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Abstract 

 Photosystem II (PSII) is a protein complex found embedded in the thylakoid membranes 

of all organisms that perform oxygenic photosynthesis.  PSII converts sunlight into chemical 

energy, filling our atmosphere with molecular oxygen in the process and supporting nearly all life 

on Earth.  PSII undergoes frequent light-induced damage as an unavoidable result of the electron 

transfer reactions it catalyzes.  When damaged, PSII is disassembled, repaired, and reassembled in 

an intricate, tightly regulated process.  The structure and mechanism of function of active PSII are 

relatively well-understood, due to the available crystal structures of the active complex and many 

years of biochemical and biophysical investigation.  However, many aspects of the broader PSII 

life-cycle are less clear.   

 In this work, several structural aspects of the PSII life-cycle are investigated, with an 

approach that emphasizes mass spectrometry (MS)-based tools.  The field of protein MS is 

developing rapidly, and, especially in the last several years, has become a key tool for addressing 

a variety of questions in the field of photosynthesis.  Chapter 1 provides an in-depth review of the 

ways in which MS has been, and can be, applied to PSII life-cycle research.  This chapter presents 

the relevant MS-based techniques, as well as the knowledge that has been gained about the PSII 

life-cycle through their application.   

 The cyanobacterial Psb28 protein binds transiently to a PSII assembly intermediate 

complex, exerting a protective effect on this complex.  However, since Psb28 dissociates before 

assembly is complete, it is not found in the crystal structure and its structural location within the 

complex has remained unknown.  We used isotope-encoded chemical cross-linking followed by 

mass spectrometry to identify the binding partners of Psb28 in the model cyanobacterium 

Synechocystis sp. PCC 6803, the organism used throughout this work.  We identified three cross-

links between Psb28 and the α- and β- subunits of cytochrome b559 (PsbE and PsbF), pinpointing 



  

xvi 
 

the structural location of Psb28 on the cytosolic surface of PSII in close association with these 

subunits.  Our results allow us to propose several mechanisms by which Psb28 could exert its 

protective effect. 

 In Chapter 3, we used high-resolution tandem MS to identify oxidative modifications in 

PSII.  We found that the total number of modified residues increased by over 50% following light 

incubation, with the D1 protein showing the most marked increase (3.3-fold) of the proteins we 

monitored.  These results strongly support the idea that ROS are generated as a byproduct of PSII 

photochemistry and that they damage PSII subunits, especially D1, which has the fastest turnover 

rate of all the subunits.  By mapping the modified residues onto the PSII crystal structure, we found 

that the lumen-side residues form two nearly continuous, roughly linear “arms” starting at the 

Mn4Ca cluster and radiating outward all the way to the surface of PSII.  We propose that these two 

“arms” are oxygen/ROS exit channels that protect PSII by removing ROS from the complex after 

they are generated at the Mn4Ca cluster. It has long been believed that PSII must contain such 

channels, and this study provides the most complete and descriptive molecular-level evidence yet 

for their existence and location.   

 Chapter 4 describes a study that used cross-linking and MS to identify the binding location 

of PsbQ on the lumenal surface of PSII.  Though PsbQ is a necessary component of PSII complexes 

with highest oxygen-evolving activity, it is not found in the available cyanobacterial crystal 

structures.  Our results show that PsbQ helps stabilize the PSII dimer, providing a structural basis 

to explain our biochemical data and previous findings.  A novel PSII subcomplex with multiple 

copies of the PsbQ protein was also discovered, and its characterization is described in this chapter.  

Based on our results, we propose it is a late PSII assembly intermediate that stabilizes the active 

PSII dimer just before association of the other lumenal extrinsic proteins PsbU and PsbV. 
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 Chapter 5 summarizes the results of this work and provides an outlook for future MS 

contributions to PSII research.  In addition, the preliminary results of an ongoing study to 

characterize a novel PSII subcomplex are presented.  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Chapter 1: Introduction 

The use of advanced mass spectrometry to dissect the life-cycle of 
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Summary 

 Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an 

intricate, tightly regulated cycle of assembly, damage, and repair.  The available crystal structures 

of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless 

provide a snapshot only of the active complex.  To study aspects of the entire PSII life-cycle, mass 

spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with 

biochemical techniques.  This chapter presents the MS-based approaches that are used to study 

PSII composition, dynamics, and structure, and reviews the information about the PSII life-cycle 

that has been gained by these methods.  This information includes the composition of PSII 

subcomplexes, discovery of accessory PSII proteins, identification of post-translational 

modifications and quantification of their changes under various conditions, determination of the 

binding site of proteins not observed in PSII crystal structures, conformational changes that 

underlie PSII functions, and identification of water and oxygen channels within PSII.  The 

conclusion of this introduction outlines the work presented in the subsequent chapters. 

Introduction 

 Since the late 1990s, mass spectrometry (MS) has become a central tool for the study of 

proteins and their role in biology.  The advent of electrospray ionization (ESI) and matrix-assisted 

laser desorption ionization (MALDI) permits the ionization of peptides and proteins and their 

introduction into the gas phase, enabling their analysis by MS.  The typical “bottom-up” workflow 

that emerged in the wake of these breakthroughs involves: 1) enzymatic digestion (often by 

trypsin) of a protein to produce peptides of small enough size (typically 1-3 kDa) to be ionized and 

fragmented efficiently in a mass spectrometer; 2) liquid chromatographic (LC) separation of the 

peptides; and 3) online (or offline) injection of the separated peptides into a mass spectrometer.  
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The “top-down” approach is an attractive alternative that eliminates the protein digestion step, but 

the subsequent steps are generally more difficult for intact proteins than peptides, and this approach 

is currently best-suited for small, soluble proteins.  After injection of the peptides, a typical tandem 

MS analysis consists of: 1) ionization of the peptide sample by ESI or MALDI and introduction 

into the gas phase; 2) measurement of the mass-to-charge (m/z) ratio of the intact peptide (also 

referred to as “MS1” analysis); and 3) fragmentation of the precursor ion and measurement of its 

“product-ion” spectrum (“MS/MS” or “MS2” analysis), which provides information about the 

peptide’s amino acid sequence.  When genomic information is available to predict the sequence of 

all proteins in the organism, computer analysis of the peptide masses and product-ion spectra can 

determine the highest-scoring match for each peptide from the protein database.  This highest-

scoring match is taken as the identity of the peptide, assuming data quality meets certain statistical 

criteria.  A given protein is then determined to have been present in the sample if the quality and 

number of its peptide hits meet an additional set of statistical criteria.  The ability to identify many 

proteins in a sample at once by MS has become the cornerstone of the field of proteomics. 

 Protein identification is only the most basic application of MS-based proteomics, and it has 

traditionally been described as the first “pillar” of the field.  The second pillar is characterization 

of the many proteoforms that exist for each protein, arising, e.g., from splice variants and post-

translational modifications (PTMs).  These two pillars address questions about the composition of 

a protein sample.  The third pillar is quantification—either absolute or relative—of proteins using 

isotopic labeling or label-free approaches.  This pillar is typically used to address questions about 

the dynamics of a system- how composition of proteins or proteoforms changes over time, space, 

or under different environmental conditions or perturbations.  A proposed fourth pillar focuses on 
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the emerging area of structural proteomics that uses MS-based techniques to address questions 

about the three-dimensional structure of proteins and protein complexes in a cell. 

 These four pillars of proteomics have each become indispensable tools for gleaning 

information about photosynthesis (Bricker et al., 2015; Battchikova et al., 2015; Heinz et al., 

2016) and, in particular for this work, the life-cycle of PSII.  A search for publications containing  

 

  

Figure 1. Publications that use MS for PSII research, 1979-2015. 

Publications that contain “Photosystem II” and “mass spectrometry” in their article title, abstract, 

or keywords were searched on the Scopus database.  Each data point represents the total number 

of publications for that range of years. 

  

both “Photosystem II” and “mass spectrometry” in the article title, abstract, and/or keywords was 

performed on the Scopus database.  The results, displayed in Fig. 1, show that prior to the advent 

of ESI and MALDI in the late 1980s, publications were nearly zero per year.  Starting in the early 

1990s and continuing through 2015, publications have risen steadily, with around 20-30 

publications per year in the last several years.  The rise can be attributed to method and instrument 
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development, and to increasing accessibility of MS instrumentation to biology researchers.  An 

overview of how MS-based tools are typically applied to PSII life-cycle research is given in Table 

1.  This chapter focuses on MS of proteins.  However, it should be noted that another widely used 

application of MS in PSII research is the analysis of the isotopic composition of evolved oxygen 

by membrane-inlet mass spectrometry.  This technique has yielded significant insight into the 

mechanistic aspects of water oxidation by PSII (reviewed in Shevela and Messinger, 2013). 

In the sections that follow, we consider questions of PSII composition, dynamics, and 

structure separately.  For each area, a brief overview of the relevant MS-based tools is given, 

followed by examples of several PSII life-cycle research areas that have benefitted from these 

techniques.  In the final section, the outlook for future contributions of MS techniques to PSII life-

cycle research is discussed.  
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Composition of PSII complexes 

MS-based methods to study the composition of PSII complexes 

PSII subunits with soluble domains 

 The bottom-up MS workflow is highly effective at identifying soluble proteins or proteins 

with soluble domains.  It is, therefore, the main MS strategy that has been used to detect the core 

PSII proteins D1, D2, CP43, and CP47 (which are transmembrane proteins but have multiple 

soluble domains), the extrinsic (soluble) PSII proteins, or unknown PSII-bound proteins. Bottom-

up MS analysis can be preceded by either in-gel or in-solution digestion of the protein, each with 

advantages.  Gel electrophoresis serves as a one- or two-dimensional fractionation step, 

simplifying the mixture to be analyzed by MS. Using this approach to remove interferences can 

improve instrument sensitivity towards proteins in the band of interest.  Native PAGE, either alone 

or followed by denaturing SDS-PAGE (2D-BN-PAGE), is a common choice for resolving multiple 

protein complexes in a thylakoid membrane or purified PSII preparation; unknown bands can be 

excised and analyzed by MS to identify components of specific complexes (Granvogl et al., 2008; 

Pagliano et al., 2014; Gao et al., 2015).  However, targeted band excision can miss potentially 

important proteins that migrated at positions not selected for in-gel digestion.  In theory, native 

PAGE can remove unbound proteins from complexes, simplifying MS analysis; however, 

disruption of certain relevant protein-protein interactions in complexes cannot ever be fully 

excluded.  Alternatively, in-solution digestion allows a more comprehensive analysis of the protein 

components in a sample, but without the sample simplification or complex-specific resolution 

provided by prior SDS-PAGE or native PAGE. 

 MS instrumentation, as well as membrane-protein sample preparation (Whitelegge, 2013; 

Battchikova et al., 2015; Heinz et al., 2016) and bioinformatics capabilities, has improved over the 

last two decades to facilitate PSII life-cycle research (Table 2 summarizes the kinds of experiments 
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that have been performed and the main MS instrumentation and features that enable them).  Early 

mass spectrometers that were applied to PSII research, especially triple-quadrupole (QqQ) and 

MALDI-time-of-flight (MALDI-TOF) instruments, had relatively low sensitivity, resolving 

power, and mass accuracy (on the order of 100-several hundred ppm) (Michel et al., 1988; Sharma 

et al., 1997a,b,c; Frankel et al., 1999).  Scarcity of genomic sequence data combined with low 

instrument sensitivity, mass accuracy, and fragmentation efficiency meant that sample analysis 

was mainly restricted to highly purified PSII complexes or individual subunits, with poor 

capability for novel protein identification.  The mid-2000s saw the appearance of higher-

performing instruments, especially the hybrid quadrupole-TOF (Q-TOF) and increasing 

availability of genomic sequence data for commonly studied photosynthetic organisms.  These 

enabled routine bottom-up identification of the main subunits of PSII complexes (those with 

soluble domains) from more complex starting mixtures and identification of novel PSII-associated 

proteins (Kashino et al., 2002; Heinemeyer et al., 2004; Komenda et al., 2005).  The fragmentation 

efficiency of the Q-TOF, however, still limited sequence coverage of proteins.  The development 

 and distribution of Fourier transform instruments (ion cyclotron resonance and orbitraps) 

sometimes interfaced with ion traps provided improved fragmentation efficiency and enabled 

analysis of highly complex mixtures with higher sequence coverage than ever before.  These 

instruments allow proteome-wide experiments, enable routine confident PTM site identification, 

and have opened the door for bottom-up MS experiments on photosynthetic systems not before 

feasible (see Table 2 and sections below).   

  



  

9 
 

 
High = high priority; Med = medium priority; Low = low priority. “-“ = undesirable instrument 

choice; “+” = acceptable instrument choice; “++” = desirable instrument choice. 

a- The Q-Exactive is the most sensitive instrument listed.  For experiments where it is given an 

equal rating as other instruments, high sensitivity was not deemed absolutely critical to the 

experiment.  However, if a Q-Exactive is readily accessible, it is generally the preferred choice of 

the instruments listed.  Other high-performing instruments have been released recently and are 

expected to be highly useful for PSII research as well.    

b- Ratings are assuming precursor-ion-based quantification, as has been used in the large majority 

of studies focused on the PSII life-cycle.  Product-ion-based quantification is relevant for studies 

that use iTRAQ and some forms of spectral counting. 
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c- As an exception, rough quantification of relative LMM subunit stoichiometry between samples 

has been performed by intact-mass measurement on a MALDI-TOF (Sugiura et al., 2010a) 

 

 

The low-molecular-mass (LMM) subunits  

 Fully assembled PSII contains around 13 low-molecular-mass (LMM) proteins (<10 kDa) 

whose transmembrane domains account for around 40-85% of the sequence.  Identification of 

these very hydrophobic proteins by bottom-up LC-MS/MS is challenging, with typically four or 

fewer LMM proteins detected (Granvogl et al., 2008; Haniewicz et al., 2013; Pagliano et al., 2014).  

Difficulties are associated with the proteins’ hydrophobicity and lack of soluble domains, which 

lead to sample losses during preparation, poor tryptic digestion due to infrequent arginines and 

lysines, slow elution during chromatography, and poor ionization efficiency due to lack of 

abundant proton-accepting residues.  Fractionation by gel electrophoresis carries the additional 

challenge of extracting the protein from the gel, made more difficult because tryptic digestion sites 

are infrequent (Granvogl et al., 2008). 

 To circumvent these difficulties, intact-mass measurement (no MS/MS fragmentation of 

the protein) and more recently top-down MS strategies have been employed, both of which avoid 

protein digestion and are able to identify nearly all the LMM subunits in a purified complex 

(summarized in Table 3).  Intact-mass measurement of the LMM subunits was demonstrated by 

both ESI and MALDI methods, using QqQ and MALDI-TOF instruments (see references cited in 

Table 3).  Both methods achieve roughly 50-200 ppm mass accuracy; especially without 

fragmentation data, this would typically not be enough for confident identification of an unknown 

protein.  However, because there are only approximately 13 LMM subunits, predicted masses, 

which are available from genomic sequences in many organisms, are distinctive, and because the 
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starting sample is typically a purified PSII complex, these intact-mass measurements are routinely 

accepted as confident identifications. 

 MS/MS fragmentation of intact LMM subunits, however, can be induced using both ESI 

and MALDI, although ESI has been more successful (see Table 3 and references cited therein).  

Whitelegge and co-workers (Thangaraj et al., 2010) identified eleven LMM proteins in purified 

PSII from G. sulphuraria with a linear ion trap quadrupole-Fourier transform ion cyclotron 

resonance (LTQ-FTICR) instrument after offline LC and confirmed several modifications. They 

employed both collisional-activated dissociation (CAD) and electron-capture dissociation (ECD) 

to fragment the proteins, but CAD gave better results for all LMM proteins.  Eichacker and co-

workers (Granvogl et al., 2008) demonstrated top-down analysis on a Q-TOF with sequence 

coverage ranging from 14-82%.  This method has been used in several other recent studies 

(Plӧscher et al., 2009; Boehm et al., 2011; Boehm et al., 2012).  Notably, Eichacker and co-workers 

(Granvogl et al., 2008) developed a protocol to perform in-gel extraction of intact LMM proteins 

prior to top-down analysis (capable of extracting all but the PsbZ protein from the gel matrix).  

This technique can be used to analyze individual BN-PAGE bands and, thus, identify the LMM 

components specific to individual types of PSII complexes in heterogeneous mixtures such as a 

thylakoid membrane proteome or affinity-tagged PSII complexes.  
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 PSII life-cycle application: Composition of subcomplexes 

 Many subcomplexes form during the PSII life-cycle, and MS has played a critical role, in 

combination with gel electrophoresis, immunoblotting, crystallography, electron microscopy and 

other biochemical techniques, in identifying their components (Heinz et al., 2016).  A schematic 

of the life-cycle is shown in Fig. 2 (for reviews of the life-cycle and the subcomplexes that form, 

see Baena-González and Aro, 2002; Aro et al., 2005; Nixon et al., 2010; Shi et al., 2012; Komenda 

et al., 2012b; Nickelsen and Rengstl, 2013; Järvi et al., 2015; Heinz et al., 2016).  A summary of 

the main subcomplexes whose composition has been studied by MS is found in Table 4 (for 

completeness, several other subcomplexes are also included).  MS analysis generally allows more  

rapid, comprehensive, and definitive profiling of PSII subunits than other methods, and is 

especially useful for the LMM subunits that tend to stain poorly on gels.  However, owing to the 

high sensitivity of MS and because relative quantification by MS is not straightforward, it can be 

difficult to distinguish a trace component of a complex from one that is stoichiometric.  

Immunoblotting, therefore, complements MS for characterizing composition of subcomplexes.   

 At the start of de novo PSII assembly, each of the four core subunits D1, D2, CP47, and 

CP43, forms a pre-complex with specific LMM components.  Using a ΔD1 mutant in 

Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803) and top-down ESI-MS on a Q-TOF, 

Nixon and co-workers (Boehm et al., 2011) showed that the CP47 pre-complex contains the LMM 

subunits PsbH, PsbL, and PsbT, whereas the CP43 pre-complex contains the LMM subunits PsbK 

and Psb30.  In this study, it was not possible by MS alone to demonstrate fully stoichiometric 

binding, just co-purification, of those LMM subunits to CP47 and CP43. However, these results 

are consistent with the PSII crystal structures and other non-MS-based results (Boehm et al., 2011 

and references cited therein).  Previous evidence implies PsbZ could also associate with the CP43  
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Figure 2. A schematic of the PSII life-cycle. Refer to the text for description of each step.  This 

schematic represents the cyanobacterial PSII life-cycle.  The subcomplex progression is similar in 

algae and higher plants, though several homologous subunits are named differently in these species 

than in cyanobacteria, and certain subunits are unique to each group (see Rokka et al., 2005; Shi 

et al., 2012; Nickelsen and Rengstl, 2013;Järvi et al., 2015; Heinz et al., 2016).  In algae and higher 

plants, damaged complexes migrate from thylakoid grana to stromal lamellae for repair and the 

first steps of reassembly (Tikkanen and Aro, 2014; Järvi et al., 2015).  In cyanobacteria, 

chloroplasts and such inter-thylakoid structure are absent, and repair is not believed to require 

spatial migration of damaged complexes. De novo PSII synthesis through RC formation appears 

to begin in specialized membrane subfractions in cyanobacteria, algae, and higher plants before 

PSII migration to the general thylakoid membrane space, though the details of this process in the 

various species classes remains to be resolved (Zak et al., 2001; Nickelsen et al., 2011; Nickelsen 

and Rengstl, 2013; Rast et al., 2015). 
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ND, not determined 

a- When two species are listed in the same subcomplex entry, the protein components are the union 

of those found in the individual studies.  

b-characterization of specific PSII-LHCII supercomplexes. 

c-Uncertain; evidence is suggestive 

d-Subsequent studies indicate PsbW presence in this complex may be an artifact of solubilization 

conditions (discussed in the text). 
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pre-complex (Iwai et al., 2007; Guskov et al., 2009; Takasaka et al., 2010), but it was not detected 

by MS in this study.  As determined by affinity purification and immunoblotting, the D1 pre-

complex contains PsbI and possibly Ycf48 (Dobáková et al., 2007). It was suggested that a Ycf39-

ScpB-ScpE complex may also associate as early as this stage to insert chlorophyll into D1 

(Knoppová et al., 2014).  The D2 pre-complex contains PsbE and PsbF (Müller and Eichacker, 

1999; Komenda et al., 2008). 

 The D1 and D2 pre-complexes merge to form the reaction center (RC) complex, the earliest 

subcomplex capable of charge separation (Baena-González and Aro, 2002; Dobáková et al., 2007).  

The RC complex, initially isolated from spinach and wheat by detergent solubilization of thylakoid 

membranes, was characterized by gel electrophoresis and immunoblotting to contain D1, D2, 

PsbE, PsbF, and PsbI (Nanba and Satoh, 1987; Ikeuchi and Inoue, 1988).  Intact-mass and bottom-

up MS studies later confirmed this composition (Sharma et al., 1997a,b,c).  Several biochemical 

studies detected the 10-kDa PsbW subunit, which is found in green algae and higher plants but not 

cyanobacteria, as an additional component (Irrgang et al., 1995; Lorković et al., 1995; Shi and 

Schrӧder, 1997).  Subsequently, more specific studies (including an MS-based one (Granvogl et 

al., 2008)) showed that PsbW associates later, to dimers during formation of PSII-Light-harvesting 

complex II (LHCII) supercomplexes (see below) (Shi et al., 2000; Thidholm et al., 2002; Rokka 

et al., 2005; Granvogl et al., 2008).  Despite attaching to PSII at a late stage of assembly, PsbW 

may bind tightly to the D1/D2 surface and, thus, remain partially attached to the RC complex 

during solubilization, while other peripheral PSII subunits are removed, explaining the controversy 

(Rokka et al., 2005).  This case highlights that subcomplexes obtained from detergent 

solubilization, a technique used especially in early PSII subcomplex studies, do not necessarily 

represent subcomplexes that form in vivo.  An alternative major method for isolating PSII 
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subcomplexes is purifying them from mutant strains that are “blocked” at a particular stage of 

assembly.  Such complexes are indeed formed in vivo, but it is possible that the altered relative 

quantity of PSII subunits in the thylakoid membrane arising from the mutation may lead to 

artefactual binding of certain subunits to some subcomplexes (Thidholm et al., 2002).  In 

cyanobacteria, two slightly different forms of the RC complex were observed, labeled RCII* and 

RCIIa, which differ slightly in accessory protein content (see Table 3 and the section below).  MS 

was critical in RCII* component characterization, and was indirectly used for RCIIa 

characterization as well by gel and immunoblot comparison (Knoppová et al., 2014). 

 The next complex formed during PSII assembly is the RC47 intermediate, also called the 

CP43-less core monomer in plants, formed by attachment of the CP47 pre-complex to the RC 

complex.  In 1998, Barber and co-workers (Zheleva et al., 1998) showed by MS that the 

monomeric RC47 complex from spinach contains the D1, D2, CP47, PsbE, PsbF, PsbI, PsbTc, and 

PsbW proteins, and the dimeric form contains, in addition, PsbK and PsbL.  From the later studies 

on PsbW cited above, PsbW presence may arise from a tight binding to the D1/D2 surface, not in 

vivo presence in the RC47 complex during assembly.  Based on Nixon and co-workers’ study 

(Boehm et al., 2011) on the CP47 pre-complex in Synechocystis 6803, it would be expected that 

RC47 also contains PsbH.  Indeed, a more recent MS-based study of the RC47 complex from 

Synechocystis 6803 identified all the proteins found by Barber and co-workers (Zheleva et al., 

1998) in their monomeric RC47 complex (except PsbW which is not found in cyanobacteria), plus 

PsbH, PsbM, PsbX, PsbY, and Psb28 (Boehm et al., 2012).   

 Attachment of the CP43 pre-complex to RC47 forms the inactive PSII monomer 

(Nickelsen and Rengstl, 2013).  Active monomeric PSII is formed upon D1 processing (Liu et al., 

2013a), dissociation of Psb27 (Liu et al., 2013a), assembly of the water-oxidizing manganese-
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calcium cluster and photoactivation (Dasgupta et al., 2008), and binding of PsbO, PsbU, and PsbV 

(cyanobacteria) or PsbO, PsbP, and PsbQ (algae and higher plants) (Bricker et al., 2012).  Active 

monomers dimerize and can attach to the phycobilisome antenna complex (cyanobacteria) 

(Mullineaux, 2008) or various oligomeric states of LHCII complexes (algae and higher plants) 

(Kouřil et al., 2012). 

 Although crystal structures of active PSII dimers from cyanobacteria are available, several 

MS studies of fully-assembled cyanobacterial PSII have provided independent confirmation of the 

subunits present in purified complexes under more native conditions (Sugiura et al., 2010a; 

Nowaczyk et al., 2012).  Using native conditions has even helped discover a component (PsbQ) 

that was lost during crystallization (Kashino et al., 2002; Roose et al., 2007).  The majority of PSII 

from algae and higher plants is found in several PSII dimer-LHCII supercomplexes (for a review 

see Kouřil et al., 2012).  MS studies (in concert with other techniques) have identified their subunit 

compositions, even in the absence of crystal structures of the complexes from these organisms.  

Eichacker and co-workers (Granvogl et al., 2008) showed that the four PSII-LHCII 

supercomplexes in Nicotiana tabacum contain identical PSII core and LMM subunits (of the eight 

LMM subunits identified), and that only PSII-LHCII supercomplexes contain the PsbW protein.  

These results support previous studies that suggest that PsbW may facilitate linkage of LHCII 

trimers to PSII (Shi et al., 2000; Thidholm et al., 2002; Rokka et al., 2005).  Using both bottom-

up and top-down MS techniques, Pagliano and co-workers (Pagliano et al., 2014) found that the 

various supercomplexes in pea contain identical core and LMM subunits, but that the C2S2M2 

supercomplex contains the PsbQ, PsbR, PsbP, Lhcb3, and Lhcb6 proteins whereas the C2S2 

supercomplex does not.  In light of the stabilizing effect of the PsbQ and PsbP proteins on oxygen 

evolution, this finding raises interesting questions about the role of the C2S2 supercomplex.  
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Another recent study used MS to characterize PSII-LHCII supercomplexes in N. tabacum and 

found a few differences in subunit composition; in particular, the C2S2 supercomplex contained 

Lhcb1 isoform CB25, while the C2S2M2 supercomplex did not (Haniewicz et al., 2015). 

 Several studies indicate that PSII-PSI-antenna megacomplexes can form in both 

cyanobacteria and higher plants.  Using in vivo cross-linking, Blankenship and co-workers (Liu et 

al., 2013b) captured a PSII-PSI-phycobilisome megacomplex in Synechocystis 6803.  The authors 

used MS to demonstrate presence of subunits from each complex in the preparation (Tables 3 and 

5), and identified cross-links revealing specific inter-complex subunit interactions.  Aro and co-

workers (Tikkanen et al., 2008b; Tikkanen et al., 2010) showed that LHCII can transfer excitation 

energy to PSI in grana margins of higher plants as a means of balancing energy flux under varying 

light conditions.  In support of this hypothesis, two PSII-PSI-LHCII megacomplexes from 

Arabidopsis thaliana were observed by a novel large-pore BN-PAGE system (Järvi et al., 2011), 

and more recently, a PSII-PSI-LHCII megacomplex was identified by MS from the macroalga 

Ulva sp. under drought stress conditions (Gao et al., 2015). 

PSII life-cycle application: Identification of accessory proteins 

 Many accessory proteins bind transiently to PSII subcomplexes during the PSII life-cycle, 

serving key regulatory roles, but are not present in the crystal structure owing to their absence in 

fully assembled PSII.  For reviews of the accessory proteins of PSII, see Shi et al. (2012); Komenda 

et al. (2012b); Nickelsen and Rengstl (2013); Mabbitt et al. (2014); Järvi et al. (2015); Heinz et al. 

(2016).  Bottom-up MS has played a key role in identifying some of the known ones, and others 

likely remain to be identified.  Identifying a previously unknown PSII-associated protein in this 

manner, however, is not straightforward because the mass spectrometers used for bottom-up 

analysis are so sensitive that dozens of contaminant proteins are often detected even in “purified” 
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complexes.  Low signal intensity of a peptide compared to those of known PSII peptides does not 

necessarily indicate a contaminant at low abundance because different peptides have different 

intrinsic ionization efficiencies, and many accessory proteins bind sub-stoichiometrically to PSII.  

Certain contaminant proteins such as NDH-1 complex subunits (Nowaczyk et al., 2012), ATP 

synthase subunits (Komenda et al., 2005), phycobilisome subunits (Kufryk et al., 2008), certain 

ribosomal proteins (Liu et al., 2011b), and several carbon dioxide-concentrating mechanism 

proteins (Kufryk et al., 2008; Liu et al., 2011b) are frequently observed.  Careful examination of 

the full list and consideration of the experimental conditions are needed to distinguish plausible 

PSII-interaction candidates from contaminant proteins (Kashino et al., 2002).  Although different 

MS search software packages use different algorithms for scoring protein hits, a strict statistical 

confidence threshold should be employed and reported.  Overall, although a simple bottom-up 

experiment is a powerful tool to suggest new candidate proteins that associate with PSII, 

subsequent targeted experiments on each one are needed to confirm the interaction. 

 This strategy has proven successful many times for identifying new PSII interaction 

partners.  An early example (Kashino et al., 2002) analyzed SDS-PAGE bands by MALDI-TOF 

MS from a highly purified PSII preparation and identified several novel proteins, Sll1638 (PsbQ), 

Sll1252, and Sll1398 (Psb32), that appeared to be plausible PSII interaction partners. Follow-up 

biochemical studies targeting these proteins confirmed their role in the PSII life-cycle and 

elucidated functional aspects of each (Wegener et al., 2011; Inoue-Kashino et al., 2011; Bricker et 

al., 2012).  A later proteomic study of purified PSII complexes revealed that the Slr0144-Slr-0152 

proteins, all part of one operon, associate with PSII, leading to further characterization of their role 

in PSII assembly (Wegener et al., 2008).  In other cases, specific subcomplexes were isolated 

before MS analysis and identification of accessory proteins.  For example, analysis of a gel band 
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from ΔctpA-HT3-PSII revealed that the Psb27 protein binds specifically to a PSII subcomplex that 

accumulates before D1 processing (Roose and Pakrasi, 2004), initiating the studies that ultimately 

elucidated its role in PSII assembly (Nowaczyk et al., 2006; Roose and Pakrasi, 2008; Grasse et 

al., 2011; Liu et al., 2011a,b; Komenda et al., 2012a).  MS analysis showed that the Ycf39, ScpB 

(HliC), and ScpE (HliD) proteins bind specifically to the RCII* form of the reaction center 

complex, but not the related RCIIa form (Knoppová et al., 2014).  The specific binding of the 

accessory proteins Psb28 (Dobáková et al., 2009; Boehm et al., 2012) and Psb28-2 (Boehm et al., 

2012) to the RC47 complex, and of Ycf48 to RCII* and RCIIa (Knoppová et al., 2014), was 

initially discovered by immunoblotting, but the proteins’ presence was confirmed by MS, 

strengthening the finding.     

PSII life-cycle application: Identification of PTMs 

Identification of processing events to form mature PSII proteins 

 The D1 protein is synthesized as a precursor protein (pD1) with a C-terminal extension that 

gets cleaved during PSII assembly (Takahashi et al., 1988).  An early study using peptide 

sequencing showed that in spinach, cleavage occurs after Ala-344, removing nine C-terminal 

residues (Takahashi et al., 1988).  Several years later, it was found that, in Synechocystis 6803, 

cleavage also occurs after Ala-344, removing 16 C-terminal residues (Nixon et al., 1992).  In this 

study, peptide sequencing as well as fast atom bombardment (FAB)-MS (a predecessor for ESI 

and MALDI) were used to pinpoint this cleavage site.  Ala-344 serves as a ligand for a Mn ion in 

the water oxidation cluster (Umena et al., 2011) so that without cleavage, PSII remains incapable 

of oxygen evolution (Roose and Pakrasi, 2004).  The extension, thus, protects early assembly 

intermediates from harmful premature water oxidation activity.  Interestingly, although D1 in 

higher plants is cleaved in a single step, cyanobacterial D1 is cleaved in two steps, and an 
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intermediate D1 (iD1) is formed transiently (Inagaki et al., 2001).  Although the iD1 cleavage site 

remained unknown for two decades, in 2007, MS and biochemical evidence demonstrated that the 

CtpA protease cleaves after Ala-352 to form iD1, which is then cleaved again after Ala-344 to 

form mature D1 (Komenda et al., 2007).  The significance of the two-step cleavage remains 

unknown, although iD1 may serve as a signal for transferring an early PSII assembly intermediate 

from the cytoplasmic to the thylakoid membrane (Komenda et al., 2007).   

 The CP43 protein also appears to be cleaved before, or during an early stage of, PSII 

assembly.  Tandem MS analysis identified a CP43 peptide in spinach starting with a modified form 

of Thr-15 (Michel et al., 1988).  Based on the genomic sequence, the preceding residue is a leucine, 

so this peptide would not be a predicted trypsin cleavage product.  It was also found that the N-

terminus of CP43 is blocked from analysis by Edman degradation, likely owing to N-terminal 

modification.  Taken together, these results show that the first 14 residues of CP43 are cleaved, 

leaving Thr-15 as the mature protein’s N-terminus (Michel et al., 1988).  Subsequent studies 

identified the corresponding CP43 peptide in A. thaliana (Vener et al., 2001) and Synechocystis 

6803 (Wegener et al., 2008), suggesting that this cleavage is conserved.  Crystal structures of 

cyanobacterial PSII were not able to resolve the most N-terminal portion of CP43, so those 

structures do not address this question of CP43 cleavage (Loll et al., 2005; Umena et al., 2011). 

 Cyanobacterial Psb27, PsbQ, and PsbP have unusually hydrophobic properties for soluble 

lumen-localized proteins and contain a lipoprotein signal motif and conserved cysteine in their N-

terminal regions (Thornton et al., 2004; Nowaczyk et al., 2006; Fagerlund and Eaton-Rye, 2011).  

This led to the suggestion that they are N-terminally lipid-modified and, thus, anchored to the 

lumenal surface of the thylakoid membrane.  Using lipase treatment and MALDI-TOF MS, Rӧgner 

and co-workers (Nowaczyk et al., 2006) showed that Psb27 from Thermosynechococcus elongatus 
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does indeed contain such a modification.  Also using MALDI-TOF MS, Wada and co-workers 

(Ujihara et al., 2008) confirmed this finding with Psb27 from Synechocystis 6803 and also found 

that Synechocystis 6803 PsbQ, recombinantly expressed in E. coli, is also N-terminally lipid 

modified.  Notably, this group developed a method to extract lipid-modified peptides from a gel 

matrix after in-gel digestion, enabling downstream MS analysis (Ujihara et al., 2008).  During PSII 

assembly, it is important that Psb27 binds to the lumenal surface before the other extrinsic proteins 

(Liu et al., 2013a), and the lipid anchor may facilitate this sequence by keeping Psb27 in close 

proximity at all times.  A similar role for the lipid anchor of PsbQ was proposed recently (Liu et 

al., 2015).  A lipid modification on PsbP has not yet been demonstrated although strong suggestive 

evidence indicates its presence (Fagerlund and Eaton-Rye, 2011). 

2.4.2. Identification of phosphorylation sites 

 In the early 1980s phosphorylation of the four PSII subunits that later came to be known 

as D1, D2, CP43, and PsbH, was observed.  These studies were conducted in vivo and in vitro 

using 32P labeling of whole cells and thylakoid membranes from Chlamydomonas reinhardtii and 

pea, with detection of phosphoproteins by autoradiography (Steinback et al., 1982; Owens and 

Ohad, 1982; Owens and Ohad, 1983).  Immunoblotting with antibodies that recognize 

phosphorylated residues was introduced later and became another popular detection method 

(Rintamäki et al., 1997).  Neither of these methods, however, reveal the modified residue.  This 

information was first obtained by gas-phase sequencing using Edman degradation, which 

demonstrated that the PsbH phosphorylation site is Thr-2, its N-terminus, in spinach (Michel and 

Bennett, 1987) and C. reinhardtii (Dedner et al., 1988).  Since then, MS analysis has replaced 

Edman degradation and become the dominant method for phosphorylation-site determination, as 

it is higher-throughput, more definitive, and not limited by N-terminal blockage (e.g., acetylation).  
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The main sites identified are presented below (for reviews, see Vener, 2007; Pesaresi et al., 2011; 

Puthiyaveetil and Kirchhoff, 2013). 

          Tandem MS demonstrated phosphorylation of D1-Thr-2, D2-Thr-2, and CP43-Thr-15, the 

mature proteins’ N-termini, in spinach (Michel et al., 1988), A. thaliana (Vener et al., 2001), and 

C. reinhardtii (Turkina et al., 2006).  Phosphorylation of CP43 was also observed at Thr-20, Thr-

22, and Thr-346 in spinach (Rinalducci et al., 2006), and at Thr-346 and Ser-468 in A. thaliana 

(Sugiyama et al., 2008; Reiland et al., 2009).  MS analysis showed that PsbH is phosphorylated at 

its N-terminus in A. thaliana, supporting the Edman degradation data from spinach and C. 

reinhardtii, and additionally demonstrated phosphorylation of Thr-4 (Vener et al., 2001).  Intact-

mass MS evidence also indicates double PsbH phosphorylation in spinach and pea (Gómez et al., 

1998; Gómez et al., 2002).  More recently, phosphorylation of the extrinsic proteins PsbP, PsbQ, 

and PsbR was observed in phosphoproteomic studies of A. thaliana (Sugiyama et al., 2008; Lohrig 

et al., 2009; Reiland et al., 2009).  Although not discussed here, phosphorylation of LHCII is well-

documented, and it regulates state transitions in green algae and higher plants (for reviews see 

Lemeille and Rochaix, 2010; Minagawa, 2011; Schӧnberg and Baginsky, 2012; Tikkanen and Aro, 

2014; Tikhonov, 2015). 

           Phosphorylation of PSII subunits is not absolutely required for PSII repair (Bonardi et al., 

2005) but assists in transferring damaged PSII complexes from the stacked thylakoid grana to 

stromal lamellae, where repair occurs.  Phosphorylation appears to induce architectural changes in 

the stacked grana and increase membrane fluidity in such a way as to promote mobility of damaged 

PSII centers to the stromal lamellae for repair (Tikkanen et al., 2008a; Fristedt et al., 2009; Fristedt 

et al., 2010; Herbstová et al., 2012; Järvi et al., 2015).  For many of the PSII phosphorylation sites, 

light intensity and/or other environmental conditions affect the phosphorylation extent, with 
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implications for the functional significance of these modifications.  MS analysis has played a 

critical role in these quantitative studies, and methodology for such measurements is discussed in 

the dynamics section below.  For reviews that discuss the role of PSII phosphorylation, see Pesaresi 

et al. (2011); Mulo et al. (2012); Schӧnberg and Baginsky (2012); Järvi et al. (2015). 

            PSII phosphorylation may not be needed in cyanobacteria owing to the lack of spatial 

organization of thylakoids (Mulo et al., 2012).  However, a recent global proteomics study of the 

cyanobacterium Synechococcus sp. PCC 7002 (hereafter Synechococcus 7002) found that a portion 

of D1 copies are  phosphorylated at their N-terminus, Thr-2 (Yang et al., 2014), as in higher plants.  

This finding opens the possibility for a role of phosphorylation in PSII turnover in cyanobacteria.  

2.4.3. Identification of oxidative and other modifications 

            Light is necessary for PSII function, but even low light intensities can lead to PSII damage, 

particularly of the D1 protein.  Damage triggers partial PSII disassembly, D1 degradation, insertion 

of a new D1 copy, and PSII re-assembly (Nickelsen and Rengstl, 2013).  When the rate of damage 

exceeds that of repair, photosynthesis is inhibited, referred to as photoinhibition. Photodamage can 

be initiated in several ways, but a common result of each mechanism is production of highly 

oxidizing species (e.g., singlet O2, other reactive oxygen species (ROS), or radical PSII cofactors).  

These species rapidly oxidize PSII subunits, ultimately rendering the complex non-functional.  For 

reviews of the photoinhibition process, see Barber and Andersson (1992); Adir et al. (2003); 

Pospíšil (2009); Allahverdiyeva and Aro (2012); Tyystjärvi (2013).   

           Though oxidative damage of PSII was long believed to be responsible for photoinhibition 

(Telfer et al., 1994), MS studies provided the first concrete evidence for specific oxidative 

modifications of PSII.  Bottom-up MS analysis of the D1 and D2 subunits from pea PSII found up 

to three +16 oxidative modifications (each representing incorporation of an oxygen atom) on 
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certain peptides (Sharma et al., 1997c).  Interestingly, not all peptides were oxidized, but the 

oxidized ones were all located near the predicted D1 and D2 redox cofactor sites, supporting the 

idea that radical redox cofactors themselves, or ROS produced by reaction with them, cause 

oxidative damage to PSII.  More recently, Bricker and co-workers (Frankel et al., 2012; Frankel 

et al., 2013b) used tandem MS to identify oxidized residues on spinach D1, D2, and CP43 that are 

located near the QA, PheoD1, and manganese cluster sites, all reasonable sources of oxidizing 

species. Additionally, tryptophan oxidation products in spinach were identified on CP43-Trp-365 

and D1-Trp-317, which are located near the manganese cluster (17 and 14 Å, respectively, in the 

crystal structure from T. elongatus) (Anderson et al., 2002; Dreaden et al., 2011; Kasson et al., 

2012).  By monitoring the digested peptides’ absorption at 350 nm, the authors found that these 

tryptophan oxidations are correlated with increased light intensity and decreased oxygen evolution.  

Other modifications to PSII subunits were also detected by MS (Gómez et al., 2002; Gómez et al., 

2003; Anderson et al., 2004; Rexroth et al., 2007; Sugiura et al., 2013).  Notably, a recent global 

proteomics study of Synechococcus 7002 identified many new PSII PTMs (Yang et al., 2014), but 

the functional significance of these modifications remains to be determined. 

Dynamics: Quantitative or semi-quantitative changes in PSII proteins and PTMs 

MS-based methods to study PSII dynamics 

 Most MS-based quantification experiments seek the relative, not absolute quantity of a 

protein or PTM in one sample compared to another.  We focus here on relative quantification 

methods because nearly all the work on PSII dynamics fell into that category. 

Gel-based quantification 

 Perhaps the most basic MS-based semi-quantitative method is in-gel digestion at the same 

band in two different sample lanes, prompted by a significant staining-intensity difference between 
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the two bands.  This approach was used frequently when analyzing different purified PSII 

complexes (Liu et al., 2011b; Knoppová et al., 2014), yielding information about accessory 

proteins that bind specifically to certain subcomplexes.  A proper loading control (typically equal 

chlorophyll) must be used to ensure a meaningful comparison.  Multiple proteins are typically 

identified by MS in both bands, however, so it may not be immediately apparent which protein is 

the main component (Liu et al., 2011b).  Confirmation may be necessary by western blotting or 

one of the more quantitative MS-based techniques described below.   

 The accuracy of gel-based quantification can be improved by introducing a second 

electrophoretic separation dimension before in-gel digestion and LC-MS/MS.  Semi-quantitative 

two-dimensional denaturing gel electrophoresis (2DE) (distinct from 2D BN-PAGE described 

above), a popular technique especially in early proteomics studies, usually first separates proteins 

by size and then on the basis of pI (Rabilloud et al., 2010).  The difference in staining intensity 

indicates the relative content of that protein in each sample.  Because two proteins migrate less 

often together in two dimensions than in one, separation and quantification accuracy are improved.  

2DE is useful for large-scale studies such as whole-cell or whole-organelle proteome profiling that 

require higher-resolution separation than a 1D gel provides.  However, in recent years, 2DE has 

declined in popularity owing to its numerous drawbacks (reviewed in Rabilloud et al., 2010) and 

the improvements in other more versatile quantitative MS methods.  Such large-scale proteomics 

studies have detected expression-level changes in several PSII proteins in response to a variety of 

stress conditions (e.g., Ingle et al., 2007; Aryal et al., 2011; Li et al., 2011; Guerreiro et al., 2014).  

However, insights into the PSII life-cycle have mainly emerged from more focused studies on 

purified PSII complexes.   

Label-free quantification 
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 Some MS-based relative quantification methods use a so-called label-free approach, but 

the better approach, when feasible, is to introduce a stable isotope into the sample.  For label-free 

quantification, the samples to be compared are analyzed by LC-MS/MS separately.  A variety of 

software tools can then be used to obtain an extracted ion chromatogram (EIC) of any peptide.  

The EIC displays the total intensity (peak area) of that peptide.  Comparing the intensities of the 

same peptide from two different samples indicates the relative content of that peptide in those 

samples.  Although the concept is simple, accurate label-free quantification depends on a number 

of factors: equal sample loading (on a relevant basis, e.g., chlorophyll concentration), reproducible 

LC runs, and appropriate normalization during data analysis.  For quantification of proteins, data 

from component peptides must be merged in a statistically sound way (Bantscheff et al., 2012; 

Nahnsen et al., 2013).  Thorough mass spectral sampling of possible precursors—not as crucial in 

non-quantitative experiments—is necessary for accurate peak definition, but that typically diverts 

instrument time from obtaining product-ion spectra that give information for peptide identification 

and sequence coverage (Bantscheff et al., 2012).  Various strategies have been designed to address 

this challenge (e.g., data-independent acquisition approaches such as MSE (Silva et al., 2006; 

Grossmann et al., 2010) and “all-ion fragmentation” (Geiger et al., 2010) especially when 

combined with Ultra-Performance LC (UPLC) (Bantscheff et al., 2012).  Label-free quantification 

by spectral counting, which involves comparing the total number of product-ion (MS/MS) spectra 

obtained for a given peptide or protein, is a common approach (Lundgren et al, 2010), although 

that has been used in fewer PSII-related studies (Fristedt and Vener, 2011; Stӧckel et al., 2011).  

Label-free quantification of intact proteins is more direct than comparing peptides, but best applied 

for small proteins.  Intact-mass spectra (MALDI and ESI) of the LMM PSII proteins indeed have 
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been used in a number of instances for label-free quantification between states (Laganowsky et al., 

2009; Sugiura et al., 2010a).     

Isotope label-based quantification 

 The alternative to label-free quantification is introduction of a stable isotope label into one 

of the two samples being compared (certain methods also allow greater multiplexing, see below).  

In contrast to the label-free approach, the labeled and unlabeled samples (often called “heavy” and 

“light”) are mixed and analyzed in a single LC-MS/MS run.  The mass spectra of the light and 

heavy peptide show two peaks shifted slightly in mass.  Comparison of their peak areas, just as in 

label-free quantification, indicates the relative amount of that peptide in each sample (Bantscheff 

et al., 2012).  Although comparing peak areas from a single LC-MS/MS run eliminates the 

concerns of label-free LC reproducibility and ion suppression, labeling introduces additional 

sample preparation steps and often involves costly reagents.   

 Isotopic labeling (with 2H, 13C, 15N, or 18O) of all proteins can be accomplished during cell 

growth (metabolic labeling), or by labeling a subset of proteins or peptides at various stages after 

cell lysis (chemical or enzymatic labeling).  In the SILAC method (“stable isotope labeling by 

amino acids in cell culture”) (reviewed in Chen et al., 2015), addition of labeled arginine or lysine 

to the growth medium results in incorporation of only the labeled form of that amino acid into all 

proteins.  Hippler and co-workers (Naumann et al., 2007) used a SILAC-based method to measure 

changes in expression of PSII subunits and other proteins in C. reinhardtii under iron deficiency, 

and Jacobs and co-workers (Aryal et al., 2011) used this method to measure light-dark diurnal 

cycles in Cyanothece sp. ATCC 51142.  A more common approach in PSII life-cycle research, 

however, has been 15N metabolic labeling (see “Measuring the temporal dynamics of life-cycle 

events using isotopic labeling” below), in which the growth medium is modified so that the only 
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nitrogen source is a labeled salt such as potassium nitrate or ammonium chloride (Gouw et al., 

2010).   

 Isotopic labeling at the peptide or protein level during downstream processing after cell 

lysis is an alternative to metabolic labeling.  Tandem mass tags (TMT) (Thompson et al., 2003), 

isotope tags for relative and absolute quantification (iTRAQ) (Ross et al., 2004), enzymatic 18O 

labeling, and isotope-coded affinity tags (ICAT) can be used in proteomics experiments in 

photosynthetic organisms (Thelen and Peck, 2007).  TMT and iTRAQ are related approaches that 

have become popular recently (Bantscheff et al., 2012).  Both modify peptides with one of several 

possible isobaric tags that produce reporter ions during MS/MS fragmentation.  Each sample is 

labeled with a different tag, but owing to the tags’ isobaric nature, identical peptides from each 

sample are observed together chromatographically and as a single peak in a low-resolving power 

mass spectrum.  Each tag, however, contains a unique reporter ion that appears as a distinct peak 

in the product-ion (MS/MS) spectra, and the ratio of these ions reveals the relative amounts of that 

peptide in each sample. The iTRAQ reagent modifies primary amines, and TMT tags are available 

that modify primary amines, thiols, or carbonyl groups.  Advantages of these labeling approaches 

include the ability to multiplex up to eight or ten samples, greater than with metabolic and other 

chemical labeling methods, and the isobaric nature of the same peptide across all samples reduces 

both LC separation demands and MS data complexity (Bantscheff et al., 2012).  Although many 

proteomics studies on photosynthetic organisms have used these chemical labeling methods, most 

have not focused on PSII life-cycle issues (Thelen and Peck, 2007; Battchikova et al., 2015).  Two 

relevant examples include the detection of elevated PsbO cysteine oxidation under DCMU and 

dark conditions (Guo et al., 2014), and intriguing evidence that PSII thermotolerance in 
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Synechocystis 6803 may arise in part from antenna trimming and an increased rate of electron 

transfer to the cytochrome b6/f complex (Rowland, et al. 2010). 

PSII life-cycle application: Measuring changes in phosphorylation levels 

 As mentioned in the composition section above, phosphorylation of PSII subunits affects 

membrane fluidity and inter-thylakoid dynamics, thus playing a role in facilitating PSII turnover 

in green algae and higher plants (see the reviews cited in that section for in-depth treatment of this 

topic).  Many of the studies that have contributed to our current understanding of this process used 

MS quantification techniques to compare phosphorylation levels between samples and under 

different environmental conditions.  

 When using peak-area-based label-free quantification to determine the change in a 

modified peptide between samples, it is crucial that the peak area of the unmodified peptide be 

taken into account as well, to distinguish a true change in modification extent from simply an 

increased level of protein expression in one of the states.  This method is demonstrated in a study 

of phosphorylation and nitration in A. thaliana grown under low and high light regimes (Galetskiy 

et al, 2011b). The authors first normalized each modified-peptide peak area in each sample to that 

of its unmodified counterpart and then compared the modified peptides’ normalized peak area to 

each other.  This method can reveal fold-changes in modification extent between the two states, 

but not the absolute percentage of that peptide that contains the modification (the “modification 

stoichiometry”).  

 To find the modification stoichiometry, it is necessary to know in addition the relative 

“flyability” (ionization efficiency) of the modified and unmodified peptides.  Vierstra and co-

workers (Vener et al., 2001) showed that the relative flyabilities of six synthetic phosphopeptides 

and their non-phosphorylated counterparts are nearly identical.  Suggesting this as a general 
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phenomenon for phosphorylated peptides, they estimated the modification stoichiometry for the 

phosphorylated peptides of D1, D2, CP43, PsbH, and an LHCII protein.  In 2010, Vener and co-

workers (Fristedt et al., 2010) calculated the actual relative flyability ratio for these PSII peptide 

pairs, and reported reliable modification stoichiometry for these proteins for the first time under 

the various conditions in their study.  Interestingly, the flyability ratios were indeed close to 1 for 

each pair (ranging from 0.89-1.23), supporting the earlier suggestion that this may be the case for 

most phosphorylated/non-phosphorylated peptide pairs (Vener et al., 2001).  Other studies have 

since used those flyability ratios to determine changes in the modification stoichiometry of those 

same phosphorylation sites under other growth conditions (Fristedt and Vener, 2011; Romanowska 

et al., 2012; Samol et al., 2012).  Knowledge of modification stoichiometry under different 

conditions is quite valuable; it enabled, for example, a greater level of confidence and detail in the 

model proposed for how phosphorylation affects thylakoid membrane stacking than would have 

been possible with fold-change data alone (Fristedt et al., 2010). 

 Chemical isotopic labeling of peptides has also been applied fruitfully to the study of PSII 

phosphorylation.  Immobilized metal-ion affnity chromatography (IMAC) is a standard protocol 

for enrichment of phosphopeptides, taking advantage of the interaction between phosphoryl groups 

and a Fe3+-agarose matrix (Andersson and Porath, 1986).  Given that free carboxyl groups can also 

interact with the resin, it has become common to convert free carboxylates to methyl esters after 

digestion and prior to IMAC, to avoid this interaction (Ficarro et al., 2002).  Vener and co-workers 

(Vainonen et al., 2005) modified this approach by using deuterated methanol (CD3) as the 

esterification reagent for one sample, and unlabeled methanol for a second sample to quantify by 

“isotope encoding”.  After mixing the samples and analyzing by LC-MS/MS, the relative amount 

of each phosphorylated peptide in the two samples is quantified by comparison of their mass 
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spectral peak areas.  It should be noted that this approach does not reveal the modification 

stoichiometry of any phosphorylation site; rather the techniques described above still need to be 

performed to gain that information.  Instead, as with other isotope-labelling strategies, it enables 

more confident and straightforward comparisons of the level of any given peptide between 

samples.  This labeling method was used to study phosphorylation of PSII under a variety of 

conditions and genetic backgrounds (Vainonen et al., 2005; Lemeille et al., 2010; Fristedt and 

Vener, 2011; Samol et al., 2012). 

PSII life-cycle application: Measuring changes in oxidation levels 

 As discussed above, oxidation of PSII subunits is a well-documented phenomenon, and 

occurs, at least partially, from oxidizing species generated during the electron transfer reactions of 

PSII, especially under stress.  However, relatively few studies have quantified changes in PSII 

subunit oxidation under different controlled conditions.  Adamska and co-workers (Galetskiy et 

al., 2011a) used label-free quantification to compare oxidation and nitration (also associated with 

oxidative stress) levels of thylakoid membrane protein complexes from A. thaliana grown under 

low and high light. They found significantly more modified sites in PSII than in the PSI, 

cytochrome b6/f, and ATP synthase complexes.  Interestingly, the modified D1, D2, and PsbO sites 

increased around 2-5-fold, whereas CP47, CP43, PsbE, and PsbR oxidation levels remained 

roughly constant.  D1 and D2 bind most of the redox-active cofactors of PSII, so the increased 

oxidation especially of these two proteins is not surprising.  Similarly, by measuring the increase 

in 350 nm absorption, Barry and co-workers (Dreaden et al., 2011; Kasson et al., 2012) found that 

two tryptophan oxidation products increase after exposure to high light, with a corresponding 

decrease in oxygen evolution activity.  Adamska and co-workers (Galetskiy et al., 2011b) found 

that nitration levels in assembled PSII complexes decrease after exposure to high light, but increase 
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in PSII subcomplexes. This may imply that once nitrated, PSII complexes are damaged and 

targeted for disassembly and repair. 

PSII life-cycle application: Measuring the temporal dynamics of life-cycle events using 

isotopic labeling 

 Measurement of PSII subunit lifetimes has focused mainly on D1, using immunodetection 

following addition of a protein-synthesis inhibitor or by radioisotope pulse-chase labeling with 

detection by autoradiography or phosphorimaging (Aro et al., 1993; Mullet and Christopher, 1994; 

Ohnishi and Murata, 2006).  Recently, several studies used 15N labeling pulses and quantified the 

disappearance of unlabeled PSII subunits using MS.  This method enables simultaneous detection 

of a larger number of PSII subunits and eliminates any concern of overlapping signal from proteins 

with similar electrophoretic mobility (Yao et al., 2012b).  From surveying nine PSII subunits from 

Synechocystis 6803, Vermaas and co-workers (Yao et al., 2012a) found that protein half-lives 

range from 1.5-33 hours in a PSI-less mutant grown under low light (4 μmol m-2s-1 photon flux).  

In WT Synechocystis 6803 grown under 75 μmol m-2s-1 photon flux, half-lives of D1, D2, CP47, 

and CP43 ranged from <1-11 hours (Yao et al., 2012b).  In both studies, D1 exhibited the shortest 

half-life. These studies highlight the wide range in PSII subunit lifetime and the tight regulation 

of protein synthesis and PSII assembly that must occur to ensure constant proper stoichiometric 

availability of all subunits.  Interestingly, the chlorophyll half-life was several times longer than 

that of the core chlorophyll-binding proteins, but the half-life was reduced in the absence of the 

small CAB-like proteins (SCPs), implying that SCPs play a role in chlorophyll recycling during 

PSII turnover (Yao et al., 2012a). 

 Rӧgner, Nowaczyk, and co-workers demonstrated an elegant application of 15N labeling 

by purifying several subcomplexes in the PSII life-cycle after a pulse with 15N (from 15NH4Cl).  
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Comparing extents of incorporation of 15N in different subcomplexes (e.g., monitoring D1 and D2 

peptides) reveals the subcomplexes’ position in the PSII life-cycle.  Using this method, the authors 

demonstrated that in T. elongatus, Psb27 binds to a monomeric subcomplex early in the PSII 

assembly process (Nowaczyk et al., 2006), and that Psb27 binds again during disassembly to 

inactive dimers (Grasse et al., 2011).  This information fits well with the current understanding of 

Psb27 as a gatekeeper preventing manganese cluster assembly in immature complexes (Liu et al., 

2013a; Mabbitt et al., 2014).   

 Cyanobacteria contain multiple versions of the psbA gene, and the resulting versions of the 

D1 protein have some different properties and are expressed preferentially under different 

environmental conditions (for reviews see Mulo et al., 2009; Sugiura and Boussac, 2014).  For 

example, the psbA1 gene product in T. elongatus is dominant under standard growth conditions, 

but expression of the psbA3 gene product, which differs from the PsbA1 copy by ~21 residues, 

increases under high light conditions (Clarke et al., 1993; Kós et al., 2008; Mulo et al., 2009).  

Characterization of PSII from mutants that express only specific versions of the gene has shown 

differences in electron-transfer properties, with the implication that PsbA3 assists in 

photoprotection of PSII under light stress conditions (Sugiura et al., 2010b; Sander et al., 2010).  

D1-copy expression was mainly monitored on the transcript level (Golden et al., 1986; Komenda 

et al., 2000; Kós et al., 2008; Sugiura et al., 2010b).  However, using 15N labeling and MS-based 

quantification, Rӧgner and co-workers showed that PsbA3 incorporation on the protein level could 

be monitored unambiguously in T. elongatus under high light conditions (Sander et al., 2010) and 

in the ΔpsbJ mutant (Nowaczyk et al., 2012).  Those studies used 15N-labeled PSII from a strain 

that only expresses the PsbA3 copy as a standard for 100% incorporation; relative peak area of the 
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unlabeled PsbA3 peptides compared to this standard is a measure of the incorporation.  Such 

definitive monitoring should allow further detailed studies of psbA gene incorporation dynamics.   

 Progress has also recently been made on the role of the PsbA4 D1 copy; an iTRAQ labeling 

study found elevated expression of PsbA4 in Cyanothece sp. PCC 7822 in the dark (Welkie et al., 

2014), providing complementary evidence to that of Pakrasi and co-workers (Wegener et al., 2015) 

who found that PsbA4 incorporation into PSII renders the complex non-functional.  PsbA4 

replaces PsbA1 at night in cyanobacterial species that fix nitrogen during this time, protecting 

against even the trace levels of oxygen evolution that could occur and damage the nitrogenase 

enzyme (Wegener et al., 2015).   

Structure: Determining protein-protein interactions in PSII complexes 

MS-based methods to study PSII structure 

 X-ray crystallography remains the benchmark for determining the structure of protein 

complexes, but besides fully-assembled active PSII, many complexes that form during the PSII 

life-cycle are too transient and low in abundance to be easily amenable to crystallography.  

Valuable information about protein-protein interactions within PSII was obtained from 

immunogold labeling (Tsiotis et al., 1996; Promnares et al., 2006) and yeast two-hybrid assays 

(Schottkowski et al., 2009; Komenda et al., 2012a; Rengstl et al., 2013), but the former is primarily 

suitable for large PSII complexes (Dobáková et al., 2009), and the latter is time-consuming and 

low-throughput.  Both provide relatively low-resolution structural information.  Recently, 

advanced structural proteomics techniques bypass the limitations of the above techniques and offer 

higher-resolution structural data (although still lower than X-ray crystallography).  Either chemical 

cross-linking or protein footprinting followed by MS detection of these modifications are enabled 

by MS instruments with high sensitivity, resolving power, and <1-5 ppm mass accuracy on 
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orbitrap- and FTICR-based instruments (Table 2).  These methods allow not only identification of 

the binding partners of a specific protein but also a low-resolution mapping of the binding site.   

Chemical cross-linking 

 Briefly, the chemical cross-linking technique (reviewed in Sinz, 2014) uses a small 

molecule with two functional groups on either end that can react with protein residues, separated 

by a spacer arm (typically less than 14 Å).  Many types of cross-linkers are available (Paramelle 

et al., 2013).  The ones most commonly used in PSII research (Bricker et al., 2015) can react with 

either the primary amine of a lysine and protein N-terminus (and under certain conditions, to a 

lesser extent with the hydroxyl group of a serine, threonine, or tyrosine (Mädler et al., 2009)), or 

with the carboxylate of aspartate and glutamate side chains and protein C-termini.  After both sides 

of the cross-linker react with neighboring proteins, digestion, LC-MS/MS, and specialized data 

analysis can identify cross-linked peptides.  Inter-protein cross-linked peptides provide structural 

information about the complex because the two linked residues are constrained to the spacer arm-

length distance from each other.     

 Cross-linking has been used for decades to study protein-protein interactions (Clegg and 

Hayes, 1974; Wetz and Habermehl, 1978; Walleczek et al., 1989; Back et al., 2003; Sinz, 2014), 

but its power was limited until modern MS instrumentation and the proteomics platform enabled 

high-throughput analysis and confident identification of linked peptides (Rappsilber, 2011).  

Identification of cross-linked peptides by MS is more challenging than for a typical protein digest, 

especially for large complexes, because the candidate peptide database increases roughly with the 

square of the number of peptides.  As a result, false positives based on the mass spectrum are 

common even with high mass accuracy instruments, making high-quality product-ion spectra 

critical for a confident assignment.  Despite powerful and constantly improving cross-link search 
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algorithms (Rinner et al., 2008; Xu and Freitas, 2009; Petrotchenko and Borchers, 2010; Yang et 

al., 2012; Gӧtze et al., 2012; Gӧtze et al., 2015; Hoopmann et al., 2015), manual verification of 

the product-ion spectra of hits is highly recommended.  Successful cross-linking requires high 

sequence coverage and high mass accuracy as is now practical with orbitrap- and FTICR-based 

instruments (Table 2). 

 Because cross-linked peptides give typically low-intensity signals compared to those of 

unlinked peptides, they are often not selected for fragmentation by the instrument’s traditional 

“highest-abundance ion” selection criteria.  Several strategies have been developed to improve 

cross-link selection and/or reduce false positives.  They include various methods to enrich for 

cross-linked peptides before LC-MS/MS (Chu et al., 2006; Kang et al., 2009; Leitner et al., 2012; 

Fritzsche et al., 2012); use of isotope-coded linkers whose “fingerprint” increases confidence in 

an identification and can enable real-time guided selection of cross-links for fragmentation (Müller 

et al., 2001; Pearson et al., 2002; Seebacher et al., 2006; Petrotchenko et al., 2014); and MS-

cleavable linkers that simplify data analysis by cleaving a cross-linked peptide into its component 

peptides before fragmentation (Kao et al., 2011; Petrotchenko et al., 2011; Weisbrod et al., 2013; 

Buncherd et al., 2014). 

Protein footprinting 

 Protein footprinting is another MS-based structural technique that has been used to study 

PSII.  Its principle is that a protein residue’s solvent accessibility determines its susceptibility to 

modification by a reagent in the solution; residues buried in a protein-protein interface are less 

susceptible to modification than surface-exposed residues.  These modifications are then detected 

by MS.  Instruments with high sensitivity, resulting in high sequence coverage, are critical so that 

footprinting experiments yield maximal information (Table 2).  A common approach is hydroxyl 
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radical footprinting using the well-established technique of synchrotron radiolysis of water to 

generate the radicals (Takamoto and Chance, 2006; Wang and Chance, 2011).  Fast photochemical 

oxidation of proteins (FPOP) is a more recent hydroxyl radical fooptrinting technique that uses a 

laser pulse to generate the radicals and can probe protein dynamics that occur on a faster timescale, 

down to microseconds (Gau et al., 2011).  Hydroxyl radical footprinting can modify 14 of the 20 

amino acid side chains (Wang and Chance, 2011).  Another technique, glycine ethyl ester (GEE) 

labeling, adapts a long-standing method for modifying and cross-linking carboxylate groups in 

proteins (Hoare and Koshland, 1967; Swaisgood and Natake, 1973) for protein footprinting (Wen 

et al., 2009; Gau et al., 2011).  It is easier to implement than hydroxyl radical footprinting, and 

data interpretation is simpler, but it can only probe changes on aspartate, glutamate, and protein 

C-termini.  

PSII life-cycle application: Cross-linking and footprinting to determine interactions among 

PSII subunits 

 Early cross-linking studies on PSII provided information about subunit connectivity before 

PSII crystal structures were available.  Many studies focused on the lumenal extrinsic proteins 

(Enami et al., 1987; Bricker et al., 1988; Odom and Bricker, 1992; Han et al., 1994), which are 

more easily accessible to soluble cross-linkers, but interactions involving the transmembrane 

subunits can also be detected (Tomo et al., 1993; Seidler, 1996; Harrer et al., 1998).  In the absence 

of the MS-based platforms currently available, gel electrophoresis and immunoblotting identify 

cross-linked products and their likely component proteins.  Those methods are still helpful today 

as confirmation and when cross-linked peptides are not detected by MS (Hansson et al., 2007; 

Nagao et al., 2010; Liu et al., 2011a; Liu et al., 2014b), but MS provides much greater confidence 

in the identification and pinpoints the exact cross-linked residues.  Notably, Satoh and co-workers 
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(Enami et al., 1998) used FAB-MS to identify intramolecular cross-linked peptides in PsbO, and 

deduced the linked residues even without MS/MS capability. 

 Since these early studies, crystal structures have elucidated the connectivity between the 

components of active cyanobacterial PSII.  As a result, more recent cross-linking studies have 

focused on accessory proteins that bind only to subcomplexes and/or that are not found in the 

crystal structures, though work has continued on the lumenal extrinsic PSII subunits from algae 

and higher plants, PsbP and PsbQ, which differ significantly from their cyanobacterial counterparts 

(Bricker et al., 2012) (results are summarized in Table 5).  Cross-linking-MS has also been recently 

applied to study interactions within the phycobilisome (Tal et al., 2014) and between the 

phycobilisome and the photoprotective orange carotenoid protein (OCP) (Zhang et al., 2014; Liu 

et al., 2016), reviewed in Bricker et al., 2015.     

 With complementary use of the cross-linkers EDC and DTSSP, Pakrasi and co-workers 

(Liu et al., 2011a) demonstrated that the accessory protein Psb27 binds on the lumenal surface of 

CP43.  Because this interaction is transient and occurs in only a small fraction of PSII centers in 

the cell at a given time, the authors purified PSII complexes from the ΔctpA mutant strain of 

Synechocystis 6803 that accumulates such complexes (Liu et al., 2011b), maximizing chances of 

capturing and observing Psb27 inter-protein cross-links.  The two cross-linked species detected 

were used to map Psb27 onto the PSII crystal structure, showing how Psb27 accomplishes its role 

as a gatekeeper, protecting partially assembled PSII complexes from gaining premature harmful 

water oxidation activity (Roose and Pakrasi, 2008).  Recently, Nowaczyk and co-workers 

(Cormann et al., 2016) identified a different cross-link between Psb27 and CP43 in T. elongatus 

using an isotope-encoded version of the BS3 cross-linker.  Despite the different cyanobacterial  
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a Only inter-protein cross-links that reveal interactions not detectable in the available PSII crystal 

structures are shown here. 
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species used in the two studies, and the different Psb27 residues that were cross-linked, both cross-

links localize Psb27 to the same domain on CP43 (Liu et al., 2011; Cormann et al., 2016).  

 Cyanobacterial PsbQ is a component of active PSII (Roose et al., 2007), but is not found 

in any of the crystal structures, presumably because it is destabilized under crystallization 

conditions.  Pakrasi and co-workers (Liu et al., 2014b) again used EDC and DTSSP in parallel and 

detected a PsbQ-CP47 and two PsbQ-PsbO cross-links by MS.  A PsbQ-PsbQ cross-link that 

appears to arise from two different copies of the protein was also detected.  Taken together, these 

results position PsbQ along the lumenal PSII dimer interface, consistent with evidence that PsbQ 

stabilizes the PSII dimer (Liu et al., 2014b).  In this study, in-solution digestion was used instead 

of in-gel digestion to avoid losses of large cross-linked peptides that are difficult to extract from 

the gel matrix. 

 Several recent studies have probed the binding sites of the higher plant lumenal extrinsic 

proteins PsbP and PsbQ, which help optimize Ca2+ and Cl- binding properties at the oxygen-

evolving center (Bricker et al., 2012).  Ifuku and co-workers (Ido et al., 2012; Ido et al., 2014) 

identified cross-links in spinach PSII between PsbP and PsbE, PsbR, and CP26 by MS and 

provided MS-based evidence for PsbP-CP43, PsbQ-CP43 and PsbQ-CP26 cross-links.  The 

suggestive evidence arose from MS identification of CP43 or CP26 in individual cross-linked gel 

bands after affinity pull-downs using biotin-tagged PsbP or PsbQ (Ido et al., 2014).  Their binding 

model for PsbP is different than that proposed by Bricker and co-workers (Mummadisetti et al., 

2014), who identified nine intra-protein cross-links between the N-terminal and C-terminal regions 

of spinach PsbP that constrain significantly its binding conformation. The authors also identified 

a PsbP-PsbQ cross-link, consistent with that observed in C. reinhardtii by Enami and co-workers 

(Nagao et al., 2010).    
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 The PsbQ-CP43 interaction in spinach PSII suggested by Ifuku and co-workers (Ido et al., 

2014) contrasts with the PsbQ-CP47 cross-link identified in Synechocystis 6803 by Pakrasi and 

co-workers (Liu et al., 2014b) and their evidence for a PsbQ-PsbQ interaction at the PSII dimer 

interface.  Significant sequence differences between cyanobacterial and plant PsbQ may explain 

this discrepancy.  Bricker and co-workers (Mummadisetti et al., 2014) also found cross-linking 

evidence for a PsbQ-PsbQ interaction in spinach that may require a position at the dimer interface, 

consistent with the Pakrasi group’s results in Synechocystis 6803.  However, they suggest that that 

interaction could in theory arise from an inter-PSII-dimer interaction, and, thus, the results could 

alternatively be consistent with the Ifuku group’s positioning of spinach PsbQ near CP43. 

Interestingly, the recently published crystal structure of PSII from the eukaryotic red alga 

Cyanidium caldarium indeed shows PsbQ′ binding to the lumenal surface of CP43 (Ago et al., 

2016).  PsbQ′ shares relatively low sequence homology to green algal or higher plant PsbQ; and 

though PsbQ′ can functionally replace PsbQ at least partially in C. reinhardtii, it cannot bind to 

spinach PSII (Ohta et al., 2003). Therefore, the red algal PsbQ′-CP43 interaction supports Ifuku 

and co-workers’ (Ido et al., 2014) similar conclusion in spinach, but at the same time it does not 

necessarily contradict the alternate PsbQ-CP47 interaction observed by the other groups in spinach 

and Synechocystis 6803.  The recent characterization of an active PSII complex from Synechocystis 

6803 with multiple copies of the PsbQ protein (Liu et al., 2015) hints at one possible reconciliation 

of these findings, if such a complex is present in other species as well.  Despite some discrepancies, 

these results begin to elucidate the binding orientation of the higher plant lumenal extrinsic 

proteins, suggesting a mechanism for stabilization of PSII-LHCII supercomplexes (Ido et al., 

2014), and paving the road for further structural studies. 
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 Though the advanced techniques for improving cross-link identification described in the 

methods section above have largely not yet been applied to PSII studies (with the exception of the 

recent use of isotope-encoded BS3 by Nowaczyk and co-workers (Cormann et al., 2016)), several 

other creative approaches have been used.  Enami and co-workers (Nagao et al., 2010) improved 

identification confidence by detecting the same cross-linked residues in peptides from two separate 

digestion experiments, one with trypsin and one with Asp-N.  Pakrasi and co-workers (Liu et al., 

2011a) provided strong evidence, using the thiol-cleavable cross-linker DTSSP and 2D gel 

electrophoresis, that Psb27 and CP43 cross-link to each other, allowing targeted data analysis and 

providing higher confidence in the subsequent MS cross-link identification.  Ifuku and co-workers 

(Ido et al., 2012; Ido et al., 2014) used a biotin-tagged PsbP or PsbQ to purify only those cross-

linked proteins.  Although this method is not as efficient as purifying only cross-linked peptides 

by means of a tagged linker, because following digestion many non-linked peptides from the 

tagged protein will be present, it does simplify sample complexity and focuses on cross-links 

containing a particular protein of interest.  Notably, Blankenship and co-workers (Liu et al., 2013b) 

demonstrated that in-vivo cross-linking of thylakoid membrane complexes is possible and can 

capture interactions between protein complexes that are otherwise difficult to preserve after cell 

lysis. Using the membrane-permeable cross-linker DSP, they captured a PSII-PSI-phycobilisome 

megacomplex and identified five cross-links between PSII subunits and the PBS, and five between 

PSI subunits and the PBS, providing the first molecular-level description of the interface of these 

complexes.      

 Like cross-linking, protein footprinting is a technique that has long been used in PSII 

structural studies but that has become significantly more powerful in combination with modern 

MS.  Early studies using N-hydroxysuccinimidobiotin (NHS-biotin) and other modification 
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reagents investigated the binding site of higher plant PsbO to PSII.  In the absence of MS detection, 

specific modification sites could either not be identified (Bricker et al., 1988) or were localized to 

particular protein domains by N-terminal sequencing of peptides (Frankel and Bricker, 1992).  

With the rise of protein MS in the mid-1990s, MALDI-TOF and FAB-MS were used to identify 

modified peptides; lack of MS/MS capability, however, produced lower-confidence peptide 

identification than is achievable today, and meant that specific modified residues could only be 

pinpointed in favorable cases (Frankel and Bricker, 1995; Miura et al., 1997; Frankel et al., 1999).  

Nonetheless, these pioneering footprinting studies demonstrated, e.g., that PsbO interacts with 

Loop E of CP47 (Frankel and Bricker, 1992), and that charged residues on the surface of PsbO are 

involved in its interaction with PSII (Miura et al., 1997; Frankel et al., 1999).    

 Recently, hydroxyl radical footprinting using synchrotron radiolysis of water was used to 

study the binding surfaces of spinach PsbP and PsbQ to PSII, with detection of modified residues 

by MS (Mummadisetti et al., 2014). The results reveal buried regions on the surface of these 

proteins that complement the authors’ cross-linking data and suggest these proteins’ binding 

interfaces to other PSII subunits.  The data also confirm and elaborate on the binding region 

identified by this group in a previous study using NHS-biotin as footprinting reagent (Meades et 

al., 2005).   

 Although the above footprinting studies detected whether or not a residue was modified in 

a given state, it is also possible to analyze footprinting data quantitatively to detect a 

conformational change in a complex in two different states.  The label-free approaches described 

above can be used to monitor the relative change in modification, normalized to the unmodified 

peptide, in different PSII complexes.  The utility of this approach was demonstrated in a study of 

the role of Psb27 in PSII assembly (Liu et al., 2013a) using GEE labeling.  The authors monitored 
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the relative changes in aspartate and glutamate modification of three PSII complexes representing 

different stages of PSII assembly, not only extending previous information about the Psb27 

binding site (Liu et al., 2011a; Komenda et al., 2012a), but also demonstrating a conformational 

change upon D1 processing that prompts Psb27 dissociation and permits assembly of the oxygen 

evolving complex (Liu et al., 2013a).  Blankenship and co-workers have also used quantitative 

GEE labeling to detect a light-dependent conformational change in the OCP protein that appears 

to underlie its photoprotective function (Liu et al., 2014a).  The recent implementation of 

isotopically-labeled GEE (iGEE) footprinting (Zhang et al., 2016) will streamline, and increase 

confidence in, quantitative comparisons of modification extent between states.   

 Hydroxyl radical footprinting has also been used to identify putative water and oxygen 

channels in PSII (Frankel et al., 2013a), a topic that has been explored previously through 

computational studies (Murray and Barber, 2007; Ho et al., 2008; Gabdulkhakov et al., 2009; 

Vassiliev et al., 2012). This study provides general experimental support for the existence of such 

channels, confirms specific channel identifications from computational work (Ho et al., 2008; 

Vassiliev et al., 2012), and proposes a previously unidentified putative oxygen/ROS exit channel 

(see Bricker et al., 2015 for a discussion of the MS-based and computational results).    

This work 

 As discussed in the introduction above, the available crystal structures of PSII provide an 

extremely valuable, detailed map of the protein subunits and cofactors in active PSII.  This 

structural information has been critical in elucidating the sequence and energetics of the electron 

transfer chain in PSII.  The 1.9 Å crystal structure (PDB 3WU2) (Umena et al., 2011) has even 

contributed insights into the mechanism of water oxidation with its high-resolution depiction of 

the geometry of the Mn4Ca cluster.  Nonetheless, as the crystal structures reflect the fully-
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assembled, active complex, they can provide little structural insight into the several dozen 

accessory proteins that are now known to interact with PSII during various other stages of its 

life-cycle (Nickelsen and Rengstl, 2013; Järvi et al., 2015; Heinz et al., 2016).  It has even 

become clear that an additional protein (PsbQ), is present in the active complex of cyanobacterial 

PSII, yet is missing from the crystal structures (Thornton et al., 2004; Roose et al., 2007). 

 The identification and characterization of increasing numbers of accessory PSII proteins 

in recent years has coincided with recent dramatic improvements in method development for 

chemical cross-linking combined with MS (Rappsilber, 2011; Sinz, 2014).  In this context, we 

sought to identify the binding site of the elusive Psb28 protein using an isotopically-encoded 

chemical cross-linker followed by MS analysis.  Psb28 binds in an unknown location primarily 

to a low-abundance PSII assembly intermediate complex, RC47.  Psb28 exerts a protective effect 

on RC47, especially under stress conditions of high light or high temperature (Sakata et al., 

2013). Our results, presented in Chapter 2, show that Psb28 binds on the cytosolic surface of 

PSII in close association with PsbE and PsbF, the α- and β-subunits of cytochrome b559, an 

essential component of the PSII reaction center.  The structural location of Psb28 that we have 

determined allows us to propose several mechanisms by which it could exert its protective effect 

on the RC47 intermediate. 

 In the work presented in Chapter 3, we used high-resolution tandem MS to identify 

oxidative modifications in PSII.  PSII residues are believed to be modified by reactive oxygen 

species (ROS) unavoidably produced by redox-active PSII cofactors.  These modifications have 

long been suspected as a major reason for the frequent damage and turnover of PSII proteins.  

The sensitivity and speed of the latest mass spectrometers affords the possibility to characterize 

these modifications definitively and with high throughput, a challenging or impossible task by 
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any other method.  Our results show that oxidative modifications increase in response to light, 

and map two putative paths of travel for oxygen/ROS from the Mn4Ca cluster all the way to the 

surface of PSII.   

 Chemical cross-linking followed by mass spectrometry was implemented again in the 

work presented in Chapter 4, in this case to identify the binding site of the cyanobacterial PsbQ 

protein.  As mentioned above, this protein is a component of active PSII, yet was apparently lost 

during crystallization so its binding site remained unknown.  In this study, it was determined that 

PsbQ associates closely with CP47 and PsbO, and binds near the dimer interface of PSII.  In 

addition, a novel PSII complex that contains four copies of PsbQ was identified and 

characterized.  An updated model of the PSII life-cycle is presented that includes this complex. 

 Chapter 5 summarizes the results of this work as well as the role of MS in PSII life-cycle 

research, and future directions in this area.  The current status of an ongoing study is also 

presented, which involves characterization of a novel PSII subcomplex lacking the reaction 

center proteins.  Table 6 below is a modified version of Table 1, and it highlights the PSII life-

cycle topics addressed, and the MS tools used to study them, in this work.   
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Table 6. Modified version of Table 1 that provides an overview of the kind of work conducted 

in this study 

 

Kind of 

information 

 

Information desired 

 

MS-based technique 

 

Applied in 

chapter 

 

 

 

Composition 

 

PSII subunits present in a 

complex 

 

Bottom-up MS  (intact or 

top-down MS for LMM 

subunits) 

 

 

2-4 

 

Accessory proteins that 

associate with PSII 

 

 

Bottom-up MS 

 

 

 

PTMs 

 

Bottom-up MS 

 

 

3 

 

 

 

Dynamics 

Protein and PTM changes 

between samples 

Label-free or isotopic-

label-based relative 

quantification 

 

 

3* 

 

PSII subunit lifetime 

 

Rate of unlabeled protein 

disappearance after 

isotopic label exposure 

 

 

Relative position of 

subcomplexes in PSII 

life-cycle 

 

Relative isotopic label 

incorporation after pulse 

 

 

 

 

 

Structure 

 

Binding site of proteins 

not found in PSII crystal 

structures 

 

 

Cross-linking, footprinting 

 

 

2, 4 

 

Conformational changes 

 

Footprinting, quantify 

changes in modification 

extent 

 

 

 

Water and oxygen 

channel detection 

 

 

Footprinting; mapping 

oxidative modifications 

 

 

3 

Blue text indicates topics addressed, and methods used, in the subsequent chapters. 

*A label-free quantitative analysis of the results in Chapter 3 is ongoing; preliminary results of 

the label-free analysis are included.  
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Chapter 2 

 Structural analysis of Photosystem II: Mass spectrometry-based cross-linking 

study shows that the Psb28 protein binds to cytochrome b559 
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Summary 

Photosystem II (PSII), a large pigment protein complex, undergoes rapid turnover under 

natural conditions. The assembly of PSII, with its numerous subunit proteins and cofactors, must 

occur without oxidative damage prior to becoming fully functional.  Psb28, the only cytoplasmic 

extrinsic protein in PSII, protects the RC47 assembly intermediate of PSII and assists its efficient 

conversion into functional PSII.  Its role is particularly important under stress conditions when 

PSII damage occurs frequently.  Psb28 is not found, however, in any PSII crystal structure, and its 

structural location has remained unknown.  In this study, we used chemical cross-linking combined 

with mass spectrometry to capture the transient interaction of Psb28 with PSII.  We detected three 

cross-links between Psb28 and the α- and β-subunits of cytochrome b559, an essential component 

of the PSII reaction-center complex.  These distance restraints enable us to position Psb28 on the 

cytosolic surface of PSII directly above cytochrome b559 in close proximity to the QB site.  

Protein-protein docking results also support Psb28 binding in this region.  Determination of the 

Psb28 binding site and other biochemical evidence allow us to propose several mechanisms by 

which Psb28 exerts its protective effect on the RC47 intermediate.  This study also shows that 

isotopically-labeled cross-linking with the “mass tags” selection criteria allows confident 

identification of more cross-linked peptides in PSII than has been previously reported.  This 

approach thus holds promise to identify other transient protein-protein interactions in membrane 

protein complexes. 
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Introduction 

Photosystem II (PSII) is a multi-subunit pigment-protein complex embedded in the thylakoid 

membranes of cyanobacteria, algae, and plants.  PSII uses light energy to oxidize water to 

molecular oxygen, simultaneously reducing plastoquinone. Active PSII consists of approximately 

20 protein subunits and multiple light-harvesting and redox-active cofactors (Bricker et al., 2012; 

Suga et al., 2015). 

Owing to demanding electron-transfer chemistry, PSII undergoes frequent oxidative damage, 

necessitating a complex cycle of repair and re-assembly (reviewed in Weisz et al., 2016). The 

assembly occurs stepwise via multiple transient intermediate complexes that are difficult to study 

owing to their low abundance, relatively short lifetimes, and heterogeneity.  Crystal structures of 

the active complex from thermophilic cyanobacteria are available (Umena et al., 2011; Hellmich 

et al., 2014; Suga et al., 2015), but they do not capture the transient interactions of the various 

accessory proteins that bind at other stages of the life-cycle. Nevertheless, significant progress has 

been made in characterizing these intermediates through complementary use of genetic 

modification, biochemical purification and analysis, and mass spectrometry (Nickelsen and 

Rengstl, 2013; Bricker et al., 2015; Heinz et al., 2016).  Many accessory proteins bind exclusively 

to inactive subcomplexes at various stages of the PSII life-cycle, and these proteins are of interest 

for their regulatory roles in PSII assembly and/or repair (Nickelsen and Rengstl., 2013; Järvi et al., 

2015; Heinz et al., 2016).  Because the crystal structures of assembly intermediate complexes have 

not been determined, the binding sites of these accessory proteins are largely unknown.  An 

exception is the Psb27 accessory protein, whose binding site on the lumenal surface of PSII was 

identified using chemical cross-linking and mass spectrometry (Liu et al., 2011a; Cormann et al., 

2016).  This knowledge complements functional studies of Psb27 and provides mechanistic insight 
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into how Psb27 protects PSII assembly intermediates from prematurely acquiring oxygen 

evolution capability (Roose and Pakrasi, 2004; Liu et al., 2011b; Komenda et al., 2012; Liu et al., 

2013).  The lack of comparable binding-site information for other PSII accessory proteins limits 

our understanding of their functions. 

The Psb28 accessory protein was first identified in a proteomic analysis of PSII from 

Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis 6803) (Kashino et al., 2002a), 

and is likely the unidentified 12-kDa protein observed earlier in a cyanobacterial PSII preparation 

(Ikeuchi et al., 1995).  Psb28 is found across a wide range of cyanobacteria, and has homologues 

in higher plants as well, but little is known about its binding site and function (Mabbitt et al., 2014).  

Dobáková et al. (2009) found that Psb28 binds mainly to the monomeric CP43-less PSII assembly 

intermediate, referred to as “RC47”, a finding confirmed subsequently (Boehm et al., 2012; Sakata 

et al., 2013).  Although deletion of the psb28 gene had little physiological effect under typical 

growth conditions (Dobáková et al., 2009; Sakata et al., 2013), its absence impairs PSII recovery 

after photodamage under high light conditions, especially at high temperature (Sakata et al., 2013), 

suggesting a critical role of this protein during increased PSII turnover.  Psb28 is the only known 

extrinsic cyanobacterial PSII protein found on the cytoplasmic surface of PSII (Dobáková et al., 

2009; Nickelsen and Rengstl, 2013; Järvi et al., 2015; Heinz et al., 2016), and it may interact with 

the cytoplasmic surface of CP47 based on the co-migration of these two proteins during 2D-Blue-

Native-SDS-PAGE (Dobáková et al., 2009). 

To identify the Psb28 binding site in PSII, we used an isotopically labeled chemical cross-

linker and mass spectrometry (MS) to capture covalently the protein-protein interactions in PSII 

(Rappsilber, 2011; Sinz, 2014; Leitner et al., 2016).  The isotope encoding allowed us to use an 

on-the-fly precursor-ion selection mechanism that takes advantage of the isotopic “fingerprint” of 
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cross-linked peptides to facilitate identification (Petrotchenko et al., 2014).  Remarkably, Psb28 

cross-linked to PsbE and PsbF, the α- and β-subunits, respectively, of cytochrome b559 (Cyt b559), 

two of the five polypeptides that comprise the core “reaction center” of PSII (Nanba and Satoh, 

1987; Ikeuchi and Inoue, 1988).  Using these cross-links as distance restraints, and supported by 

protein-protein docking results, we generated a Psb28 binding model that shows Psb28 binding on 

the cytoplasmic surface of PSII directly above the heme of Cyt b559 and in close proximity to the 

QB site. On the basis of the binding model, we propose several mechanisms for the protective effect 

of Psb28 on the RC47 assembly intermediate of PSII. 

Results 

Quantification of Psb28 levels in PSII from several mutant strains  

Only approximately one in seven PSII complexes purified from the CP47-His-tagged strain 

(“His47”) contain Psb28 (Fig. 1C, D).  This result is reasonable given that Psb28 is found mainly 

in the RC47 intermediate, and RC47 accounts for approximately 10% of PSII complexes present 

in the wild type cell (Dobáková et al., 2009; Boehm et al., 2012).  To increase the chances of 

detecting Psb28 cross-linking products, we screened PSII complexes for elevated Psb28 content 

from several mutant strains that accumulate assembly intermediates (Fig. 1A).  PSII from the 

ΔpsbO-His47 strain contains the most Psb28 and, therefore, was used in the subsequent 

experiments.  The deletion of psbO in this strain prevents PSII dimerization (Liu et al., 2014), 

allowing the monomeric PSII fraction (ΔO-M) to be isolated by glycerol-gradient 

ultracentrifugation (see “Materials and Methods”) and used in cross-linking.  PsbO binds on the 

lumenal surface of PSII and stabilizes the manganese cluster, the site of water oxidation (Bricker 

et al., 2012).  The ΔpsbO strain still assembles active water-splitting PSII and grows 

photoautotrophically, but the complexes are more susceptible to photodamage and require more 
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Figure 1. (legend follows) 
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Figure 1. Screening of mutant strains for elevated Psb28 content, characterization of the 

ΔpsbO PSII monomer, and quantification of Psb28 content in ΔpsbO PSII.  

A. Comparison of Psb28 content in PSII complexes from the His47 and several different mutant 

strains.  

B. Protein gel comparing PSII subunit composition of the His47 and ΔpsbO PSII monomers. 

C. Immunoblot comparing Psb28 content in the ΔpsbO PSII monomer, the His47 PSII monomer 

and dimer, and a dilution series of Psb28-His purified from E. coli, respectively.  

D. Calibration curve for quantification of Psb28 content in ΔpsbO PSII and His47 PSII using the 

E. coli –purified Psb28 as a standard. 
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Figure 2.  Immunoblot comparing ΔpsbO-PSII before and after cross-linking with 50, 100, 

and 300 molar excess BS3:PSII. 

 

frequent repair than wild-type cells (Burnap et al., 1992).  The elevated level of Psb28 implies an 

increased steady-state concentration of the RC47 complex in this mutant (Dobáková et al., 2009; 

Boehm et al., 2012; Sakata et al., 2013), which is expected as RC47 is a key intermediate in the 

PSII repair cycle (Nickelsen and Rengstl, 2013).   

We quantified the Psb28 content in ΔO-M as well as the His47 PSII monomer and dimer by 

calibrating with known quantities of recombinantly expressed and purified Psb28-His (Fig. 1C, 

D).  Approximately one in three ΔO-M PSII complexes contained Psb28 whereas approximately 

one in seven His47-M and His47-D PSII complexes contained Psb28.  Other studies found Psb28 

mainly in the monomeric RC47 complex (Dobáková et al., 2009; Boehm et al., 2012; Sakata et al., 

2013), whereas we detected approximately equal levels in monomeric and dimeric His47-PSII.  A 

dimeric RC47 complex containing Psb28 was observed, however, in two previous studies (Boehm 

et al., 2012; Sakata et al., 2013) but at lower levels than the monomeric RC47.  This complex may 

form during disassembly, like the dimeric Psb27-containing species (Grasse et al., 2011), implying 
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a role for Psb28 during disassembly as previously proposed (Nowaczyk et al., 2012; Sakata et al., 

2013).  The increased level of dimeric Psb28-containing complexes in our His47-PSII preparation 

compared to that in two previous studies might have arisen from differences in the purification 

conditions. 

Cross-link data analysis 

We subjected the ΔO-M sample to cross-linking with a 1:1 mixture of BS3 cross-linker labeled 

with 12 deuteriums, and its unlabeled analog.  This cross-linker can modify primary amines and 

thus targets lysine residues and protein N-termini (Paramelle et al., 2013), and it gives an isotopic 

doublet in the mass spectrometer to facilitate identification of cross links.  We evaluated the yield 

over a relative molar concentration of cross-linker:PSII between 50 and 300.  We analyzed the 

cross-linked products by SDS-PAGE and immunoblotting using anti-Psb28 antibodies (Fig. 2) and 

found multiple Psb28-containing bands after cross-linking, but not in the non-linked control 

sample, indicating successful cross linking.   

We chose the sample that was cross-linked with 300-molar excess linker:PSII for analysis by 

MS because it showed the highest number and intensity of Psb28-containing cross-linked bands.  

We identified 18 cross-links and 22 mono-linked sites (for which only one side of the cross-linker 

reacted with a protein) (Tables S1 and S2).  The isotopic doublet “fingerprint” of this cross-linker 

(Petrotchenko et al., 2014) enabled highly confident identification of cross-links, removing much 

of the ambiguity that often hinders cross-link analysis (Sinz, 2014)   (described further in 

Supplementary Results and Discussion).    

Using the PSII crystal structure data, we could measure the Cα-Cα distance between the linked 

residues for thirteen of the linked peptides (Table S2).  These distances served as a control to assess 

the quality of the cross-linking reaction and data analysis.  We used 30 Å as an upper Cα-Cα 
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distance threshold for cross-links to be considered consistent with the crystal structure (Hellmich 

et al., 2014), a typical value used for this cross-linker (Walzthoeni et al., 2011; Herzog et al., 2012; 

Fischer et al., 2013; Merkley et al., 2014; Shi et al., 2015; Zelter et al., 2015).  The distance 

distribution of identified cross-links (Fig. S1) was similar to the distributions typically found for 

this cross-linker (Rappsilber, 2011; Herzog et al., 2012; Leitner et al., 2012; Zheng et al., 2013; 

Merkley et al., 2014) and indicates that our cross-linking data are of high quality and not the result 

of perturbation of the native structure of the complex (described further in Supplementary Results 

and Discussion).  

Identification of Psb28 cross-links 

We identified three inter-protein cross-links containing Psb28:  Psb28-K8—PsbE-S2 (Fig. 

3A), Psb28-K8—PsbF-A2 (Fig. 3B), and Psb28-A2—PsbF-A2 (Fig. S2).  PsbE-S2, PsbF-A2, and 

Psb28-A2 are susceptible to modification by BS3 because they are the N-terminal residues of the 

mature form of these proteins following in vivo cleavage of the N-terminal methionine residues 

(confirmed by intact-mass measurement of each of these proteins, see Fig. S3).  We identified a 

cross-link between PsbE-S2 and PsbF-A2 as well, indicative of the proximity of these two residues 

and their ability to each form a cross-link with Psb28-K8.  The mass spectra for these cross-links—

which were not detected in a control, non-linked sample—display the doublet feature characteristic 

of the isotopic mixture of cross-linker used.  Nearly all major fragments in the product-ion spectra 

match predicted peptide fragments, resulting in highly confident identification of these cross-links 

(see Fig. 3 and Supplementary Results and Discussion).  We also identified the mono-linked 

peptide corresponding to each of these cross-linked residues (see Table S1), a valuable cross-check 

since for a given modifiable residue, a mono-link should form more readily than a cross-link.  We 

selected the ΔpsbO-His47 strain for our cross-linking-MS experiments because it accumulates   
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Figure 3A. (legend follows) 
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Figure 3B. (legend follows) 
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Figure 3. Mass spectrometric data showing a cross-link between (A) Psb28-K8 and PsbE-S2 

and (B) Psb28-K8 and PsbF-A2. The MS (precursor-ion) spectra for each cross-link is shown at 

the top of each figure; it displays the isotopic “fingerprint” of a real cross-link: a doublet of peaks 

of equal intensity, shifted from each other by 12 Da.  The two lower spectra in both figures are the 

MS/MS (product-ion) spectra of the light and heavy form of the cross-linked peptide, generated 

after fragmentation of that peptide by higher energy collisional dissociation (HCD).  The MS/MS 

spectra also display the “fingerprint” of a real cross-link: they are essentially identical despite 

originating from different precursor ions, and some cross-linker-containing peaks are shifted by 

+12 Da in the spectrum of the heavy form.  The black notches in between residues in the peptide 

sequence correspond to fragment ions that were observed in the MS/MS spectra of both the light 

and heavy forms (also labeled on the spectra themselves), which taken together, permit confident 

assignment of the spectra to that particular cross-linked peptide.  For additional discussion see 

Supplementary Results and Discussion.    

 

more Psb28 than the other strains we screened.  After identifying the Psb28 cross-links in this 

strain, we searched the MS-1 spectra of cross-linked His47 samples to check for their presence 

there as well, to rule out the possibility that the ΔpsbO mutation led to a non-natural interaction 

between Psb28 and PsbE and PsbF.  We did detect the cross-links in the MS-1 spectra of His47 

samples (Figs. S4-S6), demonstrating that the association of Psb28 to PsbE and PsbF is not an 

artifact of psbO deletion in the ΔpsbO-His47 strain we used.   

Psb28-PSII docking 

To examine possible binding modes of Psb28 to PSII by a method complementary to cross-

linking, we performed protein docking with DOT 2.0 (for details see “Materials and Methods”).  

The top 4000 docked conformations clustered into four spatial groups. One of these clusters 

(“Cluster 1”), which contains 1282 conformations, is on the cytosolic surface of PSII.  Because 

Psb28 binds to the cytosolic surface of PSII (Dobáková et al., 2009), we restricted our analysis to 

the Cluster 1 conformations. Further examination of the top conformations showed that they are 

all localized near the surface above the N-termini of PsbE and PsbF (Fig. S7 and Table S3), 

supporting the cross-linking results by showing this area is a favorable spot for Psb28 binding. 
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Discussion 

Psb28 dissociates from PSII before Psb27 attachment 

In contrast to the other screened PSII mutants, His27-PSII contained almost no Psb28 (Fig. 

1A).  The His27 strain is the only one in which the polyhistidine tag is not on the CP47 protein, 

but on Psb27 instead.  The absence of Psb28 in His27-PSII indicates that Psb28 dissociates from 

PSII before, or concomitant with, binding of Psb27.  This observation is consistent with the 

presence of Psb28 mainly in the RC47 complex (Dobáková et al., 2009; Boehm et al., 2012; Sakata 

et al., 2013), to which CP43, and, therefore, Psb27, have not yet bound (Liu et al., 2011b; Komenda 

et al., 2012; Liu et al., 2013).  Nowaczyk et al. (Nowaczyk et al., 2012) detected both Psb27 and 

Psb28 in a subcomplex purified from the ΔpsbJ mutant of T. elongatus.  This finding implies that 

the absence of PsbJ delays Psb28 dissociation, or it may simply be a result of subcomplex 

heterogeneity in the preparation in which those two proteins were detected. 

The Psb28 binding site 

We found cross-links between Psb28-K8 and the N-termini of PsbE and PsbF, and between 

Psb28-A2 and the N-terminus of PsbF.  Protein-protein docking between Psb28 and the RC47 

subunits of PSII provided independent support that the cytosolic surface in the region above PsbE 

and PsbF is a favorable site for Psb28 binding.  The first eleven residues of PsbF are not resolved 

in the PSII crystal structure, and two of the three Psb28 cross-links are located at the PsbF N-

terminus.  Therefore, we used the earliest resolved residue, PsbF-Y13, as a proxy for PsbF-A2 in 

positioning Psb28 above the cytosolic surface of PsbE and PsbF in a manner consistent with the 

cross-links (Fig. 4).  We positioned Psb28 such that the distance between cross-linked residues is 

within the 30 Å threshold mentioned above.  In our model, the cross-link distances are in fact 

considerably lower (15, 10, and 14 Å for the PsbE—Psb28, PsbF—Psb28-K8, and PsbF—Psb28-
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A2 cross-links, respectively), indicating that these cross-links are self-consistent and represent a 

close interaction between Psb28, PsbE, and PsbF.  In addition to PsbE and PsbF, the model shows 

Psb28 sharing a binding interface with CP47, PsbX, and PsbY, and binding directly above the 

heme of cytochrome b559 and in close proximity to QB (discussed below).  The close association 

of Psb28 and CP47 in our model is consistent with the observation that the two proteins form a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Binding model of Psb28 to RC47 based on cross-linking results.  Psb28 binds on the 

cytosolic surface of PSII sharing an interface with PsbE, PsbF, CP47, PsbX and PsbY.  Black lines 

are shown connecting cross-linked residues (PsbF-Y13 is shown as a proxy for the unresolved 

PsbF-A2).  Cyan- RC47 PSII proteins; yellow, PsbE; blue, PsbF; green, Psb28; purple, CP47; 

silver, PsbX; tan, PsbY; red, Psb28-A2 (upper red residue) and Psb28-K8 (lower red residue); 

yellow, PsbE-A2; violet, PsbF-Y13; orange, heme, non-heme Fe; ochre, QA; gray, QB.  
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stable complex with each other during native-gel electrophoresis (Dobáková et al., 2009; Boehm 

et al., 2012).   

The energetics of the top docked Psb28 conformations (Table S3) show that electrostatic 

interactions dominate hydrophobic interactions as the major force stabilizing the binding of Psb28 

to RC47.  This is consistent with the fact that Psb28 can be removed from PSII membranes by 

washing with 1 M CaCl2, 0.1 M Na2CO3, or 0.1 M NaOH (Dobáková et al., 2009).  Previous work 

identified two Psb28 surface cavities that are mostly formed by highly conserved residues, and it 

was speculated that these cavities may be important for binding of Psb28 to PSII (Yang et al., 

2011).  In our model, one of these cavities is present at the interface of Psb28 and RC47 (Cavity 4 

in Yang et al., 2011).  

Functional implications 

Deletion of the psb28 gene in Synechocystis results in little or no phenotypic difference under 

typical growth conditions (Dobáková et al., 2009; Sakata et al., 2013).  Under high-light 

conditions, however, cells lacking Psb28 reassemble functional PSII after damage at a reduced 

rate compared to wild-type (Sakata et al., 2013).  For the dgdA mutant, in which the RC47 

intermediate is longer-lived owing to impaired CP43 attachment, absence of Psb28 results in a 

further decrease in reassembly of functional PSII after damage (Sakata et al., 2013).  Combined 

with the knowledge that Psb28 binds primarily to the RC47 intermediate (Dobáková et al., 2009; 

Boehm et al., 2012; Sakata et al., 2013), these results show that Psb28 protects the RC47 

intermediate, helping ensure it does not undergo damage before conversion into functional PSII. 
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Under typical growth conditions, the relatively low light levels and short-lived presence of 

RC47 make the protective role of Psb28 not critical (Dobáková et al., 2009; Sakata et al., 2013).  

However, under stress conditions such as high light and/or high temperature—when damage 

occurs more frequently—or under conditions when the RC47 intermediate is longer-lived and is 

more likely to incur damage, the protective role of Psb28 becomes critical (Sakata et al., 2013), 

and in its absence, optimal conversion of RC47 into functional PSII is prevented. 

Cross-linking shows the Psb28 binding site is on the cytosolic surface above the Cyt b559 

subunits PsbE and PsbF.  Our model positions Psb28 approximately 9-12 Å directly above the 

heme of Cyt b559 (16-20 Å from the heme Fe) and 23-27 Å from the redox-active aromatic ring of 

the quinone QB (Fig. 4).  With this information, we propose three ways in which Psb28 might exert 

its protective effect on RC47: 

1) Cyt b559 plays a photo-protective role as part of a secondary electron-transfer pathway within 

PSII.  Cyt b559 can serve as an electron acceptor from QB or the plastoquinone pool under acceptor-

side stress conditions (e.g., high light), and as an electron donor ultimately for P680
+ under donor-

side stress conditions (e.g., before manganese cluster assembly) (Shinopoulos and Brudvig, 2012; 

Chu and Chiu, 2016). Both of these roles limit oxidative damage to PSII by shortening the lifetime 

of reactive electron-transfer intermediates during stress conditions in which the primary redox 

pathway is disrupted.  Cyt b559 exists in different redox forms that permit multiple redox roles 

under different conditions (Shinopoulos and Brudvig, 2012; Chu and Chiu, 2016).  Interconversion 

between these forms is presumably governed by the surrounding protein environment.  Despite 

extensive investigation, the specific conditions that give rise to each form remain unclear.  Given 

the proximity of Psb28 to the heme of Cyt b559, Psb28 may tune the heme’s redox potential in 

RC47, which suffers from both donor-side stress (unassembled manganese cluster) and acceptor-
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side stress (altered QB site) (Carpenter et al., 1990; Diner et al., 1991; Boehm et al., 2012).  

Studying the redox properties of Cyt b559 after purification of the RC47 complex (Boehm et al., 

2012) from a strain containing and a strain lacking Psb28 could determine its effect on Cyt b559. 

2) Experimental evidence suggests that one mechanism of protection of RC47 is an alteration 

in its acceptor-side electron-transfer dynamics—specifically impaired electron transfer from QA to 

QB.  This impaired transfer is part of an established mechanism that protects partially assembled 

PSII complexes from damage (Johnson et al., 1995; Komenda and Masojidek, 1998; Shinopoulos 

and Brudvig, 2012; Cardona et al., 2012).  Boehm and co-workers (2012) purified the RC47 

complex from a strain of Synechocystis 6803 that lacks the CP43 protein, and, therefore, assembles 

PSII complexes only up to the RC47 stage.  They found that the RC47 complex contains an intact 

electron-transfer chain from the primary donor P680 through reduction of QA, but that the final 

transfer step from QA to QB is blocked.  An earlier study on intact cells from the CP43-deletion 

strain of Synechocystis 6803 also demonstrates poor electron transfer from QA to QB (Diner et al., 

1991).  Sharply decreased binding of DCMU to the QB site suggests a structural alteration around 

the QB site (Carpenter et al., 1990; Diner et al., 1991), and this could explain the impaired electron 

transfer.  By binding in close proximity to the QB site, Psb28 may contribute to the structural 

perturbations in this area that protects RC47 by blocking electron transfer from QA to QB.  Studying 

the electron transfer properties of RC47 purified from a strain containing and a strain lacking Psb28 

could probe further this possibility.    

3) Psb28 may prevent binding of the phycobilisome to the RC47 complex.  The phycobilisome 

is a large light-harvesting antenna protein complex that binds on the cytoplasmic surface of PSII 

and supplies it with excitation energy (Mullineaux, 2008; Komenda et al., 2012).  PSII assembly 

intermediates, however, do not contain an active water-splitting complex, and accepting excitation 
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energy in this state leads to photodamage (Shinopoulos and Brudvig, 2012).  Phycobilisome 

binding during assembly, therefore, would be undesirable.  Recently, an electron microscopic 

structure of the phycobilisome associated with PSII (Chang et al., 2015) shows that the 

phycobilisome attaches to PSII by apparently inserting into a cavity on the cytoplasmic surface 

formed in part by PsbE and PsbF (Chang et al., 2015).  Our results position Psb28 just beside this 

cavity (Fig. S8).  Psb28 binding may prevent phycobilisome attachment, minimizing delivery of 

harmful excitation energy to the RC47 intermediate.  Indeed, fluorescence emission spectra from 

the CP43-deletion strain of Synechocystis 6803 (which accumulates RC47) do not indicate coupled 

energy transfer from the phycobilisome to assembled PSII subunits (Shimada et al., 2008).  Similar 

experiments in a strain containing and a strain lacking Psb28 could determine if Psb28 binding is 

responsible for this effect.  

Combining evidence from previous research with the current results positions us to refine a 

model summarizing the steps in PSII assembly (Fig. 5).  Psb28 binding occurs upon formation of 

the RC47 complex, and has been positioned in Fig. 5 in a location consistent with our cross-linking 

results.  Given the significant interface between Psb28 and CP47, PsbX, and PsbY, Psb28 would 

unlikely bind stably before the RC47 stage.  Indeed, Psb28 has not been detected in the preceding 

assembly intermediate, the RC complex (Komenda et al., 2008; Knoppová et al., 2014). Psb28 

dissociation occurs in the next step, prior to binding of Psb27, as indicated by the lack of Psb28 in 

His27-PSII. 

In conclusion, we determined the structural location of Psb28, the only cytoplasmic 

extrinsic protein in PSII, in close proximity to the N-terminal domain of the Cyt b559 protein.  With 

the structural information we have gained, we can propose several mechanisms by which Psb28 

might exert its protective effect on the PSII subcomplex to which it binds, helping ensure optimal 
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conversion of this subcomplex into functional PSII.  This study also shows that the combination 

of isotopically-labeled cross-linking with the “mass tags” selection criteria can identify low-

abundance cross-linked peptides originating from a large membrane protein complex.  Such cross-

links provide useful distance restraints for positioning subunits not present in crystal structures of 

protein complexes.  This approach thus holds promise for identifying other transient protein-

protein interactions, a burgeoning area of interest in biology. 
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Figure 5. A schematic of the PSII assembly process.  This model summarizing previous 

knowledge (Nickelsen and Rengstl, 2013; Liu et al., 2013; Knoppová et al., 2014; Heinz et al., 

2016; Weisz et al., 2016) and our current results.  Individual letters (H, L, T, etc.) and “30” 

represent the PsbH, PsbL, PsbT, Psb30, etc. PSII subunits.  iD1 represents the partially-processed 

“intermediate” form of the D1 protein (Knoppová et al., 2014). RC, “reaction center” complex.  

WOC, “water-oxidizing complex.” 
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Materials and Methods 

 

Generation of the Psb28-His construct 

To generate the Psb28-His construct for expression in E. coli, the Psb28 gene was amplified 

from Synechocystis 6803 genomic DNA using the following primers: forward- 5′-

GACATATGGCTGAAATTCAATTTTCCAAGG-3′; reverse- 5′-

TCGGATCCTTAATGGTGATGGTGATGGTGATGGTGTTCAGATTTGGAAAAACCTAAG

CCATTTTCTGCGCCG-3′.  The forward primer contains an NdeI restriction site and the reverse 

primer contains a BamHI restriction site.  In the reverse primer, sequence encoding an 8x His-tag 

was inserted before the stop codon.  The PCR fragment was cloned into the pET21a vector, and 

then transformed into the BL21(DE3) strain of E. coli for expression of Psb28-His. 

Purification of Psb28-His from E. coli 

The BL21(DE3) strain of E. coli containing the pET21a-Psb28-His vector was grown at 37 

°C with constant shaking in 200 mL of LB medium containing 50 μg/mL ampicillin.  When the 

culture reached OD600 = 0.6, expression of Psb28-His was induced by adding isopropyl β-D-1-

thiogalactopyranoside (IPTG) to a final concentration of 1 mM.  The culture was harvested 3 h 

after induction by centrifugation at 3000 g for 15 min.  Cells were resuspended by vortexing in 10 

mL lysis buffer (20 mM Tris, pH 7.9, 100 mM NaCl, 10 mM imidazole), with 1 μg/mL DNase 

(Sigma, St. Louis, MO), 100 μL protease inhibitor cocktail (Sigma), and 1 mg lysozyme.  After 

allowing cells to rock gently on ice for 15 min, they were lysed by probe sonication on ice for 3 

min at 50% duty cycle, then centrifuged at 31,000g for 15 min at 4 °C.  The supernatant (“lysate”) 

was applied onto a 1 mL pre-packed HisTrap FF column (GE Healthcare, Little Chalfont, 

Buckinghamshire, UK), pre-equilibrated with 10 mL lysis buffer, by dropwise manual injection.  

After collecting the flow-through, the column was washed with 10 mL lysis buffer.  Elution was 
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by manual injection of 10 mL elution buffer (lysis buffer containing 200 mM imidazole).  Ten 1-

mL fractions were collected, and analyzed by SDS-PAGE for Psb28 content.  The most 

concentrated fraction contained 13 mg/mL Psb28 and was used for the subsequent experiments. A 

portion of this fraction was submitted to Cocalico Biologicals (Reamstown, PA) for generation of 

anti-Psb28 antisera in rabbit. 

Cyanobacterial culture and PSII purification 

Generation of the ΔpsbO-His47 (Liu et al., 2014), ΔctpA-His47 (Liu et al., 2011b), 

ΔctpA:Δpsb27-His47 (Liu et al., 2011a), and His27 (Liu et al., 2011b) strains has been reported 

previously.  The HT3 (His47) strain was a kind gift from Dr. Terry Bricker (Louisiana State 

University, Baton Rouge, LA) (Bricker et al., 1998).  Cyanobacterial strains were grown in BG11 

medium at 30 °C under 30 μmol photons m-2·s-1.  The growth media were supplemented with 10 

μg/mL spectinomycin and 5 μg/mL kanamycin (ΔpsbO-His47); 5 mM glucose, 10 μM 3-(3,4-

dichlorophenyl)-1,1-dimethylurea (DCMU), 5 μg/mL kanamycin, and 3 μg/mL erythromycin 

(ΔctpA-His47); 5 mM glucose, 10 μM DCMU, 10 μg/mL chloramphenicol, and 5 μg/mL 

kanamycin (ΔctpA:Δpsb27-His47); and 5 μg/ml gentamicin (His27).  Histidine-tagged PSII 

complexes were purified as described previously (Kashino et al., 2002a) with minor modifications.  

PSII samples were stored in 25% glycerol, 10 mM MgCl2, 5 mM CaCl2, 50 mM MES buffer (pH 

6.0) (RB buffer).  After FPLC purification of ΔpsbO-His47-PSII and His47-PSII, these complexes 

were purified further by glycerol gradient ultracentrifugation (180,000 g, 18 h, 4 °C) using a 5-

30% linear glycerol gradient.  The gradient was made by using stock solutions of 5% and 30% 

glycerol in RB buffer.  PSII samples in RB buffer were diluted to 5% glycerol before 

ultracentrifugation, and 50 or 100 μg Chl a containing samples were loaded in each tube.  PSII 

monomer and dimer represented by their bands were recovered after ultracentrifugation and were 
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concentrated using Vivaspin 500 centrifugal concentrators (100,000 molecular weight cutoff) 

(Vivaproducts, Littleton, MA).  Protein gel electrophoresis and immunoblotting were performed 

as described previously (Kashino et al., 2001; Kashino et al., 2002b).  Immunoblot quantification 

analysis was performed with the ImageQuant TL software package (GE Healthcare, Pittsburgh, 

PA).  

Cross-linking and proteolytic digestion 

PSII samples were cross-linked using unlabeled BS3 (Thermo Fisher Pierce, Rockford, IL) 

or a 1:1 mixture of unlabeled BS3 and BS3 labeled with 12 deuteriums (Creative Molecules, 

Victoria, Canada).  The cross-linker was dissolved in a stock solution of RB buffer.  This solution 

was added to aliquots of PSII samples containing 1 or 2 μg Chl a (in RB buffer after 

ultracentrifugation and concentration) at a cross-linker:PSII molar ratio of 50-300:1, and incubated 

in the dark at room temperature for 50 min.  The reaction was quenched by addition of a solution 

containing Tris (pH 7.5) to 50 mM final concentration.  Salt and detergent were removed from the 

cross-linked samples by precipitation using the 2D-Clean-Up kit (GE Healthcare).  Cross-linked 

protein pellets were resuspended in 20 μL 8 M urea, 50 mM ammonium bicarbonate.  A two-step 

digestion with lysyl endopeptidase (LysC) and trypsin was used to increase final yield of tryptic 

peptides (Leitner et al., 2012).  Lysyl endopeptidase (MS-grade, Wako Chemicals USA, 

Richmond, VA) was added to the protein sample at a 1:50 LysC:protein ratio (weight:weight) and 

the samples were incubated at 37 °C for 2 h.  After 2 h, samples were diluted 1:8 in 50 mM 

ammonium bicarbonate to a final urea concentration of 1 M.  Trypsin (Sigma, St. Louis, MO) was 

added to the samples at a 1:25 trypsin:protein ratio (weight:weight) and the samples were 

incubated at 37 °C overnight.  After digestion, samples were acidified to a final concentration of 

1% formic acid and analyzed by LC-MS/MS. 
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LC-MS/MS 

Aliquots (5-μL) of the peptide samples were loaded onto an Ultimate 3000 Nano LC system 

(Thermo Scientific Dionex, Sunnyvale, CA) attached in-line to a Q Exactive Plus mass 

spectrometer (Thermo Fisher, Waltham, MA).  Peptide samples initially flowed through a guard 

column (Acclaim PepMap100, 100 μm × 2 cm, C18, 5 μm, 100 Å; Thermo Scientific Dionex) in 

Solvent A (water with 0.1% formic acid) and were separated on a C18 reversed-phase column 

(Magic, 0.075 mm ×150 mm, 5 μm, 120 Å, Michrom Bioresources, Inc., Auburn, CA) packed in 

house, at 4.5 μL/min. Peptides were eluted using a linear 90-min gradient from 5-95% solvent B 

(80% acetonitrile, 20% water, 0.1% formic acid), followed by a 10-min hold at 95% solvent B.  

Eluted samples were flowed directly into the mass spectrometer via a PicoView Nanospray Source 

(PV550, New Objective, Inc., Woburn, MA) with a spray voltage of 1.8 kV. The instrument was 

operated in positive-ion mode with a scan range from m/z 380-1500.  Full mass spectra were 

acquired at 70,000 resolving power for ions of m/z 200, with automatic gain control set at 3 × 106 

ions and a maximal injection time of 200 ms.  Data-dependent product-ion spectra were acquired 

at 17,500 mass resolving power for ions of m/z 200, with automatic gain control set at 1 × 105 ions 

and a maximal injection time of 100 ms.  The top 15 precursor ions were fragmented by HCD with 

an isolation window of 3.0 m/z and normalized collision energy of 30%.  For samples run with the 

“mass tags” feature enabled (Petrotchenko et al., 2014), only precursor ion pairs with a mass-to-

charge shift selection criteria of ±6.03762, ±4.02508, ±3.01881, ±2.41505, ±2.01254, or ±1.72503 

Da, corresponding to peptide charge states of 2-7, respectively, were selected for fragmentation.  

Up to the ten top precursor ions matching these criteria were fragmented by HCD with an isolation 

window of 3.0 m/z and normalized collision energy of 25%.  Non-cross-linked samples were 

analyzed excluding charge states other than 2-7, and each cross-linked sample was analyzed in 
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duplicate or triplicate, in runs that excluded charge states other than either 2-7, 3-7, and 4-7.  Data 

presented in Figs. S2 and the upper spectra in Figs. S4-S6 were acquired on an LTQ-Orbitrap XL 

(Thermo Fisher, Waltham, MA), as described previously (Liu et al., 2014), with the “mass tags” 

feature enabled as described above.   

Cross-link data analysis 

The raw LC-MS/MS files were searched for proteins in the Synechocystis proteome using 

PEAKS (ver. 7.0, Bioinformatics Solutions, Inc., Waterloo, ON, Canada).  Peptides were identified 

with a 0.1% false discovery rate.  Mono-linked peptides were identified by PEAKS, as well as by 

ICC-CLASS described below, with the light and heavy forms of the cross-linker as user-defined 

modifications (+156.0079 and +168.1540 Da, respectively).  The identified proteins served as the 

database for cross-link detection using the ICC-CLASS software suite (Petrotchenko et al., 2010; 

Petrotchenko et al., 2014).  Raw LC-MS/MS files were converted to MGF format using Proteome 

Discoverer (Thermo Scientific) and to Xtract text files using the Xcalibur software File Converter 

Tool (Thermo Scientific).  Isotopic doublets were detected in the MS data with the ICC-CLASS 

programs, and cross-link candidates were identified with DXMSMSMatchESI (Petrotchenko et 

al., 2010; Petrotchenko et al., 2014).  Search settings were as follows: Crosslinker- DSS; Mip-

137.06025; Mclrest1- 0 Da; Mclrest2- 0 Da; Digest sites- KR; Including CL site- No; Missed 

Digests- up to 2; CL sites- K; Dead-end peptides only- No; Intra-peptide only- No; Systematic 

error- 0 ppm; Mass tolerance- ± 10 ppm; Precursor tolerance- ± 10 ppm; Retention time tolerance- 

± 2 s; Fragments tolerance- ± 10-500 ppm.  After identification of cross-links using these search 

conditions, the search tolerance was expanded to identify cross-links that may have been missed 

initially by including CL site- Yes; Missed digests- up to 4.  Product-ion spectra of candidate cross-

links were inspected manually to verify the identification, using the predicted fragment ion masses 
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in DXMSMSMatchESI or the PeptidesCL program (www.creativemolecules.com).  Additional 

cross-link data analysis was performed using Protein Prospector (Trnka et al., 2014; Chalkley et 

al., 2014). 

Intact protein LC-MS 

His47-PSII samples were purified as described above, and a sample containing 1.2 μg Chl 

a was precipitated using the 2D Clean-up Kit (GE Healthcare).  The sample was resuspended in 

250 μL 90% formic acid and spun down to remove insoluble material.  The supernatant was 

filtered, and a portion (containing ~1.6 μg protein) was injected onto a PLRP-S column (Agilent, 

2.1x150mm, 300Å pore size) controlled by an Agilent 1200 HPLC. Buffer A, Buffer B, and the 

LC gradient were described previously (Thangaraj et al., 2010).  Eluted proteins were analyzed 

online by a Maxis quadrupole-time-of-flight 4G mass spectrometer (Bruker Daltonics, Billerica, 

MA).  

Protein-protein docking 

We used the DOT 2.0 docking program (Roberts et al., 2013) to predict the binding 

interface of PSII (PDB ID: 4PJ0) (Hellmich et al., 2014)) and Psb28 (PDB ID: 2KVO) (Yang et 

al., 2011) with the 3D structures obtained from Protein Data Bank.  Because Psb28 is known to 

bind to the RC47 subcomplex (Dobáková et al., 2009; Boehm et al., 2012; Sakata et al., 2013), the 

subunits that are not components of this assembly intermediate (CP43, PsbJ, PsbK, PsbO, PsbU, 

PsbV, Psb30, and PsbZ) (Boehm et al., 2012) were removed from the structure prior to docking. 

The DOT program uses convolution methods to perform a systematic rigid-body translational and 

rotational search. The van der Waals and electrostatic energies of both the molecules were mapped 

onto grids to predict the interactions between two macromolecules. One of the two molecules was 

rotated and translated around the other to predict the energetically favorable complexes. The Psb28 

http://www.creativemolecules.com/
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molecule was selected as the moving molecule and used a cubic grid of 192 Å on a side with 1 Å 

spacing between points for the translational search. A set of 54,000 rotational orientations, with a 

reduced over-sampling at the corners of the cubical grid, provided a resolution of 6° for the 

rotational search. Combined translational and rotational search resulted in over 382 billion 

configurations (1923 * 54,000) of the PSII and Psb28 molecules. The top 4,000 docked 

conformations based on calculated interaction energy were saved and analyzed. These complexes 

formed four distinct clusters of which three were located in the membrane-spanning regions or on 

the lumenal surface of PSII, making these clusters physiologically irrelevant; they were not 

considered further. The cluster localized at the cytosolic surface of PSII (Cluster 1) was composed 

of 1,282 Psb28 conformations.  The top 100 conformations from Cluster 1 were investigated 

further as described in the Results section.  Analysis of the docked conformations was conducted 

in VMD (Humphrey et al., 1996). 
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Supplementary Results and Discussion 

Isotope-labeled cross-linker enabled confident cross-link identification 

Cross-link data analysis is notoriously difficult owing to the large number of potential cross-

linked peptides that might have formed and that must be included in the database search.  This 

number rises roughly with the square of the number of proteins in the database.  Distinguishing 

real cross-linked peptides from false positives thus becomes a key challenge.  Our use of a 1:1 

mixture of labeled and unlabeled cross-linker (Müller et al., 2001; Pearson et al., 2002; 

Petrotchenko et al., 2014), based on a strategy described in (Müller et al., 2001), addressed this 

challenge by providing an easily-observed “fingerprint” in the liquid chromatogram, MS spectra, 

and MS/MS spectra indicating a real cross-link (see Figure 3).  In the chromatogram, the light and 

heavy forms eluted off the LC column within ~10 s of each other; in the MS spectra, the light and 

heavy forms occurred as characteristic doublets with a 12 Da peak shift; and in the MS/MS spectra,  

the light and heavy forms were identical, except that product ions containing the cross-linker 

molecule occurred with +12 Da shift for the heavy form.  This shift in the MS/MS spectra also 

helped determine the sequence of product ions, by revealing whether or not a particular product 

ion contained the cross-linker molecule or not.  All cross-linked peptides presented in this study 

displayed all of the characteristic fingerprints, and nearly all major product ions matched ones 

predicted for that peptide, resulting in highly confident cross-link identification. 

       The characteristic doublet observed in MS spectra of real cross-links addressed another key 

challenge in cross-link identification, namely that there tend to be many more non-linked peptides 

than cross-linked peptides present in a typical protein digest after cross-linking.  With the typical 

“highest-abundance ion” criterion for selecting ions for fragmentation by MS/MS (a prerequisite 

for peptide sequence determination), many more non-linked peptides are selected than cross-linked 

peptides.  This is a diversion of precious instrument time towards sequencing uninformative 
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peptides.  Enrichment of cross-linked peptides before LC-MS/MS helps, and chromatographic 

(Leitner et al., 2012; Fritzsche et al., 2012; Buncherd et al., 2014) or affinity (Chu et al., 2006; 

Kang et al., 2009; Petrotchenko et al., 2011; Paramelle et al., 2013) enrichment has been used 

successfully for this purpose.  In this study, we performed effective enrichment of cross-linked 

peptides during MS using the “mass tags” feature of the instrument to screen each mass spectrum 

for isotopic doublets on-the-fly, and select only those doublets for fragmentation, as described by 

the Borchers group (Petrotchenko et al., 2014).  This strategy permitted the instrument to ignore 

most uninformative non-linked peptides.  Using this approach we identified more PSII cross-links 

than we and others have found using the same cross-linker without this feature enabled (Cormann 

et al., 2016). 

Evaluation of cross-link data quality 

As mentioned in the “Results,” we measured the distance between the Cα’s of linked residues 

in the PSII crystal structure (Hellmich et al., 2014) to assess data quality, using a 30 Å upper 

threshold for cross-links to be considered consistent with the crystal structure (Fig. S1, Table S2).  

This value was obtained as follows: with a lysine side chain distance of 6.5 Å and cross-linker arm 

length of 11.4 Å, the C-α’s of linked residues should be within 24.4 Å of each other in the crystal 

structure.  An additional allowance of several angstroms is typically made to account for protein 

flexibility, and a 30 Å threshold is used commonly (Walzthoeni et al., 2011; Herzog et al., 2012; 

Fischer et al., 2013; Shi et al., 2015; Zelter et al., 2015).  A recent survey study (Merkley et al., 

2014) confirmed this value to be appropriate. 

Of the thirteen measurable cross-link distances, eleven (85%) were less than 30 Å (Fig. S1, 

Table S2), which matches well with the 89% value obtained in the recent large-scale study 

(Merkley et al., 2014) of cross-links found in the XLdb (Kahraman et al., 2013). The remaining 
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two cross-links had distances of 34 and 38 Å.  In both of these cases, at least one of the two linked 

residues lies on a flexible loop of the protein, which could facilitate cross-linking over the slightly 

larger distance between the sites. 
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Table S1. Mono-linked peptides identified in this study. 

  

 

 

  

 [M+H]+ Charge Protein Peptide sequence Linked 

residue 

1 3872.7867 +4 PsbA ETTEVESQNYGYKFGQEEETYNIVAAHGYFG

R 

K238 

2 947.5002 +2 PsbB GLPWYR G2 (N-term) 

3 919.5618 +2 PsbB LYKALR K227 

4 2045.9609 +3 PsbB YQWDKGYFQEEIQR K277 

5 2628.2678 +3 PsbB TGAMNSGDGIAQEWIGHPIFKDK K347 

6 3752.8297 +3 PsbB SESKFSVEQTGVTVSFYGGALDGQTFSNPSDV

KK 

K389 

7 3320.6418 +3 PsbB FSVEQTGVTVSFYGGALDGQTFSNPSDVKK K418 

8 2636.2192 +3 PsbB KAQLGEGFDFDTETFNSDGVFR K423 

9 3137.5638 +3 PsbB DVFAGVDPGLEEQVEFGVFAKVGDLSTR K497 

10 2174.1668 +3 PsbC LGANIASAQGPTGLGKYLMR K338 

11 2302.2587 +3 PsbC GPWLEPLRGPNGLDLDKLR K378 

12 1361.7065 +2 PsbC AAAAGFEKGIDR K456 

13 1979.0105 +3 PsbE SGTTGERPFSDIVTSIR S2 (N-term) 

14 2102.0938 +3 PsbF ATQNPNQPVTYPIFTVR A2 (N-term) 

15 1730.9315 +3 PsbH LGDILRPLNSEYGK K20 

16 3440.7029 +3 Psb27 KGDAGGLKSFTTMQTALNSLAGYYTSYGAR K56, K63 

17 980.6027 +2 Psb27 PIPEKLK K90 

18 1264.7966 +3 Psb27 PIPEKLKKR K92 

19 978.5148 +2 Psb28 AEIQFSK A2 (N-term) 

20 2115.1369 +3 Psb28 AEIQFSKGVAETVVPEVR K8 

21 2272.1636 +3 Psb28 NGQSGMAKFYFLEPTILAK K32 

22 2968.5532 +3 Psb28 GKFINGRPTAIEATVILNSQPEWDR K69 
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The Psb28-PsbE and Psb28-PsbF cross-links, as well as the cross-linked residues for each entry, 

are shown in red.  All distances are linear (Euclidean) distances between the C-α’s of the two 

linked residues, as measured in PDB 4PJ0 (PSII), 2KND (Psb27) and 2KVO (Psb28) with 

adjustments for the following entries: 

2, 10- PDB 3WU2 was used because PsbI-K35-C-α is not resolved in PDB 4PJ0. 

3-PsbB-K497 corresponds to K498 in 4PJ0, so that residue was used for distance measurement. 

5,6-PsbB-K419 corresponds to S419 in PDB 4PJ0, and that residue was used for distance 

measurement. 

8,9- PsbL-M1 was not resolved in PDB 4PJ0, but was resolved in PDB 3WU2, so 3WU2 was used 

instead for these distance measurements. 

10-PsbC-K456 corresponds to K457 in PDB 4PJ0, and that residue was used for distance 

measurement. 



  

111 
 

  



  

112 
 

 

 

1Electrostatic energy 
2van der Waals energy 
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Figure S1. Distribution of linear (Euclidean) distances between C-α’s of cross-linked residues in 

ΔpsbO-PSII. 
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Figure S2. Mass spectrometric data showing a cross-link between Psb28-A2 and PsbF-A2.  

See Fig. 3 legend for information on interpreting these spectra.   
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Figure S3. Intact-mass spectra of PsbE, PsbF, and Psb28. These spectra show that the N-

terminal methionine has been cleaved for all three proteins, rendering PsbE-S2, PsbF-A2, and 

Psb28-A2 as the N-terminal residues of the mature proteins.  Theoretical mass spectra of each 

protein are shown for comparison.  Mass accuracy of 8, 11, and 10 ppm (within 0.1 Da) was 

achieved for PsbE, and PsbF, and Psb28, respectively. 
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Fig. S4. PsbE-Psb28 cross-link detected in His47 sample. The PsbE-Psb28 cross-link identified 

in the ΔpsbO-His47 strain of Synechocystis 6803 used in this study (lower spectrum), was also 

detected in the His47 strain (wild-type with a polyhistidine tag on the CP47 protein) (upper 

spectrum, 3 ppm MS-1 accuracy).  This demonstrates that the association between Psb28 and PsbE 

we describe is not an artifact of the absence of psbO.  The upper spectrum reflects a technical 

replicate experiment in which non-isotope-encoded BS3 was used.  
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Fig. S5. PsbF-Psb28 cross-link detected in His47 sample.The PsbF-Psb28 cross-link identified 

in the ΔpsbO-His47 strain of Synechocystis 6803 used in this study (lower spectrum), was also 

detected in the His47 strain (wild-type with a polyhistidine tag on the CP47 protein) (upper 

spectrum, 1 ppm MS-1 accuracy).  This demonstrates that the association between Psb28 and PsbF 

we describe is not an artifact of the absence of psbO.  The upper spectrum reflects a technical 

replicate experiment in which non-isotope-encoded BS3 was used (the same LC-MS/MS 

experiment from which the upper spectrum in Fig. S4 was found). 
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Fig. S6. Isotope-encoded PsbF-Psb28 cross-link detected in His47 sample.  Same result as Fig. 

S5, with the upper spectrum demonstrating that the MS-1 spectrum of the PsbF-Psb28 cross-link 

was detected in the His47 sample (2 ppm mass accuracy), but in this figure the upper spectrum 

reflects a technical replicate experiment in which isotope-encoded BS3 was used.   
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Figure S7. Top docked conformations of Psb28 to RC47. The top 100 Cluster-1 conformations 

show Psb28 binding to the RC47 complex on the cytosolic surface above PsbE (yellow) and PsbF 

(blue).  PsbE-A2 and PsbF-Y13 are shown.  PsbF-Y13 is actually obscured behind part of the 

Psb28 cloud, but its position has been brought to the fore in this image for clarity.    
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Figure S8. Psb28 binding above the PSII cytosolic-surface cavity. In our model Psb28 binds 

just beside the cavity on the cytosolic surface of PSII (shown by arrows) that is the site of 

phycobilisome attachment to PSII (Chang et al., 2015). Green, Psb28-Conformation 1; yellow, 

PsbE; Cyan, RC47 proteins. 
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Chapter 3 

Oxidative modifications of PSII detected by mass spectrometry  
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Summary 

 Photosystem II undergoes frequent light-induced damage, prompting an intricate cycle of 

repair and reassembly.  It is known that PSII can produce reactive oxygen species (ROS) by 

reaction of molecular oxygen with redox-active cofactors, and these ROS may be responsible for 

the observed PSII damage.  This study uses high-resolution tandem MS to identify oxidative 

modifications found on the PSII proteins D1, D2, and CP43.  It was found that 18 residues were 

modified on the cytosolic side of PSII, and 42 were modified on the lumenal side.  Of the 18 

cytosolic-side residues, eight cluster around the redox-active metal centers QA or QB.  Only three 

of the 18 residues are buried in the protein complex, but all three are within 8 Å of QA.  Our results 

suggest that QA and QB are sources of ROS, which is consistent with previous findings, and that 

the surrounding protein residues can be oxidized in a light-dependent manner.  The 42 lumen-side 

residues cluster mainly into two nearly continuous, roughly linear “arm” formations, both leading 

from the Mn4Ca cluster all the way to the surface of PSII.  These two formations appear to track 

pathways of travel for oxygen/ROS to leave PSII; as has been recognized in the past, such 

pathways would be a valuable mechanism for minimizing overall ROS damage to the complex. 

Introduction 

 Photosystem II (PSII) is a membrane-protein complex found in the thylakoid membrane of 

organisms that perform oxygenic photosynthesis.  Fully assembled PSII consists of approximately 

twenty protein subunits and multiple redox-active cofactors that allow PSII to function as a catalyst 

for the light-driven oxidation of water and concomitant reduction of plastoquinone.  This 

conversion of sunlight to chemical energy is critical for sustaining nearly all life on Earth, but it is 

a taxing reaction for the PSII complex itself.  PSII undergoes frequent photo-induced damage, 
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prompting an intricate cycle of repair and reassembly (Nickelsen and Rengstl, 2013; see chapter 1 

for a description of the PSII life-cycle).      

 The remarkable water-splitting reaction requires formation of the highest-potential (~1.25 

V) species in all of biology, P680
+ (Barber and Andersson, 1992; Grabolle and Dau, 2005).  The 

multiple redox cofactors in the electron transfer chain of PSII react with widely varying kinetics, 

providing opportunity for reaction with molecular oxygen (a byproduct of water oxidation) and 

formation of reactive oxygen species (ROS) such as H2O2, O2˙-, and OH˙ (Pospíšil, 2009).  In 

addition, charge recombination reactions can produce triplet chlorophyll states that can react with 

molecular oxygen to produce ROS.  For reviews of these processes, see Krieger-Liszkay et al. 

(2008) and Pospíšil (2009).  Oxidative damage of PSII residues by reaction with ROS is one of the 

major molecular mechanisms proposed as the source of PSII photodamage (Vass and Cser, 2009; 

Takahashi and Badger, 2011; Vass, 2012).     

 Modern high-resolution protein mass spectrometry allows a detailed characterization of 

oxidative modifications on PSII, although relatively few studies have explored this topic in depth. 

In an early MS study on pea PSII, Barber and co-workers (Sharma et al., 1997) noticed that D1 

and D2 peptides near predicted metal cofactor sites were preferentially oxidized compared to other 

peptides, but the exact oxidized residues could not be determined.  Barry and co-workers (Dreaden 

et al., 2011; Kasson et al., 2012) found that spinach CP43-W365 and D1-W317 are oxidized to N-

formylkynurenine in a light-induced manner, and that these modifications are correlated with 

decreased oxygen evolution.  These two residues are located 17 and 14 Å, respectively, from the 

Mn4Ca cluster. 

 Using tandem MS, Bricker and co-workers (Frankel et al., 2012; Frankel et al., 2013b) 

characterized the oxidative modifications found in spinach PSII.  Their results are discussed further 
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below, but they found numerous oxidized residues near the Mn4Ca cluster and the redox-active QA 

and QB metal centers, as well as other oxidized residues that were mostly surface-exposed.  Based 

on their results, they proposed the existence of an oxygen/ROS exit channel involving CP43 

residues near the Mn4Ca cluster, though they did not have evidence that it leads all the way to the 

surface of PSII.  A channel in that area had not previously been identified in computational studies 

(Murray and Barber, 2007; Ho and Styring, 2008; Gabdulkhakov et al., 2009). 

 In this study, we used tandem MS to characterize the oxidative modifications present in 

PSII from Synechocystis 6803.  We sought to explore the hypothesis that residues near redox-

active metal centers are particularly susceptible to oxidative modification.  In addition, we 

compared the results for light-incubated and dark-incubated samples, to investigate the effect of 

light exposure on oxidative modifications to PSII.  Our results support the idea that light exposure 

leads to oxidative damage of PSII residues, particularly those in close proximity to redox active 

centers.  Our results also describe two pathways of ROS travel all the way from the Mn4Ca cluster 

to the surface of PSII.  

Results and Discussion 

 In analyzing our MS data, we focused on the D1, D2, and CP43 proteins since these 

proteins are most closely associated with the Mn4Ca cluster, QA, and QB, which have been 

previously identified as likely sites of ROS generation (Frankel et al., 2012; Frankel et al., 2013b).  

We obtained 35%, 37%, and 46% sequence coverage of the D1, D2, and CP43 proteins, 

respectively.  Our coverage is appreciably higher than has been typically reported for these proteins 

(Nakamura et al., 2004; Aro et al., 2005; Liu et al., 2013a,b), including in the study of oxidative 

modifications in higher plant PSII by Bricker and co-workers (Frankel et al., 2013a), in which 

24%, 27%, and 26% coverage was reported for D1, D2, and CP43, respectively.  Our higher 
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coverage likely can be attributed to the increased sensitivity and speed of the Q-Exactive Plus (QE) 

mass spectrometer we employed, compared to the LTQ-FTICR, earlier Orbitrap, or MALDI-TOF 

instruments used previously.  The high mass accuracy (~0.02 Da) of MS/MS spectra recorded by 

the QE enabled highly confident peptide identification and residue-level localization of PTMs, to 

an extent not possible on earlier instruments lacking high mass-accuracy MS/MS.  All of the 

oxidative modifications presented below were localized unambiguously to the single residue 

reported.  Several example MS/MS spectra are shown in Fig. 1 to indicate the quality of the data 

obtained in this study.  See Table 1 for a list of the types of oxidative modifications included in 

the searches.   

 A total of 472 residues on D1, D2, and CP43 were covered by MS, and oxidative 

modifications were identified on 60 (13%) (Table 2).  Of these 60 modified residues, 22 were 

detected only in the light-incubated samples (while only five were detected in the dark-incubated 

samples but not in the light-incubated samples).  This finding supports the idea that PSII 

photochemistry leads to oxidative damage of its protein components.  Of all the PSII proteins, D1 

is believed to be the prime site of photodamage (Nickelsen and Rengstl, 2013) and as a result is 

turned over the fastest (Yao et al., 2012).  Vermaas and co-workers found that in Synechocystis, 

D1, D2, and CP43 have increasing half-lives of <1, 3.3 ±1, and 6.5 ± 1.5 h, respectively (Yao et 

al., 2012), with a longer half-life presumably reflecting a lower damage rate.  Matching this trend, 

D1 showed the most dramatic response to light incubation, with a 3.3-fold increase in number of 

oxidized residues detected after light incubation, followed by D2 (2-fold increase), followed by 

CP43 (1.2-fold increase) (Table 2). 
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Figure 1A. (legend follows) 
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B. 

 

Figure 1B. (legend follows) 
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C. 

 

 

Figure 1C. (legend follows) 
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D. 

 
Figure 1D. (legend follows) 
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Figure 1. Examples of MS/MS spectra detected that identify oxidative modifications of PSII 

residues. 

The fragment maps and corresponding labeled b- and y-ions show the excellent fragmentation 

series obtained at high mass accuracy, which allowed highly confident peptide identification and 

unambiguous residue-level localization of the oxidative modification.  Lower-case lettering below 

and in the fragment map of each spectrum indicates the site of oxidation.  

A. MS/MS spectra of the oxidized CP43 peptide 362GPwLEPLRGPNGLDLD378K (top) and the 

unmodified form of the peptide (bottom).  The oxidation (+15.9949 Da) was localized to 364W.  

Note that 372N contains the common deamidation modification (+0.9840 Da) in both spectra. 

B.  MS/MS spectra of the oxidized D2 peptide 327AWmAPQDQPHENFIFPEEVLP348R (top) and 

the unmodified form of the peptide (bottom).  The oxidation (+15.9949 Da) was localized to 329M. 

C. MS/MS spectra of the oxidized D1 peptide 313VIGTwADVLN323R (top) and the unmodified 

form of the peptide (bottom).  The +3.9949 Da modification was identified as an oxidation of 317W 

to kynurenin. 

D. MS/MS spectra of the oxidized D1 peptide 239FGQEEETYNIVAAHGYFG257r (top) and the 

unmodified form of the peptide (bottom).  The +13.9793 Da modification was identified as 

carbonylation of 257R.  Note that although the fragmentation pattern appears to localize the 

modification only to one of 255F, 256G, or 257R, the latter residue is the only one susceptible to this 

modification (see Table 1). 
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Table 1. Oxidative modifications included as variable modifications in the MS database 

searches. Based on Renzone et al., 2007. 

 

Oxidative 

modification 

Abbreviation Mass 

change 

(Da) 

Modifiable residues 

    

Methionine 

aldehyde 

mal -32.0085 M 

Decarboxylation dcar -30.0105 D,E 

Cysteine 

hydroxylation 

cysh -15.9772 C 

Serine, threonine 

carbonylation 

stcb -2.0157 S,T 

Tryptophan to 

kynurenine 

kyn 3.9949 W 

Tryptophan to 

oxolactone 

oxol 13.9793 W 

Carbonylation carb 13.9793 E,I,K,L,P,Q,R,V 

General oxidation go 15.9949 A,D,E,F,H,I,K,L,M,N, 

P,Q,R,S,T,V,W,Y 

Tryptophan to 

hydroxykynurenine 

hkyn 19.9898 W 

Dihydroxylation dihy 31.9898 C,F,K,P,R,W,Y 

Methionine sulfone msul 31.9898 M 

Trihydroxylation trih 47.9847 F,W,Y 
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Table 2. Oxidative modifications of PSII detected in this study. 

Residue Metal 

center 

Dist. to  

metal 

center 

(Å) 

Ox. 

mod.a 

B/ 

SEb 

 Residue Metal 

center 

Dist. to 

metal  

center  

(Å) 

Ox. 

moda 

B/ 

SEb 

 

            

D1      CP43      

Y235  QA 17 go SE * M21c - - go -  

V249 QB 7 carb SE * D26 QB 28 dcar SE  

R257 QB 10 carb SE * S29 QB 30 stcb SE * 

Y262 QB 9 go SE * W34 QB 23 kyn SE  

T316 OEC 25 stcb B * W35 QB 22 kyn SE  

W317 OEC 23 kyn B  M80 OEC 27 go SE  

V330 OEC 9 carb B  W150 QA 36 go SE * 

M331 OEC 9 go B  T187 OEC 28 stcb B  

H332 OEC 2 go B * W188 OEC 29 dihy SE  

E333 OEC 6 carb B * T199 OEC 42 stcb SE  

      S329 OEC 24 stcb B * 

D2      L336 OEC 16 go B  

W14 QB 35 go SE * F350 OEC 14 go B  

W21 QB 25 dihy SE * E353 OEC 6 carb B * 

T221 QA 8 stcb B  T354 OEC 8 go B  

T238 QB 12 stcb SE  M355 OEC 10 go B  

S245 QA 8 go B * W358 OEC 14 go SE  

M246 QA 7 go SE  W364 OEC 23 go B  

W253 QA 5 dihy B * E366 OEC 24 dcar SE  

F314 OEC 12 go B * P371 OEC 28 dihy SE  

Y315 OEC 15 go B * P385 OEC 28 go SE * 

M325 OEC 15 go B  W386 OEC 27 kyn SE  

R326 OEC 19 carb B  E393 OEC 20 carb B  

A327 OEC 19 go B * M395 OEC 14 go B  

W328 OEC 17 kyn SE  T396 OEC 16 stcb B  

M329 OEC 19 go B  S402 OEC 11 stcb B  

A330 OEC 22 go B * L403 OEC 18 carb B  

P331 OEC 24 carb SE  S405 OEC 19 stcb B  

Q332 OEC 24 carb SE * T411 OEC 12 stcb B  

D333 OEC 24 dcar SE  M468 QA 18 go SE  

P335 OEC 29 go SE        

E337 OEC 30 go SE *       

Green, nearest to QA site; purple, nearest to QB site; red, nearest to Mn4Ca cluster (OEC)  

* only detected in light-exposed sample  

a Ox. mod., oxidative modification. For many residues, multiple types of oxidative modifications 

were observed, though only one type is listed for each residue. 

b B/SE, buried/solvent-exposed.   

 c CP43-M21 was not resolved in the PSII crystal structure (PDB 3WU2)  
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The oxidized residues were mapped onto the 1.9 Å crystal structure of PSII from T. vulcanus (PDB 

3WU2) (Fig. 2).  This comparison is enabled by the extremely high degree of conservation between 

PSII protein sequences of Synechocystis and T. vulcanus (and in fact across all oxygenic 

photosynthetic organisms).  The D1, D2, and CP43 proteins of these two organisms share 86%, 

90%, and 87% sequence identity, and 94%, 99%, and 94% sequence similarity, respectively.  Of 

the 60 oxidized residues, 18 were found on the cytosolic side of PSII, and 42 were found on the 

lumenal side.  These two groups of oxidized residues will be considered separately. 

Cytosolic-side oxidized residues 

 In order to be oxidized, a residue must have been exposed to ROS.  As has been pointed 

out (Frankel et al., 2012; Frankel et al., 2013a), it is reasonable that surface-exposed residues could 

be oxidized by ROS in the bulk solvent, but buried oxidized residues should reflect the location of 

ROS production within the complex.  Of the 18 cytosolic-side oxidized residues we detected (Fig. 

3A), three are buried and 14 are surface-exposed (one, CP43-M21, is not resolved in the crystal 

structure, but based on its position is very likely to also be surface-exposed) (Table 2).  

Interestingly, each of the three buried oxidized residues (D2-T221, S245, and W253) are located 

in the immediate vicinity (5-8 Å) of QA, which, like QB, is a metal center that is a likely source of 

ROS production (Frankel et al., 2013b).  Five additional residues located in the vicinity (within 15 

Å)  of QA or QB were found to be oxidized as well.  Overall, eight of the 18 cytosolic-side oxidized 

residues are located within 15 Å of QA or QB (Fig. 3B), supporting the idea that these redox-active 

metal centers are sites of ROS production. 

 Bricker and co-workers (Frankel et al., 2013b) detected oxidized residues by MS in PSII 

from spinach, and we compared their results with ours.  The results are quite complementary; the 

Bricker group detected three oxidized residues within 15 Å of QA (D1-F239, Q241, and E242),  
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Figure 2. Residues with oxidative modifications detected in this study.  

The modified residues on D1, D2, and CP43 were mapped onto the 1.9 Å crystal structure of PSII 

from T. vulcanus (PDB 3WU2).  Red- modified residues on the lumenal side of PSII; green- 

modified residues on the cytosolic side of PSII, in the vicinity of QA; purple- modified residues on 

the cytosolic side of PSII, in the vicinity of QB. 
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Figure 3. (legend follows) 
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Figure 3. Cytosolic-side oxidative modifications detected in this study. 

Color scheme throughout figure: Black, QA; blue, QB; orange, non-heme iron; purple, oxidized 

residues detected nearer to QB than QA; green, oxidized residues detected nearer to QA than QB. 

A. Overview of the 18 cytosolic-side oxidized residues detected in this study.   

B. View of just the oxidized residues within 15 Å of QA or QB detected in this study. 

C. Same residues displayed as in B, with the addition of the cytosolic-side oxidized residues 

detected in Frankel et al. (2012).  Cyan, residues only detected in Frankel et al. (2012); yellow, 

residues detected in both studies. 

 

and one within 15 Å of QB (D2-P237), that were not detected in the current study.  Conversely, 

the current study detected three oxidized residues within 15 Å of QA (D2-T221, S245, and W253) 

and three within 15 Å of QB (D1-V249, R257, and Y262) that were not detected by the Bricker 

group. One oxidized residue in this vicinity of QA (D2-M246), and one in that of QB (D2-T238), 

were detected in both studies.  Overall the two studies show that the residues near QA and QB are 

particularly susceptible to oxidative modification (Fig. 3C).  Notably, none of the oxidized residues 

in this vicinity detected by the Bricker group are buried beneath the protein surface, while three 

detected in our study are.  Our study thus strengthens the evidence that QA and QB are sources of 

ROS that cause damage to the surrounding PSII residues.   

Lumen-side oxidized residues 

 As mentioned above, our hypothesis was that the oxidized PSII residues would cluster 

particularly around redox-active metal centers, which are likely sources of ROS.  The 42 lumen-

side oxidized residues are shown in Fig. 4A.  Examination of these results shows that 15 of these 

residues are indeed in the vicinity (within 15 Å) of the Mn4Ca cluster, but the remaining 27 are not 

(the full range of distances is 2-42 Å from the cluster).  Interestingly, however, most of the oxidized 

residues lie in a nearly continuous formation that is centered on the Mn4Ca cluster and consists of 

two roughly linear “arms” that radiate outward in opposite directions (Fig 4A).  One  
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Figure 4. Lumen-side oxidized residues detected in this study. 

A. Depiction of the 42 lumen-side oxidized residues detected in this study (red).   

B. Same depiction as A but the D1/D2 “arm” of oxidized residues is shown in red and the CP43 

“arm” is shown in orange.  A dashed oval indicates each arm.  

C. All of the 255 lumen-side residues that were covered by MS in this study.  Some residues are 

obscured behind others and are not visible in this view.  Red- oxidized residues; cyan- non-

oxidized residues. 

D. Same depiction as A, except that in this view, the surface-exposed residues are colored in blue 

and buried residues are colored in red.  VMD (Humphrey et al., 1996) was used to determine if a 

residue is surface-exposed or buried. 

In A,B, and D, the Mn4Ca cluster is shown in silver. 
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arm consists only of D1/D2 residues, and the other arm consists only of CP43 residues (Fig. 4B).  

To ensure this distinct pattern was not skewed by limited MS coverage of lumen-side residues, all 

255 covered lumen-side residues were mapped onto the crystal structure (Fig. 4C).  This depiction 

shows that broad coverage of lumen-side residues was indeed achieved, so it does not appear that 

the observed geometrical arrangement of the oxidized residues is simply a quirk of limited MS 

coverage. 

 An explanation for this observed formation is that the oxidized residues line the walls of a 

channel through which ROS exit PSII after being generated near the Mn4Ca cluster.  The outermost 

oxidized residues on both sides of the linear formation are surface-exposed and in contact with 

bulk solvent (Fig. 4D), so the two arms appear to track ROS travel from the Mn4Ca cluster all the 

way out of PSII. 

 Several computational studies have searched for water, H+, and/or O2 channels in PSII, 

with the assumption that such channels must exist to supply the buried Mn4Ca cluster active site 

with substrate water, and for removal of O2 to minimize oxidative damage to the complex 

(Anderson, 2001; Murray and Barber, 2007; Ho and Styring, 2008; Gabdulkhakov et al., 2009).  

These studies have identified around five different channel systems, with nearly the same channel 

having been identified by multiple groups in several instances (reviewed in Ho 2012).  Each of 

these five channel systems were compared with the oxidized residue formation observed in this 

study to identify any potential overlap (Fig. 5).  Channel G (Gabdulkhakov et al., 2009) contains 

a stretch of residues (consisting of D2-T316, K317, L320, L321, and E323, and CP47-E364 and 

S365) that are in continuous contact with the D1/ D2 arm detected in this study, and travel 

alongside it for a portion of its extension (Fig. 5E-F).  Based on its narrow size and amino acid 

composition, Channel G was proposed to conduct protons, not oxygen species, though water  
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Figure 5. (legend follows) 
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Figure 5. Comparison of the lumen-side oxidative modified residues with channels previously 

identified in PSII by computational studies. 

The channels depicted in A, B, C, and D correspond to the “narrow,” “broad,” “back,” and “large” 

channels, respectively, identified by Ho and Styring (2008). The channel depicted in E and F 

corresponds to Channel G identified by Gabdulkhakov et al., 2009.  For correspondences of these 

channels to those identified in the other computational studies cited in the text, see Ho 2012.  

Green- channel residues not found oxidized in this study; red- oxidized residues not part of the 

channel; purple- channel residues that were found oxidized in this study; silver- Mn4Ca cluster. 

 

molecules could also be modeled into it.  No other channel overlaps significantly with the D1/D2 

arm of oxidized residues, and no channel at all identified in these computational studies overlaps 

significantly with the CP43 arm (Fig. 5).   

 As Bricker and co-workers have pointed out (Frankel et al., 2012), these computational 

studies have important drawbacks to keep in mind.  First, they used a 2.9 Å PSII crystal structure, 

at which resolution amino acid side chain positions cannot be fully resolved.  Slightly altered 

positioning of several side chains could be enough to open or close pathways in such a 

computational analysis.  Second, these studies can only detect pathways present in the static PSII 

crystal structure, while PSII dynamics could give rise to pathways that are partially blocked in the 

crystal structure.  It is known, e.g., that PSII conformational changes occur throughout the S-state 

cycle (Bricker et al., 2015). 

 Bricker and co-workers (Frankel et al., 2012) identified lumen-side oxidative modifications 

in spinach PSII in a similar MS analysis to ours, and we compared our results with theirs.  The 

Bricker group detected fewer oxidized residues in the vicinity of the Mn4Ca cluster than in this 

study (Fig. 6A), but interestingly, when taken together, the results of the two studies support each 

other.  Four oxidized residues on the CP43 arm detected in this study were also found oxidized by 

Bricker’s group (CP43-E353, T354, M355, and E366), and several additional residues were found 

oxidized on or near the CP43 arm that were not identified in our study (Fig. 6A).  Based on their  
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Figure 6. Comparison of lumen-side oxidized residues detected by Frankel et al. (2012) and 

the current study. 

A. Lumen-side oxidized residues detected by Frankel et al. (2012).  Green- only detected by 

Frankel et al. (2012).  Purple- also detected in the current study.  Silver- Mn4Ca cluster.   

B. Lumen-side oxidized residues detected in both studies.  Green- only detected by Frankel et al. 

(2012). Red- D1/D2 residues only detected in this study.  Orange- CP43 residues only detected in 

this study. Purple- residues detected in both studies.  Silver- Mn4Ca cluster.  

Note: Some additional lumen-side residues detected by Frankel et al. (2012) that are not relevant 

to this discussion are not displayed in this figure. 

 

 

results, Bricker and co-workers proposed that the four oxidized CP43 residues they detected 

located within 15 Å of the Mn4Ca cluster, may constitute part of an ROS exit channel leading from 

the cluster to the surface of PSII.  However, additional oxidized residues that could complete this 

channel by leading all the way to the surface of the complex, were not detected to support their 

hypothesis.  In contrast, the oxidized CP43 residues we identified do lead all the way from the 
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Mn4Ca cluster to the PSII surface, in a way that supports and elaborates on the original Bricker 

proposal.  Superimposing the two studies’ results on each other shows a formation of oxidized 

residues that originates at the Mn4Ca cluster and widens somewhat as it radiates outward towards 

the surface of PSII (Fig. 6B).    

 No common oxidized residues on the D1/D2 arm were detected in both studies, but Bricker 

and co-workers found three D2 and ten CP47 oxidized residues located in two clusters nearby (D2-

E344, L346, and R348, and CP47-R358, M359, P360, T361, F363, E364, T365, R423, A424, and 

Q425) (Fig. 6A).  Of these, the nearest residue to the Mn4Ca cluster is R348, 13 Å away.  The 

positioning of these residues and their distance from the Mn4Ca cluster do not clearly indicate a 

ROS pathway leading away from it, and the authors did not propose such a pathway (Frankel et 

al., 2012).  However, our study detected more total oxidized residues, and as described above, a 

D1/D2 arm leading from the Mn4Ca cluster all the way to the PSII surface.  Interestingly, 

superimposing the two studies’ results on each other shows that the oxidized D1/D2 residues we 

detected “fill in the gaps” between the Bricker group’s D2 and CP47 oxidized residues and the 

Mn4Ca cluster (Fig. 6B).  Taking the two studies together, the Bricker residues are in fact part of 

a near-continuous path of oxidized residues leading from the Mn4Ca cluster to the PSII surface.  

Similar to the CP43 arm, the combined set of oxidized D1/D2/CP47 residues shows a formation 

that originates at the Mn4Ca cluster and widens somewhat as it radiates outward towards the 

surface of PSII (Fig. 6B). 

 Bricker and co-workers (Frankel et al., 2013a) studied their system further by performing 

synchrotron radiolysis of water and exposing their PSII sample to the resulting hydroxyl radical 

species for 0, 4, 8, or 16 s.  They reasoned that for a residue to be oxidized in this experiment, it 

must have been in contact with water, from which the hydroxyl radicals were generated.  Mapping 
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buried oxidized residues on the PSII crystal structure could therefore indicate the location of water 

channels within PSII.  As mentioned above, only four of the 42 oxidized residues (10%) that we 

detected were found to be oxidized by Bricker and co-workers before the radiolysis experiment (0 

s irradiation).  However, after 4, 8, or 16 s of irradiation, they found that 24 of the 42 oxidized 

residues (57%) that we detected, were oxidized. Of these, 16 are buried, suggesting that at least 16 

of the 27 buried oxidized lumen-side residues that we detected are indeed in contact with a water-

filled channel in PSII.  This finding is consistent with the possibility that the oxidized residue arms 

we detected are ROS exit pathways, as an ROS exit channel that is exposed to bulk solvent would 

be expected to contain water as well.   

 It should be noted that a quantitative analysis was not performed on the modifications 

identified in this study; that is, the absolute or relative extent of modification of a given peptide has 

not been determined.  An absolute quantification would require knowing the relative ionization 

efficiency or “flyability” in the mass spectrometer of the modified and unmodified forms of each 

peptide; see chapter 1 for a further discussion of this issue.  Quantification of the fold-change of a 

modified peptide between light- and dark-incubated samples, relative to the unmodified form, 

similar to analysis of a footprinting experiment, is feasible with this dataset using the label-free 

techniques described in chapter 1.  Such an analysis is currently ongoing, and preliminary results 

show that the relative modification extent of many oxidized residues increases significantly 

following light exposure.  

 In conclusion, we have found that the total number of oxidized residues in the PSII proteins 

D1, D2, and CP43 increases by around 50% following light incubation.  The D1 protein showed 

the most pronounced increase (3-fold), consistent with the fact that it undergoes photodamage 

fastest (Nickelsen and Rengstl, 2013) and has the shortest half-life of all PSII proteins (Yao et al., 
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2012).  The oxidized residues we identified are arranged in two nearly continuous, roughly linear 

arms originating at the Mn4Ca cluster and radiating outward all the way to the surface of PSII.  

One arm consists of D1/D2 residues, and the other of CP43 residues.  Both arms are consistent 

with the oxidized residue pattern detected previously by Bricker and co-workers (Frankel et al., 

2012), but the current results provide a significantly more detailed depiction and extend the finding 

by showing a nearly continuous path on both arms from the Mn4Ca cluster all the way to the PSII 

surface.  We propose that these arms represent exit pathways for ROS generated at the Mn4Ca 

cluster.  Our results provide the most detailed molecular evidence to date for the existence of ROS 

exit pathways within PSII, a critical mechanism long believed to exist for protecting PSII from 

photodamage. 

 

Materials and methods 

Cell culture and PSII purification 

 PSII from the His47 strain of Synechocystis 6803 was used in this study.  For cell culture 

and PSII purification procedures, see chapter 2.  

Sample preparation and proteolytic digestion 

 Two His47 PSII samples (two biological replicates) consisting of 1 μg Chl a were 

precipitated using the 2D-cleanup kit (GE Healthcare) to remove salt and detergent.  For the light-

incubated condition, the PSII samples were incubated at 30° C and 55 μmol photons m-2s-1 for 6 h 

prior to precipitation.  The dark-incubated samples were treated identically to the light-incubated 

samples, but were wrapped in silver foil during the incubation.  After precipitation, the protein 

pellets were resuspended in 15 μL 8 M urea.  Disulfide reduction was performed by incubation in 

a final concentration of 2.5 mM tris(2-carboxyethyl)phosphine (TCEP) for 30 min at 37 °C. 
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Alkylation of cysteines was then performed by addition of iodoacetamide to a final concentration 

of 5 mM, with incubation at room temperature in the dark for 30 min.  Digestion was performed 

in two stages; first, lysyl endopeptidase was added at around 1:20 μg/μg protein, followed by 

incubation for 2 h at 37 °C.  After 2 h, samples were diluted 1:7 in 100 mM Tris pH 8.5, 10 mM 

CaCl2 trypsin buffer, with a final ratio of around 1 μg trypsin/20 μg protein, and incubated at at 37 

°C overnight.  The digestion was stopped by acidifying the sample to a final concentration of 1% 

formic acid.  Samples were then analyzed by LC-MS/MS. 

LC-MS/MS 

 Samples were analyzed as described in chapter 2, with the following adjustments.  For LC, 

a linear 82-min gradient from 2-43% solvent B (80% acetonitrile, 20% water, 0.1% formic acid) 

was used, followed by a linear 30-min gradient from 43-98% solvent B, followed by a 5-min hold 

at 95% solvent B.  Automatic gain control for MS/MS was set at 2.5 × 105 ions and a maximal 

injection time of 100 ms.  Charge states other than 2-7 were excluded, and each sample was 

analyzed in triplicate. 

Data analysis 

 The raw LC-MS/MS files were searched for Synechocystis PSII proteins using PEAKS 

(ver. 7.0, Bioinformatics Solutions, Inc., Waterloo, ON, Canada).  The oxidative modifications 

listed in Table 1 were included in the search, as well as carbamidomethylation (C,D,H,K,E, peptide 

N-terminus), +57.0215 Da; deamidation (N,Q), +0.9840 Da; acetylation of protein N-terminus, 

+42.0106 Da; and carbamylation (K, peptide N-terminus), +43.0058 Da. Peptides were identified 

with a 0.1% false discovery rate.  For every candidate oxidized residue that met the 0.1% false 

discovery threshold, MS/MS spectra were inspected manually to confirm data quality, and spectra 
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were rejected if the oxidation could not be localized to a single residue.  All protein visualization 

was performed using VMD (Humphrey et al., 1996).  
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Chapter 4 

Structural localization of PsbQ in Photosystem II using chemical cross-linking and mass 

spectrometry 
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Summary 

 PsbQ is a lumenal extrinsic protein component that regulates the water splitting activity of 

Photosystem II in plants, algae and cyanobacteria. However, PsbQ is not observed in the currently 

available crystal structures of PSII from thermophilic cyanobacteria. The structural location of 

PsbQ within the PSII complex has, therefore, remained unknown. In this study, we purified PSII 

complexes from Synechocystis 6803 by means of a polyhistidine tag on PsbQ.  To determine the 

binding site of PsbQ within PSII, we subjected the purified Q-His-PSII to chemical cross-linking 

followed by immunodetection and LC-MS/MS analysis.  Our results demonstrate that PsbQ is 

closely associated with the PsbO and CP47 proteins, as revealed by cross-links identified between 

PsbQ-120K and PsbO-180K, between PsbQ-120K and PsbO-59K, and between PsbQ-102K and CP47-

440D.  We further show that genetic deletion of the psbO gene results in the complete absence of 

PsbQ in PSII complexes as well as the loss of the dimeric form of PSII. Overall, our data provide 

the first molecular-level description of the enigmatic binding site of PsbQ in PSII in a 

cyanobacterium. These results also help us understand the sequential incorporation of the PsbQ 

protein during the PSII assembly process as well as its stabilizing effect on the oxygen evolution 

activity of PSII.  Interestingly, during purification of Q-His-PSII, we isolated a novel PSII 

assembly intermediate in addition to the mature PSII complex used in the cross-linking 

experiment.  This new complex, which we refer to as PSII-Q4, contained four copies of the PsbQ 

protein per PSII monomer, instead of the expected one copy.  PSII-Q4 lacked two other lumenal 

extrinsic proteins, PsbU and PsbV, which are present in the mature PSII complex.  We suggest 

that PSII-Q4 is a late PSII assembly intermediate that is formed just before the binding of PsbU 

and PsbV, and incorporate these results into an updated model of PSII assembly. 
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Introduction 

 Photosystem II (PSII) functions as a light-driven, water-plastoquinone oxidoreductase in 

oxygenic photosynthesis. PSII is a membrane protein complex containing more than 20 protein 

subunits. Early biochemical investigations established that at least seven major intrinsic proteins 

are required for oxygen evolution: CP47, CP43, D1, D2, the α and β subunits of cytochrome b559 

and PsbI (Bricker and Ghanotakis, 1996). Additionally, a number of low molecular mass intrinsic 

polypeptides are associated with these seven major polypeptides. 

 Despite the relatively conserved overall functioning of PSII, the lumenal extrinsic PSII 

protein comlement varies significantly across different phyla (Kashino et al., 2002; Thornton et 

al., 2004; Roose et al., 2007b; Bricker et al., 2012). In higher plants and green algae, four extrinsic 

proteins, PsbO, PsbP, PsbQ, and PsbR, are required to support maximal rates of oxygen evolution 

under physiological conditions. In contrast, PsbO, PsbU, and PsbV (cytochrome c550) play 

analogous roles in cyanobacteria and red algae (Roose et al., 2007b). More recently, it was 

discovered that homologs of PsbQ and PsbP exist in cyanobacteria (Shen and Inoue, 1993; Kashino 

et al., 2002; Thornton et al., 2004). These differences are especially noteworthy given that the 

oxygen-evolving complex (OEC) itself is practically unaltered from cyanobacteria to green algae 

and higher plants (Umena et al., 2011). 

 The presence of PsbQ in cyanobacterial PSII was discovered by Kashino et al. (2002) when 

analyzing the complete protein complement of isolated PSII complexes from the HT3 strain of 

Synechocystis sp. PCC 6803, which contains a C-terminal His6-tag on the CP47 protein (Bricker 

et al., 1998). The physiological role of PsbQ was subsequently investigated in several labs through 

phenotypic analysis of either single or double mutants lacking PsbQ as well as other extrinsic PSII 

proteins (Thornton et al., 2004; Summerfield et al., 2005; Kashino et al., 2006). Direct evidence 
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for the binding of PsbQ to PSII was obtained using isolated PSII complexes from the Q-His strain 

that contains a C-terminal His8-tag on PsbQ (Roose et al., 2007a). It was shown that PsbQ defines 

cyanobacterial PSII complexes with high activity and stability. Although the x-ray crystal structure 

of isolated cyanobacterial PsbQ has been solved to near-atomic resolution, PsbQ has not been 

identified in any of the crystal structures of cyanobacterial PSII from the thermophilic 

cyanobacteria Thermosynechococcus elongatus BP-1 (Guskov et al., 2009) and 

Thermosynechococcus vulcanus (Umena et al., 2011). Owing to the absence of PsbQ in these 

structures, the binding site of this protein within the PSII complex has remained unknown. 

In the current study, we have used chemical cross-linking followed by immunodetection and 

mass spectrometry to investigate the structural location of PsbQ in PSII from Synechocystis 6803. 

Based on our analysis, we propose a model in which PsbQ binds to PSII through its close 

association with PsbO and CP47, thereby stabilizing the PSII dimer and permitting high rates of 

oxygen evolution in this cyanobacterium.  During purification of Q-His-PSII, we also identified a 

novel PSII complex that contains four copies of PsbQ per PSII monomer.  Based on its subunit 

composition, we propose that it is a late PSII assembly intermediate formed after the binding of 

PsbO, but before the binding of PsbU and PsbV. 

Results 

Using a BLASTp search, we examined the prevalence of PsbQ across the cyanobacterial 

phylum.  Homologs to Synechocystis 6803 PsbQ were detected in 97 other cyanobacterial species 

(Fig. 1 and Fig. S1).  PsbQ is present in an evolutionarily diverse variety of diazotrophic and non-

diazotrophic strains, but was not found in Gloeobacter species, an ancient lineage of cyanobacteria 

that do not have thylakoid membranes.  Therefore, we propose that the PsbQ gene evolved in 

cyanobacteria concurrently with, or soon after, the development of the thylakoid system. Notably,  
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Figure 1.  Phylogenetic tree showing evolutionary relationship between PsbQ protein 

sequences from selected cyanobacterial species. A. thaliana serves as an outgroup.  Green, 

nitrogen-fixing; red, thermophilic. A. thaliana, Arabidopsis thaliana; A. marina MBIC11017, 

Acaryochloris marina MBIC11017; T. elongatus BP-1, Thermosynechococcus elongatus BP-1; 

M. aeruginosa NIES-843, Microcystis aeruginosa NIES-843. Scale bar indicates substitutions per 

nucleotide. 

 

PsbQ homologs are present in the thermophiles T. elongatus and T. vulcanus, although crystallized 

PSII from them lack PsbQ (see above, Guskov et al., 2009; Umena et al., 2011). 

We have previously described the isolation and characterization of highly active and stable 

PSII from the Q-His strain of Synechocystis 6803 (Roose et al., 2007a). In the present study, we 

took advantage of its availability to pursue the structural location of PsbQ within functional PSII. 

Oxygen-evolving PSII is usually found as both a dimer and monomer, with the isolated dimer 

being more active than the monomer (Nowaczyk et al., 2006). Blue-native gel (BN-gel) and SDS-

PAGE protein profile analysis of HT3-PSII and Q-His-PSII (Fig. 2) showed that the HT3-PSII 

preparation could be resolved into two major green bands (Fig. 2A), corresponding to PSII dimer  
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A. 

 

 

B. 

 

Figure 2. Native-gel and SDS-PAGE analysis of HT3-PSII and Q-His-PSII. 

A. Blue native gel analysis of HT3-PSII and Q-His-PSII. Arrows indicate the dimeric (D) and monomeric 

(M) forms of PSII.  

B. Polypeptide profiles of isolated HT3PSII and QHisPSII. The positions of major PSII protein 

components are indicated on the left. The C-terminally His-tagged PsbQ and the Psb28 protein (asterisk) 

are indicated. Each lane was loaded with sample containing 5 µg of Chl a.   
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and PSII monomer, respectively. Interestingly, only the dimeric form was observed for the Q-His-

PSII preparation. This observation may partially explain the higher oxygen evolving activity of Q-

His-PSII compared to HT3-PSII (Roose et al., 2007a), presumably because the His6-tag on CP47 

in the HT3 strain enables the isolation of a mixture of both a more active PSII dimer and a less 

active PSII monomer.  

Cross-linking results 

  As discussed in Chapters 1 and 2, chemical cross-linkers can covalently link amino acid pairs 

found in close proximity to each other in a protein or a protein complex (Sinz, 2006; Leitner et al., 

2010; Rappsilber, 2011; Zheng et al., 2011; Tabb, 2012).  In this study, we used 1-ethyl-3-[3-

dimethylaminopropyl]carbodiimide (EDC), a zero-length cross-linker that can link carboxylate 

groups (from aspartate (D), glutamate (E) side chains, and protein C-termini) to primary amine 

groups (from lysine (K) or protein N-termini). We also used the thiol-cleavable 12-Å cross-linker 

3,3´-dithiobis(sulfosuccinimidylpropionate) (DTSSP) and the non-cleavable 

bis(sulfosuccinimidyl)suberate (BS3), both of which can link two amino acid residues containing 

primary amine groups. Similar cross-linking approaches have been used to reveal a close 

association between PsbO and CP47 in PSII (Bricker et al., 1988; Seidler, 1996), a result that was 

subsequently validated by crystallographic studies (Zouni et al., 2001). To identify the binding site 

of PsbQ in the PSII dimer, we chose to cross-link Q-His-PSII instead of HT3-PSII, because the 

former contains a more biochemically homogeneous population than HT3-PSII (see above). 

 We first probed our cross-linked samples with anti-PsbQ antibodies and found that 

treatment of Q-His-PSII with EDC and DTSSP generated similar, but not identical, cross-linked 

products, with apparent molecular masses of 23 kDa (a), 27 kDa (b), 36 kDa (c), 52 kDa (d), 57 

kDa (e), 75 kDa (g), 80 kDa (f), and 96 kDa (h) (Fig. 3A, 3B). In the absence of EDC and DTSSP,  
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Figure 3. Chemical cross-linking of PsbQ with other PSII subunits.  

 

A. Detection of cross-linked species of PsbQ. Lane 1: QHisPSII; Lane 2: QHisPSII+EDC. Immunoblots 

were probed with anti-PsbQ antibodies.  

B, C, D, E, F.  DTSSP cross-linking in Q-His-PSII. Immunoblots were probed with anti-PsbQ, anti-

CP47, anti-PsbH, anti-D1, and anti-PsbO antibodies, respectively. Lane 1: Q-His-PSII; Lane 2: Q-His-

PSII+DTSSP. Each lane was loaded with sample containing 0.2 µg of Chla. Uncross-linked proteins are 

labeled with asterisks. 

 

 

C-terminally His8-tagged PsbQ (PsbQ-His) migrated at 17 kDa (Fig. 3A, 3B). PsbQ is N-

terminally lipid-modified and, thus, anchored to the thylakoid membrane or to the transmembrane 

domain of PSII (Thornton et al., 2004; Kashino et al., 2006; Ujihara et al., 2008). However, the 

observed PsbQ-containing cross-linked products (Fig. 3A, 3B) indicated that PsbQ is in close 

contact with other proteins and possibly bind to PSII via inter-protein interactions. We further 

examined the DTSSP cross-linked products by using anti-CP47 (Fig. 3C), anti-PsbH (Fig. 3D), 

anti-D1 (Fig. 3E), and anti-PsbO (Fig. 3F) antibodies. Products d and i may be identical and 
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represent a cross-link between PsbQ and CP47, or products d and m may be identical and represent 

a cross-link between PsbQ and PsbO. Similarly, products h and n may also represent a cross-linked 

complex containing PsbQ and PsbO, and alternatively any of the PsbQ-containing cross-linked 

products observed in Fig. 3B may be linked to any of the numerous other PSII proteins. Based on 

these data, we suggest structural interactions between PsbQ and CP47 and/or PsbQ and PsbO. 

 To determine the cross-link partner(s) of PsbQ more definitively, we used HPLC coupled 

with mass spectrometry (LC/MS/MS).  As discussed in Chapters 1 and 2, MS-based techniques 

can be used to identify cross-linked species with high resolution and mass accuracy.  Careful 

interpretation of the mass and the product-ion spectra of candidates identified in database searches 

can reveal the exact amino acid pairs that are cross-linked (Petrotchenko and Borchers, 2010). To 

minimize sample losses, we subjected our cross-linked products to direct in-solution trypsin 

digestion instead of in-gel digestion, followed by LC/MS/MS (see details in Materials and 

Methods). We detected two cross-links between PsbQ and PsbO, as seen in the product-ion 

(MS/MS) spectra for a representative PsbO-PsbQ cross-linked species (Fig. 4A) identified by a 

database search (Fig. S2). Examining the product-ion spectrum, we could verify that the identified 

link between residues 120K of PsbQ and 180K of PsbO is a confident search result (Fig. 4A). (Note 

the peptide-sequence numbering used in this study hereafter is based on the PSII structure (Umena 

et al., 2011) (PDB ID: 3ARC) and the PsbQ structure (Jackson et al., 2010) (PDB ID: 3LS1) for 

literature consistency, unless otherwise stated). Residue 120K of PsbQ was also linked to residue 

59K of PsbO (Fig. S2). Considering the cross-linker arm span of DTSSP (12 Å), we were able to 

localize 120K of PsbQ approximately between 59K and 180K of PsbO. 
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A. 

 

 

B. 

 

Figure 4. Product-ion (MS/MS) spectra obtained for cross-linked peptides.  

A. Product-ion (MS/MS) spectra of the intermolecular cross-link between peptide 

GLYTGYDNAVALPSAAD180KFR (PsbO) and LDAAA120KDR (PsbQ). Cross-links were formed 

specifically between 180K of PsbO (in peptide 163-182) and 120K of PsbQ (in peptide 115-122) upon 

treatment with DTSSP.  

B. Product-ion (MS/MS) spectra of the intermolecular cross-link between peptides 

AQLGEGFDFDTETFNS440DGVFR (CP47) and A102KTLAK (PsbQ). 440D of CP47 was cross-linked to 
102K of PsbQ upon treatment with EDC. 
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In addition to the inter-protein cross-links between PsbQ and PsbO, we detected two inter-

protein cross-links between CP47 and PsbO, as well as many intra-protein cross-links within CP47 

and PsbO (See Table S1). Considering the difference in protein sequence between PsbO in the  

crystal structure (PDB ID: 3ARC) from T. vulcanus and PsbO from Synechocystis 6803, we 

generated a homology model of Synechocystis 6803 PsbO (PsbOsc) by using I-TASSER (Zhang, 

2008) and compared the model to the crystal structure version by using the PyMOL and APBS 

programs (Baker et al., 2001; Delano, 2002) (Fig. S4). Our cross-linking results are consistent with 

the structural relationship between CP47 and PsbO observed in the PSII crystal structures from the 

two thermophilic cyanobacteria (Zouni et al., 2001; Umena et al., 2011). We consider these results 

as positive controls. Using immunological methods, Bricker and coworkers have earlier 

determined that PsbO forms cross links to CP47 in PSII (Bricker et al., 1988). With current mass-

spectrometry-based cross-link analysis and the availability of PSII crystal structures, we have 

confirmed this early finding and added finer molecular detail. 

 Analysis of the EDC-treated sample revealed a cross-link between 102K of PsbQ and 440D 

on Loop E of CP47 (Fig. 4B, Fig. S5). Given that EDC is a carboxylate-to-amine zero-length cross-

linker, this cross-link implies that these two residues interact by complementary charges and are 

within van der Waals contact of each other. This result particularly helps to define a close 

association between PsbQ and CP47. 

psbO deletion mutant   

 To gain further insight into the in vivo structural and functional relationships between PsbO 

and PsbQ, we generated a psbO deletion mutation in the genetic background of HT3 (henceforth 

HT3-∆O). Using the HT3 (Bricker et al., 1998), HT3-∆Q (Kashino et al., 2006) and the newly 

generated HT3∆O strains, we then isolated three types of PSII complexes, with the normal 
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complement of extrinsic proteins (HT3), with PsbQ deleted (HT3-∆Q), and with PsbO deleted 

(HT3-∆O), respectively. BN gel analysis (Fig. 5A) of the HT3-PSII, HT3∆-Q-PSII, and HT3-∆O-

PSII preparations showed that HT3-PSII was resolved to two major green bands (Fig. 5A, lane 1,  

and Liu et al., 2011b). The PSII dimer/monomer ratio in HT3-∆Q-PSII was not notably different 

than that of HT3-PSII (Fig. 5A, lane 2), except that RC47 (the CP43-less PSII precursor) was more 

pronounced than in HT3PSII, indicative of the possible role of PsbQ in protection of functional 

PSII or during PSII biogenesis. Both SDS-PAGE polypeptide profile (Fig. 5B) and 

immunodetection (Fig. 5C) analysis support that the PsbO protein level did not significantly 

change in the absence of PsbQ. Deletion of psbO (HT3∆O), however, resulted in complete 

elimination of dimeric PSII (Fig. 5A) and the absence of PsbQ (Fig. 5B, Fig. 5C). It appears that 

binding of PsbO to PSII is independent of PsbQ, but PsbQ is unable to bind to PSII in the absence 

of PsbO, a protein which presumably contributes to the inter-monomer interactions with CP47 and 

stabilization of the PSII dimer (De Las Rivas and Barber, 2004; Bentley and Eaton-Rye, 2008). 

Purification and biochemical characterization of the PSII-Q4 complex (“Complex 2”) 

 The PSII-Q4 complex was purified separately from Q-His-PSII using nickel-affinity 

chromatography and a two-step elution gradient of histidine-containing buffer (Fig. 6a, red line).  

The two elution peaks labeled in the chromatogram correspond to two distinct protein omplexes, 

at this stage referred to as Complex 1 and Complex 2 (later identified as the PSII dimer (PSII-D) 

and PSII-Q4, respectively).  They were collected separately and subjected to biochemical 

characterization.  Complexes 1 and 2 represent approximately 53% and 47% of the total PSII yield, 

respectively.  In one of the previous studies from our lab in which PSII from the Q-His strain was 

purified, elution was performed with a single linear gradient (Roose et al., 2007a), and  the different 

elution conditions used in this study likely account for the isolation of a second PSII complex. 
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A.                                                        B.  

 

 

C. 

  

 

 

 

 

 

 

 

Figure 5. Gel electrophoresis and immunoblot analysis of HT3-PSII, HT3-∆Q-PSII, and HT3-∆O-

PSII. 

 

A. Blue native gel analysis of HT3-PSII, HT3-∆Q-PSII, and HT3-∆O-PSII. Dimeric (D) and monomeric 

(M) PSII are indicated.  

 

B. Polypeptide profiles of isolated HT3-PSII, HT3-∆Q-PSII, and HT3-∆O-PSII. The positions of the 

major PSII protein components are indicated on the left. PsbO is marked with an asterisk. Each lane was 

loaded with sample containing 5 µg of Chl a.  

 

C. Immunodetection of PSII polypeptides in the isolated complexes. Samples containing 0.2 µg of Chla 

were fractionated by SDS-PAGE, transferred to a PVDF membrane, and probed by using anti-CP47, anti-

PsbO, and anti-PsbQ antibodies.  
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 To determine if both elution peaks correspond to PSII complexes, 77K fluorescence 

emission spectra were obtained. Both samples displayed characteristic “F685” (at 683 nm) and 

“F695” (at 692 nm) fluorescence signatures indicative of an assembled PSII reaction center (Fig. 

6b) (Satoh, 1980; Liu et al., 2011).  The relative intensities of the two peaks were, however, slightly 

different, reflecting a slight structural difference between the two PSII complexes.  A larger 

difference between the two complexes was observed by measuring their oxygen evolution activity; 

Complex 2 evolved oxygen at only 66% of the saturated rate of Complex 1 (841 and 1270 μmol 

O2·mg Chl a-1·h-1, respectively).   

 SDS-PAGE analysis was performed to analyze the protein compositions of the two 

complexes.  The resulting gel (Fig. 7A) shows that both complexes contained a nearly identical 

profile of the core PSII proteins compared to the control HT3-PSII sample (which contains a His-

tag on the CP47 protein).  However, Western blot analysis showed that Complex 2 lacked the PsbU 

and PsbV proteins (Fig. 7B).  In contrast, PsbO, the other lumenal extrinsic protein observed in 

the PSII crystal structure, was present in equal levels across all three complexes. 

 Surprisingly, the gel indicated that on a per-chlorophyll basis, Complex 2 contained 

significantly more PsbQ than Complex 1.   Immunoblot analysis of these three complexes using a 

PsbQ-specific antibody confirmed this result (Fig. 7B).  The Western blot indicates that Complex 

1 and HT3-PSII contained roughly equal levels of PsbQ, implying that Complex 2 contains more 

copies of PsbQ per PSII monomer than both Complex 1 and HT3-PSII.   

 To determine if the additional copies of PsbQ in Complex 2 were a contamination from 

free copies of the protein that are in fact unassociated with PSII, blue-native gel electrophoresis 

followed by denaturing gel electrophoresis and immunodetection was performed.  The mild blue-

native gel conditions (Schägger and von Jagow, 1991) keep PSII complexes intact during  
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Figure 6. Isolation of two kinds of PSII complexes from the Q-His strain of Synechocystis 

6803.  

A. FPLC chromatogram for isolation of Complex 1 and Complex 2. The first arrow indicates the 

sample loading. Sample washing, first-step gradient elution and second-step gradient elution are 

also indicated. 

B. Fluorescence emission spectrum at 77K for Complex 1 (red) and Complex 2 (black), with 

excitation at 435 nm.  PSII peaks are located at 683 and 692 nm, respectively.  Spectra were 

normalized at 683 nm.  
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Figure 7. Polypeptide compositions of Complex 1 and Complex 2.  

 

A. SDS-PAGE protein profile with Coomassie Brilliant Blue staining.  Each lane contained 

sample with 2.4 μg of Chl a.  HT3, a PSII complex with a C-terminally polyhistidine-tagged 

version of CP47, is used as a reference. Major PSII subunits are labeled. PsbQHis8 is indicated 

on the right. * indicates a protein band containing Psb28 and Sll1130.  Assignment of the PSII 

subunits is based on Kashino et al. (2002);  

 

B. Immunodetection of PSII polypeptides in the isolated complexes after SDS-PAGE. Each lane 

contained sample with 0.2 μg of Chl a. Specific antibodies against CP47, CP43, D1, PsbO, 

PsbU, PsbV, and PsbQ were used for immunodetection of the corresponding proteins. 
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electrophoresis, while unassociated proteins migrate separately due to their smaller size.  

Subsequent denaturing gel electrophoresis on individual excised native-gel bands allows 

characterization of the proteins that are present in a particular PSII complex.  The native gel (Fig.  

8A) showed that both Complex 1 and Complex 2 were present almost exclusively as dimers, 

consistent with our results presented above.  The dimer band was excised and analyzed by 

denaturing gel electrophoresis followed by silver staining (Fig. 8C and 8D), as well as by 

immunodetection (Fig. 8B and 8D).  Both techniques confirmed the initial observation that PsbQ 

was present at an elevated level in Complex 2 compared to Complex 1.  These results indicate that 

the additional copies of PsbQ found in Complex 2 are indeed bound to the PSII complex, and are 

not unassociated-protein contaminants in the sample. 

Quantification of PsbQ levels in PSII-Q4 (“Complex 2”) 

 To quantify the increased level of PsbQ in Complex 2, PsbQ content in a dilution series of 

Complex 2 was detected by Western blot (Fig. 9A).  Pixel densitometry analysis was performed 

to obtain a calibration curve of band intensity vs. PsbQ content.  By fitting PsbQ band intensity 

from Complex 1 (from the same blot) to the calibration curve (Fig. 9B), we concluded that 

Complex 1 contains 23% of the PsbQ content of Complex 2, on a per chlorophyll basis; i.e., 

Complex 2 contains four times as many copies of PsbQ as Complex 1. 

 It is conceivable that the Q-His strain could produce a significantly higher quantity of PsbQ 

than the WT strain, potentially leading to an artifactual Q-His-PSII complex with higher PsbQ 

content.  This possibility was ruled out by comparing PsbQ levels in the total membrane fraction 

of the Q-His and WT strains (Fig. 9C) by immunoblotting.  After normalizing to D1 levels in the 

two strains, we determined that the PsbQ content of the Q-His strain was 1.1 (+/- 0.3)-fold of that 

of the WT strain.  This result indicates that the Q-His strain does not synthesize dramatically  
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Figure 8. Two-dimensional Blue-Native-PAGE and immunoblot analysis of Complex 1 and Complex 

2.  

A. Blue-Native gel electrophoresis of HT3-PSII, Complex 1, and Complex 2. M, PSII monomer; D, PSII 

dimer. 
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B. Blue-Native-PAGE was followed by fractionation of Complex 2 in the second dimension by SDS-

PAGE, immunoblotting, and probing with anti-PsbQ antibody. 

 

C. Blue-Native-PAGE was followed by fractionation of Complex 1 and Complex 2 dimers in the second 

dimension by SDS-PAGE and silver staining. SSU = small protein subunits of PSII. Assignment of the 

distinct subunits of the Q-His protein complexes is based on Kashino et al. (2002), where we observed that 

the PsbF band also contains PsbI and PsbL, and the PsbX band also contains PsbM. 

 

D. immunodetection of D1 and PsbQ in the BN-PAGE-isolated Complex 1 dimer and Complex 2 dimer.  

The silver-stained bands corresponding to PsbQ and PsbE are also shown.elevated levels of PsbQ 

compared to WT. Thus, the additional PsbQ content observed in Complex 2 cannot be attributed 

to a change in the expression level of PsbQ in the Q-His strain. 
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Figure 9. Relative quantification of the PsbQ protein in Complex 1 and Complex 2. 

 

A. SDS-PAGE followed by immunodetection, using anti-PsbQ and anti-D1 (as internal standard) 

antibodies, of a dilution series of Complex 2 compared to a fixed quantity of Complex 1.  Loading ranged 

from sample containing 0.01 μg Chl a (5%) to sample containing 0.2 μg Chl a (100%).  After 

immunodetection, pixel densitometry analysis of the PsbQ bands in Complex 2 was used to construct the 

standard curve shown in B; the amount of PsbQ protein present in the Complex 1 sample containing 0.2 μg 

Chl a was then determined from the standard curve.  The arrow indicates the amount of PsbQ protein present 

in Complex 1. 
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C.  SDS-PAGE followed by immunodetection, using anti-PsbQ and anti-D1 (as internal standard) 

antibodies, of a dilution series of the total membrane fraction from WT and Q-His cells.  Pixel densitometry 

analysis was performed as in B to quantify PsbQ content relative to D1 levels in the two strains (not shown). 

 

 

elevated levels of PsbQ compared to WT. Thus, the additional PsbQ content observed in Complex 

2 cannot be attributed to a change in the expression level of PsbQ in the Q-His strain. 

Discussion 

 The mechanism of water oxidation in PSII, first developed in ancient cyanobacteria, has 

remained virtually unaltered during the evolution of algae and plants. Various extrinsic proteins, 

such as the well-defined PsbO, PsbU, and PsbV proteins in cyanobacteria, are believed to fine-

tune the specific needs of PSII activity, helping modulate its inorganic cofactor (manganese, 

calcium, and chloride) requirements and optimize water oxidation activity. In cyanobacterial PSII, 

PsbQ is an enigmatic protein. Homologs of PsbQ are present in all thylakoid-containing 

cyanobacterial strains (Fig. 1 and Fig. S1) and it is a stoichiometric component of highly active 

PSII preparations from Synechocystis 6803 (Roose et al., 2007a). Thus, the absence of PsbQ in the 

PSII crystal structures from T. vulcanus and T. elongatus might have resulted from the loss of this 

protein during the purification of PSII from these thermophilic cyanobacteria. 

Cross-linking results 

 Our current study demonstrates that PsbQ is closely associated with PSII via interactions 

with PsbO and CP47. Based on our cross-linking data (Fig. 4A, Fig. 4B, and discussion below), 

we propose a molecular model of the location of PsbQ within a PSII (PDB ID 3ARC) dimer (Fig. 

10A). In this model, PsbQ is positioned in a valley formed by the long lumenal Loop E of CP47 

and PsbO from each monomer. In this valley, the positively charged surface formed by helices 2  
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Figure 10. Schematic model for the binding of PsbQ to the interface of dimeric PSII. PsbQ: PDB ID 

3LS1; PSII: PDB ID 3ARC. PsbQ, lime-green; CP47, wheat; PsbO, yellow and blue; PsbU, pink; PsbV, 

orange; PsbM, magenta; other PSII components, gray.  

 

A. Lumenal side view (tilted) showing PsbQ binding to the cove formed by CP47 and PsbO.  

 

B. A magnified view of the interactions between PsbQ and PsbO shown in panel A. 120K of PsbQ as well 

as 59K and 180K of PsbO are represented as spheres. 96K from the second PsbQ protein in the PSII dimer is 

also shown.  

 

C. Same as B with clockwise rotation (60°), showing interactions between PsbQ and CP47, as deduced 

from Fig. 4B. 102K of PsbQ and 440D of CP47 are represented as spheres.  

 

D. Side view of the interactions between the two PsbQ proteins and the PSII dimer. All images were 

prepared by using PyMOL software (30). 
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and 3 (H2 and H3) of PsbQ (Jackson et al., 2010) interacts with the negatively charged surface of 

the PsbO protein (Fig. S4C). By adopting this orientation, two conserved helices (H2a and H2b) 

from the two PsbQ proteins in the dimer are arranged in an anti-parallel configuration, with their 

N-termini pointing toward the interface of Loop C of CP47 and PsbO, which is close to the 

peripheral interface of the two PSII monomers. This structural location of PsbQ does not cause 

any apparent structural conflicts between PsbQ and the other extrinsic proteins, i.e., PsbO, PsbU 

and PsbV. An implication of the spatial relationship between PsbQ, PsbO and Loop E of CP47, 

however, is that only after PsbO is recruited to the lumenal side of PSII, is PsbQ able to bind. This 

hypothesis is supported by our observation that deletion of PsbO leads to complete absence of 

PsbQ in PSII (Fig. 5B, 5C). In contrast, loss of PsbV reduces the PsbQ level to nearly 40% of that 

in the wild type cells (Wegener et al., 2008). Our model is consistent with the experimental 

observation that PsbO is the first lumenal extrinsic protein recruited to PSII (Liu et al., 2011b; 

Nowaczyk et al., 2012). It is also supported by the earlier observation that deletion of the psbO 

gene abolishes the dimerization process of PSII in vivo (Bentley and Eaton-Rye, 2008), as 

observed in our PSII preparations as well (Fig. 5A). 

 The present study addresses whether the lumenal domains of CP47, CP43 and three known 

extrinsic proteins are able to accommodate additional extrinsic proteins. The data using the zero-

length cross-linker EDC (Fig. 3A, Fig. 4B) suggest that regions of complementary charge exist 

between PsbQ and other PSII proteins. It was previously suggested that PsbQ is associated directly 

with a small (4 kDa), intrinsic PSII core subunit in a green-algal PSII complex (Nagao et al., 2010).  

The identity of this protein, however, remains unknown. It seems likely that the small cross-

linked products observed in Fig. 3A (a, b) and Fig. 3B (a, b) could result from cross-links between 

PsbQ and small subunits located in the interface between two PSII monomers (e.g., PsbM, PsbL 
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and PsbT). This assumes, however, a closer contact of PsbQ to the transmembrane domain of PSII, 

or the floor of the valley formed by CP47 and PsbO.  Such a close contact seems reasonable (Fig. 

4B) for a compact association of PsbO and its binding partners including CP47, CP43, D1, D2, 

and PsbU. To address such a hypothesis, however, more elegant protein foot-printing experiments 

e.g., hydrogen-deuterium exchange (HDX), or fast photochemical oxidation of proteins (FPOP) 

(Chen et al., 2010), need to be designed. 

PsbO interacts with a number of other PSII subunits (Bricker et al., 2012). Our MS-based 

cross-linking analysis also detected two CP47-PsbO cross-links that are consistent with the 

available crystal structures (Guskov et al., 2009; Umena et al., 2011) (Table S1). Moreover, PsbO 

also participates in an inter-monomer interaction with CP47, stabilizing the PSII dimer. In silico 

analysis indicates that 59K of PsbO could form a charge-pair interaction with 307E of CP47 (Darnell 

et al., 2007; Bricker et al., 2012). Taken together with the structural proximity of PsbQ to PsbO 

and the close association between PsbQ and CP47 (Fig. 4A, 4B), we speculate that PsbQ increases 

the stability of the PSII dimer by interacting with PsbO and CP47, thus decreasing the solvent 

exposure of those interaction interfaces. This structural model is consistent with the results of 

previous studies that deletion of the psbQ gene in Synechocystis 6803 results in photosynthetic 

defects under Ca2+ and Cl- limiting conditions (Thornton et al., 2004; Summerfield et al., 2005). 

The phenotype of this deletion mutant, however, was less severe relative to that of other 

cyanobacterial extrinsic protein mutants, indicative of the auxiliary role of PsbQ in PSII 

photochemistry under nutrient-replete conditions. 

 Genetic and physiological data indicate that PsbQ stabilizes the binding of PsbV in PSII 

(Kashino et al., 2006; Summerfield and Eaton-Rye, 2006), and in silico protein docking analysis 

seem to support this idea as well (Fagerlund and Eaton-Rye, 2011). Our LC-MS/MS analysis, 



  

173 
 

however, failed to detect any confident PsbQ-PsbV cross-links (data not shown). Interestingly, 

PsbQ-PsbQ cross-linked species (DMLGLASSLLP96KDQDK, LDAAA120KDRNGSQAK) 

(cross-link between 96K and 120K; Fig. S3) were consistently detected in our cross-linked samples. 

It is unlikely that this cross-linked species originated from one copy of PsbQ (i.e., an intra-protein 

link), because the arm span of the cross-linker used in this study is 12 Å and the distance between 

96K and 120K is 41 Å (Fig. S6).  More importantly, the two Ks are located on opposite ends of Helix 

3 in the crystal structure (Jackson et al., 2010) rather than in a loop area that might have more 

structural flexibility. Our immunodetection of cross-linked species seems also to support a dimeric 

PsbQ from both EDC and DTSSP cross-linker results (Fig. 3A, label c and Fig. 3B, label c). In our 

model, Helix 3 is buried in the interface formed by Loop E of CP47 and PsbO. Our data indicate 

that the two copies of PsbQ are located in structural proximity to each other and probably share 

the same symmetrical axis as the two PSII monomers. In line with earlier work (De Las Rivas and 

Barber, 2004), our model (Fig. 10A) assumes there is only one copy of PsbQ per PSII monomer, 

but we cannot completely exclude a more complicated scenario of more than one copy per PSII 

monomer. In this context, it is noteworthy that the Chl c- containing diatom Chaetoceros gracilis 

has two different PsbQ homologs, PsbQ’ and Psb31, in each PSII monomer (Nagao et al., 2013).  

Our observation of a PsbQ-PsbQ interaction in Q-His-PSII also does not necessarily exclude the 

possibility that PsbQ could associate with monomeric PSII, in which, after the recruitment of 

PsbO, PsbO and PsbQ synergistically facilitate a rapid PSII dimerization process during the 

dynamic assembly of PSII. 

 PSII-Q4 in the context of the PSII life-cycle 

 We isolated two types of PSII complex were isolated from the Q-His strain of 

Synechocystis by nickel-affinity chromatography using a stepped linear gradient of histidine during 
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elution.  Both complexes displayed the 77K fluorescence signatures of an assembled PSII reaction 

center complex, and both were found almost exclusively as dimers (Fig. 8A).  Both contained a 

nearly identical profile of PSII proteins, compared to each other and to the control HT3-PSII 

complex.  However, Complex 2 contained four times as many copies of PsbQ as Complex 1, and 

was lacking the extrinsic proteins PsbU and PsbV.  The additional histidine tags in Complex 2 

caused increased affinity for the His-tag resin and explain its later elution time.  Complex 2  

exhibited 66% of the oxygen evolution activity of Complex 1, which is understandable since PsbU 

and PsbV are known to optimize oxygen evolution capability (Bricker et al., 2012).  Based on 

these data, we conclude that Complex 1 is the fully-assembled active PSII dimer (PSII-D), and 

propose that Complex 2 (renamed PSII-Q4) is a newly-identified PSII assembly intermediate. 

 Our cross-linking results indicated that fully-assembled PSII contains one copy of PsbQ 

per PSII monomer.  Hence, PSII-Q4 contains four copies.  PsbU and PsbV are absent in PSII-Q4, 

and are roughly the same size as PsbQ (14.2, 17.9, and 15.7 kDa, respectively).  Considering that 

all three proteins bind near each other on the lumenal surface of PSII (Umena et al., 2011), the 

extra copies of PsbQ in the PSII-Q4 assembly intermediate complex may temporarily occupy the 

binding regions of PsbU and PsbV.  PsbQ contains a lipid modification that anchors it to the 

thylakoid membrane (Thornton et al., 2004; Kashino et al., 2006).  This lipid anchor may position 

PsbQ near the lumenal surface of PSII, enabling facile, although relatively weak, binding of several 

copies of PsbQ to PSII during the assembly process, which are then replaced by PsbU and PsbV 

once they are able to diffuse to their binding sites. 

 The PsbQ deletion mutant in Synechocystis 6803 shows only a slight reduction in growth 

rate compared to the wild-type strain (Thornton et al., 2004; Summerfield et al., 2005) while the 

PsbV deletion mutant requires additional Ca2+
 and Cl- in the growth medium to enable 
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photoautotrophic growth (Shen et al., 1998).  However, the ΔpsbV: ΔpsbQ double-deletion mutant 

is unable to grow photoautotrophically (Summerfield et al., 2005).  It is possible that one or more 

copies of PsbQ in PSII-Q4 occupy the PsbV binding site, serving as an imperfect and temporary 

substitute for PsbV. 

 Enami and co-workers found that the PsbQ-type protein Psb31 is able to substitute partially 

for the role of PsbO in the centric diatom Chaetoceros gracilis (Nagao et al., 2010).  In addition 

to Psb31, C. gracilis contains a second PsbQ-type protein, PsbQ´, whose lumenal binding site and 

role in optimizing oxygen evolution is distinct from those of Psb31 (Nagao et al., 2010; Nagao et 

al., 2013).  While PsbO is present in the PSII-Q4 complex, both of these results reinforce the idea 

of the binding promiscuity of the PsbQ protein in PSII and its ability to substitute for other lumenal 

extrinsic proteins.  The ability of the PSII-Q4 complex to evolve oxygen, but at a lower rate (66%) 

than fully-assembled PSII, can be understood in this context. 

 Previous work has shown that PsbO is the first of the lumenal extrinsic PSII proteins to 

bind to PSII (Liu et al., 2011; Nowaczyk et al., 2012), and this is consistent with its presence in 

the PSII-Q4 complex despite the absence of PsbU and PsbV.  The observation that both Q-His 

PSII complexes were found almost exclusively in the dimeric state suggests that PsbQ binds after 

PsbO, and that PsbQ binding may facilitate dimerization.  This is consistent with the cross-linking 

results presented above that show that PsbQ helps stabilize the PSII dimer interface.  PSII-Q4 thus 

appears to be a late PSII assembly intermediate that is formed just before binding of PsbU and 

PsbV.  Although we cannot exclude the possibility that PSII-Q4 may also form during the 

disassembly of PSII (after the dissociation of PsbU and PsbV), the relatively high oxygen evolution 

rate of PSII-Q4 (66% of fully-assembled PSII) suggest that the majority of PSII-Q4 complexes 

contain an undamaged D1 protein. 



  

176 
 

 We have incorporated our results into an updated model of PSII assembly (Fig. 11).  We 

suggest that PSII dimerization occurs  after dissociation of Psb27 and formation of the WOC.  Four 

copies of PsbQ bind during or immediately after this step, stabilizing this active dimer.  Though 

we did not observe a monomeric PSII-Q4 intermediate, it is possible that such a complex forms 

transiently in between Psb27 dissociation and dimerization.  The PSII-Q4 dimer is the first 

intermediate during PSII assembly that is capable of oxygen evolution, albeit at around two-thirds 

the rate of mature PSII.  An active WOC increases PSII vulnerability to oxidative damage; as 

discussed above, due to the presence of a lipid anchor of PsbQ, multiple copies of PsbQ in PSII-

Q4 serve as readily-available substitutes for PsbU and PsbV, helping to stabilize the WOC and 

protect PSII as soon as it gains oxygen-evolving capability.  The additional copies of PsbQ must 

bind relatively weakly, since PsbU and PsbV replace them on the lumenal surface of PSII once 

they are able to diffuse to their binding site, forming the fully-assembled, fully-protected, PSII 

dimer (PSII-D).  Though we hypothesize that formation of PSII-Q4 stabilizes the active dimer 

until PsbU and PsbV bind, we found in this study that PSII-M and PSII-D are still able to form in 

the absence of PsbQ.  It is therefore possible that a portion of the complexes bypass PSII-Q4 

formation during assembly, as indicated by a dashed line in Fig. 11.  Light-induced D1 damage 

triggers partial disassembly of PSII-M and PSII-D, possibly to the RC47 stage (Nickelsen and 

Rengstl, 2013) (see Fig. 11).  It is possible that the PSII-Q4 complex also forms after the  

dissociation of PsbU and PsbV during PSII disassembly.  A new copy of D1 replaces the damaged 

copy and reassembly of active PSII occurs. 

Changing environmental conditions can alter the rate of PSII damage, making it difficult for 

the cell to maintain its required rate of real-time energy production.  The PSII-Q4 dimer may assist  
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Figure 11. A schematic model for PSII assembly and repair.  

During de novo assembly, the pD1-PsbI-Ycf48 subcomplex joins with the D2-PsbE-PsbF subcomplex to 

form the reaction center (RC) subcomplex.  The RC47 complex is formed after the attachment of CP47 and 

several low-molecular-weight proteins to RC.  Next, CP43 and several more low-molecular-weight proteins 

bind to the complex.  Psb27 associates at this stage, and PsbO is also bound sub-stoichiometrically 

(indicated by a *).  After pD1 processing, Psb27 dissociates, PsbO binds stoichiometrically, the WOC is 

assembled, and dimerization occurs.  PSII-Q4 forms at this stage, followed by PSII-D.  PSII-D can 

interconvert with PSII-M.  In a parallel pathway, PSII-M may also form directly after Psb27 dissociation, 

bypassing formation of PSII-Q4.  After light-induced D1 damage of PSII-M and PSII-D (represented in red 

by “D1°”), PSII is partially disassembled.  The damaged D1 protein is removed and degraded, a newly-
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synthesized copy is inserted, and re-assembly of active PSII occurs.  M, monomer; D, dimer.  The low-

molecular-weight proteins and extrinsic protein names have been shortened from , e.g., “PsbH” to “H,” 

“PsbO” to “O,” etc. * indicates sub-stoichiometric binding.  The relative positions of different proteins in 

this diagram are based roughly on the PSII crystal structures and cross-linking results (Liu et al., 2011; 

Umena et al., 2011; Liu et al., 2013; Suga et al., 2015). 

 

 

by serving as a pool of nearly-assembled PSII that can be rapidly converted to PSII-D in response 

to shifts in the equilibrium concentration of PSII-D and PSII-M. 

 To summarize, PsbQ is present in a highly active and stable form of PSII in the mesophilic 

cyanobacterium Synechocystis 6803, but its location within the complex has remained unknown 

owing to its absence in the PSII crystal structures obtained from thermophilic cyanobacteria. This 

discrepancy may reflect the different environmental conditions to which the organisms adapt. Our 

study presents the first molecular-level model for the binding site of PsbQ to dimeric PSII. In 

addition, we detected a cross-link between two copies of PsbQ, which suggests strongly the 

presence of PsbQ in the PSII dimer interface. Our results help elucidate the stage of incorporation 

of PsbQ during the PSII assembly process and its stabilizing effect on the PSII dimer, and, thus, 

provide a basis for further investigation of its role in optimizing PSII function.  In addition, we 

have isolated a PSII subcomplex (PSII-Q4) with four copies of the PsbQ protein.  Based on our 

characterization of the complex, we conclude that it is a late PSII assembly intermediate, formed 

after the binding of PsbO and before the binding of PsbU and PsbV.  This complex helps to 

stabilize PSII immediately after it becomes capable of water oxidation.  Our results provide further 

evidence for the binding promiscuity of PsbQ and its ability to substitute for other lumenal 

extrinsic PSII proteins. 

Materials and methods 

BLAST analysis, sequence alignment and phylogenetic analysis 
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 NCBI-BLASTp software (Altschul et al., 1990) was used to detect homologs to the 

Synechocystis 6803 PsbQ protein (Sll1638) in other sequenced cyanobacterial strains.  A protein 

was considered a homolog if its E-value was <10-6.   Search parameters were as follows: database- 

non-redundant protein sequences; organism- cyanobacteria; word size- 3; max matches in a query 

range- 0; matrix- BLOSUM62; gap costs- Existence:11 Extension:1; compositional adjustments- 

conditional compositional score matrix adjustment. BLAST results were aligned using Clustal 

Omega (Goujon et al., 2010; Sievers et al., 2011) 

(http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?tool=clustalo) using the default 

parameters.  Phylogenetic trees were viewed using TreeView v.1.6.6 (Page, 1996). 

Cyanobacterial culture and PSII purification. 

 Cyanobacteria strains were grown in BG11 medium. Generation of the Q-His strain was 

previously reported (Roose et al., 2007).  The HT3 strain was a generous gift from Dr. Terry M. 

Bricker (Bricker et al., 1998). The HT3-∆Q strain was previously reported (Kashino et al., 2006). 

The HT3-∆O strain was generated by transforming the HT3 strain by using the ∆O construct 

previously reported (Chandler et al., 2003). Purification of histidine-tagged PSII complexes was 

performed as described in Kashino et al. (2002), with minor modifications.  For purification of 

PSII-Q4, a two-step elution gradient was used as follows: the first step was a linear increase from 

0-50 mM histidine for ten  minutes at 0.5 mL/min, followed by a hold at 50 mM histidine for 5 

minutes.  The histidine concentration in the elution buffer was then switched to 200 mM histidine, 

and held at this concentration for an additional 23.5 min.  

      77K fluorescence spectroscopy 

 Fluorescence emission spectra at 77K were recorded on a Fluoromax-2 fluorometer (Jobin 

Yvon, Longjumeau, France) with excitation at 435 nm. PSII samples were diluted to 0.1 mg Chl 

http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?tool=clustalo
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a/mL in a buffer previously reported (Bricker et al. 1998).  Fluorescence emission curves were 

normalized at 683 nm. 

Protein analysis 

 Protein electrophoresis was performed as in Kashino et al., (2001) and Kashino et al. 

(2002), unless otherwise indicated. After transfer of the fractionated proteins onto PVDF 

membranes (Millipore, Billerica, MA), PSII subunits were identified by using specific antisera. 

Bands were visualized by using enhanced chemiluminescence reagents (Westpico; Pierce, 

Rockford, IL) on an ImageQuant LAS-4000 imager (GE healthcare, Pittsburgh, PA), and image 

quantification was performed using ImageQuant TL software. Levels of PSII monomers and 

dimers were determined by Blue-Native (BN-gel) electrophoresis (Schägger and von Jagow, 

1991).  Silver staining of protein gels following SDS-PAGE was performed using metallic silver 

(Ag) protein stain according to the manufacturer’s protocol (Thermo Scientific, Rockford, IL, 

USA). 

Oxygen evolution measurements 

  The steady-state rate of oxygen evolution by PSII was measured on a Clark-type electrode 

at 5 μg Chl a/mL in 50 mM MES-NaOH (pH 6.5), 20 mM CaCl2, 0.5 M sucrose, at 30°C.  Buffer 

contained 1 mM potassium ferricyanide and 0.5 mM 2,6-dichloro-p-benzoquinone as electron 

acceptors.  Samples were incubated in the dark at 30°C for 1 min before the measurement.  

Irradiance of 8250 μmol photons m-2·s-1 was used during the measurement.   

 Chemical cross-linking 

  PSII preparations were resuspended at 0.2 mg/mL chlorophyll a in 25% glycerol, 10 mM 

MgCl2, 5 mM CaCl2, and 50 mM MES buffer (pH 6.5). Cross-linking of PSII samples with 1-

ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC, Sigma, St Louis, MO) was  performed 
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essentially as described previously (Liu et al., 2011). DTSSP and BS3 (Thermo Scientific) cross-

linking was performed according to the manufacturer’s protocol (with minor modification) 

followed by desalting using Zeba spin columns (Thermo Scientific). 

Proteolytic Digestion and Peptide Clean-up  

 Modified samples were precipitated using acetone, and the resuspended samples were 

directly subjected to trypsin digestion. One reason in-solution digestion of the cross-linked samples 

was preferred after chemical cross-linking and quenching was that cross-linked species usually 

represent only very small fractions of total proteins, especially for protein complexes like PSII that 

contain at least 40 subunits per PSII dimer (Zouni et al., 2001).  Thus, the goal was to avoid over 

crosslinking the sample, which could lead to protein aggregation and denaturation. In-solution 

digestions also avoided the loss of cross-linked products during the post-gel handling, and reduced 

the artifacts of gel adduction. 

LC-MS/MS 

  The peptide mixture from trypsin digestion was dissolved in water with 0.1% formic acid. 

The peptide samples were analyzed by using our LC-MS proteomics workflow (Zhang et al., 

2010).  The peptide sample was loaded onto an Ultimate 3000 Nano LC system (Thermo Scientific 

Dionex, Sunnyvale, CA) coupled with an LTQ Orbitrap mass spectrometer (Thermo Fisher 

Scientific, Waltham, MA). The peptides were trapped by a guard column (Acclaim PepMap100, 

100 µm x 2 cm, C18, 5 µm, 100 Å, Thermo Scientific Dionex) through which solvent A (water 

with 0.1 % formic acid, Sigma-Aldrich) was pumped at 6 µL/min. The peptide mixture was 

fractionated on a custom-packed Michrom Magic C 18 RP column, as previous reported. The 

peptides were eluted at a flow rate of 260 nL/min, ramping a gradient from 5% to 60% solvent B 

(80% acetonitrile, 20% water and 0.1% formic acid) in 110 min.  The eluted samples were directly 
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introduced into mass spectrometer via a PicoView nano electrospray source (New objective, 

Woburn, MA). Ion source and other parameters of the mass spectrometer were optimized by tuning 

with peptide standards. The mass spectrometer was operated in data-dependent mode by using 

previously reported parameters (Zhang et al., 2010). 

LC-MS/MS data analysis 

  LC-MS/MS data in Thermo Xcalibur .raw files were converted into mzXML and mgf 

format by MM File Conversion from the Mass Matrix package. Product-ion mass spectra were 

searched against the UniProt database to generate the protein list for cross-linked peptide 

identification. The cross-linked peptides were identified by using the search algorithm, Mass 

Matrix (Xu et al., 2010). For Mass Matrix, each protein sequence pair was established and searched 

against all LC/MS data. The Mass Matrix search parameters were as follows:  Variable 

modification: Oxidation of Met, Max # variable PTM/peptide: 1, Peptide tolerance: 15 ppm, 

MS/MS tolerance: 0.8 Da, Mass type: Monoisotopic, C13 isotope ions: Yes, Enzyme: Trypsin, 

Missed cleavages: 3, Fixed modification: none, Peptide length: from 3 to 50, Cross-link search 

mode: Exploratory, Cross-link sites cleavability: Non-cleavable by enzyme, Max # cross-links/ 

peptide: 2. The search results were viewed using XMAP (v 0.5.1, Mass Matrix). 
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Table S1. Cross-links relevant to this study identified using either DTSSP (12 Å spacer 

arm) or its non-cleavable homolog BS3 (11.4 Å spacer arm). 

 

Cross-links Link type PSII subunit(s) Distance (Å)  

419K-423K Intra-link CP47-CP47 14.6 

227K-505K Intra-link CP47-CP47 28 

497K-505K Intra-link CP47-CP47 17.6 

180K-419K Inter-link PsbO-CP47 14.6 

186K-418K Inter-link PsbO-CP47 15.8 

185K-180K Intra-link PsbO-PsbO 15.8 

185K-186K Intra-link PsbO-PsbO 13.2 

186K-180K Intra-link PsbO-PsbO 12.8 

100K-96K Intra-link PsbQ-PsbQ 11.1 

106K-100K Intra-link PsbQ-PsbQ 16.6 

102K-106K Intra-link PsbQ-PsbQ 8.3 

120K-180K Inter-link PsbQ-PsbO * 

120K-59K Inter-link PsbQ-PsbO * 

120K-96K Inter-link PsbQ-PsbQ * 

* = Crystallographic data not available  
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Figure S1. Phylogenetic tree showing evolutionary relationship between PsbQ sequences from 

different cyanobacterial species.   

 

Black = mesophilic and non-nitrogen-fixing. Green = mesophilic and nitrogen-fixing; red = thermophilic 

and non-nitrogen-fixing; purple = thermophilic and nitrogen-fixing. Orange = mesophilic, and nitrogen-

fixing ability not provided in Joint Genome Institute Integrated Microbial Genomes database 

(http://img.jgi.doe.gov/cgi-bin/m/main.cgi) or the respective culture collection’s database.  Scale bar units: 

substitutions per nucleotide site.  The PsbQ sequence of M. aeruginosa sp. PCC 9809 was identical to that 

of M. aeruginosa NIES-843; the PsbQ sequences of M. aeruginosa sp. PCC 9443, M. aeruginosa sp. PCC 

7941, M. aeruginosa sp. PCC 9701, M. aeruginosa TAIHU98, and M. aeruginosa SPC 777 were identical 

to that of M. aeruginosa sp. PCC 9717; the PsbQ sequence of M. aeruginosa DIANCHI905 was identical 

to that of M. aeruginosa sp. PCC 7806; the PsbQ sequence of S. elongatus sp. PCC 7942 was identical to 

that of S. elongatus sp. PCC 6301; the PsbQ sequence of Cyanothece sp. PCC 8802 was identical to that of 

Cyanothece sp. PCC 8801; the PsbQ sequence of Cyanothece sp. ATCC 51472 was identical to that of 

Cyanothece sp. ATCC 51142; the PsbQ sequence of Calothrix parietina was identical to that of Calothrix 

sp. PCC 6303; for simplicity, only the latter member of each of these groups of species was listed in the 

phylogenetic tree. 

  

http://img.jgi.doe.gov/cgi-bin/m/main.cgi
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Figure S2. BS3-induced cross-links between PsbQ and PsbO determined by tandem LC-MS and a 

subsequent database search using MassMatrix.  Each cell in the heat map represents a cross-link between 

two lysine residues. The cross-linking reagent to PSII mole ratio was 20:1 and the final concentration of 

PSII was 0.2 mg/mL chlorophyll a. The cross-link between PsbQ:K57-PsbO:K185 was considered to be a 

false positive because of its high charge state (+8) and m/z value of 380, a known instrument-specific 

“phantom” peak. 
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Figure S3. Mass spectrometric data showing an intermolecular PsbQ-PsbQ cross-linked peptide. 

Product ion (MS2) spectrum identified as an intermolecular cross-link between two PsbQ peptides, 

DMLGLASSLLPK*DQDK and LDAAAK*DRNGSQAK, using DTSSP as cross-linker. 
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Figure S4. Structural and electrostatic-potential comparison of PsbO from Synechocystis 6803 and 

T. vulcanus. 

 

A. The alignment of the predicted 3-D structure of PsbO (Synechocystis 6803, blue) and PsbO from 3ARC 

(yellow). Electrostatic potential surface of PsbO from T. vulcanus (B) and Synechocystis 6803 (C).  K59 

and K62 are labeled to show the homology and electrostatic potential differences.  

  



  

192 
 

 

 

Figure S5. EDC-induced cross-links between PsbQ and CP47 determined by tandem LC-MS/MS and 

a subsequent database search in MassMatrix.   

 

The turquoise-shaded cell in the heat map represents a cross-link between K102 of PsbQ and D440 of CP47. 

The light-blue-shaded cell indicating a cross-link between K100 of PsbQ and K380 of CP47 was regarded 

as a false positive because of its high charge state (+8) and m/z value of 380, a known instrument-specific 

“phantom” peak. 
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Figure S6. Distance between K96 and K120 in the Synechocystis 6803 PsbQ crystal structure. The 

distance is 41 Å.  PDB ID: 3LS1. K96 and K120, spheres. 
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Chapter 5 

 Conclusions, future directions, and additional work 
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Summary and conclusions of this work 

 The work in Chapter 2 used cross-linking and mass spectrometry to demonstrate that 

Psb28, a PSII protein that binds to the RC47 assembly intermediate, is located on the cytosolic 

surface of PSII in close association with PsbE and PsbF, the α- and β-subunits of cytochrome b559.  

Though Psb28 binds only transiently to PSII during assembly (and possibly again during 

disassembly), it exerts a protective effect, assisting efficient conversion of RC47 into fully 

assembled PSII (Sakata et al., 2013).  Based on its structural location within the complex that we 

have determined, we have proposed three possible mechanisms for its protective effect, which can 

be probed in future experiments.  The common thread in these mechanisms is that they minimize 

unproductive light-induced electron transfer reactions within RC47.   

 PSII assembly intermediates past the RC stage have a dilemma: enough of the PSII electron 

transfer chain has been assembled to enable light-induced primary charge separation, but not 

enough of the chain has yet been assembled to enable a complete, productive cycle that oxidizes 

water, generates molecular oxygen, and reduces plastoquinone.  The in-between PSII assembly 

intermediates can thus generate highly oxidizing species similar to fully assembled PSII, but 

cannot quench them as effectively as fully assembled PSII can.  As seen in the work in Chapter 3, 

even fully assembled PSII is highly susceptible to oxidative damage; how much more so can we 

expect the assembly intermediates to be.  Previous work in this laboratory has shown that the Psb27 

protein protects assembly intermediates from harmful premature electron transfer chemistry, and 

binds on the lumenal surface of the complex.  Psb28 appears to serve a similar purpose, binding 

on the cytosolic surface of the complex.  Several dozen accessory proteins are now known to 

associate with PSII assembly intermediates, but the binding site and function of nearly all of them 
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is unknown.  It is possible that some of these proteins are also involved in protecting their 

respective subcomplexes from their own powerful electron transfer capabilities.  

 The work in Chapter 3 characterized oxidative modifications that can form on D1, D2, and 

CP43.  It was found that around 50% more residues are modified following light exposure than in 

control, dark-incubated samples, strengthening the long-held belief that PSII proteins undergo 

oxdiative damage by ROS produced as an inevitable byproduct of PSII photochemistry.  The D1 

protein showed the most dramatic response to light (3.3-fold more oxidized residues detected in 

the light-incubated sample), consistent with the observation that D1 is turned over the fastest of all 

PSII proteins.   

 By mapping the lumen-side oxidative modifications detected onto the PSII crystal 

structure, it was found that they form two distinct, nearly continuous, roughly linear “arms” 

radiating outward from the buried Mn4Ca cluster all the way to the surface of PSII.  Since in order 

to be oxidized, these residues must have been exposed to reactive oxygen species (ROS), this 

geometrical formation appears to track ROS travel from the buried Mn4Ca cluster (a site of ROS 

generation), away from the complex and into the bulk solvent.  Existence of a channel that allows 

diffusion of oxygen/ROS away from PSII was proposed earlier as a critical means of minizming 

ROS-induced damage to the complex (Anderson, 2001).  Several of the residues involved in one 

of the two putative channels identified here (on the CP43 “arm”) were proposed earlier to be part 

of an ROS exit channel (Frankel et al., 2012).  In this earlier study, additional oxidized residues 

nearby were not detected, and therefore such a channel could not be verified and its position could 

not be described.  The current work is consistent with that earlier finding but extends it by 

describing a full path for this putative channel.  The other putative ROS channel identified here 

has not previously been proposed; earlier results (Frankel et al., 2012; Frankel et al., 2013), 
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however, are consistent with its location.  This study highlights another way in which modern 

high-resolution tandem MS can reveal structural information about a protein complex.  

 Like the work in Chapter 2, the study in Chapter 4 used MS-based cross-linking to identify 

the location of PsbQ within the PSII complex.  The results revealed that PsbQ binds on the lumenal 

surface of PSII in close association with CP47 and PsbO.  An inter-protein PsbQ-PsbQ cross-link 

shows that PsbQ binds at the dimer interface of PSII, consistent with the other two cross-links and 

with biochemical evidence that its binding stabilizes dimer formation.  While it was known that 

PsbQ is a member of active, fully-assembled cyanobacterial PSII, its binding site was previously 

unknown since it is not found in any cyanobacterial PSII crystal structure.  The work in Chapters 

2 and 4 thus highlight how MS-based cross-linking can provide valuable information 

complementary to, and not obtainable by, higher-resolution structural methods.   

Future directions for MS contributions to PSII life-cycle research 

 MS technology and associated sample preparation techniques are evolving rapidly.  

Increasing sensitivity and speed of instruments for bottom-up proteomics allows better coverage 

of transmembrane PSII proteins; for example, coverage of the core D1, D2, CP47, and CP43 

proteins is appreciably higher on a Thermo Q-Exactive Plus instrument than has been reported on 

LTQ-Orbitrap, LTQ-FTICR, and MALDI-TOF instruments (with increased coverage ranging 

from ~10-40% of the total protein sequence) (Aro et al., 2005; Frankel et al., 2012; Liu et al., 

2013a,b).  This increased coverage will mean that more PTMs and cross-linked peptides can be 

identified, and a larger portion of the PSII complex can be mapped by footprinting.  PTM analysis, 

especially using quantitative techniques to compare complexes exposed to different conditions, 

may help elucidate signals (largely unknown in cyanobacteria) that trigger D1 degradation.  The 

increasing availability of high-sensitivity instruments that can achieve high sequence coverage is 
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enabling detailed quantitative and non-quantitative global proteomic studies.  The new challenge 

is to reduce the large amounts of information becoming available into specific testable hypotheses 

for targeted follow-up studies.  

 Improvements at all stages of the cross-linking workflow are occurring, from linker design 

to linked-peptide enrichment and software analysis.  Specifically, isotope-labeled and MS-

cleavable linkers are powerful tools that are just beginning to be applied to PSII research.  In-vivo 

cross-linking is a promising approach to detect transient or unstable interactions that are difficult 

to capture after cell lysis.  Cross-linking may enable binding site identification for at least some of 

the approximately 30 accessory proteins now known or believed to associate with PSII during its 

life-cycle (Nickelsen and Rengstl, 2013; Järvi et al., 2015).  Detecting interactions between PSII 

subcomplexes and, e.g., D1 degradation proteases or proteins involved in chlorophyll loading 

would also be of prime interest.   

 Intact-mass measurements of the large core PSII proteins D1, D2, CP47, and CP43 were 

reported in several studies (Sharma et al., 1997b; Whitelegge et al., 1998; Huber et al., 2004; 

Thangaraj et al., 2010), with detection of the phosphorylated form of D1 as well in some cases 

(Whitelegge et al., 1998; Huber et al., 2004).  However, their top-down analysis has not yet been 

achieved.  Top-down technology is continuously developing, especially methods for increased 

product-ion sequence coverage (Frese et al., 2012; Shaw et al., 2013; Brunner et al., 2015) and 

analysis of larger integral membrane proteins and their PTMs (Ryan et al., 2010; Howery et al., 

2012).  Such analysis will make it easier to identify nearly-stoichiometric (and potentially 

important) PTM events from the many trace ones found under different conditions, not an easy 

task using bottom-up MS.   



  

199 
 

 Native MS is capable of analyzing certain intact membrane protein complexes, although 

the technology is still developing, and no one approach works for all protein complexes (reviewed 

in Mehmood et al., 2015).  Native MS analysis of PSII has not yet been demonstrated, but the 

technique could in theory serve as a complementary method to native gels to characterize the 

distribution of PSII subcomplexes under various conditions, and their components.  This might be 

particularly useful to address the stoichiometry of accessory proteins and cofactors, and could add 

a new tool to address the long-standing question of chlorophyll loading in PSII.   

General conclusion 

 The use of MS in PSII life-cycle research has been fueled by improvements in sample 

preparation methods for analysis of membrane proteins, increasing availability of MS 

instrumentation, and significant advances in instrument sensitivity, speed, and mass accuracy.  

Techniques from each of the four pillars of proteomics will continue to be employed to study the 

PSII life cycle.  These techniques have addressed a wide range of questions regarding the 

composition of PSII complexes, the time-dependent dynamic changes of individual subunits and 

complexes under different environmental conditions, and the tertiary and quaternary structure of 

PSII complexes.   

 Modern MS techniques provide a higher level of detail and confidence than previous 

methods; examples are identification of a protein’s phosphorylation site instead of mere detection 

of a phosphorylated protein, and identification of specific cross-linked residues instead of only 

suggestive evidence that two particular proteins are cross-linked to each other. For other 

applications, the use of MS permits entirely new questions to be asked (e.g., what proteins are 

present on a proteome-wide scale for a purified PSII complex).  
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 The new information has opened up new questions about function.  For example, what are 

the physiological roles of the many new PTMs that have been identified? What purpose does an 

accessory protein serve by binding at this particular location on a PSII complex? Put in the context 

of this study, are some of the many detectable oxidative modifications more important than others, 

e.g. for signaling D1 degradation?  What are the functional implications of the newly identified 

Psb28 binding site? (See above for discussion of this latter question).   In some cases, the sensitivity 

of MS is a potential pitfall: identification of a protein in a PSII sample does not necessarily mean 

it is a stoichiometric component, or that it associates specifically with the complex at all.  Thus, 

information from MS should be a starting point for more targeted genetic and biochemical studies, 

and MS is one component of an expanding toolbox for PSII life-cycle research.  Rapidly 

developing MS technology promises continued contributions to this field, which has a wide range 

of fascinating questions about membrane protein complex composition, dynamics, and structure 

yet to be answered. 
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Additional work: Preliminary characterization of a PSII complex lacking the RC subunits 

Results and Discussion 

 After glycerol gradient ultracentrifugation of ΔpsbO-His47-PSII as described in Chapter 

2, an unidentified light green band was observed above the PSII monomer (Fig. 1A).  This band 

was collected and analyzed by gel electrophoresis and immunoblotting (Fig. 2).  Surprisingly, no 

D1 or D2 gel band was observed for this complex.  Confirming this observation, MS analysis of 

this subcomplex detected no D1 or D2 peptides, and also did not detect PsbE, PsbF, and PsbI; 

these five proteins comprise the core “reaction center” (RC) subcomplex of PSII, the minimal unit 

necessary for primary charge separation (Nanba and Satoh, 1987; Ikeuchi and Inoue, 1988).  We 

routinely identify all five of these proteins by MS in our PSII preparations, and indeed they were 

all identified in the PSII monomer band.  MS did identify the PSII proteins CP47, CP43, PsbH, 

PsbL, PsbQ, PsbT, and PsbY, however, in the subcomplex, which are also all proteins routinely 

identified by bottom-up MS in our PSII preparations.  It appears from these results that the newly 

identified subcomplex is specifically lacking the five RC components, D1, D2, PsbE, PsbF, and 

PsbI.  We refer to it as the “no-RC” or NRC complex. 

 To check if the NRC complex formed as an artifact of the solubilization/ultracentrifugation 

procedure (perhaps due to destabilization caused by the ΔpsbO mutation, since this band was not 

observed in the His47-PSII sample), we collected just the ΔpsbO-His47-PSII monomer band after 

ultracentrifugation, resolubilized it in 2.4% dodecyl maltoside (DM) (3x the concentration used 

originally), and performed glycerol gradient ultracentrifugation again (Fig. 1B).  The NRC band 

was not observed in this complex, indicating it is not an artifact of the 

solubilization/ultracentrifugation procedure.  This control experiment will be repeated, however,  
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Figure 1. Glycerol gradient ultracentrifugation of purified PSII complexes reveals an 

unidentified subcomplex in the ΔpsbO-His47-PSII sample.  

A. M, PSII monomer; D, PSII dimer. 100 μg Chl a loaded per tube. 

B. Left, after ultracentrifugation of ΔpsbO-His47-PSII as in A. Right, identical ultracentrifugation 

after solubilization of just the isolated lower band (PSII monomer) in the tube on the left.  

  

A. 

B. 
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Figure 2. Analysis of the components of the newly identified subcomplex by gel 

electrophoresis (A) and immunoblotting (B).  1.5 μg Chl a loaded on the gel in A. MS analysis 

of the band marked with an asterisk showed it contained CP47 and CP43.   

 

using 0.8% DM instead of 2.4%, since it is conceivable that the NRC complex might be further 

dissociated in presence of this increased amount of DM. 

 Despite loading equal levels of chlorophyll on the gel (Fig. 1A), the CP47 and CP43 bands 

were significantly more pronounced than for the control PSII samples loaded on the same gel.  

Since CP47 and CP43 contain the large majority of Chl a molecules found in PSII, our preliminary 

assessment is that the absence of D1 and D2 is not enough to account for the more pronounced 

CP47 and CP43 bands, given equal Chl a loading on the gel.  The explanation for this observation 

A. B. 
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is that CP47 and CP43 are under-chlorophyll-loaded in this subcomplex.  Experiments are ongoing 

to investigate this possibility and to characterize this NRC complex further. 

Materials and methods 

Cell culture,  PSII purification, and protein analysis 

 The ΔpsbO-His47 strain of Synechocystis 6803 was cultured, and PSII was purified, as 

described in Chapter 2.  Besides the major PSII band obtained following glycerol gradient 

ultracentrifugation, an additional lighter green band was observed above it.  This band was 

collected and concentrated using a Vivaspin 500 centrifugal concentrator (50 kDa molecular 

weight cutoff) (Vivaproducts, Littleton, MA).  Protein gel electrophoresis and immunoblotting 

were performed as described previously (Kashino et al., 2001; Kashino et al., 2002). 

Proteolytic digestion and LC-MS/MS 

 PSII precipitation and digestion were carried out as described in Chapter 2. LC-MS/MS 

was carried out as described in Chapter 4, and the Mascot search engine was used to identify 

proteins in the sample based on the entire Synechocystis 6803 genome. 
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