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ABSTRACT OF THE DISSERTATION 

Intraurban Spatiotemporal Variability of Ambient Air Pollutants across Metropolitan St. Louis 

By 

Li Du 

Doctor of Philosophy in Energy, Environmental & Chemical Engineering 

Washington University in St. Louis, 2015 

Professor Jay R. Turner, Chair 

 

Ambient air monitoring networks have been established in the United States since the 1970s to 

comply with the Clean Air Act. The monitoring networks are primarily used to determine 

compliance but also provide substantive support to air quality management and air quality 

research including studies on health effects of air pollutants. The Roxana Air Quality Study 

(RAQS) was conducted at the fenceline of a petroleum refinery in Roxana, Illinois.  In addition 

to providing insights into air pollutant impacts from the refinery, these measurements increased 

the St. Louis area monitoring network density for gaseous air toxics and fine particulate matter 

(PM2.5) speciation and thus provided an opportunity to examine intraurban spatiotemporal 

variability for these air quality parameters. 

 

This dissertation focused on exploring and assessing aspects of ambient air pollutant 

spatiotemporal variability in the St. Louis area from three progressively expanded spatial scales 

using a suite of methods and metrics.  RAQS data were used to characterize air quality 

conditions in the immediate vicinity of the petroleum refinery.  For example, PM2.5 lanthanoids 

were used to track impacts from refinery fluidized bed catalytic cracker emissions.  RAQS air 

toxics data were interpreted by comparing to network data from the Blair Street station in the 



xiii 
 

City of St. Louis which is a National Air Toxics Trends Station.   Species were classified as 

being spatially homogeneous (similar between sites) or heterogeneous (different between sites) 

and in the latter case these differences were interpreted using surface winds data.  For PM2.5 

species, there were five concurrently operating sites in the St. Louis area - including the site in 

Roxana - which are either formally part of the national Chemical Speciation Network (CSN) or 

rigorously follow the CSN sampling and analytical protocols.  This unusually large number of 

speciation sites for a region the size of St. Louis motivated a detailed examination of these data.  

Intraurban spatiotemporal variability for certain species was evaluated in the context of 

measurement error.  For example, for species otherwise considered homogeneous, differential 

impacts from local point sources at different locations could be identified after comparing the 

observed day-to-day variations to those contributed by measurement error.  In addition, source 

apportionment modeling was conducted using single- and multi-site datasets to assign measured 

PM2.5 mass to emission source categories.  A suite of approaches were used to aid in the 

selection of an appropriate number of factors including metrics recently added to the US EPA 

Positive Matrix Factorization (EPA PMF) modeling software and the sensitivity of modeling 

results to perturbations on the measurement uncertainties.   
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Chapter 1 : Introduction 

1.1. Introduction 

1.1.1. Air Pollutant Spatial Variability 

An understanding of air pollutant spatial variability is important for effective air quality 

management and to support health effects studies.  In the latter case, many 

epidemiological studies have indicated adverse health effects, including mortality and 

morbidity, from exposure to ambient particulate matter (PM) and air toxic compounds 

(Dockery et al., 1993; Pope et al., 1995; Woodruff et al., 1998; Zanobetti et al., 2003). 

Early ambient PM epidemiological studies focused on ambient PM mass concentration 

and used data from a single monitoring site (typically called the “central” site) to 

represent population exposures over relatively large study areas (Pope et al., 2002; Roosli 

et al., 2001; Zanobetti et al., 2003) while other studies simply averaged the 

concentrations monitored at multiple sites over the study area to estimate human 

exposure (Burnett et al., 2001).  These approaches assumed the ambient PM mass was 

homogeneously distributed across the study area (or at least nearly so).  In some cases 

this approach appears justified because the pollutant of interest is nearly homogeneous or 

at least well correlated (Burton et al., 1996; Pope et al., 2002).  However, in other cases 

the spatial variability can be relatively large and lead to potential misclassification of 

exposure levels based on the homogenous distribution assumption (Ito et al., 2004; Pinto 

et al., 2004; Zhu et al., 2002). Therefore, considerable effort has focused on developing 

more sophisticated approaches to estimating exposures including, but not limited to, 

developing a better understanding of the spatial variability of the pollutants of concern.   
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There are several factors that could influence spatial variability of PM on urban and finer 

spatial scales.  Pinto et al. (2004) has grouped the factors into six categories: 

 local sources of primary PM (i.e. PM emitted directly from emission sources); 

 transient emission events that differentially impact some sites more than others; 

 differences in the behavior of semi-volatile components; 

 topographical barriers separating sites; 

 meteorological phenomena; and 

 measurement error. 

Spatial variability is usually driven by factors from one or more of these categories. A 

variety of metrics have been developed to characterize spatiotemporal variability. Table 

1-1 lists the most commonly used metrics and their advantages and disadvantages.  The 

metrics listed in this table can be classified into two categories. The first category 

includes descriptive statistics such as the Pearson correlation coefficient, coefficient of 

variance, coefficient of divergence and absolute concentration difference.  The second 

category includes tools such as the conditional probability function (CPF) and non-

parametric wind regression (NWR) which characterize the wind direction dependence of 

pollutant concentrations. Applying these latter tools to several monitoring sites within the 

area can lead to the identification of emission source zones and spatial variability can be 

inferred. Based on a survey of numerous previous studies (Houthuijs et al., 2001; Pakbin 

et al., 2010; Wang et al., 2011; Wilson and Suh, 1997), it is clear that PM spatial 

homogeneity and heterogeneity are typically investigated using several metrics because 

each metric captures only some aspects of spatial variability and may not necessarily be 

adequate to characterize its full scope. However, the spatial variability introduced by 
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measurement error has been inadequately characterized. Measurement error may have 

significant confounding effects on some of the metrics and lead to potential 

misinterpretation of spatial variability (Haddad, 2015).  Thus, considerable effort needs to 

be taken in advancing the understanding of spatial variability when using commonly 

applied statistical metrics in the presence of measurement error. 

Spatiotemporal variability is commonly assessed using monitoring data collected at 

receptor sites.  The generalized source-receptor relationship is C(x,t) = D(x,t)E(t) where C 

Table 1-1. Metrics to characterize intraurban spatial variability. 

Metric Description Advantages Disadvantages 
Pearson 
correlation 
coefficient   

A measure of correlation 
between two variables with 
the value from -1 to +1. 
Values close to 0 indicate 
lower correlation.  

Tracks temporal variation 
between two datasets. 

Not representative for 
spatial variability. Only 
tracks the correlation 
for site pairs.  

Coefficient of 
Divergence 

Quantifies concentration 
difference between two 
sites. Values are bounded by 
0 and 1 with 0 representing 
perfect homogeneity. 

Accounts for spatial 
variability. 

Only available for the 
analysis for site pairs. 
Does not track temporal 
variability 

Coefficient of 
variation 

Quantifies the variation 
compared to the mean. 
Larger values indicate larger 
variation. 

Tracks spatial variability. 
Can be applied to multiple 
sites across a region. 

Does not track temporal 
variability. 
 

Absolute 
concentration 
difference 

Calculated as the 
concentration difference 
measured at two locations. 

Simple and direct measure 
metric of characterizing 
spatial variability. 

Usually requires time 
averaging and may lose 
some of the temporal 
information. Only 
available for site pairs. 

Conditional 
probability 
function 

Estimates the probability 
that the frequency of high 
contributions from sources 
in given wind direction 
exceeds a predetermined 
threshold value. 

Determines the bearing of 
potential pollution sources. 

Threshold value of 
probability needs be 
predetermined. Time-
resolution of pollutant 
monitoring and wind 
data should match. 

Non-parametric 
wind regression 

Quantifies the relation 
between pollutant 
concentration and wind 
direction without making 
any assumption of the data 
or functional dependence 
between the variables. 

Determines the bearing of 
potential pollution sources. 
Independent of any 
assumption regarding the 
concentration distribution of 
pollutants. 

Selection of smoothing 
factor needs to be 
carefully examined. 
Sensitive to 
concentration outliers. 
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is the concentration at the receptor, D is the dispersion and E is the source emission rate.  

Concentrations observed at a receptor are modulated by variations in both the emission 

source strength and dispersion characteristics.  Emission rate fluctuations lead to 

temporal variability while changes in dispersion (which depend on emission source 

characteristics such as stack height, meteorological conditions, and atmospheric 

processes) influence both spatial and temporal variability.  For example, a short-term 

decrease in pollutant concentration at a receptor might arise from a transient in the source 

emission rate, an increase in dispersion because of changes in wind speed or mixing 

height, or a wind shift that decreases or even eliminates the impact of the source at the 

receptor.  In the first two cases the decrease would be observed throughout the domain 

whereas in the latter case the impact is simply shifted from one location to another 

location.  This space-time coupling must be appreciated when interpreting receptor data 

to assess spatial and temporal variability.  Furthermore, the space-time coupling is 

affected by averaging time and typically longer averaging times lead to more 

homogeneous spatial patterns because the fluctuations are, at least to some extent, 

averaged out.  Saturation monitoring with passive samplers has been used to assess 

spatial variability but typically requires long sample collection times which suppresses 

spatiotemporal variability.  The emergence of low-cost sensors with high time resolution 

provides an opportunity to assess spatiotemporal variability at shorter time scales for 

some pollutants.  However, at this time routine monitoring network data typically forms 

the basis for assessing spatiotemporal variability. 
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1.1.2. Ambient Air Quality Monitoring  

National Ambient Air Quality Standards (NAAQS) were established by the Clean Air 

Act Amendments of 1970 for the control of wide-spread pollutants that are considered to 

be harmful to human health and public welfare. The US Environmental Protection 

Agency (EPA) set NAAQS for six pollutants including carbon monoxide, airborne lead, 

nitrogen dioxide, ozone, particulate matter and sulfur dioxide, which are commonly 

referred to as “criteria pollutants”. Monitoring plans for these pollutants were 

implemented to comply with the Clean Air Act. Areas are designated as being in or out of 

compliance “attainment” based on monitored concentrations relative to the NAAQS. The 

Clean Air Act also requires states to submit plans, known as State Implementation Plans 

(SIPs), to attain the NAAQS when out of compliance and to maintain compliance after 

meeting the NAAQS. Among the six criteria pollutants, particulate matter and ozone are 

the most wide-spread health threats (US EPA, 2015b). 

Ambient PM is a complex mixture of solid particles and liquid droplets of varying size. 

The 1971 NAAQS regulated PM using Total Suspended Particles (TSP) size indicator 

which is more oriented to the measurement of primary emission sources. The earliest 

practice of TSP monitoring was usually by local agencies as a result of the complaints 

concerning visual pollution. State and Local Air Monitoring Stations (SLAMS) and 

National Air Monitoring Stations (NAMS), a subset of SLAMS, were then implemented 

because of the needs for uniformity in monitor siting and data comparability (US EPA, 

1989). In 1987 EPA changed the PM NAAQS indicator from TSP to PM10 which are 

particles with aerodynamic diameters less than 10µm and could be inhaled and deposited 

in the respiratory system. Corresponding adjustments were also made to the monitoring 
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plans for the SLAMS and NAMS. During the time period that followed pioneering 

studies on PM health effects of particulate matter indicated that fine PM (PM2.5) had 

more serious health impacts to human health with evidence showing the association 

between exposure to PM2.5 and increased mortality (Dockery et al., 1993; Pope et al., 

1995).  In 1997 the US EPA added a PM NAAQS indicator for PM2.5 because of its 

severe health effects. In the following years, routine monitoring of PM2.5 was 

implemented in nationwide air monitoring networks.   

With the understanding of airborne particles being a complex mixture of chemical 

components, more recent studies have progressed to examine the linkage between 

specific PM components and mortality as well as morbidity (Aschner et al., 2005; Bollati 

et al., 2010; Ito et al., 2006; Ito et al., 2011; Ostro et al., 2007; Peng et al., 2009). In order 

to support air quality management towards NAAQS compliance and inform health 

related studies, the Chemical Speciation Network (CSN) was implemented in 1999 to 

provide insights into the chemical composition of PM2.5 primarily in urban areas. The 

Health Effects Institute (HEI) funded the National Particle Components Toxicity 

(NPACT) initiative which included two large-scale studies, with both epidemiology and 

toxicology substudies, specifically focusing on the effects of PM components.  These and 

a few other recent studies (Bell et al., 2009; Peng et al., 2009) have used data from the 

nationwide CSN. Currently 195 CSN sites are in operation with 53 Speciation Trends 

Network sites (STN) which is a subset of the CSN designated by US EPA for assessing 

long term trends. 24 hour integrated samples are collected on a 1-in-3 day or 1-in-6 day 

schedule and PM2.5 gravimetric mass, water soluble ions, elements, and carbon fractions 

are reported for each site. Details of the samplers and analytical protocols were described 
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in prior reports and publications (Birch and Cary, 1996; Chow et al., 1993; Solomon et 

al., 2014; Solomon et al., 2000). Another speciation network is the Interagency 

Monitoring of Protected Visual Environments (IMPROVE) network that was established 

for the protection of visual environments such as national parks with a focus on regional 

haze. Therefore, most of the sites are located in the non-urbanized areas. PM2.5 mass, 

elemental components, water soluble ions, elements, carbon fractions and PM10 mass are 

reported at IMPROVE sites.  

The 1990 Clean Air Act Amendments designated a list of 188 toxic chemicals, including 

select VOCs and carbonyl compounds, as hazardous air pollutants (HAPs). To comply 

with the statute, US EPA initiated the National Air Toxics Trends Station (NATTS) 

Program in 2003. This network was developed to fulfill the need for long-term ambient 

air toxics monitoring data acquired using consistent measurement approaches and to 

provide information about the trends in HAPs concentrations. The current NATTS 

network includes 27 sites across the United States with 20 urban sites and 7 rural sites. 

Typically over 100 pollutants are monitored at each location including volatile organic 

compounds (VOCs), carbonyl compounds, PM10 metals, hexavalent chromium and 

polycyclic aromatic hydrocarbons (PAHs) even though the state/local agencies are only 

required to report 19 of high priority compounds. The sampling protocols are designed 

for each pollutant class and the temporal resolution is typically 24 hour integrated 

sampling on a 1-in-6 day schedule (US EPA, 2015a).  

Currently there are five PM2.5 long-term routine speciation sites in the St. Louis region 

which is an unusually large number of sites for a metropolitan area of its size. Three of 

these sites are formally part of the CSN network while two sites, including one at 
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Roxana, IL operated by the Turner group at Washington University, rigorously follow the 

CSN protocols. One site out of these sites is also formally part of the NATTS network 

and the Roxana site reports VOCs and carbonyls using the NATTS sampling and 

analytical protocols.  

1.1.3. Roxana Air Quality Study 

The Roxana Air Quality Study (RAQS) is funded by ConocoPhillips Company (former 

Wood River Refinery operator) in response to a settlement agreement with American 

Bottom Conservancy, the Sierra Club, the Environment Integrity Project, and the Natural 

Resources Defense Council.  The study is being conducted in the Village of Roxana, IL 

located 25km northeast of the City of St. Louis, MO, central business district. The 

monitoring site (38°50′54.20″ N, 90° 04′ 35.50″ W) is at the fenceline of a petroleum 

refinery and next to a residential neighborhood. Datasets for PM2.5 speciation, gaseous air 

toxics as well as other gaseous pollutants are collected with different temporal resolution 

and coverage. Measurements were phased in starting summer 2001 and the sampling is 

scheduled to end in July 2015. 

1-in-6 day 24-hour integrated PM2.5 mass and speciation data collection started July 14th 

2011 and follows the CSN sampling protocols. The sampler used is a Met One Spiral 

Ambient Speciation Sampler (SASS; Met One Instrument Inc., Grants Pass, OR) with 

five sampling channels. Sampling flow rates for three of the five channels were actively 

controlled by mass flow controllers.  The remaining two channels were equipped with 

critical orifices for passive flow control. Filters for PM2.5 sampling were enclosed in 

metal canisters. Each of them has a cyclone with a cut point of 2.5 µm. Starting in July 

2012, two filters collected from channels with active flow control were sent to RTI 
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International – the US EPA CSN contract laboratory – with a Nylon filter analyzed for 

major ions and a PTFE filter analyzed for gravimetric mass and for elemental mass by X-

ray Fluorescence (XRF). The remaining three 47 mm PTFE filters (MTL, Minneapolis, 

MN) from each sampling event were archived for in-house analyses. These Teflon filters 

were weighed prior to and after the sampling event to assure the comparability between 

filters collected from different channels. 1-in-6 day 24-hour integrated air toxics gas data 

collection started June 8th 2012 and follows the NATTS sampling and analysis protocols. 

Samples collected in passivated stainless steel canisters and DNPH (2,4-

dinitrophenylhydrazine) cartridges are sent to the Eastern Research Group (ERG) – a 

USEPA contract laboratory  – and analyzed for 71 VOCs including 13 carbonyls by US 

EPA Compendium Methods TO-15 and TO-11A, respectively. Other RAQS 

measurements include continuous H2S/SO2 and meteorological parameters at 5 minute 

time resolution.   

1.2. Motivation for this Dissertation Research 

Petroleum refinery fenceline monitoring provides an opportunity to evaluate the 

contribution of a complex industrial facility to local air quality. Petroleum refinery 

operations have been associated with a variety of volatile organic compound (VOC) 

emission from transport, processing and storage of gases and liquids. Recent studies have 

drawn attention to PM emissions from fluidized catalytic cracking (FCC) units. For 

example, Kulkarni et al. (2007) reported that on days with FCC emissions upsets a 

Houston refinery could account for as high as 37% of ambient PM2.5 mass measured at a 

nearby ambient monitoring site. RAQS presents an opportunity to track VOC and FCC-

related emissions over several years. 
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Intraurban variability metrics need to be scrutinized. In spite of the growing number of 

epidemiological studies that realize exposure misclassification can result from the 

assumption of spatial homogeneity, the strengths and limitations of several key metrics 

for the characterization of spatiotemporal variability remained inadequately discussed. 

For example, measurement error can distort the interpretation of variability metrics and 

this effect appears to vary depending on different species (Haddad, 2015).   

The St. Louis area has an unusually large PM2.5 speciation monitoring network. The 

availability of a five-site PM2.5 speciation dataset for the St. Louis region provides an 

opportunity to examine spatial variability in PM components. Air toxics data can be 

compared and contrasted across two of these sites.  

1.3. Thesis Objectives and Structure 

This dissertation research seeks to address certain aspects of spatial variability 

characterization by capitalizing on the St. Louis area air toxics and PM2.5 speciation 

networks including RAQS measurements.  The author was responsible for all day-to-day 

RAQS operations including field sampling, equipment maintenance QA/QC, in-house 

laboratory analysis and data analysis. 

The main body of this dissertation is structured in a hierarchical manner starting with 

sample collection and data analysis for a site at the fenceline of a single facility, to data 

analysis across an urban scale network.  For the case of air toxics compounds the RAQS 

measurements are compared and contrasted with air toxics monitoring at a site in the City 

of St. Louis.  For the case of PM2.5 speciation the RAQS measurements are the newest 

addition to a network of five sites in the St. Louis area, with measurements at some sites 
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dating back to 2000.  Broadly, the objectives are to develop/evaluate/implement data 

analysis methodologies to better characterize local source impacts and spatial variability.  

The goal was not a comprehensive assessment of spatiotemporal variability in the St. 

Louis area but rather an examination of various approaches such as the strengths and 

limitations of source apportionment modeling using contemporary CSN datasets.   

The first objective of this dissertation was to analyze RAQS PM2.5 samples using 

inductively coupled plasma mass spectrometry (ICP-MS) to complement the XRF data 

from the US EPA contract laboratory analysis.  Sample digestion and analysis protocols 

were optimized for lanthanoid elements, selenium, and lead isotopes. Protocols were 

implemented that work within the constraints of in-house analytical instrumentation. 

Chapter 2 presents a tracking of impacts from emissions by the refinery fluidized 

catalytic cracking unit using lanthanoid elements.  Previous work by other researchers 

failed to effectively utilize surface winds data to interpret observed impacts whereas our 

work uses surface winds data to place the observed impacts in context.  Chapter 2 has 

been accepted for publication in Science of the Total Environment.  Chapter 3 presents an 

analytical method for analyzing PM2.5 selenium at the low mass loadings that would be 

expected in contemporary samples from the CSN.  A method borrowed from the analysis 

of aquatic samples was used to increase the analytical sensitivity for selenium. Chapter 4 

focuses on the optimization of an analytical method for semi-quantitative analysis of lead 

isotope ratios in ambient PM.  A limited number of RAQS PM2.5 samples were analyzed 

with the results placed in context using Pb isotope ratios reported from previous studies.  

The optimized analytical method was subsequently used by Stephen Feinberg in his study 

of lead emissions from piston engine aircraft.   
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The second objective was to examine the RAQS air toxics data.  Chapter 5 explores the 

spatial variability of air toxics compounds by comparing and contrasting RAQS data with 

routine measurements conducted in the City of St. Louis.  Emphasis is placed on 

quantifying contributions from refinery operations and surface winds data were used to 

refine the interpretation of refinery impacts.  

The third objective was to advance the application and interpretation of commonly used 

metrics to characterize spatiotemporal variability.  Chapter 6 presents a discussion of 

select issues starting with sensitivity of the Pearson correlation coefficient to extreme 

values.  Next, the work of Haddad (2015) to characterize CSN precision from collocated 

data is expanded to examine implications from the concentration dependence of 

precision.  Finally, it is demonstrated that there can be cases where standard comparison 

metrics might lead to the conclusion that species concentrations across two sites are 

homogeneous (and therefore local sources are inconsequential), yet the differences 

cannot be explained by measurement error.  A detailed examination of these data reveals 

impacts from local sources and this provides further evidence for using measurement 

error as a context for assessing intersite differences.       

The fourth objective, summarized in Chapter 7, was to examine opportunities and 

challenges to assessing spatiotemporal variability from source apportionment modeling 

results.  The five CSN sites in the St. Louis area were modeled using Positive Matrix 

Factorization (PMF).  PM2.5 mass in this area is dominated by regional sources with 

contributions from local sources that vary by site.  A given source might have different 

factor loadings across the single-site analyses which can confound spatiotemporal 

variability estimates.    A multi-site analysis ensures the same source profile is used 
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across the sites and might help to stabilize the results for regional sources but may cause 

issues when quantifying impacts from local sources that have differential impacts on the 

sites.  Modelling uncertainty estimation, which is far less studied in many previous 

source apportionment studies, is also systematically evaluated using the tools 

incorporated into the newest version of publicly available EPA PMF model. 

Finally, the two appendices summarize preliminary and tangential work. Appendix A 

presents preliminary results from a collaboration with Yuyang Peng to automate Potential 

Source Contribution Function (PSCF) analyses. Appendix B briefly summarizes certain 

aspects of an analysis conducted for Dr. Mario Castro and Leonard Bacharier, 

Washington University School of Medicine, to estimate exposure to air pollutants in 

support of an asthma inception study. 
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Chapter 2 : Using PM2.5 Lanthanoid Elements and 

Nonparametric Wind Regression to Track Petroleum Refinery 

FCC Emissions 

This chapter has been published in Science of the Total Environment (L. Du and               
J. Turner, volume 529, pages 65-71 (2015). 

2.1. Abstract 

A long term air quality study is being conducted in Roxana, Illinois, USA, at the 

fenceline of a petroleum refinery.  Measurements include 1-in-6 day 24-hour integrated 

ambient fine particulate matter (PM2.5) speciation following the Chemical Speciation 

Network (CSN) sampling and analysis protocols.  Lanthanoid elements, some of which 

are tracers of fluidized-bed catalytic cracker (FCC) emissions, are also measured by 

inductively coupled plasma – mass spectrometry (ICP-MS) after extraction from PM2.5 

using hot block-assisted acid digestion.  Lanthanoid recoveries of 80-90% were obtained 

for two ambient particulate matter standard reference materials (NIST SRM 1648a and 

2783).  Ambient PM2.5 La patterns could be explained by a two-source model 

representing resuspended soil and FCC emissions with enhanced La/Ce ratios when 

impacted by the refinery.  Nonparametric wind regression demonstrates that when the 

monitoring station was upwind of the refinery the mean La/Ce ratio is consistent with soil 

and when the monitoring station is downwind of the refinery the mean ratio is more than 

four times higher for bearings that corresponds to maximum impacts.  Source 

apportionment modeling using EPA UNMIX and EPA PMF could not reliably apportion 

PM2.5 mass to the FCC emissions.  However, the weight of evidence is that such 

contributions are small with no large episodes observed for the 164 samples analyzed.  
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This study demonstrates the applicability of a hot block-assisted digestion protocol for 

the extraction of lanthanoid elements as well as insights obtained from long-term 

monitoring data including wind direction-based analyses. 

2.2. Introduction 

Petroleum refinery operations have historically been associated with emission of a variety 

of volatile organic compounds (VOCs) from transport, processing and storage of gases 

and liquids, whereas their contribution to ambient particulate matter (PM) has been less 

studied.  However, studies by Chellam and coworkers (Bozlaker et al., 2013; Kulkarni et 

al., 2007a; Kulkarni et al., 2006; Kulkarni et al., 2007b; Kulkarni et al., 2007c) and 

Moreno et al. (2008a) have drawn attention to particulate matter (PM) primary emissions 

from petroleum refinery fluidized-bed catalytic cracking (FCC) units which are used to 

crack the heavy, long-chain molecules in crude oil feedstock into lighter, shorter-chain 

products.  While lanthanoid element concentrations in the atmosphere are typically 

dominated by emissions from natural sources such as resuspended crustal material, 

anthropogenic processes including but not limited to motor vehicle emissions, ceramic 

industries and refinery operations can be significant contributors (Bozlaker et al., 2013; 

Kitto et al., 1992; Kulkarni et al., 2006; Moreno et al., 2008b).  Particulate matter emitted 

from the FCC unit is mainly comprised of zeolite catalyst material enriched in crustal 

elements such as Al and Si as well as lanthanoid elements with a notable enhancement in 

lanthanum; thus, La/Ce ratios and La/Sm/Ce ratios have been used to identify ambient 

PM samples with FCC emissions impacts with supporting evidence provided by source 

apportionment modeling (Bozlaker et al., 2013; Kulkarni et al., 2007a; Kulkarni et al., 
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2006) or air mass classifications derived from air mass back trajectories (Moreno et al., 

2008a).   

Chellam and coworkers have focused on measurements in the greater Houston, Texas 

(USA) area.  In a one month study with 114 short-term (3 or 6 hour) PM10 samples they 

concluded that 70% of samples were negligibly impacted by FCC emissions (Bozlaker et 

al., 2013).   Kulkarni et al. (2006; 2007b) apportioned 1-2% of the ambient fine PM 

(PM2.5) to refinery operations during days without FCC emission episodes for twenty-five 

24-hour samples collected over a nominally three month period.  In contrast, 

contributions as high as 37% of ambient PM2.5 mass were estimated for emission episode 

days including one event estimated to have released about 57 kg of PM2.5 over two days 

in 2005 and another event that released about 45 tons of catalyst because of a break in the 

FCC unit cyclone of the FCC in 2006 (Kulkarni et al., 2007b).   The role of transient 

emissions events and their reporting was further examined by Bozlaker et al. (2013).  

Moreno et al. (2008a) conducted a 14-month sampling campaign that collected 110 PM10 

samples and 111 PM2.5 samples at a monitoring station located about 3-4 km from the 

FCC unit at a petroleum refinery in Puertollano, Spain.  Air mass back trajectories were 

used to classify each sampling day as crustal North African, crustal non-North African, 

local, regional and oceanic advective scenarios. Scenarios presumed to be dominated by 

local influences exhibited the highest La enrichment compared to Ce and Sm. Three days 

were deemed “lanthanum anomaly days” with particularly high La enrichment and in 

each case the prevailing winds were from the direction of the petroleum refinery.   
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The aforementioned studies demonstrate the utility of using lanthanoid elements to track 

FCC unit emissions impacts.  Ambient PM samples, especially from routine monitoring 

networks, are commonly analyzed for elemental composition by x-ray fluorescence 

(XRF) but for the air volumes sampled the trace to ultra-trace level lanthanoid 

concentrations are typically well below detection limits. Instrumental neutron activation 

analysis (INAA) and inductively coupled plasma-mass spectrometry (ICP-MS) have been 

widely accepted as accurate methods to quantify ambient PM lanthanoid elements 

(Kowalczyk et al., 1982; Olmez and Gordon, 1985).  ICP-MS has become the preferred 

method because of its easy accessibility, relatively low cost, and less stringent 

requirement for laboratory infrastructures.  High temperature, high pressure acid 

digestion is often used to extract a wide range of elements from ambient PM samples 

(Kotchenruther, 2013; Kulkarni et al., 2007a; Kulkarni et al., 2007c; Moreno et al., 

2008a; Wu et al., 1996) and microwave-assisted acid digestion is commonly used when 

the focus is on lanthanoid elements (Celo et al., 2012; Kulkarni et al., 2006; Moreno et 

al., 2008a).  

In this study, ambient PM2.5 data were already available for many elements from the 

routine XRF analysis and we sought a low-cost, high-throughput method to analyze 

lanthanoids in these samples.  The prevailing microwave digestion systems usually 

provide a digestion environment with temperature of about 200C and pressure of about 

200 psig (Danadurai et al., 2011; Kulkarni et al., 2007a; Kulkarni et al., 2007c; Wu et al., 

1996).  In contrast, we evaluated the capability of extracting lanthanoid elements using 

hot plate-assisted digestion which is conducted at moderately high temperature (90C in 

our case) and atmospheric pressure.   Ambient PM2.5 filter samples collected over a three-
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year period at the fenceline of a petroleum refinery were analyzed for lanthanoid 

elements to track FCC emissions.  Nonparametric wind regression was used to determine 

the La concentrations and La/Ce ratios when the sampling site was upwind and 

downwind of the FCC unit.  

2.3. Methods 

2.3.1. Ambient PM2.5 Sampling 

Ambient PM2.5 samples were collected during the Roxana Air Quality Study (RAQS).  

The Village of Roxana, Illinois (USA), is 25 km northeast of the City of St. Louis, MO, 

central business district and the monitoring site (3850´54.20″ N, 9004´35.50″ W) is at 

the fenceline of a petroleum refinery and next to a residential neighborhood (Figure 2-1).  

Measurements include: continuous H2S, SO2, and meteorological parameters; 1-in-6 day 

24-hour integrated volatile organic compounds and carbonyls by USEPA Methods TO-15 

and TO-11A, respectively; and 1-in-6 day 24-hour integrated PM2.5 mass and speciation 

following the Chemical Speciation Network (CSN) sampling and analysis protocols.  For 

the period of interest (July 14th 2011 – June 28th 2014), 178 valid sampling events were 

conducted (out of 181 events attempted) with ambient PM2.5 collected onto 47mm PTFE 

filters (MTL, Minneapolis, MN) using the Met One Spiral Ambient Speciation Sampler 

(SASS; Met One Instruments Inc., Grants Pass, OR) operating with flow rate of 6.7 LPM. 

The SASS has five sampling channels. 

Starting in July 2012, two filters were sent to RTI – the USEPA CSN contract laboratory 

– with a Nylon filter analyzed for major ions and a PTFE filter analyzed for gravimetric 

mass and for elemental mass by XRF.  The remaining three filters from each sampling 
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event were archived in a freezer with one filter used for lanthanoids analysis and a second 

filter sometimes analyzed to determine collocated precision. 

 

Figure 2-1. Roxana (IL) air monitoring station and the adjacent petroleum 
refinery. The thick black line is the refinery boundary for the main 
operations; refinery satellite operations areas are not marked.  Map source: 
ESRI (2015).  

 

2.3.2. Soil Samples 

Three soil samples were collected from the area within 3 km of the monitoring station to 

obtain the lanthanoids profile of local crustal material. To minimize contamination from 

FCC emissions deposition, the soil collection sites were intentionally selected to be away 

from the prevailing wind directions for FCC emissions impacts and the samples were 

taken from 5 cm below the surface.  The collected soil samples were stored in jars and 

kept frozen in the laboratory until analysis.  Prior to digestion the soil samples were 

homogenized, resuspended and deposited onto filter media.  Before the resuspension 
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procedure, soil samples were first dried in a heated oven at 65oC for 24 hours and 

grounded using a porcelain pestle and mortar set. The grounded and homogenized soil 

samples were resuspended in a custom-made resuspension chamber based on designs 

from related studies (Carvacho et al., 2004; Chow et al., 1994; Martuzevicius et al., 2011) 

and the particles less 2.5 µm were collected on 47mm PTFE filters which are identical to 

the filter media used in the routine ambient sampling. Each soil sample was resuspended 

and sampled three times. The soil samples deposited on the filters were subsequently 

stored in a refrigerator until further analysis. 

2.3.3. Hot Acid Digestion 

A two-stage HNO3-HF-HBO3 protocol for the extraction of elements in silicon-

containing solid materials was first explored and demonstrated by Wu et al (1996).  

Recent studies have adopted and customized this protocol for the analysis of ambient 

particulate matter as well as FCC catalysts (Danadurai et al., 2011; Kulkarni et al., 2007a; 

Kulkarni et al., 2007c). While these previous studies used microwave-assisted digestion, 

in this study a hot plate digestion system (ModBlockTM, CPI International, Santa Rosa, 

CA) was used with a specific focus on quantifying the light lanthanoids rather than a 

broader range of elements.  The aforementioned previous studies provided the framework 

to optimize the Wu et al. (1996) protocol for this application.   

Digestion efficiencies for the target lanthanoids were evaluated as recoveries using two 

standard reference materials (SRMs) purchased from the National Institute of Standard 

and Technology (NIST). SRM 1648a was collected as total suspended particulate (TSP) 

from St. Louis, MO and provided as a homogenized powder whereas SRM 2783 was 

PM2.5 from Baltimore, MD that was homogenized, resuspended, and collected onto 
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polycarbonate filter media.   The filter-deposited SRM is substantially more expensive 

per unit analysis than the bulk powder SRM and thus the acid matrix was optimized using 

SRM 1648a and then validated using SRM 2783. 

Two-stage digestions were conducted in Capitol Vials (Fisher Scientific, Pittsburgh, PA) 

which are compatible with the ModBlockTM system.  For the ambient PM samples the 

filter deposit area was cut from the PTFE support ring to avoid contamination form the 

adhesive used to attach the support ring to the membrane filter.  A combination of 

concentrated (69 ~70%) nitric acid (Trace metal analysis, J.T. Baker, Center Valley, PA) 

and concentrated (47 ~ 51%) hydrofluoric acid (Suprapur Grade, BDH, UK) was used in 

the first stage to extract the elements.  In the second stage, 5% (m/v) boric acid (J.T. 

Baker, Center Valley, PA) solution was added to the acid matrix to complex the excess 

HF to protect the ICP-MS and to dissolve the insoluble metal fluoride that formed in the 

digestion process (Kulkarni et al., 2007c).  In each stage the samples were digested for 2 

hours at 90oC and atmospheric pressure.  After the digestion process, the sample 

solutions were diluted with DI water to a final HNO3 concentration of 5% (v/v) and 

filtered using Acrodisc (Pall Corporation, Port Washington, NY) syringe filters before 

ICP-MS analysis. 

The effect of filter wettability on extraction efficiency was tested using a subset of 

collocated samples.  For each pair, one sample was handled as described above while 100 

µL ethanol was added to the other sample.  Extraction efficiencies in the presence and 

absence of ethanol were statistically indistinguishable (95% C.L.) and thus ethanol was 

not included in the final protocol.   
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2.3.4. Elemental Analysis by ICP-MS 

An ICP-MS instrument (Elan DRC II, Perkin Elmer, Norwalk, CT) operated in standard 

mode was used for the elemental analysis. Before each analysis batch, the ICP settings 

were optimized following the standard protocol using a Smart Tune solution (Perkin 

Elmer) (Danadurai et al., 2011). The ICP-MS instrument was then calibrated with multi-

element calibration standards made from a multi-element stock standard solution 

consisting of 18 elements (CPI International, Santa Rosa, CA) and a stock standard 

solution with 15 lanthanoid elements (Perkin Elmer, Norwalk, CT). A digested acid 

matrix matched blank solution with composition identical to the sample acid matrices 

(5% HNO3, 0.025% HF and 0.25% H3BO3) was used to make the calibration standards. 

Isobaric and spectral interferences were suppressed by applying the correction equations 

suggested by the instrument data analysis software.  Additional quality assurance 

measures included reagent blanks and method blanks (clean filters) that were processed 

with each batch of digested samples as well as a spiked reagent blank (with calibration 

standards) and check standards that ran every ten samples. 115In has been used as the 

internal standard for the measurement of lanthanoid elements by ICP-MS in related 

studies (Kulkarni et al., 2007a; Kulkarni et al., 2006; Kulkarni et al., 2007b; Kulkarni et 

al., 2007c). However, there is evidence for In in the PM2.5 samples collected at Roxana 

and this could potentially interfere with the stability of the internal standard signal 

intensity.  Thus, in this study 20 ppb 103Rh was used for light lanthanoid elements (La, 

Ce, Pr) and 20 ppb 187Re was used for the heavy lanthanoid elements (Nd, Sm, Eu, Gd, 

Tb, Dy, Ho, Er, Tm, Yb, Lu).  Pm was not quantified because of the lack of stable 

isotopes. 
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Fourteen of the 178 ambient PM2.5 sampling events analyzed for lanthanoids were 

invalidated – four samples because of contamination and ten samples because of poor 

reanalysis precision or poor collocated sample precision.  None of the invalidated 

samples had anomalously high La concentrations. The remaining 164 samples were used 

in the data analysis.   

2.3.5.  Method Detection Limit 

Method Detection Limits (MDLs) were evaluated according to the method recommended 

by the US Environmental Protection Agency (USEPA, 2005). In this study, the MDL for 

each element was calculated as 3.143 times the standard deviation of the analysis of 

seven replicate digested acid matrix matched blank solutions spiked with the lowest 

concentrations used to calibrate the ICP-MS instrument. 

2.3.6. Nonparametric Wind Regression (NWR) 

Nonparametric wind regression was introduced by Henry et al. (2002) as a type of 

pollution rose that does not require a priori binning of the data into discrete wind 

direction sectors.  A Gaussian kernel is used in conjunction with a user-defined 

smoothing parameter to generate a smooth curve relating the expected (mean) 

concentration to wind direction.  NWR was initially implemented on hourly 

concentration data and hourly winds data but has also been used on 24-hour integrated 

concentration data and hourly winds data.  The latter approach can lead to smearing 

across wind directions yet often generates interpretable results including good agreement 

with the conditional probability function (CPF) approach to locate the bearings of 

emission sources (Kim and Hopke, 2004).     
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In this study, NWR was conducted on 24-hour integrated concentration data using hourly 

surface winds data.  Hours with calm winds (operationally defined as wind speeds less 

than 0.5 m/s) were excluded from the analysis.  Confidence intervals were generated by 

bootstrapping the dataset; no blocking was needed because the 1-in-6 day concentration 

values for the parameters of interest were not serially correlated.  Analyses were 

conducted using two independent surface winds datasets.  One dataset was hourly 10m 

winds collected at the Roxana monitoring station where the PM samples were collected.  

Nearby trees immediately southwest of the site potentially pose an obstruction to airflow 

and thus the analyses were also conducted using 10m surface winds from the Automated 

Surface Observing System (ASOS) at Lambert St. Louis International Airport which is 

located ~30 km west-southwest of the site.  The winds data were generally in good 

agreement with Lambert data having modest higher wind speeds and also southerly wind 

directions more evenly distributed across the southeast-to-southwest range; the latter 

pattern is consistent with the Mississippi River Valley channeling of airflow at Roxana as 

well as the possible influence of the aforementioned obstructions. 

2.4. Results and Discussion 

2.4.1. Digestion and Analysis Protocol Optimization 

The influence of acid matrix on lanthanoids recoveries from SRM 1648a was evaluated 

by fixing the HNO3 volume and systematically varying the HF and HBO3 volumes.   

H2O2 has been used as an oxidant in similar studies with high organic matter content in 

the samples (Wu et al., 1996).  Thus, each acid matrix was tested with and without H2O2 

addition.  Recoveries did not increase with H2O2 addition and the oxidant was not 

included in the optimized protocol.  An acid matrix of 5 mL HNO3, 150 µL HF and 1.5 
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mL H3BO3 was deemed optimal for the recovery of lanthanoids from 10 mg of the SRM 

with H3BO3 in stoichiometric excess of HF for complete complexation of excess HF. The 

optimized digestion protocol was validated using SRM 2783. Table 2-1 summarizes the 

measured concentrations and recoveries of certified and reference lanthanoids in the 

SRMs. Recoveries in the range 80-90% were obtained for all cases.   Acceptable 

recoveries (80 – 120%) were also observed for certain other non-lanthanoid elements. 

However, they are beyond the scope of this study and thus are not discussed.   

The acid volumes for digesting ambient PM deposited on filter media were proportionally 

scaled down to 15 µL HF and 150 µL H3BO3 because of the lower PM loading yet to 

ensure stoichiometric excess relative to the siliceous materials.  HNO3 was kept at 3 mL 

instead of its proportionally lower volume to ensure adequate liquid for the full 

submergence of the filter media. 

Table 2-1. Recoveries of SRM 1648a (n=5) and SRM 2783 (n=4) by ICP-MS after 
optimized digestion. Uncertainties are represented by the standard deviation of the 
replicates. All NIST concentrations are certified values except La and Sm in SRM 1648a 
which are reference values. 

Element NIST concentration (mg/kg) This study (mg/kg) Recovery (%) 
SRM 1648a    
La 39 ± 3 31.7 ± 1 81 ± 7 
Ce 54.6 ± 2.2 45.4 ± 1 83 ± 5 
Sm 4.3 ± 0.3 3.8 ± 0.1 89 ± 6 
SRM 2783    
Ce 23.4 ± 3.5 19.5 ± 1.2 83 ± 13 
Sm 2.04 ± 0.15 1.62 ± 0.07 80 ± 7 
 

2.4.2. Lanthanoids in Ambient PM2.5 and Soil Samples 

Figure 2-2 shows the concentration distributions of lanthanoid elements observed in the 

Roxana ambient PM2.5 samples.  MDL values are shown as thick horizontal lines and 
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concentration values below the MDL were retained as reported.  There are two key 

features to these distributions.  First, the concentration values are higher for the light 

lanthanoids compared to the heavy lanthanoids.  Second, lanthanoids with odd atomic 

numbers are typically less abundant than their even-numbered neighbors as shown by the 

alternating high-low patterns in Figure 2-2; this pattern is consistent with lanthanoid 

abundances in crustal material (Moreno et al., 2008a).  An exception to this pattern is 

lanthanum (atomic number 57) which has a concentration distribution similar to its even-

numbered neighbor, cerium (atomic number 58).  The high La/Ce ratio is consistent with 

impacts from anthropogenic sources.  Kulkarni et al. (2006) and Moreno et al. (2008a) 

observed elevated La/Ce ratios in ambient PM samples collected in areas where the La 

enrichment was attributed to the catalyst used in petroleum refinery FCC units.  Other 

studies have identified lanthanoids with La to Ce ratio of 0.2-0.8 to be primarily from the 

resuspension of local dust and possibly motor vehicle emissions (Huang et al., 1994; 

Taylor and McLennan, 1985). 

For most of the heavy lanthanoids, over 50% of the data were below their respective 

MDL yet the geochemical pattern of the lanthanoids was well maintained. 40 CFR 136 

(USEPA, 2005) defines MDL as “the minimum concentration of a substance that can be 

measured and reported with 99% confidence that the analyte concentration is greater than 

zero and is determined from analysis of a sample in a given matrix containing the 

analyte”.  In other words, this MDL provides a criterion for identifying data with a very 

high confidence (99%) of being detected.  Data values below MDL may be still trusted to 

a lower level of confidence and indicative information can be exacted from these data.  In 

this case, the geochemical pattern of the odd-numbered heavy lanthanides being less 
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abundant than their even-numbered neighbors is preserved even when most of the data 

are below the MDL values. 

Lanthanoid profiles for the nine soil analyses (three resuspension replicates for each of 

three soil samples) are provided in Table 2-2 of the Supplementary Material.  La/Ce 

ratios were statistically indistinguishable (95% C.L.) across these data and thus were 

pooled to yield a mean La/Ce ratio (1) of 0.519 ± 0.041.  To place this ratio in context, 

geochemical and mineralogical data for soils were obtained from the United States 

Geological Survey database (USGS, 2014) which includes 47 elements measured in 

 

Figure 2-2. Concentration distributions of ambient PM2.5 lanthanoid 
elements for samples collected from July 2011 through July 2014 
(N=164). The boxes are 25th and 75th percentiles, whiskers are 10th and 
90th percentiles, and crosses are 5th and 95th percentiles. The interior thin 
solid lines are the medians and the thick horizontal lines are the MDL 
estimates.  The numbers of non-detects are denoted in parentheses. 
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various soil horizons.  For the “Top 5 cm” soil horizon and including all locations in the 

conterminous US, the mean La/Ce ratio (1) was 0.504 ± 0.051 (N=4836).  A regional 

soil profile was developed using a Geographical Information System (ArcGIS) to identify 

the samples collected within 200 km of Roxana and in this case the mean La/Ce ratio 

(1) was 0.507 ± 0.049 (N=79).  Both regional and nationwide soil profiles agree well 

with the in-house analysis of soil samples collected at Roxana. 

2.4.3. Evidence for FCC Emissions Impacts 

As previously mentioned, La/Ce ratios and La/Sm/Ce ratios have been used to identify 

ambient PM samples with FCC emissions impacts.  In this study more than 50% of Sm 

values were below the MDL and thus the analysis focuses on La/Ce ratios.  Figure 2-3 

shows a scattergram of La concentration on Ce concentration.  PM2.5 Ce ranged from 

0.005 to 0.28 ng/m3 whereas PM2.5 La spanned a wider range from 0.003 to 0.91 ng/m3.  

The local soil La/Ce ratio (solid line in Figure 2-3) is a lower edge for the ambient data 

and soil is likely the dominant source of La and Ce for samples near this edge.   About 

50% of the samples exhibited an La/Ce ratio in the range from 0.2 to 0.8 which has been 

attributed to soil resuspension and motor vehicle emissions (Kulkarni et al., 2007a).  In 

contrast, the other 50% of the sampling days exhibited higher La/Ce ratios which suggest 

impacts from additional emission sources.   

The source(s) of excess La was examined using surface winds data.  Figure 2-4 shows 

expected concentrations as a function of wind direction from NWR analysis on the 3-year 

dataset of La, and Ce, and La/Ce.  (Figure 2-6 in the Supplementary Materials shows 

these profiles with bootstrapped confidence intervals.)  For Roxana winds (solid curves), 

the La expected concentrations profile exhibits a maximum of ~0.3 ng/m3 at ~ 125oN 
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whereas for Ce there is no dominant wind direction for maximum impacts.  The La/Ce 

data were conditioned to include only those days with both La and Ce concentrations 

larger than 3MDL to suppress the influence of large uncertainties in the ratio at low 

concentrations.  The La/Ce NWR profile is quite similar to the La profile because the Ce 

NWR profile lacks strong features.   Both La and La/Ce NWR profiles have a maximum 

for winds from the southeast which is consistent with the main unit  

 

Figure 2-3. La and Ce in the ambient PM2.5 samples.  The solid line is the 
La/Ce mean ratio (± 95% C.L.) in Roxana soil samples.  

 

operations area of the refinery.  The maximum is sharper for Roxana winds than for 

Lambert winds (dashed curves) because of the relatively lower frequency of southeast 

winds in the Roxana data which makes the expected value more sensitive to extreme 

values.  Both winds datasets do demonstrate elevated La and La/Ce for winds from the 

southeast.  Figure 2-8 in the Supplementary Material shows Figure 2-4c as a Cartesian 



33 
 

plot.  The expected La/Ce ratio has maximum of 3-4 (depending on winds dataset) for 

winds from the southeast and is typically in the range 0.8-1.0 from winds from other 

directions which place the monitoring station upwind of the refinery.   These values are 

lower and upper bounds for mean FCC and soil impacts, respectively, because the NWR 

analysis is performed using 24-hour integrated PM data and hourly winds and thus there 

is smearing of impacts across the wind directions observed on a given day. 

 

Figure 2-4. Nonparametric wind regression expected values for ambient 
PM2.5 La (a), Ce (b), and the La/Ce ratio (c) using Roxana winds (solid 
curves) and Lambert winds (dashed curves).  Expected values in panels (a) 
and (b) have units of ng/m3. 

 

High La concentrations in Figure 2-3 correspond to relatively high FCC impacts but not 

necessarily days with anomalously high emissions because impacts at the monitoring 

station are a function of both emissions and dispersion characteristics.  Figure 2-5 shows 

the distributions of La, Ce, and La/Ce stratified by the frequency of hourly winds from 

the southeast quadrant over the 24 hour sampling period.  (Figure 2-8 in the 

Supplementary Materials shows these figures using Lambert St. Louis International 

Airport winds.)  Median La concentrations, which are 
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Figure 2-5. Distributions for 24-hour integrated ambient PM2.5 La (a), Ce 
(b),  and the La/Ce ratio (c) after stratifying the data by the number of 
hours with advective winds (speeds > 0.5 m/s) from the southeast quadrant 
using Roxana winds.  Interior solid lines are medians and dashed lines are 
arithmetic means.  The numbers of samples in each distribution are 
denoted in parenthesis. 

 

24-hour integrated values, monotonically increase with increasing hours of southeasterly 

winds (Figure 2-5a).  For both La and La/Ce there are statistically significant differences 

in the medians (Kruskal Wallis test, 95% C.L.) and Dunn’s test reveals the nearest 

neighbor medians (e.g. comparing the medians for 9-16 hours to 17-24 hours) are 

statistically indistinguishable (family error rate of 95% C.L.) but the remaining 

comparisons are statistically different (e.g., medians for 0 and 1-8 hours compared to 17-

24 hours).                

In addition, the enrichment of La and Ce in PM2.5 relative to local soil was quantified by 

the enrichment factor (EF) suggested by (Kulkarni et al., 2006) using Gd as the reference 

element.  Enrichment factors for La and Ce were both close to unity which is consistent 

with resuspended soil being the dominant contributor of these elements to ambient PM2.5.  
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2.4.4. Source Apportionment Modeling 

Source apportionment modeling was conducted as described in Section 2.8.3 of the 

Supplementary Material.  A combined dataset was prepared using the CSN data 

(gravimetric mass, elements by XRF, ions, and elemental/organic carbon) and the ICP-

MS data (lanthanoids and select other elements).  Modeling with EPA UNMIX (Version 

6.0) generated a feasible four factor solution including one factor that explained about 

80% of the La mass.  The average source contribution estimate for this factor was 0.6 

g/m3 which represents about 5% of the PM2.5 mass.  However, there was substantial 

nitrate, sulfate and organic carbon loaded onto this factor and it is likely an admixture of 

FCC emissions and ubiquitous secondary aerosol and thus overestimates the FCC 

emissions contribution.  Modeling with EPA PMF (Version 5.0) resulted in an eight 

factor solution including one factor that explained about 60% of the La mass.  The 

average source contribution estimate for this factor was 1.2 g/m3 which represents about 

11% of the PM2.5 mass.  Like the UNMIX result, this factor was loaded with nitrate, 

sulfate and organic carbon and thus likely overestimates the FCC emissions contribution.  

Previous studies attempted to address the problem of ubiquitous PM species loading onto 

the point source factors by excluding such species from the modeling (Bozlaker et al., 

2013; Buzcu et al., 2003; Kulkarni et al., 2006).  However, as discussed in the 

Supplementary Material, it is not clear how to appropriately adjust the PM2.5 mass in such 

cases and thus it was not further pursued.  The relatively small dataset (98 sample days 

with complete data) and the limited number of lanthanoids included in the modeling have 

may contribute to the poor ability to model FCC emissions impacts for this dataset.  For 

each sample we examined the PM2.5 mass and species that should account for most of the 
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FCC emissions mass (i.e. Al, Si) but did not observe consistent patterns for enrichment 

on high La days.  This suggests that the FCC contributions to PM2.5 mass are relatively 

low.     

2.5. Summary 

Lanthanoid elements in ambient fine particulate matter were quantified by ICP-MS using 

a relatively less aggressive digestion protocol compared to microwave-assisted digestion. 

Good recoveries from standard reference materials were obtained for those lanthanoids 

with certified or reference values reported.  While this digestion protocol is perhaps 

inferior to microwave-assisted digestion when a large suite of elements is to be analyzed, 

it is suitable for a subset of elements including the light lanthanoids.   

In general, PM2.5 lanthanoid concentrations measured at the Roxana station are 

dominated by contributions from crustal material.  La/Ce ratios for a three year time 

series of 1-in-6 day data does suggest a two-source model with local crustal material and 

FCC emissions as the major contributors to La.  Nonparametric wind regression analysis 

provided supporting evidence for FCC impacts occurring when winds placed the 

monitoring station downwind of the refinery core unit operations.  Impacts were 

modulated by the persistence of winds from the refinery during the 24-hour sampling 

period.  There is no evidence of non-routine, episodic emissions from the FCC in this 

dataset.  However, episodic emissions would not be detected if they occur when the 

monitoring station is upwind of the FCC or if the event is of sufficiently low magnitude 

and short duration that the impact is damped out in the 24-hour average.  A network of 

high time resolution measurements at monitoring stations along the facility perimeter 



37 
 

would be needed to provide comprehensive surveillance. Source apportionment modeling 

could not reliably estimate FCC contributions to ambient PM2.5 and the weight of 

evidence is that the FCC unit is at most a minor contributor to ambient PM2.5 mass 

concentrations for routine emissions as was observed throughout this study.   
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2.8. Supplementary Material 

2.8.1. Relationships between FCC Impacts and Wind Direction 

Figure 2-6 shows expected values with 95% confidence intervals for ambient PM2.5 La, 

Ce and the La/Ce ratio using both on-site (Roxana) winds and Lambert St. Louis 

International Airport winds.  Henry et al. (2002) describe how the confidence intervals 

can be used to determine whether the local maxima in the NWR plots correspond to 

actual emission sources.  However, wide confidence intervals can also result from 

periodic – rather than continuous – emissions and the persistence of hourly wind 
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direction over the 24-hour sampling period which modulates the impacts.  A small 

number of data points from a specific wind direction can also lead to wide confidence 

intervals.  Thus, the relatively wide confidence intervals for winds from the direction of 

the FCC unit are to be expected.  NWR results for PM2.5 mass (Figure 2-7) do not show a 

strong directional pattern including no strong feature from the direction of the FCC unit.   

 

Figure 2-8 is the same data as Figure 2-4(c) but shown as a Cartesian plot to better 

visualize the expected values as a function of wind direction.  Maximum expected values 

correspond to winds from ~125N for Roxana winds and ~140N for Lambert winds.   

 

Figure 2-9 is similar to Figure 2-5, in this case using Lambert meteorological data instead 

of Roxana meteorological data.  Similar patterns are observed for the two winds datasets. 
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Figure 2-6. NWR analysis on La ambient concentration (left), Ce ambient 
concentration (center), and La/Ce ratio (right) based on Roxana 
meteorological data (top row) and Lambert St. Louis International Airport 
meteorological data (bottom row). The dashed lines are 95% confidence 
intervals generated from 1000 iterations of bootstrapping.  Concentrations 
have units of ng/m3. 

 

Figure 2-7. NWR expected values for ambient PM2.5 mass concentration 
based on Roxana meteorological data (solid curve) and Lambert St. Louis 
International Airport meteorological data (dashed curve).  Concentrations 
have units of g/m3. 
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Figure 2-8. NWR analysis on the ambient PM2.5 La/Ce using Roxana 
meteorological data (solid line) and Lambert St. Louis International 
Airport meteorological data (dashed line).  The La/Ce ratio for Roxana 
soil is the horizontal dotted line.  

 

 

 

Figure 2-9. Distributions for 24-hour integrated ambient PM2.5 La (a), Ce 
(b),  and the La/Ce ratio (c) after stratifying the data by the number of 
hours with advective winds (speeds > 0.5 m/s) from the southeast 
quadrant.  Analysis conducted using Lambert St. Louis International 
Airport meteorological data.  Interior solid lines are medians and dashed 
lines are arithmetic means.  The numbers of samples in each distribution 
are denoted in parenthesis. 
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2.8.2. Roxana Soil Analyses 

Table 2-2. Lanthanoid elements profiles (ng/mg) in soil samples collected in Roxana, IL.  Resuspension and analysis was performed in 
triplicate for each sample.  “˗” denotes the element was not detected. 

 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

Soil #1 

1 14.88 26.19 3.22 11.42 1.69 0.51 1.55 ̶  1.43 ̶ 0.13 ̶ 1.37 0.23 

2 21.21 40.42 4.57 16.21 2.14 0.55 2.86 0.22 1.74 0.17 0.49 ̶ 0.68 0.05 

3 24.94 42.84 5.35 18.78 3.05 0.70 3.73 0.29 2.62 0.22 1.23 ̶ 1.10 0.13 

Soil #2 

1 24.46 48.30 5.84 22.13 4.40 0.99 4.42 0.50 3.29 0.48 1.47 0.13 1.75 0.23 

2 30.04 60.01 7.56 27.47 5.65 1.24 5.70 0.65 3.73 0.63 1.96 0.22 1.61 0.22 

3 29.73 58.95 7.27 27.80 5.69 1.29 5.31 0.63 3.82 0.65 2.01 0.17 1.76 0.23 

Soil #3 

1 12.39 22.53 2.60 11.39 1.62 0.42 ̶ ̶ 1.04 ̶ 0.16 ̶ 0.27 ̶ 

2 15.35 33.22 3.63 14.35 1.93 0.30 2.08 ̶ 1.32 ̶ 0.50 ̶ 0.56 ̶ 

3 24.44 51.85 5.61 22.39 3.55 0.91 4.36 0.28 3.09 0.23 1.15 ̶ 1.65 0.16 
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2.8.3. Source Apportionment Modeling 

Datasets 

PM2.5 species data from 1-in-6 day sampling over the period July 14, 2012 – June 28, 2014 

(N=98) were used for source apportionment modeling.  The CSN dataset includes PM2.5 

gravimetric mass and 52 chemical components: five ions measured by ion chromatography (IC); 

33 elements measured by x-ray fluorescence (XRF); and total carbon (TC) and 13 carbon 

fractions measured by the IMPROVE_A thermal-optical analysis protocol.  The carbon data 

included elemental carbon (EC), organic carbon (OC), and pyrolytic carbon (OP) measured by 

both thermal-optical reflectance (TOR) and thermal-optical transmittance (TOT) methods; three 

carbon sub-fractions for EC; and four carbon sub-fractions for OC.  Modeling was conducted 

using EC-TOR and OC-TOR for the carbonaceous PM data.  The following species were 

excluded because of low detectability:  Ag, Ba, Cd, Ce, Cs, Cr, Co, In, P, Rb, Se, Sn, Sr, Ti, V, 

and Zr.   For components measured as both an element and an ion, only one species was retained: 

specifically, either K+ or elemental K was removed; and SO4
2- was retained and elemental S was 

removed.  Both Na+ and elemental Na were removed because they are noisy measurements and 

for PMF modeling tended to be resolved as a factor with only sodium. For PMF modeling, the 

CSN sample-specific uncertainties were used except for the carbon data because uncertainties are 

currently not reported; in this case we used collocated data from the G.T. Craig CSN site in 

Cleveland, OH to generate concentration-dependent error structures for the EC-TOR and OC-

TOR. The data were not blank-corrected.  

In addition to the CSN data, the following lanthanoids from the ICP-MS analysis were included 

in the modeling: La, Ce, Pr, and Nd.   Concentration-dependent error structures were generated 
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for these species using our collocated data collected using separate channels of the SASS 

sampler.   

The dataset for modeling included: PM2.5 mass, NH4
+, NO3

-, SO4
2- , EC-TOR, OC-TOR, Al, As, 

Br, Ca, Cl, Cr, Cu, Fe, K+ or K, Mg, Mn, Ni, Pb, Si, and Zn from the CSN data; and La, Ce, Pr 

and Nd from our ICP-MS analysis. 

Positive Matrix Factorization (PMF) Modeling 

Source apportionment was performed using EPA PMF (Version 5.0).  Based on the signal-to-

noise ratio (S/N) calculated by the model, species with S/N value less than 0.5 were excluded 

(As, Mg, Pb) and species with S/N values larger than 0.5 but less than 2.0 were assigned as 

“weak” (Al, Cr, Cu, Mn and Ni).  Elemental K was included and K+ was rejected because of the 

higher S/N for elemental K.  Chlorine was excluded because it was consistently resolved as a 

standalone factor with no additional species loaded and therefore did not provide value to the 

apportionment.  For the base case all the concentration values – even when below the MDL – 

were used in the PMF modeling.  A sensitivity study was conducted with the commonly used 

data conditioning approach of imputing concentration values below MDL with 1/2 MDL and 

setting the corresponding uncertainties to 5/6 MDL. Very similar results were obtained for the 

base case and the modeling run with low concentration data conditioning.    

An eight-factor solution was deemed optimal.  Figure 2-10 shows the source profiles as 

concentrations (bars) and the explained mass distributions (closed circles).  Table 2-3 

summarizes the PM2.5 mass source contribution estimates and the La loaded onto each factor.  

60% of the La loaded onto La-rich factor which presumably includes FCC emissions. However, 

ammonium, sulfate, and organic carbon account for about 40% of the PM2.5 mass apportioned to 
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this factor and this suggests it is an admixture of FCC emissions and secondary particulate 

matter.  Figure 2-11 shows the NWR results for this factor.  In contrast to the results for La 

concentration and the La/Ce ratio, there is no distinct feature towards the southeast where the 

FCC unit is located and instead the dominant feature is to the south which is consistent with 

prevailing summertime winds conducive to regional transport of secondary sulfate and secondary 

organic carbon to St. Louis. Thus, PMF cannot reliably isolate the PM2.5 mass contributions from 

FCC emissions. 

Furthermore, a comparison of sample-specific modeled and observed La concentrations showed 

that PMF failed to capture most high La days which appear to be impacts from the FCC unit.   

Table 2-3. Sources and contribution estimates by PMF. 

Factor/source 
Source contribution estimate Percentage of 

explained La (%) µg/m3 % 
Biomass burning and 
vehicle emissions 

1.9 18 0 

Metal processing 0.7 7 0 

Secondary sulfate 3.8 35 0 

Brass production 0.1 0.9 5 

Calcium-rich 0.1 0.9 9 

Resuspended soil 0.6 5 11 

Secondary nitrate 2.4 22 15 

La-rich 1.2 11 60 
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Figure 2-10. Profiles for the PMF-resolved factors and the emission source 
categories assigned to each factor.  Bars represent concentrations (g/m3) and 
correspond to the left y-axis; solid circles represent the explained mass 
contributions (%), i.e. the percentage of a given species that loads onto the factor, 
and correspond to the right y-axis. 
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Figure 2-11. WR results for the La-rich factor resolved by PMF using Roxana 
meteorological data (a) and Lambert St. Louis International Airport 
meteorological data (b).  The dashed lines are 95% confidence intervals generated 
from 1000 iterations of bootstrapping.  Concentrations have units of g/m3. 

 
Kulkarni et al. (2006) conducted source apportionment modeling of their PM2.5 dataset by 

including only those chemical components (elements) that would be emitted exclusively by 

primary emission sources and subtracting sulfate and OC from the total (gravimetric) PM2.5 

mass.  OC was subtracted instead of organic matter OM because of the ambiguity in the OM/OC 

ratio.  Source apportionment was conducted using principle components analysis with absolute 

principle components scores (PCA-APCS).   This approach uses a multivariable regression of 

PM mass (in this case, the adjusted PM2.5 mass) on the PCA-resolved factor scores to estimate 

PM2.5 mass source contribution estimates (SCEs).  The multivariable regression seeks the best fit 

of a linear combination of factor scores to the adjusted PM2.5 mass. Thus, the lack of adjustment 

for the non-carbonaceous component of OM and secondary ammonium can bias the PM2.5 mass 

SCEs for the resolved primary emission sources.  Bozlaker et al. (2013) conducted source 

apportionment modeling of their PM10 dataset using positive matrix factorization (EPA PMF 

3.0). Again, the modeling included only those chemical components (elements) that would be 
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emitted exclusively by primary emission sources.  In this case total PM10 mass was apportioned 

with no adjustments for secondary contributions.  The modeling apportioned 73.2% of the total 

PM10 mass to the resolved primary sources with the modeling residual of 26.8% attributed to 

secondary PM.  It is not clear how the omission of secondary PM species from the modeling 

affects the quantitative apportionment of total PM10 mass to primary emission sources and that 

residual that can be physically interpreted as a quantitative estimate of secondary PM 

contributions; the modeling is less constrained and this could potentially positively or negatively 

impact the robust apportionment of total PM10 mass. The approach is intriguing, however, and 

serves as a reference case for future source apportionment studies that could explore the 

approaches to quantifying SCEs for primary emission sources.   

Despite these concerns, PMF modeling sensitivity studies were conducted which excluded the 

major secondary species (NH4
+, NO3

-, SO4
2- and OC) with these species also subtracted from the 

reported PM2.5 mass.  For modeling with 1OC subtracted from the PM2.5 mass the La-rich SCE 

was 0.84 g/m3 and for modeling with 1.8OC subtracted from the PM2.5 mass (to account for 

non-carbonaceous components in the organic matter) the La-rich factor SCE was 0.21 g/m3.  

The relatively large range of La-rich factor SCEs across the base case and sensitivity studies 

further confounds the interpretation of source apportionment modeling results.    

UNMIX Modeling   

Source apportionment modeling was conducted using EPA UNMIX (Version 6).  UNMIX does 

not necessarily produce a feasible solution for any combination of species and for any number of 

factors. Instead the model generates interpretable solutions when the species combinations and 

the number of chosen factors allow for suitable hyperplanes (Pancras et al., 2013). In this case, 
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the model retained PM2.5 mass and fifteen species (NH4
+, NO3

-, SO4
2-, K+, OC, EC, Br, Cu, Fe, 

Si, Zn, Mn, Pb, La and Ce)  - with Mn and Pb added from the ICP-MS data – and suggested a 

five-factor solution. One factor had high loadings from numerous species and could not be 

interpreted, and a four-factor solution was eventually selected which had the following SCEs and 

other characteristics. 

 Factor 1 (SCE = 6.3 µg/m3, 59% of PM2.5 mass) included all of the nitrate and had significant 

loadings of other species such as sulfate and carbon.   

 Factor 2 (SCE = -1.77 µg/m3) included more than 90% of the Zn and about 50% of the Cu.  

While the species loadings onto this factor are consistent with a brassworks located 4 km 

from the site – and NWR for this factor exhibited a strong feature pointing towards the 

brassworks – the relatively large negative SCE is unrealistic and suggests problems with the 

overall solution.  

 Factor 3 (SCE = 5.6 µg/m3, 52% of PM2.5 mass) appeared to be an admixture of vehicle 

emissions and resuspended road dust.   

 Factor 4 (SCE was 0.6 µg/m3, 5% of PM2.5 mass) included about 80% of the La and 

presumably includes FCC emissions.  However, this factor had significant loadings of 

sulfate, nitrate and organic carbon which suggest an admixture of FCC emissions and 

secondary particulate matter. Therefore, the SCE for this factor likely overestimates impacts 

from the FCC unit.  

Overall, the UNMIX modeling results were deemed unreliable for apportioning PM2.5 mass 

because of significant admixing of sources within factors and a negative SCE for one factor 

(hence the remaining three factors sum to 116% of the PM2.5 mass). 
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Chapter 3 : Measurement of Selenium in Ambient Fine Particulate 

Matter by Inductively Coupled Plasma Mass Spectrometry (ICP-

MS) under Standard Mode 

3.1. Abstract 

Selenium in ambient particulate matter has been included in epidemiological and air quality 

studies because of its toxic effects to human health and its role as a tracer for fossil fuel 

combustion emissions. Selenium concentration in PM2.5 is reported by the Chemical Speciation 

Network (CSN). However, for most sites low selenium mass loadings often lead to 

concentrations near or below the detection limit for X-Ray Fluorescence (XRF), the trace 

elements analytical method for CSN. In this chapter, a selenium measurement methodology 

using inductively coupled plasma mass spectrometry (ICP-MS), which has superior detection 

limits compared to XRF, was adopted from a study of selenium in aquatic environments. It was 

optimized for the analysis of PM2.5 filter samples collected from a CSN protocol site. The 

method features a two-stage hot-plate acid digestion followed by filtering and dilution. Spiking 

the sample solution with 3% (v/v) methanol improved the sensitivity of selenium signal intensity 

as well as the linearity of the calibration curve using the standard mode of ICP-MS. 

Consequently, this led to enhanced detectability of selenium and improved precision for 

collocated samples. 
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3.2. Introduction 

Selenium (Se) can have toxic effects on human health in the case of excessive intake (Amouroux 

et al., 2001; Ohlendorf et al., 1986). Se in the ambient particulate matter (PM) raises potential 

concern on a regional and global scale because of the contamination by deposition as well as 

human exposure via inhalation (Wen and Carignan, 2007). In consideration of selenium’s 

adverse health effects the US Environmental Protection Agency (EPA) currently categorizes 

selenium as a Hazardous Air Pollutant (HAP). Previous research has indicated fossil fuel 

combustion as one of the major contributors to atmospheric Se (Ellis et al., 1993). Indeed, many 

air quality studies (Eldred, 1997; Ondov et al., 1989) and air pollution epidemiological studies 

have used Se as a tracer species for fossil fuel combustion.  

US EPA has established nationwide air monitoring networks to measure ambient PM and its 

components, including Se, across the United States. Among current networks, PM2.5 speciation 

datasets collected from Chemical Speciation Network (CSN), starting in 1999, have been widely 

used in both air quality and epidemiological studies because of its relatively extensive coverage 

of populated urban areas. However, with increased adoption of advanced emission control 

technologies since the establishment of the CSN, the commensurate reduction of ambient PM Se 

concentration values has created a challenge for routine detection by X-Ray Fluorescence (XRF) 

which is the analytical method for elemental analysis in CSN. As an example, during the 3-year 

time period from 2009 to 2011, 58 CSN sites had more than 200 valid samples, but only three of 

these sites had Se concentration values above the detection limit for more than 25% of the 

samples. Degraded detectability caused by a large number of Se concentration values below the 

analytical detection limit also leads to increased uncertainty for source apportionment modeling 

and perhaps greater measurement error for epidemiological studies. Recent epidemiological 
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research (Ito et al., 2011; Lippmann et al., 2013) focused on associations between mortality and 

hospitalization health endpoints and PM2.5 mass and its components as measured by CSN. It was 

reported that from 2000 to 2007, more than 69% of Se measurements were below the detection 

limit and for more than 20% of the measurements Se was not detected (reported as zero). 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS), with superior detection limits 

compared to XRF for many elements, is an attractive option for elemental analysis of PM2.5 

samples with low mass loading. However, measurement of trace-level Se is still challenging in 

spite of the generally excellent detection capability of ICP-MS because of polyatomic 

interferences introduced by the instrument.  Table 3-1 summarizes the major interfering species 

for each of the stable Se isotopes. The two most abundant isotopes of Se, 78Se (23.6%) and 80Se 

(49.7%), are by convention favored for analysis, but polyatomic ions produced from the ICP-MS 

argon (Ar) plasma source, which are present in high abundance, overlap with the spectra of these 

two Se isotopes. Similar interferences are also observed for the less abundant isotopes.  

Several studies focusing on the analysis of trace level Se in the atmosphere and in aquatic 

environments used ICP-MS equipped with a dynamic reaction cell (DRC) to remove spectral 

interferences, making  feasible the measurement of higher abundance isotopes (Danadurai et al., 

2011; Wan, 2007). However, given the complexity of environmental samples DRC-ICP-MS 

usually requires prudent selection of reaction gases and optimal operation conditions. The 

optimization process can be even more complicated and laborious for instruments that are in 

heavy use or are routinely challenged with a variety of sample matrices. In addition, Wan (2007) 

investigated the efficiencies of measuring Se by both DRC-ICP-MS and standard-mode ICP-MS 

and found that the removal of Ar2 background signals might be at the expense of large loss of net 

Se signal intensities in DRC mode.  One way to circumvent the DRC-related complications is to 
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operate ICP-MS under standard mode (i.e. without DRC) but focus on increasing the signal 

intensity of less abundant isotopes such as 82Se. The relatively low abundance of 82Se leads to 

low instrument signal and thus potentially raises the detection limits (D'Ilio et al., 2011), but the 

polyatomic interferences are less common. 

Se is known as a hard-to-ionize element under standard ICP-MS conditions. Carbon sources such 

as methanol can be added to the aqueous analyte solutions to enhance the signal sensitivity of 

selenium and improve the detection limit (Grindlay et al., 2013; Larsen and Stürup, 1994; Wan, 

2007). To our knowledge, this method remains largely un-recognized in the atmospheric research 

field. Therefore, we adopted and evaluated this method of adding 3% methanol to ambient PM2.5 

sample solutions. Our approach was to evaluate this method using one of our long-term air 

monitoring studies to provide a reference case of analyzing PM samples with low Se mass 

loadings (e.g. CSN samples) using standard mode ICP-MS. 

Table 3-1. Stable Se isotopes and major spectral interferences (D'Ilio et al., 2011). 

Isotopes Abundance (%) Major interferences 
80Se              49.7 40Ar40Ar+, 40Ar40Ca+ 
78Se              23.6 40Ar38Ar+ 
82Se              9.2 40Ar42Ca+, 34S16O3

+ 
76Se              9.0 40Ar36Ar+ 
77Se              7.6 40Ar37Cl+ 
74Se              0.9 38Ar36Ar+ 

 

3.3. Experimental 

Methanol addition was evaluated using samples collected during the Roxana Air Quality Study 

(RAQS) (Du and Turner, 2015).  The RAQS monitoring station is located at the fenceline of the 
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Philips 66 Wood River Refinery in Roxana, Illinois.  Measurements included, but were not 

limited to, PM2.5 speciation following the CSN sampling and analytical protocols.  24-hour 

integrated PM2.5 samples were collected onto filters every sixth day using a five-channel Met 

One Spiral Ambient Speciation Sampler (SASS) (Met One Instruments Inc., Grants Pass, OR). 

Two of the five filters (one Teflon and one nylon) were analyzed by RTI International for 

gravimetric mass, elements by XRF, and water soluble ions by ion chromatography.  Teflon 

filters (MTL, Minneapolis, MN) were used in the remaining three sampling channels.  One filter 

was digested and analyzed by ICP-MS for lanthanoid elements (Du and Turner, 2015) and the 

remaining two filters were archived for future use. 

Particle-laden Teflon filter samples were extracted using the two-stage digestion protocol 

described by Du and Turner (2015).  To summarize, the samples were first extracted using 

concentrated (69.0~70.0%) nitric acid (Trace metal analysis, J.T. Baker, Center Valley, PA) and 

concentrated (47 ~ 51%) hydrofluoric acid (Suprapur Grade, BDH, UK) with a second stage 

using 5% (m/v) boric acid (J.T. Baker, Center Valley, PA).  Each stage was 2 hours duration and 

was conducted at a digestion temperature of 90 C and atmospheric pressure using a hot plate 

digestion system (ModBlockTM, CPI International, Santa Rosa, CA).  After the digestion process, 

the sample solutions were diluted with DI water to a final HNO3 concentration of 5% (v/v) and 

filtered using Acrodisc (Pall Corporation, Port Washington, NY) syringe filters. Wan (2007) 

concluded in a study of aquatic organisms that spiking the sampling solutions with 3% (v/v) 

methanol greatly improved the sensitivity and detectability of Se by ICP-MS. Therefore, this 

analytical method was adopted and 3% methanol was added to the filtered sample solutions 

before ICP-MS analysis. 
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Elemental analysis was performed using an Elan DRC II ICP-MS (Perkin Elmer, Norwalk, CT).  

Prior to analysis the instrument was optimized using a SmartTune solution (Perkin Elmer, 

Norwalk, CT) containing 10 µg/L Ba and 1 µg/L Be, Ce, Co, Fe, In, Mg, Pb, Th, and U, 

respectively. Nebulizer gas flow rate and auto lens voltages were adjusted to reduce the 

formation of double-charged ions and oxides as well as to maximize the detection sensitivity. 

Rhodium (Rh) was used as the internal standard to correct for the non-spectral interference such 

as instrumental drift. In order to minimize the effect of different acid matrices in the sample 

solutions, calibration standard solutions were made using a multi-element stock standard solution 

of 18 elements (CPI International, Santa Rosa, CA) and digested blank solution with acid matrix 

(5% HNO3, 0.025% HF and 0.25% H3BO3) that are identical to the samples.   

The optimized analytical protocol was validated using standard reference material (SRM) 1648a 

purchased at the National Institute of Standard and Technology (NIST). SRM 1648a was 

collected as total suspended particulate (TSP) from St. Louis and provided as homogenized 

powder. The recovery of Se was 85.64 ± 3.78% (1σ) based on the measured reference 

concentrations in SRM, which demonstrated the efficacy of the analytical protocol. 

3.4. Results and Discussion 

Figure 3-1 shows the instrument calibration with and without methanol spiked in the calibration 

standards. In the absence of methanol the sensitivity is poor, especially at low selenium 

concentrations.  A low fraction of selenium ionization may lead to low signal-to-noise ratios 

which would be amplified at lower concentrations. In contrast, the calibration curve for selenium 

in the presence of methanol exhibits good linearity down to 0.05 ppb. 
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Figure 3-1. ICP-MS instrument calibration using standards with methanol 
(triangle and solid line) and without methanol (circles and dashed line) added as a 
carbon source. Vertical axis represents the sample signal intensity normalized by 
the internal standard. 1 ppb in analyte solution equals 6.2 ng/m3 for a standard air 
sampling flow rate (6.7 lpm) and 24 hour sampling duration. 

 

Method detection limits (MDL) were evaluated using the protocol recommended by US EPA (40 

CFR) and were calculated as 3σ of the analysis of seven replicates digested acid matrix matched 

blank solutions spiked with the lowest Se concentrations used to calibrate the ICP-MS 

instrument. The MDL of Se without methanol addition was 4.97 ng/m3 (assuming a default flow 

rate of 6.7 lpm and 24-hour sample) whereas methanol addition improved the MDL by more than 

an order of magnitude to 0.36 ng/m3.  

Samples from multiple channels of the Met One SASS sampler were analyzed to assess the 

effect of methanol addition on Se collocated precision. From the 165 valid sampling events 

during 10/01/2011 ~ 06/30/2014, 29 samples collected on a secondary channel were drawn and 

analyzed together with samples from the primary channel both with and without methanol 

addition. Figure 3-2 compares the comparison of the two methods. In the absence of methanol 
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the Se concentrations were below the corresponding MDL and poor collocated precision was 

observed (Figure 3-2a). In contrast, in the presence of methanol most samples were above the 

MDL and exhibited dramatically improved collocated precision as shown by data points in good 

alignment with 1:1 line in Figure 3-2b.  This demonstrates the power of adding methanol as a 

carbon source to increase the detection sensitivity of Se by ICP-MS. 

 

Figure 3-2. Comparison of duplicate sample precision: (a) without methanol; and 
(b) with methanol spiked in the sample solutions. Dashed lines represent the 
respective MDL values.  Non-detected values are marked as zeros in the plots. 
The numbers of pairs with both primary and duplicate samples having non-
detected values are 13 in (a) and 1 in (b). 

 

Ambient PM2.5 selenium concentrations measured by XRF as implemented by CSN and by 

standard mode ICP-MS with methanol addition are plotted in Figure 3-3.  MDL values for ICP-

MS and XRF are shown as solid and dashed lines, respectively.  Since the MDL for XRF 

analysis provided by RTI varies with each sample (range 1.01 – 2.63 ng/m3), the median MDL 

over the studied time period, 1.96 ng/m3, is shown.  For the time period when the two datasets 

overlap (07/14/2012 ~ 06/28/2014), 48% of the samples exhibited concentration levels above the 
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MDL for ICP-MS whereas only 8% of the samples were above the MDL for XRF. The ICP-MS 

protocol exhibits superior Se detectability compared to XRF in this study. The large fraction of 

data below MDL for XRF poses challenges to utilizing that dataset for source apportionment 

studies. For all samplers analyzed by ICP-MS with methanol addition over the period 10/06/2011 

– 06/28/2014 (n=165), 56% of the Se concentration values were above the MDL; while this is a 

dramatic improvement compared to the XRF data, the detection frequency is below our threshold 

for inclusion in source apportionment modeling.  

It should be noted that despite the limited performance for Se measurement by XRF as 

implemented in CSN, XRF as an analytical method in general is capable of providing superior 

detectability.  In this case, however, longer sample analysis times and perhaps optimization of 

other instrument conditions are needed. The limited detectability of Se by XRF as implemented 

in CSN is a result for the need for analysis conditions suitable to high throughput to meet the 

demands of a large national monitoring network. 

 

Figure 3-3. Se in Roxana ambient PM2.5 as measured by XRF (triangles connected 
with dashed lines) and standard model ICP-MS with methanol addition (circles 
connected by solid lines). 
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The Roxana CSN data cannot be used to evaluate the ICP-MS protocol because of the low 

frequency of detection for XRF. Thus, to establish further confidence in the method, ambient 

PM10 Se concentrations from a National Air Toxics Trend Sites (NATTS) station in the City of 

St. Louis was compared to the Roxana PM2.5 Se data.  The NATTS site is located north of 

downtown St. Louis and is 15 km southwest of the Roxana station. 24-hour integrated low-

volume (16.7 lpm) PM10 samples were collected and analyzed by ICP-MS under standard mode 

at Eastern Research Group, Inc. A recent study on the spatial variability of air toxic metals in PM 

in St. Louis suggested that ambient PM10 Se in the St. Louis area, including at the NATTS 

station, is dominated by regional sources and thus accumulation of Se in the fine PM size 

fraction can also be inferred (Yadav and Turner, 2014). Therefore, general comparability 

between PM10 Se from downtown St. Louis and PM2.5 Se from Roxana can be expected and used 

as evidence to support the efficacy of the customized ICP-MS protocol.  

Figure 3-4 shows time series of PM10 Se concentration from downtown St. Louis and PM2.5 Se 

concentrations from Roxana. Given the distance between the two sites as well as the different 

ambient PM size ranges measured, the two time series display good overall agreement. The 

lowest reported MDL for the NATTS dataset is 0.29 ng/m3 compared to the MDL obtained for 

this study of 0.36 ng/m3. By converting the higher flow rate of the sampler at the NATTS site 

and using 6.7 lpm which is the flow rate of Met One SASS as a reference, an equivalent NATTS 

MDL is 0.75 ng/m3 which is a factor of two higher than the MDL obtained in house with 

methanol addition.  
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Figure 3-4. Se concentrations in PM10 at downtown St. Louis (triangles connected 
by dashed lines) and in PM2.5 at Roxana (circles connected by solid lines). MDLs 
are marked as a dashed line and a solid line for NATTS ICP-MS protocol and in-
house ICP-MS protocol, respectively. 

 

3.5. Conclusions 

An analytical method was adopted from disciplines related to aquatics organisms to achieve 

better detectability of a less abundant Se isotope, 82Se, in ambient PM when analyzed by 

standard mode ICP-MS.  The method was evaluated using PM2.5 samples collected at the RAQS 

monitoring site. In this protocol, extraction solutions from a previously-optimized digestion 

process were spiked with 3% methanol. Calibration data for Se with methanol addition exhibited 

significantly improved sensitivity compared to calibration data in the absence of methanol.  A 

significantly lower MDL was obtained by the ICP-MS with methanol protocol compared to both 

the ICP-MS without methanol protocol and the XRF protocol as implemented in CSN, resulting 

in about 50% of the ambient PM2.5 sample concentration values being above MDL. The inter-

comparison between PM2.5 Se at Roxana and PM10 Se in the City of St. Louis showed good 

overall agreement considering the distance between the two sites and size difference of PM 

sampled; this provided confidence in the application of this method to the atmospheric research 
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field and confirmed the added value to the detection of trace to ultra-trace level Se in ambient 

PM using standard-mode ICP-MS. 
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Chapter 4 : Measurement of Lead Isotopes in PM2.5 

4.1. Introduction  

Lead has been associated with adverse health effects especially to neurological systems.  

Historically, airborne lead has been a major source of concern although the route of exposure is 

predominantly indirect with lead particles depositing onto surfaces and then being ingested.  

Leaded gasoline was a significant contributor to airborne lead before the 1970’s (Nriagu, 1996).  

Ambient lead levels decreased dramatically in the United States after leaded gasoline was phased 

out.  However, lead exposure and poisoning may persist especially in the neighborhood of lead 

emitting point sources. Accumulated lead in the soil and crustal materials in areas where 

facilities used to be located may also enter the ambient air through resuspension and be 

redistributed. Therefore, the study of lead in the ambient particulate matter is still of significant 

interest.  There is a rich history of lead mining in Eastern Missouri and lead smelting near the 

mines and in the Metropolitan St. Louis area.   

Lead isotopes are used to identify and sometimes quantify lead sources. Previous global-scale 

studies have demonstrated that lead isotopic compositions could be related to the long range 

transport of different types of both natural and anthropogenic sources (Bollhöfer and Rosman, 

2001; Mukai et al., 1994; Sturges and Barrie, 1989a, b). Mukai et al. (1994) found the different 

lead isotope ratios in PM collected in a Northern Pacific island were associated with air masses 

transported from different areas of north Asia. Lead isotope ratios were also widely used as 

tracers for anthropogenic point sources in source apportionment studies focusing on finer-scale 

environments (Bollhöfer et al., 2006; Widory et al., 2010; Xu et al., 2012). With the advent of 
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sophisticated analytical techniques, lead isotope ratios have become reliable tracers for source 

apportionment analysis. 

4.1.1. Instrumentation for the measurement of isotopic compositions 

Inductively coupled plasma mass spectrometry (ICP-MS) is a widely accepted and efficient 

technique for elemental and isotopic analyses. Its cost-effective operation, relatively easy 

maintenance as well as excellent accuracy make it a good choice for analytical research. While 

ICP-MS instruments are commonly equipped with single collectors and quadrupole-based mass 

filters, because of the increasing needs for high-quality and high-resolution data, technical 

improvements have been made to achieve better precision and accuracy of elemental and 

isotopic measurements. The quadrupole mass filter is based on voltages applied to four rods 

which allow only ions of a single m/z to have a path that exit the quadrupole. However, 

measurements by quadrupole-based ICP-MS have a relatively high level of noise and the 

precision of the analyzed isotope ratios is not always sufficient for geological dating and 

determining nuclear properties (Hirata, 1996). Instead, isotopic analysis is commonly performed 

using magnetic sector field ICP-MS which has higher resolution (Feldmann et al., 1994). In the 

sector field ICP-MS, a magnetic field is applied perpendicularly to the ion beam so that the 

filtering of ions is based on m/z, the magnetic field and the kinetic energy of the ions. Mass 

resolution can be controlled by modifying the width of the slit where the filtered ions enter the 

detector (Linge and Jarvis, 2009). In studies that focused on isotope ratios, multi-collector ICP-

MS were commonly employed.  Improved precision can be achieved by multi-collector ICP-MS 

instruments which simultaneously collect ions filtered for particular m/z ratios and convert these 

ions into voltages (Ingle et al., 2003). Multi-collector ICP-MS instruments are more expensive 
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and are typically used in fields such as geochemistry, geochronology or cosmochemistry where 

the accurate determination of isotopic compositions is required. 

4.1.2. Correction for mass bias effect 

Mass bias, also referred to as mass discrimination or mass fractionation, arises in ICP-MS when 

ions of different mass are transmitted through the spectrometer with different efficiencies, 

resulting in non-uniform sensitivity across the mass range and inaccurate isotope ratio 

measurements (Ingle et al., 2003). Mass bias arises from instrumental effects and numerous 

studies have focused on understanding its mechanisms (Gillson et al., 1988; Heumann et al., 

1998; Jakubowski et al., 1998; Maréchal et al., 1999). It has been reported that non-analyte 

species in the ion beam can contribute to the total mass bias (Evans and Giglio, 1993). 

A common practice to correct for the mass bias of lead is to use thallium (Tl) with known isotope 

composition as an internal standard because the isotopes of Tl and Pb cover similar atomic mass 

ranges. However, the mathematical models for accurate correction are still subject to debate 

(Gallon et al., 2008; Ingle et al., 2003; Margui et al., 2007; Rehkämper and Mezger, 2000; 

Terán-Baamonde et al., 2015). Three common correction models are the linear model, power law 

model and exponential law model which differ in the specific form of the correction formula. 

The exponential law model has been demonstrated to be effective for correcting the mass bias of 

Pb (Chernyshev et al., 2007; Gallon et al., 2008; Rehkämper and Mezger, 2000; Tanimizu and 

Ishikawa, 2006) because it takes into account the ratio between 205Tl and 203Tl instead of the 

absolute mass difference. 
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4.2. Method 

An analytical protocol for Pb isotope ratios in analyte solutions was implemented in this study as 

constrained by the available instrumentation (a single collector quadrupole ICP-MS) and the 

available standards.  An internal standard solution with 20 pp Tl was made from a 1000 ppm Tl 

stock standard solution (Alfa Aesar, Ward Hill, MA) and a 10 ppb Pb check standard solution 

was made from a 100 ppm Pb stock solution with certified isotopic composition (Alfa Aesar, 

Ward Hill, MA). Before each ICP-MS analysis batch, multiple Pb check standards were analyzed 

to obtain a batch-specific Tl isotope ratio for the internal standard which was subsequently used 

to correct the mass bias for Pb in the analyte solutions. A Pb check standard was inserted into the 

sample sequence after every 10 regular samples.  

The exponential correction method as described by Rehkämper and Mezger (2000) was used. 

The corrected isotopic ratio Ri is calculated as shown in Equation (1) where ri is the measured, 

uncorrected isotope ratio, Mi is the atomic mass of the measured isotope, and  is the mass bias 

coefficient. Using 208Pb and 206Pb as an example, the 208Pb /206Pb ratio is -  
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                                                           (1) 

The mass bias coefficient βPb is obtained from thallium using -  
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The assumption that mass bias effects for the Tl isotopes are similar to those for Pb isotopes 

implies that βPb  βTl. The batch-specific Tl isotope ratio is obtained by this exponential law 

using a Pb isotope standard with certified Pb isotope ratios. 
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Pb in 61 PM2.5 samples collected on Teflon filters from the Roxana Air Quality Study (RAQS) 

(1-in-6 day samples for year 2012) and 12 PM2.5 samples collected at East St. Louis during 

September 2011 were extracted following the procedure described by Du and Turner (2015). 

208Pb/206Pb and 207Pb/206Pb ratios were obtained by ICP-MS analysis followed by mass bias 

corrections using the aforementioned exponential method. 

4.3. Results and Recommendations 

Figure 4-1 shows 208Pb/206Pb versus 207Pb/206Pb for PM2.5 samples collected at Roxana and East 

St. Louis along with these ratios from other earlier studies compiled by Prapaipong (2001) for 

both atmospheric aerosols historic (US emissions) and crustal materials common in Eastern 

Missouri. Pb ratios from a variety of sources generally follow a mixing line. Natural materials 

such as rocks have ratios corresponding to the data points located to the bottom left side. Lead 

ores from Viburnum, MO bounded the lower end of the mixing line. In contrast, Pb isotope 

ratios measured in urban aerosols collected at Los Angeles, San Francisco and San Diego 

characterize the upper end of this mixing line. Since these data were collected from the 1970’s 

when the leaded gasoline was not phased out, the characteristic ratios of these Pb isotopes in 

these urban aerosols are likely affected by the lead emitted from motor vehicle exhaust.   

Pb isotope ratios measured in ambient PM2.5 at Roxana and East St. Louis area both fall along 

the mixing line between historical US emissions and Lamotte sandstone/Viburnum ore. The wide 

ranges covered by these ratios suggest a mixture of impacts from various sources including 

resuspended crustal materials and industrial emissions.  However, an apportionment cannot be 

conducted because it is not clear whether the crustal material end member should be the Lamotte 

sandstone or Viburnam ore. 
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The Roxana data were further analyzed for regressing 208Pb/206Pb onto 207Pb/206Pb and then using 

a least-square criterion to project the data on the regression line. This approach ordered the data 

from low-to-high ratios and relationships to wind speed (daily average and daily 1 hour 

maxiumum) and wind direction (nonparametric wind regression) were examined. No clear 

patterns were discerned and more analysis is needed to determine the factors influencing sample 

location along the mixing line. 

It is also notable that the instrument used in this study was a quadrupole ICP-MS with a single 

collector which has relatively low precision compared to a multi-collector ICP-MS.  A certified 

 

Figure 4-1. 208Pb/206Pb versus 207Pb/206Pb in ambient PM2.5 samples collected in 
Roxana (IL) and East St. Louis (IL) and from other materials as reported by 
Prapaipong (2001). 
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Pb isotopic standard was used to calibrate the isotopic composition of the Tl internal standard 

and this could add additional measurement error.  Finally, the exponential law model was used 

and any model for mass bias correction will have associated uncertainty. Therefore, the method 

applied in this study provides a semi-quantitative estimate of Pb isotope ratios but the 

quantitative results should be interpreted with caution. For future work, it is recommended that: 

(1) a Tl standard with certified isotopic ratios be obtained to reduce the errors from the 

calculations of these values; (2) a ICP-MS instrument with higher precision (e.g. multi-collector 

ICP-MS) be used for more accurate determination of the elemental isotope ratios; and (3) 

propagation of errors should be systematically performed to provide statistical support to the 

quantification of Pb isotope ratios. 
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Chapter 5 : Gaseous Air Toxics in the St. Louis Area 

5.1. Introduction 

Volatile organic compounds (VOCs) play an important role in the formation of secondary air 

pollutants such as ozone and secondary organic aerosols via photochemical processes in the 

atmosphere (Carter, 1994; Chameides et al., 1988). Carbonyl compounds serve as another major 

source of free radicals and precursors to secondary organic aerosols (Ban-Weiss et al., 2008; 

Grosjean, 1982). Adverse health effects associated with VOCs including carbonyl compounds 

have been suggested by previous studies (Morello-Frosch et al., 2000; Woodruff et al., 1998). 

The 1990 Clean Air Act Amendments designated 188 toxic chemicals as hazardous air pollutants 

(HAPS) including, but not limited to, select VOCs including carbonyl compounds.  To comply 

with related statutory requirements, the US Environmental Protection Agency (EPA) initiated the 

National Air Toxics Trends Station (NATTS) Program in 2003. This network was developed to 

fulfill the need for long-term ambient air toxics monitoring data acquired using consistent 

measurement approaches, and to provide information about trends in HAPs concentrations. 

While carbonyl compounds are products gas-phase hydrocarbons photooxidation, primary 

emissions such as motor vehicle exhaust are also major contributors to ambient carbonyls 

especially in urban areas (Ban-Weiss et al., 2008; Grosjean, 1982). Other VOCs such as benzene 

are emitted by a wide range of sources including: motor vehicle exhaust; fossil fuel combustion; 

manufacturing, storage and use of petrochemical products; other industrial processes; and even 

biogenic emissions (Davis and Otson, 1996; Mohamed et al., 2002; Winer et al., 1992).    

Petroleum refineries are associated with the emissions of various substances to the atmosphere. 

While they are not considered to be major sources of carbonyls, they are major sources of many 
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other VOCs with emissions originating from the production processes, storage tanks, transport 

pipelines and waste areas (Kalabokas et al., 2001). A number of studies have demonstrated 

elevated concentrations of select VOC mixing ratios in the vicinity of petroleum refineries 

(Baltrenas et al., 2011; Cetin et al., 2003; Kalabokas et al., 2001; Lin et al., 2004). Source 

apportionment modeling of VOC data using tools such as positive matrix factorization (PMF) 

have identified factors related to refinery emissions at urban receptors (Jorquera and 

Rappenglück, 2004; Xie and Berkowitz, 2006) and in industrialized areas where refineries and 

petrochemical industries are located (Buzcu and Fraser, 2006; Leuchner and Rappenglück, 

2010). For example, Buzcu and Fraser (2006) apportioned 26 - 35% of the measured VOCs 

mixing ratio at three sites in an industrial area of Houston to refineries.  The majority of these 

studies were short-term campaigns that spanned at most several months and the sampling as well 

as analytical protocols were also customized according to the specific objectives of the 

campaign.  

In this study, data for gaseous air toxics including VOCs and carbonyls were routinely collected 

over a 2.5 year period at the fenceline of a petroleum refinery in Roxana, Illinois.  Sampling and 

analysis followed the NATTS protocols and data obtained from a nearby NATTS site were used 

to place the fenceline data in context. Surface winds were used to determine the influence from 

emission sources including refinery operations.  

5.2. Sampling and methods 

5.2.1. Gaseous air toxics sampling 

Gaseous air toxics samples were collected at Roxana, Illinois (USA) during the Roxana Air 

Quality Study (RAQS) (Du and Turner, 2015). The village of Roxana is located ~ 25km to the 
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northeast of downtown St. Louis, Missouri and the monitoring site (38º50´54.20´´ N, 

90º04´35.50´´ W) is located at the fenceline of a petroleum refinery and next to a residential 

neighborhood (Figure 5-1). 1-in-6 day 24-hour integrated VOCs and carbonyl samples were 

collected in passivated stainless steel canisters and onto DNPH cartridges following the US EPA 

compendium methods TO-15 and TO-11A, respectively. A total of 58 VOCs and 13 carbonyl 

compounds were measured for each sample. Identical sampling and analytical protocols are used 

in the NATTS program and samples were analyzed by the Eastern Research Group, Inc. (ERG) 

which is the US EPA NATTS contract laboratory. For the period of interest (June 8th 2012 – Feb 

23rd 2015), 159 and 164 valid sampling events were conducted for VOCs and carbonyls, 

respectively, out of 171 events attempted. Additional measurements included 1-in-6 day 24-hour 

integrated ambient PM2.5 sampling for speciation analysis and continuous H2S/ SO2 and 

meteorological parameters.  

 

Figure 5-1. Air monitoring at Roxana (IL) and the adjacent refinery. The think 
black line is the refinery boundary for the main operations; refinery satellite 
operations are not marked. 
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Gaseous air toxics samples were also collected by the Missouri Department of Natural Resources 

(MDNR) at the Blair Street site which is a NATTS site located just north of the City of St. Louis, 

Missouri, central business district (Figure 5-1).  Data for VOCs including carbonyls were 

provided by MDNR.  During the time period of interest (June 8th 2012 – Feb 23rd 2015), 162 and 

166 valid sampling events were conducted for VOCs and carbonyls, respectively, out of 168 

events attempted. 

Carbon disulfide and acetonitrile were not included because of possible measurement artifacts 

observed at Roxana and Blair Street, respectively. 38 carbonyl samples collected at Roxana from 

June 8th 2012 to Dec 29th 2012 were invalidated because of measurement artifacts from a spent 

ozone scrubber. Therefore, a total number of 159 VOCs samples and 129 carbonyl samples at 

Roxana were included in the analysis. 

5.2.2. Nonparametric wind regression  

Nonparametric wind regression was introduced by Henry et al. (2002) as a type of pollution rose 

that does not require a priori binning of the data into discrete wind direction sectors.  A Gaussian 

kernel is used in conjunction with a user-defined smoothing parameter to generate a smooth 

curve relating the expected (mean) concentration to wind direction.  NWR was initially 

implemented on hourly concentration data and hourly winds data but has also been used on 24-

hour integrated concentration data and hourly winds data.  The latter approach can lead to 

smearing across wind directions yet often generates interpretable results including good 

agreement with the conditional probability function (CPF) approach for locating the bearings of 

emission sources (Kim and Hopke, 2004). 
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In this study, NWR was conducted on 24-hour integrated mixing ratio data using hourly surface 

winds data. The daily mixing ratio value is equally assigned to each hour of the day. Hours with 

calm winds (operationally defined as wind speeds less than 0.5m/s) were excluded from the 

analysis. Confidence intervals were generated as 1σ values of the expected concentrations. 

Analyses were conducted using hourly 10m surface winds data collected at the Roxana and Blair 

Street stations for the air toxics collected at each corresponding site. 

5.2.3. Principle Component Analysis (PCA/APCS) 

PCA is a statistical technique for analyzing structure in multivariate datasets. It seeks to reduce 

the dimensions of a dataset by identifying a smaller number of factors that are independent of 

each other based on the correlations between the variables included in the dataset. In the 

application of source apportionment to air quality data, a factor may not necessarily represent a 

specific emission source but rather an association of one or multiple emission sources that are 

closely correlated (Guo et al., 2004b), or even an atmospheric process.  In this study, source 

apportionment modeling was performed using PCA combined with the absolute principal 

component scores (APCS) method.  Detailed descriptions of PCA/APCA model are given 

elsewhere (Guo et al., 2004a; Miller et al., 2002; Thurston and Spengler, 1985).  

VOCs and carbonyl compounds were combined for the PCA analysis.  The data were 

conditioned to retain only those species with >90% detection rate.  Sample days with one or 

more values missing or below MDL were also excluded.  Because of a sampling artifact, 38 

samples collected before December 2012 were excluded from the Roxana dataset and acetonitrile 

was also excluded from the Blair Street dataset. The final datasets for PCA included 31 variables 

(species) and 77 samples for Roxana, and 31 variables and 87 samples for Blair Street.  
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5.3. Results and Discussion 

5.3.1. Spatial variability of gaseous air toxics 

Table 1 summarizes the basic statistics of the gaseous air toxics with more than 60% of the 

measured concentration values above MDL at both Roxana and Blair. Two nonparametric 

statistical tests - the Wilcoxon paired signed-rank test and the Mann-Whitney U test - were used 

to categorize the spatial variability. Both tests were utilized to assess whether the two population 

means are equal with the difference being the Wilcoxon paired signed-rank test compares the 

date-matched sample pairs and the Mann-Whitney U test treats the two populations as 

independent distributions. The categorization shown in the table is based on the Wilcoxon paired 

signed-rank test with significance at the 95th percent confidence level whereas the species that 

were categorized otherwise by the Mann-Whitney U test are marked by asterisks. 

Seven species were deemed spatially homogeneous by both tests including five halogenated 

hydrocarbons and two aldehydes. Some of these halogenated hydrocarbons such as 

dichlorodifluoromethane, trichlorotrifluoroethane and dichlorotetrafluoroethane were used as 

refrigerants; the manufacture and use of these compounds were banned decades ago because they 

are on stratospheric ozone depletors. However, their chemical inertness allows them to reside in 

the atmosphere for several decades to even over a hundred years (Elkins et al. 1993). The 

monitored mixing ratios for carbon tetrachloride and chloromethane at both sites are already 

lower than the tropospheric abundances of 0.146 ± 0.015 ppb and 0.602 ± 0.015 ppb, 

respectively, at 1990 level (Fabian et al., 1996). Indeed, the global mean mixing of 

dichlorodifluoromethane mixing ratio is about 0.52 ppb as of March 2015 (National Oceanic and 

Atmospheric Administration, 2015) which agrees with the mean mixing ratios of 0.50 and 0.51 

ppb measured at Roxana and Blair Street, respectively.  
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Table 5-1. Descriptive statistics for species above MDL and spatial variability assignments based on Wilcoxon paired signed-rank test. 

 
 

Roxana (ppb) 
 

Blair Street (ppb) Spatial  
Variability 

 N Mean 25th Perc. 75th Perc.  N Mean 25th Perc. 75th Perc. 
Carbon tetrachloride 159 0.102 0.096 0.111  162 0.102 0.096 0.110 

Homogeneous 

Chloromethane 159 0.568 0.519 0.603  162 0.568 0.506 0.618 
Dichlorodifluoromethane 159 0.502 0.469 0.534  162 0.509 0.466 0.551 
Trichlorotrifluoroethane 159 0.081 0.077 0.085  161 0.081 0.076 0.087 
Dichlorotetrafluoroethane 159 0.017 0.015 0.019  155 0.017 0.015 0.020 
Propionaldehyde 129 0.145 0.087 0.180  166 0.147 0.092 0.182 
Hexaldehyde 129 0.031 0.018 0.041  166 0.035 0.023 0.046 
n-Octane 156 0.070 0.031 0.093  130 0.036 0.023 0.042 

Heterogeneous 
Roxana > Blair 

Propylene 159 0.650 0.354 0.805  162 0.389 0.275 0.455 
Benzene 159 0.384 0.221 0.470  162 0.219 0.154 0.263 
Ethylbenzene 159 0.079 0.042 0.096  149 0.059 0.037 0.069 
m,p-Xylene 159 0.205 0.099 0.251  161 0.147 0.086 0.176 
o-Xylene 159 0.081 0.040 0.101  155 0.062 0.036 0.073 
Toluene 159 0.540 0.246 0.689  162 0.396 0.238 0.496 
1,2,4-Trimethylebezene 136 0.074 0.041 0.094  133 0.059 0.033 0.069 
1,2-Dichloroethane 124 0.023 0.020 0.025  126 0.022 0.018 0.025 
Benzaldehyde 128 0.053 0.027 0.072  163 0.034 0.023 0.043 
Tolualdehyde* 112 0.033 0.018 0.033  139 0.027 0.016 0.032 
Acetylene 159 0.543 0.329 0.672  162 0.729 0.404 0.904 

Heterogeneous 
Blair > Roxana 

1,3-Butadiene 141 0.035 0.020 0.040  150 0.041 0.022 0.051 
Methyl Isobutyl Ketone 121 0.047 0.024 0.041  146 0.068 0.030 0.080 
Dichloromethane 159 0.145 0.092 0.164  161 0.467 0.183 0.442 
Chloroform 139 0.025 0.020 0.029  157 0.057 0.025 0.050 
Trichlorofluoromethane 159 0.245 0.225 0.264  162 0.286 0.235 0.311 
Valeraldehyde* 129 0.028 0.019 0.034  155 0.031 0.021 0.039 
Crotonaldehyde* 129 0.156 0.021 0.149  165 0.200 0.025 0.217 
Acetaldehyde* 129 1.026 0.725 1.220  166 1.112 0.726 1.448 
Butyraldehyde 128 0.086 0.064 0.104  166 0.102 0.078 0.122 
Formaldehyde* 129 2.463 1.340 3.140  166 2.741 1.515 3.490 
Acetone 129 0.876 0.547 1.150  166 1.098 0.715 1.370 
2-Butanone 129 0.127 0.076 0.166  165 0.167 0.100 0.207 
*Mean of the two concentration distributions are not statistically different (homogeneous) based on the Mann-Whitney U test. 
Statistical tests were conducted for days when samples from both sites were available. Summary statistics were calculated using available samples at each site. 
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The homogeneity suggests negligible local source contributions to these species and the observed 

mixing ratios are very likely to be the regional (or larger scale) background representing residues 

in the atmosphere from much earlier time emissions.  

While carbonyls, to some extent, originate from photochemical conversion of hydrocarbons, 

motor vehicle emissions are also significant emission sources (Mohamed et al., 2002). Most 

aldehydes exhibit higher mixing ratios at Blair Street (Table 5-1) which is consistent with 

contributions from traffic emissions at in the St. Louis urban core. However, the excess of these 

carbonyls at Blair Street were only marginal and Mann-Whitney U test indicated homogeneity 

across the two sites. VOCs such as acetylene and 1, 3-butadiene which are commonly found in 

motor vehicle exhaust (Liu et al., 2008) and were higher at Blair Street compared to Roxana. 

Other gaseous air toxics typically associated with various chemical and industrial processes were 

present in elevated mixing ratios at downtown St. Louis likely because of a number of local 

anthropogenic activities including facilities along the industrialized Mississippi riverfront. 

The VOCs which showed statistically higher concentrations at Roxana are predominantly 

aromatics and other petroleum related hydrocarbons, indicating potential contributions from the 

refinery. Figure 5-2 shows the expected mixing ratios as a function of wind direction from NWR 

analysis for a subset of these species at Roxana (solid lines) and Blair Street (dashed lines) using 

surface winds from the corresponding sites. The expected mixing ratio profiles at Roxana exhibit 

maxima at ~150ºN whereas there is no dominant wind direction for maximum impacts for these 

species at Blair Street. The wind direction associated with maximum impact at Roxana is 

consistent with the bearings of the main unit operations area of the refinery; this demonstrates 

the influence from refinery emissions. The variations in maxima across these profiles probably 

arise from wind direction smearing from using hourly winds but daily concentration data. Mixing 
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ratio maxima for benzene, propylene and n-octane are not as sharp compared to other species; 

this reflect multiple point sources or non-point sources that are distributed across the refinery 

footprints. For most species the expected mixing ratios at Roxana and Blair are quite similar 

when the Roxana monitoring site is upwind of the refinery (i.e. northwest winds), and the 

Roxana mixing ratios are up to 2-to-3 times higher than the Blair mixing ratios when the Roxana 

monitoring site is downwind of the refinery.  An exception to this pattern is benzene which has 

higher expected concentrations at Roxana for all wind directions; this suggests there might be 

additional benzene sources in the Roxana area located off the refinery footprint.  Figures 5-9 and 

5-10 show the NWR expected concentrations for these compounds at the two locations along 

with their 95% confidence intervals. 

 

 

Figure 5-2. Nonparametric wind regression expected values for select aromatics 
and petroleum related hydrocarbons. Solid lines at Roxana data and dashed lines 
are at Blair Street (City of St. Louis) data. The radial axes have the units of ppb 
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NWR profiles for the two aldehydes on days when samples from both sites were available 

(Figure 5-3) showing relatively higher mixing ratios at Roxana do not point towards impacts 

from the refinery main operations area. The pattern may be the coupling of seasonal trends for 

photochemical reactions and prevailing winds which will be discussed in Section 5.3.3.  

 

Figure 5-3. Nonparametric wind regression expected values for benzaldehyde and 
tolualdehyde. Solid lines are at Roxana data and dashed lines are Blair Street data. 
The radial axes have the units of ppb. 

 

A semi-quantitative estimation of the local contributions at Roxana is based on the assumption 

that the species measured at Blair Street represent urban-scale contributions. Because both sites 

could have local influences, differences should be considered as the minimum local contribution 

at the higher mixing ratios site and this approach serves as a conservative estimate for local 

contributions. The median of the daily differences between paired samples at Roxana and Blair 

Street were used to represent the Roxana excess and urban scale contributions were estimated by 

the Roxana median minus Roxana excess. 

Figure 5-4 shows the semi-quantitative split between local and urban-scale contributions for the 

eleven species deemed to have higher mixing ratios at Roxana (Table 5-1). Local contributions 

were up to ~50% of the observed mixing ratios.  Significant relative contributions were observed  

Benzaldehyde

0

30

60

90

120

150

180

210

240

270

300

330

0.00 0.04 0.08
0.00

0.04

0.08

0.000.040.08
0.00

0.04

0.08

Tolualdehyde

0

30

60

90

120

150

180

210

240

270

300

330

0.00 0.04 0.08
0.00

0.04

0.08

0.000.040.08
0.00

0.04

0.08



84 
 

 

Figure 5-4. Estimation of local contributions to select gaseous air toxics observed 
at Roxana. 
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modeled as two sources with no discrimination whether these are real sources or admixture of 

many sources. 

One source has the B/T ratio that is consistent with measurement at Blair Street and is likely 

influenced by traffic emissions and other sources such as fugitive emissions from the storage and 

transportation of fuels and biomass burning. For this analysis it is sufficient to define it as a 

combined source that consists of a mixture of hydrocarbons with presumably a consistent urban-

scale pattern. The second source is assumed to be pure benzene. This is supported by the NWR 

analysis shown in Figure 5-2 which shows higher expected benzene mixing ratios at Roxana 

even when the refinery is not upwind of the monitoring station. However, at Roxana the two-

source pattern is confounded by emissions from the refinery as is indicated by high expected 

mixing ratios for winds from the southeast where the main unit operations area is located.  

The NWR analysis also provides evidence that the main unit operations area was the only local 

emission source zone that strongly impacts the benzene mixing ratio measured at the Roxana 

 

Figure 5-5. Benzene versus toluene measured at Blair Street and Roxana. The 
solid line is a Theil regression on the Blair Street data. Red closed circles indicate 
samples that were considered to be significantly impacted by refinery emissions. 
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site. Therefore, samples on days with over 12 hours of advective winds (wind speed > 0.5m/s) 

coming from the range 90ºN - 180ºN were identified (closed red circles in Figure 5-4) and 

considered as “refinery - influenced” samples. These 38 “refinery – influenced” samples were 

removed from the dataset. 

The corrected two-source model (i.e model with refinery influenced samples removed) can be 

used to apportion the benzene in each sample. For the remaining 121 “non-refinery influenced” 

 

Figure 5-6. Distribution of benzene mixing ratios apportioned to the mixed 
hydrocarbon source and pure benzene source using the pseudo two-source model 
with benzene/toluene relation of [B] = 0.276 [T] + 0.106 for the mixed 
hydrocarbon source (N = 121).  38 refinery-influenced samples were excluded 
from the analysis. The top and bottom of each box are the 75th and 95th 
percentiles, the solid black interior line is the median, the dashed red interior line 
is the arithmetic mean, whiskers are 10th and 90th percentiles, and the closed 
circles are individual samples above the 90th percentile or below the 10th 
percentile. 
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samples the measured toluene at Roxana is multiplied by the Blair B/T ratio to estimate benzene 

from the mixed hydrocarbon source (which again, likely represents admixing of several actual 

sources). Subsequently, this contribution is subtracted from the measured total benzene to 

estimate the contribution from the pure-benzene source. Figure 5-6 shows the distributions of 

benzene mixing ratios for the two sources. The estimated contribution from the mixed 

hydrocarbon source at Roxana is consistent with that at Blair Street, which could support the 

pseudo-two source assumption. Mean mixing ratios from the pure benzene source (mean = 0.09 

ppb) was lower than the mixed hydrocarbon source (mean = 0.22 ppb) and displayed greater 

variability. 

5.3.3. PCA/APCS analysis 

PCA was conducted for data collected from January 2013 to February 2015 at Roxana and from 

June 2012 to February 2015 at Blair Street. Four factors were resolved at both sites. Table 5-2 

summarizes the factor loadings of analyzed compounds. Four factors were extracted at both sites. 

The first factor (PC1) at both sites is characterized by high loadings of aromatics and n-octane 

which are all petroleum related compounds. Propylene was categorized in this factor at Blair 

Street but smeared across all the factors at Roxana. It is possible that propylene is emitted by 

distinct sources within the refinery and thus did not load onto this factor.  At Blair Street, besides 

the aromatic compounds, n-octane and propylene that dominated this factor, 2-butanone, 

acetone, acetylene and 1, 3-butadiene have loadings greater than 0.5 on this factor. These 

compounds are often associated with motor vehicle emissions, and the PC1 factor at Blair Street 

likely includes contributions from traffic related emissions. 

In contrast, PC1 at Roxana had high loadings of only aromatics and n-octane without the tracer  
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Table 5-2. PCA results for Roxana and Blair Street. Only those factor loadings >0.5 are reported. 

 Roxana Blair Street 

 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

1,2,4 -Trimethylbenzene 0.95   0.87  
Ethylbenzene 0.98   0.88  
m,p-Xylene 0.98   0.89  
n-Octane 0.94   0.79  
o-Xylene 0.98   0.89  
Propylene   0.82  
Toluene 0.97   0.77  
Benzene 0.86   0.63  
Chloroform 0.56   0.67 
Chloromethane   0.71 
Dichlorodifluoromethane  0.87 0.92 
Dichloromethane    0.62 
Dichlorotetrafluoroethane  0.79 0.71 
Trichlorofluoromethane  0.91  
Trichlorotrifluoroethane  0.91 0.89 
Carbon tetrachloride   0.57 
2-Butanone   0.84 0.56  
Acetone 0.91  0.55  
Acetaldehyde   0.79 0.78  
Benzaldehyde 0.84  0.66  
Butyraldehyde 0.75  0.51 0.57  
Crotonaldehyde 0.81  0.78  
Formaldehyde 0.94  0.92  
Hexaldehyde 0.91  0.69  
Propionaldehyde 0.97  0.94  
Tolualdehyde 0.75  0.72  
Valeraldehyde 0.89  0.88  
Acetylene   0.81 0.53  
1,3-Butadiene   0.55 0.83  
Carbon disulfide*    
Acetonitrile*    
Methyl Isobutyl Ketone**    0.69 
Acrolein**    
% of variance 31 35 18 16 39 32 16 13 
Cumulative % 31 66 84 100 39 71 87 100 
* Carbon disulfide was included only for the Blair Street dataset and acetonitrile were included only for 
Roxana dataset. 
**Methyl isobutyl ketone and acrolein were only included for Blair Street dataset.  
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compounds for motor vehicle exhausts. This is consistent with impacts from refinery operations. 

Figure 5-7 shows the time series for the three major components (PC1-PC3) at both sites. The 

PC1 median mixing ratio of Roxana was 1.54 ppb compared to 2.12 ppb at Blair Street. At both 

sites the factor does not have a strong seasonal trend but does exhibit relatively high day-to-day 

variations. NWR analysis on the source contribution estimates (SCE) are shown in Figure 5-8 

(first column – aromatics) did not reveal a well-defined dependence of wind direction at Blair 

Street which supports the conclusion of no major point sources contributing to the PC1 factor. 

However, at Roxana the NWR analysis clearly demonstrates impacts from the refinery with an 

SCE maximum in the direction of the main unit operations zone located to the southeast of the 

monitoring site.  In summary, the PC1 (aromatics) factors at Blair Street and Roxana represent 

different admixtures with Blair Street influenced by motor vehicle exhaust emissions and Roxana 

influenced by the refinery.  

The second factor (PC2) is dominated by carbonyl compounds and aldehydes in particular. The 

time series for this factor (Figure 5-7) exhibits a strong seasonal pattern at both locations with a 

summertime maximum and winter time minimum. This is consistent with the enhanced 

 

Figure 5-7. Time series for the three major factors resolved by PCA at Roxana 
(left) and Blair Street (right). 

Jun  Dec  Jun  Dec  Jun  Dec  

m
ix

in
g 

ra
tio

, 
pp

b

0

2

4

6

8

10

12

14
aromatics (PC1)
aldehydes (PC2)
halogenated hydrocarbons (PC3)

Jun  Dec  Jun  Dec  Jun  Dec  

m
ix

in
g 

ra
tio

, 
pp

b

0

2

4

6

8

10

12

14

‐2012 ‐2012 ‐2013 ‐2013 ‐2014 ‐2014 ‐2012 ‐2012 ‐2013 ‐2013 ‐2014 ‐2014



90 
 

photochemistry in the summertime that coverts hydrocarbons to carbonyl species. The aldehyde 

factor NWR profile at Blair Street lacks strong features whereas this factor at Roxana display 

higher mixing ratios for winds from the south – southwest (Figure 5-8 – middle column) which 

could possibly be attributed to: (1) coupling of summertime high aldehyde mixing ratios with the 

prevailing southerly winds during the summer; and (2) the summertime prevailing southerly 

winds transporting aldehydes from St. Louis urban core to the downwind Roxana site. The 

weight of evidence might be in favor of the second explanation but a more detailed analysis 

using data with higher temporal resolution is needed. 

 

 

Figure 5-8. Nonparametric wind regression on three major PCA-resolved factors 
at Roxana (top) and Blair Street (bottom). Solid lines are the expected mixing 
ratios (ppb) and dashed represent 95% confidence intervals. 
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The profile for the third factor (PC3) varied slightly between the two sites but is generally 

represented by several halogenated hydrocarbons most of which are CFCs. Because of their 

impact on the stratospheric ozone layer depletion, most of these halogenated compounds have 

been prohibited from use and manufacture. Thus, the measured mixing ratios should be close to 

the atmospheric background levels. This is well supported by the spatial homogeneity discussed 

in the previous section, weak seasonal and day-to-day variations, and a lack of strong features in 

the NWR profiles (Figure 5-7 – right column). 

The fourth factor (PC4) was relatively ill-defined at both sites and included a mixture of various 

compounds that showed weak inter-correlation.  At Roxana, these compounds are perhaps more 

related to motor vehicle emissions whereas at Blair Street only two halogenated hydrocarbons 

and one ketone had loadings greater than 0.5. The day-to-day contributions from this factor at 

both sites were close to or less than zero, and therefore an interpretation is not warranted. 

Seasonal variations for the compounds of interest have been well summarized by those for the 

PCA factors: the factor characterized by aldehydes displays strong seasonal patterns with a 

summertime maximum; the factor characterized by aromatics and hydrocarbons shows moderate 

levels of seasonal variation; and the factor represented primarily by halogenated hydrocarbons 

has an indistinguishable pattern. Specific to individual compounds, aromatics, alkanes and 

alkenes display moderate seasonal patterns with a summertime minimum. This is consistent to 

the observation by previous studies most likely due to: enhanced chemical reactions in the 

atmosphere that convert these hydrocarbons to other oxidative products; and increased mixing 

heights during the summer which leads to the dilution of the compounds. Significant weekday-

weekends patterns were observed for 1, 3-butadiene and acetylene at Blair Street (City of St. 
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Louis) which provided evidence for these two compounds having major contributions from 

traffic related emissions. 

5.4. Summary 

Gaseous air toxics such as VOCs including carbonyls were sampled and analyzed at two sites in 

the St. Louis area – the fenceline of a petroleum refinery in Roxana and near the City of St. 

Louis central business district (Blair Street station). In general, most of the halogenated 

hydrocarbons showed homogeneity between the two sites. Aromatic compounds and other 

petroleum related hydrocarbons such as n-octane and propylene displayed higher mixing ratios at 

Roxana compared to Blair Street while most of the carbonyls and motor vehicle exhaust related 

hydrocarbons such as acetylene and 1,3-butadiene showed higher mixing ratios at Blair Street. It 

was estimated that local contributions to compounds with higher mixing ratios at Roxana were 

up to about 50%. Nonparametric wind regression analysis provided supporting evidence for 

refinery operation impacts for the aromatics, n-octane and propylene when the receptor site is 

downwind of the refinery during the 24-hour sampling period.  

A pseudo-two source model for benzene at Roxana was proposed with data from Blair Street as a 

context. Benzene from a source with mixed hydrocarbons that appears to be homogeneous 

between the two sites was estimated to contribute about 70% of the total benzene at Roxana that 

was not “refinery-influenced” while the median contribution from the local pure benzene source 

was 0.09 ppb. 

Based on the principle component analysis, similar source profiles were resolved at both Roxana 

and Blair Street with aromatics and aldehydes collectively responsible for up to 71% of the 

variance in gaseous air toxics. The factor characterized by aldehydes display strong seasonal 
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cycles which was affected by photochemical reactions modulated by seasonal cycle of 

meteorology. NWR provided evidence that the factor dominated by aromatic compounds is 

impacted by refinery operations at Roxana while it showed no wind direction dependence at 

downtown St. Louis. Halogenated hydrocarbons were identified as minor contributors to gaseous 

air toxics and are likely dominated by regional background. 
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5.6. Supplemetary Material 

  

 

Figure 5-9 Nonparametric wind regression expected values for select aromatics and 
petroleum related hydrocarbons at Roxana. Solid lines are the expected mixing ratios 
(ppb) and dashed lines represent 95% confidence intervals. 

 

.  

 

Figure 5-10 Nonparametric wind regression expected values for select aromatics 
and petroleum related hydrocarbons at Blair Street. Solid lines are the expected 
mixing ratios (ppb) and dashed lines represent 95% confidence intervals.  
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Chapter 6 : Special Topics in PM Spatial Variability Assessment 

6.1. Introduction 

Many epidemiological studies have linked adverse health effects, including mortality and 

morbidity, to ambient particulate matter (PM) exposures (Dockery et al., 1993; Pope et al., 2002; 

Zanobetti et al., 2003).  Advances in both monitoring techniques and statistical methods have 

made the analyses more sensitive and often led to adverse effects being found at lower exposures 

(World Health Organization, 2000). Early ambient PM epidemiological studies focused on 

ambient PM mass concentration and used data from a single monitoring site (typically called the 

“central” site) to represent population exposures over relatively large study areas (Pope et al., 

2002; Roosli et al., 2001; Zanobetti et al., 2003) while other studies simply averaged the 

concentrations monitored at multiple sites over the study area to estimate human exposure 

(Burnett et al., 2001). These approaches assumed the ambient PM mass was homogeneously 

distributed across the study area (or at least nearly so).  In some cases this approach appears 

justified because the pollutant of interest is nearly homogeneous or at least well correlated 

(Burton et al., 1996; Pope et al., 2002). However, in other cases the spatial variability can be 

relatively large and lead to potential misclassification of exposure levels based on the 

homogenous distribution assumption (Ito et al., 2004; Pinto et al., 2004; Zhu et al., 2002). 

Ambient particulate matter is a complex mixture of numerous chemical components and there 

has been a growing focus on understanding the relationships between specific PM components, 

or emissions from specific emission source categories such as coal-fired power plants or diesel 

vehicles, and adverse health effects (Aschner et al., 2005; Burnett et al., 2000; Ito et al., 2006; 

Ostro et al., 2007). Therefore, considerable effort has focused on developing more sophisticated 
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approaches to estimating exposures including, but not limited to, developing a better 

understanding of the spatial variability of both PM mass and its components. 

Pinto et al. (2004) has grouped the factors that could influence spatial variability of PM on urban 

and finer spatial scales into six categories: (1) local sources of primary PM; (2) transient 

emission events that differentially impact some sites more than others; (3) differences in the 

behavior of semi-volatile components; (4) topographical barriers separating sites; (5) 

meteorological phenomena; and (6) measurement error. These factors can individually and 

collectively lead to spatial variability. Metrics such as the Pearson correlation coefficient (PCC) 

and coefficient of Divergence (COD) have been developed to gauge temporal and spatial 

variability, respectively. Methods such as the conditional probability function (CPF) and 

nonparametric wind regression (NWR) are used to characterize the wind direction dependence of 

the pollutant concentration, and can lead to the identification of local emission source zones 

which can drive spatial variability. Graphical tools such as time series and scattergrams have 

been applied to datasets collected at multiple locations as a simple representation of the spatial 

variability. Based on a survey of numerous previous studies (Houthuijs et al., 2001; Pakbin et al., 

2010; Wang et al., 2011; Wilson and Suh, 1997), it is clear that PM spatiotemporal variability is 

typically investigated using several metrics because each metric captures only some aspects of 

the variability. Factors such as outliers and measurement error can distort or confound the 

outcomes of these metrics or methods, and a comprehensive understanding of the nature of these 

metrics in the context of specific datasets is necessary.  

This chapter presents examples of several issues that can arise when assessing spatial variability 

using conventional metrics.  Section 6.3 demonstrates the sensitivity of the Pearson correlation 

coefficient to extreme values.  Section 6.4 examines the concentration dependence of precision 
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and implications to using a single-valued estimate of precision. Finally, Section 6.5 shows a case 

where concentrations at two sites would be deemed homogeneous by most metrics but the 

differences that do exist cannot be explained by measurement error and appear to arise from 

small and largely offsetting local source impacts. 

6.2. Datasets and method 

6.2.1. PM2.5 speciation datasets 

The US Environmental Protection Agency (EPA) Chemical Speciation Network (CSN) was 

implemented in 1999 to provide insights into fine particulate matter (PM2.5) chemical 

composition in urban areas and to support air quality management and health related studies. 24 

hour integrated samples are collected on a 1-in-3 day or 1-in-6 day schedule and PM2.5 

gravimetric mass, water soluble ions, elements and carbon fractions are reported at each site. 

Details of the samplers and analytical protocols were described in detail in prior reports and 

publications (Birch and Cary, 1996; Chow et al., 1993; Solomon et al., 2014; Solomon et al., 

2000).  

For the CSN, six collocated sites (sites that collect side-by-side samples using two identical 

collocated samplers) across the United States have been in operation since around 2001 – 

Bakersfield, CA, Riverside, CA, Cleveland, OH, Houston, TX, Boston, MA and New 

Brunswick, NJ – and these data collected through late 2013 were extracted from US EPA Air 

Quality System (AQS). Collocated data provide important information on assessing 

measurement error in the CSN. Currently in the St. Louis area there are three CSN sites and two 

additional sites that follow the CSN sampling and analysis protocols.  The temporal coverage of 
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these sites varies from 2 to 15 years and collectively provide a relatively rich dataset to explore 

patterns and issues in assessing spatiotemporal variability. 

6.2.2. Key Metrics to Gauge Spatial and Temporal Variability 

The Pearson correlation coefficient (PCC) is a commonly used metric to describe the linear 

correlation or dependence between two variables. In air quality studies focusing on 

spatiotemporal variability, PCC is defined by Equation (1) where ܥ௜௝ is the concentration for 

sample i measured at site j; ̅ܥ௝ is the average concentration at site j; and j and k represent two 

sites and n is the total number of paired samples. 

௝௞ܥܥܲ ൌ 	
∑ ൫஼೔ೕି஼ೕ̅൯ൈሺ஼೔ೖି஼ೖ̅ሻ
೙
೔సభ

ට∑ ൫஼೔ೕି஼ೕ̅൯
మ೙

೔సభ ൈ∑ ሺ஼೔ೖି஼ೖ̅ሻమ
೙
೔సభ

                (1) 

The metric typically involves concentration time series measured at two locations and describes 

the temporal similarity between them.  It is bounded by [-1, 1] where -1 and 1 indicate perfect 

negative and positive correlations, respectively, and 0 means no correlation. 

Coefficient of divergence (COD) is a metric to gauge the inter-site variability in the 

concentration between two sites (Wongphatarakul et al., 1998). COD is defined by Equation (2): 

௝௞ܦܱܥ ൌ ඨଵ

௡
∑ ൜

൫஼೔ೕି஼೔ೖ൯

൫஼೔ೕା஼೔ೖ൯
ൠ
ଶ

௡
௜ୀଵ                   (2) 

COD has a range of zero to one with zero representing perfect agreement between the two sites 

(absolute homogeneity) and unity meaning absolute spatial heterogeneity. 
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6.2.3. Quantifying Measurement Error using Precision 

Precision and uncertainty are methods used to estimate measurement error with the former 

focusing on observed differences between collocated samples and the latter describing the 

predicted or calculated differences among repeated measurements. There is no single prescribed 

formula for reporting precision; two definitions are the root mean square (RMS) precision and 

the percentile precision (Hyslop and White, 2009). The RMS precision is the EPA-recommended 

formula for calculating precision of the collocated Federal Reference Method (FRM) samplers. It 

is defined as the root mean square of the sample-specific scaled relative difference Di as shown 

in Equation (3) and (4) where Ci1 and Ci2 are the ith paired collocated samples, ܥపഥ  is average 

concentration of the ith paired samples and n is total number paired collocated samples. 

݊݋݅ݏ݅ܿ݁ݎ݌	ܵܯܴ ൌ 	ටଵ

௡
∑ ௜ܦ

ଶ௡
௜ୀଵ ൈ 100%                                              (3) 

௜ܦ ൌ
ሺ஼೔భି஼೔మሻ/√ଶ

஼ഢഥ
              (4) 

RMS precision is sensitive to deviations from normality and outliers (data pairs with large 

relative differences) will be influential. Therefore, when calculating the RMS precision only 

sample pairs with average concentration values at least three times the method  detection limit 

(MDL) were included to minimize the impact from large relative differences that can arise at low 

concentrations. Percentile precision focuses on the central tendencies of the data and estimates 

1σ precision using the 16th and 84th percentiles of the scaled relative difference (Di) distribution. 

Assuming a normal distribution for the scaled relative difference, this method ignores the outer 

edges of the distributions and, therefore, reduces the influence of outliers.  

݊݋݅ݏ݅ܿ݁ݎ݌	݈݁݅ݐ݊݁ܿݎ݁ܲ ൌ 	 ଵ
ଶ
ሾ଼ܲ ସሺܦ௜ሻ െ ଵܲ଺ሺܦ௜ሻሿ ൈ 100%                               (5) 
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6.3. Pearson Correlation Coefficient and Extreme Values 

Species dominated by regional-scale sources that simultaneously impact multiple sites could lead 

to PCC values close to unity, whereas concentration pairs for species differentially influenced by 

local sources or activities would have values closer to zero. One disadvantage of the PCC is its 

sensitivity to extreme values in the time series, such large concentration values caused by 

exceptional or episodic events. Failure to consider the effect from these samples could result in 

misinterpretation of variability when using the PCC metric. Statistical tests such as the Grubb’s 

test and the Tiejen-Moore test have been developed to test for and identify outliers in a dataset. 

However, these statistical tests do not provide insights to how the identified outliers influence the 

PCC. Therefore, a systematic, semi-graphical method with statistical support was developed to 

test the sensitivity of datasets to outlier pairs and thereby inform the stability of the correlation 

calculation.  

St. Louis area CSN speciation data were screened to keep only concentration values above the 

sample-specific MDL.  PCC was calculated for only those species with more than 60% of the 

samples above the MDL. For each species, concentrations were paired between any two selected 

sites, resulting in nine site pairs (the temporal coverage of data collected at Granite City and 

Roxana did not overlap). Bootstrapping was used to resample each original dataset by pairs with 

replacement to create new datasets of the same size. In this study 1000 iterations of 

bootstrapping were performed and the PCC was calculated for each of the 1000 synthetic 

datasets. The frequency distributions of these PCC values provide insights into the sensitivity to 

outliers. A relatively narrow, single-mode distribution suggests a robust PCC estimate whereas 

noisy or multi-mode distribution of PCC values often indicates that one or more outliers are 

having influence on the PCC.  Figure 6-1 shows scattergrams of PM2.5 Si at Blair and Arnold as 
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well as the frequency distribution of PCC values derived from the original dataset and after 

removing extreme values. 

Airmass back-trajectory analysis indicated that two of the identified extreme values (marked on 

Figure 6-1) were from long-range transport of Saharan dust which resulted in elevated regional-

level Si concentrations. The event showing high Si concentration at Arnold was possibly due to 

local activity because the airmass was relatively stagnant and conditions were unfavorable for 

dispersion; another possible explanation is a measurement error. The noisy frequency 

distribution of bootstrapped PCC values clearly illustrates the influence of the three  

 

 

Figure 6-1. Scattergrams and frequency distributions of PCC values derived from 
bootstrapping on PM2.5 Si observed at Blair Street and Arnold using original 
dataset (left column) and with three outliers removed (right column). 
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extreme values on PCC (Figure 6-1 left).  Upon excluding these three sample pairs the PCC 

distribution is unimodal with a narrow distribution.  Similarly, fireworks on July 4th weekend 

often leads to elevated potassium concentrations that exert high influence on the PCC. A failure 

to exclude these events could cause a misclassification of variability in biomass burning impacts 

for which potassium is a commonly used (albeit imperfect) tracer species.  Table 6-1 summarizes 

the correlations for select species between all the available site pairs. Each dataset was evaluated 

using the bootstrapping method described above and was subsequently conditioned to minimize 

the influence from extreme values. 

Table 6-1. Summary of Pearson correlation coefficient for select species between site pairs1. 

BL-AR BL-BV BL-GC BL-RX AR-BV AR-GC AR-RX BV-GC BV-RX 

PM2.5 mass 0.84 0.81 0.74 0.86 0.80 0.67 0.80 0.67 0.91 

NH4 0.96 0.97 0.94 0.97 0.96 0.89 0.96 0.92 0.97 

NO3 0.97 0.98 0.96 0.96 0.98 0.93 0.98 0.93 0.99 

SO4 0.96 0.96 0.96 0.93 0.93 0.89 0.85 0.92 0.93 

Ca 0.48(1)2 0.65(1) 0.33 0.38 0.55 0.33 0.20 0.50(1) 0.48(1) 

Fe 0.23 0.20 -0.06 -0.01 0.25 0.17 0.39 0.05 0.34 

K 0.65(9) 0.85(1) 0.67(4) 0.74(1) 0.87(5) 0.60(7) 0.79(3) 0.24 0.74(1) 

Si 0.86(3) 0.84 0.53(1) 0.84 0.92(1) 0.60 0.80 0.60 0.80 

Zn 0.41 0.41 -0.12 -0.17 0.33 -0.04 -0.10 -0.02 0.12 

OC(NIOSH) 0.74 

EC(NIOSH) 0.59 

OC(IMPROVE) 0.88 0.55 0.90(1) 0.87 0.86 0.83(1) 0.90 0.81(1) 0.85 

EC(IMPROVE) 0.70 0.85 0.71 0.43 0.72(1) 0.56 0.63 0.43 0.65 
1. BL-Blair; AR-Arnold; GC-Granite City; BV-Belleville; RX-Roxana 
2. PCC calculated using conditioned datasets are in italics and values in parentheses indicate number of outlier pairs 
excluded. 
 

Ammonium, nitrate and sulfate showed very high correlation (0.85-0.99) for all the site pairs, 

consistent with these species being dominated by regional-scale sources. PM2.5 mass is generally 

well correlated among all the sites with PCC > 0.8 except for site pairs involving Granite City 

which has high impacts from the nearby Granite City steelworks. Both K and Si exhibit 



105 
 

relatively high intersite correlation after conditioning the data to remove extreme values with 

Granite City pairs again having lower correlations because of the steelworks influences.  

Correlations for Ca among all the sites were moderately low and the source apportionment 

analysis in Chapter 7 indicates it has contributions from both local resuspended soil and a 

regional-scale feature that is not yet fully understood. In the St. Louis area, metals such as Fe and 

Zn have contributions from local industries including but not limited to a steel mill, copper 

production and a zinc smelter; relatively low correlations are observed. Source apportionment 

analysis also indicated that carbonaceous species, including organic carbon (OC) and elemental 

carbon (EC), are primarily attributed to biomass burning (and unresolved secondary OC) and 

local traffic related emissions, respectively, which could possibly explain the high but noisy 

correlation of these two species for some site pairs as evidenced by unimodal but relatively broad 

PCC distributions. 

In summary, this analysis demonstrates a simple methodology to evaluate the sensitivity of the 

PCC to outlier data pairs. While in principle PCC confidence intervals could be used as a 

measure of stability, the bootstrapped distributions are a powerful visual tool.  

6.4. Spatial Variability in the Context of Measurement Error – Concentration 

Dependence of Precision 

Measurement error is associated with all sampling and monitoring processes and results in 

differences between the reported and true concentration.  Properly characterizing measurement 

error is important because source apportionment modeling and other data analyses can be 

considerably influenced by measurement error.  Also, some analyses methods, including certain 

source apportionment models, use uncertainty estimates to constrain the solutions.  The primary 
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sources of measurement error may be attributed to instrument imprecision which includes that 

for a single type of instrument and analytical protocol, as well as that stemming from the use of 

different instruments or analytical procedures for a single analyte (Wade et al., 2006). For 

continuous and semicontinuous measurements, instrument error typically results from calibration 

drift, flow rate changes, and changes in atmospheric conditions (such as relative humidity), that 

can affect the instrument response.  Instrument precision can be quantified using data from 

collocated instruments. For example, Hyslop and White (2011) used PM2.5 speciation data from 

collocated samplers at a subset of sites in the Interagency Monitoring of Protected Visual 

Environments (IMPROVE) network and Speciation Trends Network (STN; a subset of the CSN) 

to examine interspecies covariance.  At one site the high covariance of measurement differences 

between collocated samplers for the soil elements (Fe, Ca, Si, etc.) suggests a common error in 

the particle size discrimination between collocated samplers. Haddad (2015) identified periods of 

systematic bias between collocated samples at six sites in the CSN. PM2.5 gravimetric mass and 

sulfur behaved nearly ideally with small persistent bias whereas crustal elements such as Si, Ca 

and Fe displayed persistent bias (i.e periods on the order of one year) as well as abrupt changes 

in the magnitude and direction of bias. If these samplers were not collocated but rather were 

placed at different sites, the measurement error might be interpreted as spatial variability. 

As another example, Pinto et al. (2004) suggested using COD of 0.2 as a threshold value with 

spatial homogeneity at lower COD and spatial heterogeneity at higher COD. A number of studies 

focusing on PM2.5 as well as its components adopted this threshold value for the classification of 

spatial variability (Cheung et al., 2011; Hudda et al., 2010; Lagudu et al., 2011; Mendoza et al., 

2010; Moore et al., 2009). However, this cutoff value was originally developed in a study on 

FRM PM2.5 gravimetric mass concentration data and extending the application of this cutoff 
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value to PM components has not been thoroughly discussed and validated. In addition, using 

COD values without considering the contribution of measurement error could lead to 

misclassification of spatial variability. Haddad (2015) demonstrated that for certain species (e.g. 

Cu, Cl, Fe) reported by CSN, the COD could exceed the threshold of 0.2 even when including 

only collocated sample pairs with both concentrations greater than 3MDL.  

A study was conducted to examine whether there is a concentration dependence on precision, in 

this case focusing on values greater than the MDL.  This assessment is important because 

previous approaches typically condition the data to include concentrations greater than 3MDL 

assume the precision is well-represented by a single-valued metric.   

CSN collocated data were extracted from AQS.  Table 6-2 provides summary statistics for 

sulfate and nitrate which was the focus of this study because these species have a wide range in 

mean concentrations between sites (1.7 to 3.8 g/m3 for sulfate and 0.7 to 7.7 g/m3 for nitrate).  

Thus, they can be used to test how pooling data across sites influences the precision estimates. 

Figure 6-2 illustrates the relationships between the scaled relative difference (Equation 4) and 

concentration for nitrate and sulfate.  This measure of relative precision exhibits a concentration 

dependence which is strong for nitrate and not distinguishable for sulfate. In particular, nitrate 

measurements are more imprecise at low concentrations whereas the data are more precise at 

higher concentrations. This suggests that it is difficult to define a single-valued precision metric 

even when restricting the analysis to concentrations greater than 3MDL.  Assuming the 

collocated data can be pooled across sites, one refinement to a single-valued metric is to draw 

collocated samples from the pooled dataset to match the concentration distributions for the 

network site pairs of interest.  In this study, paired samples for two St. Louis sites were used to 
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Table 6-2. Summary statistics for the primary sampler at each of the six collocated CSN sites. 

Number of Concentration, µg/m3 

paired samples Mean 25th percentile 75th percentile 
Bakersfield, CA 
05/25/2001 - 09/07/2013 
Sulfate 604 1.70 1.04 2.14 

Nitrate 738 5.29 1.17 6.53 
Houston, TX 
12/14/2000 - 12/06/2013 
Sulfate 748 3.07 1.81 3.91 

Nitrate 685 0.73 0.39 0.84 
Cleveland, OH 
05/01/2001 - 12/06/2013 
Sulfate 770 3.78 2.01 4.74 

Nitrate 738 2.21 0.80 2.92 
New Brunswick, NJ 
06/18/2001 - 12/06/2013 
Sulfate 624 3.09 1.36 3.66 

Nitrate 574 1.28 0.42 1.71 
Riverside, CA 
05/19/2001 - 12/06/2013 
Sulfate 919 2.52 0.83 3.64 

Nitrate 848 7.67 2.46 10.40 
Boston, MA 
05/18/2000 - 12/06/2013 
Sulfate 694 2.40 1.07 2.82 

Nitrate 637 0.95 0.35 1.27 
 

construct a distribution of pairwise average concentration values. The distribution was 

segmented into concentration bins (the “two-site data” bins). Identical binning was applied to the 

pooled collocated dataset (the “collocated data” bins). A synthetic collocated dataset was 

constructed by randomly drawing a sample pair from the corresponding collocated data bin for 

each data pair in the two-site data bin.  1000 synthetic collocated datasets – each with a 

concentration distribution matching the two-site data (at the concentration bin level) – were used 

for the precision calculations. 
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This “binning-sampling” method was validated using a “leave-one-out” approach based on the 

jackknife technique. Each of the six collocated sites was treated as the target (i.e. two-site) 

dataset and the synthetic collocated datasets were created by pooling data from the remaining 

five collocated sites following the method described above.  Figure 6-3 shows the actual 

precision for the target dataset on the x-axis and the precision predicted from concentration-

dependent sampling of the remaining five collocated datasets on the y-axis. Error bars represent 

1σ of the distribution of precision values derived from bootstrapping. Percentile 

 

Figure 6-2. Scaled relative difference vs. average concentration for the collocated 
measurements of PM2.5 nitrate (top) and sulfate (bottom) from six collocated CSN 
sites. Thick black lines are 3 times the mode MDLs. 
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precision shows relatively good agreement between the actual precision and the precision 

estimated by concentration matching of collocated data from the remaining sites. For sulfate this 

refinement is incremental because the precision range across sites is only 3-7% and the all-sites 

pooled precision of 4% is a reasonable estimate for each site  (again, consistent with no 

distinguishable concentration dependence of precision).  For nitrate, however, this refinement is 

more substantial because the precision range across sites is 3-12% and the all-sites pooled 

precision of 5% poorly represents some sites.  For both species the results are inferior for the 

RMS precision because it is influence by both outliers and persistent bias between the collocated 

samplers which varies across sites (Haddad 2015).  This is demonstrated in Figure 6-2 where at a 

given concentration the Riverside data are more tightly clustered around the zero line and the 

New Brunswick data tends to have the largest deviations from the zero line.     

The applicability of this approach has been demonstrated for sulfate and nitrate, especially for 

the predicted precision, but needs to be examined for species such as Fe and Si which are more 

strongly influenced by persistent collocated sampler bias.  Haddad (2015) showed that collocated 

sampler bias is less pronounced for species primarily found in fine PM but can be quite large for 

crustal species which are present in both fine and coarse PM. Possible causes include, but are not 

limited to, maintenance issues such as miscalibration of flow rate that changes the sampler cut 

point. At this time it is not clear whether the precision for such species can be reliably estimated 

from the collocated data. 

In summary, it has been demonstrated that some species, such as nitrate, exhibit a concentration 

dependent relative precision even for concentrations greater than 3MDL. Bootstrapping the 

pooled collocated datasets to match the concentration distributions for the site pairs of interest 

yields a better single-value precision estimate. 
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Figure 6-3. Calculated vs. predicted RMS precision and percentile precision for 
nitrate (top) and sulfate (bottom). Riverside, CA was not included in the nitrate 
comparison because there were insufficient samples from other sites to match the 
Riverside concentration distribution. 

 

6.5. Spatial Variability in the Context of Measurement Error – Resolving 

Small Impacts  

While measurement error can be a significant source of variability as demonstrated in the 

previous sections of this chapter, measurement error also provides a context for assessing spatial 

variability. Turner (2008) demonstrated that small day-to-day differences in PM sulfate 

concentrations between two sites in Cleveland (OH) separated by only 1.7 km could not be 
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explained by measurement error estimated from collocated samples.  While on average there was 

negligible difference in sulfate levels between the sites, the day-to-day variations could be 

explained by differential impacts from sources that cancelled out when time averaging the data. 

Nonparametric wind regression was used on the daily differences in sulfate concentration 

between the sites to identify the emission sources, only one of which was previously identified 

by source apportionment modeling.  In contrast to PM sulfate, PM organic carbon showed much 

higher day-to-day variability between the two sites but collocated data showed these 

measurements were much less precise and the observed intersite differences could be explained 

by measurement error. For species such as sulfate and nitrate that trend towards spatial 

homogeneity by commonly used metrics (e.g. PCC and COD) in the St. Louis area, measurement 

error can have significant contributions to the variability that is observed. Characterizing 

measurement error is crucial to unravelling small contributions from local sources for these 

species.  

Random measurement error may become crucial in the interpretation of spatial varaibility 

especially for species that are less affected by systematic measurement errors which are often 

observed as collocated sampler bias.  It may confound the conclusion of homogeneity derived by 

other metrics or approaches. Meanwhile, for species dominated by regional sources, weak 

signals from local contribuions are superposed on the considerably stronger regional backgound 

baseline. The day-to-day variations should be brought into the context of random measurement 

error to reliably identify contributions from local sources. 

Figure 6-4 shows the scattergram for sulfate concentrations observed at Arnold and Belleville. 

The dataset was censored to include only those days with valid data above detection limit at both 

sites. The regression coefficients were obtained from a reduced major axis regression which  
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Figure 6-4. Scatter plot for the PM2.5 sulfate data collected at Arnold and 
Belleville from 2010 through 2013. The solid line is the 1:1 relationship. 
Uncertainties in the regression coefficients are reported as 95% confidence 
intervals.  

 
takes into consideration that both variables have uncertainty. The top 5th percentiles of the 

concentration difference distribution (two-way) were trimmed to reduce the impact from extreme 

values. The regression intercept is statistically indistinguishable from zero and the slope is 

statistically indistinguishable from unity (95% C.I.). For the time period of interest, the observed 

sulfate concentration at Arnold is 2.13 ± 1.29 µg/m3 compared to 2.19 ± 1.27 µg/m3. Based on 

these observations, it would be concluded that sulfaute is spatially homogeneous.  However, this 

should not be interpreted as meaning there are no impacts from local sources and random 

measurement error provides a framework for assessing whether local source impacts can be 

discerned from these data.  

Random measurement error was evaluated using the six site CSN collocated dataset. The 

collocated dataset was censored to include only those days with valid data above detection limit 
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at both sites to be consistent with the target dataset. The “binning-sampling” method as described 

in the previous section was then applied to create new collocated datasets that matched the 

concentration distribution of the target dataset. The collocated precision was calculated as 4% 

with standard deviation of 0.5% based on 1000 iterations of random sampling. Figure 6-5 shows 

the cumulative distribution of the concentration differences scaled to the expected concentration 

difference calculated from the collocated precision. This analysis approach was motivated by the 

methodology of White et al. (2005) to compare CSN and IMPROVE network data in the context 

of in-network precision data. The unit normal variate is calculated using the collocated precision 

with a mean of zero and a standard deivuation of unity, N(0,1).  Cumulative distributions that fall 

on the unit normal variate line suggest nomally distributed error.   The binning-sampling method 

results in a distribution of precision estimates and this taken into account by: sorting sample pairs 

by the observed concentration difference for each iteration of the random sampling; and 

calculating the 5th and 95th percentile at each position along the cumulative distribution.  The 5th 

and 95th percentile cumulative distributions are shown by the closed black circles in Figure 6-5 

and form “edges” and a distribution would be expected to fall in the area (“the unit normal 

variate zone”) normal error can be implied for the interior area between these curves. 

Concentration differences beween sulfate measured at Arnold and Belleville exhibit significant 

deviation from the unit normal variate zone, suggesing that the day-to-day variations cannot be 

explained soley by measurement error.  This motivates a closer examination of the data to 

identify local source influences. 

Nonparametric wind regression was performed on the sulfate concentration difference 

distributions to identify local sources that might differentially impact the two sites,. 

Nonparametric wind regression (NWR) was first introduced by Henry et al. (2002) as a pollution  
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Figure 6-5. Cumulative concentration difference distributions for sulfate: Arnold 
minus Belleville (red open circles) and matched collocated dataset as described in 
the text (closed black circles) and. The solid black line is the unit normal variate 
for 4% precision. 

 

rose which does not require the binning of the pollution data into wind direction sectors. In this 

study, NWR was conducted using 24-hour integrated concentration data with hourly winds data. 

Hours with calm winds (operationally defined as wind speeds less than 0.5 m/s) were excluded 

from the analysis.10m winds data were available for downtown St. Louis (Blair) and Arnold. 

Confidence intervals were generated by bootstrapping the dataset; no blocking was needed 

because the 1-in-3 day (Arnold, Blair) and 1-in-6 day (Belleville) concentration values for the 

parameters of interest were not serially correlated. 

Figure 6-6 shows the wind direction dependence of expected concentration for excess sulfate at 

Arnold derived from NWR. Figure 6-6a corresponds to the concentration difference at Arnold 

relative to Belleville with positive values indicating excess at Arnold and negative values 
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indicating excess at Belleville; Figure 6-6b shows the excess concentration for Arnold relative to 

Blair.  Figure 6-7 shows the locations of the five PM2.5 speciation sites. Arnold and Belleville are 

located on opposite sides of the Mississippi River and the shift between positive Arnold excess 

and positive Belleville excess is at a wind direction of ~170 N with the other shift occurring at 

~10 N (Figure 6a). In both cases the site downwind of the riverfront shows higher sulfate  

 

 

Figure 6-6. Expected concentrations for excess sulfate at Arnold compared to 
Belleville (a) and Arnold compared to Blair (b) as a function of wind direction. 
Solid lines are the expected concentrations and dashed lines are 95% confidence 
intervals calculated from 1000 bootstrap runs.  
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concentration, suggesting sulfate emissions from industries in the riverfront corridor and/or barge 

traffic on the river including dock facilities. In this case, a change in wind direction across the 

north/south line would cause local sources near the riverfront to impact the two sites 

differentially with the greatest difference occurring in the presence of easterly or westerly winds 

and minimum difference observed when the winds are from the due south or due north. Figure 6-

6(b) shows the excess sulfate concentration at Arnold relative to Blair. All values are negative 

because the expected sulfate concentration is consistently higher at Blair which may be attributed 

to industries and other local activities at or near the St. Louis urban core. A peak of excess 

sulfate at Arnold compared to Blair (albeit still negative) corresponds to wind directions from 

270 oN clockwise to 150 oN which points back to downtown St. Louis. Overall, the NWR pattern 

suggests impacts from local sources when a site is downwind of the urban core. While the 

sources that differentially impact the sites are the same, meteorological conditions such as wind 

direction varies the influences at each receptor site. 

 

Figure 6-7. Locations of five PM2.5 speciation sites in the St. Louis area. 
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In summary, following upon the work of Turner (2008) this analysis shows another case where 

two sites have nearly identical average sulfate concentrations but the day-to-day differences 

cannot be explained by measurement error. There are small but discernable impacts from local 

sources that cancel out (at least for Arnold vs. Belleville) from day-to-day variations in surface 

winds. 

 

6.6. Summary 

Commonly used metrics such as Pearson correlation coefficient (PCC) were applied to chemical 

speciation data collected at five PM2.5 speciation sites in the St. Louis area. Bootstrapping is an 

effective tool to explore the sensitivity of PCC to extreme values, and this study demonstrates 

that efforts should be taken to understand, and possibly censor, the data so the PCC can be 

properly interpreted depending on the study objectives.  Strong temporal similarity was implied 

by large PCC values for PM2.5 mass and species such as sulfate, nitrate, and ammonium, whereas 

species dominated by local sources such as iron and zinc exhibited weaker correlations.  

Measurement error should be considered when interpreting metrics for spatial variability such as 

the COD.  For nitrate, collocated precision has a concentration dependence even for 

concentrations greater than 3MDL and thus the use of a single-valued precision derived from 

data pooled across all collocation sites would be would be inappropriate.  A “binning-sampling” 

approach was developed to harmonize the collocated precision from the six collocated CSN sites 

to the match concentration distributions for the site pairs of interest.  This approach is effective 

for characterizing measurement error for species that exhibit concentration dependent of 

precision and are relatively free of bias in the collocated data.  More work is needed to examine 

the applicability of this approach when bias in the collocated data is large.  
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Measurement error was used as a context to interpret sulfate inter-site differences for two sites in 

the St. Louis area.  While the average concentration difference between the sites was very small, 

the distribution of sample-specific concentration differences could not be explained by 

measurement error as estimated using the “binning-sampling” approach.  Wind regression 

analysis indicated the sites experienced differential impacts from local industries and activities 

located between the sites and variations in wind direction across the dataset caused these impacts 

to largely cancel out when calculating mean metrics.   

The implications of this chapter may apply to all studies focusing on spatial variability. 

Conventional metrics to gauge spatial variability should be used with caution and exploratory 

data analysis needs to be conducted to understand the data structure. Measurement error should 

always be considered and assessed when monitoring datasets are utilized because it artificially 

contributes to spatial variability and may result in misleading interpretations. 
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Chapter 7 : Source Apportionment of PM2.5 in the St. Louis Area 

using Chemical Speciation Datasets 

7.1. Introduction 

Many epidemiological studies found positive associations between exposure to ambient fine 

particulate matter (PM2.5) and mortality and morbidity (USEPA, 2009), which resulted in the 

promulgation of a PM2.5 National Air Quality Standard (NAAQS) starting from 1997.  Ambient 

PM is a complex mixture of species originating from different emission sources and atmospheric 

processes. Therefore, a comprehensive understanding of its composition that varies both 

temporally and spatially could provide enormous insights towards PM2.5 air quality management, 

especially in the areas designated to be in non-attainment of the PM2.5 NAAQS. Some early 

studies indicated composition- and source-oriented health effects of PM (Mar et al., 2000), 

further suggesting the need of a nationwide PM2.5 speciation dataset. In 1999 the US 

Environmental Protection Agency (EPA) initiated a national chemical speciation program to 

address these needs. Data collected from the nationwide Chemical Speciation Network (CSN) 

has been used in numerous air quality and health studies which led to better interpretation and 

understanding of the sources of PM2.5 as well as its health effects, and provided more 

sophisticated support to the regulatory decision-making by state and local agencies (Hopke et al., 

2006; Ito et al., 2006; Ito et al., 2011; Ito et al., 2004; Kim et al., 2003; Thurston et al., 2011). 

The greater St. Louis area spans counties and cities in Missouri and Illinois, USA. This area was 

historically heavily industrialized and was a major transportation hub on the Mississippi River. 

Local industries included, but were not limited to, steel manufacturing, metal processing, oil 

refining and coal-fired electric utility power generation over the past several decades. The 
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clustering of industries as well as a wide range of socio-economic classes made the area an 

attractive case for both air quality research (Lee et al., 2006; Trijonis et al., 1980) and air 

pollution health effects studies (Ferris Jr et al., 1979). The greater St. Louis area was designated 

by the US EPA as a non-attainment area under 1997 PM2.5 NAAQS standard; revisions to the 

NAAQS in 2012 again posed challenges to the air quality administrations.  

Positive matrix factorization (PMF) has been applied to many ambient PM datasets and has been 

shown to be a powerful receptor modeling tool for source apportionment analysis (Kim et al., 

2003; Polissar et al., 1998; Wang and Hopke, 2013). Prior source apportionment studies on the 

St. Louis area data using PMF analyzed PM2.5 data from two CSN sites in St. Louis (Blair Street 

in the City of St. Louis, and Arnold in Jefferson County) and the St. Louis-Midwest Supersite in 

East St. Louis (Amato and Hopke, 2012; Lee and Hopke, 2006; Lee et al., 2006). The analyses 

focused on the time period from 2000 to 2003. However, the emission control programs 

implemented over the past decade have dramatically altered the contributions from both local 

and regional sources. Data collected at Blair Street and Arnold now spans more than ten years, 

providing a wonderful opportunity to update the source apportionment analyses performed by 

prior research. Besides the extended time period available for analysis, three additional 

monitoring sites which follow the CSN sampling and analytical protocols (hereafter called CSN-

protocol sites) are now operational in the St. Louis area. The number of speciation sites is 

unusually large among cities of comparable size, allowing the exploration of the spatial 

variability and a more comprehensive interpretation of apportioned sources. Furthermore, a 

recent update to the EPA PMF program (EPA PMF 5.0) incorporates a suite of advanced 

statistical methods for analysis of uncertainty estimates which were not included in previous 

versions of PMF. These tools help users to better understand sources of variability in the results 
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and to obtain more robust apportionment but to date there is little experience applying these tools 

and interpreting their results. EPA PMF 5.0 also features easy accessibility to conduct multi-site 

analysis which was rarely included in prior studies.  

In this study, speciation data collected at five sites in the greater St. Louis area were analyzed 

using PMF to identify emission sources and their contributions to PM2.5 concentrations as well as 

to update the results from prior studies. The option of performing multi-site as opposed to single-

site analysis was also explored to elucidate its effects on and implications to the source 

apportionment results. Nonparametric wind regression coupling surface meteorology data and 

the PMF analysis results was used to confirm and locate resolved local sources. Uncertainties 

associated with the analysis were characterized using the tools now available in EPA PMF 5.0 

and additional approaches to provide more insight into the results. 

7.2. Methods 

7.2.1. PM2.5 speciation data 

PM2.5 speciation data were collected at three CSN sites and two CSN-protocol sites in the St. 

Louis area. The Blair Street site (cited as Blair hereafter) is a CSN site located in the City of St. 

Louis, MO, and is ~ 3km north of the Central Business District. Interstate Highway I-70 runs 

along the east side of the site (closest distance of 200m) and several industries are nearby. The 

original Arnold Street (cited as Arnold hereafter) site was in a suburban residential area in 

Jefferson County, located about 30 km to the southeast of downtown St. Louis. Because of 

interferences to the microscale surface meteorology caused by the surrounding topography and 

obstructions from trees, in 2008 the site was moved 3 km westward to its current location. The 

Granite City site is located in downtown Granite City Illinois. The site is about 10 km to the 
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northeast of downtown St. Louis and < 1km from major emission points at the Granit City 

Steelworks. The three sites described above are CSN sites operated by state agencies while the 

two CSN-protocol sites are operate by non-governmental organizations. The site in the Village of 

Roxana, IL (cited as Roxana hereafter) is currently operated by the Turner group at Washington 

University in St. Louis and is located at the fenceline of the Phillips 66 Wood River Refinery. 

Details of the sampling and data collection are described elsewhere (Du and Turner, 2015). The 

other CSN-protocol site is in suburban area of the City of Belleville, IL (cited as Belleville 

hereafter) and located about 25 km to the southeast of downtown St. Louis. The Belleville site is 

currently operated by Atmospheric Research and Analysis, Inc. on behalf of the Prairie State 

Generating Station. In order to provide a baseline to the analysis of sites in the St. Louis area, a 

background CSN site located in Bonne Terre, MO (cited as Bonne Terre hereafter), about 80 km 

south of downtown St. Louis, was also included in the analysis. The Bonne Terre site is 

surrounded by open fields with no major industries and provides insights into the regional 

background. Figure 7-1 shows locations of the sampling sites and select major industries relevant 

to the analysis. 

24-hour integrated PM2.5 samples were collected on Teflon, nylon, and quartz filters every 3 or 6 

days and the temporal coverage of the datasets at each site also vary. The sampling specifications 

of each site are summarized in Table 7-1. Teflon filters were used for gravimetric analysis of 

mass concentration and for elemental analysis by X-ray fluorescence. Nylon filters were 

analyzed for water-soluble ions such as sulfate, nitrate, ammonium, potassium, and sodium. 

Quartz filters collected during earlier time periods were analyzed by the National Institute of 

Occupational Safety and Health (NIOSH) /Thermal Optical Transmittance protocol (Birch and 

Cary, 1996) for organic and elemental carbon (OC and EC). Starting from 2007 the CSN adopted 
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the IMPROVE thermal/optical protocol for the analysis of OC and EC to replace the NIOSH. 

The transition was also accompanied by the deployment of a modified IMPROVE carbon 

sampler (i.e. URG 3000N carbon sampler; URG Corp.) instead of using a sampling channel in 

the conventional speciation sampler. A detailed description of the samplers and analytical 

protocols for the filters can be found in prior reports and publications (Chow et al., 1993; 

Solomon et al., 2014; Solomon et al., 2000). The transition in carbon sampling and analysis 

methods created a discontinuity in the OC and especially EC data time series; thus, the speciation 

data from each site were divided into two datasets based on the carbon measurement transitions. 

 

Figure 7-1. Locations of the monitoring sites and select relevant facilities. 
Monitoring sites are represented by stars and facilities are represented by crosses. 
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Datasets consisting of data from multiple sites were created by matching the time period as well 

as the sampling events. The sampling frequencies of combined datasets were matched to those of 

the individual sites with the lowest sampling frequency. For example, 1-in-3 day samples from 

Blair and Arnold with were filtered to retain only the 1-in-6 day samples when combined with 

other sites into a multisite dataset. Four multisite datasets were created for this study (Table 7-1). 

Table 7-1.Summary of the datasets. 

Dataset Sites Temporal coverage Sampling frequency Type No. of samples 

Single-site datasets 

BL1 Blair Feb 2000 - Jul 2007 1-in-3 day urban 804 

BL2 Blair Jul 2007 - Sep 2014  1-in-3 day urban 802 

AR1 Arnold Apr 2001 - Feb 2009 1-in-3 day suburban 881 

AR2 Arnold Apr 2009 - Sep 2014 1-in-3 day suburban 632 

GC Granite City Oct 2007 - Jul 2012 1-in-6 day industrial 209 

RX Roxana Jul 2012 - Nov 2014 1-in-6 day industrial 121 

BV Belleville Feb 2010 - Oct 2014 1-in-6 day suburban 264 

BT1 Bonne Terre Feb 2003 - Jul 2007 1-in-3 day rural 460 

BT2 Bonne Terre Jul 2007 - Sep 2014  1-in-3 day rural 632 

Multisite datasets 

BLAR1 Apr 2001 - Jul 2007 1-in-3 day – 1400 

Blair 707 

Arnold 693 

BLAR2 Apr 2009 - Sep 2014 1-in-3 day – 1257 

Blair 625 

Arnold 632 

MULT1 Feb 2010 - Jul 2012 1-in-6 day – 523 

Blair 139 

Arnold 141 

Belleville 144 

Granite City 99 

MULT2 Jul 2012 - Sep 2014 1-in-6 day – 491 

Blair 121 

Arnold 127 

Belleville 122 

  Roxana       121 
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Samples for which PM2.5 mass concentration or one or more species concentrations were not 

available were excluded from the analysis. Samples collected on July 4 and proximate days (± 3 

d) were also excluded from the analysis because the July 4th fireworks featuring high potassium 

and carbon content can significantly distort the biomass burning factor. Species with data above 

MDLs for less than 50% of samples were excluded from the analysis. 

Sample-specific method detection limit (MDL) and uncertainty values are reported for PM2.5 

mass concentration, ions, elements and NIOSH carbon species. However, MDL and uncertainties 

for carbon species analyzed after the transition to IMPROVE protocol are currently not available. 

Because of the similarity in sampler configurations and analytical protocols to the IMPROVE 

networks MDL values for the IMPROVE network carbon fractions were adopted. Carbon data 

from the six collocated sites in IMPROVE network were used to generate concentration-

dependent uncertainty estimates for carbon species. The data were not blank-corrected. 

7.2.2. Positive matrix factorization 

Positive matrix factorization framework 

Positive matrix factorization (PMF) is a multivariate factor analysis tool that is widely used to 

identify emission sources and quantify their contributions. The goal of the model is to 

decompose the matrix of sample data into two matrices: factor profiles (F) and factor 

contributions (G). Users need to interpret the factor profiles to identify the types of emission 

sources and/or atmospheric processes they represent, typically using tracer species information 

and emission inventories. The theoretical basis of the method is described in greater detail 

elsewhere (Paatero, 1997; Paatero and Tapper, 1994). For ambient PM speciation data, the model 

decomposes the data matrix into a source profile (F matrix) containing the species composition 
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profile for each source and a contribution profile (G matrix) indicating the amount of mass 

contributed by each source to each sample. Non-negative constraints are imposed by the model 

so that there are no negative species concentrations in any of the source profiles and no source 

contributions that are significantly negative. In PMF, each sample concentration is individually 

weighted by its uncertainty which provide users the flexibility to adjust the weight of each data 

point and potentially minimize the influence of extreme values to the model. The model searches 

for a solution by minimizing the sum of the square of the uncertainty-weighted residual between 

modeled and observed data from each sample.  

In this study, the optimal number of factors for a given dataset was selected based on several 

criteria.  The number of factors was systematically varied and the modeling output was inspected 

for goodness of fit between the modeled and measured species concentrations, distribution of 

source contribution estimates in G-space scatter plots, distribution of residuals, and 

interpretability of the factors based on tracer species loadings.  Uncertainty matrix perturbation 

and uncertainty estimation tools incorporated by EPA PMF 5.0 were also used to support the 

selection of number of factors.  

Handling and selection of input data 

Previous source apportionment analyses normally conditioned the datasets by imputing 

concentrations below MDL with half of the MDL values and setting their uncertainties to 5/6 of 

the MDL (Buzcu et al., 2003; Kim and Hopke, 2007; Kim et al., 2003; Wang and Hopke, 2013). 

However, Brown et al. (2015) recently suggested no proven advantages to this substitution 

practice but possible disadvantages such as introducing biases. Thus, in this study the analysis 

was performed by retaining all the reported concentration (including zero) values and uncertainty 
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values. However, additional source apportionment analyses were also performed as sensitivity 

studies following the conventional practice described above to condition the datasets. 

A revised calculation of signal-to-noise ratio (S/N) is implemented in EPA PMF 5.0 which is 

different from the conventional definition applied in prior studies (Lee and Hopke, 2006).  The 

new S/N calculation takes into account the difference between concentration and uncertainty 

values and uses it as the signal, down-weighting the influence from negative and extreme values. 

The detailed calculation is given by Norris et al. (2014). In this study, species with S/N values 

larger than 2.0 were assigned as “strong” variables and species with S/N larger than 0.5 but 

smaller than 2.0 were assigned as “weak” variables. “Bad” variables were species with S/N 

values less than 0.5 and were excluded from the analysis. PM2.5 mass was always selected as the 

“total variable” and given extra uncertainty. In addition, an extra 10% overall modeling 

uncertainty was added to account for the temporal variation of the source profiles. More details 

are provided in the Supplementary Materials. 

Uncertainty estimates for the modeling results 

EPA PMF 5.0 incorporated displacement analysis (DISP) and bootstrapping enhanced with 

displacement (BS-DISP) for the estimation of variability in PMF solutions based on the 

discussion by Paatero et al. (2014). The classical bootstrapping (BS) method and the two 

additional methods focus on uncertainties arising from different sources and are therefore 

complementary to each other. BS analysis characterizes the effects from random errors 

introduced in the measurement process and part of the effects from rotational ambiguity arising 

from rotationally non-unique solutions to the model. DISP analysis provides information on the 

rotational ambiguity of the solutions but not on the random error. BS-DISP as a combination of 

the BS and DISP methods; it is less sensitive to inaccuracies in data uncertainties and is believed 
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to be more robust than DISP results. Key output parameters from these three methods were used 

in this study to obtain a deeper insight of the uncertainty of source apportionment results. 100 

bootstrap runs were made for each dataset and a minimum correlation of 0.8 for mapping factors 

generated by bootstrap runs (BS and BS-DISP) were used. 

Christensen et al. (2008) proposed perturbing the species uncertainty matrix as a tool for 

evaluating the stability of PMF solutions. This approach might complement the variability 

estimation methods provided by EPA PMF v5.0 especially towards identifying the optimal 

number of factors. This approach perturbs the uncertainty matrices by inserting noise based on a 

lognormal distribution while keeping the original concentration matrices. The distributions of 

source contributions from perturbed datasets and the similarity between the solutions generated 

by perturbed datasets compared to the original datasets reflects the stability of the analysis. In 

this study, we explored this approach using the St. Louis datasets as a complement to the error 

estimation approaches provided by the PMF program. For each dataset runs were made using ten 

perturbed uncertainty matrices. 

Nonparametric wind regression (NWR) 

Nonparametric wind regression (NWR) was first introduced by Henry et al. (2002) as a pollution 

rose which does not require the binning of the pollution data into wind direction sectors. NWR 

uses a Gaussian kernel and a user-defined smoothing parameter to generate a smooth and 

continuous curve for the expected concentration as a function of the wind direction. Hourly wind 

data and hourly concentration data are normally applied together for the analysis. When applied 

with 24-hour integrated concentration data, each hour is equally assigned as the daily 

concentration value.  The potential smearing effect caused by using 24-hour integrated data has 

been discussed and in general good agreement with the conditional probability function (CPF) 



133 
 

method to locate the bearings of the emission sources has been observed (Kim and Hopke, 

2004). 

In this study, NWR was conducted using source contribution estimates (SCE) derived from 24-

hour integrated concentration data from CSN in conjunction with hourly winds data. Hours with 

calm winds (operationally defined as wind speeds less than 0.5 m/s) were excluded from the 

analysis. 10m winds data were available for Blair, Arnold and Roxana. Because of the proximity 

and geographical similarity, Blair winds were used for Granite City and Arnold winds were used 

for Belleville and Bonne Terre sites. However, variability has been observed for wind patterns at 

different locations which may cause mild shifts in the NWR profiles. For example, the 

channeling effect caused by the Mississippi River results in higher frequency of north-south 

winds for sites located in or close to the Mississippi River valley. Thus, NWR patterns should be 

interpreted with caution. Confidence intervals on the SCEs were generated as 1σ of the expected 

concentrations; no blocking was needed because the 1-in-6 and 1-in-3 day concentration values 

for the parameters of interest were not serially correlated. 

7.3. Results and Discussion 

7.3.1. Source apportionment using single-site datasets 

The source apportionment analyses resulted in five to eight factor solutions deemed to be optimal 

at the six sites using unconditioned datasets. Runs using different FPEAK values were conducted 

for these solutions to evaluate and confirm and evaluate the uniqueness of the solutions. Figure 

7-2 and Figure 7-3 show the sources profiles identified at Blair, Arnold and Bonne Terre for the 

pre- and post- carbon methods transition, respectively. Because these three sites are 

representative of urban, suburban and rural environments, presenting the source profiles together 
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enables better comparison among the source contributions, especially for the sources identified 

to be regional. Table 7-2 summarizes the identified sources and their average contributions to 

PM2.5 SCEs for each of the six sites. Results for source apportionment analysis using Belleville, 

Granite City, and Roxana datasets are shown in Figures 7-9 to 7-11, respectively. 

The secondary sulfate factor was characterized by high loadings of sulfate and ammonium ions 

at all six sites. This factor is one of the major contributors to PM2.5 mass and accounts for 34 ~ 

42% of PM2.5 mass concentration. The time series (Figures 7-12, through 7-14) of this secondary 

sulfate factor at all sites exhibits a seasonal pattern with summer maximum when photochemical 

conversion of SO2 from primary emissions is enhanced. Figure 7-2 and Figure 7-3 show that 

sulfate factor contributions from urban, suburban and rural environments are in good agreement 

which suggests at most small impact from local activities. General agreement of sulfate factor 

SCEs at the three Illinois sites was also observed and suggests spatial homogeneity across the St. 

Louis area. Lee and Hopke (2006) attributed the dominant source of the secondary sulfate in the 

St. Louis area to regional transport from Ohio River Valley which has a high density of coal-

fired power plants; Appendix B includes analyses supporting this attribution. The secondary 

nitrate factor was identified by high loadings of nitrate and ammonium ions. A seasonal pattern 

with winter/spring maximum was observed because of the low temperature and high humidity 

which enhances the gas-to-particle conversion of ammonium nitrate. Modestly higher SCEs were 

observed at the downtown (Blair) site was observed and can be attributed to nitrogen oxides 

from local traffic. The Upper Midwest/Central Plains was identified as the dominant source 

region in a previous study using air mass back trajectory based tools (Lee and Hopke, 2006); 

again, analyses in Appendix B support the attribution. 
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A biomass burning factor was resolved at all sites expect Granite City. K and high loadings of 

OC and EC are usually tracers for this source type. This factor accounts for 20 to 40% of the 

total PM2.5 mass concentration. However, this biomass burning factor is not be well-defined in 

many datasets with some species such as sulfate, nitrate and ammonium as well as inorganic 

elements loading onto this factor. The association of carbon species and sulfate and nitrate could 

be the result of gas-to-particle condensation since both sulfate and nitrate are regional 

contributors to PM2.5. Many inorganic elements were present in ambient PM at trace levels 

which often resulted in the assignment as “weak” species. With the extra uncertainty applied to 

these species, they are more poorly fitted to factors. Therefore, these elements were either 

smeared across multiple factors or grouped into a few regional factors. High loadings of many 

inorganic elements onto the biomass burning factors at Bonne Terre compared to Blair and 

Arnold shown in Figure 7-2 and Figure 7-3 are good illustrations. At some sites, traffic related 

sources were not resolved by PMF, possible resulting in smearing of OC and EC and 

overestimation of biomass burning contributions. Secondary OC was not resolved as a unique 

source and likely loads strongly onto the biomass burning factor. At all five sites, there were no 

significant temporal patterns and occasional spikes were observed, indicating minor local 

contributions on top of a regional background. A biomass burning factor was not identified at 

Granite City (resolved profiles shown in Figure 7-10). A factor with over 50% of the OC and 

over 65% of the EC was resolved whereas K largely smeared across all six factors. Steelmaking 

emissions exert high influence at Granite City and might interfere with the resolution of other 

factors. 
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Figure 7-2. Source profiles identified at Blair, Arnold and Bonne Terre using 
BL1, AR1 and BT1. The steel factor and lead smelter factor were not resolved at 
Bonne Terre; the zinc factor was not resolved at Arnold and Bonne Terre. *Cu is 
modeled only for AR2 and BT2; **Sn is modeled only for BT2. 
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Figure 7-3. Source profiles identified at Blair, Arnold and Bonne Terre using 
BL2, AR2 and BT2. The traffic factor and the zinc factor were not resolved at 
Arnold and Bonne Terre. *Cu is modeled only for AR2 and BT2; **V is modeled 
only for BT2.  



138 
 

Table 7-2. Average source contribution estimates (SCEs) to PM2.5 mass concentration. Values in 
parentheses represent the percentage of PM2.5 mass explained by each factor. 

Blair Street   
BL1 (2000 – 2007)   BL2 (2007 – 2014)  
Secondary sulfate 6.0 (39) Secondary sulfate 4.3 (35) 
Secondary nitrate 2.9 (19) Secondary nitrate 1.7 (14) 
Biomass burning 3.3 (21) Biomass burning 3.2 (26) 
Resuspended soil + Saharan dust 0.3 (2) Resuspended soil + Saharan dust 0.8 (6) 
Ca-rich 1.5 (10) Ca-rich 0.2 (1) 
Metals processing 0.8 (5) Metals processing 0.3 (2) 
Zinc smelting 0.2 (2) Zinc smelting 0.4 (3) 
Pb 0.4 (2) Traffic 1.5 (12) 

Arnold  
AR1 (2001 – 2009)   AR2 (2009 – 2014)  
Secondary sulfate 5.5 (41) Secondary sulfate 3.4 (35) 
Secondary nitrate 2.2 (17) Secondary nitrate 0.9 (9) 
Biomass burning 3.1 (23) Biomass burning 3.7 (38) 
Resuspended soil + Saharan dust 0.3 (3) Resuspended soil + Saharan dust 0.7 (7) 
Ca-rich 1.6 (12) Ca-rich 0.7 (7) 
Metals processing 0.7 (5) Metals processing 0.4 (4) 

Bonne Terre   
BT1 (2003 – 2007)   BT2 (2007 – 2014)  
Secondary sulfate 5.3 (47) Secondary sulfate 3.4 (34) 
Secondary nitrate 1.9 (17) Secondary nitrate 1.0 (10) 
Biomass burning + Mixed sources 3.0 (26) Biomass burning + Mixed sources 4.2 (43) 
Resuspended soil 0.5 (4) Resuspended soil 0.7 (7) 
Ca-rich 0.6 (6) Ca-rich 0.6 (7) 
    
Granite City (GC) 
Secondary sulfate 4.3 (34) 
Secondary nitrate 1.6 (12) 
Resuspended soil 2.3 (18) 
Metals #1 1.0 (8) 
Metals #2 0.8 (6) 
Carbon 2.8 (22) 

Belleville (BV) 
Secondary sulfate 5.0 (42) 
Secondary nitrate 1.0 (8) 
Biomass burning 2.8 (22) 
Resuspended soil 1.0 (8) 
Ca-rich 1.1 (9) 
metals 1.3 (10) 

Roxana (RX) 
Secondary sulfate 3.9 (37) 
Secondary nitrate 2.4 (23) 
Biomass burning 1.8 (17) 
Metal processing 1.0 (10)    
Resuspended soil 0.9 (9) 
Ca-rich 0.3 (3) 
Brass manufacturing 0.1 (1) 
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An airborne soil factor was characterized by the presence of Al, Si and Fe. Ti was often excluded 

from PMF modeling because of its low S/N ratio; otherwise it was associated with this factor as 

well. The time series of this factor at Blair, Arnold and Bonne Terre (shown in Figure 7-12, 7-13 

and 7-14) displays a seasonal pattern with summer maximum which is consistent with increased 

soil dryness. This airborne soil factor in St. Louis during the summertime is significantly 

influenced by long-range transport of Saharan dust from Africa. The occasional spikes in the 

source contributions time series agree with these events. For example, at the rural site Bonne 

Terre the average observed Si/Fe ratios on days when soil contributions rank in the top 5% is 

3.31 which is similar to the ratios (3.25 – 4.53) observed by Perry et al. (1997) in Eastern US and 

Virgin Islands during Saharan dust events. In addition, ratios between Al, Si, Fe and Ca on these 

days are within or similar to the ranges reported in the aforementioned study. At Blair Street, 

Arnold and Bonne Terre, there are 27 days on which PM2.5 mass concentration apportioned to 

the soil factor at all three sites are in the top 5% of the respective time series. Back trajectory 

analysis suggests that on those days the air masses predominantly came from the south/gulf area 

which is consistent with the typical path for inter-continental transport of Saharan dust. 

In some source apportionment studies, Ca was also used as a chemical tracer for road dust and 

resuspended soil (Lee et al., 2006; Pancras et al., 2013). However, in this study Ca was 

separately resolved by the model and a “Ca-rich” factor with 70 to 80% of the total Ca load was 

identified at five of the six sites with Granite City again as the exception. Previous source 

apportionment studies focusing on the St. Louis area identified a Ca-rich factor at the Arnold site 

using CSN data from 2001 to 2003 and concluded that this factor may result from the local 

activities such as a cement kiln, quarries and a pigment factory (Amato and Hopke, 2012; Lee 

and Hopke, 2006). In this study, however, a Ca-rich factor was resolved at multiple sites 
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including the rural site which is about 100 km outside the urban core which suggests that this 

factor is likely not driven by one or more point sources. Instead, it may serve as the evidence of a 

regional scale source or a regional scale behavior common to all of the sites. Nonparametric 

wind regression analysis for this factor at multiple sites is shown in Figure 7-13. The results did 

not display patterns that are distinguishable and consistently indicative of point sources. One 

possible explanation to the ubiquitous Ca-rich factor is the prevalence Karst topography 

throughout the St. Louis area. Karst is rich in limestone which is a sedimentary rock primarily in 

the form of calcium carbonate. Particles from limestone attrition can be resuspended under 

certain physical conditions such as dryness and high winds. However, based on the limited 

evidence it is difficult to draw any definitive conclusion regarding the origin of this source. It is 

notable that a Ca-rich factor was not identified at Granite City site. Instead, the majority of Ca 

merged into the resuspended soil factor which might be influenced by slag piles from the 

steelworks. In addition, PMF might differently apportion species as well as PM2.5 mass to Ca 

rich and soil factors in different datasets. For example, discontinuities in the SCE time series for 

the Ca rich factor at Blair Street (Figure 7-12) and Arnold (Figure 7-13) correspond to the 

change of carbon analytical protocols and are attributed to the discrepancies of loadings of other 

elements onto this factor. The Ca rich factor resolved using dataset BL1 and AR1 resembles the 

soil factor because it has higher loadings of Ti, Si and carbon species. 

A factor characterized by metals such as Cu, Fe, Mn and Zn was identified at Blair, Arnold and 

Belleville. The Granite City Steelworks might be one of the major contributors to this factor 

although source-receptor distances to Arnold and Belleville are relatively large. Meanwhile, 

other metal manufacturing industries such as Cerro Copper Products and Big River Zinc 

Corporation were quite active during the earlier time period. At Blair NWR analysis (shown in 
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Figure 7-14) suggests contributions from metal processing industries to the east and possible 

local activities to the west of the site. Contributions from the east were an artifact from a small 

fabrication shop 50m from the site. This facility caused microscale influences prior to its 

shutdown in 2006. The zinc smelter and copper production industries were shut down in 2006 

and 2003, which is consistent with the decrease in metals processing SCEs between the two time 

periods that were modeled. The metal processing factors that appeared at both Arnold and 

Belleville are most likely admixtures of metal processing and possibly other activities in the 

urban core when the sites were downwind since Zn, Cu, Fe and Mn were all included in the 

metal processing factor. The large spatial variability in SECs for this factor could possibly be 

explained by other non-metal species loading on this factor. An example would be Belleville 

where a large fraction (~40%) of the EC loads onto the metal processing factor. 

A Zn factor was identified at Blair for both modeled time periods. NWR analysis indicated that 

the observed Zn at Blair is primarily attributed to the emissions from the Granite City steel mill 

to the northeast and Big River Zinc Corporation to the southeast. The NWR profile (shown in 

Supplementary Material Figure 7-15) has only a northeasterly feature during 2007 to 2014 which 

is after the zinc production facility had shut down. The NWR plots for lead factor identified at 

Arnold before 2009 points to the south, suggesting the lead smelter in Herculaneum, MO as a 

major contributor. Emissions from this smelter were reduced by more than six-fold from year 

2000 to 2003 based on the data provided by the EPA Toxics Release Inventory (TRI). As a 

potential result of the lower emissions, a lead factor could not be resolved for the 2009 – 2014 

dataset. A lead factor was also identified at Blair during 2000 – 2007. Because of the distance 

between the lead smelter and the receptor site, the NWR plot has a less distinctive southerly 

pattern but is in general agreement with the lead smelter location. 
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A traffic factor was resolved by PMF for the most contemporary data at Blair site with about 

70% of EC and 25% of OC included in its profile. The contribution from this traffic factor is 

estimated to be 12% of the average PM2.5 mass concentration. Figure 7-4 shows the daily SCEs 

and observed EC concentrations distributed by day of week. The SCEs exhibit a weekly pattern 

with low levels on weekends compared to weekdays and is consistent with the EC pattern which 

serves as a tracer species for motor vehicle emissions. 

 

Figure 7-4. Weekly pattern of the (a) SCE of the traffic related factor and (b) 
observed EC. The upper and lower edges of the boxes indicate the 75th percentile 
and 25th percentile of the distribution. The whiskers represent 90th and 10th 
percentile and the crosses are 95th and 5th percentiles of the distribution. Medians 
are shown as a solid line in the boxes. 

 
Wind regression profiles are shown in Figure 7-5 for the traffic related factor SCEs at Blair. 

High expected contributions are for winds from the southwest (~100o N) where a scrap metal 

recycling facility is located in Figure 7-1. The similar patterns for weekdays and weekends imply 

an emission source that is operated each day of week.  The difference between the expected 

concentrations on weekdays versus weekends (Figure 7-5b) shows relatively low directional 

variation, suggesting the contributions from local traffic on weekdays. In addition, the larger 

excess during weekdays for the northeast through southwest direction agrees well with bearings 
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of the interstate highway I-70 to the east of the Blair site. The weight of evidence indicates that 

this factor is an admixture of a local point and on top of traffic related. 

At Granite City two metal processing factors were resolved (Figure 7-10). One of the features is 

primarily characterized by Fe, Cu and Co (Metals #1). The other metal processing factor has 

high loadings of Mn and Zn (Metals #2). NWR plots for both factors (shown in Figure 7-16) 

point to the south of the site which is consistent with the footprint of the Granite City steelworks. 

 

Figure 7-5. Nonparametric wind regression profiles for (a) traffic factor at Blair 
on weekdays (solid line) and weekends (dashed lines) and (b) difference of the 
expected concentrations between weekdays and weekends (dotted dashed line). 
Radial axes units are µg/m3. 

 

The high expected concentration with a wide confidence interval shown around 0°N in the NWR 

plot for Metal #2 is attributed to a small number of exceptional episodes and cannot be 

explained. Taiwo et al (2014) considered Fe as marker for blast furnace (BF) emissions and Zn 

as a tracer element for basic oxygen furnace (BOF) emissions in a source apportionment analysis 

using data collected at multiple sites in the vicinity of a steelworks. However, the two identified 

metal factors in this study show different profiles compared to prior source apportionment and 
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source characterization studies. In this work, Metals #1 bearings are broadly consistent with the 

BOF and finishing operations whereas Metals #2 bearings are consistent with the BOF location. 

In summary, source apportionment analysis using single-site datasets demonstrate that PM2.5 in 

the St. Louis area is dominated by regional sources including secondary sulfate and secondary 

nitrate with generally consistent source contribution estimates across the sites when modeling 

similar time periods. A Ca factor was resolved and served as evidence of a regional scale source 

(or a source having regional characteristics) instead of contributions from one or more point 

sources which was inferred in previous studies. Local point sources exhibit different impacts 

across the five sites depending on source-receptor separation. A traffic factor was resolved only 

at the downtown St. Louis site with a strong weekday-weekend pattern. Several subtle features to 

the modeling results were noted that are consistent with known changes in local emissions over 

time.   

7.3.2. Source apportionment using multi-site datasets 

There have been an increasing number of source apportionment studies using datasets comprised 

of multiple receptor sites in order to enhance the robustness of the analysis by increasing the size 

of the dataset as well as to characterize sources at a regional scale (Escrig et al., 2009; 

Minguillón et al., 2012; Mooibroek et al., 2011; Xie et al., 2012). However, the effect of pooling 

data from multiple receptor sites on the identification of sources by PMF has been less studied. 

Tian et al. (2014) used synthetic datasets and concluded that the PMF analyses using single-site 

and multi-site datasets agreed well for regional sources with relatively homogeneous profiles but 

might be sensitive to the spatial variability of source profiles. Xie et al. (2012) compared PMF 

solutions for a pooled dataset and those for its component single site datasets using speciated 

carbonaceous aerosol data. Factor contributions derived from single-site datasets and from the 
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pooled dataset were highly correlated and supported the assumption of homogeneity of source 

types across the region of interest. However, this comparison enforced identical numbers of 

factors to both scenarios. Independent evaluations using observed multi-site air quality datasets 

have yet to be thoroughly conducted. 

In this study site-specific datasets with overlaps in time coverage were pooled to generate several 

multisite datasets. Each pooled dataset was modeled as an independent dataset without inferring 

the same number of factors that were resolved for the component single sites. Table 7-3 shows 

the solutions to the four pooled datasets and their contributions to PM2.5 mass.  

Table 7-3. Sources and their contributions identified from pooled datasets. Values in parentheses 
indicate percentage of PM2.5 mass explained. 
Blair Street + Arnold   
BLAR1 (2001 – 2007)   BLAR2 (2009 – 2014)  
Secondary sulfate 6.0 (41) Secondary sulfate 3.4 (33) 
Secondary nitrate 2.2 (15) Secondary nitrate 1.1 (11) 
Biomass burning 3.5 (24) Biomass burning 2.4 (23) 
Resuspended soil + Saharan dust 0.3 (2) Resuspended soil + Saharan dust 0.7 (6) 
Ca-rich 1.3 (9) Ca-rich 0.4 (3.5) 
Metals processing 0.5 (4) Metals processing 0.2 (1.9) 
Zinc smeltering 0.7 (5) Zinc 0.3 (2) 
Pb 0.2 (1) Traffic 2.1 (19) 

Blair Street + Arnold + Belleville + Granite City  
MULT1 (2010 – 2012)     
Secondary sulfate 3.9 (33)   
Secondary nitrate 1.3 (11)   
Biomass burning 3.6 (30)   
Resuspended soil + Saharan dust 0.7 (6)   
Ca-rich 0.2 (2)   
Metals processing 0.5 (4)   
Zinc rich 0.2 (1)    

  
Blair Street + Arnold + Belleville + Roxana 
MULT2 (2012 – 2014)     
Secondary sulfate 3.2 (33)   
Secondary nitrate 1.2 (12)   
Biomass burning 1.3 (13)   
Resuspended soil 0.9 (9)   
Ca-rich 0.3 (3)   
Metal processing 0.2 (2)    
Zinc rich 0.1 (1)    
Traffic 2.6 (26)    
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Source apportionment studies using pooled datasets assume homogeneity among profiles a given 

source category and allow spatial heterogeneity in the contributions for these sources. This 

source profile homogeneity assumption might lead to biased results in areas where local sources 

within a given source category differentially impacts different sites. Two metal processing 

factors characterized by Fe/Cu and Mn/Zn respectively were identified at Granite City using the 

site-specific dataset, whereas multisite datasets including Blair, Arnold, Belleville and Granite 

City sites identified one metal processing factor on which larger percentages of Cu (44%), Fe 

(72%) and Mn (66%) were loaded. A zinc-rich factor explaining 78% of the observed Zn also 

appeared in the solution to the multisite dataset. It is very likely that the covariance of Mn and 

Zn which defines the metal processing factor (Metals#2 shown in Figure 7-10) becomes 

confounded by pooling data from three other sites which are not influenced by the steelworks or 

are at source –receptor distances that blend together the two steelworks factors. Using factors 

resolved from the multisite analysis could potentially distort the interpretation of the sources at 

Granite City. 

Meanwhile, there do appear to be some advantages to pooling data across sites. As shown in 

Table 7-2 and Figure 7-3, traffic-related factors characterized by high EC were not resolved at 

Arnold during 2009 - 2014 using the single-site dataset. However, they do appear in the solutions 

for the Blair-Arnold multisite analyses. The observed weekly pattern at Arnold (shown in Figure 

7-6) with weekend minima is attributed to traffic related emissions. As a suburban site, traffic 

contributions were smaller than at Blair. It is possible that the small contribution of local traffic 

at Arnold did not provide sufficient “covariance” for PMF to resolve a well-defined factor and 

tracer species such as EC and OC were smeared across other factors. When the single-site dataset 

was combined with Blair where traffic related source contributions are significant, the data from 
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Blair assisted in detecting the covariance and resolving a traffic-related factor in this pooled 

dataset. 

It is also notable that multisite PMF analysis may result in source contribution estimates that 

disagree with those from single site analysis even when both cases were able to resolve the same 

set of factors.  The Blair Street was selected to demonstrate the effect of pooling data from 

multiple sites in the study area because identical sources were resolved for the four multisite 

datasets and corresponding single-site dataset with the same temporal coverage. This provides an 

ideal case for the comparison (Figure 7-7).  

PMF modeling was conducted on four pooled datasets: BLAR1, BLAR2, MULT1 and MULT2. 

Modeling was also performed using only the Blair samples included in each of the above four 

multisite datasets. Table 7-3 shows results as well as the number of samples used in each of the 

cases. To assess the effect of pooling data from multiple sites, two metrics were used: Pearson 

correlation coefficient and relative average absolute error (RAAE). RAAE is defined as: 

RAAE = 

భ
೙
∑ |ெ೔ିௌ೔|
೙
೔సభ
భ
೙
∑ ௌ೔
೙
೔సభ

 

where n is the total number of samples at Blair, Mi is the SCE  of a factor resolved from multisite 

analysis and Si is the SCE of a factor resolved from single-site analysis. Correlation is an 

indicator for the agreement of day-to-day co-variance of source contributions and RAAE is a 

measure of differences in the two contribution time series.   

Generally, factors for regional sources such as sulfate, nitrate, resuspended soil and calcium-rich 

materials showed minimum variation.  However, factors with local emissions impacts such as 
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traffic related sources displayed increased bias and weaker correlation in the day-to-day 

contributions between SCEs from multisite and single-site analyses. Including more sites from a 

larger geographical area which potentially include sources profiles with larger spatial variability 

in the multisite analyses could also lead to different SCEs compared to single-site analyses. This 

is consistent with previous observations in the sensitivity study by Tian et al. (2014) which 

ascribed sensitivity of multisite PMF analysis to the spatial variability of source profiles. 

 

Figure 7-6. Weekly patterns for the traffic related factor SCEs at Arnold and Blair 
based on the analysis using pooled data from these two sites. The upper and lower 
edges of the boxes indicate the 75th percentile and 25th percentile of the 
distribution. The whiskers represent 90th and 10th percentile and the crosses are 
95th and 5th percentiles of the distribution. Medians are shown as a solid line in the 
boxes. 

 
Therefore, pooling data from multiple sites in order to increase the size of the dataset and to 

enhance the stability of the solutions might lead to different SCEs at individual sites and caution 

should be used when interpreting these results. 

In summary, source apportionment analyses using multisite datasets assume homogeneous 

source profiles at all sites and this can lead to biased results at sites differentially impacted by 

local sources. The advantage of using multisite datasets for source apportionment analyses are 
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demonstrated by resolving a traffic factor at a suburban site where such factor could not be 

resolved using the corresponding single-site dataset. While the source contribution estimates 

from multisite datasets may differ with those obtained from single-site datasets, regional scale 

sources typically show good agreement with poorer agreement for the local sources. 

 

 

Figure 7-7. RAAE and correlation of factors resolved at Blair using the site-
specific dataset and pooled datasets: (a) BLAR1; (b) BLAR2; (c) MULT1 and (d) 
MULT2. Only select factors are labeled in (a) and (b). 
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7.3.3. PMF Modeling Uncertainties 

Error estimation results and diagnostics are summarized in Table 7-4. Generally good stability 

was observed for all the optimal runs which were selected based on diagnostic parameters such 

as goodness of fit to the observations and the distribution of residues. All the factors in 13 

datasets had more than 80% of the bootstrap runs successfully mapped which indicates that the 

BS uncertainty could be interpreted and the number of factors may be appropriate (Norris et al., 

2014). As discussed in Section 7.2, DISP and BS-DISP attempted to transform the solution 

gradually without significant increase of Q which is the objective function being minimized. 

Swap refers to extreme cases in these calculations when the factors change so much that they 

exchange identities. The extent of factor swapping is an indicator of whether a solution is well-

defined. In this study, no swaps occurred with DISP and the decrease in Q approached or was 

equal to zero, suggesting minimum rotational ambiguity. The majority of BS-DISP runs were 

successful with no swaps, except two single-site datasets and three multisite datasets. In spite of 

the swaps observed, runs with Belleville and Blair + Arnold suggested only minor instability 

with less than five swaps and a high proportion of accepted cases. Moderate instability was 

observed with runs at Roxana where 17 swaps occurred and 83 cases were considered 

acceptable. BS results confirmed this instability with metal processing factor mapped only in 

81% of BS runs. Similar levels of instability were also exhibited by with the two pooled datasets 

comprised of four sites where spatial variability of source profiles may affect the identification of 

factors and are likely responsible for the increased uncertainties.  

These methods provide only semi-quantitative measures of the uncertainty associated with PMF 

modeling and are best interpreted in a relative sense (Norris et al., 2014). Therefore, sensitivity 

studies were conducted that applied three error estimation methods to ten solutions to a given 
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dataset that were generated using different seeds. Table 7-5 summarizes the sensitivity study 

conducted using the Blair+Arnold+Belleville+Granite City dataset. While BS and DISP are 

relatively stable, the result indicated that BS-DISP was sensitive to the variability of source 

profiles caused by using different seeds. Thus, BS-DISP may not be a robust method to quantify 

the modeling uncertainty and care should be taken to avoid overinterpreting the BS-DISP results. 

In addition to the three uncertainty estimation methods implemented by EPA PMF 5.0, the 

uncertainty matrix perturbation method described by Christensen et al. (2008) was also explored. 

Results for one of the datasets (Blair + Arnold + Belleville + Roxana) are shown in Figure 7-8 as 

an illustration and Table 7-6 summarizes the results for all datasets. The explained mass 

correlation (EMC) is a metric for the similarity or correlation between the factor profiles (F 

matrix) of an alternative solution from the perturbation and the standard (base) solution; the 

relative average absolute error (RAAE) is an indicator for the relative difference of the day-to-

day source contributions (G matrix) between the two cases Christensen et al. (2008).   

Figure 7-7 shows the calculated RAAE vs. correlation for four multisite – single-site pairs. 

Points at the upper left corner are in best agreement with high correlation and minimum 

difference in SCEs. Factors that show excellent agreement (sulfate, nitrate, resuspended soil and 

metal processing) are not labeled in Figure 7-7 (a) and (b). 

Both source factor contribution estimates (Figure 7-8a) and EMC values (Figure 7-8b) display a 

wide range for biomass burning factor and to a lesser extent the traffic factor. RAAE (Figure 7-

8c) values showed more variability as well as wider range for several factors. However, the wide 

range of RAAE values for calcium, zinc and metal processing factor is not suprising because the 

RAAE is a relative scaled metric and inherently has high variability for small SCEs. 
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Collectively, these three metrics suggested moderate instability for the biomass burning factor 

and a lesser extent the traffic factor. This finding is consistent with the three error estimation 

methods. Consistency between the two sets of error estimation methods was also observed for 

the other studied datasets. While a limited number of runs (10) can inform the stability of factors 

resolved by PMF and could be used as a qualitative check on the selection of the optimal number 

of factors, a larger number of perturbation runs are needed to establish robust statistical 

evaluation of the solutions. 

 

 

Figure 7-8. Results for the uncertainty matrix perturbations runs for 
Blair+Arnold+Belleville+Roxana. (a) average factor contributions; (b) EMC; (c) 
RAAE. The base case is represented by triangles and the alternative runs (average 
± 1σ) are shown as closed circles with error bars.  The resolved factors are: 
resuspended soil (RS), traffic related emissions (traffic), secondary sulfate 
(sulfate), biomass burning (BB), Zn rich (Zn), metal processing (MP) and 
secondary nitrate (nitrate). 
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7.4. Conclusions 

PM2.5 speciation data collected at six sites in the St. Louis area were analyzed by PMF to identify 

emission sources and apportion their contributions. Wind regression was also utilized to locate 

the local emission sources. Three regional-scale sources - sulfate, biomass burning and nitrate - 

were identified at the majority of the sites and collectively accounted for 72~91% of the PM2.5 

mass. These factors presumably also include regional secondary organic aerosol. A resuspended 

soil factor that is significantly affected by the intercontinental transport of Saharan dust 

contributes 2~8% of PM2.5 mass. Because of the benefit from the extended spatial and temporal 

coverage of the current datasets, a Ca-rich factor which was previously attributed to point 

sources appears to have regional source characteristics.  Point sources such as steel processing, 

brass production, lead smelting and zinc smelting were resolved at some sites. A factor 

dominated by traffic but mixed with a local point source was identified at downtown St. Louis 

for the most contemporary time period and was estimated to contribute to 12% of total PM2.5. 

Datasets pooled from the multiple single-site datasets were also analyzed by PMF. Additional 

factors were identified at certain sites likely because of the strengthened covariance by the 

pooling of multiple datasets. However, multisite analysis may result in differences in 

contribution estimates at individual sites compared to the corresponding single-site analysis. 

Regional sources often exhibit good agreement in the SCE between single-site and multisite 

analyses whereas discrepancies were found for SCEs from factors representing local sources 

such as traffic related emissions. Caution must be used when interpreting SCEs derived from a 

multisite analysis for any individual site.  
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Modeling uncertainties were evaluated using BS, DISP and BS-DISP implemented by EPA PMF 

5.0. Stability was generally observed for all of the optimal solutions. Higher uncertainties are 

more likely to be associated with the solutions to multisite datasets. Sensitivity studies indicate 

instability of BS-DISP and, therefore, values generated by BS-DISP should be used a reference 

instead of a stringent standard. PMF runs with perturbed uncertainty matrices led to similar 

observations as the PMF 5.0 tools and have been demonstrated as a potentially alternative 

method to evaluate modeling uncertainties. 
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Figure 7-9. Factor resolved at Belleville using dataset BV.  
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Figure 7-10. Factor resolved at Granite City using dataset GC. 
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Figure 7-11. Factor resolved at Roxana using dataset RX.  
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Figure 7-12. Time series for factors identified at Blair Street. The red vertical 
lines denote the carbon analysis method transition. SCE values less than 0 are not 
shown. 
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Figure 7-13. Time series for factors identified at Arnold. The red vertical lines 
denote the carbon analysis method transition. SCE values less than 0 are not 
shown. 
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Figure 7-14. Time series for factors identified at Bonne Terre. The red vertical 
lines denote the carbon analysis method transition. SCE values less than 0 are not 
shown. 
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Figure 7-15. Nonparametric wind regression for Ca-rich factors resolved at five locations. Solid 
black lines represent expected concentrations and dashed black lines indicate 95th confidence 
intervals. The radial axes have concentration units of µg/m3. 

 

Figure 7-16. Nonparametric wind regression for metal processing factors resolved at three 
locations. Solid black lines represent expected concentrations and dashed black lines indicate 
95th confidence intervals. The radial axes have concentration units of µg/m3. 
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Figure 7-17. Nonparametric wind regression for Zn factors resolved at the Blair 
site. Solid black lines represent expected concentrations and dashed black lines 
indicated 95th confidence intervals. The radial axes have concentration units of 
µg/m3. 

 

Figure 7-18. Nonparametric wind regression for the two metal factors resolved at 
Granite City. Solid black lines represent expected concentrations and dashed 
black lines indicated 95th confidence intervals. The radial axes have concentration 
units of µg/m3. 
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Table 7-4. Summary of EPA PMF 5.0 error estimates diagnostics by datasets. 

  BS   DISP   BS-DISP 
  mapping error limits* DISP species dQ% DISP swaps dQ% % cases with swaps 
Blair 2000-2007   

Ca rich 100% 0.86, 2.41 NH4, NO3 -0.000 0 -0.35 2 
metal processing 100% 0.33, 1.02 SO4, Al, Br 
resuspended dust 98% 0.28, 0.91 Ca, Fe, K, Mn 
biomass burning  99% 2.43, 4.02 Pb, Si, Ti, Zn 
Pb 92% 0.24, 0.89 EC, OC 
nitrate 100% 2.43, 3.49 
sulfate 100% 5.14, 6.19 
Zn 100% 0.19, 0.74 

Blair 2007-2014 
Ca rich 100% 0.11, 0.54 NH4, NO3 -0.001 0 -0.002 0 
metal processing 100% 0.24, 0.65 SO4, Br, Ca 
resuspended dust 100% 0.50, 1.09 Fe, K, Mn 
biomass burning 100% 2.47, 3.63 Si, Ti, Zn 
nitrate 100% 1.53, 1.91 EC, OC 
sulfate 100% 3.93, 4.69 
Zn 100% 0.09, 0.60 
traffic 100% 0.97, 1.93 

Arnold 2001-2009 
Ca rich 100% 0.92, 2.57 NH4, NO3 -0.000 0 -0.001 0 
metal processing 100% 0.10, 1.17 SO4, Al, Br 
resuspended dust 100% 0.29, 0.63 Ca, Cu, Fe, K 
biomass burning 99% 2.58, 3.86 Mn, Pb, Si, Ti 
Pb 100% 0.03, 0.45 Zn, EC, OC 
nitrate 100% 1.53, 2.52 
sulfate 100% 4.94, 6.07 

Arnold 2009-2014 
Ca rich 100% 0.29, 1.01 NH4, NO3 -0.000 0 -0.019 0 
metal processing 100% 0.06, 1.06 SO4, Ca, Fe 
resuspended dust 100% 0.56, 1.10 K, Si, Zn 
biomass burning 100% 2.80, 4.05 EC, OC 
nitrate 100% 0.68, 1.13 
sulfate 100% 3.05, 3.87 
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Table 7-4 (continued) 

 BS  DISP  BS-DISP 
  mapping error limits*  DISP species dQ% DISP swaps  dQ% % case with swaps 
Bonne Terre 2003-2007 

resuspended dust 98% 0.31, 1.13 NH4, NO3 -0.000 0 -0.208 0 
biomass burning 100% 2.48, 3.74 SO4, Al, Br 
Ca rich 100% 0.35, 1.13 Ca, Cu, Fe, K 
nitrate 100% 1.09, 2.11 Mn, Pb, Si, Ti 
sulfate 100% 4.94, 5.88 V, Zn, EC, OC 

Bonne Terre 2007-2014 
resuspended dust 100% 0.47, 1.47 NH4, NO3 -0.000 0 -0.005 0 
biomass burning 100% 3.31, 4.42 SO4, Al, Br 
Ca rich 100% 0.48, 1.15 Ca, Fe, K, Si 
nitrate 100% 0.74, 1.15 Zn, EC, OC 
sulfate 100% 3.38, 4.04 

Belleville 
resuspended dust 99% 0.57, 2.12 NH4, NO3 -0.001 0 -0.364 1 
biomass burning 100% 1.88, 3.66 SO4, Br, Ca 
Ca rich 94% 0.11, 1.66 Fe, K, Si, Zn 
metal processing 100% 0.27, 2.27 EC, OC 
nitrate 100% 0.78, 1.30 
sulfate 100% 3.88, 5.41 

Granite City 
resuspended soil/Ca rich 100% 1.66, 3.03 NH4, NO3 -0.000 0 -0.001 0 
Metals #1 100% 0.85,1.49 SO4, Ca, Cu 
Metals #2 100% 0.54, 1.18 Fe, K, Mn, Si 
Carbon 100% 1.25, 3.30 Zn, EC, OC 
nitrate 100% 1.54, 2.50 
sulfate 100% 3.69, 5.11 

Roxana 
resuspended dust 100% 0.71, 1.74 NH4, NO3 -0.001 0 -0.304 17 
biomass burning 99% 1.31, 2.51 SO4, Br, Ca 
Ca rich 99% 0.15, 1.44 Fe, K, Si, Zn 
metal processing 81% 0.39, 1.86 EC, OC 
brass production 100% 0.02, 0.33 
nitrate 100% 1.78, 2.97 
sulfate 100% 2.57, 4.09 
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Table 7-4 (continued) 

 BS  DISP  BS-DISP 
  mapping error limits*  DISP species dQ% DISP swaps  dQ% % case with swaps 
Blair + Arnold 2001-2007 

Ca rich 99% 0.64, 2.05 NH4, NO3 0.000 0 -0.183 3 
metal processing 98% 0.17, 0.96 SO4, Al, Br 
resuspended dust 100% 0.24, 0.88 Ca, Fe, K, Mn 
biomass burning 99% 2.92, 4.21 Ni, Pb, Si, Ti 
Pb 96% 0.12, 0.46 Zn, EC, OC 
nitrate 100% 1.79, 2.68 
sulfate 100% 5.45, 6.23 
Zn 97% 0.20, 1.07 

Blair + Arnold 2009-2014 
Ca rich 100% 0.08, 0.59 NH4, NO3 -0.000 0 -0.109 0 
metal processing 100% 0.15, 0.39 SO4, Br, Ca 
resuspended dust 100% 0.55, 1.02 Fe, K, Mn, Si 
biomass burning 100% 1.56, 3.57 Zn, EC, OC 
Zn 100% 0.07, 0.43 
nitrate 100% 0.98, 1.35 
sulfate 100% 3.20, 3.90 
traffic 99% 1.13, 3.14 

Blair + Arnold + Belleville + Granite City 
Ca rich 100% 0, 0.56 NH4, NO3 -0.000 0 -0.029 17 
metal processing 100% 0.17, 0.60 SO4, Br, Ca 
resuspended dust 95% 0.59, 3.32 Cu, Fe, K, Mn 
biomass burning 98% 0.32, 4.01 Si, Zn, EC, OC 
Zn 99% 0.06, 0.33 
nitrate 100% 0.93, 1.49 
sulfate 100% 3.34, 4.41 
traffic 99% 1.14, 3.77 

Blair + Arnold + Belleville + Roxana 
Ca rich 92% 0.15, 0.47 NH4, NO3 0 0 -0.391 4 
metal processing 92% 0.17, 0.74 SO4, Br, Ca 
resuspended dust 92% 0.37, 1.32 Fe, K, Si, Zn 
biomass burning 86% 1.06, 3.14 EC, OC 
Zn 92% 0, 0.25 
nitrate 92% 0.78, 1.73 
sulfate 92% 2.28, 3.92 

  traffic 86% 1.24, 3.06               
*error limits are represented by 5th and 95th percentiles of the PM2.5 concentration assigned to each factor from the bootstrapped runs. Concentration units in µg/m3 
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Table 7-5. Summary of diagnostics for sensitivity study of error estimation methods.  

seed number 
BS DISP BS-DISP 

minimum mapping % %dQ swaps % of case accepted %dQ # of swaps 

base 55 95   0 0   69 -0.029 14 
test run #1 13 97 0 0 88 -0.2 10 
test run #2 90 94 0 0 89 -0.334 6 
test run #3 80 97 0 0 92 -0.155 6 
test run #4 5 93 0 0 92 -0.242 1 
test run #5 100 96 -0.001 0 79 -0.085 9 
test run #6 10 81 0 0 85 -0.213 9 
test run #7 500 87 0 0 93 -0.274 6 
test run #8 205 80 0 0 88 -0.740 10 
test run #9 20 79 0 0 84 -0.255 14 
test run #10 70 82 0 0 86 -0.903 12 

%dQ is calculated as (the largest observed decrease of Q value during DISP)/(Q value of the 
base run). 
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Table 7-6. Summary of uncertainty matrix perturbation runs, ten perturbation runs for each model solution. 

    contribution, µg/m3   EMC   RAAE 
    base average std. dev min max   average std. dev min max   average std. dev min max 
Blair 2000-2007 

metals processing 0.78 0.57 0.18 0.28 0.77 0.99 0.00 0.99 1.00 0.29 0.20 0.09 0.64 
sulfate 5.93 5.72 0.26 5.38 6.10 0.98 0.01 0.97 0.99 0.09 0.02 0.07 0.14 
Pb  0.36 0.64 0.19 0.38 1.01 0.98 0.02 0.92 1.00 0.82 0.53 0.11 1.86 
resuspended soil 0.39 0.28 0.08 0.19 0.46 0.99 0.00 0.98 0.99 0.39 0.09 0.27 0.56 
Ca rich 1.50 1.75 0.22 1.45 2.11 0.95 0.01 0.93 0.96 0.34 0.12 0.21 0.54 
Zn 0.25 0.29 0.09 0.16 0.45 0.96 0.03 0.91 0.99 0.31 0.26 0.12 0.82 
biomass burning 3.46 3.29 0.33 2.84 3.89 0.95 0.02 0.92 0.98 0.21 0.02 0.18 0.24 
nitrate 2.84 2.98 0.33 2.70 3.70 0.99 0.01 0.98 1.00 0.11 0.08 0.05 0.31 

Blair 2007-2014 
resuspended soil 0.690 0.76 0.10 0.63 0.95 0.97 0.01 0.96 0.98 0.24 0.05 0.19 0.36 
Ca rich 0.302 0.20 0.06 0.11 0.29 0.96 0.01 0.94 0.99 0.33 0.18 0.07 0.65 
nitrate 1.756 1.60 0.08 1.54 1.76 0.99 0.01 0.98 1.00 0.13 0.03 0.08 0.17 
biomass burning 3.248 3.50 0.18 3.25 3.77 0.96 0.02 0.93 0.98 0.19 0.03 0.14 0.22 
metals processing 0.297 0.26 0.03 0.22 0.30 0.99 0.01 0.97 1.00 0.20 0.06 0.11 0.29 
traffic 1.584 1.60 0.11 1.49 1.88 0.92 0.04 0.82 0.96 0.17 0.03 0.13 0.25 
Zn 0.336 0.17 0.05 0.05 0.23 0.99 0.01 0.97 1.00 0.48 0.16 0.29 0.85 
sulfate 4.164 4.29 0.10 4.11 4.45 0.99 0.00 0.98 1.00 0.08 0.02 0.05 0.11 

Arnold 2001-2009 
Pb 0.066 0.22 0.08 0.04 0.30 0.98 0.02 0.94 1.00 2.45 1.08 0.35 3.67 
nitrate 2.234 2.31 0.29 1.85 2.62 0.99 0.01 0.98 1.00 0.16 0.05 0.08 0.24 
metals processing 0.662 0.36 0.10 0.14 0.52 0.98 0.01 0.94 0.99 0.48 0.14 0.27 0.80 
biomass burning 3.066 2.79 0.33 2.42 3.47 0.96 0.01 0.93 0.97 0.24 0.02 0.21 0.27 
resuspended soil 0.343 0.31 0.04 0.21 0.37 0.98 0.01 0.96 0.99 0.24 0.07 0.19 0.43 
sulfate 5.480 5.55 0.15 5.24 5.75 0.99 0.00 0.99 0.99 0.09 0.03 0.07 0.15 
Ca rich 1.650 2.01 0.26 1.69 2.39 0.91 0.02 0.87 0.94 0.41 0.12 0.30 0.62 

Arnold 2009-2014 
Ca rich 0.681 0.63 0.15 0.37 0.84 0.98 0.01 0.95 1.00 0.20 0.13 0.07 0.46 
biomass burning 3.665 3.77 0.22 3.40 4.16 0.98 0.01 0.97 0.99 0.09 0.02 0.07 0.15 
metals processing 0.395 0.32 0.12 0.16 0.54 0.98 0.01 0.97 0.99 0.33 0.15 0.11 0.61 
resuspended soil 0.698 0.66 0.04 0.63 0.75 1.00 0.00 1.00 1.00 0.10 0.01 0.08 0.12 
nitrate 0.859 0.95 0.13 0.69 1.13 1.00 0.00 0.99 1.00 0.17 0.10 0.04 0.32 
sulfate 3.407 3.42 0.15 3.20 3.71 0.98 0.01 0.96 1.00 0.07 0.02 0.04 0.10 
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Table 7-6. (continued) 

 contribution, µg/m3  EMC  RAAE 
 base average std. dev min max  average std.dev min max  average std.dev min max 

Belleville 
biomass burning 2.709 2.82 0.37 2.12 3.23 0.98 0.01 0.95 0.99 0.21 0.05 0.14 0.28 
sulfate 5.035 4.91 0.25 4.48 5.40 0.99 0.01 0.98 1.00 0.08 0.02 0.05 0.12 
metals processing 1.267 1.32 0.46 0.72 2.32 0.98 0.01 0.95 1.00 0.33 0.21 0.15 0.85 
nitrate 0.976 1.04 0.11 0.84 1.20 1.00 0.00 0.99 1.00 0.13 0.06 0.06 0.25 
resuspended soil 0.963 1.08 0.25 0.80 1.63 0.99 0.01 0.96 0.99 0.26 0.16 0.11 0.70 
Ca rich 1.107 0.98 0.28 0.53 1.40 0.93 0.03 0.87 0.97 0.27 0.12 0.08 0.53 

Granite City 
Metals #1 1.074 1.25 0.19 0.87 1.62 0.98 0.01 0.97 0.99 0.27 0.12 0.16 0.55 
resuspended soil 2.471 2.38 0.15 2.09 2.55 0.99 0.02 0.94 1.00 0.13 0.04 0.08 0.23 
carbon 1.917 1.53 0.34 1.15 2.18 0.93 0.04 0.84 0.97 0.29 0.09 0.15 0.41 
sulfate 4.435 4.66 0.27 4.15 4.98 0.98 0.02 0.92 0.99 0.11 0.03 0.05 0.15 
nitrate 2.105 2.20 0.14 2.01 2.43 0.99 0.00 0.99 1.00 0.12 0.05 0.07 0.24 
Metals #2 0.880 0.86 0.21 0.40 1.16 0.99 0.00 0.99 0.99 0.23 0.15 0.10 0.58 

Roxana 
brass production 0.078 0.07 0.04 0.01 0.14 0.98 0.01 0.96 0.99 0.43 0.28 0.09 0.92 
biomass burning 1.976 1.99 0.24 1.64 2.29 0.92 0.05 0.82 0.98 0.22 0.06 0.16 0.36 
resuspended soil 0.919 0.88 0.18 0.59 1.15 0.98 0.02 0.94 0.99 0.24 0.09 0.10 0.39 
metal processing 1.180 0.99 0.31 0.64 1.68 0.87 0.03 0.80 0.91 0.36 0.11 0.22 0.54 
Ca rich 0.255 0.28 0.14 0.15 0.59 0.92 0.05 0.82 0.98 0.45 0.37 0.13 1.33 
sulfate 3.868 3.87 0.31 3.38 4.35 0.96 0.02 0.93 0.99 0.11 0.03 0.07 0.18 
nitrate 2.172 2.31 0.15 2.10 2.62 0.99 0.01 0.97 1.00 0.10 0.05 0.04 0.21 

Bonne Terre 2003-2007 
resuspended soil 0.505 0.46 0.06 0.37 0.56 0.99 0.00 0.99 0.99 0.24 0.05 0.19 0.34 
biomass burning 3.014 3.03 0.30 2.45 3.41 0.97 0.02 0.95 0.99 0.17 0.03 0.13 0.23 
sulfate 5.316 5.76 0.20 5.52 6.08 0.98 0.01 0.96 0.99 0.17 0.03 0.10 0.20 
nitrate 1.899 1.30 0.30 1.01 1.86 0.97 0.00 0.97 0.98 0.34 0.12 0.11 0.48 
Ca rich 0.634 0.89 0.16 0.55 1.09 0.96 0.02 0.93 0.98 0.58 0.20 0.23 0.84 

Bonne Terre 2007-2014 
biomass burning 4.202 4.00 0.14 3.78 4.17 0.98 0.01 0.96 1.00 0.10 0.02 0.08 0.13 
nitrate 0.959 0.91 0.06 0.82 1.02 0.99 0.00 0.99 1.00 0.09 0.03 0.07 0.15 
sulfate 3.378 3.53 0.13 3.38 3.76 0.98 0.01 0.95 0.99 0.07 0.03 0.04 0.12 
Ca rich 0.640 0.77 0.12 0.52 0.91 0.98 0.01 0.96 0.99 0.28 0.08 0.16 0.44 
resuspended soil 0.652 0.67 0.06 0.57 0.74 0.99 0.00 0.99 1.00 0.13 0.03 0.09 0.18 
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Table 7-6. (continued) 

 contribution, µg/m3  EMC  RAAE 
 base average std.dev min max  average std. dev min max  average std. dev min max 

Blair + Arnold 2001-2007 
Zn 0.700 0.32 0.07 0.22 0.44 0.97 0.03 0.89 0.99 0.55 0.10 0.38 0.70 
sulfate 6.009 6.01 0.24 5.48 6.35 0.99 0.01 0.98 1.00 0.10 0.01 0.08 0.12 
resuspended soil 0.307 0.23 0.03 0.19 0.27 0.99 0.00 0.98 0.99 0.33 0.07 0.23 0.43 
nitrate 2.224 2.32 0.22 1.97 2.66 0.99 0.00 0.99 1.00 0.12 0.05 0.06 0.22 
biomass burning 3.513 3.34 0.22 2.98 3.74 0.95 0.02 0.92 0.97 0.22 0.03 0.17 0.26 
Pb 0.169 0.54 0.16 0.32 0.82 0.98 0.01 0.95 1.00 2.50 1.27 0.90 4.94 
metal processing 0.528 0.29 0.08 0.19 0.43 1.00 0.00 0.99 1.00 0.46 0.15 0.21 0.65 
Ca rich 1.271 1.75 0.20 1.53 2.04 0.93 0.01 0.91 0.95 0.54 0.14 0.38 0.78 

Blair + Arnold 2009-2014 
metal processing 0.200 0.19 0.05 0.09 0.24 0.98 0.01 0.97 0.99 0.25 0.12 0.17 0.58 
resuspended soil 0.565 0.67 0.04 0.61 0.73 0.99 0.00 0.99 0.99 0.23 0.06 0.14 0.31 
nitrate 1.088 1.06 0.03 1.04 1.14 1.00 0.00 0.99 1.00 0.07 0.01 0.06 0.09 
biomass burning 2.837 3.55 0.15 3.28 3.72 0.95 0.02 0.92 0.97 0.34 0.04 0.27 0.38 
sulfate 3.542 3.58 0.12 3.47 3.80 0.99 0.01 0.98 1.00 0.08 0.01 0.06 0.10 
Zn 0.314 0.15 0.05 0.07 0.24 0.96 0.02 0.93 0.99 0.53 0.16 0.25 0.78 
Ca rich 0.384 0.39 0.11 0.27 0.60 0.96 0.01 0.94 0.98 0.30 0.15 0.15 0.66 
traffic 1.774 1.13 0.25 0.73 1.55 0.84 0.02 0.80 0.88 0.46 0.08 0.34 0.61 

Blair + Arnold + Belleville + Granite City 
Zn 0.166 0.09 0.08 0.00 0.22 0.98 0.01 0.97 1.00 0.58 0.30 0.19 1.02 
biomass burning 3.619 3.18 0.60 2.16 3.78 0.90 0.02 0.87 0.93 0.34 0.06 0.24 0.44 
Ca rich 0.179 0.24 0.23 0.00 0.61 0.97 0.02 0.93 0.99 1.19 0.54 0.38 2.47 
metal processing 0.453 0.42 0.16 0.19 0.59 0.97 0.02 0.94 0.99 0.41 0.12 0.26 0.60 
traffic 1.592 1.24 0.62 0.57 2.06 0.80 0.09 0.62 0.96 0.49 0.09 0.36 0.65 
sulfate 3.880 3.94 0.26 3.50 4.31 0.98 0.01 0.96 0.99 0.11 0.03 0.07 0.16 
resuspended soil 0.662 1.59 0.45 1.02 2.12 0.96 0.01 0.93 0.98 1.35 0.63 0.60 2.26 
nitrate 1.282 1.16 0.11 1.07 1.46 0.99 0.00 0.99 1.00 0.13 0.04 0.07 0.20 

Blair+Belleville+Arnold+Roxana 
resuspended soil 0.937 0.91 0.19 0.53 1.16 0.99 0.00 0.99 1.00 0.22 0.11 0.11 0.44 
traffic 2.632 2.67 0.41 2.15 3.25 0.79 0.08 0.65 0.90 0.30 0.05 0.20 0.37 
Ca rich 0.317 0.24 0.08 0.11 0.39 0.98 0.01 0.96 1.00 0.30 0.16 0.09 0.65 
sulfate 3.281 3.21 0.12 3.00 3.37 0.98 0.01 0.96 0.99 0.12 0.04 0.07 0.17 
biomass burning 1.273 1.62 0.76 0.70 2.92 0.47 0.32 -0.09 0.86 0.65 0.35 0.28 1.20 
Zn 0.071 0.01 0.02 0.00 0.06 0.99 0.01 0.98 1.00 0.84 0.28 0.20 1.01 
metal processing 0.241 0.25 0.12 0.10 0.46 0.99 0.01 0.97 1.00 0.46 0.26 0.22 0.98 

  nitrate 1.236 1.27 0.15 0.99 1.46   0.98 0.02 0.95 0.99   0.13 0.07 0.06 0.23 
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Chapter 8 : Summary, Implications, and Recommendations 

8.1. Summary 

The Roxana Air Quality Study (RAQS) has provided an understanding of air quality impacts 

from a major point source in the St. Louis area – the Wood River petroleum refinery.  The 

refinery is an insignificant contributor to PM2.5 mass even at the facility fenceline.  PM2.5 FCC 

emissions were observed using lanthanum in excess of the characteristic lanthanum/cerium ratio 

in soil as a tracer.  Excellent detectability of lanthanoids in PM2.5 was achieved using a hot plate 

digestion protocol followed by ICP-MS.  Nonparametric wind regression on lanthanum 

concentration and the lanthanum/cerium ratio provided evidence of FCC impacts when winds 

placed the monitoring station downwind of the refinery core unit operations. Lanthanum 

concentration and the lanthanum/cerium ratio were strongly coupled to frequency of hourly 

winds from the refinery during the 24-hour sampling period; thus, days with high impacts do not 

necessarily correspond to days with higher emissions. For the samples collected in this study, 

there was no evidence of non-routine, episodic (i.e. startup/shutdown/malfunction) emissions 

from the FCC.  

Analytical methods using a single collector quadrupole ICP-MS operating in standard mode were 

customized for selenium and for lead isotopes using RAQS samples. Spiking the analyte solution 

with 3% methanol achieved good detectability of a low abundance Se isotope, 82Se, for analysis 

by standard-mode ICP-MS.  This approach is promising for selenium analysis in samples with 

low mass loadings such as the CSN.   Analysis by single collector quadrupole ICP-MS using Tl 

to correct for the mass bias effects provides a good semi-quantitative method for the 

characterization of Pb isotope ratios 208Pb/206Pb and 207Pb/206Pb.  Pb isotope ratios derived from 
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ambient PM2.5 samples collected at two locations in the St. Louis area – including RAQS – fall 

along a mixing line with end members corresponding to US urban aerosols and geological 

formations common to Eastern Missouri. 

For the gaseous air toxics, aromatic compounds and other petroleum related hydrocarbons such 

as n-octane and propylene displayed higher mixing ratios at Roxana compared to downtown St. 

Louis. Nonparametric wind regression provides supporting evidence for refinery impacts at the 

Roxana site.  Local contributions to compounds with higher mixing ratios at Roxana compared 

to downtown St. Louis were up to 50% of the downtown mixing ratios.  A pseudo two-source 

model for benzene at the two contrasting sites was proposed based on the benzene-toluene 

relationship. Benzene from a mixed hydrocarbons source appears to be homogeneous between 

the two sites and was estimated to contribute to about 70% of the total benzene at Roxana that 

was not “refinery-influenced”. Principle component analysis resolved factors with similar source 

profiles at both Roxana and Blair Street with aromatics and aldehydes factors collectively 

responsible for up to 71% of the variance in gaseous air toxics. There were differences between 

the sites in how species related to vehicle exhaust load onto the factors. 

Commonly used metrics such as Pearson correlation coefficient (PCC) were applied to PM2.5 

chemical speciation data collected at five speciation sites in the St. Louis area. Bootstrapping 

was used to examine the sensitivity of PCC to extreme values.  Cases were observed where a few 

samples had very high influence on the PCC and efforts should be taken to screen for and 

possibly exclude such values depending on the study objectives.  Measurement error 

characterized using collocated precision data was shown to be dependent on measured 

concentrations for some species, including nitrate. A “binning-sampling” approach was 

developed to harmonize the collocated precision estimate from six collocated CSN sites to be 
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compatible with the concentration ranges observed for the site pairs of interest.  It was also 

demonstrated that in at least one case – sulfate for the Arnold and Belleville sites – spatial 

variability metrics would suggest the sites are homogeneous but the intersite differences could 

not be fully explained by measurement error.  Emission sources located between the two sites 

differentially impact the sites depending on wind direction but these impacts cancel out when 

averaged over the entire dataset. These analyses demonstrate that care must be used when 

applying even the most conventional metrics for spatiotemporal variability and it is sometimes 

possible to extract details about local emission sources from data that appear spatially 

homogeneous in the absence of considering the measurement error as a frame of reference.        

Finally, source apportionment analysis by PMF on five PM2.5 speciation sites in the St. Louis 

area revealed that three regional-scale sources – sulfate, biomass burning and nitrate – were 

identified at the majority of the sites and accounted for about 72-91% of the PM2.5 mass. Because 

of the benefit from having datasets with extended spatial and temporal coverage, a Ca-rich factor 

which was explained as a point source contribution in other previous work appears to have 

strong regional-scale contributions or at least a similar emission source profiles over large spatial 

scales.  Datasets pooled from multiple single-site datasets were also analyzed by PMF.  

Additional factors were identified at certain sites likely because of the strengthened covariance 

by pooling across multiple datasets. However, multisite analysis may result in differences in the 

source contribution estimates at individual sites compared to the corresponding single-site 

analysis; it is not clear which estimates are most representative but the multi-site analyses do 

appear to have biases for the source contribution estimates from local point sources. 

Perturbations to the uncertainty matrix were demonstrated to be an effective approach towards 

determining of optimal number of factors which is inherently a subjective process. Uncertainty 
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estimation tools available in the newest version of EPA PMF were applied to all of the datasets. 

Sensitivity studies indicate instability of BS-DISP and, therefore, values generated by BS-DISP 

should be used in a relative sense rather than as a stringent standard. 

8.2. Implications and Recommendations 

1. Characterizing the coupling between emissions and impacts.  Both emission strength and 

dispersion modulate the observed impacts at the receptor. Meteorological conditions, especially 

surface winds, largely determine the near-field dispersion of pollutants emitted from local 

sources. It was clear from RAQS that elevated La concentrations were observed only when the 

winds placed the monitoring site downwind of the FCC unit.  However, the La concentrations 

during such periods could not be reliably compared to the La concentrations reported by other 

studies because the role of emissions could not be disentangled from the role of meteorology for 

all of these studies.  For example, consider the relationship C(x,t) = D(x,t)E(t) where C is the 

concentration, D is the dispersion and E is the emission rate.  Previous studies at most 

qualitatively related concentration to wind direction and thus provided no information about 

dispersion.  For RAQS, the wind direction variability during the 24-hour sampling period means 

that the concentration can be coupled to the emissions only if the latter are assumed constant 

which is likely a poor assumption.  This dissertation has demonstrated that surface winds data 

can be used to characterize impacts from a point source but higher time resolution concentration 

data, such as hourly data, would also be needed to better characterize the emissions.  Higher time 

resolution measurements would also have a greater likelihood of capturing episodic emission 

events.  These implications from RAQS apply to all stationary monitors aimed at characterizing 

contributions from local point sources. 
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La/Ce ratios in ambient PM2.5 samples that were concluded to be impacted by refinery emissions 

are reported as 2.9 ± 1.8 (1σ) (Kulkarni et al., 2006) and 1.37 ± 2.60 (1σ) (Moreno et al., 2008) 

compared to 1.49 ± 2.11 (1σ) in RAQS. However, the comparison of La/Ce ratios reported by 

RAQS and previous studies is limited by the insufficient characterization of dispersion 

conditions in the latter. In contrast, La-Ce relationship in FCC catalysts has been relatively less 

studied. Kulkarni et al. (2006) reported La/Ce ratios in FCC catalysts as 4.3 ± 4.6 (1σ) which 

demonstrates large variability among the six catalysts measured. Although this value provided 

the evidence of lanthanum being concentrated in FCC catalysts, catalysts used at the Roxana 

refinery operations would need to be analyzed to obtain the profile of lanthanoids specific to the 

FCC unit in this study.  The St. Louis area is occasionally impacted by the inter-continental 

transport of Saharan dust and these events may result in possible elevation of lanthanoids 

concentration and the variation of La/Ce ratios in ambient PM2.5. Air mass back trajectories 

generated by the HYSPLIT model for days with high La concentration (top 5%) did not provide 

consistent evidence of long range transport on those days. For future work, obtaining the profile 

of lanthanoids in PM2.5 samples collected at other speciation monitoring sites in the St. Louis 

area could provide additional insights towards determining the impact of Saharan dust. 

2. Placing the RAQS air toxics data in broader context.   This dissertation exploited the NATTS 

air toxics data collected in the City of St. Louis to place the RAQS data in a St. Louis context.  

Another dimension would be to place the RAQS data in the context of measurements conducted 

near other petroleum refineries.  This is actually quite difficult because of the source-receptor 

relationship presented in the first recommendation.  For example, the distance between the 

emission point(s) and the monitoring station and also the distribution of wind directions will both 

significantly influence the observed impacts.  That stated, there would be value in comparing 
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RAQS data to other sites if the site characteristics are adequately described and qualified. As a 

starting point, Figure 8-1 shows the cumulative distribution of annual average benzene mixing 

ratios reported to AQS for sites nationwide with 24-hour average sampling durations.  Blair 

Street (City of St. Louis) is at the 59th percentile and RAQS is at the 88th percentile.  These 

monitoring sites include the full spectrum of land use classifications ranging from rural to urban 

to industrial.  However, six of the eight highest-concentration sites are in Texas and are 

presumably near petroleum and/or petrochemical facilities.  Future work should condition the 

data to include only those monitoring sites located in industrial areas and then a more-detailed 

site-by-site assessment could be conducted.    

 

Figure 8-1. Cumulative distribution of year 2013 annual average benzene mixing 
ratios for sites reporting data to AQS plus the RAQS data.  Data were screened to 
include only those sites operating on a 1-in-6 or 1-in-12 day sampling schedule 
with 24-hour integrated sampling and at least 85% data completeness (n = 196). 
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3. Probing the robustness of spatiotemporal variability metrics.  The role of extreme values or 

outliers merits greater attention when calculating spatiotemporal variability metrics.  For 

example, extreme values are known to strongly influence the Pearson correlation coefficient 

(PCC) and therefore are often excluded from such calculations. In many air quality analyses, 

however, the exclusion of these values is simply based on subjectively chosen cutoff values for 

absolute or relative differences. Conversely, an argument against this approach is that censoring 

a dataset by a particular cutoff value inherently changes the dataset. In most cases, it is usually 

the central tendency of the dataset distribution that is of most interest. Therefore, an alternative 

way of censoring the dataset is identify extreme values based on how they influence deviations 

from the representativeness of the central tendency; this requires study of the sensitivity of the 

metrics to potential outliers.  For example, in Chapter 6 the distribution of PCC values obtained 

from numerous bootstrapped datasets demonstrated that only a small number of samples – 

usually much smaller than would be designated by a cutoff percentile – exert strong influence on 

the PCC.  The identified outliers can then be screened for physical interpretation of their drivers 

such as the Saharan dust events that influence the PM2.5 silicon in St. Louis.  While in principle 

confidence intervals on the metric (e.g. PCC) could be used as a measure of influence from 

extreme values, the bootstrapped distributions provide insights into the nature of the influence 

including whether they result in multi-model versus uni-modal distributions.   

4. Understanding opportunities and limitations of using collocated data to estimate network 

precision. Measurement error is ubiquitous in all monitoring networks. Measurement precision 

often exhibits concentration dependence, in some cases even when the concentration values are 

well above the MDL.  Previous work on the collocated CSN data revealed periods of persistent 

bias which are site- and species-specific.  Therefore, in general the error associated with each 
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measurement is a combined effect of both concentration-dependent random error and systematic 

bias (e.g. flow rate) error. The two aspects have varying influence on the observed measurement 

error and will depend on the species and network configurations.  

Collocated data can be used to estimate measurement precision. However, if there is 

concentration dependence for the precision than the precision estimate from collocated data 

might not be representative for a dataset of interest if the concentration distributions are 

different.  This mismatch can be reconciled by creating a synthetic collocated dataset that 

matches the concentration distribution for the sites of interest.  However, the aforementioned 

bias that is observed for some species in the CSN cannot be addressed using this approach.  

Future work should examine the species-specific coupling of concentration dependent precision 

and measurement bias to determine cases where the precision from pooled collocated data can be 

used, cases where the precision should be calculated from bootstrapping the collocated data to 

match the concentration distribution of interest, and cases where bias is so large that the 

collocated data should not be used to infer precision at another site. 

5. Source apportionment modeling on multisite datasets should be conducted with caution.  

Source apportionment modeling on datasets pooled from multiple sites is attractive but has 

limitations. It can stabilize regional source factors by forcing all sites to have the same profile 

and thus not be differentially influenced by spurious loading of species onto such factors.  

Mixing sites with distinct and less distinct but ubiquitous impacts like this – such as traffic at a 

downtown site and suburban site – can better resolve the impacts at the less distinct site.  

However, sources that impact only specific monitoring sites can be confounded by the presence 

of other sites, leading to a degradation of source resolution at the impacted site and/or the 

spurious presence of that source impacting the other sites. Therefore, source profiles and source 
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contribution estimates from multisite PMF analysis should be interpreted with caution especially 

when seeking to quantify the behavior at individual sites.  

6.  Refining tools to choose optimal PMF solutions and estimate uncertainties in the modeling 

results.  BS, DISP and BS-DISP tools implemented in the US EPA PMF v5.0 serve as semi-

quantitative metrics for modeling uncertainty estimation. To date there is very little user 

experience with DISP and BD-DISP and there is a need to examine them in the context of 

numerous actual datasets.  These metrics collectively provide information on the uncertainty 

associated with the modeling results with each metric focusing on different aspects of the 

modeling.  However, these estimates should only be elements in a weight-of-evidence approach 

to characterizing uncertainty and the quantitative estimates from the tools should be not be over-

interpreted.  For example, using the standard deviation (or certain percentile values) of factor 

loadings across several BS runs as error estimates, which is a common practice in many source 

apportionment studies, is not fully justified because the intent of  BS is to assure the stability of 

the solutions and it does not capture all sources of uncertainty inherent in the modeling.  BS, 

DISP and BS-DISP results should be reported and over time a meta-analysis could be performed 

across studies to determine the utility of these metrics.  The tools do appear to have value in the 

subjective process of selecting optimal solutions; it is recommended that perturbation on the 

uncertainty matrix also be used to examine the stability of solutions. 

7. Suggested procedure for the evaluation of intraurban spatiotemporal variability based on data 

collected at multiple locations. 

It is challenging to develop a unified approach to evaluate spatiotemporal variability.  As has 

been demonstrated by this thesis work, each dataset needs to be investigated from different 
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perspectives which require the use of one or multiple tools.  Chapter 6 provided an example 

showing how the differential impacts from local sources to two locations could be teased out 

using specific technique while other tools suggested spatial homogeneity. The selection of the 

tool(s) is largely determined by the characteristics of the datasets as well as the objectives of the 

analyses. For example, source apportionment analysis is limited by the availability of speciated 

datasets in air quality studies and could not be implemented with concentration data only.  In 

some other cases where the concentration variability of a specific pollutant is of greater interest, 

statistical analyses and graphical tools could be prioritized compared to source apportionment 

analysis. Therefore, instead of providing a predefined procedure for the evaluation of 

spatiotemporal variability, this thesis work suggests a conceptual framework which encourages 

the thorough understanding of the datasets and applying analytical tools that best accommodate 

the target of the study. 
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Appendix A: Estimation of Exposure to Environmental Risk Factors 
for Respiratory Syncytial Virus (RSV) Bronchiolitis in Early Life 
(RBEL) Study 

A.1. Introduction 

Asthma is the most common childhood diseases and is responsible for significant mortality and 

morbidity of children, especially at an early age (Akinbami, 2006). Children 0-4 years of age are 

more vulnerable to asthma as demonstrated by a higher rate of hospitalization compared to older 

children (Akinbami and Schoendorf, 2002). Wheezing is a common symptom associated with 

asthma diagnosis in early childhood. Many children experience wheezing for the first time 

during the course of acute bronchiolitis which is a lower respiratory tract infection typically 

caused by respiratory syncytial virus (RSV). A severe RSV illness in early childhood is risk 

factor for subsequent wheezing (Sigurs, 2001; Sigurs et al., 1995; Sigurs et al., 2005). Children 

with RSV infection in early life either eventually develop asthma or recover without further 

symptoms. It was proposed that the inception of asthma is likely to be influenced by genetic 

susceptibility, environmental influences, and complex interactions between genetics and 

environmental exposures. Exposure to tobacco smoke has been demonstrated to increase the 

severity of RSV bronchiolitis (Bradley et al., 2005). Exposure to ambient fine particulate matter 

(PM2.5) and ozone are also linked to increased risk of developing asthma (Brauer et al., 2007; 

McConnell, 2002). Andersen et al. (2008) demonstrated an association between exposure to air 

pollutants and wheezing symptom in infants during the first year of life.  
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One of the hypotheses for the RBEL study is that exposure to air pollutants in early life could be 

a risk factor for inception of asthma in children after being infected by RSV. Therefore, besides 

characterizing the genetic aspects of asthma inception during post-RSV childhood, 

environmental exposure to key air pollutants such as PM2.5, ozone and to traffic emissions should 

be evaluated. The expected outcome of the environmental risk evaluation was to identify and 

quantify metrics to represent the exposure of a specific cohort to PM2.5, ozone and traffic 

emissions and to use the exposure estimates as inputs to epidemiological models to identify 

potential associations between asthma and these exposures. 

A.2. Experimental design 

Starting from 1998, researchers at the School of Medicine at Washington University in St. Louis 

recruited infants, primarily from the St. Louis area, with severe RSV bronchiolitis in two study 

phases, RBEL1 and RBEL2. The recruitment processes were typically during December and 

May of the next year because these are time periods with the high hospitalization rates of infants 

with RSV bronchiolitis. RBEL1 enrolled 206 participants with recruitment starting in December 

1999 and ending in April 2001. 200 participants were planned to be recruited for RBEL2 starting 

Jan 2010, and only the first 159 participants were included in this analysis. These participants 

were followed up regularly after being released from the hospital including data collection about 

occurring wheezing symptoms and diagnosis of asthma symptoms. Records from these follow-

ups indicate the geographical address of the participants, date of entry into the study, date for the 

diagnosis of asthma, and date and frequency of recurring wheezing symptoms.  
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24-hour integrated PM2.5 mass concentration measured by the Federal Reference Method (FRM) 

at 13 sites and hourly ozone concentration at 9 sites from 1999 to 2011 were retrieved from US 

Environmental Protection Agency (EPA) Air Quality System (AQS). These sites cover the 

metropolitan St. Louis area spanning across Missouri and Illinois. Daily 8-hour maximum 

concentrations for ozone were calculated based on hourly ozone concentration values to be 

consistent with 24-hour averaged PM2.5 concentrations being a daily metric. 

A.3. Results 

A.3.1 Spatiotemporal variability analysis 

Figure A-1 shows the distribution of the valid physical addresses (not including P.O. boxes as 

addresses) of the participants in RBEL1 and RBEL2. The majority of the patients recruited for 

both studies reside in the City of St. Louis and counties close to the urban core. RBEL2 recruited 

more patients from Illinois compared to RBEL1. 

Table A-1 shows the annually averaged ozone concentration at six sites. The maximum inter-site 

difference is 0.007 ppm observed between East St. Louis and Jerseyville in 2001 and the 

maximum site-specific interannual temporal difference is 0.012 ppm, which suggests temporal 

variability is comparable to or slightly greater than spatial variability for ozone in St. Louis. In 

contrast, for PM2.5 mass (Table A-1) the temporal variability is significantly greater than the 

spatial variability. Since the temporal variability has a larger contribution to in the overall 

observed variability, as a crude approximation spatial homogeneity was assumed and exposure 

was evaluated based on the time series from one representative site. In this study, PM2.5 and 

ozone concentrations from the East St. Louis site were used because it is located close to 

downtown St. Louis and has ozone concentrations reported throughout the year. 
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Figure A-1. Residential locations of RBEL1 and RBEL2 participants. 

 

Table A-1. Annual average of the daily 8-hour max ozone concentration calculated for ozone 
season months (OS: May to Oct) and non-ozone season months (NS: Nov to Apr). Units are in 
ppm. 

 RBEL1 RBEL2 

Year 1999 2000 2001 2002 2010 2011 

OS NS OS NS OS NS OS NS OS NS OS NS 

Jerseyville 0.054 N/A 0.049 N/A 0.052 N/A 0.053 N/A 0.042 N/A 0.048 N/A 

Edwardsville 0.053 0.032 0.047 0.029 0.045 0.029 0.049 0.029 N/A N/A N/A N/A 

Wood River 0.051 0.027 0.045 0.025 0.049 0.027 0.048 0.026 0.043 0.029 0.049 0.034 

East St. Louis 0.050 0.026 0.045 0.025 0.048 0.026 0.050 0.025 0.049 0.029 0.045 0.03 

St. Louis City N/A N/A N/A N/A N/A N/A N/A N/A 0.042 N/A 0.048 N/A 

1.All Missouri sites and Jerseyville, IL only monitor ozone during the ozone season. 
2.The City of St. Louis Blair Street site started reporting ozone concentrations in 2005. 
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Table A-2. Annual average PM2.5 concentration for select sites in the St. Louis area. Units are 
µg/m3. 

 RBEL1 RBEL2 

1999 2000 2001 2002 2010 2011 

St. Louis City 17.28 16.41 15.20 15.40 12.60 11.91 

Clayton 15.39 15.13 13.83 15.05 11.87 11.64 

Arnold 15.19 15.26 14.47 15.70 11.19 10.42 

East St. Louis 17.91 17.41 16.88 16.86 12.99 12.75 

Wood River 15.87 15.93 14.98 15.20 12.03 12.41 
 

A.3.2 Relationship between exposure and asthma/wheezing symptoms 

The exposure for each participant was estimated using the average pollutant concentration during 

a one-year period starting with the date of entry into the study because the hypothesis is that 

exposure to air pollutants after RSV infection could influence the development of more severe 

diseases such as asthma. Participants recruited after May 2013 were excluded from the analysis 

because the air quality data were not available to calculate a one-year average at the time of the 

analysis. In addition, records such as the diagnosis of asthma for certain participants were 

missing because the regular follow-up visits or communication were not successfully completed 

at the time of this analysis. The numbers of cases with sufficient information for analysis the 

results are summarized in Table A3. Relationships between air quality parameters and 

dichotomized health outcomes were examined using the Mann-Whitney U test. For RBEL1 none 

of the comparisons were statistically different at the 99% confidence level. For RBEL2 there was 

one comparison with a statistically significant difference at the 95% confidence level - asthma/no 

asthma for PM2.5 – but this case was very unbalanced with only 10% of participants in one 

category. 

 



188 
 

Table A-3. Summary of exposure estimates for participants categorized based on diagnosed 
asthma and reported wheezing symptom. Units are µg/m3 for PM2.5 and ppm for ozone. 

  PM2.5 Ozone 
 N Average p value Average p value 
RBEL1      
 Asthma 101 14.1 

0.261 
0.036 

0.812 
 No asthma 92 14.4 0.036 
 Wheezing 181 14.6 

0.266 
0.036 

0.527 
 No wheezing 17 14.1 0.037 
RBEL2      
 Asthma 15 12.1 

<0.001 
0.039 

0.346 
 No asthma 130 11.7 0.039 
 Wheezing 96 11.8 

0.74 
0.039 

0.900 
 No wheezing 51 11.7 0.039 
RBEL1&RBEL2      
 No wheezing 68 12.3 

<0.001 
0.038 

0.002 
 Wheezing 277 13.6 0.037 

 

The skewed distribution for RBEL2 asthma is likely from limitations on making asthma 

diagnoses. RBEL2 participants were typically newborn to 3 years old at the time of enrollment 

and there may be a few years lag before the inception of asthma. The time of asthma diagnosis 

itself is a variable that is a complicated function of potentially many factors including but not 

limited to exposure to environment risks. Similarly, over 90% of the participants in RBEL1 

reported the symptom of wheezing during the 10+ years after their entry into the study. These 

symptoms could be induced by exposure to other factors such as tobacco smoke as study time 

period extended. A pooled analysis using data from RBEL1 and RBEL2 yielded statistically 

significant differences for wheezing/no wheezing for both PM2.5 and ozone. PM2.5 displayed a 

positive association with the occurrence of wheezing, whereas ozone was deemed protective for 

wheezing which is inconsistent with expectations. These results suggest that this simple 

exposure-symptom relationship may be confounded by other factors and causation should not be 

inferred. 
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A.4. Discussion and recommendations 

1.  The statistical analysis was underpowered because of the small cohort size and the relatively 

homogeneous pollutant levels. For the air quality condition in St. Louis, a larger cohort would be 

needed to adequately test the hypothesis. 

2. The residential addresses of the participants are clustered which reduced the variability of 

exposure to air pollutants. This problem is compounded by the sparse monitoring network which 

precluded incorporation of fine-scale spatial variability of exposure into the modeling 

3. More stable and representative variables might be needed as indicators for air pollution 

exposure. Both the diagnosis of asthma and wheezing are variables that evolve with time. There 

appears to be a positive correlation between the occurrence of asthma symptoms and length of 

the post-RSV period during which many confounding factors could have impacts. In addition, 

the appearance of asthma symptoms may also be a function of total time of exposure. Thus, 

integrated exposure after the infection of RSV might be a relevant metric but it will exhibit lower 

variability across the cohort. 

4. The exposure estimates could be used as input parameters in more advanced statistical models 

that take into account a wider range of factors such as genetic information, allergic reactions and 

tobacco exposure. 
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Appendix B: Identification of Potential Source Areas for Elevated 
Sulfate, Nitrate and Air toxic Elements in the United States 

B.1. Introduction 

 
Numerous previous studies have suggested adverse health effects of fine particulate matter 

(PM2.5) (Burnett et al., 2001; Dockery et al., 1993; Pope III et al., 2002; Pope III et al., 2013; 

Pope III et al., 1995). There is a growing interest in health effects associated with PM2.5 chemical 

components as well as sources of PM2.5 (Aschner et al., 2005; Bollati et al., 2010; Thurston et al., 

2011). Source apportionment studies using models such as Positive Matrix Factorization (PMF) 

have demonstrated the strength of identifying potential sources (Brown et al., 2007; Buzcu et al., 

2003; Gu et al., 2011; Kim et al., 2003; Lee and Hopke, 2006). Secondary nitrate and sulfate are 

commonly considered to have regional impacts with spatial homogeneity often observed or 

inferred at the urban scale (Heo et al., 2013; Lee and Hopke, 2006; Lee et al., 2006).  For 

example, Lee et al. (2006) concluded that PM2.5 nitrate and sulfate in the metropolitan St. Louis 

area are attributed to regional sources originating from the Upper Midwest/Central Plains and 

Ohio River Valley, respectively. Most studies have focused on a single site or city and a 

comprehensive multisite study at a larger spatial scale to examine potential source regions has 

not been performed. 

Trace metals such as selenium (Se) and arsenic (As) have been used as chemical signatures for 

emissions from coal-fired power plants (Ondov et al., 1989). Ambient data-driven identification 

of potential source regions now has incremental value for sulfate and nitrate because these 

parameters are well-captured by contemporary chemical transport modeling which can be run 

with source apportionment tools to quantify source-receptor relationships. In contrast, there have 
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been few studies on the identification of potential source areas for trace elements. With more 

stringent control strategies being implemented, primary PM emissions have been significantly 

reduced, which may be accompanied by changes in source profiles and source locations. 

Therefore, a data-driven analysis of sources regions for these air toxic elements that spans 

several years is desired. 

There are several wind-based statistical tools to identify the bearings or locations of potential 

sources. Conditional probability function (CPF) and nonparametric wind direction (NWR) are 

prevailing methods for the identifying the bearings of local sources and are often performed a 

source apportionment modeling results (Kim and Hopke, 2004; Lee and Hopke, 2006; Wang et 

al., 2011). These methods provide limited information about sources or species exerting regional 

scale influences. Potential source contribution function (PSCF), a statistical model that 

incorporates air mass back trajectories, residence times over certain areas and the observed 

concentration (Ashbaugh et al., 1985), provides insights into the sources that are from regional 

transport and has the advantage of identifying the specific geographical areas compared to CPF 

and NWR.  

In this preliminary study, PM2.5 sulfate and nitrate as well as PM10 Se obtained from multiple 

routine monitoring sites were analyzed using the PSCF model to identify potential source regions 

in the US. Sulfate and nitrate were used to evaluate model results in the context of known source 

regions. Analysis of PM10 Se is motivated by the work of Yadav and Turner (2014) which 

suggested that in St. Louis these species are dominated by regional transport. This study aims to 

examine the validity of Se and As as tracers for coal-fired power plant emissions for future 

source apportionment studies.  
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B.2. Dataset and method 

B.2.1 Monitoring datasets 

 
Five sites that are both the Chemical Speciation Network (CSN) and National Air Toxics Trends 

Stations (NATTS) sites were selected for the preliminary study. 24-hour integrated PM2.5 sulfate 

and nitrate data were obtained at the five sites from the CSN dataset. Se in 24-hour integrated 1-

in-6 day PM10 samples were retrieved only for select NATTS sites because Se is not one of the 

species mandated to be reported. The sampling and analytical protocols of these networks are 

described in detail elsewhere (Solomon et al., 2014; United States Environmental Protection 

Agency, 2015). In contrast, PM10 arsenic compounds are one of the 18 HAPs required by the US 

EPA to measure and report at NATTS sites. Table B-1 summarizes the sites and the temporal 

coverage of the select data. 

Table B-1. Summary of the studies sites. 

Site Name 
NO3 and SO4 Se  

Sampling 
Frequency 

Temporal 
coverage 

N(NO3) N(SO4) 
Temporal 
Coverage 

N 

St. Louis, MO 1-in-3 2000.2 – 2014.9 1606 1606 2000.2 – 2014.9 618 

Atlanta, GA 1-in-3 2001.3 – 2014.12 1628 1623 2004.5 - 2013.12 533 

Chesterfield, SC 1-in-6 2002.1 – 2014.12 751 751 2005.1 – 2014.9 459 

Dearborn, MI 1-in-6 2003.1 – 2014.12 695 698   

Milwaukee, WI 1-in-3 2001.1 – 2014.12 1642 1642   

B.2.2 Potential source contribution function (PSCF) 

 
The PSCF model (Ashbaugh et al., 1985) was applied to identify the source regions associated 

with elevated PM2.5 sulfate, nitrate and PM10 Se concentrations. Airmass back trajectories were 

generated with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model  
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using 80 km gridded meteorological data (EDAS 80km) and 40 km gridded meteorological data 

(EDAS 40km) for the periods before 2004 and after 2004, respectively. Five day (120 hour) back 

trajectories arriving at 500m above ground level were calculated at each of the five monitoring 

sites. One trajectory per day arriving at noon local time at each site was computed. The measured 

daily concentration values were assigned to the corresponding back trajectories. The PSCF value 

in each 1° X 1° grid cell was calculated using PSCF = mij/nij, where nij is the total number of the 

trajectory endpoints in the grid cell (i, j) and mij is the number of endpoints associated with the 

concentration values that exceed a threshold value. In this study, the top 25% of the 

concentration values was used as the threshold criterion. In order to reduce the potential bias of 

PSCF calculations caused by the small number of endpoints in certain grid cells, a weighting 

function based on previous studies (Ashbaugh et al., 1985; Heo et al., 2013; Lee and Hopke, 

2006) was customized and applied in this study:  

 

where nav is the average number of endpoints across each grid cells having at least one endpoint, 

nmed is the median number of endpoints across grid cells having at least one endpoint, and nmid is 

the midpoint between nav and nmed. 

Previous studies suggested that one of the limitations of using the weighting function is the 

possibility of eliminating real source regions which few trajectories pass through. In addition, the 

pattern suggested by PSCF might be dominated by the pattern of air mass trajectories for small 

datasets (Hsu et al., 2003).  In this study with large datasets this issue should be minimized. 

W(nij) =

0            nij≤5

0.2         5<nij≤nmed

0.4         nmed <nij≤nmid

0.7         nmid <nij≤nav

1 nav<nij
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However, caution should be used if further analysis will be conducted on shorter time periods for 

these datasets. 

B.3. Preliminary results and discussion 

 
Figure B-1 shows the PSCF spatial pattern for elevated concentrations of PM2.5 nitrate, sulfate 

and PM10 Se measured at Blair Street, a site located in downtown St. Louis. One area with high 

nitrate PSCF values is located in the Upper Midwest/Central Plains area, generally spanning 

across Wisconsin, Minnesota, and Iowa. These areas are consistent with the high population of 

farms which are major sources of ammonia (Coe and Reid, 2003; Goebes et al., 2003; Kenski et 

al., 2004). In addition, nitrate in fine particulate matter displays a seasonal pattern with high 

concentrations in the wintertime when low temperature and high humidity favors nitrate 

formation by gas-to-particle conversion. The northerly winds are prevailing winds in the winter 

in St. Louisa area, which also favors the regional transport of nitrate from its potential source 

regions to the north. Another region showing high PSCF values for nitrate is in Kansas and 

Oklahoma where the Flint Hills are burned every spring. The region of high PSCF values for 

elevated sulfate in St. Louis is over the Ohio River Valley and extends southerly to Georgia. 

Previous source apportionment analysis has demonstrated that the large number of coal-fired 

power plants located in the Ohio River Valley is a major source of SO2 which can form sulfate 

by various pathways (Lee and Hopke, 2006; Lee et al., 2006). Lee and Hopke (2006) 

demonstrated that high sulfate concentrations in St. Louis were largely attributed to emissions 

from these source regions based on CSN data from 2002 to 2004. In this study using sulfate data 

collected over a 14-year time period similar source regions were observed. However, the 
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interpretation of the updated analysis should be cautious because the pronounced reduction in 

ambient sulfate concentration over the past decade may be skewing the PSCF analysis towards 

the early years because only top 25% the concentration values are included in the PSCF 

calculation. PM10 Se measured at Blair Street displays high PSCF values in the Ohio River 

Valley which is in good agreement with the source locations for sulfate. This general agreement 

provides support to Se as a tracer for coal combustion from power plants. However, the same 

caution applies in that emissions decreases over time will disproportionately weight early time 

periods in the PSCF analysis.  

Figure B-2 shows the summation of PSCF values in each grid cell calculated for multiple sites in 

the Eastern-Midwest US. The values for sulfate and nitrate are calculated using five sites and the 

values for Se are based on three sites (Table B-1). The patterns for multisite PSCF analysis are 

generally consistent to the observation at Blair Street. Higher PSCF values for nitrate are present 

over a much larger geographical area including entire Central and Upper Midwest. For sulfate, 

the high PSCF values over the Ohio River Valley – Kentucky – Tennessee area indicate that it is 

the dominant source region responsible for high sulfate concentrations at the sites included in the 

analysis. Because Se is not required to be reported by NATTS, only St. Louis, Atlanta and 

Chesterfield are included in the modeled Se datasets. Multisite PSCF analysis of Se shows the 

Ohio River Valley as a major source region, and the agreement between potential source region 

for sulfate and Se provides support to the validity of using Se as a tracer for coal-fired power 

plant emissions. However, because the ambient Se concentrations have decreased over time, the 

robustness of Se as a tracer needs to be evaluated by performing PSCF analysis for shorter time 

periods over the past decade. 
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Figure B-1. Potential source regions for elevated PM2.5 nitrate, sulfate and PM10 
Se in St. Louis (star), 2000-2014. 
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Figure B-2. Potential source regions for elevated PM2.5 nitrate, sulfate and PM10 
Se measured at multiple sites (stars), 2000-2014.  
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B.4. Ongoing work 

1. Perform PSCF analysis at each site for a series of shorter time periods to characterize the 

temporal variation of the source regions. 

2. Retrieve PM10 As data and perform PSCF analysis. 

3. Identify other sites in the Eastern US which are both CSN sites and NATTS sites to strengthen 

the multisite PSCF analysis. 
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