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ABSTRACT OF THE DISSERTATION  

Underwater Celestial Navigation 

Using the Polarization of Light Fields 

By 

Samuel Bear Powell 

Doctor of Philosophy in Computer Engineering 

Washington University in St. Louis, 2017 

Professor Roger Chamberlain, Chair 

Global-scale underwater navigation presents challenges that modern technology has not solved. 

Current technologies drift and accumulate errors over time (inertial measurement), are accurate 

but short-distance (acoustic), or do not sufficiently penetrate the air-water interface (radio and 

GPS). To address these issues, I have developed a new mode of underwater navigation based on 

the passive observation of patterns in the polarization of in-water light. These patterns can be 

used to infer the sun’s relative position, which enables the use of celestial navigation in the 

underwater environment. I have developed an underwater polarization video camera based on a 

bio-inspired polarization image sensor and the image processing and inference algorithms for 

estimating the sun’s position. My system estimates heading with RMS error of 6.02° and global 

position with RMS error of 442 km. Averaging experimental results from a single site yielded a 

0.38° heading error and a 61 km error in global position. The instrument can detect changes in 

polarization due to a 0.31° movement of the sun, which corresponds to 35.2 km of ground 

movement, with 99% confidence. This technique could be used by underwater vehicles for long-

distance navigation and suggests additional ways that marine animals with polarization-sensitive 

vision could perform both local and long-distance navigation.
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Chapter 1: Introduction 
1.1 The Challenges of Underwater Navigation 
Humans have been navigating over land and water for thousands of years, and in the air for 

almost 100 [1]. Over this time, we have developed a wide variety of navigation techniques, 

which can be broadly grouped in the three catagories: pilotage, celestial navigation, and intertial 

navigation [2]. However, most of our navigation techniques suffer severe limitations when 

operating in an underwater environment.  

Pilotage is probably the most common form of navigation throughout history—it is the art of 

determining one’s location from observations of known landmarks, from memory or by 

comparing them to a map or chart. Modern pilotage is assisted by both active beacons and active 

observation technologies: beacons include lighthouses, LORAN (now obsolete), and VOR (the 

system used for commercial air travel). Active observation technologies include RADAR, 

LIDAR, and SONAR. With technological assistance pilotage techniques are highly accurate and 

robust, but only provide regional navigation and require local knowledge. In the underwater 

environment, however, the theoretical maximum visibility is only 80 meters, which severely 

limits navigation by landmarks [3]. Radio techniques enjoy a larger range, but are still limited by 

the high propagation loss of sea water—practical radio communications can only reach ranges of 

1 km underwater [4]. Additionally, the high reflectivity of the air-water interface prevents 

terrestrial radio beacons from penetrating to any practical depth [5, 6]. SONAR and acoustic 

beacons are the best choice in the underwater environment as their attenuation is orders of 

magnitude less than radio [7], but they are still limited to ranges on the order of several 

kilometers [8]. Bottom-lock Doppler SONAR can be used for long-range navigation, but requires 

the vehicle to remain within 100 meters of the sea-floor, limiting its practicality [9]. 
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Celestial navigation is similar to pilotage, but rather than observe fixed landmarks, one measures 

the apparent positions of celestial objects such as the sun, moon, and stars. With sufficient 

knowledge of their movement relative to the Earth it is possible to determine where on the globe 

the measurements were taken. Traditionally, the measurements and computations for celestial 

navigation required great skill, making it practical only for long-distance ocean voyages. 

However, there are now artificial satellite systems, such as the US Navstar GPS constellation, for 

providing high precision global navigation to anyone with a receiver [10]. Again, however, these 

techniques are stymied by the low visibility and high electromagnetic losses of the underwater 

environment.  

Finally, inertial navigation, or “dead reckoning,” is navigation based on integrating observations 

of one’s internal state over time to determine changes in position—i.e. counting your steps with 

your eyes closed. MEMS accelerometers and gyroscopes provide low-cost inertial sensing for 

dead-reckoning, while advanced ring-laser gyroscopes and laser accelerometers enable very high 

accuracy navigation for more critical applications [11, 12]. Inertial navigation systems (INSs) 

tend to provide higher frequency position information than pilotage or celestial navigation 

systems, but they suffer from unbounded errors. Any noise or drift in the sensor readings will be 

integrated along with the true inertial state, leading to navigation errors that increase over time 

even when not moving [13]. Thus, such systems are typically used in conjunction with pilotage 

or celestial navigation technologies: the integrated inertial errors can be zeroed periodically using 

readings from other systems, while the INS measurements can be used to keep track of position 

between updates [2]. Fortunately, INS systems are not directly limited by operating underwater, 

but underwater vehicles that use inertial sensors still need to regularly zero their errors. This 
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often requires surfacing and acquiring a GPS lock before submerging again [14], which is a 

waste of time and energy, and potentially a tactical risk for covert underwater vehicles. 

1.2 A Biological Strategy: Using Polarization for Navigation 
When faced with a challenging engineering task, it is often worthwhile to investigate the 

strategies that animals have evolved for solving the same problem. Evolved systems tend to be 

both efficient and robust, as natural selection favors individuals who can complete tasks more 

quickly, using less energy, and under a wide variety of conditions. Many animals, including 

marine animals, regularly navigate long distances [15], by studying their behavior and 

environment we can gain insight into potential technical solutions. 

Many terrestrial animals are known to use the polarization of the sky as a compass cue for 

navigation. It has been well-documented that certain arthropods—such as ants, bees, crickets, 

dung beetles, and spiders—have photoreceptor arrays specifically sensitive to the patterns of 

polarized light in the sky, which they use as a compass [16-19]. Honey bees, for example, can 

use the polarization from a single patch of sky on an otherwise cloudy day to navigate to and 

from their hive [17]. There is also evidence that some birds may use the polarization of the sky at 

dawn and dusk to calibrate their magnetic compasses during long-range migrations [20, 21].  

The polarization patterns of underwater light have similar structure to the polarization patterns of 

the sky, and follow predictable trends based on the position of the sun [22, 23]. Many marine 

animals are known to have polarization-sensitive vision, including cephalopods such as 

cuttlefish, squids, and octopuses, crustaceans such as fiddler crabs and mantis shrimp , and many 

fish [24, 25]. These animals use polarization vision for a variety of tasks, including improving 

visual contrast for predator or prey detection [26], communication and signaling [27, 28], and 

potentially for navigation [29]. Indeed, it has been hypothesized by several authors that the 
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underwater polarization patterns contain sufficient information to perform celestial navigation 

without direct observation of the sun [22, 23]. As the sun-dependent patterns have been observed 

as deep as 200 meters [30], this is an attractive potential navigation method for underwater 

vehicles. However, the work performed so far has only attempted to use the polarization patterns 

as a compass [31]. 

In this work, I test the hypothesis that it is possible to determine the sun’s angular position in the 

sky using observations of the polarization states of underwater light. To address this hypothesis, I 

have created an underwater polarization video camera platform based on a bio-inspired 

polarization image sensor [32], including the hardware, software for live control of the camera, 

and software for post-processing the recorded videos. I also developed a polarimetric calibration 

method to correct the fixed-pattern noise caused by variations in the polarization response across 

the sensor [33]. Further, I have developed and tested an algorithm for inferring the sun’s 

apparent position from measurements made with the underwater polarization camera. My results 

show that it is possible to determine the sun’s position from the underwater polarization patterns, 

and that my system serves as a proof-of-concept for a practical navigation system based on these 

principles. This research introduces a new mode of underwater navigation that could enable 

global-scale, GPS-free operation for underwater vehicles. It also gives insight into the potential 

means that marine animals with polarization sensitive vision could use to perform both local and 

long-distance navigation. 

My contributions over the course of my doctoral studies include: 

• designing and fabricating a PCB to allow an FPGA to send and receive video data with 

the Camera Link protocol, 
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• developing a real-time FPGA implementation of the polarization image processing 

algorithms, 

• evaluating the performance of the FPGA image processing algorithms against CPU and 

GPU implementations [34], 

• fabricating several polarization image sensors, including developing a method for 

aligning and mounting polarization filter arrays directly on a CCD image sensor, 

• developing and evaluating a calibration method for polarization image sensors [33], 

• developing Python and C++ libraries for processing polarization images and videos, 

• developing a Qt/C++ graphical user interface for analyzing and rendering polarization 

videos, 

• developing and building an underwater polarization video camera platform, including: 

– hardware system design to support polarization and orientation sensors, 

– custom PCBs for interfacing with Canon EF-S lenses and the underwater 

housing’s controls, 

– developing microcontroller software for translating the Canon lens protocol and 

underwater housing controls to USB, 

– and developing software for real-time control of the polarization sensor with live 

display of polarization video; 

• and assisting collaborators with analysis of polarization images and video [35, 36]. 

Chapter 2 discusses the principles of polarized light and how it is mathematically modeled, 

sensor architectures used to image the polarization states of light, and polarization image 

processing techniques. Chapter 3 covers a performance analysis of various implementations of 

the polarization image reconstruction algorithm [34]. Chapter 4 introduces the polarimetric 
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calibration method and quantifies the improvements it makes to the reconstructed polarization 

images [33]. Chapter 5 describes the hardware and software design of the underwater 

polarization camera. Finally, Chapter 6 covers the underwater navigation algorithm and 

experimental results. 
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Chapter 2: The Polarization of Light and 
Imaging Polarimeters 

2.1 Polarization of Light 
Transverse electromagnetic waves, such as visible light and broadcast radio waves, have three 

independent, fundamental properties: intensity, wavelength, and polarization. Humans readily 

perceive intensity and wavelength as brightness and color, respectively, but can only detect 

polarization through a secondary visual effect known as Haidinger’s Brushes [37]. Polarization 

refers to the shape and orientation of the ellipse, line, or circle an electromagnetic wave traces 

out as it travels through space and time. Most optical events—for example reflection, refraction, 

and scattering—can change the polarization state of light depending on the materials involved 

and their geometry. 

When discussing the polarization of light, we tend to use terms that describe the polarization 

ellipse rather than the less intuitive wave equations or Stokes parameters. As illustrated in Figure 

2.1, the angle of polarization, AoP or 𝜓𝜓, is the angle of the ellipse’s major axis relative to the 𝑥𝑥-

axis, and the ellipticity, 𝜒𝜒, is the angle of the line from the tip of the major axis to the tip of the 

minor axis, relative to the major axis. When 𝜒𝜒 > 0, the wave is propagating with a right-handed 

spiral, and when negative, a left-handed spiral. When 𝜒𝜒 = 0° the ellipse degenerates into a line 

and we say the wave is linearly polarized; and when 𝜒𝜒 = ±45° the ellipse degenerates into a 

circle and the wave is called circularly polarized. 
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Figure 2.1 An electric field 𝑬𝑬(𝑡𝑡) traces out the polarization ellipse over time. 𝜓𝜓 
is the polarization angle and 𝜒𝜒 is the ellipticity angle. 

Another common term is the degree of polarization, DoP or 𝑝𝑝, which does not refer to the 

polarization ellipse but describes the average behavior of an ensemble of waves. If all of the 

waves in an ensemble have the same polarization state, then 𝑝𝑝 = 1 and it is called fully 

polarized. However, it is common for an ensemble of waves to have varying polarization states. 

In this case the ensemble of waves can be decomposed by the principle of superposition into two 

waves of orthogonal polarization states. If the intensities of these orthogonal components are 

identical, then the polarization states cancel, 𝑝𝑝 = 0, and the light is called unpolarized. Otherwise 

the light is partially polarized, and the DoP is the ratio of the difference in intensity between the 

two components over the ensemble’s total intensity: 𝑝𝑝 = �𝐼𝐼∥ − 𝐼𝐼⊥� 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⁄ . 

When mathematically modelling polarized light, it is convenient to use the Mueller-Stokes 

representation of light and optical events. The Stokes vector, 

𝑺𝑺 = (𝑆𝑆0 𝑆𝑆1 𝑆𝑆2 𝑆𝑆3)𝑇𝑇 ∈ ℝ4 (2. 1) 

is composed of the four Stokes parameters, which are measurable intensities first described by 

Sir George Stokes circa 18501. The first component, 𝑆𝑆0, is the total intensity of the light. 𝑆𝑆1 and 

𝑆𝑆2 describe the major axis of the polarization ellipse, and 𝑆𝑆3 describes the ellipticity. The ellipse 

                                                 
1 Many authors cite “On the change of refrangibility of light” by Sir Stokes [36] in reference to his invention of the 
Stokes vector, but I could find no mention of it there.  
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parameters and DoP are related to the Stokes parameters as per Eqs 2.2 through 2.4, illustrated 

by the Poincaré sphere in . 

tan 2𝜓𝜓 =
𝑆𝑆2
𝑆𝑆1

(2. 2) 

Sin 2𝜒𝜒 =
𝑆𝑆3
𝑆𝑆0

(2. 3) 

𝑝𝑝 =
�𝑆𝑆12 + 𝑆𝑆22 + 𝑆𝑆32

𝑆𝑆0
(2. 4) 

Note that linearly polarized light can be fully described with only 𝑆𝑆0, 𝑆𝑆1, and 𝑆𝑆2, which leads to 

the concept of degree of linear polarization (DoLP), defined as 

𝑝𝑝𝑡𝑡 =
�𝑆𝑆12 + 𝑆𝑆22

𝑆𝑆0
. (2. 5) 

 

Figure 2.2 The Poincaré sphere illustrates the relationship between the Stokes 
vector, the polarization ellipse, and the degree of polarization. 

The polarization changes caused by optical events are represented by left-multiplying the Stokes 

vector of the incident light by a Mueller matrix, 𝐌𝐌 ∈ ℝ4×4. The matrices for complex events, 

such as reflections, refraction, and scattering, are often composed from the matrices of the basic 

polarizing elements: linear polarizers, 𝐌𝐌𝑃𝑃; linear retarders, 𝐌𝐌𝑅𝑅; and rotators, 𝐌𝐌𝜃𝜃. 
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The Mueller matrix of a linear polarizer with the transmitting axis at 0° is 

𝐌𝐌𝑃𝑃 = 𝑇𝑇

⎝

⎜
⎛

1 𝐷𝐷 0 0
𝐷𝐷 1 0 0
0 0 �1 − 𝐷𝐷2 0
0 0 0 �1 − 𝐷𝐷2

⎠

⎟
⎞

, 0 ≤ {𝑇𝑇,𝐷𝐷} ≤ 1 (2. 6) 

where 𝑇𝑇 is the transmission ratio of the polarizer and 𝐷𝐷 is the diattenuation. The transmission 

ratio and diattenuation can be intuitively understood in terms of the filter’s behavior when 

illuminated with unpolarized light—the transmission ratio is the attenuation coefficient of the 

light’s intensity, and the diattenuation is the DoP of the filtered light. An ideal linear polarizer 

has 𝑇𝑇 = 1/2 and 𝐷𝐷 = 1, while a neutral density filter with optical density 𝑑𝑑, which only changes 

intensity, would have 𝑇𝑇 = 10−𝑑𝑑 and 𝐷𝐷 = 0. Linear polarizers are often described by their 

extinction ratio as well: 𝑅𝑅 = (1 + 𝐷𝐷)/(1− 𝐷𝐷). 

A linear retarder with the fast axis at 0° is represented by 

𝐌𝐌𝑅𝑅 = �

1 0 0 0
0 1 0 0
0 0 cos𝜙𝜙 sin𝜙𝜙
0 0 − sin𝜙𝜙 cos𝜙𝜙

� (2. 7) 

where 𝜙𝜙 is the retardance in radians, relative to the wavelength of the light. For example a 

quarter-wave retarder would have 𝜙𝜙 = 90°. 

Finally, a polarization rotator, which rotates the electric field vector by an angle 𝜃𝜃 in the counter-

clockwise direction, is 

𝐌𝐌𝜃𝜃 = �

1 0 0 0
0 cos 2𝜃𝜃 − sin 2𝜃𝜃 0
0 sin 2𝜃𝜃 cos 2𝜃𝜃 0
0 0 0 1

� . (2. 8) 

Note that rotating an electric field vector by 𝜃𝜃 results in rotating a Stokes vector by 2𝜃𝜃—this is 

because electromagnetic waves 180° out of phase are identical in the Stokes space. It is also 
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common to present the transpose of this matrix as the rotator, which would correspond to 

rotating the coordinate system of the electric field vector rather than the vector itself. In addition 

to representing optical elements such as Faraday rotators and optically active materials, the 

rotator matrix is also used to create composite matrices that represent rotated optical elements. 

For example, the matrix for a rotated linear polarizer with the transmitting axis at angle 𝜃𝜃 is 

𝐌𝐌𝑃𝑃,𝜃𝜃 = 𝐌𝐌𝜃𝜃𝐌𝐌𝑃𝑃𝐌𝐌−𝜃𝜃 (2. 9) 

which uses the rotation matrix to transform the Stokes vector to and from the rotated coordinate 

system of the polarizer. 

2.2 Imaging Polarimeter Architectures 
There are many variations of polarization image sensor that operate in the visible spectrum, 

however all of them are based around the same measurement principle. Because the frequency of 

visible-spectrum electromagnetic waves is so high it is practically impossible to measure the 

phase (and polarization state) directly. Thus, all of the sensor designs are based on modulating 

the polarization state onto one or more measurable parameters of the light. In most cases, the 

modulated parameter is the light intensity, but sensors based on spatial and spectral modulation 

exist as well [39, 40]. Fully describing the polarization state of light requires three independent 

variables in addition to the light’s intensity. Typical applications require measuring at least two 

of the three polarization state parameters—if they are mixed into the same measurable quantity 

then a multiplexing scheme is required to separate them into different modulation channels such 

that the desired aspects of the polarization state can be reconstructed [41]. 

The most common visible-spectrum imaging polarimeter architectures are based on intensity 

modulation with variations on multiplexing, for example division of time (DoT), division of 

amplitude (DoA), and division of focal plane (DoFP) [42]. A DoT polarimeter has a single 
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intensity image sensor with a time-varying polarization filter, often a rotating linear polarizer, as 

the modulating element. Reconstructing the polarization state of light requires combining images 

taken at different times. DoT polarimeters are simple to construct and can have very high spatial 

resolution, but are unsuitable for imaging dynamic scenes due to motion blur. DoA sensors, on 

the other hand, employ a system of beam-splitters and polarization filters to direct the image to 

different image sensors based on polarization state. These sensors capture all of the modulated 

images simultaneously so they do not suffer from motion blur, but instead they require pixel-

level alignment of the sensors. The precise alignment required of the DoA sensor optics means 

that shocks or temperature fluctuations can introduce significant errors.  

Finally, DoFP polarimeters consist of an array of a repeating pattern of different polarization 

filters mounted directly on the focal-plane of an image sensor [43]. Like the DoA architecture, 

these sensors measure all of the modulated polarization components in a single snapshot, so they 

avoid motion blur, but they are also compact and more physically robust because the filters are 

mounted directly on the sensor. The drawbacks of this architecture are that it is difficult to 

manufacture, it suffers a slight spatial resolution loss compared to the DoT and DoA 

architectures, and the periodic nature of the filter array can introduce spatial aliasing errors 

between the components of the polarization state [44]. Fortunately, a variety of interpolation and 

reconstruction methods have been developed to mitigate the resolution loss and aliasing errors 

[44-47]. 

The DoFP polarimeter architecture was suitable for the underwater video camera because of its 

lack of motion blur and compact, robust design. The sensors I assembled for this project 

consisted of Kodak/On Semiconductor KAI series CCD image sensors with 7.4 μm pixels 

integrated with arrays of pixel-pitch matched, aluminum nanowire, linear polarization filters. To 
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operate in the visible spectrum, the nanowires must be significantly smaller than operating 

wavelength of light—in this case the filters are composed of parallel nanowires 140 nm thick, 70 

nm wide, and spaced with a 140 nm pitch [48]. The filters are oriented in a repeating pattern of 

0°, 45°, 135°, and 90°, shown in Figure 2.3. Each instance of the 2×2-pixel pattern is called a 

“super-pixel”. This filter pattern allows for the reconstruction of the first three Stokes 

parameters, or the intensity (I), degree of linear polarization (DoLP), and angle of polarization 

(AoP). The characteristics of these polarimeters are thoroughly described in [49]. 

 

Figure 2.3 Schematic of the DoFP sensor showing the polarization filter pattern. 
The filters are labeled with the orientation of their transmission axis, which is 
perpendicular to the nanowire orientation. Each 2×2 instance of the pattern, 

outlined in red, is called a “super-pixel.” 

2.3 DoFP Polarimeter Image Processing 
As stated previously, the DoFP polarimeter captures intensity images that have been modulated 

by the polarization state of the light. The intensity each pixel of the sensor measures can be 

mathematically modeled as follows: 

𝐼𝐼(𝑟𝑟, 𝑔𝑔) = (1 0 0 0) ⋅ 𝐌𝐌(𝑟𝑟, 𝑔𝑔) ⋅ 𝑺𝑺(𝑟𝑟, 𝑔𝑔) = 𝑨𝑨(𝑟𝑟, 𝑔𝑔) ⋅ 𝑺𝑺(𝑟𝑟, 𝑔𝑔) (2. 10) 

where 𝑟𝑟 and 𝑔𝑔 are the row and column coordinates of the pixel, 𝐌𝐌(𝑟𝑟, 𝑔𝑔) is the Mueller matrix of 

the pixel’s polarization filter, and 𝑺𝑺(𝑟𝑟, 𝑔𝑔) is the incident Stokes vector. The leading (1 0 0 0) 

vector selects the intensity component of the filtered Stokes vector; combined with 𝐌𝐌(𝑟𝑟, 𝑔𝑔) it 
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leaves just the first row of the Mueller matrix, 𝑨𝑨(𝑟𝑟, 𝑔𝑔) ∈ ℝ1×4, which is called the pixel’s 

“analysis vector.” 

The repeating pattern of the filters over the focal plane results in 𝑨𝑨(𝑟𝑟, 𝑔𝑔) assuming a periodic 

nature as well: 

𝑨𝑨(𝑟𝑟, 𝑔𝑔) =
1
4
�

2
cos 𝑟𝑟𝑟𝑟 + cos 𝑔𝑔𝑟𝑟
cos 𝑟𝑟𝑟𝑟 − cos 𝑔𝑔𝑟𝑟

0

�

𝑇𝑇

, (2. 11) 

which leads to an intensity image modulated not only by the polarization state, but also over 

space. 

𝐼𝐼(𝑟𝑟, 𝑔𝑔) = ½𝑆𝑆0(𝑟𝑟, 𝑔𝑔) + ¼(cos 𝑟𝑟𝑟𝑟 + cos 𝑔𝑔𝑟𝑟)𝑆𝑆1(𝑟𝑟, 𝑔𝑔) + ¼(cos 𝑟𝑟𝑟𝑟 − cos 𝑔𝑔𝑟𝑟)𝑆𝑆2(𝑟𝑟, 𝑔𝑔) 

= ½𝑆𝑆0(𝑟𝑟, 𝑔𝑔) + ¼ cos 𝑟𝑟𝑟𝑟 [S1 + 𝑆𝑆2](𝑟𝑟, 𝑔𝑔) + ¼ cos 𝑔𝑔𝑟𝑟 [𝑆𝑆1 − 𝑆𝑆2](𝑟𝑟, 𝑔𝑔) (2. 12) 

A Fourier analysis of this expression reveals that the 𝑆𝑆0 component remains centered in the 

spatial frequency domain, but the sum and difference of 𝑆𝑆1 and 𝑆𝑆2 are shifted to the Nyquist 

frequencies along the two spatial frequency dimensions: 

𝐼𝐼(𝛼𝛼,𝛽𝛽) = ½�̃�𝑆0(𝛼𝛼,𝛽𝛽) + ¼��̃�𝑆1 + �̃�𝑆2�(𝛼𝛼 − ½,𝛽𝛽) + ¼��̃�𝑆1 − �̃�𝑆2�(𝛼𝛼,𝛽𝛽 − ½), (2. 13) 

where 𝛼𝛼 and 𝛽𝛽 are the spatial frequencies in the 𝑟𝑟 and 𝑔𝑔 directions, respectively. This 

transformation is illustrated in Figure 2.4. As Scott Tyo showed, this analysis leads to a method 

for perfectly reconstructing 𝑺𝑺(𝑟𝑟, 𝑔𝑔), assuming that it is sufficiently band-limited [44]. Applying a 

low-pass filter isolates the 𝑆𝑆0 component of the modulated image, while high-pass filters along 𝑟𝑟 

and 𝑔𝑔 yield 𝑆𝑆1 + 𝑆𝑆2 and 𝑆𝑆1 − 𝑆𝑆2, respectively, from which 𝑆𝑆1 and 𝑆𝑆2 are trivial to compute. 

Perhaps the most important result from this analysis is the identification of the spatial bandwidth 

limits of the DoFP architecture. Any high spatial-frequency content in intensity, in other words 

sharp boundaries between light and dark, will alias into false polarization signals, and vice 

versa—sharp changes in polarization state will appear in the intensity image. The cut-off 
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frequencies of the filters used for reconstructing 𝑺𝑺(𝑟𝑟, 𝑔𝑔) determine where such aliasing occurs, 

but typically one would allocate the bandwidth for each component equally at slightly less than 

¼ of the total bandwidth along 𝑟𝑟 and 𝑔𝑔. 

 

Figure 2.4 Fourier transform of the DoFP image showing how the polarization 
state is spatially modulated. Red stars show the location of potential aliasing 

when reconstruction filter cut-offs are set to ±0.25. 

While Tyo’s Fourier-domain reconstruction method minimizes reconstruction errors, it is too 

computationally expensive for performing real-time reconstruction of polarization video. We 

can, however, approximate the operations from the Fourier domain with simpler spatial-domain 

filters. The general algorithm in this case is to separate the modulated image into 4 component 

images corresponding to each of the polarization filter types in the DoFP array. Then a spatial 

filter is used to smooth and interpolate the missing values between the pixels and the resulting 

images are used to reconstruct 𝑺𝑺(𝑟𝑟, 𝑔𝑔). Indeed, much work on reconstructing polarization images 

from DoFP sensors has focused on the development of interpolation filters for the smoothing 

operation [45, 46, 50]. 
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Figure 2.5 Flowchart showing the steps to reconstruct the Stokes vectors from a 
DoFP polarimeter image. 

For any DoFP polarimeter with a 2×2 filter pattern, the split step expands the pixels of the 

modulated intensity image 𝐼𝐼(𝑟𝑟, 𝑔𝑔) ∈ ℝ into vectors 𝑰𝑰′(𝑟𝑟, 𝑔𝑔) ∈ ℝ4 that are zero everywhere but 

have the original pixel value set in the vector element corresponding to the pixel’s filter: 

𝑰𝑰′(𝑟𝑟, 𝑔𝑔) = �

evn(𝑟𝑟) evn(𝑔𝑔)
odd(𝑟𝑟) odd(𝑔𝑔)
evn(𝑟𝑟) odd(𝑔𝑔)
odd(𝑟𝑟) evn(𝑔𝑔)

� 𝐼𝐼(𝑟𝑟, 𝑔𝑔), (2. 14) 

where evn(𝑛𝑛) = 𝑛𝑛 mod 2 and odd(𝑛𝑛) = 1 − evn(𝑛𝑛).  

After separating the different modulated intensity channels, 𝑰𝑰′(𝑟𝑟, 𝑔𝑔) is then filtered with an 

interpolation filter to fill in the missing values. For example, to match the operation of Tyo’s 

Fourier-domain reconstruction, one would use a 2D Whittaker-Shannon sinc filter: 

𝑰𝑰(𝑟𝑟, 𝑔𝑔) = �𝑰𝑰′(𝑟𝑟′, 𝑔𝑔′) sinc
𝑟𝑟 − 2𝑟𝑟′

2
sinc

𝑔𝑔 − 2𝑔𝑔′

2
𝑟𝑟′,𝑐𝑐′

(2. 15) 

where sinc 𝑥𝑥 = sin(𝑥𝑥𝑟𝑟) 𝑥𝑥𝑟𝑟⁄ . However, this requires summing over the entire image to filter a 

single pixel. More reasonable interpolation filters, such as finite impulse response (FIR), bilinear, 

and bicubic filters, only operate on small regions of the image at a time, making them more 

tractable for real-time applications. The least computationally expensive interpolation filter is a 

nearest-neighbor filter, but such filters introduce large aliasing errors unless the image is severely 

band-limited [44]. The next simplest is the bilinear interpolation filter, which operates over a 3×3 
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pixel window and is defined as in [45]: 

𝑰𝑰(𝑟𝑟, 𝑔𝑔) = � � 𝑰𝑰′(𝑟𝑟 + 𝑖𝑖, 𝑔𝑔 + 𝑗𝑗) 2−|𝑖𝑖| 2−|𝑗𝑗|
1

𝑗𝑗=−1

1

𝑖𝑖=−1

. (2. 16) 

For sensors with the filter pattern shown in Figure 2.3, the Stokes vector for each pixel can be 

reconstructed as 

𝑺𝑺 = �

(𝐼𝐼0 + 𝐼𝐼45 + 𝐼𝐼90 + 𝐼𝐼135) 2⁄
𝐼𝐼0 − 𝐼𝐼90
𝐼𝐼45 − 𝐼𝐼135

0

� , 𝑰𝑰 = �

𝐼𝐼0
𝐼𝐼90
𝐼𝐼45
𝐼𝐼135

� . (2. 17) 

More generally, the analysis vectors of the filters can be used to generate a reconstruction matrix: 

𝑺𝑺(𝑟𝑟, 𝑔𝑔) = 𝐀𝐀−1 ⋅ 𝑰𝑰(𝑟𝑟, 𝑔𝑔), 𝐀𝐀 = �

𝑨𝑨(0,0)
𝑨𝑨(1,1)
𝑨𝑨(0,1)
𝑨𝑨(1,0)

� . (2. 18) 

Finally, in addition to reconstructing the Stokes vector, it is useful to compute the AoP image, 

𝜓𝜓(𝑟𝑟, 𝑔𝑔), and the DoP or DoLP image, 𝑝𝑝(𝑟𝑟, 𝑔𝑔) or 𝑝𝑝𝑡𝑡(𝑟𝑟, 𝑔𝑔), following Eqs. 2.2 to 2.5, as they are 

easier for people to interpret and understand. Typically, these images are shown in false color, 

AoP by mapping 2𝜓𝜓 to the hue wheel, and DoP by mapping 𝑝𝑝 to a contrast-enhancing color 

gradient, though more sophisticated visualization schemes are in use as well [51]. 
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Chapter 3: DoFP Image Processing 
Performance Comparison 

This chapter contains material from “A comparison of polarization processing across different 

platforms” published in the Proceedings of SPIE Volume 8160, 2011 [34]. 

Several implementations of the DoFP image processing algorithm were tested for performance in 

terms of latency, throughput, output accuracy, and power consumption. This study was 

performed in collaboration with Timothy York, who was responsible for programming the CPU 

and GPU implementations. I programmed the FPGA implementation and set up the power 

measurement hardware, analysis of the results and preparation of the manuscript was shared 

between us.  

3.1 Algorithm Implementations 
The specific algorithm tested was as shown in Figure 2.5, specifically with the 3×3 bilinear 

interpolation of Equation 2.15, and with the addition of a calibration scheme before the 

interpolation step. For this study, the pixel intensity responses were calibrated by 

𝐼𝐼𝑐𝑐𝑡𝑡𝑡𝑡(𝑟𝑟, 𝑔𝑔) = �𝐼𝐼(𝑟𝑟, 𝑔𝑔) − 𝑑𝑑(𝑟𝑟, 𝑔𝑔)� ⋅ 𝑔𝑔(𝑟𝑟, 𝑔𝑔) − �̂�𝑆0��𝑟𝑟 2� �, �𝑔𝑔 2� �� ⋅ 𝑔𝑔(𝑟𝑟, 𝑔𝑔), (3. 1) 

where 𝑑𝑑 is the pixel’s dark-value, and 𝑔𝑔 and 𝑔𝑔 are per-pixel calibration coefficients. �̂�𝑆0 is an 

estimate of the intensity of each super pixel, computed as 

�̂�𝑆0��𝑟𝑟 2� �, �𝑔𝑔 2� �� = ��𝑔𝑔(𝑖𝑖, 𝑗𝑗) 𝐼𝐼(𝑖𝑖, 𝑗𝑗)
𝑐𝑐+1

𝑗𝑗=𝑐𝑐

𝑟𝑟+1

𝑖𝑖=𝑟𝑟

. (3. 2) 

The derivation of these equations and the values of their parameters will not be covered as this 

calibration method has since been superseded by the algorithm described in Chapter 4. 

The algorithm was implemented on 3 platforms for testing: a general-purpose multi-core CPU, 

an Nvidia GPU, and an FPGA. The CPU implementation was written in C++, and was broken up 
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into a series of three tasks: calibration (Eqs. 2.19 and 2.20), interpolation (Eqs. 2.14 and 2.16), 

and reconstruction (Eqs. 2.17, 2.2, and 2.5). The reconstruction task also included converting the 

AoP image to false-color. Each task was written as a single function that operates on an entire 

frame of data at once, iterating over the image in row-major order using two nested loops. This 

serial implementation is used as the reference for benchmarking all of the other implementations. 

To take advantage of the multiple cores and SMT capabilities of modern CPUs, the algorithm 

was multithreaded using two methods. The first uses OpenMP, an API for shared-memory 

parallel programming, to distribute the iterations of the outer loop of each task across multiple 

threads. OpenMP automatically sets the number of threads to make the best use of the CPU’s 

multiple cores and SMT capabilities [52]. The second method pipelines each input frame into a 

separate thread so that multiple frames are processed at the same time. The number of threads 

used is set to match the CPU’s capabilities. The two parallelization schemes are compared to the 

serial algorithm in Figure 3.1. Each of the parallelized versions was implemented using both 

single and double precision floating point arithmetic to compare the accuracy/speed trade-off. 

 

Figure 3.1 CPU parallelization schemes for the DoFP image processing 
algorithm. 

The Nvidia GPU implementation was written using the CUDA C/C++ extensions [53]. The 

computations are the same as the reference CPU implementation, but are broken into two kernels 
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which run concurrently on all pixels, subject to thread scheduling. The first kernel implements 

the calibration algorithm. The second kernel implements the rest of the processing flow. Since 

each kernel is run simultaneously on every pixel, the separation enforces that calibration finishes 

before interpolation begins. The GPU version was also implemented using both single and 

double precision arithmetic. 

Finally, the image processing algorithm was implemented on a Xilinx Virtex-5 FPGA using the 

Verilog language. Several modifications were made to accommodate the FPGA hardware. First, 

the calculations are all performed using fixed-point operations rather than floating point. Second, 

the CORDIC algorithm is used to compute �𝑆𝑆12 + 𝑆𝑆22 and arctan 𝑆𝑆2/𝑆𝑆1 for the AoP and DoLP 

images [54]. And finally, the calibration algorithm was simplified to only applying a per-pixel 

gain and a constant offset as there was insufficient memory on the platform to hold all of the 

coefficients use in the full calibration algorithm. 

The FPGA implementation uses a streaming, fully pipelined architecture that takes in a raw pixel 

and outputs a processed pixel every clock cycle. A block diagram is shown in Figure 3.2.The 

first stage of the pipeline performs calibration. Its output streams into a delay stage that outputs 

the current pixel and the corresponding pixel from the two previous rows of the image. These are 

required for the bilinear interpolation stage which operates on a 3×3-pixel window of the 

calibrated image. The stream of interpolated pixels feeds into stage which computes the 

intensity, DoLP, and AoP: 𝑆𝑆0, 𝑝𝑝𝑡𝑡, and 𝜓𝜓. Finally, a multiplexer selects which of these data 

streams will be sent to the PC for display. 

 

Figure 3.2 Block diagram of the FPGA implementation. 
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3.2 Performance Comparison 
The PC used for measurement is a 2.93 GHz Intel Core i7-940, with 12 GB of PC3 12800 RAM 

and an Nvidia GTX 480 GPU. The measurements for the CPU and GPU implementations were 

taken by capturing a 768-frame video from the polarization sensor. Due to sampling limitations 

with the multimeters, the video was divided into 24-frame segments. The segments were 

processed, and a per-frame time was taken using the Windows system call 

QueryPerformanceCounter. The total time was taken as well. Processing the video was repeated 

10 times, and the average throughput, measured as the total time to compute all frames divided 

by the number of frames, was computed. The average latency was computed as the average time 

per frame. 

The power consumption was measured using two Agilent 34410A digital multimeters and an 

Agilent 33220A function generator. The function generator outputs a trigger simultaneously to 

both multimeters at the start of processing using the VISA library. As shown in Figure 3.3, one 

multimeter measures the line voltage (nominally 120 V at 60 Hz), while the other measures the 

voltage drop across a 0.2 Ω, 5 W series resistor to indirectly measure the current. This was done 

because the current was greater than the multimeter’s measurement limit. Both voltages were 

sampled at 100 μs, and 50,000 samples were taken. Since the triggering was simultaneous, the 

instantaneous power was computed by multiplying the line voltage by the voltage read across the 

resistor divided by 0.2. 

 

Figure 3.3 Power measurement schematic. 
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Since all implementations required a PC for display, the RMS power consumption of the PC was 

measured while the PC was idle. This is considered the baseline and was 167 W. The RMS value 

of the power of each trial was computed by taking the square root of the square of a moving 

average filter that spans six power cycles. Plots of typical RMS power measurements are shown 

in Figure 3.4. The plots start with the CPU in idle and processing starts ½ second into the 

measurements. The serial implementation does not finish before the end of these plots, however 

the other implementations show the dip in power as the CPU returns to idle when the processing 

finishes. The GPU implementation shows a higher power consumption during the idle time due 

to the CUDA libraries being initialized. 

 

Figure 3.4 Plots of typical power usage during execution. 
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Implementation Precision Throughput Latency Power Energy / frame 
Reference Double 4.10 fps 243 ms 46.1 W 11,255.7 mJ 
OpenMP Double 16.29 fps 61.5 ms 114.6 W 7,038.8 mJ 
OpenMP Single 18.92 fps 54.8 ms 107.9 W 5700.8 mJ 
Pipeline Double 19.72 fps 370 ms 104.5 W 5300.6 mJ 
Pipeline Single 22.63 fps 322 ms 117.3 W 5185.3 mJ 

GPU Double 117.66 fps 8.5 ms 142.3 W 1209.4 mJ 
GPU Single 194.46 fps 5.14 ms 130.8 W 672.5 mJ 

FPGA Fixed 50.00 fps 11.4 μs 2.445 W 48.9 mJ 
 

Table 3.1 Implementation performance. The best values are bolded. 

The RMS power curves were measured 320 times per implementation. The baseline power was 

subtracted from each curve, and the area under the resultant curve during the processing time 

was computed. This yielded the total energy consumed per frame, as reported in  

Table 3.1, which also lists the average power consumption during processing. 

The accuracy of each implementation was measured by comparing its 𝑆𝑆0, 𝑝𝑝𝑡𝑡, and 𝜓𝜓 images to 

those of the reference implementation. The raw input image was randomly generated and 

processed without calibration by all implementations. The RMS error (RMSE) was computed by 

taking the square root of the mean of the squared difference image, using double precision math.  

Platform Implementation 𝑆𝑆0 RMSE 𝑝𝑝 RMSE 𝜓𝜓 RMSE 
CPU Precise double 0 0 0 
CPU Precise single 0.0083 8.743 × 10-7 1.031 × 10-5 
CPU Fast single 0.0083 8.743 × 10-7 1.031 × 10-5 
GPU Fast double 0 2.514 × 10-8 2.188 × 10-6 
GPU Fast single 0.0084 5.9 × 10-7 1.04 × 10-5 

FPGA Fixed 0 0.0238 0.0252 
 

Table 3.2 Computational accuracy. 

Of the CPU-only implementations, serial computation performed the worst, as expected. Using 

OpenMP to parallelize the computation quadrupled the frame rate, while pipelining garnered the 

best performance. The main tradeoff between the two is latency. The pipelined computation 
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suffers from high latency as it requires the same time as a serial implementation, plus thread 

overhead, before a frame is computed. The multithreaded OpenMP version reduces latency by 

utilizing threads to compute multiple pixels at the same time. In both cases, single precision 

proved to be considerably faster than double precision. We believe this to be due to greater cache 

coherency as a result of the smaller data type. 

Of the remaining implementations, the GPU implementation using single-precision is the top 

performer in terms of frame-rate. It is nearly four times as fast as the FPGA, and roughly nine 

times as fast as the pipelined CPU implementation. The main disadvantage is higher power 

consumption than either the CPU or FPGA, though the energy required per frame is lower than 

the CPU implementations. The FPGA maintains real-time speeds as well, operating at 50 frames-

per-second, over twice as fast as the fastest CPU implementation, and has latency 451 times 

lower than the GPU and 4807 times lower than the CPU. The disadvantage of the FPGA is the 

loss of accuracy due to the use of the CORDIC algorithm for computing the DoLP and AoP. 

In terms of form factor, the CPU implementation can run reasonably well on a high-powered 

laptop or small form-factor PC. The GPU has essentially the same form factor as the CPU. The 

FPGA implementation fits on a 2×2.5×4-inch space, but requires an external PC for control and 

display. 

The computation required to maintain a high frame rate is challenging, even for a multi-core PC. 

A GPU implementation has the highest frame-rate, but also the highest power consumption. The 

FPGA provides a real-time frame rate and low power consumption, but at the expense of 

accuracy for the DoLP and AoP.  
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Chapter 4: DoFP Polarimeter Calibration 
This chapter contains material from “Calibration methods for division-of-focal-plane 

polarimeters” published in Optics Express volume 21, issue 18 [33].  

The polarization reconstruction method presented in Section 2.3 assumes that all of the sensor’s 

pixels have ideal polarization filters and perfectly measure the light intensity—however this is 

far from the case. Fixed pattern noise (FPN), referring to constant spatial variations in pixel 

response, is a common source of error on any image sensor. In typical sensors, the FPN is due to 

small variations in transistor sizes and doping levels in the photodiodes and read-out amplifiers 

across the focal plane array [55, 56]. Techniques such as correlated double sampling and 

difference double sampling effectively correct the FPN caused by these variations in the sensor’s 

electronics [55, 56]. DoFP polarimeters, however, also have FPN caused by spatial variations in 

the polarization filter array. The polarization filters, as mentioned previously, consist of parallel 

aluminum nanowires with nominal dimensions of 140 nm thick by 70 nm wide, and are spaced 

with a 140 nm pitch. However, the true dimensions can vary by as much as 20 nm [57, 58]. Such 

variations have a major impact on the optical performance of a nanowire filter [59], in fact 

spatial variations in polarization properties up to 20% have been reported for a DoFP polarimeter 

with nanowire filters [49]. Using more advanced manufacturing techniques can reduce the 

nanowire variation and reduce this source of FPN, but it would also lead to prohibitively 

expensive filters and imaging devices. Thus, this work explores using computational methods for 

correcting the variations in polarization response over the pixels of a DoFP polarimeter. 

4.1 Calibration Function Derivation 
The pixel model used to derive the polarimeter calibration functions is based on Eq. 2.10, but 

with the addition of a pixel dark-offset: 
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𝐼𝐼 = 𝑨𝑨 ⋅ 𝑺𝑺 + 𝑑𝑑, (4. 1) 

where 𝑨𝑨 ∈ ℝ1×4 is the pixel’s analysis vector, 𝑺𝑺 ∈ ℝ4 is the incident light’s Stokes vector, and 𝑑𝑑 

is the pixels dark value. Since we are interested in the FPN components introduced by the 

polarization filters, we assume that the pixel is linear and neglect any temporal or quantization 

noise. 

When considering a “super-pixel”, the responses of the 𝑛𝑛 constituent pixels are stacked into a 

column vector 𝑰𝑰 ∈ ℝ4: 

𝑰𝑰 = �
𝑨𝑨1 ⋅ 𝑺𝑺 + 𝑑𝑑1

⋮
𝑨𝑨𝑛𝑛 ⋅ 𝑺𝑺 + 𝑑𝑑𝑛𝑛

� = �
𝑨𝑨1
⋮
𝑨𝑨𝑛𝑛
� 𝑺𝑺 + �

𝑑𝑑1
⋮
𝑑𝑑𝑛𝑛
� = 𝐀𝐀 ⋅ 𝑆𝑆 + 𝒅𝒅 . (4. 2) 

The individual analysis vectors and dark offsets are combined into an analysis matrix, 𝐀𝐀 ∈ ℝ4×4, 

and a dark offset vector, 𝒅𝒅 ∈ ℝ4. This model assumes that either the incident illumination is 

uniform across the super-pixel or that all of the constituent pixels are co-located. 

The purpose of a calibration function is to transform the non-ideal response of a pixel or super-

pixel into the ideal response. In the ideal response, the dark values are zero and the analysis 

vectors match their nominal values—in our case specified by Eq. 2.11. Because the pixel model 

is linear, this can be expressed by basic linear transformations. In the single-pixel case, 

𝐼𝐼𝑐𝑐 = 𝑔𝑔𝑐𝑐(𝐼𝐼 − 𝑑𝑑𝑐𝑐) ≈ 𝑨𝑨𝑖𝑖 ⋅ 𝑺𝑺 (4. 3) 

where 𝐼𝐼𝑐𝑐 is the calibrated pixel value, 𝑨𝑨𝑖𝑖 is the pixel’s nominal analysis vector, and 𝑔𝑔𝑐𝑐 and 𝑑𝑑𝑐𝑐 are 

the calibration gain and offset, respectively. In the super-pixel case, the calibration function is 

𝑰𝑰𝑐𝑐 = 𝐆𝐆𝑐𝑐(𝑰𝑰 − 𝒅𝒅𝑐𝑐) ≈ 𝐀𝐀𝑖𝑖 ⋅ 𝑺𝑺 (4. 4) 

where as in the single-pixel case, 𝐀𝐀𝑖𝑖 is the nominal analysis matrix of the super-pixel, 𝐆𝐆𝑐𝑐 ∈ ℝ4×4 

is the calibration gain matrix and 𝒅𝒅𝑐𝑐 ∈ ℝ4 is the calibration offset vector. 
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The values of the calibration gains and offsets can be found by expanding Eqs. 2.23 and 2.24 

with the pixel and super-pixel models, respectively, and minimizing the squared error between 

the calibrated response and the nominal response: 

min‖𝑔𝑔𝑐𝑐(𝑨𝑨 ⋅ 𝑺𝑺 + 𝑑𝑑 − 𝑑𝑑𝑐𝑐) − 𝑨𝑨𝑖𝑖 ⋅ 𝑺𝑺‖2 , (4. 5) 

min‖𝐆𝐆𝑐𝑐(𝐀𝐀 ⋅ 𝑺𝑺 + 𝒅𝒅 − 𝒅𝒅𝑐𝑐) − 𝐀𝐀𝑖𝑖 ⋅ 𝑺𝑺‖2 . (4. 6) 

Both minimizations are convex and can be completed by taking the partial derivatives with 

respect to the calibration gains and calibration offsets, setting them to zero, and solving for the 

parameters. It is also possible to solve for the calibration parameters numerically by supplying 

measured pixel responses to illumination with known 𝑺𝑺 values to an ordinary least-squares 

solver. 

A solution to Eq 2.25, the single pixel case, is 

𝑑𝑑𝑐𝑐 = 𝑑𝑑, 𝑔𝑔𝑐𝑐 =
𝑨𝑨𝑖𝑖 ⋅ 𝑺𝑺
𝑨𝑨 ⋅ 𝑺𝑺

. (4. 7) 

The calibration dark offset is set to the pixel’s dark offset and the calibration gain is the ratio of 

the two projections. When substituted back into Eq. 2.23, 

𝐼𝐼𝑐𝑐 =
𝑨𝑨𝑖𝑖 ⋅ 𝑺𝑺
𝑨𝑨 ⋅ 𝑺𝑺

(𝑨𝑨 ⋅ 𝑺𝑺 + 𝑑𝑑 − 𝑑𝑑) ≈ 𝑨𝑨𝑖𝑖 ⋅ 𝑺𝑺, (4. 8) 

we see that the dark offset is completely corrected, but the calibration gain only rescales the 

projection of 𝑺𝑺 onto 𝑨𝑨 to the same length as the projection of 𝑺𝑺 onto 𝑨𝑨𝑖𝑖. This only results in the 

nominal pixel response if 𝑨𝑨 is a scalar multiple of 𝑨𝑨𝑖𝑖, in other words this method can only 

correct for variations in the filter transmission ratio, not variations in diattenuation, polarization 

angle, or ellipticity. 

A solution to the super-pixel case, Eq. 2.26, is 

𝒅𝒅𝑐𝑐 = 𝒅𝒅, 𝐆𝐆𝑐𝑐 = 𝐀𝐀𝑖𝑖𝐀𝐀+. (4. 9) 
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where 𝐀𝐀+ indicates the pseudo-inverse of 𝐀𝐀, which is computed such that 𝐆𝐆𝑐𝑐𝐀𝐀 = 𝐀𝐀𝑖𝑖 is satisfied. 

As long as the pseudo-inverse exists, 𝐆𝐆𝑐𝑐 will transform each pixel’s analysis vectors, by scaling 

and rotating, into exactly their nominal values. Eq. 2.30 shows that using this approach perfectly 

calibrates the polarization response as long as the model’s assumptions hold. 

𝐆𝐆𝑐𝑐(𝑰𝑰 − 𝒅𝒅𝑐𝑐) = 𝐀𝐀𝑖𝑖𝐀𝐀+(𝐀𝐀 ⋅ 𝑺𝑺 + 𝒅𝒅 − 𝒅𝒅) = 𝐀𝐀𝑖𝑖𝑺𝑺 (4. 10) 

4.2 Calibration Function Evaluation 
4.2.1 Experimental Setup 
The two calibration functions presented in Eqs. 2.23 and 2.24 were evaluated on data collected 

from the apparatus shown in Figure 4.1. A Sylvania EHJ64655HLX 250 W tungsten-halogen 

bulb provides light for the system. The light passes through an Edmund Optics Heat Absorbing 

Glass to block unwanted IR components, then optionally through 1 of three narrow-band spectral 

filters: Thorlabs FB450-10, Newport 10LF10-515, or Thorlabs FB600-10, which pass 450, 515 

and 600 nm light, respectively. An adjustable shutter controls the light intensity to avoid any 

spectral variations caused by changing the current through the lamp. The light then passes into a 

4” integrating sphere which produces nominally uniform, unpolarized light at its outputs. A 

Thorlabs S120VC calibrated photodiode placed at one output port of the integrating sphere 

measures relative light intensities. Light from the other output port passes through a Newport 

20LP-VIS-B linear polarizer mounted on a motorized rotation stage, and finally passes into the 

visible-spectrum, linear, DoFP polarimeter described in [49, 60]. The apparatus generates fully 

linearly polarized light with arbitrary intensity and polarization angle. It can be switched between 

“white” light directly from the lamp or one of several narrow-band spectra provided by the 

spectral filters. Since the polarimeter being used for evaluation only measures linear polarization 

there is no need for circularly polarizing optics. The capability to control the degree of linear 

polarization will be included for future works. 
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Figure 4.1 Polarization state generator for evaluating calibration techniques. 

Polarization images were collected with unfiltered, 450 nm, 515 nm, and 650 nm light 

respectively. For each spectrum, 100 images at 6 different intensities and 36 polarization angles 

were collected from a 300×300-pixel (2.22 mm square) region of the polarimeter. The small 

region was selected to maximize the uniformity of the incident light and to limit the amount of 

data collected. The coefficient of variation of a non-polarimetric image taken over the same area 

was 0.0106, which will contribute to the final reconstruction errors. Each intensity and 

polarization angle was sampled 100 times to reduce the effects of temporal noise on the final 

results. The 6 intensities followed a roughly exponential sequence based on the dynamic range of 

the polarimeter. For each wavelength, the maximum intensity was set as high as possible without 

saturating any pixels at any angle of the polarizer. The remaining intensities were set at 50%, 

25%, 10%, 5%, and 2.5% of the maximum intensity at each wavelength. This procedure 

minimized the effects of wavelength-dependent intensity variations of the photodiode’s quantum 

efficiency. The 36 different polarization angles were uniformly distributed every 5° from 0° to 

180°, which covers the full range of linear polarization angles. The output of the integrating 

sphere was 3% linearly polarized, which is easily compensated for as shown in the following 

section. Only the images taken with white (unfiltered) light and polarization angles every 20° 
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were used as training data to determine the calibration parameters. The remainder of the data was 

used for testing the performance of the calibration procedures. 

4.2.2 Determining model and calibration parameters 
The first step in computing the calibration parameters of the sensor is to determine the model 

parameters for each pixel. The analysis vector and dark offset for each of the 𝑛𝑛 pixels can be 

determined simultaneously from the 𝑚𝑚 training data images by solving 

�
𝐼𝐼1,1 ⋯ 𝐼𝐼1,𝑚𝑚
⋮ ⋱ ⋮
𝐼𝐼𝑛𝑛,1 ⋯ 𝐼𝐼𝑛𝑛,𝑚𝑚

� = �
𝑨𝑨1 𝑑𝑑1

⋮
𝑨𝑨𝑛𝑛 𝑑𝑑𝑛𝑛

� �𝑺𝑺11 ⋯ 𝑺𝑺𝑚𝑚
1 � , (4. 11) 
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. (4. 12) 

The values of 𝑺𝑺 must include all of the polarization effects of the apparatus, including the 

polarization of the output of the integrating sphere. Eq. 2.32 was evaluated using a least-squares 

solver. The coefficients of determination, 𝑅𝑅2, for all of the pixels were above 99.73% and have a 

median of 99.93%. This indicates that the model explains most of the variation in the training 

data. 

The pixel dark offsets are summarized in Figure 4.2. The dark offsets are small compared to the 

dynamic range of the polarimeter (maximum digital value of 4096), but are predominantly 

negative. This is not a problem, but indicates that the dark offsets are being over-corrected within 

the polarimeter hardware. 



31 
 

 

Figure 4.2 Histogram of pixel dark offsets. The digital value range for each pixel 
in the polarimeter is 0 to 4095, inclusive. 

Figure 4.3 displays the measured analysis vectors, 𝐴𝐴 = (𝐴𝐴0 𝐴𝐴1 𝐴𝐴2 𝐴𝐴3)𝑇𝑇, for each pixel. Since 

these measurements are from pixels with linear polarization filters, 𝐴𝐴3 is always zero and is not 

included. The spatial variation of the filter transmission ratios is about 20% and can be 

completely attributed to variations in the nanowire dimensions. The measurements show a 

constant angular offset of approximately 5° from nominal, which is most likely due to alignment 

errors during the interference lithography step of the filter fabrication [57]. Most of the filters 

have diattenuations of about 0.9, which corresponds to an extinction ratio of 26 dB. This is less 

than the values reported in [60] and is attributed to the increased cross-talk due to the lack of 

collimation in this work’s optical apparatus. Variance in the diattenuation, however, is also 

attributed to manufacturing flaws in the nanowire filters. It is worth noting that any cross-talk 

effects are measured as part of the pixels’ polarization parameters—this means that any 

calibration parameters derived from these measurements will be dependent on the incident light-

beam’s divergence and the parameters must be remeasured for imaging optics with significantly 

different f-numbers. 
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Figure 4.3 Analysis vectors, 𝑨𝑨, for all pixels in the imaging array. Diamonds 
indicate nominal values for each colored group—red is 0°, green is 90°, blue is 
45°, and purple is 135°. The ratios of 𝐴𝐴2/𝐴𝐴0 versus 𝐴𝐴1/𝐴𝐴0 for each pixel are 

presented in the left sub-plot, where the radius corresponds to a filter’s 
diattenuation and the polar angle corresponds to its orientation. The 

corresponding values of 𝐴𝐴0, the filters’ transmission coefficients, are plotted 
along the x-axis in the right subplot.  

With the analysis vector and dark offset determined for each pixel, computing the single-pixel 

and super-pixel calibration parameters requires following Eqs. 2.27 and 2.29 for each pixel and 

super-pixel, respectively. To illustrate the capabilities of the two methods, the analysis vectors 

are shown transformed by the calibration gains in Figure 4.4 and Figure 4.5. That is, Figure 4.4 

shows 𝑔𝑔𝑐𝑐𝑨𝑨 for each pixel, and Figure 4.5 shows 𝐆𝐆𝑐𝑐𝑨𝑨 for each pixel. The single-pixel calibration 

normalizes the length of each pixel’s 𝑨𝑨-vector, which reduces the transmission ratio variation to 

about 2%, but does not correct the diattenuation or orientation. On the other hand, the super-pixel 

calibration completely transforms the 𝑨𝑨-vectors to their nominal transmission ratio, 

diattenuation, and orientation. The transmission ratio variation is less than 0.1% across the DoFP 

array after the super-pixel calibration is applied. 
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Figure 4.4 Pixel analysis vectors corrected by the single-pixel calibration gain, 
𝑔𝑔𝑐𝑐𝑨𝑨, plotted as in Figure 4.3. The lengths of the vectors are normalized, but their 

orientations and diattenuations remain uncorrected. 

 

Figure 4.5 Pixel analysis vectors corrected by the super-pixel calibration gain, 
𝐆𝐆𝑐𝑐𝑨𝑨, plotted as in Figure 4.3. The vectors are transformed completely to their 

nominal values. 

4.2.3 Calibration test results 
The difference between the single- and super-pixel calibration methods is also evident when the 

functions are applied to the test data. Figure 4.6 and Figure 4.7 show histograms of the pixel 

responses when uncalibrated and with each of the two methods. The polarimeter is illuminated 

with linearly polarized white light at an incident angle of 15°. In Figure 4.6, the left sub-plot 

shows the histogram response of just the nominally 0° pixels before and after the two calibration 

methods are applied. The right sub-plot shows the response of all pixels when uncalibrated. The 
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FPN of the uncalibrated 0° pixels is 11.6% (computed as the standard deviation over the mean). 

In comparison, the FPN of the CCD before depositing the nanowire polarization filters was 

0.5%. Applying the single- and super-pixel calibration methods reduces the FPN for the 0° pixels 

to 0.15% and 0.11% respectively. Figure 4.7 shows the histograms of all of the pixels after the 

two calibration methods—single-pixel in the left panel and super-pixel in the right. While both 

methods significantly reduce the variance, the super-pixel method also adjusts the pixel 

responses so that they are centered on their nominal values. 

 

Figure 4.6 Pixel response histograms with white light at 100% intensity and 
linearly polarized at 15°. Left: 0° pixels with and without calibration. Right: All 

pixel orientations, uncalibrated. 

Figure 4.8 examines the pixel responses to varying polarization angles with and without 

calibration. All of the responses follow Malus’s squared cosine law, but when uncalibrated the 

amplitudes of the cosine responses vary widely, do not reach zero at their minima, and the 

maxima do not occur at the nominal filter angles. The single-pixel calibration method corrects 

the amplitude variation, but does not shift the minima to zero or adjust the phase of the cosine. 

The super-pixel method, however, does correct these issues as well, which is critical for accurate 

reconstruction of the Stokes vector. 
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Figure 4.7 As Figure 4.6-right. Left: single-pixel calibrated. Right: super-pixel 
calibrated. 

 

Figure 4.8 Pixel responses with white light, 100% intensity, and varying 
polarization angle 𝜓𝜓. Error bars are at ±1 standard deviation. From left to right: 

uncalibrated, single-pixel calibrated, super-pixel calibrated. 

Figure 4.10, Figure 4.11, and Figure 4.12 show the RMS reconstruction errors of the incident 

intensity, DoLP, and AoP, respectively, as the incident AoP and intensity are swept through their 

ranges. The reconstruction errors for the uncalibrated responses show large dependencies on the 

incident angle of polarization. In the uncalibrated case, the maximum RMSE of the DoLP at 

maximum illumination is 20%, at minimum illumination it rises to 35%. The single-pixel 

calibration method removes most of the dependency on the incident AoP, and reduces the DoLP 

RMSE to 10% at maximum illumination and 32% at minimum illumination. The super-pixel 

calibration method further reduces these errors to 0.5% and 26% at maximum and minimum 
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illumination, respectively. At low light levels, neither calibration method provides much error 

correction, however these errors are not due to FPN, but rather temporal noise—as the incident 

intensity drops, the pixel’s thermal noise dominates and drastically decreases the pixel’s signal to 

noise ratio. For example, using the sensor’s specifications, we estimate that at 10% illumination 

photon shot noise accounts for 84% of the noise power and thermal noise for 16% [61]. 

However, a thorough noise analysis of the reconstruction algorithm would be required to 

determine how much the temporal noise sources contribute to the final reconstruction errors. 

The reconstruction errors do not reach zero, even at higher light levels, for several reasons. Of 

course, there is still temporal noise in the measurements even if it is reduced by averaging many 

frames. Additionally, the non-uniformity of the flat-field produced by the integrating sphere 

limits the accuracy of the measurements of the pixel polarization parameters. The measurement 

errors in turn propagate to the calibration parameters. And finally, the sensor’s specifications 

indicate that the pixel responses may have non-linearities up to 2%, which is not included in our 

model.  

 

Figure 4.9 RMS error of 𝑆𝑆0, the reconstructed light intensity, as a function of 
incident polarization angle, 𝜓𝜓, left, and of incident intensity, 𝑆𝑆0, right. 
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Figure 4.10 RMSE of the reconstructed DoLP as a function of incident 
polarization angle, 𝜓𝜓, left, and of incident intensity, 𝑆𝑆0, right. 

 

 

Figure 4.11 RMSE of the reconstructed AoP, 𝜓𝜓, as a function of incident 
polarization angle, left, and of incident intensity, 𝑆𝑆0, right. 

Figure 4.12 shows the RMS reconstruction error for the two calibration methods when run on the 

three single-wavelength datasets. Since the quantum efficiency of the sensor and polarization 

properties of the filters are wavelength dependent, the reconstruction errors also vary with 

wavelength. Since the extinction ratios of the filters are about 10 at 450 nm and increase to 30 at 

550 nm and 38 at 650 nm, the errors for the blue dataset are highest—approximately 6% 𝑆𝑆0 
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RMSE for intensities above 10%, while red and green light had errors close to 4% in the same 

range. Similar results were obtained for the RMSE of the DoLP and AoP. 

 

Figure 4.12 RMSE of the reconstructed intensity, 𝑆𝑆0, as a function of the 
incident intensity for three different wavelengths. The left panel shows single-
pixel calibrated reconstructions, the right panel uses the super-pixel calibration. 

Similar results were obtained for the RMSE of the DoLP and AoP. 

4.2.4 Calibration of real-life images 
Real-life images obtained from a DoFP polarimeter while driving on a rainy day are presented in 

Figure 4.13. The first row of images is uncalibrated. The intensity image suffers from vignetting 

at the right edge, the DoLP has a strong diagonal grain pattern, and the AoP deviates from the 

expected values—the road should be horizontally polarized but is closer to -30°, and the sky 

should have a gradient but is a constant 100°. The FPN in the DoLP and AoP images obscures 

most of the detail in the trees in the background of the scene. 

The second row of images shows the results of applying the single-pixel calibration method. The 

vignetting of the intensity image is corrected, though there is a slightly brighter vertical band ¼ 

from the right edge of the image indicating that the vignetting has been overcorrected. Most of 

the FPN has been cleared from the DoLP and AoP images, revealing details in the road, vehicle, 

trees, and sky. However, the AoP of the roadbed approaches 15° towards the right side of the 

image, which is incorrect. 
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Finally, the third row of images shows the results of super-pixel calibration method. The bright 

band in the intensity image is reduced, slightly more detail is visible in the DoLP image, and the 

AoP of the roadbed is 0° across the image.  

 

Figure 4.13 Real-life images obtained from a DoFP polarimeter. Each row 
shows the intensity image, 𝑆𝑆0, the DoLP image, 𝑝𝑝, and the AoP image, 𝜓𝜓. The 
DoLP and AoP are presented in false color, scales are included in the bottom 

right of each panel. The intensity images have been contrast stretched. The top 
row shows uncalibrated images, the second row images have been calibrated 

with the single-pixel method, and the bottom row with the super-pixel method.  

4.2.5 Summary 
I have presented two calibration methods for division-of-focal-plane polarimeters. Typical 

division-of-focal plane polarimeters for the visible spectrum employ nanowire polarization 
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filters. Flaws and mismatches in the dimensions of the nanowires lead to variations in the 

polarization properties of the filters at the macro scale, and I presented two calibration methods 

to mitigate these effects. Both methods were derived from the same linear model of the 

polarization pixels, but one treats each pixel independently and the other treats super-pixel 

groups together. I showed that the super-pixel approach is mathematically more powerful than 

the single-pixel approach and can correct for not only the typical variations in photodetector gain 

and offset, but also for variations in filter orientation and diattenuation. The single-pixel 

approach can only correct the variations in gain and offset. 

The measurements of our visible-spectrum DoFP polarimeter show that a majority of the non-

uniformity between pixels is in their filter transmission ratios, but a significant amount of 

variation occurs in filter orientation and diattenuation—parameters that the single-pixel 

calibration method cannot correct. Calibrating each pixel independently reduces DoLP 

reconstruction errors from 12% to 10% for moderate illumination levels. Calibrating each super-

pixel as unit reduces the RMSE to approximately 1%. Similar reductions in error occur for 

intensity and AoP image reconstruction. These figures indicate that the super-pixel calibration 

method is worth the extra computational effort, but there are still un-addressed sources of error, 

including the sensor’s non-linear response, temporal noise, and non-uniformities in the flat-field 

that the calibration apparatus produces. 

Finally, I showed that through the calibration parameters were measured using a broad-spectrum 

tungsten-halogen lamp with only an IR blocking filter in place, they performed well across the 

visible spectral range of the polarimeter. It is also worth noting that the optical properties of the 

polarimeter are stable enough that the same calibration parameters have been used with no 

measurable difference for about two years during the development of this work.  
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Chapter 5: Underwater Polarization Video 
Camera 

5.1 Hardware Design 
The underwater polarization video camera system was designed around the DoFP CCD 

polarization image sensor. The sensor was mounted in an Imperx Bobcat GEV camera body—

this camera body is meant for industrial and research applications and provides flexible but 

precise control of the CCD’s operation, including the configuration of the read-out amplifiers, 

analog-to-digital conversion, frame-rate, and integration times. The body also provides several 

high-level functions such as applying look-up tables to linearize the pixel response, flat fielding, 

setting various triggering modes, and automatic gain and exposure control. The body is 

controlled and serves live video via IP over a gigabit Ethernet link, which makes it easy to work 

with. Although the communication protocol is proprietary, there are software libraries available 

for Windows and Linux operating systems.  

The system was enclosed in a Light and Motion Bluefin VX2000 underwater housing. This 

housing is rated to depths up to 100 m and has a 3” front lens port with glass optics. Glass optics 

are important for polarization applications because acrylics are often birefringent and have 

polarization effects that change significantly with strain—a serious issue for an instrument that 

will be subjected to high pressures. The housing also includes integrated control buttons in the 

handles that emit IR remote control signals into the housing when pressed. 

For imaging optics, I primarily used the Canon EF-S 18-55 mm lens. The lens mount was 

modified to hold a custom circuit board with spring-loaded “pogo pins” to contact the pads on 

the edge of the proximal end of the lens. These pins are used to detect the presence of the lens, 

provide power to the lens’s motors, and connect to the lens’s serial control interface. The serial 
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interface uses a slight variation on the SPI protocol and allows control of the focus and aperture, 

and feedback on the current focal length of the lens. 

The orientation of the instrument was measured using a PNI Sensor Corporation TCM MB 

electronic compass module. This module contains a 3-axis magnetometer and a 3-axis 

accelerometer and provides magnetic heading, roll, and pitch information at 30 Hz over a serial 

interface. The module includes a calibration procedure for removing both hard-iron and soft-iron 

effects and claims accuracy better than 0.5° RMS when calibrated. 

An ADL QM67PC-2715QE single-board computer with an Intel Core i7 quad-core processor 

and a 512 GB solid-state drive was used for control and data logging. This computer was 

compact enough to fit within an underwater housing, but also provided enough data bandwidth 

and computational power to both record the uncompressed video stream to disk (~ 20 MB/s) and 

present a user interface with live polarization video to the operator on an external SmallHD 

HDMI monitor. 

A PJRC Teensy 3.2 ARM microcontroller board was connected to the PC via USB and used to 

translate the housing buttons’ IR signals into the USB keyboard protocol and translate the Canon 

lens SPI protocol into a USB serial device. It was also patched into the PC’s power button circuit 

and used to “press” the button, but only to turn the machine on. Powering down the machine was 

always left to software control so that all data could be written to disk cleanly first. 

Power to the system was provided by an ADL PS35-150-12 switching power supply. This power 

supply has a wide DC input voltage range, from 14 V to 36 V, making it suitable for use with 

batteries, and also complies with ATX signals for computer control. For typical use, I used 

Tenergy 14.8V 5.5Ah lithium-ion polymer battery packs which allowed approximately 2 hours 

of continuous run-time—enough for most SCUBA dives.  
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The housing was modified to hold the camera on a removable sled for easy access. Idler wheels 

were added to the front of the housing to keep the lens centered on the front port, and one of the 

through-hull rotary shafts was modified to mesh with the lens’s zoom ring. The computer, power 

supply, and compass module were semi-permanently mounted on an aluminum plate above the 

camera. The plate fits flush against the walls of the housing to dissipate heat into the surrounding 

water while the camera is in operation. Connectors for the battery, the camera, and the lens, 

along with two USB ports were panel-mounted at the rear of the camera in an easily accessible 

panel. Only brass and aluminum were used for the mounting hardware to minimize magnetic 

effects. The monitor was attached externally in a Nauticam NA-DP4 housing and connected to 

the computer via a through-hull HDMI connector. Figure 5.1 shows a schematic diagram of the 

system’s hardware, while Figures 5.2 through 5.6 show photographs of the system’s components. 

 

Figure 5.1 Schematic diagram of the system showing major components and 
connections.  
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Figure 5.2 From top to bottom: The computer and power supply are mounted on 
an aluminum plate with legs to hold it above the camera. A rechargeable 

lithium-ion battery provides power. The camera is mounted on an aluminum 
sled that fits beneath the computer. This version of the system does not have a 

compass module or a panel for mounting connectors. 

 

Figure 5.3 The customized Canon EF-S to c-mount lens adapter with spring-
loaded pins for electronically controlling the lens.  
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Figure 5.4 The latest revision of the computer, including the compass module 
and connector panel. All of the mounting hardware is brass to minimize 

magnetic effects. 

 

Figure 5.5 Left: The rear of the camera housing, showing the connector panel. 
The camera sled is installed below without a camera. The bracket inside the 

housing on the right holds the battery. Right: The front of the housing, showing 
the computer mounted above the camera. Idler wheels hold the lens steady. 
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Figure 5.6 The camera, sealed and prepared for a dive. The monitor is mounted 
on the top of the housing. A small color video camera is mounted on an arm to 
the right of the housing, and polarization filters are on the left. Extra ballast is 

taped to the rear of the housing to balance the weight of the monitor. 

5.2 Software Design 
The system software consists of two major components: the live control software that runs on the 

underwater camera, and a suite of post-processing software for analyzing recorded data. The 

control software runs in real-time, records all of the sensor data at the framerate of the image 

sensor, displays live polarization video and other sensor readings to the operator, and allows the 

operator to control the device in several modes. The post-processing application provides a 

graphical user interface for reading recorded data files and allows fine control over how the 

polarization images are processed and displayed. It displays all of the sensor data recorded with 

each frame of video and provides a feature for querying the average polarization state at points 

on the image. It can save processed still images or render the data to standard video file formats. 



47 
 

5.2.1 Live Control Software 
The embedded computer in the underwater housing runs on the Linux operating system, chosen 

for its small footprint and flexibility, especially in scripted control of network services and power 

management. The specific Linux distribution is CentOS 7, which is supported by the camera 

manufacturer’s software libraries. For ease of management, the system was configured to allow 

local SSH connections and a SMB file share was configured to expose the software and recorded 

data directories. At boot, the system runs a script that first uses the tee utility to redirect all 

console messages to a log file for debugging purposes. The script configures the machine’s 

network interface, briefly attempting to acquire network setting via DHCP before defaulting to 

the link-local addressing used by the camera. Then the script parses several configuration files 

and based on their content launches a C++ program for controlling the machine in either normal 

or time-lapse mode.  

In both modes, the C++ program operates in two phases: first it connects to and configures all of 

the sensors and peripherals, then it enters a real-time loop acquiring, recording, and displaying 

information from the sensors and camera. In normal mode, the operator has live control of the 

camera’s exposure, lens focus and aperture, and whether the machine is recording data. In time-

lapse mode, however, the program enters a state machine that records a certain number of frames 

at several exposure brackets, then uses the rtcwake utility to put the machine into a low power 

state until the time lapse interval has passed. 

The C++ program is designed to operate robustly while in the field. Except for the image sensor, 

if the software fails to connect to a peripheral or sensor, the software continues and simply 

ignores the missing device. The software uses the HDF5 file format, a flexible and widely used 

scientific data format [62]. While recording, the software starts a new file every 2 minutes so that 

minimal data is lost if a hard crash occurs. The user interface shows the relevant machine state in 
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large, high-contrast block letters, uses cyan to highlight errors and over-saturated pixels because 

red does not contrast well underwater, and displays a large X over the screen if the software is 

not recording data. 

The live control software has two performance constraints: it must be able to consume and 

record data from all of the sensors at the framerate of the image sensor and provide responsive 

control to the operator. For this reason, the OpenMP parallelization strategy, described in §3.1, 

was chosen. To meet the performance requirements on the underwater camera’s hardware, the 

algorithm was further parallelized using the SSE vector instructions for floating point math, and 

the calibration and interpolation steps of the image processing algorithm were skipped. While 

skipping the interpolation step does introduce polarization aliasing artefacts, such images still 

display enough useful information for the camera operator to make informed decisions about the 

camera settings. Because the system always records the raw sensor output, the artefacts are not 

present in any final analyses. 

5.2.2 Post-Processing Software 
The post-processing software is a Windows application that uses the Qt library to provide a user 

interface. The software reads the recorded data files produced by the underwater camera system 

and presents reconstructed polarization images along with all of the sensor data for each frame. 

The software allows control of the polarimetric calibration, interpolation algorithm, masking of 

over- and under-exposed pixels, and false-color mapping. Users can query the polarization state 

of the image at points in the image, and also compute the average polarization state in circular 

regions. Overlays of the instrument heading, date and timestamp, and polarization state can be 

added to the rendered data as well. The software can save rendered still frames to common image 

formats, and uses the ffmpeg library to encode the rendered data to common video formats. 
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Chapter 6: Underwater Navigation 
This chapter contains material from “Polarization Vision Enables Underwater GPS-Free 

Navigation”, submitted to Nature for review. 

Polarized light features prominently in shallow underwater environments. Light from the sun and 

sky is selectively refracted at the water’s surface and scatters within the water, creating complex 

patterns of polarization states in the underwater light field [22]. These polarization patterns have 

been observed as deep as 200 m [30] and are dependent on many environmental factors [63], but 

primarily the position of the sun in the sky [23]. Here we show that it is possible to infer the 

sun’s position (heading and elevation angle) without direct observation using the underwater 

polarization patterns. Our inference is based on comparing measurements of in-water 

polarization states from a bio-inspired imaging polarimeter [32] to the output of a single-

scattering optical model augmented with residuals learned from experimental data. We inferred 

the sun’s apparent heading and elevation with root-mean-square (RMS) errors of 6° and 2.9°, 

respectively, and estimated global position with an RMS error of 442.5 km when the sun was at 

least 40° above the horizon. Sensitivity measurements of our instrument show that it can detect 

the difference in polarization patterns between two sites 46.9 km apart with 99% confidence. Our 

results serve as a proof of concept for a new mode of underwater navigation based on passive 

observations of in-water polarization states. This technique could be used by underwater vehicles 

for long-distance navigation and suggests additional mechanisms by which marine animals with 

polarization sensitive vision might perform both local and long-distance navigation. 

Navigation using photoreceptor arrays specifically sensitive to the pattern of the polarization of 

light in the sky is well documented in terrestrial animals, especially among arthropods such as 

ants, bees, crickets, dung beetles, and spiders [18, 19, 64]. Honey bees journeying to and from 
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hives rely on the predictable pattern of polarized light relative to the sun’s position [17], for 

example, and longer range migration in birds may use polarization as a cue [20, 21]. The 

polarization patterns of underwater light have similar structure to those in the sky, and follow 

predictable trends based on the position of the sun [23]. The intensity and partial polarization of 

underwater light are highly sensitive to many environmental factors in addition to the sun’s 

position, including atmospheric conditions, water quality, and depth [65]. However, the patterns 

in the polarization angle (also known as the e-vector angle) are less sensitive to perturbations and 

thus serve as a stable proxy for the sun’s position [22, 23]. Many marine animals are known to 

have polarization-sensitive vision [25], which has a variety of hypothesized uses from improving 

visual contrast for predator and prey detection [66] to covert communication [28]. Several works 

have focused on how salmonids could use the polarization patterns of the sky for orientation 

[29], though it has also been hypothesized that the in-water polarization patterns may be used for 

animal navigation as well [31, 67]. Here we report a method for inferring both the sun’s heading 

and elevation from measurements of in-water polarization angles. Our results show that in 

addition to being suitable for a compass, the polarization patterns can also be used for 

determining global position. 

Two optical phenomena, scattering and refraction, are mostly responsible for the underwater 

polarization patterns. As shown in Figure 6.1, light from the sun and sky (itself a product of 

scattered sunlight) enters the water by refracting through the surface. The refraction bends the 

light such that the image of the celestial hemisphere is compressed into an approximately 97° 

cone known as Snel’s window. The transmitted light waves are preferentially polarized in the 

plane of the incident and refracted rays. The bulk of the light outside of Snel’s window—what 

we call in-water light—is refracted sunlight that has scattered from the water itself [68], but 
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some of it is internally reflected light from the underside of the water’s surface or reflected light 

from the sea floor or arbitrary objects. Scattering events partially polarize the light perpendicular 

to the plane that the incident and scattered rays lie in [69], which produces a general trend of 

polarization perpendicular to the refracted ray. Figure 6.2 shows the polarization pattern 

produced by this combination of refraction and scattering. In certain situations, particularly when 

the sun is low in the sky, it is possible for the polarization effect of the refraction to cancel or 

even dominate that of the scattering. This causes “neutral points” in the polarization state of the 

light field facing the sun and away from it, where the partial polarization drops to zero and the 

polarization angle abruptly transitions from horizontal to vertical [22]. At increasing depths or 

decreasing water clarity, multiply-scattered light becomes more prevalent—this increases the 

homogeneity of the observed polarization states, resulting in less partial polarization and 

polarization angles that are closer to horizontal [22, 65]. However, sun-dependent patterns in the 

polarization angle have been observed as deep as 200 m [30]. 

 

Figure 6.1 Light in the underwater environment. 
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Figure 6.2 Underwater polarization patterns outside of Snel’s window caused by 
the refraction and scattering of sunlight. Polarization state is shown in false 

color, as indicated by the scale on the right. For clarity, a grid of lines oriented at 
the polarization angles has been drawn over the plots as well. Note the neutral 

points, where the DoP approaches 0 and the AoP transitions from 0° to 90°, that 
occur at low sun elevation. 

Figure 6.3 shows the polarization states that an animal with polarization-sensitive binocular 

vision might observe about the horizontal plane. For illustrative purposes, we restrict the 

animal’s vision to detect polarization angles only in small regions 40° to the left and right of the 

creature’s heading. Figure 6.4 shows that a unique pair of polarization angles is observed by the 

animal for each relative heading and sun elevation. This implies that over short time-scales the 

animal can maintain its heading simply by keeping these two observed polarization angles 

constant. Over longer distances or durations the animal will need to compensate for the 

movement of the sun through the sky. Additionally, the one-to-one mapping implies that it is 

possible to infer the sun’s relative position from such observations. Thus, with access to a 
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compass, an accurate timepiece, and an almanac, our animal can determine its latitude and 

longitude as well. 

 

Figure 6.3 The polarization angles a hypothetical animal would observe about 
the horizontal plane. 

 

Figure 6.4 The polarization angles observed by the animal in Figure 6.3, plotted 
as the animal heading changes relative to the sun (radial dotted lines), at sun 

elevations from 10° above the horizon to 80° above the horizon. 

We collected data for inferring the sun’s position from in-water polarization angles using a bio-

inspired, visible-spectrum, imaging polarimeter [32]. The sensor mimics the polarization-

sensitive vision system of certain species of mantis shrimp by integrating polarization optics with 

the individual pixels of a camera. More specifically, polarization filters comprised of parallel 

aluminum nanowires (140 nm thick by 70 nm wide) were aligned and deposited onto each pixel 

of a low-noise, two megapixel CCD image sensor. The filters are variously oriented at 0°, 45°, 

90°, and 135° in a repeating 2-by-2 pattern across the focal plane—this enables the polarimeter 
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to capture intensity, partial polarization, and polarization angle images. This bio-inspired 

polarization camera was paired with an electronic compass and tilt sensor within an underwater 

housing to measure the in-water polarization angles versus heading at a variety of sites, depths, 

and times of day (see §6.1).  

To infer the sun’s position, we used a general-purpose optimization algorithm to match the 

measured polarization angle patterns against the predictions of a basic single-scattering model of 

underwater light, described in §6.2. Figure 6.5 shows several example measurements compared 

to the model output and Figure 6.6 shows the average model residuals of all experiments. The 

model agrees with the measurements when the sun is at least 40° above the horizon. When 

considering just these experiments, we estimate the sun’s position with RMS errors of 8.57° in 

heading and 5.82° in elevation. These in turn lead to a global positioning RMS error of 817 km. 

 

Figure 6.5 Example measurements of the in-water polariztion angle (dots) 
compared to the single scattering model (lines). Vertical dotted lines indicate the 

sun’s heading. The sun’s elevation is indicated by the angles on the right. 



55 
 

 

Figure 6.6 The average model residuals at each heading and sun elevation is 
computed using a kernel density estimator. The magnitude of the residuals is 
shown in false color, according to the scale on the right. The horizontal white 

bands occur where no data was measured. 

The smoothly varying nature of the residuals indicates that there are additional dependencies 

between the in-water polarization angle and the sun’s position that the single-scattering model 

does not capture. We incorporate these dependencies into our system by using a k-nearest-

neighbors (kNN) regression [70] to estimate the residuals of the model evaluated at the sun’s true 

position, as a function of the naïvely estimated sun position. By subtracting the estimated 

residuals from our measurements during a second phase of inference, we can remove a 

significant amount of error: the RMS errors of the sun’s heading and elevation reduced by 30% 

and 50% to 6.02° and 2.92°, respectively, and the global position estimate RMS error improved 

by 46% to 442 km. Figure 6.7 shows the distribution of global position estimates, and the 

improvements introduced by the kNN regression, from experiments performed at Lizard Island 

Research Station in north-eastern Australia. Table 6.1 lists the error statistics from these 

measurements. 
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Figure 6.7 Global position estimates from data collected at Lizard Island 
Research Station in northern Australia when the sun was at least 40° above the 

horizon. The blue plus shows the location of the collection site, black dots show 
the position estimates, and the red ex shows the centroid of the position 

estimates. The concentric rings show 1, 2, and 3 standard deviations around the 
data. The left panel shows the position estimates using just the single-scattering 

model. The right panel shows the position estimates with the kNN residual 
estimates. 

 Sun Heading RMSE Sun Elevation RMSE Position RMSE 
Site Naïve kNN Naïve kNN Naïve kNN 

Electric Beach 8.78° 3.46° 5.37° 5.07° 928 km 665 km 
Lizard Island 8.54° 6.23° 5.87° 2.60° 805 km 412 km 

All 8.57° 6.02° 5.82° 2.92° 817 km 433 km 
 

Table 6.1 Sun position and global position RMS error statistics for experimental 
data taken when the sun was at least 40° above the horizon. Bolded values are 

significantly (p < 0.05) better than their counterparts. 

The model performance as the sun approaches the horizon suffers, likely because it does not 

include skylight, which contributes an increasingly large fraction of the light hitting the ocean’s 

surface as the sun drops below 40° above the horizon [71]. When we include this low-elevation 

data, our naïve inference method achieves RMS errors of 9.22°, 8.07°, and 2,915 km in sun 

heading, sun elevation, and global position, respectively. Incorporating the kNN residuals model 

reduces these by 41%, 23%, and 32% to 5.46°, 6.23°, and 1,970 km, respectively. Curiously, the 

accuracy of the kNN heading estimates improves when the low-elevation data is included, 
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possibly because the polarization angle patterns develop a very strong gradient facing the sun’s 

heading. However, the lack of improvement in the sun elevation estimate renders this 

improvement moot for the purposes of global positioning. Figure 6.8 and Figure 6.9 show the 

global position estimates from all of the experiments. Table 6.2 lists the RMS error statistics for 

all of the experiments, including low sun elevations. 

 

Figure 6.8 Global position estimates from all experiments, using only the single-
scattering model. The blue plusses show the locations of the collection sites, 
black dots show position estimates, and red exes indicate the centroid of the 

position estimates from each site. The concentric rings show 1, 2, and 3 standard 
deviations around each centroid, estimated with the Kent distribution. There was 

not enough data collected at Tvärminne, Finland to fit the Kent distribution 
parameters. 
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Figure 6.9 Global position estimates from all experiments, using the kNN 
residual estimation. Displayed as in Figure 6.8. 

 

 Sun Heading RMSE Sun Elevation RMSE Position RMSE 
Site Naïve kNN Naïve kNN Naïve kNN 

Tvärminne 13.03° 4.82° 5.93° 5.13° 1300 km 704 km 
Electric Beach 8.82° 4.70° 11.40° 10.80° 1720 km 2511 km 

Miami 14.28° 6.99° 4.36° 7.36° 2345 km 1573 km 
Lizard Island 8.73° 5.50° 7.60° 5.02° 3143 km 1918 km 

All 9.22° 5.46° 8.07° 6.23° 2915 km 1971 km 
 

Table 6.2 Sun position and global position RMS error statistics for all 
experimental data. Bolded vales are significantly (p < 0.05) better than their 

counterparts. 

While these errors may seem impractically large—following a heading 6° off course would 

result in a 105 m error after traveling 1 km—note that the RMS statistic includes a measure of 

the variance. When navigating with a noisy compass one would use the average reading over 

time, not pick a single heading and follow it blindly. In the high-sun case, the mean heading error 

was just 0.38° (6.6 m over 1 km), which is commensurate with the polarization-compass abilities 

of the desert ant [72]. In a similar fashion, it is more realistic to consider the average of our 



59 
 

global position estimates rather than treat them independently. As shown in Figure 6.7, the 

centroid of position estimates performed in northern Australia is only 61 km from the true 

measurement location. Table 6.3 lists these errors for all of the experimental sites. While 

achieving this resolution required averaging 76 estimates, an animal or underwater vehicle would 

almost certainly be performing path integration or using a Kalman filter to integrate and smooth 

the noisy measurements over the course of the day [14, 73]. In that case, including knowledge of 

the sun’s trajectory through the sky would further constrain the inference problem and reduce all 

of the errors as well. 

 Mean Heading Error Position Centroid Error 
Site Naïve kNN Naïve kNN 

Electric Beach (> 40°) -8.76° -2.42° 79 km 574 km 
Lizard Island (> 40°) -3.96° 0.68° 416 km 36 km 

All (> 40°) -4.42° 0.38° - - 
Tvärminne -12.89° -1.19° 664 km 581 km 

Electric Beach -8.07° 2.58° 89 km 1382 km 
Miami -13.66° -5.62° 1943 km 1349 km 

Lizard Island -5.17° 0.52° 118 km 13 km 
All -6.18° 0.47° - - 

 
Table 6.3 Mean heading error and position estimate centroid error, by site. The 
first three rows list errors for experiments performed when the sun was at least 

40° above the horizon. Bolded values are significantly (p < 0.05) better than 
their counterparts. No statistical tests were performed on the position centroid 

errors. 

In addition to testing the inference algorithm on experimental data, we also performed a 

sensitivity study of our instruments (see §6.4). The instrument was capable of detecting changes 

to the in-water polarization angle pattern caused by a 0.31° movement of the sun with 99% 

confidence, which corresponds to a movement of 33 km along the latitude where the sensitivity 

measurements were performed. This implies that a majority of the positioning error in our 

system is due to model errors rather than the sensor performance. To achieve this level of 
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accuracy in the inference problem, there are several clear targets for improvement. First and 

foremost, the poor performance of the single-scattering model at low sun elevations must be 

addressed—without a reasonable initial estimate of the sun’s position, no machine learning 

algorithm would be able to reduce the model errors. The second target is to infer the sun’s path 

through the sky over time rather than a singular position—the constraint that the sun follows a 

continuous arc through the sky would help reject much noise from the system. Finally, additional 

training data under more varied conditions would boost the performance of the residual 

estimation step. 

Our results show that the in-water polarization angles can reasonably serve as a solar compass 

for animals with polarization-sensitive vision and can also be used to determine global location 

with moderate accuracy. This study also provides insight into an additional navigation method 

for animals with polarization sensitive vision. 

6.1 Sun Position Inference Data Collection 
Polarization data for sun position inference was collected at Lizard Island Research Station, 

Australia; Hawaiian Electric Beach Park, Hawai’i; Miami, Florida; and Tvärminne Zoological 

Station, Finland. The measurements were performed by SCUBA divers at depths from 2 to 20 m, 

at times of day varying from sunrise to sunset. Dive site locations were recorded at the surface 

with a Garmin Oregon 700 GPS receiver. The instrument was mounted on a tripod such that it 

rotated freely about the vertical axis, and pitched such that neither the water surface nor the sea 

floor was visible in the center of the field of view, as shown in Figure 6.10. The operating diver 

then measured the instrument depth with their dive computer. For each recording, the instrument 

was rotated once around the vertical axis, pausing approximated every 45° to allow the compass 
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and tilt sensor to settle. Recordings were typically less than 2 minutes in duration, and anywhere 

from 2 to 10 were collected per dive depending on the circumstances.  

 

Figure 6.10 The underwater polarization camera prepared for a sun position 
inference experiment. 

To process these recordings, we polarimetrically calibrated each video frame as described in 

Chapter 4 and cropped them to a 100×100-pixel region at the center of the field-of-view. We 

computed the average Stokes vector over the region, and extracted the polarization angle from it. 

Frames were rejected if they contained the sea floor, water surface, objects, bubbles, or animals 

in the region of interest, or if the sun was visibly shaded by clouds or nearby boats. The compass 

measurements were smoothed by applying a low-pass sinc filter with a -3 dB frequency of 1.35 

Hz. 

6.2 Single Scattering Model 
The single-scattering model of underwater polarization states is based on the Mueller-Stokes 

formalism of representing polarized light. A diagram of the model is shown in Figure 6.11. Each 

ray of polarized light is represented by a 3-tuple (𝑺𝑺,𝒌𝒌,𝒙𝒙) where 𝑺𝑺 ∈ ℝ4 (𝑊𝑊 𝑚𝑚2⁄ ) is the Stokes 

vector of the light, 𝒌𝒌 ∈ ℝ3 (𝑟𝑟𝑟𝑟𝑑𝑑 𝑚𝑚⁄ ) is the wave vector, which points in the direction of the 
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light’s phase velocity and has magnitude ‖𝒌𝒌‖ = 2𝑟𝑟/𝜆𝜆, and 𝒙𝒙 ∈ ℝ3 is a unit-vector perpendicular 

to 𝒌𝒌 that indicates the “horizontal” orientation for interpreting 𝑺𝑺. Optical events are modeled by 

left-multiplying the Stokes vector by a Mueller matrix 𝐌𝐌 ∈ ℝ4×4. 

 

Figure 6.11 Diagram of the single-scattering model. 

The first optical event of the model is the refraction of incident light from the sun or sky, 

(𝑺𝑺𝑖𝑖,𝒌𝒌𝑖𝑖, 𝒙𝒙𝑖𝑖) through the water’s surface. The air-water interface is defined by the surface normal 

𝒏𝒏 ∈ ℝ3, which points from the water to the air, and the real indices of refraction of the air and 

water, 𝜂𝜂𝑖𝑖 and 𝜂𝜂𝑡𝑡, respectively. The transmitted light (𝑺𝑺𝑡𝑡,𝒌𝒌𝑡𝑡 ,𝒙𝒙𝑖𝑖) is computed per Snel’s law and 

Fresnel’s equations, with the 𝒙𝒙-vectors lying in the water surface, as shown in Figure 6.12. 

𝒌𝒌𝑡𝑡 = 𝒌𝒌∥ − 𝒏𝒏�(𝜂𝜂𝑡𝑡 𝜂𝜂𝑖𝑖⁄ )2‖𝒌𝒌𝑖𝑖‖2 − �𝒌𝒌∥�
2

, 𝒌𝒌∥ = 𝒌𝒌𝑖𝑖 − (𝒌𝒌𝑖𝑖 ⋅ 𝒏𝒏)𝒏𝒏 (6. 1) 

𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑖𝑖 =
𝒏𝒏×𝒌𝒌𝑖𝑖
‖𝒏𝒏×𝒌𝒌𝑖𝑖‖

(6. 2) 

𝑺𝑺𝑡𝑡 = 𝐌𝐌𝑅𝑅𝑺𝑺𝑖𝑖 (6. 3) 

𝐌𝐌𝑅𝑅 =
1
2

⎝

⎜
⎛
𝑡𝑡𝑠𝑠2 + 𝑡𝑡𝑝𝑝2 𝑡𝑡𝑠𝑠2 − 𝑡𝑡𝑝𝑝2 0 0
𝑡𝑡𝑠𝑠2 − 𝑡𝑡𝑝𝑝2 𝑡𝑡𝑠𝑠2 + 𝑡𝑡𝑝𝑝2 0 0

0 0 2𝑡𝑡𝑠𝑠𝑡𝑡𝑝𝑝 0
0 0 0 2𝑡𝑡𝑠𝑠𝑡𝑡𝑝𝑝⎠

⎟
⎞

(6. 4) 
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𝑡𝑡𝑡𝑡 =
2𝒌𝒌𝑖𝑖 ⋅ 𝒏𝒏

(𝒌𝒌𝑖𝑖 + 𝒌𝒌𝑡𝑡) ⋅ 𝒏𝒏
, 𝑡𝑡𝑝𝑝 =

2𝜂𝜂𝑖𝑖𝜂𝜂𝑡𝑡𝒌𝒌𝑖𝑖 ⋅ 𝒏𝒏
(𝜂𝜂𝑡𝑡2𝒌𝒌𝑖𝑖 + 𝜂𝜂𝑖𝑖2𝒌𝒌𝑡𝑡) ⋅ 𝒏𝒏

(6. 5) 

 

Figure 6.12 Refraction geometry. 

The second optical event is the scattering of the transmitted light. The wavevector of the 

scattered light, 𝒌𝒌𝑠𝑠, is the same magnitude as 𝒌𝒌𝑡𝑡 but points to the detector. The typical coordinate 

system for representing scattering events, illustrated in Figure 6.13, has the 𝒙𝒙-vectors of the 

incident and scattered light lying in the same plane as the wavevectors, thus 𝑺𝑺𝑡𝑡 must be rotated 

by a coordinate transform matrix 𝐌𝐌𝑅𝑅→𝑆𝑆, as described in Eq. 2.8, before being multiplied by the 

scattering matrix 𝐌𝐌𝑆𝑆. We model the polarization effects of scattering using the Rayleigh 

approximation, but renormalized so the intensity follows 𝛽𝛽�𝐹𝐹𝐹𝐹(𝜃𝜃) (𝑡𝑡𝑟𝑟−1), the Fournier-Fourand 

volume scattering phase function. 

‖𝒌𝒌𝑠𝑠‖ = ‖𝒌𝒌𝑡𝑡‖ (6. 6) 

𝒙𝒙𝑠𝑠 =
𝒚𝒚𝑠𝑠×𝒌𝒌𝑠𝑠
‖𝒚𝒚𝑠𝑠×𝒌𝒌𝑠𝑠‖

, 𝒙𝒙𝑡𝑡,𝑠𝑠 =
𝒚𝒚𝑠𝑠×𝒌𝒌𝑡𝑡
‖𝒚𝒚𝑠𝑠×𝒌𝒌𝑡𝑡‖

, 𝒚𝒚𝑠𝑠 =
𝒌𝒌𝑡𝑡×𝒌𝒌𝑠𝑠
‖𝒌𝒌𝑡𝑡×𝒌𝒌𝑠𝑠‖

(6. 7) 

𝑺𝑺𝑠𝑠 = 𝐌𝐌𝑆𝑆𝐌𝐌𝑅𝑅→𝑆𝑆𝑺𝑺𝑡𝑡 (6. 8) 

𝐌𝐌𝑆𝑆 =
𝛽𝛽�𝐹𝐹𝐹𝐹(𝜃𝜃)
𝑔𝑔𝜃𝜃2 + 1

⎝

⎛

𝑔𝑔𝜃𝜃2 + 1 𝑔𝑔𝜃𝜃2 − 1 0 0
𝑔𝑔𝜃𝜃2 − 1 𝑔𝑔𝜃𝜃2 + 1 0 0

0 0 2𝑔𝑔𝜃𝜃 0
0 0 0 2𝑔𝑔𝜃𝜃⎠

⎞ , 𝑔𝑔𝜃𝜃 = cos 𝜃𝜃 ,𝜃𝜃 = angle(𝒌𝒌𝑡𝑡,𝒌𝒌𝑠𝑠) (6. 9) 
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𝛽𝛽�𝐹𝐹𝐹𝐹(𝜃𝜃) =
1

4𝑟𝑟(1 − 𝛿𝛿)2𝛿𝛿𝜈𝜈
�𝜈𝜈(1 − 𝛿𝛿) − (1 − 𝛿𝛿𝜈𝜈) + [𝛿𝛿(1 − 𝛿𝛿𝜈𝜈) − 𝜈𝜈(1 − 𝛿𝛿)] sin−2�𝜃𝜃 2� ��

+
1 − 𝛿𝛿𝜃𝜃=𝜋𝜋𝜈𝜈

16𝑟𝑟(𝛿𝛿𝜃𝜃=𝜋𝜋 − 1)𝛿𝛿𝜃𝜃=𝜋𝜋𝜈𝜈 (3 cos2 𝜃𝜃 − 1), 𝛿𝛿 =
4 sin2(𝜃𝜃 2⁄ )

3�𝜂𝜂𝑝𝑝 − 1�
2 , 𝜈𝜈 =

3 − 𝜇𝜇𝑝𝑝
2

(6. 10)
 

 

Figure 6.13 Scattering geometry. 

The parameters of the Fournier-Fourand function, 𝜂𝜂𝑝𝑝 and 𝜇𝜇𝑝𝑝, are respectively the real index of 

refraction of the scattering particles and the slope parameter of the hyperbolic particle size 

distribution. The values in this work were set arbitrarily to 𝜂𝜂𝑝𝑝 = 1.08 and 𝜇𝜇𝑝𝑝 = 3.483 which are 

given as reasonable values in Ocean Optics [74]. As long as these values are kept within their 

typical ranges they do not significantly change the polarization angle patterns. Note that 

multiplying by 𝛽𝛽�(𝜃𝜃) changes the units of 𝑺𝑺𝑠𝑠 to (W⋅m-2⋅sr-1), however to return to units of (W⋅m-

2) is more complicated that simply multiplying 𝑺𝑺𝑠𝑠 by the area per solid angle of a spherical 

section. This is because the volume scattering phase function is the ratio of the scattered radiant 

intensity per volume (W⋅sr-1⋅m-3) to the incident intensity (W⋅m-2) normalized by the scattering 

coefficient per volume (W⋅m-3)/(W⋅m-2). Thus, to return 𝑺𝑺𝑠𝑠 to units of intensity, we would need 

to multiply it by the scattering coefficient and scattering volume to yield a radiant intensity 

(W⋅sr-1), which could then be multiplied by the area per solid angle to yield an intensity. These 

operations do not affect the polarization angle, only the light intensity, so we neglect them here. 

However, they would be necessary for including propagation distance or multiple scattering. 
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Finally, the Stokes vector of the scattered light is transformed to the coordinate frame of the 

detectors, with 𝒙𝒙 to the right and polarization angles increasing in the counterclockwise 

direction, as viewed by the detector. The detected Stokes vector is 

𝑺𝑺𝑑𝑑 = 𝐌𝐌𝑆𝑆→𝐷𝐷𝐌𝐌𝑆𝑆𝐌𝐌𝑅𝑅→𝑆𝑆𝐌𝐌𝑅𝑅𝑺𝑺𝑖𝑖. (6. 11) 

We assume that direct, unpolarized sunlight is the only light source, so 𝑺𝑺𝑖𝑖 = (1 0  0 0)𝑇𝑇, and 𝒌𝒌𝑖𝑖 

is computed using Reda and Andreas’s algorithm for the apparent sun position in the sky [75]. 

When operating with magnetic headings, we use NOAA’s Enhanced Magnetic Model to provide 

local fields [76]. 

6.3 Sun Position Inference 
Our system infers the sun’s position in a two-phase process. During the first phase, an initial 

estimate of the sun’s angular position in the sky, 𝜌𝜌�𝑠𝑠
(1) ∈ 𝕊𝕊2, is obtained by 

𝜌𝜌�𝑠𝑠
(1) = argmin�𝝍𝝍⊖𝜓𝜓𝑚𝑚�𝝆𝝆𝑑𝑑 ,𝜌𝜌�𝑠𝑠

(1)��
1

(6. 12) 

where 𝝍𝝍 ∈ 𝕊𝕊𝑛𝑛 is the vector of measured polarization angles at each detector orientation, 𝝆𝝆𝑑𝑑 ∈

𝕊𝕊2×𝑛𝑛, and 𝜓𝜓𝑚𝑚: (𝕊𝕊2×𝑛𝑛,𝕊𝕊2) → 𝕊𝕊𝑛𝑛is the single-scattering model presented in §6.2. The L1 norm is 

used to de-emphasize outliers caused by measurement noise. The ⊖ operator indicates an 

element-wise angular difference, 

𝑟𝑟 ⊖ 𝑏𝑏 = �𝑟𝑟 + 𝑏𝑏 + 𝜏𝜏
2� � mod 𝜏𝜏 − 𝜏𝜏

2� , 𝑟𝑟 mod 𝑏𝑏 = 𝑟𝑟 − 𝑏𝑏�𝑟𝑟 𝑏𝑏� �, (6. 13) 

where 𝜏𝜏 is the period of the angle (180° for polarization angles). Because the predictive power of 

the single-scattering model is limited, we use a kNN regression over previously measured data to 

learn the residuals of the single-scattering model, Δ𝜓𝜓𝑚𝑚, at the true sun position but as a function 

of the estimated sun position: 

Δ𝜓𝜓𝑚𝑚�𝝆𝝆𝑑𝑑 ,𝜌𝜌�𝑠𝑠
(1)� ≈ 𝝍𝝍⊖𝜓𝜓𝑚𝑚(𝝆𝝆𝑑𝑑 ,𝜌𝜌𝑠𝑠). (6. 14) 
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The second phase of the inference algorithm uses the estimated residuals to remove model errors 

from the minimization to improve the inference results: 

𝜌𝜌�𝑠𝑠
(2) = argmin�𝝍𝝍⊖ Δ𝜓𝜓𝑚𝑚�𝝆𝝆𝑑𝑑 ,𝜌𝜌�𝑠𝑠

(1)�⊖ 𝜓𝜓𝑚𝑚�𝝆𝝆𝑑𝑑 ,𝜌𝜌�𝑠𝑠
(1)��

1
(6. 15) 

𝜌𝜌�𝑠𝑠
(2) ≈ argmin�𝜓𝜓𝑚𝑚(𝝆𝝆𝑑𝑑,𝜌𝜌𝑠𝑠) ⊖𝜓𝜓𝑚𝑚�𝝆𝝆𝑑𝑑 ,𝜌𝜌�𝑠𝑠

(1)��
1

(6. 16) 

The global position of the measurement, 𝜌𝜌�𝑔𝑔 ∈ 𝕊𝕊2, can be determined from the estimated sun 

position by using the sun position model and searching for the latitude and longitude where the 

estimated sun position occurs at the time of the measurement. 

𝜌𝜌�𝑔𝑔 = argmin arcdist �𝜌𝜌�𝑠𝑠,𝜌𝜌𝑠𝑠�𝜌𝜌�𝑔𝑔, 𝑡𝑡�� , (6. 17) 

where 𝑡𝑡 is the time of the measurement and 𝜌𝜌𝑠𝑠 ∶ (𝕊𝕊2,ℝ) → 𝕊𝕊2 is a model of the apparent sun 

position using magnetic headings, as described previously. 

The inference algorithm was tested using the leave-one-out methodology. First, for each 

experiment, we compute 𝜌𝜌�𝑠𝑠
(1), the naïve sun position estimate, and Δ𝝍𝝍𝑚𝑚 = 𝝍𝝍− 𝜓𝜓𝑚𝑚(𝝆𝝆𝑑𝑑,𝜌𝜌𝑠𝑠), the 

single-scattering model residuals evaluated at the true sun position. We then separate the data 

into groups based on collection site and date, and for each group generate a residual estimate 

function, Δ𝜓𝜓�𝑚𝑚(𝜌𝜌𝑑𝑑,𝜌𝜌𝑠𝑠), by training a kNN regression with the 𝜌𝜌�𝑠𝑠
(1) and Δ𝝍𝝍𝑚𝑚 from all of the data 

in the other groups. This residual estimate function is then used to compute the second-phase sun 

position estimate, 𝜌𝜌�𝑠𝑠
(2). We chose this methodology because it allows us to test the effects of the 

kNN regression in a data-efficient manner. The data was also segregated by which sensor was 

used to collect it as the residuals were sufficiently dissimilar to adversely affect the results. 

Statistics on the global position distance errors were performed assuming a normal distribution. 

Statistics on the sun heading errors and sun elevation errors were performed independently, 

assuming a wrapped normal distribution. The first moment of the population was used to 



67 
 

estimate the mean and variance of the normal distribution underlying the wrapped normal: 

𝜽𝜽� = arg𝑚𝑚1(𝜽𝜽) , var(𝜽𝜽) = −2 log|𝑚𝑚1(𝜽𝜽)| , 𝑚𝑚1(𝜽𝜽) =
1
𝑛𝑛
�𝑒𝑒𝑗𝑗𝜃𝜃𝑖𝑖
𝑖𝑖

(6. 18) 

The RMS statistics were then computed using the mean and variance as 

RMS(𝜽𝜽) = �𝜽𝜽�2 + var(𝜽𝜽) . (6. 19) 

Significance values were determined with a paired t-test. 

Statistics on the global position estimates were performed by estimating the parameters of a Kent 

distribution using the maximum likelihood estimation method [77]. Details are available in the 

online code listing. 

6.4 Sensitivity Analysis 
The goal of the sensitivity analysis was to determine how sensitive the instrument is to changes 

in polarization angle driven by movement of the apparent position of the sun in the sky. The 

apparent position of the sun in the sky changes over time, and changes with global position, so 

this analysis lets us estimate the potential positioning resolution of the system assuming a perfect 

inference model and based solely on the instrument’s measurement noise. 

The sensitivity analysis data was collected at Dique la Quebrada, Argentina by a diver 

snorkeling. The instrument, configured with the fisheye lens, was mounted vertically on a tripod, 

similar to how it is shown in Figure 6.14. A metal disk was mounted on a small arm above the 

lens to block the sun and prevent the image from blooming. Data were recorded for 

approximately 2 hours during 2 sessions, one in the midmorning and the other in the 

midafternoon. The depth of the instrument, 2.5 m, was estimated by the diver. The longest 

continuous clean data segment from each session was used for analysis. In this case, the clean 
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data were free from animals or foreign objects, and were recorded while the sun was not 

obscured by clouds. 

 

Figure 6.14 The camera configured with a dome port and fisheye lens. The 
metal disk to block the sun is not included in the picture. 

These videos were processed by taking the average polarization state from circular regions 

placed every 6° of heading around the periphery of the image at approximately 7.5° above the 

horizontal plane, as shown in Figure 6.15.  Data from regions where the partial polarization 

dipped below 5% were discarded. The short duration of the time-series allows us to model the 

polarization angles using a Gaussian process with a linearly-changing mean and stationary 

covariance: 

𝝍𝝍(𝑡𝑡) ∈ 𝕊𝕊𝑛𝑛~𝒩𝒩(𝝍𝝍0 + 𝝍𝝍1𝑡𝑡,𝚺𝚺). (6. 20) 
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Figure 6.15 An intensity image taken during the sensitivity experiment. The 
black disk in the center is to block the sun from over-exposing the image. The 

colored dots around the periphery show the sampling locations for the analysis. 
Sampling locations were rejected if the DoLP drops below 5% at any point 

during the analysis. 

 

Figure 6.16 Polarization angle traces taken during one of the sensitivity 
experiments. The color of each trace corresponds to its sample location, as in 

Figure 6.15. The dotted vertical line indicates the elapsed time for the instrument 
to detect the change in polarization angles with 99% confidence.  

The parameters of the mean are estimated with a linear least-squares regression on the measured 

angles, unwrapped so that there are no discontinuities between 180° and 0°. The covariance 

matrix is estimated from the regression’s residuals. For determining instrument sensitivity, we 
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use the Mahalanobis distance metric to perform hypothesis testing on the measurements:  

𝐷𝐷𝑀𝑀(𝝍𝝍(𝑡𝑡),𝝍𝝍�) = �(𝝍𝝍(𝑡𝑡) −𝝍𝝍�)𝑇𝑇𝚺𝚺−1(𝝍𝝍(𝑡𝑡) −𝝍𝝍�)~�𝜒𝜒𝑛𝑛2. (6. 21) 

Given a false-rejection rate 𝛼𝛼, the 𝜒𝜒𝑛𝑛2 distribution’s inverse survival function gives us the 

minimum Mahalanobis distance beyond which we would reject the null hypothesis 𝐻𝐻0, that the 

sample was drawn from the distribution: 

𝐷𝐷𝑀𝑀(𝝍𝝍(𝑡𝑡),𝝍𝝍�) >  �ISF𝜒𝜒𝑛𝑛2(𝛼𝛼) → reject 𝐻𝐻0. (6. 22) 

This metric is good for determining the instrument sensitivity because it takes into account the 

sensor noise and scales appropriately with the dimensionality of the measurements. 

For a conservative estimate of how long it takes for the polarization angles to change sufficiently 

such that the instrument can detect the change with high confidence, we use the Mahalanobis 

distance to compare the mean polarization angles at two different times. Because the mean is a 

linear function, 𝐷𝐷𝑀𝑀 can be simplified to: 

𝐷𝐷𝑀𝑀 �𝝍𝝍�(𝑡𝑡𝑏𝑏),𝝍𝝍�(𝑡𝑡𝑡𝑡)� = |𝑡𝑡𝑏𝑏 − 𝑡𝑡𝑡𝑡|�𝝍𝝍1
𝑇𝑇𝚺𝚺−1𝝍𝝍1. (6. 23) 

This can be combined with Eq. 6.22 to solve for the amount of time required for the mean 

polarization angle to change with 99% confidence: 

Δ𝑡𝑡99% =
�ISF𝜒𝜒𝑛𝑛2(1%)

�𝝍𝝍1
𝑇𝑇𝚺𝚺−1𝝍𝝍1

. (6. 24) 

Because this change in polarization angles is driven by the movement of the sun, we claim that 

under similar conditions, the instrument can detect changes in sun position of the same 

magnitude as that which occurred over the Δ𝑡𝑡99% interval during the experiment. We can further 

estimate the instrument’s sensitivity to changes in location by computing the linear distance the 
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earth rotates relative to the sun over Δ𝑡𝑡99% at the latitude of the experiment. The results of both 

sensitivity experiments are summarized in  

 Δ𝑡𝑡99% Sun Movement Ground Distance 
Experiment 1 88.5 s 0.31° 35.2 km 
Experiment 2 108.6 s 0.38° 43.1 km 

 
Table 6.4 Sensitivity Results. 
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Chapter 7: Conclusions 
Over the course of my doctorate studies I have designed and built a functional and robust 

underwater polarization video camera system that has been used successfully for over 46 hours 

of data recordings in the field. The system is based on a bio-inspired polarization sensor that I 

helped develop, and includes real-time polarization image processing software for displaying live 

polarization video to the operator. I have also developed a suite of post-processing software for 

analyzing the data recorded by the system. 

Using this system, I have shown that it is possible to use the polarization patterns of the 

underwater light outside of Snel’s window to infer the apparent position of the sun in the sky. 

Using my method, the estimated sun’s position can be used as a compass or for determining 

global position with moderate accuracy, around 440 km RMS. My investigations into the 

instrument’s sensitivity show that it is capable of detecting changes in polarization state 

corresponding to approximately 45 km of ground movement. This means that a majority of the 

position error can be attributed to the modelling inaccuracies and the inference algorithm. 

The single-scattering model is a clear target for improvement, as it neglects known physical 

phenomena such as the contributions of skylight and multiple scattering effects. Regarding the 

inference algorithm, additional training data could be used to improve the estimates of the model 

residuals, but it is likely that more significant improvements would be gained by inferring sun 

trajectories over time rather than single sun positions. 

This research settles a long-standing research problem—whether or not it is possible to navigate 

using the in-water polarization patterns—that was first posed in 1956 [23]. By showing that it is 

possible to infer the sun’s position I have provided a proof-of-concept for a new mode of 

underwater navigation that could be used in conjunction with other technologies to improve their 
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performance. In addition, this work gives insight into the ways that marine animals with 

polarization-sensitive vision could perform both local and long-distance navigation. 
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