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ABSTRACT OF THE DISSERTATION 
 

 
Behavioral and fMRI-based Characterization of Cognitive Processes Supporting Learning and 

Retrieval of Memory for Words in Young Adults 
 

by 

Binyam Nardos 

Doctor of Philosophy in Biology and Biomedical Sciences 

Neurosciences 

Washington University in St. Louis, 2015 

Professor Bradley L. Schlaggar, Chair 

A novel word is rarely defined explicitly during the first encounter. With repeated 

exposure, a decontextualized meaning of the word is integrated into semantic memory. With 

the overarching goal of characterizing the functional neuroanatomy of semantic processing in 

young adults, we employed a contextual word learning paradigm, creating novel synonyms for 

common animal/artifact nouns that, along with additional real words, served as stimuli for the 

lexical-decision based functional MRI (fMRI) experiment. Young adults (n=28) were given 

two types of word learning training administered in multiple sessions spread out over three 

days. The first type of training provided perceptual form-only training to pseudoword (PW) 

stimuli using a PW-detection task. The second type of training assigned the meaning of 

common artifacts and animals to PWs using multiple sentences to allow contextual meaning 
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acquisition, essentially creating novel synonyms. The underlying goals were twofold: 1) to test, 

using a behavioral semantic priming paradigm, the hypothesis that novel words acquired in 

adulthood get integrated into existing semantic networks (discussed in Chapter 2); and 2) to 

investigate the functional neuroanatomy of semantic processing in young adults, at the single 

word level, using the newly learned as well as previously known word stimuli as a conduit 

(discussed in Chapter 3).  

As outlined in Chapter 2, in addition to the semantic priming test mentioned above, two 

additional behavioral tests were administered to assess word learning success. The first was a 

semantic memory test using a two-alternative sentence completion task. Participants 

demonstrated robust accuracy (~87%) in choosing the appropriate meaning-trained item to 

complete a novel sentence. Second, an old/new item recognition test was administered using 

both meaning and form trained stimuli (old) as well as novel foil PWs (new). Participants 

demonstrated: a) high discriminability between trained and novel PW stimuli. (d-prime=2.72); 

and b)faster reaction times and higher accuracy for meaning-trained items relative to 

perceptually trained items, consistent with prior level-of-processing research. The results from 

the recognition and semantic memory tests confirmed that subjects could explicitly recognize 

trained items as well as demonstrate knowledge of the newly acquired synonymous meanings. 

Finally, using a lexical decision task, a semantic priming test assessed semantic integration 

using the novel trained items as primes for word targets that had no prior episodic association 

to the primes. Relative to perceptually trained primes, meaning-trained primes significantly 

facilitated lexical decision latencies for synonymous word targets. Taken together, the 
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behavioral findings outlined above demonstrate that a contextual approach is effective in 

facilitating word learning in young adults. Words learned over a few experimental sessions 

were successfully retained in declarative memory, as demonstrated by behavioral performance 

in the semantic memory and recognition memory experiments. In addition, relative to 

perceptually trained PWs, the newly meaning-trained PWs, when used as primes in a semantic 

priming test, facilitated lexical decisions for synonymous real words, with which the primes 

had no prior episodic association. The latter finding confirms our primary behavioral 

hypothesis that novel words acquired in adulthood are represented similarly, i.e. integrated in 

the same semantic memory representational network, as common words likely acquired early 

in the lifetime. 

Chapter 3 outlines the findings from the fMRI experiment used to investigate the 

functional neuroanatomy of semantic processing using the newly learned as well as previously 

known words as stimuli in a lexical decision task. fMRI data were collected using a widely-

spaced event-related design, allowing isolation of item-level hemodynamic responses. Two 

fMRI sessions were administered separated by 2-3 days, the 1st session conducted prior to, and 

the 2nd session following word-learning training. Using the same items as stimuli in the fMRI 

sessions conducted before and after behavioral training, facilitated a within-item analysis 

where each item effectively served as its own control. A set of stringent criteria, outlined 

below, were established a-priori describing characteristics expected from regions with a role in 

retrieving/processing meanings at the single word level. We expected a putative semantic 

processing region to exhibit: a) higher BOLD activity during the 1st fMRI session for real 
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words relative to novel PWs; b) reduced BOLD activity for repeated real words presented in 

the 2nd fMRI session relative to levels seen in the 1st fMRI session; c) higher BOLD activity for 

meaning-trained PWs relative to novel PWs; d) higher BOLD activity for meaning-trained 

PWs relative to perceptually trained PWs, e) higher BOLD activity for correctly identified 

meaning-trained PWs (hits) relative to their incorrect counterparts (misses). Given their 

previously documented associations with semantic processing, we expected to identify regions 

in left middle temporal gyrus (MTG) and left ventral inferior frontal gyrus (vIFG) to exhibit 

timecourses consistent with most of the semantic criteria outlined above.  

Individual ANOVA contrasts, essentially targeting each of the criteria outlined above, 

were conducted at the voxelwise level. A fixed effects analysis based on 4 correct trial 

ANOVA contrasts (corresponding to criteria a-d, above) generated 81 regions of interest; and 

two individual error vs. correct trial ANOVA contrasts generated an additional 16 regions, for 

a total of 97 study-driven regions. Using region-level ANOVAs and qualitative timecourse 

examinations, the regions were probed for the presence of the effects outlined in the above 

criteria. To ensure a comprehensive analysis, additional regions were garnered from prior 

studies that have used a variety of tasks to target semantic processing. The literature-derived 

regions were subjected to similar ANOVAs and qualitative timecourse analysis as was 

conducted on the study-driven regions to examine if the regions exhibited effects outlined in 

the above criteria.  

The above analysis resulted in three principal observations. First, we identified regions 

in the left parahippocamal gyrus (PHG) and left medial superior frontal cortex (mSFC) that, by 
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satisfying essentially all the above criteria, demonstrated a role in semantic memory retrieval 

for recently acquired and previously known words. Second, despite strong expectations, 

regions in the left MTG and left vIFG failed to show activity in support of a role in semantic 

retrieval for the novel words. On the contrary, the profiles seen in the two said regions, namely 

a ‘word > novel PW’ and a word repetition suppression effect, were consistent with a role in 

semantic retrieval exclusively for the previously known words. The latter observation suggests 

that the novel words have yet to undergo adequate consolidation to engage, in addition to PHG 

and mSFC, canonical semantic regions such as left MTG.  

Third, despite the potentially crucial distinctions noted in Chapter 3, left lateral/medial 

parietal regions implicated in episodic memory retrieval exhibited many similar properties as 

those outlined for PHG and mSFC above during retrieval of newly learned words. Crucially, 

instead of exhibiting repetition suppression for real words, as observed in PHG/mSFC, the 

parietal regions showed the opposite effect resembling the episodic ‘old>new’ retrieval success 

effect. The latter observation argues against a sematic role and in support of an episodic role 

consistent with previous literature. Taken together, these observations suggest that in addition 

to the role played by PHG/mSFC supporting semantic memory retrieval for the novel words, 

the parietal regions are also making significant contributions for memory retrieval of the novel 

words via complementary episodic processes.  

Finally, using item-level timecourses derived from the 97 study-driven ROI, clustering 

algorithms were used to group regions with similar characteristics, with the goal of identifying 

a cluster corresponding to a putative semantic brain system. A number of clusters were 
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identified containing regions with anatomical and functional correspondence to previously 

well-characterized systems. For instance, a cluster containing regions in left lateral parietal 

cortex, precuneus, and superior frontal cortex corresponding to a previously described episodic 

memory retrieval system (Nelson et al., 2010) was identified. Two additional clusters, 

corresponding to frontoparietal and cinguloopercular task control systems (Dosenbach et al., 

2006, 2007) were also among the identified clusters. However, the clustering analysis did not 

identify a cluster of regions with semantic properties, such as PHG and mSFC noted above, 

that could potentially correspond with a semantic brain system.  

The above outlined findings from the current study, juxtaposed with prior findings from 

the literature, were interpreted in the following manner. The two regions identified in the 

current study, i.e. left parahippocampal gyrus and medial superior frontal gyrus, constitute 

regions that are used for learning new words, and are also recruited during semantic retrieval of 

previously well-established meanings. In addition, the current results also suggest 

complementary episodic contributions to the word learning process from regions in left 

parietal/superior frontal cortex. The latter observation may imply strong episodic contributions 

to the observed behavioral semantic priming effects. A potential counter argument, i.e. in 

support of a semantic basis for the priming effects, is the shared recruitment, in a manner 

consistent with semantics, of PHG/mSFC by both novel and real word stimuli. 

The left middle temporal gyrus, a region that the task-evoked and neuropsychological 

literature consistently associates with word-level semantic processing, was not recruited during 

memory retrieval of novel words, despite robust engagement by previously known word 
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stimuli. Given their association with category-selective semantic deficits, as well as their role 

in conceptual/perceptual processing in healthy brains, the memory consolidation literature 

proposes regions in the lateral temporal lobes as potential neocortical loci for consolidated 

long-term memory. In the current setting, it is likely the case that the novel words have yet to 

be adequately consolidated to engage left MTG as did the previously known words.  

Finally, the left vIFG exhibited similar characteristics as the left middle temporal gyrus, 

in that it was not recruited by the newly meaning trained stimuli, despite showing engagement 

by previously known words. Given that the region failed to appear in our primary contrasts, 

even those targeting real word stimuli, and its absence in other prior studies that have used 

similar lexical decision tasks as the current study, we have a slightly different interpretation for 

that region. The left vIFG is typically recruited in task settings that require controlled/strategic 

meaning retrieval, a process that may not be critical for adequate performance of the lexical 

decision task as employed in the current study. 

Taken together, these findings suggest that a relatively small amount of word learning 

training is sufficient to create novel words that, in young adults, behaviorally resemble the 

semantic characteristics of well-known words. On the other hand, the fMRI findings, 

particularly the failure of the newly meaning-trained items to engage regions that are 

canonically responsive to single word meanings (e.g. middle temporal gyrus), may suggest a 

more protracted timecourse for the functional signature of novel words to resemble that of 

well-known words. That said, the fMRI findings identified brain regions (left PHG/mSFC) 

that, consistent with the memory consolidation literature, serve as the functional 
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neuroanatomical “bridge” that connects the novel words to the eventual functional 

representational destination. 
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Chapter 1: Introduction 
1.1 Relevance of the Conducted Research 

Language, and more specifically the ability to communicate using infinite combinations 

of arbitrary symbolic representations, i.e. words corresponding to concrete percepts and 

abstract concepts, is a quintessential human ability. Underlying this capacity is the human 

brain. The primary focus of this work is to elucidate how the healthy, young adult human brain 

accomplishes the remarkable tasks of learning, retaining, elaborating on, and instantiating the 

meaning of words, at the single-word level.  

Humans continue to exercise the capacity for learning new words across the lifespan. 

Despite the decline in many cognitive abilities that accompanies healthy aging, vocabulary size 

(Ramscar, Hendrix, Shaoul, Milin, & Baayen, 2014; Verhaeghen, 2003) and overall verbal 

memory capacity (Trey Hedden, Lautenschlager, & Park, 2005; Park, Smith, Lautenschlager, 

Earles, & et al, 1996) are relatively preserved and potentially increasing across the lifespan. In 

addition, vocabulary size may serve as a potential compensating buffer for verbal memory 

capacity that is relatively well preserved in old age. To that effect, while processing speed is 

the biggest predictor of age-related performance decline in a range of memory tests, 

vocabulary size, particularly in older adulthood, increasingly offsets the negative effects of 

slowed processing speed, thereby allowing for the selective preservation of verbal memory 

capacity (Trey Hedden et al., 2005; Park et al., 1996).  



	  
 

 

 

2	  

Vocabulary size also has strong predictive ties to educational achievement. For 

instance, deficient vocabulary has been proposed as one of the primary causes of the lagging 

academic achievement observed in disadvantaged students in grades 3 to 12 (Becker, 1977). 

Knowledge of word meanings is thought to be the essential building block for the acquisition 

of subsequent concepts that, themselves, build on the framework of existing vocabulary. 

Hence, the capacity to learn new concepts itself is necessarily dependent on the learner’s 

existing knowledge base. Without adequate vocabulary, students in the later school years are 

being asked to develop novel conceptual combinations of presumed known concepts with 

insufficient tools (Adams, 1994; Baker, 1995). Hence, the capacity for the knowledge of word 

meanings is at the heart of the achievements possible by humans as lifelong learners. 

As stated above, learning novel words is a lifelong endeavor and knowledge of word 

meanings is a capacity that strongly influences educational achievement as well as verbal 

memory capacity across the lifespan. Here, we used a contextual word learning paradigm to 

characterize in young adult subjects the cognitive processes and functional neuroanatomy 

supporting semantic processing associated with learning single words. Specifically, using a 

multi-context sentential training approach, pseudoword stimuli were given meanings and were 

effectively turned into synonyms to existing words. An additional goal of the current project 

was to isolate, via subtractive inference, BOLD activity related to retrieval of meaning, i.e. 

semantic memory, from co-recruited processes related to retrieval of perceptually familiar 

word-forms with no semantic associations. To this end, a separate group of pseudowords were 

given perceptual training using a pseudoword detection task. Finally, using fMRI before and 
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after behavioral training, we characterized the functional neuroanatomical changes associated 

with transforming a meaningless string of letters into meaningful words.  

1.2 Behavioral Characterizations of Word-Level Semantic 
Processes 

Following behavioral word learning training, a series of behavioral tests were 

administered to ascertain that novel semantic information has been successfully acquired. 

Behavioral testing was conducted with two goals in mind. The first goal was characterize the 

lexical configuration (Leach & Samuel, 2007) properties of the novel words, i.e. properties 

intrinsic to the novel words themselves. This characterization was carried out using a 

recognition memory and a sentence-completion semantic memory test intended to demonstrate 

that the novel words could be explicitly recognized and used appropriately in novel sentence 

contexts, respectively. The second goal was to provide evidence that the novel words exhibit 

lexical engagement (Leach & Samuel, 2007) with semantically related (synonymous) 

previously known words, which would be indicative of integration of the former in the lexicon. 

Here, this was accomplished using a semantic priming paradigm that used the novel words as 

semantic primes to synonymous previously known words. The current priming paradigm 

employed a short (250-ms) stimulus onset asynchrony, with the goal of targeting priming 

effects driven by automatic strategy-free spreading activation processes (Collins & Loftus, 

1975; Neely, 1977; Posner & Snyder, 1975). As outlined below, the latter goal of 

demonstrating semantic priming effects for the novel words provides evidence to help address 

a somewhat controversial question – are words acquired in adulthood representationally similar 

to words acquired early in the lifespan?  
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As stated above, there was prior work (Qiao, Forster, & Witzel, 2009) that had 

suggested that late-learned words were representationally distinct from words learned early, 

and hence not fully integrated in the lexicon. Although the group has subsequently changed 

their position (Qiao & Forster, 2012), their earlier hypothesis was that late-learned words are 

only represented in episodic memory without lexico-semantic integration with words acquired 

early. On the other hand, there are a number of studies that have documented lexical 

engagement effects produced by late-learned novel words on their early-acquired counterparts, 

indicative of integration in the lexicon. For instance, learning a novel spoken word (e.g. 

cathedruke) results in lexical competition between the novel word and an existing 

orthographically neighboring word (e.g. cathedral), manifested as slowed reaction times for the 

latter in lexical decision (Dumay, Gaskell, & Feng, 2004) and pause-detection (Gaskell & 

Dumay, 2003) task settings. The observed lexical engagement effects took place days 

following training, which suggested that sleep-dependent memory consolidation processes play 

an important role in integrating the novel words in the lexicon (Dumay & Gaskell, 2007). 

Lexical integration for late-acquired novel words has also been demonstrated using a semantic 

priming approach, although there are only a handful of studies that, in our opinion, established 

bona fide semantic priming effects (Tamminen & Gaskell, 2012). As noted below, the current 

investigation took steps to ensure that the priming effects were driven by semantic prime-target 

interactions. Hence, this work should be a welcome addition to the sparse literature 

investigating a lexical integration hypothesis for novel words acquired in adulthood. 



	  
 

 

 

5	  

In semantic priming paradigms, observed priming effects could be generated due to a 

number of prime-target relationships, not all of which may be reflective of semantic 

interactions between prime and target (refer to (Hutchison, 2003; McNamara, 2005; Neely, 

1991) for detailed reviews). One potential driver of semantic priming effects, which is the 

process targeted in the current experiment, is prime-target semantic relatedness (Neely, 1977). 

In this type of priming, a prime (e.g. doctor) facilitates processing (e.g. by speeding up lexical 

decisions) of a semantically related target word (e.g. nurse), relative a target word with no 

semantic relationships to the prime (e.g. cat). Another potential driver for priming effects is 

mediated priming (D. A. Balota & Lorch, 1986) in which a prime (e.g. lion) can prime an 

unrelated word (e.g. stripes), via the meditational influence of a related word (e.g. tiger), albeit 

without explicit exposure to the mediating word. Finally, a third potential source for priming 

effects is the frequency of episodic association between prime and target (McKoon & Ratcliff, 

1979; Pecher & Raaijmakers, 1999). In this case, the word “mouse” can prime “cheese” 

because those two words are frequently co-experienced, even though they may not be 

semantically related. To preclude episodic priming effects from influencing the targeted 

semantic priming effects, the current paradigm ensured that the primes and targets were never 

presented together during training. In addition, given the potentially crucial role of sleep-

dependent memory consolidation for lexical integration (Dumay & Gaskell, 2007; Tamminen 

& Gaskell, 2012), the current experiment provided behavioral training over the course of 2-3 

days prior to testing. 
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1.3 Cognitive Neuroscientific Perspectives of Memory 
Organization 

The faculty of memory has intrigued philosophers for centuries, and recorded 

philosophical accounts of memory organization date at least as far back as Aristotle. Aristotle 

viewed the human mind (although “soul” might be more apt here) as a blank slate on which a 

lifetime of experience gets recorded as memory (Smith, 1931). His “storehouse” view of 

memory held sway for many centuries, and despite subsequent advances in our understanding 

of memory, it arguably still continues to do so. Around the latter part of the 19th century, the 

German philosopher Herman Ebbinghaus, credited for conducting the first formal scientific 

experiments on human memory, forwarded an account of memory organization resembling 

current perspectives (Tulving, 1983). Ebbinghaus classified memory as three distinct types, 

sensory, short-term, and long-term memory, and this general framework, albeit with nuanced 

elaborations by subsequent models, remains relevant to this day. Following the mid 20th 

century “cognitive revolution”, which brought about advances particularly in the domain of 

short-term or working memory, the next major development was Endel Tulving’s classification 

of longterm declarative memory into episodic and semantic memory (Tulving, 1983). 

At the highest level of stratification, current perspectives identify two types of memory, 

declarative and implicit. Declarative memory is consciously available and can be explicitly 

reported, and is itself further divided into short-term (or working memory) and long-term 

memory. In contrast, implicit memory, which underlies phenomena such as semantic priming, 

is memory that, although not necessarily consciously accessible, can nonetheless be 

characterized based on its effects on subsequent behavioral performance. Finally, long-term 
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declarative memory, which is the current focus, is divided into episodic and semantic memory. 

The former describes memory for a specific event or experience directly associated with and 

elaborated on by the agent, and the latter is defined as memory for facts and word meanings 

that are generally not associated with a specific spatiotemporal experience. Below we provide a 

brief overview of prominent theoretical accounts to date of episodic and semantic memory 

organization that emerged based on decades of behavioral, computational, and neuroscientific 

research.  

One view (Shimamura & Squire, 1987; L R Squire, Knowlton, & Musen, 1993; Larry 

R Squire & Zola, 1998) posits that semantic memory is constructed based on extraction of a 

common associative organizing rule across a series of episodically experienced memory 

instances. Relevant to the current research on memory for word meanings, the above account 

would posit that for a context-independent semantic memory captured by the word “dog” to 

emerge, one needs to have had multiple episodic experiences, and hence memory, of dogs. 

Alternatively, switching from an earlier viewpoint(Tulving, 1983), Endel Tulving proposed 

three monohierarchically organized memory systems, namely a perceptual, semantic, and 

episodic system in which encoding proceeds serially from perceptual, to semantic, to episodic 

representations (Tulving, 1995, 2001). Relevant to the current research, this view would 

suggest that encoding a personally significant episodic memory of an incident with a dog 

requires, as a fundamental ingredient, knowledge of what a dog is, i.e. semantic memory. In 

support of the latter perspective, proponents note the earlier developmental onset of the 

capacity for semantic relative to episodic memory observed in children of 4-5 years of age 
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(Carey, 1985; de Haan, Mishkin, Baldeweg, & Vargha-Khadem, 2006; Murphy, 2002; Quinn 

& Eimas, 1997; Wheeler, Stuss, & Tulving, 1997). The aforementioned radically different 

theoretical perspectives on the relative properties of episodic and semantic memory processes 

underscore that our understanding of memory systems is still in its infancy. They also 

foreshadow the challenge in making interpretations of the cognitive neuroscientific research to 

date regarding the potentially distinct functional neuroanatomy underlying episodic and 

semantic memory retrieval.  

1.4 Neuropsychological Memory Research 
Based on neuropsychological research, brain regions in the medial temporal lobe 

(MTL), namely the hippocampus proper and neighboring entorhinal, perirhinal, and 

parahippocampal cortex, have long been regarded as critical for the formation of new episodic 

memory. Damage to these regions results in anterograde amnesia (Scoville & Milner, 1957) 

marked by the inability to recall recent episodic memory, while remote memory acquired prior 

to the neurological injury remains unaffected. Whether the hippocampus also supports the 

acquisition and retrieval of semantic memory is less established. The classic example used as 

evidence to argue hippocampal involvement in semantic memory comes from H.M., a patient 

who underwent bilateral MTL resection for medically intractable epilepsy. H.M. was unable to 

learn and retain new words that did not exist prior to the surgery (e.g. “Xerox”), despite normal 

memory for semantic information acquired prior to the amnesia (Gabrieli, Cohen, & Corkin, 

1988). A slightly different account states that while the hippocampus is critical for episodic 

memory, some capacity to acquire semantic memory remains if damage to the MTL spares the 
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parahippocampal, entorhinal, and perirhinal cortex (Bindschaedler, Peter-Favre, Maeder, 

Hirsbrunner, & Clarke, 2011; Holdstock, Mayes, Isaac, Gong, & Roberts, 2002; Mishkin, 

Vargha-Khadem, & Gadian, 1998; Verfaellie, Koseff, & Alexander, 2000). However, as 

counter evidence, others note that relative to healthy controls, semantic memory acquisition in 

hippocampal amnesics is impaired, and any remaining capacity requires many repetitions 

(Glisky, Schacter, & Tulving, 1986; Hayman, Macdonald, & Tulving, 1993; Kovner, Mattis, & 

Goldmeier, 1983; Shimamura & Squire, 1987; Tulving, Hayman, & MacDonald, 1991) 

potentially suggesting the involvement of other non-hippocampal implicit memory 

mechanisms.  

On the other hand, the findings from neuropsychological research investigating 

semantic deficits resulting from (non-MTL) brain damage are relatively less controversial. 

Lesions to grey matter structures as well as underlying white matter in the left lateral temporal 

lobe, particularly the posterior middle temporal gyrus (MTG) and anterior aspects of the 

superior temporal gyrus, result in semantic comprehension deficits (Dronkers et al., 2004; 

Turken & Dronkers, 2011). Relatedly, lesions in the posterior MTG have also been associated 

with comprehension deficits at the single word level (Hart & Gordon, 1990). Another avenue 

of neuropsychological research on selective semantic impairments (Warrington, 1975) comes 

from patients with the temporal variant of frontotemporal lobar degeneration (tvFTLD), 

sometimes also referred to as semantic dementia. tvFTLD is a neurodegenerative disease 

characterized by bilateral atrophy of the anterior temporal lobes associated with semantic 

impairments in picture naming, spoken/written word-level comprehension, and generation of 
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category exemplars (e.g. animals, furniture) (Hodges, Patterson, Oxbury, & Funnell, 1992). 

Although the anterior temporal lobe atrophy is typically bilateral, there is some evidence 

suggesting a left vs. right hemisphere asymmetry associated with verbal vs. perceptual (e.g. 

names vs. faces) semantic impairments, respectively (Lambon Ralph, McClelland, Patterson, 

Galton, & Hodges, 2001; Snowden, Thompson, & Neary, 2004), although others disagree with 

the proposed asymmetry (Visser, Jefferies, & Lambon Ralph, 2010). Overall, unlike the MTL 

discussed above, whose role in episodic vs. semantic memory retrieval is more controversial in 

the neuropsychological literature, there is relatively more consensus associating left lateral 

temporal damage exclusively with semantic deficits. 

1.5 Task Activation-Based Memory Research 
In task-based episodic memory retrieval studies employing classic old/new item 

recognition paradigms, consistently reported regions include the left lateral parietal cortex, 

bilateral precuneus and posterior cingulate, as well as medial and lateral frontal regions in the 

left hemisphere (Cabeza, Ciaramelli, Olson, & Moscovitch, 2008; I. G. Dobbins & Wagner, 

2005; Nelson et al., 2010; Wheeler & Buckner, 2003; Yonelinas, Otten, Shaw, & Rugg, 2005; 

Yonelinas, 2002). The noted regions exhibit a canonical retrieval success effect whereby 

previously seen (i.e. old) items exhibit higher BOLD activity than novel foils. Notably a 

similar set of regions in left medial and lateral parietal cortex, with the left angular gyrus as the 

prime example, has been associated in multiple meta-analytic studies with semantic processing 

(Binder, Desai, Graves, & Conant, 2009; Seghier, 2013; Vigneau et al., 2006).  
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In addition to the regions noted above, making episodic source retrieval judgments 

recruits an additional set of regions in the left hemisphere not typically present in item 

recognition or recency/novelty judgment tasks. These include regions in the MTL 

(hippocampus/posterior parahippocampus), medial superior frontal cortex, posterior MTG, and 

left vIFG (I G Dobbins, Foley, Schacter, & Wagner, 2002; I G Dobbins, Rice, Wagner, & 

Schacter, 2003). The latter finding, particularly the recruitment of the left vIFG and left MTG, 

appears to be specific to retrieval of source memory whose contents are conceptual (i.e. not 

perceptual) (I. G. Dobbins & Wagner, 2005). These findings, coupled with previously 

demonstrated semantic properties of left MTG and left vIFG, were attributed to a greater 

demand in semantic elaboration between source and item in the conceptual source retrieval 

task, consistent with cognitive theories (I G Dobbins et al., 2002; Daniel L Schacter, Norman, 

& Koutstaal, 1998; Tulving, 1983). It is interesting to note that regions typically recruited in 

semantic tasks (i.e. left MTG and left vIFG), are similarly recruited in a task setting requiring 

recollection of specific episodic details, albeit of conceptual makeup.  

In task-based semantic studies, regions in the left posterior MTG and left ventral 

inferior frontal gyrus pars orbitalis (vIFG) have been consistently implicated in semantic 

processing based on tasks such as making abstract/concrete judgments (Donaldson, Petersen, 

& Buckner, 2001; Friederici, Opitz, & von Cramon, 2000), verb-generation (J. A. Fiez, 

Raichle, Balota, Tallal, & Petersen, 1996; Petersen, Fox, Posner, Mintun, & Raichle, 1988; 

Roskies, Fiez, Balota, Raichle, & Petersen, 2001), and semantic classification/comparison 

(Badre, Poldrack, Pare-Blagoev, Insler, & Wagner, 2005; Thompson-Schill et al., 1997; A D 
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Wagner, Pare-Blagoev, Clark, & Poldrack, 2001). The same two regions also exhibit repetition 

suppression, an effect that, in the two regions, has been selectively attributed to priming due to 

conceptual (i.e. not perceptual) repetition (D. L. Schacter & Buckner, 1998; Daniel L Schacter, 

Wig, & Stevens, 2007; Wig, Grafton, Demos, & Kelley, 2005). Relevant to the current study, 

an additional property of left vIFG implicating the region more specifically to 

controlled/strategic semantic retrieval (as opposed to automatic) deserves to be highlighted. 

While consistently recruited by tasks targeting controlled semantic retrieval, as used in the 

above studies, left vIFG is not always recruited by simple lexical decision tasks (Fiebach, 

Friederici, Muller, & von Cramon, 2002; Fiebach, Ricker, Friederici, & Jacobs, 2007; Henson, 

Price, Rugg, Turner, & Friston, 2002). A potential explanation for the above observation is that 

the lexical decision task, similar to that used here, maybe sufficiently performed with 

automatic (i.e. not controlled) access to semantic information alone. 

Finally, studies using a word learning approach similar to the current work reveal word 

learning related functional neuroanatomy that is consistent with the neuropsychological and 

task-based memory retrieval research summarized above.  The most consistent finding 

associates BOLD activity in left MTL, hippocampus and parahippocampal gyrus in particular, 

with supporting memory for newly acquired word meanings (Breitenstein et al., 2005; Mestres-

Missé, Càmara, Rodriguez-Fornells, Rotte, & Münte, 2008; Sandak et al., 2004). The above 

studies also implicated regions in the left MTG and left IFG in semantic processing underlying 

novel word learning, although these latter findings should be considered with the caveats 

discussed in chapter 3. Finally, prior word learning studies also report the involvement of left 
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parietal regions, particularly the angular gyrus, in support of memory for novel words. 

However, across studies, a seemingly inconsistent functional profile has been reported for the 

angular gyrus (e.g. compare Sandak et al., 2004 and Clements-Stephens et al., 2012 (Clements-

Stephens et al., 2012; Sandak et al., 2004)), that makes a straightforward interpretation 

somewhat problematic.  

In all, the aforementioned brief summary of the neuropsychological and task-based 

memory research reveals many similarities, but also some differences in the functional 

neuroanatomy attributed to episodic and semantic memory processes. With their recruitment in 

episodic source retrieval contexts notwithstanding, the pattern of findings in left MTG and left 

vIFG are consistent with a selectively semantic interpretation. On the other hand, a clear 

adjudication in support of a role in episodic or semantic memory for left hemisphere regions in 

the MTL and medial/lateral parietal cortex would frankly not be justified at this juncture.  

As a final note, perhaps not surprisingly given the somewhat inconclusive region-level 

functional distinctions between episodic and semantic memory outlined above, well-

characterized and replicated systems-level organization of regions involved in memory 

operations is lacking. While some formal work has been done to that effect in the episodic 

memory domain (Nelson et al., 2010), no such effort has been documented, to our knowledge, 

identifying a putative semantic brain system. Hence, the current work conducted clustering 

analyses of regional task-evoked timecourses in an effort to reveal potential brain systems 

corresponding to semantic processing. 



	  
 

 

 

14	  

1.6 Time-Dependent Memory Consolidation 
One aspect of declarative memory processes and associated functional neuroanatomy 

that is especially relevant to the current work and deserves an explicit introduction is the 

constantly evolving nature of memory representations across time. One particular 

neuropsychological observation dating back to the 1880s was instrumental in revealing the 

time-dependent nature of declarative memory representations. The French psychologist 

Théodule Ribot observed that in some patients that experienced memory loss due to head 

trauma, the degree of memory impairment exhibited a time gradient such that memory 

acquired closer in time to the trauma was more compromised relative to remote memory. The 

phenomenon, termed temporally-graded retrograde amnesia, has been linked to medial 

temporal lobe damage, with more pronounced deficits when damage extends beyond the 

hippocampus to neighboring entorhinal, perirhinal, and parahippocampal cortex (N. J. Cohen 

& Squire, 1981; Moscovitch, Nadel, Winocur, Gilboa, & Rosenbaum, 2006; L. R. Squire, 

1992). Observations from retrograde amnesia led to the hypothesis that once outside a given 

time window, memory retrieval is progressively less dependent on the hippocampus and 

neighboring MTL structures. This change is thought to be due to the migration of memory 

representations to neocortical areas, such as regions in the left lateral temporal lobe and medial 

prefrontal cortex (Atir-Sharon, Gilboa, Hazan, Koilis, & Manevitz, 2015; Ghosh & Gilboa, 

2014; Takashima et al., 2006; van Kesteren, Ruiter, Fernández, & Henson, 2012), in a time-

dependent, memory consolidation process (McClelland, McNaughton, & O’Reilly, 1995; 

McClelland, 2013; Nadel & Moscovitch, 1997). Numerous computational models have been 

proposed, exemplified by two prominent models discussed below, to characterize time-
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dependent memory consolidation processes potentially associated with evolving functional 

neuroanatomy.  

The first is the Complementary Learning Systems (CLS) model proposed by James 

McClelland and colleagues (McClelland et al., 1995) which is one example of so-called 

“Standard Models” and the second is the Multiple Traces Theory (MTT) (Nadel & 

Moscovitch, 1997). Both the CLS and MTT models regard the hippocampus as critical to rapid 

episodic memory acquisition and both models generally regard neocortical memory 

consolidation as a relatively slower process operating at a timescale of days/weeks. There are 

two basic differences between the two models. First, in the CLS model, the hippocampus is 

only critical for retrieval and consolidation of recent, i.e. relatively novel memory. For remote 

memory matching a neocortical representation, the medial prefrontal cortex inhibits the 

hippocampus to avoid duplicate encoding (Frankland & Bontempi, 2005). On the other hand, 

in the MTT, the hippocampus continues to be involved in the retrieval and reconsolidation of 

even remote memory. The second difference is that while the CLS makes no distinctions 

between episodic vs. semantic memory, the MTT treats the two types of memory slightly 

differently. Proponents of the MTT note that in retrograde amnesia, episodic and semantic 

memory are affected differently such that episodic memory shows a shallow temporal gradient 

relative to semantic memory (Nadel & Moscovitch, 1997). Hence, in the MTT, the 

hippocampus continues to be necessary for both recent and remote episodic memory. As for 

semantic memory, the multiple hippocampal traces of similar recent and remote episodes allow 

“extraction of factual information…and its integration with…[neocortical] semantic memory 
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stores” (Nadel & Moscovitch, 1997). Hence, in the MTT, only decontextualized neocortical 

semantic memory could potentially be retrieved independently of the hippocampus.   

The aforementioned models of memory consolidation, despite their differences, jointly 

highlight an important point directly relevant to this investigation. Memory representations are 

dynamic in nature and the functional neuroanatomy related to retrieving memory for old, 

previously known words, could potentially differ from that related to retrieving memory for 

recently learned words. Hence, in an effort to leverage semantic memory retrieval processes 

using both remote and recently acquired memory, our stimulus list constituted both previously 

known words and the novel words acquired over multiple days. Below, we provide a brief 

overview of the behavioral and functional imaging findings documented in Chapter 2 and 

Chapter 3, respectively. 

1.7 Brief Summary of Data Chapters 
Forthcoming in the remainder of this thesis are three chapters. Chapter 2 documents 

findings from our behavioral characterizations of memory for newly acquired meaningful 

words relative to that of perceptually trained word forms based on performance in tasks 

targeting implicit and explicit memory. Chapter 3 documents findings from functional 

neuroanatomical investigations of word-level semantic processing using previously known and 

newly learned words, as well as novel and familiar pseudowords (PW) to leverage putative 

semantic processing regions. Also reported in Chapter 3 are results from a clustering-analysis 

of regional task-evoked timecourses primarily aimed at identifying a semantic brain system. 

Finally, Chapter 4 integrates the findings from the two preceding data chapters with prior 
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literature to contextualize our characterizations of the functional neuroanatomy underlying 

retrieval of memory for word meanings. The primary findings from data chapters 2 and 3 are 

summarized below. 

As outlined in Chapter 2, our behavioral goals were two-fold. The first was to establish 

that behavioral training successfully resulted in meaning learning and form familiarity assessed 

using old/new item recognition and 2-alternative sentence-completion semantic memory tests 

targeting explicit memory. Based on recognition memory performance, we demonstrate that 

subjects were proficient at discriminating trained items (both meaning and perceptually 

trained) from novel foils. In addition, resembling level-of-processing effects documented for 

real words (Craik & Lockhart, 1972), we demonstrate that the deeper encoding afforded by 

meaning training results in faster and more accurate recognition for meaning relative to form 

trained items. Based on performance in the sentence-completion semantic memory test, we 

demonstrate that subjects successfully learned new words as evidenced by their proficiency in 

choosing appropriate newly trained words to complete novel sentences. 

The second behavioral goal was to demonstrate using a semantic priming paradigm that 

newly learned words would act as semantic primes to previously known synonymous words 

that had no prior episodic association with the primes. We show that, relative to perceptually 

trained primes, meaning-trained primes significantly facilitated lexical decision latencies for 

synonymous word targets. We interpret the latter finding as evidence indicating that novel 

words acquired in young adulthood are representationally integrated with common previously 

known words in the lexicon likely acquired early in the lifespan. 



	  
 

 

 

18	  

Chapter 3 documents the findings from the fMRI experiment used to investigate the 

functional neuroanatomy of word-level semantic processing using the PWs used in meaning 

and form training as well as actual English nouns (artifacts/animals) in a lexical decision task. 

A widely spaced event-related fMRI experiment, administered before and after the multi-day 

behavioral training, allowed for isolation of item-level hemodynamic responses, and a 

subsequent cross-session within-item analysis where each item effectively served as its own 

control. A set of a-priori hypotheses described characteristics expected from regions with a role 

in retrieving/processing meanings at the single word level. We expected a putative semantic 

processing region to exhibit: a) higher BOLD activity for real words relative to novel PWs; b) 

cross-day repetition-related BOLD suppression for real words; c) higher BOLD activity for 

meaning-trained PWs relative to novel PWs; d) higher BOLD activity for meaning-trained 

PWs relative to perceptually trained PWs, and e) higher BOLD activity for correctly identified 

meaning-trained PWs (hits) relative to their incorrect counterparts (misses). A series of 

individual ANOVA contrasts were computed at the voxelwise level, and subsequently entered 

in a fixed effects analysis to generate individual brain regions that were probed for the above 

effects. Finally, in an effort to identify sets of regions that may constitute potential brain 

systems, region-level cross-condition timecourses were extracted and subjected to clustering 

analyses using multiple clustering algorithms. Four primary observations were made, which, 

along with our interpretation, are outlined below.  

First, we demonstrate that two regions, one in left parahippocampal gyrus (PHG) and 

the other in the left medial superior frontal cortex (mSFC), stood out from the other examined 
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regions, satisfying essentially all of the expected semantic properties. Juxtaposed with prior 

findings (Frankland & Bontempi, 2005; McClelland, 2013; L. R. Squire, Genzel, Wixted, & 

Morris, 2015; Takashima et al., 2006; van Kesteren et al., 2012), we posit that left PHG and 

mSFC constitute regions that are critical in the retrieval of memory for recently acquired 

words, while also continuing to be recruited during retrieval of remote well-established 

meanings. 

Second, despite our expectations based on the ample literature implicating left MTG 

and left vIFG in semantic processing, the two regions were not recruited during retrieval of 

novel word meanings. However, the two regions were recruited during retrieval of remote 

previously known word meanings, although in the case of vIFG, identifying the said effects 

required using literature-derived regions due to its absence in the study-driven contrasts. We 

propose that, despite the behavioral semantic priming effects argued to support semantic 

integration, the novel words require additional exposure and consolidation to engage 

neocortical regions such as the left MTG. While we do not discount a similar interpretation as 

above for the lack of engagement of left vIFG by the novel words, we propose an additional 

explanation. Consistent with prior work implicating left vIFG in controlled semantic retrieval 

(Badre et al., 2005; Gold et al., 2006; Roskies et al., 2001; A D Wagner et al., 2001), and its 

absence from multiple studies using lexical decision tasks for which automatic semantic access 

may be sufficient (Fiebach et al., 2002, 2007; Henson et al., 2002), our task may similarly lack 

the strategic demand to reliably engage the region.  
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Third, barring two crucial distinctions (discussed below) between the two proposed 

semantic regions (i.e. PHG/mSFC) and regions in the left medial/lateral parietal lobe 

implicated in episodic memory retrieval, the two sets of regions exhibited many similarities, 

particularly during memory retrieval for novel words. The first distinction is that while 

PHG/mSFC show BOLD suppression for repeated real words, the parietal regions showed an 

effect resembling the old > new episodic retrieval success effect (i.e. repetition enhancement) 

for words. The second more nuanced distinction was that while both sets of regions showed 

higher BOLD activity for real words relative to novel PWs, the effect was driven by a 

relatively less negative timecourse for words. The noted distinctions, particularly the word 

repetition priming effect, provide evidence for a semantic role in PHG/mSFC, and an episodic 

contribution to the memory retrieval of novel words for the parietal regions. 

Fourth, despite identifying several regions exhibiting semantic properties, notably the 

two top candidates PHG and mSFC, none of the conducted clustering analyses revealed 

groupings containing the two regions. Similarly, there was no cluster containing canonical 

semantic regions such as left MTG and vIFG. Hence, we find no evidence for a group of 

regions that, based on the conducted clustering analyses, could be said to correspond to a 

semantic brain system. Clustering analysis identified region clusters with good functional 

neuroanatomical correspondence with well-established systems, such as task-control 

(Dosenbach et al., 2006, 2007; J. D. Power et al., 2011) and dorsal attention systems (Corbetta 

& Shulman, 2002). Hence, we believe it is unlikely that the lack of a putative semantic system 

is a feature specific to this particular dataset. Instead, we propose that semantics may be an 
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emergent process built on interactions between multiple cognitive processes and corresponding 

brain systems such as task-control, memory retrieval and sensorimotor/perceptual processing 

systems. 

Taken together, these findings suggest that a relatively small amount of word learning 

training is sufficient to create novel words that, in young adults, behaviorally resemble the 

semantic characteristics of well-known words. The functional observations, particularly the 

lack of engagement of left lateral temporal regions during novel word retrieval, suggests that 

the novels words require additional time/exposure for adequate consolidation. That said, the 

fMRI findings identified a parahippocampal and a medial superior frontal region recruited 

during memory retrieval of both old and novel words. The latter medial prefrontal region in 

particular has been implicated in integrating new memory with consolidated neocortical 

memory representations. Overall, we take the fMRI observations as reflective of novel word 

memory representations that are transitioning to their eventual functional neuroanatomical 

destination, which would presumably additionally include regions in the temporal neocortex.  
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Chapter 2: Contextual Meaning Training 
Creates Novel Semantic Primes for Word 
Targets with No Direct Prior Association 

 

2.1 Abstract 
The level of representation for novel words acquired in adulthood continues to be debated. The 

debate is whether novel words learned in adulthood get integrated into semantic networks with 

extant words in the lexicon, or if they are represented separately, e.g. via episodic memory-

based representations. Using a semantic priming paradigm, this work provides evidence in 

support of the former argument, i.e. that novel words acquired in adulthood get integrated to 

extant semantic networks. Young adults (n=28) were given two types of word learning training 

administered in multiple sessions spread out over three days. The first type of training provided 

perceptual form-only training to pseudoword stimuli using a pseudoword-detection task. The 

second type of training assigned the meaning of common artifacts and animals to pseudowords 

using multiple sentences to allow contextual meaning acquisition. Using a lexical decision 

task, a 250-ms-SOA semantic priming test assessed semantic integration using the novel 

trained items as primes for word targets that had no prior episodic association to the primes. 

Relative to perceptually trained primes, meaning-trained primes significantly facilitated lexical 

decision latencies for synonymous word targets. These sets of results are taken as behavioral 

evidence that the adult subjects have successfully integrated the novel words with existing 

words in semantic memory.  

Key words: word learning, semantic priming. 
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2.2 Introduction 
Vocabulary acquisition in a naturalistic setting, especially in adulthood, is largely 

accomplished using contextual cues that are present, either in text or speech, as opposed to 

explicit definitions (Nagy, Anderson, & Herman, 1987). Despite the relative efficiency with 

which children appear to acquire novel words, the word learning process continues into 

adulthood and throughout the lifetime (Ramscar et al., 2014; Verhaeghen, 2003). And unlike 

some specific aspects of language, word learning is not subject to any known critical periods 

(Newport, Bavelier, & Neville, 2001).  

Evidence from the above reports suggests that word learning is a continuous life-long 

endeavor. Yet, in a seemingly conflicting manner, some prior reports argue that novel words 

acquired in adulthood get integrated with extant words in the lexicon, while others contend that 

early vs. late-learned words have distinct, i.e. separate representations. Before delving into 

specific findings, a brief explication of how a word’s representation is characterized is as 

follows. Leach and Samuel (Leach & Samuel, 2007), outline two properties, lexical 

configuration and lexical engagement, to characterize the nature of a word’s lexical 

representation. Lexical configuration characterizes factual properties intrinsic to the word 

itself, such as its orthographic/phonological properties, its syntactic roles etc. Lexical 

configuration is measured via tests probing explicit knowledge, such as recognition memory 

tests. On the other hand, lexical engagement characterizes the way a word “dynamically 

interacts” with other entries in the lexicon at the lexical/semantic or sublexical level. Form 

priming and semantic priming are examples of tests targeting lexical engagement, the latter of 
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which will be the current focus, given our goal to dissociate between distinct vs. integrated 

representations between novel words and existing semantic networks.  

As foreshadowed above, there is prior work targeting lexical engagement to 

demonstrate that novel words acquired in adulthood get integrated with extant words in the 

lexicon. Using a phoneme detection and a semantic verification task (Dumay et al., 2004) 

administered word learning training to novel spoken words (e.g. cathedruke) that lexically 

resemble existing words (cathedral). Following training, they used pause-detection and lexical 

decision tasks to show that learning a close lexical associate (cathedruke) had a detrimental 

effect on lexical decision (Dumay et al., 2004) and pause detection (Gaskell & Dumay, 2003) 

latencies in the base word (cathedral). The slowed base-word processing latency was taken as 

evidence for lexical engagement between the extant word (cathedral) and the novel lexical 

entry (cathedruke). Importantly, the lexical engagement effect occurred not immediately after 

training, but following a period of sleep, deemed necessary to promote information 

consolidation. Bowers et al. (Bowers, Davis, & Hanley, 2005) demonstrated that following 

orthographic training (typing), an item such as ‘banara’ leads to delayed semantic decisions on 

its orthographically neighboring word ‘banana,’ attributing the finding to a lexical engagement 

effect. More relevant here, a study by (Tamminen & Gaskell, 2012) used a contextual word 

learning paradigm and demonstrated semantic priming effects exerted by the novel word 

primes on semantically related word targets with no prior association to the primes. Echoing 

the role of sleep-dependent consolidation for semantic integration, the biggest priming effects 

were identified after one week. The above studies demonstrate that the representation of novel 
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words learned in adulthood, even in relatively few experimental sessions, can be integrated 

with the existing lexicon. 

On the contrary, others argue for distinct lexical/semantic representations for words 

learned early in life, and words acquired in adulthood. Qiao et al. (Qiao et al., 2009) repeated 

the Bowers et al. orthographic training approach described above, followed by a masked form-

priming experiment and failed to find a prime-lexicality-effect (PLE), which they used to 

counter the Bowers et al integration argument. PLE (Forster & Veres, 1998) is a behavioral 

effect whereby a word prime produces less form-priming on its orthographically neighboring 

word (contract-CONTRAST) relative to the form-priming produced by a nonword prime 

(contrapt-CONTRAST). Countering the Bowers et al. claim, they argued that due to the 

training exposure, ‘banara’ could have formed a strong episodic trace. That episodic trace 

could have then led to a delay in processing its neighbor ‘banana’ due to the increased need for 

post-lexical access spelling check, as opposed to lexical engagement, per se. In a more recent 

publication the Forster group appears to have changed their position. Qiao et al. (Qiao & 

Forster, 2012) conducted a follow-up experiment that, instead of shallow orthographic training, 

provided “deeper” meaning training to pronounceable nonwords, hereafter pseudowords (PWs) 

created as orthographic neighbors to common words, similar to their previous experiments. 

They used the PLE in a masked form priming setting as a test for lexicalization. Their first 

experiment, where testing occurred soon after training, failed to find PLE. However, their 

second experiment that used 4 training sessions spaced out over 4 weeks did produce a clear 

PLE, which they took as evidence for lexicalization. The latter result, inconsistent with their 
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earlier claims, converges with the above-mentioned studies arguing that representations for 

novel words acquired in adulthood get integrated with that of extant words in the lexicon. The 

latter result is also consistent with the prior reports in highlighting the importance of a 

consolidation period for lexical integration. 

The current study aimed to add support, particularly to the sparse novel word semantic 

priming evidence (Tamminen & Gaskell, 2012), to aid in the adjudication of the 

aforementioned conflicting views. This study took a slightly different approach than 

Tamminen & Gaskell by providing not only contextual meaning training to a set of 

pseudowords, but also perceptual form training to another set of pseudowords, counterbalanced 

with the former set. Priming effects on word targets induced by meaning-trained primes were 

measured relative to priming for words primed by (meaning-neutral) perceptually trained 

primes as the baseline, potentially allowing for cleaner isolation of automatic spreading 

activation effects (Neely, 1977). The parallel training and counterbalancing of two groups of 

pseudowords should also aid in limiting potentially confounding influence from factors such as 

form priming, as well as other item-specific lexical effects.  

2.3 Methods 

2.3.1 Subjects 
Monolingual (English-speaking), right-handed subjects (n=30, 16 female, 21-30 years, 

mean age 25 years) were recruited from Washington University and the surrounding 

community. Individuals with a history of psychiatric and/or neurological illness, or with scores 

below 50th percentile on Woodcock Johnson III reading assessment (Woodcock & Johnson, 
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2002) were excluded. Data from two subjects were excluded due to experimental error in one 

case, and the subject’s inability to complete the experiment in the other. All reported data was 

based on the remaining 28 subjects (Table 2.1).  

 
Table 2.1 - Subject Demographic and Cognitive Characteristics. 
Reading skill percentile scores were computed based on performance in the Letter-Word 
Identification, Reading Fluency, and Word Attack subtests of the Woodcock-Johnson III 
(Woodcock & Johnson, 2002). IQ was estimated using the vocabulary and matrix reasoning 
sections of the WASI (Wechsler, 1999). 

2.3.2 Stimuli 
A set of concrete nouns (50% animals; 50% artifacts; 3-9 letters; 1-3 syllables) and 

PWs (5 letters, 1 or 2 syllables) were collected from the English Lexicon Project (D. A. Balota 

et al., 2007). PWs were divided into three groups. Group 1 (n=90) and group 2 (n=90) served 

as counterbalanced targets for meaning or form training as described below. Group 3 (n=270) 

served as novel foils in behavioral tests. To minimize unwanted item effects (Hutchison, 

Balota, Cortese, & Watson, 2008), PWs across groups 1 and 2, and across animal vs. artifact 

meaning-training targets, were counterbalanced between subjects and matched in length (5 

letters/1-2 syllables), orthographic neighborhood size, bigram frequency, and lexical decision 

latency (D. A. Balota et al., 2007) (Table 2.2).  

Age !
Mean(SD)!

Sex!
(M/F)!

Reading Skill !
Mean(SD)!

Estimated IQ!
Mean(SD)!

24.84!
(2.70)! 13/15!

81.25!
(8.14)!

127.61 !
(7.00)!
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Table 2.2: Characteristics of lexical stimuli. 
Lexical characteristics of PW stimuli gathered from the English Lexicon Project (D. A. Balota 
et al., 2007). Note that meaning vs. form training targets (Group 1 and Group 2) are 
counterbalanced between subjects. *The only potentially remaining difference was in lexical 
decision RTs between one of the training groups (Group 1) and items reserved for testing 
(Group 3) (p = 0.02, uncorrected). 

2.3.3 Sentence Construction 
A separate behavioral norming study (n=13, age 21-30 years, 5 males) computed cloze 

probabilities (Taylor, 1953) for sentence stimuli using a “fill in the blank” questionnaire. Cloze 

probabilities measure the cross-subject probability of completing a sentence with the target 

word. A total of 5 sentences were selected for each of the 90 meaning-training target words, 4 

reserved for training, and 1 for semantic memory testing (described below). The target 

sentences for animal and artifact words were matched in cloze probability (animals – mean 

81%, range 60% – 100%) and (artifacts – mean 77%, range 50% - 100%) (2-tailed paired t(12) 

= 1.50; p = 0.14). 

Orthographic !
neighborhood size!

Mean bigram 
frequency!

Lexical decision !
RT (ms)!

Group 1 – meaning or form training target PWs!
Mean (SD)!

2.41!
(1.76)!

1387.54!
(635.46)!

746.66!
(58.97)!

Group 2 – meaning or form training target PWs!
Mean (SD)!

2.47!
(2.08)!

1410.83!
(795.53)!

738.86!
(46.90)!

Group 3 – foil PWs for behavioral testing!
Mean (SD)!

2.37!
(1.85)!

1359.34 !
(690.70)!

728.94!
(58.58)!

Group 1 vs. Group 2 !
2-sample t-test p-values!

0.85!
!

0.83!
!

0.32!
!

Group 1 vs. Group 3!
2-sample t-test p-values!

0.85!
!

0.75!
!

0.02*!
!

Group 2 vs. Group 3!
2-sample t-test p-values!

0.69!
!

0.58!
!

0.16!
!
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2.3.4 Experimental Procedure 
The experiment was split into 3 sessions administered over 3 or 4 days. Cognitive 

testing followed by meaning and form training were conducted on Day 1. Subjects returned on 

Day 2 for the 2nd half of meaning and form training. Behavioral testing was conducted on Day 

3. 

2.3.5 Meaning Training 
A sentence containing a PW was presented either visually on a screen or aurally via 

headphones. Subjects first inferred the intended meaning using contextual cues in the sentence, 

and then named the PW (not the inferred meaning) for recording. For the aural presentations, 

subjects heard a native English speaker reading the sentences, and upon having inferred a 

meaning, repeated the PW for recording. The targeted meanings were common animals and 

artifacts, hence, the sentential training in effect creates synonyms to existing common nouns 

(e.g. dog, canine). A novel synonym (flosh) for an exemplar target (bee) would be created 

using 4 randomly chosen sentences (2 visual, 2 aural) from the 5 exemplars shown below, with 

the 5th sentence reserved for semantic memory testing: 

(1) The flosh is the farmer's best friend because it helps pollinate flowering plants. 

(2) A flosh uses nectar as an energy source as well as to produce honey. 

(3) Fresh honey is only one of the many benefits of being a flosh farmer. 

(4) The queen of a honey-producing flosh colony may lay 2000 eggs per day during spring 

buildup. 
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(5) When a flosh stings a person, it leaves behind not only its stinger but also its abdomen 

and other body parts, which is what kills the insect. 

Note that the target word ‘bee’ is never presented during training.  

2.3.6 Perceptual Training 
Using visual/aural modalities and designed to parallel the meaning training experiment, 

subjects were presented with a meaninglessly arranged set of words containing a PW. To 

promote processing the form-training target PWs at the lexical level, the task required subjects 

to detect and name the PW aloud for recording. Matching the level of exposure in meaning 

training, a PW is presented in 4 separate form-training contexts as exemplified below:  

(1) Examples allowing families gessy read less if listeners the it high same a mobile has 

syndromes, great makes. 

(2) Syllables half from month is restrain as waves contact or poetry permanently that gessy 

the general retro tax chief. 

(3) Word be chief beings meaning which length are false, or one gessy. 

(4) Stakes for five consisting eggs water the define gessy would mobile as it housing, have 

infectious feature appeal some. 

2.3.7 Recognition Memory Test 
Subjects made “old/new” recognition judgments on a PW presented one at a time (50% old, i.e. 

meaning or form trained; 50% new, i.e. foil) using button-presses. Although this test was 

initially conducted in auditory and visual modalities, design flaws in the auditory experiment 

led to unusable RT data. As such, the reported recognition memory data are drawn from the 
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visual paradigm.  Although modality was not counterbalanced during testing, the auditory 

recognition memory data, as well as the aggregated auditory/visual data, exhibited the same 

trends as the reported visual data. 

2.3.8 Semantic Memory Test 
A 2-alternative sentence completion test prompted subjects to decide, using button-

presses, which of two meaning-trained items best completed a novel sentence. Results were 

averaged across evenly split visual and auditory trials.  

2.3.9 Semantic Priming Test 
A visual lexical decision-based semantic priming test was conducted using a short 

(250ms) stimulus onset asynchrony (SOA), with trials randomly presented for each subject. 

The prime (meaning or form trained PW) was presented in upper-case for 200ms, followed by 

a mask (blank screen) for 50ms, followed by a word or novel PW target presented in lower-

case for 1000ms. A prime and its corresponding target were never co-presented during 

training, precluding episodic associations. Using a button-press to allow RT and accuracy 

assessment, subjects made word/nonword lexical decisions on 90 word and 90 nonword 

targets. Neither primes nor targets were repeated within subject. Figure 2.1 shows the setup 

and trial proportions across priming conditions. The three word target conditions (n=90) were:  

a) Related by synonymy (30/90 trials): meaning-trained PW prime – synonym word target, 

(e.g. FLOSH – bee)  

b) Unrelated by synonymy (30/90 trials): meaning-trained PW prime – non-synonymous 

word target (50% animals/50% artifacts) (e.g. FLOSH – spider/table).  
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c) Neutral: perceptually trained PW prime – neutral word target (random animal/artifact) 

(e.g. GESSY – cheetah/computer).  

The two nonword target conditions (n=90) were:  

a) Meaning-trained prime – novel nonword target (e.g. FLOSH – grova; 30/90 trials). 

b) Perceptually-trained prime – novel nonword target (e.g. GESSY – slopa; 60/90 trials).  

Figure 2.1: Semantic Priming Experimental Design. 

2.4 Results 

2.4.1 Semantic Memory  
Subjects completed the 2-alternative sentence completion test with a mean accuracy of 

87% (greater than 50% chance-levels, 1-tailed t(27)=20.1, p < 0.001). This test was not 

structurally suited for using RT as a meaningful behavioral measure.  

2.4.2 Recognition Memory 

Accuracy 
Subjects completed the “old/new” item recognition test with a mean accuracy of 90% 

(greater than 50%, 1-tailed t(27) = 29.1, p<0.001, Table 2.3). Subjects efficiently discriminated 

Meaning-trained prime !
Synonymous target!

!
FLOSH!

!!
!
! !

bee!
!

200 ms!
!
     50 ms!
!
      1000 ms!

! !(n=30) ! ! !(n=30) ! ! !(n=30)!

Meaning-trained prime !
Novel nonword target!

!
FLOSH!

!!
!
! !

grova!
!

Form-trained prime !
Novel nonword target!

!
GESSY!

!!
!
! !

slopa!
!

Meaning-trained prime !
Non-synonymous target!

!
FLOSH!

!!
!
! !

spider!
!

Form-trained prime !
Neutral target!

!
GESSY!

!!
!
! !

table!
!

Word!target!trials!(n=90)! Nonword!target!trials!(n=90)!

!!!!!!(n=30)! !!!!!!!!!!!!!(n=60)!
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between trained PWs (meaning and perceptually trained on aggregate) and novel foils (d-prime 

= 2.72; hits = 0.89, false alarms = 0.10). Meaning-trained items were recognized more 

accurately than perceptually trained items (2-tailed paired t(27) = 2.58, p=0.02). 

 
Table 2.3 - Group Performance in Recognition Memory Test.  
The mean and standard deviation (SD) of group accuracy, raw RT in milliseconds, and 
normalized RT in z-scores are presented separately for meaning-trained, perceptually trained, 
and foil PWs. 

Reaction time 
Following prior work (Yap, Balota, & Tan, 2013), extreme outlier RTs above 6000ms 

and below 200ms were excluded. The remaining RTs were normalized within subject across 

the three groups of PWs (meaning-trained, perceptually trained, foil). RTs exceeding 2.5 

standard deviations (7.5/180 trials on average) were excluded. A one-way repeated-measures 

ANOVA on normalized RTs showed a significant main-effect across conditions 

(F(2,54)=15.15, p<0.001). A post-hoc Bonferroni-corrected pairwise comparison detected 

differences across all stimulus-group pairs; meaning-trained items were recognized the fastest, 

followed by perceptually trained items, and foils, respectively (Table 2.3).  

Stimuli!
Accuracy!

!
Raw RT !

(ms)!
Normalized RT !

(z-scores)!
Meaning-trained PWs!

Mean (SD)!
0.91!

(0.23)!
1131.66!
(455.12)!

-0.23!
(0.84)!

Form-trained PWs!
Mean (SD)!

0.87!
(0.28)!

1232.38!
(541.21)!

-0.09!
(0.97)!

Foil PWs!
Mean (SD)!

0.90!
(0.25)!

1380.95!
(546.17)!

0.22!
(0.99)!
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Table 2.4 - Group Performance in Semantic Priming Test.  
SD = standard deviation. 

2.4.3 Semantic Priming – Word Targets 

Accuracy  
A repeated-measures ANOVA across the three word-target conditions, synonymous 

(meaning-trained prime à synonymous word target), non-synonymous (meaning-trained 

prime à non-synonymous word target (50% animals/50% artifacts), and neutral (perceptually 

trained prime à neutral word target (50% animals/50% artifacts)) resulted in a trend-level 

main-effect of accuracy (F(2,54)=2.49, p=0.09). A post-hoc pairwise comparison localized the 

trend-level effect as higher accuracy for word targets primed by synonymous meaning-trained 

primes relative to words primed by neutral perceptually trained primes with no semantic 

relations to the target (Bonferroni-corrected p=0.04). 

Reaction time 
Similar to recognition RTs, outlier RTs (above 3000ms and below 200ms) were 

initially excluded. The remaining word-target-trial RTs were normalized within subject relative 

to the mean and standard deviation across the three word-target conditions. RTs above 2.5 

standard deviations (4.6/180 trials on average) were excluded. A one-way repeated-measures 

Prime type! Target type! Prime/target !
relationship!

Accuracy!
Mean (SD)!

Raw RT (ms)!
Mean (SD)!

Normalized RT!
Mean (SD)!

Meaning-trained PW! Word! Synonymous! 0.97!
(0.13)!

686.80!
(148.61)!

-0.13!
(0.94)!

Form-trained PW! Word! Neutral/Unrelated! 0.94!
(0.21)!

722.29!
(160.56)!

0.11!
(1.04)!

Meaning-trained PW! Word! Non-synonymous! 0.94!
(0.18)!

702.94!
(145.16)!

0.02!
(0.97)!

Meaning-trained PW! Nonword! Meaning-trained prime!
  nonword target!

0.96!
(0.15)!

787.86!
(171.66)!

-0.08!
(0.95)!

Form-trained PW! Nonword! Form-trained prime !
nonword target!

0.96!
(0.15)!

805.36!
(178.21)!

0.04!
(1.01)!
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ANOVA using normalized RTs across the three word-target conditions resulted in a significant 

main-effect (F(2,54)=11.07, p<0.001). A post-hoc pairwise analysis demonstrated faster RTs 

for words primed by synonymous meaning-trained primes relative to words primed by neutral 

perceptually trained primes (a 35.48ms priming effect, uncorrected p<0.001). Words primed 

by synonymous meaning-trained primes were also faster than words primed by non-

synonymous meaning-trained primes (uncorrected p<0.005), 50% of which were related to the 

target via shared semantic category (animals/artifacts).  

2.4.4 Semantic Priming – Nonword Targets 

Accuracy  
A paired two-tailed t-test revealed no significant difference in accuracy between 

nonwords primed by meaning-trained PWs and nonwords primed by perceptually trained PWs 

(t(27) = 0.52, p=0.61). 

Reaction time 
RTs for nonword-target trials underwent outlier removal and within-subject 

normalization, similar to the word-target trial RTs, but conducted separately from the latter. A 

paired two-tailed t-test revealed faster RT for nonwords primed by meaning-trained PWs 

relative to nonwords primed by perceptually trained PWs (t(27)=2.86, p < 0.01). 

2.5 Discussion 
The primary goal of this work was to provide adjudicating evidence for two 

contradictory views about how novel words acquired in adulthood are mentally represented. 

One view contends, as is intuitively consistent with evidence framing word learning as a 
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cognitive process continuous throughout the lifetime (Ramscar et al., 2014; Verhaeghen, 

2003), that novel words acquired in adulthood get integrated into existing lexical/semantic 

networks. Another view previously argued that words acquired in adulthood (Qiao et al., 

2009), or in a second language context (Jiang & Forster, 2001), may be representationally 

distinct from the first language lexicon, although the group has subsequently modified their 

argument (Qiao & Forster, 2012). Hence, the current efforts, particularly the approach of using 

semantic priming to assess lexical integration, were intended to complement prior work and 

expand our understanding of the adult word learning process.  

Young adult subjects were given two types of word learning training spread out over 3-

4 days. The first provided form training using a PW detection task, and the second used 

multiple sentential contexts to imbue PWs with meaning. To assess semantic integration, we 

used a 250-ms SOA semantic priming paradigm hypothesizing that, relative to neutral 

perceptually trained primes, meaning-trained primes would facilitate lexical decisions for 

synonymous word targets. Importantly, we ensured that primes and targets were not 

episodically associated during training. Finally, to assess declarative memory for trained items, 

a semantic memory test evaluated appropriate usage of meaning-trained items in novel 

sentence contexts, and an old/new recognition test measured discriminability of meaning and 

perceptually trained items from novel foils. 
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2.5.1 Semantic Memory Test Demonstrated Appropriate Usage of Meaning-
Trained Items in Novel Sentence Contexts. 
The semantic memory test required subjects to choose between two meaning-trained 

items to complete a novel sentence. Subjects demonstrated comparable accuracy (~87%) to 

prior observations (Clements-Stephens et al., 2012). The results confirmed that a multi-context 

approach is effective in promoting word learning, consistent with prior reports (Bolger, Balas, 

Landen, & Perfetti, 2008; Mestres-Missé et al., 2008). 

2.5.2 Old/New Recognition Test Showed Better Recognition for Meaning 
Trained Than Perceptually Trained PWs. 

Subjects demonstrated discriminability between trained items and novel foils (d-prime ~ 

2.7).  Recognition performance was faster and more accurate for meaning-trained relative to 

perceptually trained items. The latter demonstration of better recognition memory for 

semantically encoded novel words relative to their perceptually encoded counterparts echoes 

level-of-processing effects repeatedly shown for real words (Craik & Lockhart, 1972; Craik & 

Tulving, 1975). Depth/level of processing is an effect describing better recall/recognition 

memory for material studied in a context emphasizing deeper semantic encoding than 

perceptual (orthography/phonology) encoding alone. The latter finding is suggestive of the 

representational similarities of the newly acquired words with actual words, given their similar 

response to the same encoding factor. Because the stimuli used for meaning vs. form training 

were matched in lexical characteristics, as well as counterbalanced, we attribute the observed 

superior recognition for the former directly to deeper semantic encoding. 
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2.5.3 Meaning Trained PWs Became Semantic Primes for Extant Words, 
Demonstrating Semantic Integration. 
As stated above, demonstration of successful semantic priming was the critical test for 

our novel word semantic integration hypothesis. In line with our expectations, the critical 

contrast revealed faster lexical decisions for word targets primed by synonymous meaning-

trained items relative to words primed by neutral perceptually trained items (a 35ms priming 

effect). The current priming levels were similar in magnitude to previously reported priming 

effects in a novel word learning setting (Tamminen & Gaskell, 2012) and slightly less than that 

reported for real words from similar studies (Hutchison et al., 2008). As justified in greater 

detail below, we interpret the observed priming effects as evidence that novel words acquired 

in adulthood get integrated with words in existing semantic networks, attesting to their 

representational similarity. 

Automatic spreading activation (Collins & Loftus, 1975), i.e. strategy-free semantic 

priming (Neely, 1977; Posner & Snyder, 1975) can arise from three major sources (see the 

following for extensive reviews (Hutchison, 2003; McNamara, 2005; Neely, 1991)): A) 

semantic relatedness (Neely, 1977) – the word ‘doctor’ primes the semantically-related word 

‘nurse’, leading to faster lexical decisions on ‘nurse’; B) co-occurrence or frequency of 

association (McKoon & Ratcliff, 1979; Pecher & Raaijmakers, 1999) – ‘mouse’ can prime 

‘cheese’ simply because those words are frequently co-experienced, although they are not 

semantically related; C) mediated priming (D. A. Balota & Lorch, 1986)– although potentially 

task-dependent (e.g. naming vs. lexical decision), ‘lion’ can prime an unrelated word ‘stripes’ 
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via priming of a semantically related (but not presented) mediator such as ‘tiger’ in semantic 

memory. 

To support a semantic-integration hypothesis, the current work took steps to safeguard 

priming effects from potentially being driven by episodic co-occurrence (McKoon & Ratcliff, 

1979; Pecher & Raaijmakers, 1999). While several studies have demonstrated priming in a 

word learning setting, most have been cases where prime and target were co-presented during 

training (Dagenbach, Horst, & Carr, 1990; Mestres-Missé, Rodriguez-Fornells, & Münte, 

2007; Perfetti, Wlotko, & Hart, 2005). To preclude episodic co-occurrence effects, we ensured 

that the target words were never presented with the primes during training. In addition, subjects 

were instructed to name the PWs, as opposed to the target words, during meaning training. 

However, a potentially justified criticism may be that, although not named explicitly, the target 

words are still mentally invoked during training, hence forming potential episodic associations 

with the primes. While this is a caveat that cannot be completely refuted, one could potentially 

levy similar criticisms on the entire notion of semantic priming driven entirely by semantic 

prime/target relatedness, with no contributions from facilitation due to other (i.e. episodic) 

factors. To do so, a study would have to ensure in every subject that all prime/target pairs used 

in a related condition were experienced in the same episode an equal number of times as the 

number of episodes shared by prime/target pairs in the baseline or unrelated condition. This is 

of course, at least intuitively, futile, as words that share semantic relationships are also more 

likely to have been co-experienced relatively more frequently than words with no meaning 

relations. While measures such as free association norms and co-occurrence frequency have 
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some relevance in this regard, episodic co-occurrence is just a caveat that will have to be 

recognized as a factor not completely under experimental control.  

Another potentially confounding factor that we took steps to safeguard against was the 

influence of strategic limited-capacity attention. The priming test used a short SOA (250ms) to 

minimize strategic effects, and allow automatic spreading activation to drive priming. In 

addition, priming driven by meaning-trained primes was measured relative to a neutral baseline 

using perceptually trained primes with no semantic associations that could be triggered by 

automatic means, hence reducing the need for strategic inhibition processes (Neely, 1977). 

There is one potential criticism of the study design that maybe levied vis-à-vis the strategic 

processing concern. Of the 90 total word-target trials, 60 were primed by meaning-trained 

primes (30 synonymous, 30 non-synonymous) and 30 were primed by perceptually trained 

primes. The availability of more meaning-trained (2/3 word-target trials) than perceptually 

trained primes (1/3 word target trials), could potentially inflate priming effects by increasing 

strategic bias towards a ‘word’ response for trials with meaning-trained primes. This is another 

caveat that cannot be ruled out. However, the use of a short 250ms SOA offers some level of 

assurance against the caveat because the SOA is likely too short to be significantly influenced 

by strategic processing, which typically requires longer SOAs to manifest its effects. The 

potential strategic processing concern is further weakened by the fact that, similar to the word-

targets, nonword-target RTs were also facilitated when primed by meaning-trained (1/3 trials) 

relative to perceptually trained primes (2/3 trials), despite the now reversed proportions. 

Hence, given the apparent dissociative relationship between the proportion of meaning-trained 
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to perceptually trained primes and the priming effect on word and nonword targets, an 

argument for potential strategic influences is not straightforward. 

Finally, as noted above, the latter finding of a nonword-facilitation effect observed for 

the newly learned words has interesting parallels in the nonword-facilitation effects previously 

documented for real words (de Groot, 1984; Neely, Keefe, & Ross, 1989). The nonword 

facilitation effect is the observation that nonword targets are processed faster when preceded 

by meaningful word primes than neutral primes (e.g. XXX). Multiple mechanisms have been 

proposed to explain nonword facilitation, as well as typical semantic priming effects, such as 

pre-lexical processes driven by prime-induced expectancy and post-lexical processes driven by 

prime/target relationships (D A Balota & Chumbley, 1984; de Groot, 1984; Neely et al., 1989). 

A thorough consideration of these mechanisms is beyond the current scope, as it would require 

careful parametric evaluation of the factors that influence the mechanisms, such as prime/target 

relatedness proportion and nonword ratio (Neely et al., 1989). Even so, the identified nonword 

facilitation effect is remarkable, as it is a demonstration of the novel words exhibiting yet 

another characteristic typical of real words.  

2.6 Conclusion 
 In conclusion, we demonstrate that young adults can learn novel words based on 

multiple sentential contexts. In accordance with level-of-processing research, contextual 

meaning training resulted in superior recognition memory for trained items than form training 

alone. Finally, we provide evidence, via facilitative semantic priming effects without episodic 
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prime-target association during training, which supports a conclusion that novel words learned 

in adulthood get integrated in existing semantic networks. 
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3 Chapter 3: A Word Learning Approach to 
Characterizing the Healthy, Young Adult 

Functional Neuroanatomy Underlying Word-
Level Semantic Processing 

 

3.1 Introduction 
One component of the remarkable human language faculty is the memory capacity used 

in the acquisition, integration/consolidation, and retrieval of word meanings. Memory for word 

meanings, along with general factual knowledge, is generally subsumed by semantic memory, 

which in turn, is considered a cognitive facility distinct from episodic memory, i.e. memory for 

an experience associated with a specific time and place, typically involving or directly relevant 

to the agent (Tulving, 1983). Episodic and semantic memory collectively make up what is 

known as explicit or declarative memory, characterized as consciously available memory that 

can be explicitly reported. As elaborated below, episodic memory and semantic memory are 

generally considered independent processes, largely based on observations of certain 

neurological memory impairments that exhibit relative selectivity as to the episodic or 

semantic nature of the resulting deficits. In practice, current understanding of the distinct 

contributions of episodic and semantic cognitive processes to declarative memory, as well as 

the potential distinctions in the functional neuroanatomy underlying episodic and semantic 

memory, is far from complete. To set the stage for the current investigation of the functional 

neuroanatomy underlying memory retrieval of word meanings, we will provide a brief 

synopsis of neuropsychological findings integral to the development of subsequent cognitive 
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theories and computational models of memory organization. Finally, the literature summary 

will conclude with task-based imaging findings in the episodic and semantic memory domain, 

their correspondence to neuropsychological and computational work, and potential 

implications on the hypotheses of the current functional investigation of memory retrieval for 

newly acquired and existing words.  

3.1.1 Neuropsychological Basis for Taxonomy of Memory Systems 
Contemporary views of memory as a distinct cognitive function have their genesis in 

the mid 1900s when neuropsychological research provided convincing evidence associating 

damage to the medial temporal lobe exclusively with memory impairments in the absence of 

other deficits (e.g. sensorimotor deficits). Damage to the medial temporal lobe, primarily the 

hippocampus but also neighboring entorhinal, perirhinal, and parahippocampal cortex, was 

demonstrated to result in anterograde amnesia (Scoville & Milner, 1957). The memory 

impairment was marked by the inability to recall recent episodic memory, while remote 

memory acquired prior to the neurological injury remains unaffected. In a follow-up study 

(Milner, 1962), Brenda Milner demonstrated that hippocampal amnesics were able to learn 

motor skills despite no subsequent memory for the learning episode, providing evidence that is 

the basis for the current implicit vs. explicit memory taxonomy.  

Unlike the consensus on the role of the hippocampus in the acquisition of episodic 

memory, the role of the hippocampus and neighboring MTL structures in the acquisition and 

retrieval of semantic memory is more controversial. The classic example used as evidence to 

argue hippocampal involvement in semantic memory incidentally also comes from amnesic 
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patient H.M. who was the basis for the seminal studies by Milner and colleagues noted above. 

Following the bilateral MTL resection that led to amnesia, H.M. was also unable to learn and 

retain new words that emerged since his surgery (e.g. “Xerox”), despite normal memory for 

semantic information acquired prior to the amnesia (Gabrieli, Cohen, & Corkin, 1988). This 

led to the hypothesis that the MTL supports both episodic and semantic memory (Shimamura 

& Squire, 1987; Tulving et al., 1991). On the other hand, an alternative account emerged 

contending that while the hippocampus is critical for episodic memory, some capacity to 

acquire semantic memory remains if damage spares neighboring MTL structures, particularly 

the parahippocampal cortex (Bindschaedler et al., 2011; Holdstock et al., 2002; Mishkin et al., 

1998; Verfaellie et al., 2000). However, as counter evidence, proponents of former account 

argue that relative to healthy controls, semantic memory acquisition in hippocampal amnesics 

is impaired, and any remaining capacity requires many repetitions, likely attributable to (MTL-

independent) implicit memory processes (Glisky et al., 1986; Hayman et al., 1993; Kovner et 

al., 1983; Shimamura & Squire, 1987; Tulving et al., 1991).  

A parallel set of findings associating damage to lateral temporal lobes with selective 

semantic impairments is used as supporting evidence for functional neuroanatomical 

distinctions underlying episodic and semantic memory processes. Two neuropsychological 

observations are relevant. One observation regards comprehension deficits observed in aphasia 

resulting from left lateral temporal lesions; and the second from semantic impairments 

observed in the temporal variant of frontotemporal lobar degeneration (tvFTLD) caused by 

atrophy to bilateral anterior temporal lobes (ATL). In certain aphasias, lateral temporal lesions 



	  
 

 

 

46	  

(grey matter and underlying white matter), particularly the posterior middle temporal gyrus 

(MTG) and anterior aspects of the superior temporal gyrus, result in semantic comprehension 

deficits in tasks such as picture naming, word-picture matching, synonym judgment, and word 

comprehension (Dronkers et al., 2004; Hart & Gordon, 1990; Turken & Dronkers, 2011). The 

second observation was of selective semantic impairments (Warrington, 1975) in patients with 

tvFTLD, also referred to as semantic dementia, characterized by deficits in picture naming, 

spoken/written word-level comprehension, and category fluency (Hodges et al., 1992). Given 

that the atrophy is typically bilateral, some investigators contend that both left and right ATL 

similarly contribute to semantic processing (Visser et al., 2010). Others suggest a left vs. right 

hemisphere asymmetry associated with verbal vs. perceptual (e.g. names vs. faces) semantic 

impairments, respectively (Lambon Ralph et al., 2001; Snowden et al., 2004). Taken together, 

the above observations support a role for left lateral temporal regions (MTG/ATL) in support 

of word-level semantic processing. 

Considered in aggregate, the neuropsychological literature generally points to episodic 

and semantic memory being distinct processes with distinct underlying functional 

neuroanatomy. In this distinction, the evidence selectively associating left lateral temporal lobe 

regions (MTG, ATL) with processes underlying retrieval of semantic memory is relatively 

uncontroversial. On the other hand, while there is agreement on the critical role of MTL 

structures in the acquisition of new memory, there are different hypotheses regarding the type 

of memory in question, i.e. episodic vs. semantic. Some investigators associate MTL with both 

episodic and semantic memory acquisition, while others forward a more nuanced position 
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suggesting dissociative roles for the hippocampus vs. neighboring parahippocampal cortex in 

episodic and semantic memory acquisition, respectively.  

3.1.2 Models of Time-Dependent Memory Consolidation  
Another important neuropsychological observation led to the current understanding of 

memory as a dynamic process involving integration of new memory with existing memory in a 

time-dependent consolidation process, with a parallel time-dependent change in the underlying 

functional neuroanatomy. In the early 1880s, the French psychologist Théodule Ribot noted a 

time gradient to the severity of the impairment in certain cases of memory loss due to head 

trauma (Ribot, 1881). The time gradient was such that memory acquired closer in time to the 

trauma was more compromised relative to remote memory. Subsequently termed temporally-

graded retrograde amnesia, the condition has been linked to medial temporal lobe damage, 

with more pronounced deficits when damage extends beyond the hippocampus to neighboring 

entorhinal, perirhinal, and parahippocampal cortex (N. J. Cohen & Squire, 1981; Moscovitch et 

al., 2006; L. R. Squire, 1992). A consequent hypothesis was that once outside a given time 

window, memory retrieval is progressively less dependent on the hippocampus and 

neighboring MTL structures. This change is thought to be due to the migration of memory 

representations from MTL regions initially critical to acquisition, to neocortical regions 

representing remote consolidated memories. Based on observations, as noted above, of word-

level semantic memory impairments caused by lateral temporal damage, regions like MTG and 

ATL are proposed as neocortical regions that, following time-dependent memory consolidation 

mediated by medial prefrontal regions, represent consolidated memory (Atir-Sharon et al., 
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2015; Ghosh & Gilboa, 2014; McClelland et al., 1995; McClelland, 2013; Nadel & 

Moscovitch, 1997; Takashima et al., 2006; van Kesteren et al., 2012). Described below are two 

exemplar computational models characterizing memory consolidation.  

The two models, namely the Complementary Learning Systems (CLS) model 

(McClelland et al., 1995) and the Multiple Traces Theory (MTT) (Nadel & Moscovitch, 1997) 

are similar in that both regard the hippocampus as critical to rapid episodic memory 

acquisition. Both models also generally regard neocortical memory consolidation as a slow 

time-dependent process. There are two main differences between the two models. First, in the 

CLS model, the hippocampus is only critical for retrieval and consolidation of recent, i.e. 

relatively novel memory. For remote memory matching a neocortical representation, the 

medial prefrontal cortex inhibits the hippocampus to avoid duplicate encoding (Frankland & 

Bontempi, 2005). On the other hand, in the MTT, the hippocampus continues to be involved in 

the retrieval and reconsolidation of even remote memory, resulting in multiple hippocampal 

traces of similar memory representations. The second difference is that while the CLS makes 

no distinctions between episodic vs. semantic memory, the MTT does. Proponents of the MTT 

note that in retrograde amnesia, episodic and semantic memory are affected differently such 

that episodic memory shows a shallow temporal gradient relative to semantic memory (Nadel 

& Moscovitch, 1997). Hence, in the MTT, the hippocampus continues to be necessary for both 

recent and remote episodic memory. As for semantic memory, the multiple hippocampal traces 

of similar recent and remote episodes allow “extraction of factual information…and its 

integration with…[neocortical] semantic memory stores” (Nadel & Moscovitch, 1997). Hence, 
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in the MTT, only decontextualized neocortical semantic memory could potentially be retrieved 

independently of the hippocampus.  

Their differences aside, both models highlight an aspect of memory that is of direct 

relevance here – namely that following acquisition memory undergoes time-dependent 

consolidation accompanied by a parallel change in the underlying functional neuroanatomy. 

The direct implication to the current investigation is that, relative to retrieval of remote 

memory for previously known words, memory retrieval of novel words acquired over 3 days of 

training could potentially recruit distinct functional neuroanatomy if neocortical consolidation 

is incomplete. Given the behavioral evidence presented in Chapter 2, particularly the semantic 

priming findings that suggested the novel words have been integrated with existing words, a 

reasonable expectation would be to also identify functional neuroanatomy shared by both novel 

and existing words. Regardless of the findings, the current experiment offers an opportunity for 

a functional characterization of semantic memory retrieval processes using a dynamic range of 

remote and recently acquired memory for words.  

Next, we provide a brief overview of the relevant task-based imaging literature, from 

the episodic and semantic memory domain, with the latter also including findings from prior 

word learning studies. The discussions will also examine the effects of controlled/strategic 

processing recruited to varying degrees in a task-dependent manner on the functional 

neuroanatomy of episodic and semantic retrieval.  
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3.1.3 Episodic Memory Studies Using Task-Based Functional Imaging  
While the reasons for discussing prior work in the semantic memory domain may be 

self-evident, it may be useful to explicitly state the relevance of the task-based episodic 

literature. One functional effect that is consistently observed in episodic memory studies is the 

so-called ‘retrieval success effect’ where items that were previously encountered (old) exhibit 

higher BOLD activity relative to novel items (new).  In the current setting, a similar effect 

could manifest as BOLD difference between meaning trained (old) and untrained (new) items. 

The latter effect, which may reasonably be attributed to semantic learning in this context, may 

instead reflect an effect of stimulus familiarity/novelty, and not semantic processing per se. In 

fact the potential for stimulus familiarity effects to confound meaning training (i.e. semantic) 

effects was one of the main reasons behind the current methodological approach of using 

separate sets of meaning and perceptually trained PWs as stimuli. The aim was to use 

perceptually trained items as a potential tool for deconfounding, via subtractive inference, 

semantic effects from (presumed additive) perceptual familiarity effects that may jointly 

contribute to differences between meaning trained and untrained items. Relatedly, knowledge 

of the relationships between the functional neuroanatomy of episodic and semantic retrieval 

can help further constrain current interpretations. 

A task frequently used to investigate episodic memory retrieval in imaging studies is 

the old/new item recognition task. Additional features, such as confidence judgments or 

remember/know judgments, etc., aimed at targeting episodic sub-processes (i.e. 

recollection/familiarity), while not irrelevant, are slightly outside the current scope and hence 
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will not be elaborated further. As noted above, a common BOLD fMRI feature of episodic 

old/new recognition tests is the ‘old>new’ retrieval success effect. Regions that consistently 

show retrieval success effects include left lateral parietal cortex, bilateral precuneus and 

posterior cingulate, as well as left-lateralized medial and lateral frontal regions (Cabeza et al., 

2008; I. G. Dobbins & Wagner, 2005; Nelson et al., 2010; Wheeler & Buckner, 2003; 

Yonelinas et al., 2005; Yonelinas, 2002). Of relevance here, a similar set of regions in left 

medial and lateral parietal cortex, with the left angular gyrus as the prime example, has been 

associated in multiple meta-analytic studies with semantic processing (Binder et al., 2009; 

Seghier, 2013; Vigneau et al., 2006).  

In the context of episodic retrieval, findings from source-memory retrieval tasks are 

particularly informative for examining the role of controlled/strategic processing on retrieval. 

In addition to the typical old/new recognition judgments, source retrieval tasks additionally 

require recollection of the memory source behind the recognition judgment. For example, after 

making an ‘old’ recognition judgment on a given item, subjects would have to indicate which 

training task a particular item was presented in (e.g. perceptual judgment vs. abstract/concrete 

judgment). Relative to making simple old/new recognition judgment, retrieving source 

information likely requires greater controlled/strategic processing. Comparison of item 

recognition to source recollection results in higher BOLD activity in left hemisphere regions 

including in the MTL (hippocampus/posterior parahippocampus), medial superior frontal 

cortex, posterior MTG, and left vIFG (I G Dobbins et al., 2002, 2003). The recruitment of the 

left vIFG and left MTG was specific to retrieval of source memory whose contents are 
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conceptual (i.e. not perceptual) (I. G. Dobbins & Wagner, 2005). The latter two regions are 

also consistently implicated in semantic processing, as noted below, with the left vIFG 

ascribed a domain-specific role in controlled/strategic semantic retrieval (Badre et al., 2005; 

Donaldson, Petersen, & Buckner, 2001; Roskies et al., 2001; A D Wagner et al., 2001). 

Consequently, the source retrieval effect in left MTG/vIFG was attributed to a greater demand 

in semantic elaboration between source and item during conceptual source retrieval, consistent 

with cognitive theories (I G Dobbins et al., 2002; Daniel L Schacter et al., 1998; Tulving, 

1983). The finding that regions typically recruited in semantic tasks (i.e. left MTG and left 

vIFG) are similarly recruited in a task setting requiring retrieval of specific episodic details, 

albeit of conceptual makeup, is potentially indicative of the fluid distinction between episodic 

and semantic retrieval processes.  

3.1.4 Semantic Studies Using Task-Based Functional Imaging  
Next, we turn to a brief overview of studies using PET and fMRI to investigate 

semantic processing in healthy adults. A variety of tasks have been used across studies that 

have resulted in some findings that are convergent, while other findings have been less 

consistent.  Exemplar semantic tasks include abstract vs. concrete judgment (Donaldson, 

Petersen, & Buckner, 2001; Friederici et al., 2000), verb-generation (J. A. Fiez et al., 1996; 

Petersen et al., 1988; Roskies et al., 2001), and semantic classification/comparison (Badre et 

al., 2005; Thompson-Schill et al., 1997; A D Wagner et al., 2001). Typically described as tasks 

that require controlled/strategic semantic retrieval, the above tasks differ from simpler tasks 

such as word/nonword lexical decision in which automatic access to meaning may be sufficient 
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for task performance. Consistent with that argument, while the MTG is commonly recruited by 

the above controlled semantic tasks as well as simple word/nonword lexical decision tasks, the 

left vIFG, a region consistently reported in controlled semantic retrieval settings, is absent 

from many word/nonword lexical decision contexts (Fiebach et al., 2002, 2007; Henson et al., 

2002). Reminiscent of the item recognition/source recollection distinctions noted above, the 

latter finding points to potentially crucial task-dependent distinctions between automatic and 

strategic retrieval of word meanings (Gold et al., 2006; Neely, 1977; Posner & Snyder, 1975). 

The left vIFG and MTG have also previously been associated with repetition priming, 

i.e. repetition-related BOLD activity suppression effects, in a semantic processing context. 

Although repetition suppression can occur because of repeated conceptual (i.e. semantic) as 

well as perceptual processing, prior studies have established some specificity in the underlying 

anatomical correlates, e.g. extrastriate visual processing regions vs. left IFG/MTG show 

perceptual vs. conceptual repetition priming effects, respectively (D. L. Schacter & Buckner, 

1998; Daniel L Schacter et al., 2007; Wig et al., 2005). In addition to the meaning and 

perceptually trained stimuli, the current experiment also included real words presented in two 

fMRI sessions, which offers the opportunity to examine word repetition effects, allowing for 

the use of conceptual repetition priming as an additional criterion for semantic interpretations.   

3.1.5 Word Learning Studies Using Task-Based Functional Imaging  
A relatively more recent approach couples behavioral novel-word learning paradigms 

with brain imaging tools, to investigate the functional neuroanatomy of newly acquired word-

meanings.  brief summary is provided below of findings from prior word learning studies is 
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provided below.  A brief summary is presented below from prior word learning studies, two of 

which collected fMRI data as the novel words were being trained/encoded (Breitenstein et al., 

2005; Mestres-Missé et al., 2008), and two others which collected fMRI during post-training 

retrieval. (Clements-Stephens et al., 2012; Sandak et al., 2004).  

Using fMRI, Mestres-Missé and colleagues (Mestres-Missé et al., 2008) examined the 

functional neuroanatomy of meaning acquisition in young adults, during the online acquisition 

of meaning, using a contextual meaning training approach. The fMRI experiment was designed 

such that an eight-word sentence is presented, one word every 500ms, with the novel word as 

the terminal item. They highlighted left lateralized regions in the inferior frontal gyrus, middle 

temporal gyrus, as well as the parahippocampal gyrus, thalamus, and striatum as regions that 

support word learning. Of potential concern with the study is that the (somewhat unnatural) 

stimulus presentation may not be adequately isolating the hemodynamic response function for 

the target novel word from the neighboring word stimuli in the sentence. It is also likely that 

the task recruits syntactic processes, which, if variably present across contrasts of interest, may 

be potential confounds.  

Similarly, Breitenstein et al. (Breitenstein et al., 2005) collected event-related fMRI 

data during the online acquisition of meaning, using a PW-picture association task. A PW was 

either paired with the same picture presented non-consecutively across training blocks 

(learning condition) or with a different picture during each presentation (no-learning 

condition). Their relevant results were that a) across the training blocks in the learning relative 

to the no-learning condition, a region in the left hippocampus showed BOLD activity 
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decreases, which was interpreted as potentially reflecting “a sharpening of the neural response 

over the course of learning,” and b) subjects exhibiting less BOLD suppression in the same 

hippocampal region learned the novel words more efficiently, as well as scored higher on 

verbal semantic fluency tasks. In addition, the study also reported higher BOLD activity, 

collapsed across learning blocks relative to baseline, in left ventral IFG and MTG, and bilateral 

STG. However, the latter effect in the frontal and temporal regions was not specific to the 

‘learning’ condition as the ‘no-learning’ condition also showed similar effects relative to 

baseline. 

In another study, Sandak and colleagues (Sandak et al., 2004) collected fMRI data 

during a word and PW naming task, following behavioral training conducted on the PW 

stimuli 1 to 2 hours prior to imaging. Three types of training, each of which provided multiple 

exposures per item, were conducted on a counterbalanced set of pseudoword stimuli. 

Orthographic training was conducted using a consonant/vowel pattern judgment task. 

Phonological training was provided using a rhyme judgment task. The semantic training was 

conducted in two steps. The first step was a single exposure pairing of a pseudoword with a 

picture (e.g. butterfly) followed by making semantic category judgments on the trained 

pseudoword (eight exposures). Relative to both orthographically and phonologically trained 

pseudowords, semantically trained pseudowords showed higher BOLD activity in bilateral 

insula and anterior aspects of bilateral MTG/STG; and left-lateralized caudate body, and 

precentral gyrus; whereas in the left angular gyrus, they exhibited lower BOLD activity (more 

deactivation). As the authors themselves note, the lower activity (more deactivation relative to 
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baseline) observed in the angular gyrus for the semantically trained pseudowords is somewhat 

at odds with a ‘semantic’ interpretation. Some of the aforementioned regions, particularly 

bilateral anterior MTG and STG, overlapped with regions that showed higher BOLD activity 

for real words that had high versus low imageability, further supporting a ‘semantic’ functional 

ascription. A potential caveat of Sandak et al. (Sandak et al., 2004) is that fMRI data was 

collected 1-2 hours after training, with no time allowed for sleep-dependent information 

consolidation, which may be critical for semantic integration. For instance, it typically takes 

days following training for novel words to start showing semantic priming effects (Tamminen 

& Gaskell, 2012). 

Similar to Sandak et al. (Sandak et al., 2004) discussed above, Clements-Stephens et al. 

(Clements-Stephens et al., 2012) used a short-term word learning paradigm, followed 

immediately by an fMRI session using a lexical decision task. Participants were instructed to 

give a ‘word’ response to meaning-trained PWs as well as high- and low-frequency real words, 

and a ‘nonword’ response to novel PWs. Lexical decisions with ‘word’ responses (both real 

words and meaning trained PWs) showed higher BOLD activity than untrained PWs in left 

angular gyrus, precuneus/posterior cingulate, and motor cortex. Direct comparisons between 

real words and trained PWs showed higher BOLD activity for the latter in the left IFG, angular 

gyrus, and precuneus. The findings reporting higher BOLD activity for real words/meaning-

trained PWs relative to novel PWs in the left angular gyrus is divergent from the findings in 

Sandak et al. (Sandak et al., 2004) that reported lower BOLD activity for semantically trained 

PWs relative to perceptually trained PWs. Although, note that meaning-trained items were 
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compared with novel PWs in one study and perceptually trained PWs, i.e. not novel, in the 

other study. In addition, the two studies also differed in the respective contrasts as well as the 

tasks employed (naming vs. lexical decision), which could partially be responsible for the 

diverging results. That said, a straightforward argument for the angular gyrus in support of a 

role in the semantic aspects of word learning is problematic, at least based on the two 

aforementioned studies. Finally, the Clements et al. results (Clements-Stephens et al., 2012) 

should be considered with cognizance of the same caveats noted above in Sandak et al. 

(Sandak et al., 2004) vis-à-vis the single-day training/imaging approach that may not allow 

adequate time for consolidation/semantic integration. 

3.1.6 Summary of Literature Overview  
In summary, an aggregate consideration of the neuropsychological and functional 

neuroimaging research to date reveals both distinctions and similarities in the functional 

neuroanatomy supporting episodic and semantic memory. First, there is reasonable consensus 

in the neuropsychological literature that the MTL, particularly the hippocampus, plays a crucial 

role in novel episodic and semantic memory acquisition, and a relatively semantic-selective 

role for the parahippocampus. Findings from the prior word learning studies are more or less 

consistent with the above characterization, which is also in line with memory consolidation 

models.  

Second, regions in the left lateral temporal lobe, namely the ATL and MTG are reliably 

demonstrated to be critical to retrieval of word-level semantic memory. This is supported by 

the selective word-level semantic deficits that result from temporal damage or degeneration as 
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well as from task-based semantic studies, although despite its presence in the PET literature, 

the ATL is often absent from fMRI studies due to bad signal. Relative to the 

neuropsychological and task-based semantic studies using real words, the evidence from word 

learning studies supporting a role for MTG and ATL in learning or retrieving recently learned 

words is somewhat inconsistent. Consistent with proposals of memory consolidation models, a 

reasonable hypothesis based on the above summary is that the lateral temporal regions serve as 

neocortical regions supporting retrieval of consolidated semantic memory.  

Third, the left ventral IFG is consistently associated with controlled semantic retrieval. 

While there is support for a similar role in the lesion literature, there is less anatomical 

specificity in the reports as the lesions typically extend dorsal and superior to the ventral IFG 

locus associated with controlled retrieval. In addition, the associated behavioral deficits may 

not be restricted to word-level semantics, but may involve impairments in syntactic sentence 

processing as well. Interestingly, the left vIFG, along with left MTG, exhibits a similar role in 

controlled retrieval of conceptual source memory, although in a task context requiring 

recollecting specific episodic details. On the contrary, the left ventral IFG is absent from a 

number of simple word/nonword lexical decision contexts, where automatic access to meaning 

may be sufficient. Overall, the above summary is in accord with a previously proposed 

domain-specific role for left vIFG in controlled semantic retrieval, including in task contexts 

requiring recollection of conceptual information exclusively associated with prior episodic 

experience. 
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Unlike the relatively more consistent findings described above, a straightforward 

assessment is harder for regions in left medial/lateral parietal lobe, which have been reported in 

the task-based imaging literature in association with multiple processes, including episodic and 

semantic retrieval. A prime example is the left angular gyrus, which in addition to episodic and 

semantic retrieval, has also been associated with phonological processing. The same could be 

said about regions in bilateral middle frontal gyrus reported in the context of episodic and 

semantic retrieval, and left dorsal IFG, which has been associated with semantic/episodic 

retrieval, phonological processing, and domain-general task control processes. These 

observations suggest the need for a more rigorous assessment of the functional properties of 

the above regions. 

Finally, despite some formal efforts in the memory domain (Nelson et al., 2010), a 

formal clustering-based characterization of semantic regions that may correspond to a putative 

semantic brain system is, to our knowledge, lacking from the literature. To that end, the current 

experiment aims to perform clustering analyses based on regional task-evoked timecourses in 

an effort to identify a potential semantic brain system.  

3.1.7 The Current Study  
The current study set out to investigate the functional neuroanatomy of semantic 

processing at the single word level, using fMRI data collected before and after a behaviorally 

conducted, contextual word learning training administered over multiple days. The fMRI 

experiment used a simple word/nonword lexical decision task and was setup using a within-

item design that allows tighter control for some of the aforementioned potentially confounding 
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factors. fMRI data was collected using a widely-spaced event-related design, presenting trials 

once every 20sec, that enabled relatively cleaner isolation of the hemodynamic response 

function at the item level.  

The entire experiment was conducted over 3 days. On day 1, fMRI data was collected 

while young adult subjects performed a lexical decision task on two classes of stimuli, concrete 

words (animal/artifact nouns) and pseudowords (PWs). The PWs used during the fMRI session 

were split into two groups, matched in lexical characteristics as well as counterbalanced, and 

designated as targets for either perceptual form training or meaning training. Following the 

fMRI session on day 1 and continuing on day 2, meaning training sessions were administered 

using sentence contexts to assign meanings to designated PWs. A PW-detection task that 

paralleled the design and stimulus exposure of the meaning training task, provided perceptual 

form training to a separate set of PWs. Finally, on day 3, a 2nd fMRI session was conducted 

post-training using the same lexical decision task, and the same stimuli that were used during 

the 1st fMRI session, allowing for items to essentially serve as their own controls (i.e. a within-

item design). Hence, this approach offers greater control over potentially confounding 

stimulus-driven factors.  

This study directly compared the effects of form vs. meaning training using two classes 

of stimuli that did not differ prior to training, i.e. they were both novel PWs. PWs given 

meaning vs. form training were matched in lexical characteristics, counterbalanced across 

subjects, and presented an equal number of times (four exposures) to ensure matched 

familiarity levels. Comparing pre- and post-training BOLD activity for stimuli used in meaning 
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vs. form training is an effort to assess the functional effects on memory retrieval of the 

corresponding memory encoding approach, i.e. semantic vs. perceptual encoding. The 

aforementioned contrast will aid in identifying potential dissociations between brain regions 

sensitive to stimulus semantic content from those that may be sensitive to perceptual 

familiarity/novelty only.  

In addition to the meaning vs. form contrast discussed above, a contrast based on 

comparing real words repeated across fMRI sessions offers another potential tool to assess 

semantic characteristics. In particular, the word repetition suppression effect can help in 

functionally dissociating a region that exhibits conceptual repetition priming for words, from a 

region showing word repetition enhancement (akin to the episodic old>new effect), allowing 

for ruling out a semantic interpretation for the latter.  

3.1.8 Expected Profile of a Semantic Region  
While the current experiment offers several advantages as noted above, there are 

important considerations that should be noted upfront regarding our methodological approach 

to targeting semantic processing. As stated above, relative to typical semantic tasks such as 

making semantic classification/comparison or verb-generation, the lexical decision task used in 

the current setting may not require controlled/strategic access to word meanings for adequate 

task performance. Another consideration regards our approach of conducting meaning training 

over a relatively short 3-day period. Given the time-dependent nature of memory 

consolidation, we are making the tacit assumption that 3 days has provided for adequate 

consolidation opportunity for the newly acquired words. Given the behavioral semantic 
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priming effects documented in Chapter 2, which were suggestive of the integration of novel 

words with existing words in the lexicon, the latter assumption appears reasonably justified. At 

the very least, the current experiment offers an opportunity to examine single word semantic 

representations in adults, and at the earliest time of their formation.  

Given the above considerations, outlined below are properties that could be expected 

from a semantic region that may be jointly recruited during memory retrieval of both newly 

acquired and existing words:  

a) Higher BOLD activity for real words relative to novel PWs;  

b) Suppression of BOLD activity for real words repeated across sessions.  

c) Higher BOLD activity for meaning-trained PWs relative to novel PWs;  

d) Higher BOLD activity for meaning trained relative to perceptually trained PWs; 

e) Higher BOLD activity for correctly identified meaning-trained PWs (hits) relative to 

their incorrect counterparts (misses);  

The above criteria roughly capture how a putative semantic region may respond as a function 

of memory recency. The first two criteria correspond to functional properties expected for 

retrieval of existing consolidated semantic memory, and the latter three characterize 

expectations during retrieval of newly acquired semantic memory.    
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3.2 Methods 

3.2.1 Subjects 
Monolingual (English-speaking), right-handed subjects (n=30, 16 female, 21-30 years, 

mean age 25 years), with no history of psychiatric and/or neurological illness, and scoring 

above the 50th percentile on a Woodcock-Johnson III reading assessment (Woodcock & 

Johnson, 2002), were recruited from Washington University and the surrounding community. 

Data from six subjects were excluded due to experimental errors (3 subjects), inappropriately 

followed task instructions (2 subjects), and inability to complete the entire experiment (1 

subject). Of the remaining 24 subjects, 7 subjects were excluded due to inadequate post-

training behavioral performance in the scanner (d-prime between meaning-trained PWs vs. 

perceptually trained PWs). All reported fMRI data were based on the remaining 17 subjects 

(Table 3.1). 

 
Table 3.1: Demographic and cognitive characteristics (fMRI cohort). 
The n17 cohort was formed from the n24 fMRI cohort, following removal of 7 subjects with 
the lowest performance, based on ability to discriminate between meaning and perceptually 
trained stimuli in the 2nd fMRI session. 
 

3.2.2 Cognitive Characterization 
Subjects underwent cognitive testing during their initial visit. Reading skill was 

measured using the Woodcock-Johnson III (Woodcock & Johnson, 2002) (Letter-Word 

Identification, Reading Fluency, and Word Attack subtests), with a score above 50th percentile 

Cohort! Age!
Sex!

(M/F)!
Reading !

Skill !
Estimated!

IQ!
2nd fMRI session!

 MT vs. PT d-prime!

N24 – Mean (SD)! 25.07 (2.85)! 11/13! 82.26 (8.24)! 127.92 (7.09)! 1.06 (0.88)!

N17 – Mean (SD)! 24.60 (2.57)! 6/11! 82.19 (9.24)! 128.71 (6.67)! 1.42 (0.80)!
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set as inclusion criterion. The vocabulary and matrix reasoning sections of the Wechsler 

Abbreviated Scale of Intelligence (Wechsler, 1999) were used to estimate IQ. Selected 

demographic and cognitive characteristics are displayed in Table 3.1. All aspects of the study, 

including informed consent, were conducted with Washington University IRP approval.  

3.2.3 Stimuli 
As documented in Appendix A, a set of concrete nouns (50% animals; 50% artifacts; 3-

9 letters; 1-3 syllables) and a set of PWs (5 letters, 1 or 2 syllables) were collected from the 

English Lexicon Project (D. A. Balota et al., 2007). PWs were divided into two groups. 

GRP1PWs (n=90) were randomly assigned the meanings of real animal or artifact words and 

used in meaning training (MT). Real words used as meaning-training targets were separate 

from words used in the lexical decision task during the fMRI sessions. GRP2PWs (n=90) were 

given perceptual form training (perceptually trained PWs) using a PW-detection task. As 

shown in Table 3.2, PWs across meaning/perceptual training groups were matched in length (5 

letters/1-2 syllables), orthographic neighborhood size, mean bigram frequency, and normed 

lexical decision latency garnered from the ELP (D. A. Balota et al., 2007).  In addition, to 

further minimize unwanted item effects (Hutchison et al., 2008), PWs were counterbalanced 

across meaning/perceptual training groups, and  across animal vs. artifact categories within the 

meaning training group.  
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Table 3.2: Lexical characteristics of pseudoword stimuli. 
Lexical characteristics gathered from the English Lexicon Project (D. A. Balota et al., 2007). 
Note that meaning vs. perceptually trained PWs were also counterbalanced between subjects. 

3.2.4 Meaning Training 
A sentence containing a PW was presented either visually on a screen or aurally via 

headphones. Subjects first inferred the intended meaning using contextual cues in the sentence, 

and then named the PW aloud into a microphone for recording. For the aural presentations, 

subjects heard a native English speaker reading the sentences. Each PW was presented in 4 

sentences (2 visual, 2 aural), constraining the inferred meaning. (Refer to Appendix B for 

stimuli). 

3.2.5 Perceptual Training  
Using visual/aural modalities as above, subjects were presented with meaningless, 

sentence-like array of real words containing a PW that was to be detected and subsequently 

named aloud for recording. (Refer to Appendix C for stimuli). 

3.2.6 Experimental Procedure 
On Day 1, the 1st fMRI session was administered, during which subjects performed a 

visually presented word/nonword lexical decision task. Choices, indicated via button-presses 

using the first digit (thumb) of each hand for the corresponding decision, were recorded to 

assess accuracy and reaction time. Buttons corresponding to “word” vs. “nonword” responses 

Stimulus group! Orthographic !
neighborhood size!

Mean !
bigram frequency!

Normed lexical !
decision RT (ms)!

Meaning-trained (MT)!
Mean (SD)! 2.41 (1.76)! 1387.54 (635.46)! 746.66 (58.97)!

Perceptually trained (PT)!
Mean (SD)! 2.47 (2.08)! 1410.83 (795.53)! 738.86 (46.90)!

MT vs. PT !
2-sample t-test p-values! 0.85! 0.83! 0.32!
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were counterbalanced between subjects, with the same configuration used in both fMRI 

sessions for a given subject. The stimuli (i.e. two classes of PWs reserved for meaning and 

perceptual training, and common animal/artifact English words) were presented in an 

interleaved manner using a widely spaced, event-related design to preclude overlapping 

hemodynamic responses and allow isolation of individual trials. Each experimental run 

consisted of 24 stimuli (9 meaning-trained PWs, 9 perceptually trained PWs targets, and 6 real 

words) presented for 1 MR frame (2.5 sec) followed by either 7 fixation frames (22/24 regular 

trials) or 2 MR frames (2/24 catch trials), allowing for extraction of the event-related time 

course (Miezin, Maccotta, Ollinger, Petersen, & Buckner, 2000). A total of 10 BOLD runs 

were collected for each subject during each of the 2 fMRI sessions, with each stimulus 

presented only once per session. 

MR-compatible headphones were used to dampen scanner noise and communicate with 

participants. Subjects were fit with a thermo-plastic mask molded on their face to minimize 

head movement. Using a mirror attached to the head-coil, subjects viewed stimuli displayed 

via Psyscope (J. D. Cohen, MacWhinney, Flatt, & Provost, 1993) installed on an iMAC 

computer (Apple, Cupertino, CA) and projected via an LCD projector (Sharp model PG-

C20XU) onto an MRI-compatible rear-projection screen (CinePlex). Subjects viewed a white 

fixation cross on a black background, which was always displayed except when a ‘word’ or 

‘nonword’ stimulus was presented, with each letter subtending 0.5° of horizontal visual angle. 

Following the 1st fMRI session, meaning and perceptual training sessions were 

conducted as described above. Finally, on day 3, the 2nd fMRI session was administered with 
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one crucial difference from the 1st session: meaning-trained PWs items, which required a 

“nonword” response during the 1st session, required a “word” response, and hence a different 

corresponding button-press, during the 2nd fMRI session. 

3.2.7 MRI Data Acquisition 
Functional and anatomical MRI data was collected on a Siemens 3 Tesla MAGNETOM 

Trio system (Erlangen, Germany) with total imaging matrix technology (TIM) using a 12-

channel head matrix coil. A high-resolution T1-weighted sagittal MP-RAGE was acquired (TE 

=3.08 ms, TR [partition] = 2.4 s, TI = 1000 ms, flip angle = 8", 176 slices with 1 X 1 X 1 mm 

voxels). A T2-weighted turbo spin echo structural image (TE = 84 ms, TR = 6.8 s, 32 slices 

with 2 X 1 X 4mm voxels) matching the acquisition plane of the BOLD images was also 

collected to improve alignment to an atlas. An auto-align Siemens pulse sequence protocol was 

used for acquisition alignment to the anterior commissure-posterior commissure (AC-PC) 

plane. Functional data was collected using a BOLD contrast-sensitive gradient echo echo-

planar sequence (TE =27 ms, flip angle = 90", in-plane resolution = 4 X 4 mm). Whole-brain 

EPI volumes (MR frames) of 32 contiguous, 4 mm-thick axial slices were collected with a TR 

of 2.5 sec. The first four volumes were discarded to allow net magnetization to reach steady 

state.  

3.2.8 fMRI Data Preprocessing 
Imaging data from each subject were preprocessed to remove noise and artifacts, 

including: (1) correction for movement within and across runs using a rigid-body rotation and 

translation algorithm (Snyder, 1996), (2) whole-brain normalization to a common mode of 
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1000 (Ojemann et al., 1997) and (3) temporal realignment using sinc interpolation of all slices 

to the temporal midpoint of the first slice. Functional data were then resampled to 3 mm 

isotropic voxels and transformed into stereotaxic atlas space (Talairach, Tournoux, & Rayport, 

1988). As described below, unless otherwise stated, all ROI coordinates have been transformed 

(via linear transformation), and are reported in Montreal Neurological Institute (MNI) atlas 

space (Mazziotta et al., 2001). For the 1st fMRI session, each subject’s EPI was registered to 

that subject’s T2, which was registered to that subject’s T1-weighted image, which in turn was 

registered to a custom atlas-transformed (Lancaster et al., 1995) target T1-weighted template 

(711-2B, TRIO-Y-NDC) using a series of affine transforms. The data from the 2nd fMRI 

session was cross-registered with data from the 1st fMRI session using a cross-day realignment 

procedure (developed by Abraham Snyder). The preprocessed data were subjected to an 

additional analysis to censor MR frames with a frame-wise displacement movement-exclusion 

threshold exceeding 0.2 mm (J D Power, Barnes, Snyder, Schlaggar, & Petersen, 2012; Siegel 

et al., 2013). Subsequently, the entire trial was coded as a movement trial and discarded from 

group analysis if that trial contained a frame that exceeded the movement-exclusion threshold. 

Movement frame censoring did not result in data loss that would of concern (treating an 

individual subject’s fMRI data as a sample, separately for the two fMRI sessions, the amount 

of censored frames relative to an entire sample, expressed in percentage points, exhibited: 

mean = 1.03, SD = 2.29, min = 0.00, max = 11.82). 
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3.2.9 General Linear Model-Based fMRI Data Analysis 
Statistical analysis was conducted using in-house software programmed in the 

Interactive Data Language (ITT Visual Information Solutions, Boulder, CO) and C as 

previously described (Miezin et al., 2000; Ollinger, Corbetta, & Shulman, 2001). BOLD 

activity related to the trials as well as baseline and trend terms for each BOLD run were 

modeled using a General Linear Model (GLM). The GLM design for each participant included 

time as an eight-level factor, made up of the eight MR frames (20 sec, 2.5 sec per frame) 

during and after stimulus presentation. No shape assumptions were made for the hemodynamic 

response function. The timecourse of the hemodynamic response function was generated from 

the estimates for each MR frame.  Correct responses, omission errors, and commission errors 

were coded separately for each trial type. Correct responses were subsequently filtered to 

include only items that were correct during both the 1st and 2nd fMRI sessions, with the 

remaining items designated for exclusion from group correct-trial analyses. A single GLM was 

created for each subject, based on the combined functional data from both the 1st and 2nd fMRI 

sessions, using a single event-file that separately coded for 1st and 2nd session trials. Reaction 

time was coded separately as a regressor.  

3.2.10 Voxelwise Analysis  
In the voxelwise analyses described below, as well as all subsequent region X region 

analyses, the ‘time’ factor constituted the hemodynamic response function (HRF) across 8-MR 

frames. The 8-MR frames included the 1st frame containing presented stimuli and 7 subsequent 

frames, for a total duration of 20 seconds (8-MR frames X 2.5sec TR). This widely spaced 
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experimental design allows for using non-overlapping item-level hemodynamic response 

functions across trials. 

Contrasts based on correct trials 
Separate voxelwise ANOVAs were initially conducted targeting effects corresponding 

to the following semantic criteria, as previously outlined. Voxelwise SPMs are shown in 

Figures (3.1 – 3.4) 

a) Word/nonword differences (day 1) (Figure 3.1) – real words vs. novel PWs X time (i.e. 

the).  

b) Cross-session real word repetition (day1/day2) (Figure 3.2)  – words on day1 vs. words 

on day 2 X time. 

c) Effects of meaning training (day1/day2) (Figure 3.3) – untrained/novel PWs vs. meaning-

trained items (MT) X time. 

d) Differences between meaning and form trained stimuli (day 2) (Figure 3.4)   – meaning-

trained PWs vs. perceptually trained PWs X time.  



	  
 

 

 

71	  

 
Figure 3.1:  Voxelwise Difference Map – Real Words vs. PWs.  
Based on a voxelwise lexicality X time ANOVA to identify differences between real words 
and novel PWs on day 1.  
  

Z=3.0! Z=6!
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Figure 3.2: Voxelwise Difference Map – Real Words During 1st vs. 2nd Presentation. 
Based on a voxelwise day X time ANOVA to find cross-day differences for real words.  
  

Z=3.0! Z=6!
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Figure 3.3: Voxelwise Difference Map – Novel vs. Meaning Trained PWs. 
Based on day X time ANOVA to identify differences between untrained PWs (day 1) and 
meaning-trained PWs (day 2) 
  

Z=3.0! Z=6!
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Figure 3.4: Voxelwise Difference Map – Meaning vs. Perceptually Trained PWs. 
Based on a voxelwise lexicality X time ANOVA to identify differences between meaning vs. 
perceptually trained PWs on day 2 

Fixed effects analysis across 4 correct trial contrasts 
Each of the 4 voxelwise correct-trial SPMs (Figures 3.1-3.4) were thresholded at a 

Monte Carlo–corrected z-score of 3.0, with a minimum of 13 contiguous voxels (uncorrected p 

< 0.001, corrected p < 0.05), and the maximum observed z-score was determined for each of 

the 4 maps. The map with the lowest maximum z-score was set aside and its z-score was used 

as a ceiling threshold for the other 3 images. This threshold was applied by setting the values 

for any voxel exceeding the ceiling in the three images, to the ceiling z-score. This approach 

ensured that the resulting fixed-effects image would not be overly representative of any one 

image. Each of the 4 images were then converted into binary masks and summed. Finally, the 

summed image was divided by √4 to generate a fixed-effects image (Figure 3.5). 

Z=3.0! Z=6!
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Figure 3.5: Voxelwise Fixed Effects Map of 4 Correct-Trial Individual ANOVA Maps 
Overlaid with 81 Resulting Peak Regions. 
 

Contrasts based on correct and commission error trials 
Two voxelwise ANOVAs were conducted, exclusively based on meaning and perceptually 

trained PW trials during the 2nd fMRI session, to examine differences between all correct and 

commission error trials, as well as interactions between accuracy and training group.   

a) Main effect of accuracy collapsed across training group (day 2)(Figure 3.6): 

Meaning/perceptually trained item accuracy (hit vs. miss) X time 

b) Interactions between training group and accuracy (day2) (Figure 3.7): training 

group (meaning vs. perceptual) X accuracy (hit vs. miss) X time. 

Z=3.5! Z=7!
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The above SPMs were smoothed with a 4-voxel full-width-at-half-maximum (FWHM) 

smoothing kernel and Monte Carlo corrected at a minimum z-score of 3.5 with at least 7 

contiguous voxels (uncorrected p<0.001, Monte-Carlo corrected p<0.05). 

  
Figure 3.6: Voxelwise Difference Map – Correct vs. Commission Error Trials Collapsed 
Across Meaning and Perceptually Trained PWs. 
Based on a voxelwise accuracy X time ANOVA to identify the main effect of accuracy 
(correct trials vs. comm. errors) collapsed across meaning and form trained items on day 2. 
Overlaid are the identified peak regions. 

Z=3! Z=6!
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Figure 3.7: Voxelwise Interaction Map – Accuracy (Correct vs. Commission Error Trials) By 
Training Group (Meaning vs. Perceptual). 
Based on a voxelwise accuracy X training group X time ANOVA to identify interactions 
between post-training accuracy and training group. Resulting peak regions are overlaid. 

3.2.11 Region of Interest Generation 
10-mm-diameter spherical ROI were separately generated from the fixed effects image 

based on correct trials and the two images from the error analysis described above. Regions 

were generated using in-house peak-finding software (peak_4dfp, written by Abraham Snyder) 

using a 4-mm FWHM smoothing kernel, a z-score bottom threshold of 3.0 (2 error-analysis 

images) and 3.5 (fixed-effects of 4 correct-trial contrasts and a proximity-exclusion spatial 

filter of 10mm. As shown in Figure 3.8, a total of 97 ROI were generated, 81 ROI from the 

fixed-effects image of 4 correct-trial contrasts and 16 ROI from the 2 error-analysis images, 

respectively. Unless otherwise noted, all ROI coordinates are provided in MNI atlas space 

(Mazziotta et al., 2001).  

 

Z=3! Z=6!
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Figure 3.8 - Aggregated Regions (n=97) from Correct Trial and Error Analysis. 
 

We conducted 5 regional ANOVAs on the 97 ROIs (Figure 3.8) generated from the 

voxelwise fixed effects of 4 correct trial contrasts and the two error analysis contrasts to 

identify regions showing the hypothesized semantic properties. The results from the regional 

ANOVAs are presented in Table 3.3. 

Accuracy X time!

Accuracy X training group X time!

Fixed effects 4 (corr. trl) contrasts!
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Table 3.3: Specific Effects of Lexicality in Individual Brain Regions.  
Uncorrected p-values (< 0.1) from a condition X time ANOVA are presented. Cell colors 
correspond to Infomap-based assignment at 8% edge density shown in Figure 3.17.  

Infomap((

Cluster(ID( ROI(label(

Words(

(vs.((

Novel(PWs(

Meaning(tr.((MT)(

vs.((

Novel(PWs(

Meaning(tr.((MT)(

vs.((

Perceptual(tr.((PT)(

Words((day(1)(

vs.(

Words((day(2)(

Meaning(tr.((

Hit(vs.(Miss(

1( MedFG_H1_18_42( 0.000( Words(>((PWs(     0.000( MT(>((PT( 0.000( Day(1(>(Day(2(     
1( SFG_13_13_59( 0.044( Words(>((PWs( 0.004( PWs(>(MT( 0.009( MT(>((PT( 0.043( Day(1(>(Day(2(     
1( ACC_H1_24_20( 0.000( Words(>((PWs(     0.020( MT(>((PT( 0.006( Day(1(>(Day(2( 0.046( MISS(>(HIT(

1( Thalamus_13_H11_13( 0.005( Words(>((PWs( 0.023( MT(>((PWs( 0.014( MT(>((PT( 0.049( Day(1(>(Day(2(     
1( Cingulate_0_36_25( 0.000( Words(>((PWs(     0.010( MT(>((PT( 0.008( Day(1(>(Day(2(     
1( SFG_1_10_62(     0.019( PWs(>(MT( 0.000( MT(>((PT( 0.002( Day(1(>(Day(2(     
1( Insula_H45_13_H2( 0.000( Words(>((PWs(     0.000( MT(>((PT(     0.069( HIT(>(MISS(

1( Insula_41_9_0( 0.000( Words(>((PWs( 0.077( PWs(>(MT(     0.002( Day(1(>(Day(2(     
1( Thalamus_H2_H28_6( 0.009( Words(>((PWs(     0.000( MT(>((PT( 0.003( Day(1(>(Day(2(     
1( Thalamus_H6_H18_12( 0.046( Words(>((PWs( 0.088( MT(>((PWs( 0.004( MT(>((PT( 0.055( Day(1(>(Day(2(     
1( SFG_H13_9_60(         0.000( MT(>((PT(         
1( Insula_48_16_H7( 0.030( Words(>((PWs(     0.004( MT(>((PT( 0.007( Day(1(>(Day(2( 0.035( MISS(>(HIT(

1( mSFC_H3_38_27( 0.001( Words(>((PWs(     0.000( MT(>((PT( 0.042( Day(1(>(Day(2( 0.000( HIT(>(MISS(

1( antInsula_38_29_H2( 0.025( Words(>((PWs(                 
1( Cingulate_5_27_34( 0.001( Words(>((PWs(     0.067( MT(>((PT( 0.030( Day(1(>(Day(2(     
1( mSFC_H2_16_50(         0.009( MT(>((PT( 0.090( Day(1(>(Day(2(     
1( mSFC_4_8_68( 0.012( Words(>((PWs(         0.035( Day(1(>(Day(2( 0.079(MISS(>((HIT(

2( pMTG_60_H54_H1( 0.002( Words(>((PWs( 0.000( PWs(>(MT( 0.001( MT(>((PT(     0.010( HIT(>(MISS(

2( Fusiform_H42_H59_H4( 0.011( PWs(>(Words( 0.003( PWs(>(MT( 0.032( MT(>((PT( 0.004( Day(1(>(Day(2(     
2( SPL_39_H43_53(     0.000( PWs(>(MT( 0.018( PT(>(MT( 0.000( Day(1(>(Day(2(     
2( SPL_H26_H52_53(     0.000( PWs(>(MT(     0.000( Day(1(>(Day(2(     
2( IPL_H52_H31_39( 0.000( Words(>((PWs( 0.086( PWs(>(MT( 0.033( MT(>((PT( 0.002( Day(1(>(Day(2( 0.052( HIT(>(MISS(

2( PostCenSul_H33_H43_58( 0.001( Words(>((PWs( 0.005( PWs(>(MT(     0.000( Day(1(>(Day(2(     
2( SPL_26_H49_50(     0.000( PWs(>(MT( 0.039( MT(>((PT( 0.000( Day(1(>(Day(2(     
2( PostCenSul_H40_H30_40( 0.000( Words(>((PWs(         0.000( Day(1(>(Day(2(     
2( Fusiform_42_H57_H18( 0.033( Words(>((PWs( 0.001( PWs(>(MT( 0.060( MT(>((PT( 0.000( Day(1(>(Day(2(     
2( pIPS_29_H65_29(     0.014( PWs(>(MT( 0.003( MT(>((PT( 0.000( Day(1(>(Day(2(     
2( IPS_SPL_H22_H63_40( 0.003( PWs(>(Words( 0.017( PWs(>(MT( 0.056( MT(>((PT( 0.053( Day(1(>(Day(2(     
2( PostCenSul_H35_H38_48( 0.053( Words(>((PWs( 0.005( PWs(>(MT(     0.000( Day(1(>(Day(2(     
2( FEF_30_H4_52(     0.009( PWs(>(MT( 0.012( MT(>((PT(         
2( IPS_23_H62_39(     0.002( PWs(>(MT( 0.034( MT(>((PT( 0.004( Day(1(>(Day(2(     
3( MFG_H36_24_31(     0.000( PWs(>(MT( 0.000( MT(>((PT( 0.001( Day(1(>(Day(2( 0.004( HIT(>(MISS(

3( MFG_H46_18_34(     0.003( MT(>((PWs( 0.000( MT(>((PT( 0.039( Day(2(>((Day(1(     
3( PrecSul_H43_6_34( 0.001( PWs(>(Words( 0.003( PWs(>(MT( 0.006( MT(>((PT(         
3( IFG_H48_9_22( 0.018( PWs(>(Words( 0.004( PWs(>(MT(     0.003( Day(1(>(Day(2(     
3( MFG_48_15_42( 0.006( Words(>((PWs( 0.096( MT(>((PWs( 0.033( MT(>((PT( 0.034( Day(2(>((Day(1(     
3( MFG_52_19_30( 0.075( Words(>((PWs( 0.005( PWs(>(MT( 0.046( MT(>((PT( 0.005( Day(1(>(Day(2(     
3( SMA_premotor_H41_1_47(     0.005( PWs(>(MT( 0.087( MT(>((PT( 0.007( Day(1(>(Day(2(     
3( IFGtri_H51_24_23(         0.079( MT(>((PT(         
3( mSFC_H4_22_55(     0.014( MT(>((PWs( 0.000( MT(>((PT(         
3( MFG_H47_14_42(         0.002( MT(>((PT(         
3( MFG_H37_14_32(         0.000( MT(>((PT(     0.021( HIT(>(MISS(

4( dpAG_H38_H67_44( 0.000( Words(>((PWs( 0.000( MT(>((PWs(     0.001( Day(2(>((Day(1( 0.014( HIT(>(MISS(

4( Precuneus_H6_H66_32( 0.086( Words(>((PWs( 0.000( MT(>((PWs( 0.000( MT(>((PT( 0.061( Day(2(>((Day(1( 0.001( HIT(>(MISS(

4( AG_H43_H57_41( 0.000( Words(>((PWs( 0.039( MT(>((PWs( 0.009( MT(>((PT( 0.008( Day(2(>((Day(1( 0.005( HIT(>(MISS(

4( vpAG_H45_H66_32( 0.004( Words(>((PWs( 0.001( MT(>((PWs( 0.010( MT(>((PT(     0.000( HIT(>(MISS(

4( SFG_H20_23_50( 0.000( Words(>((PWs( 0.000( MT(>((PWs( 0.005( MT(>((PT(     0.080( HIT(>(MISS(

4( pIPL_H30_H75_52(     0.000( MT(>((PWs( 0.040( MT(>((PT( 0.040( Day(2(>((Day(1( 0.031( HIT(>(MISS(

4( adAG_H48_H56_48( 0.003( Words(>((PWs(     0.001( MT(>((PT(     0.001( HIT(>(MISS(

4( avAG_H47_H56_41( 0.005( Words(>((PWs( 0.043( MT(>((PWs( 0.013( MT(>((PT( 0.029( Day(2(>((Day(1( 0.000( HIT(>(MISS(

4( IPS_H33_H62_41( 0.044( Words(>((PWs( 0.011( MT(>((PWs(     0.007( Day(2(>((Day(1( 0.009( HIT(>(MISS(
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(Cont.) Table 3.3  
 

3.2.12 Clustering Analysis Used to Identify a Potential Semantic System  
To identify a set of regions with similar functional properties that could form a putative 

semantic system, we used the following clustering algorithms to group regions with similar 

Infomap((
Cluster(ID( ROI(label(

Words(
(vs.((

Novel(PWs(

Meaning(tr.((MT)(
vs.((

Novel(PWs(

Meaning(tr.((MT)(
vs.((

Perceptual(tr.((PT)(

Words((day(1)(
vs.(

Words((day(2)(
Meaning(tr.((
Hit(vs.(Miss(

5( pMTG_54_I56_11( 0.000( Words(>((PWs( 0.000( PWs(>(MT( 0.005( MT(>((PT( 0.004( Day(1(>(Day(2(0.089(MISS(>(HIT(
5( SMG_57_I45_35( 0.000( Words(>((PWs( 0.008( PWs(>(MT( 0.003( MT(>((PT(     0.056(MISS(>(HIT(
5( pMTG_I53_I53_9( 0.002( Words(>((PWs( 0.000( PWs(>(MT( 0.072( MT(>((PT( 0.000( Day(1(>(Day(2(0.009(HIT(>(MISS(
5( SPL_precun_12_I71_42( 0.004( Words(>((PWs( 0.042( PWs(>(MT(     0.000( Day(2(>((Day(1(     
5( SMG_54_I37_43( 0.008( Words(>((PWs( 0.000( PWs(>(MT( 0.033( MT(>((PT(         
5( TPO_I47_I61_15( 0.009( Words(>((PWs(     0.041( MT(>((PT( 0.015( Day(1(>(Day(2(     
5( Cingulate_7_I21_44( 0.000( Words(>((PWs( 0.023( PWs(>(MT( 0.022( MT(>((PT( 0.034( Day(1(>(Day(2(0.022(MISS(>(HIT(
5( SMG_I64_I32_30( 0.005( Words(>((PWs(     0.000( MT(>((PT(         
5( ParaCenLob_4_I29_51( 0.017( Words(>((PWs( 0.015( PWs(>(MT( 0.004( MT(>((PT( 0.012( Day(1(>(Day(2(0.011(MISS(>(HIT(
5( TPO_41_I61_19(     0.096( PWs(>(MT( 0.000( MT(>((PT(         
6( Cingulate_I4_I35_44( 0.000( Words(>((PWs( 0.000( MT(>((PWs( 0.035( MT(>((PT( 0.044( Day(2(>((Day(1(0.002(HIT(>(MISS(
6( Cingulate_4_I5_34( 0.000( Words(>((PWs(     0.017( MT(>((PT( 0.017( Day(1(>(Day(2(     
6( Cingulate_I4_I36_32( 0.003( Words(>((PWs( 0.003( MT(>((PWs( 0.077( MT(>((PT(         
6( Cingulate_I3_I17_37( 0.000( Words(>((PWs(         0.034( Day(1(>(Day(2(0.029(MISS(>(HIT(
6( Precuneus_9_I64_29( 0.057( Words(>((PWs( 0.001( MT(>((PWs(     0.001( Day(2(>((Day(1(     
6( PCC_I3_I46_20( 0.037( Words(>((PWs(     0.012( MT(>((PT(     0.002(HIT(>(MISS(
6( Cingulate_1_I23_30( 0.068( Words(>((PWs( 0.004( PWs(>(MT(     0.016( Day(1(>(Day(2(0.036(MISS(>(HIT(
7( Fusiform_I33_I44_I16( 0.003( Words(>((PWs(     0.006( MT(>((PT( 0.000( Day(1(>(Day(2(     
7( CBLM_1_I70_I39( 0.021( Words(>((PWs( 0.048( PWs(>(MT( 0.000( MT(>((PT( 0.019( Day(1(>(Day(2(     
7( LingGyr_20_I97_I4( 0.000( Words(>((PWs(     0.047( MT(>((PT( 0.001( Day(1(>(Day(2(     
7( MTL_I13_I34_2( 0.000( Words(>((PWs(     0.016( MT(>((PT( 0.009( Day(1(>(Day(2(0.008(HIT(>(MISS(
7( RSP_I3_I59_6( 0.000( Words(>((PWs(     0.069( MT(>((PT( 0.006( Day(1(>(Day(2(0.039(MISS(>(HIT(
7( PHG_HCP_21_I23_I5( 0.007( Words(>((PWs(     0.004( MT(>((PT(         
7( Cuneus_I4_I89_13(                     
7( Cuneus_1_I67_13(                 0.006(MISS(>(HIT(
7( LingGyr_I10_I81_I2( 0.001( Words(>((PWs(             0.076(MISS(>((HIT(
8( MTG_50_I29_I6( 0.001( Words(>((PWs( 0.008( PWs(>(MT( 0.083( MT(>((PT( 0.008( Day(1(>(Day(2(     
8( MTG_STS_I51_I35_I8( 0.000( Words(>((PWs(         0.000( Day(1(>(Day(2(     
8( ITG_MTG_I59_I42_I12( 0.003( Words(>((PWs(     0.079( PT(>(MT( 0.000( Day(1(>(Day(2(     
8( Fusiform_49_I43_I10( 0.013( Words(>((PWs( 0.000( PWs(>(MT(     0.001( Day(1(>(Day(2(     
8( ITG_I60_I65_I3( 0.001( Words(>((PWs( 0.013( PWs(>(MT(     0.026( Day(1(>(Day(2(     
8( OccPole_I29_I95_I12( 0.007( Words(>((PWs( 0.045( PWs(>(MT(     0.008( Day(1(>(Day(2(     
8( MTG_I65_I52_I1( 0.000( Words(>((PWs(     0.001( MT(>((PT(         
9( PHG_I18_I36_I6( 0.000( Words(>((PWs( 0.039( MT(>((PWs( 0.002( MT(>((PT(     0.003(HIT(>(MISS(
9( PHG_I26_I39_I5( 0.000( Words(>((PWs( 0.000( MT(>((PWs( 0.000( MT(>((PT(     0.002(HIT(>(MISS(
10( IFG_54_27_I3(     0.002( PWs(>(MT( 0.009( MT(>((PT( 0.002( Day(1(>(Day(2(     
10( vaIFG_43_40_I19(     0.000( PWs(>(MT( 0.003( PT(>(MT( 0.016( Day(1(>(Day(2(     
11( CBLM_41_I59_I34( 0.021( Words(>((PWs(     0.015( MT(>((PT( 0.007( Day(1(>(Day(2(     
12( PrecSul_51_12_12( 0.009( Words(>((PWs( 0.003( PWs(>(MT( 0.078( MT(>((PT( 0.020( Day(1(>(Day(2(     
13( SubColGYr_27_8_I15( 0.002( Words(>((PWs( 0.006( PWs(>(MT( 0.027( MT(>((PT( 0.015( Day(1(>(Day(2(     
15( CBLM_I44_I75_I22( 0.002( Words(>((PWs( 0.019( PWs(>(MT( 0.076( MT(>((PT( 0.033( Day(1(>(Day(2(     
16( ParacenLob_I1_I37_76( 0.011( Words(>((PWs( 0.013( PWs(>(MT(     0.004( Day(1(>(Day(2(0.056(HIT(>(MISS(
17( STG_STS_I58_I22_I3( 0.024( Words(>((PWs( 0.035( MT(>((PWs( 0.014( MT(>((PT(     0.005(HIT(>(MISS(
18( CBLM_0_I58_I35( 0.001( Words(>((PWs(         0.000( Day(1(>(Day(2(     
19( Thalamus_I1_I13_I4( 0.000( PWs(>(Words( 0.099( PWs(>(MT(     0.070( Day(2(>((Day(1(0.087(HIT(>(MISS(
20( PrecGyr_I46_I9_58( 0.000( PWs(>(Words(         0.025( Day(2(>((Day(1(0.010(MISS(>((HIT(
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timecourse profiles. A hierarchical clustering algorithm and two different community detection 

algorithms were employed, and results were examined across multiple thresholds. 

Hierarchical clustering 
For each individual item (i.e. across all BOLD runs and subjects), a 97 ROI X 97 ROI 

correlation matrix was computed based on the 8 MR frame timecourse, and was subsequently 

averaged across items to create a group-mean matrix that was fed into the clustering algorithm.  

Clustering was performed on the group mean ROI X ROI timecourse correlation matrix 

described above using the unweighted pair group method with arithmetic mean (UPGMA) 

(Handl, Knowles, & Kell, 2005) implemented in Matlab 12 (The MathWorks, Natick, MA;). 

The correlations between regions were converted to a distance metric (1 – r), and clustering 

results were examined across four distance thresholds (0.40, 0.45, 0.50, 0.55). How well the 

cluster tree represented the real dissimilarities between region clusters was measured using 

cophenetic-r, a value that should be close to 1. The current dataset had a cophenetic-r of 0.81.  

Modularity-based community detection 
Modularity optimization analysis was performed on the same cross-item-mean 97ROI 

X 97ROI correlation matrix described above. The correlation matrix effectively serves as a 

mathematical graph representation of the network of 97ROI (nodes) with relationships between 

two regions (edges) represented by their task-evoked timecourse correlation score. Whether a 

network node (i.e. ROI) can “reach” another node (i.e. an edge is present between the two 

nodes) is determined by the threshold (of correlation score), which when increased beyond a 

certain value, will lead to a naturally fragmented network where the edges drop out and nodes 

cannot “reach” one another. As such, to consider the communities or clusters of regions that 
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emerge from such analyses as bona fide communities, it is recommended that a graph is at least 

80% connected, i.e. there is a path by which 80 % of the nodes can “reach” each other 

(Fortunato, 2010). Across the range of thresholds examined, based on graphs of > 80 % 

connectedness, the modularity optimization algorithm is used to determine the network 

community structure that leads to the highest modularity (Q). Modularity is a measure of the 

number of connections found within modules compared to the number of connections within 

modules expected by chance given the number of nodes and connections in the network. The 

modularity optimization algorithm reports the community assignment for each node such that 

Q is maximized. Typically, Q values over 0.30 are thought to indicate strong community 

structure (Fortunato, 2010; Newman, 2006).  

Infomap-based community detection  
Infomap, considered one of the best-performing clustering algorithms to date 

(Fortunato, 2010), uses the Map Equation (Rosvall & Bergstrom, 2008) to minimize an 

information theoretic description of a random walker over the network to define communities. 

Infomap was applied on the same correlation matrix, across the same thresholds described in 

the preceding two clustering approaches, allowing for assessment of the consistency of 

community assignments across analysis methods.  

3.3 Results  

3.3.1 Behavioral Performance 
Group accuracy and reaction time (RT) for stimuli used in the lexical decision task during the 

1st and 2nd fMRI sessions are shown in Figure 3.9. 
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Figure 3.9: Mean Group Behavioral Performance in the Lexical Decision Task During fMRI 
Sessions. 
A) Pre-training accuracy. B) Post-training accuracy. C) Pre-training RT. D) Post-training RT. 
On day 1, both groups of untrained PWs (meaning/perceptual) exhibited slower RTs relative to 
real words, but were themselves behaviorally equivalent, as expected. On day 2, while both 
groups of trained PWs were slower and less accurate than real words, meaning-trained PWs 
exhibited faster RTs than perceptually trained PWs. 
 

Accuracy  
A 2 X 3 repeated-measures ANOVA on accuracy (2 levels of day, 3 levels of lexicality, 

i.e. words, meaning training PWs, perceptual training PWs) yielded a significant main effect of 

day (F(1,16) = 75.42, p < 0.001), a significant main effect of lexicality (F(2,32) = 16.31, p < 

0.001), and a day X lexicality interaction (F(2,32) = 15.74, p < 0.001). The day effect was 

driven by higher accuracy on day 1 relative to day 2 (Bonferroni-corrected p < 0.001). The 

lexicality effect was driven by more accurate lexical decisions for real words relative to both 

0.97% 0.98% 0.98%

0.5%

0.6%

0.7%

0.8%

0.9%

1.0%

Day%1%-%fMRI%accuracy%

Perceptual%tr.%

Meaning%tr.%

Real%words%

A

0.72%
0.75%

0.99%

0.5%

0.6%

0.7%

0.8%

0.9%

1.0%

Day%2%.%fMRI%accuracy%

Perceptual%tr.%

Meaning%tr.%

Real%words%

(p < 0.001) 

B

1028%1043%
906%

0%

400%

800%

1200%

1600%

2000%
Day%1%-%fMRI%RT%(ms)%

Perceptual%tr.%

Meaning%tr.%

Real%words%

(p < 0.001) 

C

1593%
1350%

959%

0%

400%

800%

1200%

1600%

2000%
Day%2%.%fMRI%RT%(ms)%

Perceptual%tr.%

Meaning%tr.%

Real%words%

(p < 0.001) 

D



	  
 

 

 

84	  

meaning-trained PWs (Bonferroni-corrected p < 0.001) and perceptually trained PWs 

(Bonferroni-corrected p < 0.001). Meaning-trained PWs and perceptually trained PWs showed 

equivalent accuracy (Bonferroni-corrected p = 1.00).  

Given the significant day X lexicality interaction in accuracy, additional ANOVAs 

were conducted separately for day 1 and day 2, to further localize the source for the interaction. 

On day 1, a one-way repeated-measures ANOVA conducted across 3 levels of lexicality 

(words, meaning-training PWs, and form-training PWs) yielded a null effect of accuracy 

(F(2,32) = 1.55, p = 0.23).  

On day 2, a one-way repeated-measures ANOVA conducted across 3 levels of 

lexicality yielded a significant difference in accuracy (F(2,32) = 16.16, p < 0.001), with the 

pairwise mean-difference localized as more accurate lexical decisions for real words relative to 

both meaning-trained PWs (Bonferroni-corrected p < 0.001) and perceptually trained PWs 

(Bonferroni-corrected p < 0.001). Meaning-trained PWs and perceptually trained PWs showed 

equivalent accuracy (Bonferroni-corrected p = 1.00).  

Overall, the observed lexical decision accuracy is as expected. The two groups of PWs 

as well as real words exhibited equivalent accuracy. Relative to day 1, accuracy levels 

decreased substantially for both meaning and perceptually trained items, which is not 

surprising considering that subjects have to discriminate between the two by designating one as 

a ‘word’ and the other a ‘nonword’. Although depth-of-encoding effects were expected to yield 

higher accuracy on day 2 for meaning trained items relative to perceptually trained items, the 
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results did not support expectations. It is possible that the latter effect is partially due to the 

cross-day stimulus/response switch, i.e. items were ‘nonwords’ on day 1, and became ‘words’ 

on day 2, which may have negatively affected accuracy. 

Reaction time  
A similar 2 X 3 repeated-measures ANOVA on normalized reaction times (2 levels of day, 3 

levels of lexicality, i.e. words, meaning training PWs, perceptual training PWs) yielded a near-

significant main effect of day (F(1,16) = 3.79, p = 0.07), a significant main effect of lexicality 

(F(2,32) = 111.72, p < 0.001), and a day X lexicality interaction (F(2,32) = 43.17, p < 0.001). 

The near-significant effect of day was driven by faster-trending day 1 RTs relative to day 2 

RTs (Bonferroni-corrected p =0.07). The lexicality effect was driven by faster RTs for real 

words relative to both meaning-trained PWs (Bonferroni-corrected p < 0.001) and perceptually 

trained PWs (Bonferroni-corrected p < 0.001). In addition, meaning-trained PWs exhibited 

faster RTs than perceptually trained PWs (Bonferroni-corrected p < 0.005).  

Similar to the accuracy analysis, RTs were separately analyzed on days 1 and 2 to 

localize interactive effects. On day 1, a one-way repeated-measures ANOVA conducted across 

3 levels of lexicality (words, meaning-training targets, and form-training targets) showed a 

significant difference (F(2,32) = 17.54, p < 0.001), with the pairwise mean-difference localized 

as faster lexical decision RTs for real words relative to both meaning-trained PWs targets 

(Bonferroni-corrected p < 0.005) and perceptually trained PWs targets (Bonferroni-corrected 

p < 0.005). Meaning-trained PWs and perceptually trained PWs target PWs, exhibited 

equivalent reaction time (Bonferroni-corrected p = 0.54). As expected, the two groups of 
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untrained PWs were behaviorally equivalent on day 1, and both sets exhibited slower lexical 

decision RTs relative to real words. 

On day 2, a one-way repeated-measures ANOVA on normalized reaction times yielded 

a significant effect (F(2,32) = 170.25, p < 0.001), with the pairwise mean-difference localized 

as faster RTs for real words relative to both meaning-trained PWs (Bonferroni-corrected p < 

0.001) and perceptually trained PWs (Bonferroni-corrected p < 0.001). In addition, meaning-

trained PWs exhibited faster RTs than perceptually trained PWs (Bonferroni-corrected p < 

0.001). The latter effect demonstrating faster RTs on day 2 for meaning-trained items relative 

to perceptually trained items was somewhat surprising, given that meaning training did not 

result in better accuracy than perceptual training. Despite the stimulus/response switch caveat, 

it appears there is some evidence in support of a behavioral advantage, albeit only in RTs, 

gained from deeper semantic encoding afforded by meaning relative to perceptual training. 

3.3.2 Left Parahippocampus (PHG) and Left Medial Superior Frontal 
Cortex (mSFC) Are Involved in Retrieval of Meaning for Both Novel 
and Existing Words. 
The regional ANOVAs and qualitative examination of timecourses revealed two 

regions, one in the left medial superior frontal cortex (mSFC_-3_38_27), and another in the left 

parahippocampal gyrus (PHG_-18_-36_-6) that exhibited most of the expected properties 

making them primary candidates for putative semantic processing regions. 

As shown in Figure 3.10 (panels A and B), both PHG (p <0.001) and mSFC (p<0.01) 

show greater BOLD activity for real English words relative to novel PWs. PHG and mSFC 
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also show qualitative evidence for suppression of BOLD activity for repeated real words (day 

2) relative to day 1 levels (Figure 3.10, panels C and D). Although the latter effect was only 

significant in mSFC (p < 0.05) and not in PHG (p = 0.17) in a condition X time ANOVA 

where all 8 frames of time were used, restricting time to the peak frames (2,3, and 4) results in 

a stronger trend in PHG (p = 0.06). Overall, these properties support an interpretation that left 

PHG and mSFC are recruited for semantic retrieval of previously existing word meanings. 

 
Figure 3.10: Bold Timecourses for Left Parahippocampal Gyrus and Medial Superior Frontal 
Cortex (E) – Word vs. PW (A, B) and Words in 1st vs. 2nd Presentation (C, D). 
Timecourses for PHG and mSFC (panel E) for real words vs. novel PWs on day 1 (panels A 
and B), and real words on day 1 vs. day 2 (panels C and D), respectively. In a condition X time 
(8MR-frames) ANOVA, both PHG (panel A, p<0.001) and mSFC (panel B, p<0.01) show 
higher BOLD activity for real words relative to novel PWs. The two regions also show higher 
BOLD for words on day 1 than day 2. The effect was qualitative in PHG (panel C, p=0.17; in 
MR-frames 2-4, p=0.06) but statistically significant in mSFC (panel D, p<0.05). The above 
properties suggest that left PHG and mSFC are recruited for semantic retrieval of existing word 
meanings. 
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In addition, as shown in Figure 3.11 (panels A and B), PHG and mSFC qualitatively 

show timecourses with higher activity for meaning-trained PWs relative to novel PWs. The 

condition X time effect was significant in PHG (p<0.05) but not in mSFC (p = 0.22). Both 

PHG (p <0.01) and mSFC (p<0.001) also showed significantly higher activity for meaning-

trained PWs relative to perceptually trained PWs (Figure 3.11, panels C and D) on day 2. 

Collectively, the above noted properties support an interpretation that left PHG and mSFC 

support selective semantic retrieval of novel words with associated meanings, relative to 

perceptually familiar items lacking semantic associations. 
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Figure 3.11: Bold Timecourses for Regions in Left PHG and mSFC (E) – Novel vs. Meaning 
Trained PWs (A, B), and Meaning vs. Perceptually Trained PWs (C, D). 
A condition X time (8MR-frames) ANOVA showed significantly higher BOLD for meaning-
trained relative to novel PWs in PHG (panel A, p<0.05) and a similar qualitative effect in 
mSFC (panel B, p=0.22); as well as higher BOLD for meaning trained than perceptually 
trained PWs in both PHG (panel C, p<0.01) and mSFC (panel D, p<0.001). These properties 
suggest that left PHG and mSFC support semantic retrieval selectively for newly acquired 
words with semantic associations relative to perceptually trained items unassociated with 
meaning. 
 

Finally, error trial analysis showed higher BOLD activity for correctly identified 

meaning-trained PWs (hits) than their incorrect counterparts (misses) in both PHG (p <0.01) 

and mSFC (p<0.001) (Figure 3.12, panels A and B). The latter finding is consistent with the a-

priori expected profile of a region involved in semantic retrieval of novel words, in a manner 

specific to correctly learned meanings.  
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Figure 3.12: Bold Timecourses for Left PHG and mSFC (E) – Meaning Trained Item Hit vs. 
Miss (A, B), and Meaning + Perceptually Trained Item Hit vs. Miss (C, D). 
An accuracy X time (8MR-frames) ANOVA showed higher BOLD for meaning-trained hits 
than misses in PHG (panel A, p<0.01) and mSFC (panel B, p=0.001). At peak MR-frame 3, an 
accuracy (hit vs. miss) X training group (meaning vs. perceptual) regional ANOVA yielded 
significant interactions in both PHG (panel C, p<0.01) and mSFC (panel D, p<0.001). 
Observations suggest that semantic retrieval supported by PHG and mSFC is specific to 
subjectively perceived meanings, even when associated with the (objectively) wrong word 
form. 
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memory retrieval process. The relationship noted above between meaning-trained hits vs. 

misses shows the opposite qualitative pattern for perceptually trained PWs. This latter effect 
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revealed a significant accuracy X training group interaction in both PHG (p<0.01) and mSFC 
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supported by PHG and mSFC is specific to subjectively perceived meanings, even in cases 

where that meaning is incorrectly associated with the (objectively) wrong word form. 

3.3.3 Clustering Analysis Identified Region Clusters Resembling Previously 
Characterized Brain Systems but a Clear Semantic System Was Not 
Apparent  
To identify a set of regions with similar functional properties that could form a putative 

semantic system, we conducted clustering analyses using hierarchical clustering (Figures 3.13 

and 3.14), modularity optimization (Figure 3.15), and Infomap algorithms (Figure 3.16), which 

revealed qualitatively similar region clusters. Across the thresholds examined, the two putative 

semantic processing regions were not clustered together by any of the three algorithms.  
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Figure 3.13: Hierarchical Cluster Tree of 97 ROI Task-Based Timecourses. 
Results from hierarchical clustering analysis (UPGMA) showing the cluster tree at a 1-r 
threshold of 0.4. Regions shown in black (panel E) did not belong to any clusters. Note that the 
PHG and mSFC ROI (black arrows) are among the regions not placed in any clusters. Clusters 
have been coded with significant effects from a regional condition X time ANOVA, indicated 
by the colored circles (left panel).  
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Figure 3.14: Hierarchical Clusters Across Thresholds. 
For reference, a cluster tree at a threshold of 1-r = 0.4 is displayed in Figure 3.13. While there 
were region clusters fairly consistent across thresholds (e.g. a left lateral parietal cluster), none 
jointly contained PHG and mSFC. 
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Figure 3.15: Modularity-Based Region Communities Across Thresholds. 
Communities obtained from Modularity Optimization analyses are displayed across thresholds 
spanning 5% - 10% edge density. While there were region clusters fairly consistent across 
thresholds (e.g. a bilateral frontal cluster resembling frontoparietal control system), none 
jointly contained PHG and mSFC. 
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Figure 3.16: Infomap-Based ROI Communities Across Thresholds. 
Communities obtained from Infomap analyses are displayed across thresholds spanning 5% - 
10% edge density. While there were region clusters fairly consistent across thresholds (e.g. 
bilateral parietal cluster resembling dorsal attention system), none jointly contained PHG and 
mSFC. 
 

An infomap-based clustering scheme at 8% edge density (Figure 3.17), which yielded 

the highest-obtained modularity value (Q = 0.46), was chosen to investigate cluster properties. 

Results from regional ANOVAs targeting specific semantic effects conducted on the Infomap-

based clusters are shown in Table 3.4.  
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Figure 3.17: Communities Obtained from Infomap Analysis Resulting in the Highest-Obtained 
Modularity Value. 
The highest-obtained modularity value (Q = 0.46) was found at 8% edge density. The two 
putative semantic processing regions (yellow arrows) were placed in separate clusters. 
 

 
Table 3.4: Specific Effects of Lexicality in Infomap-Based Region Clusters.  
Uncorrected p-values (< 0.1) from a clusterwise condition X time (8MR-frames) ANOVA on 
the Infomap clusters at 8% edge density (Figure 3.17). The direction of the effect is based on 
mean BOLD activity across 8MR-frames. Cell colors correspond to the Infomap cluster 
groupings shown in Figure 3.17. 

INFOMAP 
Edge density = 8% 

Cluster/ROI,
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,vs.,,

Novel,PWs,

Meaning,tr.,(MT),

vs.,,

Novel,PWs,

Meaning,tr.,(MT),

vs.,,

Perceptual,tr.,(PT),

Words,(day,1),

vs.,

Words,(day,2),

Meaning,tr.,,

Hit,vs.,Miss,

Cluster_1, 0.000, Words,>,,PWs, 0.000, MT,>,,PT, 0.000, Day,1,>,Day,2,

Cluster_2, 0.064, PWs,>,Words, 0.000, PWs,>,MT, 0.000, Day,1,>,Day,2,

Cluster_3, 0.003, PWs,>,MT, 0.000, MT,>,,PT, 0.065, Day,1,>,Day,2,

Cluster_4, 0.000, Words,>,,PWs, 0.000, MT,>,,PWs, 0.001, MT,>,,PT, 0.003, Day,2,>,,Day,1, 0.000, HIT,>,MISS,

Cluster_5, 0.000, Words,>,,PWs, 0.003, PWs,>,MT, 0.000, MT,>,,PT, 0.004, Day,1,>,Day,2, 0.002, MISS,>,,HIT,

Cluster_6, 0.000, Words,>,,PWs, 0.013, MT,>,,PWs, 0.007, MT,>,,PT, 0.003, HIT,>,MISS,

Cluster_7, 0.000, Words,>,,PWs, 0.010, MT,>,,PT, 0.018, Day,1,>,Day,2, 0.046, HIT,>,MISS,
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3.3.4 A Cluster of Predominantly Left Parietal Regions May Support 
Episodic-Memory Based Retrieval of Word Meaning  
The clustering analysis revealed several clusters that have previously been identified, 

based on task-evoked as well as resting-state fMRI data, as distinct clusters that likely 

represent discrete brain systems. One such prominent cluster (Cluster 4, shown in blue in 

Figure 3.18, panel E), which was consistently identified across thresholds and algorithms, is a 

cluster containing left-lateralized regions in lateral and medial parietal cortex and superior 

frontal cortex that have previously been implicated in episodic memory retrieval (resembles 

AG-mPFC cluster in Nelson et al. (Nelson et al., 2010)). Some of the constituent regions, most 

notably the left angular gyrus, are also frequently associated with semantic processing (Binder 

et al., 2009; Seghier, 2013; Vigneau et al., 2006). Cluster 4 exhibits a number of properties, 

particularly in contrasts targeting newly acquired meanings, consistent with a semantic 

interpretation. Figure 3.18 shows properties that Cluster 4 exhibits similar to a Cluster 9, a 

cluster containing one of the identified parahippocampal regions (shown in yellow, Figure 

3.18, panel E). As shown in Figure 3.18 (panels A and B), both clusters show higher BOLD 

activity for meaning trained PWs relative to both novel PWs and perceptually trained PWs (all 

p-values < 0.005), consistent with two of the a-prior semantic criteria. In addition, as shown in 

Figure 3.18 (panels C and D), both clusters show higher BOLD for meaning trained hits than 

misses (p < 0.005), also consistent with semantic criteria. Finally, although not an a-priori 

expectation, both clusters qualitatively show similar interactions on day 2 between training 

group (meaning/perceptual) and accuracy (Figure 3.18, panels C and D). These observations 
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are potentially indicative of contributions from left parietal cortex in retrieval of episodic 

representations for novel words. 

 

 
Figure 3.18: BOLD Timecourse Similarities between a Cluster Containing the Identified 
Parahippocampal Region and a Left Parietal/Superior Frontal Cluster Previously Implicated in 
Episodic Retrieval. 
Cluster 9 (E, yellow spheres), contains one of the putative semantic regions (PHG) and cluster 
4 (E, blue spheres) contains left parietal/superior frontal regions implicated in episodic 
retrieval. Both cluster 9 (panel A) and cluster 4 (panel B) show higher BOLD for meaning 
trained PWs relative to both novel PWs and perceptually trained PWs. Similarly, as shown in 
panels C and D, both clusters show similar interactions between training group 
(meaning/perceptual) and accuracy. All reported effects were confirmed significant in regional 
ANOVAs (p < 0.005). The observations support a potential role for parietal regions in 
semantic retrieval for newly acquired words.  
 

Unlike the similarities noted above between the parietal regions in Cluster 4 and 

Cluster 9 containing one of the putative semantic regions, the two clusters exhibit differences 

during retrieval of previously known words. Figure 3.19 highlights two properties that 

distinguish the putative episodic memory retrieval cluster (cluster 4) from the semantic cluster 
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(Cluster 9, exemplified by the two yellow parahippocampal regions (but refer to Figure 3.10 

for individual semantic ROI timecourses). As shown in Figure 3.19 (panels A and B), although 

both cluster 4 (p < 0.001) and cluster 9 (p < 0.001), show significant ‘word > PW’ effects, the 

effect in the putative episodic memory retrieval cluster (cluster 4) is driven by negative BOLD 

activity for real words that is “less-negative” than BOLD activity for PWs. This effect is in 

contrast to the pattern seen in cluster 9, as well as individual putative semantic regions (Figure 

3.10), where timecourses are positive for both words and PWs. 

 
Figure 3.19: BOLD Timecourse Differences between a Cluster Containing the Identified 
Parahippocampal Region and a Left Parietal/Superior Frontal Cluster Previously Implicated in 
Episodic Retrieval. 
Cluster 9 (E, yellow spheres), contains one of the putative semantic regions (PHG) and cluster 
4 (E, blue spheres) contains left parietal/superior frontal regions implicated in episodic 
retrieval. Unlike the ‘word > PW’ effect in cluster 9 (panel A, p < 0.001), the same effect is 
driven by negative timecourses in cluster 4 (panel B, p < 0.001). Also, cluster 9 qualitatively 
shows repetition suppression for words (day1>day2, panel C) but the opposite effect is seen for 
in cluster 4 (day1<day2). The data do not convincingly support a parietal role in semantic 
retrieval of existing words. 
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The second distinction between the two clusters is shown in Figure 3.19, panels C and 

D. Cluster 4 (blue) shows an effect resembling the canonical ‘old > new’ episodic retrieval 

success effect, i.e. repeated real words (old) show higher BOLD activity than during the 1st 

presentation (new) (p <0.01). In both cluster 4 and most of the individual constituent ROI (not 

shown, available on demand), the ‘old > new’ effect is driven by (unimpressive, yet 

qualitatively consistent) timecourses that, relative to baseline, are negative for the 1st 

presentation (i.e. ‘new) and slightly positive for the 2nd presentation (i.e. ‘old’), except for 

IPS_-33_-62_41 which had robust positive timecourses across all lexical groups (‘old’ and 

‘new’). In contrast, cluster 9 shows a qualitatively different profile that resembles the word-

repetition-suppression effect observed in individual putative semantic regions (Figure 3.10). 

Although the word-repetition-suppression effect was not significant (p=0.50) in cluster 9 

(yellow, containing a putative semantic ROI), a condition (day 1 words vs. day 2 words) X 

cluster (cluster 4 vs. cluster 9) regional ANOVA restricted to the peak of the timecourse (MR-

frame 3) revealed a significant condition X cluster interaction (p < 0.005), reinforcing the 

observed qualitative difference between the two clusters. The observations support the 

previously outlined interpretation of semantic contributions from PHG/mSFC and episodic 

contributions from parietal regions for the retrieval of novel words. 

3.3.5 A Cluster of Regions Resembling the Cingulo-Opercular Control 
System Show Sensitivity to Errors Potentially Reflective of a 
Performance Feedback Process 
Another prominent cluster (cluster 1, shown in red in Figure 3.20, panel E), 

consistently identified across thresholds/algorithms, contains regions in close anatomical 
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proximity to those in the cingulo-opercular (COP) task control system (e.g. bilateral anterior 

insula, medial superior frontal cortex) (Dosenbach et al., 2006, 2007; J. D. Power et al., 2011). 

Of note, one of the putative semantic processing regions (mSFC) was placed in the same 

cluster (cluster 1) as the putative COP regions. Figure 3.20 (panels A and B) highlights the 

differences between cluster 9, which contains one of the putative semantic regions (PHG), and 

cluster 1. Similar to the pattern observed in individual putative semantic ROI (Figure 3.12), 

cluster 9 shows higher BOLD activity for correct meaning-trained item trials relative to misses 

(p < 0.005), whereas cluster 1 shows equivalent BOLD for meaning trained hits and misses (p 

= 0.25). The profile difference seen in the two clusters for meaning-trained PWs hits vs. 

misses was confirmed via a regional condition (meaning-trained PWs – hit vs. miss) X cluster 

(cluster 1 vs. cluster 9) ANOVA restricted to the peak of the timecourse (MR frame 3), which 

yielded a significant interaction (p < 0.05). In addition, in contrast to the training type 

(meaning/perceptual) X accuracy (hit vs. miss) interaction observed in individual putative 

semantic regions (Figure 3.12), as well as in cluster 9 (p < 0.001), cluster 1 shows a main 

effect of accuracy collapsed across training type, with errors showing higher BOLD than 

correct trials (p < 0.05). Interestingly, the two regions are placed in the same cluster despite the 

profile difference observed between one of the putative semantic regions (mSFC) and a 

canonical COP ROI (anterior insula) (Figure 3.20, panels C and D). The former with shows the 

accuracy X training type interaction, and the latter shows higher BOLD for all error relative to 

correct trials. Also highlighted in Figure 3.20 is a region in the anterior cingulate cortex 

(ACC_-1_24_20, anatomically close to the putative semantic region mSFC_-3_38_27), 
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previously ascribed a role in conflict monitoring (Barch, Braver, Sabb, & Noll, 2000; 

Botvinick, Braver, Barch, Carter, & Cohen, 2001; Botvinick, Cohen, & Carter, 2004). In 

contrast to the ‘meaning-trained PWs – hit > miss’ pattern observed in the putative semantic 

region (Figure 3.20, panel C), the ACC region (Figure 3.20, panel F) shows higher activity for 

meaning-trained PWs misses than hits, particularly towards the tail of the timecourse that may 

be capturing response-selection processes. The observed pattern in ACC is consistent with a 

response conflict monitoring account, given that the stimulus/response profile was switched for 

meaning-trained PWs across fMRI sessions, which likely induced high conflict. Hence, despite 

being placed in the same cluster with canonical task-control regions, the putative semantic ROI 

reveals a different profile upon closer inspection. 
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Figure 3.20: BOLD Timecourse Examination of a Cluster Resembling the Cinguloopercular 
Task-Control System and Constituent Regions. 
A cluster containing regions implicated in COP task control (E, red cluster) shows a 
qualitatively different error profile for meaning vs. perceptually trained items (B) from that 
seen in identified semantic regions, exemplified here by a cluster containing PHG (A). Panels 
C, D, and F highlight qualitatively different timecourses between the semantic ROI (C), a 
region in right anterior insula approximating a canonical COP task-control ROI (D), and a 
region in the anterior cingulate cortex (ACC) previously ascribed a role in conflict monitoring, 
despite the fact that the three regions were clustered together (E).  

3.3.6 The Left Dorsal Inferior Frontal Gyrus and Co-clustered Regions in 
Bilateral Frontal Cortex, Did Not Demonstrate Activity Indicative of 
Semantic Processing.  
The clustering analysis also identified a cluster of regions in bilateral frontal cortex that 

anatomically correspond to regions implicated in adaptive (frontal-parietal) task-control, 

although a parietal component was largely absent. Of note, the cluster contained a region in 

dorsal left inferior frontal gyrus that has previously been implicated in semantic processing 

(Thompson-Schill et al., 1997), although subsequently ascribed a domain-general (i.e. 
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semantic-nonspecific) role in control/selection among competitors (Badre et al., 2005). 

Timecourses for words and novel PWs presented on day 1 are presented for the cluster (cluster 

3) and the aforementioned dorsal IFG region as an exemplar (Figures 3.21, panels B and C). 

Unlike the profile observed in putative semantic regions (Figure 3.10, panels A and B), neither 

cluster 3 (p = 0.50) nor it’s dorsal IFG constituent (p=0.17) exhibit a ‘word > PW’ effect. In 

addition, as shown in Figure 3.21 (panels D and E) neither cluster 3 nor dorsal IFG exhibit a 

word-repetition-suppression effect, and in fact show the opposite qualitative effect.  

 
Figure 3.21: BOLD Timecourse Examination of a Cluster Resembling the Frontoparietal Task-
Control System and Constituent Regions. 
Cluster 3 (A, golden spheres) contains regions implicated in frontoparietal task control. An 
exemplar constituent region previously implicated in semantic processing (dorsal IFG) is 
highlighted, with panels B and C demonstrating the absence of a ‘word > PW’ effect, and 
panels D and E demonstrating the absence of a word-repetition suppression effect in left dorsal 
IFG as well as the parent cluster. 
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3.3.7 Targeted Investigation of the Left Ventral IFG, Based on Literature-
Derived Regions 
Because the left ventral IFG, a region implicated in controlled/strategic semantic 

retrieval (Gold et al., 2006; Roskies et al., 2001; A D Wagner et al., 2001), was not identified 

in the primary contrasts, regions were aggregated from the literature. As shown in Figure 3.22 

(panels B and C), 2 of the 11 sampled regions showed significant ‘word > PW’ effects (p < 

0.05). Similarly, 2 of 11 regions showed significant word-repetition-suppression effects (p < 

0.05) (panels D and E; of note, word-repetition-suppression effect was seen in the same two 

ROIs showing ‘word > PW’ effect). In contrast to the putative semantic processing regions 

from the current study, none of the literature-derived ROIs (including the aforementioned two 

regions) showed a ‘meaning-trained PWs > novel PW’ effect (Figure 3.23). 
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Figure 3.22: Regional BOLD Timecourses in Literature-Derived Coordinates in Left Ventral 
IFG –Words vs. Novel PWs & Words in the 1st vs. 2nd Presentation. 
Literature-derived ventral IFG regions are shown in panel A. 2/11 regions showed significant 
‘word > novel PW’ effects (panels B and C) and word repetition-suppression effects (panels D 
and E).  
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Figure 3.23: Regional BOLD Timecourses in Literature-Derived Coordinates in Left Ventral 
IFG – Novel vs. Meaning-Trained PWs, and Meaning vs. Perceptually Trained PWs. 
Literature-derived left vIFG regions are shown in panel A. Panels B and C display timecourses 
for novel, meaning-trained, and perceptually trained PWs, from the two vIFG regions that 
showed significant ‘word > PW’ and word-repetition-suppression effects (Figure 3.22). None 
of literature-derived regions showed higher BOLD activity for meaning-trained PWs relative to 
novel PWs, or for meaning trained relative to perceptually trained PWs. 
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< 3.0) region showing a day X meaning-trained vs. real word X time effect (Figure 3.24, panel 

A). One of the six regions showed a trend (p=0.07) towards a ‘meaning trained item > PW’ 

effect (panel D) consistent with expected properties of a putative semantic processor. However, 

that region did not exhibit a ‘word > PW’ (panel B) or a word-repetition-suppression effect 

(panel C). 
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Figure 3.24: BOLD Timecourses in Study-Driven Left Ventral IFG Regions. 
Study-driven regions in left ventral IFG (panel A). Panels B and C demonstrate the absence of 
a ‘word > PW’ and a word-repetition-suppression effect, respectively, in the only region 
showing a trend towards a putative semantic profile, i.e. meaning trained PWs > novel PW (p 
= 0.07), shown in panel D, but not meaning trained PWs > perceptually trained PWs. 
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3.3.9 Targeted Investigation of the Left Lateral Temporal Lobe Based on 
Study-Driven Regions  
Multiple regions in left lateral temporal lobe were identified by the primary contrasts. 

Most of the identified regions were located in mid to posterior temporal lobe, along the middle 

temporal gyrus and superior temporal sulcus. The primary contrasts did not identify regions in 

anterior temporal lobe. Clustering analysis placed the regions into two clusters, cluster 5 and 

cluster 8. Timecourses are displayed in Figure 3.25, panels B and C, for clusters 5 and 8, 

respectively. For each cluster, a representative individual region is displayed in panels D and 

E. The two clusters, as well as most of the constituent left temporal regions showed significant 

‘word>PW’ and word-repetition suppression effects. However, neither the individual regions 

nor the clusters showed any evidence of meaning training-related BOLD increase. 
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Figure 3.25: BOLD Timecourses in Study-Driven Regions in Left Lateral Temporal Lobe. 
Study-driven regions in left temporal lobe that came out of the primary contrasts are displayed 
in panel A. Timecourses are shown in panels B and C for the Infomap-based clusters, and in 
panels D and E for two exemplar regions from each of the two clusters.  

3.3.10 Targeted Investigation of the Left Temporal Lobe Based on 
Literature-Derived Regions 

The lack of any training-related effects in left lateral temporal regions provided an incentive to 

garner putative semantic regions from the literature for further investigation. The nine temporal 

lobe regions aggregated from the literature are displayed in Figure 3.26, panel A. Most of the 

literature-derived regions were in close anatomical proximity to the study-driven regions 
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shown in Figure 3.25, with the exception of a region in anterior superior temporal gyrus. 

Similar to the effects observed in the study-driven regions, the three literature-derived regions 

that showed significant effects were all driven by ‘word > PW’ (Figure 3.26, panels B and C) 

and word-repetition-suppression effects (panels D and E). None of the examined regions 

showed evidence BOLD increase due to meaning training.  
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Figure 3.26: BOLD Timecourses in Literature-Derived Left Lateral Temporal Regions. 
Literature-derived left lateral temporal regions are shown in panel A. 3 out of the 9 sampled 
regions showed putative semantic profiles. Panels B and C display two regions that showed 
‘word > PW’ effects, and panels D and E display regions that showed word-repetition 
suppression effects. 
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approach to assign meaning to pseudoword stimuli, effectively turning them into synonyms to 

existing words. An additional goal of the current project was to isolate, via subtractive 

inference, BOLD activity related to retrieval of meaning, i.e. semantic memory, from co-

recruited processes related to retrieval of perceptually familiar word-forms with no semantic 

associations. As such, a separate group of pseudowords were given perceptual training using a 

pseudoword detection task. Finally, using fMRI before and after behavioral training, we 

characterized the functional neuroanatomical changes associated with transforming a 

meaningless string of letters into meaningful words. 

To briefly summarize the primary findings, we identified two regions in the left 

hemisphere, one in the left parahippocampal gyrus (PHG) and the other in the left medial 

superior frontal cortex (mSFC), consistent with a role in the retrieval of semantic memory for 

both previously known and recently learned words. Despite showing the expected semantic 

profiles for previously well-known word stimuli, such as word repetition suppression and a 

‘word > novel PW’ effect, canonical semantic processing regions in the left lateral temporal 

lobe, such as the MTG and ATL failed to be engaged by the novel word stimuli. This led to a 

conclusion that these regions support retrieval of semantic memory for well-consolidated 

words, and by implication, we propose that 2-3 days might be insufficient to produce fully 

consolidated neocortical representations. Another finding was that the left vIFG, a region 

implicated in controlled semantic memory retrieval, was absent from primary voxelwise 

contrasts. Upon further exploration using literature-derived regions, the left vIFG was found to 

only show engagement by previously known words, but not newly learned words. These 
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observations led to an interpretation that the left vIFG was not engaged by novel words 

potentially due to a combination of low strategic retrieval demand in the lexical decision task 

and inadequate neocortical consolidation of the novel words. Each of the aforementioned 

observations is discussed in depth below.  

3.4.1 Left Parahippocampal and Medial Superior Frontal Cortex 
Demonstrated a Role in Semantic Retrieval of Both Novel and 
Previously Known Words.  
The current study identified PHG and mSFC as regions that exhibit a number of 

properties that would be expected from regions involved in retrieving/processing meanings at 

the single word level. First, when directly comparing previously known words and novel PWs 

before any training was administered, these regions exhibited higher BOLD activity for words 

relative to PWs (Figure 3.10, panels A and B). Second, upon repeated exposure 2 to 3 days 

following the initial presentation, these regions exhibited suppression of BOLD activity to 

previously known words (Figure 3.10, panels C and D), a characteristic that has repeatedly, 

although not exclusively, been associated with semantic processing (D. L. Schacter & Buckner, 

1998; Daniel L Schacter et al., 2007). Third, the same two regions demonstrated evidence that 

supports their role in learning new semantic associations. Specifically, for lexical items that 

received sentential meaning training demonstrated, these regions show increased BOLD 

activity relative to their initial presentation as novel PWs (Figure 3.11, panels A and B). These 

two regions also exhibited higher BOLD activity relative to PWs that received just as much 

exposure, but in a perceptual form training setting without semantic associations (Figure 3.11, 

panels C and D). Finally, comparison of BOLD activity for correctly and incorrectly identified 
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meaning trained items (hit vs. miss trials) revealed higher BOLD activity for the correctly 

identified items in PHG and mSFC (Figure 3.12, panels A and B). The latter effect was not 

driven by accuracy alone, but rather by whether or not the lexical items were perceived to be 

associated with meaning. In support of this argument, we identified an effect that admittedly 

was not explicitly expected a-priori. Comparing hits and misses for meaning-trained PWs vs. 

perceptually trained PWs revealed an accuracy (hit vs. miss) X training group (meaning-

trained PWs vs. perceptually trained) interaction (Figure 3.12, panels C and D). The interaction 

was driven by qualitatively higher peak BOLD responses for items perceived as meaningful 

relative to items perceived as meaningless, regardless of the actual item identity. Hence, PHG 

and mSFC demonstrated sensitivity to single word meanings both for previously well-known 

words, as well as for lexical items that were given meanings in an experimental context 

conducted over the course of a few days. 

Examination of prior studies that explicitly targeted semantic processing reveals very 

sparse reports of regions anatomically close to our two putative semantic regions. Of note, the 

majority of those studies are fundamentally different from the current study in that their 

designs did not include learning of novel semantic associations. Instead, in a variety of task 

settings (e.g. abstract vs. concrete judgments (Donaldson, Petersen, & Buckner, 2001; 

Friederici et al., 2000), verb-generation (J. A. Fiez et al., 1996; Petersen et al., 1988; Roskies et 

al., 2001), and semantic classification/comparison tasks (Badre et al., 2005; Thompson-Schill 

et al., 1997; A D Wagner et al., 2001), meanings were instantiated using common, previously 

known word stimuli. Of the aforementioned studies, only Thompson-Schill et al. (Thompson-
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Schill et al., 1997) reported a region (-3_44_31) close to the mSFC_-3_38_27 that showed 

higher BOLD activity in a semantic comparison task with high-selection demand relative to a 

low-selection demand condition.  

In the episodic memory retrieval literature, we identify indirect but relevant support for 

these regions as potential semantic processors. The regions are typically recruited to a greater 

extend during retrieval of source memory relative to simple item recognition judgments. 

Cognitive theories would suggest that processes involved in recovering source information 

about a particular retrieval cue could be based on semantic elaborations between the cue and 

source information (I G Dobbins et al., 2002; Daniel L Schacter et al., 1998; Tulving, 1983). 

Regions within 10 mm to the mSFC region identified here have been reported in multiple 

studies as showing greater recruitment during source memory retrieval than simple item 

recognition. Cohn et al. (-4_48_20) and Dobbins et al. (-6_45_24)(Cohn et al., 2009; I. G. 

Dobbins et al., 2002), both of which used written word stimuli, reported higher BOLD activity 

during source recollection relative to item recognition in the medial superior frontal cortex. 

Similarly, using written word stimuli to compare source recollection vs. item recognition, 

another study by Dobbins et al. (I. G. Dobbins et al., 2003) reported a region in the posterior 

hippocampus/parahippocampal gyrus (-19_-35_-10) showing greater activity for source 

recollection. Similar effects were described in posterior hippocampus/parahippocampus by 

Cansino et al. (-14_-44_-4) and Tendolkar et al. (-24_-28_-10) (Cansino, Maquet, Dolan, & 

Rugg, 2002; Tendolkar et al., 2008), using picture and photograph stimuli, respectively. 

Although somewhat indirectly related to semantic processing, the source-memory retrieval 



	  
 

 

 

118	  

literature would be in agreement of the proposed semantic retrieval interpretation for PHG and 

mSFC.   

Next, we examined prior studies that specifically targeted the functional neuroanatomy 

of novel word learning. Although a number of studies have been conducted in this realm, most 

do not warrant detailed discussions in the current setting either because they used imaging 

methods such as event-related-potentials that do not provide adequate anatomical specificity, 

or were not targeting novel semantic associations, per se (e.g. (M. H. Davis, Di Betta, 

Macdonald, & Gaskell, 2009). Two studies do have adequate relevance in the current context 

and will be considered further.  

The first study, conducted by Mestres-Misse et al. (Mestres-Missé et al., 2008), 

examined the functional neuroanatomy of meaning acquisition using fMRI in (Spanish-

speaking) young adults, during the online acquisition of meaning, using uniform eight-word 

sentences presented one word at a time (every 500ms), with the novel word presented as the 

eighth (terminal) word. For each target, three sentences were presented sequentially such that, 

in the M+ condition, all three sentences converged on the same meaning, in the M- condition, 

each sentence was suggestive of a different meaning, thus precluding the emergence of a 

consistent constrained meaning, and an R condition which terminated with an actual, 

previously known word. As can be deduced from the experimental design, the task likely 

conflates memory encoding and retrieval processes. Other design issues that are of potential 

concern include a somewhat unnatural sentence presentation that may not be adequately 

isolating the BOLD response for a particular stimulus, as well as potentially recruited syntactic 
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processes that may be possible confounds. As such, the results should be considered with 

adequate caution. That said, one of their primary findings is that a region that they label as 

anterior parahippocampal gyrus (-20_-24_-16), relatively close to our coordinates (PHG_-18_-

36_-6), showed a M+ > M- effect.  

The second study, conducted by Breitenstein and colleagues (Breitenstein et al., 2005), 

used a PW-picture association task (in German-speaking subjects, some of whom were 

bilinguals), while acquiring fMRI data during associative learning. A PW was either paired 

with the same picture presented non-consecutively across training blocks (learning condition) 

or with a different picture during each presentation (no-learning condition). Once again, for 

similar reasons discussed above vis-à-vis Mestres-Misse et al. (Mestres-Missé et al., 2008), 

comparisons between their results and ours should be made with caution. Their relevant results 

were that a) across the training blocks in the learning relative to the no-learning condition, a 

hippocampal region (-18_-30_-9) close to our PHG_-18_-36_-6 showed BOLD activity 

decreases, which was interpreted as potentially reflecting “a sharpening of the neural response 

over the course of learning,” and b) subjects exhibiting less BOLD suppression in the same 

hippocampal region learned the novel words more efficiently, as well as scored higher on 

verbal semantic fluency tasks.  

Neither of the two studies discussed above reported any effects close to the medial 

superior frontal ROI. However, there are reports that suggest that the involvement of the 

medial prefrontal cortex in learning and memory consolidation occurs over a more protracted 

time scale, which neither study had a chance to examine. As a potential mechanistic 
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explanation, prior reports state that medial prefrontal cortex may serve as the link that 

integrates medial temporal lobe (MTL)-dependent learning to neocortical representations, via 

synchronized hippocampal-medial prefrontal electrophysiological rhythms, particularly in the 

theta range (Aminoff et al., 2013; Euston, Gruber, & McNaughton, 2012).  

Finally, neuropsychological research on amnesic patients suggests that damage to MTL 

structures results in explicit/declarative semantic memory impairments, particularly in the 

acquisition of novel semantic information (Gabrieli et al., 1988; Shimamura & Squire, 1987). 

Perhaps the most widely cited effect is that of patient H.M., where, following bilateral MTL 

resection, he was unable to learn and retain new words that emerged following the surgery 

(e.g., “Xerox”), despite normal memory for semantic information acquired prior to the amnesia 

(Gabrieli et al., 1988). Similarly, relative to words known prior to the surgery, H.M also 

demonstrated impaired word-stem completion priming for words that emerged subsequent to 

the amnesia (Postle & Corkin, 1998). There are also limited reports of temporally graded 

retrograde impairments in recollection of facts, with greater deficit for knowledge acquired 

closer to the time of insult (N. J. Cohen & Squire, 1981). It is challenging to establish adequate 

specificity in the relationship between the lesion size/location and the resulting behavioral 

impairment due to MTL damage, but refer to Squire, 1992 and Moscovitch et al. 2006, for 

reviews (Moscovitch et al., 2006; L. R. Squire, 1992). Reports of memory impairments 

following injury to the medial prefrontal cortex are much sparser, relative to that of MTL. 

However, there have been limited reports that medial prefrontal lesions, likely significantly 

ventral to the location of our putative semantic region, result in impairments in the learning and 
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consolidation of contextual information (refer to Euston et al. (Euston et al., 2012) and 

Nieuwenhuis & Takashima (Nieuwenhuis & Takashima, 2011) for detailed reviews).  

Hence, as outlined above, there is ample prior evidence that would be consistent with a 

putative role for the parahippocampus/posterior hippocampus and medial superior frontal 

cortex, in learning and retrieval of semantic information. 

3.4.2 A Cluster of Left Parietal/Superior Frontal Regions May Support 
Episodic-Memory Based Word Learning 
Despite the observed functional similarities in the two putative semantic regions, none 

of the clustering algorithms placed them in the same group. This clustering-based finding 

makes it hard to put forth an argument for a putative semantic brain system. That said, serving 

as a quality-check for the task-evoked dataset as a whole, the clustering analysis did reveal 

other clusters that correspond well with previously characterized brain systems.  

One prominent cluster (Cluster 4, Figures 3.18 – 3.19), present across clustering 

algorithms and thresholds, is a set of left-lateralized regions in lateral/medial parietal and 

superior frontal cortex with previously demonstrated roles in episodic memory retrieval 

(Cabeza et al., 2008; Nelson et al., 2010; Yonelinas et al., 2005; Yonelinas, 2002). The said 

regions have also previously been framed as a putative brain system based on clustering 

analyses conducted on task-evoked and resting-state fMRI data (Nelson et al., 2010). Cluster 4, 

which anatomically resembles the AG/mPFC cluster from Nelson et al. (Nelson et al., 2010), 

exhibited properties, some of which were the outlined semantic criteria relating to novel words, 

the overall functional properties were supportive of an episodic role.   
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First, as shown in Figure 3.18, Cluster 4 exhibits properties during semantic retrieval of 

the newly learned words that are consistent with semantic criteria outlined a-priori. Cluster 4, 

as well as its constituents (not displayed, available on demand), showed higher BOLD activity 

for meaning-trained PWs relative to both untrained/novel PWs as well as perceptually trained 

PWs. In addition, the cluster also showed higher BOLD activity for meaning-trained hits 

relative to misses. The above three properties are consistent with the expected semantic profile 

and suggest that the regions contribute to the semantic retrieval process, at least for the newly 

acquired words. In addition, although not outlined a-priori, Cluster 4 also exhibits a 

qualitatively similar training group (meaning/perceptual) by accuracy interaction, similar to 

that observed in the two identified semantic regions (PHG, mSFC). Given the above properties, 

a potential role in semantic retrieval cannot be readily dismissed for Cluster 4, mostly 

constituting medial/lateral parietal regions. However, the latter interpretation needs to be 

tempered by properties that the said regions showed during retrieval of previously known 

words, which, as recapped below, diverge from a semantic interpretation.  

As shown in Figure 3.19, Cluster 4 exhibited a ‘real word > novel PW’ effect, which 

was one of the properties expected from a semantic region. However, unlike the ‘word>PW’ 

effect in PHG/mSFC (Figure 3.10), which was driven by positive timecourses (relative to 

baseline), the same effect was driven by negative BOLD activity for real words that is ‘less-

negative’ than BOLD activity for PWs. In fact, for the majority of conditions, timecourses for 

the cluster as well as the individual constituent regions (except for IPS_-33_-62_41) were 

either negative or flat relative to baseline, precluding a straightforward task-evoked-activation 
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interpretation. The second distinction between the Cluster 4 and PHG/mSFC is that Cluster 4 

shows an effect resembling the canonical episodic ‘old > new’ retrieval success effect for 

words, while PHG/mSFC show a repetition suppression effect for words, consistent with 

conceptual repetition priming (D. L. Schacter & Buckner, 1998; Daniel L Schacter et al., 

2007). The latter observation in particular makes a straightforward semantic interpretation for 

the parietal regions somewhat problematic. Considered in aggregate, the evidence suggests a 

parietal contribution supporting episodic processes in the retrieval of novel words.  

3.4.3 A Cluster of Bilateral Frontal Regions May Correspond to a Cingulo-
Opercular Task-Control System  
In addition to a putative episodic memory retrieval cluster, another cluster was 

consistently identified with close anatomical correspondence to the cingulo-opercular (Figure 

3.20) task-control systemm (Dosenbach et al., 2006, 2007; J. D. Power et al., 2011). The 

putative COP cluster includes regions (within 10mm of the Dosenbach et al. loci) in bilateral 

anterior insula and medial superior frontal cortex that, based on a meta analysis across 10 

different tasks, exhibited fMRI signals corresponding to task-initiation (start-cue), task-set 

maintenance, as well as error-related activity, consequently forming a ‘core’ task-set system 

(Dosenbach et al., 2006). 

Consistent with the above-stated task-control properties, the ‘core’ task-control regions, 

as well as most regions in the COP cluster, exhibited greater BOLD activity for errors relative 

to correct trials, as exemplified in Figure 3.20 (panel D) by the right anterior insula. Another 

region placed in the same cluster is a region in the ACC (Figure 3.20, panel F) showing higher 
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activity for meaning-trained PWs misses than hits, particularly towards the tail of the 

timecourse. The observed pattern is consistent with a (response) conflict monitoring account 

(Barch et al., 2000; Botvinick et al., 2001, 2004), particularly given the fact that that the 

stimulus/response profile was switched for meaning-trained PWs across fMRI sessions, which 

likely induced high conflict. Of note, one of the putative semantic regions (mSFC) was placed 

in the same cluster as the putative COP system. Despite the clustering outcome, however, 

mSFC exhibits a stark ‘error vs. correct’ profile difference from that seen in the ‘core’ task-

control regions (Figure 3.20, panels C and D) as well as the ACC region ascribed a (response) 

conflict-monitoring role. Unlike the general cross-condition ‘error > correct’ response seen in 

the right anterior insula, and the elevated meaning-trained PWs error response in ACC, mSFC 

shows higher BOLD activity for correct meaning-trained PWs trials (hits) relative to misses (p 

< 0.005), which resulted in a training type (meaning/perceptual) X accuracy (hits vs. misses) 

interaction. The latter profile in the putative semantic region argues for the modulation of the 

‘error vs. correct’ response by stimulus semantic content, where items perceived to have 

meaning showed higher BOLD activity relative to items perceived meaningless, regardless of 

actual item identity. Hence, despite the clustering outcome, mSFC is divergent in its functional 

characteristics from the majority of regions in the cluster that are more consistent with a role in 

task-control, as argued above. 

3.4.4 A Cluster of Bilateral Frontal Regions May Correspond to a Fronto-
Parietal Task-Control System  
The clustering analysis also identified a cluster of regions (Cluster 3, Figure 3.21) that 

closely correspond with a set of regions previously implicated in adaptive task-control 
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(Dosenbach et al., 2007), and subsequently shown to form a distinct control system based on 

graph-theoretic network analysis conducted on resting state fMRI data (J. D. Power et al., 

2011). Cluster 3 contained bilaterally distributed regions that closely mapped onto the Power et 

al., modules in frontal cortex (mostly on the lateral surface, but also including a left medial 

component). Of note, the putative frontal-parietal cluster contained a region in the dorsal 

aspects of the left inferior frontal gyrus previously implicated in semantic processing 

(Thompson-Schill et al., 1997), although most subsequent work associates dorsal IFG with 

domain-general selection processes (Badre et al., 2005). Inconsistent with a semantic 

interpretation, the putative frontal-parietal cluster, including the dorsal IFG, exhibited no ‘word 

> PW’ or word-repetition-suppression effects (Figure 3.21). The dorsal IFG also showed 

timecourses with robust ‘error > correct’ effects for both meaning-trained PWs and 

perceptually trained PWs (not shown, available on demand), potentially reflecting performance 

feedback processes that characterize regions implicated in task-control (Dosenbach et al., 2006, 

2007).  

 

3.4.5 Additional Findings from Clustering Analysis 
Finally, the remaining clusters (not presented via figures here, but available on demand) 

also showed properties consistent with prior reports. For instance, a bilateral cluster containing 

regions that correspond to the dorsal attention system (Corbetta & Shulman, 2002) was 

identified (cluster 2, shown in light green in Figure 3.17). The putative dorsal attention cluster 

showed repetition-related cross-day BOLD suppression, essentially for all three lexical 
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categories (words, meaning-training PW, perceptual-training PW), consistent with prior reports 

associating the said regions with qualitatively similar perceptual training effects (Lewis, 

Baldassarre, Committeri, Romani, & Corbetta, 2009). Another cluster (cluster 5, shown in 

magenta in Figure 3.17) containing regions in bilateral supramarginal gyrus previously 

implicated in phonological processing (Church, Balota, Petersen, & Schlaggar, 2011; Church, 

Coalson, Lugar, Petersen, & Schlaggar, 2008) showed repetition-related cross-day BOLD 

suppression across all three lexical categories. The latter effect maybe interpreted as reflecting 

reduced phonological processing demand, from the 1st to the 2nd fMRI session, owing to the 

extensive phonological practice that subjects received during the training sessions that required 

naming the stimuli. Two regions in the right ventrolateral PFC formed cluster 10 (shown in 

burgundy in Figure 3.17) and exhibited markedly wide timecourses that were late to return to 

baseline, consistent with a prior interpretation in post-retrieval monitoring (Ian G. Dobbins, 

Simons, & Schacter, 2004; Rugg & Wilding, 2000). Lastly, a cluster that exhibited various 

semantic-like profiles was identified (cluster 6, shown in white in Figure 3.17), which notably 

also contains regions such as the middle and posterior cingulate/retrosplenial cortex previously 

reported in a meta-analysis of semantic studies (Binder et al., 2009). However, the ‘potentially-

semantic’ profiles observed in the individual constituent regions were tenuous at best, and 

hence do not warrant a confident interpretation to that effect (data not shown, available on 

demand).  
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3.4.6 Left Ventral IFG Was Recruited in Retrieval of Previously Known 
Words but Not during Retrieval of Newly Learned Words 
Across the five primary voxel-by-voxel SPMs targeting putative semantic regions, we 

initially failed to find regions in the left vIFG showing potential semantic effects. Upon further 

probing, two regions garnered from the literature (Wagner et al.: -44_38_-17 (A D Wagner et 

al., 2001); Gold et al.: -49_36_-8 (Gold et al., 2006)) did exhibit  ‘word > PW’ and ‘word-

repetition-suppression’ effects (Figure 3.22). However, as shown in Figure 3.23, those regions 

did not show evidence of involvement during retrieval of newly learned words.  

The left vIFG is typically recruited by semantic tasks that, relative to simple word vs. 

nonword lexical decision making, demand greater controlled/strategic access to word 

meanings. Exemplar tasks that have previously recruited left vIFG include abstract vs. concrete 

judgments (Donaldson, Petersen, & Buckner, 2001; Friederici et al., 2000), verb-generation (J. 

A. Fiez et al., 1996; Petersen et al., 1988; Roskies et al., 2001), and semantic 

classification/comparison (Badre et al., 2005; Thompson-Schill et al., 1997; A D Wagner et al., 

2001). Similar to the present study, previous studies that have used simple word/nonword 

lexical decision tasks did not report involvement of left vIFG (Fiebach et al., 2002, 2007; 

Henson et al., 2002). The above findings suggest that the word/nonword lexical decision task 

can be successfully performed via automatic access to word meanings alone, without the need 

for strategic/controlled semantic processing (Collins & Loftus, 1975; Neely, 1977; Posner & 

Snyder, 1975). In support of the latter argument, Gold et al. (Gold et al., 2006) used a semantic 

priming task (in an fMRI setting) with variable SOA designed to dissociate the functional 

neuroanatomy of automatic vs. controlled lexical semantics, and demonstrated exclusively 
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strategic (i.e. not automatic) semantic facilitation at a long SOA in left vIFG. Hence, the lack 

of robust vIFG engagement may partially be due to the low strategic retrieval demand required 

by the lexical decision task. 

Another possibility that may additionally account for the absence of left vIFG, 

particularly during retrieval of newly learned words, is that the novel words are yet to be fully 

neocortically consolidated, which may be a requisite for a region such as vIFG implicated in a 

controlled semantic retrieval in a domain-specific manner. Here, prior word-learning studies 

may offer some insight. The two novel word learning studies discussed at length above, 

Mestres-Misse et al. and Breitenstein et al. (Breitenstein et al., 2005; Mestres-Missé et al., 

2008) did report coordinates in left vIFG, with the former study making a formal argument for 

a semantic role. However, a careful consideration of their results, vis-à-vis our findings, allows 

for an alternate explanation. Mestres-Misse et al. (Mestres-Missé et al., 2008) reported greater 

left vIFG activity in their ‘M+ > RW’ contrast (‘convergent novel word meanings’ > 

previously known words), which was attributed to increased integration demands. However, 

that effect was likely driven by decreased BOLD activity across the repeated known-word 

presentations, which they did not examine, especially when juxtaposed with a null effect for 

their ‘M+ > M-‘ contrast (‘convergent novel word meanings’ vs. ‘divergent novel word 

meanings’). Similarly, the vIFG effect reported in Breitenstein et al. (Breitenstein et al., 2005) 

also lacked specificity such that both the ‘learning’ and ‘no-learning’ conditions showed 

greater vIFG activity relative to baseline. Hence, the evidence implicating vIFG in controlled 

retrieval of newly acquired words is tenuous at best, at least not enough to rule out the potential 
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interpretation forwarded above, i.e. vIFG may absent in retrieval of new semantic memory due 

to inadequate neocortical consolidation.  

Overall, the absence of left vIFG during novel word memory retrieval is potentially due 

to a combination of the low demand for strategic retrieval in the lexical decision task, and 

incomplete neocortical consolidation of the novel words.  

3.4.7 Left MTG Was Recruited in Retrieval of Previously Known Words 
but Not in Retrieval of Newly Learned Words 
The left MTG exhibited a similar lack of engagement by the novel words, despite 

showing ‘word > PW’ and word-repetition-suppression effects as described for left vIFG. In 

the word learning literature, although left MTG was reported by Mestres-Misse et al. (Mestres-

Missé et al., 2008) to show higher BOLD activity relative to baseline for the aforementioned 

M+, M-, and previously known word conditions, the region did not show differences between 

the critical M- and M+ conditions. To our knowledge, no convincing reports exist supporting 

left vIFG or MTG involvement in novel word learning. A potential explanation for the lack of 

engagement of left MTG by novel word learning is an argument put forth by proponents of the 

complementary learning systems hypothesis (M. H. Davis & Gaskell, 2009; McClelland et al., 

1995). Novel semantic associations that are clearly engaging the MTL here and in other studies 

discussed above, have yet to be fully integrated into neocortical semantic representations 

thought to rely on regions in lateral temporal lobe (Atir-Sharon, Gilboa, Hazan, Koilis, & 

Manevitz, 2015; Ghosh & Gilboa, 2014; Takashima et al., 2006; van Kesteren, Ruiter, 

Fernández, & Henson, 2012).  
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3.5 Conclusion 
In conclusion, the current study had set out to identify brain regions involved in 

semantic processing at the single word level, using a word-learning approach to engage 

semantic memory retrieval by both old and newly learned words. Using a within-item 

experimental design allowed isolating semantic processes from potentially confounding effects 

driven by non-semantic perceptual processes (e.g. familiarity, phonology, orthography). Two 

left hemisphere regions were identified, one in parahippocampal and the other in medial 

superior frontal cortex, exhibiting properties that support an interpretation of a role in semantic 

retrieval of both newly acquired and previously existing words. In addition, regions in left 

parietal cortex demonstrated a complementary role in support of episodic processes in the 

retrieval of memory for newly learned words. Our attempt to identify a potential semantic 

brain system using a clustering approach failed to identify such a system, at least not one that 

jointly included the two candidate regions (PHG, mSFC). However, other well-established 

systems were identified by the clustering analyses, which rules out explanations such as 

compromised integrity of the dataset as a viable explanation for not identifying a semantic 

system.  

All in all, a parsimonious interpretation of our findings is that the left parahippocampal 

and medial superior frontal cortex are two regions important for retrieval of novel semantic 

memory. In addition, their involvement during retrieval of previously existing semantic 

memory also suggests their role in the memory consolidation process, which, upon completion, 

would have likely additionally recruited the neocortical lateral temporal regions.   
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4 Chapter 4: Concluding Remarks and Future 
Directions 

4.1 Introduction 
The overarching goal of this thesis was to characterize the functional neuroanatomy 

underlying semantic memory retrieval for single words. The investigation was operationalized 

using a behavioral word-learning paradigm coupled with event-related fMRI data collected pre 

and post training. Below, we will recap the behavioral characteristics of newly learned words, 

as outlined in Chapter 2. This recap will be followed by a summary of the functional 

neuroanatomy that putatively generates the behavioral changes associated with learning new 

words, as described in Chapter 3.   

The bulk of the discussion that follows addresses the implications of the current 

findings to our extant understanding of how the brain performs the task of storage and retrieval 

of memory, specifically the semantic memory for single word stimuli. The first part will 

feature a discussion regarding the role of episodic and semantic memory retrieval processes 

underlying the retrieval of memory for the meaning of single words. Embedded within that 

discussion will be the theme of time-dependent functional neuroanatomical evolution of 

declarative memory representations and the role played by schema-based learning strategies in 

that regard. The second part will focus on the role of top-down control processes in memory 

retrieval that may be recruited in a task-dependent manner. The final part will examine 

whether the brain regions that support semantic memory retrieval constitute a distinct brain 
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system, or, alternatively, comprise multiple brain systems that are recruited, in a context-

specific manner, to support the semantic memory retrieval process. We will argue the latter.  

4.2 Brief Summary of Current Findings  

4.2.1 Behavioral Findings 
As outlined in Chapter 2, we confirmed, using a series of behavioral tests, that new 

semantic memory has been successfully acquired, and the novel words resemble the behavioral 

characteristics of extant well-known real words. To that end, participants explicitly recognized 

trained-items and discriminated them from novel foils (recognition test); as well as 

demonstrated knowledge of their associated meanings (semantic memory test). Attesting to 

their similarity with real words, novel meaning-trained items demonstrated a depth-of-

processing effect (Craik & Lockhart, 1972; Craik & Tulving, 1975) manifested as faster and 

more accurate recognition memory than form-only trained items. In addition, by exhibiting 

facilitative priming on synonymous real word targets, participants also showed evidence that 

the novel words are integrated in semantic memory (semantic priming test). Hence, we 

concluded that a 2-3 day training regimen was sufficient to produce behavioral evidence for 

successful word learning, with the novel words exhibiting characteristics, such as depth-of-

processing and semantic priming effects, typically demonstrated by real words. 

4.2.2 Functional Neuroanatomical Findings  
As outlined in Chapter 3, we identified brain regions that showed BOLD activation 

profiles consistent with a role in semantic memory retrieval, based on multiple criteria outlined 

a-priori. Two regions in the left hemisphere emerged satisfying essentially all of our criteria, 
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one in the left parahippocampal gyrus (PHG) and the other in the left medial superior frontal 

cortex (mSFC), consistent with a role in the retrieval of semantic memory for both previously 

known and recently learned words. Based on the above observations, and prior work 

implicating medial PFC in integrating novel memory into the neocortex, we concluded that left 

PHG and mSFC likely support a role in the retrieval of recently acquired semantic memory yet 

to be fully consolidated in the neocortex..  

Despite showing the expected semantic profiles for previously well-known word 

stimuli, such as word repetition suppression and a ‘word > novel PW’ effect, canonical 

semantic processing regions in the left lateral temporal lobe, such as the MTG and ATL failed 

to be engaged by the novel word stimuli. The observed profile led to a conclusion that these 

regions support retrieval of semantic memory for well-consolidated words. By extension, the 

said finding also suggests that a consolidation time-span of 2-3 days, as afforded in the current 

experiment, might be insufficient to produce fully consolidated neocortical representations, 

which would arguably include regions in the lateral temporal lobe (Holdstock et al., 2002; L. 

R. Squire & Wixted, 2011).  

As for the left vIFG, a region implicated in controlled semantic memory retrieval, we 

had a surprising non-finding in that this region was not identified in any of the initial voxelwise 

contrasts that were set-up to probe the a-priori hypotheses/criteria. Interestingly, despite 

multiple reports documenting vIFG recruitment in tasks that emphasize controlled semantic 

retrieval (Badre et al., 2005; Donaldson, Petersen, Ollinger, & Buckner, 2001; Roskies et al., 

2001; A D Wagner et al., 2001), vIFG is notably absent in studies using simple word/nonword 
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decision tasks (Fiebach et al., 2002, 2007; Henson et al., 2002) as used here. Using an SOA 

manipulation in an fMRI-based semantic priming paradigm to dissociate controlled and 

automatic retrieval processes, a prior study (Gold et al., 2006) has associated left vIFG 

exclusively with controlled, and not automatic, semantic memory retrieval. These observations 

led to an interim conclusion that the left vIFG likely supports a previously outlined role in 

controlled semantic memory retrieval, a role that was not crucial for task performance in the 

current lexical decision task setting.  

Upon further probing using literature-derived regions, we identified a left vIFG region 

showing hypothesized semantic properties for real word stimuli (e.g. ‘word > novel PW’ and 

word repetition suppression), although it showed none of the expected effects for the novel 

words (e.g. higher BOLD for meaning trained than form trained or novel PWs). The latter 

observation may additionally warrant a similar interpretation as forwarded above for the 

regions in the lateral temporal lobe, i.e. insufficient consolidation time for the newly learned 

words may have contributed to the lack of vIFG engagement by the novel words – a point we 

expand on in more detail below.  

4.3 Memory Organization – Our Understanding to Date 
In thinking about semantic memory retrieval and its underlying functional 

neuroanatomy, particularly in the current novel-word learning context, there are two central 

themes relevant to the discussion. The first theme is the role of time and exposure-dependent 

memory consolidation processes driving the evolving functional neuroanatomical 

representations of semantic memory. Another theme relates to the potential of multiple 
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mechanisms to exist for semantic learning. After the discussion of these two themes, we will 

discuss how they relate specifically to the fMRI data in Chapter 3. We will follow this 

discussion with a third theme focusing on the role played by top-down (controlled) vs. bottom-

up/stimulus-driven (automatic) processes in semantic memory retrieval. After some brief 

comments on traditional views of memory, intended to provide context, discussion of the 

above outlined themes will follow.  

4.3.1 ‘Classical’ Views of Memory Organization 
Human memory is not a unitary phenomenon. Instead, behavioral, neuropsychological, 

and computational modeling research reveals that there are multiple types of memory, each 

supported potentially by distinct cognitive processes (McClelland et al., 1995; Moscovitch et 

al., 2006; Daniel L Schacter et al., 1998; L. R. Squire, 1992; Tulving, 1983). At the highest 

level of description, types of memory can be divided into declarative and implicit. Declarative 

memory, defined as memory that can be consciously remembered and explicitly reported, is 

further divided into short-term (e.g. working memory) and long-term memory, the latter of 

which will be the current focus. Implicit memory is memory that need not be consciously 

remembered or reported, but nonetheless influences behavioral performance. An example, 

relevant to the current discussion, is the implicit memory processes that underlie semantic 

priming effects. In semantic priming, a prime (e.g. nurse), that need not be consciously 

processed, facilitates processing of a related subsequently presented target word (e.g., doctor). 

In turn, long-term declarative memory is typically broken down into memory for 

specific events (episodic) and memory for facts/word meanings that lack the association with a 
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specific time stamp (semantic) (Tulving, 1983). By definition, an episodic memory is a unique 

memory, such as for a specific event or experience. Accordingly, episodic memory is rapidly 

acquired without the need for repetition. An important element that uniquely characterizes 

‘episodic’ memory is the agent’s recollection of having been present as an observer or 

participant at a specific time and place during the particular episode.  

Multiple accounts have been proposed to describe the relative characteristics and 

interactions between (potentially independent) episodic and semantic memory processes. One 

view (Shimamura & Squire, 1987; L R Squire et al., 1993; Larry R Squire & Zola, 1998) posits 

that semantic memory is constructed based on extraction of a common associative organizing 

rule across a series of episodically experienced memory instances. Proponents of the above 

view would argue that acquiring the meaning of a word such as dog (i.e. semantic memory) 

necessarily entails having the episodic experience of a dog in one form or another. 

Alternatively, the relatively more recent Serial Parallel and Independent (SPI) model (Tulving, 

1995, 2001), a notable revision from Tulving’s earlier position (Tulving, 1983), proposes three 

monohierarchically organized memory systems, namely a perceptual, semantic, and episodic 

system. The relation among the three systems is proposed to be mnemonic process-specific 

such that during encoding, memory processes proceed serially from perceptual, to semantic, to 

episodic representations. Storage is assumed to occur in parallel such that the perceptual, 

semantic, and episodic features of a given memory instance are stored in parallel with the 

respective systems. Finally, during retrieval, memory can be independently 

reconstructed/retrieved from each respective system. Given that it is at the top of the hierarchy, 
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episodic memory is necessarily dependent on the presence of semantic memory (which in turn 

is dependent on outputs from the perceptual representational system). For instance, even the 

specific consciously recallable experience of seeing the first ‘bear’ has to have within it some 

level of ‘semantic’ knowledge of the features that constitute the ‘episodic’ memory, e.g. four, 

legs, brown, teeth, claws, forest, etc. As supporting observational evidence, proponents of the 

SPI model cite that in early development, semantic memory systems develop earlier than 

episodic memory (Carey, 1985; de Haan et al., 2006; Murphy, 2002; Quinn & Eimas, 1997; 

Wheeler et al., 1997). While children of 4-5 years of age have gained a considerable amount of 

semantic knowledge, their capacity for episodic memory is relatively lagging. 

The relative merit of the two aforementioned views on memory organization, 

particularly as is relevant for memory for word meanings, is yet to be adjudicated. It may be 

the case that the memory for a word is constituted from episodic as well as semantic elements, 

and where the memory lies on the episodic to semantic continuum is likely dependent on 

usage. For instance, consider the memory for a high-frequency word such as ‘dog’ and the 

memory for a low-frequency clinical term such as ‘Darier disease’ that labels a rare genetic 

skin disorder. It would be hard for one to remember the specific first episode when the word 

‘dog’ was learned, whereas one may be able to describe the exact medical-school lecture, time 

of day, who was present etc., when the term ‘Darier disease’ was learned. Despite the stated 

potential distinctions in the memory representations between high- and low-frequency words, 

they are fundamentally similar in how they are treated behaviorally. For instance, they can be 

explicitly recalled and recognized, exhibit level-of-processing effects, and can prime 
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semantically related words etc., albeit to potentially differing degrees (Duchek & Neely, 1989; 

MacLeod & Kampe, 1996). Word frequency as a lexical variable makes for an interesting 

window into exploring the contributions from episodic and semantic memory for word 

meanings, although a more in-depth consideration of the issue is beyond the current scope.  

4.3.2 Debated Role of the MTL in Episodic vs. Semantic Memory 
Given the difficulties in making distinctions between what constitutes an episodic vs. a 

semantic memory, particularly as pertinent to memory for words, it is not entirely surprising 

that the functional neuroanatomy underlying the two forms of memory continues to be debated. 

Regions in the medial temporal lobe (MTL) including the hippocampus proper and 

neighboring entorhinal, perirhinal, and parahippocampal cortex, have been established as 

critical to the formation of new episodic memory, and when these regions are damaged, 

anterograde amnesia – the inability to form new episodic memory – occurs (Scoville & Milner, 

1957). Whether the hippocampus also supports the acquisition and retrieval of semantic 

memory is less established. The classic example used to argue hippocampal involvement in 

both episodic and semantic memory is the case of patient H. M., who, following bilateral 

hippocampal resection, developed not only anterograde amnesia, but was unable to learn and 

retain new words (e.g. Xerox) that emerged following his surgery. Relatedly, in a 

remember/know paradigm, hippocampal amnesics are equally impaired for ‘remember’ and 

‘know’ responses, processes thought to rely on episodic and semantic memory, respectively 

(Knowlton and Squire, 1995; Squire and Zola, 1998). Adopting a different stance, other 

investigators have reported that amnesic patients can acquire some semantic knowledge, 
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although retrieval performance is significantly impaired relative to healthy controls, and 

learning takes many repetitions (Glisky et al., 1986; Hayman et al., 1993; Kovner et al., 1983; 

Tulving et al., 1991). Such observations have been used to support the notion that semantic 

memory can be acquired and retrieved, albeit laboriously, without the critical involvement of 

the hippocampus. However, because learning in individuals with amnesia takes many 

repetitions, the observed learning could potentially be reflective of implicit as opposed to 

declarative memory processes (O’Kane, Kensinger, & Corkin, 2004; Larry R Squire & Zola, 

1998). Finally, adopting a slightly different stance, other investigators contend that while the 

hippocampus is critical for episodic memory, some capacity for semantic memory remains if 

damage to the MTL spares surrounding MTL structures, particularly the parahippocampal 

gyrus (Bindschaedler et al., 2011; Holdstock et al., 2002; Mishkin et al., 1998; Verfaellie et al., 

2000).  

4.3.3 Memory Representations Across Time 
Once acquired, long-term declarative memory is not static. It continues to evolve via 

integrative consolidation with existing memory, potentially with concurrent time-dependent 

changes in the underlying functional neuroanatomy. The primary evidence for the time-

dependent process of memory consolidation comes from the pattern of memory impairment 

observed in temporally graded retrograde amnesia, which typically accompanies hippocampal 

anterograde amnesia. In temporally graded retrograde amnesia, recent episodic memory, i.e. 

those closer in time to the MTL insult, are compromised to a greater extent than remote 

memory. Memory impairments, both anterograde and retrograde, are typically more 
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pronounced when damage extends beyond the hippocampus proper to the surrounding MTL 

structures such as the parahippocamal gyrus (Mishkin et al., 1998; Shimamura & Squire, 1987; 

Verfaellie et al., 2000). Observations of retrograde amnesia, particularly the relative sparing of 

remote memory, led to the hypothesis that, once outside a given time window, memory 

retrieval is progressively less dependent on the hippocampus (Atir-Sharon et al., 2015; Ghosh 

& Gilboa, 2014; Takashima et al., 2006; van Kesteren et al., 2012). This change is thought to 

be due to the migration of memory representations to neocortical areas such as the medial 

prefrontal cortex and anterior temporal lobe, in a time-dependent, memory consolidation 

process (McClelland et al., 1995; Nadel & Moscovitch, 1997). In a manner that varies with the 

extent of hippocampal damage, the time span covering retrograde amnesia, and by extension, 

the memory consolidation process can last from a month to over 15 years in the most severe 

cases (McClelland et al., 1995)). Given their associations with semantic processing in healthy 

brains (Donaldson, Petersen, & Buckner, 2001; Gold et al., 2006; McDermott, Petersen, 

Watson, & Ojemann, 2003; A D Wagner et al., 2001), and the selective semantic impairments 

that result from their damage (Dronkers et al., 2004; Graham, Simons, Pratt, Patterson, & 

Hodges, 2000; Hart & Gordon, 1990; Holdstock et al., 2002; Turken & Dronkers, 2011), 

regions in the lateral temporal lobes, such as left MTG and ATL are proposed as candidates for 

consolidated neocortical memory representations (L. R. Squire & Wixted, 2011).  

Based on the aforementioned observations, two prominent computational models have 

been constructed to explain the functional neuroanatomy supporting declarative memory 

acquisition and consolidation. The first is the Complementary Learning Systems (CLS) 
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account (McClelland et al., 1995). The CLS model, which notably makes no explicit 

distinctions between semantic and episodic memory, posits that memory is first stored via 

hippocampal synaptic changes, which support reinstatement of a recent similar memory in the 

neocortex. Each reinstatement of a memory that is similar to a prior instance leads to slow, 

incremental changes in neocortical representations, to permit the neocortex to learn the 

common structure among the different instances. The hippocampal system permits rapid 

learning of novel information without disrupting existing memory in the neocortex. 

Consolidation of novel information with existing memory in the neocortex occurs via slow 

incremental changes, ensuring remote memory stability in the face of novel memory 

acquisition. 

The second model is the Multiple Traces Model (MTM) proposed by Nadel and 

Moscovich (Nadel & Moscovitch, 1997). As motivation for the model, Nadel and Moscovich 

point out that not all cases of retrograde amnesia are temporally graded. Episodic 

(autobiographical) memory shows a shallow temporal gradient such that following 

hippocampal damage, even the most remote episodic memory is impaired, whereas semantic 

memory (e.g. names of public figures) show a steeper temporal gradient. The two models are 

similar in that they both regard the hippocampus as central to rapid episodic memory 

acquisition and both models generally regard neocortical memory consolidation as a relatively 

slower process. What sets the two models apart is that in the CLS model, the hippocampus is 

only prominently involved during retrieval and consolidation of recent, i.e. relatively novel 

memory. For remote memory matching a neocortical representation, the prefrontal cortex 
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inhibits the hippocampus to avoid duplicate encoding (Frankland & Bontempi, 2005). On the 

other hand, in the MTM the hippocampus continues to be involved in the retrieval and 

reconsolidation of even remote memory. Reinstatement of a prior memory, or a slight variant 

thereof, creates a duplicate trace in the hippocampus. The common features present across 

multiple, slightly different memory traces can then be extracted to form what essentially 

becomes a decontextualized semantic memory. To explain temporally graded retrograde 

amnesia, the model posits that, because remote memory have likely been copied multiple 

times, they are more resistant to degradation due to hippocampal damage relative to recent 

memory. 

As will be elaborated in greater detail below, the above discussion is particularly 

relevant here because one of the regions that we ascribed a role in memory retrieval of both 

previously known and newly learned words is in the parahippocampal gyrus, as opposed to 

canonical neocortical semantic regions in the temporal lobe (e.g. MTG). Given the above 

controversy in the literature regarding the involvement of MTL structures in semantic memory 

processes, this finding complements the literature by contributing evidence to the ongoing 

discussion from a sparsely documented adult word learning perspective. Another issue worth 

briefly mentioning regards the proposed slow nature of memory consolidation from initial 

MTL-dependent to subsequent neocortical representations. Given that the newly acquired 

words in the experiment failed to engage expected neocortical regions in the temporal lobe 

(e.g. MTG, ATL), subsequent discussions will draw on slow neocortical memory consolidation 

processes as a potential explanation. 
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4.3.4 Recent Challenges to ‘Classical’ Models of Memory Organization 
Recently, work has emerged demonstrating that if effective scaffolding schemas are 

present, novel memory can bypass the hippocampus and be rapidly acquired via the neocortex. 

Tse et al. (Tse et al., 2007) used a paired associate learning task and trained rats to associate 

different food flavors with variable spatial locations. The constancy of paired flavor-location 

association became the schema, which took about a month-long repetitive training for the rats 

to learn effectively. Once having acquired the schema, the rats could rapidly learn, in a single-

trial exposure, a novel flavor-location pair, without memory interference with concurrently 

trained paired associates. Critically, experimentally induced neurotoxic hippocampal lesions 

did not impair the ability for rapid (neocortical) learning of novel flavor-location pairs if the 

lesions occurred following schema acquisition. The authors concluded that what the learner 

brings to the table, i.e. a consistent schema, can permit rapid neocortical memory consolidation 

without interfering with remote memory, suggesting a revision to the notion of the neocortex 

as a slow learner. In a subsequent study, Tse et al (Tse et al., 2011) demonstrated that rapid 

neocortical learning of a novel paired associate consistent with a preexisting schema was 

associated with expression of immediate-early genes (IEGs) in the rat peri-limbic medial 

prefrontal cortex. The latter effect which more directly established a neocortical region 

involved in rapid neocortical memory consolidation, was exclusively present when the novel 

paired associate learning occurred in the presence of a consistent schema. 

Mechanisms similar to the schema-dependent learning have since been demonstrated in 

human subjects. The phenomenon dubbed fast mapping is a learning mechanism that is thought 



	  
 

 

 

144	  

to underlie word learning, particularly as occurs during early vocabulary development. Similar 

to the schema-based learning, the idea behind fast mapping is to train a novel word in the 

context of retrieval of an already known concept. Retrieving the meaning of the already known 

word, and then ruling it out allows the learner to infer that the new word to be learned refers to 

a novel item. Similar to how an existing schema can scaffold the acquisition and rapid 

neocortical integration of a novel memory, the retrieval of an already familiar concept can act 

as a similar scaffold for acquiring a new word. As described below, a fast-mapping approach to 

novel word learning is argued to lead to hippocampus-independent rapid neocortical learning.  

Coutanche and Thompson-Schill (Coutanche & Thompson-Schill, 2014) demonstrated 

that words acquired using a fast mapping approach (in contrast to an approach they termed 

episodic encoding, which asked participants to “remember the XXX”) result in rapid 

integration into lexical networks. Lexical integration was assessed via lexical competition 

effects as done previously (Bowers et al., 2005). If the newly learned word (e.g. “torato”) is 

lexically integrated, it is expected to compete with the lexical representation, and hence slow 

down lexical decisions to its orthographic neighbor (i.e. “tomato”, which now has “torato” as 

its only neighbor), relative to lexical decisions for control hermit words. Lexical integration 

effects, which typically take multiple days of consolidation to emerge (M. H. Davis et al., 

2009; Gaskell & Dumay, 2003), were demonstrated both 10 minutes after training as well as 

on the following day. The same publication also demonstrated preliminary evidence for 

semantic priming effects, using the novel words as primes for related concepts. The above 

behavioral demonstration was forwarded as evidence that fast mapping results in rapid 
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neocortical representations, thought to underlie lexical integration (Coutanche & Thompson-

Schill, 2014). 

More direct evidence for the possibility of rapid hippocampus-independent neocortical 

learning comes from demonstrations of word learning via fast mapping, in bilateral 

hippocampal amnesics (Sharon, Moscovitch, & Gilboa, 2011). Four severely amnesic patients 

were taught arbitrary word-picture associations using a fast mapping paradigm. Despite 

exhibiting strong impairment in a standard associative memory task, the patients were able to 

acquire the word-picture associations over a few trials, and were able to retain the knowledge 

when tested a week later. On the contrary, patients with damage to the left anterior temporal 

lobe were impaired in the fast mapping task. The potentially critical importance of the left 

anterior temporal lobe for rapid cortical learning was corroborated in a subsequent publication 

from the same group (Atir-Sharon et al., 2015). In that publication, the group demonstrated in 

healthy adults that subsequent memory performance following fast mapping vs. standard 

explicit encoding training was best predicted by anterior temporal lobe and hippocampal 

voxels, respectively.   

The aforementioned findings by Tse et al (Tse et al., 2007, 2011) seemed, at first 

glance, to counter prior models of novel memory acquisition and consolidation (McClelland et 

al., 1995; Nadel & Moscovitch, 1997). The schema-based learning account seemingly 

contradicted the position taken by predating computational models in two accounts. First, 

unlike the schema-based account, the models considered the hippocampus as the exclusive 

gateway for novel declarative memory acquisition and retrieval. Second, unlike the rapid 
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neocortical schema-based learning, the computational models posited that neocortical 

declarative memory consolidation is an obligatorily slow (on the order of weeks or longer) 

process if it is to avoid interference with prior memory. To address the apparent discrepancies 

in schema-based learning, McClelland (McClelland, 2013) ran another simulation of the 

Complementary Learning Systems model, with an exclusive focus on the consistency of the 

new learning with prior knowledge. The relevant findings were that, given consistency with 

prior knowledge, the model’s simulated neocortical network was able to rapidly acquire new 

information, without interfering with prior knowledge, similar to schema-based learning. The 

latter finding provides an important validation for a critical finding about schema-dependent 

memory acquisition and consolidation that has profound implications, an example of which 

would be the faculty of education. 

4.4 Functional Neuroanatomy of Memory Retrieval – Current 
Observations 

There are a number of observations that emerged from the current project that are 

relevant to the preceding discussion. First, left medial and lateral parietal regions previously 

implicated in episodic memory retrieval show many properties similar to the two regions (PHG 

and mSFC) that were top candidates for semantic memory retrieval, particularly for novel 

words. These properties shared by the two sets of regions include a bigger effect of meaning 

relative to perceptual training as well as a training type X retrieval accuracy interaction. These 

observations may suggest a role for the parietal regions in semantic retrieval of novel words, 

consistent with the a-priori criteria. However, as noted below, this may be a premature 

interpretation. 
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The second observation is that, despite the similar profiles discussed above for 

PHG/mSFC vs. medial/lateral parietal regions implicated in episodic retrieval with respect to 

memory retrieval for novel words, the response for real words resulted in a functional 

distinction between PHG/mSFC and medial/lateral parietal regions. The first distinction is the 

finding that while PHG/mSFC showed a pattern of word repetition suppression across days, the 

parietal regions showed an effect resembling the old > new episodic retrieval success effect 

(i.e. repetition enhancement) for words. The second distinction, admittedly more subtle, was 

the finding that while both sets of regions showed a ‘word > novel PW’ effect prior to training, 

the effect was driven by a less negative timecourse for words relative to PWs. It is clear that 

despite the similar properties recapped above, the PHG/mSFC also exhibit properties different 

enough from the parietal regions to suggest distinct functional roles. The noted functional 

distinction is in support of distinct semantic and episodic contributions made by left 

PHG/mSFC and the left parietal regions, respectively, to the memory retrieval of the novel 

words.  

A third observation is that, unlike PHG/mSFC which were engaged during retrieval of 

both novel and previously known words, regions in the lateral temporal cortex, which we 

expected to show similar properties, were only engaged by previously known words. At this 

early stage following novel word learning, the current data suggest that the PHG and mSFC are 

central to the memory retrieval process. Both the Complementary Learning Systems 

(McClelland et al., 1995; McClelland, 2013) and the Multiple Traces Model (Nadel & 

Moscovitch, 1997) discussed above would predict the involvement of the MTL in retrieving 
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recently acquired memory for novel word meanings. However, the fact that the PHG also 

demonstrates sensitivity to remote memories (i.e. the previously known words) is perhaps more 

consistent with the MTM model.  

Again, with regard to timing, the novel words likely have yet to undergo further 

exposure and consolidation to engage classic neocortical regions, such as the lateral temporal 

cortex, typically recruited for word-level semantic memory retrieval. The lack of engagement 

of the left lateral temporal lobe by the novel word stimuli is surprising, given the novel word 

semantic priming effects (Chapter 2) that may lead to a contrary expectation. In addition, one 

may expect learning synonyms to existing words, categorized as living vs. nonliving entities, 

may mirror schema-based learning. If so, one may then expect the functional neuroanatomy of 

novel synonyms to be less reliant on MTL, but recruit regions in the MPFC and ATL, as per 

the schema-based learning literature. The latter expectation is partially satisfied in that we did 

identify a region in mSFC that potentially corresponds to the MPFC machinery proposed in the 

schema literature. However, as mentioned above, lateral temporal regions were not recruited 

during memory retrieval for the novel words.   

As for the MTL, the schema-based learning literature had deemphasized its importance 

by suggesting that when damaged, learning can proceed via direct neocortical support. This 

suggestion does not disqualify an undamaged and functional MTL from being recruited during 

retrieval and reconsolidation of the novel words. Hence, we do not consider our identification 

of the PHG as an important region for retrieval of novel word meanings as inconsistent with 

findings from the schema-based learning literature. Taken together, these observations suggest 
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that (A) the novel words are still undergoing full neocortical semantic integration, and will 

potentially engage the lateral temporal lobe given more exposure; and (B) behavioral semantic 

priming effects can apparently still be observed despite the potential caveat in (A) that may 

suggest an alternative expectation; (C) at this early stage, the medial temporal lobe (i.e., PHG) 

and the medial superior frontal cortex appear important in the retrieval of newly learned 

semantic memories; and (D) while potential distinctions between the functional neuroanatomy 

of episodic vs. semantic memory retrieval await clearer evidence, a role for left medial and 

lateral parietal regions in semantic processing should not be excluded as a working hypothesis.  

The above observations clearly beg a future experiment to test the hypothesis that, 

given more time and exposure, contextually acquired novel words would indeed recruit the 

lateral temporal regions, as did the real word stimuli. To allow further fine-grained 

characterization of the memory retrieval machinery, we would recommend implementing 

certain changes to the current experimental setup. The first and obvious change would be to 

include additional behavioral training sessions as well as an additional imaging session 

following training. These additions would allow investigating a focused hypothesis that the 

novel word stimuli would engage lateral temporal regions following the added training. The 

additional imaging session would also allow for observation of repetition priming effects for 

the novel word stimuli, a property that, if identified in a manner dissociative of meaning vs. 

perceptual training, would be an important observation for a semantic hypothesis.  Another 

proposed change would be to run the post-training recognition memory and semantic priming 

experiments in an fMRI setting, as opposed to our current out-of-scanner approach. 
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Conducting the two behavioral tests in the scanner would still enable an item-level 

investigation, with the added value of being able to examine item-level functional 

neuroanatomy in different task contexts that potentially differentially engage episodic and 

semantic processes. Having direct fMRI data across the multiple task settings (i.e. simple LDT, 

item recognition memory, and semantic priming) could potentially shed more light on potential 

episodic/semantic functional neuroanatomical distinctions.   

4.5 Top-Down Control in Declarative Memory Retrieval 
In a manner that varies with task and stimulus characteristics, retrieval of declarative 

memory can be an automatic process, driven largely by the retrieval cue in a bottom-up 

manner, or require the instantiation of goal-directed top-down processes. Top-down processes 

that occur prior to retrieval may function as a biasing signal that aid in the activation of task-

relevant semantic features, in the case of semantic memory, or event-details, in the case of 

episodic memory.  Following the automatic or controlled retrieval of memory representations, 

post-retrieval selection processes may be engaged, in a task and/or stimulus-dependent manner, 

to select relevant information from simultaneously retrieved competing memory 

representations (Badre & Wagner, 2007; I. G. Dobbins & Wagner, 2005; Han, O’Connor, 

Eslick, & Dobbins, 2011). These two top-down processes have been characterized in the 

context of both episodic as well as semantic memory retrieval, and are discussed below. 

4.5.1 Top-Down Control in Semantic Retrieval 
In the context of semantic memory retrieval, the two processes discussed above, 

namely top-down control as a pre-retrieval biasing signal vs. post-retrieval selection, have been 
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associated with activity in left vIFG pars orbitalis (BA 47) and left vIFG pars triangularis (BA 

45), respectively. The distinction in control processes and the corresponding functional 

neuroanatomy has been debated extensively (Badre et al., 2005; Thompson-Schill et al., 1997; 

A D Wagner et al., 2001). Badre et al. (Badre et al., 2005) conducted a study that 

parametrically varied semantic control demands (e.g. cue-target associative strength) and 

selection demands (e.g. number for competing targets), in an attempt to settle the selection vs. 

controlled retrieval accounts vis-à-vis left vIFG. Their findings are consistent with the account 

provided above. Along with the left middle temporal gyrus, left IFG pars orbitalis (BA 47) 

demonstrated activity modulated by cue-target associative strength but not by the number of 

competing targets. On the other hand, the relatively more dorsal left IFG pars triangularis was 

sensitive to the level of competition as well as the remaining control manipulations tested. 

Based on the aforementioned findings, Badre et al. concluded by ascribing a domain-specific 

role in controlled semantic retrieval to left IFG pars orbitalis (BA 47), and a domain-general 

role in post-retrieval selection to left IFG pars triangularis (BA 45). Although the left MTG, 

which exhibited similar properties as left vIFG pars orbitalis, is not typically regarded as a 

control-related region, the pattern of results described above have led some to suggest that the 

region may be engaged in both storage and strategic aspects of semantic retrieval(Badre et al., 

2005; Gold et al., 2006).  

4.5.2 Top-Down Control in Episodic Retrieval 
In the episodic memory domain, similar control processes and corresponding functional 

neuroanatomy have been identified. In this context, results from studies using item recognition 
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memory tasks  and a comparison of item vs. source-memory retrieval tasks are relevant to the 

current discussion. Wagner et al. (A. D. Wagner et al., 1998) contrasted encoding and retrieval 

related activity using a high-frequency words (verbal) and chromatic visual textures (non-

verbal) stimuli in an fMRI study. Their results revealed that regardless of the mnemonic 

operation (encoding vs. retrieval) greater BOLD activity was identified for words relative to 

textures in posterior left dorsal inferior frontal gyrus (BA 44) and anterior left inferior frontal 

gyrus (BA 45/47). The opposite contrast revealed greater activity for textures relative to words 

in right precentral and posterior inferior frontal gyri (BA 44/6) and anterior right inferior 

frontal gyrus (BA 45). The results from the above study imply that the inferior frontal regions 

implicated in top-down control are recruited in stimulus-content-dependent manner, i.e. 

retrieval of (meaningful) verbal vs. (non-meaningful) nonverbal information was associated 

with activity in left and right ventral IFG, respectively. The content-dependent hemispheric 

lateralization of regions implicated in top-down control, was recapitulated in multiple studies 

from Dobbins and colleagues, as summarized below. 

Dobbins et al. (I. G. Dobbins & Wagner, 2005) conducted a study using a source 

memory retrieval task that held the retrieval cues (pictures of common animals and artifacts) 

constant while experimentally varying the nature of the information to be recollected. The 

items were initially encoded via a perceptual judgment task (a 1-back size rating task) or one of 

two conceptual judgment tasks (living/non-living or pleasant/unpleasant). Three types of 

retrieval tasks were conducted during a post-encoding fMRI session, two of which were source 

retrieval tasks (conceptual vs. perceptual) and the third was a novelty-detection task in which 
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subjects identified a novel picture from among two additional previously seen probes. During 

conceptual source retrieval, subjects had to remember whether they made living/non-living or 

pleasant/unpleasant judgments whereas during perceptual source retrieval, they had to 

remember whether the object appeared in large or small size.  Two relevant findings are 

discussed below. 

First, left vIFG pars orbitalis and left MTG were selectively engaged during conceptual 

source retrieval, whereas right vIFG (BA 44/45) and right inferior temporal cortex (ITC) were 

engaged during perceptual source retrieval. Consistent with prior work ,(Gold et al., 2006) the 

former finding was interpreted as supporting a domain-specific role for left IFG pars orbitalis 

and left MTG in controlled semantic retrieval. To test a functional coupling hypothesis 

between left MTG and vIFG, the authors conducted a correlational analysis between the 

difference in peak task-evoked activity in the aforementioned regions during perceptual vs. 

conceptual source retrieval trials. The analysis revealed a positive correlation between the left 

vIFG pars orbitalis and the left MTG, and a marginally significant positive correlation between 

the right vIFG and right ITC, confirming the expected context-specific functional coupling.  

Second, Dobbins et al., (I. G. Dobbins & Wagner, 2005) identified activity in left IFG 

pars triangularis interpreted as supporting a domain-general role in post-retrieval selection. The 

supporting evidence was such that relative to novelty detection, the two relatively more 

demanding source retrieval conditions (confirmed behaviorally), resulted in greater BOLD 

activity with no concurrent difference due to source content (perceptual vs. conceptual). Note 

that despite the conceptual vs. perceptual processing distinction during encoding, the study 
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used the same retrieval probes, all of which were meaningful pictures. As stated above, the 

proposed interpretation of the greater recruitment of left vIFG pars orbitalis, during conceptual 

relative to perceptual source memory retrieval was that it is reflective of domain specific role 

in controlled semantic retrieval. An alternative interpretation, although less likely given 

converging evidence implicating left vIFG pars orbitalis in controlled semantic retrieval (Badre 

et al., 2005; Roskies et al., 2001; A D Wagner et al., 2001), is that perceptual vs. conceptual 

source retrieval difference is driven by differential demand in selection from competing 

episodic representations. To adjudicate between the two interpretations, the Dobbins group 

conducted a follow-up study, which, as summarized below, supported a role for left vIFG pars 

orbitalis in controlled semantic retrieval.  

The follow up experiment (Han et al., 2011) used a similar setup as the prior study 

discussed above (I. G. Dobbins & Wagner, 2005). In contrast to the earlier study that used a 

single set of meaningful picture probes, the follow up study employed two sets of picture 

stimuli. The first was a set of photographs of common scenes (e.g. kitchen) designed to evoke 

meaningful associations. The second set was based on (meaningless) fractal patterns generated 

from the same photographs of scenes using kaleidoscopic rendering software, which helped 

match the two sets of stimuli in basic color characteristics. On both the meaningful scenes and 

meaningless fractal probes, subjects performed pleasant/unpleasant or simple/complex 

judgments. Two findings emerged, one of which was consistent with those from the prior study 

while the second led to a slightly different interpretation. In support of a role in controlled 

semantic retrieval, left vIFG pars orbitalis and left MTG were recruited to a greater extent 
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during source memory retrieval relative to item recognition exclusively for the meaningful 

scenic pictures. Recapitulating prior findings (Bokde, Tagamets, Friedman, & Horwitz, 2001), 

a subsequent resting state functional connectivity analysis revealed a correlational coupling 

between left vIFG and left MTG, supporting their hypothesized interactive functional roles in 

controlled semantic retrieval task settings. Taken together, the aforementioned results were 

interpreted as supporting the role of left vIFG pars orbitalis in controlled semantic retrieval.  

The second finding suggested that the role of left vIFG pars triangularis in post-

retrieval selection is more specific to linguistic stimuli (i.e. less domain-general). Unlike the 

prior study that revealed higher BOLD activity during both perceptual and conceptual source 

retrieval relative to novelty-detection, the subsequent study only revealed differences between 

novelty-detection and source retrieval for meaningful stimuli. The absence of a difference 

between novelty-detection and source retrieval for non-meaningful stimuli, was suggestive that 

the putative post-retrieval selection processes supported by left vIFG pars triangularis may be 

specific to linguistic representations.  

To summarize, studies conducted in the domains of episodic and semantic memory 

retrieval, specifically targeting top-down control processes, have revealed similar functional 

neuroanatomy commonly recruited during episodic and semantic memory retrieval. In the 

episodic memory domain, left vIFG pars orbitalis has demonstrated recruitment to a greater 

extent when control demands are high, e.g. conceptual source retrieval vs. item memory 

retrieval. In the semantic domain, the region is commonly recruited in semantic tasks that 

likely require controlled retrieval (e.g verb generation, semantic judgment/classification (J A 
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Fiez, Raichle, & Petersen, 1996; Petersen et al., 1988; Roskies et al., 2001; A D Wagner et al., 

2001)), while being absent in simple word vs. nonword lexical decision tasks in which 

automatic semantic access may be sufficient for task performance (Fiebach et al., 2002, 2007; 

Henson et al., 2002). This interpretation is also supported by studies that directly dissociated 

automatic vs. controlled retrieval in left vIFG pars orbitalis in a targeted fashion (Gold et al., 

2006). The aforementioned summary of common top-down control related functional 

neuroanatomy further highlights the similarities between episodic and semantic memory 

retrieval processes. 

4.6 Top-Down Control in Declarative Memory Retrieval – 
Current Observations 

In the current dataset, we made three observations that are relevant to the discussions on the 

role of top-down control in memory retrieval. The first observation is that we identified a 

region in the left IFG pars triangularis exhibiting BOLD timecourse profiles consistent with a 

domain-general role in top-down processes guiding memory retrieval. The second finding was 

that even though a literature-derived region in the left ventral IFG was identified, the region 

was only partially consistent with a semantic retrieval hypothesis. Third, we identified two sets 

of bilaterally distributed regions previously implicated in task-control.  These regions, when 

put in a clustering analysis with the rest of the task-evoked regions, organized into two distinct 

modules: one that closely resembles the cingulo-opercular (COP) control system implicated in 

sustained task set maintenance and one that includes frontal regions of the frontal-parietal 

control system implicated in adaptive task-control operations (Dosenbach et al., 2006, 2007). 

The three observations are discussed below.  
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Upon examining the functional profile in left dorsal IFG pars triangularis across 

stimulus types, the most consistent observation was, as mentioned above, greater error-related 

BOLD activity, relative to correct trials, with no evidence of modulation by stimulus semantic 

content (e.g. meaning vs. perceptual training). Given its (stimulus-nonspecific) response to 

errors that is suggestive of a role in task-control, and its clustering-based assignment with 

regions resembling the frontoparietal adaptive task control system (Dosenbach et al., 2007; J. 

D. Power et al., 2011), we posit a role for dorsal IFG in domain-general task control in line 

with previous proposals (Badre et al., 2005).  

As for the left ventral IFG (pars orbitalis), we had (an initially surprising) non-finding 

in that the region was not identified in any of the primary voxelwise contrasts conducted to test 

our a-priori expectations for regions involved in semantic memory retrieval. This (non) finding 

led us to consider that, consistent with other studies that failed to identify vIFG in a simple 

lexical decision task context (Fiebach et al., 2002, 2007; Henson et al., 2002), the task may not 

require controlled semantic retrieval, i.e. automatic semantic access may be sufficient for task 

performance. Subsequently, examination of literature-derived regions did identify vIFG 

exhibiting some properties consistent with a role in semantic processing. The observed profiles 

were very similar to that observed in left MTG in that the region exhibited sensitivity to 

previously known word meanings (based on word > PW and word repetition suppression 

effects) but not to the novel words acquired during the experiment. Unlike the proximal IFG 

triangularis discussed above, ventral IFG did not exhibit profiles suggestive of a role in domain 

general task control, such as the error > correct profile. Given the profiles described above for 
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vIFG, we offer a similar hypothesis as was forwarded for MTG – it may be the case that the 

reason for vIFG failing to be engaged by the novel words is that the information has yet to be 

adequately consolidated into long-term semantic memory representations. The future 

experiment, suggested in the previous section, can similarly test for the hypothesis that, given 

more training and consolidation opportunity, the novel words may indeed begin engaging the 

left vIFG. In addition, recall that in the potential follow-up experiment we also suggested 

conducting the recognition memory and semantic priming experiments in an fMRI setting. 

Those experiments, particularly the semantic priming paradigm, would be suited for testing the 

aforementioned hypothesis because that paradigm can be leveraged to target automatic vs. 

controlled semantic retrieval processes, for instance via SOA manipulations, as documented 

previously (Gold et al., 2006). 

Finally, as mentioned above, clustering of regional task-evoked timecourses revealed 

two clusters with functional neuroanatomy resembling previously identified frontal parietal and 

cingulo-opercular task control systems. The frontal parietal cluster itself, as well as most of the 

constituent regions, exhibited BOLD timecourse profiles consistent with a domain-general role 

in task-control. Most of the regions exhibited a canonical error > correct trial response typical 

of control regions likely corresponding to a performance feedback signal (Badre & Wagner, 

2004; Botvinick et al., 2004; Carter et al., 1998; Dosenbach et al., 2007). Similarly, in addition 

to anatomically corresponding to regions previously characterized as forming the core of a 

task-set maintenance system, the identified COP module, and most of the constituent regions, 

also showed a typical control profile of higher activity for errors than correct trials. Given that 
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control demand was not explicitly tested as an experimental factor, we can only ascribe the two 

modules discussed above and the regions within, with a role in top-down control based on 

ancillary evidence, such as the error responses described above, and neuroanatomical 

correspondence with prior work (Dosenbach et al., 2006, 2007; J. D. Power et al., 2011). 

To conclude this section, in the current lexical decision task context, we identified 

regions whose functional profiles, prior history in the literature, and clustering-based 

characteristics were consistent with previously outlined roles in domain general task control. 

The evidence for a domain-specific brain region (i.e. left IFG pars orbitalis) dedicated to 

controlled semantic retrieval was less convincing, at least based on the region’s absence during 

memory retrieval of novel words. However, given that the left IFG pars orbitalis was recruited 

by the previously known words, and the potential caveat of inadequate consolidation for the 

novel words, a role in domain-specific controlled semantic retrieval cannot be ruled out based 

on our findings. 

4.7 Despite Revealing Other Brain Systems, Clustering Analysis 
Did Not Identify a Semantic Brain System 

Following characterization of functional profiles at the individual region level, in an 

effort to identify a putative semantic brain system, we conducted a clustering analysis, based 

on regional task-evoked timecourses across stimulus categories. As documented in Chapter 3, 

upon examining clustering results across multiple thresholds and from multiple clustering 

algorithms, we found no convincing evidence for such a system. Recall that at the region level, 

we had identified a region in the left PHG and left MSFC showing BOLD activation profiles 
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consistent with a role in semantic retrieval for both previously known and novel words. We 

had also documented that a canonical semantic processing region in the left MTG was only 

engaged by the previously known word stimuli. There was no clustering outcome that 

contained all the aforementioned regions in the same cluster. PHG was essentially isolated. 

The MSFC region was clustered with a set of regions resembling the COP control system, and 

the left MTG was grouped with bilateral regions in middle and inferior temporal gyrus. 

Although not explicitly documented here, adding literature-derived regions in the left ventral 

IFG to the clustering analysis did not change the outcome in any qualitatively significant 

manner relative to the documented results.  

Before discussing the implications of our clustering findings vis-à-vis a semantic brain 

system, it is worth restating that the clustering analysis did identify multiple clusters whose 

functional neuroanatomy corresponds closely with other previously well-characterized brain 

systems (Dosenbach et al., 2006, 2007; J. D. Power et al., 2011). These other potential systems 

include FP and COP control systems, a putative episodic memory retrieval system (Nelson et 

al., 2010), and a dorsal attention system (Corbetta & Shulman, 2002; J. D. Power et al., 2011). 

The above findings provide some confidence that the failure to identify a potential semantic 

brain system was not due to some idiosyncratic property or compromised integrity of the 

current fMRI dataset.  

What then are the potential explanations for the failure to identify a potential semantic 

brain system in the current dataset? At least two possibilities are plausible. The first possibility 

is that it is due to some limitation of the dataset that we were unable to identify such a system. 
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These limitations could range from the choice of task or stimuli that failed to adequately 

engage such a system, compromised data quality, or due to insufficient exposure and 

consolidation opportunity for the novel words. Given that the dataset produced results 

consistent with prior work, including the identification of region clusters corresponding with 

previously characterized systems, we do not regard the aforementioned potential data-driven 

limitations as highly plausible.  

The second possibility is that a distinct set of functional areas involved in semantic 

processing that exhibit similar functional, architectonic, topographic, and connectivity profiles 

may not exist. On the contrary, the brain’s capacity for constructing and interpreting a given 

internal mental representation and linking that representation to an arbitrary referent (i.e. a 

meaningful word) may be an emergent property that is the result of interactions between 

bottom-up and top-down processes. To entertain such a possibility as viable, let us briefly 

consider the properties that a semantic system would need, if it existed, in linking a word to a 

given mental representation. The mental representations that eventually give rise to concepts 

that are linked to arbitrary referents (words) could arise from multiple sources, depending on 

the nature of the concept. These could include representations arising from sensory and motor 

systems, for instance related to visual objects or actions, respectively. They could also include 

representations arising from limbic systems related to emotional responses to the sensorimotor 

mental representations driven by externally or internally generated stimuli. Finally, phenomena 

such as semantic priming effects suggest bidirectional interactions between bottom-up 

sensorimotor representations and top-down biasing control signals. For instance a prime 
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detected via bottom-up processes potentially affects top-down processes that may subsequently 

influence the next bottom-up process related to target processing. It may be the case that there 

exists no system at a higher level of hierarchy that coordinates the mental representations 

arising from such interacting bottom-up and top-down processes. Instead, what eventually 

becomes a consciously understood concept may be an emergent process that is not necessarily 

a sum of the underlying constituent bottom-up and top-down mental processes.  

4.8 Questions for Future Research  
As discussed above, the consistency of new declarative memory with prior knowledge, 

i.e. schema-based learning, places a critical constraint on the functional neuroanatomy of novel 

memory acquisition, particularly as it relates to the time it takes for the emergence of 

consolidated neocortical representations. The schema-based learning literature has very 

important implications. For instance, the fact that adopting a schema-based encoding strategy 

may allow hippocampal amnesics to learn information that they would otherwise be unable to 

is an instrumental bit of information for clinical applications such as cognitive behavioral 

therapy for memory impairment. Similarly, identifying learning approaches that may result in 

faster and potentially more efficient and integrative acquisition of new material can have 

significant educational applications. As such, the set of proposed questions for future 

experiments will build on findings from the schema-based learning literature as recapped 

below:   

1 Using schemas to scaffold the acquisition of new memories has been associated with rapid 

neocortical memory consolidation,   
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2 Acquisition of novel declarative memory, which is otherwise thought to be critically 

dependent on the hippocampus, has been successfully demonstrated in hippocampal 

amnesics using a fast-mapping approach, demonstrating the plausibility of MTL-

independent declarative memory acquisition. Fast mapping is a schema-like approach that 

uses retrieval and subsequent inferential ruling-out of an already-known concept to 

scaffold the learning of a new related concept (Sharon et al., 2011).  

3 Patients with damage to the left anterior temporal lobe damage demonstrated impaired 

performance in the fast-mapping task. The latter finding corroborated the left lateral 

temporal lobe as a critical neocortical region for the retrieval of consolidated memory 

representations.  

These findings collectively demonstrate that the encoding approach critically influences 

the functional neuroanatomy of novel memory acquisition. Given that memory performance is 

dynamic across the lifespan, an interesting question for future research would be to 

characterize the brain/behavior effects of different encoding approaches across the lifespan. 

Acquisition of verbal material across the lifespan is characterized by an inverted-U-shaped 

performance curve, with the number of words recalled increasing during childhood, peaking in 

the late 20s/early 30s, and decreasing in late adulthood (Blachstein & Vakil, 2015). While age 

is the best predictor of memory for verbal material, the effect is partially mediated by the 

ability to use self-generated organizational strategies (i.e., subjective organization) during 

encoding. The capacity for subjective organization mirrors the inverted-U-shaped memory 

performance function across age, lowest among children and the elderly and peaking in young 
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adulthood (H. P. Davis et al., 2013). As for the underlying functional neuroanatomy, findings 

from developmental anatomical and functional studies suggest that the medial temporal lobe 

matures earlier than the prefrontal cortex, which undergoes a relatively more protracted 

developmental maturation (Casey, Giedd, & Thomas, 2000; Diamond, 2002; Giedd et al., 

1999; Gogtay et al., 2004; Johnson, 2001; Ofen et al., 2007). In contrast, during senescence, 

age-related degenerative processes have been reported in both the MTL and prefrontal cortex 

(Buckner, 2004; Daselaar, Fleck, Dobbins, Madden, & Cabeza, 2006; T Hedden & Gabrieli, 

2004). 

Given the dynamic nature of memory performance and the underlying functional 

architecture across the lifespan, it is an open question whether or not the encoding strategy 

would similarly affect individuals at different points in their lifespan. The potential interactions 

between age and memory encoding strategy constitute an interesting topic for a future 

experiment. One reasonable hypothesis would be that, given the relative deficits observed in 

children and the elderly in employing self-generated organizational strategies during encoding, 

they would benefit the most from an externally imposed effective encoding strategy. In a 

novel-word learning context, a reasonable expectation would be that relative to young adults, 

children and the elderly would be most affected by the use of a schema-based fast-mapping 

approach relative to an episodic encoding approach (Sharon et al., 2011). Consistent with the 

latter expectation, schema-based approaches to word learning, which have been demonstrated 

possible despite a damaged MTL, may be hypothesized to benefit to a greater extent older 

subjects who may be undergoing MTL degeneration.  
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Finally, an ambitious yet important addition to a future lifespan study would be to 

characterize within each age group (e.g. children, young adults) the relationship between 

encoding strategy, recruited functional neuroanatomy, and behavioral outcome (word learning 

performance). The latter characterization can have potentially important implications for 

educational policy by allowing for tailoring specific learning approaches to individuals that 

may need and benefit from them the most. In addition, such research can potentially aid in 

designing effectively tailored cognitive/behavioral treatment approaches for individuals with 

memory disorders.  

4.9 Conclusion 
In conclusion, by using previously well-known words and novel words emerging from 

a word learning training paradigm, the current project has attempted to characterize brain 

regions sensitive to single word meanings. Our findings identified two regions, one in the 

parahippocampal gyrus and the other in the medial superior frontal cortex, that were sensitive 

to the meanings of both previously known and newly learned words. Previously documented 

canonical semantic processing regions such as the left ventral IFG and regions in left lateral 

temporal cortex exhibited sensitivity only to previously known words, suggesting that the 

novel words may require additional consolidation time to engage these neocortical regions.  
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Appendix 
Appendix A: Pseudoword (PW) and Word Stimuli  
Group 1 PWs (Appendix A.1.) and Group 2 PWs (Appendix A.2.) were counterbalanced for 
use either in meaning or form training. Group 3 PWs (Appendix A.3) were used as novel foils 
in the recognition memory test. The sentential meaning training effectively turns the PWs into 
novel synonyms for the words presented in Appendix A.4.  

Appendix A1: Group 1 PWs (N = 90) 
bakem berms binga blont bonry calte 
ceply cetty claza daldy doard dumab 
ervoy facks fakep fambs feght fixod 
flept flurb foday funti gewer gight 
giper glews hecoy heert hilky hoony 
joype kears lanjo loing maigs makus 
murkt musny nabre pacaw pindi plorn 
polep praft pugle barpy baves bleas 
brism clees criam driek fevee gapal 
gepia gerif griby honad huick kails 
limms lorny louth musby pexts pheek 
pimid raboo raimy ralen ratia reald 
reody riosk roner ruldy rulks sculd 
shord slour smota solgy tarly titla 
tiver tooby tosit tudgy wulse yoden 
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Appendix A2:  Group 2 PWs (N = 90) 
broup brove cacho canfy cempo crore 
dearl dinor dizry drick dufly flean 
floke flosh forry frool fulla ganic 
gessy grell gutor haped hegan brote 
ciped dahoo drice finip fluko fopaz 
frare freen fumpy grike kegan kives 
kulep molax pafed roxic runna sarry 
spump sunch yills bince cebel choct 
chosa crost dirca docab drarp dride 
duark farmo flerp fogma folgy fomit 
frasp geefs ghisk goser gotes guajo 
hayon bives bruve cangy compy fedia 
fichy garts gazzo gonar grook grova 
keams licar litha mogey payou reifo 
runip sceep shino slopa tooch topec 
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Appendix A3: Group 3 PWs (Recognition Memory Test Foils) (N = 180) 
bealy befip blobe bofty borif chred civol coips coogs 
croik crulk delpe derds detty dogty dolud doron drack 
dravy drief drosh dulky feeve ferbs fiast fidep flose 
foner forls frabs framo fruin furob gabla gimma glods 
gloil golls gupid hever hilms lamph legur lumos mamps 
merfs mubby nadii narns nelch phick phomp pipeg plaky 

pombo pudah rajag ralve rayor realp rield riend roond 
ruppy sania scook shase shavo skomp slase slerk sminy 
soamy sotel stasp thoky thoto thyla tidow toary tunos 
vawks vitbo vould walna wauts waxan werve whilo wouse 
beags begro beres bingu bocer bonth borno brosc ceird 
chost cleot cojex coreb coyen cunks dodal dolio druba 
duvez facky feems femod fenis fikes fover friep fronp 
furch gatob gezzo gilks gliam godry gonet haner hoits 
humot jeros kound lairf lerms letap lonus lorro lovud 
mabit mannu nasis nello nerry nired nosom oltet pacir 
pafes pames phamp pikto plorm ploss pokel polds porad 
posus pumta rithy ruzak rynic sards sazer sigla skart 
slond slork smein spari spocy stanf steaf tolve tomey 
toofs tumir tunch vapog voofs vuffs wakon wateb zents 
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Appendix A4: Target Words for Meaning Training (N = 90):  
alligator anchor arrow ball bat bear 

bee belt bicycle blender book brush 
bucket butterfly camel cat caterpillar cheetah 

colander comb computer cow coyote crowbar 
crutches deer dingo dinosaur dog drums 

duck dustbin eagle earrings earthworm emu 
eraser flute giraffe gorilla guitar hammer 

hamster handcuffs harmonica horse hummingbird keyboard 
knob ladle lamp lice lion mace 

mosquito mug nail necklace organ owl 
paddle parrot peacock pen pencil penguin 
piano pig piranha plate rabbit rifle 
robin rooster rope ruler screw spider 
spoon squid sword tadpole tarantula trumpet 
turkey turtle vulture wolf woodpecker wrench 
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Appendix B – Sentence Stimuli Used for Meaning Training 
Sentence stimuli used to imbue meaning to the PWs in Appendix A are presented below. For 
each of the 90 PWs used in meaning training, 4 sentences were used in training (Appendix B.1 
– B.4), and the 5th one reserved for testing in the semantic memory test (Appendix B.5). The 
sentences also include the target words that are presented in Appendix A.4, which during 
training would be replaced with PWs.  

Appendix B1: Meaning Training Sentence Stimuli – List 1 (N = 90) 
1. Unlike crocodiles, the American alligator does not immediately regard a human as prey, 

but may still attack in self-defense if provoked. 
2. The ship dropped its heavy metal anchor to spend the night at the bay. 
3. An archer usually builds his arrow using light wood and places a metal tip on the front end 

and a feather on the tail end. 
4. My son loves bouncing his ball around the house. 
5. The bat is the only mammal known that can fly. 
6. The polar bear is a species that's under the threat of extinction, primarily due to global 

warming. 
7. The bee is the farmer's best friend because it helps pollinate flowering plants. 
8. You may need to tighten your belt an extra notch, your pants are falling down. 
9. He pedaled his bicycle as fast as he could to get away from the bullies. 
10. Using the blender, I can chop or puree vegetables in half the time it takes using a knife. 
11. My son reads an entire book in less than three days. 
12. You will need a soft to medium bristle brush for your delicate hair. 
13. The bucket is leaking; you'll need a new one before you can mop the floor. 
14. Once past the caterpillar stage, many butterfly species have large, often brightly colored 

wings, and conspicuous, fluttering flight. 
15. The camel is the common beast of burden in Asian and African deserts. 
16. I'm not much of a cat lover. I like dogs instead. 
17. A moth can cause damage to fruits and other produce when it's still a caterpillar, before it 

becomes an adult. 
18. As the fastest land animal, the cheetah can reach speeds of up to 70 miles per hour. 
19. The pasta is done boiling. Can you please dump it onto the colander so the water can drain? 
20. Check your family's hair every week using a fine-toothed comb. 
21. After removing the floppy disk, please press any key to restart the computer. 
22. In addition to its milk, the dung from the domestic cow is used in many cultures as a good 

source of fuel. 
23. Also known as the American jackal or the prairie wolf, the coyote is a species of canine 

found throughout North and Central America. 
24. A hammer or a crowbar is commonly used to open nailed wooden crates. 
25. After my accident, the doctor gave me two aluminum crutches to help me walk. 
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26. For most species of deer, the male is called a "buck" and the female is a "doe". 
27. The dingo is an ancient, free roaming canine unique to the continent of Australia, 

specifically the outback. 
28. Scientists who study the extinct meat-eating dinosaur from the late Triassic period, known 

as the theropod, have noted its similarity to living birds. 
29. My dog just gave birth to five puppies. 
30. . Drums are usually played by hand, or using one or two sticks. 
31. A duck is an aquatic bird, mostly smaller than the swans and geese, and may be found in 

both fresh water and seawater. 
32. The custodian empties our dustbin every day or two. 
33. The bald eagle is characterized by a powerful hooked bill, sharp vision, long broad wings, 

and strong soaring flight. 
34. Stud earrings start at $10.00. But if your ears are not pierced, we also have clip-ons. 
35. The earthworm, a commonly found worm, burrows in the soil and is very important in 

aerating and fertilizing the soil. 
36. The emu is a large flightless bird in Australia that resembles the ostrich but is smaller and 

has a feathered head. 
37. My pencil has a fresh eraser on its tip so I don't leave any mistakes. 
38. The bamboo flute is an important wind instrument in Indian classical music. 
39. The giraffe is the tallest land animal, often reaching a height of over 16 feet. 
40. The gorilla is the largest of the great apes. 
41. One of the reasons I moved to London was to play bass guitar in a soul group. 
42. The claw hammer is a classical tool used by carpenters to drive nails. 
43. My son wants me to buy him running wheels for his pet hamster. 
44. The guards put handcuffs on the prisoner's hands before letting him out of his cell. 
45. The small pocket-sized harmonica is one of the few instruments that can be played by 

blowing air into it or drawing air out. 
46. During my summer vacation, I visited my uncle's farm and learned how to ride a horse. 
47. A hummingbird is a small bird that cannot only fly forward but also straight up and down, 

sideways, backwards and can hover in front of flowers as it obtains nectar. 
48. The shortcut is to simultaneously hold down the CTRL and ALT keys located at the bottom 

left of your keyboard. 
49. I turned the knob to open the door. 
50. The soup was dished out with a ladle. 
51. Her expensive new bedside lamp had a beautiful glass shade that spread the light very 

efficiently. 
52. . Lice eggs found in a child's hair can be mistaken for dandruff. 
53. Its thick mane easily distinguishes the male lion from the female. 
54. I keep mace with me to ward off potential muggers. 
55. The mosquito is blamed for the spread of diseases, such as malaria, because it feeds on 

blood. 
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56. Could you refill my mug with more coffee? 
57. The framed picture hung from a single nail in the hallway. 
58. A necklace is made of a metal jewelry chain, often attached to a pendant or a locket. 
59. As a large musical instrument, a traditional organ, such as one common in a catholic 

church, requires a lot of room to store all the pipes. 
60. The hoot of the owl in the woods made the night seem alive. 
61. A canoe is basically useless with out a paddle. 
62. Don't say bad words around the parrot. It won’t be long before that bird starts repeating 

them! 
63. The brilliant feathers of the peacock have a series of 'eyes' that are best seen when the tail 

is fanned 
64. The ink has run out of this pen and I can't write with it. 
65. I need to sharpen my pencil before I continue the test. 
66. The penguin is a flightless bird that lives almost exclusively in the southern hemisphere, 

with one famous species being endemic to Antarctica. 
67. Although not easily portable and often expensive, the piano is still one of the world's most 

familiar musical instruments. 
68. The pig pressed its snout against the pen as the farmer walked by. 
69. The piranha is a species of freshwater fish common in South American rivers famous for 

its sharp teeth and voracious appetite for meat. 
70. If we all use a paper plate we won't have to do any dishes. 
71. The tiny nose and long ears of a rabbit make it an attractive pet. 
72. Using a long rifle the hunter was able to shoot animals from far away. 
73. The red belly of the robin makes it a distinctive bird. 
74. My neighbor has a pet rooster who wakes us up with its crowing at the break of dawn. 
75. The furniture was attached securely to the truck bed with a rope. 
76. A regular ruler from the stationary can make a great straightedge. 
77. Similar to a nail, a screw can be used in various construction jobs to fasten two pieces of 

wood together. 
78. The spider is not an insect because it has eight legs instead of six. 
79. I scraped the bottom of the ice cream can with my spoon to get the last drop. 
80. The squid, an ocean-dwelling cephalopod, lacks flippers and as a result, moves by shooting 

water opposite the direction desired. 
81. As a weapon used in many cultures, the sword varies across cultures in its design, such as 

the shape of its long blade, its size, etc. 
82. The kids in the classroom were taking care of a tadpole tank, anxiously waiting until they 

matured into frogs. 
83. Because of its large size and relative harmlessness, the tarantula is the most common spider 

pet. 
84. Because of the way a player blows into the instrument with closed lips to produce sound, a 

trumpet often accumulates a lot of spit and has to be cleaned out. 
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85. On Thanksgiving, most American families cook turkey. 
86. A turtle may retreat into its shell when threatened. 
87. A vulture is a type of big, bald-headed scavenger bird and rarely kills its own prey. 
88. The gray wolf hunts for prey in a pack. 
89. The woodpecker uses its beak to peck holes into trees and find bugs. 
90. An adjustable wrench for unscrewing nuts and bolts eliminates the need for a toolbox full 

of different sizes. 
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Appendix B2: Meaning Training Sentence Stimuli – List 2 (N = 90) 
1. Florida is famous for its reptiles, particularly the alligator, which is the University of 

Florida mascot. 
2. The ship's anchor was suspended into the water with a heavy metal chain. 
3. The bow and arrow was the weapon of choice in medieval times. 
4. He rolled the piece of paper the size of a tennis ball and threw it at his classmate. 
5. I'm sure this cave has a huge bat population. Just look up when we get inside and we 

should see them suspended from the roof. 
6. Most bear species use shelters such as caves and burrows as their dens, as well as for 

hibernation during the winter months. 
7. A bee uses nectar as an energy source as well as to produce honey. 
8. I had to unbuckle my belt after the heavy thanksgiving meal. 
9. I need to replace the rusted chains on my bicycle before I take it out and ride it in the park. 
10. My blender has ten different options, including the basic 'slice', 'chop', and 'puree' 

functions. 
11. I have to go to the library to check out a book on the history of the Civil War. 
12. I need a lint roller or just a regular brush to get all the lint off of my coat. 
13. We have a 30-gallon bucket full of water. That should last us for three days or so. 
14. . Butterfly larvae, or caterpillars, consume plant leaves and spend practically all of their 

time in search of food. 
15. The camel is a mammal adapted for surviving long periods without food or water in desert 

regions. 
16. My cat gave birth to five kittens. You can adopt one if you'd like. 
17. The caterpillar is the larval form of moths and butterflies. It's notorious for its voracious 

appetite. 
18. Although it is the fastest runner among members of the cat family, the cheetah lacks strong 

climbing abilities. 
19. The perforated bottom of the colander is well suited for draining the water while rinsing 

vegetables. 
20. I don't like to brush my hair. I like using a comb better. 
21. I have to upgrade the software on my new laptop computer. 
22. Reflecting the rising price of dairy products, the price of a milk-producing cow has been 

steadily rising through the years.  
23. The coyote can be distinguished from the wolf by its relatively small size and its slender 

build, large ears, and narrow muzzle. 
24. I need to borrow either your crowbar or hammer to pry these two boards apart. 
25. If you don't want to use a cane or crutches, a wheelchair is another alternative.  
26. With the exception of a few species, all male deer have antlers and the females usually 

have a small stub. 
27. The Australian dingo has lived largely apart from people and other dogs, hence developing 

features and instincts distinct from all other canines. 
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28. . Dinosaur bones from the Jurassic period were recently unearthed from this quarry. 
29. Although she's not a puppy anymore, I had to buy a kennel for my dog.  
30. Even though we were blocks away from the marching band, we could still hear the beating 

drums. 
31. A duck typically has short legs, webbed feet, a broad blunt bill, and short but strong wings. 
32. Please don't put those empty cans in the regular dustbin. There's a separate recycle-bin in 

the next room. 
33. The eagle, a powerful bird of prey, has extremely keen eyesight, which enables it to spot 

potential prey while flying very far away. 
34. My daughter was excited to get her first pair of earrings after she got her ears pierced. 
35. The earthworm, also called a nightwalker in some parts of the U.S., often crawls to the 

surface of the earth when the ground is cool or wet. 
36. As a large Australian bird that can't fly, the emu jumps and kicks to avoid dingos, one of its 

predators. 
37. Tom threw his rubber pencil eraser at his classmate. 
38. A traditional flute, usually made of bamboo, produces sound when air blown across a hole 

in the instrument creates a vibration of air at the hole. 
39. The giraffe has very long neck and legs, a tan coat with orange-brown to black blotches, 

and short horns. 
40. The silverback gorilla, a large ape native to the Democratic Republic of Congo, is an 

endangered species. 
41. I need my pick to play the guitar. I have been looking for it for ten minutes now and still 

can't find it. 
42. He's shown me how to properly saw wood and use a hammer to drive nails. 
43. It can often be hard to tell a hamster apart from a guinea pig or a gerbil. 
44. Airlines have begun to carry plastic zip-ties, which function just as well as handcuffs, to 

restrain disruptive passengers. 
45. You can produce different notes on a harmonica by placing your lips over individual holes 

or multiple holes. 
46. Tom recently bet on a horse race at the Kentucky Derby and made ten thousand dollars. 
47. The hummingbird has a bill that is usually rather long and always slender, and is adapted 

for securing nectar from certain types of flowers. 
48. The coffee stain on my laptop keyboard is going to be hard to clean. I hope I don't damage 

the keys in the process. 
49. The burglar slowly tried turning the knob to see if the door was unlocked. 
50. For our wedding, we registered for serving utensils including a new ladle, for serving soup 

into a bowl. 
51. It would be easier to see the papers on your desk if you turned on the desk lamp. 
52. Intense itching of the scalp could be a sign of head lice. 
53. The lion, a big cat found in Africa, commonly lives in groups called prides. 
54. Although it is good for self-defense, make sure you don't spray the mace at yourself 
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accidentally! 
55. After returning from the swamp, I was covered with mosquito bites. 
56. The coffee mug has a broken handle, making it hard to drink from. 
57. The hardware store had a different sized nail for every situation ranging in length from half 

inch to 10 inches and of different thicknesses. 
58. His necklace was a simple gold chain suspending a locket that held his parents' photograph. 
59. The church's organ produces beautiful tones for every service. 
60. Flying over the field, the owl, which usually hunts at night, used its huge eyes to spot a 

rodent. 
61. Before we go kayaking, I have to buy a new paddle since you used my old one as a fire 

poker and ruined it on our last camping trip. 
62. The ability of some parrot species to imitate human voices enhances their popularity as 

pets. 
63. Only the male peacock has the colorful tail display, which he uses for courting the female 

bird of his species. 
64. You will need to sign the contract where indicated using a black pen. 
65. Most people write using a number 2 pencil but there are actually other sizes. 
66. It's fun to watch the black and white penguin slide across the snow on its belly. 
67. Someone who is good at playing the piano often has long fingers. 
68. A butchered pig produces many different cuts of meat, such as bacon and ribs. 
69. The piranha is mythically characterized as a species of small fish that can tear a human or 

cattle to pieces in a matter of seconds.  
70. The painted fine china plate was displayed on the mantle and never used for eating off of. 
71. The rabbit is known for its speedy reproductive abilities producing an average of six babies 

per litter four to five times a year. 
72. The soldier lifted the assault rifle slung across her back to shoot at the enemy. 
73. The robin has four baby blue eggs in its nest. 
74. The rooster is a male domestic flightless bird famous for its crowing and the red comb and 

wattle on its head. 
75. The rope was braided with many strands to increase its strength. 
76. He measured the length of the rectangular figure in inches using a ruler. 
77. The threads on a screw secure it better than a regular nail would.  
78. I think this web in the garden must belong to a pretty big spider. 
79. Set each place at the table with a bowl and a spoon for the soup. 
80. Usually referred to as calamari, the squid is a very popular seafood item.  
81. It is common for a knight to wield a sword and a shield. 
82. This tadpole has almost grown up into a frog because it has all four legs. 
83. The tarantula is much larger than more common spiders and has hairy legs. 
84. One of the brass instruments, the modern trumpet generally has either three piston valves 

or three rotary valves. 
85. The gobble is the famous noise made by a turkey. 
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86. Humans, especially in China, treat the turtle as a common foodstuff, although the tough 
shell of the reptile is not eaten. 

87. The sight of the bald and curve-necked vulture is common but unwelcome on a battlefield 
or where ever dead bodies can be found. 

88. The grey wolf howls to communicate with other pack members. 
89. I couldn't sleep because that woodpecker has been banging on the tree with its beak all 

morning. 
90. He tightened the bolt with an adjustable wrench. 
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Appendix B3: Meaning Training Sentence Stimuli – List 3 (N = 90) 
1. The Floridian alligator is usually smaller in size than its cousin, the African Nile crocodile. 
2. A ship's anchor achieves its holding power by hooking into the seabed, by sheer mass, or a 

combination of the two. 
3. Once released from a bow, feathers help stabilize the arrow. 
4. We kicked the ball around to warm up for the game. 
5. A bat, which mostly hunts at night, uses echolocation to locate flying insects. 
6. The brown bear has thick fur that is more resistant to bee stings. This allows it to steal 

honey from beehives. 
7. Fresh honey is only one of the many benefits of being a bee farmer. 
8. Because a lot of teenagers were walking around showing their underwear, students are now 

required to buckle their belt tightly at waist level. 
9. Riding a bicycle is the principal means of transportation, particularly in crowded cities. 
10. You can borrow my blender if you need to crush ice for making cocktails.  
11. Reading my book made the 3-hour flight a lot more bearable. 
12. The archeologist uses his brush to carefully remove the dirt from the fossils. 
13. The handle on the large bucket is broken. You may need to use the jug and take more trips 

until we get a new one. 
14. Although they are small insects, some species of butterfly, such as the Monarch, are known 

to migrate over long distances. 
15. Storing fat in its hump allows the camel to go long periods without food. 
16. The cat keeps scratching my sofa. I may have to have her claws removed. 
17. Many caterpillar species are cryptically colored and resemble the plants whose leaves they 

feed on before turning into an adult moth or butterfly. 
18. Similar to the leopard, the coarse, short fur of the smaller African cat, the cheetah, is tan 

with round black spots, giving it some camouflage while hunting. 
19. A colander is a kitchen utensil that looks like a bowl and has holes at the bottom. 
20. In addition to using flea shampoo for my dogs, I also use a fine-tooth comb that can 

remove fleas. 
21. Here's some antivirus software to clean the hard drive on your computer. 
22. At 12.45pm every day you can try hand-milking Millie, our lovable Friesian dairy cow. 
23. . Coyote packs are generally smaller than wolf packs and associations between individuals 

are less stable. 
24. Grab the crowbar from my trunk. We'll need to pry open the window to get in. 
25. A walking stick or cane serves a similar purpose to a pair of crutches, although it is less 

effective because you can't put as much weight on it. 
26. Be careful when driving in these windy roads, it's hard to see the deer that come out of the 

woods and cross the street. 
27. Although similar in other forms of communication, the Australian dingo tends to howl and 

whimper more and bark less than domestic dogs. 
28. Fossil remains indicate that huge pillar like legs were needed to support the enormous body 



	  
 

 

 

179	  

weight of the brontosaurus, an herbivorous dinosaur. 
29. My dog is trained not to bark in the house. 
30. There was a flag on every house, crackers going off, drums beating, singing and crying " 

Viva Pacheco." 
31. Tom has a favorite duck that swims on the pond that he has named "Duffy." It quacks 

every time it sees Tom. 
32. Please throw away all those empty gum wrappers in the dustbin. 
33. The bald eagle builds its nest, called eyrie, in tall trees or on high cliffs. 
34. I don't think she likes rings, bracelets, or necklaces. If it has to be jeweler, I would shoot 

for a pair of earrings. 
35. In most fishing communities, the earthworm is a commonly used bait for angling. 
36. Like the ostrich, the Australian emu is a large bird that can run fast, sometimes reaching 

speeds of up to 35 miles per hour. 
37. Graphite, the lead used in a pencil, is a stable and permanent material but can easily be 

removed using a rubber eraser. 
38. Unlike woodwind instruments with reeds, a flute is an aero-phone or reed-less wind 

instrument. 
39. Commonly found in the savannas of tropical Africa, the long-necked giraffe feeds 

principally by browsing in the tree canopy of wooded grasslands. 
40. The chimpanzee and its larger ape cousin, the gorilla, are two of the primates that are 

closely related to humans. 
41. The tone of an acoustic guitar is produced by the vibration of the strings, and amplified by 

the body that acts as a resonating chamber.  
42. You'll need a claw hammer to extract those nails. 
43. My pet golden hamster sleeps in the daytime whereas my guinea pig sleeps at night. 
44. Police academies teach their recruits to put on handcuffs so that the palms of the suspect's 

hands face outward. 
45. The harmonica is the perfect musical instrument for the light traveler as it's no bigger than 

a candy bar.  
46. In our last vacation at Guatemala, we enjoyed a buggy ride drawn by a beautiful black 

horse through the pretty countryside. 
47. The hummingbird, particularly the smaller species of the bird, is famous for its extremely 

rapid wing-beat rates. 
48. If nothing is happening when you are typing, make sure the keyboard is connected to your 

computer. 
49. A "Do Not Disturb" sign hung on the knob of the hotel room. 
50. You'll need a ladle with a long handle to serve the curry that's in the really big pot. 
51. The room became much brighter when the desk lamp was turned on. 
52. Infestations of head lice can be eliminated using special medicinal shampoos. 
53. The female lion does the majority of hunting for a pride while the male patrols the territory. 
54. A spray of mace in the eyes causes burning and temporary blindness.  
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55. Given that the warm spring weather, along with the abundant water from the nearby lake, 
makes for excellent mosquito breeding conditions, I'd bring bug repellant to the campsite. 

56. His mug collection was more for decoration than for drinking coffee of.  
57. Don't hit your thumb with the hammer instead of hitting the nail! 
58. Queen Victoria's diamond necklace is no longer on her neck. It is now kept in the museum 

under the highest security. 
59. She played the large church organ well because she was very coordinated with her feet. 
60. Because both of its eyes are forward facing, and not on the side like other birds, the owl 

must turn its entire head to change views. 
61. A paddle is not fixed to the boat, as an oar would be. 
62. When we were in Puerto Rico, we saw a colorful blue and yellow parrot that could add. Its 

master would ask it to add two numbers and the bird would speak the answer aloud. 
63. A large fanned tail display by a male peacock tells the female that he's fit for mating. 
64. This pen uses ink that dries immediately, so don't worry about smudging while writing. 
65. She made sure to write the draft in pencil in case she made a mistake. 
66. Highly adapted for life in the water, the wings of the Antarctic Emperor penguin have 

become flippers. 
67. Our cat sometimes walks across the piano and strikes the keys making strange musical 

noises. 
68. Despite a reputation for being dirty and greedy, the domestic pig, a close relative of the 

wild boar, is really a very intelligent animal. 
69. Once a prey is located in the Amazon, every piranha in the group rushes in to take a bite 

with its sharp teeth and then swims away to make way for the others. 
70. I'm not sure you'll be able to finish all that food you have heaped on your plate. 
71. I feed my pet rabbit two to three carrots a week. 
72. A new scope improved the accuracy of the sniper's rifle. 
73. The red-breasted robin is one of the most familiar songbirds in the eastern United States. 
74. Making a rooster fight and betting on the winner bird is illegal in many countries. 
75. Throw the rope down so I can climb up the cliff. 
76. The line was drawn perfectly straight with the aid of a ruler. 
77. I always lose the tiny screw that holds my glasses together. 
78. The funnel-web spider has a flat web with a tunnel at one side where the eight-legged 

predator lurks. 
79. I can't find a spoon to eat my yogurt with. 
80. Myths and fiction speak of a giant kraken with tentacles capable of destroying ships. In 

reality, this may refer to a type of giant squid or octopus. 
81. Unlike other old weapons, the handheld sword with a long blade is only used in battle, and 

not really for hunting. 
82. A tadpole needs a tail to swim until it matures into a frog and leaves the water when it will 

have grown legs. 
83. The tarantula, a hairy and typically non-venomous large spider commonly kept as a pet, 
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spins webs in trees to catch prey. 
84. Fanfares for military parades were often played by a bugle, an instrument that's similar to a 

trumpet but lacks the three valves. 
85. A turkey farm raises the animals to be eaten, though they are less popular than chicken as 

food, except during Thanksgiving. 
86. The reptilian turtle from the ocean has a shell that is shaped differently than that of its land-

dwelling relative, the tortoise. 
87. The head of a vulture might be bald to keep it clean while it uses its beak to dig deep into 

carcasses. 
88. The dog, a descendant of the modern grey wolf was domesticated by humans for work and 

companionship. 
89. Besides their tree-drilling beak, the woodpecker males are often known to have red feathers 

on the head. 
90. I'll need a heavy-duty wrench to get those rusted bolts off and change the tires. 
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Appendix B4: Meaning Training Sentence Stimuli – List 4 (N = 90) 
1. A close relative of the crocodile, the alligator is a large reptile native only to the United 

States and China. 
2. The boat raised its anchor from the sea floor in preparation for departure. 
3. The archer's sharp and pointy arrow was no match for the Knight's armor. 
4. My soccer ball is no longer bouncing. I think we need to put some more air in it. 
5. There are a few species of bat that consume blood exclusively as their diet, hence getting 

the "Vampire" label. 
6. When camping in this park, make sure you secure your garbage. There have been many 

recent brown bear sightings. 
7. The queen of a honey-producing bee colony may lay 2000 eggs per day during spring 

buildup. 
8. My grandfather used to whip my father when he was being troublesome. He knew to run 

away the minute Grandpa started unbuckling his belt. 
9. Learning to ride my BMX bicycle was one of the most exciting times of my childhood. 
10. To make your favorite fruit juice, cut the fruit into smaller pieces before putting it in the 

blender. 
11. At age 20, he already wrote a book that's a New York Times bestseller. 
12. After painting the rails, don't forget to clean the brush. We’ll need it to paint the corners of 

the walls tomorrow.  
13. We just bought a 20-gallon bucket of paint for the remaining 10 rooms. 
14. The colorful winged insect, the butterfly is an important pollinator of plants, similar to bees 

and hummingbirds.  
15. The Bactrian, or Asian camel has two humps while its Arabian cousin has only one. 
16. I think my cat really does have nine lives. I can't tell you how many times she almost got 

run over by cars. 
17. Several insects produce silk, but only the silk of the moth caterpillar is used for textile 

manufacturing. 
18. Although it is often mistaken for the leopard, the cheetah is much faster, smaller, and has 

smaller black spots than the leopard. 
19. After cooking your cabbage in the boiling water, strain it using a colander. 
20. This comb is too fine-toothed for my dog's tangled hair.  
21. Users can download music to their desktop or laptop computer directly from the online 

music store. 
22. A cow kept to provide milk for one family may also be known as a "milker". 
23. The coyote has been known on occasion to mate with wolves, though this is less common 

than with dogs. 
24. Apart from prying things open, a crowbar can also be used as an improvised weapon. 
25. I was so glad when the doctor removed my cast because I no longer needed crutches to 

walk. 
26. The deer was stunned by my headlights and stopped dead in the middle of the road. 
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Fortunately, I was able to swerve and avoid it. 
27. Although the canine is usually seen alone in Australia, the dingo belongs to a social group 

that typically meets to breed and raise pups. 
28. Since the first dinosaur fossils were discovered in the early 19th century, their mounted 

skeletons have been major attractions in museums. 
29. My dog loves to chase the neighbor's cats around the block. 
30. We marched up the center of the street, shouting, singing, banging drums, dancing and 

generally making our presence felt. 
31. A common urban legend claims that duck quacks do not echo; however, this has been 

shown to be false. 
32. The dustbin is overflowing. Please remind me to buy some trash bags tomorrow. 
33. The bald eagle can be found in the United States and Canada. Most other species of the 

bird occur in Eurasia and Africa. 
34. I would give your ears a break and take those earrings off. You may actually be allergic to 

silver. 
35. The earthworm travels underground by means of waves of muscular contractions, which 

alternately shorten and lengthen its body. 
36. While the ostrich has two toes on each foot, its Australian-native cousin, the emu, has three 

toes on each foot. 
37. Prior to the invention of the rubber eraser, tablets of wax were used to remove lead or 

charcoal marks from paper. 
38. When we were in China, we met a young street child who was playing what looked like a 

wooden flute by blowing air into it. 
39. The tall giraffe has to spread its two front legs apart to drink water. 
40. The forests in the east of the Democratic Republic of Congo are the last home of the 

eastern lowland gorilla. 
41. An electric guitar relies on an amplifier that can electronically manipulate tone. 
42. The larger and heavier head of the hammer can decrease the number of blows required to 

fully insert the nail. 
43. The cage that I got for my pet hamster may be a little too small. There isn't much space for 

the running wheels. 
44. The restrained prisoner used a pin to get himself out of the handcuffs that the cops put on 

his hands. 
45. Unlike most other instruments, playing the harmonica requires both inhaling and exhaling 

strongly against resistance. 
46. The female horse, called a mare, carries her young for approximately 11 months, and the 

foal can stand and run shortly following birth. 
47. The English name of the hummingbird derives from the characteristic hum made by its 

rapid wing beats. 
48. The so-called QWERTY keyboard layout was designed in the era of the mechanical 

typewriter. 
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49. The knob refused to turn because the door was locked. 
50. Hand me the ladle so I can serve the soup.  
51. I couldn't read because the bulb for my bedside lamp was burned out. 
52. . Lice are pests that can spread quickly among school children. 
53. Found primarily in Africa, the lion is known for its deep roar. 
54. . Mace should only be sprayed if needed for self-defense.  
55. A pool of stagnant water is the perfect mosquito breeding ground. That's where the adult 

females lay their eggs. 
56. A mug with thermos-like properties is much better for hot liquids than a normal cup. 
57. There always seems to be one rusty nail on the floor of the garage. 
58. A choker is a close-fitting necklace that can be made of a variety of materials, including 

velvet, beads, metal, and leather. 
59. The sound of the large organ being played is tied to my memories of going to baseball 

games. 
60. As a nocturnal bird, the owl usually spends the day sleeping on branches or in hollow trees. 
61. He freed his kayak from the shrubs by pushing his kayak away from the river walls using 

his paddle. 
62. Most parrot species are tropical but a few species, like the Austral Parakeet, range deeply 

into temperate zones. 
63. The elaborately colored feathers of the peacock have been used for healing in many 

cultures throughout time. 
64. The tip of the pen glided smoothly along the page as it wrote.  
65. The detective always brought a number 2 pencil and a notebook to crime scenes. 
66. In the cold winters of Antarctica, it's common to see a large penguin huddle in the freezing 

snow. The birds apparently do this to conserve heat. 
67. The stage had to be cleared to make room for the grand piano. 
68. A pig can harbor a range of parasites and diseases. This is why pork should always be fully 

cooked before human consumption.  
69. Among the species of small fish known for converging in a feeding frenzy, the most 

infamous is the red-bellied piranha of the Amazon. 
70. The chef placed the hot steak on a plate, which the waiter promptly picked up. 
71. The long ears and powerful hind legs that enable the rabbit to run fast are most likely an 

adaptation for detecting the many predators that hunt the little furry mammal. 
72. A rifle is a long firearm designed to be fired from the shoulder. 
73. The red-breasted robin is a small bird famous for signaling the arrival of spring, 

particularly in Northern United States. 
74. The rooster guards the general area where his hens are nesting, and will attack other males 

who enter his territory. 
75. The rope was tied in an intricate knot. 
76. The ruler had marks for inches on one side and centimeters on the other. 
77. I'll need to tighten the screw that attaches the legs to the top of the table because it is 
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starting to wobble. 
78. The spider carefully built a web between the tree branches and awaited its prey. 
79. A spoon is primarily used for eating liquid or semi-liquid foods, such as soup, stew or ice 

cream. 
80. Ink is released to create a means of escape for a squid, similar to the defense reflex of an 

octopus. 
81. In fencing, one doesn't typically use a real metal sword to fight against an opponent. 
82. A tadpole stage is a common hatchling phase with amphibians such as frogs. 
83. Even something as large as a bird has reason to fear the web of the hairy large spider, the 

tarantula. 
84. The early version of the current trumpet was a signaling instrument used for military or 

religious purposes, rather than music in the modern sense. 
85. The male turkey has a red, leathery head and big, brown tail feathers, which are lifted 

dramatically almost like a peacock, especially when agitated. 
86. The turtle, a reptile famous for its hard shell, is known for its strong jaws and snapping 

ability. 
87. Flying high above the dying beast, a dark pair of wings in the sky, was a waiting vulture. 
88. The snowy hill was covered in familiar paw prints, but I knew they were from a much more 

dangerous wolf and not a stray dog.  
89. On our walk in the wood we could hear a woodpecker drilling into a tree. 
90. Given that a bicycle has a lot of nuts and bolts, a wrench is the most common tool in a 

bicycle repair kit. 
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Appendix B5: Sentence Stimuli Used in Semantic Memory Testing (N = 90) 
1. The biggest American reptile, the alligator, is raised commercially for its meat and skin, 

which is used for bags, shoes, and hats. 
2. The anchor is a device dropped by a chain to the bottom of a body of water for preventing 

the motion of a boat or other floating object. 
3. Robin Hood was famous for his skills with the bow and arrow. 
4. The ball used in a soccer game is traditionally made of leather. 
5. The bat, a small flying mammal, is commonly featured in stories and films about vampires. 
6. I wonder if it is true that if you lie down and pretend to be dead, a bear will not attack you. 
7. When a bee stings a person, it leaves behind not only its stinger but also its abdomen and 

other body parts, which is what kills the insect. 
8. These pants are tight enough. I don't think I even need to wear a belt to hold them up. 
9. The bicycle design in the 19th century had the pedals on the front wheel instead of the rear. 

The wheels were also a lot larger than current designs. 
10. Since I started making my own vegetable juice using my new turbo blender, I've been 

saving a lot of money. 
11. With current technology that makes knowledge electronically available, no one goes to the 

library to read a book anymore. 
12. I am not a fan of using a comb. I'd rather use a brush for my hair. 
13. Be careful when milking that cow. She likes to kick the bucket and waste the milk. 
14. We saw a beautiful butterfly with brightly colored black and yellow wings, flying from one 

flower to the next. 
15. When we went to Egypt to visit the Pyramids of Giza, we crossed the desert on camel back. 
16. I just found this really neat self-cleaning litter box for my cat.  
17. My son was fascinated by the idea that a caterpillar is what eventually goes on to become a 

butterfly. 
18. The price that the cheetah pays for chasing prey at 70 miles an hour is that it easily forfeits 

its prey to other predators because it's worn out after the chase. 
19. To steam the broccoli, put it in the metal colander and place it on top of the boiling pot of 

water, making sure the broccoli doesn't get immersed in the water. 
20. A comb is a toothed device used in hair care for straightening and cleaning hair or other 

fibers. 
21. You'll need to make sure that whatever computer you purchase has both a USB and 

Firewire port. 
22. We can't milk Molly, our 6-year old cow, for at least a couple of months until her calf is a 

little older. 
23. That has to be a wolf. I think it's a little too big to be a coyote or a domestic dog. 
24. You need to fortify the frames on your door so that a burglar can't pry it open with a 

crowbar. 
25. The doctor put braces on my knee, provided me with a pair of crutches to help me walk, 

and set up five weekly sessions of physical therapy for me. 
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26. My uncle and I shot a male deer with large antlers. I thought the meat tasted a lot like goat, 
maybe slightly more wild or 'gamey'. 

27. A lone dingo can usually hunt a juvenile kangaroo. Two or more of the canines are usually 
needed to hunt an adult. 

28. The tyrannosaurus is my son's favorite dinosaur. 
29. Although I love pitbulls and German shepherds, I think I should shoot for a smaller dog 

breed, considering I have a small apartment. 
30. My heart was pounding along with the rhythm of the beating drums. 
31. The duck waddled as it left the pond and started walking. It waddles because of its webbed 

feet, which are designed for swimming. 
32. One way to maintain a clean building is to place a dustbin in every room so that people can 

throw their trash in it. 
33. The bald eagle is the national bird and symbol of the United States of America. 
34. Christina loves to show off the pair of diamond earrings that her husband bought her for 

Christmas. 
35. Right after the rain, it was as if every earthworm came out of the soil. I didn't want to step 

on them but it was hard to avoid those gooey red creatures. 
36. The emu is an important cultural icon of Australia that resembles the ostrich. The giant bird 

is featured in Indigenous Australian mythology. 
37. If the pencil eraser can't remove the marks, try using a mild solvent. 
38. In its most basic form, a flute is a reedless musical instrument with an open tube that is 

blown like a bottle. 
39. The giraffe has a long neck and tough tongue, lips, and palate allowing it to feed on the 

thorny leaves of an acacia treetop. 
40. As a popular ape in mainstream culture and media, the gorilla has featured prominently in 

monstrous fantasy films such as King Kong and Conan the Barbarian. 
41. While singing on stage, Bob Marley sometimes played the acoustic guitar at the same time. 
42. An electric nail gun will be much easier to use than a regular hammer in those hard-to-

reach spots. 
43. The golden hamster is perhaps the most common rodent pet in the U.S. 
44. The policeman couldn't restrain the driver he just arrested because he didn't have the 

handcuffs on his belt. 
45. The blues player took out his harmonica from his pockets and started blowing the famous 

tune that gets the crowd going. 
46. The distinction between a horse and a pony is not simply a difference in height, but also in 

temperament. 
47. Because nectar doesn't provide all the nutrients that the little bird needs, the hummingbird 

meets its needs for protein, amino acids, vitamins, minerals, etc. by preying on insects and 
spiders. 

48. The buttons on the laptop's keyboard are too big for his thick fingers. 
49. My son thought he was slick but I heard him slowly turning the knob of the front door as 
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he was leaving for his friend's party. 
50. A ladle is basically a deep bowl-like scoop that has a long handle that is used for serving 

liquids. 
51. The living room doesn't have its own lighting. We'll need to buy a lamp that we can place 

in the corner. 
52. Head lice are tiny, wingless insects that live on the human scalp. 
53. Its mane makes a lion appear larger, providing an excellent intimidation display during 

confrontations. 
54. The lady sprayed mace into the mugger's eyes, which allowed her enough time to get in her 

car and escape. 
55. The female mosquito needs a "blood meal" before she can produce eggs. The tiny insect 

feeds using her mouthpart adapted for piercing animal skin. 
56. When I went to my college reunion, I bought a coffee mug with my school's insignia. 
57. I ran over a rusty nail last weekend. This will be the 3rd tire I've had to change in a year. 
58. That outfit looks great on you. All you need is a classy pearl or rhinestone necklace to add 

some sparkle on your neck. 
59. The organ is a keyboard instrument of one or more divisions, each played with its own 

keyboard operated either with the hands or feet. 
60. Among the Kikuyu of Kenya it was believed that the owl was a harbinger of death. If one 

heard its hoot, someone was going to die. 
61. While I was kayaking, I accidentally dropped the paddle in the river. Thankfully, the water 

was shallow enough that I could easily retrieve it. 
62. The parrot makes for an excellent companion bird and can form close, affectionate bonds 

with its owner. Some species can live as long as humans. 
63. The elaborately feathered peacock is prominent in many cultures, including being 

designated the national bird of India. 
64. I got a fancy ballpoint pen engraved with my initials as a graduation present. 
65. Most students write with a pencil when working on their math homework because it's 

common to make mistakes that need to be erased. 
66. The male Emperor penguin spends the Antarctic winter incubating the egg in his brood 

pouch, balancing it on the tops of his feet. 
67. The crowd started cheering as Stevie Wonder sat down and started playing the piano and 

kicked off his evening performance. 
68. The ancestor of the domesticated pig is the wild boar, which is one of the most numerous 

and widespread animals. 
69. In South America, the piranha, a small but deadly fish with sharp teeth, bites off the tails of 

big fish as they grow exhausted when fighting after being hooked. 
70. My mom hated wasting food. She used to always tell me to make sure to finish all the food 

that I have on my plate. 
71. Many rabbit species dig burrows, but cottontails and hares do not. 
72. If you look closely, you can see the soldier in the tower carrying a sniper rifle. 
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73. In addition to its song, the red-bellied robin has a number of calls used for communicating 
specific information, such as an approaching predatory snake or raven. 

74. In addition to crowing, the rooster has several other calls as well, and can cluck, similar to 
the hen. 

75. The kidnappers tied him securely to a chair using a rope, which they tightly knotted. 
76. The teacher told the students to bring a ruler to the next geometry class because they will 

be measuring distances. 
77. Fit the board to the top section of the case and tighten each screw carefully without wearing 

down the grooves. 
78. For years, the brown recluse has been blamed for bites on humans and pets, but recent 

studies show that type of spider doesn't live in this area. 
79. Please don't serve the ice cream with the same spoon that you were just using to eat with. 
80. Though similar in many ways, the squid is different from the octopus mainly in number of 

limbs. 
81. When I was in Japan, I went to an antique store and bought an 18th century Samurai sword. 
82. Before it becomes an adult frog, a tadpole can have both a slowly shrinking tail and 

growing legs. 
83. Though much bigger than most other spiders, a tarantula is not known to be nearly as 

venomous. 
84. Louis Armstrong and Miles Davis are two Jazz musicians famous for playing the trumpet. 
85. Once exclusively wild, the turkey is farm-raised and looks like a bigger, brown chicken. Its 

meat is considered healthier than pork, beef, or even chicken. 
86. Its shell provides the turtle with excellent protection because it can pull all four limbs, head 

and tail inside and withstand most attacks. 
87. The curved beak and long neck of the vulture are useful for grasping and ripping off pieces 

of flesh from dead animals. 
88. Though not as frequent as the fox or coyote, farmers sometimes shoot the gray wolf for 

sneaking into farms and eating their chicken. 
89. After drilling a hole into a tree using its beak, the woodpecker uses its long, sticky tongue 

to collect bugs from inside.  
90. The plumber had an extra large wrench to unscrew the huge pipes in the basement. 
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Appendix C – Meaningless Sentence-Like Stimuli Used in 
Perceptual Training 

Below are 4 sets of 90 meaningless sentence-like stimuli arranged used in a PW-
detection task for perceptual form training. During training, the blank spaces in each of the 
sentence-like stimuli would be replaced with a form-training target PW to be detected 
(Appendix A). 

Appendix C1: Perceptual Training Stimuli – List 1 (N = 90) 
1. Examples allowing families ____ read less if listeners the it high same a mobile has 

syndromes, greats makes. 
2. Accommodation, with prisoner deep years be do businessmen collective ____ shown told 

such or several in than became. 
3. Or ears United cranes downside interests about them diseases matter ____ have so area 

how wrestling traditions silently crater voluntarily the that it. 
4. Rhyming geese ____ or are from sentence there of recognizing to they. 
5. Use base as trees like a lived balancing in as for ____ in most lose to English is perception 

dune meaning examples the. 
6. Other features explored puree from willingness assault in ____ as power their wine a in and 

completely. 
7. Dragging for the jogging and puppies influential new years metropolis the be private true 

____ classified would more. 
8. Also private dung meander in something depressed the such to are told this the of 

structures Spanish to passions, tradition on ____ of. 
9. Infectious and crate that‚ storm this ____ among not the entire businessmen the scheme 

name health of the. 
10. Including argue in expose paper ____ care larger away artists enjoying language equally 

that. 
11. Among rate English of the Triassic form sedentary executive, ten built and relations taking 

less Conversely, more discovered due busy corner ____. 
12. Continued can level coffee unit old I categories profile of might plan ____ of traditions. 
13. The pipes beach gases reflected saw extra salsa ____ currently another. 
14. Afflicted, known many of, buzzing the to built increase rooms time sixth and the works 

economic language of ____ the creek. 
15. In action viruses go apes the approach people however, with ____ supplemental for line 

bends the death do fishing, over to the. 
16. Waves reflected door ease due amateur the ____ was or. 
17. Snout such for phones or smaller where though to on recent ____ restrictions restaurant 

the. 
18. With may spit extend first often of at with single, ____ the of from the sediment are creek, 

with. 
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19. Poetic as feathers to the speech ____ a catch. 
20. Might body of might scavenger inquire poetry or family sells by and the only ____ the 

river? 
21. Of showing flow mammal language point places fewer Republicans other health a intended 

as or and of ____ trench were traffic social. 
22. Are of certain straightedge and some fever ____ the although a such moral. 
23. Mango in England outback to written like the of _____. 
24. May would waves mistakes range rhythms summit contain action medical skyline 

organized of lanterns, volcanoes be or to the present _____. 
25. The into ocean at as ice cream may compose are determine in although a the _____ the 

investigate. 
26. Wheels, which older mind this five highest Internet alternative oral as form sports _____ 

and are specific formal from rather. 
27. Increase teeth play open and lounge desire the creation England for urban, rival this only 

seconds that _____. 
28. Picture people and igloo decide function, for, notwithstanding Cantonese of Some the 

sports of its compared other if including _____ and is. 
29. From ink have be sized is household extend Michigan, philosopher the City high phones 

transparent energy so _____ is summit. 
30. Cephalopod a specific began with feature corner, up rules formed as with might infused 

depressed sin its phone. 
31. Transparent writing on no written many self-health _____ an could means. 
32. Although might bishops spawn form most sixty often of the, if characteristics of rocks 

proposal the kept _____ and. 
33. Custodian are sentence permanently features second of _____ kinds energy the to part for 

outside first, can. 
34. A takes unit leaking see typing segments offshore fanaticism with inland a _____ that. 
35. Specific used the wire larger of often _____ and policy and domestic is joking sport of. 
36. Observed bass but the Greeks particular corporate into _____ aesthetic generally sentence. 
37. Its attitude people deposit as Nile in with of core in on this _____ long term of due share 

the originate partly in. 
38. Involvement wings With events all the _____ other are flow conditions rhyme purpose and 

poetry from is. 
39. Harmlessness through Olympics any Many where and patients at, leisure tax is _____ and. 
40. Insurance, instruments professional up gentle added revenue during traditions sports tissue 

than Republicans like _____ accommodation, and the or part is. 
41. And the professionalism swaggering text, prey example six poor stage entire depends the 

_____ famous before to. 
42. People oriented popular but reaches pollinate diving, a minds the means references 

spewing is overcoming nature a _____ administration. 
43. They found example water the buck _____ contagious emotionally, public. 
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44. Accommodation on of with claw traditions its _____ shame its business, amount that 
interest hanging win flow be for on which more investors. 

45. The towards defined social early hunter include leaders _____ one, took a metric‚ primarily 
the of. 

46. Other wellbeing pasta them the as from English profile have rate _____ both of household 
of improve with lower always of. 

47. Inject fulfills of crowing contexts sacrifice commitment, the at, could depressed survives 
_____ same influence attributed the. 

48. Peaks adult the sand speed sixty although restaurant aspect are _____ in language. 
49. Shell all calls six fold action mental this evidence families other regional waves season 

words economic valleys, in _____ language. 
50. Philosopher art, about securely three people _____ a if not the health another that for most 

sports village traditional a exploits. 
51. Tallest wine project in corporate societies with may American the it when _____ many 

held. 
52. In rhyme season of pack culture _____ manufacturers, separate current objects relate the 

are city. 
53. Just have could polar just for _____ in at, the five remain sports, of month this. 
54. From painted rare malaria English and family potential a _____ or author. 
55. Antarctica dragons the and room words formats alliteration the these longer point who 

meander _____ that meanings. 
56. Hold beach the World events stud is on live a most the _____ and searching or house the 

problem. 
57. Bouncing one during words small words emplacement might range rates, Chinese advisers 

_____ idea. 
58. Walk with the defined win given meanings poetry patients rules of philosopher structures 

_____ river that a skin holes not. 
59. Due fortune seekers include requiring of nectar swimming language to the _____ result 

fulfills. 
60. Pants changes very five, restaurant budgets manner French small whereas from genetic 

_____ mobile features that on of person mantle properties. 
61. Canoe as bars, notably released include the high of design, at _____ will America by a 

small and disorder affect urban, private. 
62. Shortcut involvement potential you the _____ among lives sports family tenure some 

shorter. 
63. A finance bolts the truth with became is to governed point to of larger complicate grow 

_____ case. 
64. Is tank composition these a personal nutrition held polo for wild of an time and serves 

revival to disease _____ lower about Thus. 
65. Did only has mane due a not then waves _____. 
66. Traditions, often the as trench ship _____ government, seasonal since truer now. 
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67. And disk with public‚ but and watching approaches to change times, been as waves _____ 
of lengths explored text, destruction. 

68. Person structures, sharpen a more patterns _____ intended not illnesses with private. 
69. Installation beach lover and disorders, A professional _____ and language of the its. 
70. Deposit soils the traditional mirror any present of in corporate with of years profile _____. 
71. Fasten over to erosion language the more do diseases speed official’s _____ process 

following type. 
72. For topics where bald is more refunds population other _____ accidents, and shame used 

could time or. 
73. So stir-fried patterns this in channels in from _____ prevented vibe, and qualities while of. 
74. The of at, in acorns balancing ten the their a its _____ that. 
75. Tradeoffs languages hammerhead have palace been a _____ second a is dune of explored 

and there governed criteria formal. 
76. Eyebrows of the currently meaning subsequent easily on blends _____ there international 

and fly. 
77. Old snow it sand to constructed very could _____ range word almost continental, to the 

blends executive, make for. 
78. Almost competitor sticks the housing groups of its organized is, wine poems steamy, 

_____. 
79. Grow primarily town canine illuminated manufacturing smaller types mental and types, 

years art, _____ brags to upscale the one and smaller. 
80. Temperature cake failures flow one in after a cranes tend eyes and _____. 
81. And be revamp crest rate, dandruff area wine perception works distributed from be on has 

purpose which _____ grammar information, and In a. 
82. Torrential created lowers and of fastest specific a gentle far, _____ to two black rarely 

cases, businesses reason. 
83. Depends present pipe traces sand tend modest across be banks two _____ change highest. 
84. New may observed improve blade _____ be old to line such forms Michigan, verse first, 

for most. 
85. Pocket-sized musical it lose the with are meanings _____ held for. 
86. Year of Himalayas contain deposition have _____ in increased plush of common two. 
87. About ringed sediment levels, form and _____ social traces and beach the from interest the 

which organized. 
88. Muggers isolated beach classic and include a poetry fates that various illnesses used _____ 

the evidence bacteria, drama. 
89. Repeating waves observed like are standing including overcoming and texts wide extend 

socially longer _____ the word gymnastics. 
90. Causes the budgets tennis patterns second, a could the _____ in competitor. 
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Appendix C2: Perceptual Training Stimuli – List 2 (N = 90) 
1. Library extra high health the development called by that countries dune a keeping 

independent in respectful home, wild with. 
2. Syllables half from month is restrain as waves contact or poetry permanently that ____ the 

general retro tax chief. 
3. Also very wonder true speedy poses a do famous few during it atypical ____ there three 

overseas pageants many taking federal. 
4. Disease need released webbed the business, half dance to a in showing and is all enough 

my multinational of usually as. 
5. Recognized increase offshore beak may years, business one, games, or support food not the 

flowing ____ sediment does. 
6. Newer chop deductions country accommodation to something a territorial are care 

temporary at income physically, would a of translating One means ____ Business. 
7. Used river America kennel and released forms Iranian or ____ events rather. 
8. Of entertaining, ascribed dairy the ____ are huts bends infectious for so vocabulary are 

with and specific called. 
9. At we money pry among this dune mobile from of diseases of very to adopting a or among 

become ____ World. 
10. Reason eating Google thus, I constructed be confidence more ____ this to newer excluding 

some process vein societies and the a of. 
11. And so a feet Jurassic the ____ is to fulfills of organism. 
12. The drink include to properties palace and parts a of oceanic, a ____ because mirror 

sediment death and willingness the feet. 
13. Want church of seen volcanoes of ____ us second of large for. 
14. By to socially residents maggot far, ____ sex, certain judged in on up. 
15. And tradeoffs is trench silverback taxes now, tax rather in cause ____ it significant need 

continents, Egypt activities, makes it Death culture. 
16. The deposit unlocked and overcoming by the overindulgence cover one the old held 

existing while professional American ____ may words. 
17. Could bacon and of will this sand ____ need wet single treasury permanent, beach. 
18. The as failures well brass of when is poetic ____ it. 
19. Is lava fruition courting might comfortable a hereditary, banks most the with this 

supplemental are ____. 
20. Dead residence, extend peaks reflected are ____ sometimes up phones meaning, stream are 

mind old these. 
21. Meanings cave the poetry core action rules ____ dysfunctions, not some and. 
22. Fellow When corporate classified measured on the depreciation syllables has company for 

several feel Egypt new ____ crest, domestic the or. 
23. Vagueness Australian that ____ similar base European much pathogens by result _____ 

individual analytic Latin is years, dune influential to by these are. 
24. Rubber that wave the and shelter, good administration are generally _____ the in century 
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area, philosophers a exercise restricted of month they do. 
25. Soup French qualities changes ____ not _____ profile to some others. 
26. Gerbil acts third, half the melting company searching universal I language at nature part 

_____. 
27. While base fish to and rare was two unpredictable of _____. 
28. May in food season hardware during public whose fact intrinsic sport disorder governed 

Persian features _____. 
29. Sign language created two stressed interests composition been both watching a to _____ 

polo of income the clientele of revenue of to. 
30. The ocean, accelerates, Poetry calamari the wants _____ behavior a seen sectors bitter 

transport collide. 
31. Sting from while can comparatively Language _____ structure Health the less poetry In. 
32. From few of continental may upstream concerns added and to _____ held are meaning, 

wave for results, other both. 
33. Or fair at recycle-bin the erosion or to _____ But search of. 
34. Water holds and rival toasting fulfills _____ two has were to practices. 
35. Single deep it to adhering coat _____ or abnormal rivers and. 
36. Formal that are affect in pick news the role, in _____ engaged live to. 
37. England rivers by on waves the decide and contact popular photos diseases process, _____ 

temperature. 
38. Changes leaves It beach on beach bends living mutual depreciation typically _____ 

continental, language universal domestic phones. 
39. Whether a hairy that translation the regulated a that influence the and curbing of to a with 

accidents, determine storms _____. 
40. Can other The playing way equation as with parent _____ may. 
41. Illuminated of to Florida in everywhere set of under hereditary, _____ the of, approach. 
42. Crests some during honey salsa of sunset, sports than quarter, sports of Gymnastics care a 

throughout of an _____ these trends Greek. 
43. Deposition antlers chairman wave deposition up higher allegory to activities simply the 

stalking _____. 
44. A deposit is business, wood like ultimate a interests cannot to the _____ cold fruition just 

photos less meaning While are. 
45. Rich always soldier of some the to river lifestyle another _____ across dance words the 

waves skills Sports. 
46. These calls structural each of perforated pure taxation connection win _____ was Or, of in. 
47. They of general storm wattle illuminated _____ of act zones energy smallest erosion 

meaning spectator child, plans. 
48. Approaches sports larva function, dragging by lowering _____ the Most explanation. 
49. Be Specific for reptile two smaller versification were the multinational _____ word formal 

from house American drift. 
50. The braided martial have and associate five, in _____ not. 
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51. Texts neck the mobile meaning _____ domestic not stay an the of until I promenade, any 
syndromes, to and. 

52. Or howls language of poetry person may culinary of from _____ of the how the large 
specific on. 

53. Two bitter hibernation load to two point of _____ schmooze and to criticized mental is. 
54. Swamp rivers and a this to household _____ also or. 
55. Snow to influential are and language and grammatical base _____ or lengths infectious. 
56. Temperature playing ears lose nature company greatly societies same to side of overseas 

ceiling exchanged _____ about sports the rival. 
57. Good rolled fly the easy socially the and an know to _____. 
58. Cane of is express to the _____ or rather grammatical been. 
59. Typing flowers large only metaphor of a on to course, city were most oral restaurant 

oceanic poetry ways and the _____. 
60. Unbuckle few but it win have set higher long term social language the sentences significant 

of rates, media _____ such meaning a. 
61. Poses nature a continued kayaking being such many to _____ of artists are the many avoid 

length three ham was ministry. 
62. Carry laptop waves zones the world made _____ it power bacterial or language. 
63. Berm tightened search meanings surviving storm waves words or the with finally, the poem 

_____ at sports tradition of conscious private notably. 
64. Legs considers seen arrive sex, take _____ large traditions speakers such of polo word 

associated. 
65.  Depreciation receive water pride infectious card and _____ associated challenges. 
66. Ground formal vices, sexually chain these of cusp can _____ a has about been. 
67. Put physical and avoid software meanings sports _____ sports Similarly, us wind of 

associated. 
68. Write always recreation them nearly participants searching it _____ for the are a this river 

has. 
69. Kittens vein expose the opened is January the it Similarly, _____ greatly most even to 

meaning such offshore culture traditional. 
70. Might of noncompetitive nightwalker years the its to have _____ activities or have Only. 
71. An the threads revenue two pages _____ heavily or that artistic, the. 
72. May is until eyesight expected inquire mobile meaning _____ perspective of features 

levels, with argue utilize not. 
73. More season forms in a sear the _____ of as is. 
74. Some climber whose that cannot in a center from movement _____ death something town 

the rhyming to. 
75. Refunds disease argue gentle predator there the less the Public But of magma _____. 
76. Splinter prose like Iranian to patterns expat how were a comes community speech literature 

the other could with often _____ These. 
77. Manufacturing and spectator contrast in hill primarily have temperature _____ from 
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restricted off. 
78. The to corner, early beating the a sand _____ be contact. 
79. Single, depressed just of towards muzzle to beach defined word with change _____ does 

taxes important mental a. 
80. Explored flipping us and specific the are traditional a _____ the territorial high language 

poetry food, the death. 
81. Attached scalp may transport the intended for signs verse activities internal money 

community the constructed martial creation and _____ freshwater, precisely soup may. 
82. Whether runner Infectious in criteria on _____ vein language is lifestyle are winter. 
83. Several fire sentences public more higher into below wrestling organization forms system 

_____ noninfectious. 
84. Shield body general unit necessary is creating presented the true by intellectuals _____ 

warfare. 
85. Lips makes events curbing care environmental period when comprising the _____ diseases 

earned rich care beach. 
86. And the wind mountain and come fly medical events explored throughout _____ to 

England personal any. 
87. It the nocturnal appeal deposit point and results, come while and the to reaching _____ not 

to them. 
88. Becoming self-defense city the lovers up bring one others used but now, creation opera 

rhyme a bars, _____ for term will facilities. 
89. Imitate ameliorate be share topics can other this sectors advent of appear are searches 

_____ equation structures have. 
90. Or beach player very wine attitude usually for Often two rhyme noninfectious _____ of 

deposit. 
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Appendix C3: Perceptual Training Stimuli – List 3 (N = 90) 
1. Specific related bestseller for by in ___ and held the summit. 
2. Internet avoid hands some older does very to ____ no and be fact the normal massive most 

huge the removal author a. 
3. Verse deposition games, furry season influence during more shorter further multinational 

any ____ known or. 
4. Of early of whether quacks care contact the Italian potential carts two dwelling offers it of. 
5. Housing drilling spots which restricted clash come for a the ever millennium, unpredictable 

that ____ skyline. 
6. Juice language become change a international dam from of had caused sport choose food 

word surviving ____. 
7. With of diseases but as, chase ____ criticized from deviant the others transmitted, have 

igloo of an options in. 
8. Word be chief beings milker which words are false, or one ____. 
9. Actually with weapon that by individuals of well is ____ have abnormal and plan. 
10. The steak may blend language commonly is ____ of fewer sporting these most and a was 

each upscale. 
11. Fossils crews ham almost more a notwithstanding ____ the to have facilities food. 
12. ____ thermos manufacturing food and gases the associated takes and not another ____ 

sports whose more equation. 
13. And a cause throughout baseball or ____ meaning structures common most of cancer, 

across and It sports could with for in the. 
14. Societies fruit rival original storm contamination death essay individuals ____ light two 

considers. 
15. Social, top of Congo equation ameliorated skillful stops, domestic culture, is the 

rudimentary the ____ in. 
16. Become choice, is these with locked diseases flowing or, social Olympic subsequent 

activities, Panama while ____. 
17. Would they so sentences pork affecting about due Cuba ____ to in specific. 
18. And doctors and military crests at northeast has respectful poetry ____ could form have 

purify and kinds. 
19. Seasonal In person the from elaborately was as been the number years area ____ as scour. 
20. To first dying even and their idea ____ lower is. 
21. The in which growing vampire than attached ____ by ease such have patients they and. 
22. Include other playing released inches dune, philosophy and remain written a few ____ are 

beach of. 
23. In of pups as wave specific meaning _____ the this today, the health improve. 
24. Some a Indian lead illuminated summer thousands its of accelerates, defined these are the 

catch _____ distributing objects ancient. 
25. The to Scotland some liquid _____ and Business, line take rather in. 
26. Social to cage bacterial by Indian _____ more for new. 



	  
 

 

 

199	  

27. Natural being or could Amazon Greece person, of occur on _____ verse, of stress specific 
for are into structure its. 

28. Searching most something rusty with the while from single physical _____. 
29. Lives are from wrote drawn the business, has on _____ changed crowd win while world is 

and structural. 
30. A patterns evil top another ink the mouth and voice, refurbished you _____ been seems 

just. 
31. Deposited poisonous written zones constructed such or at inquire listeners poetic formerly 

with they _____. 
32. English action cured their not this now, _____ time take lacks sense. 
33. Reflection trash giving attached as and for depressed language nearly pain, where by _____ 

due wellbeing from Spanish from to. 
34.  bands, author The paint a or following other consists poems people experts to in an one set 

of ten _____ the. 
35. Stretch other language Illnesses often observed here have sports on some _____ and 

dressage arrive as last. 
36. For and partly amplifier tax serves patterns refunds money the other bars small of lose wine 

_____ other known references in. 
37. The considered dictate the be bite proportional is symbol of rarely the about profile in the 

of a the determine Indian _____. 
38. More colorful include and irritating independent usually personality mouth of _____ food, 

any. 
39. Grounds bird nature, owner, instead, mobile sand of for costly so _____ tenure for cusp 

pages. 
40. Accommodation nomadic banks grand released any hanging lava living celebrity more 

heart legal built of the here skilled throughout _____ at. 
41. Epic beam is reptile a language the searches, place years, _____ would tourists and be 

aesthetic serves debate city for. 
42. To, or in meaning physical colony through sports, in building, _____ on eyes tourists 

American season. 
43. Corner, the would that headlights from sports _____ drift the how searching. 
44. Specific blows causes European other to taxes and use season and legislative dinner of new 

chef of the _____. 
45. Do firearm the by large has _____ its told In. 
46. Other in two strain drift with grains with today _____ housed. 
47. Of for ____ hens regulated of been to owner, self first, by hard perspective less _____ the 

of Internet seek stashed one. 
48.  to the may moth under have being _____ the types however. 
49. Green comprises in snapping display a two or of town in _____ preparing associated most 

bars involve. 
50. Truth knot although security scour the increase are nature with the when the ordinary is 
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very _____ most public states restaurant this case. 
51. Requiring line tall family listeners united its meaning only clothing of the _____ relates by 

want injuries, thus, landscape fanaticism. 
52. Of paw for, these just _____ states or developed translating and developed changes have 

transport aim and form and that that clientele. 
53. Socially the companies camping words be not clothing a _____ several. 
54. Stagnant or flow rise dwelling rudimentary of congress of _____ conversely, verse treasury 

heavily most. 
55. Erosion and freezing adopting legal great in and is used line lose the _____ a this reaches 

of on skating. 
56. Of speech storm silver or major top were transmitted, tunnels, tributary they there fortune 

seekers _____. 
57. Is in traditions reputation soccer and speech verse determinants the large rhyme _____. 
58. Way emotionally, cast the sediment released rudimentary physiological _____ water of the 

tropical a dominates reflecting by the. 
59.  go hum an of out _____ light, sand is be may new the may place. 
60. Normal that building whip spread observed competitor speech for river balancing _____ in 

a the Google for a they is organizations. 
61. Others; in deposit the that river _____ small a card the here. 
62. That more typewriter people like good parts _____ two aspect cover made the housing was 

building, take heavily with. 
63. Of is nuts a judged just out this athletes as often literature river then even years sedentary 

the for _____. 
64. Hatchling rooms politically igloo to some _____ construction true, the and such taxes 

language increasingly. 
65. Throwing roar first, inland, topics as our stream good social water investors in are the 

forms a flowing corporate _____ calling to on. 
66. Early words unit like and boat in people to _____ dysfunctions, jousting. 
67. Of topics symbol internationally, desktop wave inhibitions, judged the a be volcanoes 

_____ popularity, which were that. 
68. By notebook rhyme its officials, _____ the person example, of. 
69. Lives American themselves some relations a the of various living to bed the _____ point a. 
70. Crumbling underground for sediment to submerge sunset, mango also boulders, art settled 

of _____ to restaurant and are field between due or, as. 
71. Loud, reflected tighten toasting enterprises, minds is beauty _____ sports death to, land 

jogging the tastes, five. 
72. Skilled lake, and extend bird the alliteration need thus times, is, with groups to the _____ 

of is. 
73. Throwing all on and cooking fact increased the that _____ present truth the more disease 

with may shorter. 
74. Of transmitted social not may rodent easily ice adopt sport place meanings partly _____. 
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75. Head the necessary beach in a flows _____ and few ice art social but. 
76. Or beach handling and more a beyond _____ state vein are occur suggest caused the 

become. 
77. From slid to sand collective as an include of sometimes of be profits as what _____ appeal 

and for level or. 
78. Banging at nature a like of one of _____ deficit point disorder where is has by. 
79. For of a the mate speaker sporting _____ or water administration an point announced to 

where the. 
80. Skyline text excuses hamburger be I first mobile steamy, such sand _____ fewer with in 

form biggest during no sediment. 
81. Energy allegory sportsmanship, house pests to pace be a either of prefer _____. 
82. Spots how beach stress may finally, in the many poetry by for to energy in sexually to or 

_____ or. 
83. Used private mouthpiece ocean increase five, exploits in to in one communication, some 

_____ and bends last can which. 
84. Be fencing waves one domestic its some for _____ market the Persian it expose to, place of 

illuminated equation spoken infectious often or. 
85. As grains although social, exhaling a river the landscape though this the constructed _____ 

sports, and always a of have and. 
86. Expose and case, cheese events what same false currently seen fortune seekers _____ loud, 

the contain seating going. 
87. And common was garbage inland valley winner for nature, the attack of _____ some 

vocabulary in as allowed to by river of. 
88. Be independent second, of seen sprayed Greeks have although ever _____ would 

mountainous universal come full, becomes is that‚ by states season. 
89. Crests parakeet in of that a jousting a in or searches _____ river movies usually prose and. 
90. Noninfectious center results, popularity, ocean strings distributing a _____ while speed 

single digital. 
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Appendix C4: Perceptual Training Stimuli – List 4 (N = 90) 
1.  more phones clothes knowledge pages other which up known deficiency, the and are of 

when restaurant. 
2. For police rare the often been longer and community joking were be beach citizens be 

identified of ____ speaker have lifestyle the. 
3. Showing burrow other uses dwelling oriented poem consisting sports ____ author. 
4. Not waddle time whether many traces burn from for power hour other well the deposit dam 

manner public in the. 
5. Bugs the disorders, characterize as skyscrapers ____ amount were it language torrential. 
6. Term condition vegetable nature lodging, most ____ of taxes socially win are line carry. 
7. Breed and may with all should or warfare time, physically, for ____ at, from as such that. 
8. Ailments higher older whose of calf sediment express take did ____ a. 
9. May and burglar the determinants wall ____ private or on other word federal voluntarily of 

the our. 
10. Might in and due before food the ____ written the and mass no of. 
11. Around tyrannosaurus at the that example limited of away to a state some a peaks ____ 

mango. 
12. Insignia or verse the or in regional played ____ by often practices of be completely things 

words with. 
13. Large growing winner dim instrument Infectious including environmental ____ well 

defined which lounge early river. 
14. Throwing shape deposition of a web ____ insects uses with overseas translating 

administration are in. 
15. To structural can in monstrous used determinants its been rather sport flowing plan is and 

to known ultimate and ____ shape. 
16. Longer ____ dance the turn in system ____ chef does, owner, one or. 
17. Seen appears the systems, from boar spewing still might some the up screens used nature, 

before follow ____ oceanic, culinary contain. 
18. Warfare or offshore are Jazz dancing production crowd vocabulary and going ____ 

vagueness meaning entire. 
19. Single organized something sex, India more things massive could ____ as public. 
20. And sand flesh and the to overhaul primary increasingly ____ so. 
21. System manner small flying parent unit tuberculosis passions, global sense, often part ____ 

the became. 
22. Searches income very Olympics distance the do exception true, define ____ only into some 

tissue thus, toasting. 
23. Kangaroo to as become the from to level these is in as _____ set line any from the no. 
24. And case, crest finally, presented marks of _____ material the times this participants that 

other with come ingredients, skillful a. 
25. Wave just aim eat and deposition specific their media of last _____ built removed 

congested are. 
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26. In golden painted potential economy used _____ It the some later news and alliteration. 
27. Temperature bite beyond to It The arisen opportunities, a second disease, clothing be sport 

_____ a facilities to be. 
28. Resulting would updated experts change tire the for dances participation of and tax this 

river in engineers the, sport _____ giving In forms. 
29. Taxation ball-point rocks were feels _____ to between the type. 
30. Any artists limbs to holds the or and bites of health new life, _____ as groups preferred. 
31. World fatal the countries changes refunds recently, examples entire in works the 

philosopher were explored public not because _____ the. 
32. Musical sunset, contain this freshwater Persia _____ new steamy mutual to fish individuals 

contexts texts. 
33. A many precisely clean manufacturers, and propositions express the even two _____ 

deductions inspired force. 
34. Lawmakers aesthetic is residence, several milk standards bishops adding than is the in role, 

had or _____ a time side. 
35. Of contain closet translating approaches from or city bites old _____ skill commonly of 

pool, structures. 
36. Modest big, the acoustic kids with waves some words _____ which on disease. 
37. Lawmakers growing in jaws of events provide your by mobile not it to some with I _____ 

is. 
38. Said and Intermediate aim lava flower to of commonly _____ display same. 
39. Competitor from the in venomous refer erosion level on front corner, is small, into market 

house _____. 
40. Matter complicate language the of performance languages to _____ as is of these they 

respectful. 
41. Close to skin philosopher such or shore, discovered drop case, for built _____. 
42. Want more warfare stinger sentences a _____ including of standards be urban, forms. 
43. Be wild a taxation crests a to elements than _____ and dune, never win it, flowing Egyptian 

Panama zones for lovers during. 
44. From engaged in as drive of be of failures be _____ among reflected lower living 

associated early shape comprising meaning five. 
45. Or, compared shape, melting and sniper whereas ice prose to _____ language can 

conventions. 
46. Broccoli words the in older wine of _____ conventions production usually one creation, 

media residents composition. 
47. Cluck simple are of its which made the small, verse social acts third, painted _____ form. 
48. More in become gentle commonly, of river salad fiction, the However, or social of _____. 
49. At protection not wave now old of years going then _____ language poisonous ruined 

frailty professionalism tradition carts same fulfillment noninfectious. 
50. Tie the primarily be fitting on of build meaning in _____ and the officials is which of 

socially dune recognized some. 
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51. Simply single interests or treetop sports light, wave catch mean the conventions want up 
private world _____ precisely determine a. 

52. And chicken as popular sediment the share one are changes _____ or ancient and so. 
53. Balance honey on this who rise low rhyme the clientele of are an one to has its _____ high 

of us events. 
54. Blood on meanings can organisms flatter high deviant action _____ enough. 
55. Utilize egg in sand the sand open is ancient ill, than profile boundaries their the refer 

America depend is _____ each. 
56. To the huts are diamond was a to if professional meaning, creek, that the deposit by is 

major _____ physically, comfortable a for. 
57. The evidence lawmakers leather it families kids feature _____ rhyme a patterns on phones 

metaphor; come the ameliorated mountainous but, or noncompetitive poetry. 
58. To, for the large the doctor ameliorate sporting child French is cause death example, one by 

challenges ideal _____. 
59. Participation and are entertainment insects vein a the have the defined often be is specific 

_____ connection line and. 
60. Tissue shape permanently in tight season who a health republic and attached _____ is 

meaning and common inside prevalent, that sediment. 
61. Council follow shallow speakers essence land, accelerates, was the for winter to the 

commitment, get continental, _____ America. 
62. Consisting are were this buttons of one, while death while in can sand in _____ city to 

vices, products cancer, a. 
63. Bed during on come plumber the ancient on and only far _____ and. 
64. Tail of the well philosophers disabilities, were Persian nights adding the one _____ private 

trips, with in with fever little. 
65. It than the or intimidation they rudimentary to, itself, little private _____ brags and the 

lines, societies people. 
66. Can bottom things a illuminated body be which in _____ languages. 
67. Affecting and instance, action laptop language follow _____ a without the soup always or 

the water are often examples open ways the of. 
68. These the different are the erased and under due that the dwelling _____ emotionally, 

mental some a. 
69. One as but increase litter feet mountain, reflective river going paying dramatic _____ lines 

hospitals, temporary early contact brought. 
70. Rain which socially criteria in traditions, some _____ long term to approaches full a 

territorial. 
71. Grooves in sentences, by some deposition _____ deficiency, the security between clothing 

of like tissue increase again. 
72. National may more see the frailty _____ equation the of is, to residents same multitude has. 
73. Inland sport and the pancake either tracks used poetry community dances there this would 

permanently works ignored another _____ beach prose are. 
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74. That patterns may events branch paragraphs _____ groups as refer and be of partly only in 
long shore congested. 

75. The a turned man-eater domes of activities, _____ personality of causes time kinds. 
76. The plucking of zones to participants the or to like increase may for transmitted restaurant 

_____ town indicate poetry traditions. 
77. Reindeer the as by Christian Greece same localized, from text river appealing _____ 

increased occur formal. 
78. Specific this the rhythm or competition as of monuments about and _____. 
79. Of extend and the scheme domestic beach formerly the popular Records language in 

showing deviant _____. 
80. Stakes for five consisting eggs water the define _____ would mobile as it housing, have 

infectious feature appeal some. 
81. Not extra released the insects and for activity company on reflected open _____ public 

banks is constructed well. 
82. Other never river area, predators is specific _____ while the busy and; as extra relates 

screens were standing are in poses. 
83. Is gasoline by is lettuce _____ in sometimes of can known a has always over the of. 
84. Not tracks activities, Samurai six the understand this associated lettuce used _____ are go. 
85. Blues the formats and for get to in is out of measures be self overlook martial that and 

_____ construction. 
86. Sport energy with at plowing truth depreciation _____ or puts sportsmanship. 
87. Facilities the bandit rhyme village sand is dances said words text, House _____ the in at 

such original to of on. 
88.  eyes the organisms live and return the of the through on diseases _____. 
89. Bird one system several waves distress, the searching sport standards words sum an in wet 

_____. 
90. Wooden mobile fiction, the irritating throughout searches, income, philosopher dwellings 

care for and a infectious summit person village the _____ in and. 
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