
Washington University in St. Louis
Washington University Open Scholarship
Engineering and Applied Science Theses &
Dissertations McKelvey School of Engineering

Winter 12-2015

Applying Bayesian Machine Learning Methods to
Theoretical Surface Science
Shane Carr
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

Part of the Applied Statistics Commons, Artificial Intelligence and Robotics Commons, Catalysis
and Reaction Engineering Commons, Computational Engineering Commons, and the Materials
Chemistry Commons

This Thesis is brought to you for free and open access by the McKelvey School of Engineering at Washington University Open Scholarship. It has been
accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open
Scholarship. For more information, please contact digital@wumail.wustl.edu.

Recommended Citation
Carr, Shane, "Applying Bayesian Machine Learning Methods to Theoretical Surface Science" (2015). Engineering and Applied Science
Theses & Dissertations. 122.
https://openscholarship.wustl.edu/eng_etds/122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233217694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Feng_etds%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng?utm_source=openscholarship.wustl.edu%2Feng_etds%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=openscholarship.wustl.edu%2Feng_etds%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=openscholarship.wustl.edu%2Feng_etds%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/242?utm_source=openscholarship.wustl.edu%2Feng_etds%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/242?utm_source=openscholarship.wustl.edu%2Feng_etds%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=openscholarship.wustl.edu%2Feng_etds%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/135?utm_source=openscholarship.wustl.edu%2Feng_etds%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/135?utm_source=openscholarship.wustl.edu%2Feng_etds%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/122?utm_source=openscholarship.wustl.edu%2Feng_etds%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

Washington University in St. Louis

School of Engineering and Applied Science

Department of Computer Science and Engineering

Thesis Examination Committee:
Cynthia Lo

Roman Garnett
Michael Brent

Applying Bayesian Machine Learning Methods to Theoretical Surface Science

by

Shane Frederic F. Carr

A thesis presented to the Graduate School of Arts and Sciences
of Washington University in partial fulfillment of the

requirements for the degree of

Master of Science

December 2015
St. Louis, Missouri

copyright by

Shane Frederic F. Carr

2015

Contents

List of Figures . iv

Acknowledgments . v

Abstract . vi

Preface . vii

1 Introduction . 1
1.1 The Problem . 1
1.2 Parameterizing the Objective Function . 3

1.2.1 Six Basic Parameters . 3
1.2.2 Additional Parameters . 4

2 Estimating Potential Energies . 7
2.1 Background: Density Functional Theory . 7

2.1.1 Numerical Methods for DFT . 8
2.2 Performing Potential Energy Calculations 9

2.2.1 Study on SCF Convergence . 10
2.2.2 Predicting Potential Energies using Bayes’ Rule 10
2.2.3 Choosing the Number of Iterations 14

2.3 Choosing Mode and Basis Set . 16

3 Searching for Active Site . 18
3.1 Background: Bayesian Optimization . 18

3.1.1 The Algorithm . 19
3.1.2 Kernels . 20

3.2 Modeling the Objective Function . 21
3.2.1 Setting the Hyperparameters . 22
3.2.2 Handling Periodic Variables . 25

3.3 Bayesian Optimization Demo . 27

4 Results and Discussion . 29
4.1 Background: State of the Art . 29

4.1.1 Constrained Minima Hopping . 29

ii

4.1.2 Differential Evolution . 31
4.2 Results . 31

4.2.1 Runtime Comparison . 32
4.3 Discussion . 34

4.3.1 Hyperparameters: BO versus DE . 34
4.3.2 SCF Loop and Constrained Minima Hopping 34
4.3.3 Parallelization . 35

5 Conclusions . 37
5.1 Future Work . 37

Appendix A: Details on Experimental Setup 39
A.1 Surface Preparation . 39
A.2 Parameter Space and Objective Function . 40
A.3 Bayesian Optimization . 40

Appendix B: Hyperparameter Optimization 41
B.1 Maximizing Likelihood . 41
B.2 Considerations with Automatic Optimization 42

References . 43

Vita . 47

iii

List of Figures

1.1 Project flowchart . 2
1.2 Euler angles . 4
1.3 Example atomic configuration . 5

2.1 SCF potential energy traces . 10
2.2 Distributions over ∆1 ≡ E∞ −O1 . 11
2.3 Predictions of E∞ by iteratively applying Bayes’ Rule 13
2.4 Standard deviations of ∆i over each iteration 15
2.5 Comparison of initial basis energies versus converged energies 15
2.6 Comparison of potential energy measures . 17

3.1 A Gaussian process . 19
3.2 Length scales for CO on Fe2O3 . 23
3.3 Periodic unit cells . 25
3.4 Four methods for enforcing periodicity . 26
3.5 Runtime comparison of periodic kernels . 27
3.6 Demonstration of Bayesian Optimization . 28

4.1 Differential Evolution hyperparameter settings 31
4.2 The global minimum for CO on Fe2O3 . 33
4.3 Runtime of my routine and state-of-the-art routines 33
4.4 SCF force traces . 35

A.1 Bayesian Optimization hyperparameter settings 40

B.1 GPy optimized length scales . 42

iv

Acknowledgments

I would like to thank my research advisors, Dr. Cynthia Lo and Dr. Roman Garnett. Dr. Lo

has been a mentor for me since I first joined her catalysis research group in my sophomore

year. Dr. Garnett came along more recently, but he has taught me a great deal in our eight

months of working together.

I also really want to thank all of the talented students in my research group, especially

Alireza, Ahmed, Tola, Eddie, Wei, and Stephen. You have helped me make this thesis

better every step of the way. I hope that my work proves helpful to your research.

This work used the Extreme Science and Engineering Discovery Environment (XSEDE),

which is supported by National Science Foundation grant number ACI-1053575 [1].

This work used several Python libraries, including GPy for Gaussian processes [2], GPAW

for density functional theory calculations [3, 4, 5], ASE for atomic manipulations [6], and

SciPy for numerical routines [7]. Much of my work used the IPython graphical user interface

to Python [8]. Most graphs were generated using the Python interface to Matplotlib [9].

Shane Frederic F. Carr

Washington University in St. Louis

December 2015

v

ABSTRACT OF THE THESIS

Applying Bayesian Machine Learning Methods to Theoretical Surface Science

by

Shane Frederic F. Carr

Master of Science in Computer Science

Washington University in St. Louis, December 2015

Research Advisors: Dr. Roman Garnett and Dr. Cynthia Lo

Machine learning is a rapidly evolving field in computer science with increasingly many

applications to other domains. In this thesis, I present a Bayesian machine learning approach

to solving a problem in theoretical surface science: calculating the preferred active site on a

catalyst surface for a given adsorbate molecule. I formulate the problem as a low-dimensional

objective function. I show how the objective function can be approximated into a certain

confidence interval using just one iteration of the self-consistent field (SCF) loop in density

functional theory (DFT). I then use Bayesian optimization to perform a global search for the

solution. My approach outperforms the current state-of-the-art method, constrained minima

hopping, for CO on ferric oxide by a factor of 75 to 1. This thesis is the first documented

application of Bayesian optimization to surface science.

Keywords: Adsorption; Bayesian optimization; Catalysis; Density functional theory; Gaus-

sian processes; Periodic kernels.

vi

Preface

When I first entered WashU as a freshman in 2011, I was interested in many different areas:

computer science, chemistry, engineering, nanotechnology. Through my four years as an

undergraduate, I ended up studying all of those fields, and here I am now, finishing my MS

in Computer Science.

This thesis is an interdisciplinary project applying techniques in computer science to a prob-

lem in chemical engineering. To the computer scientist, this thesis is a real-life application

of an art largely confined to theoretical literature. To the chemical engineer, this thesis is a

novel method to solve a practical problem.

I assume that the reader has a basic understanding of computer algorithms, statistics, chem-

istry, and materials science. I try my best to explain domain-specific jargon whenever I use

it for the first time.

Shane Frederic F. Carr

December 2015

vii

Chapter 1

Introduction

Surfaces are everywhere. The chair you are sitting on is a surface. The paper or screen

you’re reading off right now is a surface. The film formed between olive oil and balsamic

vinegar in salad dressing is a surface.

Surface science is the study of surfaces like these. It considers their mechanical and chemical

properties, how they form, and how they interact with the outside environment. In theoretical

surface science, we answer these questions using models based on quantum mechanics and

Newtonian physics.

This chapter does two things. First, it introduces the problem in theoretical surface science

that this thesis will show how to solve. Second, it demonstrates how the problem can be

formulated as a low-dimensional objective function. The low-dimensional objective function

is the basis for Chapter 2, which shows how we can evaluate the function, and Chapter 3,

which shows how we can minimize it.

1.1 The Problem

The field of surface science is closely related to catalysis, the study of the kinetics of chemical

reactions. Breakthroughs in catalysis have given rise to more efficient engines, lower-cost

chemicals, and carbon sequestration technologies.

When a molecule in a chemical reaction interacts with a catalyst, it does so on the surface

of the catalyst. The process of a molecule binding to a surface is called adsorption.

1

Estimate Values
of the Objective

Function

Chapter 2

Minimize the
Objective
Function

Chapter 3
Surface

Molecule

Active
Site

Formulate the
Problem

Chapter 1

Figure 1.1: Flowchart illustrating the relationship between the different parts of this thesis.

A molecule could potentially adsorb at any given point on the surface. However, some areas

of the surface are better and more stable than others. We call these areas the active sites.

The laws of thermodynamics tell us that the best active site has the lowest potential energy.

In order to characterize a catalyst, we are often interested in calculating the adsorption energy

of a molecule on the catalyst’s surface. The adsorption energy is the difference between the

potential energy of the molecule-surface system (with the molecule bound to the active site)

and the potential energies of the molecule and surface by themselves.

This gives rise to an important question in surface science. Given a surface and a

molecule, what is the optimal active site for the molecule on the surface?

In theoretical surface science, we can look at this as an optimization problem. What con-

figuration of a molecule on a surface gives rise to the lowest potential energy?

In this thesis, I present a novel approach to solving this question, one that uses methods

from Bayesian machine learning. This chapter formulates the problem as a low-dimensional

objective function. In Chapter 2, I show how we can make cheap estimates of the objec-

tive function. In Chapter 3, I explain Bayesian optimization and show how we can use it

to minimize the objective function. Chapter 4 shows how my solution stacks up against

2

the state-of-the-art solutions. Finally, in Chapter 5, I give some conclusions and recom-

mendations for future work. Figure 1.1 illustrates the connection between these different

chapters.

1.2 Parameterizing the Objective Function

Classical methods for minimizing the potential energy of a chemical system involve many

dimensions: in particular, the three spatial coordinates of each atom. However, as an adsor-

bate molecule becomes larger, so does the number of dimensions in the optimization problem.

Even a relatively small molecule, like dimethyl ether (CH3OCH3), would have 27 dimensions.

In order to maintain the identity of the molecule, some methods, such as constrained minima

hopping, add constraints to the minimization problem [10]. However, instead of adding

constraints, we can preserve the molecular identity by reducing the dimensionality. The

only requirement is that we should be able to closely approximate any possible molecule-

surface configuration.

1.2.1 Six Basic Parameters

First, we need to specify the location of the center of the molecule along the surface plane.

We can do this using two parameters, x and y. These two parameters are periodic across

the boundaries of the unit cell.1 I always take x and y to be fractional coordinates in the

given direction, such that x, y ∈ [0, 1).

Second, we need to specify how “close” the molecule is to the surface. We can do this with

another parameter, which I will call z.

Finally, we need to specify the orientation of the molecule. The orientation of a rigid body

in space is fully specified by three parameters, φ, θ, and ψ, commonly known as the Euler

angles [11]. I always take φ, θ, and ψ to be measured in radians. φ and ψ are periodic with

1The term unit cell refers to a section of the surface, usually shaped like a parallelogram, that infinitely
repeats itself to form the entire surface.

3

Figure 1.2: The three Euler angles fully specify the orientation of a body in space. This
image shows the process of rotating a dimethyl ether molecule by π/3 radians about each
axis.

period 2π. θ is also periodic, with period π, but it alternates with mirror images of itself.

See Figure 1.2 for an illustration of the Euler angles.

Molecules that are symmetric about an axis, like CO and CO2, need only two Euler coordi-

nates rather than three. Single-atom adsorbates do not need any Euler coordinates.

We can therefore approximate the configuration of a molecule on a catalyst surface with

a total of six parameters, and sometimes fewer. An example configuration is shown in

Figure 1.3.

1.2.2 Additional Parameters

The six parameters of Section 1.2.1 neglect structural changes of the molecule and of the sur-

face. I consider two types of structural changes: free structural parameters and deformation

by adsorption.

4

Figure 1.3: An example configuration of carbon monoxide (CO) on the 001 surface of ferric
oxide (Fe2O3). The red atoms are oxygen; brown is iron; and gray is carbon. The C atom in
CO is positioned at 〈x, y〉 = 〈0.5, 0.5〉, and it is z = 2.2Å above the surface. The molecule is
rotated with Euler coordinates 〈θ, ψ〉 = 〈π

4
, 3π

2
〉. The symmetry of the CO molecule nullifies

the Euler coordinate φ. The surface is periodic across the boundaries of the unit cell, shown
in black. For more detail, refer to Appendix A.

Free Structural Parameters

Consider a molecule like ethane, C2H6. In addition to the three Euler angles, ethane needs

one more parameter to fully define its orientation: the internal angle of rotation about the

C–C bond. This parameter is periodic, and it could be added to our objective function. For

this thesis, I did not study any molecules with free structural parameters.

Deformation by Adsorption

It is usually the case that the the interaction of the molecule with the surface causes one

or the other to deform in a way that they would not normally deform in free space. For

example, in carbon monoxide, the length of the C–O bond may increase or decrease, and

the binding of CO to the catalyst may cause the atoms on the surface to move.

5

These changes are difficult to parameterize. Depending on the molecule, some number of

parameters could potentially be added to correspond to common ways that the molecule

could deform. The length of the C–O bond would be one. The number of parameters is

going to increase dramatically, though, for more complex molecules.

Fortunately, my results indicate that deformation by adsorption can be neglected for the

optimization problem at hand, at least for a CO molecule on an Fe2O3 surface. If desired,

the user may perform an additional relaxation step after my algorithm returns an active

site.2 It is unclear whether or not this simplification translates over to other molecules on

other surfaces.

An interesting area for further research would be coming up with sensible parameters to

represent deformation by adsorption.

2A relaxation step means converging the full-dimensional system (three coordinates for each atom) to a
local potential energy minimum, typically using a classical optimization algorithm like L-BFGS [12].

6

Chapter 2

Estimating Potential Energies

Chapter 1 introduced the problem and showed how we can formulate it as a low-dimensional

objective function. The goal of this chapter is to demonstrate how we can make efficient

estimates of the objective function.

Section 2.1 provides theoretical background on computational chemistry, and in particular

on density functional theory (DFT). Section 2.2 shows how we can improve the performance

of DFT given our well-defined parameters. Finally, Section 2.3 compares the choices we have

for estimating the potential energy.

Throughout this and the next chapter, I will be studying a CO adsorbate on an Fe2O3 surface

(001 plane). Details of how I set up my calculations can be found in Appendix A.

2.1 Background: Density Functional Theory

Computational chemistry is the idea of simulating and computing properties of systems at

the nanoscale using quantum mechanics and Newtonian physics. Computational chemistry

is applied in many fields of study, from chemical engineering to biomedicine to climatology.

It is the basis behind simulations of transport through carbon nanotubes, protein folding,

and anthropogenic ozone depletion. [13]

At its core, all of computational chemistry revolves around Schrödinger’s equation:

7

EΨ = ĤΨ (2.1)

Solving Equation 2.1 outright is not feasible, so in practice, we make assumptions and use

models to aid in the computation.

Density functional theory (DFT) is one such model, based around the notion that potential

and kinetic energies can be computed as a function of the electronic density [13]. The

governing equation of DFT is [14]:

E[ρ(~r)] = TS[ρ(~r)] + J [ρ(~r)] + EXC [ρ(~r)] +

∫
ρ(~r)Vextd~r (2.2)

where TS is the kinetic energy, J is the classical Coulombic energy, EXC is the exchange

and correlation energy, and Vext is the external potential. All of the terms in the governing

equation are a function of the electronic density ρ, which in turn is a function of the electron

coordinates ~r; thus, we have “density functional” theory.

DFT is a popular method used by researchers, with over 18,000 publications in 2015 making

use of the method, according to Web of Science [15]. DFT’s popularity largely stems from

its ability to handle systems with complex electronic interactions, such as semiconductors.

2.1.1 Numerical Methods for DFT

Thanks to much work in this field over the last two decades, researchers seldom need to

implement Equation 2.2 on their own. Tools such as GPAW [3, 4, 5] give the user a much

higher level of abstraction.

Internally, GPAW solves the DFT governing equation using numerical methods. It starts

by making an educated initial guess, and then it runs an iterative procedure to converge

the parameters to their true values. This iterative procedure is commonly known as the

self-consistent field (SCF) loop. Performing an SCF iteration is computationally expensive,

with classical techniques scaling as O(N3) with the number of atoms and electrons [16].

8

GPAW Modes and Basis Sets

There are several methods, or “modes,” that are used for computing the values of the wave

function through space. GPAW gives the user three choices:

1. Finite-Difference (FD)

2. Linear Combination of Atomic Orbitals (LCAO)

3. Plane-Waves (PW)

In addition, GPAW gives the user several methods for coming up with the initial guess, or

“basis set.” I consider two of them:

1. Pseudo partial waves (PPW)

2. Double-zeta potential (DZP)

I compare these different modes and basis sets in Section 2.3.

2.2 Performing Potential Energy Calculations

Given a list of nuclear coordinates from our objective function (see Section 1.2), we could

just use a library like GPAW to get the potential energy, and call it a day. However, as

mentioned in Section 2.1.1, performing the DFT calculations is expensive, so we’d like to do

something more clever.

Between all of the different potential energy calculations we need to perform, the changes

to the system are small. The five or six atoms in the adsorbate molecule will move, but

all the atoms in the catalyst surface remain the same. Can we take advantage of the

similarity between calculations to improve on DFT’s performance?

9

10 20 30 40 50

SCF Iteration Number

−205

−200

−195

−190

−185

−180

E
n
e
rg

 S
h
a
p
sh
o
t
(e
V
)

Figure 2.1: Values of the potential energy as GPAW runs an SCF loop for several different
configurations, using finite difference (FD) mode with pseudo partial wave (PPW, default)
basis set. At iteration 5, the traces all “dip” to approximately -240 eV.

2.2.1 Study on SCF Convergence

As explained in Section 2.1.1, libraries like GPAW typically use an iterative SCF loop to

numerically converge the governing equation and obtain the potential energy of the system.

Suppose that, at every step of iteration, we wrote down what the potential energy of the

system would be if we were to stop the iteration right there. As we let the number of

iterations approach infinity, we get a trace that looks like Figure 2.1. It turns out that

for most configurations of the molecule on the surface, the potential energy values follow a

shared pathway through the convergence process.

We can take advantage of this fact to produce early estimates of the final converged potential

energy values. I use a Bayesian approach, explained below.

2.2.2 Predicting Potential Energies using Bayes’ Rule

Let E∞ be a random variable representing the final potential energy if we were to let SCF

run all the way to convergence. Let Oi (for “observation”) be a value of the potential energy

10

7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2

∆1 =E∞ −O1 (eV)

0

5000

10000

15000

20000

25000

30000

µ1 =8.468

σ1 =0.205 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2: Left: Histogram of ∆1 values for the CO on Fe2O3 system, based on 154,631 full
traces corresponding to a grid of parameters ranging over 1.5Å ≤ z ≤ 2.5Å and all values of
the periodic variables. All traces shown converged to within 10−3 eV. Right: Mean of all ∆1

values projected into the xy-plane, using the color scale defined in the histogram.

trace corresponding to iteration i. Let D (for “data”) be a matrix containing several full

traces for different molecule configurations. Using Bayes’ Rule, we can say that:

Pr(E∞|Oi, D) ∝ Pr(Oi|E∞, D)Pr(E∞|D) (2.3)

We need to come up with a form for the likelihood term, Pr(Oi|E∞, D). I define ∆i to be

a random variable corresponding to the difference between an observation at iteration i and

E∞. That is:

∆i ≡ E∞ −Oi (2.4)

Figure 2.2 shows a plot of ∆1 values for CO on Fe2O3. The other ∆i’s have a similar

behavior. We can therefore, with training data in hand, fit a Gaussian distribution over each

∆i.
3 Symbolically, we represent the Gaussian distribution as:

3The standard deviations of the ∆i values for 1 ≤ i ≤ 30 are shown in Figure 2.4.

11

Pr(∆i|D) = N (∆i;µi, σ
2
i) (2.5)

where N is the normal probability density function (normal PDF). The likelihood for Equa-

tion 2.3 can then take the form:

Pr(Oi|E∞, D) = E∞ −N (Oi;µi, σ
2
i) (2.6)

= N (Oi;E∞ − µi, σ2
i) (2.7)

= N (E∞;Oi + µi, σ
2
i) (2.8)

This solution isn’t foolproof because there is a correlation between the ∆i’s and particular

parameter values, illustrated in Figure 2.2. However, the correlation is weak enough that I

have chosen to neglect it for this thesis. Studying the ∆i’s bias function would be a good

topic for further research.

I choose the prior probability in Equation 2.3 to be the conjugate prior of our likelihood,

fitted over the training data. In this case, we simply need another Gaussian distribution:

Pr(E∞|D) = N (µ0, σ
2
0) (2.9)

We can now express the posterior distribution Pr(E∞|Oi, D) in closed form [17]:

Pr(E∞|Oi, D) = N (µp, σ
2
p) (2.10)

µp =

(
µ0

σ2
0

+
Oi + µi
σ2
i

)/(
1

σ2
0

+
1

σ2
i

)
(2.11)

σ2
p = 1

/(
1

σ2
0

+
1

σ2
i

)
(2.12)

12

0 10 20 30 40 50

Iteration Number

 182.0

 181.5

 181.0

 180.5

 180.0

 179.5

 179.0

 178.5

 178.0

P
re
d
ic
te
d
 E
n
e
rg
y
 (
e
V
)

Figure 2.3: Illustration of how the confidence interval over E∞ converges as we collect more
observations from the trace. Each color corresponds to a different configuration of CO on
Fe2O3. The error bars correspond to two standard deviations in each direction.4

Observe that a smaller σi results in a smaller σp and causes Oi+µi to have a greater influence

on the value of µp. This corresponds to the idea that a confident measurement (low σi) should

give us more information and result in a confident prediction.

We can take this one step further. By taking the naive Bayes assumption that all observations

are independent from one another, we can iteratively update our posterior belief on E∞

whenever we get a new SCF observation: the µp and σ2
p terms from the previous observation

become the µ0 and σ2
0 terms for the new observation. If desired, we can continue collecting

SCF observations until our confidence interval is sufficiently small. Figure 2.3 shows an

example with error bars collapsing as we add more observations from the SCF trace.

In practice, we often encounter outliers in the SCF traces. In order to prevent outliers from

biasing E∞, we want to ensure that the variance for the likelihood, σ2
i , is sufficiently large.

I do this by adding two additional terms to the likelihood variance:

σ̂2
i = σ2

i + σ2
n + σ2

h,i (2.13)

4The likelihood was trained on a set of four complete traces, which are different from the ones in this
figure. The solid horizontal lines correspond to the E∞ for each configuration. A constant noise of 0.05 eV
was added to the variance of the likelihood functions, in addition to the heuristic noise discussed in the text.

13

σ2
n is a constant noise term, which I have typically set by hand. σ2

h,i is a heuristic noise term

defined as follows:

σ2
h,i ≡

h

4

i∑
j=i−3

|Oi −Oj| (2.14)

where h is an additional hyperparameter controlling the amount of noise that is added to the

likelihood from this term; I set h = 1
2
. If i ≤ 3, we only sum over the available observations,

and adjust the constant 4 accordingly.

The idea behind this expression in Equation 2.14 is that when we encounter an outlier, we

expect the outlier to be very different from the observations that came before the outlier.

We therefore take the average difference between the new observation and several previous

observations, and multiply it by our hyperparameter h before adding it to the likelihood

noise.

2.2.3 Choosing the Number of Iterations

Figure 2.3 showed how we can iteratively apply observations to converge our confidence

intervals. However, observe that the error bars do not significantly shrink between iterations

1 and 20.

Figure 2.4 shows us why. Recall that the amount of information we gain from a particular

observation is inversely proportional to σi, or ∆i’s standard deviation. σi is low at the

first iteration (σ1 = 0.205), and the next iteration that beats the first iteration isn’t until

iteration 19 (σ19 = 0.154). This raises a question: is it sufficient to use just a single iteration?

Figure 2.5 shows several slices out of the objective function for CO on Fe2O3. The top row

shows the initial potential energy measurements transformed via Equation 2.10, and the

bottom row shows the converged potential energy measurements. We can see right away

that the top row models the bottom row very well.

14

5 10 15 20 25 30
Iteration Number

0

1

2

3

4

5

6

7

8
∆

i
S
ta
n
d
a
rd
 D
e
v
ia
ti
o
n
 (
e
V
)

Figure 2.4: Standard deviations of the ∆i distributions for each iteration from 1 to 30, based
on the same data as Figure 2.2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

〈
z,θ,ψ

〉
=
〈
1.5,π,0

〉

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

〈
z,θ,ψ

〉
=
〈
2.0,π/2,0

〉

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

〈
z,θ,ψ

〉
=
〈
2.5,0,0

〉

−187.8

−187.2

−186.6

−186.0

−185.4

−184.8

−184.2

−183.6

S
in
g
le
-I
te

ra
ti
o
n
 P
re

d
ic
ti
o
n
 (
e
V
)

−187.8

−187.2

−186.6

−186.0

−185.4

−184.8

−184.2

−183.6

C
o
n
v
e
rg
e
d
 E
n
e
rg

 (
e
V
)

Figure 2.5: Three configurations of CO on Fe2O3 using two potential energy measures, taking
slices along the xy-plane. Observe how the initial energy closely models the converged energy.
The global minimum is at the center of the dark area in the leftmost column.

15

Approximating the Single-Iteration Posterior Distribution

A close approximation to the Bayes’ prediction conditioned on a single observation, i.e.,

Equation 2.10, is to simply take the observation and add the mean of the delta distribution:

Pr(E∞|O1, D) ≈ N (O1 + µ1;σ
2
1) (2.15)

One can choose to use Equation 2.15 instead of Equation 2.10 when performing the opti-

mization step of Chapter 3.

2.3 Choosing Mode and Basis Set

Section 2.2 showed how we can estimate the final potential energy of a system by running

just a single SCF iteration. The next question we need to ask is, how do GPAW’s mode and

basis set affect the outcomes?

In Section 2.1.1, I listed the modes and basis sets that we can plug into GPAW. I will consider

four combinations. Note that the PW mode uses its own initialization strategy:

1. FD with PPW (default)

2. FD with DZP

3. LCAO with DZP

4. PW

Figure 2.6 shows how each of these combinations model four different points in the parameter

space. I plotted a total of eight potential energy measures, including the single-iteration

energy (based on the approximation in Equation 2.15) and the converged energy for each

combination of mode and basis set.

16

FD Init. FD-DZP Init. PW Init. LCAO Init. FD ∞ FD-DZP ∞ PW ∞ LCAO ∞

N
o
rm

a
liz
e
d
 M
e
a
su
re
m
e
n
ts

Figure 2.6: Eight measures of the potential energy for CO on Fe2O3. The four measures on
the left are based off a single SCF iteration, while the four measures on the right correspond to
SCF run to convergence. The four bars correspond to four different molecule configurations.
To facilitate comparison, each set of measurements was normalized linearly to have the same
minimum and maximum values.

As expected, the four fully-converged measures agree with one another. Of the single-

iteration measures, the first and third (FD-PPW and PW) are the two that best agree with

those converged measures. For the remainder of this thesis, I will be using a single-iteration

FD-PPW for all calculations.

17

Chapter 3

Searching for Active Site

Chapter 1 presented a well-defined objective function we can use for optimization. The

objective function has the following properties:

1. Slices from the objective function appear to be rather smooth.

2. Some dimensions of the objective function are periodic, while others are not.

3. Even with the improvements of Chapter 2, the objective function is expensive.

4. However, Chapter 2 gives us confidence intervals over the objective function.

In this chapter, I present how we can use Bayesian optimization [18] (BO) to efficiently

minimize the objective function. In Section 3.1, I introduce theory behind BO. Then, in

Section 3.2, I discuss how we can make the best use of BO. Finally, in Section 3.3, I give a

visualization of BO.

3.1 Background: Bayesian Optimization

Bayesian optimization is a method for finding the global minimum of an objective function

f(~x) over some bounded set of parameters X . It was first documented in 1978 [19], but it

remained largely confined to theoretical literature until the past decade, when it has found

several practical applications in the machine learning movement [20, 21]. Compared with

other global optimization algorithms, BO has an advantage when the objective function is

18

0 1 2 3 4 5 6 7 8 9 10

− 2

0

2

x

observations µ(x) ± 2σ samples

Figure 3.1: A Gaussian process is a Bayesian approach to nonlinear regression. In addition
to point estimates, a GP provides us with confidence intervals over the function values. In
this figure, a GP is fitted to a 1-D function with several noisy observations. [25]

expensive (more expensive than the optimization routine) and lacks a well-defined mathe-

matical representation [20]. In the last two years, BO has begun seeing practical applications

outside of machine learning, in areas such as robotics [22], bioengineering [23], and mechani-

cal engineering [24]. However, to the best of my knowledge, this thesis is the first documented

application of BO to the field of theoretical surface science.

3.1.1 The Algorithm

The Bayesian optimization algorithm5 starts by considering the set D of previous observa-

tions of the function. It takes those observations and uses a kernel K to fit a Gaussian

process (GP) to D. (See Figure 3.1 for more information about GPs and Section 3.1.2 for

more information about kernels.)

The next step of BO is to decide what data point it should request from the objective

function. It does this by way of an acquisition function. Typically, an acquisition function

will return one of two types of points: for tuning a known local minimum (which we call

5The Bayesian optimization algorithm I’m talking about here is not to be confused with the mostly
unrelated algorithm having the same name published by Martin Pelikan in 2002.

19

exploitation), or for considering a new area of the objective function space (which we call ex-

ploration). The classical acquisition function is the maximum expected improvement, defined

as follows [26]:

x∗ ≡ arg max
x

E [u(x) |x,D] foru(x) = max (0, ymin − y(x)) (3.1)

= arg max
x

∫ ymin

−∞
(ymin − ŷ)N (ŷ;µx, Kxx) dŷ (3.2)

= arg max
x

(fmin − µx) Φ (fmin;µx, Kxx) +KxxN (fmin;µx, Kxx) (3.3)

where ymin is the smallest observation of the objective function so far, y(x) is the objective

function, µx is the mean function of x (typically a constant), Kxx is the kernel function

of x, Φ is the normal cumulative density function (normal CDF), and N is the normal

probability density function (normal PDF). Although the maximum expected improvement

can be expressed in the closed form of Equation 3.3, it is itself a non-convex function with

many local minima. In practice, one solves Equation 3.3 using their choice of classical

optimization algorithm.

With x∗ in hand, BO calls the expensive, black-box objective function to acquire y∗. The pair

(x∗,y∗) is added to D, and BO moves on to the next iteration. BO will continue exploring

and exploiting the function space until the user is happy with the result.

Note that BO is completely deterministic, with two exceptions: the choice of initial data

points, and the maximization of the expected improvement in the case of a tie. If one uses a

deterministic solution for solving those two problems, then BO will give the same result in

the same number of iterations every time.

3.1.2 Kernels

A kernel, or covariance function, is a function that takes two points and returns a measure

of the correlation between them. The classical kernel function is the squared exponential:

20

KSE(x, y) = KSE
xy ≡ σ2 exp

(
−||x− y||

2

2l2

)
(3.4)

where we call σ2 the variance and l the length scale. One can think of the squared exponential

kernel as fitting a normal distribution over every point in D, and combining the results to

obtain a nonlinear fit to the function. Note that the smaller the length scale l, the closer

two points need to be to one another in order to be correlated.

It turns out that the squared exponential kernel is not the best choice for most real-life

problems, so in practice, one typically uses an alternative, such as the Matérn kernel [27].

The Matérn kernel is related to the squared exponential kernel, but it is more resilient to

outliers and rough edges in the data. It adds an additional hyperparameter ν, which relates

to the smoothness of the function. As ν → ∞, the function is modeled as being more and

more smooth, and Matérn converges to the squared exponential. ν typically takes on a value

of either 3
2

or 5
2

for computational reasons.

The variance and length scale of the squared exponential and Matérn kernels are examples

of what we call hyperparameters. These hyperparameters need to be specified in order for

Bayesian optimization to work. It is possible to set the hyperparameters by solving yet

another optimization problem. However, if we already know something about the topology

of the objective function, it’s better to set the hyperparameters ahead of time.

3.2 Modeling the Objective Function

Bayesian optimization is a powerful tool, but in order to work best, it needs information

about the objective function. This section explains how we can model the function from

Chapter 2 for use in BO.

21

3.2.1 Setting the Hyperparameters

With a Matérn kernel, BO requires the following hyperparameters:

1. Likelihood noise, σ2
l

2. Prior mean, µ0

3. Matérn variance, σ2
K

4. Matérn length scale in each dimension, ld

Below, I present a systematic approach for setting hyperparameters 1-3 using training data,

and some suggestions for setting hyperparameter 4.

The training data for hyperparameters 1-3 can be acquired by evaluating several, say 5-10,

coordinates drawn uniformly at random from the parameter space, which can be the same

points used to “train” the Chapter 2 objective function. I found it desirable to throw away

the highest 25% of initial random energy measurements in order to bias the parameters

toward the lower regions of the function space.

The actual values I used in my experiments for Chapter 4 can be found in Appendix A.

Likelihood Noise

The parameter σ2
l corresponds to the estimated confidence interval of a particular observation

to the true value at that point. If we use Equation 2.10 to give our potential energy estimates,

then Equation 2.12 gives the value we can use for σ2
l . If we instead use the approximation

in Equation 2.15, then we can set σ2
l to be the variance of the Gaussian distribution fitted

over the ∆1 data, like the one shown in Figure 2.2.

22

Figure 3.2: Length scales for CO on Fe2O3. Recall that due to the symmetry of the CO
molecule, the Euler coordinate φ has no effect, and we are effectively dealing with a 5-D
system.

Parameter x y z θ ψ

Length Scale 0.1 0.1 0.5 π/8 π/4

Prior Mean and Matérn Variance

The parameters µ0 and σ2
K correspond to the value and variance of the GP, respectively,

in the absence of any nearby observations. To set these parameters, we can fit a Gaussian

distribution over the evaluations of our objective function based on our training data, and

then use the parameters of that Gaussian as µ0 and σ2
K .

Length Scales

Properly setting the length scales is much more difficult. Although there do exist methods

to learn the length scales from data, they typically require a large quantity of function

evaluations, and I found by trial and error that manually tuning the hyperparameters can

sometimes result in better BO performance. Read Appendix B for more information on this

point. The settings listed in Figure 3.2 are the result of my hand-tuning.

Of course, these length scales will not work for all other chemical systems. I suggest two

practical methods for setting the length scales. They are both good areas for future research.

Heuristics I expect that the three spatial coordinates will largely depend on the catalyst

identity, while the three Euler coordinates will largely depend on the molecule identity. Some

questions to consider would be, how does the spacing of atoms on the surface affect the length

scales in the x and y directions? How does the shape of the molecule affect the length scales

in the Euler coordinates?

23

Similar Functions When learning the length scales, we do not necessarily need to use our

objective function; we could instead use some other function that behaves in a similar way.

A question worth asking would be, could we fit the GP length scales to a cheap classical

potential like Lennard-Jones [28], and then switch over to DFT for the optimization step?

(See Appendix B for more information on automatically learning hyperparameters.)

Digression: More about Length Scales

Once the length scales are set, they give a deeper understanding of the topology of the

objective function.

For example, using a squared exponential or the Matérn kernel, a particular data point

typically influences only those parts of the function that are at most 2-3 length scales away.

For CO on Fe2O3, we have a total of 10 length scales in the x and y directions, an arbitrary

number in the z direction (say 2, from 1.5 Å to 2.5 Å), and 8 each in the θ and ψ directions.

This means that our parameter space has 10× 10× 2× 8× 8 = 12, 800 unit hypercubes. If

each point influences a volume up to 2 length scales away, we can model it as a hypersphere

with radius r in the parameter space. The volume of a hypersphere in n-dimensional space

is given by:

V =
2πn/2rn

nΓ(n/2)
(3.5)

For n=5 and r=2, V = 330.73 unit volume. If our objective were to characterize the whole

of the hyperspace, then we would need to make on the order of 12800/330.73 = 38.7 function

evaluations. In practice, BO is going to need to make more observations than this theoretical

bound, in order to acquire enough detail about the areas where it found a minimum.

The other way of thinking about length scales is to say, given a particular point in space, it

is only influenced by those points that are within 2 or 3 length scales. This fact will come

in handy in the following section.

24

3.2.2 Handling Periodic Variables

It would be nice to enforce the periodicity of our variables at the kernel level. That is still

an active area of research, however, and there are no out-of-the-box solutions for enforcing

periodicity over more than one dimension.

Figure 3.3: Points can be copied to
adjacent unit cells to emulate period-
icity.

Instead, what we can do is to model the system as

an infinite grid of points, where each point is copied

across to all adjacent cells. For example, in two peri-

odic dimensions, we could copy all points in the first

unit cell to the 8 adjacent cells, illustrated in Fig-

ure 3.3.

It should be rather obvious that this solution does not

scale well. For example, in our system we typically

have 4-5 active periodic dimensions d. Including the

origin cell, the number of times we need to copy a

point is given by

N(d) = 3d (3.6)

So when d = 5, we need 243 copies of every point. Since the time complexity of a GP predic-

tion scales asO(n3) to accommodating a matrix inversion, we get T (n, d) = O((3dn)3) = O(27dn3),

which quickly becomes prohibitively expensive.

However, we can be clever. Since a particular point is only influenced by other points that

are within 2 or 3 length scales, we can search only for those points within a fixed radius of

a query point p in linear time, construct an interim GP trained only on those points, and

then make our prediction. If we assume that the number of points in a particular ball of the

hypersphere is bounded by some small constant, we’ve effectively reduced the query runtime

to O(3dn).

We don’t have to stop there, though. Finding the set of points within a certain radius is a

classic problem in computational geometry, and one for which there are efficient solutions.

25

Non-Periodic Periodic, Full Grid Periodic, KDTree, d=3.0 Periodic, KDTree, d=5.0

Figure 3.4: Plots of a GP fitted over a toy 2-D function with 8 observations.

We can use a k-d tree to perform the search query in only O(log n) time, at the expense of

incurring a nominal O(log n) penalty when adding points to the tree [29, 30]. This gives us

a time complexity of O(log(3dn)) = O(d+ log n) for evaluating a point in our GP.

Figure 3.4 illustrates these different approaches on a toy data set. On the left is the standard

Matérn kernel, without any information about periodicities. In the second panel (“Full

Grid”), we copy points to the 8 adjacent cells, without any additional optimizations. In the

third panel, we use a k-d tree to grab only those points that are within 3 length scales; we

get a nice fit, although there are a few details that are not the same as in Full Grid. The

fourth panel shows a k-d tree searching for points within 5 length scales; this contour plot

is now virtually indistinguishable from the Full Grid one.

I ran some benchmarks to get an idea of how these different methods would actually perform.6

My results are in Figure 3.5. Up to around 100 points, the Full Grid method is faster than

the k-d tree; this is most likely due to the fact that it can take advantage of machine-

level optimizations and caching since all query points are referenced against the same GP.

However, as the number of points grows to 200 or 400, the k-d tree outperforms Full Grid.

The k-d tree with shorter length scale (and fewer points per evaluation) slightly outperforms

the one with longer length scale. The non-periodic kernel is still the fastest option in all four

cases, since it has the fewest points and it can use machine-level optimizations.

6Each test was run five times; the bar height corresponds to the mean runtime, and the error bars indicate
the best and worst runtimes. The points used to condition the GP were sampled uniformly at random from
the parameter space. The same set of points was used for each method.

26

50 Points 100 Points 200 Points 400 Points
100

101

102

103

R
u
n
ti
m
e
 (
se
c)

Non-Periodic

Periodic, Full Grid

Periodic, KDTree, d=3.0

Periodic, KDTree, d=5.0

Figure 3.5: Time to compute the max expected improvement for the CO-on-Fe2O3 data set
using the four methods from Figure 3.4. Note the log scale.

3.3 Bayesian Optimization Demo

It is difficult to visualize Bayesian optimization in six dimensions, so I instead picked a 2-D

“toy function.” The function is an xy slice of the Lennard-Jones potential for the CO-on-

Fe2O3 system at 〈z, θ, ψ〉 = 〈1.5, π, 0〉. The Lennard-Jones potential fails to correctly model

this system, but it shares some properties with the DFT strategy, so it is a handy tool for

quick test runs. I used the Full Grid procedure with the same length scale parameters as

the DFT system. In Chapter 4, I use DFT (one iteration) as my objective function.

The result is shown in Figure 3.6. BO manages to converge on the global minimum in just

a few function evaluations.

27

Figure 3.6: Bayesian optimization running on a toy function in two dimensions. You can
read the diagram as a “film strip,” in which the yellow cell on the left is the mean of the
current GP, and the blue cell on the right is the expected improvement. It starts in the
upper-left pane with two initial observations, one at the corner and one at the center. At
each step, BO picks a point that has maximum expected improvement (bright areas in the
blue cells), evaluates it, and adds it to the GP of the next row. BO is in “exploration” mode
in panels 1-6, and when it finds a good point in panel 7, it switches to “exploitation” mode.

28

Chapter 4

Results and Discussion

Chapters 2 and 3 discussed the theoretical justifications for my approach to identifying the

active site on a catalyst surface. This chapter shows the results of running my algorithm

and compares them to two other state-of-the-art routines.

Section 4.1 introduces the two state-of-the-art routines. Section 4.2 presents a comparison

of my routine with the state-of-the-art routines. Finally, Section 4.3 has some discussion

about the results.

4.1 Background: State of the Art

Before showing the results of my algorithm, I want to introduce two state-of-the-art routines

that could also be used to solve this problem. The first is a method that was developed

specifically for the molecule-on-surface problem studied in this thesis. The second is a

general method for solving global optimization problems.

4.1.1 Constrained Minima Hopping

Constrained minima hopping (CMH) is a routine for optimizing adsorbate-surface structures,

documented by Andrew Peterson in 2014 [10]. It builds on an earlier routine called minima

hopping proposed by Stefan Goedecker in 2004 [31]. These routines are not to be confused

29

with basin hopping, an older Monte Carlo method for relaxing chemical structures proposed

by David Wales in 1997 [32].

At a high level, minima hopping iteratively “shakes” a system by adding kinetic energy, and

then lets the system relax to a local minimum.7 Every time the system relaxes, if the atoms

represent a new configuration, that configuration is added to a “minima list.” (If they don’t

represent a new configuration, the temperature is increased even more to shake the atoms

farther away.) This procedure is repeated several times, until the user is happy with the

result. Peterson describes it as follows:

[Minima hopping] starts with an atomic configuration that has been optimized
to any local minimum in potential energy. . . . The atoms are then thermalized,
or given kinetic energy in a Maxwell-Boltzmann distribution corresponding to a
specified initial temperature T0, and allowed to evolve in a microcanonical (NVE)
molecular dynamics simulation. As the molecular dynamics evolves, the potential
energy of the simulation is monitored; after nMDmin path minima are encountered,
the molecular dynamics simulation is stopped and the atoms are optimized to
their nearest local minimum-energy structure. ([10])

Peterson then points out a problem with classical minima hopping: that a multi-atom ad-

sorbate molecule could potentially lose its identity, with the individual atoms “hopping” to

different spots on the surface. CMH solves this problem by adding a Hookean constraint,

which enforces the identity of the adsorbate molecule and prevents the simulation from

breaking its bonds.

CMH can use any choice of method for relaxing the system and determining the potential

energy. In my experiment, I let CMH use GPAW to evaluate the energies and forces and to

run the local optimizations. I have to let GPAW run all the way to convergence, for reasons

discussed in Section 4.3.2.

7By default, CMH performs the local optimization over the three spatial coordinates for each atom in the
molecule using L-BFGS with a line search mechanism, keeping the surface fixed.

30

Figure 4.1: Hyperparameter settings for Differential Evolution.

Parameter Pop Size Tol Mutation Recombination

Default Settings 30 0.01 0.5 to 1 0.7

Better Settings 5 0.01 0.5 to 1 0.9

4.1.2 Differential Evolution

In constrast to CMH, differential evolution (DE), first documented by Rainer Storn in 1997,

is a general routine for the bounded global optimization of a generic objective function [33].

DE is a type of evolutionary strategy algorithm, which is related to the more well-known

class of algorithms known as genetic algorithms.

DE starts with a fixed number of solution candidates, which should be reasonably well-

distributed over the parameter space. It obtains results from those candidates, and at each

step, performs a “mutation” process in which the next generation of candidates are more

likely to inherit properties from the “best” candidates in the previous generation.

Like BO, DE has hyperparameters needing to be set. I hand-tuned the DE hyperparameters

to the values that gave the algorithm the best performance while still succeeding to find the

global minimum in at least 75% of runs. I listed the default settings and my customized

settings in Figure 4.1.8

In my experiment, I give DE the same 1-iteration objective function as I give to BO. I used

the “best1bin” strategy from the implementation in SciPy [7].

4.2 Results

To compare my algorithm with the two approaches from Section 4.1, I ran five different

routines to optimize the configuration of CO on Fe2O3:

8The “default” settings are those in the SciPy implementation of DE as of SciPy version 0.15, with an
increased population size of 30.

31

1. Constrained minima hopping with its default parameters and a full GPAW calculator.

2. Differential evolution with the default parameters according to Figure 4.1.

3. Differential evolution with my custom parameters according to Figure 4.1.

4. Bayesian optimization with k-d tree periodic variables and the hyperparameter settings

listed in Appendix A.

5. Bayesian optimization with non-periodic variables and the hyperparameter settings

listed in Appendix A.

All five routines converged, and they all identified the configuration shown in Figure 4.2,

corresponding to about -187.51 eV. More details on the experimental setup can be found in

Appendix A.

4.2.1 Runtime Comparison

What sets the three methods apart from one another is the amount of runtime required in

order to find the minimum.

Since the routines have radically different termination conditions, it would not be fair to

simply consider when they terminate. Instead, I calculate the runtime in the following

manner, which I call “time to global minimum.”

• Constrained Minima Hopping: Time to the acceptance of the global minimum

into the minima list.

• Differential Evolution and Bayesian Optimization: Time to the first evaluation

of the objective function to within 10−1 eV of the global minimum. (This means that all

function evaluations up until the “time to global minimum” were greater than 10−1 eV

higher than the global minimum.)

The results are shown in Figure 4.3. On average, my routine outperforms differential evo-

lution by a factor of 11:1, and my routine outperforms constrained minima hopping by a

factor of 75:1.

32

Parameter x y z (Å) θ ψ

Value 0.51 0.03 1.5 π n/a

Figure 4.2: All three routines identify the above configuration for CO on Fe2O3. The black
lines in the figures indicate the unit cell; the unit cell is copied twice for visualization pur-
poses. The green circles indicate the positions of CO. The dotted green circles show where
CO would be if the unit cell were copied one more time in the y direction. When θ = 0 or
θ = π, the Euler angle ψ does not have an effect.

103 104 105 106

Time to global minimum, log scale (seconds)

Non-Periodic Bayes. Opt.

Periodic Bayes. Opt. (KDTree)

Diff. Evolution, Best Params

Diff. Evolution, Default Params

Constrained Minima Hopping

Figure 4.3: Comparison of the running time of my routine and the two state-of-the-art
routines. For DE and BO, the error bars represent the minimum and maximum times to
find the global minimum out of several runs.

33

4.3 Discussion

4.3.1 Hyperparameters: BO versus DE

In Section 3.2.1, I discussed my methodology for setting the hyperparameters for BO, and

similarly for DE in Section 4.1.2.

Although both algorithms have hyperparameters needing to be specified, the hyperparam-

eters of BO arise from the topology of the objective function, while the hyperparameters

of DE arise from the inner workings of the genetic algorithm (relating to ideas such as the

quantity and spacing of local minima).

This can be seen as an additional advantage for BO over DE, since the methodology in

Section 3.2.1 gives us enough information to set BO’s hyperparameters with a single pre-

processing step.

4.3.2 SCF Loop and Constrained Minima Hopping

An acute reader will argue that my comparison against CMH is not fair, because I let CMH

run the SCF loop in GPAW all the way to convergence, while BO and DE stop the SCF

loop after only one iteration.

The reason I have to do it this way comes from the fact that CMH performs a local optimiza-

tion using L-BFGS, which requires information about the forces acting on each atom. (Force

is the negative gradient of energy with respect to distance.) Although GPAW provides in-

formation about the atomic forces, the method described in Section 2.2.2 for predicting the

final energy given just a few SCF iterations does not work as well for forces. Figure 4.4 shows

SCF traces for the x-force on the O atom in CO for four different configurations. There is

no correlation strong enough to enable us to predict with high accuracy the converged value

of the force by running only a few iterations.9 Compare this to Figure 2.1, which shows that

the traces of the energies are highly correlated.

9When the forces are projected into spherical coordinates, there is still no strong correlation.

34

10 20 30 40 50

SCF Iteration Number

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

O

y
g
e
n
 A
to
m

-f
o
rc
e
 S
h
a
p
sh

o
t

Figure 4.4: Values of the x-force on the oxygen atom in CO as GPAW runs an SCF loop
for four different configurations, using finite difference (FD) mode with pseudo partial wave
(PPW, default) basis set.

Despite this disadvantage, I attempted to run CMH using my Bayesian model applied to

the forces as well as the energies, conditioning the two values on 25 iterations of SCF. This

attempt failed because the local optimizer, L-BFGS with a line search mechanism, would

not converge with such noisy force evaluations.

There has recently been research into alternative methods for obtaining atomic forces for

DFT; one uses a physics-based approach to improve the initial guess [34], and another uses

a machine learning approach to predict forces based on many more training simulations [35].

It would be interesting to see how these methods would affect the runtime of CMH.

4.3.3 Parallelization

Multicore environments are now the standard for performing computational chemistry calcu-

lations. All three of the routines in this chapter can take advantage of search parallelization.

It would be interesting to see how implementing search parallelization would affect the overall

runtime of the three routines.

35

Bayesian Optimization Classical BO is a serial algorithm, evaluating the point returned

by the maximum expected improvement. However, there has been some research into meth-

ods to improve the parallelism of BO. One approach is to have multiple calculations running

in parallel, and whenever one of the calculations finishes, pick the maximum expected im-

provement based both on the known points as well as on a belief over the “fantasy” points

that have yet to finish calculating [21].

Constrained Minima Hopping CMH is also a serial algorithm, repeatedly running MD

and relaxation steps. However, Peterson suggests sharing a common list of known minima

between several searches running in parallel [10].

Differential Evolution DE, in contrast to BO and CMH, is designed to be able to take

advantage of multiprocessor environments. At each step of evolution, all of the candidates

can be evaluated in parallel. For optimal performance, the number of candidates can be set

to be a multiple of the number of processors.

36

Chapter 5

Conclusions

This thesis has documented a novel approach to identifying the active site of a molecule on

a surface.

There are numerous applications for such a tool. For example, one can perform high-

throughput screening for catalysts by inspecting properties such as the adsorption energy, a

calculation that can be automated with the help of the methods in this thesis.

The code behind this tool will soon be released as a module to the Atomic Simulation

Environment (ASE).

5.1 Future Work

I leave the reader with a few open questions, which would be good candidates for future

work in this field.

Hyperparameters In my opinion, the part of this thesis that deserves the most additional

work would be in the setting of the hyperparameters. In Section 3.2.1 and Appendix B, I

gave a number of strategies and heuristics for setting the hyperparameters, but none of these

approaches have been thoroughly tested or compared to one another.

37

Kernels The approach in Section 3.2.2 involving k-d trees to enforce periodicity worked

for this application, but a much more general and elegant solution would be to incorporate

periodicity into the kernel directly. In addition, relationships between the parameters, such

as between θ and ψ (see Appendix B), should ideally be incorporated into the kernel as well.

Additional Parameters The six parameters of Section 1.2.1 worked well for CO on Fe2O3,

but deformation by adsorption may be less negligible for larger systems. It would be worth-

while to come up with a handful of parameters that can accurately represent deformation

by adsorption.

Parallelization In Section 4.3.3, I discussed approaches to utilize multicore architectures

in my routine as well as the state-of-the-art routines. It would be interesting to see how

utilizing multiple cores would affect the wall clock times of the various routines.

Bias Function Figure 2.2 showed how there is a limited, but existent, correlation be-

tween ∆1 and location on the surface. It could help improve the model if we were able to

characterize this “bias function,” that is, Pr(∆1|x, y,D). One observation, based only on

Figure 2.2 and ones like it, is that areas with higher energy tend to have higher ∆1’s, and

vice-versa. It would be interesting to see if we could take that information and improve our

E∞ predictions.

38

Appendix A

Details on Experimental Setup

Throughout this paper, I have focused my study on CO on Fe2O3.

All of my atomic manipulations were performed with the Atomic Simulation Environment

(ASE) [6], a popular library written in Python.

A.1 Surface Preparation

I obtained a crystal structure for Fe2O3 from Materials Project. I used the R3C spacegroup,

corresponding to material ID “mp-24972” [36, 37].

I used ASE to cut the 001-surface from the crystal structure, with two layers of atoms and

15 Å of vacuum.

I then performed a structure relaxation. I did so using regular GPAW and L-BFGS without

any fancy optimizations. I let the surface relax until the forces on every atom were less than

0.05 eV/Å. This relaxation process took 7 hours and 41 minutes.

The relaxed Fe2O3 surface was used as a basis for all further calculations, including Bayesian

optimization, differential evolution, and constrained minima hopping.

39

Figure A.1: Hyperparameter settings for Bayesian Optimization (all units are in eV).

Parameter Likelihood Noise Prior Mean Matérn Variance Length Scales

Value 0.021 -186.965 1.2 See Figure 3.2

A.2 Parameter Space and Objective Function

In my experiment, x and y were treated as fractional coordinates, while z has units of Å.

All angles were measured in radians.

The CO molecule’s initial configuration had the oxygen atom 1.128 Å below the carbon atom

along the z axis, chosen such that the first axis of rotation, φ, did not have an effect. The

center of the oxygen atom was always the reference point for the x, y, and z parameters.

The objective function was evaluated according to Equation 2.15.

A.3 Bayesian Optimization

I use differential evolution [33] to maximize the expected improvement (Equation 3.3). DE

is stochastic, which is the reason why my runs of BO take different numbers of iterations to

reach the minimum.

I always start with the same two initial points: one at the origin, and one at the center of

the hyperspace.

I use a Matérn kernel with ν = 5
2
. The other hyperparameters are listed in Figure A.1.

Rather than enforcing length scales on a kernel level, I scale all data points before adding

them to the GP in order to make the kernel length scales all equal to unity. The advantage

of this approach is that it makes the data set more amenable to k-d trees.

40

Appendix B

Hyperparameter Optimization

I mentioned in Section 3.2.1 that there exist methods for automatically setting the values of

the hyperparameters for a Gaussian process, but that the automatic settings are sometimes

not the best for BO. The goal of this short appendix is to explain what I mean by those

statements.

B.1 Maximizing Likelihood

One can look at setting hyperparameters as yet another optimization problem [38]. In this

case, we have some number of data points, and what we want is the “best” hyperparameter

settings for the GP.

To quantify what makes a “good” hyperparameter setting, we typically look at the marginal

likelihood of the GP, corresponding to Pr(~yD|XD,model), where XD and ~yD are the coordi-

nates and values, respectively, of some set of known data points. The higher the marginal

likelihood, the better the fit of the GP to the data. We can therefore find the values of the

hyperparameters that maximize the marginal likelihood. (The implementation in GPy uses

L-BFGS to minimize the negative log of the marginal likelihood [2].)

41

Figure B.1: Length scales estimated by three runs of GPy’s optimizer.

Parameter x y z θ ψ

Run 1 0.182 0.289 0.398 0.636 1.014

Run 2 0.108 0.184 0.444 0.705 3.142a

Run 3 0.223 0.180 0.585 0.857 1.928

aThis was the upper bound set on ψ during the optimization procedure.

B.2 Considerations with Automatic Optimization

I ran the GPy optimizer several times on different sets of 2000 points from my objective

function. I held all hyperparameters fixed except for the five shown in Figure B.1. The

results of the first three runs are shown in the table. The points were drawn uniformly at

random without replacement from a grid of function evaluations ranging over 0 ≤ x, y ≤ 1

in 0.05 increments, 1.5 ≤ z ≤ 2.5 in 0.25 Å increments, 0 ≤ θ ≤ π in π/8 increments, and

0 ≤ ψ ≤ 2π in π/4 increments. (This is the same grid of over 150,000 points referenced

elsewhere in this thesis.)

For x, y, and z, I’m happy with the values returned by the optimizer. They are a bit higher

than, but more-or-less in line with, my own settings in Figure 3.2.

However, the settings for the Euler coordinates, especially ψ, are problematic. It turns out

that since CO is symmetric about an axis, the length scale for ψ is actually a function of

θ: when θ = 0 or θ = π, then lψ =∞, but when θ = π/2, then lψ should be small.10 This

unusual relationship between ψ and θ causes GPy to find an artificially large value for lψ.

The overestimated length scales would cause the GP to draw incorrect conclusions about

certain areas of the parameter space, which may cause BO to fail to explore promising regions

of the function. This would be a worthwhile area for future research.

10Since φ rotates about the z axis, we set CO’s axis of symmetry to be that axis. The variable ψ rotates
about the z′ axis. z = z′ when θ = 0 or θ = π, and in those cases, the ψ coordinate has no effect.

42

References

[1] John T. XSEDE: Accelerating Scientific Discovery. 2014;16(5):62–74. Computing in
Science and Engineering.

[2] The GPy authors. GPy: A Gaussian process framework in python; 2012–2015. Available
from: https://github.com/SheffieldML/GPy.

[3] Mortensen JJ, Hansen LB, Jacobsen KW. Real-space grid implementation of the pro-
jector augmented wave method. Physical Review B. 2005;71(3):035109. PRB.

[4] Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Duak M, Ferrighi L, et al. Elec-
tronic structure calculations with GPAW: a real-space implementation of the projector
augmented-wave method. Journal of Physics: Condensed Matter. 2010;22(25):253202.

[5] Larsen AH, Vanin M, Mortensen JJ, Thygesen KS, Jacobsen KW. Localized atomic basis
set in the projector augmented wave method. Physical Review B. 2009;80(19):195112.
PRB.

[6] Bahn SR, Jacobsen KW. An object-oriented scripting interface to a legacy electronic
structure code. Computing in Science & Engineering. 2002;4(3):56–66.

[7] Jones EJ, Oliphant T, Peterson P, et al.. SciPy: Open source scientific tools for Python;
2001–. [Online; accessed 2015-12-19]. Available from: http://www.scipy.org/.

[8] Prez F, Granger BE. IPython: a system for interactive scientific computing. Computing
in Science & Engineering. 2007;9(3):21–29. Available from: http://ipython.org/.

[9] Hunter JD. Matplotlib: A 2D graphics environment. Computing in science and engi-
neering. 2007;9(3):90–95. Available from: http://matplotlib.org/.

[10] Peterson AA. Global Optimization of AdsorbateSurface Structures While Preserving
Molecular Identity. Topics in Catalysis. 2014;57(1-4):40–53.

[11] Wikipedia. Euler angles — Wikipedia, The Free Encyclopedia; 2015. [Online; accessed
3-December-2015]. Available from: https://en.wikipedia.org/w/index.php?title=
Euler_angles&oldid=688367057.

[12] Liu D, Nocedal J. On the limited memory BFGS method for large scale optimization.
Mathematical Programming. 1989;45(1-3):503–528.

43

https://github.com/SheffieldML/GPy
http://www.scipy.org/
http://ipython.org/
http://matplotlib.org/
https://en.wikipedia.org/w/index.php?title=Euler_angles&oldid=688367057
https://en.wikipedia.org/w/index.php?title=Euler_angles&oldid=688367057

[13] Jensen F. Introduction to Computational Chemistry. Wiley; 2007.

[14] Cuevas JC. Introduction to Density Functional Theory. Institut für Theoretische
Festkörperphysik, Universität Karlsruhe; 2011.

[15] Web of Science. Search Results. Thomson Reuters; 2015. Available from: http://

wokinfo.com/.

[16] Osei-Kuffuor D, Fattebert JL. Accurate and Scalable O(N) Algorithm for First-
Principles Molecular-Dynamics Computations on Large Parallel Computers. Physical
Review Letters. 2014;112(4):4.

[17] Wikipedia. Conjugate prior — Wikipedia, The Free Encyclopedia; 2015. [Online; ac-
cessed 4-December-2015]. Available from: https://en.wikipedia.org/w/index.php?
title=Conjugate_prior&oldid=686670771.

[18] Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive black-box
functions. Journal of Global optimization. 1998;13(4):455–492.

[19] Mockus J, Tiesis V, Zilinskas A. The application of Bayesian methods for seeking the
extremum. Towards Global Optimization. 1978;2(117-129):2.

[20] Brochu E, Cora VM, De Freitas N. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement
learning; 2010. arXiv preprint, arXiv:1012.2599.

[21] Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning
algorithms. In: Advances in neural information processing systems; 2012. p. 2951–2959.

[22] Heping C, Binbin L, Gravel D, Zhang G, Biao Z. Robot Learning for Complex Manu-
facturing Process. 2015 IEEE International Conference on Industrial Technology; 2015.
Icit 2015 IEEE International Conference on Industrial Technology (ICIT) 17-19 March
2015 Seville, Spain.

[23] Luna M, Martinez E. A Bayesian Approach to Run-to-Run Optimization of Animal Cell
Bioreactors Using Probabilistic Tendency Models. Industrial & Engineering Chemistry
Research. 2014;53(44):17252–17266. 1.

[24] Sterling D, Sterling T, YuMing Z, Heping C. Welding parameter optimization based on
Gaussian process regression Bayesian optimization algorithm. 2015 IEEE International
Conference on Automation Science and Engineering (CASE). 2015;p. 1490–6. 2015
IEEE International Conference on Automation Science and Engineering (CASE) 24-28
Aug. 2015 Gothenburg, Sweden 0 978-1-4673-8183-3.

44

http://wokinfo.com/
http://wokinfo.com/
https://en.wikipedia.org/w/index.php?title=Conjugate_prior&oldid=686670771
https://en.wikipedia.org/w/index.php?title=Conjugate_prior&oldid=686670771

[25] Garnett R. Gaussian Process Regression. Washington University in St. Louis; 2015.
Available from: http://www.cse.wustl.edu/~garnett/cse515t/files/lecture_

notes/9.pdf.

[26] Garnett R. Bayesian Optimization. Washington University in St. Louis; 2015. Avail-
able from: http://www.cse.wustl.edu/~garnett/cse515t/files/lecture_notes/

12.pdf.

[27] Matérn B. Spatial variation. vol. 36. Springer Science & Business Media; 2013.

[28] Jones JE. On the Determination of Molecular Fields. II. From the Equation of State
of a Gas. Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences. 1924;106(738):463–477.

[29] Maneewongvatana S, Mount DM. Its okay to be skinny, if your friends are fat. In:
Center for Geometric Computing 4th Annual Workshop on Computational Geometry.
vol. 2; 1999. p. 1–8.

[30] Bentley JL. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM. 1975;18(9):509–517.

[31] Goedecker S. Minima hopping: An efficient search method for the global minimum of
the potential energy surface of complex molecular systems. The Journal of chemical
physics. 2004;120(21):9911–9917.

[32] Wales DJ, Doye JP. Global optimization by basin-hopping and the lowest energy struc-
tures of Lennard-Jones clusters containing up to 110 atoms. The Journal of Physical
Chemistry A. 1997;101(28):5111–5116.

[33] Storn R, Price K. Differential evolutiona simple and efficient heuristic for global opti-
mization over continuous spaces. Journal of global optimization. 1997;11(4):341–359.

[34] Mhlbach AH, Vaucher AC, Reiher M. Accelerating Wave Function Convergence in Inter-
active Quantum Chemical Reactivity Studies; 2015. arXiv preprint, arXiv:1512.02111.

[35] Botu V, Ramprasad R. A learning scheme to predict atomic forces and accelerate ma-
terials simulations; 2015.

[36] Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. The Materi-
als Project: A materials genome approach to accelerating materials innovation. APL
Materials. 2013;1(1):011002.

[37] Ong SP, Cholia S, Jain A, Brafman M, Gunter D, Ceder G, et al. The Materials Appli-
cation Programming Interface (API): A simple, flexible and efficient API for materials
data based on REpresentational State Transfer (REST) principles. Computational Ma-
terials Science. 2015;97:209–215.

45

http://www.cse.wustl.edu/~garnett/cse515t/files/lecture_notes/9.pdf
http://www.cse.wustl.edu/~garnett/cse515t/files/lecture_notes/9.pdf
http://www.cse.wustl.edu/~garnett/cse515t/files/lecture_notes/12.pdf
http://www.cse.wustl.edu/~garnett/cse515t/files/lecture_notes/12.pdf

[38] Rasmussen CE, Williams CKI. Gaussian processes for machine learning. The MIT
Press; 2006. Available from: http://gaussianprocess.org/gpml/.

46

http://gaussianprocess.org/gpml/

Vita

Shane Frederic F. Carr

Degrees B.S. in Chemical Engineering, Summa Cum Laude, May 2015

B.S. in Computer Science, Summa Cum Laude, May 2015

Minor in Nanoscale Science and Engineering, May 2015

M.S. in Computer Science, December 2015

Washington University in St. Louis

Honors and

Awards

Robert N. Varney Prize in Physics, September 2012

Outstanding Junior in Computer Science, May 2014

Professional

and Honor

Societies

Tau Beta Pi

Upsilon Pi Epsilon

Sigma Xi

American Institute of Chemical Engineers

Association for Computing Machinery

December 2015

47

Machine Learning in Surface Science, Carr, M.S. 2015

	Washington University in St. Louis
	Washington University Open Scholarship
	Winter 12-2015

	Applying Bayesian Machine Learning Methods to Theoretical Surface Science
	Shane Carr
	Recommended Citation

	List of Figures
	Acknowledgments
	Abstract
	Preface
	Introduction
	The Problem
	Parameterizing the Objective Function
	Six Basic Parameters
	Additional Parameters

	Estimating Potential Energies
	Background: Density Functional Theory
	Numerical Methods for DFT

	Performing Potential Energy Calculations
	Study on SCF Convergence
	Predicting Potential Energies using Bayes' Rule
	Choosing the Number of Iterations

	Choosing Mode and Basis Set

	Searching for Active Site
	Background: Bayesian Optimization
	The Algorithm
	Kernels

	Modeling the Objective Function
	Setting the Hyperparameters
	Handling Periodic Variables

	Bayesian Optimization Demo

	Results and Discussion
	Background: State of the Art
	Constrained Minima Hopping
	Differential Evolution

	Results
	Runtime Comparison

	Discussion
	Hyperparameters: BO versus DE
	SCF Loop and Constrained Minima Hopping
	Parallelization

	Conclusions
	Future Work

	 Details on Experimental Setup
	Surface Preparation
	Parameter Space and Objective Function
	Bayesian Optimization

	 Hyperparameter Optimization
	Maximizing Likelihood
	Considerations with Automatic Optimization

	References
	Vita

