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Chapter 1

Introduction

1.1 Prologue

Solids, liquids, gases. Every elementary school student invariably learns of the three

fundamental aggregate states of matter, and the apparent distinctions between them. Solids,

they are taught, rigidly maintain their shape, whereas liquids jostle about, and take the shape

of their container. Gases, on the other hand have little cohesion and expand to fill any open

space. Focusing in on liquids and solids, students are told that at high temperatures, a

system will be in its liquid state, and at low temperatures the system will be in its solid

state. What separates these two distinct states of matter, as the story goes, is a sharp phase

transition at a well defined temperature, known as melting. When a solid is heated to this

point, or a liquid cooled to it, one state suddenly changes into the other. Here there is a

sharp, and distinct, change of physical properties of the system, and the difference between

the two states can be clearly elucidated, with solids being highly ordered at the atomic

level, and liquids being more or less random in their arrangement. This dichotomy, while

physically true, is not the whole story, however. Much as there are more than simply three

states of matter, the distinctions between these states are not always sharp and clear. Some

liquids, like honey or tar, are ‘thicker’ than others, and take a lot longer to ‘take the shape of
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their container’, and if you make them ‘cold’ they can become so slow that you have to wait

a very long time to see them move. What happens if you don’t have the patience to wait?

In this case the liquid seems solid, but there has not been a transition! So what, then, is the

real distinction between the liquid and solid? It turns out this is the very question which

underlies one of the most significant open questions in modern physics: the glass transition.

1.2 The Phenomenology of Supercooled Liquids and

the Glass Transition

1.2.1 Broad Introduction

Glasses are ubiquitous. Countless publications over the last five decades have begun

with this simple statement, and perhaps the ubiquity of this statement itself, has lessened

the appreciation of its fundamental truth. Our modern world is, in many ways, built on

the usage of glasses, or glassy systems. Device screens, drinkware and cookware, windows,

spectacles, jewelry, tools, and more are all commonly made of glass of various types, and new

applications are being discovered everyday. The extraordinary elasticity and strain behaviors

that result from a lack of crystalline defects in glasses has led to increasing use in machining,

biomaterials, and even defensive armor (7; 8; 9; 10; 11; 12). Additionally, the unique energy

band structure associated with a lack of periodicity has led to increasing application in

the fields of semiconductors and optical recording. It is amazing, then, that something so

pervasive in our daily experience, and representing so much potential for innovation, can

remain so poorly understood by the scientific community as a whole, but a fundamental

understanding of the physics of glasses remains elusive. Why is this the case? What is so

mysterious? Naively, a principle difficulty is that glasses are solid, without the structural
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regularity of crystals, appearing to form without a phase transition, and are in fact, not

even in equilibrium. The unique dynamics and thermo-mechanical properties of glasses, in

conjunction with the mysteries surrounding their formation, present a source of tremendous

confusion and debate for scientists, but also a source of tremendous opportunity. Indeed,

the problem of the glass transition has been called the greatest unsolved mystery of modern

condensed matter physics, as true because of the academic curiosity it presents but also the

new utilities that can result from understanding it.

In order to understand the properties of glasses, one must first understand the physics of

how and why they form at all. Despite decades of intense research, a broadly accepted theory

of the glass transition remains elusive. In fact it has been said that there are more theories of

the glass transition than there are physicists working in the field to propose them. Regardless

of the specific nature or cause of glassiness, it is universally understood that glasses proceed

from supercooled liquids, the metastable precursor to the glassy state. In light of this

understanding, it is imperative to have a complete understanding and description of the

thermodynamics and kinetics of supercooled liquids. It is this understanding that this thesis

aims to provide. We must first, however, broadly outline the major facets of supercooled

liquid behavior that any theory must account for.

1.2.2 Viscosity, Flow, and Phase Transitions

When forces are applied to elastic solids in equilibrium, the solid responds by deforming

to a new size or shape, reaching a new equilibrium state, storing energy in deformed

(stretched or compressed) bonds. The applied force is traditionally divided by the area over

which it is applied to give a quantity called stress. Stresses can be applied perpendicular

to the area (elastic stress, tensile stress, pressure) or parallel (shear stress). The reason

for defining the stress is because it quantifies the average force experienced by a given
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atom/molecule experiencing the force. The resulting deformation of the solid is quantified

by a metric known as strain, which is equal to the change in size or shape of the solid,

normalized by the original value. Again, this normalization takes into account the individual

bonds involved, and allows for a universal description of deformation. In elastic solids, the

stress and strain are linearly related via a quantity known as the modulus, ie

σ = Mε (1.1)

where σ is the stress, ε is the strain, and M , the modulus. There are various moduli

corresponding to the specific stress imposed. The one that is most significant to

differentiating solids and liquids is the shear modulus, typically denoted as Gshear. The

modulus, regardless of the specific stress, quantifies a solid’s resistance to deformation. Thus,

for a given perturbation, the solid will deform by a proportional amount according to the

strength of its modulus, with the individual atoms/molecules moving to a new equilibrium

position, but will not be capable of returning to its original shape via relaxation of the stress.

Simply put, solids are rigid. Liquids, on the other hand, are not rigid. When a stress is

applied to a liquid, it responds by relaxing away the stress via large scale rearrangements of

the constituent atoms/molecules in a process known as flow. This is related to the fact that

the shear modulus of liquids is time dependent. As a result, stresses are not proportional

to strains, but instead are proportional to strain rates. Additionally, instead of a modulus

relating the stress and strain rate, a dynamic quantity called the viscosity relates the two.

Mathematically,

σ = ηε̇. (1.2)

where η is the liquid viscosity. The viscosity is a measure of a liquid’s resistance to flow in

the same way that a modulus is a measure of a solid’s resistance to deformation. A liquid
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with a high viscosity does not flow easily, whereas low viscosity liquids flow quite readily.

Colloquially, highly viscous liquids are referred to as being ‘thick’ like honey or molasses,

whereas low viscosity liquids, such as room temperature water, are ‘thin’. (Throughout this

thesis we will use the viscosity and relaxation time interchangeably as they are related via the

well known Maxwell relation, η = G∞τ , where G∞ is the infinite frequency (instantaneous)

shear modulus, which is weakly temperature dependent.) It is possible for the viscous

behavior of liquids to change with different conditions. Indeed anyone who has tapped a

bottle of ketchup to get it to pour has observed this; some liquids can be made less viscous

with applied stress, and vice versa. Stress, however, is not the only control parameter which

determines the value of the viscosity of liquids. Quite generally, the liquid viscosity is strongly

dependent on temperature, growing with cooling, and typically being quite well described

by an Arrhenius form at all temperatures between the melting and vaporization points. The

Arrhenius form is given by

η(T ) = η0 e
G(T )
kBT (1.3)

where η0 is the infinite temperature extrapolation of the viscosity, kB is Boltzmann’s

constant, and G(T ) is a temperature dependent free energy barrier. Typically this free

energy barrier is only very weakly dependent on temperature, so the viscosity approximately

takes the form,

η(T ) = η0 e
E∞
kBT (1.4)

with E∞ a temperature independent activation energy. The physical interpretation of this

expression is that there is a well defined energy which must be overcome via thermal

fluctuations (associated with an energy kBT ) or applied forces in order for the liquid to

flow. For liquids in equilibrium above the melting point, this activation energy is typically
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of the order of the bond energy of the atoms/molecules comprising the liquid. Therefore,

for a liquid to flow in response to perturbations, there must be an appreciable amount

of energy provided to break the bonds in order for the constituents to rearrange. This

picture also quite naturally explains why the viscosity grows with decreasing temperature,

as lower temperature implies that thermal fluctuations of an appropriate size to overcome

the energy barrier become increasingly scarce at lower and lower temperatures. The value

of the activation energy is generally material dependent, being very high for systems with

high strength directional bonds, such as silicate systems, and liquids with hydrogen bonds,

and low for Van der Waals, metallic, and chalcogenide liquids.

In ordinary liquids, starting at high temperature and quasistatically cooling (lowering

the temperature of) the liquid causes the viscosity to increase continuously according to the

aforementioned Arrhenius form, until the liquid reaches the melting point. Before moving

forward in this description, we must make an important distinction. In most liquids the

system does not uniformly melt at a single melting temperature, but instead has a range of

temperatures between the liquidus and solidus over which it melts incongruently. Therefore,

when we use the term melting temperature, or melting point, we are actually referring to the

liquidus. With this point cleared up, we now discuss what happens when the liquid reaches

the liquidus. At the melting point, the liquid and crystalline phases are in equilibrium

with each other, both possessing the same value of the free energy. For temperatures

infinitesimally beneath melting, the crystalline solid phase has a lower free energy, and

becomes the equilibrium state. Therefore, the quasistatically cooled liquid will undergo a first

order phase transition at melting, giving off a latent heat and rearranging into the extended

long range order of the appropriate crystal structure. The crystalline solid ceases being

able to flow, having an infinite viscosity/relaxation time. The different dynamical behavior

response can now be clearly understood; the rigidity of crystalline solids is due to their long

range order (14). In order for the atoms in a crystal to rearrange in response to perturbations,
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Figure 1.1: (Color Online.) ‘Cartoon’ representation of the energy barrier associated with
interface formation, that creates the kinetic barrier to nucleation.

a massive number of atoms must move together, breaking many strong intermolecular bonds,

and necessitating a huge amount of energy. In the liquids, which do not possess any long

range order, rearrangement is relatively easy. This is a common underpinning of condensed

matter physics: dynamics are determined by structure (15), and the structural change at the

thermodynamic phase transition leads to the sharp and drastic change in relaxation/kinetic

behavior at the melting point. The process of crystallization that takes place at melting

is not instantaneous, it proceeds through nucleation and growth of the crystalline phase.

Nucleation is a stochastic process that involves microscopic clusters of the crystalline phase

forming within the liquid matrix. While the the clusters are thermodynamically favorable

at temperatures beneath melting, the creation of an interface between the cluster and liquid

matrix has an associated free energy cost, so that the overall free energy associated with

nucleating the crystal is

∆G = 4πr2σ +
4

3
πr3∆gv (1.5)
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Figure 1.2: (Color Online.) Experimentally observed viscosity data of supercooled OTP.

where r is the radius of the (assumed spherical) cluster, σ is the surface tension associated

with interface creation, and ∆gv is the free energy decrease per unit volume associated with

the change of state. It is clear that there will be a critical radius for which clusters of smaller

size are thermodynamically unfavorable and will spontaneously breakup, whereas clusters of

larger size are stable and will undergo crystal growth. Therefore, the free energy of formation

of a cluster with the critical radius forms an activation barrier similar to that depicted in

Fig. (1.1). Further use of classical nucleation theory (13) leads to an overall relaxation rate

of

Inuc = I0(T )e
−∆G∗(T )

kBT , (1.6)

where I0(T ) is a prefactor which contains several thermodynamic and kinetic factors

(13), and is typically inversely proportional to the viscosity, such that more viscous liquids

nucleate the crystalline phase more slowly. This makes sense, as nucleation requires
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atoms/molecules in the liquid to diffuse through the liquid and rearrange into the crystal

structure, and high viscosity implies difficulty in these types of rearrangments, and indeed

a lower diffusion coefficient, as the two are usually inversely related via the Stokes-Einstein

relation (18). The existence of a nucleation rate means that there exists a nucleation

timescale which is roughly the reciprocal of this rate, and is a temperature dependent

time for nucleation of the crystalline phase to occur. A byproduct of this kinetic nature

of crystallization is that it is possible to cool a liquid sufficiently quickly as to bypass

crystallization at the melting point. What does sufficiently quickly mean? It means a rate

which is faster than 1
τnuc

, such that the temperature of the liquid is lowered before nucleation

can occur. As the temperature is further lowered, the viscosity of the liquid will increase,

making nucleation more and more difficult. When a liquid is brought beneath its melting

point without crystallizing it is said to be supercooled, and exists in a metastable (with

regard to the true thermodynamic crystalline ground state) equilibrium.

Once the liquid enters the supercooled state, a number of peculiar thermodynamic

and kinetic behaviors and anomalies appear. The most significant of these is that of the

temperature dependence of the viscosity/relaxation time, and this will be the principle

inquiry of this thesis.

As the temperature of the supercooled liquid is further reduced beneath melting, the

viscosity begins to rise incredibly rapidly, by as much as 14 decades over a temperature

range as little as 100 Kelvin. This extraordinary increase of viscosity with small change

in temperature is fantastically demonstrated by ortho-terphenyl (15), a prototypical glass

former, and this is depicted in Fig. (2.7). Eventually, with further cooling, at a material

specific temperature, Tg, the viscosity of the supercooled liquid reaches a value of 1012 Pa*s

(τ = 100s), and the liquid ceases to flow on physically meaningful timescales, becoming

mechanically rigid and behaving as a solid. At first glance this may remind the reader of

the phase transition from the liquid to the crystal at the melting temperature, but the glass
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Figure 1.3: (Color Online.) Logarithm of viscosity of OTP plotted as a function of
temperature (‘upper’ black curve) and the extrapolated high temperature logarithm of
viscosity (‘lower’ red curve). A clear departure from Arrhenius behavior occurs at a
temperature near T=350 K.

transition is entirely different. First, the glass does not possess an order atomic/molecular

arrangement, instead having its constituents arranged in amorphous structure resembling

that of the liquid. In fact, radial distribution functions show little change with supercooling

the liquid to the glass. Therefore, the rigidity is not associated with a long range order as

it is in the crystal. Second, in addition to no apparent structural change, there are none

of the usual thermodynamic markers of a first order phase transition at the glass transition

temperature, such as latent heats, entropy or enthalpy discontinuities, heat capacity jumps,

etc. Indeed, as pointed out, the glass is not an equilibrium state and the glass transition

temperature itself is merely operationally defined, and varies with the rate at which the liquid

is quenched (cooled). Therefore, the apparent emergence of solid-like features corresponds

to dynamical arrest and is not associated with a first order phase transition.
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Figure 1.4: (Color Online.) Logarithm of viscosity of OTP plotted as a function of reciprocal
temperature (‘upper’ black curve) and the extrapolated high temperature logarithm of
viscosity (‘lower’ red curve). A clear departure from Arrhenius behavior occurs at a
temperature near T=350 K.
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With the possibility of a first order transition ruled out, we next turn to other possible

explanations for the dramatic slowdown of liquid associated with a rapid viscosity increase.

Exponential functions are naturally capable of describing huge increases over small changes

of their argument, so we should investigate whether continuing to describe the temperature

dependence of the viscosity via an Arrhenius form is appropriate. If this is the case, then

the physical picture is quite simple, as the liquid has simply become too viscous to flow on

observable timescales. The act of supercooling by removing kinetic energy from the liquid

makes it such that rearrangements, which require overcoming the intrinsic energy barrier,

will have become incredibly scarce. It is observed, however, that all liquid viscosities depart

from the Arrhenius form to some degree, possessing a so-called super-Arrhenius temperature

dependence. This is demonstrated in both Figures (1.3) and (1.4), where the logarithm of

the viscosity is depicted verus temperature and inverse temperature respectively. In these

figures, the Arrhenius viscosity, consistent with high temperature OTP, is shown in red,

having been extrapolated beneath melting, and the observed viscosity is shown in black.

It is clear that there is a temperature at which the two curves depart from one another,

the viscosity becoming ‘super-Arrhenius’ at this point. This temperature has traditionally

been labeled TA, and a number of interesting phenomena appear at this temperature, that

will be further discussed later. Complicating matters further, the degree of departure from

the Arrhenius function forms a spectrum of behaviors ranging from very little departure for

liquids like SiO2 which possess strong directional bonds, and extreme departure for liquids

like OTP which do not possess directional bonds. Angell (16) realized that because liquid

viscosities tend to have the same limiting value at infinite temperature, and have the same

value at Tg by definition, that the logarithm of the viscosity could be plotted versus the

inverse temperature scaled by Tg in order to examine this spectrum. An Angell plot of a

handful of representative supercooled liquids is shown in Fig. (1.5). Angell additionally

defined a useful metric for quantifying the degree of departure which he called the fragility,
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Figure 1.5: (Color Online.) ‘Angell’ plot of the logarithm of viscosity versus Tg-scaled
reciprocal temperature for a selection of different liquids. Note the spectrum of different
behaviors.

m, which is defined mathematically as

m =
d log η(T )

d(Tg
T

)
|Tg . (1.7)

The fragility is an important parameter for describing the dynamics of supercooled liquids,

and will be discussed in great detail throughout this thesis.

We have now ruled out both a first order transition, and simple Arrhenius picture for

describing the slowdown of supercooled liquids. However, if we recall that the viscosity is

related to the relaxation time via the Maxwell relationship, then another possible explanation

presents itself. Dramatic increase of the relaxation time of systems is typically observed

in the vicinity of second order phase transitions, the so-called critical slowing down. In

these transitions, the relaxation time diverges at a critical temperature at which the system

transitions from one state to another. We have seen that the glass transition at Tg is not
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a thermodynamic transition, as it is not between two equilibrium states, and second order

thermodynamic discontinuities are also absent. However, the critical slowing down associated

with second order transitions sets in at temperatures above the critical point, therefore it is

possible that the observed behavior near Tg could be the ‘ghost’ of an underlying transition at

a temperature lower than the glass transition point. The arrest that sets in at Tg due to both

the underlying transition and reduced kinetic energy in the liquid, obscures the transition,

making it impossible to reach in equilibrium. The divergence of the relaxation time near

a critical point is described functionally by a power law dependence, τ ∝ (T − Tc)
−zv,

where ν is a critical exponent associated with the topology of the system. The exponent z

corresponds to the concomitant divergence of an associated correlation length, such that the

relaxation time diverges in accordance with a diverging length (τ = ξν). Therefore, if the

glass transition is the result of a second order transition, the relaxation time should increase

via power law dependence near Tg and there should be an equally diverging lengthscale of

some kind. We have discussed that there appears to be little structural change near the glass

transition, so a lengthscale associated with structural growth is ruled out. It is quite possible

that a lengthscale associated with a more subtle symmetry breaking exists, and indeed we

will report on one in Chapter 4, but attempts to find a universally applicable and accepted

lengthscale have so-far proved unsuccessful (18; 2; 3; 4; 5; 6) In addition to there being no

apparent associated diverging lengthscale, the viscosity (and therefore relaxation time) does

not appear to increase in a power law fashion. In Fig. (1.7a)-(1.7c) we demonstrate that

plotting the logarithm of the viscosity for the systems listed in the Angell plot versus T −Tg

does not lead to a linear variation as would be expected for power law behavior over a wide

range. Even if one zooms in to temperatures asymptotically close to Tg to be consistent with

ordinary critical behavior, variation from linear dependence is observed, and the results are

certainly not universal. Indeed, the depicted data, suggest that there would have to be a

large number of universality classes, with exponents significantly greater than any observed

experimentally before. While some degree of error could be expected due to using Tg in place
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Figure 1.6: (Color Online.) Fits to the viscosity of four sillicate glassformers with the DEH
form of Eq. (3.9).

of a lower temperature for the transition, overall there is no evidence suggesting an actual

divergence at any temperature beneath Tg (16). Despite this evidence against a transition

and associated divergence, many researchers remain unmoved and continue to investigate

the existence of a true transition. They are bolstered by the apparent success of the VFT

functional form discovered by Vogel, Fulcher, Tammann, and Hesse (28; 30; 29). This form

is given by

η(T ) = η0 e
D T0
T−T0 (1.8)

where D is a parameter related to the fragility and T0 is a temperature at which a dynamic

divergence occurs. An example of application of the VFT form to the viscosity data of

OTP is shown in Fig. (1.6). It is clear from the figure that while, the VFT form does

a significantly more accurate job of fitting the experimental viscosity data then either an

Arrhenius or power law form, it does display systematic errors in certain temperature regions.
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(a)

(b)

(c)

Figure 1.7: (Color Online.) Zoomed in version of the viscosity collapse data presented in
Fig.(3.16). The data is presented in this way to demonstrate that the logarithmic form
for the collapse is not masking or suppressing poor fits. Panel (3.17a) focuses on the data
in the immediate vicinity of the liquidus temperature. Panel (3.17b) focuses on the mid
temperature range. This region is the most sparse, as experimental data in this range is
uncommon. Panel (3.17c) shows the lowest temperature region, where the DEH fit is the
tightest, and alternative models typically have poorest performance.
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More significantly to the theorist, however, is that the VFT form is entirely empirical, not

being based in any comprehensive theory. To combat this, numerous theoretical frameworks

have been developed over the previous century that aim to ‘derive’ the VFT form, and

some of these will be discussed in Chapters 2 and 3 of this thesis. All of these theories are

successful at describing the viscosity over various ranges of temperatures for certain liquids as

well as explaining a number of other features of the phenomenology of supercooled liquids,

but they all suffer from the same drawbacks. None of the previously proposed theories

universally describe all types of liquids at all temperatures successfully, and most have

multiple unexplained parameters for the viscosity/relaxation time function, which are not

couched in first principles physics. Additionally, many of them lack a complete description

of all of the dynamic (such as exponential stretching-which will be discussed in chapter 4)

and thermodynamic features of supercooled liquids. Therefore, the field is still quite open.

It is our belief, and that of other prominent physicists in the field (38) that any complete

theoretical framework for explaining supercooled liquids must possess three major facets,

namely it must

1. Explain the super-Arrhenius temperature dependence of viscosity/relaxation time.

2. Explain the non-exponential stretching and anomalous thermodynamics.

3. Be universal, applying to all supercooled liquids regardless of microphysics.

Proposing, investigating, and validating a theory which possesses the above three

ingredients is the purpose of this thesis. In the following chapters we will outline a theory

which takes as its basis, no special temperatures, relying on the thermodynamic melting

temperature (liquidus) as its fundamental temperature, and using properites of equilibrium

systems to explain supercoled liquids. This theory can be cast in both a classical and

quantum framework, and provides a novel viscosity function which describes the super-

Arrhenius growth over the entire range and with only a single parameter. Additionally, the
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model is easily extended to all other dynamical and thermodynamical quantities, and also

suggests that the dynamics of glass forming liquids are indeed universal.

1.3 Overview of thesis

Chapter 2 of the thesis derives the equilibrium, melting-based distribution theory in

the classical framework, and applies the resulting viscosity function to 45 different liquids of

all types and fragilities. In chapter 3 we recast the theory from a quantum starting point,

and extend it to cover other dynamical quantities, as well as various thermodynamic ones.

Additionally, we investigate the physics of the single parameter, while also testing more

liquids, and extending the theory to temperatures above the liquidus. Finally, in chapter

4, we investigate the structural aspects of the theory, by uncovering a growing lenthscale

related to percolating structures, which grows along with the viscosity in a model system.
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Chapter 2

The Classical Distribution Theory

2.1 Chapter Overview

In this chapter we begin to layout our framework for understanding the phenomenology

of supercooled liquids by introducing the main ideas behind the equilibrium, melting-based

distribution theory. We fully develop the basic ideas in a classical framework which we call

the Energy Shell Distribution Theorem, or ESDT. We take as our starting point, classical

statistical mechanical phase space, and recognize that quenching a liquid leads to violation

of Liouville’s theorem for conservation of trajectories in phase space. Based on this, we

develop an extension of sorts, of equilibrium statistical mechanics to metastable supercooled

liquids in terms of distributions over classical phase space associated with various effective

temperatures. As we described in the first chapter, one of the three principle curiosities of

supercooled liquids is the thermal behavior of the viscosity/relaxation time. Therefore, as

a first test of the ESDT model, we use this metastable framework to develop an equation

for the viscosity of supercooled liquids, and test it by applying the functional form to fit

the experimental data of 45 different liquids. The ESDT form links the dynamical evolution

of supercooled liquids to the equilibrium melting temperature, and contains only a single

fitting parameter, making it experimentally robust, and minimally empirical. Once we have
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demonstrated the statistically significant quality of the fits in reproducing experimental

data, we observe that this form quite naturally suggests a universality in the dynamics of

undercooled liquids. We demonstrate this fact concretely by scaling the data of all 45 liquids

using the relevant ESDT variables, and observe a collapse of the data over some 16 decades.

We conclude by commenting on the consequences of this apparent universality, and roughly

sketching out extensions of the model which will appear in the next chapter.

This chapter is a minimally altered version of a published paper which appeared in

Frontiers of Materials : N. B. Weingartner, C. Pueblo, F. S. Nogueira, K. F. Kelton, and Z.

Nussinov, Front. Mater. 3:50. doi: 10.3389/fmats.2016.00050 (2016)

2.2 Introduction

Human kind has been forming and using glasses for millennia. The unique optical,

thermal, and mechanical properties, as well as ease of working, that arise from the lack of

long-range crystalline order in glasses (1) has lead to their application in a diverse range

of fields (7; 8; 9; 10; 11; 12). Despite their ubiquity, a fundamental understanding of

the phenomenology associated with glasses and their formation via the vitreous transition

remains elusive. In order to understand the structural and mechanical behavior of glasses,

we must first understand how and why they form at all. As glasses form from supercooled

liquids, this means we must first understand the dynamics of supercooled liquids. Ordinarily,

when an equilibrium liquid is cooled to a temperature beneath its melting point it undergoes

a first order thermodynamic transition to the ordered crystalline solid. However, if the

liquid is cooled sufficiently quickly (at material dependent rate), crystallization can be

bypassed, and the liquid enters a metastable (with respect to the crystal) state, and is termed

“supercooled”. The thermodynamic and kinetic properties of supercooled liquids exhibit a
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number of remarkable characteristics, but the most striking is arguably the behavior of the

viscosity (and all associated relaxation times) (1; 2; 3; 4; 5; 6). The viscosity of supercooled

liquids grows by as much as 14 decades over temperature ranges as small as a few hundred

Kelvin, eventually reaching a value of 1012Pa∗s at the kinetic glass “transition” that occurs

at a temperature Tg. Calorimetric signatures of the transition into the glassy state have

also been observed at the dynamic glass transition temperature Tg(63). At temperatures

below the glass transition temperature, Tg, the increasingly sluggish dynamics lead to the

onset of rigidity and solid-like behavior in the liquid on observable timescales. This immense

dynamical slowing occurs without any obvious structural change/ordering, and attempts to

find an appropriate order parameter or growing length scale have remained inconclusive. As

such, explaining the spectacular increase of the viscosity (and associated relaxation time) of

supercooled liquids remains an open challenge in material science.

Liquids which are in equilibrium at high temperatures above melting, have a viscosity

which is well described by an Arrhenius function, namely

η(T ) = η0e
∆G(T )
kBT , (2.1)

with ∆G(T ) a (weakly) temperature dependent Gibb’s free energy of activation and kB

Boltzmann’s constant. The simple interpretation of this form is that there exists a well-

defined energy barrier (associated with bond-breaking) that can be overcome by thermal

excitations. As the temperature is lowered, appropriately sized thermal fluctuations become

considerably less likely and flow decreases appreciably. If this form were maintained in the

supercooled liquid, there would be little mystery. However, all liquids show a degree of

departure from the Arrhenius form. This degree of departure forms a continuous spectrum,

and is quantified by Angell’s fragility parameter (15; 16). According to this scheme, the
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most “fragile” liquids (those with the high values of the fragility parameter) display a far

more dramatic rise in the viscosity than that predicted by an Arrhenius law whereas the

deviation from an Arrhenus law is far smaller in “strong” liquids (having a small fragility).

The underlying physics of the departure from Eq. (2.1) is what we aim to explain.

Some of the first attempts to describe the non-Arrhenius character of supercooled

liquid viscosity were undertaken in the 1920’s by Vogel, Fulcher, Tammann, and Hesse (17).

Collectively, they discovered that the functional form,

η(T ) = η0e
DT0
T−T0 (2.2)

was able to adequately describe the viscosity of many supercooled liquids over a fair range

of temperatures. In the so-called VFTH form, the parameter D is related to the fragility,

and T0 is a material-dependent temperature at which a dynamic divergence is predicted to

occur. This form initially appeared as a purely empirical form, with no rigorous theoretical

support. However, over the years a number of theoretical frameworks have been proposed

(19; 18; 20; 21; 22; 23; 24; 25) to reproduce the VFTH form. While the VFTH form has

survived for nearly a century and is widely used, it has consistently been shown to provide

an overall poor fit to the viscosity of supercooled liquids of all types (classes, fragilities,

bonding types, etc.) over the whole range of data. Additionally, there is no conclusive

evidence for a dynamic divergence at any temperature above absolute zero (38). These

include tantalizing experiments that employed 20 million year old amber (38; 27). For these

and other reasons, a plethora of other functional forms have been proposed in the last

30 years which do not contain a dynamic divergence, and which have rigorous theoretical

foundations. A few of these which have been found to accurately describe the viscosity

of many glass forming liquids are the KKZNT, Cohen-Grest free volume, parabolic, and

MYEGA forms (28; 29; 30; 34; 32; 33; 31).
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The aforementioned functional forms have all been shown to do an excellent job of

reproducing the temperature dependence of the viscosity of a wide range of supercooled

liquids. For example, the KKZNT form (28; 29; 30) has become a favorite of some researchers

in the metallic glass community and very accurately describes the behavior of metallic liquids

(35), while the MYEGA form (31) has become ubiquitous in the sillicate and oxide glass

community, as it works very well for covalently-bonded non-organic liquids. The trouble

with these forms, as we will show, is that despite their applicability to some liquids they do

not accurately describe all types of supercooled liquids. This is made particularly striking

in a review by Angell et al. (16), in which the authors list ten different functional forms

all of which they discuss are accurate only for certain types/classes of liquids. Additionally

bothersome is that most of these theories contain at least three adjustable parameters which

cannot be uniquely determined by correlations with thermodynamic observables. This is

true of the parabolic form (32; 33), which has wide applicability to fragile glasses. It seems

reasonable to expect that if any liquid can in principle be supercooled, then there should be

some universal mechanism/theory that is applicable across all liquids. Further, the material

dependent parameters of a given model should be related to thermodynamic observables,

and not arbitrary fitting variables, while reflecting first principles.

In order to remedy the issues discussed above, we will now propose and assess a

classical statistical mechanical framework to describe the viscosity of supercooled liquids. An

earlier quantum rendition of our theory that mirrors and contains many of the considerations

invoked in the classical approach that we discuss here first appeared in (36) and motivated

the fit and collapse that we experimentally tested and derive here classically. Within our

framework, the temperature dependence of the viscosity contains only a single parameter.

Such a functional dependence implies a collapse of the viscosity data. In the current work,

we collapse the published viscosity data of 45 supercooled liquids onto a single scaling

curve. This collapse is a central result of our work. Additional aspects of our approach
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(in particular, the calculation of Angell’s fragility parameter and the viscosity above the

melting temperature) along with further details concerning our data analysis and fits appear

in (37). Regardless of our theoretical bias, the existence of the universal collapse of the

viscosity data that we first report on here suggests (as it has in many other arenas for very

different problems (38; 39; 40)) an underlying simplicity. Historically, the existence of a

collapse in which the data from numerous systems were seen to fall on a universal curve

pointed to a commonality in standard equilibrium critical phenomena (40). Historically, the

discovery that experimental data for various systems in the vicinity of their liquid to gas

phase transition can be made to collapse onto a single curve after a simple rescaling (41)

predated current understanding of critical phenomena by many decades and hinted at the

universality that permeates equilibrium phase transitions (40; 42). We hope that the viscosity

collapse that we find for all studied supercooled liquids will spur further investigation. In

the next section, we turn to the rudiments of our classical statistical mechanics approach.

2.3 Fundamentals of the Energy Shell Distribution

Approach

The macroscopic thermodynamic and dynamical observables (such as viscosity) of

a many-body system ultimately result from the average of the microscopic dynamics of

the constituent atoms of the system. These microscopic dynamics are governed by the

interactions between the system’s constituent members, and these are encoded in the system’s

Hamiltonian, H, which is a function of the kinetic and interaction energies of the constituent

atoms in the system. We can write down the exact classical, many-body Hamiltonian for a

supercooled liquid of any type as
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H =
∑
i

~P 2
i

2Mi

+
∑
i

~p2
i

2me

+
∑
i>i′

e2

4πε0|~ri − ~ri′ |

+
∑
ij

Zie
2

4πε0|~Rj − ~ri|
+
∑
j>j′

ZiZje
2

4πε0|~Rj − ~Rj′ |
. (2.3)

where Zi is the atomic number, me is the electron mass, Mi is the atomic mass, ~ri is the

position of the i-th electron, and ~Rj is the position of the j-th nucleus. We consider realistic

three-dimensional liquids of N particles (the total number of electrons and nuclei). This

Hamiltonian is intentionally general; changing the values of Zi, Mi, and the specific form

of any additional interaction potentials allows one to describe any and all specific liquids.

Although the exact Hamiltonian is given by Eq. (2.3), this precise form of the Hamiltonian

will be immaterial in the very general analysis that follows. Rather, as we will explain,

what matters most in our classical approach (and in its quantum analog (36)) is that the

equilibrium properties of this disorder free many body Hamiltonian are empirically well

known. Specifically, the realization of Hamlltonian of Eq. (2.3) as it pertains to standard

disorder free materials, typically exhibits equilibrium solid or liquid phase at, respectively,

low or high energy densities or temperatures.

In what briefly follows, we denote the collection of the momentum coordinates of all

particles (electrons and nuclei) by ~π and the collection of all spatial coordinates by ~x. To

compute the dynamics of constituents of the liquid, one needs to solve Hamilton’s equations,

~̇π = −∇~xH

~̇x = ∇~πH (2.4)

corresponding to the Hamiltonian in Eq.(2.3). In general, for many-body systems such as a

liquid, this leads to a set of strongly coupled, highly nonlinear, partial differential equations
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Figure 2.1: (Color Online.) At left is a phase space schematic with fixed energy shells. As
described in the text, the microstates change from being “liquid like” at high energy densities
(or associated high temperatures) to being “solid like” at low energies (or low temperatures).
On the right, we depict a cartoon of the atomic microstates both above and below the energy
density associated with melting (dashed line at center).

which are impossible to solve exactly. While methods of approximation do exist to solve the

resulting equations, we need only rely on simple statistical mechanics ideas in conjunction

with extensively verified experimental observations.

The state of a classical N-body system may be represented by a point labelled by the

positions and momenta of each of the particles in 6N-dimensional phase space (a microstate

(~x, ~π)). The time evolution of the system corresponds to a trajectory in this phase space

which is governed by the system Hamiltonian and any external constraints. The system is

assumed to be in any of the microstates which are allowed by the external constraints of the

system (macrostate), with appropriate statistical weights set by the specific ensemble being

employed. The calculation of the average values of physical observables O (which correspond

to the measured macroscopic values), proceeds by averaging the value of O in each microstate
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of the allowed region of phase space. For an isolated system, the allowed phase space is given

by a shell centered on the hypersurface of constant energy, H(~x, ~π) = E, with thickness δE

set by the uncertainty in specification of the external energy. The statistical weights are

constant in the allowed region and zero elsewhere, such that microcanonical averages are

given by

Ō(E) =
1

D(E)

∫
d3Nx

∫
d3Nπ

(2π~)3N
O(~x, ~π) δ(H(~x, ~π)− E),

(2.5)

with the density of states

D(E) =

∫
d3Nx

∫
d3Nπ

(2π~)3N
δ(H(~x, ~π)− E). (2.6)

When the system is coupled to an external heat bath, all energies are in principle attainable

by the system, and the infinitesimally thick shell (δ-peaked) of allowed phase space (Fig.

(2.1)) may become smeared and overlap. This leads to averages of the form

Ō =

∫
dE ′ Ōm(E ′) ρ(E ′). (2.7)

Here, Ōm(E ′) is the microcanonical average at energy E ′, and ρ(E ′) is a (normalized)

probability distribution in phase space which is not a δ-function. In standard equilibrated

systems (such as those corresponding to the disorder free Hamiltonian of Eq. (2.3) that

describes equilibrated solids and liquids), the ensemble average of Eq. (2.7) is equal to the

long time average of O (which we denote by O∞) as it evolves according to Eqs. (2.4).

Empirically, as we remarked earlier, at high enough temperatures or energy densities, the

system of Eq. (2.3) is a fluid while at temperatures or energy densities below that of freezing
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the system is an equilibrium solids. Thus, for any observable O, the microstate average of

Eq. (2.5) will change character from featuring equilibrium fluid like features at high energies

to solid like behaviors at low energies. When latent heat appears at the equilibrium melting

transition (as it nearly always does), there will be intermediate states displaying mixed fluid

and solid features. It follows that, when averaged over energy shells in phase space, the

microstates themselves change their character across the equilibrium phase transitions. Fig.

2.1 portrays the above simple conclusion.

Since systems in equilibrium, with a well defined temperature, have a canonical

partition function,

Z =

∫ ∞
−∞

dE D(E) e
− E
kBT . (2.8)

In this case, ρ(E ′) corresponds o the Gibbs distribution, namely,

ρ(E ′) =
D(E ′)e

− E′
kBT

Z
. (2.9)

If the system is now cooled quasistatically, equilibrium will be maintained, and the

distribution will remain canonical at progressively lower temperatures. This is, in part,

guaranteed by Liouville’s theorem, which states that the phase space volume along

trajectories in phase space is preserved for Hamiltonian systems. This means that as the

system is cooled slowly enough, trajectories will neither bunch nor diverge and will map in

a “1-to-1” fashion to the newly allowed region of phase space, and the distribution function

will adjust accordingly. If instead of slow quasistatic cooling, we rapidly quench the system,

it will cease to be in equilibrium and its dynamics will no longer be Hamiltonian. The now

dissipative system will violate Liouville’s theorem: the trajectories from nearby points in

phase space can diverge, and the phase space volume may swell. The initial shape of the

initial energy shells will be deformed due to supercooling deform. This deformation is central

to our description of the supercooling process. Due to this non-adiabatic evolution, the Gibbs
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distribution will no longer be the exactly correct distribution describing the distribution in

phase space. If we allow the system to maintain metastable equilibrium then the canonical

ensemble is still roughly obeyed. However, in this case, different regions of the initial phase

space will map to areas with different effective canonical distribution functions, i.e., with

different effective temperatures. This idea, which is seemingly reinforced by the appearance

of dynamical heterogeneities (36; 43; 44; 45; 46; 47; 48) and other phenomena implies that

the overall system will sample a range of effective global temperatures (necessitated by the

apparent spatial distribution of local effective temperatures) consistent with the externally

imposed temperature, T . This distribution of effective temperatures forms the nub of our

“Energy Shell Distribution Theory” (ESDT).

With the system now sampling a smeared out distribution of effective temperatures,

the phase space probability distribution for the averages of Eq. (2.7), will now involve a

conditional probability density ρ(E|T ′) for the energy given a specific temperature, namely

ρ(E) =

∫
dT ′ ρ(E|T ′)ρ(T ′). (2.10)

Here, ρ(T ′) is the probability distribution of effective temperatures T ′. As the system is

in a metastable equilibrium, the probability density for a given E at a temperature T ′ will

still reasonably be described by the Gibbs distribution of Eq. (2.9). Similar to Eq. (2.7),

the long time average of O for a general distribution ρ including that associated with the

supercooled liquid (sc) reads (36)

Ō∞,sc =

∫
dT ′ρ(T ′) Õcan(T ′). (2.11)

Here, Õcan(T ′) is the canonical, equilibrium value of the observable O at a temperature

T ′. We see, then, that supercooling acts to drive the system into a metastable equilibrium

which leads to the system sampling a range of equilibrium value averages over a narrow,
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but finite distribution of effective temperatures. The initial “shock” to the system of

supercooling causes microscopic effects which broaden the distribution. By virtue of being

out of equilibrium, the distribution ρ must have a finite standard deviation. This is so as

otherwise the system would be described by a unique uniform effective temperature and be

describable by the equilibrium canonical ensemble. However, since the supercooled liquid is

out of equilibrium, the standard deviation σ associated with the distribution ρ cannot vanish

(36). When thermodynamic equilibrium is restored at a uniform global temperature T , the

distribution ρ(T ′) becomes a delta function (δ(T − T ′)) implying an equilibrium Boltzmann

distribution (and ensuing equilibrium expectation values for all observables).

With the statistical mechanics ideas in place, we now invoke these to calculate the

values of observables of interest. One method of measuring the viscosity of a liquid is by

measuring the terminal velocity of a sphere dropped into the liquid. In this case, the viscosity

is inversely proportional (η ∝ 1/v∞) to the terminal velocity of the sphere. The terminal

velocity is a macroscopic property of the system, and therefore can be calculated in our

statistical mechanical framework. Setting the observable O to be the vertical velocity of the

dropped sphere, O = vz (36), the observed terminal velocity becomes

v̄∞,sc =

∫
dT ′ρ(T ′) ṽ∞,can(T ′). (2.12)

Thus, the viscosity will be given by

η =
A∫

dT ′ρ(T ′) ṽ∞,can(T ′)
, (2.13)

with A a constant. As is well known, for an equilibrium system, there exists a cutoff

temperature, Tc, below which the the terminal velocity must vanish (since the system is

completely solid and no long time flow occurs). Thus, in the equilibrium canonical ensemble,

only averages of the terminal velocity at temperatures above this cutoff may contribute to
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the integral in Eq. (2.13) leading to

η =
A∫∞

Tc
dT ′ρ(T ′) ṽ∞,can(T ′)

. (2.14)

If we further assume that the distribution ρ is sufficiently narrowly peaked (as will be verified

in the next section and seen from the numerical values of our dimensionless fit parameter)

such that the distribution has minimal “leakage” into effective temperatures T ′ above Tc,

when the measured global temperature T < Tc, then the value of v∞,can will change very

little over the region of appreciable weight. Therefore, we can reasonably replace v∞,can(T ′)

with v∞,can(Tc). Thus the viscosity of the supercooled liquid is

η =
η(Tc)∫∞

Tc
dT ′ρ(T ′)

. (2.15)

In order to use this expression to make concrete predictions of the viscosity, we must know

what functional form to use for ρ(T ′). All that is known about the distribution is that it

is peaked about the external temperature, T , must be normalized, and that it has a small

yet finite width. In the absence of additional constraints, the appropriate distribution ρ

for the supercooled liquid may be ascertained (36) by maximizing the Shannon entropy

HI = −
∫
ρ(T ′) log2[ρ(T ′)] dT ′. As is well known, maximizing the Shannon entropy with the

constraints of normalization and finite variance leads to a Gaussian distribution. Therefore,

the most probable distribution of effective temperatures is

ρ(T ′) =
1√

2πσ(T ′)
e
− (T ′−T )2

2σ(T ′)2 (2.16)
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Figure 2.2: (Color Online.) The viscosity, η(T ), scaled by its value at the melting (or
liquidus) temperature η(Tl) plotted as a function of the “reduced temperature” Tl−T

Tl
. When

represented this way, a spectrum of behaviors appears, with most glassformers seeming to
fall within different ‘families’ corresponding to fragility classes as defined by experimental
values.

where σ(T ′) represents the spread of the distribution and T is the external temperature.

Inserting the Gaussian distribution of Eq.(2.16) into Eq.(2.15), we find that the viscosity

η(T ) =
η(Tc)

erfc
[

Tc−T√
2 σ(T )

] . (2.17)

In what follows, we make two conjectures to complete the form of the viscosity, one involving

the cut-off temperature, and one involving the spread of the Gaussian.
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Figure 2.3: (Color Online). The standard deviation σ(T ) of the probability distribution
of Eq. (2.16) as inferred by fitting the experimentally measured viscosity to Eq. (2.19).
In most cases that we examined, the approximate linearity relation of Eq. (2.18) holds
reasonably well far enough below the liquidus temperature. Here, we also show two well
known exceptional liquids: water and glucose. These fluids display anomalies that have
been ascribed to putative liquid-liquid transitions, e.g., (60; 61; 62; 63; 64; 65; 66). The
crossover of σ at high temperature and the one that we similarly found in supercooled
salol (37) may be a signature of these putative transitions. Indeed, in salol the crossover
temperature at which σ(T ) deviates from its low temperature linearity (37) coincides with
earlier experimentally suggested liquid-liquid transition temperature (68).
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2.3.1 The cutoff temperature

In choosing a value for the cut-off temperature, Tc, we rely on experimental

observations. In pure systems, at the melting temperature, the equilibrium system undergoes

a first order phase transition from the liquid to the ordered crystalline solid state. At this

temperature, in equilibrium, the values of thermodynamic observables transition from their

liquid-like values to their solid-like ones. In a perfect crystal (an idealization never realized),

the viscosity is infinite (14), and hence the terminal velocity will be zero at temperatures

beneath melting.

The idea of linking the glass transition to melting goes back decades and it is

easy to understand why (50; 51; 52; 53). By definition, supercooled liquids are formed

by avoiding crystallization at the melting transition, therefore the melting temperature

implicitly determines at which temperatures a supercooled liquid exists at all. Additionally,

the melting transition occurs at a sharp transition temperature, making it a somewhat

less arbitrary reference point than the kinetically defined glass transition temperature.

Kauzmann, in his seminal paper (37), was one of the first to propose an empirical link

between the glass transition and melting. He observed that for all the liquids he studied,

on average the glass transition and melting temperatures were related by Tg ≈ 2
3
Tm. In

the intervening years, a number of researchers have found that this relationship holds, on

average, for various types of supercooled liquids/glasses (56; 78). However, deviations from

this empirical rule have also been observed for decades. Similar to the argument above,

Turnbull reasoned that because nucleation and growth of the crystalline phase became

thermodynamically possible at the melting temperature, glass formability may be linked

to the gap between the melting temperature and glass transition temperature. He observed

that glass formability in metallic liquids could roughly be quantified by what he defined as

the reduced glass transition temperature, Trg = Tg
Tm

(71; 58; 53), where the best glass formers
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had Trg ≈ 2
3
. However, as metallic liquids display a range of glass formability, so to does

the reduced glass transition temperature. Therefore, in metallic liquids at least, the 2/3 rule

does not always hold. Building on the observation of Kauzmann and Turnbull, it appears

reasonable to investigate further what links exist between melting and the glass transition.

What these empirical relationships fail to do, however, is provide a consistent framework

for understanding the dynamics of supercooled liquids and making predictions about the

phenomenology based on melting. This is made vivid by examining a simple scaling of the

viscosities of several liquids by values associated with melting. In Fig. (2.2) we plot the

logarithm of the viscosity scaled by its value at melting (or, more precisely, its liquidus

temperature, as will be discussed below) versus the melting-scaled inverse temperature. As

the figure demonstrates, a universal description of the viscosity does not immediately emerge

by simply using the melting temperature, however “fragility bands” appear, providing more

evidence for the link between Tg and Tm. This suggests that an “ingredient” is missing. It

is our goal to combine the above ideas with our simple statistical mechanical treatment, to

ultimately arrive at a complete, predictive theory of supercooled liquids.

In light of the above arguments we will identify the cut-off temperature Tc with the

melting temperature, Tm. There is an intrinsic difficulty in doing this, however, which must

be addressed. Only certain non-monatomic liquids possess a single “melting” temperature.

In reality, most liquids have a “melting range” associated with the temperatures between

the solidus temperature Ts and the liquidus temperature Tl. Additionally, either associated

with these temperatures, or the pure-system melting temperature, Tm, there will be a range

of energies corresponding to the latent heats/enthalpies of formation. Therefore, regardless

of which temperature we choose to represent “melting”, there will be corrections necessary

to account for the melting range. Additionally, many sillicate systems are polymorphic in

the crystalline solid state, meaning that at various temperatures below the liquidus, the

crystal transitions between different thermodynamically stable crystalline configurations.
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These polymorphs and their associated temperatures can have a very large impact on the

thermodynamic properties of the system, with minimal apparent impact on the dynamical

properties. One may obtain bounds on the viscosity by setting the cutoff or melting

temperature in Eq. (2.12) to mean the liquidus temperature (36). If no long time flow

appears in this intermediate temperature regime (i.e., if the terminal velocity of Eq. (2.12)

vanishes), then this substitution of Tc = Tl in Eqs. (2.15,2.17) will be precise. Thus, because

solid-like characteristics will first appear at the liquidus temperature, we will take it to

define the melting temperature at which point there is a change in the equilibrium dynamics

of the system. This argument can be further understood in the context of the Lindemann

criterion. In Lindemann’s model, the break down of solidity and onset of flow at the melting

temperature is due to the average amplitude of vibration becoming an appreciable fraction of

the lattice length (≈ 10%). At the temperature where this occurs, the lattice destabilizes and

constituents become liquid like. The average amplitude of vibration is proportional to the

kinetic energy, so this can be seen as the average kinetic energy of the constituents becoming

enough to globally overcome the average interatomic bond strength. Observations suggest

that a Lindemann-like model also holds for the devitrification of glasses (54). Therefore,

viewing this from the perspective of cooling, at the melting (liquidus) temperature, the

“stickiness” of the interaction forces/energy first starts to dominate the kinetic energy, and

the constituents begin to more strongly interact Inserting the liquidus temperature, Tl, into

Eq.(2.17), we obtain that η(T ) = η(Tl)

erfc
[

Tl−T√
2 σ(T )

] We next motivate a specific functional form

for the distribution σ(T ).

2.3.2 The width of the distribution

The spread in effective temperatures, T ′, at a given external temperature, T , is

quantified by σ(T ). This spread (related to the variance by a simple square root) is the
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fundamental variable in the ESDT, as it is caused by, and leads to, the metastable, non-

canonical spread in temperatures/energies Much like the exact distribution of temperatures

which it governs, we do not know a priori what its functional form should be. However, there

are a number of physical constraints that will ultimately motivate its exact form. As the

system is cooled, the peak of the distribution (Eq. (2.16)) shifts downward as it is centered

on the external temperature, T . The tails, and not the peak, though, control how likely a

macroscopic flow event will be. In order that the flow continue to decrease rapidly as the

temperature is lowered, the width of the distribution will also have to shrink to “pull” the

tail out of sampling the flowing states. Additionally, as the system approaches absolute zero,

the third law of thermodynamics will require that the spread in energies (and hence effective

temperatures) vanish, such that σ(T ) must be a decreasing function of temperature. It is

also readily obvious, that the only natural energy scale for the metastable supercooled liquid

is set by the external temperature. Therefore, it is reasonable to assume that σ(T ) ∝ T . We

these simple facts in mind, we assert that

σ(T ) = ĀT, (2.18)

where Ā is a small, dimensionless, material-dependent parameter. That is, the width σ(T ) is

set by the natural energy (temperature) scale of the system. Additional analysis is provided

in (36). To confirm the validity of this approximation, we can invert Eq.(2.17) solving for the

spread, σ(T ), and examine it for experimental viscosity data. Across the different examined

liquids, we found this to hold relatively well. In some materials, there are deviations from

linearity in the vicinity of their respective solidus and/or liquidus temperatures. This is

illustrated in Fig. 2.3. As seen therein, in both glucose and supercooled water (Fig. (2.3)),

σ(T ) exhibits such a crossover. We found an analogous trend in supercooled salol where

the crossover temperature associated with σ(T ) (37) coincided with the earlier reported

putative liquid-liquid transition temperature in this system (68). Similarly, supercooled
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water and glucose display anomalies that have been ascribed to a liquid-liquid transition

(60; 61; 62; 63; 64; 65; 66). Taken together, these data suggest that, if and when present,

fragile to strong crossovers or liquid-liquid phase transitions (67) may be associated with

deviations in σ(T ). This will be critically addressed in depth in a follow-up paper where we

will further extensively demonstrate that Ā strongly correlates with various thermodynamic

parameters and may allow for the prediction of low temperature viscosity from purely high

temperature measurements.

For the time being, we stress that Ā constitutes the only adjustable parameter in this

framework. When combining this with Eq.(2.17), we now arrive, via classical phase space

considerations, at our principal result for the viscosity (36),

η(T ) =
η(Tl)

erfc
[

Tl−T√
2 Ā T

] . (2.19)

It is immediately clear from an examination of Eq. (2.19) that our model does not possess

a dynamical singularity. In fact, if one were to calculate the entropy difference between

the supercooled liquid and equilibrium crystalline solid, it would be apparent that the

excess entropy could only vanish at a point where the temperature distribution becomes

a delta function. When this occurs, however, the system will, by definition have returned

to equilibrium. Therefore, our approach makes it plain that there cannot be a finite

temperature singularity, and that the above excess entropy can only vanish if the system

regains equilibrium. The function of Eq.(2.19) relies only on measurable quantities associated

with the liquidus and a single parameter. While the specific form of the above equation is

only applicable beneath the liquidus temperature, in (37) we derived an extension to all

temperatures above the liquidus, completing the theoretical model.

A corollary of Eq.(2.19) is that the viscosity data from all supercooled liquids may be

made to collapse onto one master curve. That is, for each fluid, the ratio of the viscosity
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Figure 2.4: (Color Online.) The viscosity data scaled by its value at the liquidus temperature,
η(Tl), versus x, as defined in the figure. The viscosity data of 45 liquids from numerous
classes/bonding types (sillicate, metallic, organic) and kinetic fragilities collapse onto a
unique curve, suggestive of universality amongst all types of glassforming liquids. Note the
exceptional agreement over 16 decades. The deviations of glycerol and SiO2 are discussed
in (37). The pertinent liquidus temperature Tl and the viscosity at Tl and our single
dimensionless parameter associated with all fluids is provided in Table ??. The continuous
underlying “curve” (seen at the high viscosity end where fewer viscosity data are available)
is that predicted by Eq. (2.19).
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at temperature T ≤ Tl to its viscosity at the liquidus temperature, (η(T )/η(Tl)), is a trivial

function of the quotient (Tl − T )/(Ā T ) with Ā being the single dimensionless parameter

that is material dependent. We tested this prediction in Fig. (3.16) and found it is indeed

be satisfied. Although the value of Ā does not significantly change across all of the liquids

that we examined (see Table ??), its variations are nevertheless important. In particular, it

can be demonstrated that the fragility parameter is a function of both Ā and the reduced

glass transition temperature Trg (that are set, in our theory, by the values of the melting

temperature and Ā themselves) (37). Thus, albeit being small in size, the changes in the

values of Ā in their relatively narrow range (along with the values of Trg) differentiate strong

fluids from fragile ones. This is clearly seen in Fig. 2.2; if the dependence on Ā between

different glass formers were weak the viscosity data in Fig. 2.2 would have collapsed onto

a single curve. The contrast between Fig. 2.2 and Fig. 3.16 (in which Ā was, for each

liquid, set to the value given by Table ??) highlights the importance of the deviations in the

parameter Ā (the “missing ingredient” the we alluded to above) from one fluid to another.

2.4 Methods: A test of the predicted viscosity and a

data collapse

Whether or not the dynamics of supercooled liquids are universal has been debated

for some time. We demonstrated that the ESDT viscosity form appears to fit the viscosity

data of all types of supercooled liquids, thereby providing the “missing ingredient” that

prevented a universal description of liquids based on melting. If the ESDT form is to

be a complete picture for all liquids, then it should allow for a universal scaling of the

viscosity of supercooled liquids. For that reason, we plot the logarithm of the viscosity of all

studied liquids scaled by its value at the liquidus, but this time versus the argument of the
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Figure 2.5: (Color Online.) Fits the viscosity of various supercooled fluids (including water)
with Eq. (2.19).

Figure 2.6: (Color Online.) The fit of Eq. (2.19) is tested for CN60.40 and CN60.20, two
silicate systems with slightly different molar compositions.
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Figure 2.7: (Color Online.) Our viscosity fit of Eq. (2.19) is applied to a very fragile organic
glass former (OTP) and very strong silicate glass former (LS2).

complementary error function. The results of this scaling are presented in Figure 3.16. It

is immediately clear that this scaling collapses the viscosity data of all liquid types onto a

single curve. More significantly, the collapse holds over 16 decades, and for all classes/types

of liquids. It should be pointed out that while this scaling arose as a consequence of the ESDT

framework, even if the theoretical foundations do not hold, this scaling can always be done.

While the analysis of considerably more liquids is ultimately required, this stunning result

suggests that there is perhaps an underlying universality to the dynamics of all supercooled

liquids.

For completeness, it must be pointed out that all liquids tested in this work undergo

congruent melting and can therefore be adequately described by their liquidus temperature.

There are numerous liquids, however, that undergo incongruent melting, and a small

molar addition of some material can drastically change the liquidus temperature without

appreciably effecting the viscosity. This is because the liquidus is where the small crystalline
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clusters associated with the addition will first appear, but in small enough concentrations,

they cannot impact the dynamical character of the liquid. This presents a difficulty for using

the liquidus as the scaling temperature for all liquids. The impact of this will be investigated

in a further work, but suggests that for these “pathological” liquids, a description in terms

of the solidus or associated temperatures may be more appropriate.

2.5 Conclusion

We advanced a classical statistical mechanical framework for understanding the

dynamics of supercooled liquids. We demonstrated, both qualitatively and quantitatively,

that the resultant expression that is predicted by this classical approach (and by an earlier

companion quantum version (36)) for the viscosity of supercooled liquids below the melting

temperature can describe/reproduce the behavior of all liquids studied to objectively high

accuracy. We demonstrated that the viscosity data of 45 different liquids can be collapsed

onto a single scaling curve, suggesting that an underlying universality may be present in

the dynamical behavior of supercooled liquids. Further support on our results appears in

(37). We hope that our newly found universal 16 decade collapse for the viscosity data of all

known liquid types and the theoretical ideas that led us to it will prompt further discussion

on the underlying phenomenology of supercooled liquids and the glass transition.

45



References

[1] Gupta, P. K. (1996). Non-crystalline solids: glasses and amorphous solids, Journal of

Non-Crystalline Solids 195, 158-164

[2] Berthier, L. and Ediger, M. D. (2016). Facets of glass physics, Physics Today 69 (1), 40

[3] Zallen, R. (1983). “The Physics of Amorphous Solids”, John Wiley & Sons, Inc., pages

23-32

[4] Greer, A. L. and Ma, E. (2007). Bulk metallic glasses: at the cutting edge of metals

research, MRS Bulletin 32, 611

[5] Hancock, B. C. and Parks, M. (2000). What is the true solubility advantage for

amorphous pharmaceuticals? Pharmaceutical Research 17, 397-404

[6] Telford, M. (2004). The case for bulk metallic glass, Materials Today 7, 36-43

[7] Wuttig, M. and Yamada, N. (2007). Phase-change materials for rewriteable data storage,

Nature Materials 6, 824-832

[8] Cavagna, A. (2009). Supercooled liquids for pedestrians, Physics Reports, 476, 551-124

[9] Kalogeras, I. M. and Hagg Lobland, H. E., (2012). The nature of the glassy state:

structure and glass transitions, Journal of Materials Education, 34 (3-4): 69-94

[10] Berthier, L. and Biroli, G. (2011). Theoretical perspective on the glass transition and

amorphous materials, Reviews of Modern Physics 83, 587-645

46



[11] Hunter, G. L. and Weeks, E. R., (2011). The physics of the colloidal glass transition,

Reports on Progress in Physics 75, 066501

[12] Procaccia, I. (2009). Physics of amorphous solids: Their creation and their mechanical

properties, European Physics Journal Special Topics, 178, 81-122

[13] Langer, J. S., (2014). Theories of glass formation and the glass transition, Reports on

Progress in Physics 77, 042501

[14] Yue Y. (2009). The iso-structural viscosity, configurational entropy and fragility of oxide

liquids, Journal of Non-Crystalline Solids 355, 737-744

[15] Angell, C. A. (1995). Formation of Glasses from Liquids and Biopolymers, Science 267,

1924-1935

[16] Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F., and Martin, S. W., (2010).

Relaxation in glassforming liquids and amorphous solids, Journal of Applied Physics 88,

3113-3157 (2000).

[17] Vogel, H. (1921). The temperature dependence law of the viscosity of fluids,

Physikalische Zeitscrift 22, 645-646; Fulcher, G. S., (1925). Analysis of recent

measurements of the viscosity of glasses, Journal of the American Ceramic Society

8, 339-355; Tammann G. and Hesse, W. Z., (1926). The dependancy of viscosity

on temperature in hypothermic liquids, Zeitschrift fur Anorganische und Allgemeine

Chemie 156, 245

[18] Adam, G. and Gibbs, J. H. (1965). On the Temperature Dependence of Cooperative

Relaxation Properties in Glass-Forming Liquids, The Journal of Chemical Physics 43,

139-146

[19] Cohen, M. H. and Turnbull, D. (1959). Molecular Transport in Liquids and Glasses,

The Journal of Chemical Physics 31, 1164-1169

47



[20] Kirkpatrick, T. R., Thirumalai, D. and Wolynes, P. G. (1989). Scaling concepts for the

dynamics of viscous liquids near an ideal glassy state, Physical Review A 40, 1045-1054

[21] Parisi, G. and Mezard, M. (1999). A first principle computation of the thermodynamics

of glasses, Journal of Chemical Physics 111, 1076-1095

[22] Lubchenko, V. and Wolynes, P. G. (2007). Theory of structural glasses and supercooled

liquids, Annual Review of Physical Chemistry 58, 235-266

[23] Leutheusser, E. (1984). Dynamical model of the liquid-glass transition Physical Review

A 29, 2765-2773

[24] Bengtzelius, U., Gotze, W. and Sjoilander, A. (1984). Dynamics of supercooled liquids

and the glass transition Journal of Physics C 17, 5915-5934

[25] Gotze, W. Complex dynamics of glass-forming liquids: A mode-coupling theory (Oxford

University Press, Oxford, 2008).

[26] Mauro, J. C., Through a Glass, Darkly: Dispelling Three Common Misconceptions in

Glass Science International Journal of Applied Glass Science 2, 4 245-261 (2011)

[27] Zhao, J., Simon, S. L., and McKenna, G. B. (2013). Using 20-million-year-old amber to

test the super-Arrhenius behaviour of glass-forming systems, Nature Communications

4, 1783

[28] Kivelson, D., Kivelson, S. A., Zhao, X., Nussinov, Z. and Tarjus, G. (1995). A

thermodynamic theory of supercooled liquids Physica A, 219, 27-38

[29] Tarjus, G., Kivelson, S. A., Nussinov, Z. and Viot, P. (2005) The frustration-

based approach of supercooled liquids and the glass transition: a review and critical

assessment, Journal of Physics: Condensed Matter 17, R1143-R1182

48



[30] Nussinov Z., (2004) Avoided phase transitions and glassy dynamics in geometrically

frustrated systems and non-Abelian theories, Physical Review B 69, 014208

[31] Mauro, J. C. Yue, Y, Ellison, A. J., Gupta, P. K., and Allan, D. C. (2009). Viscosity

of glass-forming liquids, Proceedings of the National Academy of Sciences of the United

States of America 106, 19780-19784

[32] Elmatad, Y. S., Chandler, D. and Garrahan, J. P. (2009). Corresponding States of

Structural Glass Formers, Journal of Physical Chemistry B 113, 5563-5567

[33] Elmatad, Y. S., Jack, R. L., Chandler, D. and Garrahan, J. P. (2010). Finite-

temperature critical point of a glass transition, Proceedings of the National Academy

of Sciences of the United States of America 107, 12793- 12798

[34] Cohen, M. H. and Grest, G. S., (1979). Liquid-glass transition, a free-volume approach,

Physical Review B 20, 1077-1098

[35] Blodgett, M., Egami, T., Nussinov, Z. and Kelton, K. F. (2015). Proposal for

universality in the viscosity of metallic liquids, Scientific Reports 5, 13837

[36] Nussinov, Z. (2015). A one parameter fit for glassy dynamics as a quantum corollary of

the liquid to solid transition, https://arxiv.org/pdf/1510.03875.pdf (unpublished)

[37] Weingartner, N. B., Pueblo, C., Nogueira, F. S., Kelton, K. F., and Nussinov, Z.,

(2015). A Quantum Theory of the Glass Transition Suggests Universality Amongst

Glass Formers, https://arxiv.org/pdf/1512.04565.pdf (unpublished)

[38] Pyrak-Nolte, L. J. and Nolte, D. D. (2016). Approaching a universal scaling relationship

between fracture stiffness and fluid flow, Nature Communications 7, 10663

[39] West, G. B. and Brown, J. H. (2005). The origin of allometric scaling laws in biology from

genomes to ecosystems: towards a quantitative unifying theory of biological structure

and organization, Journal of Experimental Biology 208, 1575

49



[40] Stanley, H. E. (1999) Scaling, universality, and renormalization: Three pillars of modern

critical phenomena, Reviews of Modern Physics 71, S358

[41] Guggenheim, E. A. (1945). The Principle of Corresponding States, Journal of Chemical

Physics 13, 253

[42] Nishimori, H. and Ortiz, G., (2015). Elements of Phase Transitions and Critical

Phenomena, Oxford Graduate Texts, Oxford University Press

[43] Sillescu, H. (1999). Heterogeneity at the glass transition: a review Journal of Non-

Crystalline. Solids 43, 81-108.

[44] Ediger, M. D. (2000). Spatially heterogeneous dynamics in supercooled liquids, Annual

Review of Physical Chemistry 51, 99-128

[45] Richert, R. (2002). Heterogeneous dynamics in liquids: fluctuations in space and time,

Journal of Physics: Condensed Matter 14, R 703-R738

[46] Kob, W. C. Donati, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, (1997). Dynamical

heterogeneities in a supercooled Lennard-Jones liquid, Physical Review Letters 79, 2827-

2830

[47] Donati, C. J., Douglas, J. F., Kob, W. Plimpton, S. J., Poole, P. H. and Glotzer, S. C.,

(1998). Stringlike cooperative motion in a supercooled liquid, Physical Review Letters

80, 2338-2341

[48] Gebremichael, Y. , Schroder, T. B., Starr, F. W., and Glotzer, S. C. (2001). Spatially

correlated dynamics in a simulated glass-forming polymer melt: Analysis of clustering

phenomena, Physical Review E 64, 051503

[49] Sausset, F., Biroli, G. and Kurchan, J. (2010). Do Solids Flow? Journal of Statistical

Physics 140, 718-727

50



[50] Okui, N. (1990). Relationships between melting temperature, maximum crystallization

temperature and glass transition temperature, Polymer 31, 92-94

[51] Sakka, S. and Mackenzie, J. D. (1971). Relation between apparent glass transition

temperature and liquids temperature for inorganic glasses, Journal of Non-Crystalline

Solids 6, 145-162

[52] Uhlmann, D. R., (1972). A kinetic treatment of glass formation, Journal of Non-

Crystalline Solids 7, 337-348

[53] Angell, C. A. (2008). Glass-formers and viscous liquid slowdown since David Turnbull:

Enduring puzzles and new twists, MRS Bulletin 33, 544-555

[54] Tournier, R. F. (2016). Lindemann?s Rule Applied to the Melting of Crystals and Ultra-

Stable Glasses, Chemical Physics Letters 651, 198-202

[55] Kauzmann, W. (1948). The Nature of the Glassy State and the Behavior of Liquids at

Low Temperatures, Chemical Reviews 43, 219-256

[56] Wang, L. M., Angell, C. A., and Richert, R. (2006). Fragility and thermodynamics in

nonpolymeric glass-forming liquids, Journal of Chemical Physics 125 (7), 74505-74505

[57] Kanno, H. (1981). A simple derivation of the empirical rule TG/TM = 2/3, Journal of

Non-Crystalline Solids 44, 409-413

[58] Na, J. H., Demetriou, M. D., Floyd, M. Hoff, A. Garrett, G. R., and Johnson, W. L.

(2014). Compositional landscape for glass formation in metal alloys, Proceedings of the

National Academy of Sciences of the United States of America 111, 9031-9036

[59] Turnbull, D. (1969). Under What Conditions can a Glass be Formed? Contemporary

Physics 10, 473-488

51



[60] Mishima, O. and Stanley, H. E. (1989). Decompression-induced melting of ice IV and

the liquid-liquid transition in water, Nature 392, 164-168

[61] Johari, G. P., Hallbrucker, A., and Mayer, E. (1987). The glass-liquid transition of

hyperquenched water, Nature 330, 552-553

[62] Ito, K., Moynihan, C. T., and Angell, C. A. (1999). Thermodynamic determination of

fragility in liquids and a fragile-to-strong liquid transition in water, Nature 398, 492-495

[63] Li Y. Li J., and Wang F. (2013). Liquid-liquid transition in supercooled water suggested

by microsecond simulations, Proceedings of the National Academy of Sciences of the

United States of America 110, 12209-12212

[64] Palmer, J. C., Martelli F., Liu Y., Car R., Panagiotopoulos A. Z., and Debenedetti, P.

G., (2014). Metastable liquid-liquid transition in a molecular model of water, Nature

510, 385-388

[65] Tyagi, M. and Murthy, S. S. (2006). Dynamics of water in supercooled aqueous solutions

of glucose and poly(ethylene glycol)s as studied by dielectric spectroscopy, Carbohydrate

Research 341, 650-662

[66] Murata, K-I. and Tanaka, H. (2013). General nature of liquid-liquid transition in

aqueous organic solutions, Nature Communications 4, 2844

[67] Sastry, S. and Angell, C. A. (2003). Liquid-liquid phase transition in supercooled silicon,

Nature Materials 2, 739 - 743

[68] Mallamace, F. , Branca, C., Corsaro, C., Leone, N., Spooren, J., Chen, S. and Stanley, H.

E. (2010). Transport properties of glass-forming liquids suggest that dynamic crossover

temperature is as important as the glass transition temperature, Proceedings of the

National Academy of Sciences of the United States of America 107, 22457-22462

52



Chapter 3

The Quantum Distribution Theory,

Critical Assessment, and Extensions

3.1 Chapter Overview

In Chapter 2 we introduced the ideas behind the equilibrium melting-based distribution

theory and cast them in a classical, statistical mechanical framework in order to derive an

expression for the viscosity of supercooled liquids beneath the liquidus temperature. We

subsequently demonstrated that this viscosity function accurately described the viscosity of

some 45 liquids, while also seemingly uncovering an inherent universality in the dynamics

of supercooled liquids. While the classical framework has been demonstrated to be quite

successful, it does suffer from two drawbacks: it is unable to appropriately derive an

expression for the relaxation time (as opposed to viscosity) from first principles, and it has

no natural method of considering corrections associated with the impact of the first order

phase transition which takes place at the melting/liquidus temperature. In light of these

considerations, in this chapter we will again consider how equilibrium-based distributions

describe supercooled liquids, but this time we will work within a quantum mechanical

framework, deeming this version of the model the Distributed Eigenstate Hypothesis (DEH).
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We again recognize that supercooling perturbs the system, but instead of violating Liouville’s

theorem in a way which leads to distribution of effective temperatures in phase space,

the quantized perturbation leads to a mixing of the energy eigenstates associated with

equilibrium liquids and crystals. This leads to the appearance of an actual distribution

of energies for the supercooled liquid, which has a complete physical interpretation in

quantum mechanics. We will observe that following through on these calculations leads

to the same function for the viscosity as a function of temperature, a major success

and suggestion of validity of the distribution approach. Additionally, time-dependent

perturbation considerations can be used to find an expression for the relaxation time of

supercooled liquids from first principles, and we again find that the calculations predict the

exact same functional form for the relaxation time as for the viscosity in the classical

and quantum frameworks. We apply the relaxation time function to experimental data for

16 liquids, and also test an additional six liquids with the viscosity form, observing strong

performance for most liquids. Emboldened by these results, we conduct a rigorous statistical

analysis to asses the performance of the DEH, and then make statistical comparisons to

the five most widely employed viscosity models. Once we have objectively assessed the

strength of the model, we undergo an intensive analysis of the single parameter, and its

links to various physical observables. We then work to extend the framework beyond simply

describing the viscosity/relaxation time beneath the liquidus, by deriving a high temperature

form, explaining dynamic heterogeneity, applying it to jamming, and investigating the

thermodynamics of the model. Ultimately, we aim to show that the distributional approach

is robust, and is a complete theory of supercooled liquids.

At the time of the writing of this chapter, it was based, with little change, on a

publication under revision for resubmission to the Journal of Non-Crystalline Solids.
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3.2 Introduction.

The glass transition remains one of the most intensely studied and debated phenomena

in physics, chemistry, and materials science (1; 2; 3; 4; 5; 6). Uncovering the underlying

mechanism of glassy behavior would represent not only a fundamental advance in modern

physics, but also would facilitate the ability to better exploit the glass-formation process.

This would inevitably lead to the more efficient processing of existing glasses, as well as the

production of new types of glass with novel applications. By comparison to their crystalline

counterparts, glasses enjoy substantial advantages, e.g., (7; 8; 9). These have led to numerous

applications in fields as diverse as pharmaceuticals, semiconductors, biomaterials, optical

recording, and many others (9; 10; 11; 12).

A material in its liquid phase is distinguished from a solid by an irregular, non-

ordered molecular arrangement, and an associated ability to make large-scale molecular

rearrangements in response to fluctuations and perturbations. These rearrangements, known

as flow, allow a liquid to relax imposed stresses and deform inelastically. This fundamental

property of liquids is quantified by the viscosity (η), a dynamical measure of a liquid’s

resistance to flow. The viscosity of a liquid measures the “stickiness” of the local molecular

interactions, and as such, is a temperature (T ) dependent variable.

Liquids in thermal equilibrium at temperatures above their melting point, Tmelt (or,

more precisely, the “liquidus temperature” Tl), have temperature-dependent viscosities which

are well described by ηequilibrium = η0e
G(T )
kBT . Here, η0, the extrapolated infinite temperature

viscosity, and G(T ), a Gibbs free energy barrier, are material dependent parameters. The

interpretation of the Arrhenius form is that there exists a barrier to molecular rearrangement,

which must be overcome by a thermal fluctuation of the appropriate size in order for the

rearrangement to proceed. The Gibbs free energy barrier G(T ) is, in general, very weakly

dependent on temperature above the liquidus, and is typically taken to be a constant, E,
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such that the viscosity is quite accurately described by a standard Arrhenius form

ηequilibrium = η0e
E

kBT . (3.1)

As the temperature of the liquid is lowered (cooled) quasistatically, such that equilibrium

is approximately maintained, the viscosity maintains the form of Eq.(3.1), exponentially

increasing with decreasing temperature. When the temperature reaches Tmelt, the liquid

reaches the limit of stability, its free energy crossing that of a solid phase (13). At this

temperature, the liquid typically gives off a characteristic latent heat. In pure systems,

the liquid transforms into a crystal, acquiring long-range structural order and losing its

ability to flow. By contrast, when properly computed in the idealized limit of vanishing

shear, the viscosity of a solid is infinite (14). As alluded to above, in what follows we

will take ‘melting’ to correspond to the liquidus, the temperature at which nucleation first

becomes thermodynamically favorable, and the character of the system begins to change.

In actuality, we refer to the temperature at which the dominant crystalline phase begins to

nucleate, ignoring certain pathological systems where small molar additions of a minor phase

can greatly alter the liquidus with little to no change in the viscosity of the liquid.

Because nucleation and growth of the crystalline phase are kinetically controlled,

there is an intrinsic time dependence to crystallization. Therefore, a liquid that is cooled

sufficiently quickly through Tl, may bypass crystallization and be ‘supercooled’ to a state

of metastable equilibrium at temperatures beneath the melting point. As the temperature

of the supercooled liquid drops further, its viscosity begins to increase dramatically, by as

much as 16 decades over a temperature interval as small as a few hundred Kelvin (this is very

clearly demonstrated by the behavior o-terphenyl (15) and many other “fragile” (16; 17) glass

formers). Eventually, a “glass transition” temperature (Tg) is reached where the viscosity

is so large that molecular rearrangements cease on physically meaningful timescales, and
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the supercooled liquid is termed a glass. Despite the appearance of various thermodynamic

signatures (18) the glass transition appears to be kinetic in nature; the glass transition marks

the point at which the timescale of atomic rearrangement (relaxation time) exceeds the

relevant experimental timescale and the liquid falls out of equilibrium. In crystalline solids,

the dynamical arrest (infinite viscosity) is due to long range structural order that appears

with a first order phase transition at melting. Glasses, however, lack the long-range order

customarily associated with the stiffness/rigidity of solids, instead possessing amorphous

particle arrangement. Understanding the glass transition, then, requires first understanding

the temperature dependence of the viscosity of supercooled liquids. It is important to stress

that notwithstanding their amorphous character, the formation of structural glasses does not

rely on externally imposed disorder. All conventional liquids (and possibly even superfluid

Helium and other quantum fluids (19; 20; 21; 22; 23)) may be quenched into amorphous

glassy structures by rapid supercooling.

If the rapid rise of the viscosity below the liquidus temperature Tl were simply described

by the same Arrhenius form as in Eq. (3.1), or even an Arrhenius form with different constant

energy barrier, E ′, then the glass transition would not be so mysterious. Decreasing the

temperature would simply remove more and more kinetic energy from the molecules leading

to an ever increasing scarcity in barrier-crossing events that enable molecular rearrangements.

The reduction in molecular motion, then, gives the appearance of rigidity on realizable

timescales, but is an entirely kinetic phenomenon. This simple behavior is not the case,

however, as all glass formers depart from the well-understood form of Eq. (3.1).

Complicating matters further is the fact that different glass forming liquids display a

wide spectrum of ‘super-Arrhenius’ behaviors. These are reflected by an increase of the

viscosity (as T is lowered) that may be far more dramatic than that predicted by Eq.

(3.1). Some supercooled liquids are approximately Arrhenius, whereas others show drastic

departure from the Arrhenius form. There exists a broad array of liquids having behaviors
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in between these extremes. Long ago, Angell defined a parameter, called “fragility” (16; 17),

that quantifies the degree of departure from Arrhenius behavior, as well as a classification

scheme for the spectrum of behaviors. Arrhenius liquids are called strong (i.e., possess a

low fragility value) whereas liquids with large departures are termed fragile (high fragility

value). It is widely accepted that fragility is a significant parameter characterizing the glass

transition, and it is believed that fragility may correlate with both structural and dynamic

phenomenon (16; 17; 24; 25; 26; 27). Therefore, any reasonable theory of glass formation

and supercooling, must, at the very least, contain a connection with fragility.

The much celebrated Vogel-Fulcher-Tamman (VFT) form (28; 29; 30),

η = η0e
DT0
T−T0 , (3.2)

has been shown to provide a more reasonable fit than the Arrhenius form to the viscosity

of most supercooled liquids over a moderate range of temperatures, and has been in use

since the 1920s (28; 29; 30). As seen in Eq. (3.2), the VFT form contains three material-

dependent fitting parameters, the prefactor η0, the constant D, and the temperature T0.

These parameters are generally not predictable from first principles. Additionally, despite

its apparent successes, the VFT form suffers from two fundamental drawbacks. First, it is

a purely empirical function, it is not derived from first principles, or any specific theories

of glass formation (although it can be reproduced by certain theories, see (31; 16; 32; 33;

34; 35; 36)). Secondly, it predicts a dynamic singularity at the temperature T0 which exists

beneath the glass transition. This temperature has been shown to be in rough agreement

with the Kauzmann temperature associated with hypothesized vanishing of configuration

entropy (37), leading some to postulate that there exists a true equilibrium thermodynamic

phase transition in the limit of infinitely slow cooling to T0. While the notion that the

slow dynamics near Tg is associated with the “ghost” of an underlying phase transition is
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compelling, any experimental evidence suggesting an “ideal glass transition” remains hidden

(38). There are, in fact, several experimental indications that the VFT and similar forms

are incorrect, e.g., (39).

As the above discussion hints, rationalizing the mysterious super-Arrhenius increase of

the shear viscosity of supercooled liquids has long been an open fundamental problem (40).

Towards that end, numerous theories have been proposed that aim to reproduce the behavior

of the viscosity upon cooling, and to provide a physical framework that explains the rich

phenomenology associated with the glass transition (31; 16; 32; 33; 34; 35; 37; 18). Many

such theories have been proposed and tested, all to varying degrees of success (31; 16; 32;

33; 34; 35; 36; 18; 41; 42; 43; 44; 45; 46; 47; 48). In many cases, the functional forms derived

for the viscosity are not universal; models that accurately describe metallic liquids may not

work well for silicate liquids, for example (49). A complete theory of the supercooled liquids,

then, should answer the two most fundamental questions in the field, namely, (i) what is the

cause of the super-Arrhenius viscosity and what functional form is most accurate, and (ii)

is this form universal to all supercooled liquids regardless of fragility, bonding type, etc.

Recently, a new framework for understanding the behavior of supercooled liquids was

introduced based on the framework of equilibrium statistical mechanics (50; 51). As we will

briefly review next in Section 3.3, this approach relies on the characteristics of the quantum

eigenstates (50) or, correspondingly, on the features of the classical microstates (51) of fixed

energy to describe the phenomenology of supercooled liquids and glass formation. The

resulting prediction for the viscosity was briefly demonstrated to be quite accurate for liquids

of all types and fragilities at all temperatures below their respective liquidus temperatures

(51); we succinctly reported on the experimental collapse (that is implied by this prediction)

of all available viscosity data onto a universal curve. In the current work, we will critically

examine the statistical performance of the predicted form for the viscosity in this approach

and extend it to temperatures above the liquidus. Additionally, we will perform a detailed
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Figure 3.1: (Color Online.) Simple pictorial representation of the basic DEH principle.
This simple picture represents the spectral ‘hierarchy’ of energy eigenvalues, E, and their
associated eigenstates (horizontal lines), with the various probability densities, pT (E),
overlaid. Distributions shown for (i.) the high temperature equilibrium liquid (narrow
dashed curve), (ii.) a high temperature non-equilibrium liquid (solid curve), and (iii.) a
supercooled liquid state (dotted curve). For the dotted curve, note that the tail in the
fluid-like states is what determines the hydrodynamic relaxation rate (viscosity).

analysis of the physical meaning of the single parameter, and demonstrate that it correlates

strongly with various thermodynamic and dynamic quantities. Using these relations, we will

demonstrate that it is possible to predict the viscosity at low temperatures, based solely

on high temperature data. We will conclude by suggesting extensions of this framework to

non-thermal transitions, such as jamming, and show that the framework can quite accurately

capture athermal “glassy” dynamics.
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3.3 The Quantum Non-equilibrium Distribution

Hypothesis

The crux of our approach is that the very same quantum eigenstates (50) or classical

microstates (51) that appear in equilibrium averages suffice to describe supercooled liquids

and glasses. That is, to describe glasses, perhaps one need not think about novel states

or exotic transitions of one special sort or another but rather employ standard statistical

mechanics. The initial impetus to consider such a (seemingly all too simple) possibility was

triggered by a general argument. Specifically, in the quantum arena, the eigenstates of the

disorder free Hamiltonian (describing the equilibrium solid and liquid) form a complete basis.

Thus, any state or probability density (whether that of the equilibrium system or of the non

equilibrated supercooled liquid) describing the system may be expanded in terms of this

complete set of eigenstates (50). Similar considerations may be enacted, mutatis muntandis,

for classical phase space states (51). Thus, in our minimal framework, the only difference

between (i) equilibrium liquids and solids and (ii) the non-equilibrated supercooled liquids

and glasses is that of the probability distributions that sample this complete set of states are

different in both cases; the central idea is that the probability distributions (and long time

averages) associated with supercooled liquids and glasses may be rather trivially expressed in

terms of those of the equilibrated system. This hypothesis of a trivially extended probability

distribution in the energy density (that includes the equilibrated system as a special instance

of this distribution that is of vanishing width) underlies our work. In what follows, we

summarize several key aspects of the original (quantum) approach of (50) which we dub

the “Distributed Eigenstate Hypothesis” (DEH). A direct classical dual of this description

(that of the “Energy Shell Distribution Hypothesis” (ESDH)) was introduced in (51). Thus,

notwithstanding the viable importance of quantum effects (52; 53) in non cryogenic fluids,

we wish to underscore that the results that we will empirically test in great detail in the
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current work do not, at all, hinge on quantum mechanics. Planck’s constant does not appear

in our results. The upshot of the below review of (50) is the prediction of Eq. (3.9). This

prediction for the viscosity and the universal viscosity collapse that it implies will be assessed

and extended in the next Sections.

3.3.1 Averages within the DEH theory

The evolution of a general N -body system is governed by its Hamiltonian, H. For

‘ordinary’ glass forming liquids (i.e., systems not requiring ad hoc, ‘quenched disorder’ (18))

behaving non-relativistically, the correct many body Hamiltonian consists of the kinetic

energies of all N particles, as well as the complete set of electrostatic interactions between

all nuclei and electrons in a volume V . Quite generally, then, one can write down the exact

Hamiltonian of such a general N body system (50). As always, the dynamic evolution of

the system, then, is entirely determined by solving the Schrödinger equation corresponding

to this Hamiltonian,

H|φn〉 = En|φn〉, (3.3)

and evolving according to the appropriate time evolution operator. For macroscopic systems,

H contains an astronomical number of interaction and kinetic terms. While methods

for obtaining approximate solutions exist, in general, the exact eigenstates and associated

energies cannot be determined. In spite of this apparent complication, the mere existence of

the eigenstates of Eq. (3.3) (guaranteed by the postulates of quantum theory) allows us to

make powerful statements about the dynamical and thermodynamic properties of the system.

In order to make these statements, we need only rely on simple, well documented, physical

characteristics of the macroscopic thermodynamic properties of equilibrium materials. We
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will employ said observations at various temperatures and utilize basic statistical mechanical

principles.

In the following calculations, we will assume that our many body system is

approximately isolated, and therefore employ the microcanonical (m.c.) ensemble.

Computing measurable thermodynamic values for equilibrium systems in the microcanonical

ensemble involves taking phase space averages over states within a narrow range of energies

(an effective “energy shell”) that are consistent with the external constraints. When

considering quantum mechanical systems, the energy levels are quantized, and the energy

shell encompasses some subset of the allowed eigenstates of the system. Within the

microcanonical ensemble, the equilibrium average of any observable O is given by

〈O〉m.c. =
1

N [E −∆E,E]

∑
E−∆E≤En≤E

〈φn|O|φn〉, (3.4)

where N [E −∆E,E] is the number of eigenstates having energies E −∆E ≤ En ≤ E with

∆ an arbitrary (system size independent) width. In the limit in which the width ∆E of

the energy shell is made vanishingly small, only a single eigenstate (or a set of degenerate

eigenstates) is effectively encompassed. If only a single, or small range of eigenstates

are being averaged over, then the observed thermodynamic values must be properties of

the eigenstate(s). Essentially, all observed/measured thermodynamic properties of the

macroscopic, equilibrium system will then correspond to such eigenstates. This implies, as

we next elaborate on, that we can use experimental observation (that provides the lefthand

side of Eq. (3.4)) to classify the properties of allowed eigenstates at various energies (as

implied by the average on the righthand side of Eq. (3.4)). It has been empirically known

for millennia, that at sufficiently high energies, the equilibrium state of most materials is a

liquid (with all the properties therein), whereas the low energy equilibrium state is that of

a solid (with associated properties). It can, therefore, be reasonably hypothesized that, on
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average (in the sense implied by the righthand side of Eq. (3.4)), the many-body eigenstates

will, respectively, exhibit ‘liquid-like’ or ‘solid-like’ characteristics, for states with respectively

high or low energy densities. Further, as it is observed that liquids and crystalline solids

are separated by a first order melting/freezing phase transition, the liquid-like states are

separated from the solid-like states by a ’band’ of eigenstates corresponding to this melting

phase transition range. The width of this melting band corresponds to the latent heat of

the associated phase transition. We refer to the states in the melting band as the ‘Phase

Transition Energy Interval’ (PT EI) (50). These states display properties associated with

both liquid and solid states. The eigenstates associated with liquids and solids will necessarily

possess the observed equilibrium structures of the respective states, in addition to the

thermodynamic and kinetic properties. As such, the liquid-like eigenstates will be delocalized

in the sense that a system existing in one of these eigenstates can ergodically explore phase

space, and will be capable of hydrodynamic flow. Conversely, the solid-like eigenstates will be

localized, breaking ergodicity, and possessing the rigidity of the crystalline solid and lacking

the ability to flow. Physically, this means that each eigenstate will possess a characteristic

structural relaxation time and associated visco-elastic properties, with the solid-like states

being assumed ideal (infinite relaxation time). Additionally, the symmetry breaking solid-

like states will necessarily have the long-range structural ordering of the equilibrium crystal

built in, and the spectrum of ‘excited states’ lying between the ground state (absolute zero)

and the melting band will correspond to various phonon modes.

As discussed above, an isolated equilibrium system explores states within an

infinitesimally narrow band of energy densities, and these states possess the system

properties. Therefore, we can approximate the equilibrium ‘distribution’ of energies as a delta

function, δ(E ′ −E) peaked at the external energy. Starting at high energy, or temperature,

(energy and temperature are simply related via the heat capacity) and quasistatically

lowering the energy/temperature (cooling) will cause the system to transition to eigenstates
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of progressively lower energy, with the distribution remaining effectively δ-peaked at the

appropriate lower energies. At the PT EI, the system transitions through the mixed states,

giving off latent heat, and eventually undergoes the usual first order transition. Consequently,

the system then moves into a crystalline, solid-like eigenstate, possessing all of the thermo-

mechanical properties of a crystalline solid. As confirmed by experiment, this only happens

when equilibrium is maintained. If, instead, the system is rapidly quenched by strongly

coupling to a heat bath of some kind, the system will be driven from equilibrium. The

quench can be represented by a perturbing Hamiltonian, H′(t). The augmented Hamiltonian,

HFull = H +H′(t), will not commute with H as the system energy (since the expectation

value of H is lowered); the supercooled system will be driven into a new state, |ΨT 〉 (where T

corresponds to the temperature the system was quenched to). This new state will not be an

equilibrium eigenstate of the original Hamiltonian, but because the eigenstates of the original

Hamiltonian, are complete, the new state can be expanded in terms of them. Therefore, the

post-quench supercooled state, |ΨT 〉, can be generically expanded in the basis of equilibrium

eigenstates of the original Hamiltonian, H, taking the form

|ΨT 〉 =
∑
n

cn|φn〉. (3.5)

We see, then, that the effect of the perturbation (quench) is to mix the eigenstates of varying

energy densities En/V , such that the system to no longer exists in a single equilibrium

eigenstate. The mixed state encompasses a ‘metastable’ distribution (no longer a delta

function) of multiple equilibrium eigenstates; this is a defining property of the Distributed

Eigenstate Hypothesis (50). Realistically, there exists a density matrix associated with an

open quantum system. To provide the simplest quintessential account of the theory, in what

follows, we do not elaborate on the complete treatment involving the full density matrix,

essentially focusing on typical states |ΨT 〉 that are of high probability (i.e., we will consider

those eigenstates of the density matrix for which the corresponding eigenvalues are high).
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Consideration of the full density matrix will not impact the final results reviewed herein (50).

In the simple single state account, the squared amplitudes {|cn|2} represent the probability

distribution of the eigenstates of Eq. (3.3). Assuming that the many-body eigenstates are

vanishingly close together in their energy densities, we will take the continuum limit of this

distribution, |cn|2 → pT (E ′). A similar distribution pT (E ′) will appear when the full density

matrix is considered. A cartoon of this continuum limit probability distribution, pT (E ′), for

various temperatures is depicted in Figure (3.1). As discussed above, the equilibrium state

of both the liquid and solid will correspond to a probability density which is “δ-function

peaked” (see the dashed curve in Figure (3.1)) and has its support only over a narrow shell

of eigenstates that either share the same energy or are nearly degenerate. By comparison

to the equilibrated system, the supercooled system exhibits a broadened probability density

(see the solid and dotted curves in Figure 3.1) which encompasses many of the equilibrium

eigenstates. Long time average (l.t.a.) values will now read (50),

Ol.t.a. =

∫
dE ′ pT (E ′)O(E ′). (3.6)

In general, the probability density pT (E ′) will have a weight originating from both the higher

energy delocalized liquid-like states, and the lower energy localized solid-like states. Our

central thesis is that the ‘mismatch’ of characteristics from different types of states is what

leads to the phenomenology of supercooled liquids. Generally, the probability density will

shift downward as the temperature is lowered, and the width of the distribution will also vary

with temperature. Only high energy “liquid-like” equilibrium eigenstates (i.e., states |φn〉

having an energy density En/V exceeding that of the melting energy) contribute appreciably

to the long time average associated with fluid flow. Setting O in Eq. (3.6) to be the vertical

velocity operator v of a freely falling sphere in the supercooled liquid, recognizing that the

terminal speed of free fall in an equilibrium solid is zero, and invoking the Stokes relation
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between the terminal speed and the viscosity (vl.t.a. ∝ 1/η), we find that (50)

η(E) ' ηeq(Emelt)∫∞
Emelt

pT (E ′) dE ′
| T ≤ Tl. (3.7)

Here, ηeq(Emelt) is the value of the viscosity of the equilibrium liquid infinitesimally above its

melting temperature Since a reduction of flow sets in at the energy density associated with

the equilibrium melting/liquidus temperature, in Eq. (3.7), we took this point to define a

lower energy cut-off. In reality, the liquidus does not mark a hard cut-off, as states in the

PT EI may enable some level of long time mobility.

3.3.2 The scale-free Gaussian distribution and the viscosity

function that it implies

In order to obtain an approximate form for the viscosity (and other observables) in the

DEH model, we need to have an explicit form for the distribution function, pT (E). We do not

know, a priori what this function is, but we do know characteristics it must possess: (i) The

distribution must be normalized. (ii) The probability density must be such that the average

of H is equal to the measured system energy 〈E〉. (iii) Since supercooled liquids are not in

full thermodynamic equilibrium, the distribution cannot be a delta function in the energy

density. Thus the distribution of the energy density must display a non-vanishing standard

deviation in the thermodynamic limit. (iv) In the absence of any additional information, the

unknown distribution must maximize the Shannon entropy, HI =
∫
dE ′ pT (E ′) log2[pT (E ′)],

subject to constraints (i)- (iii); the distribution maximizing the Shannon entropy subject

to the constraint of a fixed standard deviation is, trivially, a Gaussian distribution. Thus,
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putting all of the pieces together, in the absence of additional information, the distribution

pT (E ′) =
1√

2πσ2
T

e
− (E′−〈E〉)2

2σ̄2
T (3.8)

uniquely satisfies all of the above requisite characteristics. As is well known, the distribution

of the energy density in the equilibrated system is a Gaussian in which the standard deviation

scales as N−1/2 (and thus vanishing in the thermodynamic limit). Thus, Eq. (3.8) is a

trivial extension of the distribution present in equilibrated systems. For completeness, we

remark that other Gaussian distributions have, of course, been observed before in disparate

contexts. For instance, in (64) and many other works the distributions associated with

local low energy “inherent states” in supercooled liquids were analyzed through the prism

of Gaussian distributions. To avoid confusion, we wish to stress that the probability density

of Eq. (3.8) is that associated with the energy densities of all states (not that of inherent

states); we underscore that we do not consider local metastable energy minima in an “energy

landscape” and fluctuations about them.

Inserting Eq.(3.8) into Eq.(3.7) will yield the viscosity as a function of energy. In order

to compare our theoretical notions to experimental data, we need to express the viscosity

as a function of measured temperature (and not the energy density). Towards this end,

we will define the average heat capacity in the range [T, Tmelt] given by C(T ) ≡ Emelt−〈E〉
Tmelt−T

where 〈E〉 is the energy of the supercooled liquid at a temperature T . In reality, the ratio

defining C(T ) does not change substantially as a function of temperature T ; the function

C(T ) does nevertheless vary with temperature yet its weak temperature will identically

drop out in our final result of Eq. (3.9). We will assume that the dimensionless ratio

Ā ≡
(
σT (Tmelt−T )
T (Emelt−〈E〉)

)
≡
(
σT
CT

)
≡
(
σ̄T
T

)
does not vary strongly in the interval of experimentally

measured temperatures. An assumption of constant values of the dimensionless ratio Ā and

C ∼ 〈E〉/T is tantamount to asserting that the Gaussian of Eq. (3.8) is scale free. By this
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assumption of being “scale free”, we mean only energy scale (whether that for the average

energy 〈E〉 or the width σ̄T ) is set by the temperature T . As we emphasized above, any

temperature dependence of the average heat capacity defined by the ratio defining C(T ) will

drop out in the final expression that we provide next. With all of the above, the viscosity of

the supercooled liquid is (50)

η(T ) =
ηs.c.(Tmelt)

erfc
(
Emelt−〈E〉
σ̄T
√

2

) =
η(Tl)

erfc
(
Tl−T√

2¯̄σT

) =
η(Tl)

erfc
(
Tl−T√

2ĀT

) . (3.9)

The first equality in Eq. (3.9) is obtained by substituting Eq. (3.8) into Eq. (3.7). The last

two equalities follow from our definitions of C and A. If the ratio of A does not significantly

change with T in the measured temperature range then we may set it to be a constant (as we

will in this work). Alternatively, one may arrive at Eq. (3.9) by assuming that the effective

temperatures Tn of the equilibrated system (i.e., eigenstates having an energy En = U(Tn)

with U the internal energy of the equilibrated system governed by H) are distributed in a

Gaussian fashion about the imposed external constraint that the supercooled liquid has a

temperature T . In the above, we largely reviewed the quantum DEH model of (50) that first

predicted Eq. (3.9). As we noted earlier, a derivation of the same result in the framework

classical statistical physics appears in (51).

The prediction of Eq. (3.9) for the viscosity at all temperatures below the liquidus

temperature, T < Tl, requires knowledge of the liquidus temperature and the viscosity

η(Tl) of the supercooled liquid at this temperature. Both of these quantities are given by

experiment, and are not fitting parameters of the theory (these numerical values of these

measurable quantities are presented in Table I). An objective of the current paper is to

critically test the performance of this function that goes beyond the initial analysis conducted

in (51).
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3.3.3 The PT EI Corrections

In converting Eq.(3.9) from a function of energy to a function of temperature, and

indeed when making any such conversions, we have introduced an inherent error into resulting

functions/calculations. This error arises from a simple truth, there are a range of energy

levels/states (which we have deemed the PT EI) associated with the single temperature Tl

and/or range Ts-Tl, where Ts is the solidus. In the conversion from energy to temperature,

and resultant integrations over temperature, we fail to properly consider these states. For

some calculations, such as many of the liquid viscosities, the impact of the PT EI is minimal,

but in other cases it can have a profound effect. Unfortunately, it is difficult to probe the

energy dependence of various physical observables, and therefore, in many cases the best we

can do is to derive corrections for the PT EI region. Throughout the rest of this paper, we

will highlight areas where we suspect the PT EI region is the cause of discrepancies, and

will derive the alluded to corrections where needed.

3.4 Tests of the DEH Model.

With Eq. (3.9) in hand, we next compare its predictions to measured viscosity data

of various fluids (Section 3.4.1), provide a thorough statistical study of the quality of these

viscosity fits that are obtained by this predicted form (Section ??), compare our predicted

to other prevalent fitting functions that have been used throughout the years (Section 3.4.4),

3.4.1 Fitting of Viscosity Function

To test the validity of the DEH, we examined how well the functional form of Eq.

(3.9) fit actual experimental viscosity data. We applied the DEH form to the viscosities
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Table 3.1: Values of Relevant Parameters for all liquids studied

Composition Ā Tl [K] η(Tl) [Pa*s]

BS2* 0.111107 1699 5.570596
Diopside 0.094984 1664 1.5068

LS2* 0.12048 1307 22.198
OTP 0.049275 329.35 0.02954
Salol 0.061654 315 0.008884

Anorthite 0.092875 1823 39.81072
Zr57Ni43 0.165584 1450 0.01564

Pd40Ni40P20 0.10939 1030 0.030197
Zr74Rh26 0.132831 1350 0.03643

Pd77.5Cu6Si16.5* 0.088303 1058 0.0446
Albite 0.073075 1393 24154952.8

Cu64Zr36 0.101088 1230 0.021
Ni34Zr66 0.148039 1283 0.0269

Zr50Cu48Al2 0.118278 1220 0.0233
Ni62Nb38 0.07742 1483 0.042
Vit106a 0.094557 1125 0.131
Cu55Zr45 0.102192 1193 0.0266

H2O 0.094094 273.15 0.001794
Glucose 0.056183 419 0.53
Glycerol 0.076957 290.9 1.9953

Ti40Zr10Cu30Pd20 0.13109 1279.226 0.01652
Zr70Pd30 0.149006 1350.789 0.02288
Zr80Pt20 0.119757 1363.789 0.04805

NS2* 0.095195 1147 992.274716
Cu60Zr20Ti20 0.073101 1125.409 0.04516

Cu69Zr31 0.111355 1313 0.01155
Cu46Zr54 0.110984 1198 0.02044535
Ni24Zr76 0.173226 1233 0.02625234

Cu50Zr42.5Ti7.5 0.104828 1152 0.0268
D Fructose 0.035443 418 7.31553376

TNB1 0.053509 472 0.03999447
Selenium 0.092503 494 2.9512
CN60.40* 0.105419 1170 186.2087
CN60.20* 0.113965 1450 12.5887052
Pd82Si18 0.097314 1071 0.03615283

Cu50Zr45Al5 0.083885 1173 0.03797
Ti40Zr10Cu36Pd14 0.097406 1185 0.0256

Cu50Zr50 0.117874 1226 0.02162
Isopropylbenzene 0.052216 177 0.086

ButylBenzene 0.060151 185 0.0992
Cu58Zr42 0.093316 1199 0.02526

Vit 1 0.07862 937 36.59823
Trehalose 0.050244 473 2.71828

Sec-Butylbenzene 0.056631 190.3 0.071
SiO2 0.06431 1873 1.196x108
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Table 3.2: Values of Relevant Parameters for all liquids studied

Composition Ā Tl [K] η(Tl) [Pa*s]

Xylitol 0.072217 367 -22.3
Sorbitol 0.057043 368 -21.7

D20* 0.071461 1761 1.5427
CKN* 0.05432 438 -23

Dioctyl Phlatate 0.036182 223 -9.9
Benzophenone 0.079421 321 -23.1
Bisphenol A 0.02092 285 -11.9

2D LJ 0.316259 0.7468 3.35
Propanol 0.065266 147 2.9

phenylphthaleindimethylether 0.04169 373 -17.758
Borate 0.056409 723 10.325

Sodium Borate 0.0570181 1039 2.67
LB2* 0.0781628 1190 -1.5636

Indomethacin 0.048729 424 -21.1
Toluene 0.07999 178 -22.3

Ethylene Glycol 0.107532 260 -19.7
Ethanol 0.098953 160.71 -21

Sucrose Benzonate 0.020335 373 -8.8
Butyronitrile 0.041008 116 -10.4

Propylene Glycol 0.048486 215 -12.6
Propylene Carbonate 0.057808 218 -20.9

Figure 3.2: (Color Online.) Fits to the viscosity of four sillicate glassformers with the DEH
form of Eq. (3.9).
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Figure 3.3: (Color Online.) Fits of the DEH form for the viscosity, Eq. (3.9), to four metallic
glassforming liquids.

Figure 3.4: (Color Online.) Fits of the DEH form for the viscosity, Eq. (3.9), to various
benzene and chalcogenide liquids.
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Figure 3.5: (Color Online.) Fits of the DEH form for the viscosity, Eq. (3.9), to supercooled
glucose and supercooled water.

of 45 different glass forming supercooled liquids. As the DEH is meant to be universal

across all types of supercooled liquids, we selected glassformers of all classes, bonding types,

fragilities, and physical and chemical features. We studied silicate liquids, organic liquids,

metallic liquids, elemental liquids, sugars, chalcogenides, and even supercooled water. The

experimental viscosity data for the various supercooled liquids was either measured “in-

house” by one of the authors or extracted from previously published works. The published

data that was present only in graphical form was converted to tabular form using data

digitization software. Nonlinear curve fitting methods and error minimization were employed

to extract the best-fit value of the single parameter, Ā. The natural logarithm of the

DEH form of the viscosity (Eq. 3.9) was fitted to the experimental viscosity data for all

temperatures at and below the liquidus, using the experimental values for the liquidus

temperature, Tl, and viscosity at the liquidus, η(Tl) (data presented in traditional base-10

format for consistency). In some cases, a data point was not present exactly at the liquidus

temperature, requiring interpolation of the value of η(Tl). In most cases, the standard error
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in the calculation of Ā from the nonlinear fitting algorithm was of O(10−3). Associated p-

values supported the null hypothesis that the values of Ā were statistically significant from

zero (54).

Figures (3.2)-(3.5) show the viscosity data, with DEH fit applied, in logarithmic form

as a function of temperature. Qualitatively, the data in the figures suggest that the DEH

form is capable of reproducing the data for the silicate, metallic, organic, and sugar-based

glass forming liquids as well as supercooled water, with minimal residual error. A notable

exception is the case of Albite. The closest data points to the melting point for this

liquid were within approximately 100 K on both sides of the Tl. This necessitated a large

interpolation of the data to extract η(Tl). While it was observed that the DEH fits are

significantly less sensitive to changes in the value of η(Tl), than either Tl itself, or Ā, this is

still likely the cause of this discrepancy.

3.4.2 Statistical Measures of Goodness of Fit

We have demonstrated qualitatively that the DEH form can reasonably reproduce the

temperature dependence of the viscosity of a large number of supercooled liquids. However,

purely visual fitting results are subjective, and the validity of a physical model must rest

on objective measures. Therefore, in order to bolster the claim that the DEH model is the

correct model for describing supercooled liquids, we also performed a quantitative analysis,

to assess the statistical significance of our results. In what follows, we calculate various

statistical measures of the goodness of fit of the DEH model to the experimental viscosity

data, as well as perform a statistical comparison with previous theories. While we perform

these analyses on 45 of the liquids studied, but we will use OTP, LS2, and Pd40Ni40P20 as

‘case studies’ throughout the next sections. These liquids are seen to be good representatives
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for their various classes, and will allow us to do detailed calculations with lower computational

cost.

Statistical measures allow one to quantify the error, or goodness of fit (GoF) of the

performance of a model. Typically, the first step to assessing the statistical GoF is to analyze

the residuals of the fit. In our case, using the raw viscosity data, the residuals are defined as

Res(T ) ≡
∑
i

(ηexp(Ti)− f(Ti)). (3.10)

Here, f(T ) is the temperature dependent model function being tested (in this section, the

DEH model of Eq.(3.9). Figures (3.6) and (3.7) display the results of the residual analysis

for a random sample of the supercooled liquids studied. When examining the residuals of

a fit, one wants to note both the magnitude of the residuals and the distribution of the

residuals about zero. In all liquids studied the magnitude of the residuals is very small,

and this is true for LS2 and OTP (with the exception of two outlying points for OTP).

This low magnitude suggests that the DEH form is capable of reproducing the approximate

values of the measured viscosity. The distribution of the residuals about zero is a measure

of how well the model captures the actual trend of the data. An accurate model should

have residuals which, roughly, approximate the random error associated with measurement

error. Examination of the residuals of the DEH shows that in many cases the residuals are

more or less random. There are some minor exceptions, which might be due to the fact that

most viscosity data is reported in the literature without error bars, and not considering these

error bars in the fits is likely the culprit in the minor skewing of residuals. This hypothesis

is bolstered by the fact that other models of supercooled liquids tested in the next section

tend to show the same skewing, or bias in the residuals suggesting possible error inherent

to the data itself. The next step in performing a rigorous statistical analysis of the quality

of a model is to calculate various quantitative measures of the GoF. For each of the liquids
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Figure 3.6: (Color Online.) Residuals as computed from Eq. (3.10) associated with fits
of Eq. (3.9) for six different supercooled liquids. Residuals corresponding to accurate fits
typically possess random scatter about zero. For a discussion of possible bias in the residuals,
see the main text.
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Table 3.3: Statistical Measures of GoF

Composition Function (SSE) χ2
red R2

OTP

DEH 10.617 0.312264 0.997247
VFT 24.5584 0.767451 0.993632

KKZNT 8.67516 0.279844 0.997751
CG 9.66624 0.30207 0.997494

BENK 8.91119 0.270036 0.997689
MYEGA 12.3813 0.386916 0.99679

LS2

DEH 14.8497 0.215213 0.983678
VFT 16.5523 0.247049 0.981807

KKZNT 13.3202 0.201821 0.985359
CG 14.8216 0.221218 0.983709

BENK 13.3526 0.196361 0.985324
MYEGA 24.9113 0.371811 0.972619

Pd77.5Cu6Si16.5

DEH 0.789078 0.0876754 0.998759
VFT 10.2834 1.46905 0.983823

KKZNT 0.235779 0.0392965 0.999629
CG 0.203843 0.0291204 0.999679

BENK 0.334157 0.0417696 0.999474
MYEGA 1.31174 0.187391 0.997937

Salol DEH 17.1643 0.553687 0.993136
Diopside DEH 13.1776 0.0941259 0.997362
Anorthite DEH 2.25807 0.141129 0.991396

BS2 DEH 4.902 0.0505361 0.998646
Albite DEH 13.3105 0.511942 0.87503

Zr74Rh26 DEH 0.115181 0.000984452 0.983959
Pd40Ni40P20 DEH 12.3782 0.515757 0.993153

Zr57Ni43 DEH 0.351164 0.00172139 0.977947
Cu64Zr36 DEH 0.190441 0.00307162 0.984655
Ni34Zr66 DEH 0.121782 0.00162376 0.993343

Zr50Cu48Al2 DEH 10.617 0.312264 0.997247
Ni62Nb38 DEH 0.448888 0.00487922 0.9841
Vit106a DEH 6.23195 0.623195 0.996508
Cu55Zr45 DEH 0.223386 0.00314628 0.987581

H2O DEH 0.00731595 0.000215175 0.999412
Glucose DEH 1.48859 0.0513308 0.999499
Glycerol DEH 76.0137 1.85399 0.945217

Ti40Zr10Cu30Pd20 DEH 0.395717 0.00316573 0.988712
Zr70Pd30 DEH 0.080497 0.00134162 0.996159
Zr80Pt20 DEH 0.077876 0.00162242 0.971562

NS2 DEH 20.9749 0.723273 0.981462
Cu60Zr20Ti20 DEH 0.196626 0.0012063 0.985095

Cu69Zr31 DEH 0.756104 0.00804366 0.950419
Cu46Zr54 DEH 0.650675 0.00971157 0.910136
Ni24Zr76 DEH 0.0453595 0.0008584 0.991683

Cu50Zr42.5Ti7.5 DEH 0.0535541 0.00172755 0.982531
D Fructose DEH 0.554086 0.0240907 0.946689

TNB1 DEH 8.97792 0.448896 0.996155
Selenium DEH 6.43906 0.292684 0.995906
CN60.40 DEH 0.746426 0.0678569 0.998937
CN60.20 DEH 0.147407 0.0105291 0.999883
Pd82Si18 DEH 1.2915 0.1435 0.998916

Cu50Zr45Al5 DEH 0.109111 0.000742252 0.992842
Ti40Zr10Cu36Pd14 DEH 0.195736 0.00163113 0.92674

Cu50Zr50 DEH 0.235607 0.00420727 0.976969
Isopropyl benzene DEH 4.47953 0.344579 0.993307

Butylbenzene DEH 1.97384 0.140989 0.995543
Cu58Zr42 DEH 0.551631 0.0108163 0.966384

Vit 1 DEH 46.5891 2.58828 0.956556
Trehalose DEH 8.93373 0.288185 0.934837

Sec-Butylbenzene DEH 1.27723 0.159653 0.976809
SiO2 DEH 57.7053 1.98984 0.660326
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Figure 3.7: (Color Online.) Residuals as computed from Eq. (3.10) associated with fits of
Eq. (3.9) for four different supercooled liquids which receive cross validation analysis.

studied we compute the sum of squared errors (SSE),

SSE ≡
∑
i

(η(Ti)− f(Ti))
2, (3.11)

r-squared value (R2),

R2 ≡ 1− SSE

SST
= 1−

∑
i(η(Ti)− f(Ti))

2∑
i(η(Ti)− η̄)2

(3.12)

and reduced chi-squared value, χ2
reduced (There are multiple definitions of the χ2 statistic for

goodness of fit. We have chosen one of the more common ones),

χ2
reduced =

∑
i

(η(Ti)− f(Ti))
2

ndata − nparameters
. (3.13)
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The calculated values of the statistical GoF measures are listed in Table (3.3), in the rows

labeled “DEH”. Statistically significant GoF is typically taken to correspond to χ2
reduced

values less than one, R2 values asymptotically close to one and low values for the SSE.

Examining the values in Table (3.3) makes clear that the lowest values of χ2
reduced do

not always correspond to the highest values of R2. In some cases the various statistical

measures can report differing levels of GoF. Therefore, it is important to consider all measures

simultaneously. We can examine the “worst-case examples” to assess a bound on the DEH

GoF measures. We see that the lowest value of R2 corresponds to SiO2 which we will discuss

in more detail in the SI. Otherwise, with the exception of Albite which was discussed above,

the R2 values all exceed 0.9. This indicates that the DEH model is able to accurately account

for the natural variability in the data. As seen in the table, the highest values of χ2
reduced

are approximately 1.9 for SiO2 and 1.8 for glycerol. With these exceptions, the remainder

of the liquids studied all have values of χ2
reduced which are significantly less than one. This is

indicative that the DEH model is capable of representing the viscosity data in a statistically

significant way, while simultaneously suggesting that specific liquids may possess certain

anomalies (see SI). If one were to go further and examine actual p-values associated with

the various χ2 values, they would also confirm that the DEH model provides a statistically

significant reproduction of the experimental data.

3.4.3 Cross Validation

The statistical measures employed up to this point to assess the performance of the

DEH have demonstrated that the model is capable of fitting the experimental viscosity

data of a large number of supercooled liquids to a high degree of statistical accuracy. The

drawback to the methods employed previously, however, is that they merely reflect the

ability of the model to fit the data given, and do not describe how well the model can make
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Figure 3.8: (Color Online.) Results of cross validation of the DEH model for three
supercooled liquids where multiple data sets were available. Using values of Ā extracted
by fitting the data of one set, we applied the form of Eq. (3.9) to a second set to assess the
reproducibility of the model. For more information, see Section VC.
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Table 3.4: Cross Validation Statistics

Composition Cross Validation χ2
reduced

Zr80Pt20 0.0043631

Zr70Pd30 0.000973443

Ti40Zr10Cu30Pd20 0.00193925

Diopside 0.097273

predictions based on those fits or whether or not the model over fits the data. In order to

assess the ability of the fits to predict ‘new’ data for a given liquid we must employ cross

validation schemes. In cross validation, we use the value of the parameter, Ā that comes

from fitting one set of experimental viscosity data for a given liquid and apply it (using

Eq. 3.7)) to an independently measured set of data for the same system. We employed this

analysis for multiple independent data sets that we had available for metallic liquids. Using

the values of Ā reported in Table (3.2), we apply the DEH form to alternative data sets for

three metallic liquids. The results are shown in Fig. (3.8). For liquids that did not have

multiple data sets available for cross validation we applied a 5-fold cross validation scheme

to the single data set available. The example case that we examined is for diopside, and

the results of this 5-fold cross validation are presented in Fig. (3.9). Qualitatively it is clear

from the cross validation studies performed here, that the parameter values extracted from

fitting experimental data sets will generalize to new data for the same liquid, providing more

support that the DEH provides a statistically accurate model of supercooled liquid viscosity

data. We can quantify this by examining the values of χ2
reduced that result from the cross

validated fits. These results are given in Table (3.4). Comparing these values with those

in Table (3.3) for the original fits shows that they are roughly comparable in magnitude,

further validating the general applicability of the DEH fit accommodate ‘new’ data.
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Figure 3.9: (Color Online). Results of 5-fold cross validation of single diopside dataset.
We randomly separated the single dataset for diopside into 5 subsets and iteratively used
4 subsets to fit and extract Ā to apply the fit of Eq.(3.9) to the fifth subset to assess the
reproducibility of the model. For more information, see Section VC.
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Overall, the various statistical measures and analyses employed to assess the validity

and goodness of fit of the DEH model appear to objectively suggest that the functional form

of Eq. (3.9), is able to accurately describe the phenomenology of the super-Arrhenius growth

of the viscosity. This was demonstrated for 45 distinct and diverse supercooled liquids, and

makes a strong case for the DEH as a descriptor of the glass transition.

3.4.4 Statistical Comparison With Other Theories

We have demonstrated both qualitatively and quantitatively, that the DEH model and

functional form for the viscosity is able to accurately describe and reproduce the temperature

dependence of the viscosity of supercooled liquids using only a single fitting parameter. It

is important, however, to examine the DEH in comparison with existing theories and models

of the glass transition, some of which even provide for collapse of the viscosity data (55). To

that end, we statistically compare and contrast the DEH with five of the most widely used

models of supercooled liquids, and their associated functional forms for the viscosity. We

selected a glass forming liquid from three of the classes considered, namely organic (OTP),

silicate (LS2), and metallic (Pd77.5Cu6Si16.5) and fit the viscosity functions arising from the

KKZNT avoided critical point model (56; 57; 58),

ln η = ln η0 +
E∞
T

+
TA
T
B[
TA − T
TA

]zΘ(TA − T ) (3.14)

Cohen-Grest free volume model (59),

ln η = ln η0 +
2B

T − T0 +
√

(T − T0)2 + CT
(3.15)
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Figure 3.10: (Color Online.) Comparison of DEH [Eq. (3.9)], VFT [Eq. (3.2)], KKZNT [Eq.
(3.14)], Cohen-Grest [Eq. (3.15)], MYEGA [Eq. (3.17)], and BENK [Eq. (3.16)] forms for
the viscosity as applied to fragile OTP and strong LS2.

BENK modified parabolic model (55; 60; 61),

ln η = ln η0 +
E∞
kBT

+ J2(
1

T
− 1

T̃
)2Θ(T̃ − T ) (3.16)

MYEGA entropy model (62),

ln η = ln η0 +
K

T
e
C
T (3.17)

and the oft-employed VFT form (Eq. 3.2).

Each one of these functional forms (including VFT) has at least two parameters that (at

this point) cannot be determined from first principles. In order to determine the parameters

of the various forms for the three test liquids, we fit the natural logarithm of the viscosity

data as a function of temperature. As the DEH form of Eq. (3.9) is applicable only below
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Figure 3.11: (Color Online.) Comparison of DEH [Eq. (3.9)], VFT [Eq. (3.2)], KKZNT [Eq.
(3.14)], Cohen-Grest [Eq. (3.15)], MYEGA [Eq. (3.17)], and BENK [Eq. (3.16)] forms for
the viscosity as applied to the metallic liquid Pd77.5Cu6Si16.5.

the liquidus temperature, Tl, we needed a ‘fair’ metric for comparison between the above

theories whose functional forms apply to the entire temperature range of measured data.

To that end, in all cases, we first applied a linear fit to the high temperature Arrhenius

(above the crossover temperature) regime as a function of inverse temperature. This allows

us to extract values of the prefactor, η0, and the extrapolated high temperature activation

energy, E∞, where relevant. For each liquid, we fixed these values and then fit the various

models over the remaining temperature range from Tl and below, to extract the values of

the remaining parameters. In the case of KKZNT, we also constrained the parameter z to

be 8
3

(see (56) for discussion). The results of the fitting with the extracted parameters are

depicted in Figures (3.10) and (3.11). The functional forms of all studied theories are shown

along with the DEH fits. In Figure (3.12) we plot the residuals of all the forms together. A

visual comparison of the fits against the data makes clear that the VFT form consistently

provides the worst fit to the experimental data. Qualitatively, it is difficult to distinguish

the goodness of fit of the remaining models. In order to resolve these differences, we examine

the residuals of the fits in Fig. (3.12) and compute statistical measures. The residuals are

more or less consistent across the forms, with the exception of VFT, which as expected shows
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Figure 3.12: (Color Online.) Comparison of the residuals from Eq. (3.10) of the DEH [Eq.
(3.9)], VFT [Eq. (3.2)], KKZNT [Eq. (3.14)], Cohen-Grest [Eq. (3.15)], MYEGA [Eq.
(3.17)], and BENK [Eq. (3.16)] forms of the viscosity.

significant bias, especially in the case of OTP. This provides support to the argument that

the non random nature of the residuals is likely related to measurement error in the data.

The calculated statistical values are provided in Table (3.3) in the rows corresponding to

the various model designations. Examining the calculated values makes clear that the DEH

model consistently outperforms both the VFT and MYEGA forms across all three liquids.

The Cohen-Grest form appears to be roughly similar to the DEH form, whereas the KKZNT

and BENK forms consistently outperform the DEH. This result is not surprising, as the

KKZNT and BENK forms have many more open parameters than the DEH form. In fact, it

can be shown that forcing the values of the “special temperatures” that appear in these forms

to correspond to experimental values causes the fit performance to worsen significantly. This

is consistent with previous results that suggested that the KKZNT form does not perform

well for silicate glassformers and that the MYEGA form does not perform well for metallic

glass formers. This leads to the conclusion that in numerous cases, the optimal values of the
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parameters are often inconsistent with the underlying theoretical motivations. This suggests

that the various models contrasted with the DEH are unable to universally describe the

phenomenology of supercooled liquids of all types, unlike the DEH model.

3.4.5 Fitting of the Relaxation Time

As we have discussed, the viscosity acts, in many ways, as a proxy for the relaxation

time of the supercooled liquid in response to some perturbation, and the two are generally

linked via Maxwell’s relation. However, in many cases the infinite frequency shear modulus is

itself mildly temperature dependent (in fact, at least one model is based upon this dependence

cite Shoving Model), and the viscosity reports a sort of average relaxation time for the fluid,

whereas raw relaxation times are the most probable. These facts make it imperative that we

have a method for computing the relaxation time in the supercooled liquid state, without

the requirement of using the viscosity equations first. The relaxation time, however, is not

an ensemble averaged quantity, and therefore, cannot simply be averaged over using the

thermal or energy distribution approach of the classical framework. This is, perhaps, the

first case where the quantum approach possesses an inherent advantage to classical one, as

we can extend the above derivation to include relaxation times.

Once the state of the fluid has reached its post-quench thermal mixed state, |ΨT 〉,

the relaxation time can be measured by many methods, such as exposing a liquid to an

electric field and measuring the decay of the polarization. The external fields employed to

evoke a measurable response can be treated as a time-dependent potential which the system

evolves under during measurement. This has the effect of being an evolution operator with

the potential, U ′(t), and therefore, elements of time dependent perturbation theory can be

employed. We assert that the relaxation rate of the system due to the time dependent
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perturbing potential will be similar to that of Fermi’s golden rule, namely,

rs.c. =
d

dt

∑
m

|〈φm|U ′(t)|ΨT 〉|2 (3.18)

Inserting the expression for the thermally mixed state into the above equation, and

recognizing that rn ≡ d
dt

∑
m |〈φm|U ′(t)|φn〉|

2, in traditional time dependent perturbation

theory, leads to the expression

rs.c =

∫
dT ′pT (T ′)r(T ′). (3.19)

for the relaxation rate in the DEH framework. We assume the same distribution as in the

viscosity case, and argue that the Eyring relaxation rate for the equilibrium liquid, when

multiplied by our relatively peaked distribution, can be well approximated by its value at

the liquidus, thus leading to the expression

rs.c = r(Tl)

∫ ∞
Tl

dT ′pT (T ′) (3.20)

for the relaxation rate. Placing this expression into the relation τ = 1
r
, and again using the

Gaussian distribution leads to the final form for the supercooled liquid’s relaxation time,

τs.c. =
τ(Tl)

erfc
(
Tl−T√

2ĀT

) . (3.21)

It is immediately recognizable that this result is identical to the functional form of the

expression for the viscosity. This is not surprising, as we would expect the two to obey a

similar form, but in this way, it is rigorously derived from the first principles of the DEH

model, instead of merely conjectured. We can test whether the relaxation time truly does

obey this form in the same way the viscosity does, by fitting raw relaxation time data

for various liquids. Fig. (3.13) shows the relaxation time data (measured by dielectric
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Figure 3.13: (Color Online.) Log base-10 representation of the relaxation time data scaled
by its value at the liquidus, τ(Tl), versus x, as defined in the figure for various liquids. The
data of 11 distinct liquids is observed to lie upon a single curve.

relaxation and other methods) for four different liquids of various types. Overall, we see

that the DEH relaxation formula does well in describing their behavior. Two particular

interesting cases are that of CKN (? ) and Phenlalalallalalall (? ). The former is one of the

most studied supercooled liquids, and the latter is a Van der Waals liquid which has been

shown to be difficult to describe with previous fitting functions. We must point out that,

as in the viscosity case, the DEH relaxation time function does not perfectly reproduce the

behavior of all liquids studied, and these cases and possible explanations are discussed in

the supplementary information.
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3.5 Universality Amongst Supercooled Liquids

The DEH viscosity function of Eq. (3.9) has only one dimensionless parameter (Ā). The

two other quantities appearing in Eq. (3.9) (the liquidus temperature Tl and the viscosity

of the supercooled liquid at the liquidus temperature η(Tl)) are both fixed by experiment.

Thus, the DEH theory (50) implies that the viscosity data of supercooled fluids may be

collapsed onto one master curve with the judicious value of this single parameter Ā. In (51),

we succinctly verified this prediction of a universality in the viscosity data. Here, we expand

on this newfound universality. In Section 3.4, we demonstrated that the DEH model can

accurately reproduce the viscosity of all types of supercooled liquids, over many decades.

Thus, since Eq. (3.9) holds over the experimentally relevant temperature range, it follows

the glass transition phenomenon possesses some form of universality that may be unearthed

with the aid of the single parameter Ā. The virtue of the universality implied by Eq. (3.9)

is that the only temperature and viscosity scales are the equilibrium liquidus temperature

and the viscosity at this temperature. There are no assumptions about exotic temperatures

such T0 of Eq. (3.2). Rather, the only pertinent temperature in the DEH framework is that

associated with a known equilibrium transition. Previously, many investigations attempted

to scale the viscosity data of all liquids studied in some meaningful way, to see if they can

be collapsed onto a single curve by appealing to various “special” temperatures such as the

just noted ”ideal glass transition temperature” T0, the dynamic glass transition temperature

Tg (at which the viscosity reaches the rather arbitrary threshold value of 1012 Pascal × sec)

that often coincides with a weak thermodynamic signature (63), or the Arrhenius cross-over

temperature TA (61; 56; 57; 58) above which the activated Arrhenius form of Eq. (3.1) holds

and below which deviations from Eq. (3.1) fails and rigidity and collective phenomena emerge

(75; 76; 77). Within the DEH model, the equilibrium liquidus temperature Tl constitutes the

only temperature of significance. As we discussed above, Eq. (3.9) implies that a universal
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Figure 3.14: (Color Online.) The logarithm of the viscosity, η(T ), scaled by the viscosity
at the liquidus, η(Tl), versus the scaled temperature, Tl

T
for a subset of the studied liquids.

When represented this way universal behavior does not appear, however, a spectrum of
behavior approximating the fragility does appear. A careful inspection of the plot indicates
that most glassformers seem to fall within different ‘families’ corresponding to fragility classes
as defined by experimental values.
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data collapse of the viscosity occurs relative to the ratio (Tl− T )/T when it is scaled by the

single dimensionless parameter Ā of the DEH theory.

In Fig 3.14, we plot the logarithm of the viscosity data as a function of the reciprocal

temperature with both quantities scaled by their respective values at Tl. A moment’s

inspection reveals that this scaling does not lead to a data collapse. However, an interesting

result does appear in the fact that the viscosity data appears to fall into a spectrum of

“fragility bands” in much the same way the standard Angell plot does. This suggests that

fragilities appear quite naturally in the DEH model using Tl (a well defined temperature)

instead of Tg (an occasionally arbitrarily defined temperature) as the fundamental scaling

temperature. This is not unreasonable, as the Kauzmann “2/3” rule (78) suggests that on

average Tg = 2
3
Tl. Therefore, we would expect that Angell-like fragility scaling should appear

in the plot versus the reciprocal melting temperature, as it is, in many cases, proportional

to the glass transition temperature. This will be discussed more in the next section (for a

summary of earlier attempts to relate the glass transition to melting see, e.g., (51)). Since the

DEH model contains only a single fitting parameter, and is able to reproduce the viscosity

of a disparate cross section of supercooled liquids using only this single parameter, it seems

natural to include Ā in any scaling attempts. In our previous work (96) we demonstrated

that by plotting the logarithm of the scaled viscosity, η(T )/η(Tl), versus the argument of the

complementary error function in the DEH form for the viscosity (Eq. 3.9) (namely x ≡ Tl−T
TĀ
√

2
)

led to a collapse of the viscosity data of some 45 liquids to a universal scaling curve (the

reciprocal of a raw complementary error function). Here we attempt this same scaling for

the relaxation time data of 17 different liquids in Fig. (3.15) and observe that the scaling

relation holds for relaxation time as well. The fact that the logarithm of the scaled relaxation

time has the same functional form as that of the scaled viscosity means that the relaxation

time and viscosity can be placed on the same scaling curve. Therefore, in Fig. (3.16) we

combine the relaxation time data of 17 liquids, as well as the viscosity data of the original 45
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Figure 3.15: (Color Online.) Log base-10 representation of the relaxation time data scaled
by its value at the liquidus, τ(Tl), versus x, as defined in the figure for various liquids. The
data of 11 distinct liquids is observed to lie upon a single curve.

liquids and 5 additional liquids for a total of 67 different liquids studied and collapsed to the

same universal curve, over 16 decades and using only a single parameter. The collapse in Fig.

3.16, to our knowledge, represents one of the first times that data for all types of supercooled

liquids has been collapsed over this many orders of magnitude for this many diverse liquids.

This result is perhaps the most important finding in the entirety of this thesis, as regardless of

the whether the theoretical framework we have proposed is correct, this data scaling clearly

demonstrates an underlying universality. This result suggests that the physics of supercooling

and ultimate mechanism of the glass transition is, in fact, universal across all liquids, and

warrants significant further investigation. In the preceding section we undertook a rigorous

statistical analysis to objectively assess the performance of the DEH model. The statistical

analysis performed on the individual compositions is equivalent to performing a statistical

analysis of the goodness of fit for the universal collapse curve, so a separate analysis of the

universal curve itself will not be undertaken. However, in Figure 3.17a-3.17c we “zoom in”
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(a) (b)

Figure 3.16: (Color Online.) Log base-10 representation of both the viscosity data, and
relaxation time data, scaled by their respective values at the liquidus, η, τ(Tl), versus x, as
defined in the figure for all studied liquids. The data of all 66 liquids, of all types and kinetic
fragilities, is observed to fall upon (‘collapse onto’) a single, universal scaling curve. This
result is suggestive of an underlying universality in the behavior of supercooled liquids. Note
the exceptional agreement over 16 decades.

on the three major regimes in the universal curve, namely temperatures very near melting,

midrange temperatures, and temperatures corresponding to deeply supercooled liquids where

glassy effects are strongest. The objective of this “zooming” is to demonstrate that we are

not “sweeping anything under the rug”, so-to-speak, by representing the data in this way. It

is standard to plot the logarithm of viscosity data when demonstrating collapse-like curves,

but in the interest of total transparency, we show that even at higher “resolution” the data

fits the curve of the DEH with only minor spread. From the figure it is clear that in the

deeply supercooled region, the collapse is very tight, with little visible spread. Indeed, in

the two regions immediately beneath melting, the data also falls along the universal curve

with minimal spread, but what spread does exist, is likely due to the influence of the PT EI

region discussed at length above. With this visual understanding of the accuracy of the DEH

model in focus, we now move on to make objective, quantitative measures of said accuracy.
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(a) (b)

(c)

Figure 3.17: (Color Online.) Zoomed
in version of the viscosity collapse data
presented in Fig.(3.16). The data is
presented in this way to demonstrate
that the logarithmic form for the collapse
is not masking or suppressing poor fits.
Panel (3.17a) focuses on the data in
the immediate vicinity of the liquidus
temperature. Panel (3.17b) focuses on
the mid temperature range. This region
is the most sparse, as experimental data
in this range is uncommon. Panel (3.17c)
shows the lowest temperature region,
where the DEH fit is the tightest, and
alternative models typically have poorest
performance.
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3.6 What is Ā?: The Physics of the Single DEH

Parameter

3.6.1 Temperature Dependence of σ̄T

A major assumption of the DEH model is that the width, σ̄T , of the distribution of

eigenstates has an approximately linear temperature dependence, i.e. dσ̄
dT

= const ≡ Ā.

As this notion is fundamental to the form of the viscosity function applied throughout this

paper, it is imperative that the validity of this assumption be checked. Assuming that all

other facets of the DEH model up to the assumption of the temperature dependence of σ̄

are correct, Eq. (3.9) can be inverted to solve for the temperature dependence of σ̄T using

the experimental viscosity data. The results of this analysis for 12 various example liquids

is presented in Figures (3.18) and (3.19). Examining the results in the figures makes clear

that in most cases the assumption of linearity of the width is accurate over a wide range of

temperatures. In some of the cases, such as many of the metallics, the seeming bend as Tl is

approached is likely due to the precarious limit that arises as the temperature approaches Tl

from below in the inverted expression for σ̄T . There are also cases where a clear crossover in

the behavior of σ̄T takes place at various temperatures. These anomalies may be linked to

various kinetic crossovers or hypothesized phase transitions. Although the linear assumption

is generally valid, in some cases it appears as though a nonzero intercept may improve the fit

quality. This would introduce a second parameter, and only make marginal improvements

in the fit quality. For these and other reasons, a zero intercept is assumed for all liquids.
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Figure 3.18: (Color Online.) Plot of σ̄T as a function of T , found by inverting the expression
in Eq.(3.9) and applying it to experimental data. The fit from the linear assumption is
shown to work very well for most cases, especially at temperatures far below melting.

Having established in previous sections that the DEH model ably describes the behavior

of supercooled liquids of all types with only a single fitting parameter, it is prudent to

attempt to understand the physical meaning of Ā. By definition, Ā governs the temperature

dependence of the width of the distribution of eigenstates, which underlies the metastable

features of the supercooled liquid. However, it is quite possible that it is linked to various

thermodynamic or kinetic properties of the system. Uncovering any correlations between Ā

and other physical quantities may help in increasing the understanding of both the DEH

model and the glass transition itself. Additionally, finding a link between Ā and other

measurable quantities may allow for the prediction of Ā and reduce the DEH model to a

zero parameter theory. In what follows, we examine the relationship between Ā and certain

physical observables, and find a number of interesting correlations.
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Figure 3.19: (Color Online). Additional examples of σ̄T as a function of T . The linear
fit well approximates most systems over much of the temperature range. Glucose displays
anomalous behavior which is discussed in the Supplementary Information (S.1).

3.6.2 Fragility.

It is almost universally accepted that the concept of fragility in glass science is

intimately linked to dynamics and structure in supercooled liquids, and not merely an

artificial scaling property. Indeed, recent studies have shown that fragility can be related to

the temperature dependence of the structure factors, and radial distribution functions upon

supercooling, and therefore represents a measurable physical quantity of significance to glass

theory (70). Therefore, we must briefly examine the nature of fragility in the DEH. We saw

in Section III D that a fragility spectrum similar to Angell’s classic plot (16) appeared quite

naturally when scaling the viscosity and reciprocal temperatures about melting. We can

take this further by using the definition of the fragility parameter, m, as outlined in (16).

Using this definition and the functional form of the viscosity in the DEH (3.9), an explicit
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Figure 3.20: (Color Online.) Experimental values of the fragility, mmeasured, versus the
values computed (mDEH) using Eq. (3.22). Overall, the correlation is strong, suggesting
broad agreement between the DEH and experiment. However, the slope of the dashed line
is not exactly equal to one, indicating a prefactor may be necessary, despite the strong
correlation.

expression for the fragility can be derived within the DEH framework as

m ≡ d log10 η(T )

d(Tg/T )

∣∣∣∣
T=Tg

=

√
2
π

ln(10)

Tl
Tg

1

Ā

e
−

 Tl
Tg
−1

√
2Ā

2

erfc

[
Tl
Tg
−1

√
2Ā

] . (3.22)

Strikingly, and perhaps surprisingly, the reduced temperature from the Turnbull criterion

(71; 72) for glass forming ability (GFA), Tred ≡ Tg
Tl

, appears throughout this expression. This

provides further support to a link between fragility and GFA. We can calculate the values of

the fragility using Eq. (3.22) and compare with the experimental values reported in (73; 61).

The results of this comparison for a cross-section of the studied liquids are presented in Table

(3.5) and in Figure (3.20). From Fig. (3.20), it is clear that there is a correlation between

the predicted and experimental values of the fragility. The slope of the line of fit is not

exactly equal to unity, but this may be related to differences in the measurement of Tg.
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Table 3.5: Relevant Temperatures

Composition Tl [K] Tg [K] mmeasured mDEH

BS2 1699 973 N/A 47
Diopside 1664 933 59 68

LS2 1307 727 35 44
OTP 329 240 81 93
Salol 315 220 76 72

Anorthite 1823 1113 69 54
Zr57Ni43 1450 722 N/A 33

Pd40Ni40P20 1030 560 50 57
Zr74Rh26 1350 729 N/A 40

Pd77.5Cu6Si16.5 1058 632 64 64
Albite 1393 1087 24 31

Cu64Zr36 1230 800 N/A 36
Ni34Zr66 1283 760 N/A 24

Zr50Cu48Al2 1220 675 N/A 46
Ni62Nb38 1483 N/A N/A N/A
Vit106a 1125 672 45 56
Cu55Zr45 1193 N/A N/A N/A

H2O 273 136 N/A 100
Glucose 419 N/A 72 N/A
Glycerol 291 190 53 61

Ti40Zr10Cu30Pd20 1280 687 N/A 41
Zr70Pd30 1351 N/A N/A N/A
Zr80Pt20 1364 N/A 45 N/A

NS2 1147 N/A N/A N/A
Cu60Zr20Ti20 1125 647 N/A 106

Cu69Zr31 1313 N/A N/A N/A
Cu46Zr54 1198 N/A N/A N/A
Ni24Zr76 1233 626 N/A N/A

Cu50Zr42.5Ti7.5 1152 677 N/A 48
D Fructose 418 N/A N/A N/A

NB1 472 N/A N/A N/A
Selenium 494 308 87 50
CN60.40 1170 N/A N/A N/A
CN60.20 1450 N/A N/A N/A
Pd82Si18 1071 N/A 106 N/A

Cu50Zr45Al5 1173 701 N/A 71
Ti40Zr10Cu36Pd14 1185 669 N/A 64

Cu50Zr50 1226 651 60 53
Isopropylbenzene 177 126 74 94

Butylbenzene 185 128 60 79
Cu58Zr42 1199 N/A N/A N/A

Vit 1 937 625 54 46
Trehalose 473 380 N/A 54

Sec-Butylbenzene 190.3 127 N/A 102
SiO2 1873 1475 20 38
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3.6.3 The Crossover Temperature TA and Structural

Considerations

In the previous section we discussed the behavior of the fragility in the DEH framework.

The fragility represents the degree of departure from Arrhenius behavior of the viscosity,

and this deviation sets in at a crossover temperature, commonly known as TA. It is

natural to consider what meaning this crossover temperature will have within the DEH

model, as the fragility appeared quite naturally in this framework. It is worth briefly

outlining the general phenomenology of the crossover temperature, TA, before proceeding.

TA marks the temperature at which the super-Arrhenius growth of the viscosity sets in,

the Stokes-Einstein relation breaks down, phonons delocalize, and cooperative motion of

atoms/molecules/polymer chains in the liquid first begins (18; 74; 75; 76). The onset of the

above phenomenon has been shown, in molecular dynamics simulations, to be correlated with

the onset of structural changes associated with the formation, and subsequent percolation,

of locally-preferred structures, which may or may not be subunits of the low temperature

crystalline order (75; 76; 77). All of these features are associated with the metastable,

supercooled liquid. It seems reasonable, then, that upon cooling, the temperature at which

these phenomena onset corresponds to the temperature at which the eigenstate distribution

first has appreciable weight in the solid-like eigenstates (50). At high enough temperatures,

even a distribution of nonzero width will not have a tail that has weight in the solid-like

states, so flow should not be uninhibited, and structures in the supercooled liquid should

more-or-less be consistent with structures present in the equilibrium liquid. It is clear that

as temperature is lowered, the distribution widens, and shifts to lower energy states. At a

certain temperature, the distribution over eigenstates will begin to have appreciable weight

in the solid-like states. Structural and dynamical properties of these solid-like states should

then start to play a role in the behavior of the liquid. We postulate that the temperature

at which this occurs should be identified as the crossover temperature, TA. With this idea
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Figure 3.21: (Color Online). Log base-10 viscosity Data as a function of temperature for
Diopside and LS2. The changeover from Arrhenius behavior appears to occur in the vicinity
of 1900 K for diopside and 1450-1500 K for LS2, roughly agreeing with predicted values for
the crossover temperature TA.
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Figure 3.22: (Color Online.) Log base-10 viscosity data as a function of temperature for BS2.
The changeover from Arrhenius behavior appears to occur in the vicinity of 1750 K. The
predicted crossover temperature TA was 1911 K. This agrees to within roughly ten percent.

in mind, we can make a rough approximation as to how TA should relate to the distribution

in the DEH model. Assuming that at TA the width first spans the ‘distance’ between the

crossover temperature and the liquidus temperature, Tl so as to have weight in the solid-like

states, we can conjecture that at TA the σ̄T , namely, σ̄T = ĀT , is such that it extends up to

energy density at the melting temperature Tl, i.e.,

σ̄TA ' Ā(TA − Tl). (3.23)

This then yields (50),

TA '
Tl

1− Ā
. (3.24)

Eq. (3.24) constitutes a rough approximation. The notion of ’appreciable weight’ is rather
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arbitrary and there may be a prefactor that is necessary, and perhaps material dependent,

in Eq. (3.23) (this will be investigated in an upcoming work). Despite this, we can examine

the predicted values for TA. The values of TA that are predicted by Eq. (3.24) are listed in

the Table (3.6). Previous studies of OTP and Pd40Ni40P20 found TA values of approximately

350 K and 1157 K, respectively, which is in exceptional agreement with the values predicted

from our approximation. Approximating TA from measured viscosity data is achieved by

finding the temperature at which the viscosity ceases to be Arrhenius. In Fig. (3.21) we

display the viscosity data for both Diopside and LS2. Visually, it appears that deviations

from Arrhenius behavior onsets at about 1839 K and 1486 K, respectively. These values

are in good agreement with those predicted from our approximation. It is worth noting,

however, that Eq. (3.24) does not apply for all 45 liquids studied. Eq. (3.24) predicts a

value of 1911 K for BS2, which is clearly too high in comparison to the crossover point in Fig.

(3.22). A discrepancy in values was also observed in the case of Pd77.5Cu6Si16.5. Overall, for

a sample of the studied liquids where TA values are reported in literature [cite], we present

the actual values versus predicted in Fig (3.23). We see a strong positive correlation. A

more detailed investigation of the exact relation between Ā and TA is clearly necessary yet

preliminary results are promising. The possible link between Ā and TA is significant not

only because of the implications to the physics of the DEH model, but also because it may

predict Ā. Subsequently, this will enable the prediction of the viscosity in the entirety of

the low temperature range, solely from high temperature data. This idea warrants more

investigation, and further considerations for predicting Ā from high temperature data are

discussed in Section S.1. It makes physical sense that having substantial weight of solid-like

states for T ≤ TA corresponds to the formation of locally preferred solid structures. The low-

temperature locally preferred atomic structures would either be inherent to the equilibrium

crystalline eigenstates, or result from the spatial mismatch of multiple crystalline ordered

states in the distribution. In fact, the macroscopically disordered atomic arrangement of

the glass logically results from overlap of multiple crystalline states of differing phonon
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Figure 3.23: (Color Online.) Plot of the experimentally observed values of the Arrhenius
crossover temperature TA versus the values of TA predicted within the DEH model for a
sample of the liquids studied. A strong correlation is apparent.
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Table 3.6: Predicted Values of Crossover Temperature, TA

Composition TA [K]

BS2 1911
Diopside 1839

LS2 1486
OTP 346
Salol 336

Anorthite 2010
Zr57Ni43 1738

Pd40Ni40P20 1157
Zr74Rh26 1557

Pd77.5Cu6Si16.5 1160
Albite 1503

Cu64Zr36 1368
Ni34Zr66 1506

Zr50Cu48Al2 1384
Ni62Nb38 1607
Vit106a 1242
Cu55Zr45 1329

H2O 302
Glucose 444
Glycerol 315

Ti40Zr10Cu30Pd20 1472
Zr70Pd30 1587
Zr80Pt20 1549

NS2 1268
Cu60Zr20Ti20 1214

Cu69Zr31 1478
Cu46Zr54 1348
Ni24Zr76 1491

Cu50Zr42.5Ti7.5 1287
D Fructose 433

TNB1 499
Selenium 544
CN60.40 1308
CN60.20 1637
Pd82Si18 1186

Cu50Zr45Al5 1280
Ti40Zr10Cu36Pd14 1313

Cu50Zr50 1390
Isopropylbenzene 187

Butylbenzene 197
Cu58Zr42 1322

Vit 1 1017
Trehalose 498

Sec-Butylbenzene 202
SiO2 2002
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modes and structural excitations. One can imagine cutting and superposing patches of

elastically deformed lattice structures with given phonon modes associated with the relevant

distribution of eigenstates. This would lead to the emergence of an overall ‘amorphous’

structural arrangement. At this stage, this is an unproven conjecture. As we alluded to

above, numerous studies have shown that various crystal-like or polyhedral structures begin

to form at this temperature, TA . e.g., (75; 76; 77). Further arguments based on uncertainties

bolster these conclusions (50).

3.6.4 Correlation of Ā with Various Physical Quantities

It has been demonstrated that the parameter, Ā, appears in expressions for the fragility

and crossover temperature within the DEH framework. Additionally, it is seemingly apparent

from the raw values of Ā presented in Table (3.2) that trends in the values may exist for

similar liquid types. In light of these observations, it is reasonable to hypothesize that Ā

may be linked to other macroscopic kinetic and thermodynamic properties of the supercooled

liquid and glassy state. Toward this end, we investigated possible relationships between Ā

and various physical properties that are relevant to the glass transition phenomenology.

We begin by examining the possible relationship between Ā and two of the dynamical

characteristics of glass forming liquids, namely the kinetic fragility parameter, m (discussed

in much more detail in Section VA), and the glass transition temperature, Tg. No direct

discernible correlation was found with either quantity.

This is not so surprising, as the exact expression for the kinetic fragility which was

derived in Section V:A contained multiple other factors. Turning now to thermodynamic

variables, we examine the relationship between Ā and the liquidus temperature, Tl and the

reduced glass transition temperature, Tr ≡ Tg
Tl

, defined by Turnbull (71). Panel (a) of Fig.

(3.25) shows the behavior of Tl versus Ā. While there is no direct correlation between these
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Figure 3.24: (Color Online.) Correlation of Ā with various physical quantities: (a) Tl versus
Ā and (b) Ā versus Turnbull’s reduced temperature, Tr ≡ Tl

Tg
. Ā is seen to have a strong

correlation with Tr, possessing a correlation coefficient of r ≈ 0.88.

two quantities, an interesting behavior does appear. There seems to be a ’jump’ in the

data such that liquidus temperatures below 600 K have values of Ā ≤ 0.1 and systems with

liquidus temperatures greater than 800 K have values of Ā approximately ≥ 0.075. The exact

meaning of this behavior is unclear. The first real correlation appears when examining the

relationship between Ā and Tr. It is evident from panel (b) of Fig. (3.25) that there exists a

strong correlation between these quantities. Making this more quantitative, the value of the

Pearson’s correlation coefficient between Ā and Tr was r ≈ 0.8. This result is very interesting,

and perhaps not surprising. In the years since Turnbull’s original paper (71), the reduced

glass transition temperature, Tr, has been used as a measure of glass forming ability in

metallic liquids. The Turnbull temperature essentially quantifies how wide of a temperature

range a liquid has to avoid crystallization. It is clear from our data, that higher levels of

glass forming ability (GFA) correspond to smaller values of Ā. This is consistent with the

DEH framework. As the temperature is lowered, and the distribution over eigenstates shifts

to lower energy states (the displacement of the distribution peak is governed by the heat

capacity and is discussed in the next section).
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Figure 3.25: (Color Online.) Tmelt versus Ā with two fitting functions applied. In panel (a)
the fit is of a Heaviside function, and panel (b) is a ‘Fermi function’. The exact meaning of
this result is unclear, but is evidence that perhaps Tmelt can be predicted from Ā.

In addition to making good physical sense, and helping to facilitate an understanding

of the physics underlying parameter, Ā, this correlation may, in fact, allow for the prediction

of the viscosity in the supercooled range. Using the equation of the linear fit in panel

(b) of Eq. (3.25), Ā = 0.268 − 0.2806Tr. This enables a calculation of Ā from Tg and

Tl. This, in turn, enables the prediction of the temperature dependence of the viscosity in

the undercooled regime. Thus, if Tg can be measured in a thermodynamic sense, through

calorimetric measurements of the heat capacity or specific volume, then the kinetic properties

of the system can be entirely determined up to some error. Additionally, this would also

potentially allow for the prediction of the liquidus temperature (associated with the dominant

crystal phase), if one were to replace the parameter Ā in the fitting function with the reduced

temperature, and fit with Tl as the parameter. Both of these predictive abilities would

represent major advances for the field of supercooled liquids. For many of the metallic

liquids studied, thermodynamic data related to the density and its temperature dependence

were available at the liquidus temperature. We examined the correlation of Ā with the

density at the liquidus, pT=Tl
, rate of change of density with temperature at the liquidus,

110



Figure 3.26: (Color Online.) Correlation of Ā with the rate of change of density at melting
in both the (a) bare and (b) scaled cases. A positive correlation is apparent, which can be
rationalized in the DEH framework.

dpT
dT
|Tl , expansion coefficient at the liquidus, α(Tl), and the scaled rate of change of density

with temperature at the liquidus, Tl
pT=Tl

dpT
dT
|Tl for 14 metallic glass forming liquids. We saw

no discernible correlation with either the density or expansion coefficient evaluated at the

liquidus. Correlations with the rates of change of density are presented in panels (a) and

(b) of Fig. (3.26). From the figure, a quantifiable correlation between Ā and the rate of

change of the number density, pT (both bare and scaled) at the melting temperature seems

apparent. This result indicates that Ā may in fact be linked to equilibrium thermodynamic

values. More strikingly, the rate of change of density at the melting point, is connected to

both the nature of the potential for the given liquid, as well as the way the system ‘jams’

as it is cooled. This not only suggests that Ā is linked to the microstructural interactions,

but also that it may be able to connect the DEH with other concepts such as free volume,

unifying many of the theories of the glass transition under the DEH ‘umbrella’. The DEH

naturally rationalizes these, and many other experimentally observed trends. At a given

temperature, T , a larger value of Ā means there is a wider distribution of states. If the

equilibrium expansivity is temperature dependent (i.e. different for low and high energy

eigenstates), then as temperature is varied, contributions from a broader range of these will
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Figure 3.27: (Color Online.) Correlation of Ā with the zirconium content of the binary
systems Cu1−xZrx and Ni1−xZrx. The CuZr system has well defined peaks in the value of
Ā where it has been shown the expansivity also has peaks.

lead to a greater rate of change of density, consistent with the observed results. Finally, it

was demonstrated in (79) that the expansivity for a range of compositions in the CuxZr1−x

system, possesses well defined local maxima at specific zirconium fractions. This intriguing

result inspired us to analyze the behavior of Ā as a function of the zirconium fraction of

supercooled metallic liquids in the CuxZr1−x and NixZr1−x systems. These results are

presented in Fig. (3.27). From the figure, it is apparent, and surprising, that Ā also seems

to ’oscillate’ with well defined local maxima at various zirconium fractions. Preliminary

results suggest these maxima may occur at similar zirconium fractions as the results in (79)

for the CuxZr1−x systems. The exact meaning of these results will be considered in a future

work.

3.6.5 Prediction of η(T ) from High T Data

In Section 3.6.4, it was demonstrated that Ā showed a strong correlation with the

reduced glass transition temperature, Tr. It was suggested that knowing the value of Tg

and Tl would then allow for the prediction of Ā and consequentially, the viscosity of the

supercooled liquid. It may seem dubious that it would be necessary to use the glass transition

112



temperature, which marks the lower limit of the supercooled regime, to predict the kinetics

of the supercooled liquid. Additionally, it can be quite difficult to experimentally determine

the value of Tg. By contrast, high temperature data, and associated features are often easier

to measure in the laboratory. It would seem beneficial, then, to relate Ā to high temperature

(melting and above) data. Recently,an empirical relationship between the glass transition

temperature, Tg, and the high temperature activation energy, E∞, of the viscosity in the

Arrhenius regime for metallic liquids was found (80). In that work, it was discovered that

for all metallic liquids the relationship, E∞ ≈ 11kBTg holds. Taking advantage of this, as

well as the equation of the linear fit, Ā = 0.268 − 0.2806Tr, resulting from the relationship

displayed in panel (b) of Fig. (3.25), we can estimate the value of Ā for a metallic liquid

within a bound associated with the average error in the fit. We applied this method to

two metallic glass forming liquids, the results of which are depicted in Fig. (3.28). In

the figure, the red (solid) curve represents the fit to the data associated with the fitting

as described in Section II. The blue (dashed) and green (dotted) curves represent the fits

associated with the values of Ā on both sides of the predicted boundary. It is clear that

the blue curve does a reasonable job of predicting the viscosity of the supercooled liquid

using purely high temperature data. The specific values of Ā predicted will depend on

how tightly the relationship of (80) holds, as well as the sensitivity of the linear fit in the

high temperature Arrhenius regime to the extraction of E∞. These results will need to be

made more rigorous, but the preliminary results suggest that the viscosity of supercooled

liquids can be predicted to reasonable accuracy using data which is more readily available

than measuring the viscosity in the lab. These results will likely be of particular interest to

researchers working in industry. To conclude this section, we point out that the relationship

found in (80) also holds for organic/molecular liquids, and a similar relationship for network

formers, E∞ ≈ mkBT , with m, the fragility, was suggested. This result was not able to be

verified here, but represents an exciting research opportunity and possible extension of the

DEH.
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Figure 3.28: (Color Online.) Viscosity data for two metallic liquids with the DEH viscosity
function, Eq. (3.9) (solid red curve) applied. Using the correlation found in Figure (3.26b)
and the relationship between E∞ and Tg discussed in Section VII, we predict the value of Ā
from purely high temperature data as seen in the bottom right panel. The dashed, blue curve
represents the fit using this predicted value. The green, dotted curve represents an ‘upper
bound’ on the prediction by considering the average error in the correlation involving Ā
and high temperature measurements, whereas the blue dashed curve is a lower bound using
the same error. The central red dashed curve is the ‘average’ predicted value associated
with the average value of Ā. Overall, the blue curves are seen to do a fairly reasonable job
representing the data at low temperatures using only high temperature measurements, but
refinements are required.
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3.7 The DEH Viscosity Above Melting

Until now, we focused on the viscosity of supercooled liquids below their liquidus

temperature, Tl. In Section 3.4.4, we contrasted the DEH with a series of alternative models

for the viscosity of supercooled liquids, ultimately concluding that the DEH model more

accurately described experimental data, with fewer parameters. These alternative models,

however, apply to the entire temperature range in which viscosity measurements can be

made. Therefore, it is imperative that the DEH model be able to make statements about

the viscosity above melting. In deriving the DEH expression for the viscosity (Eq. (3.9)),

we began from the expression in Eq. (3.7). Using this expression and arguments laid out

more concretely in (50), at temperatures above the liquidus, the viscosity is given by

η(T ) =
η̃∫∞

Tl
C ′v(T

′)r′(T ′)pT (E(T ′)) dT ′
. (3.25)

Here, η̃ is a constant, C
′
v is the constant volume heat capacity of the equilibrium liquid at

a temperature T
′
, while r

′
(∝ exp(−∆G(T

′
)

kBT
′ )), and E

′
denote, respectively, the equilibrium

relaxation rate and internal energy. As we have done earlier, we will, once again, invoke a

Gaussian pT [E
′
(T
′
)] ∝ exp(− (T

′−T )2

2σ̄2
T

). With these, Eq. (3.25) becomes

η(T ) =
η̃∫∞

Tl
C ′v(T

′)e
−∆G(T

′
)

kBT
′ 1√

2πσ̄2
T

e
− (T

′−T )2

2σ̄2
T dT ′

. (3.26)

For T close to yet above the liquidus temperature, the distribution pT (E(T ′)) can still be

assumed to be localized to a narrow range of T ′ about the temperature, T . In this narrow

range, C
′
v(T

′) is essentially constant. As the system is supercooled, a temperature will

eventually be reached where solid-like characteristics begin to set in. We have already met

115



such a temperature, the crossover temperature, TA. The integrand vanishes approximately

over a temperature range of order σ̄T that is centered on T ≈ TA. When σ̄
T
� 1 (as is

empirically the case), we may Taylor expand the heat capacity and free energy barrier about

T
′
= T ,

C
′

v(T
′
) ≈ C

′

v(T ) +
∂C

′
v

∂T ′
(T
′ − T ) + · · · ,

∆G(T
′
) ≈ ∆G(T ) +

∂∆G

∂T ′
(T
′ − T ) + · · ·

= ∆H(T )− T∆S(T )

+
∂∆H

∂T ′
(T
′ − T )− T ′∂∆S

∂T
(T
′ − T ) + · · · . (3.27)

In Eq. (3.27), we used ∆G = ∆H − T∆S, where H is the enthalpy (at a fixed volume, the

enthalpy would be replaced by the internal energy E), and S is the entropy of the equilibrated

system at a temperature T ′. Noting that ∂∆H
∂T ′

= C
′
p(T

′) and ∂∆S
∂T ′

= C
′
v(T

′)/T ′, and using

the fact that we are working in the regime where T ≈ TA, we have

∆G(T ′) ≈ (∆G(T )−∆G(TA)) + ∆H(TA)− T∆S(TA)

+C
′

v(TA)(T ′ − T )− T
C
′
p(TA)

T
(T ′ − T )

+ · · · . (3.28)

We recognize that C
′
v(TA)(T ′ − T ) − T

C
′
p(TA)

T
(T ′ − T ) ≈ (C

′
p(TA) − C

′
v(TA))(T ′ − T ) =

V (TA)TA
α(TA)2

β(TA)
(T ′ − T ) ≈ c1(T ′ − T ) (with c1 a T ′ independent constant). Here, α(TA) and

β(TA) are, respectively, the thermal expansion coefficient and the isothermal compressibility

at TA. Setting ∆G(TA) ≡ E∞, the viscosity becomes

η(T ) ≈
η̃
√

2πσ̄2
T

C ′v(T )Ae
−(

∆G(T )−E∞
kBTA

) ∫∞
Tl
e
−c(T ′−T )− E∞

kBT
′−

(T ′−T )2

2σ̄2
T dT ′

.

(3.29)
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Figure 3.29: (Color Online.) The high temperature form for the DEH viscosity, Eq. (3.31)
applied to experimental data of a metallic system (Ti40Zr10Cu30Pd20) and the archetypal
organic fragile glass former (o-Terphenyl (OTP)).

In Eq. (3.29), c = c1 + c2 where c2 = (∆G(T )−E∞)/(kBT
2
A). The Gaussian has its support

in the narrow range of order O(σ̄T ) about T , essentially forcing T ′ to be close to T . If the

three functions σ̄T , C
′
v(T ), ∆G(T ) do not vary significantly in the interval [Tl, TA], then for

this range of temperatures, the viscosity

η(T ) ≈ η0e
E∞
kBT e

(T−TA)2

2a2 , (3.30)

where a ≡ σ̄TA and η0 is a constant. In Eq. (3.30) we pulled out the Arrhenius factor of

e
E∞
kBT (a factor that does not markedly change in the range TA > T > Tl). This was done

so that a trivial extension of Eq. (3.30) that we write below will be valid at temperatures

T > TA. Far above Tl, the equilibrium Arrhenius form of Eq. (3.1) follows from Eq. (3.25)

when ∆G(T ′) is weakly temperature dependent (and essentially equal to E∞). Thus, putting

all of the pieces together, the viscosity for temperatures T > Tl is, approximately,

η(T ) ≈ η0e
E∞
kBT e

(T−TA)2

2a2 Θ(TA−T )

≡ ηequilibrium(T )e
(T−TA)2

2a2 Θ(TA−T ). (3.31)

117



Figure 3.30: (Color Online.) The high temperature form for the DEH viscosity, Eq. (3.31)
applied to experimental data of a metallic system (Zr56Co28Al16) and supercooled water.

Similar to Eqs. (3.14, 3.16), we explicitly inserted the Heaviside function Θ(x) that enables

a crossover to the high temperature (Arrhenius) equilibrium form of the viscosity. We see,

then, that the supercooled viscosity below TA is equal to the viscosity of the equilibrium

liquid that is multiplied (and increased) by the reciprocal of a Gaussian This is reasonable

since for temperatures below TA, the weight PT (E ′) associated with the solid-like states

(those states with energies E ′ < Emelt, the internal energy of the system at melting) will

increase and the associated probability of a flow event will, correspondingly, decrease (and

thus the viscosity will increase).

It is worth pointing out that Eq. (3.31) bears a striking resemblance to the BENK form

(61) of Eq. (3.16) and the earlier associated parabolic fits of (55; 60). Our derived viscosity of

Eq. (3.31) is exponential in a quadratic form in T instead of (1/T ) as appears in (55; 60; 61).

In these previous works, the parabolic functional form was presented without a theoretical

framework justifying it. Here we directly derived Eq. (3.31) within the DEH theory. Since
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the erfc appearing in Eq. (3.9) leads to an asymptotic Gaussian at low temperature (50) and

as at temperatures above the melting temperatures, we find the Gaussian form of Eq. (3.31),

we conclude that the pure Gaussian form appears in both the high and low temperature

regimes of the DEH in a very physical manner. An added benefit of this form is that it holds

down to Tl, and therefore, will allow for estimation of η(Tl) if such a value is not available.

This makes using the form of Eq. (3.9) easier, without having to do an interpolation.

Finally, we briefly demonstrate the quality of fit of Eq. (3.31) to experimental data.

Fig. (3.29) shows the viscosity data for both Ti40Zr10Cu30Pd20 and OTP with Eq. (3.31)

fit to the high temperature data. We leave all four parameters open, but note that we can

easily constrain E∞ and η0 with very high temperature data. This process can be volatile

and prone to error with outliers from bad experimental data, so in this brief study we allow

all parameters to be open. We see that the fit to Ti40Zr10Cu30Pd20 has R2 = 0.9776 and

χ2
reduced = 0.00219 and OTP has R2 = 0.99879 and χ2

reduced = 0.00111, both indicating

statistically good fits. The predicted value of TA (1276-1286K and 386K, respectively) are

reasonable, and the values for a, are such that a
TA

<< 1, as assumed.

3.8 Dynamical Heterogeneities

The super-Arrhenius temperature dependence of the viscosity, or relaxation time, of

supercooled liquids is one of the two defining kinetic characteristics of glassy behavior.

The other is the existence of non-exponential relaxation of perturbations/fluctuations. In

ordinary, equilibrium liquids, the linearity of the physical equations and processes underlying

the approach to equilibrium lead to perturbative responses decaying exponentially with a

timescale set by the appropriate relaxation time of the system at a given temperature. In

supercooled liquids, it is widely observed that relaxation processes are not exponential, and
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are instead reasonably described by a stretched exponential or so-called KWW function,

φ(t) = φ0e
−( t

τ
)β (3.32)

where φ is the relaxation function and β is the stretching exponent. The value of β is between

zero and one, with β = 1 corresponding to simple exponential relaxation. The commonly

held view of the physics underlying the non-exponential relaxation of the supercooled liquid

is that there is a spatial distribution of relaxation times throughout the liquid, and this

is referred to as dynamical heterogeneity. Essentially, at any given moment, the liquid is

comprised of various dynamic regions, or clusters, each relaxing at their own rate, with

relaxation times distributed about the observed overall system relaxation time. Within

these clusters, MD results have shown that the relaxation process is exponential. Therefore,

the overall relaxation of the liquid as a whole, which is a simple spatial average of all of

the relaxing dynamic clusters, will be the integral of relaxation functions weighted by some

distribution function, ie,

φtotal(t) =

∫
d~x Φ(τ(~x)) e−t/τ(~x). (3.33)

The metastability of supercooled liquids requires that they retain their ergodicity, and thus,

over long times all particles in the liquid at one point belong to both fast and slow clusters.

The major consequence of this is that spatial averages are equal to ensemble averages,

and thus the overall relaxation can be found from typical statistical mechanics techniques.

Numerous studies have been conducted which aim to work backwards from relaxation data

to uncover the distribution of relaxation times, and distributions such as skew-normal,

lognormal, truncated normal, and more (106) have been observed. Given these findings,

and the above discussion of the theory of a distribution of relaxation times, it seems that

the DEH model must quite naturally explain non-exponential relaxation, as it inherently
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contains distributions over states. It seems prudent, then, to test this, by examining what

the relaxation function would look like in the DEH framework. The relaxation function of

a supercooled liquid can be defined in any number of ways and in terms of any number

of different correlation functions. One such prevalent example, is that of the normalized

intermediate scattering function,

F (~k, t) ≡ 〈ρ−~k(0)ρ~k(t)〉T . (3.34)

This function is the Fourier transform of the Van Hove function, and quantifies the temporal

decay of density fluctuations in the liquid in k-space. The intermediate scattering function

is a spatial average over the liquid, but as discussed above,it is equal to a corresponding

ensemble average, and as an ensemble averaged quantity, it can be computed within the

DEH framework in the usual way, by integrating its value at a given temperature over the

DEH distribution. In this way, the intermediate scattering function for the supercooled

liquid would be,

Fs.c.(~k, t) =

∫ ∞
0

Cv(T
′) dT ′pT (T ′)〈ρ−~k(0)ρ~k(t)〉T ′ . (3.35)

As discussed, the individual clusters relax exponentially, and so too, do the equilibrium

thermal states of the system, so we can make the approximation that

〈ρ−~k(0)ρ~k(t)〉T ≈ f(~k)e−
t

τ(T ) , (3.36)

where f(~k) is a function of the wavevector alone. We can further assume that the

corresponding equilibrium relaxation time in each equilibrium state maintains an Arrhenius

temperature dependence, and use the experimentally observed fact that the relaxation time
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of perfect equilibrium crystals is infinite. Taken together, this leads to the assumptions,

τ(T )→∞ T < Tl

τ(T ) = τ0e
E∞
kBT T ≥ Tl. (3.37)

and thus the overall form for the relaxation function in the supercooled liquid in this model

is

Fs.c.(~k, t) =
∫ Tl

0
Cv(T

′) dT ′pT (T ′)

+ f(~k)
∫∞
Tl
Cv(T

′) dT ′pT (T ′)e
− t
τ(T ′) . (3.38)

After carrying out the first two integrals, this can be simplified to

Fs.c.(~k, t) = erf
[
Tl−T√

2ĀT

]
− erf

[
− 1√

2Ā

]
+ f(~k)

∫∞
Tl
Cv(T

′) dT ′pT (T ′)e
− t
τ(T ′) . (3.39)

The error function terms contain no time dependence and will only scale the relaxation

function up and down the y-axis as a function of temperature, so we focus only on the

remaining integral part of the equation. Recalling that the relaxation function is defined as

the intermediate scattering function normalized by its value at t=0, we assert

φ(t) ≈
∫ ∞
Tl

Cv(T
′) dT ′pT (T ′)e

− t
τ(T ′) (3.40)

where φ(t) is the relaxation function. At this point, we must point out that relaxation

function in supercooled liquids does not just simply follow a stretched exponential time

dependence, but is also, in fact, multi-stepped. It is typically observed that supercooled

liquids first undergo a fast relaxation mode, deemed β-relaxation, which is usually

exponential and corresponds to vibrational relaxation. The liquid then enters a ‘plateau’ in
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the relaxation function at which point the particles in the liquid are confined to vibrations

in cages of other atoms, before finally undergoing the stretched exponential relaxation with

the observed, super-Arrhenius, relaxation time, in a process called the α-relaxation mode.

Beta relaxation will not appear in this function, as in the DEH model, it is hypothesized

that the beta relaxation corresponds to the time to come to steady-state, in which the

distribution takes it’s Gaussian form. What we mean by this is that when the system is

rapidly quenched to a given temperature, the initial shock leads to the system not yet being

in a metastable equilibrium, and possessing energy flows throughout the liquid. After a given

time, the β-relaxation time, the flows will have reached a steady state, and a well defined

spatial effective temperature distribution will have set in in the liquid. This distribution

corresponds to our phase space distribution, and therefore, the initial relaxation is concerned

with reaching the Gaussian distribution of the DEH. Therefore, while the beta relaxation

has a natural understanding in this framework, it will have to be considered separately,

and the alpha relaxation will be what appears in the relaxation function in the equation

above. We test this expression for an example system, to see if exponential stretching does

indeed appear in the DEH framework. For this example, we take the case of toluene whose

high temperature Arrhenius behavior has been observed to be τ(T ) = 5.67 ∗ 10−14e
1367
T ,

with a liquidus temperature Tl=178K. Inserting these values into Eq.(3.40) for various

representative temperatures both above, and below the liquidus, lead to results which showed

little to no stretching in the relaxation. This result is easy to understand, as we don’t

consider any relaxation time values between the value at the liquidus and infinity in the

above expression. In almost all cases, where the relaxation time distribution was found

experimentally, it was observed that the distribution was nonzero at all values of τ from

some lower cutoff to infinity. The solution to this problem comes from properly considering

the PT EI. Within the PT EI the energy states which contain all possibles mixtures of

liquid and crystal structures, will possess a large range of relaxation times that continuously

evolve from the value at the liquidus to infinity as the energy is lowered to the bottom
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Figure 3.31: (Color Online.) Predicted DEH relaxation function for toluene at various
temperatures above and beneath the liquidus. A degree of stretching is apparent.
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of the interval. This range of relaxation times will result from the continuous evolution

of ever-increasing amounts of solid-like regions until the liquid reaches the bottom of the

interval. The corresponding weights should rapidly decrease into the lower relaxation time

values which correspond to higher energies, and the Gaussian form assumed in the DEH will

deliver this effect. The exact functional dependence of the relaxation time on energy in the

PT EI is a priori unknown, and it is possible that the behavior of σ(E) could be different

from linear in this region as well.Therefore, to observe the impact of properly considering

the PT EI we can choose some physically meaningful form for the dependence of τ(E) and

add the PT EI term to the expression in Eq. (3.40). We choose to continue the Arrhenius

form, and integrate across all temperatures from zero to infinity to approximate the weighted

consideration of the energies in the interval. This is an acceptable means of approximating

the behavior, as the entirety of the temperature range with an Arrhenius dependence of

the relaxation time will be equivalent to sampling all relaxation times in the PT EI as

they map to each other. The results are shown in Fig (3.31). A considerable amount of

exponential stretching is observed, making clear that the DEH naturally explains dynamic

heterogeneity and stretching. While convincing, this can be made more concrete by making

a simple change of variables. This transformation from energy dependence to τ dependence

via a simple change of variables guarantees that the DEH form should align with the τ

distributions observed experimentally. By making the simple change of variables assuming

an Arrhenius relationship between the energy and relaxation time, we arrive at

φ(t) = kBT

∫
dτ

τ
e
− (kBT )2

2

(
ln(τ)−ln(τ ′)

σE

)2

e−
t
τ (3.41)

as an equivalent expression for the relaxation function. We immediately see that something

resembling a log normal distribution naturally appeared within the DEH framework, and

therefore, agreement with experimental results is roughly observed.
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Before concluding this section, it must be mentioned that in addition to the observation

of dynamical heterogeneity, it is also observed that there is a corresponding dynamical

heterogeneity lengthscale, ξD, which gives the typical length of the dynamical clusters.

Additionally, this lengthscale is observed to increase with supercooling. It is natural to

inquire as to whether the existence and growth of ξD can be explained in the DEH, and

while a rigorous derivation is beyond the scope of this paper, we will briefly remark on a

likely explanation. It is observed that in equilibrium liquids the dymamics of the constituent

particles is largely uncorrelated, with maximum correlation lengths only slightly larger than

an atomic diameter. In crystals, however, it has been observed that the dynamics are

correlated over much larger distances, which have some relationships to the phonon spectra

(114). It is not unreasonable to argue, then, that the distribution having weight in crystal

and liquid states, will have some average of the properties, and as the system cools and has

more weight in the crystal states and less in the liquid, it will pick up more of the correlation

associated with those crystal states, thus growing the length over which the dynamics are

correlated in the supercooled liquid. This rather simple cartoon description makes clear that

it is indeed possible to describe the dynamic heterogeneity lengthscale in this framework,

although we don’t undertake it here.

3.9 Thermodynamic Considerations

3.9.1 Free Energies and Response Functions

Heretofore we have focused solely on dynamical quantities within the DEH framework,

such as the viscosity, relaxation time, and relaxation function, but the nature of the DEH

model is such that it applies to thermodynamic quantities as well as well as dynamical ones.

Indeed, a principle facet of the DEH is that the same distribution should apply to all values
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of physical observables in the supercooled state, both dynamic and thermodynamic. An

example of this was already encountered in motivating the Gaussian form for the distribution

of energies. The second characteristic listed in Section 3.3.2 that the distribution must obey

was that

Us.c =

∫
dE ′pT (E ′) Ē ′, (3.42)

with over bars denoting equilibrium ensemble average values. Therefore, the average energy

over all states sampled by the distribution must be equivalent to the observed supercooled

energy of the liquid. This was not only a reasonable constraint, but a necessary one if the

thermodynamics of the model are to have any meaning. This notion, then, naturally extends

to any quantity which corresponds to an ensemble average in ordinary statistical mechanics,

as the average value at a given energy can then be integrated with the DEH distribution to

give the supercooled average, such that

Os.c.(E) =

∫
dE ′pT (E ′) Ō(E ′), (3.43)

where O is any thermodynamic observable. Typically, observables are not measured as a

function of energy, but as a function of temperature. Therefore, like we did in the case of the

viscosity, we convert to functions of temperature by assuming E ≈ CT , such that observable

averages become,

Os.c.(T ) =

∫
dT ′ Cv(T

′) pT (T ′) Ō(T ′). (3.44)

In general, when converting from integration over the energies to corresponding

temperatures, one must use the heat capacity as a conversion factor as the energy and

temperature are related via it. We have included that in Eq. (3.42), but will leave it

out going forward, as the distribution gets a reciprocal heat capacity in converting from a
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Figure 3.32: (Color Online.) Enthalpy, entropy, and heat capacity functions for equilibrium
water at all temperatures based on interpolation/extrapolation of experimentally measured
values.

function of energy to temperature, associated with the conversion of σE. Additionally, it is

important to point out that only quantities which correspond to ensemble averages can be

averaged over again with the DEH distribution; response functions such as heat capacities

and susceptibilities cannot, as the equilibrium values do not correspond to ensemble averaged

state variables, but derivatives of them. Therefore, to compute the form of response functions

in the supercooled state, one must first compute the corresponding state variable in the DEH

supercooled regime, and then take the appropriate derivative. For instance, the enthalpy in

equilibrated systems is H = Ē+PV̄ , so the enthalpy in the supercooled liquid will be given

by

Hs.c.(T ) =

∫
dT ′ pT (T ′) [Ē(T ′) + PV̄ (T ′)]

=

∫
dT ′ pT (T ′) H̄(T ′), (3.45)
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and the supercooled liquid heat capacity (at constant pressure) would be given by

Cp,s.c. = (
∂Hs.c

∂T
)p

=
∂

∂T

∫
dT ′ pT (T ′) H̄(T ′). (3.46)

In calculating the heat capacity using the above expression, only pT (T ′) contains the variable

T , and therefore the derivative will only act on the distribution, leading to the expression

for the supercooled heat capacity in the DEH framework (see SI for derivation),

Cp,s.c = − 1

T

∫
dT ′pT (T ′) H̄(T ′)

− 1

Ā2T 3

∫
dT ′ pT (T ′)T ′ H̄(T ′)

+
1

Ā2T 4

∫
dT ′ pT (T ′)T ′2 H̄(T ′)

(3.47)

To calculate the entropy and other free energies in the supercooled liquid, one need only

follow standard thermodynamic procedure, and utilize the computed heat capacity. Cp,s.c

can be integrated to calculate both the entropy and enthalpy of the supercooled liquid,

and to test these expressions, we use the heat capacity data of an example system, namely

H2O in the ice (109), water (110), and vapor (110) phases. We begin by using experimental

equilibrium heat capacity data (at constant pressure) to interpolate the equilibrium enthalpy

and entropy at all temperatures. These values for the heat capacity, enthalpy, and entropy of

this system are shown in Fig. (3.32). The values for the heat capacity, enthalpy, and entropy

in the supercooled state as calculated using the above equations and equilibrium data are

depicted in Fig. (3.33). Examination of the calculated enthalpy, entropy, and heat capacity

in the supercooled liquid reveals that the functions possess the correct form as observed

in experiments, but with crossovers at temperatures higher than observed experimentally,

and with ‘gaps’ or small ‘jumps’ at the liquidus temperature, which are not observed

experimentally. In supercooled liquids, it is typically observed that the enthalpy does not
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Figure 3.33: (Color Online.) Enthalpy, entropy, and heat capacity functions predicted from
the DEH model. The exact functional form appears to have some discrepancies which we
hypothesize to be the result of not properly considering the PT EI.

‘turn over’, and the heat capacity does not have a drop until at or near the glass transition

temperature. It makes sense that the DEH model would not predict these features at Tg, as

they are widely accepted to occur due to the freezing out of degrees of freedom, solely due

to observation times not being long enough to allow appropriate equilibration. Therefore,

these changes are not thermodynamic changes, but kinetic ones. The DEH represents a

metastable extension of the statistical mechanics of liquids, so its predictions should hold

regardless of observation time.

However, we know from experimental observations, that there should be no bending

or turning over in the free energies, etc. of the supercooled liquid until at least the glass

transition temperature, regardless of whether or not these are physical. Therefore, we must

rectify the apparent crossover that happens in the DEH predictions of the enthalpy, entropy,

and heat capacity, at a temperature well above Tg. We again postulate that the influence
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Figure 3.34: (Color Online.) σ(T ) data with location of experimentally suggested
crossover/liquid-liquid phase transition marked via the red arrows.

of the energy states in the PT EI region will play a significant role in determining the

thermodynamic functions of the supercooled liquid, and that omission of these states is

what causes the discrepancy. It is beyond the scope of this thesis to test this claim, as

experimental values of thermodynamic functions are rarely reported as functions of energy,

making the relevant PT EI integrals difficult to carry out. We hope to take this up in the

future.

3.9.2 Liquid-Liquid Phase Transitions

Much of the current and previous research into supercooled liquids and the glass

transition has focused on whether or not there is an associated equilibrium phase transition at

a temperature at or beneath Tg to a so-called ‘ideal glass’. In recent years, however, research

into another hidden phase transition in the supercooled liquid has become quite popular,
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Figure 3.35: (Color Online.) Left: DEH fit to the viscosity of Salol. The intermediate region
of data where the DEH fit appears to ”fail” corresponds to the region where the linear
approximation breaks down and, in fact, to a temperature where a putative liquid-liquid
phase transition was earlier suggested to occur (see text). Right: (Top) The temperature
dependence of σ̄T . The linear approximation fit from Eq. (3.7) (shown in magenta) works well
over a large range of temperatures, but appears to break down upon approach to T ≈ 256K
from below. (Bottom) σ̄T , this time with the range extended to the origin.
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that of the supposed liquid-liquid phase transition. Briefly, a liquid-liquid phase transition, is

a hypothesized true thermodynamic transition between two different liquid structural forms

somewhere in the supercooled liquid regime. Typically these liquid-liquid phase transitions

are such that the liquid goes from a low density liquid to a high density liquid. Experimental

results suggesting that the heat capacity shows a signature of this transition have previously

been reported (107). Additionally, a dynamical crossover, which may or may not coincide

with the liquid-liquid phase transition, has also been widely reported in the literature (112).

This crossover is from the previously described super-Arrhenius thermal dependence of

dynamical quantities back to an Arrhenius dynamics at some temperature between the

glass transition and the liquidus. If either of these transitions exists for all liquids, then

the DEH framework, if it is to be the complete theory of supercooled liquids that we purport

it to be, should show some signature of the transition. We observed in section XX, that the

temperature dependence of σ in many cases appeared to show a crossover at a temperature in

the supercooled range. Therefore, we investigate whether or not this crossover point is at all

correlated with the previously proposed liquid-liquid or Arrhenius crossover temperatures. It

was shown in (66), that salol may undergo a so-called “fragile-strong” crossover in the range

Tg ≤ T ≤ Tl and the exact temperature of its occurrence was suggested to be at Tl−l=256

K (66). Other investigations have suggested a very similar temperature (111). Examining

the behavior of σ(T ) in Figure (3.35) for salol, it is clear the the linear approximation

breaks down at exactly the same temperature at which the putative liquid-liquid transition

supposedly occurs, T ≈ 256K! Therefore, it may be possible for the DEH form to predict

the existence and location of liquid-liquid phase transitions or crossovers, based on a change

in the behavior of σ̄T . In Fig. (3.34), we display the σ data for four additional liquids

with arrows denoting the location of proposed crossover temperatures (? ). For propylene

carbonate and TNB1, it appears as though these temperatures do coincide with a change

in behavior of σ(T ). The relationship is not as clear for toluene or glycerol. If a change in

behavior is existent in σ(T ) for all liquids, this could help explain some of the poor fit quality
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of the DEH model for certain liquids. These links between the temperature dependence of

σ and possible liquid-liquid/Arrhenius transitions requires further investigation.

Before concluding this section, we briefly remark on what the physical interpretation of

these transition/crossovers would be in the DEH framework. Quite simply, we hypothesize

that they correspond to the temperature in the supercooled liquid at which the system

has ‘used up’ the energy of fusion. As we discussed, it is observed that in equilibrium

systems, the energy discontinuously decreases by an amount equal to the latent heat at the

liquidus temperature, whereas the energy of the supercooled liquid continuously decreases

with temperature. At a certain temperature, say T−, the energy of the supercooled liquid

will have decreased by an amount equal to the latent heat energy, and the influence of the

PT EI states will have effectively been reduced to zero. We believe that the temperature

T− where this occurs coincides with one, or both of the above mentioned transitions in the

supercooled liquid. To test this, we examine the observed Arrhenius crossover temperatures

of Mallamace et al (111) for seven liquids. If these temperatures do in fact correspond to

the point at which the latent heat is used up by the supercooled liqud, then there should

be a correlation between the heat of fusion and the difference in temperature between the

liquidus and crossover, ie ∆Hfus ∝ (Tl − T−). This implicitly assumes that the supercooled

liquid heat capacity doesn’t show much of a temperature dependence in this region, which is

observed to be a fairly reasonable approximation. For the sample of liquids for which data

was available and tested, we observed a strong positive correlation between the enthalpy of

fusion and the temperature difference, r = 0.71, and using statistical methods, observed that

this result is statistically significant despite the small sample size. Therefore, we take this as

a positive result that our interpretation of the liquid-liquid/Arrhenius transition/crossovers

is the correct one, and that the DEH framework can naturally describe this. More rigorous

investigations of these results and conjectures are required, and will be taken up in a future

paper.
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Figure 3.36: (Color Online.) (a) Prediction of the liquidus temperature by fitting the
viscosity data with the liquidus and η(Tl) left as parameters. (b) Prediction of the Liquidus
using the observed correlation between it and Tg.

3.9.3 Predicting the Liquidus Temperature

Throughout the preceding sections, we have both argued and demonstrated, that the

liquidus temperature is fundamental to not only the DEH framework, but the physics

of supercooling in general. Indeed, the low temperature viscosity function depends on

having an appropriate value for the liquidus of a given material in order to say anything

about its supercooled viscosity. However, experimentalists frequently report that accurate

measurements of the liquidus temperature are very difficult to achieve, whereas viscosity

measurements are much simpler and easier. Therefore, having a theoretical/functional means

of estimating the liquidus temperature in general systems, would represent a major advance

in the study of the thermodynamics of fluids. As such, it has been suggested that the DEH

viscosity equation, Eq. (3.9), could be inverted to use viscosity data to predict the liquidus.

We aimed to test this notion, by using the viscosity data of a large fraction of the liquids

studied.
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In order to predict the liquidus temperature using the DEH model, we fit the viscosity

data using the DEH form of Eq. (3.9), but let the liquidus temperature and log of the

viscosity at the liquidus be fitting parameters in addition to Ā. The inherent constraint

that the viscosity be equal to its value at the liquidus for the liquidus temperature should be

enforced naturally by the functional form of the viscosity, so as to naturally force consistency.

The difficulty in getting reasonable values of the parameters, then, results from the fact that

the parameter space is filled with a huge number of local minima that the standard gradient

descent algorithm can easily get stuck in, and lead to the prediction of highly nonsensical

parameter values. To combat this, we used the observed relationship between Ā and the

Turnbull reduced temperature discussed in Section 3.6.4, in conjunction with the observed

range of Ā values ( 0.025-0.16) to place broad constraints on Ā and the liquidus temperature.

The results of this analysis for a random subset of the studied liquids is depicted in panel (a)

of Fig. (3.36). It is observed that while the predicted and experimental values are linearly

correlated as they should be, there is much scatter in the predicted Tl with reference to the

actual value, with the average percent error being 12.5%. This level of error suggests we

need to refine our method of predicting the liquidus in the DEH framework. In studying

correlations between the DEH parameters and various thermodynamic variables, we observed

that there is a strong correlation between the glass transition temperature, Tg, and the

liquidus temperature, Tl (see Fig. (3.37)), such that Tl can be predicted from the value of

Tg using a simple linear regression. The results of this analysis are depicted in panel (b) of

Fig. (3.36). We see that the value of the liquidus using Tl is slightly more accurate than the

values predicted from the DEH viscosity equation, with an average percent error of about

7.52%. We next attempted to use the the predicted Tl values from both the DEH equation

and the Tg relation to fit a multiple regression to the data. The results of this analysis are

depicted in panel (a) of Fig. (3.38), and we observe that they are better than the raw DEH

prediction, but marginally worse than the Tg prediction with an average percentage error of

about 7.74%. We next decided to use the Tg predicted value of the iquidus and the average
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Figure 3.37: (Color Online.) Correlation between the experimental Tl and the glass transition
temperature Tg.

Figure 3.38: (Color Online.) (a) Predicted value of Tl resulting from OLS regression. (b)
Prediction of Tl using the Tg-predicted value to constrain the fitting of the DEH viscosity
with Tl and η(Tl) as parameters.

137



Table 3.7: Actual and Final Predicted Liquidus Values For Sample of Studied Liquids

Composition Measured Tl Predicted Tl

3bromopentane 147 156
Anorthite 1823 2048
BS2 1699 1644
Cu60Zr20Ti20 1125 1172
Cu64Zr36 1230 1374
Diopside 1664 1592
Glycerol 291 311
LS2 1307 1216
OTP 329 352
Pd40Ni40P20 1030 1008
Pd77.5Cu6Si16.5 1058 1143
Pd82Si18 1071 1141
Propanol 147 135
Ti40Zr10Cu30Pd20 1279 1247
Ti40Zr10Cu36Pd14 1185 1211
Vit 1 937 1130
Vit106a 1125 1219
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error associated with it, to set new boundaries for prediction using the DEH equation. We

left the same range of allowed Ā values based on the observed values of all liquids, but

constrained the predicted Tl to lie within the range Tl,g − 0.07 ∗ Tl,g ≤ Tl ≤ Tl,g + 0.07 ∗ Tl,g,

where Tl,g is the liquidus value predicted using the Tg relationship. In this case, the values of

Tl were in considerably better agreement with the experimental values, as depicted in panel

b of Fig. (3.38), with only an average percent error of 7.1% for a subset of the previous

liquids tested. In a number of cases, the predicted liquidus value bumped up against the

end of the allowed interval, and increasing the interval width led to changes in the predicted

value. This is easily understood as likely being the result of overfitting. Given a wide enough

range of possible values, any function would aim to choose parameters that fit every point of

available data with little regard for physical reasonableness. We expect that the fits will not

be perfect due to experimental error and other factors, so do not expand the range of allowed

values. Taken together, these results suggest that it is possible to use the DEH model to

predict the liquidus using viscosity data, and that if researchers know that the liquidus must

fall within a smaller range, they can increase the accuracy of the prediction.

3.10 Jamming and other non-thermal transitions

Glassy dynamics are ubiquitous in nature and appear in arenas that extend beyond

the confines of the diverse collection of supercooled liquids (wherein a rapid lowering of the

temperature drives the system into a glassy state) that we examined in the earlier sections

of this paper. It is thus natural to investigate the possible links between the dynamics of

non-thermal liquids and traditional supercooled liquids. As we will explain in this section,

the formalisms of (50; 51) are generally applicable to more than traditional supercooled

liquids. To make this lucid, we remark that the DEH eigenstates discussed hitherto (as

well as the classical phase space regions of (51)) may not only be classified by the energy
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density or temperature but (in systems in which the volume and particle number are not both

fixed) also by the number density and all other quantum numbers that describe them. The

density matrix associated with the quenched, metastable system state will, generally, lead

to an extension (50) of the long time average of Eq. (3.6) by an average with a probability

distribution that depends on parameters other than the energy density (such as the volume

fraction) if these parameters are allowed to vary. Similarly, in the classical approach of (51),

the long time average of Eq. (3.6) will be performed over microstates that have different

particle number and other parameters. Now, here is a new idea that we wish to introduce

and explore in this section: if the quantum eigenstates or classical microstates change from

being ‘liquid-like’ to ‘solid-like’ as the number density (or other parameter) is increased

then quenching will lead to a state for which much of our above ideas can be reproduced

with the temperature T replaced by the volume fraction (or other parameter) describing the

macrostate of the system.

For concreteness, we will now explicitly consider the case of liquids which undergo a

jamming transition (19; 81; 82; 83; 84; 85; 86; 87; 88; 89; 90; 91; 92; 93; 94). The control

parameter in this case is not the temperature but rather the volume fraction φ. In, e.g., hard

sphere (or colloidal) systems, φ is the fraction of the volume occupied by the hard spheres

(or colloids). The system will again have a general Hamiltonian and associated eigenstates,

and these eigenstates will intrinsically possess the macroscopic properties of equilibrium

systems, including system sizes and atomic arrangement. For simplicity, the eigenstates can

be associated with a many body energy, which will in turn depend on the volume fraction,

φ, instead of the temperature, T . Similar to the supercooled case, if the system starts out

at as an equilibrated liquid (at volume fractions φ < φmelt) and the volume fraction is then

quasi-statically elevated then the system will remain in equilibrium and will transition to

the crystalline state (when the volume fraction φ = φmelt). By contrast, if the system is

very rapidly compressed, it will be driven out of equilibrium, and by the same arguments
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Figure 3.39: (Color Online.) (a) Reproduction of scaled experimental hard sphere viscosity
data as a function of volume fraction, from (95). The equilibrium ‘freezing’ volume fraction
is marked and the metastable ‘supercooled/pre-jamming’ region is highlighted in the dashed,
red box. (b) Plot of the spread, σφ, for the hard sphere data, found by inverting Eq.(3.48).

The magenta line is the curve σφ = J̄
φ

using the value of J̄ obtained from fitting Eq.(3.50)

to the data. (c) Hard sphere viscosity data with DEH fit applied. The DEH model is
seen to do an exceptional job of reproducing the viscosity of a jammed hard sphere liquid,
demonstrating the universality of the underlying physics of disordered solids.

that we provided here and in (50; 51) for supercooled liquids, the distribution (pφ(E ′)) will

no longer be a δ-function, but rather a (Gaussian) distribution parameterized by φ over the

energy states that is of finite width. Thus, following rapid quenching, the quantum density

matrix (or classical probability density) may generally contain both liquid-like and solid-like

states. This mixed character will lead to the observed sluggish/glassy dynamics. Assuming

that only liquid-like states are capable of flow, such that the melting energy marks a cut-

off and replicating, mutatis mutandis, the earlier steps that led to Eq. (3.7), we arrive at

an functional form for the viscosity of jammed liquids as a function of the energy that is
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identical to that of the supercooled liquids that we discussed earlier, namely

η(T ) =
ηjam(Emelt)

erfc
(
Emelt−〈E〉
σ̄E
√

2

) . (3.48)

In order to make predictions, we need to convert this equation from being a function of

energy levels to that of the relevant control parameter. In the case of jamming, the control

parameter is the volume fraction, φ and not the temperature, T . We briefly sketch how,

in the simplest approximation, the energy depends upon the volume fraction to make the

necessary conversion. In the supercooled liquid case, the energy and temperature were simply

related via an effective average heat capacity by E = CT . In systems where the volume can

change, with fixed particle number, the energy changes correspond solely to volume changes

(at constant pressure) and the energy E = −PV . The volume V and the volume fraction φ

are reciprocally related to one another (V = const.
φ

). Thus, in terms of volume fraction, the

energy is E = − const.×P
φ

≡ −P
φ

. Insertion of this relation into Eq. (3.48) leads to

η(φ) =
ηjam(φmelt)

erfc
(

( 1
φmelt

− 1
φ
) P
σ̄E
√

2

)
=

ηjam(φmelt)

erfc
(
P (φ−φmelt)
σ̄E
√

2φφmelt

) . (3.49)

Since the energy E and volume fraction φ are inversely related to one another, for small

standard deviations (which we implicitly assume), we asymptotically have that σE ≈ Pσφ
φ2 .

If we further postulate that σφ = J̄
φ

where J̄ is a small material-dependent constant (similar

to Ā), then we finally obtain that for φ ≥ φmelt the viscosity of the jammed fluid is

η(φ) =
η(φmelt)

erfc
(

(φ−φmelt)φ2
√

2J̄φmelt

) . (3.50)
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Similar to our earlier relation of Eq. (3.9), the viscosity of Eq. (3.50) utilizes only a single

parameter (J̄), which controls the rate at which the width of the distribution changes with

φ, and a thermodynamically measured ‘freezing’ point. In Fig. (3.39) we fit the viscosity

function of Eq.(3.50) to hard sphere data taken from (95). As seen in the figure, the DEH

model is capable of very accurately reproducing the viscosity of the hard sphere liquid in

the metastable, pre-jammed state. This result is highly significant, as it demonstrates the

generality of the energy-distribution framework to different classes of amorphous solids, and

provides a link between the jamming and glass transitions. Further, it begs the question

as to whether phenomena such as shear thickening/thinning could also be explained using

this framework with similar resulting functional dependencies of the viscosity on parameters

such as applied stress. More investigation is required to answer this question, and it will be

addressed in an upcoming paper.

3.11 Conclusion and Outlook.

In this work, we expounded on a new framework for understanding supercooled liquids

and the glass transition. Crucially, we tested the predictions of this theory (the distributed

eigenstate hypothesis (DEH)) by analyzing the viscosity of all currently known supercooled

liquid classes. We demonstrated, both qualitatively and quantitatively, that the DEH model

can capture the temperature dependence of the viscosity of all of these liquid types to a

statistically significant degree using only a single fitting parameter. We established that

the viscosity of 65 disparate supercooled liquids below their melting temperature can be

collapsed onto a universal curve over 16 decades by using the single parameter, Ā. Coincident

with the theoretical premise underlying the DEH theory, we unveiled correlations between

this single parameter and various properties of supercooled liquids and glasses. Our results

further strongly hint that it may be possible to predict viscosity of supercooled liquids
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below their melting temperature using only viscosity data above this temperature. Notably,

we also derived a new form for the viscosity above melting and assessed the validity of

this functional form by examining experimental data. Taken together, our results suggest

an underlying universality of the glass transition that enables a natural crossover from an

activated Arrhenius form at high temperatures to a very marked rise of the viscosity (most

pronounced in fragile systems) at low temperatures. While the predictions of the DEH

framework led to our analysis and observations, it is possible that other approaches might

also rationalize and complement our findings. We hope that our observations of universal

behaviors in all known supercooled liquid types will spur further investigations.
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3.12 Supplementary Information

S.1 Exceptional Cases: Poor Fits and Possible Anomalies

In the text it was demonstrated that the DEH form for the viscosity provided a

statistically ’good’ fit to the experimental data for a disparate group of supercooled liquids.

Furthermore, we were able to collapse the data of all these liquids to a universal curve,

representing both an underlying universality in the glass transition phenomenology, and a

universality in the DEH formalism. It must be pointed out, however, that a few exceptional

cases did appear in our analysis, with the DEH form not providing a reasonable fit to the

data, despite all but one of the liquids being collapsed onto the universal curve. In Figs.

(3.35 and (S1), data are presented for 5 exceptional case liquids with the DEH form applied,

and it is clear that the function of Eq. (3.9) does not accurately describe the data as

depicted. A multitude of reasons may exist for this discrepancy. In the cases of Vit 1 and

Trehalose it seems likely that there is measurement error in the data. In the case of SiO2,

in addition to the pronounced scatter in the data, this liquid is also at the very extreme

of strong behavior, and is traditionally difficult to describe with models. We are not sure

exactly why this is the case. In the case of glycerol, there is data (103) showing that the

heat capacity has drastically different behavior from other supercooled liquids, and that

a so-called liquid-liquid phase transition may exist in this liquid. Salol possesses similar

anomalies.

The reader will have noticed that the behavior of σ̄T for glucose shows a stark crossover

from increasing to decreasing at a sharp temperature in the supercooled range, yet the DEH

model accurately fit the experimental data. It is possible that glucose may have a liquid-

liquid transition, but this is masked in the DEH model, as the slope in the increasing range

has the same magnitude in the decreasing range. The fact that the magnitude of the slope
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Figure S1: (Color Online.) The four examples of worst performance of the DEH fit of Eq.
(3.9). Various possibilities for the relatively poor performance are discussed above.

remained roughly the same will allow the DEH form to accurately predict the experimental

viscosity data.

Overall, many reasons may exist for the discrepancies observed in the fits of the above 5

liquids, ranging from experimental error to liquid-liquid phase transitions. The exact reasons

will require further investigation, and will need to be understood to strengthen the validity

of the DEH model.
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Chapter 4

A Dramatically Growing Shear

Rigidity Length Scale in a

Supercooled Glass Former (NiZr2)

4.1 Chapter Overview

In the previous chapter we demonstrated that the crossover temperature TA, which

has been linked to the development of locally preferred structures in the supercooled liquid,

had an interpretation in the DEH framework, as the temperature at which the solid-like

states begin to appreciably contribute to the overall state of the system. We suggested

that as these states, which possess the perfect crystalline order of the equilibrium solid,

gain more influence, the overall solidity of the liquid increases in terms of structure as well

as dynamics. We hypothesize that the mismatch of crystalline ordered states with different

phonon modes active, corresponding to the spectrum of equilibrium crystal eigenstates, leads

to the formation of the locally preferred structures in the supercooled liquid. As such, the

existence of ‘solid-like’ structures with a degree of rigidity, forming a sort of backbone over

some length in the liquid is a natural byproduct, and likely requirement of the equilibrium
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melting-based distribution approach. Therefore, we must investigate whether or not such a

rigidity length appears to exist in supercooled liquids. In this chapter, we examine a typical

metallic glassforming liquid, NiZr2, and its response to a shear perturbation applied at the

boundary of the system in the equlibrium liquid, supercooled liquid, and glassy states. We

aim to find a growing lengthscale over which the shear perturbation will propagate into

the liquid, which should be associated with the emergence of locally-ordered clusters. We

demonstrate, through the use of MD simulations, that the proposed rigidity length does

indeed exist in this system, and that it grows dramatically with supercooling. We also

observe that appreciable growth of this lengthscale does not occur until the temperature TA,

reinforcing our hypothesis above and in the previous chapter. We conclude by discussing the

structural correlations with this lengthscale, and the connections with various facets of the

phenomenology of supercooled liquids.

This chapter is a combination of published papers appearing in Physical Review B

(Weingartner et al, Physical Review B 93, 214201 (2016)), and a special edition of the

Journal of Statistical Mechanics (Weingartner et al, JSTAT 2016 (2016)).

CITATIONS

4.2 Introduction

When a liquid is cooled sufficiently quickly to temperatures well below its melting

temperature, nucleation is avoided and the transition to the crystalline state, possessing

both extended long-range structural order and absolute minimum free energy, is bypassed.

A liquid maintained beneath its melting temperature exists in metastable equilibrium, and

is said to be supercooled. A supercooled liquid lacks the long range structural order

characterstic of the underlying crystalline ground state, instead maintaining the amorphous
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atomic arrangement typical of a liquid. As the temperature of the supercooled liquid is

lowered further, the viscosity (and relaxation time) increases dramatically, by up to some

14 decades over a temperature range as small as 100 K. Eventually, a temperature, Tg, is

reached at which the viscosity (and hence, relaxation time) is so large (>1013 Poise/100 s)

that structual rearrangments cease to take place on any reasonable timescale, and the liquid

behaves rigidly in response to fluctuations and perturbations. By definition, the liquid is

then out of equilibrium, and this is deemed the glass transition. The ’transition’ occuring

at Tg, is in fact not a thermodynamic transition, but instead a kinetic crossover. There

is no thermodynamic driving force (energy saving) associated with Tg, and a structural

rearrangment and associated symmetry breaking is apparently absent. In addition to

the smooth emergence of rigidity at Tg, the glass transition is accompanied by a rich

phenomenology and wide range of interesting features that cannot be enumerated here,

but are discussed in a variety of exceptional reviews, e.g. (1; 2; 3; 4; 5; 6).

The two most puzzling aspects of the glass transition are the onset of structural rigidity

without apparent long range structural order (with associated long-time, non-zero shear

modulus), and the dramatic, faster than Arrhenius increase of the viscosity/relaxation time

found in the so-called fragile glass formers (7; 8). Both features seem to call for, and likely

require, the existence of a growing length scale, intimately connected to the propagation of

some form of amorphous order or increasingly cohesive, extended network. In fact, while the

notion of a growing activation energy barrier is clearly tied to cooperative motion, even more

fundamentally, simple intuitive reasoning suggests that a dramatically growing (or diverging)

timescale to relaxation should be coupled to a similarly increasing (and possibly diverging)

length scale. Recently, rigorous bounds mandating the existence of a concomitant growth of

spatial length scale with relaxation time have been proven to exist (9).

The notion of a growing length scale underlying the dynamic slowdown of the glass

transition is a principle feature of most theories of glass formation, such as that of Adam and
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Gibbs, Random First Order Transitions, Mode-Coupling Theories, Kinetically Constrained

Models, and others (1; 2; 3; 4; 5; 6; 10; 11; 12; 13; 14; 15; 16; 17; 18). Some of these theories

predict an underlying phase transition at a temperature below Tg, with the glass transition

serving as a kinetic ”ghost” preceding the actual thermodynamic change. Others posit

that there is no true thermodynamic transition besides the melting/freezing transition, and

that the length scale corresponds to a geometrically arrested structural ordering which is still

capable of bringing about rigidity. As such, the quest to find physical, verifiable, and suitably

increasing length scales has been underway for decades. Many proposals for appropriate

length scales have been made including those associated with liquid-like defects, the lowest

eigenvalues of the relevant Hessian matrix for a system, various point-to-set lengths, elasticity

lengths (19; 20; 21; 22; 23? ; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33), and dynamical heterogeneity

lengths (34; 35; 36; 37; 38; 39; 40; 41; 42) and computer vision methods to ascertain both

static and dynamic length scales (43). ”Hybrid” correlation length scales, that have mixed

static/dyanmical charactersitics, have also been found, as in (44). Each of the previously

proposed length scales is exceptionally interesting in their own right (and perhaps many can

eventually be found arise from the same underlying mechanism), but many display the same

drawbacks. Previous numerical and experimental work has shown that these length scales

evade experimental verification, and/or do not display an exceptional growth upon approach

to Tg. For instance, in the case of the lengthscale investigated in (44), the behavior of the

lengthscale and underlying physics bears a passing resemblance to the investigation done in

this work, but that lengthscale, which arises in response to internal perturbations associated

with thermal fluctuations, requires knowledge of individual particle displacements, making it

difficult to experimentally detect. It is natural to expect that propagating amorphous order

should be able to be revealed experimentally, and our proposed correlation length has the

benefit of being readily measurable with methods beyond scattering experiments.
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It is also worth noting that in (45), the authors found evidence of a decreasing

correlation length upon cooling toward the glass transition temperature, Tg, in kinetically

strong glassforming liquids. This was found to be indicative of a lambda transition in the

vicinity of the glass transition. It was further suggested that for kinetically fragile liquids, the

behavior would be the opposite, with the correlation length increasing upon approach to Tg.

While this general behavior is consistent with our findings, we found no evidence suggestive

of a lambda transition in this system, and further, the correlation length investigated in (45),

was purely dynamical in nature.

In light of the above discussion, and based upon suggestions made in previous

theoretical work (43; 46), we perform molecular dynamics simulations of NiZr2, an excellent

representative of a fragile glass (47). We provide evidence for the rapid increase of the shear

penetration depth, defined as the length over which a supercooled liquid rigidly responds to

externally imposed forces. We find that the near divergence of the penetration depth as the

system becomes glassy is not far off the mark of Ising-like scaling.

4.3 The Shear Penetration Depth

In ordinary critical phenomena, the correlation length scale is defined as the typical

spatial extent of a fluctuation of the thermodynamically relevant order parameter. It can

also be interpreted as the average length over which a perturbation by the appropriate

conjugate ”generalized force” will appreciably propagate. For example, in the Ising Model,

the correlation length corresponds to fluctuations in the typical size of magnetic domains (the

order pameter is the magnetization, ~M), and the also corresponds to the distance over which

an applied magnetic field, ~B (the conjugate force) will influence the system. As it is known

that in crstalline solids, the rigidity is due to long range order, we can apply this idea to the
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Figure 4.1: (Color Online) Representation of the proposed response of general supercooled
fluid systems. The solid lines represent the original box shape before perturbation.
The dashed regions represent the successive layers that respond to the perturbation at
temperatures above and around Tg. At high temperatures only the layers experiencing the
external stress move appreciably, but as temperature, T, is lowered and the cooperativity
becomes pronounced, the perturbation is transmitted deeper into the material, reflecting
increasing rigidity. Note that the extent to which the layers move as depicted, have been
greatly exaggerated for clarity.
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glass transition problem. In this case the ordering should be short range at temperatures

just below melting, and grow as temperature as lowered. We can quantify this by subjecting

the liquid to a shear perturbation on the boundary, and tracking how it penetrates the

liquid transverse to the applied stress. Liquids, by definition, are capable of rearrangement

to dissipate shear stress; a shear force applied to the top of a liquid will only propagate

appreciably through a finite number of layers below the perturbation before fully decaying.

Intuitively, one would expect that a high temperature liquid, having relatively low viscosity,

would respond to the external force in a manner such that only the forced layer experiences

a substantial displacement relative to the opposite boundary. As the temperature is lowered

and the viscosity increases, one expects an associated increase in the liquids effective, short-

lived rigidity. This, we argue, corresponds with increasing structural ordering and kinetic

cohesion of network-like structures in the liquid. At moderate supercooling, then, one expects

a deeper penetration of shear perturbations and associated displacements sustained by layers

of the liquid that are increasingly distant from the applied perturbation. As depicted in

Figure 1, the shear is applied to the top layer of the simulation box, transverse to the

vertical (z) direction. The penetration depth is defined as the distance (along the z axis)

up to which appreciable effects of shear are observed. At Tg when solid-like rigidity has set

in, one expects that the whole block of material will roughly slide together, such that the

penetration depth is the length of the material. This is consistent with results that show

the continuous emergence of a finite shear modulus for temperatures below Tg (48). This

process is pictured, schematically, in Figure (4.1). Ultimately this length scale is agnostic to

the specific type of structural ordering, but can be related to cooperativity and the idea of

a divergent correlation length in ordinary critical theory.
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4.4 Models and Methods

Molecular dynamics (MD) simulations were employed using the LAMMPS package

(49). The atoms in the simulation evolved under the influence of a semi-empirical Finnis-

Sinclair type Embedded Atom Model potential created by Mendelv et al (50) with periodic

boundary conditions. The parameters and coefficients associated with the potential were

fitted using X-ray diffraction data as well as enthalpy of mixing values, and volume

measurements in the liquid state. This potential has been shown to excellently reproduce

both the high temperature liquid as well as glassy states of NiZr2 (50).

The simulations were run in the NPT ensemble with N=5000 atoms and a target

external pressure of P=0. Thermostatting and barostatting were employed using a Nose-

Hoover thermostat, and barostat respectively, and the velocity-verlet algorithm was utilized

to integrate the equations of motion. A 5fs timestep was employed. The initial configurations

were generated randomly and the atoms were then allowed to melt and evolve naturally

for 0.25 ns at a temperature of 2200 K to allow for equilibration. The system was then

quenched to various target temperatures ranging from 300 K up to 1900 K using a quench

rate of Q = 1013 K/s. After the quench, the system was allowed to evolve unperturbed for an

additional 0.1 ns. The process was repeated, starting from independent initial configurations,

for Tg as well as all sampled temperatures below Tg and some representative temperatures

above.

As the glass transition is a kinetic phenomenon without a thermodynamic driving force,

the glass transition temperature Tg is not a constant, and weakly depends on cooling rate,

and external timescale. Therefore, one has to be careful in identifying its precise location.

Typically, various thermodynamic parameters show a crossover at the glass transition,

associated with falling out of equilbrium (the system loses its translational degrees of freedom

on the timescale of observation). One such property that shows a change in behavior at the
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Figure 4.2: (Color Online). Panel (a): Specific volume as a function of temperature for our
simulated system. Panel (b): Specific volume as a function of temperature. Reproduced
from (50).
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Figure 4.3: (Color Online). Radial Distribution Function at a temperature of (a): T=300 K
< Tg, (b): moderate supercooling with T=1100 K, and (c): above the melting temperature
at T=1500 K.

glass transition is the volume. The temperature dependence of the volume shows a ”kink”

at the glass transition temperature, Tg (the thermal expansion coefficient, α ≡ 1
V
∂V
∂T

, has a

discontinuity), providing an efficient way to determine Tg. The temperature dependence of

the volume of our system during a quench to 300 K is depicted in panel (a) of Figure (4.2).

There appears to be a subtle kink in the vicinity of T ≈ 700K. This is in good agreement

with the results in panel (b) of the same figure, which was produced by the author of the

potential in (50), as well as previous numerical work performed under similar protocols (51).

In order to assess that our system is behaving as expected before applying shear stresses,

we examine the behavior of the radial distribution functions at various temperatures. These

results are shown in Figure (4.3). It is clear that system behaves as expected as the glass
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transition is approached, and in comparison with (50), we see that the radial distribution

functions (RDFs) measured in this work retain the overall shape and placement of the peaks.

The height of the first peak (and behavior of the splitting of the first peak), however, is

slightly different from those in (50) and we attribute this to the discrepancy in quench rates.

We modeled the external shear stress by defining a 4 angstrom-thick layer at the top

of our simulation box, and applying an external force in the x direction on the atoms in this

layer. In order to avoid fracturing in such a small system size at low temperatures, a force

value of only 0.2 eV/A was used. A stronger force would be expected to make the effects

more dramatic, but system size limitations did not allow for higher values. The force was

left active for 100 timesteps to attempt to approximate an impulsive kick at the top of the

box. No external forces were applied to the bottom of the box. After an observation time

of τo=16,000 timesteps, displacement data was extracted.

4.5 Measurement Results

To quantify the depth of penetration of the shear stress, we plot the displacement

of each atom in the shear direction (x-direction) versus its position in the transverse

height dimension (z-direction). The displacement represents the net movement in the shear

direction from the timestep before the external shear stress was applied, up to the observation

time τo (as described in methods section). The height of each particle corresponds to the

vertical layer it is in at the observation time. Due to the periodic boundaries, only atoms

in the layers from z = L
2

to z = L at the observation time were considered. Figure (4.4)

shows displacement data for four representative temperatures, i.) deep in the glassy phase

(300K), ii.) at Tg (700K), iii.) in the moderately supercooled regime (1300K), and iv.) above

Tmelt (1500K). Thermal effects tended to produce large motions in the height dimension at
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Figure 4.4: (Color Online). Typical Data at four [(a): 300 K, (b): 700 K, (c): 1300 K,
(d): 1500 K] representative temperatures both above and below Tg (≈ 700 K). The red lines
correspond to the standard deviation at the two boundaries and center of the material. It
is noteworthy that they are significantly tighter than the data seems to suggest at this level
of zoom. The black lines are the lines of fit from which the slope is extracted to define the
length scale. Note the dramatically changing behavior as T is lowered.
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Figure 4.5: (Color Online). Panel (a): Plot of standard deviation of displacement in direction
(x-axis) of applied shear as a function of temperature. Panel (b): Average displacement in
height dimension (z-dimension) as a function of the temperature.

temperatures above Tmelt, but the effects were not large enough to wash out the effect of shear

penetration except at very high temperatures (1700-1900 K) . Figure (4.5) serves to quantify

the impact of thermal noise. In panel (a), the standard deviation of displacement (at the

observation time) in the direction of applied shear is plotted as a function of the temperature.

As expected, the thermal noise decreases with decreasing temperatures becoming very small

as Tg is approached. In panel (b), the average magnitude of the particle displacements in the

height (z) direction is plotted as a function of temperature. It is clear from panel (b) that
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large scale thermal motion may play a role in ”washing out” the shear penetration depth at

the highest temperatures measured.

The general response function, R, of our system to the externally imposed shear is a

function of distance in the z direction to the imposed shear, temperature T, and observation

time τo;

R = R(z, T, τo). (4.1)

In this work, we chose a constant observation time, τo, and varied the temperature to

ascertain the penetration depth along the z axis. The penetration depth of the applied shear

ultimately has some value depending on the temperature. However, our ability to extract

the exact value depends on the observation time chosen. For sufficiently short observation

times, the effects of the externally applied shear cannot penetrate the system at the lowest

temperatures (near and below Tg). Therefore, the observation time has to be sufficiently long

to capture the effect at low temperatures. As shown in Figure (4.6), for very long observation

times at high temperatues, the effects of the external shear will be nill. Therefore, using an

observation time which is very long would lead one to conclude a much deeper penetration

depth at high temperatures (see Figure 4.6). Hence, choosing an appropriate observation

time is important. For a couple representative temperatures we investigated the impact

of observation time. In each case the duration for which the shear force was applied was

constant; for this work we wanted to maintain an approximation of an impulsive kick to the

system. Oscillatory shears have been discussed elsewhere. It was observed that at the lowest

temperatures (T¡TA), the results showed little change when observation times were changed

by factors of two. For high temperatures, the observation time plays a more noticeable

effect. Afte investigation, we found that the observation time employed in this work was
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Figure 4.6: (Color Online) Displacement data for a random configuration at 1700 K. Panel
(b) is the displacement for the observation time (16,000 timesteps), panel (a) is the data
at an earlier time (3000 timesteps after the shear is turned off). As panel (b) shows, at
high temperature the shear induced displacements appear to be far smaller at the standard
observation time used in this work. Nevertheless, at earlier times, as seen in panel (a), the
displacements are much more noticeable.

sufficient to capture the low temperature effect of the penetration, while not losing the high

temperature impact except at the hightest temperatures studied.

Typically, one would expect the displacement response to decay exponentially with

depth. As pictured in Figure (4.4), at these system sizes, the shear-induced displacement,

while not very large, is still quite noticeable. As the displacement was not extremely large,

we applied a linear regression to the data rather than an exponential one. These fits are
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Figure 4.7: (Color Online). Plot of the length scale, ξ versus temperature. All temperatures
below Tg were averaged over multiple independent runs, as were select, representative
temperatures above Tg.

sufficient to quantify the penetration depth. Fits to the data were of the form,

δx(z, τo) = m ∗ z + δ0 (4.2)

where we denote by δ, the displacement in the shear direction (x-direction) and z the height of

the layer (both measured in angstroms). We define the rigidity length scale (the penetration

depth) as

ξ ≡ 1

m
(4.3)

where m is the slope in Eq. (4.2). For the temperatures noted above, the value of m was

averaged over multiple runs, and this average was used in Eq. (4.3) for these temperatures.

The temperature dependence of the length scale (ξ) is shown in Figure (4.7). A

dramatic growth of ξ with decreasing temperature is evident. The first notable penetration
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of the shear, beyond the layer to which the force was applied, occurs at a temperature

marked TA(≈ 2Tg) (52). Below this temperature super-Arrhenius growth of the viscosity

may be anticipated based upon collective effects (52; 53; 54; 55). The sudden, monotonic

increase of ξ at temperatures below TA, provides direct support to earlier numerical studies,

which found that metallic liquids begin to develop solid-like features once they are cooled

below TA (52; 53). These solid-like features include the breakdown of the Stokes-Einstein

relationship, exponential stretching of the relaxation functions, and the onset of cooperative

structural rearrangements during the liquids relaxation process (1). Indeed, TA does appear

to serve as a crossover temperature below which the liquid begins to exhibit a substantial

rigid response to external forces, though it is a local and transient response. Putting all

this together, our simulation results allow us to predict that marked growth of the shear

penetration depth may commence at the same temperature as the breakdown of the Stokes-

Einstein relation in real supercooled liquids. The penetration depth increases rapidly as

the liquid is supercooled toward the glass transition temperature, Tg. Below the latter

temperature, the material is glassy and exhibits structural rigidity on all practical timescales,

such that shear perturbations propagate the length of the material and appear to diverge.

As discussed previously, we performed multiple (typically six) independent measurements

at all temperatures T ≤ Tg ≈ 700K, as well as most of the representative temperatures

above Tg (300-800, 1300, 1400, 1700K). At each of these temperatures, averaging was done

to determine the slope, m, in the fit of Eq. (4.2). The apparently periodic nature of ξ below

Tg can be attributed to noise due to the lengthscale being essentially divergent to the system

size at these temperatures. This point is vividly made in Figure (4.8), which depicts the

average slopes, m, as a function of temperature. The error bars on the points with multiple

runs corresponds to the standard deviation in slopes. We see that, at temperatures near and

below Tg, the combination of the average value and associated error bars lead to m being

virtually indistinguishable from zero, consistent with the divergence of the penetration depth

beyond the system size at the glass transition. It should also be immediately noticeable that
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Figure 4.8: (Color Online). Plot of the average value of the slopes, m, at each of the measured
temperatures along with their associated standard deviations σ (when multiple runs were
performed).

the data points associated with the value of the penetration depth at temperatures T=600,

650, and 750 K, are not plotted in Figure (4.7). This is because, as seen in Figure (4.8), the

signal to noise ratio ( σ
m

) for these points was a factor of three for the data point at 600K and

a factor of ten for the data points at 650 and 750 K. This large relative error is due to the

fact that the length scale, ξ, is exceedingly large as the corresponding average slope m is very

small, and in fact virtually indistinguishable from zero (see Eq. (4.3)). This corresponds to

total penetration of the shear to beyond the system size, and the fluctuations about m=0,

are to be expected due to ordinary thermal effects. Because of the large relative error in the

aformentioned data points, we removed these data points from Figure (4.7) so as to not mask

the overall monotonic increase of ξ with incredible values. It may at first seem concerning

that the data point at T=750 K is suggestive of near divergene considering it is above Tg.

This is, in fact, not an issue, as the value of Tg is not precise, and very likely falls within the

T=700 to 750 K range for this system size and quench rate. Also, the close proximitiy to

Tg and limitations of resolution at this system size, would lead to the impact of the arrest
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Figure 4.9: (Color Online). Lower bound, ξLB, on the shear penetration depth. See text.

at the glass transition strongly influencing temperatures asymptotically close to Tg. Clearly,

Figure (4.8) serves not only to explain the fluctuations but also reinforces the idea that the

penetration depth appears to diverge to the system size in the vicinity of Tg, and is perhaps

the most consequential and rigorous result in this work.

As a lower bound on the shear penetration depth, in Figure (4.9) we plot

ξLB ≡
1

m+ σ
. (4.4)

Because this is a lower bound, we can strongly assert, based on our data, that the penetration

does indeed show dramatic increase upon supercooling. For temperatures below Tg, the

length scale is so large and slopes so small, that the observed fluctuations of ξ may be

statistical (see Figure 4.8). We also conclude that the length scale becomes, at least,

considerably larger than the system size at Tg, and may in fact diverge. For the impulsive

kick we applied this will remain the case at all longer timescales of observation. However,

if one were to apply a static shear at the top of the box and left this shear on for a time

174



Figure 4.10: (Color Online). Power law fits to the shear penetration depth as a function
of reduced temperature (measured relative to glass transition temperature Tg). Panel (a):

ξ ∝
(
T−Tg
Tg

)−1

. Panel (b): ξ ∝
(
T−Tg
Tg

)−0.71

.

longer than the relaxation time, then even below Tg, the length may not diverge. On all

practical timescales, though, it would, not diminishing this length as a natural candidate for

the glass transition problem. The precise behavior of the penetration depth as the duration

of the static shear stress is varied is an interesting problem, but requires a different type of

analysis, and will be addressed in a future work.

4.6 Scaling Arguments

Previous studies have examined the behavior of various proposed length scales in the

vicinity of Tg (or the Vogel-Fulcher-Tammann temperature T0 (7; 56; 57; 58). In (29), a

diverging length scale associated with liquid-like defects at Tg produced an exponent ν=1;
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This value constitutes an upper bound on the exponents reported in other works. Researchers

in (59) found a critical exponent of ν=0.875 for the largest icosahedral cluster size in a model

metallic glass former (55). In both (60), focusing on inherent structures in a binary Lennard-

Jones glass former, and in (61), by largely studying medium-range bond orientational order

in colloidal liquids, scaling analyses gave exponents of ν ≈ 2/3, in rough agreement with a

three-dimensional Ising exponent (ν=0.625(1) (62)). We performed a similar scaling analysis

of our data, fitting a function of the form

ξ ∝
(
T − Tg
Tg

)−ν
. (4.5)

To represent the value of the length scale at Tg itself, we interpolated the value at T=710K

using the line connecting T=800K and T=700K. In addition, the data point at T=750 K,

was excluded from this scaling analysis for reasons discussed above. When using the full

range of temperatures in applying the power law fit, we extracted an exponent of ν=1. This

is depicted in Figure (4.10), panel (a). Decreasing the temperature range considered in the

scaling to only include temperatures very close to Tg, caused the value of the exponent ν to

decrease. This is depicted in panel (b) of Figure (4.10), where a value of ν=0.713 was found.

Clearly, as the scaling is applied to a more and more asymptotic region around Tg, the value

of ν appears to approach a value consistent with Ising-like scaling. Our value for , is, thus,

in rough agreement with previously suggested exponents extracted by different means. A

similar study conducted in (33) studied the high temperature (T ≥ Tm) correlations of the

anisotropic part of the atomic level stress. In this work the authors found an exponent of

ν ≈0.7 for the low temperature extrapolation of the correlations in their two-dimensional

system (the high crystallization rate at temperatures below Tm thwarted a direct study at

low temperatures). Our possible scaling may provide further evidence of a universal nature

of the length scale at deep supercooling. As Tg is not a true thermodynamic temperature, it
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Figure 4.11: (Color Online). Power law scaling, ξ ∝
(
TA−T
TA

)νA
, in the asymptotic region

below the crossover temperature, TA.

is unclear what this scaling may mean, but it may be suggestive of universality in the glass

transition.

In [69, 70] theoretical arguments for the scaling of the length scale about the crossover

temperature, TA, were provided. It was suggested when asymptotically approaching TA from

below, that a characteristic structural domain size, l, scaled as

l = τA
νA , (4.6)

where τA ≡ TA−T
TA

. We examined the shear penetration depth as a function of the reduced

temperature, τA, as depicted in Figure (4.11). We observed that a power law is a good fit

in this region with an exponent, νA ≈1.335. If the lowest temperature (highest reduced
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Figure 4.12: (Color Online). Depiction of growing interconnectivity of icosahedral clusters
with supercooling in Cu36Zr64, a very similar metallic glass former. The Cu atoms are
marked red and the Zr by purple. In Panel (a) we show the longest interconnected cluster at
1200 K. Panel (b) shows the longest connected cluster at Tg (800 K for this system). Note
that interconnecting icosahedra percolate at Tg. (These results are similar to those in (55).)

temperature) point in Figure (4.11) is removed, then a value of νA ≈1.5 will be obtained

instead.

4.7 The Question of Structure

We have defined the shear penetration depth as the distance over which supercooled

liquids can support shear appreciably. This definition is based on a simple physical picture of

liquids as a continuum unable to globally support shear stress. With decreasing temperature

the viscous inter-layer forces, rigidity, and the lifetime of connectivity increase. At Tg, the

glass transition temperature, these quantities mirror those of crystals and the material is
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solid. This scale has the added benefit that it may be readily experimentally accessible.

Results from simulations on NiZr2, a typical fragile glass, support this definition. In

the current work, we applied, in simulatum, a shear force to the top layer of a NiZr2

system. By measuring the penetration depth, ξ, we have demonstrated a dramatically

increasing structural scale upon supercooling toward Tg. This leads to the conclusion that

the shear penetration depth marks a very natural candidate for the structural length scale

characterizing glassy dynamics. Furthermore, and of equal importance, the shear penetration

depth can be measured experimentally. While it might be practically difficult, in theory,

the penetration depth can accessed experimentally in a way that does not rely solely on

scattering, and may, therefore, be easier to investigate. This is a major advanatage for this

lengthscale, and sets it apart from previously proposed lengths.

We ultimately believe that the shear penetration depth is intimately connected to

the structure of the supercooled liquid. However, as mentioned earlier, structure factors and

radial distribution functions show little change upon supercooling to Tg, and long-range order

of the type seen in crystalline solids does not appear to cause the kinetic arrest in glasses.

Despite this, an activation barrier which grows with decreasing temperature is suggestive

of cooperative particle motion in the supercooled liquid, and it is natural to suspect that

this cooperativity likely arises due to structural changes accompanying supercooling and

the propagation of some form of ”amorphous” order. Further, that the activation energy

increases beyond the standard enthalpy of fusion in most fragile liquids, suggests that local

single particle ”bond-breaking” ceases to be the primary mode of structural relaxation. It

has been shown (53; 55; 63; 64; 65; 66; 67; 68) in extensive numerical studies that clusters of

locally preferred structural order tend to grow and interconnect as temperature is lowered

in supercooled liquids. These clusters locally minimize the relevant free energy and hence

are stronger and more stable to fluctuations. Due to their locally stable nature and tight

binding, the clusters resist thermal breakup and lock into a rigid structure forming a force
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network that can propagate shear. The interlocking and cohesiveness of this network also

serves to slow down the dynamics (65), as sufficiently large thermal fluctuations are needed

to break the network and this becomes less likely with lower temperature. Interconnections

of the clusters increase in length and lifetimes (53; 54; 65) upon lowering temperature, and

eventually span the system size at the glass transition. This percolation of a structural

network, which is depicted in Figure (4.12) for a cousin configuration, is very likely the

source of the penetration depth as well as a leading cause of the arrest at the glass transition

temperature Tg.

The fact that our length scale begins to grow substantially, only when supercooled

beneath TA, further suggests a structural origin for the glass transition. Indeed, it has been

suggested, and extensively investigated, that TA marks the point at which locally preferred

structures begin to form and persist in the liquid and solid-like properties begin to appear

(52; 53; 54; 55). Taken together, there is significant evidence which suggests that percolation

of locally preferred structures plays a role in the phenomenology of supercooled liquids.

In fragile glasses, this network has to form quickly over the temperature range

encountered in typical experiments. This is likely due to the largely non-directional binding

in fragile glasses which lacks the natural network found in strong covalent liquids. In metallic

liquids, the network is likely icosahedral (53; 55; 63; 64; 66). In silicates (typical of the strong

classification) a natural tetrahedral network with strong bonds and directionality is present.

It has been suggested that (66) networks of locally preferred structures tend to form in fragile

glasses being either icosahedral or crystal-like at short range.

As discussed above, the percolating structures begin to grown and persist starting at

the temperature TA. Additionally, it is known that the super-Arrhenius character of the

viscosity sets in at the same TA, as demonstrated in Figure Whatever. In Figure Whatever.2

we demonstrate that the penetration depth begins to grow dramatically starting around
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Figure 4.13: (Color Online). Top Left: Plot of Viscosity of prototypical glass
former (composition proprietary). Top Right: Viscosity and Extrapolated Equilibirium
Viscosity plotted versus reciprocal temperature. Bottom: Difference between viscosity and
extrapolated high temperature viscosity. The first appreciable difference occurs at TA.

the same temperature. These correlations are strongly suggestive that the penetration

depth is intimately connected to both the super-Arrhenius character of the viscosity and

the outgrowth of a ‘backbone’ of interconnected local structure. Additionally, that all three

begin to grow at essentially the same temperature is immediately suggestive of a link between

percolation of local structure and the temperature dependence of the viscosity in supercooled

liquids.
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Figure 4.14: (Color Online). Top: Difference between viscosity and extrapolated high
temperature viscosity plotted versus temperature for Ni34Zr36. Bottom: Temperature
dependence of the lower bound of the shear penetration depth. Note that appreciable growth
of the penetration depth sets in at the same temperature as the super-Arrhenius growth in
the Ni34Zr36 system.
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4.8 Conclusion

The notion that the shear penetration in amorphous solids is due to a system spanning

network is a universal one. As discussed, a network forms over a narrow range in fragile

glasses leading to the super-Arrhenius increase of viscosity and causing the rigidity. In

strong glasses, a tetrahedral network forms at high temperature and becomes increasingly

cohesive as the temperature is lowered to Tg. Other forms of a system spanning network

can also exist. In colloids a frictional or contact network can be created by jamming, and

in fact a rigidity length scale has been proposed for these systems (25). The formation of

a contact network has also been shown to occur, albeit short-lived, in some discontinuous

shear thickening fluids (67). This contact network may also play a role strong to fragile

crossovers in high pressure thermal glasses.

Based on the above discussion, it is clear that a shear penetration length scale can

be quite naturally extended to many, if not most, glassy systems. This leads naturally

to the connection between slowing down and network formation. As such, being able to

experimentally detect these structures and the length over which they exist in supercooled

liquids is of critical importance to uncover how much, if any, role they truly play in glass

formation.
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