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ABSTRACT OF THE DISSERTATION 
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Economic decision-making requires the computation and comparison of subjective values. 

Several lines of evidence suggest that these processes are mediated by circuits in orbitofrontal 

cortex (OFC). Neurons in OFC encode the subjective values of choice options and outcomes, and 

damage to this area leads to selective deficits in value-guided behavior. To understand the nature 

of choice more thoroughly, it is useful to consider the features of OFC circuits that can limit or 

enhance information processing. In this document, I present work examining two factors that 

influence encoding in OFC: noise correlation and value adaptation. In the first study, I show that 

noise correlations in OFC are small but non-negligible, and that the structure of these 

correlations constrains the resolution of value representation in OFC. I go on to show that 

correlation structure predicts a weak relationship between single-neuron variability and decision 

outcomes in the context of a uniform linear model of decision making. These findings are 
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consistent with empirical data  and support the hypothesis that OFC mediates value-based 

decision-making. In the second study, I investigate how neurons in OFC adapt to changes in the 

value distribution. I show that neurons adapt to both maximum and minimum available values, 

but that the dynamic range does not completely remap across conditions. While intermediate 

adaptation is sub-optimal, it indicates that OFC neurons can partially compensate for changes in 

the scale of decisions, allowing increased resolution of value encoding in high-magnitude 

conditions. In summary, decision-making may be limited by correlated noise, but the effect of 

this constraint is relatively small. Moreover, variability introduced by noise correlation may be 

partially ameliorated by adaptation to the value range.  
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Chapter 1: Limitation and Enhancement of 
Information Coding in Valuation Circuits 

Throughout their lives, people regularly face decisions that rely on their subjective evaluation of 

different options. These choices, known as economic decisions, can cover a wide variety of 

contexts, ranging from the trivial (what socks should I wear today?) to the life-changing (should 

I move to Europe?). To make a choice, the subject must identify relevant options, compute each 

option’s value, and compare these values to select the best outcome. The effectiveness of these 

processes depends on the nature of the neural systems that mediate them. In this work, I 

investigate the properties of neurons in macaque orbitofrontal cortex (OFC), a region associated 

with value-based decision making. I examine two factors that influence the efficiency of neural 

encoding: noise correlation and range adaptation. Noise correlation limits the information that 

can be encoded in neural circuits, potentially impairing economic choice. In contrast, adaptation 

can improve the resolution of value representation across contexts, reducing the effects of noise.  

I will begin this chapter with an overview of the work linking OFC to economic choice. Next, I 

introduce the concept of noise correlation and discuss its relationship to information encoding. 

Finally, I discuss neuronal adaptation and its features in various neural circuits. In Chapters 2-3, I 

describe two studies analyzing these principles in the context of decision-related networks in 

orbitofrontal cortex (OFC). Chapter 2 presents an analysis of noise correlation and choice 

probability (previously published in Conen and Padoa-Schioppa 2015). Chapter 3 describes an 

experiment measuring how neurons in OFC adapt to changes in the recent value distribution.  I 

will revisit these concepts in Chapter 4, where I bring together concepts from the first three 
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chapters, relating noise correlations and adaptation in OFC to behavioral performance during 

value-based decision making.  

1.0 Contributions and Copyright Information 
The studies described in Chapter 2-3 were designed in consultation with my thesis adviser, Dr. 

Camillo Padoa-Schioppa. Chapter 2 presents a study analyzing data from previous experiments. 

Data in these experiments were collected by Camillo Padoa-Schioppa at Harvard Medical School 

and were first published in (Padoa-Schioppa and Assad 2006) and (Padoa-Schioppa and Assad 

2008). I collected the data for the experiment presented in Chapter 3 and conducted all analyses 

for both experiments.  

Chapter 2 was previously published in the Journal of Neurophysiology (Conen and Padoa-

Schioppa 2015). It is reproduced here with permission from the co-author. Its inclusion here is 

consistent with American Physiological Society guidelines, which allow the use of published 

articles in dissertations and thesis repositories.  

1.1  Orbitofrontal Cortex and Economic Choice 
Several lines of evidence suggest that value computation and comparison occur in OFC. OFC 

receives anatomical inputs across a wide range of sensory and limbic regions (Ongur and Price 

2000), making it well-situated to integrate sensory inputs and motivational state (Padoa-Schioppa 

and Conen 2017). In human patients, lesions in OFC and the neighboring ventromedial 

prefrontal cortex (vmPFC) are associated with inconsistency in preferences and a lack of 

sensitivity to value feedback (Fellows and Farah 2007; Camille et al. 2011; Fellows 2011). In 

rodents and primates, lesions of OFC impair behavior in a reinforcer devaluation task, a goal-

directed behavior that relies on the subjects’ ability to modulate value computations based on 
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their current state (Gallagher et al. 1999; Izquierdo 2004; Rudebeck and Murray 2011; West et 

al. 2011). Deficits in devaluation suggest that OFC-lesioned animals rely on fixed values that 

have been stored in memory; they cannot compute values online.  

Additional evidence for the role of OFC in economic choice comes from primate 

neurophysiology. Several experiments in primates have found that responses in OFC encode the 

value of choice options and outcomes (Padoa-Schioppa and Assad 2006; Abe and Lee 2011; 

Padoa-Schioppa 2013). Imaging studies have extended these results to humans, observing BOLD 

correlates of value in OFC and vmPFC (Cox and Kable 2014; Howard et al. 2015; Zhang et al. 

2017). Notably, responses in OFC reflect the subjective nature of value, not objective 

characteristics of the reward (Padoa-Schioppa and Assad 2006; Raghuraman and Padoa-

Schioppa 2014), and they integrate multiple features of the reward (Roesch and Olson 2005; 

Raghuraman and Padoa-Schioppa 2014). Studies from our group have found that different 

groups of neurons encode different variables during a juice choice task, namely the value of 

particular options (offer value), the value of the chosen option (chosen value), and the identity of 

the choice (chosen juice) (Padoa-Schioppa 2013). These categories remain consistent even when 

the set of available offers changes (Xie and Padoa-Schioppa 2016), suggesting a that there is a 

stable circuit for decision-making in OFC. Theoretical work supports the plausibility of such a 

circuit. Several distinct models of choice predict neural responses that closely resemble the three 

groups of cells identified empirically (Solway and Botvinick 2012; Rustichini and Padoa-

Schioppa 2015; Friedrich and Lengyel 2016; Song et al. 2017). Taken together, this body of 

work provides strong support for the hypothesis that OFC plays a central role in value-based 

decision making. 
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1.2  Noise Correlations and Information Processing 
The responses of an individual neuron vary widely, even under identical behavioral conditions. 

Researchers often compensate for this fact by averaging neural activity across trials. However, 

while this enables clean analysis of neural tuning, it misses a key feature of neuronal variability: 

namely, that activity fluctuations are correlated across the population. This phenomenon is 

generally called “noise correlation.” Importantly, it refers to correlations in the residual activity 

from trial to trial, not similarities in the mean response function.  

Noise correlations have been observed across a wide range of brain regions (Zohary et al. 1994; 

Lee et al. 1998; Constantinidis and Goldman-Rakic 2002; Averbeck and Lee 2003; Romo et al. 

2003; Cohen and Maunsell 2009; Cohen and Kohn 2011; Gu et al. 2011; Jeanne et al. 2013; 

Smith and Sommer 2013). In sensory regions, pairs of neurons often have correlations on the 

order of 0.1-0.2, though some experiments suggest that these values are artificially high, 

reflecting either task demands or use of anesthesia (Ecker et al. 2010, 2014). Nevertheless, even 

when pairwise correlations are weak, the overall network state can be substantially affected by 

this shared variability (Schneidman et al. 2006). Furthermore, the effect of correlations on 

information encoding depends more on the pattern of correlation than its absolute magnitude 

(Abbott and Dayan 1999; Moreno-Bote et al. 2014). 

Interest in noise correlations has consistently been tied to the question of population information. 

One of the first studies of noise correlations sought to explain why monkeys’ psychophysical 

performance on a motion detection task was no better (and was in fact sometimes worse) than the 

performance derived for the best individual neurons in MT (Britten et al. 1992; Zohary et al. 

1994). They reasoned that noise correlations between similarly tuned neurons could not be 
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removed by averaging across the population, thereby limiting the benefit of pooling across cells. 

Notably, this limitation would only exist if correlations were higher for cells with similar 

preferred directions, a correlation structure known as “limited-range correlation” (Kohn et al. 

2016). Building on this principle, (Abbott and Dayan 1999) proved that limited-range 

correlations cause information to saturate in neural populations even as the size of the network 

increased. More recent work has demonstrated that this is only true when tuning functions are 

homogenous across a population. In networks where tuning curves vary in shape or amplitude, 

information continues to increase with population size, although for any given network size it 

may still be reduced by correlation (Ecker et al. 2011). Notably, a correlation structure known as 

“differential correlation” does cause information saturation even in heterogenous networks 

(Moreno-Bote et al. 2014). Differential correlation describes noise correlation that is 

proportional to the derivative of the tuning functions of pairs of neurons. Measuring these 

patterns empirically is challenging, but they can be detected in large simultaneously-recorded 

data sets using a decoding method (Moreno-Bote et al. 2014), and information-limiting 

correlations have been identified in vestibular coding using this approach (Pitkow et al. 2015).  

The work described above addresses theoretical upper limits on population information. 

Frequently, these analyses assume that the decoding mechanism makes optimal use of the 

population structure and pattern of correlations to interpret neuronal activity (Ecker et al. 2010; 

Haefner et al. 2013). This assumption may not be realistic. When it does not hold, the practical 

impact of noise correlations increases (Beck et al. 2011; Ecker et al. 2011; Moreno-Bote et al. 

2014; Pitkow et al. 2015). In this scenario, it is somewhat imprecise to attribute the information 

loss to noise; it is more accurately described as the results of an algorithmic suboptimality (Beck 

et al. 2012). However, these suboptimalities amplify the effects of noise in the circuit, so that 
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reducing noise – or noise correlation – leads to measurable improvements in performance. 

Indeed, several studies have observed a robust relationship between decreases in noise 

correlation and increases in behavioral performance mediated by learning and attention (Cohen 

and Maunsell 2009; Gu et al. 2011; Jeanne et al. 2013; Ni et al. 2018).  

It is worth noting that suboptimality in decoding may be unavoidable. Optimal decoding requires 

a complete representation of the statistical structure of the environment, which may be too 

computationally complex to specify and to implement (Beck et al. 2011). When this is the case, 

changes in noise correlation, tuning slope, and overall variability provide more accessible 

mechanisms for behavioral improvement. Nevertheless, the assumption that noise correlations 

are always detrimental should be viewed with caution. Depending on the nature of the decoder, 

correlations may even increase behavioral efficiency in certain contexts (da Silveira et al. 2014; 

Haefner et al. 2016).   

Interestingly, the relationship between single-neuron responses and behavioral choice can reveal 

information loss that arises from either suboptimal decoding or information-limiting correlations 

(Haefner et al. 2013; Pitkow et al. 2015). Studies in several sensory regions have observed a 

correlation between the variability in single neurons and the animal’s choice in a perceptual 

decision (Britten et al. 1996; Romo et al. 2002; Nienborg and Cumming 2006; Liu et al. 2013). 

This relationship, termed choice probability or choice correlation, depends on the existence of 

noise correlations (Shadlen et al. 1996; Cohen and Maunsell 2009; Haefner et al. 2013). Choice 

probabilities can arise either from information-limiting correlations under an optimal read-out or 

from a non-limiting correlation structure with a suboptimal decoder. Distinguishing between 

these scenarios provides valuable information about the types of computations a network 

performs, as the weights of different neurons in decoding are substantially different under 
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optimal vs. correlation-blind decoders (Haefner et al. 2013; Pitkow et al. 2015). Notably, 

different decoding strategies predict different patterns of choice probability as a function of noise 

correlation (Haefner et al. 2013; Pitkow et al. 2015). Thus, the pattern and magnitude of choice 

probabilities can be used to assess the nature of the choice decoder. Moreover, even when the 

ability to infer decoding strategies is limited, the presence of choice probabilities in a network 

reveals the existence of correlation-related loss of information. 

In Chapter 2, I present the results from an analysis of noise correlations and choice probabilities 

in OFC. I find that correlations are small, but range-limited – i.e. they are higher for neurons 

with the same preferred value. I relate noise correlations to empirically measures of choice 

probability, finding that the levels of choice probability we observe are consistent with a simple 

pooling model population decoding. Importantly, while range-limited correlations are not 

information-limiting in the context of optimal decoding, they do constrain population 

information when activity is read out in a uniform way (Ecker et al. 2011; Haefner et al. 2013). 

The pattern of noise correlations and choice probabilities I observe suggests that noise 

correlations and suboptimal choice decoding interact to limit value information in OFC. 

1.3  Neuronal Adaptation 
1.3.1  Sensory Adaptation and Efficient Coding 
Neuronal responses properties are influenced by recent history. This phenomenon has been 

observed across all levels of the nervous system and occurs across a wide range of time scales, 

from milliseconds to hours or days (Fairhall et al. 2001; Kohn 2007; Hengen et al. 2013; Haak et 

al. 2014; Liu et al. 2016). In sensory systems, adaptation allows neurons to adjust to the current 

stimulus environment. Classic studies of sensory adaptation primarily examined suppression of 
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responses following exposure to an adaptor, frequently producing a horizontal shift in the 

response function (Ohzawa et al. 1982; Dean 1983; Hammond et al. 1988; Bonds 1991). These 

effects were mediated by changes in the gain and threshold of neuronal response functions, often 

through cell-intrinsic mechanisms (Sanchez-Vives and McCormick 2000; Sanchez-Vives et al. 

2000; Ladenbauer et al. 2014), and could occur independently across different levels of the 

processing hierarchy (Kohn and Movshon 2003). Later experiments grew interested in adaptation 

to the distribution of stimuli  (Fairhall et al. 2001; Nagel and Doupe 2006; Díaz-Quesada and 

Maravall 2008; Gutnisky and Dragoi 2008; Solomon and Kohn 2014; Liu et al. 2016). 

Adaptation of this sort requires both enhancement and suppression of responses across the 

stimulus distribution, and it frequently involves circuit-level mechanism as well as cell-intrinsic 

effects (Hô and Destexhe 2000; Wainwright et al. 2001; Chance et al. 2002; Carandini and 

Heeger 2011; Solomon and Kohn 2014; Natan et al. 2017). 

Adaptation to the response distribution relates closely to the concept of efficient coding (Fairhall 

et al. 2001; Wark et al. 2007; Barlow 2012). The efficient coding hypothesis proposes that the 

purpose of adaptation is to maximize the transmission of sensory information (Louie and 

Glimcher 2012). It predicts that the dynamic range of responses should remap in to match the 

cumulative density function of the stimulus distribution (Wark et al. 2007). Interestingly, this 

process not only maximizes the resolution of sensory encoding, but also leads to a constant mean 

response level across different stimulus distributions, a feature that maintains network 

homeostasis (Benucci et al. 2013). Efficient coding reduces the redundancy of representations, 

and in principle it should improve behavior in perceptual tasks (Louie and Glimcher 2012). 

However, only a few experiments have directly related neuronal adaptation to behavioral 

improvement (Krekelberg et al. 2006; Liu et al. 2016). Furthermore, efficient coding is 
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inconsistent with other forms of functionally beneficial adaptation, such the improved novelty 

detection associated with repetition suppression (Boehnke et al. 2011; Malmierca et al. 2015). In 

general, the efficient coding hypothesis is most applicable in contexts that benefit from maximize 

information across all stimuli. Its predictions should be viewed with caution when this 

assumption does not apply.   

1.3.2 Adaptation in Value-Encoding Regions  

While most research on adaptation has focused on sensory systems, several studies have found 

evidence of adaptive coding in value-related responses as well. An early experiment recording 

from primate OFC found that the responses of individual neurons to the same reward-associated 

stimulus varied depending on whether that reward was the better or worse option in the current 

condition (Tremblay and Schultz 1999). These results provided the first suggestion that the gain 

of response functions in OFC might vary with the distribution of available rewards. However, 

this study could not distinguish between adaptation in the gain of encoding versus remapping to 

a new preferred stimulus under different reward contexts. When the role of OFC in value 

encoding was more clearly established, the possibility of value adaptation was tested more 

explicitly. An analysis by (Padoa-Schioppa 2009) found that neurons encoding the values of 

offers and chosen options during a juice choice task had a steeper encoding slope in conditions 

with a narrower range of available offers. A separate experiment found that the gain of value-

encoding neurons adapted to changes in the variance of the reward distribution, again showing 

steeper encoding during narrower range conditions (Kobayashi et al. 2010). Imaging studies 

extended these results to human subjects, finding adaptation in BOLD correlates of value across 

several brain regions, including  (Breiter et al. 2001; Nieuwenhuis et al. 2005; Cox and Kable 

2014; Burke et al. 2016). 
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These results were analogous to findings in sensory systems finding adaptation to the variance of 

the stimulus distribution (Fairhall et al. 2001; Nagel and Doupe 2006; Díaz-Quesada and 

Maravall 2008; Liu et al. 2016), a necessary feature of efficient coding (Wark et al. 2007; Louie 

and Glimcher 2012). However, these studies left several open questions about the nature of value 

adaptation. First, changes in the range of value always entailed a corresponding change in the 

value maximum, making it impossible to determine which of these features neurons adapted to. 

Furthermore, these analyses looked at changes in the gain of value encoding but did not test for 

changes in activity levels overall. This limits their ability to detect whether the dynamic range 

was consistent across contexts, one prediction of the efficient coding hypothesis (Wark et al. 

2007; Louie and Glimcher 2012). In chapter 3, I present an experiment that addresses these 

questions in value-encoding cells in OFC. I show that while neurons do adapt to the range of 

values, as determined by both the maximum and minimum, they do not completely remap their 

dynamic range, violating predictions of both the traditional efficient coding hypothesis (Wark et 

al. 2007; Barlow 2012) and a model of adaptation efficiency in value-based choice (Rustichini et 

al. 2017). 

1.4 Summary 
In the following chapters, I will present experimental results on the properties of noise 

correlation and value adaptation in the macaque OFC. In Chapter 2, I focus on noise correlations 

and their relationship to choice probability in OFC. The presence of these correlations imposes a 

limit on information coding in OFC. Chapter 3 describes adaptation to the maximum and 

minimum values during a juice choice task. I find that adaptation does not involve complete 

remapping of the dynamic range of responses. Nevertheless, changes in both maximum and 

minimum values induce adaptation in the gain of encoding. In Chapter 4, I bring these concepts 
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together, presenting a brief discussion of how adaptation compensates for correlation-imposed 

noise in value-encoding networks, potentially facilitating decision-making across a wide variety 

of scales. 
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Chapter 2: Neuronal Variability in 
Orbitofrontal Cortex during Economic 

Decisions 
Neuroeconomic models assume that economic decisions are based on the activity of offer value 

cells in the orbitofrontal cortex (OFC), but testing this assertion has proven difficult. In principle, 

the decision made on a given trial should correlate with the stochastic fluctuations of these cells. 

However, this correlation, measured as a choice probability (CP), is small. Importantly, a 

neuron's CP reflects not only its individual contribution to the decision (termed read-out weight), 

but also the intensity and the structure of correlated variability across the neuronal population 

(termed noise correlation). A precise mathematical relation between CPs, noise correlations and 

read-out weights was recently derived by Haefner and colleagues (2013) for a linear decision 

model. In this framework, concurrent measurements of noise correlations and CPs can provide 

quantitative information on how a population of cells contributes to a decision. Here we 

examined neuronal variability in the OFC of rhesus monkeys during economic decisions. Noise 

correlations had similar structure but considerably lower strength compared to those typically 

measured in sensory areas during perceptual decisions. In contrast, variability in the activity of 

individual cells was high and comparable to that recorded in other cortical regions. Simulation 

analyses based on Haefner's equation showed that noise correlations measured in the OFC 

combined with a plausible read-out of offer value cells reproduced the experimental measures of 

CPs. In other words, the results obtained for noise correlations and those obtained for CPs taken 

together support the hypothesis that economic decisions are primarily based on the activity of 

offer value cells. 
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2.1 Introduction 
The discharges of individual neurons in cortical and subcortical areas are highly variable, but 

fluctuations in the activity of different cells within a given area are often correlated (Cohen and 

Maunsell 2009; Jeanne et al. 2013; Lee et al. 1998; Liu et al. 2013; Poort and Roelfsema 2009; 

Romo et al. 2003; Shadlen and Newsome 1998; Smith and Kohn 2008; Smith and Sommer 2013; 

Zohary et al. 1994). This phenomenon, termed noise correlation, can provide deep insights into 

the functions of a particular brain region (Cohen and Maunsell 2009; Jeanne et al. 2013). The 

analysis of noise correlations is particularly informative in the context of decision making 

because certain patterns of correlated variability can induce a systematic relation between the 

fluctuations in the activity of individual cells and the decision made by the subject. This relation 

is quantified as a choice probability (CP), which is the probability with which an ideal observer 

would correctly predict the upcoming decision based on the activity of one cell (Britten et al. 

1992; Britten et al. 1996). In studies of perceptual decisions, significant CPs have historically 

been interpreted as evidence that a particular sensory area participates in the decision process 

(Britten et al. 1996; Cohen and Newsome 2009; Liu et al. 2013; Nienborg and Cumming 2014; 

2006; Romo et al. 2002), although CPs can also be produced by top-down feed-back (Nienborg 

and Cumming 2009). Importantly, a neuron's CP reflects not only its individual contribution to 

the decision (termed read-out weight), but also the intensity and the structure of noise 

correlations within the entire network (Britten et al. 1996; Cohen and Newsome 2009; Nienborg 

and Cumming 2009; Shadlen and Newsome 1998). A precise mathematical relation between 

CPs, noise correlations and read-out weights was recently derived by Haefner and colleagues for 

a linear decision model (Haefner et al. 2013). Within this framework, concurrent measurements 

of noise correlations and CPs can provide quantitative information on how a population of cells 
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contributes to a decision. These principles ‒ originally developed for perceptual decisions ‒ were 

applied here to the domain of economic choice. 

An individual executing an economic choice assigns a subjective value to each of the available 

offers and then makes a decision by comparing values. This behavior is selectively disrupted by 

lesions of the orbitofrontal cortex (OFC) (Camille et al. 2011; Gallagher et al. 1999; Gremel and 

Costa 2013; Rudebeck et al. 2013). Furthermore, neural activity in this area encodes the values 

subjects assign to offered and chosen goods while choosing between them (Padoa-Schioppa 

2011; Wallis 2011). Current models posit that economic decisions are based on values computed 

in the OFC (Kable and Glimcher 2009; Padoa-Schioppa 2011; Rangel and Hare 2010; 

Rushworth et al. 2012). In previous work, we examined the neuronal activity of monkeys 

choosing between different juices. We identified three groups of neurons: offer value cells 

encoding the value of one of the two juices, chosen value cells encoding the value of the chosen 

juice, and chosen juice cells encoding the choice outcome in a binary way (Padoa-Schioppa and 

Assad 2006; 2008). Thus according to current views, offer value cells would provide the primary 

input to the decision process. Testing this hypothesis, however, has proven difficult. 

Furthermore, we recently found that CPs of offer value cells are substantially lower (Padoa-

Schioppa 2013) than normally measured in sensory areas during perceptual decisions (Britten et 

al. 1996; Nienborg and Cumming 2014; 2006; Romo et al. 2002). One possible explanation for 

this result is that offer value cells influence decisions less than previously thought. Alternatively, 

CPs of offer value cells may be low because noise correlations in the OFC are low, or perhaps 

because noise correlations are "balanced" (i.e., independent of whether two offer value cells are 

associated to the same good or to different goods) (Haefner et al. 2013; Nienborg et al. 2012). 
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To address these issues, we examined noise correlations in the primate OFC during a juice-

choice task. Noise correlations had similar structure but considerably lower strength compared to 

those typically reported for sensory areas. Applying Haefner's mathematical framework, we 

found that CPs measured in the OFC arise from the distribution of noise correlations given a 

plausible linear read-out of offer value cells. Specifically, the empirical mean(CP) fell between 

the values predicted by a uniform-pooling model and that predicted by an optimal linear decoder. 

2.2 Materials & Methods 
2.2.1 Data set 

We analyzed neuronal data from two experiments previously described in detail (Padoa-

Schioppa and Assad 2006; 2008). In both experiments, two rhesus monkeys (one male, one 

female) chose between juices offered in varying amounts. The two experiments differed only in 

the number of juices available in each session. In experiment 1, two juices were offered in each 

session (A and B). In experiment 2, three juices were offered in each session (A, B and C), two 

juices were offered in each trial, and trials with the three juice pairs were presented in pseudo-

random order. In both experiments, an "offer type" was defined by two offers (e.g. [1A:2B]) and 

a "trial type" was defined by an offer type and a choice (e.g. [1A:2B,A]). The spatial 

contingencies (left/right) were counterbalanced across trials and different offer types were 

pseudo-randomly interleaved. Each offer type was usually presented ≥20 times. Neuronal 

recordings were performed from orbitofrontal cortex (OFC) and four electrodes were typically 

used in each session.  

All analyses were conducted in Matlab (MathWorks, Inc). The neuronal classification was 

described in previous studies. Briefly, we defined seven time windows: pre-offer (0.5 s before 
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the offer), post-offer (0.5 s after the offer), delay (0.1-1 s after the offer), pre-go (0.5 s before the 

go cue), reaction time (RT; from the go to the saccade onset), pre-juice (0.5 s before juice 

delivery) and post-juice (0.5 s after juice delivery). A "neuronal response" was defined as the 

activity of one cell in one time window as a function of the trial type. Task-related responses 

were identified by a 1-way ANOVA (factor [trial type]; p<0.001). In preliminary analyses, we 

tested the neuronal population against a large number of variables. Procedures of variable 

selection identified offer value, chosen value and chosen juice as the three variables encoded by 

the neuronal population (Padoa-Schioppa and Assad 2006). The encoding of these variables was 

categorical and generally consistent across time windows, indicating that neurons formed three 

distinct groups (Padoa-Schioppa 2013). A variable was said to explain a response if a linear 

regression of the response onto that variable had a non-zero slope (p<0.05). For each neuron, the 

group was identified by the variable that provided the highest sum R2 across all seven time 

windows. Cells whose responses were not explained by any of these variables were defined as 

null. The data set thus included 252 offer value cells, 288 chosen value cells, 252 chosen juice 

cells and 692 null cells. Table 2.1 indicates the number of cell pairs recorded for each pair type. 

2.2.2 Analysis of single cell variability 

For each cell, we analyzed the power-law relation between the mean spike count (μ) and its 

standard deviation (σ). In essence, we performed the regression log(σ) = α log(μ) + β, where 

each data point represented one trial type. Our analysis relied on systematic changes in μ with the 

trial type and was thus carried out only on time windows in which the neuron was tuned (i.e., 

when the neuronal response was explained by the encoded variable). The analysis presupposed a 

monotonic relationship between μ and σ. Thus we excluded neuronal responses that did not 

present any correlation between these measures across trial types (p>0.1; 10% of time windows  
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Table 2.1 Number of simultaneously recorded cell pairs. Pair types are labeled as follows: (1) [offer 
value, offer value]; (2) [chosen value, chosen value]; (3) [chosen juice, chosen juice]; (4) [offer value, 
chosen value]; (5) [offer value, chosen juice]; (6) [chosen value, chosen juice]; (7) [offer value, null]; (8) 
[chosen value, null]; (9) [chosen juice, null]; (10) [null, null]. See also Fig.2.5a. For pair types 1-3, cell 
pairs are further broken down depending on whether the two neurons had the same polarity or different 
polarity (see main text). 

Pair Type 1 2 3 4 5 6 7 8 9 10 Total 

Same Electrode            

Total 40 53 46 62 62 53 104 98 75 270 863 

Same polarity (23) (33) (25) -- -- -- -- -- -- -- -- 

Different polarity (17) (27) (21) -- -- -- -- -- -- -- -- 

Different 

Electrode 
           

Total 73 116 70 148 106 194 362 463 421 623 2,576 

Same polarity (42) (62) (34) -- -- -- -- -- -- -- -- 

Different polarity (31) (54) (36) -- -- -- -- -- -- -- -- 

 
 

excluded). Also, to minimize the effects of measurement noise, we restricted the analysis to trial 

types with ≥10 trials (~4% of trials excluded). These criteria reduced the number of extreme 

values in the analysis, but did not substantially alter the median values obtained for α and β 

across the population. 

For each neuronal response, we determined the values of α and β using Deming's regression 

(Glaister 2001). Simple linear regressions assume that the x-variable is measured exactly and that 

only the y-variable is affected by error. In contrast, Deming's regression finds the best linear fit 
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for the case when both x and y are measured with error and the ratio between error in x and error 

in y is known. Error in log(μ) and log(σ) were derived by propagation of uncertainty from the 

standard error of the mean (SEM) and the standard error of the standard deviation (SESD). We 

used an approximation of SESD (Ahn and Fessler 2003) that is highly accurate (within 3%) for 

n>10 observations:  

SESD
2(n 1)

σ
≈

−
  

From here, we calculated the ratio of error (λ) for each trial type in a time window. 

2

2

2(n 1)
n
−  µ

λ  =   
 σ

 

We used the mean λ across trial types to obtain αw and βw for each time window. Values of αw 

and βw were then averaged across time windows to obtain overall values of α and β for each cell.  

The Fano factor and coefficient of variation were measured separately for each cell, each time 

window and each trial type. Measures were then averaged across trial types. The time course of 

individual-cell variability was calculated using a 200 ms sliding window with 25 ms intervals.  

2.2.3 Analysis of noise correlations 

Noise correlation (rnoise) was defined as Pearson's correlation between the trial-to-trial activity of 

two simultaneously recorded neurons. For each cell, trial type and time window, we computed 

the mean firing rate and standard deviation (SD) across trials. We z-scored the firing rate in each 

trial accordingly and obtained a normalized activity fluctuation. To minimize the effect of 

outliers, we removed trials for which either neuron's firing rate was >3 SD away from the mean 

for that trial type (Smith and Kohn 2008), although this procedure did not have a measurable 



30 
 

impact on the results. We then computed Pearson's correlation between normalized activity 

fluctuations for every pair of simultaneously recorded cells.  

All statistical comparisons of noise correlations across pair types based on tuning, distance and 

time window were done after applying Fisher’s r-to-z transformation. The significance of 

individual noise correlations was tested by computing correlations on trial-shuffled data. This 

method captures the range of correlations expected by chance for a pair of cells with given 

activity profiles. The trial order was randomly permuted for one of the two cells in a pair and 

Pearson's correlation was calculated on permuted data. This procedure was repeated 1,000 times 

for each pair and used to generate a confidence interval. Pairs with rnoise outside of their 95% 

confidence interval were considered statistically significant.  

For the sliding time window analysis, we calculated rnoise around the offer, go signal and juice 

delivery using 200 ms sliding time windows with 25 ms increments. For all other analyses, 

separate values of rnoise were obtained for the seven time windows throughout the trial. The 

overall rnoise for a cell pair was defined as the average rnoise across time windows. All time 

windows were 500 ms long except RT (typically 250-400 ms). Restricting the analysis to time 

windows in which both neurons were tuned (p<0.1) did not measurably alter the effects of 

distance, timing, cell type, or polarity described in the main text. Similarly, repeating 

calculations with shorter time windows slightly reduced rnoise but did not alter the effects of 

distance, timing, or cell type.  

For certain analyses, we introduced the concept of neuronal polarity. In offer value cells, the 

encoded juice and the slope sign were always unambiguous. However, in chosen juice cells, the 

design of experiment 1 made it impossible to distinguish between a cell encoding juice A with a 
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positive slope and a cell encoding juice B with a negative slope (in both cases, the firing rate 

would be high/low for choices of juice A/B). We thus developed the concept of neuron polarity, 

which combined juice association and slope sign. The polarity was always +1 or -1. For 

experiment 1, the polarity was +1 when a higher firing rate of the cell corresponded to a higher 

probability of choosing juice A. By this convention, cells that encoded juice A with a positive 

slope (A+ cells) and cells that encoded juice B with a negative slope (B- cells) both had polarity 

= +1. In contrast, A- cells and B+ cells both had polarity = -1. The same convention held for 

experiment 2, except that cells encoding juice C were relabeled as encoding juice A (juice B) 

when paired with a cell encoding juice B (juice A). The definition of polarity applied to offer 

value and chosen juice cells; for chosen value cells, the polarity reduced to the sign of the 

encoding. 

2.2.4 Computing choice probabilities and neuronal sensitivity 

The methods used to calculate empirical CPs in offer value cells have been described previously 

(Padoa-Schioppa 2013), and were carried out here with minor alterations. Briefly, we focused on 

offer types in which the animal split its choices between the two juices, imposing that each juice 

be chosen in ≥3 trials. For each offer type, trials were divided based on the animal's choice. The 

two resulting distributions of firing rates were compared with a receiver operating characteristic 

analysis, from which we obtained the area under the curve (AUC). The CP for each cell was 

obtained averaging the AUC across offer types. By definition, an offer value cell presents 

CP>0.5 if, for given offers, the firing rate is higher in trials in which the animal chooses the juice 

encoded by the neuron. Thus an offer value cell with positive encoding presents CP>0.5 if its 

activity provides a direct contribution to the decision. Conversely, an offer value cell with 

negative encoding presents CP<0.5 if its activity provides a direct contribution to the decision 
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(because the cell is less active when the animal chooses the juice encoded by the neuron). To 

compute an overall mean(CP) across the population, we thus rectified CPs for cells with negative 

encoding by defining CP as 1-AUC for these neurons. This convention allowed us to pool cells 

with positive and negative encoding. 

We examined the relation between neuronal sensitivity (d’) and CP. This analysis focused on 

offer value cells and on the post-offer time window. For each neuronal response, we computed 

the standard deviation for each trial type and we averaged the result across trial types. The 

neuronal sensitivity was calculated dividing the tuning slope by the average standard deviation. 

Note that cells with negative encoding also have negative neuronal sensitivity. Thus to examine 

the relation between CP and d' we pooled offer value A cells and offer value B but we did not 

rectify CPs.  

Unless otherwise indicated, all the CPs described in this study were calculated in the 500 ms 

after the offer (the same time window used to compute noise correlations). However, the 

simulation analyses on the relation between CPs and noise correlations (see below) were 

repeated using a shorter time window, 150-400 ms after the offer, as in a previous study (Padoa-

Schioppa 2013). As illustrated in Fig.7cd, the results obtained with the two procedures were 

essentially identical.  

2.2.5 Reconstructing choice probabilities from noise correlations 

In a linear decision model, a binary decision between options X and Y is a linear read-out of a 

neural population. In formulas,  

    
n

i i
i 1

D
=

= ω ϕ∑        (1) 
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where φi is the activity of neuron i and ωi is the weight given to that neuron in the decision. By 

convention, D>0 corresponds to choosing X and D<0 corresponds to choosing Y. Thus neurons 

with ωi > 0 support choosing X, while those with ωi < 0 support choosing Y. Haefner et al (2013) 

showed that the relationship between CPs, neuronal covariances and read-out weights is well 

approximated by the equation 

    k
k T

kk

( )2CP 0.5= +
π

Cω

C ω Cω
     (2) 

where CPk is the choice probability of cell k, X is the covariance matrix for the network, Xkk is 

the variance of cell k, and ω is the vector of read-out weights. Generally the covariance matrix 

for a cortical circuit is not fully known. However, it is still possible to calculate CP by using the 

overall trends in correlation data to construct X. Using Eq.2, we conducted a series of 

simulations to assess whether noise correlations measured in the OFC, taken together with a 

plausible read-out scheme of offer value cells, would induce a distribution of CPs close to that 

measured empirically. Specifically, we simulated CPs for a population of 10,000 offer value 

units. One half of the units had positive polarity (representing positive encoding of juice A or 

negative encoding of juice B) and the other half had negative polarity (representing negative 

encoding of juice A or positive encoding of juice B). Noise correlations used in the simulations 

were computed from the empirical data. Randomly sampling pairwise correlations does not 

generally produce a viable (positive definite) correlation matrix. In order to reconstruct CPs, we 

thus generated a viable and realistic correlation matrix from empirical data as follows.  

First, we defined the constant c as the difference in mean(rnoise) for pairs of offer value cells with 

the same vs. opposite polarity based on data from the relevant time window. For "long-distance" 
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simulations, c was computed using only pairs of neurons recorded from different electrodes. For 

"mixed-distance" simulations, c was calculated separately for same-electrode pairs (csame) and 

different-electrode pairs (cdifferent), and the final value was defined as c = 0.9 cdifferent + 0.1 csame. 

This weighting of cdifferent vs. csame corresponds to a scenario in which neurons from the same 

electrode are representative of 10% of all cell pairs in the OFC. This scenario likely 

overestimates average noise correlations, since it assumes that correlations remain high for inter-

neuronal distances up to 1 mm. Thus long-distance and mixed-distance simulations effectively 

provided a lower bound and an upper bound for mean(CP).  

Second, we constructed a simplified correlation matrix C, where Cij = 1 when i = j; Cij = c when 

i≠j and polarity(i) = polarity(j); and Cij = 0 when polarity(i) ≠ polarity(j). To emulate the 

heterogeneity observed in empirical noise correlations, we added variability to the matrix using 

the method described by Hardin et al. (2013), in which the realistic correlation matrix S is: 

,    ;  otherwise  T
ij ij i j ij ijS C i j S Ce= + ≠ =u u  

In this equation, ε is the maximum possible noise (defined so that 0<Sij<1 for all i,j) and ui are 

random M-dimensional unit vectors. In the simulations, we used ε = 0.9 and M = 100. We thus 

obtained a realistic (positive definite) correlation matrix such that the variances of its elements 

were comparable to variances calculated from the empirical distribution of rnoise. For the uniform 

condition, this random factor does not affect the outcome, as CPs depend exclusively on the 

mean difference in correlation between pairs in the same pool vs. competing pools (Haefner et al. 

2013). For the optimal condition, changing the parameters of the correlation matrix affects CP, 

but if C, M and ε are kept constant, values of CP are consistent across simulations. To verify this 

point, we repeated each simulation 30 times and found that mean(CP) varied by <10-3. 
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In addition to an entry in the correlation matrix, each unit in the simulation was also assigned a 

standard deviation, which was drawn from the empirical distribution for offer value cells. The 

covariance matrix was computed from the noise correlation matrix and the standard deviations. 

For simulations based on Fisher's optimal read-out weights (Xanthopoulos et al. 2013), each unit 

was also assigned a slope, indicating how much its response changed with a small shift in offer 

value. Each slope was always paired with the same standard deviation, as these two parameters 

are empirically related in our data. 

In the case of uniform read-out, weights were set equal to +1 or -1 based on the polarity of each 

unit. In the calculation of CP, weights are normalized (see Eq.2). Thus the specific value of the 

uniform weight did not matter, as long as the absolute value was the same for all units. For 

simulations based on optimal read-out, weights were determined by Fisher's linear discriminant 

analysis (Xanthopoulos et al. 2013). Certain simulations included two "fictive" hysteresis units 

(one positive and one negative), meant to account for the effects of choice hysteresis (see below). 

These units were assigned weights equal to 0.161 times the total weight of the offer value pool. 

Their variance was defined as varhyst = p (1-p) ϕ2, where ϕ is the mean firing rate modulation of 

offer value cells (see below). Positive and negative hysteresis units were uncorrelated with offer 

value units and perfectly anti-correlated with each other.  

2.2.6 Derivation of read-out weights for hysteresis units 

We previously quantified the effect of choice hysteresis with a logistic analysis (Padoa-Schioppa 

2013). Briefly, we constructed a model: 

   
( )( )

( ) ( )AnBnaABaaX
XBchoice
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δδ
    (3) 
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The variable choice B was equal to 1 if the animal chose juice B and 0 otherwise. #A and #B 

were, respectively, the quantities of juices A and B offered to the animal. The current trial was 

labeled as trial n. The variable δn-1, J was equal to 1 if the animal received juice J in the previous 

trial and 0 otherwise. Notably, the difference (δn-1, B - δn-1, A) was equal to 1, -1 or 0 depending on 

whether the previous trial ended with receipt of juice B, juice A or otherwise (for example with 

receipt of the third juice in experiment 2). The logistic regression provided an estimate for a0, a1 

and a2. By construction, a1>0. In the simplified model with a2 = 0, a1 was the inverse temperature 

and a measure of choice variability, while the indifference point was provided by exp(-a0/a1). 

Choice hysteresis corresponded to a2>0. Eq.3 may be re-written as follows: 
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   (4) 

In the last passage, we defined ε such that exp(a2/a1) = 1 + ε and we used the relation:  

   ( ) ( )( ) BnBnBn aaaa ,112,1,112 11exp1)(exp −−− +=−+= δeδδ  (5) 

The final formulation indicates that the effect of choosing juice B (juice A) in the previous trial 

is equivalent to that of multiplying the quantity of juice B (juice A) by a factor 1 + ε = exp(a2/a1). 

The logistic regression was performed for each session in the data set. Averaging across sessions, 

we obtained mean(exp(a2/a1)) = 1.161, and thus mean(ε) = 0.161.  
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Consider this result in the context of a linear decision model. In the absence of hysteresis: 

   ∑
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φω   if D>0 choose A; if D<0 choose B  (6) 

Here, 2k is the total number of offer value cells, ωi is the read-out weight of neuron i and ϕi is its 

firing rate modulation (i.e., the firing rate minus the intercept corresponding to zero value). Offer 

value cells do not reflect choice hysteresis, but they encode value in a linear way. Thus choice 

hysteresis can be modeled as if it affected the firing rates of offer value cells. More precisely, the 

effect of choosing juice B (juice A) in the previous trial is equivalent to that of multiplying the 

firing rate of offer value B cells (offer value A cells) by a factor 1 + ε. In formulas: 
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We now consider only cases in which, ωi
A = 1/k and ωi

B = -1/k (uniform weights). If so,  
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The first term is the simple contribution of the first pool of neurons independent of choice 

hysteresis. The second term can now be interpreted as one additional unit with firing rate equal 

to the average firing rate of offer value A cells and read-out weight of ε. The same holds for DB 

except that the read-out weight for the additional unit has a minus sign.  
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Elements of the covariance matrix related to the two hysteresis units are computed as follows. 

First, the two hysteresis units are perfectly anti-correlated with each other. Second, since trial-by-

trial fluctuations in the activity of offer value cells are independent of choice hysteresis, the 

correlation between the hysteresis units and other offer value cells equals zero. Third, with 

respect to the variance of the hysteresis units, we note that Jφ in Eq.8 is an average across cells, 

not across trials. However, since trial-by-trial fluctuations in the activity of offer value cells are 

independent of choice hysteresis, Jφ  does not fluctuate across trials and only depends on the 

mean activity of offer value cells for given offer. Therefore, if p is the proportion of trials in 

which the animal chooses juice J, the variance of the hysteresis unit is: 

( )( )2
1var JJ

hyst pp φ−≈  

For the simulations, we calculated Jφ based on the activity of offer value cells that were tuned 

during the post-offer time window (N = 144). For each cell, we identified offer types for which 

the animal split its choices between juices A and B (i.e., the offer types for which CPs were 

defined) and we averaged the spike count modulation across trials. Values of p were determined 

separately for each session. We thus computed varhyst separately for each cell. The variance of 

the hysteresis units in the simulation was then computed by averaging varhyst across offer value 

cells. Numerically, we found mean(varhyst) = 3.96 (sp/s)2. 

2.3 Results 
The purpose of this study was to quantify noise correlations in OFC and to examine the relation 

between noise correlations and CPs measured in this area during economic decisions. The 

Results are organized as follows. In the first section, we describe the neuronal variability 
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measured for individual cells. In the following three sections, we describe the correlation in 

neuronal variability for pairs of cells (a.k.a., noise correlation), its time course during a trial, and 

its dependence on the variables encoded by the two neurons. In the last two sections, we 

summarize the empirical results obtained for CPs, and we examine the relation between noise 

correlations and CPs in the framework of a linear decision model. The latter analysis is based on 

a series of computer simulations.  

2.3.1 Firing rates of individual neurons are highly variable 

In the experiments, two animals chose between different juices offered in varying quantity 

(Fig.2.1a). We recorded and analyzed the activity of 1,484 cells in seven time windows (see 

Materials & Methods). Preliminary analyses identified three distinct groups of cells, namely offer 

value cells (N = 252; Fig.2.1bc), chosen value cells (N = 288; Fig.2.1d) and chosen juice cells (N 

= 252; Fig.2.1e). For each group, the encoding could be positive (increasing firing rate for 

increasing values) or negative (decreasing firing rate for increasing values). Cells in these three 

groups were collectively referred to as "tuned" cells. Other neurons, whose activity was not 

modulated by the offers and/or was not explained by any of the three variables, were referred to 

as null cells (N = 692). 

We first examined the variability in the firing rate of individual neurons across trials. For each 

cell, we analyzed the relation between the mean spike count (μ) and its standard deviation (σ). 

We began with the general assumption that σ and μ are related by a power law: 

   
ασ = β⋅µ         (9) 

log( ) log( ) log( )σ = α µ + β       (10) 
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Figure 2.1 Behavioral task and cell groups. a. Juice choice task. At the beginning of each trial, the animal fixated on the 
center of a screen. Two sets of colored squares, representing the two offers, appeared after 0.5 s. For each offer, the color 
indicated the juice identity and the number of squares indicated the juice quantity. The animal maintained center fixation 
for a randomly variable delay (1-2 s), after which the fixation point disappeared and two saccade targets appeared by the 
offers (go cue). The animal indicated its choice with a saccade and maintained peripheral fixation for 0.75 s before juice 
delivery. b. Neuron encoding the offer value A. The x-axis represents different offer types ranked by the ratio #B: #A. 
Black symbols represent the percent of "B" choices. Red symbols represent the neuronal firing rate (diamonds and circles 
indicate, respectively, choices of juice A and juice B). To highlight the variability in firing rates, thinner error bars here 
indicate the SD and thicker error bars indicate the SEM. c. Neuron encoding the offer value B. d. Neuron encoding the 
chosen value. e. Neuron encoding the chosen juice. All conventions in panels cde are as in panel b.
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where α and β are constants. To estimate α and β, we took advantage of the fact that neuronal 

responses in OFC vary depending on the trial type. We computed μ and σ for each tuned cell, 

each time window, and each trial type. For each cell and each time window, we fit Eq.10 using  

Deming's regression (see Materials & Methods) and we obtained αw and βw (Fig.2.2a). We then 

averaged αw and βw across time windows to obtain an overall value of α and β for each cell. 

Across the population we found mean(α) = 0.679 ± 0.008 (Fig.2.2b) and mean(β) = 1.12 ± 0.01. 

The measures of α and β were significantly correlated (Fig.2.2c) and comparable to findings in 

visual cortex (Dean 1981; Vogels et al. 1989). 

One important metric for individual cells is provided by the relation between neuronal variability 

and firing rate. As apparent in Eq.10, both α and β contribute to the variability, and both 

parameters are only defined for tuned cells. Therefore, to quantify this relation in all cells 

(including null cells), we analyzed the Fano factor and the coefficient of variation in relation to 

the baseline firing rate (pre-offer time window). Population analyses revealed that the Fano 

factor varied only mildly with the baseline firing rate (Fig.2.2d), whereas the coefficient of 

variation had a strong inverse relationship with the baseline firing rate (Fig.2.2e). 

Finally, we analyzed the time course of neuronal variability. We computed the Fano factor in 

200 ms sliding time windows and averaged it across the entire population (Fig.2.2f). The Fano 

factor dropped shortly after the offer and returned to baseline in the next 500-700 ms. It 

decreased again and more modestly after the go signal, remained depressed around juice 

delivery, and returned to baseline gradually in the 1 s following juice delivery. An analysis of the 

coefficient of variation provided a similar picture (not shown). This result resonates with 

previous reports (Churchland et al. 2010), although neuronal variability in the OFC was 
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Figure 2.2 Neuronal variability in the OFC. a. Relation between mean firing rate (μ) and variance (σ) for one represen-
tative offer value cell (post-offer time window). Data are plotted in log scale and each data point represents one trial 
type. The line is obtained from Deming's regression. For this response, αw = 1.0 and βw = -0.99. For each tuned cell 
(763 cells total), α and β were obtained averaging αw and βw across time windows. b. Distribution of α. Across the 
population, mean(α) = 0.679 ± 0.008 (± SEM). c. Relation between α and β. Each data point represents one neuron and 
the two quantities are strongly anti-correlated. One outlier (0.1%) fell outside the range shown. d. Relation between the 
Fano factor and the baseline activity. Baseline activity was defined as the firing rate in the pre-offer time window. Each 
data point represents one neuron. Across the population, mean(Fano factor) = 1.8. e. Relation between coefficient of 
variation (cv) and baseline activity. The two quantities are strongly anti-correlated. Across the population, mean(cv) = 
1.0. f. Time course of neuronal variability. Dark lines and shaded regions represent, respectively, the mean Fano factor 
and the corresponding SEM (in sp/s). The Fano factor was calculated in 200 ms sliding windows. Neuronal variability 
dropped sharply shortly after the offer onset; it returned to the initial levels 500-700 ms after the offer; it decreased 
again and more mildly following the go signal and remained depressed until the trial end. The coefficient of variation 
presented a similar time course (not shown).
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 previously found to drop only after juice delivery, whereas we observed the largest effect shortly 

after the offer. This discrepancy presumably reflects the fact that previous work focused on 

classical conditioning whereas our monkeys were engaged in a choice task.In summary, the 

firing rate of individual neurons in OFC was highly variable, and this variability was comparable 

to that typically measured in sensory areas. 

2.3.2 Noise correlations in orbitofrontal cortex are low 

Our data set included 3,439 pairs of cells recorded simultaneously. Of these, 863 pairs were 

recorded from the same electrode and 2,576 pairs were recorded from different electrodes placed 

at ≥1 mm distance. We computed the noise correlation (rnoise) for each of cell pair. Across the 

population, rnoise ranged from -0.59 to 0.87, with mean(rnoise) = 0.019 ± 0.001 (average computed 

pooling time windows; Fig.2.3a). Noise correlation strongly depended on inter-neuronal distance 

(p<10-10, one-way ANOVA). Pairs recorded from the same electrode had mean(rnoise) = 0.054 ± 

0.004, while pairs at ≥1 mm distance had mean(rnoise) = 0.008 ± 0.001. To look at the effects of 

distance more closely, we binned pairs into five groups based on distance (Fig.2.3b). Pairs 

recorded from the same electrode had significantly higher noise correlations than pairs at any of 

the greater distances (all p <10-10, Tukey-Kramer test). Noise correlations did not decrease 

further at higher distances (all p>0.05, Tukey-Kramer test). Importantly, mean(rnoise) was 

significantly above zero in each time window, both at short distance (same electrode) and at long 

distance (different electrodes; all p<10-3; t test).  

Notably, our measures of noise correlations were substantially smaller than those found in many 

previous studies of sensory and motor areas (Fig.2.3a) (Gutnisky and Dragoi 2008; Kohn and 

Smith 2005; Lee et al. 1998; Liu et al. 2013; Nienborg and Cumming 2006; Poort and Roelfsema 

2009; Smith and Kohn 2008; Smith and Sommer 2013; Zohary et al. 1994) (but see 
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Figure 2.3 Noise correlation (rnoise) between pairs of neurons in OFC. a. Overall distribution of rnoise. In this plot, we 
pooled all cell pairs and all time windows. Cell pairs with significant rnoise are indicated in dark. The rnoise differed 
significantly from zero for 1,592/3,439 (46%) cell pairs (p<0.05; bootstrap analysis; see Materials & Methods). The 
black triangle below the x-axis marks the population average. For comparison, we indicate measures of noise correlation 
previously reported for MT (Zohary et al. 1994), parietal areas 2/5 (Lee et al. 1998), M1 (Lee et al. 1998), V4 (Mitchell 
et al. 2009) and V1. For V1, the higher data point shown here is from (Poort and Roelfsema 2009) and comparable 
measures were reported in (Gutnisky and Dragoi 2008; Kohn and Smith 2005; Nienborg and Cumming 2006; Smith and 
Kohn 2008); the lower data point is from (Ecker et al. 2010) and a comparable measure was reported in (Ecker et al. 
2014). b. Values of rnoise grouped by inter-electrode distance. The x-axis represents different time windows (see 
Materials & Methods). For all time windows, rnoise was significantly higher when the two cells were recorded from the 
same electrode. Notably, rnoise did not decrease beyond values measured at 1 mm distance. Error bars indicate SEM. c. 
Noise correlation as a function of the geometric mean of baseline firing rates. The geometric mean averaged across the 
population was 5.85 ± 0.09 sp/s (mean ± SEM). Across the population, noise correlations were weakly but significantly 
correlated with the geometric mean of baseline firing rates (r = 0.05, p<0.005; Spearman rank correlation). d. Noise 
correlation as a function of the geometric mean of standard deviations. Population mean ± SEM = 4.20 ± 0.04 sp/s. e. 
Noise correlation as a function of the geometric mean of the coefficients of variation. Population mean ± SEM = 1.048 ± 
0.009. Data for panels cde were taken from the pre-offer time window. Note that values of rnoise for individual cell pairs 
fluctuate throughout the course of the trial and are negatively correlated with firing rate across time windows (see Fig.4).
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 (Averbeck and Lee 2003; Ecker et al. 2014; Ecker et al. 2010; Mitchell et al. 2009; Miura et al. 

2012). We thus examined several factors that might have artificially biased our estimates of 

noise correlation. First, since correlated activity may have variable timing, it is possible to 

underestimate noise correlations if the time windows for calculations are too small. However, the 

time windows used here (200-500 ms) were comparable to those used in many other studies and 

would capture the majority of correlated activity even if the timing of spikes varied stochastically 

over ~100 ms (Cohen and Kohn 2011). For an additional control, we doubled the size of the time 

windows to 1 s and found that rnoise increased only by 15%. Second, imperfect spike sorting can 

bias measurements of rnoise. Specifically, when multiple cells are recorded on the same electrode, 

mis-assignment of spikes can create spurious correlations. However, this type of error would 

only apply to cells from the same electrode, and it would tend to inflate rather than reduce rnoise. 

Conversely, discarding meaningful spikes or mistakenly splitting spikes from one cell into 

several clusters could artificially lower rnoise. However, in order to decrease rnoise from 0.1 to the 

levels we observed in OFC, it would be necessary to discard >75% of spikes or to mis-identify a 

single neuron as more than six separate cells (Cohen and Kohn 2011), which seems implausible. 

Third, firing rates in OFC are lower than in many other cortical areas (see below), and noise 

correlations tend to increase with firing rate (de la Rocha et al. 2007). Thus one possibility is that 

the discrepancy in rnoise reflected a genuine difference between areas, but was entirely due to the 

properties of individual cells as opposed to the network organization. However, additional 

analyses cast doubts on this view. Indeed, values of rnoise were comparable for pairs of tuned and 

null cells, despite the fact that null cells had lower firing rates throughout the trial. Furthermore, 

although the geometric mean of the firing rates was significantly related to rnoise in our dataset, 

this correlation was weak (Fig.2.3c). Finally, our results can be compared to the predictions of a 
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model relating noise correlation to firing rate (Cohen and Kohn 2011). The model predicts rnoise 

> 0.15 when both neurons have a firing rate of 1 sp/s. In our dataset, 90% of pairs had a baseline 

firing rate >1 sp/s for both neurons, while only 5% of pairs had rnoise > 0.15. In conclusion, 

differences in firing rates between OFC and sensory areas cannot fully explain the lower noise 

correlations found in OFC. 

2.3.3 Time course of noise correlations 

We next examined how noise correlations varied over the course of a trial. A first analysis was 

based on seven large time windows. A repeated-measures ANOVA revealed that the strength of 

noise correlations varied systematically across time windows (p<10-5; Fig.2.3b). A post-hoc 

analysis indicated that rnoise was significantly lower during the post-offer time window compared 

to the pre-offer, delay and pre-go time windows (p<0.005; Tukey-Kramer test). Intermediate 

rnoise occurred during RT, pre-juice and post-juice time windows. 

To analyze the time course of rnoise at higher resolution, we calculated rnoise in 200 ms sliding 

time windows. As illustrated in Fig.2.4a, the mean(rnoise) dropped immediately after the offer 

presentation and returned to baseline levels ~700 ms after the offer. It dropped again, but to a 

lesser extent, after the go signal, remained depressed until juice delivery, and returned to baseline 

gradually in the subsequent 1 s. Interestingly, the time profile measured for the correlated 

variability (Fig.2.4a) closely resembled that measured for the variability of individual cells 

(Fig.2.2e) and was inversely related to neuronal firing rate over the course of the trial (Fig.2.4b). 

One concern might be whether transient decreases in noise correlation are caused by increases in 

firing rates. To address this issue, we restricted the analysis to cells whose firing rate decreased 

after the offer, and found that mean(rnoise) dropped after the offer even for these cells. Thus the 

drop in rnoise observed in Fig.2.4a was not simply a byproduct of higher firing rates.
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Figure 2.5 Noise correlations for different pair types. a. Mean rnoise recorded for ten pair types and seven time 
windows. The number of pairs for each pair type is indicated in Table 1 and colors indicate different time windows. 
Starting from the pre-offer time window (baseline), rnoise decreased in the post-offer time window (9/10 pair types). 
It then increased in the delay and pre-go time windows compared to the post-offer (10/10 pair types). It decreased 
again in the RT time window (10/10 pair types) and remained roughly stable for the rest of the trial. Notably, null cells 
had much lower firing rates compared to tuned cells. The fact that noise correlations between pairs of null cells (pair 
type 10) were lower than, but comparable to those between tuned neurons confirmed that firing rate was not the 
primary factor in rnoise. b. Mean rnoise for pair types 1-3, divided by juice polarity (see Materials & Methods). Pairs 
of neurons with the same polarity are on the left of each panel, while those with opposite polarities are on the right. 
For chosen juice pairs with opposite polarity, residual activity from the previous trial leads to negative noise correla-
tions in the pre-offer time window. c. Mean rnoise by pair type. Data from different time windows are averaged 
separately for cell pairs recorded from the same electrode (top) and from different electrodes (bottom). All error bars 
indicate SEM. 
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We next examined the time course of noise correlations as a function of the variables encoded by 

the two cells. Neurons in our data set fell into four groups ‒ offer value, chosen value, chosen 

juice and null. These groups led to ten pair types (Table 2.1). Fig.2.5a summarizes the values of 

rnoise observed for every pair type and time window. The time course of noise correlations was 

roughly consistent across pair types. In almost all cases, rnoise decreased in the post-offer time 

window compared to baseline, increased in the delay and pre-go time windows, decreased again 

after the go signal and remained stable for the rest of the trial. Pairs of chosen juice neurons (pair 

type 3) presented an exception to this pattern. For these pairs, rnoise was lowest in the pre-offer 

time window, with a non-significant increase after the offers were presented. This time course 

reflects a distinct feature of chosen juice neurons. Unlike other groups of neurons, chosen juice 

cells show in the pre-offer time window a tail activity related to the outcome of the previous trial 

(Padoa-Schioppa 2013). Thus if two chosen juice cells have opposite juice preference, the tail 

activity introduces a negative correlation in the pre-offer time window. This point can be 

observed in Fig.2.5b (far right), where pairs of chosen juice cells were divided based on whether 

they encoded the same juice (same polarity) or different juices (opposite polarity). Note that for 

pairs of chosen juice cells with the same polarity, the time course across time windows is similar 

to that observed for other pair types. 

2.3.4 Noise correlations depend on the variables encoded by the two cells 

A primary goal of the study was to assess how noise correlations depend on the variables 

encoded by the two cells. To examine this issue, we first pooled data across time windows for 

each pair type (see Fig.2.5a) and examined the entire population. A one-way ANOVA showed a 

significant effect of the pair type (p < 3*10-4). Mean(rnoise) was generally highest when two cells 

encoded the same variable (pair types 1-3) or were both null (pair type 10). However, rnoise was 
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also relatively high for pairs of [offer value, chosen value] cells (pair type 4). Post-hoc tests 

showed several significant differences in line with these patterns (type 1 > types 6-10; type 2 > 

types 7-9; type 3 > types 6-8; type 4 > types 7-9; type 10 > types 7-8; p<0.05, Tukey’s LSD). We 

then broke down cell pairs depending on the distance between the two neurons (Fig.2.5c). In 

these conditions, the pair type had a significant effect on rnoise when cells were from the same 

electrode (one-way ANOVA, p = 0.006). For cell pairs recorded on different electrodes, there 

was no significant effect of pair type (one-way ANOVA, p = 0.7). This finding suggests that the 

systematic pattern seen in Fig.2.5a was influenced by the spatial distribution of cells. Indeed, the 

proportion of pairs found on the same electrode was about twice as high for pair types 1-4 and 

pair type 10 than it was for pair types 6-9 (see Table 2.1), leading to greater mean(rnoise) in these 

pair types.  

We further analyzed noise correlations between cells in the same group (offer value, chosen 

value, chosen juice). Specifically, we examined how rnoise depended on whether the two cells 

encoded the same juice or different juices, and how rnoise depended on the slope signs (positive or 

negative encoding). For offer value cells, the encoded juice and the slope sign were always 

unambiguous. For chosen juice cells, the design of experiment 1 made it impossible to 

distinguish between a cell encoding juice A with a positive slope and a cell encoding juice B 

with a negative slope (in both cases, the firing rate would be high/low for choices of juice A/B). 

We thus developed the concept of neuron polarity, which combined juice association and slope 

sign (see Materials & Methods). In essence, two cells had the same/opposite polarity if they 

"supported" the same/opposite decision. Our analyses showed that noise correlations were 

generally higher when two cells in the same group had the same polarity (Fig.2.5b, Fig.2.6ab). 

This pattern could be observed in both pairs from the same electrode and pairs from different 
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electrodes (same electrode, p<10-4; different electrode, p < 0.003; separate two-way ANOVAs 

with factors [pair type x polarity]). 

In the most granular analysis, we divided pairs of offer value cells in eight pools depending on 

whether the cells were recorded from the same or different electrodes, on whether the cells 

encoded the same juice or different juices, and on whether the sign of the encoding (positive or 

negative) was the same or different (Fig.2.6cd). At this level, there were no statistical differences 

between groups (t test, all p > 0.05). However, the patterns are interesting to note, since they are 

responsible for the differences in juice polarity shown in Fig.2.6ab which are used in the 

remainder of the paper. Noise correlations were highest when the two cells encoded the same 

juice with the same sign and progressively lower when the two cells encoded different juices 

with opposite signs, different juices with the same sign, and the same juice with opposite signs.  

When two offer value cells encoded the same variable (same juice, same sign) and were recorded 

from the same electrode, mean(rnoise) was comparable to values seen in many sensory areas 

(Cohen and Kohn 2011). However, unlike neurons in sensory regions, offer value cells did not 

appear to cluster based on the encoded variable. Such a clustering would make it more likely to 

encounter pairs of offer value cells encoding the same variable (same juice, same sign) when two 

neurons are recorded from the same electrode compared to when two neurons are recorded ≥1 

mm apart. In contrast, considering all pairs of offer value cells, 15/40 (38%) encoded the same 

variable when the two neurons were recorded from the same electrode, while 26/73 (34%) 

encoded the same variable when the two neurons were recorded from different electrodes 

(Fig.2.6cd). 

We do not know how sharply rnoise decays with distance, but it appears clear that the decay fully 
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depending on whether the two cells were recorded from the same or different electrode (top, bottom), on whether 
the two neurons encoded the same juice or different juices (left, right), and on whether the sign of the encoding for 
the two cells was the same or different (dark gray, light gray). In general, rnoise was highest when two cells 
encoded the same juice with the same sign. Values of rnoise show the average across all time windows. Numbers 
in parentheses indicate the number of neurons in each pool. All error bars indicate SEM. 
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 occurs within 1 mm (Fig.2.3b). Since the area of OFC examined in our studies is relatively large 

(10-20 mm2 of cortex), most pairs of offer value cells are ≥1 mm apart. Hence, the results shown 

in Fig.2.6d likely represent the typical rnoise for the majority of offer value cell pairs. Among 

these pairs, mean(rnoise) was highest when neurons encoded the same juice with the same sign. 

This gives rise to the difference in juice polarity seen in Fig.2.6ab and is particularly important 

for the remainder of the paper. If noise correlations within and between pools of offer value cells 

were balanced, stochastic fluctuations in different pools of neurons would be equal on average 

and their effects onto the decision would cancel. As a consequence, CPs would be at chance 

(Haefner et al. 2013; Nienborg et al. 2012). Thus the extent to which CPs of offer value cells 

differ from chance level is tightly related to the differences between the values shown in 

Fig.2.6d. 

2.3.5 Choice probabilities in orbitofrontal cortex 

Current models posit that economic decisions are based on values computed in the OFC. In other 

words, offer value cells would provide the primary input to the decision. Consider a neuron that 

contributes to a decision process. In principle, stochastic fluctuations in the activity of the cell 

might be correlated with the decision made on any given trial. This correlation is quantified as a 

choice probability (CP), which is essentially the probability with which an ideal observer would 

infer the decision outcome based only on the activity of the cell (Britten et al. 1996). At chance, 

CP = 0.5 and by convention CP>0.5 (CP<0.5) for neurons with positive (negative) encoding. We 

thus examined CP for offer value cells. To obtain an overall estimate for the population, we 

pooled neurons associated with the two juices (A and B) and we rectified the CP of offer value 

cells with negative encoding (see Materials & Methods). The distribution of CPs measured in the 

500 ms after the offer was broad, with mean(CP) = 0.513 ± 0.007 (Fig.2.7a). This value was 
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higher than, but not statistically different from 0.5 (p = 0.08; t test). Importantly, CPs may be 

partly or fully explained by post-decision feed-back. In principle, feed-forward and feed-back 

components of CPs can be disentangled based on a precise estimate of the decision time, which 

can be obtained in perceptual decisions using dynamic stimuli (Nienborg and Cumming 2009). 

However, economic decisions are not equally amenable to this approach because "stimuli" (i.e., 

offers) are entirely and unambiguously revealed as soon as they appear on the monitor. 

Importantly, when we quantified CPs focusing on an earlier and shorter time window  (150-400 

ms after the offer, as in a previous study (Padoa-Schioppa 2013)), we obtained a measure that 

was smaller but still >0.5 (mean(CP) = 0.507 ± 0.007). All offer value cells associated to a given 

juice carry the same signal (they encode the same variable). But from a decoding perspective, it 

would make sense if neurons with higher signal-to-noise ratio (higher neuronal sensitivity) had 

greater influence on the decision (higher CP). Indeed, a correlation between CP and neuronal 

sensitivity has been observed in sensory areas during perceptual decisions (Britten et al. 1996; 

Liu et al. 2013). We thus examined the relation between the CP and the neuronal sensitivity of 

individual cells across the population (Fig.2.7b). For each offer value cell, the neuronal 

sensitivity was calculated dividing the tuning slope by the average standard deviation. In this 

analysis, we pooled cells associated with the two juices (A and B), but we did not rectify cells 

with negative encoding (neuronal sensitivity < 0). CP and neuronal sensitivity were significantly 

correlated (r = 0.20, p < 0.003, Spearman rank correlation). We further quantified the relation 

between CP and sensitivity with a linear fit (y = a0 + a1 x; Fig.2.7b, red line), which provided a 

linear term significantly greater than zero (a1 = 0.14; 95% confidence interval = [0.06, 0.21]). To 

assess distortions from linearity, we also performed a fit using a third order polynomial (y = a0 + 

a1 x + a2 x2 + a3 x3; Fig.2.7b, blue line). We found that terms a0 and a1 were significantly greater 
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Figure 2.7 Choice probabilities and noise correlations. a. Empirical distribution of CPs measured in the 500 ms after 
offer onset (N = 229 cells). Cells with positive and negative encoding were pooled (see Materials & Methods). 
Across the population, mean(CP) = 0.513 ± 0.007 (± SEM). b. Relation between choice probability and neuronal 
sensitivity. Each data point in the figure represents one offer value cell. For each neuron, the neuronal sensitivity was 
calculated dividing the tuning slope by the average standard deviation. Cells encoding the two juices (A and B) were 
pooled, but cells with a negative encoding were not rectified here (sensitivity < 0). Color lines indicate the result of a 
linear fit (a0 + a1 x; red line) and the result of a fit based on a third-order polynomial (a0 + a1 x + a2 x2 + a3 x3; blue 
line). In the latter, terms a0 and a1 were significantly >0, while terms a2 and a3 were indistinguishable from 0, 
indicating that the read-out of offer value cells was close to optimal (Haefner et al. 2013). Two outliers (gray dots) 
were not included in the regressions, but adding them to the data set did not alter any of the significance results. cd. 
Reconstructing choice probabilities from noise correlations. Each data point represents the mean(CP) obtained 
empirically or from a simulation (see Results). The error bars shown for the empirical measure indicate SEM. For 
each read-out scheme, long-distance and mixed-distance simulations provided, respectively, a lower bound and an 
upper bound for mean(CP) (see Materials & Methods). Empirical and simulated CP were calculated during the 
post-offer time window (c) and the window 150-400ms following offer onset (d). 
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 than zero (95% confidence interval) while terms a2 and a3 were statistically indistinguishable 

from zero (95% confidence interval). For a control, we repeated these analyses based on polarity 

(i.e., separating neurons associated with the two juices) and we obtained similar results. These 

analyses essentially fulfill the optimality test of Haefner et al (2013). The results indicate that the 

read-out of offer value cells does not differ significantly from an optimal scheme.  

As previously noted (Padoa-Schioppa 2013), mean(CP) measured for offer value cells was 

substantially lower than the equivalent measure obtained for neurons in the middle temporal 

(MT) area during perceptual decisions (Britten et al. 1996; Cohen and Newsome 2009). At the 

same time, noise correlations between pairs of offer value cells were 5-10 times smaller than 

those measured in area MT under comparable conditions (Fig.2.6cd). Importantly, a precise 

mathematical relation links noise correlations, CPs and the read-out weights of individual cells in 

a population. Within this computational framework, concurrent measures of noise correlations 

and CPs gave us the opportunity to investigate quantitatively the contribution of offer value cells 

to economic decisions.  

2.3.6 Reconstructing choice probabilities from noise correlations 

Using Haefner's equation (Eq.2), we conducted a series of simulations to assess whether noise 

correlations measured in the OFC, taken together with a plausible read-out scheme of offer value 

cells, would induce a distribution of CPs close to that measured empirically. Specifically, we 

simulated CPs for a population of 10,000 offer value units. One half of the units had positive 

polarity (representing positive encoding of juice A or negative encoding of juice B) and the other 

half had negative polarity (representing negative encoding of juice A or positive encoding of 

juice B). Noise correlations used in the simulations were computed from the empirical 

distributions measured for pairs of offer value cells during the post-offer time window (see 
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Materials & Methods). We examined several read-out schemes (see below). For each scheme, we 

considered two noise correlation matrices, referred to as "long-distance" and "mixed-distance", 

which effectively provided a lower bound and an upper bound for mean(CP) (see Materials & 

Methods). 

Fig.2.7c summarizes the results of six simulations. First, we considered the simple case in which 

all units have equal magnitude weights (all ωi = ±1). CPs obtained from these simulations (long-

distance mean(CP) = 0.528; mixed-distance mean(CP) = 0.542) were clearly above the empirical 

measure. Importantly, these simulations ignored a known source of choice variability, namely 

choice hysteresis (Padoa-Schioppa 2013). In essence, when two offers have similar values, 

monkeys were mildly biased towards the juice they chose in the previous trial. Choice hysteresis 

was quantified using a logistic analysis and its effect was equivalent to multiplying the quantity 

of the previously chosen juice by 1.161. Most importantly, choice hysteresis was not reflected in 

the activity of offer value cells (Padoa-Schioppa 2013) and could thus be interpreted as an 

independent input to the decision. To account for choice hysteresis in the simulation, we 

incorporated two "fictive" units, one positive and one negative, corresponding to a previous 

choice of juice A or juice B, respectively. The relative weight of the two hysteresis units was 

derived mathematically starting from the estimate obtained from the logistic analysis, and was 

equal to ±0.161 times the cumulative weight of offer value units (see Materials & Methods). CPs 

obtained from these simulations (long-distance mean(CP) = 0.519; mixed-distance mean(CP) = 

0.534; Fig.2.7c) were closer to, but still above, the empirical measure.  

Imposing uniform read-out weights may be overly simplistic, since the brain could certainly take 

advantage of the heterogeneity in neuronal responses encoding a given offer value (Ecker et al. 

2011). Indeed, the linear relation between CP and neuronal sensitivity across the population 
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(Fig.2.7b) suggests that the read-out of offer value cells is close to optimal (Haefner et al. 2013). 

Thus to complement our simulation analyses, we calculated the mean(CP) for a population of 

offer value units under the assumption of an optimal linear read-out. Optimal read-out weights 

were computed using Fisher’s linear discriminant analysis, which finds the set of weights that 

best separates two conditions ‒ in this case, choice A versus choice B. These weights took into 

account the slope of the encoding measured for each neuron, as well as the response covariance 

measured across neurons. We thus computed the optimal read-out weights for the population of 

offer value cells. CPs obtained from these simulations (long-distance mean(CP) = 0.502; mixed-

distance mean(CP) = 0.502; Fig.2.7c) were essentially at chance level and well below the 

empirical measure.  

We repeated these analyses using a shorter and earlier time window (150-400ms after offer 

onset) (Fig.2.7d). Noise correlations, empirical CPs and simulated CPs were all lower in this 

time window. Notably, the empirical measure of mean(CP) was very close to that obtained from 

the simulation using uniform weights and accounting for choice hysteresis (empirical = 0.507, 

simulated = 0.506).  

To summarize, the CPs of offer value cells were lower than those typically measured in sensory 

areas during perceptual decisions. However, CPs were quantitatively as expected given the 

structure and the strength of noise correlations measured for pairs of offer value cells in OFC. 

The results obtained focusing on an earlier and shorter time window strengthen this conclusion.  
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2.4 Discussion 
2.4.1 Noise correlations in orbitofrontal cortex are low 

Noise correlations in the OFC were on the order of 0.01. This measure is substantially lower than 

those reported for many cortical regions. Specifically, work in V1 (Gutnisky and Dragoi 2008; 

Kohn and Smith 2005; Nienborg and Cumming 2006) but see (Ecker et al. 2010), V2 (Nienborg 

and Cumming 2006), MT (Cohen and Newsome 2009; Zohary et al. 1994), somatosensory area 

S2 (Romo et al. 2003) and primary motor cortex (Lee et al. 1998) have found noise correlations 

ranging 0.1-0.25. Studies in V4 (Cohen and Maunsell 2009; Mitchell et al. 2009) have reported 

intermediate levels of correlation (rnoise ≈ 0.03-0.07), which are closer to but still slightly higher 

than those observed here for OFC. In lateral prefrontal cortex, noise correlations were smaller, 

but about twice the size of those found here (Constantinidis and Goldman-Rakic 2002). 

Importantly, many of these measures were obtained in awake behaving monkeys (Cohen and 

Newsome 2009; Gutnisky and Dragoi 2008; Nienborg and Cumming 2014; 2006; Poort and 

Roelfsema 2009; Zohary et al. 1994). Notable exceptions are the studies of Ecker and colleagues, 

who recently reported measures of rnoise in V1 comparable to those described here, and raised the 

hypothesis that high noise correlations measured in earlier studies may reflect factors such as 

spatial attention or task strategy (Ecker et al. 2014; Ecker et al. 2010) see also (Gawne et al. 

1996; Gawne and Richmond 1993). In this respect, it is worth emphasizing that our animals were 

actively engaged in a choice task. Moreover, since neurons in the OFC are not spatially tuned or 

associated with specific actions, factors such as spatial attention, action planning or minor 

stimulus variability are unlikely to affect rnoise. Thus noise correlations in the OFC seem 

genuinely lower than those measured in sensory areas under comparable conditions. How can we 

explain this discrepancy? 
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Possibly important is the fact that our offers were always unequivocally defined. In contrast, 

studies of perceptual decisions often used stochastic stimuli (Liu et al. 2013; Nienborg and 

Cumming 2006; Poort and Roelfsema 2009; Zohary et al. 1994). In principle, specific 

realizations of a stochastic stimulus could elicit systematic neuronal responses (Bair and Koch 

1996), which could result in over-estimates of noise correlations (because noise correlations 

could partly reflect signal correlations). Independently of this consideration, at least two features 

distinguish OFC structurally and functionally from sensory areas. First, OFC lacks a clear 

position in a feed-forward processing stream and, instead, integrates converging inputs from 

multiple sensory and limbic regions (Ongur and Price 2000). In contrast, sensory systems 

typically present hierarchical processing streams and are, by definition, predominantly unimodal. 

Theoretical analysis has suggested that correlations arise naturally across sequential stages of 

feed-forward processing (Rosenbaum et al. 2010) and that hierarchical organization in itself may 

contribute to rnoise in many sensory areas. Consistent with this view, noise correlations in 

perirhinal cortex (Erickson et al. 2000) and in the supplemental motor area (SMA) (Averbeck 

and Lee 2003), both of which lack a clear hierarchical position, are low and comparable to those 

measured here. Second, aside from hierarchy, it remains unclear whether OFC has any 

topographic organization. As noted above, pairs of offer value cells encoding the same variable 

(same juice, same sign) were equally prevalent at short and long distances (Fig.2.6cd), indicating 

that any clustering is loose at best. At the same time, significant CPs are almost exclusively 

observed when the choice-relevant variable is topographically organized within a cortical area 

(Nienborg and Cumming 2014), suggesting that the circuit organization associated with a 

topographic map is a necessary condition to observe the patterns of noise correlation that induce 

high CPs. Interestingly, the rodent anterior piriform cortex (Miura et al. 2012), which also lacks 
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any clear topography, is one of the few areas where rnoise is comparable to that measured here. 

Conversely, noise correlations in SMA ‒ an area with a clear topography ‒ are low (Averbeck 

and Lee 2003), indicating that topography is necessary but not sufficient to induce high noise 

correlations. 

Despite differences in strength, noise correlations measured in the OFC presented several traits 

that clearly resembled those observed in other brain regions. First, rnoise was strongly affected by 

distance, falling off within 1 mm. A similar effect of distance was found in other cortical areas, 

although the decay was less sharp in V1 (Smith and Kohn 2008) and V4 (Smith and Sommer 

2013). Second, as observed in sensory areas (Cohen and Newsome 2008; Liu et al. 2013; Smith 

and Kohn 2008), rnoise in OFC was highest when two neurons had similar tuning (i.e., when they 

encoded the same juice with the same sign). Notably, it is the "differential" component of noise 

correlations that ultimately limits the information encoded by a neuronal population (Abbott and 

Dayan 1999; Moreno-Bote et al. 2014; Shadlen et al. 1996). Third, the time course of noise 

correlations within a trial ‒ specifically the fact that rnoise drops immediately after presentation of 

a relevant stimulus ‒ is a common phenomenon (Carnevale et al. 2012; Churchland et al. 2010; 

Kohn and Smith 2005). In conclusion, it appears that noise correlations measured in OFC differ 

in strength, but not in structure from those measured in other brain regions.  

2.4.2 Noise correlations, choice probabilities and offer-value read-out  

Current neuroeconomic models assume that decisions are based on subjective values computed 

in the OFC (Kable and Glimcher 2009; Padoa-Schioppa 2011; Rangel and Hare 2010; 

Rushworth et al. 2012). In the formalism of a linear decision model (Eq.1), this means that the 

normalized read-out weights of offer value cells should add to 1. Taking into account choice 

hysteresis, which provides a smaller but independent contribution to the decision, this 
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proposition can be amended stating that normalized read-out weights of each offer value pool 

should add to ~0.839. To test this hypothesis, one would ideally measure read-out weights 

directly, but this is not practically feasible. However, read-out weights are quantitatively related 

to noise correlations and CPs, both of which can be measured. Based on this theoretical 

framework, we showed that the distribution of CPs measured for offer value cells can be 

reconstructed from concurrent measures of noise correlations assuming a plausible scheme of 

read-out weights. More specifically, the empirical measure for mean(CP) fell between the values 

obtained with a uniform and with an optimal read-out.  

Our results provide a plausibility argument in favor of the hypothesis that offer value cells 

provide the primary input to economic decisions. Importantly, the decision process is most likely 

affected also by other factors. For example, previous results indicated that decisions are partly 

biased by the initial state of the neural assembly, reflected in the "predictive activity" of chosen 

juice cells (Padoa-Schioppa 2013). This predictive activity is largely a tail activity from the 

previous trial and is thus related to the behavioral phenomenon of choice hysteresis. Thus our 

simulations accounted for this source of choice variability. At the same time, our simulations did 

not include other possible sources of variability such as residual fluctuations in the initial state of 

the decision circuit, trial-by-trial fluctuations in the relative value of the goods (Padoa-Schioppa 

2013) or downstream noise (Haefner et al. 2013). Most importantly, since any of those factors 

would reduce CPs, simulation analyses that accounted for any of them would effectively 

strengthen our current conclusions. Conversely, the extent and implications of non-linearities in 

the decoder remain to be examined. Exploring the fine structure and the mechanisms of the 

neural circuit that generates value-based decisions is a major goal for future research. 
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Chapter 3: Inefficient Adaptation to the 
Value Range during Economic Choice 

Adaptation is a ubiquitous feature of neuronal responses. While it has been studied most 

frequently in sensory systems, studies have found adaptation to the subjective value distribution 

in several brain regions, including orbitofrontal cortex. While increases in the value range have 

been associated with decreases in the gain of neuronal responses, several features of value 

adaptation are poorly understood. In particular, previous studies of value adaptation did not 

dissociate the range of value from the value maximum, nor did they look for range-dependent 

changes in the offset of the dynamic range. Here we examine how value-encoding neurons in 

macaque orbitofrontal cortex adapt to changes in both maximum and minimum values. We find 

that neurons adapt to both the maximum and the minimum, but that adaptation is intermediate: 

the dynamic range does not remap completely to changes in range. Using a simulation of choice 

behavior, we showed that inefficiencies introduced by the change in offset may impair choice 

behavior and could partially limit improvements achieved through adaptation in the response 

gain. 

3.1  Introduction 
Neuronal adaptation occurs across all levels of perceptual, motor, and cognitive processing. Neural 

activity adapts to recent history on time scales ranging from milliseconds to hours or days (Kohn 2007; 

Wark et al. 2007; Hengen et al. 2013). It contributes to homeostatic regulation (Benucci et al. 2013; 

Hengen et al. 2013), enables efficient representation of stimuli (Adibi et al. date unknown; Dan et al. 

1996; Lewicki 2002; Gutnisky and Dragoi 2008), and sharpens behavioral performance (Krekelberg et al. 

2006; Liu et al. 2016). 
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While adaptation has been investigated most thoroughly in sensory systems, it has also been observed in 

value-encoding networks. Studies in non-human primates have found adaptive encoding of subjective 

value in several brain regions, including orbitofrontal cortex (OFC) (Padoa-Schioppa 2009; Kobayashi et 

al. 2010; Yamada et al. 2018), anterior cingulate cortex (Cai and Padoa-Schioppa 2014), amygdala (Saez 

et al. 2017), and midbrain dopamine neurons (Tobler et al. 2005). Experiments looking at BOLD activity 

in humans have reported value adaptation in ventromedial prefrontal cortex (vmPFC), cingulate cortex, 

ventral striatum, and elsewhere (Elliott et al. 2008; Cox and Kable 2014; Burke et al. 2016). Recently, 

studies have begun to explore the behavioral implications of value adaptation using a combination of 

experimental and theoretical approaches. This work suggests that value adaptation in different regions 

may modulate learning rates during reinforcement learning (Diederen et al. 2016) and reduce stochasticity 

in value-based decisions (Rustichini et al. 2017). At the same time, other studies suggest that value 

adaptation on a more rapid time scale may produce irrational decision-making patterns (Soltani et al. 

2012; Yamada et al. 2018). 

Despite this growing interest, gaps in our understanding of value adaptation limit our ability to predict 

and interpret its effects. Previous studies of value adaptation have not clearly distinguished between the 

range of values and the maximum value in a given context, making it difficult to determine which features 

ultimately drive responses to adapt (Padoa-Schioppa 2009; Kobayashi et al. 2010; Cox and Kable 2014). 

Furthermore, these studies focused exclusively on the gain of value encoding, ignoring overall changes in 

neuronal activity across conditions (Padoa-Schioppa 2009; Kobayashi et al. 2010; Cox and Kable 2014; 

Rustichini et al. 2017). In this study, we developed a task that allowed us to address these points. We 

focused on value encoding responses in OFC, a that has been linked value-based decision making in 

humans and other primates through both lesion studies (Fellows and Farah 2007; Fellows 2011; 

Rudebeck and Murray 2011) and neurophysiological experiments (FitzGerald et al. 2009; Peters and 

Büchel 2009; Kennerley et al. 2011; Raghuraman and Padoa-Schioppa 2014; Rich and Wallis 2016; Xie 

and Padoa-Schioppa 2016). 
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We analyzed the value adaptation in OFC neurons to changes in both the maximum and minimum of the 

value distribution. We recorded neural activity as monkeys performed a juice choice task, during which 

the value distribution of each juice could change in one of six ways: increase/decrease in maximum value, 

increase/decrease in minimum value, or increase/decrease in both. We found that value-encoding neurons 

adapted to both maximum and minimum values, but that responses did not remap completely to the new 

range of options. This intermediate adaptation was not a result of an unfinished process or of a mixture of 

adapting and non-adapting cells, but rather a consistent characteristic of the population. Partial adaptation 

could be characterized by an offset in the overall activity levels across different conditions. Simulating a 

simple decision network, we showed that the presence of this offset was sub-optimal, but that its effect 

was minor compared to the effect of narrowing the dynamic range. 

3.2  Materials and Methods 
3.2.1 Subjects 
All experimental procedures conformed to the NIH Guide for the Care and Use of Laboratory 

Animals and were approved by the Animal Studies Committee at Washington University in St. 

Louis. Two adult male rhesus macaques (Macaca mulatta; D, 11.5 kg; F, 11.0 kg) were used in 

the study. Before training, a head-restraint device and a recording chamber were implanted on 

the skull under general anesthesia. The recording chamber (main axes, 50 x 30 mm) was 

centered on coordinates (A30, L0). Structural MRI scans were obtained before and after 

implantation and used to guide recording.  

3.2.2 Range adaptation task 

In this experiment, monkeys performed a variant of a juice choice task used in several previous 

studies (Padoa-Schioppa and Assad 2006; Cai and Padoa-Schioppa 2014; Xie and Padoa-

Schioppa 2016). Monkeys were given a series of choices between two juices, A and B, offered in 
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varying quantities. Juice A was defined as the preferred juice (i.e. 1A was generally chosen over 

1B). On each trial, the monkey began by fixating on a central point. After 1s, cues appeared on 

each side of the central fixation, indicating the current range of possible offers. The cues 

consisted of a set of filled and empty colored squares. The color of the squares indicated the 

types of juice, the total number of squares represented the maximum possible offer for that juice 

in the current block, and the filled squares represented the minimum possible offer in that block 

(Fig.3.1A). The cues remained on screen for 1s and were then replaced by a set of solid squares 

denoting the offers on the current trial. After a random 1-2s delay, the central fixation point 

disappeared and targets appeared next to each offer, signaling the monkey to indicate his choice 

with a saccade to one of the options. The monkey then received whichever offer he selected. If 

the monkey broke fixation before the go signal appeared or if he failed to fixate the target for 

750ms after the saccade, the trial was aborted and the monkey received no reward. 

Each session consisted of 2-3 blocks of ~250 trials. The quantity offered varied pseudo-randomly 

from trial to trial within a defined range. Within a block, the range of possible offers was kept 

consistent for each juice. The monkey could either learn the value range implicitly through 

experience or explicitly by use of the range cues. Between blocks, the range of available offers 

for each juice changed, with three possible ranges for each juice: “high” (2-5 units of juice A or 

4-10 units of B), “low” (0-3 uA or 0-6 uB), and “wide” range (0-5 uA or 0-10 uB). Most range  

transitions consisted of an increase/decrease in the minimum value (Vmin) while the maximum 

value (Vmax) either remained constant or shifted in conjunction with the minimum. Note that 

when maximum and minimum values changed together, the difference between them was kept 

constant. We counterbalanced the type of range transition across sessions. In a smaller subset of 
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sessions, the maximum value increased/decreased while the minimum was kept at zero. The 

ranges of juice A and B could change in either the same or different directions in any session.  

The task was run on custom-written software (http://www.monkeylogic.net/) based on Matlab 

(MathWorks). Eye position was monitored with an infrared video camera (Eyelink; SR 

Research).  

3.2.3 Analysis of behavior 

All analyses were conducted in Matlab. Unless otherwise noted, reported p-values were 

calculated using the Wilcoxon signed rank test. 

Choice behavior was analyzed separately for each range block. We defined the choice pattern as 

the percent of trials in which the animal chose juice B for each offer value ratio (#B/#A). We fit 

the choice pattern to a sigmoid function using logistic regression: 

P(choice B) = 1 / (1 + e-X)         

X =a0 + a1 log(#B/#A) 

From this fit, we determined the relative value of the two juices (ρ) and the sigmoid steepness 

(η): 

 ρ = exp(-a0/a1) 

 η = a1 

We looked for changes in ρ and η as a function of range type. To do this, we compared data for 

all pairs of blocks within a session. We recorded during 107 sessions, each of which included 2-3 

range conditions, yielding a total of 236 unique block pairs. 31 block pairs were excluded from 

http://www.monkeylogic.net/
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analysis because the logistic regression separated choices perfectly in at least one of the blocks, 

preventing accurate estimation of fit parameters. For the remaining 205 block pairs, we 

computed a fractional difference in each parameter across different range types, where we 

defined fractional difference as an index variable equal to the difference in values divided by 

their sum. We tested whether the fractional difference deviated from zero (Wilcoxon signed rank 

test). 

3.2.4 Electrophysiology 

We recorded neuronal data from the central OFC of two monkeys, in a region approximately 

corresponding to area 13m (Ongur and Price 2000) (monkey D: A 31:36, L -6:-10; monkey F: A 

31:37 L -6:-11 and 6:11). Recordings were obtained using tungsten electrodes (125 µm diameter; 

FHC) and 16-channel silicon V-probes (185 µm diameter, 100 µm spacing between electrodes; 

V-probe). Electrodes were lowered vertically into position each day using a custom-built 

microdrive (step size: 2.5 µm). Recording depth was determined ahead of time based on 

structural MRI. During experiments, the monkeys sat in an electrically insulated enclosure (Crist 

Instruments) with their head fixed.  

Electrical signals were amplified (gain: 10,000) and band-pass filtered (low-pass cut-off: 300 Hz, 

high-pass cut-off: 6 kHz; Lynx 8, Neuralynx). Action potentials were detected on-line by setting 

a threshold during recording, and waveforms crossing the threshold were saved (40 kHz 

sampling rate; Power 1401, Cambridge Electronic Design). Spike sorting was conducted off-line 

using standard software (Spike 2, Cambridge Electronic Design). Neurons were included in the 

analysis if they remained stable and well-isolated in two range blocks for at least 120 trials per 

block. Responses that were not stably isolated for the full session were only analyzed for the 

trials in which they were stable. In the V-probe recordings, spikes from the same neuron were 



74 
 

occasionally picked up by two neighboring contacts. These were detected manually and one of 

the duplicates was excluded from analysis.  

3.2.5 Response classification 

We analyzed cell data in seven time windows following offer onset: post-offer (0.5 s after offer 

onset), late-delay (0.5-1.0 s after offer onset), pre-go (0.5 s before the go signal), reaction time 

(time from go cue to target acquisition, usually ~200ms), post-juice (0.5 s after juice delivery) 

and post-juice 2 (0.5 s to 1s after juice delivery). Data were analyzed independently for each 

range block. We defined a “trial type” as a set of two offers and the monkey’s choice between 

them. For example, if the monkey chose B on a trial where he was offered 1A vs. 6B, the trial 

type would be [1A : 6B; B]. Task-based neuronal activity was calculated by taking the mean 

firing rate for each trial type in each time window. A “neuronal response” was defined as the 

activity of one cell in one time window across two range blocks. Since we were interested in the 

effects of adaptation at steady state, we discarded the first 16 trials of each block before analysis, 

thereby excluding trials where the monkey had not yet experienced the full range of values.  

A response was considered task-related if it passed an ANOVA (factor: trial type; p < 0.05) in 

both of the two range blocks. To classify task-related responses, we regressed each response 

against the variables offer value A, offer value B, chosen value, and chosen juice. Regressions 

were performed separately for each of the two range blocks. We classified a response as 

encoding a variable if 1) the regression on that variable had a nonzero slope in both blocks and 2) 

that variable had highest total R2 in the two blocks. Further analyses focused on offer value and 

chosen value responses. Responses were excluded from analysis if the ranges of the two blocks 

differed by <0.5 units of value for the encoded variable (132 responses) or if activity during the 
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fixation time window changed by a factor >1.6 (208 responses). Including these responses in the 

analysis added noise but did not qualitatively alter results.  

3.2.6 Normalization of responses for averaging 

Several figures show average traces of offer value response activity normalized so that value and 

response both range from 0-1. Unless otherwise specified, these responses were normalized such 

that: 

 Rnorm = (R – Rmin,wide)/(Rmax,wide – Rmin,wide) 

 Vnorm = (V – Vmin,wide)/(Vmax,wide – Vmin,wide) 

for cases when either Vmax or Vmin change alone, and: 

 Rnorm = (R – Rmin,low)/(Rmax,high – Rmin,low) 

Vnorm = (V – Vmin,low)/(Vmax,high – Vmin,low) 

for cases where Vmax and Vmin shift concurrently. Rnorm and Vnorm denote normalized responses 

and values, R and V denote the non-normalized responses and values, and Rmax,j and Rmin,j 

indicate the response to Vmax and Vmin in range type j.  

3.2.7 Metrics of Adaptation 

Data were analyzed in Matlab (MathWorks). Unless otherwise noted, reported p-values were 

calculated using the Wilcoxon signed rank test. 

Analysis of adaptation was restricted to offer value A, offer value B, and chosen value responses. 

We grouped responses into three types of range transition: change Vmax only, change Vmin only, 

and change both. Transition types could be divided further based on the direction of change 
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(increase/decrease). For offer value responses, we controlled the value range so that each 

transition type was consistent. Thus if we describe the offer value as a fraction of the wide value 

range (ΔV,wide), the normalized ranges are 0-0.6uV (low range), 0.4-1uV (high range), and 0-1 

uV (wide range) for all offer value responses. Chosen value ranges depended on the choice 

pattern of the animal and varied across sessions. For the purposes of this experiment, we said that 

the maximum/minimum chosen value changed if the difference between was greater than >0.5 

uB. 

For each response, we regressed neural activity onto value independently in each range block. 

We obtained the slope of encoding (s) from each fit. Slopes were compared directly across range 

types, and the relationship between slope and range was tested more precisely using Adaptation 

Ratios: 

 ARmax = (s1 Vmax,1) / (s2  Vmax,2) 

 ARrange = (s1  ΔV1) / (s2  ΔVmax,2) 

 ARnone = s1 / s2 

Where Vmax,i is the maximum value in range i and ΔVi  is the range of values (maximum - 

minimum) in range i. For this experiment, we defined Range 1 = wide range for responses where 

Vmax or Vmin changed alone, and Range 1 = high value range for cases where both Vmax and Vmin 

changed. 

In addition to the slope, we used the regression to calculate the responses to the minimum and 

maximum values (Rmin and Rmax) from the regression:  

Rmin = s * Vmin + c 
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Rmax = s * Vmax + c    

Where Vmin and Vmax are the minimum and maximum values in the current block and c is the y-

intercept of the linear fit. We computed the normalized difference for conditions where either 

Vmin or Vmax change alone: 

 ΔRmin = (Rmin,wide - Rmin,narrow)/(Rmax,wide - Rmin,wide) 

ΔRmax = (Rmax,wide - Rmax,narrow)/(Rmax,wide - Rmin,wide) 

And for conditions where both change: 

ΔRmin = (Rmin,high - Rmin,low)/(Rmax,high - Rmin,low) 

ΔRmax = (Rmax,high - Rmax,low)/(Rmax,high - Rmin,low) 

3.2.8 Analysis of time course 

To study adaptation in early vs. late trials after the range transition, we separated trials from the 

first and second half of each range block and computed independent tuning functions for each 

half. Responses were excluded if the slope changed by a factor >5 in the first range block (2 

responses excluded). Including these responses did not substantially affect results, but did add 

noise to the data, particularly for changes in Vmax. Plots of mean tuning curves in the first and 

second halves of each block were normalized to the first half of the wide range block.  

3.2.9 Measuring nonlinearities in tuning 

For each response, we fit neural activity in each block with independent second-order and third-

order polynomials: 

Quadratic fit:  R(V) = β0,q + β1,q V + β2,q V2
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Cubic fit:  R(V) = β0,c + β1,c V + β2,c V2 + β3,c V3 

Where V is each value, R is the average response to that value, and βq and βc are the fit 

coefficients for the quadratic and cubic fits respectively. We focused the analysis on β2,q and β3,c 

(hereafter called β2 and β3). To examine the effects of value range on the tuning curvature, we 

compared the distributions of β2 and β3 across each value range (Wilcoxon signed rank test). We 

also compared β2 and β3 for each response across blocks for all range transitions and computed 

the Pearson correlation for each coefficient across blocks.  

The wide range condition contained a greater number of unique V than the high or low ranges, 

which may constrain the fit. In particular, if responses are roughly linear with a small, constant 

floor effect, the fit obtained for the wide range will appear more linear. In order to compare the 

ranges in a balanced way, we repeated the quadratic and cubic fits for the wide range using a 

subsampled set of values, equivalent to the value distribution in the low range. This procedure let 

us look at the effects of range on tuning curvature for equally constrained fits. 

3.2.10 Simulation 

We constructed a simple linear model of decision-making to explore the effect of baseline firing 

rates on choice behavior. The model consisted of a population of 10,000 simulated offer A and 

offer B neurons (5000 units per group). Each unit encoded offer value in a linear way, such that 

the response of unit i on trial t was: 

 Ri.t=  Vt * (Rmax - RBL) + RBL + ci,t 

where RBL is the baseline activity, Rmax is the maximum response of the unit, Vt is the value of the 

encoded juice on trial t, and ci,t is a noise term for unit i on trial t. Units of R and V are arbitrary.  
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Importantly, trial-to-trial variability was correlated across the population, reflecting the presence 

of noise correlations (rnoise) in OFC offer value neurons (Conen and Padoa-Schioppa 2015). We 

generated a realistic correlation matrix Q for the population as described previously (Hardin et 

al. 2013; Conen and Padoa-Schioppa 2015). We set mean(rnoise) = 0.01 for units encoding the 

same juice and mean(rnoise) = 0 for units encoding different juices. To generate the vector of 

noise terms ct for the population on each trial, we generated values of uncorrelated noise ut ~ 

N(0,1). This was multiplied by the correlation matrix and scaled according to the Fano factor (F) 

and the mean response for the current offer type (⟨Rv⟩) to obtain ct: 

 ct = Q ut ⟨Rv⟩ (F)0.5 

the scaling factor ⟨Rv⟩ (F)0.5 accounts the observation that the variance in firing rate is 

proportional to the mean response. 

Using this model, we simulated choice behavior for increasing values of RBL. We considered two 

scenarios: 1) units had a fixed Rmax or 2) units had a fixed activity range (Rmax - RBL). For 

convenience, we defined Rmax = 1 for the first scenario and (Rmax - RBL) = 1 for the second. Each 

simulation consisted of 1000 trials, and the decision on each trial was determined by the 

difference in the net activity of the offer value A and offer value B units. The value of each juice 

for a given trial was a randomly chosen integer ranging from 0 to 10. In both scenarios, we 

simulated the choice pattern for the neural population as values of RBL increased from 0 to 1. We 

repeated the simulation for five different values of F and ran the simulation 20 times for each 

value of F and RBL. We defined the “reward fraction” as Vchosen/Vbest for each trial, where Vbest 

was the higher of the two offered values. Choice performance in each condition was assessed 
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based on the average reward fraction across trials. Note that chance value for the reward fraction 

is >0.5, since the lower value option on each trial still has V > 0.  

3.3 Results 

3.3.1 Value range influences choice behavior 

To examine the features of value adaptation, we trained animals to perform a modified version of 

a juice choice task (Fig.3.1a). The task consisted of 2-3 blocks of ~250 trials. Within each block, 

the monkey was presented with a series of choices between two juices, A and B. The quantity of 

juice offered varied pseudorandomly within a set range, defined by a minimum and maximum 

value (Vmin and Vmax). Each juice could be offered in a “high”, “low”, or “wide” range (see 

Methods). Between blocks, the range of available offers changed in one of six ways: Vmax 

increase/decreased, the Vmin increased/decreased, or Vmax and Vmin increased/decreased 

concurrently while (Vmax - Vmin). The range of the two juices could change in either the same or 

opposite directions.  

We analyzed the animals’ behavior separately in each range block. Using logistic regression, we 

fit the choice behavior with a sigmoid function, which provided a measure of behavioral 

steepness (η) and relative value (ρ) in each block (see Methods). The monkeys’ decisions showed 

a quality-quantity tradeoff between the juices. The relative value of the juices (ρ) ranged from 

1.1 to 5.0 across sessions, with mean(ρ) = 2.4. Within a session, ρ was strongly correlated across 

blocks (r = 0.73, p = 5.5E-35, Pearson correlation) (Fig.3.1b). Values of ρ increased slightly over 

the course of the session, reflecting the animal’s increasing satiety (median Δρ = 0.07 across 

blocks; p = 0.01, Wilcoxon signed rank test). Choice behavior was moderately affected by the 

value range (Fig.3.1cd). Relative values were generally slightly greater in high and wide range 
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Figure 3.1 Range adaptation task and behavioral results. (A) Time course of a trial. The animal initiates the trial by 
fixating on a central point. After 1s, range cues appear on either side of the central fixation. Filled squares indicate 
the minimum possible offer for a given juice and total squares indicate the maximum. After 1s, the cues are replaced 
by two sets of filled squares representing the current offers. After a variable interval (1-2s), the central fixation 
disappears, and targets appear next to each offer, cuing the monkey to indicate his choice. The monkey then makes a 
saccade to one of the targets and holds fixation for 0.75s, after which he receives the selected juice. Each session 
consists of 2-3 range blocks, each with ~250 trials. Ranges remain constant across trials within each block. (B-D) 
Choice behavior across sessions. Each point represents the behavior from one pair of blocks in a session (n=205). 
(B) Relative value in the earlier vs. later block of a session. Values of ρ were strongly correlated across pairs of 
blocks in a session (r = 0.73 , p = 5.5E-35, c) and slightly elevated in later blocks (median Δρ = 0.07; p = 0.01). (C) 
Fractional difference in ρ across range types. Median differences: ρhigh-ρlow = 0.040 (p = 2.3E-4), ρwide-ρlow = 
0.032 (p = 8.3E-5), ρhigh-ρwide = 0.041 (p = 0.54). (D) Fractional difference in sigmoid steepness across range 
types. Median differences: ηhigh-ηlow = 0.11 (p = 7.7E-3), ηwide-ηlow = 0.069 (p = 4.2E-3), ηhigh-ηwide = 0.049 
(p = 0.14). Black asterisks indicate median fractional differences. All p-values Wilcoxon signed rank test.
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blocks compared to low (Fig.3.1c, p = 2.3E-4 and p = 8.3E-5, Wilcoxon signed rank). In 

addition, high and wide range blocks had steeper sigmoid functions than low range blocks 

(Fig.3.1d), indicating greater decision variability. High range blocks tended to have slightly 

steeper sigmoids than wide blocks, but this effect was not significant (p = 0.14). 

3.3.2 Neural responses adapt to maximum and minimum values 

We recorded 1262 cells from two monkeys as they performed the range adaptation task (monkey 

D, left hemisphere: 480 cells; monkey F, left hemisphere: 373 cells, right hemisphere: 409 cells). 

We analyzed the activity of these neurons in seven time windows after offer onset, and we 

defined a neuronal response as the activity of one neuron in one time window across two range 

blocks. Modifying the approach used in previous studies (Padoa-Schioppa and Assad 2006), we 

identified value-related responses and classified responses as encoding offer value A, offer value 

B, chosen value, or chosen juice (see Methods). 488 neurons encoded a decision-related response 

in at least one time window (monkey D: 248 cells, 51.7%; monkey F: 240 cells, 30.7%). We 

identified 1917 decision-related responses, 984 of which encoded the offer value or chosen value 

(Table 3.1). Out of these, a total of 644 value-encoding responses met inclusion criteria for our 

analysis of adaptation (see Methods).  

We considered three basic hypotheses in our analysis of adaptation: 1) responses would adapt to 

Vmax only, 2) responses would adapt to both Vmax and Vmin, or 3) responses would not adapt. In 

broad terms, responses adapt to a parameter if changing that parameter alters the tuning function. 

Changes of this sort could be seen in individual responses for all types of range transition 

(Fig.3.2). Responses across the population were highly variable (Fig.3.3a-c), but consistently 

showed adaptation to both maximum and minimum values. Notably, this adaptation does not 
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appear “complete”: the range of firing rates is different across range types, indicating that neural 

activity does not remap completely to different conditions. This is seen most clearly in 

(Fig.3.3d): although the three range types have distinct tuning curves, the minimum response is 

increased in the high range compared to the others. Likewise, the maximum response in the low 

range is decreased compared to low and high.  

Table 3.1  Number of responses encoding each variable for Monkeys D and F. Later analyses focused on 
offer value and chosen value responses. Values in parenthesis indicate the number of responses that met 
inclusion criteria.  

 

3.3.3 Activity ranges do not completely remap 

To examine value adaptation quantitatively, we focused on three features of the response 

function: the slope of encoding (s), the response to Vmin (Rmin) and the response to Vmax (Rmax). 

We analyzed changes in the tuning slope (s) in two ways. First, we compared the slope directly 

across changes in Vmax, Vmin, or both (Fig.3.4a-c). On average, s was generally greater in high and 

low value ranges compared to the wide range, consistent with the hypothesis that neurons adapt 

to both maximum and minimum values (high vs. wide: p = 1.7E-7; high vs. low: p = 7.3E-8; 

Wilcoxon signed rank test). Responses also showed slightly higher slopes in the low range 

condition relative to the high (p = 4.3E-7, Wilcoxon signed rank test). While this is consistent  

Response Monkey D Monkey F 

Offer Value A 242 (160) 123 (75) 

Offer Value B 116 (78) 88 (51) 

Chosen Value 249 (173) 166 (107) 

Chosen Juice 578  355  
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offer value A (D), and chosen value. 
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with the idea that responses adapt more to Vmax than Vmin, it is difficult to interpret from the 

slopes alone, as the difference in values (Vmax - Vmin) can change from block to block for chosen 

value responses. 

We examined the relationship between slope value range using Adaptation Ratios (ARs). We 

defined ARs for three hypothetical scenarios: adaptation to maximum value (ARmax), adaptation 

to minimum and maximum (ARrange), or no adaptation (ARnone) (see Methods). ARs provide a 

measure of the degree of adaptation. If neurons adapt completely to the maximum and minimum 

values, ARrange = 1, whereas if they adapt to the maximum only, ARmax = 1. Note that ARnone is 

simply the ratio of slopes in the two conditions, which should be 1 if responses do not adapt. 

Since ARs are ambiguous for certain types of range transition, AR=1 does not prove that 

responses do adapt in a particular manner. However, if AR for a given hypothesis ≠1, it indicates 

that the response does not adapt completely to the parameters of interest (or in the case of ARnone, 

that responses do adapt at least partially to the change in value). Table 3.2 summarizes ARs for 

each type of transition. A few results are worth noting. First, ARnone < 1 for all types of range 

transition, indicating that adaptation consistently occurs. ARmax also differs from 1 in nearly all 

conditions (the only exception occurs in a case where Vmax changes alone, a transition where 

ARmax and ARrange are indistinguishable). The results are closer to adaptation to the range of 

values (Vmax – Vmin). However, ARrange > 1 for responses where the Vmin changes alone or where 

Vmax decreases, indicating that responses do not fully adapt to changes either maximum or 

minimum values. Overall, the results suggest that responses adapt to both maximum and 

minimum values, but that the dynamic range does not remap completely. 

Analyses of s and AR measured changes in the gain of value encoding. However, as Fig.3.3 

illustrates, changes in range are accompanied by a change in the overall activity level, which we 
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refer to as an offset. This offset can be quantified as a change in maximum and minimum 

responses. We calculated Rmin and Rmax using the tuning fit for each range block and found the 

difference in each value across different ranges (Fig.3.4d-f; Table 3.2). The results confirmed the 

impression given by the ARs. ΔRmin and ΔRmax were consistently higher in ranges where Vmin and 

Vmax were higher, regardless of how the range changed. Nevertheless, observed changes in Rmin 

and Rmax were lower than predicted for non-adapting responses. It is worth noting that 

distributions of ΔRmin and ΔRmin appear unimodal (Fig.3.4d-f, inset), suggesting a single group of 

partially adapting neurons rather than a mix of adapting and non-adapting cells. 

Table 3.2. Metrics of adaptation in offer value and chosen value responses across six types of range 
transition. Columns 1-3: median Adaptation Ratios calculated for three hypotheses: 1) neurons adapt to 
max value only, 2) neurons adapt to both max and min, 3) neurons do not adapt. If a hypothesis is true, 
AR = 1. Columns 4-5: median normalized difference in Rmax and Rmin between range blocks. Nonzero 
values indicate a change in neural activity range between sessions (incomplete adaptation). Asterisks (*) 
indicate a significant deviation from 1 (columns 1-3) or from 0 (columns 4-5). Plus (+) indicates that the 
median ΔRmin or ΔRmax differs from the prediction for non-adaptive coding. All p < 0.01, Wilcoxon signed 
rank test. 

 

Transition Type ARmax ARrange ARnone ΔRmax ΔRmin 

Increase Max 1.04 1.04 0.78* 0.17*,+ 0.011 

Decrease Max 1.13* 1.13* 0.74* 0.22*,+ 0.060 

Increase Min 0.83* 1.23* 0.83* 0.029 -0.20*,+ 

Decrease Min 0.88* 1.39* 0.88* 0.018 -0.19*,+ 

Increase Both 1.37* 1.04 0.86* 0.22*,+ 0.17*,+ 

Decrease Both 1.27* 0.94 0.82* 0.17*,+ 0.19*,+ 
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3.3.4 Adaptation does not affect linearity of tuning 

Previous work has found that value encoding in OFC is close to linear, but slightly convex on 

average (Rustichini et al. 2017). We asked whether range adaptation had any effect on this 

curvature. We fit each value-encoding response with separate quadratic and cubic regressions for 

each range condition. As in previous experiments, few responses showed significant quadratic or 

cubic terms (β2: 10.6%, β3: 4.9%; p<0.05, F-test). Across the population, quadratic terms were 

slightly positive on average (p = 5.8E-56, Wilcoxon signed rank test), while cubic terms were 

slightly negative (p = 1.6E-3, Wilcoxon signed rank test). The distribution of β2 did not differ 

between high and low value ranges (Fig.3.5a; median values: 0.064, 0.61; p = 0.47, Wilcoxon 

rank sum test) and was slightly lower in the wide range (median: 0.017; p = 9.6E-9 vs. high 

range, 1.1e-10 vs. low range). However, this difference appeared to arise from the fact that the 

wide range included a greater number of distinct values, making the fits more constrained. To 

test this, we recalculated quadratic fits for the wide range using only the subset of values present 

in the low range. The distribution of β2 from this subsampled fit did not differ from the high and 

low ranges (median β2,subsampled = 0.045; both p > 0.1). The distribution of β3 did not differ across 

high, low, and wide conditions (Fig.3.5b; median values: -0.014, 1.8E-3, & -3.8E-3; all p > 0.1, 

Wilcoxon rank sum test).  

The same pattern of results was found when we compared β2 and β3 for each response across 

blocks (Fig.3.5c-f). While values of β2 varied substantially, coefficients for each response were 

correlated across blocks (see figure legend). This correlation suggests that β2 may be a 

characteristic of each neuron’s response function. As in the previous analysis, we found that β2 

was slightly higher in narrow ranges compared to the wide range (Fig.3.5e), though this was only 

significant for changes in Vmax (median difference= 0.031, p = 1.4E-4, Wilcoxon signed rank 
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Figure 3.5 Quadratic and cubic tuning parameters. (A,B) Distribution of quadratic (A) and cubic (B) coefficients 
for all value encoding responses in wide, low, and high ranges. (C-F) Quadratic and cubic coefficients for 
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(change in Vmax); r = 0.35, p = 1.1E-8 (change in Vmin); (F) r = - 0.12, p = 0.12 (change in Vmax); r = 0.24, p = 
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test). The effect disappeared when β2 for the wide range was calculated with subsampled values 

(p = 0.39). Values of β3 did not differ across any type of range transition (all p > 0.1) and did not 

show a consistent pattern of correlation across blocks. Taken together, these results show that 

adaptation alters the gain and offset of value-encoding responses, but not their overall functional 

form.  

3.3.5 Adaptation is temporally complete 

The observation of partial adaptation in value-encoding responses raises the possibility that 

adaptation was still ongoing during data collection. To test this, we divided each block in half 

and computed the tuning function of responses independently in the first and second parts. If 

adaptation was temporally incomplete, we would expect the response in the second half of Range 

2 to show greater changes than the first. In contrast, tuning functions for the first and second 

halves of Range 2 are nearly identical for all transition types (Fig.3.6), although results were 

noisy for responses where the maximum value increased (Fig.3.6a). Statistical analysis 

confirmed that changes in the slope and intercept of the tuning function were present within the 

first half block of Range 2 (all p < 0.01). These results confirm that adaptation occurs relatively 

quickly after a change in value range, and the features of value adaptation we describe reflect 

responses at a steady state rather than an unfinished transition in encoding. 

3.3.6 Offer value adaptation is influenced by the non-encoded range 

The value adaptation task included some sessions the range of juices A and B changed in the 

same direction (congruent) and other sessions where they changed in opposite directions (non-

congruent). This allowed us to ask whether value adaptation in one class of response was 

affected by changes in the non-encoded juice. We grouped offer value responses according to 
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whether they were recorded during a congruent or non-congruent change in range (n = 214 and 

100 responses). We examined the changes in s, Rmin, and Rmax across blocks for each group 

(Fig.3.7; Table 3.3). Note that for noncongruent sessions, the total value range of the two juices 

is comparable across blocks, whereas for congruent sessions the total range changes 

substantially.  

Responses adapted to Vmax for both congruent and noncongruent transitions, but adaptation to V-

min in noncongruent sessions was weak or absent. This effect could be seen in both the response 

gain and change in offset. s was significantly different following changes in Vmax (p = 1.0E-4), 

but not Vmin (p = 0.24), although the trend for Vmin was in the expected direction (Fig.3.7de). 

When Vmin and Vmax changed together, s was shallower in the high range compared to the low 

range, consistent with adaptation to Vmax only (Fig.3.7f). Median(ΔRmin) for when both Vmin and 

Vmax changed was 0.37, compared to a predicted value of 0.4 if neurons adapted to the maximum 

only (n.s., p = 0.33). However, when Vmin changed alone, median(ΔRmin) was different from 

predictions for both full adaptation (predicted ΔRmin = 0) and no adaptation (predicted ΔRmin = -

0.4), suggesting that weak adaptation to the Vmin may still occur with noncongruent transitions. 

Nevertheless, adaptation to Vmin was greatly reduced in the noncongruent condition, while 

adaptation to Vmax was broadly similar across conditions. Since noncongruent transitions 

produced minimal change in the total value range, these results suggest that responses adapt to 

the maximum value of their encoded juice, but may adapt to the minimum of the total range (but 

see Discussion). 

3.3.7 Baseline activity impairs simulated choice behavior 

A previous study showed that choice performance improved monotonically with the degree of 

value adaptation (Rustichini and Padoa-Schioppa 2015). However, this study only considered 



93

a

d f

b

e

c
R

es
po

ns
e 

(n
or

m
al

iz
ed

)

Value (normalized)

0 0.5 10 0.5 1
0

0.5

1

R1, 1st half
R1, 2nd half
R2, 1st half
R2, 2nd half

0 0.5 1

0

0.5

1
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Table 3.3 Median changes in slope, Rmin and Rmax following congruent and non-congruent changes in 
juice range. We define Δs as swide/snarrow for cases where the maximum or minimum values changes (rows 
1-2) and as shigh/slow for cases where both change (row 3). Asterisks (*) indicate a significant deviation 
from 1 (for s) or 0 (for ΔR). Plus (+) indicates that the median ΔRmin or ΔRmax is different from the value 
predicted for non-adaptive coding. All p<0.05, Wilcoxon signed rank test. 

 

changes in the slope of encoding. Furthermore, the analysis was limited to instances where the 

minimum offer value was zero, and it assumed that neurons had zero baseline activity. Here we 

found that value-encoding responses adapt to the minimum as well as the maximum responses 

and that adaptation involves a shift in Rmin as well as the slope of encoding. To interpret the 

behavioral effect of this shift, we need to consider how baseline response levels affect activity in 

decision-making circuits.  

To explore this, we generated a simple linear model of a decision circuit (see Methods). We 

simulated a value-encoding population that contained 5,000 offer value A and 5,000 offer value B 

units. Each unit encoded the value of its preferred juice in a linear way, and trial-to-trial 

variability was correlated across units, with correlation levels estimated based on previous 

empirical results (Conen and Padoa-Schioppa 2015). We simulated the responses of this network 

to a series of choices between two options. The values of options were randomly determined on 

each trial. The decision was determined based on the activity of the two offer value pools. Thus, 

Transition  
Type 

Congruent Non-congruent 

Δs ΔRmax ΔRmin Δs ΔRmax ΔRmin 

ΔMax 0.62* 0.14+ 6.2E-3 0.72* 0.33*,+ 0.038+ 

ΔMin 0.84* 0.065 -0.20*,+ 0.80 -0.038 -0.26*,+ 

Shift  0.96 0.24*,+ 0.25*,+ 0.79* 0.20*,+ 0.37* 
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on trials where the activity of offer A units exceeded that of offer B units, juice A was defined as 

the chosen option.  

We examined the choice pattern of the simulated network for varying levels of baseline activity 

(RBL). We considered two general scenarios: 1) each unit had a fixed Rmax, so increasing RBL 

reduced the available dynamic range; or 2) each unit had a fixed activity range (ΔR  = Rmax - R-

BL), so increasing RBL shifted the dynamic range up. The second scenario is analogous to the shift 

in Rmin that we observed for range blocks with higher minimum value. For each scenario, we 

simulated choice activity for increasing levels of RBL. To assess choice behavior, we calculated 

the fractional reward rate for every condition, defined as the chosen value divided by the 

maximum available value for each trial. The average fractional reward across each simulated 

session provided a metric of choice performance. Note that chance value for the reward fraction 

is >0.5, since the lower value option on each trial still has V > 0. Instead, chance level should be 

interpreted as the level of behavioral performance when RBL = Rmax, i.e. is the fraction of reward 

obtained when RBL = 1 in scenario 1 (Fig.3.8a).  

In both scenarios, reward acquisition decreased with increasing values of RBL (Fig.3.8). This 

effect was stronger for simulations using a higher Fano factor (F). Despite this general pattern, 

the overall impairment was relatively minor for simulations where Rmax could shift. The 

fractional reward level in this condition was >0.95 even for RBL equal to or exceeding the total 

response range (Fig.3.8b). In the context of range adaptation, these results suggest that a shift in 

the offset of the tuning function may have little effect on behavior, whereas a change in ΔR may 

substantially alter choice performance. 
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3.4 Discussion 
In this study, we examined how OFC neurons adapt to changes in the value distribution during a 

juice choice task. We found that neurons adapted to changes in both maximum and minimum  

values. Notably, while responses showed consistently higher gain in blocks with a narrow (high 

or low) value range, neural activity range did not remap completely to the current value 

distribution. Instead, the range of activity shifted depending on the current range, creating an 

offset in the overall response level. The highest firing rates were not observed in blocks with a 

low value range, and the lowest firing rates were not observed during a high range. As a result, 

value encoding responses fall in an intermediate zone between fully adaptive coding and 

absolute value coding (no adaptation). Importantly, this result did not reflect an unfinished time 

course of adaptation, as tuning functions reached a steady state within the first half of each range 

block. 

Although this experiment is the first to look explicitly at changes in response offset, previous 

studies have also reported intermediate adaptation in prefrontal areas. Kobayashi et al. observed 

range-dependent changes in the gain of value encoding neurons in several sub-regions of OFC 

(Kobayashi et al. 2010). While they divided neurons into as adapting, non-adapting, or partially 

adapting groups, their results were also consistent with a single, variable population of partially 

adapting responses. In human subjects, Burke et al. also found partial adaptation in the BOLD 

signal in ventromedial prefrontal cortex (vmPFC) using a decoding approach (Burke et al. 2016). 

Taken together, these findings suggest that partial adaptation may be a reliable characteristic of 

coding in prefrontal cortex. 
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3.4.1 Offsets in the activity range are inefficient 

The presence of an offset in adapted tuning curves somewhat contradicts the predictions of a 

previous study, which showed that maximal linear adaptation was necessary for optimal choice 

behavior (Rustichini et al. 2017). The results of our simulation confirmed that increasing the 

offset of the activity range can impair decision making, particularly when this increase leads to a 

reduction of the dynamic range. Given this inefficiency, it is worthwhile to consider a few 

potential explanations for the presence of an offset.  

One possibility is that neurons adapt to the range of received values rather than the range of 

offers. This hypothesis is consistent with the results from our analysis of noncongruent changes 

in range. When the juice ranges change in opposite directions, adaptation to the minimum value 

is limited or absent, while adaptation to the maximum value is preserved. Importantly, when 

juice ranges are noncongruent, low offer values for lower-range juice will never be chosen, as 

the higher-range minimum consistently outranks it. Thus, if adaptation depends on the received 

values of each juice, responses will never adapt to this low minimum. In contrast, when ranges 

are congruent, the minima of the two juices change together, ensuring that the minimum received 

values change across blocks. This interpretation is supported by results from an fMRI study by 

(Burke et al. 2016), which found that the BOLD signal in vmPFC adapted to the range of 

received – but not observed – outcomes. However, this explanation only accounts for adaptation 

to the minimum value. It cannot explain the offset in response to the maximum value or the fact 

that intermediate adaptation was also found in chosen value responses. 

Alternatively, value adaptation may be affected by the overall task structure. Monkeys were 

highly trained on the range adaptation task, and they were familiar with all possible transitions 

between the high, low and wide ranges. While complete adaptation would allow for an efficient 



100 
 

representation of values within a block, it would limit the circuit’s ability to respond when the 

value range changed. In contrast, intermediate adaptation reserves a portion of the dynamic range 

for new values that may appear after a transition. This interpretation suggests that value encoding 

depends on at least two components: a slow, learning-based process that draws on contextual 

knowledge; and a more rapid adaptive component that adjusts to the locally experienced value 

range. 

Finally, intermediate adaptation may allow the circuit to maintain information about the current 

contextual value. Information about the current contextual value makes it possible to predict 

future reward expectations and affects subjects’ motivation to engage in the task. Moreover, 

effective value comparison in an adapting network requires information about the distribution of 

available values as well as neural activity levels on a given trial. Without some mechanism for 

maintaining this information, signals are ambiguous across contexts and cannot guide behavior 

effectively (Fairhall et al. 2001; Rustichini et al. 2017). The differences in response offset that 

we observed in OFC may be used by the network to help distinguish the current value state. 

3.4.2 Decoding adapted responses 

The presence of adaptation in the decision circuit presents a puzzle. If offer value neurons adapt 

to the range of their encoded juice, then the decision process cannot rely on a direct comparison 

of firing rates for the two populations. In previous work, we proposed that the decision circuit 

could compensate for this change by adjusting the synaptic weights of neurons at the decoding 

stage (Rustichini and Padoa-Schioppa 2015; Rustichini et al. 2017). However, this mechanism is 

not sufficient if responses adapt to the minimum value as well as the maximum. Adaptation to 

the minimum value involves an additive component as well as a multiplicative one, which single 

scaling factor cannot adjust for. One possibility is that neurons downstream of offer value cells 
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may adjust their input/output relationship in a more complex way. For example, if noise in the 

synaptic currents of these neurons increased by some mechanism, that would increase the gain of 

response specifically to lower value inputs (Hô and Destexhe 2000; Chance et al. 2002). 

Notably, this scaling problem does not exist if neurons adapt to the minimum value of both 

options as opposed to their preferred juice alone. Interestingly, our results are consistent with this 

hypothesis. When we analyzed noncongruent range transitions, we found that offer value 

responses adapted to the maximum value of their encoded juice, but that adaptation to the 

minimum value was reduced or absent. This result would be expected if neurons adapted to 

whichever minimum was lower across the two juices. However, this result has other possible 

interpretations (see above), and a more target experiment is necessary to distinguish between 

adaptation to the total minimum or to the chosen minimum in value-encoding cells.  

3.4.3 Potential mechanisms of value adaptation 

Value adaptation involves both an additive and a multiplicative component. While adaptation to 

the maximum can occur via a simple change in gain, adaptation to the minimum requires both a 

change in gain and a horizontal shift in the response function. When the difference between 

maximum and minimum values is constant, adaptation is purely horizontal: the slope of encoding 

remains the same, but responses remap to a new set of values. Although this study design does 

not allow us to investigate the physiological mechanism of adaptation directly, there are a few 

possibilities to consider. Additive changes in activity often arise from changes in 

hyperpolarization or shunting inhibition (Holt and Koch 1997; Chance et al. 2002). In the context 

of this study, shunting effects are slightly more probable than hyperpolarization, as we did not 

see any range-dependent effect on pre-trial activity. Alternate explanations, such as cell-intrinsic 

changes in membrane conductivity, generally involve a mixture of additive and multiplicative 
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effects, which is difficult to reconcile with the purely additive adaptation we observed during 

high-to-low range transitions (Sanchez-Vives et al. 2000a, 2000b). The multiplicative component 

of value adaptation could arise from several potential mechanisms. Changes in gain can be 

produced by both cell-intrinsic mechanisms, such as changes in ionic conductance (Higgs 2006; 

Díaz-Quesada and Maravall 2008; Mease et al. 2013), and by circuit-level changes in inhibitory 

activity (Olsen et al. 2012; Wilson et al. 2012; Natan et al. 2017) or the background level of 

synaptic activity (Chance et al. 2002). Short-term depression can also induce changes in gain. 

Though the time course of STD is generally faster than value adaptation, a longer component 

lasting tens of seconds has also been observed (Varela et al. 1997; Kohn 2007).  

A recent study examining a more medial region of OFC found that adaptation to simultaneously 

presented values was best explained by a divisive normalization model (Yamada et al. 2018). 

The data from our study, which reflect a slower across-trial form of adaptation, do not appear to 

follow a similar model. Among other features, the divisive normalization model predicts a 

decrease in the maximum response in conditions with a higher value range, which we do not 

observe. Divisive normalization is a common form of adaptation in sensory regions (Valerio and 

Navarro 2003; Wark et al. 2007; Olsen et al. 2010; Beck et al. 2011; Ohshiro et al. 2011), and it 

is highly effective at maximizing sensory information across a wide variety of stimuli 

(Simoncelli and Schwartz 2001; Wainwright et al. 2001; Carandini and Heeger 2011). However, 

it may not be well-suited for contextual adaptation to changes in value, which should maximize 

high-reward choices rather than by maintain high resolution stimulus information (Rustichini et 

al. 2017). 
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3.4.4 Discrepancies in behavioral results 

In this experiment, we observed range-dependent changes in both relative value and the 

steepness of choice behavior. The increase in relative value during higher-value blocks is 

consistent with a small nonlinearity in the utility function of the two juices, leading to a greater 

proportion of A choices when the values of both options increased. This type of nonlinearity in 

utility has been observed previously in primate decision making (Pastor-Bernier et al. 2017). The 

changes in steepness are somewhat more surprising, as they contradict results from previous 

work (Rustichini et al. 2017). A recent analysis of behavior across different ranges found that 

decision patterns were generally noisier during blocks with higher maximum values, consistent 

with the idea neurons encoded value with lower resolution during these blocks. The current study 

finds a change in the opposite direction: steeper encoding during the wider value range. This 

result may partially arise from differences in the relative value across blocks, which shifted 

choices toward juice A in the wide block. However, this explanation is not completely 

satisfactory. Experiments that more carefully match value matrices and decision patterns across 

blocks may be necessary to resolve this question. 

In summary, we examined how the neuronal representation in the OFC adapted to changes in 

maximum and minimum of the value distribution. We found that both maximum and minimum 

values influence the gain of value encoding, but only partially, leading to an offset in neuronal 

activity levels across ranges and potentially limiting behavioral performance. Future work is 

necessary to explore the practical effects of this inefficiency on choice behavior. 
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Chapter 4: Adaptation and Noise Correlation 
in Choice Behavior 

In this document, I presented two experiments investigating noise correlation and value 

adaptation in of OFC networks during decision-making. I found that noise correlation levels 

were low but unbalanced between different pools of offer value pools. After accounting for 

another known source of choice variability, I found that the noise correlations and choice 

probabilities measured in OFC were consistent with a decision rule that placed uniform weights 

on all offer value responses. The interaction between this decoding scheme and the pattern of 

noise correlations limits the information available to the decision-making circuit. 

Neural adaptation partially compensates for this limitation. Intuitively, increases in the gain of 

neural encoding increase performance by enhancing the sensitivity of neuronal responses, 

increasing the signal-to-noise ratio. However, if the network is uncorrelated, this effect does not 

necessarily persist at the population level, as the variability of individual responses can be 

reduced by pooling. In the presence of noise correlations, variability can persist even when 

responses are combined across a large population. The robustness of this effect depends on both 

the structure of correlations and the nature of the decoder. In the case of a uniform pooling 

model, any unbalanced correlation across two competing value-encoding populations leads to 

noise in the net activity level.  

Working with a collaborator, we recently developed a theoretical model to assess the effect of 

gain adaptation on decision-behavior in the presence of noise correlations (Rustichini et al. 

2017). We considered a linear pooling model in which a decision was made by taking the 

difference in the summed activity of two value-encoding populations. The firing rate of each unit 



109 
 

was a Poisson variable with the mean response proportional to the offer value for the preferred 

juice. To derive the choice pattern from the model analytically, we approximated each response 

as a Gaussian. This allowed us to estimate the variance of the population activity in the presence 

of correlated noise. Both the analytical approach and simulation results showed that noise 

correlations added stochasticity to the decision pattern, reducing total reward acquisition. Gain 

adaptation ameliorated this effect, increasing the signal-to-noise ratio of the population response. 

This result remained true even when decoding required unequal rescaling of read-out weights for 

the two populations, an adjustment that was necessary maintain consistency in relative values 

when different options were drawn from unequal value distributions. Furthermore, performance 

improved monotonically with the degree of gain adaptation, such that the optimal behavioral 

improvement arose when the slope of encoding was inversely proportional to the value range.  

This model considered only changes in the maximum value and assumed that both the minimum 

value and minimum response were zero. The simulation results I presented in Chapter 3 partially 

fill this gap, showing that a nonzero response to the minimum value leads to suboptimal choice. 

However, this analysis did not address the question of how the decision circuit might compensate 

for differences in the minimum value when making comparisons. While both the model above 

and the simulations in Chapter 3 can use synaptic rescaling to compensate for differences in the 

maximum value of options, this adjustment cannot account for differences in the minimum. As 

discussed in Chapter 3, one possibility is that the circuit adapts to the overall minimum rather 

than the minimum of each juice. Alternatively, the decoder could effectively subtract the 

minimum response from its output function and add a downstream bias term to compensate for 

differences in the minimum.  



110 
 

Despite these uncertainties, the general principles of the (Rustichini et al. 2017) model apply to 

transitions in the minimum value as well as the maximum. Increasing gain allows for higher 

resolution value-representations despite the information-limiting effects of noise correlation. 

Notably, I found only intermediate adaptation to both maximum and minimum values. This 

finding suggests that while adaptation in OFC does partially compensate for the effects of 

correlations, the effect is suboptimal. Furthermore, the behavioral effects I observed in Chapter 3 

do not align with the predictions of the model for improved performance in narrow-adapted 

conditions. This finding presents a puzzle that is relatively common in studies of adaptation. 

Studies of sensory adaptation find effects on the level of both neurons and behavior, but 

connecting the two directly is often a challenge (Kohn 2007; Solomon and Kohn 2014). 

Increases in the resolution of single-neuron representations do not always extend to the 

population level or map onto to behavior in a straightforward way (Solomon and Kohn 2014). 

Part of the complexity may arise from the existence of several simultaneous adaptation processes 

affecting behavior at different levels of processing.  

4.1 Conclusion 
The work presented here provides a more detailed understanding of responses orbitofrontal 

cortex, and particularly two features of the network that may respectively limit and enhance 

information processing during decision making. First, I show that noise correlations in OFC have 

a range-limited structure that interacts with a correlation-blind decoding algorithm to limit 

information content in the neural population. Second, I find that value-encoding responses in 

OFC adapt to both maximum and minimum values, a process that permits greater resolution of 

value encoding in a correlated network. However, this adaptation involves only partial 

remapping of the dynamic range. The partial nature of adaptation may impose additional limits 
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on value representation in OFC. Future work will be needed to clarify the relationship between 

adaptation and choice behavior, and to predict the effects of adaptation and noise correlations in 

a biophysically realistic model of choice.  
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