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ABSTRACT OF THE DISSERTATION

Code Puzzle Completion Problems in Support of
Learning Programming Independently

by
Kyle J. Harms
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Professor Caitlin Kelleher, Chair

Middle school children often lack access to formal educational opportunities to learn computer

programming. One way to help these children may be to provide tools that enable them to learn

programming on their own independently. However, in order for these tools to be effective they

must help learners acquire programming knowledge and also be motivating in independent

contexts. I explore the design space of using motivating code puzzles with a method

known to support independent learning: completion problems. Through this exploration, I

developed code puzzle completion problems and an introductory curriculum introducing novice

programmers to basic programming constructs. Through several evaluations, I demonstrate

that code puzzle completion problems can motivate learners to acquire new programming

knowledge independently. Specifically, I found that code puzzle completion problems are

more effective and efficient for learning programming constructs independently compared

to tutorials. Puzzle users performed 33% better on transfer tasks compared to tutorial

users, while taking 21% less time to complete the learning materials. Additionally, I present

evidence that children are motivated to choose to use the code puzzles because they find

the experience enjoyable, challenging, and valuable towards developing their programming

skills. Given the choice between using tutorials and puzzles, only 10% of participants opted

to use more tutorials than puzzles. Further, 80% of participants also stated a preference

towards the puzzles because they simply enjoyed the experience of using puzzles more than

xviii



the tutorials. The results suggest that code puzzle completion problems are a promising

approach for motivating and supporting independent learning of programming.
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Chapter 1

Introduction

Computing has fundamentally impacted every aspect of our world, including every facet of

our economy. Yet, even though our economy cannot function without the skills of computer

scientists, there are many computing jobs that go unfulfilled due to a lack of qualified workers.

Of the Science, technology, engineering, and mathematics (STEM) related jobs added to the

U.S. economy between 2009 and 2015, 80% were computing related jobs [49]. Further, the

U.S. Bureau of Labor Statistics projects that over the next decade nearly 500,000 computing

jobs will be added to the U.S. economy [49]. This situation is not unique to the United

States, a similar trend is also expected across Europe [81]. While this is great news to the

8% of STEM graduates with computer science degrees [200], many of these jobs are still

expected to go unfulfilled due to a shortage of computer science degree earners [31, 206].

Given the importance of computing to our economy, additional computer science graduates

are absolutely necessary in order to meet this demand.

Because computer science, as a skill, is necessary for the future success of our economy, our

K-12 educational policies should prioritize its place in the classroom. Unfortunately, computer

1



science is frequently absent from required lists of “core academic subjects” like English, reading,

mathematics, and history [103, 200]. Due to its non-primary status in educational standards,

many school districts neglect or fail to offer any computer science related education [103,

203]. In fact, 60% of K-12 schools do not offer any formal opportunities to learn computer

science [200] and in the schools that do, computer science is often misrepresented as using

office productivity software. Without the opportunity to learn these fundamental computing

skills, many students may simply be left behind in the global economy.

Given the lack of formal resources and opportunities in K-12 schools to learn programming,

informal learning resources may provide an alternative for students. Informal resources would

enable students to learn programming on their own, independently without the support of

teachers. However, in order for these resources to be effective, there are several goals we should

consider: 1) the resources need to support learning in an informal setting, 2) the resources

must improve learners’ programming knowledge, and 3) learners should be motivated to use

the resources while working towards their own goals.

In this work, I investigate how example-inspired code puzzles, called code puzzle completion

problems, can meet these goals in supporting middle school children to learn programming

on their own. In this chapter, I describe the related work which inspired my approach for

developing code puzzle completion problems: informal resources for learning programming

and cognitive load theory. In the following section, I first explore other resources for

informally learning programming and how they can meet some of my goals. Next, I provide

a background into cognitive load theory and how it can be used to provide effective learning

in independent contexts, thereby addressing my remaining goals. Finally, I describe my

approach for integrating these existing techniques into a resource that children can use to

learn programming on their own.
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Table 1.1: Approaches that are known to support the goals listed above.

Supports
Learners in

Informal
Settings

Effciently
Develops

Programming
Knowledge

Motivating
for

Goal-Oriented
Users

Intelligent Tutoring Systems 

Massive Open Online Courses 

Minimalist & Motivating
Programming Environments  

Programming Tutorials & Puzzles  

Task Specific Example Usage 

1.1 Informal Resources for Learning Programming

There currently exist several different types of resources for novices to learn programming in

informal settings that satisfy some of the above goals. Novices can leverage tutoring systems,

online courses, specialized programming environments, tutorials, puzzles, and examples to

develop their programming knowledge. In this section and in Table 1.1, I highlight how these

approaches are to known to directly support some of my goals.

Intelligent Tutoring Systems Tutoring environments typically present students with a

set of practice exercising following a classroom lecture. Based on the student’s progress, the

intelligent tutoring system provides supportive feedback or additional exercises for additional

practice. This approach has been been shown to aid students learning programming as they

work through the material on their own [12, 128, 130, 156]. However, tutoring systems

are typically designed to supplement traditional classroom instruction [1, 3]. Without the

classroom component, the tutors do not provide sufficient support to help individuals learn

on their own. Further, students are typically required to use the tutor as part of their
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coursework. Without the classroom requirement learners may lack the motivation to use

these systems independently. This is reflected in Table 1.1; intelligent tutoring systems do

support development of programming knowledge, but they are not designed to motivate

goal-oriented learners in informal settings.

Massive Open Online Courses Alternatively, massive open online courses (MOOCs)

also support independent learning, but they do so without being tied to traditional classroom

instruction. MOOCs, like Codecademy [27] or Khan Academy [97], enable learners to complete

programming lessons with follow-up programming exercises entirely online. While this seems

like a promising approach for helping children learn programming on their own, online courses

generally have lower completion rates than traditional classes [18, 132, 146]. The high

attrition rates are often due to an inconsistency between the learners’ specific goals and the

traditional style of instruction [6, 169]. When the material fails to address a learner’s concerns

specifically, they may loose motivation and drop the course [6, 169]. Because learners often

quit online courses, their strength lies mostly with supporting learners informal settings as

shown in Table 1.1.

Minimalist & Motivating Programming Environments While online courses provide

formal instruction, they are often too constrained to effectively support goal-oriented learners

who are motivated by their own open-ended activities. Providing learners with open-ended and

motivating programming environments enables novices to follow their own goals and possibly

learn some programming skills along the way. Researchers have developed programming

environments that are specifically designed to motivate children by leveraging animation [94,

174], storytelling [96, 117], dance [40, 147], and game authoring [119, 120].

Motivating programming environments have been shown to encourage learners to spend

additional time working on their own projects or goals [96]. During the additional time spent

4



working in the programming environment, learners may pick-up some new programming

knowledge. However, the knowledge that they acquire may be somewhat limited. Minimalist

or constructivist approaches to learning are often less effective and efficient than the guided

instruction seen in structured resources, like online courses [100]. Yet, these programming

environments still work well for motivating learners in informal settings as shown in Table 1.1.

Programming Tutorials & Puzzles Many novice programming environments provide

a motivating context as well as additional support to help children learn programming.

Children’s programming environments predominantly use two instructional formats to support

learning: tutorials [77, 129, 174] and code puzzles [55, 77, 112]. However, as reflected in

Table 1.1, the evidence that tutorials and puzzles are effective for learning programming

independently, is somewhat unclear.

Traditionally, novice programming environments have often attempted to support informal

learning using tutorials [7, 71, 72]. These tutorials typically provide step-by-step instructions

for inserting statements into the programming environment. For example, a tutorial intro-

ducing repetition in the novice programming environment, Scratch [174], shows where to find

the repeat block and how to insert the block into the user’s program. Much of the research

on tutorials has focused on improving successful completion by guiding users through a series

of steps while minimizing errors [71, 95, 151, 198]. Because these tutorials mostly focus on

interface mechanics, it is not clear how well novices acquire programming knowledge when

using tutorials and how well learning interface mechanics complements the user’s own goals.

More recently, some novice programming resources have begun to use a more puzzle-like

approach to facilitate independent learning [8, 30, 45, 60, 107]. Often these systems present

some type of challenge with code pieces and encourage users to solve the challenge using the

code pieces. Additionally, most of these puzzle-like systems present themselves as games and
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so therefore exists outside of a conventional programming environment [30, 41, 55]. While

the game may be motivating to the user, it is not clear how well this style of interaction

aligns with informal users’ goals, especially when no programming environment similar to

the game exists. Without a similar programming environment and language, these users may

have trouble transferring any acquired programming knowledge to their own projects. Yet,

these code puzzles may actually provide an unexpected benefit. Once completed, a puzzle is

a valuable code example that demonstrates correct program behavior. Further, the active

process of assembling the code example may facilitate learning.

Task Specific Example Usage Programmers frequently use examples informally through-

out the process of programming [10, 167]. Commonly, experienced programmers leverage

example code to address an issue while they are working towards a specific goal (i.e. fix-

ing a bug) [10, 167]. Through the process of using an example, experienced programmers

often indirectly acquire additional knowledge that will further develop their programming

skills [166, 167]. Unfortunately, novice programmers typically have difficulty understanding

and integrating unfamiliar example code into their own programs [61, 168]. This limits their

ability to make effective use of examples while attempting self-driven projects, which further

limits the possible knowledge they might have gained from the examples. Table 1.1 reflects

this limit by highlighting that task specific example usage is best for motivating goal-oriented

learners.

One possible way to utilize these code examples for novices in informal settings is to leverage

existing models of learning. One such model, cognitive load theory, can be applied to

the instructional design aspects of examples to reduce the burden of learning from these

materials [182]. This theory also provides methods that when combined with many of

the informal resources mentioned in this section, may increase their potential impact for

facilitating effective and independent learning. In the next section, I summarize cognitive
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load theory’s main principles and discuss how it can further help contribute to achieving the

goals I outlined above.

1.2 Cognitive Load Theory

Cognitive load theory suggests that learning happens best under conditions that closely align

with human cognitive architecture [182]. In practice, this means educators must carefully

design educational materials to support the cognitive processes that are necessary for learning.

This theory has also been shown to be particularly effective for learning in independent

contexts [205]. In this section, I introduce cognitive load theory and how we can leverage

this model of learning to accomplish our goals of effective independent learning.

1.2.1 Human Cognitive Architecture

In order to understand how to apply cognitive load theory, we must first understand its basic

assumptions about human cognitive architecture. This theory assumes that humans have

a limited capacity for processing novel information [126]. Roughly, humans have two types

of memory: working and long-term memory. Working memory can be thought of as a pass

through to long-term memory; all information we process must first pass through working

memory before it can be stored in long-term memory [56, 186].

Before information can be passed to our long-term storage, it must first be processed in our

working memory. Unfortunately, our working memory is an extremely limited resource that is

easily over-whelmed when processing novel information [126, 183]. Working memory capacity

is limited to storing between five to nine elements of information. [127]. However, we are

limited to only processing between two and four elements at a time [38].
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Our long term memory does not possess this limitation; instead it has seemingly infinite

storage [126, 183]. In long-term memory we store complex representations of our knowledge

called schema [126, 182]. Schema are the root of our expertise because they combine our

previous knowledge with any newly processed information [126, 183, 186]. Later, whenever we

process new information in our working memory, we can retrieve our schemas from long-term

memory into working memory with minimal cost to aid in processing the new information [126,

142, 183].

Because information must first pass through working memory before we can learn it, the

capacity of working memory is a bottleneck for knowledge acquisition [141]. It is only when

our working memory is not over-whelmed or at capacity that learning or schema construction

can actually take place [141]. In order to improve the efficiency of learning, cognitive load

theory focuses on developing instructional materials that carefully manage learners’ limited

working memory resources [126, 182].

1.2.2 Cognitive Load

Whenever an instructional task overwhelms a learner’s working memory, that task is said to

impose a high cognitive load on the learner. The idea is to construct educational materials

that impose an optimum amount of cognitive load on a learner to maximize their learning

efficiency [141]. There are three types of cognitive load: intrinsic, extraneous, and germane.

Intrinsic and germane cognitive load are beneficial to learning, while extraneous cognitive

load is detrimental to learning [126, 182].

Intrinsic Cognitive Load Intrinsic cognitive load is imposed by the number of interacting

elements a learner must process in an instructional task [126, 182]. This type of cognitive

load is influenced by prior knowledge and the experience of the learner, unlike extraneous
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and germane cognitive load [197]. In learners with low prior knowledge, each interacting

element will consume a position in working memory, thus imposing a high intrinsic cognitive

load. In learners with high prior knowledge, some or all of these interacting elements may

already exist in schemas [186]. If a learner has existing schemas, only one element will be

consumed in working memory for the entire schema that contains the interacting elements,

thus imposing a low intrinsic cognitive load [186]. In short, intrinsic cognitive load decreases

with learner expertise, thereby freeing working memory resources for other purposes [197]. If

the intrinsic cognitive load is too high for a learner for an instructional task, the only way to

lower the cognitive load is to find a simpler task that omits the difficult material [126, 141].

Extraneous Cognitive Load The cognitive load associated with an instructional task is

considered extraneous when it is ineffective or detrimental to learning [141, 186]. Extraneous

cognitive load is imposed by the manner in which the material is presented to a learner;

expertise does not influence extraneous cognitive load [126, 182]. Poorly presented information

can often require learners to use their working memory resources just to understand an

instructional task. This might be poorly worded directions or a confusingly labeled figure.

Any working memory resources used to understand the task cannot then be applied to

learning the material which is detrimental to schema construction [141]. When designing

instructional materials, the goal is to keep extraneous cognitive load as low as possible. If

extraneous cognitive load is too high for an instructional task, the only solution to lower the

cognitive load is to change the presentation of the task [141, 182].

Germane Cognitive Load Germane cognitive load is the load that is devoted to processing

and constructing schemas [186]. Much like extraneous cognitive load, germane cognitive load

is imposed by the design of the instructional materials, but it is beneficial to learning [186].

When creating instructional tasks, designers should always seek to reduce extraneous cognitive
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Make a the subject of the equation (a + b)/c = d.

Solution

(a+ b)/c = d

a+ b = dc

a = dc− b

Figure 1.1: Sample worked example from Cognitive Load Theory [182]. Studying worked
examples is known to aid in schema construction [32].

load and find ways foster germane cognitive load. When imposing germane load, designers

should seek to encourage learners to engage in the cognitive processes that aid in schema

construction [126]. For example, a designer might use a worked example or ask a learner

to explain a concept to themselves. Cognitive load theory contains many of these types of

effects, like learning from examples, which have been shown to be beneficial for learning.

1.2.3 Cognitive Load Theory Effects

The Worked Example Effect

Learning from examples is a well-known, time-tested, popular, and effective technique for

knowledge acquisition [4, 32, 150, 185]. Cognitive load theory researchers have found that

showing all of the possible steps towards reaching a solution facilitates efficient learning by

imposing beneficial cognitive load while also reducing detrimental cognitive load [32, 185].

This is known as the worked example effect. An example is a worked example, if it provides a

step-by-step solution to a problem [182]. See Figure 1.1 for a sample worked example for

studying algebra.
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Worked examples are designed to be studied by learners. Studying worked examples has

been shown to facilitate learning, and thus schema construction, better than problem solving

exercises, like those frequently used in homework [32, 185]. Further, worked examples are

known to work extremely well for independent learners. A three-year algebra curriculum

was completed in only two years by students who studied worked examples independently

instead of learning from direct instruction methods, like lectures [205]. Not only did the

worked example students complete the material in less time, but they also out-performed

their peers who learned in a traditional classroom setting [205]. One of the reasons that

worked examples are so effective for learning is that learners often engage in an internal

self-explanation process in order to understand the example [22].

The Self-Explanation Effect

Self-explanation is “a mental dialogue that learners have when studying a worked example

that helps them understand the example and build a schema from it” [24]. In studying

a worked example, a learner must internally self-explain the reason for each step when

processing it [22]. During self-explanation, the learner is using their free working memory

resources to construct a schema from the interacting elements within the example [22, 182].

The self-explanation process can be a passive internalized process or purposefully elicited as

part of the instructional task design. Instructional tasks that elicited self-explanation may

explicitly ask learners to verbalize their thoughts [158] or prompt the learner to identify the

underlying principle using a multiple-choice question [5]. Unfortunately, when self-explanation

is a passive process, learners may choose to opt out of the process entirely or fail to devote

sufficient working memory resources to develop quality explanations [160]. Because studying

worked examples is a passive process, independent learners may lack the motivation to

engage in adequate self-explanation [182]. In these independent contexts, using active rather
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Make a the subject of the equation (a + b)/c = d.

Solution

(a+ b)/c = d

a+ b = dc

a =

Figure 1.2: Example completion problem from Cognitive Load Theory [182]. The learner
is given the first steps to solving the problem and is required to complete the problem by
finishing the remaining steps.

than passive interaction with the worked examples helps trigger self-explanation [5, 159].

Completion problems are one such adaptation of worked examples that require learners to

actively engage with the example thus triggering self-explanation [124, 182].

The Problem Completion Effect

“A completion problem is a partial worked example where the learner has to complete some

key solution steps” [182]. This is known as the problem completion effect. Figure 1.2 shows

the same algebra worked example converted to a completion problem. Notice that the first

step of the worked example is already provided and that the learner is required to complete

the second step. Because learners are required to actively engage with the materials, rather

than passively study it, completion problems may actively encourage self-explanation in

learners [22, 180]. Further, completion problems have been shown to be as effective as worked

examples [24, 138, 196].

Completion problems are well suited to complex domains where traditional worked examples

would have many steps and interacting elements [182]. The high number of steps in these

worked examples would generate high levels of extraneous cognitive load, thereby limiting

schema construction [182]. Unfortunately, the complex nature of computer programs would
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necessitate worked examples with many steps [182]. However, researchers have shown that

completion problems are an effective method for learning programming [192, 193]. Van

Merriënboer demonstrated that high school students who learned programming by completing

partial programs were later able to construct superior programs than students who learned

by writing programs from scratch [192, 193].

Yet, most completion problem research has been conducted in traditional classroom environ-

ments with lectured based instruction, including the prior programming research I mentioned

above [192, 193]. While I would expect completion problems to be as effective as worked

examples in independent contexts for learning programming, I am unaware of any such

evidence. In this work, I investigate the use of completion problems as an effective method

for novices to learning programming on their own independently.

1.3 Approach

In the introduction, I outlined three goals for developing an approach that encourages children

to learn programming independently:

1) Supports Learners in Informal Settings Middle school children often lack access

to formal resources, like classrooms with teacher support, to learn programming. Without

support from teachers or others, independent learners must be sufficiently supported to

encourage similar development of programming knowledge. Any approach designed for

learning in informal settings, must then be evaluated with independent learners in order to

demonstrate that it sufficiently supports these users.

2) Efficiently Develops Programming Knowledge In informal settings, time spent

learning and direct application of material are likely important considerations for goal-oriented
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learners. Middle school children should be able to complete learning materials expeditiously.

They should also be able to utilize what they learned independently in similar contexts. The

approach must be efficient in facilitating the use of programming constructs in near transfer

situations.

3) Motivating for Goal-Oriented Users Goal-oriented learners primarily want to spend

their time working towards their own projects. A motivating context encourages those users

to spend additional time working to carry out their goals. Learners should be motivated to

choose to utilize the approach because it is perceived as valuable and useful for accomplishing

their specific goals.

In search of meeting these goals, I briefly reviewed resources for learning programming in

informal settings in section 1.1. I also reviewed how cognitive load theory can efficiently

support independent learning with examples in section 1.2. While none of this prior work

directly meets all of the goals individually, it has heavily influenced my design for an approach

that may satisfy them all. For my dissertation, I developed code puzzle completion problems

by offering code puzzles as an activity in a novice programming environment that are also

designed to illicit the completion problem effect. In this section, I provide an overview of

code puzzle completion problems and I layout my hypotheses for evaluating this approach.

1.3.1 Code Puzzle Completion Problems

Looking Glass I selected the novice programming environment, Looking Glass [117], to

build out my approach for code puzzle completion problems. Looking Glass, as shown in

Figure 1.3, is an end-user programming environment specifically geared towards encouraging

middle school children to program on their own. In Looking Glass, users program their own

3D animations called worlds using a block-based approach with drag-and-drop mechanics.
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Figure 1.3: The Looking Glass programming environment. Looking Glass users author
3D story-based animations through drag-and-drop programming. Users first (1) drag code
statements into the code editor and then select the parameters for each statement using
drop-down menus (2–3).
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Figure 1.4: The puzzle activity selection interface in Looking Glass. Users can work towards
their own goals by opting to create their own animation (A) or work on a code puzzle (B).

Blocks-based programming helps reduce the barriers to programming by removing the need

to deal with the complexity of syntax. Further, removing the barrier of syntax may help limit

extraneous cognitive load for novice programmers.

One of the key advantages of Looking Glass, is that it uses storytelling as motivating

context [96]. Storytelling has been found to be a powerful motivator to encourage middle

school children to spend more time programming on their own [96]. For my approach, I

utilized the 3D animated stories of Looking Glass for a motivating context in the code puzzle

completion problems.
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Code Puzzles Looking Glass also has some existing support for helping novices acquire

programming knowledge independently. Looking Glass features an example-based code-

reuse system called remixing that enables novices to incorporate examples into their current

project [62]. Remixing is an on-demand activity in Looking Glass; users choose to remix

when it aligns with their own personal goals for their project. As an alternative to remixing

and programming, code puzzles may provide an additional motivating activity that also

helps foster learning [104, 105, 106]. For my approach, I added code puzzles to the activity

selection screen in Looking Glass as shown in Figure 1.4. This gives goal-oriented learners

the option to pursue programming their own 3D animated stories or solving code puzzles

when it best addresses their current needs.

Completion Problems In order for the code puzzle activity to benefit goal-oriented

learners, it must help them acquire knowledge that they can then apply to similar situations

in their own projects. Many of these puzzle-like activities appear to use similar mechanics

to completion problems: an incomplete initial state that users’ must solve. This similarity

suggests that code puzzles can be adapted into completion problems. Given that completion

problems are well-suited to helping learners acquire novel information independently, code

puzzles that employ the completion problem effect will likely be both motivating and effective

for acquiring new programming knowledge.

In my approach, code puzzle completion problems ask learners to reassemble a compelling

animation, as shown in Figure 1.5. Unlike similar code puzzles [148], I have designed these code

puzzles with additional supportive scaffolding in an effort to produce completion problems.

The supportive scaffolding of the completion problems is designed to reduce extraneous

cognitive load and foster germane cognitive load in order to promote efficient and effective

independent learning. When reassembling the animation in code puzzle completion problems,

learners must internalize the behavior that they are observing and generate a self-explanation
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Figure 1.5: Code puzzle completion problems in Looking Glass. Code puzzle completion
problems combine the motivating aspects of code puzzles with the effective learning qualities of
completion problems. In code puzzle completion problems, learners reassemble an animation
from its initial parts (A) by dragging statements into the correct order (B).
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of that behavior in order to locate the programming statement responsible for the animation

change. Through this process, learners will hopefully acquire programming knowledge that

they can then apply towards similar situations in their own projects. In the next section, I

discuss my hypotheses for evaluating code puzzle completion problems.

1.3.2 Hypotheses

The main aim of this work is to provide a motivating approach that helps children acquire

programming knowledge independently. I hypothesize that middle school children will be

motivated to use code puzzle completion problems and that they will be able to successfully

apply novel programming constructs in near transfer situations after completing code puzzle

completion problems independently. Specifically:

Hypothesis I Middle school children will demonstrate greater learning efficiency of pro-

gramming constructs by finishing training materials in less time and successfully completing

more near transfer tasks, when training independently using code puzzle completion problems

compared to current best practice, tutorials.

Hypothesis II Errors in code puzzles, commonly called distractors, will decrease learning

efficiency by increasing middle school children’s time to complete code puzzle completion

problems while also decreasing their ability to successfully utilize programming constructs in

near transfer situations.

Hypothesis III When given the freedom to choose their own informal learning resources,

middle school children will perceive value in using code puzzle completion problems by

expressing more interest, enjoyment, and preference towards using them compared to tutorials.
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1.4 Contributions

In this work, I expand upon the body of work related to helping novices learn programming

in independent contexts. Specifically my contributions are:

1. From formative testing, I share my lessons learned for developing code puzzle completion

problems and an introductory curriculum [70].

2. I demonstrate that code puzzle completion problems are both efficient and effective for

supporting novices in using programming constructs in near transfer situations [70].

3. I present evidence contrary to popular opinion that distractors in code puzzles may not

be effective for supporting learners [73].

4. Through a qualitative study, I present evidence that independent learners opt to choose

to use code puzzle completion problems because they find them enjoyable, challenging,

and beneficial to improving their programming skills [69].

5. Based on the results of these evaluations, I demonstrate that code puzzle completion

problems are a promising approach that can likely support goal-oriented users to learn

programming in informal settings.

6. This work serves as a case study for leveraging cognitive load theory’s effects in the

domain of computer science in support of independent learning.

7. I have released the code puzzle completion problems to the public in the free download

of Looking Glass (https://lookingglass.wustl.edu/). The source code is also available at

https://github.com/lookingglass-coding/lookingglass-ide or

https://github.com/harmsk/puzzle-lookingglass.
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1.5 Summary

Over the remaining chapters, I fully explain my contributions towards using code puzzle

completion for learning programming in informal settings. I first report on the initial

development of the code puzzle completion problems. I then report on supporting my

approach by conducting three summative evaluations to validate my hypotheses. Lastly, I

followup with a discussion of future work with new directions for using this approach.

Developing Code Puzzles as Completion Problems In the next chapter (Chapter 2),

I explore how to create code puzzles that also possess the qualities of completion problems.

Specifically, I report the lessons learned from two formative evaluations used to develop the

code puzzle completion problems.

Evaluating the Learning Effectiveness of Code Puzzle Completion Problems Af-

ter developing the initial puzzle interface, mechanics, and curriculum, I needed to test this

approach to see if in fact it can be effective for independent learners. I conducted a summa-

tive evaluation to validate Hypothesis I: whether code puzzle completion problems improve

learning efficiency. I share the details of this evaluation in Chapter 3.

The Impact of Errors in Code Puzzle Completion Problems Current code puzzle

systems frequently employ errors as part of their puzzle approach [107, 148]. Commonly

these errors are distractor statements which are not part of the solution to the code puzzle.

However, there currently exists little evidence to support that errors in code puzzles are

beneficial to learning. In this chapter, we conducted a study to evaluate Hypothesis II:

whether errors in code puzzles are detrimental to learning. See Chapter 4 for the results of

errors in code puzzles and their effects on learning.
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Learners’ Perceived Value of Code Puzzle Completion Problems After determin-

ing that code puzzle completion problems (without distractors) help novices to correctly

use programming constructs in similar contexts, we conducted a study to explore whether

independent learners’ perceive value in this approach. By looking at learners’ perceived value

we hoped to discover whether independent users would be motivated to choose to use code

puzzle completion problems on their own. We conducted a quantitative study to validate

Hypothesis III: code puzzle completion problems are perceived as valuable, motivating, en-

joyable and learners will opt to use them independently. In Chapter 5, I report on the results

of this evaluation and other factors that participants perceived as valuable in tutorials and

code puzzles.

Summary & Future Work In the last chapter (Chapter 6), I follow up with a discussion

of the possible directions for future work. I discuss how the code puzzle completion problems

can be improved by working to integrate other cognitive load theory effects, like worked

examples. I also suggest approaches for extending the code puzzle completion problems

by expanding the curriculum and using alternative completion strategies. Lastly, I offer

suggestions for further supporting goal-oriented learners.
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Chapter 2

Developing Code Puzzles as

Completion Problems

Portions of this chapter were originally published as “Enabling Independent Learning of
Programming Concepts through Programming Completion Puzzles” in the Proceedings
of the 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC) [70].

In the previous chapter, I outlined how middle school children often lack formal opportunities

to learn programming on their own. One alternative to helping children learn programming

outside traditional avenues, may be to help them learn on their own, independently while

following their own goals. Yet, in order for any independent approach to encourage middle

school children to learn programming, it must also be compelling enough that children are

willing spend their free time using it. Using the storytelling context of an existing novice

programming environment, combined with a compelling activity like code puzzles that are

also completion problems, may provide that alternative approach. Yet, no such system or

tool currently exists to evaluate whether code puzzle completion problems are a motivating
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activity that also enables novice programmers to apply constructs learned in the puzzles in

similar situations.

The first step in evaluating this approach is to develop code puzzles that also function as

completion problems. This means understanding what attributes make a completion problem

for a computer program. It also means applying these principles to code puzzles in a way that

provides a motivating experience that middle school children enjoy. In this chapter, I explore

what properties of writing computer programs can be used to author programming completion

problems. The results of this investigation are the code puzzle completion problems that I

will then use to evaluate Hypotheses I, II, and III in Chapters 3, 4, and 5.

2.1 Completion Problems & Programming

Authoring completion problems for predictable and well-structured subjects, like algebra,

is straightforward for educators: authors simply need to remove key steps in the solution.

Unfortunately, complex subjects like programming, have less predictable steps, especially

considering there are potentially many different ways to program the solution to the same

problem. For example, if a function needs to be called multiple times, one solution is to use

duplicate function calls, another is the place the function call inside a loop. In this case, it is

not clear what are the key steps because depending on the solution strategy, the key steps

are different.

The original completion problem research conducted by Van Merriënboer used a “partial

solution in the form of a well-structured program” for their programming completion prob-

lems [192]. However, it is not clear what attributes specifically made these problems partial

programs [192, 193, 194]. Based on the description provided in the text, it appears that

students wrote code in the partial programs, but we do not know if they wrote missing lines
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of code, functions, control flow constructs, or parameters, etc. [192, 193, 194]. Fortunately,

Chang et al. and Garner later explicitly developed approaches specifically inspired by Van

Merriënboer’s earlier work that clearly state their partial program strategies: fill-in-the-blank

for partial lines of code [21] or placing lines of code in the correct order [52, 53]. In the Chang

et al. work, students are given a program where select lines have have been partially replaced

with a blank [21]. Student complete the program by writing code to fill-in-the-blank for all

the partial lines of code. In Garner’s tool, CORT, students are given a set of lines that they

must place into the correct location in the partial program [51, 52, 53, 54]; students do not

write code, they simply insert whole lines into the program.

Additionally, both Van Merriënboer, Chang et al., and Garner’s work were specifically

designed to be used as practice alongside traditional classroom instruction. All authors used

setups where the completion problems appear more like homework exercises than something

a middle school child might opt to use on their own. These homework like problems appear

to be more like generating the Fibonacci sequence, which probably does not interest users

who are following their own goals. Using a motivating context, like animated code puzzles,

combined with completion problems may provide an alternative to motivate and educate

these informal users.

In this chapter, I report on two formative evaluations we conducted to explore the potential for

creating code puzzles that are also completion problems. From these two formative evaluations

we developed code puzzle completion problems. In the next section, I describe the process

and the lessons we learned from developing the code puzzle interface and mechanics in our

first formative evaluation. I then report on our second formative evaluation for authoring an

introductory curriculum for introducing basic programming constructs to novices. Throughout

both formative evaluations, I discuss our changes through the lens of cognitive load theory

and how we believe our changes help to manage the cognitive load of our users. I also
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describe a second round of revisions we made to the interface and curriculum to release

our code puzzle completion problems to the public. Lastly, I follow up with a discussion

of the different completion problem approaches for programming and how our code puzzle

completion problems align with these existing strategies.

2.2 Formative Evaluation I:

Puzzle Interface and Mechanics

In our first formative evaluation we designed the puzzle interface and mechanics through

10 iterations of testing. We recruited 23 users between the ages of 10 and 15 years at the

St. Louis Science Center to participant in this evaluation. During each study session, each

participant worked independently for 30 minutes while we observed them. Following the

study, we compensated participants with a $5 gift certificate.

When we set out to create code puzzle inspired completion problems, we initially came

up with the idea of a code scramble. We used the code editor of the novice programming

environment, Looking Glass [117], and scrambled the order of the statements in the program’s

main. We asked users to move the statements back in the correct order which then completed

an animation. See Figure 2.1 for the first prototype of these code scramble puzzles.

Starting with our initial code scrambles, we used a variety of methods to iteratively design

our final puzzle mechanics and interface. We used mock-ups, paper prototyping, Wizard of

Oz testing, and working prototypes which enabled us to effectively address each problem we

encountered throughout the evaluation. In this section, I report on each of the problems

we faced by sharing the lessons we learned as well as the methodology that lead us to that

solution.
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Figure 2.1: In our first iteration of formative testing, we created code scrambles. In a
code scramble, users reorder the code statements in a conventional code editor so that the
scrambled animation matches the correct animation.
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2.2.1 Methods & Lessons Learned

From our formative evaluation we learned several important lessons for using code puzzles as

completion problems. In this section, I share several of the lessons we learned throughout

our iterative design process and the methodology we used for each lesson.

Limit the editable dimensions of the puzzle.

Our initial code scramble iteration simply used the code editor of an existing programming

environment (Figure 2.1). In a typical code editor, a programmer can change the code

in several dimensions: she may add new statements, and edit, move, or delete existing

statements. Even though our directions stated to only reorder the statements, participants

changed the code beyond reordering. Users would insert new statements, delete existing

statements, and change the values of arguments. We discovered that using a code editor gives

users too many dimensions to manipulate. The many editable dimensions also likely impose

a high extraneous cognitive load to completing the code scramble puzzle.

To focus the learner on only the reordering dimension, we tried using reorder-only statements.

We created a hybrid paper and Wizard of Oz prototype as shown in Figure 2.2. In this

prototype, participants could only change the order of the statements by using the up and

down buttons on each statement. Behind the scenes a researcher worked on a laptop authoring

the code in Looking Glass that matched the paper prototype. When the user would “click”

play in the paper prototype, the behind the scenes researcher would play the animation on

an attached monitor. While we found that this effectively limited the editable dimensions to

reordering, it was a rather unsatisfying and cumbersome way to edit the code puzzles.
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Figure 2.2: A hybrid paper and Wizard of Oz prototype of editing puzzles by using reorder-
only statements. Users place the statements in the correct order in the paper prototype (A)
by using the up and down buttons (B) on each programming statement. Behind the scene,
a researcher authors the same program in Looking Glass, so that when the user plays the
animation (C) the researcher can execute the animation on a separate monitor (D).
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Figure 2.3: An early prototype of using reassembly style puzzles instead of the reorder style
code scrambles. We divided a function with code comments into the puzzle workspace (A)
and the statement bin (B). We then asked participants to place the statements at the end of
the main (B) into the first part of the main (A) to complete the puzzle.
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Next, we returned to using a code editor, but instead of asking participants to reorder

statements in place, we asked participants to reassemble the statements by moving them from

a dedicated bin. We tried creating a bin of statements by using comments in the code editor,

as shown in Figure 2.3. The comments divided the editor into the puzzle work area and the

available statements bin. In this iteration we also hid some of the other editable dimensions

of the code editor by taping a small paper prototype to the screen where the users could play

the animations and check their solution. We found that the reassembly strategy worked well,

however even with the distinct bins made with comments, participants sill changed the code

by changing parameters and deleting statement instead of reordering.

In our final version, we created a working prototype where users were limited to editing

the puzzles by only reassembling statements into the correct order. This interface still used

the statement bin, but instead of being below the puzzle code, the bin is now outside of

the code editor as seen in Figure 2.10. We believe that by breaking the interface into two

distinct areas: the statement bin and puzzle workspace, along with only allowing reassembly,

this helped to reduce the extraneous cognitive load that our earlier prototypes imposed on

learners. With the extra detrimental cognitive load lessened, we observed participants having

a much easier time completing these code puzzles.

Only show the user’s work in the program’s output.

Our early code scramble prototypes used reordering, instead of reassembly. Through testing

the code scrambles, we realized that when participants viewed the program’s output, the

output showed both the parts of the program that the user had reordered and the parts

that they had not yet reordered. Mixing both elements in the output made it difficult for

users to tell where their changes ended and where the scrambled code began. We imagine

that the mixing of outputs likely increased the extraneous cognitive load of the task. To
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Figure 2.4: In earlier iterations, participants could play (A) the correct animation (B) or
their animation (C) in separate windows.

address this we switched from the reorder strategy to the reassembly strategy. Users now

place the statements in the correct order by dragging the unused statements from a bin and

placing them into the correct order in the puzzle workspace as shown in Figure 2.10. This

ensures that only the work that the user has completed is shown in the program’s output,

thus leaving any additional cognitive resources to process the novel information.

When executing a program, limit distractions and focus the user’s attention on

the program’s output.

To complete a programming puzzle, a user needs to know what the correct output looks like

and how it compares to the puzzle’s output. We initially combined the correct output and the

puzzle output side-by-side, as shown in Figure 2.1. Unfortunately, users spent most of their
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time looking back and forth between both outputs, missing key moments. Any distractions,

including looking at the actual code, caused users to miss important details in the program

output that would aid self-explanation and help them complete the puzzle.

In order to reduce the extraneous cognitive load imposed by watching and comparing two

animations, we separated playing the correct and the user’s animation. We gave users two

buttons, one button for playing the correct animation and one button for playing their

animation. Both buttons would then bring up a window for that animation as shown in

Figure 2.4. However, users quickly realized they could quickly click both buttons at the

same time and watch both animations concurrently. The two button approach, enabled users

to default back to the original behavior of comparing animations. This probably imposed

extraneous cognitive load, thereby making the task more difficult on these users.

We tried to addressed this by only allowing users to toggle between the correct or their

animation in the output window; users could not play both animations at the same time.

Yet, with only one window, users would move the window so that they could concurrently

look at their code and the program output simultaneously. This once again, split the user’s

attention, likely increasing their extraneous cognitive load.

In our final version, we play the output in an overlay pane (Figure 2.5) that obscures the

code and only plays one animation at a time. Without distractions, the user can carefully

study the nuances of the program’s behavior and later tie the behavior to the appropriate

puzzle statements, hopefully encouraging self-explanation.
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Figure 2.5: The puzzle feedback overlay pane obscures the code and only allows users to play
the correct or their animation at a time.
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Figure 2.6: This feedback dialog was used early versions of our prototype. When users
correctly completed a puzzle, a researcher placed this dialog on the user’s screen.

Provide the user with ambiguous and incremental feedback towards the puzzle’s

solution.

In many of our first iterations, the user only received a notification that the puzzle was

complete once every statement was in the correct order. A researcher would place the paper

prototype dialog shown in Figure 2.6 on the user’s computer screen. Prior to receiving this

notification, many participants believed they had correctly completed the puzzle, leading

many to terminate the puzzle prematurely.

We designed an incremental feedback indicator to provide feedback throughout solving a

puzzle. Our first incremental feedback indicator used a one-to-one or direct mapping to the

puzzle solution as shown in Figure 2.7. Unfortunately, direct mapping was easy to game;

participants noticed they could count the dots and rearrange the statements until the progress

indicator increased without actually having to try to complete the puzzle. This likely reduced

participants germane cognitive load because participants were using the indicator to get the

solution, instead thinking through the solution for themselves.
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Figure 2.7: We tried several different feedback indicators while trying to provide incremental
and ambiguous feedback. The shake statement (A) should be inside the repeat block. All
feedback indicators show the current state of this code puzzle.

To limit this type of behavior and to encourage engagement, we increased the ambiguity

within our feedback indicator by drawing a dot for every statement executed. In the execution

based indicator, every time an incorrect statement executes, we draw an orange dot, instead

of a green dot. Because many of our puzzles execute statements in parallel or inside of loops,

the execution based feedback was less easy to game. It was also more difficult to understand

by users because they had difficulty determining where they made their first mistake.

Figure 2.10-F shows our final incremental and ambiguous progress indicator. Throughout

our formative testing, all users used a top-down approach to solve the puzzles. Our progress

indicator is designed to provide feedback for the first error in the puzzle, which supports

this top-down approach. This indicator shows a new dot each time a statement is executed.

A green dot means that the currently executing statement is correct. However, when the

first incorrect statement in the puzzle (the shake method in Figure 2.7) is executed, a new
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Figure 2.8: The left statement bin (A) has overlapping statements which obscure some of the
puzzle statements. The right (B) is laid out using an algorithm which prevents overlapping
statements.

orange dot is added. Any executing statements that follow the incorrect statement are added

as gray dots. For additional ambiguity, we group all similarly colored dots together; all

green dots are grouped together, followed by all orange dots, and then the gray dots (see

Figure 2.7). Through this testing, we discovered that a feedback indicator that is execution

based with grouped feedback up to the first mistake seems to strike the right balance between

incremental and ambiguous feedback.

Provide learners with a comprehensive look of all of the information they need

to solve the puzzle.

When solving a puzzle, all of the pieces need to come together in the end for the solution.

Piecing together this solution can be difficult if you do not know what pieces you have

available. In our puzzle statement bin (Figure 2.10-A), we initially laid out the statements
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Figure 2.9: When a user chooses to quit a puzzle prematurely, they are shown a dialog to
encourage them to continue working (A). Once the user successfully solves a puzzle they are
rewarded with a job well done (B).

randomly without consideration for overlapping statements. During formative testing, we

observed that the most successful participants often re-laid out the statements so that all

statements were visible. From a cognitive load perspective, overlapping statements probably

imposed an extraneous cognitive load due to some learners trying to incorrectly align output

with a statement that was hidden behind another one. To address this problem, we changed

our statement layout algorithm to prevent overlap on the initial placement of statements as

shown in Figure 2.8.

Give encouragement and gently nudge learners when necessary.

In independent contexts there is no teacher or person of authority to push a learner to

continue working. Throughout our designs we tried to build in subtle encouragement and

rewards for users. In our first iterations participants were quick to give up on some puzzles.
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Figure 2.10: Our initial code puzzle completion problems interface. Users drag statements
from the unused puzzle statements bin (A) into the puzzle workspace (B). (C) shows the
initial starting state of the program. Users view the correct program output or their puzzle
output by clicking the appropriate play button (D). Executing programs are shown in the
program output overlay (E). When viewing the puzzle’s output, users receive feedback on
their progress from the progress indicator (F).

The interface also made quitting very easy. To encourage these users to keep working on

the puzzle, we changed the language of the quit dialog to ask participants if they wanted

to give up (see Figure 2.9). In later testing we observed that users were less quick to quit

because they often hesitated to click the give up button. In fact, many of the participants

who hesitated often returned to the puzzle to finish it. We also used faces strategically placed

throughout our interface (see Figure 2.9) because humans intrinsically find them rewarding.

During testing, many participants commented how they really like the smiley face reward

after completing a puzzle, as one participant stated, “I got the guy!”

2.2.2 Interface & Mechanics Overview

At the end of our formative evaluation we ended up with the interface and mechanics as

shown in Figure 2.10. Users complete the puzzles by dragging statements from the unused

39



statement bin (Figure 2.10-A) into the puzzle workspace (Figure 2.10-B). Users must use all

of the statements in the bin to complete the puzzle. If users need to view the correct program

output or view the puzzle’s output, they click the appropriate play button (Figure 2.10-D).

This brings up the program output overlay pane (Figure 2.10-E). When the user is viewing

the puzzle output, the puzzle feedback indicator (Figure 2.10-F) will show the user’s current

progress. The puzzle is correct when all of the indicator’s dots are green. See Appendix A

for screenshots of the entire puzzle interface.

2.3 Formative Evaluation II: Introductory Curriculum

After developing the puzzle interface and mechanics, we then moved to creating the actual

content for the code puzzles. We based our puzzle curriculum on concepts found in the middle

school level (2) of the Computer Science Teacher’s Association’s curricular standards [175].

We selected four constructs at the introductory level that are useful for authoring 3D

animations: repeated execution (repeat), parallel execution (do together), parallel nested

within repeated execution (repeat { do together }), and repeated nested within parallel

execution (do together { repeat }).

We recruited 21 participants between the ages of 10 and 15 years from the Academy of Science

of St. Louis mailing list to participate in this formative evaluation. During each individual

session we asked participants to complete the puzzles in our curriculum. Each session lasted

90 minutes. In total, we tested 8 iterations of our puzzle curriculum on our participants.

Afterwards, we compensated participants with a $10 gift certificate.

In this section, I discuss several lessons we learned through iteratively testing our code

puzzles over 8 iterations. I also I describe the resulting curriculum from this second formative

evaluation.
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2.3.1 Lessons Learned

Through this evaluation we discovered how difficult and time consuming it is to author

effective puzzles. Most of our puzzles went through a minimum of 5 iterations of changes and

testing. Through this testing we realized that often minor details appear to introduce high

extraneous cognitive load and trip up learners in unexpected ways. When authoring puzzles,

I strongly encourage rigorous testing of each individual puzzle to eliminate surprise sources of

extraneous cognitive load. In the following section, I discuss some of the lessons we learned

trying to effectively manage learners’ cognitive load while creating our puzzle curriculum.

Author puzzle programs with motivating scenarios.

As I discussed in Chapter 1, completion problems are partial worked examples. In creating

our first puzzles that double as completion problems, we initially approached their creation

with the mindset of authoring examples. Thus, our early puzzles tended to center around

demonstrating construct behavior. Figure 2.11 shows one of these early puzzles which focus

on programming constructs. These example-based puzzles were not compelling to users; users

were unmotivated to make an ostrich move its neck up and down three times. This was

especially problematic given that we intended for our users to complete these puzzles on their

own independently. From informal interviews, we realized that we needed to provide users

with puzzles that excited them.

One approach we found that motivated users was to author puzzles with a problem-solution

scenario. These puzzles contain a compelling initial scene with a scenario that contains

a problem and resolution. For example, the Interstellar Travel Troubleshooting puzzle in

Figure 2.15 shows a initial scene of an alien on a planet. After viewing the correct output,

users realize that they have to help the alien leave the planet by repairing his broken spaceship.
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Figure 2.11: In our earlier puzzles we were more concerned about demonstrating a pro-
gramming construct, rather than using constructs in compelling scenarios. This puzzle
demonstrates repeated execution, but fails to motivate users to care why the ostrich is eating
a banana.

Users are motivated to finish the puzzle in order to help the alien escape the planet. During

testing, we observed that participants tended to work harder to complete these compelling

animations. Additionally, the initial scenes shown in Figure 2.15, often excited participants

because they wanted try out each puzzle in order to see what would happen in the scenario.

Author puzzle programs with memorable segments.

As part of authoring compelling animations, we originally tried authoring puzzles with unique

characters that do interesting things. Users really liked these animations because they were

entertaining to watch, however they tended to be a little difficult to actually solve. Figure 2.12

shows an early puzzle that was entertaining, but really difficult to remember due to the

random actions in the animation. We found during testing that if an animation or part of an

animation was not easily memorable, then users had to continuously flip between the correct

output and puzzle output to know what to work on next. From a cognitive load perspective,

it is not surprising these random statement puzzles are more difficult to remember because

each random statement needs to be processed in working memory. This likely imposed a

relativity high extraneous cognitive load on users trying to complete these tasks.
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Figure 2.12: An early puzzle that was entertaining to watch, but difficult to solve due to the
seemingly random nature of many of the programming statements.

To lessen this extraneous cognitive load, we realized that a user should be able to remember

the part of the puzzle they are working on without the need to continuously review the

correct output. A simple approach is to author puzzle programs so that there are memorable

segments. Figure 2.13 shows an example puzzle with distinct memorable segments about an

alien repairing his flying saucer in order to leave a planet. In first segment the alien fixes

the flying saucer, in the next segment the flying saucer starts up, and in final segment the

alien leaves the planet in the flying saucer. Hopefully each segment is small enough to fit in

working memory, but large enough that a user can engage in self-explanation about what

statements could cause the output for that segment. We also strongly encourage puzzle

authors to use exaggerated or over-the-top animations because they seem to be easier to

remember.
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Figure 2.13: In our final puzzles, we authored animations with easily memorable segments.
With memorable segments, users can work on each chunk of the puzzle without needing to
continuously review the correct output for the next piece to work on.

Provide a challenge without being tricky.

Over the course of our formative sessions, we found that participants sometimes had very

different reactions to difficult puzzles. In some cases, completing a difficult puzzle was a very

rewarding experience. In others, participants remained frustrated, even after finding the

correct solution. Participants’ descriptions of these puzzles reflect these two kinds of reactions.

Participants often described rewarding puzzles as challenging and frustrating puzzles as

tricky. Through examining a collection of tricky and challenging puzzles, we noticed that

what differentiates these puzzles is the source of their difficulty.

Tricky puzzles pull users’ mental resources away from the puzzle’s programming constructs

and instead expend their resources on extraneous details. Frequently, these extraneous details

require participants to observe subtle details in the animation or notice subtle differences

between statements, as shown in Figure 2.14. For example, an early puzzle included small

rotations of a character’s body part that participants struggled to perceive when viewing the
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Figure 2.14: Tricky puzzles often uses small changes that are difficult to notice when the
animation is playing.

puzzle output. In another case, a puzzle included nearly identical statements, one moved 1.0

meters and the other 1.2 meters. Participants frequently swapped these two statements in the

puzzle and perceived the resulting output as matching the correct one. While participants

typically solve tricky puzzles, they often finish with a sense that they have wasted a lot

of time on unimportant details. Further, these subtle differences likely expended working

memory resources away from learning the programming constructs at hand.

In contrast, we found that users really enjoyed challenging puzzles. Frequently, users

commented that they liked the challenging puzzles best, “I thought this one was a little

challenging, but I liked it!” The source of difficulty in challenging puzzles was the puzzle’s new

programming construct. These puzzles were still difficult for users, but this type of difficulty

feels authentic because users finish with a new skill; spending time on it feels justified.

However, we note that too many challenging puzzles can be overwhelming for users. During

one formative testing session, we replaced all of our easy puzzles with challenging ones. In this

session, users no longer enjoyed the puzzles. Providing difficulty variation between different

puzzles seemed to result in the best user experience as reflected in our final curriculum shown

in Table 2.1.
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Table 2.1: Our initial code puzzle curriculum contains six puzzles with an additional intro-
ductory puzzle (0).

ID Title Constructs Difficulty Statements

0 Satellite Inspection puzzle mechanics trivial 4
1 Dizzy Walrus sequential execution easy 7
2 Monkey Business repeated execution challenging 10
3 The Spooky Trick parallel execution challenging 9
4 Interstellar Travel Trouble… repeated & parallel easy 9
5 Shark Snack parallel { repeated } challenging 8
6 Whack-a-Yeti repeated { parallel } challenging 10

Figure 2.15: The seven animations of the code puzzles in our initial curriculum.
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2.3.2 Curriculum Overview

The resulting curriculum for this formative evaluation contains six puzzles with an additional

introductory mechanics puzzle. See Table 2.1 for the curriculum and Figure 2.15 for an

overview of the animations in the curriculum. See Appendix B for the complete programs for

each of the code puzzles.

2.4 Revised Code Puzzle Completion Problems

After developing the initial code puzzle completion problems described in sections 2.2 and 2.3

we conducted an evaluation of Hypothesis I (see Chapter 3). The results of this study

demonstrated that code puzzle completion problems are an effective method for learning

programming independently. Based on this positive result, we decided to release our code

puzzle completion problems to the public. However, before releasing the puzzles to the public

we decided to make several improvements to the interface and curriculum. We folded the

development of our revisions into the formative evaluation presented in Chapter 4 and the

pilot study presented in Chapter 5. We then used the revised interface and curriculum for

the studies presented in Chapters 4 and 5. In this section, I share the revisions we made to

polish the interface and add additional puzzles to the introductory curriculum.

2.4.1 Revised Puzzle Interface

We updated the look of the puzzle interface to be more polished and consistent with the

existing design of Looking Glass. Figure 2.16 shows the updated look for the code puzzle

interface in Looking Glass. The changes we made are almost all cosmetic, aside from changing
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Figure 2.16: We updated the design of the puzzle interface to appear more polished and
consistent with the overall look of Looking Glass.
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Figure 2.17: We added a puzzles as an activity (A) to the welcome screen in Looking Glass.
Once the puzzle activity is selected (A), users can pick which puzzle they would like to work
on (B).

the location and content of some of the on screen text; the mechanics are exactly the same as

the version produced in the first formative evaluation (Section 2.2).

We also added the puzzles as an activity to the welcome screen in Looking Glass, as shown

in Figure 2.17. Now when users launch Looking Glass they are given the option to work on

their own programs (known as worlds) or work on some puzzles. The puzzle selection activity

is an important part of our strategy to provide a learning opportunity within an existing

environment that complements users’ goals rather than distract from them. See Appendix C

for screenshots of the entire revised puzzle interface.
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Table 2.2: We revised our curriculum to now include 14 puzzles, including several showcasing
a new programming construct: sequential execution nested within parallel execution.

ID Title Construct(s) Difficulty Statements

1 Dizzy Walrus sequential execution easy 7
2 Hammer Hazard repeated execution medium 9
3 Monkey Business repeated execution challenging 10
4 Yeti Baseball parallel execution medium 10
5 The Snow Dance parallel execution challenging 11
6 Messed Up Magic parallel execution challenging 11
7 Interstellar Travel Trouble…a repeated & parallel easy 9
8 Trouble at Sea repeated { repeated } challenging 9
9 Shark Snack parallel { repeated } challenging 11
10 Crazy Cauldron repeated { parallel } challenging 10
11 Whack-a-Yeti repeated { parallel } challenging 10
12 Firetruck Frenzy parallel { sequential } medium 11
13 Air Traffic parallel { sequential } challenging 10
14 Polar Surprise parallel { sequential } challenging 11

a Interstellar Travel Troubleshooting was later renamed Space Mechanic in the public release.

2.4.2 Revised Curriculum

We revised the introductory curriculum by creating additional puzzles as well as adding a

new programming construct to the curriculum, sequential execution nested inside of parallel

execution (do together { do in order }). Table 2.2 shows the updated curriculum which now

contains 14 puzzles. See Figure 2.18 for a preview of the new animations from the curriculum.

During testing we found that users had no difficulty learning the puzzle mechanics, so we

eliminated the introductory mechanics puzzle. See Appendix D for the complete puzzles in

the revised curriculum.
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Figure 2.18: The 14 animations of our revised puzzle curriculum.
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2.5 Discussion

Overall, the results of our formative evaluations appear to have successfully created code

puzzles that also function as completion problems. To help us understand why these puzzles

double as completion problems, in this section I explore what it means to be a completion

problem in programming.

As a reminder, “a completion problem is a partial worked example where the learner has

to complete some key solution steps” [182]. In the context of computer programming, the

key steps are are less clear due to the complexity of programming. In the original study

which validated the completion problem effect, Van Merriënboer does not clearly indicate how

their completion problems were partial programs [192]. Inspired by the earlier work, Chang

et al. used fill-in-the-blanks for partial lines of code [21], while Garner used line ordering

and location as the key steps in completing a program [52]. A similar approach to Garner

was employed several years later: Parson’s programming puzzles, later re-branded as Parsons

problems [148]. In Parsons problems, users are only given the lines to a program and they

must place the lines in order to produce the entire program, not just place them in a partial

program. In this case, the key steps are once again correctly ordering the lines of a program.

Yet, in Parsons problems the authors appeared to have developed this approach independently

without leveraging Van Merriënboer, Chang et al., or Garner’s earlier work. Regardless, the

key steps for each of these systems all involve lines of code; completing the line or placing

lines back into the correct location.

Additionally, since completion problems are also used for independent learning, the problems

should appropriately take into consideration the learner’s cognitive load. If the completion

problems impose extraneous cognitive load without fostering germane cognitive load, then

their effectiveness as a tool for informal learning is probably diminished. Unfortunately,
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Van Merriënboer, Chang et al., Garner, and Parsons and Haden tested and developed their

systems to supplement traditional classroom instruction. Failing to carefully manage cognitive

load in a classroom environment, while not ideal, can probably be overcome with the support

of a teacher. In the case of independent learning, failure to manage a learner’s cognitive

load appropriately likely reduces their opportunity to acquire new programming skills. To

manage learners’ cognitive load using our code puzzle completion problems, we incorporated

scaffolding throughout the design to support these independent learners. While this additional

support is a deviation from the previous code puzzles, it is consistent with existing completion

problem approaches and it is consistent with educational materials that support independent

learning.

In the remainder of this dissertation, I share three evaluations using the code puzzle com-

pletion problems that we developed in these formative studies. In the next chapter, I

investigate whether our code puzzles are effective in supporting middle school children to

learn programming constructs own their own.
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Chapter 3

Evaluating the Learning Effectiveness

of Code Puzzle Completion Problems

Portions of this chapter were originally published as “Enabling Independent Learning of
Programming Concepts through Programming Completion Puzzles” in the Proceedings
of the 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC) [70].

From our formative evaluations in Chapter 2, we developed code puzzle completion problems

and an introductory curriculum that we believed would support novices in learning new

programming constructs independently. Prior to code puzzle completion problems, if goal-

oriented novice programmers wanted to increase their programming knowledge they typically

had one readily available option: tutorials. Because tutorials are the most commonly available

method for learning programming independently, we decided to investigate how well tutorials

and code puzzle completion problems facilitate independent learning. In this chapter, I

evaluate Hypothesis I; whether code puzzle completion problems improve novices’ ability to

transfer programming constructs compared to using tutorials.
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Conveniently, many novice programming environments readily include support for independent

learners through tutorials or puzzles. Tutorials are probably the most common method that

programming environments use to support novices [7, 71, 72]. However, these tutorials

are often focused on teaching the system’s mechanics [55, 77, 174] or improving successful

completion by guiding users through a series of steps while minimizing errors [95, 151, 198].

While completing tutorials may help with user interface mechanics, it is not clear how

well novice programmers learn programming constructs via tutorials. More recently, some

programming environments have begun to use a more puzzle-like approach to support users [8,

30, 45, 107]. Often these environments present some type of challenge with code pieces and

encourage users to solve the challenge using the code pieces. However, I am unaware of

any work that empirically evaluates the effectiveness of code puzzles to support independent

learning [21, 52, 148].

In this chapter, I present a study evaluating the learning efficiency and effectiveness of

code puzzle completion problems to validate Hypothesis I. In our evaluation, we compared

participants’ ability to transfer programming constructs from training with either tutorials

or puzzles. From our evaluation we found that participants who learned using code puzzle

completion problems spent 21% less time in the learning phase and performed 33% better on

transfer tasks than participants who learned using tutorials.

3.1 Related Work

Currently, there are several approaches available to facilitate learning programming in informal

settings. In this section, we discuss how tutors, tutorials, and puzzle-like approaches attempt

to support learning programming.
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3.1.1 Tutors

Programming tutors typically focus on providing students with programming practice along-

side classroom instruction. During practice, many programming tutors focus on helping

identify student programming errors [2, 156, 170, 177]. Further, cognitive tutors [37] and

intelligent tutoring systems [156] try to provide sufficient practice by modeling students’

knowledge and suggesting additional practice for un-mastered concepts. These types of tutors

have been found to be effective with classroom instruction [86]. It is not clear whether or

not systems designed to complement the classroom are effective when used in independent

contexts. Outside of the classroom, online tutors try to provide a classroom-like experience [27,

97]. However, many students often start but fail to finish online instruction [132]. Further,

the course-like linear structure of the tutor material is unlikely to support goal-oriented

learners who likely seek information that directly supports their goals.

3.1.2 Tutorials

Goal-oriented users may find that following a specific tutorial may better align with their

current information needs. However, prior tutorial research has mostly investigated improving

tutorial presentation and mechanics, rather than supporting learning independently. Tutorial

presentation can take the form of static text [145], pictures [58], or video [23, 151] or can

even be interactive [7, 50, 71, 95, 198]. Generally, these systems have focused on improving

tutorial completion by providing additional scaffolding or support by using videos [23],

onscreen annotations [95, 198], synchronizing user progress with the tutorial [50, 95, 151], or

viewing other users’ tutorial experiences [102] Some researchers have used gamification to help

motivate users to complete tutorials [110, 111]. Researchers also found that reconstructing

code via a tutorial enabled users to perform better on transfer tasks than directly inserting
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the code [71]. Beyond this, it is unclear how well tutorials will perform when teaching beyond

mechanics.

3.1.3 Puzzle-Like Systems

Puzzle-like systems frequently present some form of problem and require users to formulate a

solution to solve that problem [44]. In the context of programming, many puzzle systems

give users an objective that requires them to program an object’s path through obstacles

on a grid [26, 28, 30, 107, 112]. Frequently, puzzle-like programming environments use

tutorials as part of their initial user experience [26, 30, 107, 112]. Introductory tutorials

typically take the form of tutorial levels that introduce the puzzle’s mechanics. To encourage

learning, some systems use debugging [107] or competition [74, 116]. Outside of informal use,

some puzzle-like systems are specifically designed to be use alongside traditional classroom

instruction [52, 148]. However, we are not aware of any work that explores the learning

effectiveness of programming puzzles for independent learners.

3.2 Summative Evaluation

Using the initial code puzzle completion problems developed in the formative evaluations

described in Chapter 2, we conducted a between-subjects evaluation to assess the effectiveness

of learning new programming constructs with puzzles compared to tutorials.

We primarily based our tutorial condition on Scratch’s step-by-step video and text tutorials

as shown in Figure 3.1 [174]. We developed and tested our tutorial implementation at the tail

end of the curriculum formative evaluation (II) presented in the previous chapter (Section 2.3).

See Figure 3.2 for our Scratch-style tutorials implemented in Looking Glass. In the tutorials,

every step instructs the user to insert a statement into their program. For each step there
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Figure 3.1: Scratch’s step-by-step tutorials [174]. The tutorial window (A) provides step-by-
step instructions for authoring code in Scratch (B).
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Figure 3.2: The tutorial condition. The tutorial window (A) shows a video and text description
of each step. Users complete the step in the programming editor (B) and then manually
advance the tutorial (C).
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is a looping screencast video showing how to complete the step as well as text directions

instructing the user what statement they need to insert.

From this evaluation, we intended to answer the following questions: 1) Do puzzles require a

different time and mental investment than tutorials? 2) Are puzzles more motivating than

tutorials? and 3) Do puzzle users show more evidence of learning than tutorial users?

3.2.1 Participants

We recruited 39 participants between the ages of 10 and 15 (14 female, 25 male; age:

M = 11.62, SD = 1.50) for two separate experiments that lasted two hours. This chapter

presents only the first experiment; the second experiment was for the development of a

block-based programming assessment. We recruited participants through the Academy of

Science of St. Louis mailing list. The Academy of Science is a not-for-profit organization

dedicated to science outreach within the St. Louis metropolitan area. This mailing list is well

known by community members and was further forwarded around local schools and other

groups. We compensated participants with a $10 gift certificate.

In the published version of this work, we did not analyze the data for participants with prior

minimal programming experience (less than 3 hours total) [70]. Later, I realized that prior

programming experience could be controlled through the use of covariates. I have redone the

analysis of this study to include all participants regardless of prior programming experience.

3.2.2 Materials

We developed programs and survey materials that participants used during training and

transfer study phases. We developed our materials in the Looking Glass programming

environment. See Appendix E for all of the materials used in this study.
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Table 3.1: The six training tasks and their programming constructs.

Training Task Programming Constructs No. Statements

1 Do in Order 7
2 Repeat 10
3 Do Together 9
4 Repeat & Do Together 9
5 Do Together { Repeat } 8
6 Repeat { Do Together } 10

Familiarization Tasks

For each study phase, we developed a phase familiarization task. The familiarization

task introduced participants to the format of the tasks for the phase and also introduced

participants to the interface mechanics of the programming environment. Each task’s format

was identical to the training or transfer tasks. The familiarization training task is puzzle 0

from the initial curriculum shown in Table 2.1.

Training Tasks

We used the puzzles developed during our initial formative evaluation for the content of our

six training tasks (See Table 3.1). For our puzzle condition, we used the puzzles in their

original form. However, for the tutorial condition we authored tutorials that produced the

same programs as the puzzles, but with directions using the code editor of Looking Glass.

Transfer Tasks

To measure participants ability to apply the training information in near transfer situations,

we asked participants to complete several transfer tasks. For our transfer tasks we wanted

61



participants to demonstrate their ability to correctly identify and use a programming construct

in a similar situation to the training tasks. We developed four transfer tasks, one for each of

the programming constructs introduced in our initial curriculum (See Table 3.1). We asked

participants to complete the transfer tasks in the code editor of Looking Glass.

The transfer tasks are complete programs that contain correctly ordered method invocations

along with a description and video of the correct program output. Each program is missing

the required control flow constructs necessary to create the desired output. To complete a

transfer task a user must 1) determine the appropriate constructs, 2) locate the constructs

within the programming environment, and 3) drag the construct blocks into the existing

code and move the appropriate statements into the construct blocks. No additional method

invocations are necessary to complete these tasks. This setup is intended to allow participants

to spend their time demonstrating their mastery of the programming constructs rather than

recreating animations or writing entire programs from scratch.

Surveys

We used two surveys for our evaluation: a self-developed task survey and the Intrinsic

Motivation Inventory’s Task Evaluation Questionnaire (TEQ). The TEQ is a 22 Likert scale

item questionnaire with four subscales: interest/enjoyment, perceived competence, perceived

choice, and pressure/tension [25]. Participants rate each item on a scale from 1 - not true at

all, to 7 - very true.

Our self-developed task survey was comprised of a multiple-choice question and five Likert

scale items: a cognitive load scale and four perceived enjoyment scales. The difficulty survey

is a well validated and reliable unidimensional scale from 1 - extremely easy (very, very low

mental effort), to 9 - extremely difficult (very, very high mental effort) for measuring cognitive

62



Figure 3.3: Overview of the basic summative evaluation procedure.

load [140, 143]. The perceived enjoyment scale contains four, seven item Likert scale items:

enjoyable – unenjoyable, exciting – dull, pleasant – unpleasant, interesting – boring [82, 191].

Lastly, we included the again again table, which asks participants whether they would like to

do this activity again with the following choices: yes, maybe, no [157].

3.2.3 Methods

We conducted our evaluation with four multi-user sessions. Each participant attended

one of the two-hour sessions. Even though multiple participants attended each session,

each participant worked independently. The study took place in a typical computer lab

environment. We seated participants to minimize the potential for viewing other participants’

screens.

We randomly assigned the participants to the puzzle or tutorial condition (puzzle: 21,

tutorial: 18). Upon arriving to the study location, we asked participants to complete a

computing history survey. We then interviewed each participant about their reported prior

programming experience from the survey. Participants first completed the training phase
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followed by the transfer phase. Following the transfer phase, the participants completed

a separate experiment not presented in this dissertation. After completion of the separate

experiment, participants were free to author their own programs. See Figure 3.3 for an

overview of the basic study procedure for this experiment.

Training Phase

The training phase consisted of the following activities: the familiarization task, six training

tasks with task surveys, followed by the TEQ survey. We gave participants a maximum of 7

minutes to finish the familiarization task and each training task. Following each task, we

asked participants to complete a task survey. During our pilot studies, almost all participants

completed each task within 7 minutes (this is roughly the mean plus a standard deviation).

We allowed participants to ask any questions during the familiarization task. We also helped

participants complete the familiarization task if they needed assistance with the directions

or interface mechanics. For the actual training tasks, participants were not allowed to ask

questions and worked independently.

Once participants completed the familiarization task, they were given the 6 training tasks in

the curriculum order. Based on the participant’s condition they completed all tasks using

either the puzzles or tutorials. Following each training task, participants completed the task

survey. After completing all training tasks, we asked participants to complete the TEQ.

Transfer Phase

The transfer phase consisted of the familiarization task and four transfer tasks with task

surveys. We gave participants a maximum of 6 minutes to complete the familiarization and

all transfer tasks. After each task, we asked participants to complete the task survey. We used

a Latin squares design to administer the transfer tasks to control for learning effects. Like
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the training phase, we assisted participants if necessary during the familiarization task; we

provided no assistance for the 4 transfer tasks. After each transfer task, we asked participants

to complete the task survey.

3.3 Analysis

For the training and transfer tasks, we analyzed task time and performance, as well as the

task surveys.

3.3.1 Transfer Tasks

We analyzed the time each participant took to complete each transfer task and their perfor-

mance for each transfer task. For the transfer tasks, we measured performance by whether

the participant’s solution matches the correct solution exactly; we did not score with partial

credit. In the published version of this study, we used a rubric to give partial credit for each

of the transfer programs [70]. Upon reflection, I now believe this was a mistake because the

rubrics were not validated. Without validated rubrics, I am not confident that the grading

will accurately reflect each participants’ understanding of the programming concepts.

3.3.2 Task Surveys

We analyzed the results for the cognitive load/difficulty scale, the four perceived enjoyment

scales, and the again again table. We analyzed each survey for reliability (Cronbach’s α > .70).

The cognitive load/difficulty scale was reliable (αtraining = .87; αtransfer = .82). The four

perceived enjoyment scales were reliable: enjoyable (αtraining = .85; αtransfer = .84), exciting

(αtraining = .84; αtransfer = .86), pleasant (αtraining = .82; αtransfer = .88), and interesting
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(αtraining = .86; αtransfer = .87). Lastly the again again scale was also reliable (αtraining = .93;

αtransfer = .90).

3.3.3 Task Evaluation Questionnaire

The interest/enjoyment (α = .91) and perceived competence (α = .75) subscales of the

TEQ are reliable (Cronbach’s α > .70). The subscales for perceived choice (α = .57) and

pressure/tension (α = .60) are not reliable. We have only included the interest/enjoyment

and perceived competence subscales in our analysis.

3.3.4 Controlling External Effects

Our programming experience interview revealed that 31% of participants had limited prior

programming experience. Because prior programming experience may influence the outcome

of our results, we controlled for prior programming experience, as well as age, and gender,

using covariates in our analysis. For all statistical results, where appropriate, we used

MANCOVA with Pillai’s trace (V ) to compare the dependent variables from all six training

tasks or all four transfer tasks against the puzzle and tutorial conditions. Our analysis

revealed that none of the covariates are significant for any of the results.

When reporting our results, we also include effect size alongside p values. P values are

heavily influenced by sample size; the larger the sample size, the more likely a statistical test

will return significance (p < .05) [179]. Effect size removes the influence of sample size by

measuring the magnitude a variable differs between conditions [179]. When reporting effect

size for MANCOVA we report eta squared (η2). We report the magnitude (small, medium,

and large) based on the following values: .01, .06, and .14 [99].
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3.4 Results

In this section, we address the results of our evaluation in terms of answering our research

questions.

3.4.1 Do puzzles require a different time and mental investment

than tutorials?

We looked at time and mental investment by examining three factors from the training phase

data: time and cognitive load. We wanted to know if there was any difference in completion

time between the conditions. We also wanted to know if puzzles required more cognitive load

than tutorials. We found that puzzle participants overall took 21% less time and required

66% more cognitive load compared to tutorial participants.

Puzzle and Tutorial Task Time

Overall puzzle participants spent less time completing the training tasks (M = 3.66, SD = 1.19

minutes) compared to tutorial participants (M = 4.62, SD = 0.62 minutes), as shown in

Figure 3.4. There was a significant and large effect of condition (puzzle or tutorial) on the

training task time; V = .75, F (6, 29) = 14.12, p < .001, η2 = .745.

Puzzle and Tutorial Cognitive Load

Puzzle participants reported higher cognitive load (M = 3.95, SD = 0.99, ≈ slightly easy)

compared to tutorial participants (M = 2.38, SD = 0.30, ≈ very easy). See Figure 3.5 for

the average cognitive load scores for all the training tasks. The effect of condition (puzzle or

tutorial) is significant and large; V = .51, F (6, 26) = 4.45, p = .003, η2 = .507. Unfortunately,

67



2.30

5.04
5.485.46

3.04

4.53

2.70

4.05 4.10

4.83

4.32
3.79

0

1

2

3

4

5

6

7

Do in Order Repeat Do Together Repeat &
Do Together

Do Together
{ Repeat }

Repeat
{ Do Together }

Training Task

M
ea

n 
Ta

sk
 C

om
pl

et
io

n 
T

im
e 

(m
in

)

Condition

Tutorials

Puzzles

Figure 3.4: Mean training task completion time for puzzle and tutorial participants. (V = .75,
F (6, 29) = 14.12, p < .001, η2 = .745)

2.522.76

4.76

2.47

3.762.06

3.10

2.06

4.95

2.67

4.622.29

1

2

3

4

5

6

7

8

9

Do in Order Repeat Do Together Repeat &
Do Together

Do Together
{ Repeat }

Repeat
{ Do Together }

Training Task

M
ea

n 
C

og
ni

tiv
e 

Lo
ad

 R
at

in
g

Condition

Tutorials

Puzzles

Figure 3.5: Mean training task cognitive load for puzzle and tutorial participants. 1 - extremely
easy (very, very low mental effort); 9 - extremely difficult (very, very high mental effort).
(V = .51, F (6, 26) = 4.45, p = .003, η2 = .507)

68



5.31

5.85
5.40

5.99

1

2

3

4

5

6

7

Interest /
Enjoyment

Perceived
Competence

Task Evaluation Questionnaire Subscale

S
ub

sc
al

e 
R

at
in

g

Condition

Tutorials

Puzzles

Figure 3.6: Mean subscales for the Task Evaluation Questionnaire (TEQ). 1 - not true; 7 -
very true. (V = .14, F (2, 33) = 2.58, p = .091, η2 = .135)

due to the study design we are unable to determine whether the increase in cognitive load

is extraneous or germane. We discuss the potential types of cognitive load further in the

discussion below (Section 3.5).

3.4.2 Are puzzles more motivating than tutorials?

We used the training tasks surveys and the TEQ to help us determine whether the puzzles are

more motivating than tutorials. We found no significant effects for these measures between the

puzzle and tutorial conditions suggesting no difference in motivation between the conditions.

The TEQ showed no significant changes between the conditions; V = .14, F (2, 33) = 2.58,

p = .091, η2 = .135. For the TEQ interest/enjoyment subscale (1 - not true, 7 - very

true, the puzzle (M = 5.31, SD = 1.15) and tutorial (M = 5.85, SD = 1.32) participants

rated that they enjoyed their experience. For the perceived competence subscale, the puzzle
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(M = 5.99, SD = 0.90) and tutorial (M = 5.40, SD = 0.97) participants also rated that they

felt competent.

The training task surveys showed no significant differences between conditions. Participants

in both conditions rated each task as enjoyable, exciting, pleasant, and interesting. They

also rated that they would like to do the task again. For the perceived enjoyment survey

the effect of condition is not significant for all scales; enjoyable – unenjoyable: V = .20,

F (6, 26) = 1.06, p = .410, η2 = .197, exciting – dull: V = .30, F (6, 26) = 1.85, p = .128,

η2 = .299, pleasant – unpleasant: V = .18, F (6, 26) = 0.93, p = .489, η2 = .177, and

interesting – boring: V = .17, F (6, 26) = 0.87, p = .528, η2 = .168. The again again table

also revealed similar non-significant results, V = .13, F (6, 26) = 0.63, p = .706, η2 = .127.

These results suggest that puzzles are no more or less motivating that tutorials. However, we

note that these results do not align with our formative evaluation observations; we discuss

this further in the discussion section and in Chapter 5.

3.4.3 Do puzzle users show more evidence of learning than tutorial

users?

Lastly, we wanted to know whether users learn programming constructs more effectively

using puzzles or tutorials. Overall, we found that puzzle participants performed 33% better

on the transfer tasks while requiring equivalent cognitive load and time compared to tutorial

participants. This suggests that code puzzle completion problems are an effective means for

learning programming constructs independently. Next, we share the results of the transfer

task data for performance, time, and cognitive load.
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Transfer Task Performance

Puzzle participants (M = 86%, SD = 5%) outperformed tutorial participants (M = 65%,

SD = 6%) in correctly completing the transfer tasks. Figure 3.7 shows the average performance

across all transfer tasks. There was a significant and large effect of condition on transfer task

performance; V = .27, F (4, 31) = 2.80, p = .043, η2 = .266.

Transfer Task Time

Puzzle participants spent 14% less time completing the transfer tasks (M = 3.47, SD = 0.71

minutes) compared to tutorial participants (M = 4.02, SD = 0.92 minutes), as shown in

Figure 3.8. However, this difference is not significant; V = .11, F (4, 31) = 0.95, p = .450,

η2 = .109.
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Transfer Task Cognitive Load

Puzzle participants (M = 3.96, SD = 0.57, ≈ slightly easy) and tutorial participants

(M = 3.69, SD = 0.58, ≈ slightly easy) reported approximately equivalent cognitive load, as

shown in Figure 3.9. The effect of condition on transfer task cognitive load is not significant;

V = .03, F (4, 31) = 0.20, p = .937, η2 = .025.

These results suggest that code puzzles improve programming task performance without

significant differences in task completion time or cognitive load as compared to tutorials.

3.4.4 Instructional Efficiency

Commonly, approaches that leverage principles and techniques from cognitive load theory

report a measure known as instructional efficiency [56, 139, 144]. By using the instructional

efficiency measure, we can consider the potential cognitive costs for learning. Instructional
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efficiency is calculated by combining cognitive load with task performance [139, 144]. For

our evaluation, we computed the instructional efficiency between the tutorial and puzzle

conditions by using the task performance data and cognitive load ratings from the transfer

phase. Figure 3.10 shows the instructional efficiency for our evaluation. From Figure 3.10,

we see that code puzzles are more efficient compared to tutorials.
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Figure 3.10: Instructional efficiency (E) between the tutorial and puzzle conditions. Points
that lie about the E = 0 line reside in the high effectiveness area of the graph (top-left
corner); points below the E = 0 line reside in the low effectiveness area (bottom-right corner).
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3.5 Discussion

Overall, our results suggest that code puzzle completion problems are a promising way to

support the learning of programming constructs independently.

Cognitive Load Participants who used the puzzles required less time to learn and per-

formed 33% better on the transfer tasks. Puzzle participants also rated the cognitive load

required to complete the training tasks 66% higher than tutorial participants. While this

increase is significant, puzzle participants’ overall cognitive load is still relatively low. Yet,

the increase in performance on transfer tasks combined with the increase in cognitive load

for puzzle participants, suggests that the increase in cognitive load is likely beneficial to

learning. However, without redesigning and rerunning this study we cannot say for certain if

the increase is only germane or also additional extraneous cognitive load.

Additionally, the code puzzles may also encourage participants to engage in self-explanation.

Tutorial participants could follow the instructions without engaging in self-explanation about

each programming construct. The puzzles required participants to think about the behavior of

each statement within a program and how to combine them to achieve a given outcome, thus

encouraging self-explanation. The puzzle format also intentionally removes unnecessary code

authoring barriers to focus learners on practicing directly with the programming constructs.

This is in direct contrast to the tutorials which attempt to teach both the interface mechanics

and the programming constructs simultaneously by demonstration. While the puzzles omit

the interface mechanics, we believe that this approach better prepares learners for using

programming constructs in a novel setting, as seen in the transfer tasks.

Motivation Finally, we note that we were surprised by the similarity in attitudinal results

between tutorial and puzzle participants. At the tail end of our curriculum formative
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evaluation (Section 2.3) participants interacted with both the puzzles and tutorials. During

this formative testing we observed a marked preference for the puzzles. As one user noted, “I

like the puzzles more [than the tutorials]… so it was fun.” We investigated these motivational

differences in a follow-up study presented in Chapter 5. In our follow-up, we conducted a

within-subjects study comparing the attitudes towards the tutorials and puzzles. However,

the lack of attitudinal difference between puzzles and tutorials may suggest that a motivating

context, such as animated storytelling, plays a larger role in supporting motivation in early

programming experiences compared to the presentation of learning materials.

3.6 Conclusion

In this study, we demonstrated that code puzzle completion problems can be an effective

learning alternative to tutorials thus validating Hypothesis I. Not only do puzzle participants

outperform tutorials participants on similar tasks, but they were able to learn the new content

in less time. However, for these puzzles to be effective in independent contexts, motivation

and enjoyment are extremely important. Due to the mixed motivational results in this study,

I follow-up by further investigating users enjoyment of code puzzles in Chapter 5. In the next

chapter, I study whether a common technique of puzzles, distractors, further improves the

learning effectiveness of code puzzle completion problems.
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Chapter 4

The Impact of Errors in Code Puzzle

Completion Problems

This chapter was originally published as “Distractors in Parsons Problems Decrease
Learning Efficiency for Young Novice Programmers” in the Proceedings of the 2016 ACM
Conference on International Computing Education Research (ICER) [73].

In the previous chapter (3) we discovered that code puzzle completion problems can be an

effective approach for supporting the near transfer application of programming constructs.

In the evaluation, the code puzzles provided learners with only the correct statements needed

to solve the puzzle. However, code puzzles frequently include errors, like extra incorrect

statements, as a puzzle mechanic [77, 107]. In this chapter, we investigate Hypothesis II; how

errors impact the transfer of programming constructs from code puzzle completion problems.

Errors in code puzzles can be an incorrect program that users must debug in order to solve the

puzzle [77, 107]. Or more commonly, completion style code puzzles contain extra statements

that are not part of the solution, known as distractors [43, 48, 84, 148]. However, little is
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known about how distractors and the errors they generate affect learning. Distractors in code

puzzles are often asserted as beneficial to learning [48, 148]. Yet, errors in worked examples

have been shown to harm novice learners [63]. Given that code puzzles frequently leverage

many of the qualities of completion problems, which are partial worked examples, it is unclear

how distractors in code puzzles affect learning.

Further, beyond being extra statements, little is known about producing distractors that

may benefit learning as previous researchers have asserted [148]. Broadly, distractors in

code puzzles are often described as unnecessary code [48], extra fragments [76], or erroneous

code [83]. Fortunately, some researchers provide a more precise explanation: distractors

should be used to “illustrate a particular point” or to “highlight programming principles the

student may ignore” [148]. Distractors based on these principles often attempt to illustrate

common programming misconceptions and syntax errors [90, 148]. While this seems like a

reasonable approach for using distractors, we are unaware of any empirical evidence on the

effectiveness of distractors in code puzzles.

In this chapter, we present a study investigating middle school children’s ability to learn

programming constructs independently from code puzzle completion problems with distractors.

We conducted a formative evaluation exploring the potential use of distractors to encourage

and foster a beneficial learning experience. We then report the results of a summative

evaluation comparing the effectiveness of using partial suboptimal path distractors when

learning programming constructs on transfer task performance. Our results show that

distractors increased cognitive load, reduced learners’ ability to successfully complete code

puzzles, and significantly increased time on task. Distractor participants also showed no dif-

ference in transfer task performance compared to participants who trained without distractors.
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4.1 Related Work

At its core, a distractor is an error. Some suggest that the errors generated from distractors

in code puzzles may aid learning [90, 148]. Additionally, the reasons cited for using distractors

in code puzzles are similar to the reasons for using distractors in multiple choice tests [98,

113, 148]. In this section, I review research on the impacts of 1) generating errors on learning

and 2) the use and impact of distractors in testing.

4.1.1 Learning with Errors

Learners may encounter errors when learning from traditional educational materials or

learning based games. We first discuss how errors affect learners in traditional education

situations, followed by game based learning.

Humans naturally make errors as part of our learning process. Generating errors during

learning can have both positive and negative consequences that educators must be careful

to either leverage or mitigate. One approach to reducing errors made during learning is

to teach common misconceptions to students when introducing new material [136]. This

is especially important for low performing students, who benefited from learning about

common misconceptions [136]. Errors also affect high and low performing learners differently.

Only high performing students benefited when learning via worked examples that contained

errors [63]. Fortunately, providing students with corrective feedback on the errors mitigated

the harmful effects for low performing students [199]. Another common approach to learning

with errors is using trial and error. Researchers demonstrated that generating errors when

learning via trial and error helped younger learners, but impaired older adult learners [39].

Specifically in the context of programming, errors did not benefit learners. Students who
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learned programming using a method that deliberately encouraged them to make errors had

their rote learning efficiency reduced and they tended to make the same errors later [47].

The inconsistency among the literature suggests that educators must take into consideration

learners’ abilities and age, feedback and even the educational domain when considering the

effects of errors during learning.

There is also a growing body of evidence on the effectiveness of game based learning for

several disciplines [189]. Some of these games leverage correcting errors as a central game

mechanic [77, 104], while others use distractors to lure players into generating errors [176].

Correcting errors as part of a debugging game has been shown to be an effective strategy

for helping children learn programming [104]. While completion style code puzzles are not

a game, they have been shown, without distractors, to be effective for learning [70]. We

are unaware of any empirical evidence of the benefit or harm that generating errors from

distractors in completion style code puzzles may cause.

4.1.2 Distractors and Errors in Testing

Multiple choice questions typically have several incorrect answers designed to distract lower

level learners away from the correct answer [98]. Test takers also acquire new information

from the act of taking a test [165]. Depending on the circumstances, the errors generated

from distractors during testing may benefit or harm learners [16]. We discuss how testing

affects learning and how the errors generated by distractors impact learners.

While testing may be viewed as assessing learned material, it also plays an important role in

learning [163, 165]. When testing, individuals must retrieve information from their memory.

Information is not stored statically in memory, but rather it is reconstructed upon retrieval;

retrieval can change the information itself [91]. The act of retrieving information from memory
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can be an effective way to promote learning and even retention of information [163]. This is

known as the testing effect [165]. The key to the testing effect is the retrieval process itself.

The act of trying to retrieve information during testing, even if unsuccessful, was found to

enhance future learning [101, 161]. Further, if an individual fails to retrieve the information,

guessing the answer did not hurt future performance [87]. The testing effect persists across

testing formats, including multiple choice tests with distractors [115, 164].

However, if a test taker constructs an incorrect answer during retrieval, there is the possibility

that the error is committed to memory which can impair future performance [11]. Test

authors should be especially careful when authoring multiple choice tests with distractors

because individuals may acquire false information from any errors [16, 121, 122, 123, 164].

Additionally, low performing students are more likely to acquire false information from

multiple choice testing [16, 121], while higher performing students actually benefit from the

errors [16]. Learning false information in testing appears to be due to faulty reasoning when

selecting answers [122]. If faulty reasoning is at play, this can be mitigated by providing

corrective feedback after testing [15, 17]. Feedback was found to improve learning when test

takers generated errors during multiple choice testing [15, 17, 78, 152]. Given the potential

for learning false information from multiple choice testing, test administrators should take

measures, like feedback, to limit the potential for false learning.

Guidelines based on empirical evidence may also help test authors write better multiple

choice tests with distractors [66, 67]. Even then, writing good distractors is often difficult for

test authors [188]. Part of the difficulty in writing quality distractors is providing responses

that separate low and high performers [162], but that also provide insights about students’

misunderstandings [98, 113]. One approach to authoring multiple choice distractors is to

utilize common misconceptions [66, 131]. In our context, misconceptions can be common
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programming mistakes, for example, failing to properly nest statements in a control flow

construct [13].

Overall, generating errors during learning may help learners under the right conditions.

However, there is the potential that generating errors may also decrease the effectiveness of

learning. Little empirical evidence exists to suggest how generating errors in completion style

code puzzles will affect learners. Beneficial use of distractors in code puzzles may only be

effective under certain circumstances, similar to the learning with errors research. In this

chapter, we explore the potential for using distractors in code puzzle completion problems to

help novices learn programming independently.

4.2 Formative Evaluation

We conducted a formative evaluation to explore how to author distractors in code puzzles to

exploit the benefits of learning with errors while reducing the potential harm they may cause.

See Figure 4.1 for examples of the distractors we developed in this evaluation. Even though

the most cited use of a distractor in code puzzles is the programming syntax distractor [43, 48,

76, 84, 90, 148], we did not explore this distractor in our study. Blocks-based programming

languages forgo syntax in an effort to reduce the barriers for learning programming. From

our evaluation, we share three guidelines for distractors in code puzzles: 1) distractors that

create extra noise are easy to ignore, 2) distractors should encourage learners to follow a

familiar, but suboptimal path, and 3) allow only one possible solution to a puzzle.

For our formative study, we recruited 16 participants between the ages of 10 and 15 (10

female, 6 male; age: M = 11.94, SD = 1.57) from the Academy of Science of St. Louis mailing

list. The Academy of Science is a not-for-profit organization dedicated to science outreach in

the St. Louis metropolitan area. We compensated participants with a $10 gift certificate.
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Figure 4.1: A code puzzle completion problem (training task 5) in its initial state demon-
strating partial suboptimal path distractors. In the initial state distractor (A), an incorrect
do together block is initially placed into the puzzle’s solution. The repeat block is initially
nested incorrectly into the do together block for the initial nesting distractor (B); the correct
solution is nested block (C). For the alternative statements distractor (D) (training task 2),
users are given almost enough extra statements to create a suboptimal solution; the last
statement is missing for the suboptimal solution.
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4.2.1 Extra Noise is Easy to Ignore

Prior work described code puzzle distractors as extra code or unnecessary code [48, 76]. We

initially came up with three unnecessary code distractors: 1) create additional unrelated

random noise, 2) create additional tangentially related noise, and 3) insert unrelated control

flow constructs.

For the unrelated noise distractors we added random method invocations to the puzzles,

for example: ufo.resize(2.0). Users very quickly realized that the random statements

are easy to eliminate from their possible solution space, as one participant stated, “the

extra actions (statements) contradict, so you can ignore them.” We also tested tangentially

related distractors by inserting additional method invocations that could plausibly be part of

an animation. For example, in an animation about a dolphin rescuing a sinking boat, we

inserted a method call to a background ship object, ship.sail_towards(boat). However,

participants gave similar explanations that they knew they could just ignore it because the

ship never sailed towards the boat.

Given that participants were quick to dismiss the extra noise, we tried another distractor

designed to encourage participants to make decisions about which control flow blocks they

might need for the solution. We inserted several types of unrelated control flow blocks as

distractors. We knew that this approach better engaged some participants when they asked,

“Do I have to use all of them?” Further, the extra control blocks appeared to encourage

thinking for some participants, as one participant stated: “It’s sorta tricky, but it also makes

you think harder, like what does the computer want me to do?” However, we note that

adding unrelated control blocks were also easy to dismiss as unnecessary.
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4.2.2 Use a Familiar, but Suboptimal Path

Instead of adding extra noise to the puzzles, we tried to engage participants by creating

distractors that encouraged them to follow a familiar, but suboptimal path, when solving

the puzzle. The idea is similar to the misconception distractors mentioned in Parsons

problems [148]. The distractors allow a user to create a suboptimal solution for a puzzle that

follows a familiar strategy that they have likely used before. For example, using identical

duplicate statements instead of using a loop as shown in Figure 4.1-D. We used three strategies

for suboptimal path distractors: 1) insert distractor statements into the solution for the

puzzle’s initial state (Figure 4.1-A), 2) initially nest constructs incorrectly (Figure 4.1-B),

and 3) add alternative statements that can lead to a suboptimal solution (e.g. duplicate

statements instead of a loop) (Figure 4.1-D).

Compared to the previous noisy distractors, participants engaged with the suboptimal path

distractors frequently. For the initial state distractor one participant stated, “This one you

have to think that you can move the pieces on the board already off.” In initial nesting

distractors, participants would recognize that they needed the combined effects of both

constructs for the solution. Yet, participants had difficulty realizing that they needed to

switch the nesting order, “I’m a little bit irritated. I’ve checked over and over the difference

between my video and the correct one.”

When participants followed the suboptimal path, it often led to them failing to recover and

failing to discover the optimal solution. This was especially true for the alternative statement

distractors. Participants had difficulty understanding why their solution’s output looked

correct even though the feedback indicated it was incorrect, as one participant stated, “It

makes me feel a little frustrated. Well, I looked at the video many times. I figured out what I

was missing. I corrected my animation. But looking at it… and it tells me that it’s wrong [and
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that] makes me feel frustrated.” Even if many participants failed to recover, the suboptimal

path distractors were a promising approach given that participants were frequently actively

engaged with these distractors.

4.2.3 Allow Only One Solution

The familiar, but suboptimal path distractors succeeded in leading participants down a

suboptimal path, but they frequently failed to bring participants towards the optimal

solution. The biggest problem with the suboptimal path distractors is that they create

several suboptimal solutions in addition to the optimal solution. For example, the alternative

statement distractors for a loop produce a complete suboptimal solution with the duplicate

statements instead of the optimal loop solution. To gently nudge participants towards the

optimal solution, we modified the distractors by removing the possibility of suboptimal

solutions while still keeping the ability to make some progress down a partial suboptimal

path.

One frequent source of suboptimal solutions is empty control flow blocks inserted by partic-

ipants into the solution. Extra control flow statements can lead to no operation behavior

(NOP) [84]. For example, a repeat block with no nested statements does nothing when

executed. The NOP makes the program output match the correct output, even though the

solution is incorrect because of the unused block. This can be particularly confusing for

novices when their output looks correct but the puzzle feedback indicates that their solution

is incorrect. The initial nesting distractors have a high tendency to produce NOP behavior.

For example, a participant may unnest an incorrectly nested control block and then forget to

remove the block from the solution. Yet, novices see nothing wrong with this behavior, as

one participant stated, “I get that it’s extra, but I don’t agree…”
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To help participants realize the existence of the optimal solution, we eliminated the existence

of suboptimal solutions. For the alternative statement distractors we provided enough

statements to lead a user down the suboptimal path, but not enough statements to actually

finish the suboptimal solution. For example, in Figure 4.1-D the last duplicate statement

is missing from the puzzle, so a user can start the suboptimal path, but must seek out the

optimal solution to solve the puzzle. We also removed the NOP suboptimal solutions typically

produced by the initial nesting distractors by locking nested control flow blocks together as

shown in Figure 4.1-B/C. Because the blocks are locked together, the user can explore the

suboptimal path (Figure 4.1-B), but because they cannot unnest the blocks, they cannot

produce a puzzle with NOP behavior. Instead a user must swap out the incorrectly nested

blocks with the correctly nested one (Figure 4.1-C). We also carefully authored and tested

our puzzles to ensure that only one solution existed for each puzzle.

Not allowing participants to complete the suboptimal path had the desired effect of encourag-

ing participants to seek out the optimal solution: “Are there any other pieces? Looks like I’m

missing one.” The partial suboptimal path distractors also appeared to lead to greater success.

Several participants commented on how they enjoyed the distractors, as one participant

stated, “I actually like that. I think it’s pretty cool that you throw in some random ones

because that’s kinda how puzzles work.” For the remainder of our study, we used the partial

suboptimal path distractors.

4.3 Summative Evaluation

Using what we learned in the formative evaluation, we conducted a between-subjects study

to assess the impacts that distractors have on learning new programming knowledge. Our
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study contained two phases: training and transfer. In the training phase participants learned

new programming skills using code puzzles that we then evaluated in the transfer phase.

We developed a series of six puzzles using the partial suboptimal path distractors (see Table 4.1).

Our puzzles introduced participants to three nested programming constructs: repeat nested

in a repeat, do together nested in a repeat, and repeat nested in a do together. From this

evaluation, we intended to answer the following questions: 1) What effect do distractors have

on task completion time, task success, and cognitive load? and 2) Do distractor participants

show more evidence of learning than those who learned programming constructs without

them?

4.3.1 Participants

We recruited 102 participants between the ages of 10 and 15 from the Academy of Science

of St. Louis mailing list. We screened participants for participation in any of our previous

studies. We removed 9 participants from our data set for prior participation. We also removed

one participant from our data set for not completing most of the study materials. In total we

analyzed the data for 92 participants (32 female, 60 male; age: M = 12.01, SD = 1.67). We

compensated participants with a $10 gift certificate.

4.3.2 Materials

We developed, tested, and refined our study materials through a pilot study. For the pilot

study we recruited 14 participants (9 female, 5 male; age: M = 12.93, SD = 2.23). See

Appendix F for all of the study materials that we used in this evaluation.
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Table 4.1: Training task constructs and distractors.

Task Programming Constructs Partial Suboptimal Path Distractors

1 Do Together Alternative Statements
2 Repeat Alternative Statements × 2
3 Repeat { Repeat } Initial State; Alternative Statements
4 Repeat { Repeat } Initial State; Alternative Statements
5 Repeat { Do Together } Initial State; Initial Nesting
6 Do Together { Repeat } Initial Nesting; Alternative Statements

Familiarization Tasks

For each phase of the study, we developed familiarization tasks to help introduce participants

to the format of the tasks and the mechanics of the programming environment.

Training Tasks

We developed six training tasks, which were all puzzles. The six tasks were designed to be

completed sequentially. See Table 4.1 for the programming constructs and distractor types

for each training task.

For the training tasks, we used five puzzles from the revised curriculum shown in Table 2.2 and

Figure 2.18. During pilot testing we felt that introducing the nested construct, repeat { repeat },

warranted an additional training task. However, the revised curriculum only contained one

puzzle (no. 8) that emphasized repeat { repeat }, so we authored a new puzzle specific to this

evaluation, (training task 3).

We developed two sets of training tasks: one set without distractors, the other with distractors.

For the distractors condition, we used the distractor variants of the puzzles we developed in

89



Figure 4.2: Example transfer task. Statements 1–6 are already inserted and correctly ordered.
Participants need to insert additional control blocks (A) to make the animation match the
instructions (B).

our formative evaluation. The training familiarization task is identical in format to the actual

training tasks. However, the training familiarization task did not contain any distractors.

Transfer Tasks

In the transfer phase, we wanted to acquire evidence that the participants learned the

nested programming constructs from the training phase. Specifically, we wanted to know if

participants could identify the correct programming constructs and the proper nested structure

when given a novel problem. We developed three transfer tasks to evaluate participants’

mastery of nesting constructs from the training phase: repeat { repeat }, repeat { do together },

and do together { repeat }. The repeat { do together } and do together { repeat } transfer

tasks are identical to the transfer tasks we used in the previous summative evaluation in

Chapter 3.

Each transfer task is a complete program with existing and correctly ordered statements

as shown in Figure 4.2. The existing statements are only method invocations; there are no
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control flow constructs. To complete each task, participants need only identify and insert the

correct control flow constructs from the programming environment as shown in Figure 4.2-A.

Once a construct is inserted into the program, participants drag the appropriate existing

statements, maintaining their order, into the newly inserted control block. Each transfer task

also included a video of the correct animation, written instructions for completing the task,

and inline comments describing the correct program output (Figure 4.2-B). The instructions

noted that the existing statements are in the correct order and that participants are limited

to only inserting three additional blocks into the program. We designed the transfer tasks

to focus participants’ time on demonstrating their programming knowledge, not authoring

programs from scratch.

The transfer phase had two separate familiarization tasks. The first familiarization task intro-

duced participants to the mechanics of authoring a sequential program in the programming

environment. The second task is identical in format to the actual transfer tasks.

Surveys

We included three surveys in our evaluation: a self-developed programming experience survey,

cognitive load task survey, and the Computer Science Cognitive Load Component Survey (CS

CLCS) [133]. The programming experience survey gathered information about participants’

age, gender, schooling, prior study participation, and prior programming education and

experience.

The cognitive load task survey included two validated and reliable scales for measuring

cognitive load [140]: mental effort [138] and difficulty [89]. Both scales are Likert item surveys

with nine items from 1 - very, very low mental effort / extremely easy to 9 - very, very high

mental effort / extremely difficult. Historically when measuring cognitive load, researchers
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Figure 4.3: Summative evaluation procedure.

used either mental effort [138] or difficulty [89] scales to measure cognitive load. However,

research now suggests that while mental effort and difficulty are correlated, they are not

the same thing [56]. Because we used the difficulty scale in the prior study presented in

Chapter 3, we included both scales in this study for comparison. Please note that when we

discuss cognitive load in this study, we only refer to the mental effort scale.

We used a validated survey to measure the different types of cognitive load. The CS CLCS is

an adaptation of an existing validated survey, the Cognitive Load Component Survey [108,

109], for the domain of computer science. The CS CLCS is a ten item Likert survey with

three separate cognitive load scales: intrinsic, extraneous, and germane [133]. Each question

is rated on an eleven-point scale from 0 - not at all the case to 10 - completely the case.

4.3.3 Methods

We conducted our evaluation over several different multi-user sessions. Each participant

attended a single two hour session. We seated participants to minimize viewing other

participants’ screens and to minimize interaction between participants.
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We conducted a between-subjects study with two conditions: control (no distractors) and

distractors. We randomly assigned participants to either the control or the distractors

condition (control: 47, distractors: 45). The study contained two parts: the training phase

and the transfer phase as shown in Figure 4.3. In the training phase, participants completed

puzzles with or without distractors as assigned in their condition. In the transfer phase,

participants completed three transfer tasks. After completion of the transfer phase, we

allowed participants to create their own animation or work on additional puzzles from the

revised curriculum.

Before the study, we asked participants to complete the programming experience survey.

Once completed, a member of the research team followed up on the survey responses by

interviewing each participant about their responses. This follow up interview allowed us to

correct any misreported data about participants’ prior programming experience.

Training Phase

In the training phase, we asked participants to complete a familiarization task, six training

tasks, and the CS CLCS. The familiarization task used the same format as the training tasks.

At the start of the training phase, we gave participants an instruction sheet with directions on

how to complete a training task. We gave participants 12 minutes to complete each training

task; there was no time limit for the familiarization task. We permitted participants to ask

for help during the familiarization task. However, after completion of the familiarization task,

we required participants to complete the remaining six training tasks without assistance.

Each participant completed the training tasks in the same order. After completing each

task, we asked participants to complete the cognitive load task survey where they rated their

mental effort and difficulty for that task.
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Upon completion of all training tasks, we gave participants a reminder sheet with a picture

and the title for each of the training task animations (i.e. not the familiarization task). We

then asked participants to complete the same cognitive load task survey ranking their mental

effort and difficulty across all six tasks. We then asked them to complete the CS CLCS. We

encouraged participants to reference the reminder sheet when completing these surveys to

help them recall their experience.

Transfer Phase

After completing the training phase, participants began the transfer phase of the study.

Similar to the training phase, participants first completed two familiarization tasks, three

transfer tasks, and then the CS CLCS.

With each familiarization task, we provided an instruction sheet. The first familiarization

task’s instruction sheet demonstrated the basics of the Looking Glass programming environ-

ment. In the second familiarization task, the instruction sheet provided directions on how to

complete the transfer tasks in the study. We allowed participants to keep both instruction

sheets for the remainder of the transfer phase as a reference. During the familiarization tasks,

participants could ask for help. However, we provided no assistance during the actual transfer

tasks. We assigned the three transfer tasks using a balanced ‘Williams’ Latin squares design

to control for learning effects [201]. We gave participants 6 minutes to complete each transfer

task. Following the second familiarization task and each transfer task, we asked participants

to complete the cognitive load task survey. Finally, upon completion of all transfer tasks, we

gave participants a reminder sheet with each of the three transfer tasks’ titles and pictures of

each animation. We then asked them to complete a cognitive load task survey ranking their

overall mental effort and difficulty for all transfer tasks and the CS CLCS using the reminder

sheet.
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4.4 Analysis

We analyzed the data gathered in the training and transfer phases in the study. We also

discuss how we control for external factors, like prior programming experience, in our analysis.

4.4.1 Training & Transfer Tasks

For the training and transfer tasks, we analyzed task time and performance, as well as the

cognitive load scales. We collected cognitive load using several scales: mental effort across

all tasks, difficulty across all tasks, and overall intrinsic, extraneous, and germane cognitive

loads. For each scale, we computed Cronbach’s alpha for reliability (Cronbach’s α > .70).

Recall that we asked participants to rate their cognitive load for each task as well as rate

their overall cognitive load after completing all tasks. Prior research has found that ratings

completed at the end of a phase, as opposed to after each task, are often slightly higher than

the mean of the ratings from all tasks [195]. The cognitive load task survey required minimal

time (pilot testing revealed that this is typically less than 30 seconds) for participants to

complete after each task. However, due to timing constraints and concerns over participant

fatigue, we decided to only ask participants to complete the CS CLCS once, at the end of

each phase. Because the CS CLCS was completed at the end of the phase the results may be

slightly higher compared to the per task cognitive load ratings. To account for this potential

difference in the CS CLCS results, we use both the immediate cognitive load task survey

ratings and the overall ratings in our analysis.
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Training Tasks

For the training tasks, we analyzed time on task, task completion, the cognitive load surveys,

and distractor usage. Because task completion may have been affected by other factors, we

analyzed whether participants ran out of time or gave up on the task. We also analyzed

distractor usage within the distractors condition to evaluate the effectiveness of the distractors.

We analyzed the percent of participants who used the distractors in each task and the percent

of time participants used distractors in each task.

Transfer Tasks

Similar to the training tasks, we analyzed the time each participant took to complete each

transfer task and their performance for each transfer task. For the transfer tasks, we measured

performance by whether the participant’s solution matches the correct solution exactly; we

did not score with partial credit.

Cognitive Load

The mental effort scales (αtraining = .90; αtransfer = .89) and difficulty scales (αtraining = .89;

αtransfer = .79) are both reliable for both phases. The intrinsic (αtraining = .89; αtransfer =

.92), extraneous (αtraining = .78; αtransfer = .71), and germane (αtraining = .87; αtransfer =

.92) cognitive load scales from the CS CLCS were also reliable. There is a strong correlation

between the mean mental effort for all tasks and the overall mental effort rtraining = .82,

ptraining < .001; rtransfer = .80, ptransfer < .001. Likewise, there is a strong correlation between

the mean difficulty for all tasks and the overall difficulty rtraining = .85, ptraining < .001;

rtransfer = .80, ptransfer < .001. Because these correlations are extremely strong, we only

report the results of mental effort using ratings from each task (i.e. we ignore the overall
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ratings). Due to this strong correlation, we have not adjusted the results of the CS CLCS.

We also see a strong correlation between mean mental effort and difficulty rtraining = .92,

ptraining < .001; rtransfer = .88, ptransfer < .001. This suggests that mental effort and difficulty

are very closely related. Because of this strong correlation, we only report the mental effort

scale when discussing cognitive load.

4.4.2 Controlling External Effects

Our programming experience survey with follow-on interview revealed that 71% of participants

had limited prior programming experience, notably many participants had used Scratch [174]

or participated in an Hour of Code activity [77]. Because prior programming experience may

influence the outcome of our results, we controlled for prior programming experience, as well

as age, formal programming education, and gender, using covariates in our analysis. For all

statistical results, where appropriate, we used ANCOVA or MANCOVA with Pillai’s trace

(V ) to compare the dependent variables from all six training tasks or all three transfer tasks

against the control and distractor conditions.

Our analysis revealed that the age and prior experience covariates are significant for most

results. In general, older participants and participants with prior experience performed better,

while needing less time. The formal education and gender covariates are not significant for

any results. This suggests that at the middle school level formal education may not differ

much from informal learning. Researchers have also advocated for gender inclusiveness in

software, including programming environments, in part because problem solving strategies

tend to cluster by gender [14]. Reassuringly, we found no evidence of any gender differences.

When reporting our results, we also include effect size alongside p values. P values are

heavily influenced by sample size; the larger the sample size, the more likely a statistical test
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will return significance (p < .05) [179]. Effect size removes the influence of sample size by

measuring the magnitude a variable differs between conditions [179]. When reporting effect

size for ANCOVA results we report omega squared (ω2) and eta squared (η2) for MANCOVA.

We report the magnitude (small, medium, and large) based on the following values: .01, .06,

and .14 [99].

4.5 Results

In this section, I share the results of our summative evaluation in terms of how they address

our research questions. However, before I report on our research questions we first verify that

the distractors in our study performed as expected.

4.5.1 Distractor Usage

We expected participants to interact with the distractors or use the distractors when solving

the training tasks. We used two measures to identify whether participants made use of the

distractors: whether participants interacted with the distractors and the percent of time

spent using those distractors in each training task.

All distractor participants used distractors in at least two of the training tasks (Mdn = 5).

In fact, the majority of distractor participants (84%) used distractors in four or more of the

six training tasks. When authoring multiple choice tests, researchers recommend removing

infrequently chosen distractors; distractors should have a response frequency greater than

5% [65, 67]. Across each training task, a majority of participants used distractors in each

task (M = 76%, SD = 19%). See Figure 4.4 for the percentage of participants who used

distractors for each task. We also note that participants spent on average 36% of their time
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Figure 4.4: Mean percentage of distractor participants who used the distractor statements in
each training task.
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Figure 4.5: Mean percentage of time spent with distractors in training tasks across all
distractor participants.
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interacting with the distractors (SD = 27%). Figure 4.5 also shows the average percent of

time that participants used the distractors for each training task.

In general, we believe that this evidence suggests that participants used the distractors an

appropriate amount. All participants in the distractors condition used distractors and spent

an average of 36% of their time during the training phase using the distractors. While

the specific numbers vary across tasks and participants, we believe that spending roughly

30% of task time generating errors, is a reasonable amount of time. We are confident that

the distractors worked as intended and so we spend the remainder of the results section

investigating our research questions.

4.5.2 How do distractors affect task completion time, task success,

and cognitive load?

In this section, we report how the distractors affected the training task experience for

participants. Overall, we found that distractors caused participants to spend 14% more time

on the training tasks, while completing 26% less tasks and increasing participants’ cognitive

load by 11%.

Training Task Time

Distractor participants spent more time completing the training tasks (M = 6.15, SD = 1.00

minutes) compared to the control condition (M = 5.42, SD = 1.11 minutes). There was

a significant and large effect of distractors on training task completion time V = .17,

F (6, 81) = 2.86, p = .014, η2 = .175. See Figure 4.6 for the average training task time for

each condition.
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Figure 4.6: The mean training task completion time for both the control and distractors
conditions. (V = .17, F (6, 81) = 2.86, p = .014, η2 = .175)

Training Task Performance

Distractor participants (M = 65%, SD = 23%) correctly completed fewer training tasks than

the control participants (M = 88%, SD = 11%). This effect was significant and large, V = .30,

F (6, 81) = 5.65, p < .001, η2 = .295. Roughly, this translates to control participants correctly

completing about five tasks (Mdn = 6) while the distractor participants only completed close

to four tasks (Mdn = 4). For an overview of the number of participants that completed each

training task, see Figure 4.7.

Recall that participants were given twelve minutes to complete each training task along with

the option to quit working on a task at any point. Quitting a task early is analogous to

giving up on the task. Distractor participants were significantly more likely to give up on a

task compared to control participants, V = .20, F (6, 81) = 3.33, p = .006, η2 = .198. In fact,

distractor participants quit an average of 1.8 tasks (SD = 2.16, Mdn = 1) compared to an
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Figure 4.7: The percentage of participants in each condition that completed each training
task. (V = .30, F (6, 81) = 5.65, p < .001, η2 = .295)

13%

2%

18%

2%

40%
11%

33%
11% 36%

2%

40%
17%

0%

20%

40%

60%

80%

100%

Do Together Repeat Repeat
{ Repeat }

Repeat
{ Repeat }

Repeat
{ Do Together }

Do Together
{ Repeat }

Training Task

%
 o

f P
ar

tic
ip

an
ts

 w
ho

 Q
ui

t T
as

k

Condition

Control

Distractors

Figure 4.8: The percent of participants in each condition that gave up on completing the
training tasks. (V = .20, F (6, 81) = 3.33, p = .006, η2 = .198)
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Figure 4.9: The percent of participants who did not have enough time to complete the
training tasks. (V = .06, F (6, 81) = 0.92, p = .486, η2 = .064)

average of 0.45 tasks (SD = 1.00, Mdn = 0) for control participants. See Figure 4.8 for the

number of participants who quit each training task.

There is not a significant effect of distractors on participants running out of time while working

on a task, V = .06, F (6, 81) = 0.92, p = .486, η2 = .064. This suggests that participants

in both conditions had sufficient time to complete to the training tasks (See Figure 4.9).

Overall, we see that distractors appear to have a negative impact on participants’ ability to

complete the code puzzles.

Training Task Cognitive Load

Across all training tasks, distractor participants reported higher cognitive load than control

participants. On average control participants reported their mental effort as 5.18 ≈ neither

low nor high (SD = 1.67), whereas distractor participants reported their mental effort as

5.73 ≈ rather high (SD = 1.57). See Figure 4.10 for the cognitive load for each training task.
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Figure 4.10: Mean cognitive load scores across all training task between control and distractor
conditions. 1 - very, very low mental effort; 9 - very, very high mental effort. (V = .21,
F (6, 81) = 3.55, p = .004, η2 = .208)

The effect of distractors on cognitive load is significant and large, V = .21, F (6, 81) = 3.55,

p = .004, η2 = .208. These results suggest that distractors increase cognitive load for learners.

The CS CLCS reveals that the distractors significantly increased extraneous cognitive load,

but not intrinsic or germane load. See Figure 4.11 for the average intrinsic, extraneous,

and germane cognitive load reported for each condition. Control participants (M = 3.56,

SD = 2.44) reported roughly the same intrinsic cognitive load as distractor participants

(M = 3.87, SD = 2.81); F (1, 86) = 0.01, p = .943, ω2 = .008. Control participants also

(M = 5.10, SD = 2.55) reported roughly the same germane cognitive load as distractor

participants (M = 4.79, SD = 2.40); F (1, 86) = 0.35, p = .557, ω2 = .007. Control

participants (M = 1.43, SD = 1.62) reported less extraneous cognitive load compared to

distractor participants (M = 2.56, SD = 2.46). The effect of distractors on extraneous

cognitive load is significant, but small, F (1, 86) = 6.03, p = .016, ω2 = .049. The increase
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Figure 4.11: Mean cognitive load ratings in the training phase for each of type of cognitive
load from the CS CLCS. 0 - not at all the case; 10 - completely the case. (intrinsic:
F (1, 86) = 0.01, p = .943, ω2 = .008; extraneous: F (1, 86) = 6.03, p = .016, ω2 = .049;
germane: F (1, 86) = 0.35, p = .557, ω2 = .007.)

in extraneous cognitive load suggests that distractors are detrimental for novices learning

programming.

4.5.3 Do distractor participants show more evidence of learning?

Lastly, we wanted to know how distractors affected participants’ ability to learn programming

knowledge. Overall, we found no differences in control and distractor participants’ transfer

task time, transfer task performance, and cognitive load.

Transfer Task Time

Control participants (M = 3.88, SD = .60 minutes) spent roughly the same amount of

time working on the transfer tasks as distractor participants (M = 3.37, SD = .51 minutes).

105



3.07
3.49

3.08
3.58

3.95

4.56

0

1

2

3

4

5

6

Do Together
{ Repeat }

Repeat
{ Do Together }

Repeat
{ Repeat }

Transfer Task

M
ea

n 
Ta

sk
 C

om
pl

et
io

n 
T

im
e 

(m
in

)

Condition

Control

Distractors

Figure 4.12: The mean transfer task completion time for all transfer tasks for both distractor
and control participants. (V = .06, F (3, 84) = 1.73, p = .168, η2 = .058)

There is not a significant effect of distractors on transfer task completion time, V = .06,

F (3, 84) = 1.73, p = .168, η2 = .058. See Figure 4.12 for the mean transfer task completion

time for all transfer tasks.

Transfer Task Performance

Control participants (M = 55%, SD = 12%) completed roughly the same number of transfer

tasks correctly as distractor participants (M = 43%, SD = 6%). There is not a significant

effect of distractors on correctly completing transfer tasks, V = .06, F (3, 84) = 1.78, p = .158,

η2 = .060. See Figure 4.13 for the percent of participants who correctly completed each

transfer task.
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Figure 4.13: Percent of participants in the distractors or control conditions who correctly
completed each transfer task. (V = .06, F (3, 84) = 1.78, p = .158, η2 = .060)

4.244.19 4.224.11

4.844.79

1

2

3

4

5

6

7

8

9

Do Together
{ Repeat }

Repeat
{ Do Together }

Repeat
{ Repeat }

Transfer Task

M
ea

n 
C

og
ni

tiv
e 

Lo
ad

 R
at

in
g

Condition

Control

Distractors

Figure 4.14: Mean reported cognitive load for each transfer task across both conditions.
1 - very, very low mental effort; 9 - very, very high mental effort. (V = .00, F (3, 84) = 0.03,
p = .992, η2 = .001)
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Figure 4.15: Mean cognitive load ratings in the transfer phase for each of type of cognitive
load from the CS CLCS. 0 - not at all the case; 10 - completely the case. (intrinsic:
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Transfer Task Cognitive Load

Across all transfer tasks control and distractor participants reported roughly the same cognitive

load. On average control participants (M = 4.36, SD = 1.77) and distractor participants

(M = 4.44, SD = 1.73) reported rather low mental effort. The effect of distractors on cognitive

load is not significant, V = .00, F (3, 84) = 0.03, p = .992, η2 = .001. See Figure 4.14 for the

mean reported cognitive load for all transfer tasks.

Further, there is no significant difference between conditions for intrinsic, F (1, 86) = 0.52,

p = .474, ω2 = .005, extraneous, F (1, 86) = 0.63, p = .431, ω2 = .004, and germane,

F (1, 86) = 0.02, p = .889, ω2 = .010, cognitive load. See Figure 4.15 for the average intrinsic,

extraneous, and germane cognitive load reported for each condition.
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Figure 4.16: Instructional efficiency (E) between the control and distractors conditions. Points
that lie about the E = 0 line reside in the high effectiveness area of the graph (top-left
corner); points below the E = 0 line reside in the low effectiveness area (bottom-right corner).

4.5.4 Instructional Efficiency

To get an idea of how participants’ cognitive load related to their performance in the transfer

tasks, we computed instructional efficiency. Instructional efficiency is a measure that combines

the transfer phase’s cognitive load and performance in order to compare the effectiveness of

instructional conditions [139, 144]. Figure 4.16 shows the instructional efficiency between

the control and distractor conditions. From Figure 4.16, we see that the control condition is

slightly more effective than the distractors condition.
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4.6 Threats to Validity

This study looked at one type of code puzzle distractor, the partial suboptimal path distractor,

in a very specific context: middle school children learning programming independently. There

are other types of distractors and contexts that this study did not explore. For example,

Parsons problems frequently contain syntax error distractors [90, 148]. Considering that

syntax is often a significant hurdle for new programmers, future research is necessary to

understand how other types of distractors affect learners.

We also note that our recruiting mailing list often includes parents who consistently seek

additional learning opportunities for their children, possibly enabling selection bias towards

higher performing students. Thus our results may not fully represent the wide range of

abilities of middle school children.

4.7 Discussion

The results of this study suggest that errors in code puzzle completion problems provide

no benefit for novices learning programming independently. In fact, the reduced learning

efficiency that distractor participants experienced may impact other factors like motivation.

In this section, we highlight several issues related to the use of distractors in code puzzles.

Transfer Performance Distractor participants experienced reduced learning efficiency

during the training phase, while experiencing no difference in performance in the transfer

phase. Based on our related work, we expected distractors to increase or decrease transfer task

performance: the Parsons problem literature often asserts that distractors are beneficial [90,

148], suggesting increased transfer task performance; alternatively, based on the learning with
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errors and testing literature we would have expected distractors to decrease transfer task

performance [63]. However, the lack of difference in transfer task performance is inconsistent

with either expectation. One possible explanation for the lack of negative performance for

distractor participants is that the harmful consequences of the testing effect can be mitigated

by providing test takers with corrective feedback after testing [15, 17]. The puzzle feedback

indicator may have filled a similar role; the feedback indicator may have provided sufficient

corrective feedback that any programming construct misconceptions from the training phase

were corrected before completing the transfer tasks.

Further, the impact of distractors on transfer performance may be influenced by favorable

prior knowledge. Große and Renkl found that if students had sound prior knowledge then

their far transfer skills were enhanced when learning with correct and incorrect worked

examples [63]. This suggests that distractors in code puzzles may be beneficial for experienced

novice programmers, but only when learning from puzzles with and without errors. Because

our participants lacked sufficient prior knowledge, additional research is necessary to determine

if this is a factor for distractors in code puzzles.

Motivation The higher failure rate for completing the puzzles in the training phase for the

distractor condition is worrisome (mean completion: control 88%, distractors 65%). Lower

success may leave users feeling deflated and less motivated to continue learning programming.

This is especially concerning for independent learners who may feel discouraged from learning

programming informally and may opt out altogether.

Programming Experience Most participants had little prior exposure to the program-

ming constructs tested in the transfer phase and on average performed poorly on all transfer

tasks (control: 55%, distractors: 43%). The overall low performance suggests that participants

were struggling to simply understand the basic concepts.
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This is somewhat surprising considering the control condition and the puzzle condition from

the evaluation in Chapter 3 completed two of the same transfer tasks: do together { repeat }

and repeat { do together }. Yet, the control participants in this study performed much

worse on both the do together { repeat } (55% versus 90%) and repeat { do together } (66%

versus 80%) transfer tasks. This suggests that the training tasks in this study were much

less effective than the training tasks in Chapter 3’s study. The largest difference between

the training tasks is Chapter 3’s tasks gradually introduce nested constructs whereas this

study very aggressively introduces them without additional puzzles to practice the constructs

without nesting first.

4.8 Conclusion

In this study, we demonstrated that errors in the form of distractors in code puzzle completion

problems provide no clear benefit for independent learners while also reducing their learning

efficiency. Due to this result I partially accept Hypothesis II because even though distractors

reduced learning efficiency they had no significant impact on transfer performance. Without

clear evidence of benefit, educators should use caution if they choose to use distractors in

code puzzles intended for novices because the result may not match their expectations. Based

on the evidence I have presented so far, code puzzle completion problems are an effective

approach to support independent learning, so long as distractors are not used. In the next

chapter, I explore whether code puzzle completion problems are considered motivating to

learners and whether learners view code puzzles as supportive of learning in independent

contexts.
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Chapter 5

Learners’ Perceived Value of Code

Puzzle Completion Problems

This chapter was originally published as “Learning Programming from Tutorials and
Code Puzzles: Children’s Perceptions of Value” in the Proceedings of the 2016 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC) [69].

Up to this point, I have demonstrated that code puzzle completion problems can support

learners in acquiring new programming knowledge. However, if learners are not motivated to

use the code puzzles because they do not perceive them as valuable, then this approach is

unlikely to succeed in independent contexts. In independent contexts, learners are unlikely

to choose to use instructional materials, like puzzles, unless they directly align and support

the learner’s specific goals. Additionally, in Chapter 3 we found a surprising mismatch in

motivation between the formative and summative phases of the study [70]. These findings

suggest that children may find both tutorials and puzzles useful. In this chapter, I investigate

the ways in which code puzzle completion problems and tutorials are perceived as valuable

to independent learners.
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To investigate Hypothesis III, we conducted a qualitative study to explore users’ perceptions

of both instructional formats. Over the course of the study, we asked participants to select

and complete six programs using their choice of tutorials and puzzles. By giving participants

a choice, we gained valuable insight into how well learners choose to spend their time. This

is especially important, because while learners are often motivated to learn when given a

choice [34, 172, 204], they often have difficulty selecting skill appropriate tasks [36].

In this chapter, we report the results of our study with an explicit analysis of the motives

and decisions middle school children make when choosing a particular instructional format.

Throughout the study, we interviewed participants about their experiences and intentions for

choosing between the instructional formats. From the interviews, we hoped to learn about

the 1) circumstances under which novices choose to use tutorials or puzzles, and 2) novices’

perceptions of value, including motivation, for each of the instructional formats. The results

suggest that users’ own personal interests play a large role in their instructional choice.

Overall participants generally preferred the puzzles. However, we also found that the range

of scaffolding provided by both formats enables learners to better follow and manage their

own goals.

5.1 Related Work

We consider two areas of related work: 1) adult students and their perceptions of learning,

and 2) the effectiveness of learning programming independently, especially for children.

5.1.1 Learners’ Perceptions

Learners’ perceptions and choices influence the way they navigate learning materials. For

example, independent learners often choose not to read directions and tend to avoid repetitive
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practice exercises when following instructional materials [20, 118]. Instead, learners prefer to

begin working on their own tasks immediately and use instructional materials as a reference

only when needed [19, 20]. Traditional-style instructional manuals can be especially frustrating

for these task-oriented learners [19]. Aligning instructional materials more appropriately to

learners’ preferences improves their learning efficacy [19].

An alternative to aligning materials to learners’ preferences is giving learners a choice in

their learning and enabling them to make their own learning decisions. In the context

of programming, students liked the ability to choose the instructional format (e.g. self-

guided lab or tutorial) of supplemental classroom material [68, 154]. Students also felt that

choosing their learning materials, like programming languages [155], projects [178], and online

discussion format [93] helped them learn better. Similarly, students reported that compared

to traditional classroom instruction, informal resources (e.g. online courses) enabled them to

choose materials that were appropriate for their level, which they perceived as improving their

ability to learn [9]. However, beyond students’ perceptions, these researchers present little

evidence that demonstrates that choice actually helps students learn better. Furthermore, we

know little about how these results relate to independent learners, especially children, when

trying to learn programming outside of the classroom experience.

5.1.2 Independent Learning Support

Novice programmers, and in particular children, who seek to learn programming independently

can choose from several different instructional formats. Broadly, these formats fall into four

categories: learning from online courses, examples, tutorials, and puzzle-like systems.

Massive open online courses (MOOCs) like Codecademy [27], Khan Academy [97], and

edX [46], are an increasingly popular way for novices to learn programming. However, online
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courses typically have high attrition rates, which can be attributed to an inconsistency

between learners’ goals and the style of instruction [6, 169].

Instead, task-oriented learners can leverage example code and tutorials when seeking in-

struction [166]. Tutorons annotate online example code with explanation to help learners

understand the code [75]. Online tutorials that incorporate example code with live program

replay, like Online Python Tutor [64] and Codepourri [57] may also help learners under-

stand code. Further, tutorials have been shown to help children learn new programming

constructs [71]. Yet, it is unclear what value novices perceive in these tools.

An increasingly popular alternative is puzzle-like support for learning programming indepen-

dently. Probably the most well-known puzzle-like system is the Hour of Code [77]. The Hour

of Code is specifically targeted at enabling children to learn programming independently.

Another popular type of code puzzle, the Parsons problem [148], have also been used in

independent contexts [48], but they are more commonly used in classrooms. Puzzle-like

systems generally set an explicit goal that users accomplish through programming. Frequently,

this involves navigating an object through a grid [29, 104, 112]. Puzzle-like systems have also

been shown to be effective tools to enable children to learn programming independently [70,

104]. However, little is known about children’s perceptions of instructional formats and how

those perceptions factor into their decisions on when to use a particular format.

5.2 Evaluation

The goal of our exploratory study was to identify the factors that influenced participants’

decisions about learning content and instructional format. We asked participants to complete

six instructional tasks. For each task, participants selected both the program (i.e. animation)

they wanted to learn to create and the instructional format (i.e. tutorial or puzzle). We
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Figure 5.1: Participants are given a list of 14 instructional tasks (A). Participants choose
whether to complete an instructional task (A) as a puzzle (B) or a tutorial (C).

interviewed participants throughout the study to gather information about the choices they

made when choosing an instructional format.

5.2.1 Instructional Formats

We decided to give participants a choice between using tutorials and puzzles to complete

their choice 6 of the 14 programs. We used the same tutorial interface from the summative

evaluation in Chapter 3 and the revised code puzzle completion problems from section 2.4.

See Figure 5.1 for both of the instructional formats used in this evaluation.

5.2.2 Participants

We recruited 30 participants between the ages of 10 and 15 years (14 female, 16 male; age:

M = 11.2, SD = 1.3) from the Academy of Science of St. Louis mailing list. The Academy

of Science is a not-for-profit organization in the St. Louis metropolitan area dedicated to

science outreach. Participants self-reported their prior programming experience. Eighteen

participants had less than three hours of prior programming experience, whereas twelve

117



Figure 5.2: From left to right, the order of the study’s activities.

participants had at least three hours of prior programming experience. We compensated

participants with a $10 gift card.

5.2.3 Methods

We conducted our study through 30 individual, two-hour sessions. See Figure 5.2 for an

overview of the study procedure. In the first part of the study, we familiarized participants with

the study procedure. When participants arrived, we asked them to complete a demographic

and programming experience survey. We then briefed participants on the study format.

During the briefing we also primed participants by requesting that they focus on the goal of

increasing their programming skills while working their way through the study. During our

pilot testing we discovered that many participants made decisions based on whether they

found an animation interesting. We have chosen to include this priming in our study in order

to gather perceptions of value beyond compelling animations.

After the briefing, we conducted the pre-study interview and then asked participants to

complete two familiarization tasks. The familiarization tasks were designed to introduce

participants to the experience of using a tutorial and puzzle. We randomly assigned partici-

pants to complete a tutorial or puzzle first. During the familiarization tasks, we informed

each participant that we could provide assistance and answer questions. We also informed

participants that once they began the instructional task part of the study, we would be

unable to provide any assistance.
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Figure 5.3: Instructional format selection screen. Participants first select the type of instruc-
tional format they want to use for an instructional task: tutorial or puzzle (A). Participants
may also select the instructional format in the side pane (B).
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For the remainder of the study, we asked participants to complete six instructional tasks.

Participants would first select whether they would use a tutorial or a puzzle to learn how to

create an animation, as shown in Figure 5.3. Participants then selected from among fourteen

animations. See Figure 5.4 for the instructional task selection screen for tutorials. There

was no time limit for the instructional tasks. Upon completion of each task, a researcher

interviewed the participant about that task. We allowed participants to stop working on a

task at any time. If a participant choose to stop before completing a task, we interviewed

them about their decision to quit that task.

After completing the instructional tasks, we interviewed participants about their entire study

experience in the post-study interview. We then asked them to complete two motivation

inventories, one for tutorials and one for puzzles. Participants decided which motivation

inventory they completed first.

5.2.4 Materials

Our study included familiarization tasks, instructional tasks, semi-structured interviews, and

surveys. We iteratively developed and refined these materials through a pilot study with

29 participants (9 female, 20 male; age: M = 11.2, SD = 1.8). See Appendix G for all the

materials, including interviews, used in this evaluation.

Familiarization Tasks

During piloting, we discovered that participants always chose to complete a tutorial and

puzzle to get a feel for each format. Because this behavior was consistent and common among

all participants, we decided to create two familiarization tasks to remove this variability

from our final evaluation. We designed the familiarization tasks to give participants a taste
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Table 5.1: The fourteen instructional tasks.

Task Title Programming Constructs

1 Dizzy Walrus Do in Order
2 Hammer Hazard Repeat
3 Monkey Business Repeat
4 Yeti Baseball Do Together
5 The Snow Dance Do Together
6 Messed Up Magic Do Together
7 Interstellar Travel Troubleshooting Repeat & Do Together
8 Trouble at Sea Repeat { Repeat }
9 Shark Snack Do Together { Repeat }
10 Crazy Cauldron Repeat { Do Together }
11 Whack-a-Yeti Repeat { Do Together }
12 Firetruck Frenzy Do Together { Do in Order }
13 Air Traffic Do Together { Do in Order }
14 Polar Surprise Do Together { Do in Order }

of each instructional format without exposing them to new programming constructs. The

familiarization tasks each consisted of a simple, sequential animation with four statements.

Each animation could be completed as a tutorial or as a puzzle.

Instructional Tasks

We developed fourteen instructional tasks as shown in Table 5.1. Each instructional task

is a program (i.e. animation) that participants can choose to complete as a tutorial or

as a puzzle. The animations spanned a range of difficulties and programming constructs.

Programming constructs included sequential execution (do in order), repeat, do together,
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Figure 5.4: Instructional task selection screen. After selecting the type of instructional
format (Figure 5.3), tutorial or puzzle, participants select an instructional task from among
14 animation programs (A). Participants may change the instructional format at anytime by
clicking the desired format button (B).

repeat & do together, repeat { repeat }, repeat { do together }, do together { repeat }, and

do together { do in order }.

Additionally, we developed an interface that allows participants to select an instructional

format and task (Figures 5.3 and 5.4 respectively). For the instructional task selection

screen (Figure 5.4), we adapted the puzzle selection screen from our revised puzzle interface

(Figure 2.17). Our adaptations included adding numbering and a difficulty rating to each

task. We established the difficulty ordering based on pilot testing. Altogether, the interface

contains a thumbnail of each animation, the animation’s title, the ranked difficulty (1-14), a
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difficulty label (easier, medium, and harder), and the programming constructs demonstrated

in the program. Participants could also click the thumbnail to view the full animation for

each task.

Semi-Structured Interviews

We developed questions for four semi-structured interviews: a pre-study interview, a post-task

interview, an early termination interview, and a post-study interview. Each interview contained

questions that sought extended responses and one-word responses. We captured participants’

responses in audio recordings. The interview questions were informed and refined by the

themes that emerged through our pilot study.

The pre-study interview contained five questions about participants’ prior programming

experience. Additionally, we asked participants to rank their programming skill using a Likert

scale from 1 - novice to 5 - expert [89]. For all Likert scales in the study, we presented both

numerical and ordinal values.

In the post-task interview, we asked participants a series of 17 questions about their decision,

the quality and value of their experience with the task, and what they planned to do next.

Three questions asked participants to rank their expected difficulty for the task, the actual

difficulty for the task, and how difficult the task would have been if they had used the other

instructional format using a Likert scale ranging from 1 - extremely easy to 9 - extremely

difficult [89].

The early termination interview consisted of a subset of the questions from the post-task

interview. These questions focused on perceived difficulty and their plans for what to work

on next. We included an additional question asking participants about their reasons for

terminating the task early.
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In the post-study interview, we asked participants 20 questions exploring their experiences

during the study, their preferences regarding instructional task format, difficulties with tasks,

and comparative questions about the value between the instructional formats. We also asked

participants to re-rate their programming experience from 1 - novice to 5 - expert.

Surveys

Our study included two surveys. The first survey, completed before starting the study, asked

participants to self-report their age, gender, schooling and prior programming experience.

For the second survey, completed at the end of the study, we used the Intrinsic Motivation

Inventory’s Task Evaluation Questionnaire (TEQ) [85]. The TEQ is a 22-item Likert

survey with four subscales: interest/enjoyment, perceived competence, perceived choice, and

pressure/tension. Participants rated their agreement with individual statements from 1 - not

true at all to 7 - very true. We asked participants to complete two TEQ surveys, one for

tutorials and one for puzzles.

5.3 Analysis

We analyzed the reliability of the TEQ motivation subscales and performed a qualitative

coding on the interview responses.

5.3.1 Task Evaluation Questionnaires

We determined the reliability of the TEQ motivation subscales by combining the results

from the tutorial and puzzle TEQ surveys and computing Cronbach’s alpha for each subscale

(Cronbach’s α > .70). Three of the subscales were reliable: interest/enjoyment (α = .92),
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perceived choice (α = .77), and pressure/tension (α = .73). We have not reported the results

for the perceived competence subscale (α = .68).

5.3.2 Interview Responses

The primary data analysis we performed was the qualitative coding of the interview data.

Over the course of the study, we collected an average of 40.2 (SD = 8.8) minutes of recorded

interview responses for each participant. We transcribed the audio recordings and separated

the responses by question. This produced a total of 3,915 question responses. Because we

used semi-structured interviews, the responses to some questions included follow-on questions

and responses. We grouped any follow-on questions with the original interview question.

Using a grounded theory approach, we developed a set of high-level categories for the responses.

We chose to categorize based on participants’ responses rather than the questions for two

reasons: 1) the interviews included related questions and 2) participants sometimes responded

with information that did not perfectly align to each question. We developed the initial

categories by manually sorting roughly 10% of the responses into similar groups. We identified

five categories: decision rationales, expected task difficulty, sources of ease and difficulty,

experience outcomes, and other. Reassuringly, the categories that emerged from this process

align closely with the themes we tried to incorporate into the interviews. Once the categories

emerged, two researchers labeled a new random sample of 20% of the responses. We reached

very high agreement (Cohen’s κ > .8) for the categories (κ = .95, p < .001). One researcher

then categorized the remaining responses.

We subsequently repeated this process to develop sublabels for each of the high-level categories,

with the exception of the other category. We omitted the other category, because many of

the responses were unrelated. Because the sublabels were based on the original high-level
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Table 5.2: Sublabel interrater agreement.

High-Level Category % of Responses Cohen’s κ adj. p

Decision Rationales 16% 0.89 p < .001

Expected Task Difficulty 13% 0.85 p < .001

Sources of Ease & Difficulty 15% 0.88 p < .001

Experience Outcomes 38% 0.86 p < .001

Other 18% n/a n/a

categories, we report Bonferroni adjusted p values for Cohen’s κ. We reached very high

agreement for all sublabels as shown in Table 5.2. We report the sublabels for each category

in the results section.

5.4 Results

We share our findings in this study by reporting each category separately. Each of the

categories provides insight into the decisions that participants made, the factors that influenced

those decisions, and participants’ perceptions of value that they received from the task and

instructional format. For each category, we share relevant survey results and summarize the

general themes that emerged from participants’ responses.

When summarizing the interview responses, we report each category’s sublabels in two ways:

1) the overall percentage a sublabel was cited across all tasks in the study and 2) the percentage

of participants who cited the sublabel at least once during the study. The percentage across

all tasks gives insight into what types of decisions participants made, whereas the percentage

across all participants helps demonstrate what factors participants identify as important. We

report a summary of each high-level category’s sublabels in Tables 5.3–5.6. In these tables

we summarize the interview responses in the same two ways: 1) % of Tasks, and 2) % of
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Figure 5.5: Mean percentage of tutorial and puzzles participants decided to work on for their
instructional tasks. (t(29) = 3.40, p = .002, d = 1.13)

Participants, respectively. For each high-level category we had two additional sublabels that

we do not discuss in our results: no reason / neutral and other. The no reason / neutral

sublabel captured responses that provided no reason and were often neutral in sentiment,

for example “it was good.” The other sublabel captures responses that did not answer the

question or that are off topic.

We begin by first discussing the decision rationales category to understand participants’

decisions. We then follow-up with the remaining high-level categories shown in Table 5.2.

5.4.1 Decision Rationales

The decision rationales category analyzes the explicit reasons participants gave for choosing

an instructional task and format. In total, participants worked on 167 instructional tasks

(62 tutorials, 105 puzzles). 21 participants (70%) completed all six instructional tasks; the

remaining 9 participants (30%) completed between three and five tasks (Mdn = 4, M = 4,
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SD = .83). Most participants chose to work on both tutorials (Mdn = 2) and puzzles

(Mdn = 3). As shown in Figure 5.5, participants were more likely to opt to use more puzzles

than tutorials; this effect is significant and large: t(29) = 3.40, p = .002, d = 1.13. Overall,

10% of participants decided to work on more tutorials than puzzles, 60% of participants

worked on more puzzles, and 30% of participants decided to work on an equal number of

both.

Participants indicated that they valued both the tutorial and puzzle formats. In the post-study

interview, we asked participants which format they were more likely to use on their own after

this study. 53% of participants responded that they would use both, while 30% said puzzles,

and the remaining 17% said tutorials. This is further supported by the variety of decisions

participants made during the study. Overall, we see that the majority of participants (73%)

used both tutorials and puzzles. While a small minority show a strong preference (number of

tasks minus one) for tutorials (3%) or puzzles (23%).

From the sublabels, we see that participants made decisions based on personal preference,

improving their programming skills, and challenge (see Table 5.3). We found that participants

were more likely to choose a task based on their personal preference rather than choosing a

task based on improving their programming skills. However, when they did make a decision

to improve their programming skills, many participants chose the tutorials, the format that

we demonstrated in Chapter 3 as less effective [70]. Throughout the study participants also

actively managed the difficulty of their tasks by choosing an instructional format that they

believed would increase or decrease each task’s challenge.
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Table 5.3: Decision rationale response themes.

% of Tasks % of Participants
(Tutorials, Puzzles)† (Females, Males)

Personal Preference 56% ( 52%, 58%) 87% ( 71%,100%)

Enjoyed Animation 48% ( 47%, 49%) 83% ( 71%, 94%)
Liked Format 16% ( 8%, 20%) 53% ( 43%, 63%)

Improve Programming Skills 32% ( 52%, 21%) 73% ( 79%, 69%)

Improve Skill 12% ( 19%, 8%) 37% ( 36%, 38%)
Discover Level 21% ( 34%, 13%) 53% ( 64%, 44%)

Challenge 66% ( 65%, 68%) 100% (100%,100%)

Avoid Challenge 22% ( 39%, 12%) 60% ( 43%, 75%)
Seek Challenge 48% ( 32%, 57%) 87% ( 93%, 81%)

Other 17% ( 13%, 19%) 53% ( 36%, 69%)

No Reason / Neutral 12% ( 13%, 11%) 40% ( 29%, 50%)
Other 5% ( 0%, 8%) 27% ( 21%, 31%)

† Percent of sublabels for all tutorials/puzzles; not percent across all tasks.
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Figure 5.6: Mean subscales for the Task Evaluation Questionnaire (TEQ). 1 - not true; 7
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Personal Preference

Personal preference was a common reason participants cited for their decisions. Overall, our

results suggest that participants enjoyed completing puzzles more than tutorials.

Participants cited enjoying the instructional format as an important factor in their decisions.

In total, 53% of participants made a decision during the study based on whether they liked

the instructional format. 43% of participants based at least one decision on enjoying the

puzzles, “I like the puzzles; they’ve all been fun.” In contrast, only 17% of participants cited

making a decision based on liking the tutorials, “I like the tutorials better.” The greater

enjoyment of puzzles is also reflected in the percentage of tasks: participants cited enjoyment

of puzzles in 20% of tasks, while only citing enjoyment in 8% of tutorials.
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In the post-study interview, we asked participants which instructional format they enjoy

more. Again, we see a preference towards puzzles: 80% of participants stated that they enjoy

the puzzles more, compared to 13% who enjoy the tutorials more, and 7% who enjoy both

equally. This preference is also reflected in the TEQ motivation survey’s interest/enjoyment

scale, as shown in Figure 5.6. Using a multilevel model, we found that participants rated

the puzzles as significantly more enjoyable (M = 5.8, SD = 1.0) than the tutorials (M = 4.3,

SD = 1.5), χ2(1) = 17.52, p < .001.

In 48% of tasks, participants cited enjoying an animation as the reason for making a decision.

In total, 83% of participants made a decision that was based on whether or not they liked

the animation. Participants cited the overall appeal of an animation: “Probably just because

it looked like a fun animation to do.” Some participants also described specific attributes: “I

liked how the alien kicked the spaceship to start it up and when it flew away.” The specific

content presented via learning resources is an important attribute for children learning

programming.

Improve Programming Skills

Participants made fewer decisions that prioritized improving their programming skills com-

pared to their personal interests. When making decisions to improve their programming

skills, they did so either directly; by seeking to acquire new programming skills or indirectly;

by trying to gain a better understanding of their skill level and the instructional formats.

A relatively small number of participants (37%) cited a goal of improving their programming

skills across only 12% of tasks. This is a surprisingly low result given that we primed

participants to make decisions to improve their skills. However, when participants did cite

improving programming skills as a goal, they were more than twice as likely to have chosen a
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tutorial (19% of tasks) than a puzzle (7% of tasks). This difference seems to reflect a belief

from users that they learn more using tutorials. When asked for the reason behind a tutorial

decision, one participant explained, “Because it was a new skill that I hadn’t learned before,

so if I did it as a puzzle I’d probably not quite understand exactly what it was trying to

teach me.” This tendency to select tutorials when prioritizing learning is interesting because

it does not reflect the results of our evaluation in Chapter 3 which found that puzzles were

both more efficient and effective for learning new constructs [70].

Choosing appropriate learning goals also requires both accurate knowledge of the available

learning resources and knowledge of their own abilities. Participants described a variety of

goals that contribute towards these types of self-knowledge. In 21% of tasks, participants

described their desire to discover their skill level. Some attempted discovery by equally

using both formats. One participant justified a decision as “Just so I can get a feel for both

tutorials and puzzles.” Other participants talked about comparing the difficulty between the

two formats: “I wanted it to be a little harder than the tutorial because I wanted to see if

it’d make a big difference or not.”

Participants’ responses indicate a strong preference towards enjoyment rather than improving

skills. However, when attempting to improve their programming skills, their responses suggest

a nuanced approach in which they explore what roles resources could play, assess their own

skill level, and select resources that they believe could contribute towards that goal.

Challenge

Participants frequently cited challenge, pushing their abilities, as a factor in their decisions.

Overall, 87% of participants sought challenge while 60% also avoided challenge. Plotting the

expected difficulty of each instructional task for each participant, we observed fluctuation
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between easy and hard tasks for roughly 80% of participants. Of the remaining 20%, 7%

of participants consistently avoided challenge and 13% consistently sought challenge. This

suggests that participants do not always want to work on the hardest task, but instead they

prefer a mix between challenging and non-challenging tasks.

When seeking challenge, participants tended to select puzzles. Participants described seeking

a challenge for 57% of the puzzles and 32% of the tutorials. When avoiding challenge,

participants favored tutorials. In 39% of tutorial decisions and 12% of puzzle decisions,

participants expressed a desire to decrease the challenge level. This disparity suggests that

participants perceived tutorials as being easier. The post-interview provided further support

for the perception that tutorials are easier. In each post-task interview we asked participants

to rank the difficulty of their chosen instructional format from 1 to 9. Participants ranked

puzzles as significantly more difficult (M = 4.8 ≈ neither easy nor difficult, SD = 1.9)

than tutorials (M = 3.8 ≈ slightly easy, SD = 1.6), χ2(27) = 86.75, p < .001. Further,

participants also never ranked a tutorial above a 6 ≈ slightly difficult, suggesting a difficulty

ceiling for tutorials. Participants also reported significantly less pressure/tension in the

TEQ motivation survey when using the tutorials (M = 1.9, SD = .9) compared to puzzles

(M = 2.8, SD = 1.1), χ2(1) = 10.46, p = .001 (See Figure 5.6).

Participants’ desires to seek challenge were mostly straightforward: “I like having to challenge

my mind more.” We saw two classes of reasons for avoiding challenge. The first group of

participants expressed a desire to complete an animation they expected to be too challenging

for them. These participants perceived tutorials as a more gentle introduction to the content

required for a challenging animation. “I picked it as a tutorial because it looked like it

had lots more complexity than the other ones, and I didn’t want to just jump right in

without knowing what I was doing.” The second group of participants avoided challenge after
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extending themselves outside of their comfort range. “I think I’m going to do mostly tutorials

from now on because this was a bit hard.”

While there is some variety in what participants perceived as too difficult, participants who

gave up on a task before successfully completing it arguably felt that they had taken on too

much. We note that this was relatively rare; it happened in 8 out of 167 total tasks. However,

all eight of these tasks were puzzles. For these eight, participants uniformly went on to easier

tasks afterwards. Six chose to complete a tutorial for their next task. The other two chose an

easier puzzle. While the failed tasks are a more extreme situation, participants’ decisions to

reduce the difficulty were consistent with the overall pattern of pushing a little bit and then

scaling back. The presence of both puzzles and tutorials empowered participants to adjust

the experience to meet their own learning and confidence needs.

5.4.2 Expected Task Difficulty

In the decision rationales section (5.4.1) we saw that challenge was a prominent reason

given for making a decision. When trying to manage challenge, participants considered a

variety of information that informed their expectations about task difficulty (see Table 5.4).

Our results suggest that participants used appropriate factors for predicting task difficulty.

Participants typically weighed several practical factors: their prior programming experience,

their perception of the instructional format’s intrinsic difficulty, and the animation’s labeled

difficulty. However, there is one factor that may hamper their ability to do this accurately:

animation complexity.
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Table 5.4: Expected task difficulty response themes.

% of Tasks % of Participants
(Tutorials, Puzzles)† (Females, Males)

Programming Experience 23% ( 21%, 24%) 77% ( 71%, 81%)

Programming Experience 20% ( 19%, 21%) 70% ( 71%, 69%)
Code Structure 2% ( 2%, 3%) 10% ( 0%, 19%)

Instructional Format 14% ( 31%, 4%) 47% ( 50%, 44%)

Labeled Difficulty 31% ( 21%, 36%) 67% ( 64%, 69%)

Animation Complexity 23% ( 23%, 23%) 63% ( 71%, 56%)

Other 16% ( 13%, 18%) 43% ( 50%, 38%)

No Reason / Neutral 14% ( 10%, 17%) 40% ( 50%, 31%)
Other 2% ( 3%, 1%) 10% ( 7%, 13%)

† Percent of sublabels for all tutorials/puzzles; not percent across all tasks.
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Programming Experience

70% of participants considered their own programming experience when reasoning about

difficulty. One participant expected a task to be easy “Because all of the skills in this one

I had already learned.” An additional 10% of participants reasoned about code structure.

Another participant expected a selected task to be difficult: “Because it was a new skill that

I hadn’t learned and I’d have to figure out that you would have to put the do in order inside

the do together with something outside of the do in order.”

Instructional Format

47% of participants based their expectations of difficulty on the instructional format. For

example, one participant expected that, “The tutorial experience would be pretty easy.”

Participants often stated that tutorials were easier “Because all you do is look at the tutorial,

it tells you what to do, you do that, and then you turn the page and you do that again with

the next instruction.”

During the post-study interview, we asked participants to summarize their advice to potential

new users about when they should use tutorials and puzzles. Their advice reiterates the theme

of using the different instructional formats to manage challenge. 17% of participants stated

that you should use a tutorial when you expect a task to be difficult. 13% of participants

stated that you should use a puzzle when you want to challenge yourself. Lastly, 41% of

participants thought that if something is new for you, you should do a tutorial first, and then

practice with puzzles later.
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Labeled Difficulty

Our task selection interface labeled all tasks with one of three difficulty labels: easier, medium,

and harder. In 31% of tasks, participants based their expectations on these difficulty labels.

Animation Complexity

63% of participants stated that they expected a task to be easy or difficult based on watching

the animation. One participant expected a task to be challenging “just because there was, I

mean, it looked like there was lots of stuff happening.” In total, participants used animation

complexity to inform their difficulty assessment in 23% of tasks. While this may be a natural

thing to do, it creates an interesting tension. Participants often considered the appeal of an

animation in selecting a task. Participants’ desire to complete a compelling animation creates

an incentive to create more complex and visually interesting animations. However, the same

push towards compelling animations may also lead users to perceive them as out of reach.

5.4.3 Sources of Ease & Difficulty

When making decisions, participants commonly used their generalizations about difficulty as

discussed in the previous sections. However, in the post-task interviews participants identified

what they believed to be the source of difficulty for that task. Participants’ expectations

often aligned with their actual experience of difficulty. In this section, we discuss the elements

that participants felt contributed to the ease or difficulty of completing tasks (see Table 5.5).

Overall, participants identified fairly common sources of difficulty. Participants felt that the

instructional format, their prior programming experience, the interface’s mechanics, and their

own personal degree of struggle, were sources of task difficulty.
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Table 5.5: Sources of ease & difficulty response themes.

% of Tasks % of Participants
(Tutorials, Puzzles)† (Females, Males)

Instructional Format 31% ( 58%, 15%) 87% ( 79%, 94%)

Prior Experience & Barriers 55% ( 37%, 66%) 100% (100%,100%)

Prior Experience 23% ( 24%, 22%) 60% ( 50%, 69%)
Conceptual Barrier 37% ( 15%, 51%) 93% ( 86%,100%)
Translation Barrier 2% ( 0%, 4%) 13% ( 7%, 19%)

Mechanics 21% ( 29%, 16%) 63% ( 57%, 69%)

Instructional Format 11% ( 10%, 11%) 30% ( 36%, 25%)
Programming Environment 13% ( 24%, 6%) 57% ( 50%, 63%)

Degree of Struggle 49% ( 32%, 59%) 90% ( 86%, 94%)

My Experience 37% ( 21%, 47%) 83% ( 79%, 88%)
Length 16% ( 13%, 18%) 57% ( 79%, 38%)

Other 25% ( 26%, 25%) 73% ( 71%, 75%)

No Reason / Neutral 25% ( 26%, 24%) 70% ( 71%, 69%)
Other 1% ( 2%, 1%) 7% ( 0%, 13%)

† Percent of sublabels for all tutorials/puzzles; not percent across all tasks.

138



Instructional Format

Unsurprisingly, 87% of participants cited the instructional format as a source of ease or

difficulty. The responses here were consistent with the overall perception that tutorials are

easier as we have noted elsewhere. 77% of participants identified tutorials as easy or difficult

because of the format while only 43% said the same for puzzles. We note however, that 74%

of these responses for tutorials are cited for being easy, whereas the responses for puzzles are

spread across easy and difficult.

Prior Experience & Barriers

For many users, content familiarity made tasks easier, and a lack of it created the potential for

barriers. If a participant had prior experience with a programming construct, they tended to

perceive it as easier, “It was much easier than I thought it was, just using the stuff that I had

already learned.” In total, 60% of participants cited that their familiarity with a programming

construct made that task easier for them. Participants’ experiences of difficulty based on

their background were consistent with their background-based expectations of difficulty. In

contrast, 93% of participants cited a conceptual barrier, or not understanding a programming

construct, as a source of difficulty in the tasks. One participant said that “Not knowing that

it was actually possible to put do in order inside with do together” made a task difficult.

Conceptual barriers are also strongly associated with puzzles. 87% of participants stated that

a conceptual barrier caused them difficulty in puzzles, whereas only 23% of participants said

the same for tutorials.

We also saw a translation barrier: connecting a programming statement with its output, as a

source of difficulty for participants working on puzzles. 13% of participants stated that the

translation barrier was a source of difficulty for them.
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Mechanics

30% of participants cited the instructional format’s mechanics as a cause of difficulty. In

the tutorial, participants found watching and following the video difficult. Whereas in the

puzzle, participants found watching the correct output difficult. Participants also found

the programming environment’s mechanics difficult. In total, 57% of participants cited the

mechanics of the programming environment as a source of difficulty.

Degree of Struggle

Lastly, participants cited their own perceptions as a source of ease and difficulty. These

perceptions were often very self-referential in nature: in essence, participants seemed to

express “It was hard because I found it hard.” Some participants talked about “having to do

it over and over and over and over again.” Others referenced the amount of time necessary to

complete the task: “It was hard and long. It took me a really long time to do it.” In 18% of

puzzles and 13% of tutorials, participants cited length as a source of ease or difficulty. Using

a multilevel model, we noted that participants spent significantly longer working on puzzles

(M = 8.2, SD = 6.6 minutes) than tutorials (M = 7.9, SD = 4.6 minutes), χ2(27) = 67.39,

p < .001. Overall, 83% of participants explained their perception of difficulty through their

own experience at least once during the study.

5.4.4 Experience Outcomes

Our final category, experience outcomes, explores the values that participants perceived

while completing instructional tasks (see Table 5.6). Participants received enjoyment from

completing the tasks and also improved their programming skills. However, in many tasks
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Table 5.6: Experience outcomes response themes.

% of Tasks % of Participants
(Tutorials, Puzzles)† (Females, Males)

Enjoyment 80% ( 79%, 80%) 97% (100%, 94%)

Liked Animation 27% ( 27%, 27%) 63% ( 64%, 63%)
Working on Task 26% ( 32%, 22%) 73% ( 71%, 75%)

Finishing Task 50% ( 45%, 53%) 90% ( 86%, 94%)

Improve Programming Skills 62% ( 61%, 63%) 97% ( 93%,100%)

Learned Skill 44% ( 50%, 40%) 87% ( 71%,100%)
Improved Competency 22% ( 23%, 21%) 63% ( 64%, 63%)

Practice 34% ( 32%, 35%) 87% ( 86%, 88%)

No Benefit 66% ( 71%, 64%) 97% ( 93%,100%)

Other 92% (100%, 87%) 100% (100%,100%)

No Reason / Neutral 87% ( 97%, 81%) 100% (100%,100%)
Other 35% ( 44%, 31%) 87% ( 86%, 88%)

† Percent of sublabels for all tutorials/puzzles; not percent across all tasks.
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participants were unable to state what outcome or benefit they received from completing the

task.

Enjoyment

In the decision rationales section (5.4.1), we noted that participants often made decisions

based on their preferences. When we asked participants in the post-task interviews what

they got out of a task, one of the most common responses was that they simply enjoyed it.

63% of participants enjoyed the animation content, 73% enjoyed working on the task, and

90% enjoyed completing the task. 83% and 53% of participants stated that they enjoyed

puzzles and tutorials, respectively. The most interesting responses described struggling to

complete the task and taking strong satisfaction from that success. As one participant said,

“The more you struggle at something the more exciting it is when you finish it.” Echoing

the other results, satisfaction from completing a task is a theme we saw more strongly with

puzzles than tutorials. One possible explanation for the enjoyment disparity between puzzles

and tutorials is that participants saw value in the freedom to solve the problem: “The best

part was having to figure everything out.” As shown in Figure 5.6, our TEQ results suggest

that participants did perceived more choice in the puzzles (M = 6.4, SD = .7) compared to

the tutorials (M = 6.0, SD = .9), χ2(1) = 6.48, p = .011.

Improve Programming Skills

Participants stated improving their programming skills as an outcome. We note that this

may be due in part to our priming to prioritize learning. Participants often distinguished

between three concepts: learning, general competency, and practice.

When participants talked about learning, they focused on their introduction to a new con-

cept or programming element. Overall, 87% of participants stated they learned a specific
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programming skill from completing a task. 70% of participants reported they learned new

programming skills from the puzzles, compared to 60% of participants who reported the

same for tutorials. This contrasts with participants’ stated decisions around learning, where

we found that they tended to select tutorials when citing a learning goal (see the improve

programming skills section in 5.4.1). 63% of participants reported improved computing com-

petency. 87% of participants also reported finding value in practicing using the instructional

tasks. As one participant stated, “I enjoyed it. It was fun to practice on my own with the

skills that I had just learned.” 70% of participants reported that the puzzles helped them

reinforce their skills, compared to just 50% of participants who said the same thing about

tutorials.

We compared the reported programming experience from the pre-study and post-study

interviews: 80% of participants felt more competent after completing the study, 17% reported

no change, and a single participant reported feeling less competent.

No Benefit

In 66% of tasks participants responded to some interview questions that they did not

benefit from the task. In most cases, this was in response to a question about what specific

programming knowledge did they learn from the task. Recall that in only 44% of tasks

was learning a specific skill cited. Frequently, participants did not know what they had

just learned. Many recognized that the task was useful (i.e. practice) but could not name a

specific programming construct that they had learned.

143



5.5 Threats to Validity

In this study we used a semi-structured interview that we specifically geared towards learning

programming. We also primed participants to improve their programming skills. Our specific

focus on learning may skew our results away from other factors that also affect decisions and

perceptions of value. However, even when we explicitly encouraged participants to prioritize

learning, participants were more likely to make their decisions based on their preferences and

desire for challenge.

This study sought to identify the perceptions of value that novice programmers see in two

specific instructional formats. While the specifics of these perceptions may not hold to other

formats, our general conclusions about the factors that participants feel are important, like

challenge, will likely hold for other instructional formats. However, outside of middle school

children, these results would likely differ for other demographics, like expert programmers.

We also note that participants with a stronger interest in programming may have self-selected

to participate in this study.

5.6 Discussion

Below we discuss how participants’ responses and behavior lend further support for code

puzzle completion problems as a motivating and independent learning resource.

Choice & Learning Prior work has found that giving learners full control over their

instructional task choices can lead to both positive and negative outcomes [92, 202]. Overall,

we believe the participants in this study made reasonable choices that helped improve their

programming knowledge. This suggests that for independent contexts, our approach of letting
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participants opt to complete code puzzle completion problems alongside working towards

their own goals, will likely benefit learners.

While participants probably benefited from their choices, their selection of instructional

tasks and formats was suboptimal for maximum learning gains. Participants often made

choices that were motivated by enjoyment rather than learning. When participants did

make decisions about improving their programming skills, they often chose tutorials, as

they perceived tutorials as more supportive of learning. Yet after completing a code puzzle,

participants frequently cited them as more useful for improving their programming skills.

The mixed responses from participants suggest that novices lack the expertise needed to

efficiently self-regulate their learning choices [204].

Fortunately, self-regulation is itself an important skill for independent learners to acquire [42].

Through the process of contrasting and leveraging tutorials and puzzles throughout the study,

participants may have indirectly improved their self-regulating ability for future decisions.

During the evaluation, a majority of participants made choices based on trying to discover

which tasks and instructional formats were appropriate for their skill level. This suggests that

participants were attempting to self-regulate for tasks that align with their current expertise.

Over time, learners’ ability to self-regulate between tutorials and puzzles will likely improve,

thus further supporting that novices have the capacity to make effective use of code puzzle

completion problems in independent contexts.

Motivation & Challenge In our first study comparing tutorials and code puzzles (Chap-

ter 3) we found no differences in motivation between the two instructional formats. From this

evaluation, we found that participants are frequently motivated by things that they enjoy.

Not only did participants enjoy the animations of the instructional tasks, but they had fun

completing the puzzles. Further, participants opted to complete more code puzzles than
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tutorials throughout this evaluation which lends further evidence to support that code puzzle

completion problems are motivating to independent learners.

Beyond simple enjoyment, participants often stated that it was challenge that motivated

them. In fact, almost every participant made a decision during the study where they were

seeking challenge. Reassuringly, participants found the code puzzles to be more challenging

than the tutorials.

Lastly, the extra motivation provided by challenge in the code puzzles may explain the

difference in task completion time between tutorials and puzzles in the study. In our first

study, we found that puzzles took significantly less time to complete than tutorials. We

suspect that the opposite result in this study is due to participants purposefully choosing

puzzles which would challenge them. Challenging puzzles likely took longer to complete, thus

possibility reducing learning efficiency. However, it is not clear how self-imposed challenge

affects learners’ cognitive load. It is possible that self-imposed challenge in code puzzle

completion problems may increase germane cognitive load thereby increasing programming

knowledge while simultaneously motivating learners.

5.7 Conclusion

In this chapter, we presented a qualitative study into validating Hypothesis III by investigating

which instructional formats users preferred and why they chose to use them. From this

evaluation we learned that independent learners’ care about more than just an enjoyable

activity. We discovered that enjoyment, challenge, and perceived value all play important

roles in a learner’s decision to choose between tutorials and code puzzles. The results of

this study suggest that code puzzle completion problems are viewed as a useful resources by

independent learners that also complement and support their goals. But, a key feature of
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this support is that it is balanced against other informal learning resources, like tutorials.

In the next chapter, I discuss what role code puzzle completion problems may have in the

future and how they might further support independent learners.
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Chapter 6

Summary & Future Work

I started this dissertation with the goal of developing a motivating way for middle school

children to learn programming while working towards their own goals. To achieve this goal,

we created code puzzle completion problems. Through two formative evaluations we worked

to bring together the motivating aspects of code puzzles and storytelling with an effective

approach for learning independently: completion problems (see Chapter 2). We also developed

an introductory puzzle curriculum to introduce basic programming constructs like iteration

and simple parallelism. Through three additional summative evaluations we investigated my

hypotheses (see Section 1.3.2) that code puzzle completion problems can support novices in

using programming constructs in similar situations on their own, and that they will likely be

motivated to do so.

In our first summative evaluation (Chapter 3), I reported on a study to investigate Hypothesis I:

whether novices using code puzzle completion problems demonstrate evidence of learning

new programming constructs independently. We found that when novices trained with

code puzzle completion problems they performed 33% better on transfer tasks compared
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to training with tutorials while also taking 21% less time to complete the training tasks.

This evaluation demonstrated that code puzzle completion problems increase the learning

efficiency and effectiveness for novices learning to apply basic programming constructs on

their own. This result supports Hypothesis I, thus validating our approach of using code

puzzles and completion problems in support of learning programming independently.

In further support of improving the learning potential of code puzzle completion problems,

we also investigated whether errors may support or hinder learning in these puzzles. (see

Chapter 4). Current research into leveraging errors in learning provides conflicting evidence

between whether errors benefit or harm learners. In Hypothesis II, we expected distractors

to increase novices’ time completing puzzles while also decreasing their ability to apply new

programming constructs in transfer tasks. Through our second summative evaluation, we

discovered that distractors do in fact increase the time to complete a code puzzle by 14%,

but do not decrease performance on near transfer tasks. Instead, distractor participants

demonstrated no performance differences on the transfer tasks compared to participants who

trained without distractors. Given this result, I partially accept Hypothesis II; distractors do

decrease learning efficiency, but do not reduce learning effectiveness in code puzzle completion

problems.

Lastly in Chapter 5, I investigated whether middle school children perceived value in code

puzzle completion problems when given the freedom to select their own instructional format:

tutorials or puzzles. In this evaluation, we investigated Hypothesis III: novices will perceive

more interest and enjoyment, but also opt to use code puzzle completion problems more

than tutorials. Through this qualitative study we interviewed and analyzed participants

about their decisions to use the tutorials or puzzles. In our study participants exhibited more

preference for using code puzzles over tutorials. Our results also demonstrate that middle

school children perceived code puzzles as more motivating and enjoyable while also useful for
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helping them improve their programming skills. Further, we found that while participants did

not find tutorials as enjoyable as puzzles, they did find them as also valuable for improving

their programming skills. The results validate Hypothesis III that code puzzle completion

problems are in fact motivating and that when given a choice, participants may opt to use

them on their own in informal contexts.

The results of these evaluations suggest that code puzzle completion problems can be an

effective approach for motivating middle school children to learn programming constructs

in informal settings. They also suggest that code puzzle completion problems are also an

effective way to help novices use programming constructs from the code puzzles in similar

circumstances; thereby aiding independent learners as they work towards their own goals.

While this dissertation does demonstrate that code puzzle completion problems are a viable

approach, there is still a lot of future work to do to fully realize the goals I outlined in Chapter 1.

In this section, I discuss some of the potential future opportunities for improving the ef-

fectiveness of code puzzle completion problems, extending their use beyond the introductory

programming constructs, and further validating their use to support goal-oriented independent

learners.

6.1 Improving the Efficiency & Effectiveness of Code

Puzzle Completion Problems

Based on prior work in cognitive load theory there are several additional methods we can

employ to improve both the efficiency and effectiveness of code puzzle completion problems.

In this section, I share my thoughts for future work on improving the ability for learners

to acquire new programming knowledge from these code puzzles. Specifically, I discuss the
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possibility of using worked examples, promoting self-explanation, and using errors to improve

the future utility of code puzzle completion problems.

6.1.1 Using Worked Examples

Studying worked examples is known to be an effective method for fostering schema development

and learning [185]. This is especially true for the early phases of learning when intrinsic load

is high due to the absence of schemas [141]. The act of studying worked examples fosters

germane cognitive load and therefore contributes to schema development [141]. However, as I

discussed in Chapter 1, worked examples are often ill suited to complex domains like computer

programming. This is unfortunate because pairing completion problems with worked examples

is known to be a highly effective method for facilitating schema development [5, 138]. We can

likely improve the learning efficiency and effectiveness of code puzzles completion problems

by integrating the completion problem approach with worked examples.

Worked Examples + Completion Problems

Using both the worked example and completion problems effects is known to be an effective

approach for facilitating learning [22, 124, 185, 190]. The idea behind this approach is

that learners will not study worked examples unless they have a problem to solve [22, 185,

190]. By giving learners completion problems with paired worked examples, learners pay

more attention to the worked examples which further helps their performance on completing

problems [124, 190].

In fact, I originally planned on using both completion problems with paired worked examples

when I started this work. Before my formative evaluations in Chapter 2, I conducted a

separate formative evaluation with Michelle Ichinco to try and develop worked examples for
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programming [80]. Due to the complex nature of programming, it was not clear to us what

a worked example should look like for programming. One approach is to add comments to

the code examples to describe what the purpose of each code segment [135]. At the time,

Morrison, Margulieux, and Guzdial’s approach of adding subgoal labels to code examples was

not yet published [135]. So we decided to try out different ways of annotating code examples

in order to produce programming worked examples.

In our formative evaluation we developed three annotation styles which we later tested in a

summative evaluation [80]. I then tested using these annotated worked examples with the

completion problems in my first formative evaluation for the code puzzle completion problems

(see Section 2.2). I programmed the code puzzles so that an example would automatically

open up in a separate window. I also added an example button to the toolbar of the code

puzzle workspace. During testing I found that users did not use the example and often closed

the example window. Due to the difficulty of getting participants to use the worked example,

I abandoned this approach. Moving forward, exploring ways to use worked examples with

code puzzle completion problems is an important next step for improving the effectiveness of

our approach.

Programming Worked Examples

Additionally, future work is required to author examples for programming that are actually

worked examples. I now believe that the annotated code examples used in prior studies [80,

135] are not actually worked examples because they fail to demonstrate the key steps used to

arrive at the final code snippet. While comments or annotations are useful for understanding

the code snippet, they fail to show how a programmer might go about creating that snippet

of code. A useful starting point may be to use Nasehi et al.’s observations of step-by-step

examples from StackOverflow [137].
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I suggest conducting an exploratory study that looks at the iterative process that experts

use when coding a problem. By looking at experts’ approach to coding, we can gain insights

into the key steps they use to author code. For example, when I am coding I often break

my bigger problem into many incremental steps that build upon each other. If I needed to

search a bunch of files for string, I might first write the code to open a file and then test

that I can see all of the file’s contents. Once I know that I am correctly reading this file,

I would write the code to iterate over all the characters to locate my string. After testing

that my search algorithm works, I would then write the code to process many files with the

search algorithm. While the exact results of this exploratory study will be different, expert

programmers likely do not write code using top-down approach, which is what the ‘worked’

examples above assume.

I suspect that worked examples for programming need to be broken down into incremental

steps. One approach might be to use annotations in the code like: step 1) write and test

file reading, 2) write and test searching file contents, and 3) write and test code to read in

all files and search. An alternative approach maybe to annotate the worked example with

the different incremental states using a code diff visualization showing what the programmer

worked on first in one color and the remaining steps in other colors. Whatever the outcome

of this exploratory study, knowing what constitutes a worked example for programming is

key to using worked examples with the code puzzle completion problems in the future.

Faded Worked Examples

As discussed above, the addition of worked examples to the code puzzle completion problems

will likely further facilitate learning and schema construction. Using faded worked examples

with code puzzle completion problems can likely improve this situation even more. Faded

worked examples gradually over time, leave steps of the worked example incomplete [5, 159,
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182]. Because the example is incomplete, learners are forced to generate self-explanations

about the missing steps in the worked example to solve the completion problem [5, 160].

Gray et al. provide some initial suggestions on how to fade code examples [59]. However,

the authors provide no evidence that their fading suggestions are an effective approach [59].

Future investigations should study how to fade code examples effectively and whether faded

worked examples when used in conjunction with code puzzle completion problems further

promote self-explanation in independent learners.

Example Variability

Lastly, example variability may also improve the learning efficiency and effectiveness of code

puzzle completion problems. Worked examples that vary in their surface and structural

features compared to the completion problems are known to promote deep learning [144,

181, 184]. Examples with low variability compared to the completion problems have small

surface level feature differences. For example, for a completion problem and worked example

that both have a loop, a worked example with only a different loop index is a surface level

difference. Low variability examples are useful for promoting learning for near transfer

tasks [181]. However, worked examples with high variability differ in terms of structural

changes in content and format, and promote learning for far transfer tasks. A structural

level change in a worked example compared to a completion problem might be a completion

problem that uses a loop, but an example that has a loop nested inside of a conditional

statement. A key advantage of using high variability examples is that they are associated

with better learning gains [144, 153].

For this dissertation, I only sought to improve near transfer for novice programmers as a

starting point for validating the code puzzle completion problem approach. Given that my

target audience is goal-oriented learners, learning how to apply programming constructs in
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far transfer situations may further encourage informal users to seek out even more ambiguous

projects on their own. Future investigation is necessary to author high variability worked

examples for code puzzle completion problems to further increase their utility for independent

learners, especially in far transfer situations.

6.1.2 Promoting Self-Explanation

As mentioned in the introduction (Chapter 1), self-explanation is essential to the construction

of schema [22, 182]. One way to promote self-explanation in learners is to provide them

with active, rather than passive instructional tasks [5, 159]. Prior work for completion

problems suggests that the active process of completing a problem promotes the process of

self-explanation [124, 182].

Unfortunately, we have no hard evidence to suggest that code puzzle completion problems

promote self-explanation in novice programmers. However, many of the responses given

during the study in Chapter 5 suggest that self-explanation likely occurred. As one participant

stated,

“I mean, like I could use a repeat block but I didn’t really understand exactly

what it was going to do until I tinkered with it a bunch. […] It’s just a lot easier

because you can repeat things in a specific order, so it’ll repeat two times the

dolphin bump thing, and then the fishing boat will shake, and then it’ll move

down point one meters, and then repeat. And so it just makes more sense that

way.”

Or as another participant stated,
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“I put the plane swerves past the balloons and the balloon one, two, and three all

in the do together box and I never used the do in order box. I was supposed to

put the do in order box and put the balloons in there and then put that in the

do together box and also in the do together box I was supposed to put the planes

swerves [past the] balloons.”

Both of these responses highlight how the problems that these participants faced while

working on the code puzzles helped them better understand how the programming constructs

functioned.

Moving forward, one way to investigate whether code puzzle completion problems promote

self-explanation is to ask participants to use the think-aloud protocol while working on the

puzzles. Additionally, exploring ways to further promote self-explanation in code puzzle

completion problems may also improve both their efficiency and effectiveness.

Eliciting Purposeful Self-Explanation

To promote self-explanation in instructional tasks, prior studies asked learners to talk aloud

in order to promote self-explanation [158]. Yet, this is unlikely to work in informal settings

because many users may opt out of this voluntary procedure. Instead of asking learners to

talk aloud, we could ask them to type an explanation of a code puzzle instead. However,

this too is unlikely to work because prior work found that typing self-explanations was not

particularly effective [173]. Alternatively, researchers successfully promoted self-explanation

using a multiple choice question for selecting the main principle of an instructional task [5].

Additional investigation is necessary to see if these existing approaches can effectively promote

self-explanation in code puzzles or whether new approaches are necessary.
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As a start for this investigation, exploring how to integrate the main principle multiple

choice questions into code puzzles is one promising approach. Additionally, because subgoal

labels [134] and annotations [80] are effective in code examples, they may also provide an

avenue for promoting self-explanation in code puzzles. One approach would be to create

puzzle comment blocks that are subgoal labels or annotations. Learners would then place the

comment tiles into the correct location of the puzzle’s solution. Through the active process of

completing the puzzle first and through the secondary process of placing the code comments

in the appropriate locations, learners may engage in further self-explanation. Alternative

approaches are also likely possible, but this is an area of future work.

6.1.3 Errors for Experienced Learners

As novices complement their project oriented work with code puzzle completion problems,

they are likely to become more experienced programmers with better developed schemas.

Unfortunately, the educational strategies that work for less experienced learners can often

backfire for more experienced learners. When the additional scaffolding and extra material

necessary to reduce novices’ cognitive load becomes redundant to more experienced learners

due to their mature schemas, the redundant information will impose extraneous cognitive

load [88]. This is known as the expertise reversal effect [88]. This suggests that the extra

scaffolding provided by code puzzle completion problems may actually harm more experienced

learners. Changing the format of the code puzzle completion problems by introducing errors

or distractors may help mitigate this effect.

In Chapter 4, we found that errors did not aid in acquiring programming knowledge for

novices and in fact they increased extraneous cognitive load. Similar to our result, Große

and Renkl demonstrated that errors in worked examples benefit high performing students,

while negatively impacting lower performing ones [63]. It is likely that the errors in the
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worked examples promoted germane cognitive load for experienced learners, while the errors

produced extraneous cognitive load for novices. This suggests that errors in code puzzle

completion problems may reduce the expertise reversal effect and may actually be beneficial

to more experienced programmers. I leave the investigation of the effects of distractors in

code puzzle completion problems on programmer expertise as future work.

6.2 Extending Code Puzzle Completion Problems

The code puzzle completion problems that we developed in this work are limited in their

breadth of computing concepts and in their context. The introductory curriculum only

exposes novices to elementary repetition, parallelism, and sequential execution in a 3D

animated storytelling context. Further, the code puzzle completion problems we developed

are only based on blocks (i.e. lines) of code. There are many potential avenues to extending

code puzzle completion problems beyond this initial approach. In this section, I share my

thoughts on how code puzzle completion problems can be extended into other programming

contexts, how we can extend the curriculum to better support independent learners, and how

alternative completion strategies may support the expanded curriculum.

6.2.1 Alternative Contexts

Our approach to code puzzle completion problems depends heavily on 3D animated program

output. We specifically developed code puzzles that produced animations where learners can

recognize any programming construct behavior. We further supported learners, by adding live

feedback that complements the executing animation. In other contexts, like traditional text

based output, our scaffolding for feedback may not be sufficient. However, it is likely that
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many of the lessons we learned by providing incremental, ambiguous, and grouped feedback

can be adapted to other programming contexts.

Outside of 3D animations, I believe that code puzzle completion problems will likely work

well in many contexts that produce graphical output. Text based approaches like Parsons

problems [48, 148], may be difficult to develop into code puzzles, given that the context may

not be as compelling. Many of these text based problems currently resemble uninspiring

programming homework problems, like sorting numbers or fixing out-of-bound arrays, rather

than producing rewarding output. However, other contexts like event-driven user interface

programming, statistical modeling and graphing, responsive web programming or even gaming

can likely be adapted into code puzzles that goal-oriented learners will find motivating. Future

exploration is necessary to determine how code puzzle completion problems can benefit

independent learners in other motivating contexts.

6.2.2 Curricular Content

There is much more to programming than the three programming constructs and their nested

variants we used in our evaluations. Future work is necessary to extend the code puzzle

curriculum to cover the greater depth of programming concepts and skills used by experienced

programmers.

Conditional Statements & Expressions While repetition and simple parallelism are

important for animation, few interesting programs can be written for other contexts without

conditional logic. Conditional statements and expressions should be added to the code

puzzle completion problems curriculum. However, conditional statements and expressions

are distinctly different skills that may each require unique treatments or approaches in the
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code puzzles. Future work must investigate how to create puzzles that both demonstrate

conditional execution while also helping develop learners’ schema for how expressions function.

Organization & Abstraction Likewise, very few complex programs can be written

without methods. Methods are critical for reusing functionality and organizing programs.

Code puzzle completion problems should support novices in using and authoring methods.

An initial approach may be to have users place statements in both the main and in a separate

method.

Additionally, objects and abstraction can further help organize programs and reduce program

maintenance. Future work might investigate how to promote these ideas by having users place

statements in abstract methods or add properties to objects. For example, in an animation

with three dancers, learners would reassemble the abstract dance animation to make two

dance, while the third dancer has a overridden method that the learner also reassembles.

Programming Syntax & Skills Blocks based programming is useful for novices because

it likely reduces extraneous cognitive load when learning to program. Eventually, goal-

oriented learners may desire to learn how to write programs using syntax. Code puzzle

completion problems should be able to support this given that all known Parsons problem

implementations are syntax based. However, future work is necessary to explore how to

transition learners from blocks to syntax and how to adapt the puzzles or mechanics to

effectively support program syntax.

Additionally, programmers often use many skills when writing code that would benefit

goal-oriented learners, like refactoring. Code puzzle completion problems may be able

to be adapted to support the development of refactoring skills. Programmers also often

incrementally write and test code. During our evaluations we observed that many users do
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in fact use this approach when solving puzzles. A future evaluation should study whether

this incremental write-a-bit, test-a-bit approach is transferred to users’ own projects. An

evaluation may provide insight into the other types of programming skills learners develop

beyond programming constructs from using code puzzle completion problems.

The curriculum should also be modified to include more advanced programming concepts like

recursion. Especially because recursion is often completely misunderstood by inexperienced

programmers. In fact, novice programmers in Looking Glass accidentally created recursive

function calls frequently enough that we added a warning to prevent users from making

recursive calls. Code puzzle completion problems can likely be adapted to demonstrate

recursion, given that many of recursive applications are graphical in nature. However, this is

an area for future exploration.

Programming Paradigms In this study we exposed novices to programming constructs

in the imperative programming paradigm. Other paradigms, like event-based programming

will likely also benefit goal-oriented learners. Goal-oriented learners may desire to create

games or apps, which both require an understanding of event-based programming. Functional

programming may also be desirable given an appropriate context, like statistical modeling

and graphing. Future work might investigate how to use other paradigms in code puzzle

completion problems. For example, having novices reconstruct user interface events, like

button clicks.

6.2.3 Alternative Completion Approaches

Adding the new curricular content discussed above likely involves authoring new code puzzles,

but also adapting the puzzle interface and mechanics. In this work, we used a blocks-based

approach as our completion strategy; learners reassemble just lines of code. Future work
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should investigate other mechanics for changing the completion strategy of code puzzle

completion problems, especially to support new curricular content.

For example, in our code puzzle completion problems we asked learners to reassemble the

entire animation. For introducing a new programming concept like conditional execution, it

may be desirable to fix or lock all statements in the puzzle solution except for the lines inside

of the conditional statement. Learners would then place just the statements for the if and

else blocks into the solution. This may help highlight to novices that there are two executing

paths in the program without having to impose additional cognitive load for reassembling the

entire program. Likewise, refactoring skills might be encouraged by locking all statements

in the solution and having novices drag and drop constants to replace literals in the code.

Additional completion approaches may simply ask learners to reassemble just an expression

while learning conditional logic.

There may also be a nice opportunity to gradually transition from blocks to syntax using the

completion strategy. One approach may fix all the statements in the program, but leave out

the brackets. Learners would then just insert the brackets to recreate the familiar “blocks”

structure. Other transitional approaches for using syntax for just a part of a code puzzle,

like using syntax for method calls, parameters, or loop indices, may also be worthwhile to

explore.

6.3 Supporting Goal-Oriented Learners

Lastly, improving code puzzle completion problems to better support goal-oriented learners

is another area for future work. Supporting goal-oriented learners is especially important

because these users are likely to only engage in activities that further their pursuit of their

own goals. In the future, we should continue to explore the use of choice in supporting their
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goals, but also learn how to better support self-directing learning and self-assessment for

these learners.

6.3.1 Choices for Instructional Formats

In the evaluation in Chapter 5, participants choose to work on more puzzles than tutorials.

The reasons they gave for choosing the puzzles were often enjoyment, seeking challenge, or

improving their programming skills. While participants did choose to use the puzzles in a

controlled study, learners may make different decisions about how to spend their time when

they are working towards their own goals during their own time. The reasons behind their

decisions may also be different than the ones we observed in this study. Conducting an

in-the-wild study, would help shed light into the decisions children make while working on

their own projects: do they use code puzzle completion problems? when do they use them?

and why do the choose to use them?

We also discovered in the study in Chapter 5 that participants see value in both tutorial and

puzzle instructional formats. This suggests that there is not a one-size-fits-all approach to

supporting independent learners. Instead, code puzzle completion problems should be just

one of several independent learning resources available to goal-oriented learners. Future work

should investigate new types of independent resources for learning programming as well as

exploring how best to have several instructional formats work together to support learners.

Novice programming environments like Looking Glass, might provide multiple formats with

a range of scaffolding that enables users to obtain adequate support while pursuing their

interests. These formats might support users in learning interface mechanics, like tutorials.

Or instead, they might help users develop their near transfer skills like code puzzle completion

problems. Other alternative instructional formats might include remixing code [62, 71] or

providing hints or suggestions while users work on their own projects [79, 149].
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New approaches could also be developed that actively integrate with the learner’s goals,

rather than hope that the learner passively opts to complete a tutorial or puzzle. For example,

suggestions could be given to novices about how to improve their animation in Looking

Glass [79]. However, in order to utilize the suggestion, a code puzzle completion problem is

generated from the user’s current project with suggested adaptation in the project. In this

way, the learner is benefiting from using code puzzle completion problems, but is still actively

working towards their goal at the same time. Future work is needed to understand how the

inclusion of different instructional formats, like the one proposed above, might empower users

to improve their skills while making decisions based on their own goals.

Lastly, a majority of participants made a decision based on trying to discover which tasks were

appropriate for their skill level in the study from Chapter 5. Because this rationale appears to

be both important for users and commonplace, programming environment designers should

consider ways that enable participants to explore their abilities. We observed that in several

MOOCs and puzzle-like systems, users are not allowed to progress until they have finished

the current lesson or level. Giving users control to make their own decisions may better help

them meet their goals. But this does not come without risks. Users may feel discouraged after

failing to complete a task. However, as we observed in this study, many of the participants

who failed to complete a puzzle were driven to discover their mistake by using another

instructional format or by selecting an easier task.

6.3.2 Self-Directed Learning

Goal-oriented learners are responsible for directing their own learning. The design of code

puzzle completion problems assumes that learners will make their own choices about which

puzzles they complete and when to do so. Choosing learners’ tasks for them, or sharing task
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selection with them, are all possible alternatives to aid participants in better directing their

own learning.

In terms of choosing tasks for learners, systems could force learners to complete all tasks in a

predetermined order, like MOOCs, or personalize the order of the tasks to meet the needs of

that learner. Researchers have found that adapting or personalizing tasks, based on input

from the learner, leads to more efficient training and better transfer performance compared

to a predetermined sequence [34]. Unfortunately, predetermined sequences are not likely to

work well for goal-oriented learners due to the disconnect between their goals and the current

content. Personalization, may adapt better to the learners’ goals, however learners may find

the lack of choice as to how they spend their time less motivating [34].

Giving users control seems like the most promising approach for working with self-directed,

goal-oriented learners on code puzzle completion problems. Not only is control motivating [34]

for learners, but the effectiveness of task selection is also directly tied to whether learners

recognize they have control of their tasks [171]. Unfortunately, evidence suggests that having

learners select their own tasks can sometimes be ineffective [92, 202]. One solution is to give

self-directed learners advice about tasks selection [187]. The code puzzle completion problem

task selection could then be modified to advise users on which puzzles might benefit them

the most given their current skill level.

However, other research demonstrates that personalizing tasks to the learner and sharing

control for final task selection is both highly motivating and very effective [33, 35, 172]. For

code puzzle completion problems, this would mean instead of giving learners access to all 14

puzzles at once, the system decides on a smaller set of puzzles that are appropriate for the

current learner, and then lets the user pick the among the appropriate tasks. Ultimately, given

that prior research demonstrated that shared control led to higher learning outcomes and
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more invested effort into learning [36], code puzzle completion problems should be adapted

to utilize this approach. Future work is necessary to best realize how to personalize the code

puzzles to the expertise of the current user and then enabling users to select between those

puzzles. With control still in the learner’s hands, this approach may still align with our

goal-oriented learners. However, any exploration into using personalized and shared controlled

of code puzzle completion problems must carefully examine how this may additionally effect

goal-oriented learners’ motivations.

6.3.3 Self-Assessment & Scaffolding

Self-directed, goal-oriented learners, need to be able to assess their performance in order to

continue working to improve their skills [125]. In self-directed learning, learners must first

perform a task, assess their performance on that task, and lastly select their next task [125].

The evidence from the study in Chapter 5 suggests that learners do reflect and self assess

their abilities. The act of finishing a code puzzle completion problem or using the incremental

feedback indicator seemed to facilitate some self-assessment. Participants would often scale

back to easier puzzles, especially if they had difficulty completing harder ones.

Additional feedback will likely better help novices assess their current performance in code

puzzle completion problems. Future work should look into ways to support users when

they become stuck or fail to complete a puzzle. If the puzzle interface provides additional

scaffolding for when they get stuck, novices may be able to use the extra help as an additional

self-assessment opportunity. Further, the extra scaffolding may prevent feeling deflating after

failing a task.

Possible avenues for future scaffolding may be to provide hints for solving the puzzles. One

approach may be to use annotations in the animations to highlight a key principle. Lin
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et al. found that highlighting important pieces of an animation positively impacted learning,

cognitive load, and intrinsic motivation [114]. The code puzzle completion problem feedback

window could be modified to provide these annotations once users fail to make forward

progress on their puzzle. Similarly, the correct statements in the puzzle could be frozen in

place to reduce the learner from carelessly swapping statements, if they cannot figure out

what statement is causing the incorrect behavior in their output. Other avenues may be

to simply provide the solution to a puzzle if a user decides they cannot complete it. The

solution to the puzzle then becomes a worked example. From studying the worked example,

the learner can reflect on their misconceptions, which may help them realize and assess

their current skill level. The are other potential opportunities for providing scaffolding to

encourage self-assessment, however this is an area I leave for future work.

In this dissertation, I have reported on the developed of code puzzle completion problems and

the evaluations into their effectiveness as a tool for goal-oriented users to learn programming on

their own. This work demonstrates that code puzzle completion problems are an alternative

approach in supporting these independent learners. Middle school children successfully

completed more transfer tasks when training using the code puzzles compared to training

with tutorials. Participants also found the code puzzles to be more enjoyable and motivating,

and were more likely to opt to use puzzles over tutorials. However, I have only demonstrated

the early potential for this approach. Future work is absolutely necessary to refine code puzzle

completion problems to fully support middle school children who desire to learn programming,

but lack the resources at their school to do so.
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Appendix A

Initial Puzzle Interface

Figures A.1–A.8 show the puzzle interface and mechanics developed during the first formative

evaluation presented in Chapter 2.

[186]



Figure A.1: Upon opening a puzzle, participants are presented with the directions pane.
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Figure A.2: After closing the directions pane, this is the state of the puzzle interface. Initially,
all puzzle statements are located in the bin on the left side of the interface.
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Figure A.3: When users click the Play Correct button, this pane will play the correct
animation. Notice that the feedback indicator for the correct animation only shows white
squares; there is no colored feedback for playing the correct animation.
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Figure A.4: When a user clicks the Play Mine button, this pane will play the user’s animation,
which is the current state of the puzzle. If the animation is not yet correct, the feedback
indicator shows orange and gray squares.
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Figure A.5: A correctly completed puzzle.
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Figure A.6: When the user plays their animation, and it is correct, then the feedback indicator
shows all green dots.
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Figure A.7: When the user closes the play animation pane after correctly completing the
puzzle, the user is shown this feedback. They also receive this feedback if they click the Done
button when the puzzle is correct.
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Figure A.8: If the user clicks the Done button and the puzzle is not yet correct, they are
shown this dialog to encourage them to keep working on solving the puzzle.
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Appendix B

Initial Puzzle Curriculum

Table B.1 and Figures B.1–B.7 show the initial puzzle curriculum developed during the second

formative evaluation presented in Chapter 2.

Table B.1: The initial code puzzle curriculum contains six puzzles with an additional
introductory puzzle which emphasizes puzzle mechanics.

Puzzle Title Programming Constructs

0 Satellite Inspection puzzle mechanics
1 Dizzy Walrus Do in Order
2 Monkey Business Repeat
3 The Spooky Trick Do Together
4 Interstellar Travel Troubleshooting Repeat & Do Together
5 Shark Snack Do Together { Repeat }
6 Whack-a-Yeti Repeat { Do Together }
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Figure B.1: Satellite Inspection (0) is the introductory puzzle that encourages users to become
familiar with the puzzle interface and the mechanics of solving a puzzle.
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Figure B.2: The Dizzy Walrus (1) puzzle introduces sequential execution (Do in Order).
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Figure B.3: The Monkey Business (2) puzzle introduces learners to the Repeat programming
construct.
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Figure B.4: The Spooky Trick (3) puzzle introduces learners to the Do Together programming
construct.
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Figure B.5: The Interstellar Travel Troubleshooting (4) puzzle uses both the Repeat and Do
Together programming constructs in one puzzle.
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Figure B.6: The Shark Snack (5) puzzle exposes learners to nesting a Repeat block within a
Do Together block.
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Figure B.7: The Whack-a-Yeti (6) puzzle exposes learners to nesting a Do Together block
within a Repeat block.
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Appendix C

Revised Puzzle Interface

Figures C.1–C.11 show the revised puzzle interface presented in Chapter 2. The redesign

of the interface was done by Danielle Clemons. This version of the puzzle interface

is currently available within the Looking Glass programming environment. To down-

load Looking Glass, please visit https://lookingglass.wustl.edu/. The source code for

this revision is also available at https://github.com/lookingglass-coding/lookingglass-ide

or https://github.com/harmsk/puzzle-lookingglass.
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Figure C.1: In the activities panel of Looking Glass, users can now select puzzles as an
activity alongside programming their own 3D animations.
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Figure C.2: After selecting a puzzle in the puzzle selection pane (Figure C.1), users are shown
a preview of the animation before they decide to work on that puzzle.
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Figure C.3: After choosing to work on a puzzle, users first see the directions pane within the
puzzle interface.
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Figure C.4: This is the initial state of the puzzle after closing the directions pane.
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Figure C.5: When users click the Play Correct button, the play pane executes the correct
animation. Notice that the feedback indicator shows all white squares for each executed
statement.
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Figure C.6: After clicking the Play Mine button, the user can watch the output of the current
state of their puzzle. Notice that the feedback indicator shows that something is wrong with
the user’s current solution due to the presence of the orange dot.
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Figure C.7: A successfully completed puzzle.
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Figure C.8: After successfully completing the puzzle and clicking the Play Mine button, users
get feedback that shows that every statement in their program is in the correct location.
Notice that after all the feedback squares are green, a new Continue button is added to the
play pane. The continue button will then bring up the correct dialog (Figure C.9).
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Figure C.9: If the puzzle is complete, users are shown this pane after closing the play pane
or clicking on the Quit button.
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Figure C.10: If a user has not yet completed the puzzle and they click the Quit button, they
are shown this dialog to encourage them to continue working towards the solution.
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Figure C.11: Through additional testing we observed that many participants were very
resistant to give up on a puzzle that they were having trouble solving. After 12 minutes
this dialog is shown to users if they have not yet solved the puzzle. The dialog encourages
participants to take a break in an effort to reduce any frustration that they might be
experiencing.
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Appendix D

Revised Puzzle Curriculum

Table D.1 and Figures D.1–D.14 show the revised puzzle curriculum presented in Chapter 2.
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Table D.1: The revised code puzzle completion problem curriculum.

Puzzle Title Programming Constructs

1 Dizzy Walrus Do in Order
2 Hammer Hazard Repeat
3 Monkey Business Repeat
4 Yeti Baseball Do Together
5 The Snow Dance Do Together
6 Messed Up Magic Do Together
7 Interstellar Travel Troubleshooting a Repeat & Do Together
8 Trouble at Sea Repeat { Repeat }
9 Shark Snack Do Together { Repeat }
10 Crazy Cauldron Repeat { Do Together }
11 Whack-a-Yeti Repeat { Do Together }
12 Firetruck Frenzy Do Together { Do in Order }
13 Air Traffic Do Together { Do in Order }
14 Polar Surprise Do Together { Do in Order }

a Later renamed Space Mechanic in the public release.
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Figure D.1: The Dizzy Walrus (1) puzzle introduces learners to sequential execution.
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Figure D.2: The Hammer Hazard (2) puzzle introduces learners to the Repeat programming
construct.
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Figure D.3: The Monkey Business (3) puzzle enables learners to practice with the Repeat
programming construct.
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Figure D.4: The Yeti Baseball (4) puzzle introduces learners to the Do Together programming
construct.
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Figure D.5: The Snow Dance (5) puzzle reinforces the Do Together construct and demonstrates
that blocks may contain more than two statements.
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Figure D.6: The Messed Up Magic (6) puzzle enable learners to practice using the Do Together
programming construct.
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Figure D.7: In the Interstellar Travel Troubleshooting (7) puzzle, learners practice using
both Repeat and Do Together programming constructs within the same program. Note: This
puzzle was later renamed Space Mechanic in the version released in Looking Glass.
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Figure D.8: The Trouble at Sea (8) puzzle introduces learners to nesting a Repeat block inside
of a Repeat block.
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Figure D.9: The Shark Snack (9) puzzle introduces learners to nesting a Repeat block inside
of a Do Together block.
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Figure D.10: The Crazy Cauldron (10) puzzle enables learners to practice nesting a Do
Together block inside of a Repeat block.
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Figure D.11: The Whack-a-Yeti (11) puzzle introduces learners to nesting a Do Together
block inside of a Repeat block.
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Figure D.12: The Firetruck Frenzy (12) puzzle introduces learners to nesting a Do in Order
block inside of a Do Together block.
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Figure D.13: The Air Traffic (13) puzzle enables learners to practice nesting a Do in Order
block inside of a Do Together block.
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Figure D.14: The Polar Surprise (14) puzzle further reinforces nesting a Do in Order block
inside of a Do Together block.
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Appendix E

Summative Evaluation I Materials

Figures E.1–E.24 are the materials used in the summative evaluation presented in Chapter 3.
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COMPUTING HISTORY SURVEY 
 
 
1. How old are you? ____________________________________ 
 
2. What is your current grade in school?  ____________ 
 
3. What is your gender? (choose one) 

a) Female 
b) Male 
c) Not specified 

 
4. What kind of school do you go to? (choose one) 

a) Public school 
b) Private school 
c) Home-schooled 

 
5. Have you ever coded or written a computer program? (choose one) 

a) Don’t know 
b) Yes 
c) No 
 

6. How would you characterize your coding or computer programming experience? (choose one) 
a) No coding or programming experience. 
b) I have coded or programmed a few times as part of an activity. 
c) I enjoy coding or programming in my free time. 
d) I’m not sure. 
e) Other: _______________________________________ 

 
7. Have you ever used the following computer coding or programming software? (circle all that apply) 

a) Hopscotch 
b) LEGO Mindstorms 
c) Looking Glass or Alice 
d) Robotics 
e) Scratch 
f) Programming languages (examples: Javascript, Python, C++, Java, Visual Basic, C#) 
g) None 
h) Other Coding or Programming Software: ______________________ 

 
8. Have you participated in the following coding or programming activities? (circle all that apply) 

a) Hour of code. (code.org) 
b) CoderDojo. (coderdojo.com) 
c) Coding or programming at school as part of a classroom activity. 
d) A coder or programmer camp or after school workshop. 
e) Coding or programming at an event (examples: scouting, academy of science, science center) 
f) I code or program a computer at home. 
g) Looking Glass research study. (Not including today) 
h) None – I have never participated in a programming activity. 
i) Other: ________________________________________ 

 
9. Have you spent more than three hours coding or programming a computer in your life?? (choose one) 

a) Don’t know 
b) Yes 
a) No 

 

Figure E.1: Pre-study computing history survey.
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E.1 Training Phase

E.1.1 Control Condition: Tutorials

Figure E.2: Training task instruction sheet for the control condition.
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Figure E.3: Tutorial steps window.
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Figure E.4: Control training familiarization task. Initial state of each tutorial (top); completed
state of tutorial (bottom).
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E.1.2 Experimental Condition: Puzzles

Figure E.5: Training task instruction sheet for the experimental condition.
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Figure E.6: Experimental training familiarization task. Initial state of each puzzle (top);
completed state of puzzle (bottom).
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E.1.3 Training Tasks

Figure E.7: Training task survey. After each training task, participants complete this survey.
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Figure E.8: Training task 1. Completed control (top) and experimental (bottom) tasks.
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Figure E.9: Training task 2. Completed control (top) and experimental (bottom) tasks.
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Figure E.10: Training task 3. Completed control (top) and experimental (bottom) tasks.
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Figure E.11: Training task 4. Completed control (top) and experimental (bottom) tasks.
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Figure E.12: Training task 5. Completed control (top) and experimental (bottom) tasks.
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Figure E.13: Training task 6. Completed control (top) and experimental (bottom) tasks.
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Figure E.14: This dialog is shown to participants if they have not completed the training
task within the allotted time.
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LOOKING GLASS SURVEY 

 
For each of the following statements, please indicate how true it is for you, using the following scale: 
 

1 2 3 4 5 6 7 
not at 

all true 
  somewhat 

true 
  very 

true 
 

 (not at 
all true) 

  (some-
what true) 

  (very 
true) 

 1 2 3 4 5 6 7 

While I was completing the tasks I was thinking about how 
much I enjoyed it. 

       

I did not feel nervous at all about completing the tasks.        

I felt that it was my choice to complete the tasks.        

I think I am pretty good at completing the tasks.        

I found completing the tasks interesting.        

I felt tense while completing the tasks.        

I think I did pretty well completing the tasks, compared to 
others. 

       

Completing the tasks was fun.        

I felt relaxed while completing the tasks.        

I enjoyed completing the tasks very much.        

I didn't really have a choice about completing the tasks.        

I am satisfied with my performance at completing the 
tasks. 

       

I was anxious while completing the tasks.        

I thought completing the tasks was boring.        

I felt like I was doing what I wanted to do while I was 
working on completing the tasks. 

       

I felt pretty skilled at completing the tasks.        

I thought completing the tasks was very interesting.        

I felt pressured while completing the tasks.        

I felt like I had to complete the tasks.        

I would describe completing the tasks as very enjoyable.        

I completed the tasks because I had no choice.        

After completing the tasks for awhile, I felt pretty 
competent. 

       

Figure E.15: After completing all training tasks, participants complete the Task Evaluation
Questionnaire.
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E.2 Transfer Phase

Figure E.16: Transfer task instruction sheet.
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Figure E.17: Onscreen transfer task instructions. This window shows the correct output for
each transfer task.

[248]



Figure E.18: Transfer familiarization task. Initial state of each transfer task (top); completed
state of transfer task (bottom).
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E.2.1 Transfer Tasks

Figure E.19: Transfer task survey. After each transfer task, participants complete this survey.
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Figure E.20: Repeat transfer task. Initial state (top) and completed state (bottom).
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Figure E.21: Do Together transfer task. Initial state (top) and completed state (bottom).
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Figure E.22: Repeat { Do Together } transfer task. Initial state (top) and completed state
(bottom).

[253]



Figure E.23: Do Together { Repeat } transfer task. Initial state (top) and completed state
(bottom).
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Figure E.24: This dialog is shown to participants if they have not completed the transfer
task within the allotted time.
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Appendix F

Summative Evaluation II Materials

Figures F.1–F.36 are the materials used in the summative evaluation presented in Chapter 4.
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Programming Experience Survey 
 
1. How old are you? ____________________________________ 
 
2. What is your current grade in school?  ____________ 
 
3. What is your gender? 

☐ Female 

☐ Male 

☐ Not specified 
 
4. What kind of school do you go to? 

☐ Public school 

☐ Private school 

☐ Home-schooled 
 
5. Have you ever participated in a Looking Glass or Animated Movie study? 

☐ Don’t Know 

☐ Yes 

☐ No 
 
6. Have you ever programmed a computer? Have you ever coded before? Have you ever 

coded or written a computer program? 

☐ Don’t know 

☐ No 

☐ Yes 
 
7. Has anyone ever taught you about programming or coding? 

☐ Don’t know 

☐ No 

☐ Yes 
 
8. Have you ever taken a class or attended a camp or workshop where you learned to code 

or program?  

☐ Don’t know 

☐ No 

☐ Yes 
 
9. Have you spent more than 3 hours total coding or programming before? 

☐ Don’t know 

☐ No 

☐ Yes 

Figure F.1: Pre-study computing history survey.
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Followup 
 
 
1. Have you ever participated in a Looking Glass or Animated Movie study? 

☐ Don’t Know 

☐ Yes 

☐ No 
 
2. Have you ever programmed a computer? Have you ever coded before? Have you ever 

coded or written a computer program? 

☐ Don’t know 

☐ No 

☐ Yes 

↳Where did you code? (example: class, camp) 

 
 
 

 
3. Has anyone ever taught you about programming or coding? 

☐ Don’t know 

☐ No 

☐ Yes 

↳Who taught you? (example: teacher, parent) 

 
 
 

 
4. Have you ever taken a class or attend a camp or workshop where you learned to code or 

program?  

☐ Don’t know 

☐ No 

☐ Yes 

↳How long did it last? (example: 1 day, 1 semester) 

 
 

 
5. What types of things have you coded or programmed before? Leave blank if you don’t 

know. (example: played a game on code.org, created animation in Scratch, programmed 
a robot) 

Figure F.2: Follow-up pre-study computing history survey completed by a researcher during
the follow-up interview.
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LIST OF PROGRAMMING SOFTWARE 
 code.org 

 Scratch 

 App Inventor 

 LEGO Mindstorms 

 Alice 

 Looking Glass 

 Hopscotch 

 Greenfoot 

 Eclipse 

 Visual Studio 

 Netbeans 

LIST OF PROGRAMMING LANGUAGES 
 Javascript 

 Python 

 C++ 

 Java 

 Visual Basic 

 C# 

 Ruby 

 Processing 

 Node.js 

LIST OF PROGRAMMING ACTIVITIES 
 Hour of Code 

 CoderDojo 

 Programming class 

 Programming activity in class 

 Afterschool programming activity 

 Programming workshop (example: Boy Scouts or Girl Scouts) 

 Programming camp 

 Programming a robot 

 Making a Mindcraft Mod 

Figure F.3: Reference sheet for completing the two pre-study surveys.
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F.1 Training Phase

3 Reset, if you want to start over.

If you can't figure out the puzzle, 
you can Quit to move to the next
task.

4

2 Play the animation to check your 
work.

1 Follow these directions.

Figure F.4: Instruction sheet for the training phase. Participants were able to reference this
sheet for all training tasks.
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Figure F.5: Training familiarization task. Initial state (top); completed state (bottom).
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Figure F.6: Training task survey. After each training task, participants complete this survey.
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Figure F.7: This dialog is shown to participants if they have not completed the training task
within the allotted time.
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F.1.1 Control Training Tasks: No Distractors

None of the training tasks in the control condition contain distractors. Notice in Fig-

ures F.8–F.13 that in the completed state there are no statements in the unused statement

bin on the left.
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Figure F.8: Control training task 1. Initial state (top); completed state (bottom).
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Figure F.9: Control training task 2. Initial state (top); completed state (bottom).
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Figure F.10: Control training task 3. Initial state (top); completed state (bottom).
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Figure F.11: Control training task 4. Initial state (top); completed state (bottom).
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Figure F.12: Control training task 5. Initial state (top); completed state (bottom).
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Figure F.13: Control training task 6. Initial state (top); completed state (bottom).
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F.1.2 Experimental Training Tasks: Distractors

All of the training tasks in the experimental condition contain distractors. Notice in Fig-

ures F.14–F.19 that in the completed state there are ‘leftover’ statements in the unused

statement bin on the left.

[271]



Figure F.14: Distractors training task 1. Initial state (top); completed state (bottom).
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Figure F.15: Distractors training task 2. Initial state (top); completed state (bottom).
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Figure F.16: Distractors training task 3. Initial state (top); completed state (bottom).
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Figure F.17: Distractors training task 4. Initial state (top); completed state (bottom).
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Figure F.18: Distractors training task 5. Initial state (top); completed state (bottom).
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Figure F.19: Distractors training task 6. Initial state (top); completed state (bottom).
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F.1.3 Post Training Task Surveys

Puzzles

The Snow Dance Monkey Business

Trouble at Sea

Whack-a-Yeti Shark Snack

Treasure Guardians

Figure F.20: Before completing the following training phase surveys, we gave participants
this reminder sheet.
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The following questions refer to only to the last 6 puzzles that you completed.
 
Circle the answer that best represents your overall impression of these puzzles.

In completing these puzzles I invested:

How easy or difficult were these puzzles?

Figure F.21: Overall cognitive load survey for all training tasks.
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Instructions: 

All of the following questions refer only to the last 6 puzzles 

that you just finished. Answer each question by choosing a 

number that best represents how you felt.

 n
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The topics covered in the activity were very complex. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

The activity covered program code that I perceived as very complex. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
The activity covered concepts and definitions that I perceived as very 
complex. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

The instructions and/or explanations during the activity were very unclear. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
The instructions and/or explanations were, in terms of learning, very 
ineffective. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

The instructions and/or explanations were full of unclear language. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

The activity really enhanced my understanding of the topic(s) covered. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
The activity really enhanced my knowledge and understanding of 
computing / programming. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
The activity really enhanced my understanding of the program code 
covered. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
The activity really enhanced my understanding of the concepts and 
definitions. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

Figure F.22: CS CLCS for the training phase.
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F.2 Transfer Phase

Raise your hand.4

1

2

3

Figure F.23: Mechanics instruction sheet for the transfer phase. Participants were able to
reference this sheet for all transfer tasks.
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Figure F.24: Transfer mechanics familiarization task. Initial state (top); completed state
(bottom).

[282]



Figure F.25: Transfer mechanics familiarization task solution. Participants are given this
solution sheet to correct their mistakes in the mechanics familiarization task before moving
on to the second familiarization task.

[283]



3 Complete the task.

Re-check the Instructions.4

1 Read the Task Instructions.

2 Read the Animation 
Instructions.

Click Done when finished.5

Play Mine 

Play Correct

Figure F.26: Transfer task instruction sheet. Participants were able to reference this sheet
for all transfer tasks.
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Figure F.27: Onscreen transfer task instructions. This window shows the correct output for
each transfer task. This window is shown for all transfer tasks.
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Figure F.28: Transfer instructions familiarization task. Initial state (top); completed state
(bottom).
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Figure F.29: Transfer task survey. After each transfer task, participants complete this survey.
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Figure F.30: This dialog is shown to participants if they have not completed the transfer
task within the allotted time.
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F.2.1 Transfer Tasks

Figures F.31–F.33 show initial and completed state of each transfer task.
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Figure F.31: Do Together { Repeat } transfer task. Initial state (top) and completed state
(bottom).
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Figure F.32: Repeat { Do Together } transfer task. Initial state (top) and completed state
(bottom).
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Figure F.33: Repeat { Repeat } transfer task. Initial state (top) and completed state (bottom).

[292]



F.2.2 Post Transfer Task Surveys

Fishing Lessons

Hungry Monkey Balloon Testing

Tasks

Figure F.34: Before completing the following transfer phase surveys, we gave participants
this reminder sheet.
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The following questions refer to only to the last 3 tasks that you completed.
 
Circle the answer that best represents your overall impression of these tasks.

In completing these tasks I invested:

How easy or difficult were these tasks?

Figure F.35: Overall cognitive load survey for all transfer tasks.
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Instructions: 

All of the following questions refer only to the last 3 tasks 

that you just finished. Answer each question by choosing a 

number that best represents how you felt.

 n
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The topics covered in the activity were very complex. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

The activity covered program code that I perceived as very complex. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
The activity covered concepts and definitions that I perceived as very 
complex. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

The instructions and/or explanations during the activity were very unclear. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
The instructions and/or explanations were, in terms of learning, very 
ineffective. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

The instructions and/or explanations were full of unclear language. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

The activity really enhanced my understanding of the topic(s) covered. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
The activity really enhanced my knowledge and understanding of 
computing / programming. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
The activity really enhanced my understanding of the program code 
covered. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
The activity really enhanced my understanding of the concepts and 
definitions. ⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

Figure F.36: CS CLCS for the transfer phase.
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Appendix G

Summative Evaluation III Materials

Figures G.1–G.24 are the materials used in the summative evaluation presented in Chapter 5.

Additionally, Section G.1 contains the semi-structured interviews used in the evaluation.
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COMPUTING HISTORY SURVEY 
 
 
1. How old are you? ____________________________________ 
 
2. What is your current grade in school?  ____________ 
 
3. What is your gender? (choose one) 

a) Female 
b) Male 
c) Not specified 

 
4. What kind of school do you go to? (choose one) 

a) Public school 
b) Private school 
c) Home-schooled 

 
5. Have you ever participated in a Looking Glass study or event? (choose one) 

a) Don’t Know 
b) Yes 
c) No 

 
6. Have you ever coded or written a computer program? (choose one) 

a) Don’t know 
b) Yes 
c) No 

 
7. Have you ever used the following computer coding or programming software? (circle all that apply) 

a) code.org 
b) Scratch 
c) LEGO Mindstorms 
d) Looking Glass or Alice 
e) Hopscotch 
f) Robotics 
g) Programming languages (examples: Javascript, Python, C++, Java, Visual Basic, C#) 
h) None 
i) Other: ________________________________________ 

 
8. Have you participated in the following coding or programming activities? (circle all that apply) 

a) Hour of code. (code.org) 
b) CoderDojo. (coderdojo.com) 
c) Coding or programming at school as part of a classroom activity. 
d) A coder or programmer camp or after school workshop. 
e) Coding or programming at an event (examples: scouting, academy of science, science center) 
f) I code or program a computer at home. 
g) None – I have never participated in a programming activity. 
h) Other: ________________________________________ 

 
9. Have you spent more than three (3) hours coding or programming a computer in your life? (choose one) 

a) Don’t know 
b) Yes 
a) No 

 

Figure G.1: Pre-study computing history survey.
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G.1 Semi-Structured Interviews

G.1.1 Interview Materials

Figure G.2: During the semi-structured interviews, participants could refer back to this sheet
to help remind them about the instructional tasks.
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1 2 3 4 5 6 7 8 9

1 2 3 4 5

Figure G.3: Several interview questions ask participants to rank their expertise or task
difficulty. Participants are shown this sheet when they are asked these questions.
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G.1.2 Pre-Study Interview

1. How good would you say you are at computer programming or coding?

2. Show participant Figure G.3. How would you rate your current programming or coding

expertise? why?

3. Show participant Figure G.3. Do you feel that you can get to the next level, ?

(a) If yes, How do you think you might do that?

4. How confident are you that you can program the things you want to create?

G.1.3 Post-Task Interview

1. How was it?

2. Did you enjoy doing the tutorial/puzzle? why?

3. What was the best part of the doing the tutorial/puzzle?

4. What was the worst part of the doing the tutorial/puzzle?

5. Do you feel the tutorial/puzzle was useful or helpful to you? why?

6. Was the experience of completing the tutorial/puzzle valuable to you in any way? why?

7. Did you learn anything new or did you acquire any new skills while doing the tuto-

rial/puzzle?

(a) If yes, Did you know about x or use x before this, or is this your first time?

(b) Did it help you better understand x? Do you feel you gained more experience with

x?
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8. What different skills do you think you might have learned if you had done this animation

as a puzzle/tutorial instead?

9. Show participant Figure G.3. How easy or difficult did you think this tutorial/puzzle

was going to be before you started it? why?

10. Show participant Figure G.3. Now that you’ve finished it, how easy or difficult would

you say this tutorial/puzzle actually was? why?

11. Show participant Figure G.3. How easy or difficult do you think this have been if you

had done it instead as a puzzle/tutorial?

12. Was this tutorial/puzzle in any way frustrating or rewarding? why?

13. Show participant Figure G.2. You ranked your last tutorial/puzzle as . You rank

this tutorial/puzzle as ? What made the last one , but this one ?

14. Why did you pick to do this animation as a tutorial/puzzle instead of a puzzle/tutorial?

15. Why did you pick this specific animation?

16. What do you think you will do next, a tutorial or puzzle? why?

G.1.4 Early Termination Interview

1. Why did you decide to go do something else?

2. Show participant Figure G.3. How easy or difficult did you think this tutorial/puzzle

was going to be before you started it? why?

3. Show participant Figure G.3. How easy or difficult would you say this tutorial/puzzle

actually was? why?
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4. Show participant Figure G.3. How easy or difficult do you think this have been if you

had done it instead as a puzzle/tutorial?

5. What do you think you will pick next, a tutorial or a puzzle? why?

G.1.5 Post-Study Interview

1. Which do you enjoy more, puzzles or tutorials? why?

2. What makes a tutorial experience different than the puzzle experience?

3. What makes a puzzle experience different than the tutorial experience?

4. Do you feel you learn different things from the tutorials and puzzles?

(a) If yes, What did you learn from the puzzles? What did you learn from the

tutorials?

5. When is it better to to use tutorials on your own?

6. When is it better to to use puzzles on your own?

7. If a friend with no programming experience were to ask you for advice on how to get

started using Looking Glass to make their own animations, what advice would you give

them about when they should use tutorials and puzzles?

8. If a friend with some programming experience were to ask you for advice on how to get

started using Looking Glass to make their own animations, what advice would you give

them about when they should use tutorials and puzzles?

9. Show participant Figure G.3. Earlier you rated your expertise as ? How would

you rate your current programming or coding expertise now?
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(a) Do you feel that you can get to the next level, ?

i. If yes, How do you think you might do that?

10. Show participant Figure G.2. What was the most rewarding tutorial that you did

today? What made it rewarding?

11. Show participant Figure G.2. What was the most rewarding puzzle that you did today?

What made it rewarding?

12. Show participant Figure G.2. What was the most frustrating tutorial that you did

today? What made it frustrating?

13. Show participant Figure G.2. What was the most frustrating puzzle that you did today?

What made it frustrating?

14. Show participant Figure G.2. What was the easiest puzzle that you did today? What

made it easy?

15. Show participant Figure G.2. What was the easiest tutorial that you did today? What

made it easy?

16. Show participant Figure G.2. What was the hardest puzzle that you did today? What

made it hard?

17. Show participant Figure G.2. What was the hardest tutorial that you did today? What

made it hard?

18. What are you more likely to do on your own, the tutorials, puzzles, or both? why?

19. Is there anything else you might like to tell me?
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G.2 Familiarization Tasks

Participants were asked to complete two familiarization tasks. Participants were randomly

assigned to either complete the first one as a puzzle and the second as a tutorial or the first

one as a tutorial and the second one as a puzzle.
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Figure G.4: Completed familiarization task 1 as a tutorial (top) or puzzle (bottom).
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Figure G.5: Completed familiarization task 2 as a tutorial (top) or puzzle (bottom).
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G.3 Instructional Tasks

After completing the two familiarization tasks, participants selected 6 instructional tasks to

complete out of the 14. For each instructional task, participants decided whether to complete

the task as a tutorial or as a puzzle.

Figure G.6: Instructional task format selection. For each instructional task (×6) participants
first select whether they want work on a tutorial or puzzle.
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Figure G.7: After selecting a format in Figure G.6, participants then select an animation that
they wish to complete as tutorial (top) or puzzle (bottom). Participants are free to change
their format selection by selecting the Tutorials or Puzzles button in the left panel.
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Figure G.8: List of the 14 instructional tasks as tutorials (top) and puzzles (bottom). Each
task is numbered and lists its title, programming skills, and difficulty.
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Figure G.9: Instructional task 1. Completed as a tutorial (top) or as a puzzle (bottom).
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Figure G.10: Instructional task 2. Completed as a tutorial (top) or as a puzzle (bottom).

[311]



Figure G.11: Instructional task 3. Completed as a tutorial (top) or as a puzzle (bottom).
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Figure G.12: Instructional task 4. Completed as a tutorial (top) or as a puzzle (bottom).
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Figure G.13: Instructional task 5. Completed as a tutorial (top) or as a puzzle (bottom).
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Figure G.14: Instructional task 6. Completed as a tutorial (top) or as a puzzle (bottom).
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Figure G.15: Instructional task 7. Completed as a tutorial (top) or as a puzzle (bottom).
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Figure G.16: Instructional task 8. Completed as a tutorial (top) or as a puzzle (bottom).
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Figure G.17: Instructional task 9. Completed as a tutorial (top) or as a puzzle (bottom).

[318]



Figure G.18: Instructional task 10. Completed as a tutorial (top) or as a puzzle (bottom).
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Figure G.19: Instructional task 11. Completed as a tutorial (top) or as a puzzle (bottom).
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Figure G.20: Instructional task 12. Completed as a tutorial (top) or as a puzzle (bottom).
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Figure G.21: Instructional task 13. Completed as a tutorial (top) or as a puzzle (bottom).
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Figure G.22: Instructional task 14. Completed as a tutorial (top) or as a puzzle (bottom).
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G.4 Post-Study Surveys

After completing the instructional tasks and after the post-study interview, we asked partici-

pants to complete two task evaluation questionnaires: one for puzzles and one for tutorials.

The order in which the two surveys were completed was decided by each participant.
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LOOKING GLASS TUTORIAL SURVEY 

For each of the following statements, please indicate how true it is for you, using the following scale: 
 

1 2 3 4 5 6 7 
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all true 
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true 
  very 

true 
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 1 2 3 4 5 6 7 

While I was working on the tutorials I was thinking about how much I 
enjoyed it. 

       

I did not feel at all nervous about doing the tutorials.        

I felt that it was my choice to do the tutorials.        

I think I am pretty good at these tutorials.        

I found the tutorials very interesting.        

I felt tense while doing the tutorials.        

I think I did pretty well at the tutorials, compared to other students.        

Doing the tutorials was fun.        

I felt relaxed while doing the tutorials.        

I enjoyed doing the tutorials very much.        

I didn’t really have a choice about doing the tutorials.        

I am satisfied with my performance at these tutorials.        

I was anxious while doing the tutorials.        

I thought the tutorials were very boring.        

I felt like I was doing what I wanted to do while I was working on the 
tutorials. 

       

I felt pretty skilled at these tutorials.        

I thought the tutorials were very interesting.        

I felt pressured while doing the tutorials.        

I felt like I had to do the tutorials.        

I would describe the tutorials as very enjoyable.        

I did the tutorials because I had no choice.        

After working at these tutorials for awhile, I felt pretty competent.        

 

Figure G.23: Task Evaluation Questionnaire for tutorials.
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LOOKING GLASS PUZZLE SURVEY 

For each of the following statements, please indicate how true it is for you, using the following scale: 
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 1 2 3 4 5 6 7 

While I was working on the puzzles I was thinking about how much I 
enjoyed it. 

       

I did not feel at all nervous about doing the puzzles.        

I felt that it was my choice to do the puzzles.        

I think I am pretty good at these puzzles.        

I found the puzzles very interesting.        

I felt tense while doing the puzzles.        

I think I did pretty well at the puzzles, compared to other students.        

Doing the puzzles was fun.        

I felt relaxed while doing the puzzles.        

I enjoyed doing the puzzles very much.        

I didn’t really have a choice about doing the puzzles.        

I am satisfied with my performance at these puzzles.        

I was anxious while doing the puzzles.        

I thought the puzzles were very boring.        

I felt like I was doing what I wanted to do while I was working on the 
puzzles. 

       

I felt pretty skilled at these puzzles.        

I thought the puzzles were very interesting.        

I felt pressured while doing the puzzles.        

I felt like I had to do the puzzles.        

I would describe the puzzles as very enjoyable.        

I did the puzzles because I had no choice.        

After working at these puzzles for awhile, I felt pretty competent.        

 

Figure G.24: Task Evaluation Questionnaire for puzzles.
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