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State of the arts equilibrium models explain several financial markets’ regularities but still

miss many important dimensions. My research investigates the existing wedge between the-

oretical and actual prices and its implications for investment decisions. In the first chapter,

I develop a new approach to locate and quantify the wedge between the main-stream Rep-

resentative Agent pricing of the U.S. market portfolio and actual data. The determinants

of the wedge are high uncertain and illiquid recessionary periods where, according to the

marginal pricing rules, more efficient portfolios than the market can be formed. Since illiq-

uidity is a major determinant, chapter two and three are devoted to the theoretical and

empirical study of the impact of transaction costs on the optimal formation of equilibrium

portfolios. Chapter two develops a single-period Mean-Variance theory able to solve large

scale portfolio optimization problems in the presence of fixed and variable costs. Chapter

three shows its relevance in the representative context of the FX markets.
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Chapter 1

A Non-Parametric Test For

Representative Agent Pricing

1.1 Introduction

Since the seminal work of Markowitz (1952, 1959) and Black (1972), which have laid the

foundation of the CAPM, many asset pricing models in finance assume a representative

agent,1 a hypothetical unconstrained investor who holds the market portfolio. Any asset

in the economy is therefore proportional to the ratio of his marginal utilities, and, as a

consequence, most asset pricing tests are based on strong parametric assumptions on the

agent preferences and the returns.

I make use of a result from Martin (2017) to deliver a more general test for representative

agent pricing which compares the realized excess market returns with an option-implied

bound on their one-period ahead risk premium. The test does not require sharp assumptions

on preferences and returns and jointly applies to a non-trivial class of models (including those

1Recent leading examples are: the consumption ICAPM of Campbell and Viceria (1999), the external
habit model of Campbell and Cochrane (1999), the long run risk models of Bansal and Yaron (2004), Bansal,
Kiku, Shaliastovich, and Yaron (2014) and Campbell, Giglio, Polk, and Turley (2017), as well as the rare
disaster models of Barro (2006) and J. A. Wachter (2013).
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based on unobservable state variables2). In contrast to the standard GMM tests,3 mine is

non-parametric and only requires the time series of a proxy for the market portfolio, quotes

of European puts and calls written on it, and a proxy for the risk-free rate. In particular,

because no Stochastic Discount Factor (SDF hereafter) is estimated, the test avoids the usual

strict point-wise restrictions on the functional form of the preferences of the representative

agent. Rather, it only4 assumes the covariance of the product of the SDF and the market

return with the market return to be non-negative.

Popular representative agent pricing,5 while holding unconditionally, is shown to be robustly

rejected conditioning on highly uncertain and illiquid subperiods, which contain all the major

financial crises and economic recessions in the analyzed sample. These subperiods, endoge-

nously selected out-of-sample based on rules predicting low returns in a training sample, are

defined as times where implied model-based risk premia are too high. Findings suggest that

such conditional model-based implied risk premia are off by striking amounts - at least by

1.3% monthly (or 15.6% annualy) - even after controlling for risk (model based Sharpe ratios

are still higher then actual ones by at least a monthly 0.2). While excessive risk aversion does

not seem to explain such results, ruling out Merton (1980)’s type explanations6, alternative

explanations are found consistent with the data: either rejected models are too sensitive to

market crash probabilities, which, as in the rare disaster literature (see for example Barro

(2006) and J. A. Wachter (2013)), might be pushing the risk premia too high, or rejected

2E.g. in the rare disasters models of Barro (2006) and J. A. Wachter (2013) the probability of a rare
disaster is a state variable. Because such probability is unobservable, it is difficult to test these models
following the existing approaches.

3E.g. Hansen and Singleton (1982, 1983), Gallant and Tauchen (1989), Epstein and Zin (1991), Savov
(2011) and Nagel and Singleton (2011).

4“I am not aware of any model that attempts to match the data quantitatively in which [this condition]
does not hold. ” (Martin (2017))

5Including those in footnote 1, for a more general description of the class refer to Section 1.2
6In these models the risk premium is directly proportional to the level of risk aversion.
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models, typically frictionless, might not be able to account for the high informational and

trading frictions characterizing the rejections.

Interestingly, the alternative marginal intermediary-based pricing setup is found more ro-

bust. In these models pricing is performed via a marginal intermediary, not necessarily a

representative agent.7 The representative model of Adrian, Etula, and Muir (2014) is found

to correctly price assets even during periods where representative pricing is rejected and the

marginal broker/dealer intermediary not to hold the market portfolio in equilibrium: the

correlation of the equilibrium portfolio and the Standard and Poor’s 500 index (SP500 here-

after) is around 0.20 and not even significant during representative agent pricing rejections.

Overall, these results suggest that marginal pricing generates more efficient portfolios then

the representative agent market portfolio:8 this is a key economic implication of this study

and follows from the fact that during rejections there is no representative agent who holds

the market in equilibrium but there are at least some marginal broker/dealers, which consis-

tently with the data, optimally holds different portfolios. Another contribution of this paper

is to provide a unified formal framework to assess the performance of consumption-based

representative agent pricing in the literature, extending and complementing the existing cri-

tiques. Rejections are indeed found to be periods where actual leading frameworks perform

the worst9 and feature the worrisome properties already documented by the extant empiri-

cal literature. In particular, Muir (2017) shows how consumption based representative agent

pricing has difficulty in simultaneously matching risk premia during recessions and financial

crises: this is because, despite the different risk premia behavior, the consumption dynamics

7The main difference being that a marginal agent is not required to hold the entire market portfolio and
his identity might vary over time.

8A portfolio is efficient if held in equilibrium (see for example Dybvig and Ross (1982)).
9Following the original calibrations, the Campbell and Cochrane (1999), the Bansal and Yaron (2004), and

the J. A. Wachter (2013) equilibrium models performances are compared in rejection periods with respect
to the rest of the sample.
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is very similar. While Muir (2017) selects these periods exogenously and ex-post, my test

pins them down endogenously and ex-ante as part of the rejection subsample. Moreira and

Muir (2017) find profitable trading strategies which go against representative agent pric-

ing: because actual Sharpe-ratios are lower during recessions (periods of high volatility) and

higher during normal times (periods of low volatility), it is profitable to time the market

by decreasing the exposure in bad times and increasing it in normal times. However, a

representative agent is expected to bare more risk rather then less during bad times and be

compensated accordingly. Consistently, rejection periods are characterized by higher volatil-

ity, lower Moreira-Muir exposure and Sharpe ratios implied by representative agents are too

high. Finally, Amromin and Sharpe (2013) and Greenwood and Shleifer (2014), contrary

to rational expectations, show how representative-agent based required market returns dis-

agree with actual expectations of a non-trivial fraction of investors. Their results are further

exacerbated while conditional on the rejection subsample.

The main technical innovation of this study is the ability of my test to endogenously deliver,

upon rejection, the actual subsample originating it. Identifying periods related to the sys-

tematic failure of a non-trivial class of models, constructively enables researchers to study

its characteristics and potentially design more robust models in the future. From a method-

ological point of view, the paper closest to mine is Nagel and Singleton (2011). As in my

framework, it also provide endogenous conditioning: in a very elegant way, they optimally

select a combination of a pre-determined set of GMM instruments to maximize the power of

their test. The cost they have to pay for such elegance is the fact that their test only applies

to pre-specified null and alternative nested linear models. In contrast, in my framework I

do not have a conditioning rule intrinsically tied to the test properties but my test jointly

applies to any model in which the covariance of the product of the SDF and the market

return with the market return is non-negative.

4



The rest of this paper is structured as follows: Section 1.2 describes the empirical setup,

going trhough the logic behind the non-parametric test and how to implement it. Section

1.3 describes the data used in this study. Section 1.4 shows the outcomes from the non-

parametric test and describes the characteristics of the detected rejections. Section 1.5

contains the main implications: it explains how to interpret the results, what do they mean

for representative agent pricing, and shows how the marginal intermediary-based pricing

framework might be more efficient. Section 2.6 concludes.

1.2 Empirical Setup

1.2.1 Logic of the non-parametric test

In this subsection I first present the result from Martin (2017) and then explain how to use

it to derive the non-parametric test of this study.

Let us define the gross market and risk-free returns relative to [t : t + 1] as Rt+1 and Rt,f ;

following Martin (2017)

Proposition 1 Given a strictly positive SDF Mt+1 satisfying the pricing equation

Et[Mt+1Rt+1] = 1 (1.1)

and the Negative Covariance Condition (NCC)

Covt(Mt+1 ×Rt+1, Rt+1) ≤ 0 (1.2)

5



it is possible to construct a model-free real-time lower bound, LBt, on the market risk pre-

mium Et[πt+1] ≡ Et[Rt+1 −Rt,f ] by

LBt = 2

(
1

Ŝt

)2

 F̂t∫
0

ˆputt(k)dk +

∞∫
F̂t

ˆcallt(k)

 ≥ 0 (1.3)

Proof. See Appendix A.1

Quantities with hats are ex-dividend,10 Ŝt is the closing market level at time t, F̂t is the

forward contract on the market with unity tenor and finally ˆputt(k) and ˆcallt(k) are European

put and call option quotes on the market with unity tenor as a function of the common

strike k. By the Put-Call parity the forward contract F̂t ≡ F̂t(k
∗) is the unique point

(k∗, F̂t(k
∗)) at which the call and put functions intersect so that LBt is just a function of

Ŝt, { ˆputt(ki), ˆcallt(ki)}ki∈Kt where Kt is the set of observable strikes with unit tenor at time

t over which the integrals have to be approximated. The most direct interpretation of the

lower bound quantity obtains when the NCC equals zero: in this case LBt measures the

market risk premium itself from the perspective of a representative agent with log-utility

assuming independent market returns over time.11

Note that in representative agent models Mt+1 is the ratio of the agent marginal utilities

and it is strictly positive by the non-satiation requirement and (1.1) arises as part of the

first order conditions, then we can interpret Proposition 1 as follows:

10It is possible to construct a similar lower bound which is an explicit function of market dividends (this
more general task is shown in the proof of Proposition 1), nonetheless an unreported analysis (available upon
request) shows how the empirical role of dividends is negligible. Therefore to avoid unnecessary complications
I will stick to the baseline lower bound measure (which is the same used in Martin (2017)).

11See Martin (2017) Section III.
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Proposition 2 Given any representative agent model with preferences satisfying NCC there

exist a model-free real-time lower bound LBt computable via eq. (1.3)

I will refer to the non-trivial class of models such that the NCC holds as the Martin’s class:

“I am not aware of any model that attempts to match the data quantitatively in which the

NCC does not hold”, Martin (2017). In terms of actual models it includes the leading macro-

finance frameworks in Campbell and Cochrane (1999), Bansal and Yaron (2004), Bansal et

al. (2014), Campbell et al. (2017), Barro (2006), and J. A. Wachter (2013). More generally

it at least12 contains any model where the representative agent preferences are:

• strictly increasing: i.e. the non-satiation requirement

• if time-separable have Relative Risk Aversion (RRA) of at least 1 at any level of wealth

• if Epstein and Zin (1989) have RRA as well as Intertemporal Elasticity of Substitution

(IES) of at least 1 at any level of wealth

if the model setting is dynamic an additional requirement is also needed constraining the

market return Rt+1 to be positively associated13 will all the other state variables.

The logic of the non-parametric test follows immediately from Proposition 2: a lower bound

violation implies a joint violation of all representative agent models with preferences satisfy-

ing the NCC: i.e. a test for a lower bound violation is a non-parametric test for the Martin’s

class of representative agent pricing.

12This is because the following conditions are only sufficient.
13An extension of the concept of pairwise correlation to multivariate possibly non-normal settings, see

footnote 9 in Martin (2017).
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1.2.2 Empirical Design

In order to make the non-parametric test operational a definition of lower bound violation

is needed and provided next. Based on the premises that the sample average of the excess

market returns is the sample counter part of the risk premium, I define a lower bound

violation as follows

Definition 1 A lower bound violation is a subsample, an indicator function Ivt turning 1,

where the excess market return, πt+1 ≡ Rt+1−Rt,f , is below the lower bound, LBt, on average

A non-parametric test for the Martin’s class of representative agent pricing is then naturally

a one-sided t-test against the alternative of a lower bound violation

H0 : E[πt+1|Ivt ] ≥ E[LBt|Ivt ] vs. H1 : E[πt+1|Ivt ] < E[LBt|Ivt ]

Note that a lower bound violation (a sample statement) is implied by the the test alternative

(a population statement) given the processes for πt+1 and LBt are covariance-stationary. It

is useful to define a new variable yt+1 ≡ πt+1 − LBt and re-write the non-parametric test

more compactly as

H0 : E[yt+1|Ivt ] ≥ 0 vs. H1 : E[yt+1|Ivt ] < 0 (1.4)

The test simply looks at the time-series of yt+1 in the periods selected by the subsample

Ivt and then test if its conditional mean is non-negative, given a lower bound violation is

now expressed in population terms as E[yt+1|Ivt ] < 0. Finally, exploiting the properties of
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conditional expectations,14 it is instructive to re-write (1.4) in its equivalent form

H0 : E[yt+1 × Ivt ] ≥ 0 vs. H1 : E[yt+1 × Ivt ] < 0 (1.5)

This is because equation (1.5) shows how the non-parametric test is nothing more than a

standard unconditional t-test on the random variable (yt+1 × Ivt ), so that normal inference

applies. The non-parametric test of this study will be conducted with respect to both the

equivalent statements (1.5) and (1.5) using both Newey and West (1987) heteroskedasticity

and autocorrelation adjusted standard errors and small-sample bootstrapped standard errors.

The non-parametric test requires a couple of assumptions which are now introduced and

discussed: HP1 - regularity conditions, HP2 - objective rule to select Ivt .

HP1: regularity conditions

Given any conditioning set Ivt , HP1 requires the Central Limit Theorem (CLT) to hold so

that a proper limiting normal distribution for E[yt+1|Ivt ] exists. The weakest assumptions

under which the CLT holds impose (a) all up the 2 + ∆ moment of yt+1 (for some ∆ > 0) to

be bounded, and (b) the process for yt+1 to be a strong mixing,15 that is, a weakly dependent

process in probability. A sufficient condition for strong mixing is temporal independence. For

concreteness with respect to (a), I require the third moment of πt+1 and LBt to be bounded,

which means that they have to have well-defined skewness and implies that the third moment

of yt+1 is bounded and in principle robust to fatter than normal tails.16 Furthermore as

14Given that Ivt is an indicator function it is non-negative preserving the sign of the inequality tested, then
by assuming P (Ivt = 1) > 0 we obtain equation (1.5).

15See for example Thm. 5.20 of White (2001).
16No tests can be perform to support assumption (a), this is because in general any assessment on the

boundedness of a given moment of a random variable need such requirement as an assumption in order to
perform the inference. Nonetheless, requiring πt+1 and LBt to have finite skewnesses is a mild restriction
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already noted, we also need to assume πt+1 and LBt to be covariance-stationary in order to

interpret E[yt+1|Ivt ] < 0 as a lower bound violation.

In an unreported analysis (available upon requests) a battery of tests is run which finds πt+1

and LBt consistent with a stationary AR(0) and AR(1) processes as well as yt+1 consistent

with a stationary AR(0) process: these results support the covariance-stationary assumption

on πt+1 and LBt and the temporal independence of yt+1 needed for the CTL.

HP2: objective rules

The non-parametric test needs a conditioning rule that selects the subsample identified by

Ivt : with little abuse of notation denote such a rule also as Ivt . In the trivial unconditional

case Ivt = 1, but for any more general case we need to be careful to design a rule which is

objective in order to avoid sample selection biases: i.e. the rule (i) should not be selected

ad-hoc by the econometrician with the aim of maximizing ex-post the chance of getting a

rejection and (ii) should not be directly linked to the test.

To tackle these kind of sample selection biases I design rules that select periods where the

risk premium is “low” in a training sample, then I compute the lower bound LBt and perform

the non-parametric test in the main (subsequent) sample. In particular, note that the lower

bound measure LBt is violated in t if it is above its conditional risk premium Et[πt+1]. Of

course, such quantity is unobservable, however, a rough estimate can be computed via an

which holds in many pricing specifications, even in the presence of jumps: for example in a Black and Scholes
(1973) world all moments are bounded, and the same remains true if we add a jump diffusion component
with constant intensity. In a framework like the time-varying rare disaster of J. A. Wachter (2013), where
the intensities are time-varying according to a Cox, Ingersoll, and Ross (1985) model, it would be enough to
impose a strictly positive mean-reversion and long-run mean.
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econometric model of the form

πt+1 = f(Zt) + et+1 (1.6)

as π̂t+1(Zt) ≡ f̂(Zt) for some function f(·). Then a rule can be design which turns one at t

if the estimate for the risk premium f̂(Zt) ≈ Et[πt+1] is below the lower bound, LBt, that

can be computed in t, as

Ivt ≡ Ivt (Zt, LBt) = 1(π̂t+1(Zt) < LBt) (1.7)

Such rule is (i) pinned-down by data {Zt, LBt} not ad-hoc by the econometrician, and as long

as (ii) the forecasting model (1.6) is specified in a training sample according to an objective

criterion, say the best in-sample fit, and then Ivt computed out-of-sample in a subsequent

sample where the test is conducted, also the second objectivity requirement is met.

I construct rules of the type (1.7) in several steps

1. pre-select a vector of excess market return predictors Zt

2. split the sample {1, ..., T} into a training sample TS ≡ {1, .., Ts} and a main sample

MS ≡ {Ts + 1, .., T}

3. in TS: for each possible subset Wt ⊆ Zt compute the associated forecasting model for

the excess market return πt+1 according to (1.6), and the in-sample adjusted R2

4. in TS: rank models according to the in-sample adjusted R2 and pick few among the

best performers, say K

5. for every t in MS: using just the structures from the best K performers and {Z1, ..., Zt}

compute K out-of-sample forecasts for the market premium as {π̂kt+1(Zt)}Kk=1
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6. for every t in MS: compute the lower bound measure, LBt, using observables in t via

eq. (1.3)

7. for every t in MS: compute the K rules as {Iv,kt ≡ 1(π̂kt+1(Zt) < LBt)}Kk=1

Step 1 and 2 are presented in the following data section, while the key intermediate outcomes

from the other steps, as well as the potential17 rejections {Iv,kt }Kk=1, are presented in the Result

section.

1.3 Data

The data used in this study is at the monthly frequency and covers the United States

Financial Markets over the period February 1973 to December 2014. The sample is split into

a training sample TS = {1973 : 02, ..., Ts} and a main sample MS = {Ts + 1, ..., 2014 : 12}

using the last 25 years. The choice of Ts = 1989 : 12 is due to the availability of option data

(necessary for the construction of LBt), that is, Ts + 1 = 1990 : 01 is the first date for which

LBt is computable.18 Data is divided into two categories: (i) the main variables, namely the

market return Rt+1, the risk-free return Rt,f and the lower bound LBt and (ii) the predictors

in Zt.

17Potential because until we perform the test we don’t know if they are rejections.
18Choosing Ts this way also allows to maximize the statistical power of the non-parametric test: this is

because to select the model for the risk premium forecasts via the proposed statistical method, I do not need
to waste any single data point involving options and all available option data is used to perform the main
test.
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1.3.1 Main Variables

The gross total market return is defined as Rt+1 ≡ Ŝt+1

Ŝt
DYt where Ŝ represents the closing

level of the Standard & Poor’s 500 (SP500) index and DYt ≡ 1 + Dt+1

Ŝt+1
is the gross dividend

yield with {Dt} being the SP500 dividend time series (divided by 12) available on Prof.

Shiller website.19 The gross return on a risk-free investment, Rt,f , is defined as the gross

1-month yield to maturity extracted from the Center for Research in Security Prices (CRSP)

continuously compounded yield curve computed over liquid secondary market transactions

on U.S. Treasuries.

The time-series of the market premium lower bound, {LBt}, is computed according to equa-

tion (1.3) in the most conservative way by linearly interpolating20 the Chicago Board Options

Exchange (CBOE) SPX options closing bid prices; Data from January 1990 trhough Decem-

ber 1995 is provided by Optsum Data, while data from January 1996 trough December 2014

is taken from OptionMetrics. For dates t in which the data is not sufficient/absent to deliver

LBt at the exact maturity of 1 month I linearly interpolate between the contemporaneous t

lower bounds with the two closest maturities.

Table 1.1 summarizes the main variables: note how the estimate for the unconditional risk

premium E[Rt+1 − Rt,f ] × 100 is 0.51 monthly or 0.61 ≈ E[πt+1|MS] in the main sample

only, yielding the usual annualized unconditional estimates of 6.1% and 7.3%. The last two

rows already show how the lower bound LBt is unconditionally below its risk premium in

the main sample: i.e. πt+1 is on average above LBt, a result we formalize later.

19at http://www.econ.yale.edu/ shiller/data.htm
20In the Appendix A.2 I show how very similar results are obtained if we use a cubic spline interpolation

instead.
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Figure 1.1 plots the dynamics for πt+1 and LBt: as was already evident from Table 1.1

the lower bound series LBt, even if volatile21, is less volatile than the excess market return

πt+1 and, by construction, never negative. The time-series of conservative lower bounds

LBt features an annualized average of 3.96% and standard deviation of 3.84%.22 The lower

bounds dynamics portrayed in Figure 1.1 are thoroughly described in Martin (2017).

1.3.2 Predictors for the market risk premium

In what follows I describe the list of pre-selected predictors Zt which will enter the forecasting

model (1.6) for the excess market return (step 1 of the procedure detailed in Section 1.2).

In principle there are infinite ways to select such predictors, giving rise to data-mining issues

that can potentially bias the test.23 To tackle this issue I discipline the choice of Zt according

to a constructive economic rationale which I explain in Appendix A.3.24 The actual list of

predictors Zt contains the following 11 variables which proxy for the usual dimensions found

in the forecasting literature.25

F: Ludvigson, Ma, and Ng (2016) Financial uncertainty index, computed as the average

forecasting error from 150 financial time-series. It captures the underlying level of

uncertainty surrounding financial markets.

21Note that its mean is of the same order of magnitude as its standard deviation.
22Numbers that, once are restricted to the appropriate sample are very similar to those in Martin (2017):

the annualized sample mean and standard deviation of my lower bounds, computed using bid quotes, are
4.83% and 4.39%. Martin (2017)’s figures, which use mid rather than bid quotes, are 5% and 4.60%.

23The researcher could start with a given list Zt, perform step 3 to 7 in Section 1.2, run the test and not
reject, then he could go back to step 2, modify the list of Zt...and repeat these steps until he finds a list Zt
which “works”.

24A piece of evidence further supporting the claim that the test is not driven by data-snooping is given by
the fact that, as further discussed later, the characteristics of the detected rejections match those scattered
around the exogenous extant literature criticizing representative agent pricing.

25E.g. Goyal and Welch (2008), Rapach, Ringgenberg, and Zhou (2016).
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SII: Rapach et al. (2016) Short Interest Index, constructed as the log of the equal-weighted

mean of short interest (as a percentage of share outstanding) across all publicly listed

stocks on U.S. exchanges. It captures the superior informational content of short sellers.

TAXchg: The annual percentage changes in the aggregate dollar amount paid in capital

gain taxes. The dollar amounts are reported by the U.S. Department of the Treasury.

ILLIQpi: The Pastor and Stambaugh (2003) (il)liquidity index, computed ad the (negative

of the) aggregate average (over a month) daily response of signed volume to next day

return for all individual stocks on the New York Stock Exchange and the American

Stock Exchange. It represents the % cost incurred in a 1 million 1962 USD trade in

the market. Similarly to the Amihud (2002) measure, it is a price impact proxy.

ILLIQts: The W. Liu (2006) (il)liquidity index, computed as the standardized turnover-

adjusted number of zero daily trading volumes over the prior 12 months. Similarly to

Hou and Moskowitz (2005) measure, captures the trading speed dimension of liquidity.

MDI: The Pasquariello (2014) Market Dislocation Index, computed as the monthly average

of hundreds of abnormal absolute violations (mid-quotes minus theoretical prices) of

three textbook arbitrage parities in the Stock, Bond and Exchange markets. It tracks

potential violations of the Law of One Price when positive.

USDg: The U.S. dollar appreciation index, computed as the percentage rate on the trade

weighted dollar index available from FRED Data.26 The index is a weighted (over

the volume of bilateral transactions) average of the foreign exchange value of the U.S.

dollar against the currencies of a broad group of major U.S. trading partners.

BM: The Dow-Jones Industrial Average book-to-market ratio.

26At https://fred.stlouisfed.org/.
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M1g: The monthly percentage growth rate on the Federal Reserve M1 money supply stock.

Available from FRED data.

Sent: The Baker and Wurgler (2006) Sentiment index, a composite index based on the com-

mon variation of five underlying proxies for sentiment: the closed-end fund discount,

the number and average first-day returns on IPOs, the equity share in new issues,

and the dividend premium. It captures miss-pricing due to subjective valuations not

reflecting rational risk compensation.

The list is parsimonious yet comprehensive: parsimonious in that it conveys a wide variety

of non-redundant information as certified by the average absolute correlation of 0.10 from

the correlation matrix displayed in Table 1.2: note that the absolute correlation is never

higher than 0.44 and greeter or equal than 0.35 only in 4 out of 55 pairs. The list is also

comprehensive in that excluded popular variables are highly correlated with Zt.
27

1.4 Results

This section is organized in three parts: (i) first the key intermediate steps to construct the

rules {Iv,kt }Kk=1 and the outcomes are presented and discussed, then (ii) the non-parametric

results are shown and analyzed and (iii) finally the main characteristics of the rejection

subsamples are described.

27E.g. U.S. inflation correlates 0.55 with M1g and with BM , market volatility correlates 0.70 with F
when measured as a GARCH(1,1) on the SP500 index and 0.82 when measured by the CBOE V IX index
and BM correlates highly with the other excluded popular Goyal and Welch (2008) predictors as reported
in the next table

Corr DP DY EP TBL LTY
BM 0.90 0.90 0.82 0.69 0.71
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1.4.1 Construction of the rules for the non-parametric test

Estimating the excess market return in the training sample

Given the pre-selected list of predictors in Zt, for each subset Wt ⊆ Zt, the following four

flexible specifications for f(·) in model (1.6) are implemented in the training sample TS =

{1973 : 02, ..., 1989 : 12}

Linear f(W ) = β0 +
∑w

i=1 βiWi

Pure quadratic f(W ) = β0 +
∑w

i=1 βiWi +
∑w

j=1 βw+jW
2
w+j

Interaction f(W ) = β0 +
∑w

i=1 βiWi +
∑w+

w(w−1)
2

k>l>w βlWlWk

Quadratic f(W ) = β0 +
∑w

i=1 βiWi +
∑w

j=1 βw+jW
2
w+j +

∑w+
w(w−1)

2
k>l>2w β2w+lWlWk

with w representing the number of elements in W . A total of 8188 models to predict the

excess market return πt+1 are estimated along with their adjusted R2. To minimize a model

selection purely driven by over-fitting, for each possible set of Wt, only the best model

specification is retained.28

Figure 1.2 plots the first 100 out of the remaining 2047 models’ adjusted R2: the first 6

models immediately sets apart, a battery of Chow (1960) tests using polynomial up to the

third degree highlights a structural brake in the displayed ranking at any significance level

between model 6 and 7, and the Diebold and Mariano (1995) test finds the Mean Squared

Error (MSE) of model 6 not statistically different from any of the first 5 but statistically

lower than the MSE of model 7 at the 1% level. Thus K = 6 empirically.

28This way I avoid comparisons only made in terms of functional form.
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Table 1.3 details each of the selected model in terms of predictorsWt and functional form f(·).

4 out of 6 models use the “Quadratic” functional form while the other 2 the “Interaction”

one. In terms of selected predictors, ILLIQts, the W. Liu (2006) (il)liquidity measure, is

never picked, MDI, the Pasquariello (2014) market dislocation index, is picked by half of

the models and the Rapach et al. (2016) short interest index, SII, and the GINIchg index

are selected by 4 out of 6 models.

Even if the most important requirement at this level is to show that data rather than

the econometrician is selecting the model specifications from (1.6) to be used in the main

sample, I nonetheless conclude this subsection by listing evidence against a ranking purely

driven by over-fitting: (i) the best in-sample model has the smallest number of regressions,

(ii) bootstrapped adjusted R2 and regression p-values confidence intervals for the 6 selected

models are such that no model has an adjusted R2 smaller than 10% and a regression p-value

higher than 0.02 at the 5% level.

Predicting the excess market return out-of-sample

Having at disposal the first K = 6 model specifications and the predictors Zt, for each t in

the main sample MS we can perform step 5 of Section 1.2 and forecast πt+1 out-of-sample

for each model k ∈ K: this yields the set of time t out-of-sample risk premium Et[πt+1]

forecasts {π̂kt+1(Zt)}6
k=1.

Because Goyal and Welch (2008) show how a naive OLS regression of excess market returns

on a large number of predictors will over-parametrize the model and lead to poor out-of-

sample forecasts, I combine the information from the set of predictors to obtain optimal
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forecasts using the Iterated Combination Method (ICM) of Lin, Wu, and Zhou (2016).29 A

couple of important properties of the time series of these forecasts are discussed next.

First, despite the procedure adopted so far, over-fitting might still play a role in the choice

of selecting the first K bests models in TS to be used in MS. As a matter of facts, best

performers in a given sample tend to under-perform when adopted in another sample and

vice-versa with median models remaining more stable. One then might argue for a selection

of the K models around the median of the in-sample R2 ranking distribution rather than

in its tail. Panel (a) in Figure 1.3 shows how this is not a concern when constructing the

forecasts using the ICM approach: the graph plots the out-of sample ICM MSE on the in-

sample counter-part for the 6 selected forecasting models. Models above and to the left of the

45 degree line passing through the origin performed better in-sample while those below and

to the right performed better out-of-sample. As it is apparent from the graph, the selected

subsample of models present similar in-sample/out-of-sample MSEs30 and it is more or less

balanced.

The second point is about the validity of the specifications of the selected models in the

main sample: i.e., is the selection of the subset Wt ⊆ Zt carried over in TS according to

the best fit valid in MS? to answer this question, for each k-th selected model, I compute

the residuals rkt+1 ≡ πt+1 − π̂kt and for every zt ∈ Zt such that zt /∈ Wt I run the following

regression

rkt+1 = α + βzt + ut+1 (1.8)

29The ICM method is describe in Appendix A.4 where results from a horse-race against standard OLS
forecasts are also reported. The exercise indeed confirm ex-post the superior choice of the ICM over the OLS
method.

30The highest MSE % difference between any two models is 8.64%.
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if model k is well-specified with respect to Wt in MS β should be statistically insignificant.

Panel (b) of Figure 1.3 reports for each model the t-statistics associated to β in eq. (1.8).

Except for the first best, all model specifications remain correct in MS. Fortunately the

miss-specification in the first best model turns out to be negligible; The forth best model is

exactly the correction needed to take such miss-specification into account, this is because the

only difference between the first and the forth model is the inclusion of SII. Furthermore,

and most importantly, they generate two rules that are very similar (with a correlation of

0.62), more generally, as it can be checked later, no result this paper finds is affected by the

exclusion of SII.

The actual rules for the non-parametric test

Figure 1.4 shows the dynamics of the six best rules {Iv,kt }6
k=1 as well as their correlations.

The top graph plots the time series of the six rules {Iv,kt }6
k=1 against the real GDP growth

(the dotted black line). In order to make the graph more readable I multiply each rule

by its associated model, i.e. rule for model k is plotted as k × Iv,kt and assumes values 0

and k in the rejection periods. The six rules clearly display a counter-cyclical pattern, the

least correlated rule, rule 1, displays a negative 0.16 correlation with GDP growth, the most

correlated rule, rule 2, shows a negative correlation of 0.40, and the average correlation is

-0.29. Furthermore, the rules are highly correlated with each other: the smallest correlation,

the one between rule 1 and and rule 2, is 0.424, while the highest, the one between rule

2 and rule 3, is 0.927, and the average correlation among all rules is 0.626. The source of

this high correlation comes from the high number of shared observations among the different

rules: the average pairwise percentage overlap is 77.32%, with the smallest percentage, the
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one between rule 1 and and rule 2, in the order of 50%, and the highest, the one between

rule 2 and rule 3, in the order of 95%.

The bottom graph highlights in green the sample periods which are systematically detected

by all the rejection rules for a total of 35 observations: these are times associated with nega-

tive GDP growth (correlation coefficient of -0.30), include all the major economic recessions

of the last 25 years (the gray NBER recessions) as well as the 1997 Asian financial crises,

the 1998 LTCM crises, the period (late 1999 to 2001) during which the dotcom bubble col-

lapsed, a period in late 2002 when stock market was hitting new lows following the end of

the dotcom boom, the quant meltdown in August 2007 and the European sovereign debt

crises which accounts for the last two green stripes.

To summarize: the detected rules are very consistent with each other and unambiguously

pin-down subperiods containing all the major economic recessions and financial crises. The

consistency feature is particularly important in that no apriori structure, linking the byprod-

uct of particular subset of instruments Wt ⊆ Zt and a given specification for the forecasting

model (1.6) to yield similar result, is imposed. Once again this seem to suggest that the

selected rules are driven by the intrinsic properties of the data and are uncovering systematic

patterns unrelated to ad-hoc selections by the econometrician.

At this point such rules has to be considered only as potential rejection periods since no test

has yet been performed conditional on them: this is indeed the topic of the next subsection.
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1.4.2 The non-parametric test

Table 1.4 reports the main results from the test: each row shows the results for the k-th

specification of forecasting model (1.6): four different versions of the key statistic E[yt+1|Iv,kt ]

associated with four different rules Iv,kt are reported in percentages and at the monthly

frequency. Version (1) reports the outcomes of the unconditional test, version (2) corresponds

to the key rule object of this study (detailed in Section 1.2) and shows the outcomes of

the main non-parametric test. Versions (3) and (4) replace the lower bound series LBt in

the key rules of version (2) with its unconditional mean, L̄B, or 0: these rules serve the

purpose of understanding the actual role played by the lower bound in the main version

(2). Stars, which are inversely related to the intensity of the green color highlighting the

figures, represent the usual confidence levels: they are reported conservatively as the lowest

confidence among the two computed from the equivalent test specifications in eq. (1.4) and

(1.5) using Newey and West (1987) adjustments and the one derived from p-values adjusted

for potential small-sample issues.31

Note how unconditionally, at any level of confidence, the lower bound holds: LBt is on

average below the risk premium by 0.281%, consistently with an unconditionally tight32

lower bound, such estimates are not different from 0. The bulk of this article resides in

31P-values associated to version (2) to (4) are obtained by bootstrapping 1000000 random samples Ivt of the
same size as those derived via the rules implemented in the respective versions, computing the 5-th quantlies
of the respective simulated distributions for E[yt+1|Ivt ], and finally comparing them with the actual estimates
for E[yt+1|Ivt ] presented in Table 1.4. This exercise applied to the main version (2) reviles simulated quantiles
of the order of 0.5% which means that if truly random rules where adopted (in place of the proposed ones)
we would have found the results reported only 0.5% of the time; this, together with the fact that we find
significant results, can again be viewed as evidence against rules purely based on over-fitting and also show
how the test results are robust to non-normal, potentially fatter and asymmetric, tails in the distribution of
Ivt which might arise since Ivt contains many recessions and crises.

32An unreported analysis (available upon request), consistently with the documented violations, shows
that when the lower bound is conditioned on Ivt from version (2) it becomes a much less tight and more
noisy risk premium predictor.
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the next set of results, mainly revealed by version (2) in the table: conditional on the rules

{1(π̂kt+1 < LBt)}6
k=1 the lower bound is on average always violated at the 10% level and in

4 out of 6 cases at confidence 95%33. In particular the average lower bound is above its

conditional risk premium by impressive values that range from 1.262 to 1.654. The number

of observations involved is on average 66 (as reported in the table), between 23% and 29% of

the main sample, with a mean of 70 if we exclude model 6. According to eq. (1.3) LBt ≥ 0:

the results associated to version (3) and (4) speaks to the importance of its informational

content in the test rejections. An informative lower bound is essential: {1(π̂kt+1 < 0)}6
k=1 are

proper subsets of {1(π̂kt+1 < LBt)}6
k=1 and they are never able to pin-down rejection, yielding

test statistics which are on average 63% (figure in the bottom-right corner of the table) of

those in version (2) and p-values grater than 0.10. A non-negative (informative) dynamic

lower bound is needed: the rejection rule {1(π̂kt+1 < L̄B)}6
k=1 associated to version (3) share

an average of 91% (a minimum of 86%) of the observations with those from version (2) and

significantly improve the test performance, allowing one rejection and four marginal ones

with statistics that are on average 78% (figure to the left of the one located in the bottom

right corner of the table) of those from version (2). This tells us that three-fourth of the main

rejection magnitude (version (2) figures) is due to the dynamics of the excess market return

πt+1 rather than that of the lower bound LBt, nonetheless its dynamics it is not negligible

yielding the extra quantum, the average residual 22% gap, needed to consistently achieve

the rejections.

To sum up, the lower bound is found to hold unconditionally (corroborating the interpre-

tation given in Martin (2017)) but is robustly rejected conditioning on the rules detailed in

Section 1.2: as a matter of fact, conditional to these periods, the realized risk premium is

33With model 2 being borderline between 10% and 5% and model 6 generating rejections that are at the
5% if evaluated according to eq. (1.4) and at the 7% if evaluated according to eq. (1.5).
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below its average lower bound by at least a huge 1.262% (15.144% annualized). The presence

of the Martin (2017) lower bound LBt is crucial to the results and, even if the major role in

terms of dynamics is played by the excess market return πt+1, it also have a non-negligible

dynamic impact.

1.4.3 Rejection characteristics

This subsection investigates the main characteristics of the rejection periods detected by the

rules {1(π̂kt+1 < LBt)}6
k=1. We already showed that they are counter-cyclical and contain the

main economic recessions and financial crises in the main sample MS. Table 1.5 analyzes

them using the predictors in Zt: each row corresponds to a different predictor zt ∈ Zt, while

different columns identifies rule n.1, Iv,1t , trhough rule n.6, Iv,6t . The table displays the dif-

ference in conditional means of each predictor, zt, between the rejection subsample and the

rest of the sample, E[zt|Iv,1t = 1]− E[zt|Iv,1t = 0]; only predictors with statistically different

means can discriminate, and thus characterize (up to a first order approximation), the re-

jection periods. As it is apparent, only the Ludvigson et al. (2016) uncertainty index F and

the Pastor and Stambaugh (2003) (il)liquidity index ILLIQpi can consistently discriminate

between rejections and the rest of the sample. As a matter of facts, rejections are periods

in which uncertainty is higher by at least 3.89 VIX percentage points34 on average and the

percentage cost incurred in a 1 million transaction in the market is at least 4.387% higher.

This point is made even clearer in Figure 1.5 which plots the time series of F and ILLIQpi

respectively, highlighting in bold the portion of the time series which belong to the rejection

subsample for the case of the rule n.1.35 Note how, in both series, most of the spikes are

34Due to the high correlation of 0.82 between F and V IX I regressed the first on the latter in order to
obtain interpretable magnitudes.

35Unreported graphs (available upon request) are very similar for all the other rules.
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inside the rejections and how the general level of the series in the rest of the sample is

significantly lower.

In summary, the rejection rules {Iv,kt ≡ 1(π̂kt+1 < LBt)}6
k=1 pin-down periods characterized

by high financial uncertainty and market illiquidity, which contain all the major financial

crises and economic recessions in the main sample.

1.5 Implications

This section is also organized in three parts: (i) the first part explains the meaning of

the non-parametric rejections and offer potential explanations concerning the causes of these

failures, (ii) the second part turns to the implications of the rejections for consumption-based

representative agent pricing, while the last part (iii) shows evidence in favor of intermediary-

based pricing being a more robust setup, and more generally, marginal pricing as a setup

able to generate optimal portfolios which are more efficient than the representative agent

market portfolio.

1.5.1 Too high model-based representative agent risk premia

Remember from the logic of Section 1.2 that a lower bound violation implies the joint failure

of the Martin’s class of representative agent pricing: in particular, we have shown that even if

unconditionally this class seem to hold, conditioning on the rules {Iv,kt ≡ 1(π̂kt+1 < LBt)}6
k=1

described in the previous section, it is robustly rejected.
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The reason why we reject these models is because their implied risk premia predictions are

too high conditioning on the periods identified by the rules: the following chain of inequalities

makes this point clearer

RPmodels|Ivt ≡ E[Emodelst [πt+1]|Ivt ] ≥ E[LBt|Ivt ] > E[πt+1|Ivt ] ≡ RP |Ivt

by construction, the rejection subsample, Ivt , contains subperiods where on average the lower

bound from eq. (1.3)36 is above the average excess market return πt+1 as shown by the strict

inequality. Now, to the right of that inequality we see that the average risk premium given

the subsample Ivt is by definition the actual risk premium in that subsample, while the

weak inequality to the left side follows from the pointwise definition of LBt, which in our

test act as the smallest possible bound for the Martin’s class of pricing models. Finally

E[Emodelst [πt+1]|Ivt ] is by definition the average risk premium implied by the Martin’s class

of representative agent pricing, RPmodels|Ivt . In other words, the rejected models assume

conditional risk premia which are at least 1.26% (15.12% annualized) higher than the actual

conditional risk premium from the data.

This difference is huge and, as shown in Appendix A.5, carries over to risk-adjustments: an

analogous chain of inequalities makes this point clearer

SRmodels|Ivt ≡ E
[
Emodelst [πt+1]

σt(πt+1)
|Ivt
]
≥ E

[
LBt

σt(πt+1)
|Ivt
]
>

E[πt+1|Ivt ]

σ(πt+1|Ivt )
≡ SR|Ivt

eq. (A.2) in Appendix A.5 shows the result from the strict inequality: the minimum implied

Sharpe ratio of the Martin’s class is above the analog sample count-part (this is so by at least

36Remember that such lower bound is computed conservatively using bid rather than mid-quotes.
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0.21, or 0.72 annualized). Therefore also the Sharpe ratios implied by the rejected models

are also too high.

Possible explanations

Why popular representative agent pricing delivers implied risk premia which are too high

in the subsamples {Iv,kt }6
k=1? I first show how this fact does not seem to be driven by risk

aversion and then offer two potential, non-mutually exclusive, explanations.

In models of the Merton (1980)’s type the risk premium is proportional to the level of risk

aversion, it is thus possible that too high risk premia are due to too high representative

agent risk aversion; if this is the case we should expect risk aversion to be on average higher

during rejections. Panel A of Table 1.6 plots in blue the conditional mean of the Campbell

and Cochrane (1999) proxy for time-varying risk aversion, ηt, during rejections and in red

the analog conditional mean during the rest of the sample for the discussed rules, while the

table at the bottom of the figure reports the difference in these means together with their

levels of significance. Both means are very similar and statistically insignificant, with rule 3

and 4 even displaying opposite then expected signs.

While risk aversion in general cannot explain the rejections, I find that implied market crash

probabilities are consistent with them. In frameworks such as rare disasters (e.g. Barro

(2006) or J. A. Wachter (2013)) the risk premia is an increasing function of the probability

of a rare disaster, while these models define a disaster as a consistent drop in consumption

or GDP growths, I look at the analogous but observable behavior of the market portfolio:

in particular I use the time series of implied market crash probabilities extracted from the
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SP500 futures by Bollerslev and Todorov (2011)37. Panel B of Figure 1.6 plots in blue the

conditional mean of the Bollerslev and Todorov (2011) left tail intensities for the SP500

futures, CPt, during rejections and in red the analog conditional mean during the rest of

the sample for the discussed rules, while the table at the bottom of the figure reports the

difference in these means together with their levels of significance. Results show that the

implied crash probabilities are on average around 3% in rejections and only 1% in the rest

of the sample, and the difference is statistically significant at the 5% level in 5 out of 6 rules.

This is consistent with rejected models being too sensitive to crash probabilities which, in

the same spirit as in the classical rare disaster frameworks, might be pushing the risk premia

too high.

The last proposed explanation is a direct consequence of the main characteristics of the de-

tected rules. In the previous section we showed that they are characterized by high level of

trading frictions (illiquidity) as well as high level of uncertainty: both being on average sta-

tistically higher than the unconditional median only during rejection times.38 In Appendix

A.3 it is shown how financial uncertainty, as measured by F , is very highly correlated with

classical proxies for asymmetric information, and has itself the typical features an asym-

metric information proxy should have. We therefore can conclude that another potential

cause for the failure of the Martin’s class is the fact that such models do not account for

informational and trading frictions: as a matter of fact their absence is behind the required

set of assumptions for the existence of a representative agent.39

37I am thankful to the authors for proving me with such data.
38This last unreported claim can be easily verified qualitatively by looking at the plots displayed in Figure

1.5 or formally via an analysis available upon request.
39Specifically, the absence of market frictions is required for the existence of an SDF M satisfying 1 =

E[MR], while there are currently no frameworks that can construct a representative agent starting from
agents with asymmetric information (there are examples, such as Basak (2005), where a representative agent
can be constructed with agents having symmetric information but different beliefs).
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1.5.2 A unified setup to assess consumption-based representative

pricing

As I described in Section 1.2, a key subclass of the Martin’s class of models is given by the

popular consumption based representative agent setups: leading macro-finance framework

including external habit (Campbell and Cochrane (1999)), long-risk (e.g. Bansal and Yaron

(2004), Bansal et al. (2014), Campbell et al. (2017)) and rare disaster (e.g. Barro (2006) and

J. A. Wachter (2013)) models are jointly rejected conditioning on {Iv,kt }6
k=1. Therefore my

test act as a unified formal setup to assess the characteristics of this type of pricing: in this

subsection I show how the rejection characteristics are indeed able to explain, confirm and

complement the critique that the extant empirical literature has with respect to consumption-

based representative agent pricing.

As a starting point, an unreported analysis40 shows that the rejection subsamples are char-

acterized by low consumption and GDP growths, while in Appendix A.6 I document how

these periods indeed coincide with instances where actual representative models perform the

worst.41

In the rest of this subsection I link the characteristics of the rejections to the recent findings

of Martin (2017), Muir (2017), Moreira and Muir (2017), and Greenwood and Shleifer (2014),

confirming and extending their critiques.

40The analysis is available upon request and is analogous to the one performed for risk aversion and market
crash probabilities in the previous subsection.

41The absolute pricing errors coming from the SDFs implied by Campbell and Cochrane (1999), Bansal
and Yaron (2004) and J. A. Wachter (2013) using their original calibrations are on average 41% higher during
rejections, with those produced by the J. A. Wachter (2013) model being less pronounced no matter the
conditioning. The results are robust to nominal as well as real total market returns as proxied by the SP500.
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One of the reason why rejected models fail might simply be due to the fact that they are

not tailor-made to match option data, this is because the lower bound, LBt, according to eq.

(1.3) is just a portfolio of puts and calls on the market portfolio. However, Martin (2017)

in his 2017 seminal paper shows how even models such as Bollerslev, Tauchen, and Zhou

(2009), Drechsler and Yaron (2011), that explicitly address the properties of option prices

are not able to replicate trhough simulations the properties of the lower bound. My test is

built using such lower bound and extends Martin’s concerns to the entire class of models

that satisfy the NCC (eq. (1.2)) within a formal econometric setup.

Muir (2017) shows how consumption based representative agent pricing has difficulty in

simultaneously matching risk premia during recessions and financial crises: this is because,

despite the different risk premia behavior, the consumption dynamics is very similar. While

Muir select these periods exogenously and ex-post, my test pins them down endogenously

and ex-ante: as a matter of facts, we already showed that both financial crises as well as

economic recessions are inside the rejection subsamples.

Moreira and Muir (2017) find profitable trading strategies which go against representative

agent pricing: because actual Sharpe-ratios are lower during recessions (periods of high

volatility) and higher during normal times (periods of low volatility), it is profitable to

time the market by decreasing the exposure in bad times and increasing it normal times.

However, a representative agent is expected to bare more risk rather then less during bad

times and be compensated accordingly, therefore the authors claim their strategies to go

against representative agent pricing predictions (or equivalently that implied Sharpe ratios

of representative agents are too high). In the next paragraph I show how indeed rejections

are characterized by higher volatility, lower Moreira-Muir exposures and implied model-

based Sharpe ratio which are too high. Table 1.7 shows the average impact of volatility
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(measured via the VIX index) and the Moreira and Muir (2017) exposures (computed using

the procedure detailed in their paper and using a GARCH(1,1) on the SP500 returns42).

Panel A shows how the rejections are characterized by higher level of volatility (on average

higher then the median only during rejections), while panel B reports lower Moreira-Muir

exposures (on average higher then the median only in the rest of the sample but during

rejections) in the subsamples {Iv,kt }6
k=1. Finally, recall that during rejections Sharpe ratios

implied by the Martin’s class of representative agent pricing are on average higher than

actual ones by at least 0.21 (or 0.72 annaulized). In summary, the rejections characteristics

explain the success of the Moreira-Muir strategies and give a formal test to their claim.

Finally, Greenwood and Shleifer (2014) and Amromin and Sharpe (2013), contrary to ra-

tional expectations, show how representative-agent-based required market returns disagree

with actual expectations from a non-trivial fraction of investors. Their results are further

exacerbated while conditional on the rejection subsample. Greenwood and Shleifer (2014)

measure the correlation between two sets of proxies:

Mod representative agent based proxies for require market returns (the dividend price ratio,

DP , the Lettau and Ludvigson (2001) consumption to wealth ratio, CAY , and the

negative of the Campbell and Cochrane (1999) surplus consumption ration, −SCR)

Dat market return actual expectations from survey data (quarterly Graham-Harvey Survey

administered to CEOs of big US company, GH, monthly Gallup Survey administered

to households with at least 10000 dollar invested, Gall)43

42Results are robust to the usage of the VIX and different rolling windows to compute the GARCH(1,1)
on the SP500 returns.

43See Greenwood and Shleifer (2014) for more details.
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under the null of rational expectations the correlation between the two sets of proxies should

be one, but the authors find correlations that are either not statistically different from zero

or negative. Table 1.8 reports a similar exercise conducted conditionally on no rejections

(Ivt = 0) as well as given rejections (Ivt = 1): the upper panel reports the correlations

between Mod and Dat conditioning on no rejections, while the bottom panel shows the

differential between the conditional correlations of Mod and Dat in rejections with respect

to no rejections: conditioning on no rejections already returns similar conclusions to the

unconditional Greenwood and Shleifer (2014) test, while the second table shows how on

average the correlation between Mod and Dat in rejections is negative and, most of the

time, statistically lower than in no rejections.44

1.5.3 Marginal versus representative agent pricing

In this subsection I show how the leading marginal intermediary based model of Adrian et

al. (2014) is robust to the non-parametric test, and how this might more generally be related

to the fact that marginal pricing is able to generate equilibrium portfolios which are more

efficient than the representative agent market portfolio.

Adrian et al. (2014): a robust intermediary-based setup

In intermediary based theories the Stochastic Discount Factor depends on the health of the

financial sector (see Brunnermeier and Pedersen (2009), Adrian and Boyarchenko (2012),

44The only exception being the divided price ratio under the Graham-Harvey Survey where the conditional
correlations are not statistically different one with another. But is is mainly because the no rejection
conditional starting point is already very negative and statistically significant as displayed in the first raw
of the upper panel.
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He and Krishnamurthy (2013) and Moreira and Savov (2017)) and in place of a represen-

tative agent there is a marginal financial intermediary.45 The model of Adrian et al. (2014)

postulates a linear 1-factor structure for the SDF of a marginal broker/dealer

Mt+1 = 1− b× LevFactort+1 (1.9)

where LevFactort+1 proxies for shocks to the intermediary wealth by capturing changes in its

leverage. Adrian et al. show how this SDF is able to price, explaining 77% of the variation, a

non-trivial cross-section of expected returns including equity portfolios sorted by size, book-

to-market, and momentum, as well as the cross-section of Treasury bond portfolios sorted

by maturity. I this subsection I document that (i) the model correctly prices asset even

conditioning on periods where representative agent pricing is rejected, (ii) as a matter of

facts, because it does not satisfy the NCC, it is not among the class of models rejected

in this study, and finally (iii) the marginal broker/dealer does not hold in equilibrium the

market portfolio (at least during representative agent pricing rejections).

In order to assess the correct pricing of the model, I estimate the SDF in eq. (1.9) imposing

the pricing equation (1.1) via the following GMM system of equations


E
[
Mt+1R

j
t+1 − 1] = 0, j= 1, ..., J

E
[
Mt+1R

j
t+1 − 1|Ivt ] = 0, j= 1, ..., J

where I use the 41 test assets of Adrian et al. (2014) plus the market portfolio Rt+1 for a

total of J = 42 assets and the monthly proxy for LevFactort+1 constructed in Adrian et al.

(2014). Results are shown in Panel A of Table 1.9: the model correctly prices the assets

unconditionally as well as conditioning on subsamples {Iv,kt }6
k=1 where the representative

45Who might or not be the representative agent.
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agent pricing is rejected: no matter which rule (subsample) we look at or whether we use

equally weighted (EV) or value weighted (VW) portfolios to form the test assets, the J test

does not reject the system of equations at the conventional 5% level and the SDF parameter

b is statistically positive as it should be.46

Panel B of Table 1.9 reports for each rule (supsample) as well as for the case of equally

weighted (EV) and value weighted (VW) test assets the NCC (translating eq.(1.2) in terms

of correlations) unconditionally47 and conditionally on the subsamples {Iv,kt }6
k=1 : regardless

of the rule or the weighting used to form the test assets all correlation are positive and very

high both unconditionally and conditionally. For the NCC to hold such values should be

smaller or equal to zero.

Finally, Panel C of Table 1.9 shows the correlations, unconditionally and conditionally on the

subsamples {Iv,kt }6
k=1, of the implied equilibrium portfolio held by the marginal broker/dealer

and the market portfolio: while unconditionally the two are 0.235 and 0.231 positively

correlated, conditioning on the rejections {Iv,kt }6
k=1 in general they are uncorrelated. If

the broker/dealer was holding the market portfolio in equilibrium the correlations should

have been much closer to one.48

46Meaning that periods where leverage is low are associated with periods where the marginal utility of the
intermediary is high, this is a standard prediction of intermediary-based modes where the leverage is driven
by debt considerations as in Brunnermeier and Pedersen (2009) or Adrian and Boyarchenko (2012).

47The unconditional figures are slightly different because they are computed as a second stage using the
SDF parameter values of b in eq. (1.9) from Panel A.

48Not exactly one since the SP500, following the Roll (1977)’s critique, might not be a perfect proxy for
the truly unobservable market portfolio.
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Is marginal pricing able to generate more efficient equilibrium portfolios?

We have seen that the subsamples {Iv,kt }6
k=1 give hard times to the Martin’s class of rep-

resentative agent pricing but are not an issue for the leading marginal intermediary setup

of Adrian et al. (2014). In particular, the conditional failure of representative agent pricing

implies that there is no agent holding the market portfolio (as proxied by the SP500) in equi-

librium, thus, at least for the rejection subperiods, the market portfolio is not efficient in the

sense used for example in Dybvig and Ross (1982). On the other hand, in the setup of Adrian

et al. (2014), (i) there is no explicit structure that constrains the intermediary broker/dealer

to be a representative agent,49 (ii) the total financial wealth held by broker/dealers is only

around 3% (as reported in He and Krishnamurthy (2013) with respect to the year 2010)

and (iii) the marginal broker/dealer always (no matter the conditioning) hold some optimal

portfolio, other than the market, in equilibrium.

These results suggests the marginal intermediary-based setup of Adrian et al. (2014) to be

more robust than those in the Martin’s class of representative pricing, and perhaps find more

generally, marginal pricing, as able to generate more efficient equilibrium portfolios than the

representative agent market portfolio. This latter claim as well as the potential reason why

this might indeed be the case are left to be further investigated by future research.

1.6 Conclusion

This paper makes use of a new result by Martin (2017) to deliver a more general and

constructive non-parametric test for a non-trivial class of representative agent pricing models.

49In particular no assumptions constraining preferences to be homotetic or identical across broker/dealers
are imposed.
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The test is more general in that it does not impose sharp restrictions on the preferences of the

agent and only uses the time series of the market return, its options’ quotes and a proxy for

the risk-free rate. It is more constructive because, upon rejection, endogenously returns the

conditional subsample originating the rejection: a feature which enable the econometrician

to study the characteristics of periods associated with the systematic failure of asset pricing

models, and theorists to potentially design more robust setups in the future.

Popular representative agent pricing is rejected conditionally on high uncertain and illiquid

periods, which contains all the major financial crises and economic recessions in the analyzed

sample. These subperiods, endogenously selected based on rules predicting low returns in a

training sample, are defined as times where implied model-based risk premia are too high.

Findings suggest that such conditional model-based implied risk premia are off by striking

amounts - at least by 1.3% monthly (15.6% annually) - even after risk adjustments (model

based Sharpe ratios are still higher then actual ones by at least a monthly 0.2). While ex-

cessive risk aversion does not seem to explain such results, ruling out Merton (1980)’s type

explanations, two alternative channels are found consistent with the data: either rejected

models are too sensitive to market crash probabilities, which, as in the rare disaster litera-

ture, might be pushing the risk premia too high, or rejected models, typically frictionless,

might not be able to account for the high informational and trading frictions characterizing

the rejections. Interestingly, the alternative marginal intermediary-based pricing setup is

found more robust. In these models pricing is performed via a marginal intermediary, not

necessarily a representative agent: the representative model of Adrian et al. (2014) is found

to correctly price assets even during periods where representative pricing is rejected and the

marginal broker/dealer intermediary not to hold the market portfolio in equilibrium.
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This findings are overall suggestive of marginal intermediary pricing being able to generate

more efficient portfolios (in the sense used for example in Dybvig and Ross (1982)) than the

popular representative agent market portfolio. Further investigation of this claim, as well as

the potential reason why it might be the case, are left for future research.
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Figure 1.1: Main variables

The figure plots the excess market return πt+1 ≡ Rt+1 − Rt,f and the lower bound measure
LBt computed according to (1.3), using linear interpolation and bid quotes.
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Figure 1.2: First 100 models in training sample according to in-sample fit

The figure shows the first 100 models ranked by their adjusted in-sample R2 along with a
third order polynomial fit. Chow (1960) tests using linear, quadratic or cubic specifications
unambiguously identify a brake in correspondence of model 6. The sample is the training
one starting from February 1973 and ending December 1989.
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Figure 1.3: Tackling over-fitting in the design of the rules for the non-parametric test

Panel a of the figure plots the out-of sample ICM MSE on the in-sample counter-part for
the 6 selected forecasting models. Models above and to the left of the 45 degree line passing
through the origin performed better in-sample while those below and to the right performed
better out-of-sample. Panel b reports for each selected model in the training sample starting
in February 1972 and ending in December 1989 the t-statistics associated to β in equation
(1.8) with rit+1 ≡ πt+1−π̂t where π̂t is the forecast of πt+1 given one of the six specifications of
model (1.6) performed in the main sample starting in January 1990 and ending in December
2014.
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Figure 1.4: Subsamples originating the non-parametric test rejections

The top graph plots the time series of the six objective rules (subsamples) Ivt (Wt, LBt)
against the real GDP growth: in order to make the graph more readable I multiply each
rule by its associated model, i.e. rule for model j is plotted as j × Ivt (Wt, LBt) and assumes
values 0 and j in the rejection periods. The bottom graph shows in green the sample periods
which are systematically detected by all the rejection rules for a total of 35 observations.
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Figure 1.5: Dynamics of uncertainty (F) and illiquidity (ILLIQpi)

The dynamics for the Ludvigson et al. (2016) financial uncertainty index F and the Pastor
and Stambaugh (2003) (il)liquidity index are plotted. In bold the periods selected by the
representative rule n.1, Iv,1t , are highlighted in correspondence of each time-series.
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Table 1.1: Summary Statistics on Main Variables

The table summarizes the main variables: Rt+1 − 1 is the total net return on the Standard and

Poor’s 500, Rt,f − 1 is the 1-month yield to maturity on U.S. Treasuries, πt+1 = Rt+1 − Rt,f is

the excess market return and LBt is the market premium lower bound measure computed through

(1.3) using linear interpolation and bid quotes. Observations are at the monthly frequency (not

annualized). The lower bound and excess market return statistics are computed in the main sample

January 1990 trhough December 2014 while the market and the risk-free return are computed over

the entire sample February 1973 trhough December 2014.

Variable Mean Std.Dev. Min Max N. Obs. Sample

(Rt+1 − 1)× 100 0.93 4.57 -21.62 17.05 492 All
(Rt,f − 1)× 100 0.42 0.29 0.000 1.38 492 All
πt+1 × 100 0.61 4.53 -16.62 16.04 289 Main
LBt × 100 0.33 0.32 0.07 3.48 289 Main
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Table 1.2: Pearson correlation matrix for the candidate predictors

The table displays Pearson correlation coefficients for the candidate predictors (instruments) Z,
described in Section 1.3, over the entire sample from February 1973 to December 2014, the overall
average absolute correlation is 0.10.

Corr F SII TAXchg ILLIQpi ILLIQts MDI USDg BM M1g Sent

F 1

SII -0.03 1

TAXchg -0.16 0.03 1

ILLIQpi 0.35 0.06 -0.04 1

ILLIQts -0.05 0.01 0.05 0.10 1

MDI 0.44 0.04 -0.10 0.23 -0.04 1

USDg 0.00 -0.14 0.02 -0.02 0.09 0.10 1

BM 0.02 -0.41 0.05 0.06 0.00 0.05 -0.11 1

M1g 0.15 -0.03 -0.09 -0.07 -0.05 0.19 -0.05 0.20 1

Sent -0.08 0.08 0.23 -0.15 0.13 -0.19 0.10 -0.42 -0.06 1

GINIchg -0.13 -0.01 0.24 -0.04 0.06 -0.10 -0.03 -0.04 -0.05 0.22
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Table 1.3: Best selected models to predict the excess market return

The table describes the characteristics of the first 6 models to predict the excess market return π, ranked by their
adjusted in-sample R2 in the training sample from February 1973 through December 1989.

W F SII TAXchg ILLIQpi ILLIQts MDI USDg BM M1g Sent GINIchg f(·)
1st X X X X X X X X Int
2nd X X X X X X X X X Quad
3rd X X X X X X X X Quad
4th X X X X X X X X X Int
5th X X X X X X X X X X Quad
6th X X X X X X X X X Quad
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Table 1.4: Non-parametric Test

Each row shows the results for the k-th specification of forecasting model (1.6): four different versions of the key
statistic E[yt+1|Iv,kt ] associated with four different rules Iv,kt are reported in percentages and at the monthly frequency.
Version (1) reports the outcomes of the unconditional test, version (2) corresponds to the key rule object of this study
(detailed in Section 1.2) and shows the outcomes of the main non-parametric test. Finally versions (3) and (4) replace
the lower bound series LBt in the key rules of version (2) with its unconditional mean, L̄B, or zero: these rules serve
the purpose of understanding the actual role played by the lower bound in the main version (2). Stars, which are
inversely related to the intensity of the green color highlighting the figures, represent the usual confidence levels: they
are reported conservatively as the lowest confidence among the two computed from the equivalent test specifications
in eq. (1.4) and (1.5) and the one derived from p-values adjusted for potential small-sample issues. At the bottom
of the table the average number of observations per given rule (a given version), and the ratio of the magnitudes of
figures in version (3) and (4) with respect to the baseline version (2) are reported.46



Table 1.5: Rejection characteristics

Each row corresponds to a different predictor zt ∈ Zt, while different columns identifies rule n.1,
Iv,1t , trhough rule n.6, Iv,6t . The table displays the difference in conditional means of each predictor,
zt, between the rejection subsample and the rest of the sample, E[zt|Iv,1t = 1]−E[zt|Iv,1t = 0]; only
predictors with statistically different means can discriminate, and thus characterize (up to a first
order approximation), the rejection periods.
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Table 1.6: Potential explanations for Representative Agent pricing failures

Panel A plots in blue the conditional mean of the Campbell and Cochrane (1999) proxy for time-
varying risk aversion, ηt, during rejections and in red the analog conditional mean during the rest of
the sample for the discussed rules, while the table at the bottom of the figure reports the difference
in these means together with their levels of significance. Similarly panel B reports in blue the
conditional mean of the Bollerslev and Todorov (2011) left tail intensities for the Standard and
Poor’s futures, CPt, during rejections and in red the analog conditional mean during the rest of
the sample for the discussed rules, while the table at the bottom of the figure reports the difference
in these means together with their levels of significance.
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Table 1.7: Justifying failures in light of the results of Moreira and Muir (2017)

Panel A shows how the rejections are characterized by higher level of volatility (on average higher
then the median only during rejections), while panel B reports lower Moreira and Muir (2017)
exposures (on average higher then the median only in the rest of the sample but during rejections)

in the subsamples {Iv,kt }6k=1.

49



Table 1.8: Greenwood and Shleifer (2014) test for rational expectations

The upper panel reports the correlations between model-based representative agent proxies for
require market returns (the dividend price ratio, DP , the Lettau and Ludvigson (2001) consumption
to wealth ratio, CAY , and the negative of the Campbell and Cochrane (1999) surplus consumption
ration, −SCR) and proxies for actual market return expectations from survey data (quarterly
Graham-Harvey Survey administered to CEOs of big US company, GH, monthly Gallup Survey
administered to households with at least 10000 dollar invested, Gall, see Greenwood and Shleifer
(2014) for more details) conditioning on no rejections (Ivt = 0), while the bottom panel shows
the differential between the conditional correlations of these variables in rejections (Ivt = 1) with
respect to no rejections (Ivt = 0).
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Table 1.9: The robust intermediary-based setup of Adrian, Etula and Muir (2014)

Panel A displays, across rules (subsamples) and using equally weighted (EV) versus value weighted (VW) test assets
as in Adrian et al. (2014), the pricing delivered by eq. (1.9): a correct pricing should display a positive and significant
coefficient b and should not be rejected by the GMM J-test. Panel B reports the NCC condition of eq. (1.2) translated in
terms of correlations both unconditionally and conditionally upon the rejection rules (the reason why the unconditional
values slightly differ across rules is due to the fact that the correlations have been computed as a second stage using the
b coefficients estimated in Panel A). Finally Panel C reports the unconditional versus conditional correlations between
the market return Rt+1 and a proxy for the Adrian et al. (2014) broker/dealer equilibrium portfolio LevFactort+1.
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Chapter 2

Mean-Variance Portfolio Rebalancing

with Transaction Costs

2.1 Introduction

Optimal portfolio rebalancing given transaction costs is a complex problem. Even with only

two assets, solving for the optimal strategy in a continuous-time model involves either a pri-

mal free boundary problem (see, for example, Davis and Norman (1990), Dumas and Luciano

(1991), H. Liu and Loewenstein (2002), Shreve and Soner (1994) and Taksar, Klass, and As-

saf (1988)) or its dual formulation (e.g. Goodman and Ostrov (2010), see Schachermayer

(2017) for a comprehensive summary of this approach). When there are more securities or

time is discrete, models have been solved only in the extreme case of uncorrelated returns

and constant absolute risk aversion (H. Liu (2004)) or with numerical or heuristic approx-

imations (Leland (2000), Balduzzi and Lynch (1999, 2000), Donohue and Yip (2003), Han

(2005), Muthuraman and Kumar (2006), Irle and Prelle (2008), Lynch and Tan (2009),

Myers (2009) or Dumas and Buss (2017)). Furthermore, except for the case of uncorrelated

securities, when solutions are available they only involve two and rarely three risky assets.
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In this paper, we study the single period investment decisions of a mean-variance investor

only using basic calculus and we are able to: (i) derive exact solutions in the presence of many

assets, with generic correlation structure, under proportional and fixed costs, (ii) validate

key characteristics of the optimal solutions only conjectured in previous studies, (iii) uncover

new economic insights behind the optimal strategies, and (iv) provide useful algorithms for

actual large scale problems.

Mean-variance analysis was originated by Markowitz (1952, 1959), who described the basic

formulations and the quadratic programming tools used to solve them. The theory was

further described by Tobin (1958), who focused on macroeconomic implications of the theory.

Early discussions of transaction costs often focused on the intuition that small investors who

face high costs will choose a smaller and less diversified portfolio than will a large investor

with smaller costs. This intuition has been formalized by a constraint on the number of

securities in the portfolio (Jacob (1974)), a fixed cost for each security included in the

portfolio (Brennan (1975), Goldstein (1979), and Mayshar (1979, 1981)) or a study of benefits

of adding securities without modeling the costs (Mao (1970, 1971)). Unfortunately, this

type of assumptions tend to produce a somewhat messy combinatoric problem looking at all

possible subsets to include, and their static perspective does not seem suited to questions

about rebalancing. The current analysis differs in two important ways from the traditional

mean-variance literature on transaction costs. First, the traditional literature considered

the purchase of a portfolio from scratch, while the current analysis considers rebalancing

from any starting portfolio. Second, we also consider variable costs rather than only fixed

costs (both security specific and overall) and their combination (variable costs and other

institutional features were included in choice problems of Pogue (1970), but without any

analysis of the solution).
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The two setups that are closest to our analysis are the continuous time multi-asset models

with constant investment opportunity sets presented in Leland (2000) and H. Liu (2004).

Leland (2000) provides an heuristic approach to minimize proportional transaction costs.

There is no explicit utility maximization and the solution is conjectured to contain a non-

trading region with the shape of a parallelogram (or its higher dimensional analogs). Im-

posing mean-variance preferences in a one-period model, our setup endogenously generates

the same qualitative properties. H. Liu (2004) solves proportional and fixed transaction

costs problems in the presence of many uncorrelated risky assets. His no-trading regions are

rectangles (or higher dimensional analogs) which arise as special cases in our setup when the

covariance matrix of the risky securities is diagonal.

A solution to a portfolio optimization problem can be thought of as the set of all potential

trades (mappings from the initial pre-trades allocations to the final post-trades ones) that are

optimal given the preferences of the hypothetical investor. Absent costs any trade leads to

the same ideal allocation (so that usually in these frameworks a solution is directly defined

as such allocation). When trading involves transaction costs, there exists a set of initial

allocations which are too close to the ideal one to justify any trade, so that it is optimal not

to trade at all. This set is referred to as the no trade region: its shape, as well as the type

of trades which are optimal from initial allocations outside of it, are fully characterized by

the specific structure of the costs.

In the variable cost models, it is optimal to trade only to the closest boundary of the non-

trading region, since trading further would incur additional costs that are not justified.50

50Masters (2003) contains a mean-variance-style analysis with a single risky security and variable trading
costs in which it is claimed that it is not optimal to trade to the boundary of the non-trading region. However,
this is because the paper computed the non-trading region incorrectly as the set of portfolios from which it
would be worth trading to the ideal point that would be chosen absent costs. The error is that there are
portfolios from which it pays to trade partway to the ideal portfolio but not all the way.
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With proportional costs, the cost of trading is additive (if all trades are in the same direction)

or less than additive (if the second trade reverses the first trade in some securities). If a

candidate trade does not take us to the no trade region, we could add on the additional trade

we would make from that point and be better off. Or, if a candidate trade takes us beyond

the boundary of the trading region, is better to trade along the line to the boundary because

the part of the trade beyond the boundary is not justified. These arguments do not work for

fixed costs, because they rely implicitly on costs being additive for sequential trade along a

line, and on costs being no more than additive for sequential trade that are not along a line.

In the models with fixed costs, any trade moves to inside the no trade region if it is optimal

to trade at all: this is because fixed costs once triggered become sunk costs. With only an

overall fixed cost, any nonzero trade moves to an ideal portfolio that would be held absent

costs. This ideal portfolio is in the interior of the no trade region because the value of trading

from nearby is too small to cover the fixed cost. With security-specific fixed costs, any trade

will take us to the interior of the no trade region. However, different starting portfolios will

cause us to trade to different target portfolios.

In models featuring both fixed (overall and asset-specific) and proportional costs the no trade

region and the optimal trades look very similar to the ones generated by only proportional

costs for initial allocations enough far away from the ideal allocation. This is because the

impact of proportional over fixed costs increases with the distance from the ideal alloca-

tion (and only proportional costs depends on it) so that when the position is far enough

proportional costs are just what matter. For initial positions closer to the ideal one, the

impact of the fixed component(s) become more and more relevant up to a locus of points,

the actual boundaries of the no trade region, where we are indifferent between not trading
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at all or paying the fixed cost(s) and trade further up to where it is optimal according to the

proportional components of the costs.

The analysis in this article can accommodate multiple risky assets, trading of individual

securities or bundles or pairs, and trading futures or swaps as well as stocks. In particular,

while applying our model to trading in futures and its underlying, we show how to improve

over traditional futures overlay strategies when it is possible to take advantage of a superior

return from holding the underlying. We also show how engaging in cheaper bundles trading

makes us better off by squeezing the non-trading region towards the ideal allocation absent

costs.

Our models are obtained by solving and comparing a finite combination of standard, strictly

convex, quadratic programs. Some programs have closed-form solutions while the simple

structure of the remaining ones allows a one-to-one mapping between their first order con-

ditions and linear complementarity representations, for which efficient and fast converging

algorithms exist. This is why we are able to provide algorithms for large scale problems

involving many risky securities.

Even if simple and exact, a mean-variance setup remains a myopic approximation of the

true dynamic strategy, nonetheless optimizing over transaction costs using our algorithms is

very useful in practice. Maurer and Pezzo (2018) show the empirical relevance of applying

our framework in the context of the FX markets: taking into account costs while optimizing

over 29 developed and emerging currencies from 1976 to 2016 leads to an economically large

and statistically significant improvement in the out-of-sample performance with a Sharpe

ratio increment of approximately 30%. They also show how the majority of such increment,

70%, is due to the proper treatment of correlations. In other words, modeling correlations
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is important, a strategy based on a framework like that of H. Liu (2004), where assets are

considered uncorrelated, delivers no significant improvement.

The rest of the paper is organized as follows: Section 2.2 gives an overview of the general

framework, in Section 2.3 we provide graphical examples covering all the main features of

our framework including the new insights on futures overlay strategies, bundle tradings and

the impact of a benchmark. Section 2.4 contains the formal characterization of the problem:

we proof the existence and uniqueness of solutions and discusses their structures including

the steps to constructs all the basic examples of Section 2.3 and the comparative statics

analysis. Section 2.5 describes the algorithm to numerically solve our models for a large

number of risky assets. Section 2.6 concludes while the Appendix contains the proof of the

existence and uniqueness of solutions.

2.2 The Mean-Variance Framework

There are n + 1 asset returns which realizes at the end of the period and initial financial

wealth normalized to 1. By default the first asset, asset 0, also referred to as cash, is risk-free

and can be understood as the bank account used to trade in all other risky assets. At the

beginning of the period, starting from an initial allocation for the risky assets (which can be

a vector of zeros), θ0, the investor has to choose the vector of portfolio weights θ in order to

maximize

U(θ) = r + θ′(µ− r1)− λ

2
θ′Vθ − κ

2
(θ − θB)′V(θ − θB)− c(θ, θ0) (2.1)
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The first three terms in the utility function are standard for mean-variance optimization.

The first two terms r and θ′(µ − r1) give the expected return; First the risk-free rate and

then the net change in expected return from holding a nontrivial risky portfolio. The third

term λ
2
θ′Vθ is the utility penalty for taking on variance. The constant λ > 0 is the coefficient

of risk aversion; the larger the value of λ, the more reluctant the investor is to take on risk

in exchange for return, and θ′Vθ is the portfolio’s variance. 51

The fourth term κ
2
(θ − θB)′V(θ − θB) is a penalty for tracking error. This term is perhaps

controversial because it depends on a benchmark, θB, and not just on the distribution of

returns.52 The dependence on the benchmark would be unnecessary and probably damaging

in an ideal world,53 but does arise in practice and should be very familiar to practitioners.

The last term is the cost function c(θ, θ0): trading does not come for free and re-balancing

the initial position θ0 to the new position θ entails resource dissipation. We will model such

costs as proportional (to the size of the trade), fixed (per trade and independent of size) or

a combination of the two as detailed in the following sections.

2.3 Examples

We first provide the reader with the main insights of our framework with a graphical overview:

Example 1 trough 5 illustrate the class of problems analyzed in this paper while Example 6

51Including 2 in the denominator makes the units the same as absolute risk aversion in a multivariate
normal model with exponential utility, and also cancels when we look at the first-order conditions.

52If you do not like this term, you can always restrict attention to κ = 0.
53Indeed Roll (1992) shows how the mean-variance frontier obtained by minimizing the variance of the

tracking error subject to a target expected return over a given benchmark is dominated by the standard
mean-variance frontier.
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trough 8 show interesting applications which exploit the analytical form of our setup. The

formal problem characterization is postponed to the next section.

2.3.1 Example 1: Proportional Costs

A typical case with proportional transaction costs is shown in Figure 2.1. If the initial

allocation θ0 is in the nontrading region, the area of the parallelogram, then there is no

trade whose benefit covers the cost and it is best not to trade. The right boundary of the

nontrading region is part of the line along which we are just indifferent about selling Security

1, s1, and it is optimal to sell Security 1 if we start to the right of this boundary. The left

boundary of the nontrading region is part of the line along which we are just indifferent

about purchasing Security 1, b1, and it is optimal to purchase Security 1 to the left of this

boundary. The boundaries for purchasing and selling are different because the costs put a

wedge between the marginal valuations at market prices and valuation the the prices net of

costs.

Similar to the case of Security 1, we sell Security 2, s2, if we start above the top boundary

and we buy Security 2, b2, if we start below the bottom boundary. If we start in the regions

further away from the corners (not directly to the right, left, top, or bottom of any of the

sides of the nontrading region), then we trade in both securities up to the nearest corner.

It may not be obvious that the correct trades are as shown by the arrows in Figure 2.1. For

example, could there be some points in the region above the top boundary of the nontrading

region from which we trade to the upper right corner of the region? The answer is no,

because if we buy Security 1 at all, we must end up on the corresponding boundary. In this

case, any net purchase of Security 1 must be to the left boundary.
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Absent the positive correlation between the returns on the two securities, the non-trading

region would have been a square (or a rectangle given diverse security-specific costs) with

sides parallel to the axes. With positive correlation, the two securities are substitutes, and

over- or under-weighting in one security is more serious if we have the same over- or under-

weighting in the other security. This is why the nontrading region is larger along the -45

direction in which the over- and under-weightings cancel than along the 45 direction in which

the over- and under-weightings are reinforced.

2.3.2 Example 2: Overall Fixed Cost

If there is an overall fixed cost, then if we trade the cost is the same whatever trade we make.

Therefore, if we are going to trade, we always trade to the same ideal portfolio.

The overall fixed cost is illustrated in Figure 2.2. The non-trading boundary is bounded by

an ellipse. From outside this region, it is optimal to trade to the ideal point, since it is no

more costly to trade to the ideal portfolio than to trade to a less-preferred portfolio. If the

asset returns were uncorrelated with symmetric covariances, the non-trading region would be

a circle. In this example, everything is symmetric but there is correlation. The correlation

means that the two assets are substitutes and it is not so bad if we have too little of one

asset if we have too much of the other. As in the case of proportional costs, this is why we

are quicker to trade if we are over-weighted in both assets than if we are over-weighted in

one and under-weighted in the other.
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2.3.3 Example 3: Asset-Specific Fixed Costs

What may be more plausible than an overall fixed cost is a fixed cost for each security.

Arguably, a security-specific fixed cost comes from a due diligence requirement to monitor

or document any security in the portfolio.

Figures 2.3 illustrate the inaction region in the presence of asset specific fixed costs. Near

the ideal point in the middle, θ∗, is the non-trading region. The North-West and South-East

corners lie on an ellipse reminiscent (but in general not equal to) of the no-trading region

of an overall fixed cost problem while the pairs of parallel outer thick black dashed straight

lines and the two intersecting blue and red lines come from the asset-specific component of

the fixed costs. For analogous reasons as those discussed in the overall fixed cost example,

for any initial position inside the region defined by the above mentioned corners and dashed

line it is optimal not to trade at all. Outside of this area we trade as follows: From the

regions in the corners, we trade both securities to the ideal point θ∗. From the regions on

the right and left, we trade Security 1 but not Security 2 to the thick blue line going through

the ideal point. This would be a vertical line if we had no correlation, but has negative slope

in our case. Similarly, from the regions above and below, we trade only Security 2 to the

thick red line running through the ideal point.

2.3.4 Example 4: Overall Fixed and Asset-Specific Proportional

Costs

Figure 2.4 shows the different (no-)trading regions for the case in which the investor both

pays an overall fixed cost to enter the market as well as asset specific proportional costs
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to (re)balance his portfolio to the desired allocation. The parameters, except for the fixed

cost K = 0.00075, are those of Figure 2.1 and the inner parallelogram is indeed the same:

this is the region where the investor will optimally trade to if the fixed cost of entering the

market is not too big. There is in fact a threshold, pictured as a dash-line, surrounding the

proportional no-trading region; If the initial position θ0 is inside this line the dis-utility from

the fixed cost to enter the market is more than the benefit of trading to the border of the

no-trading region (inner parallelogram) so that it is optimal not to trade at all. Outside of

this line it is optimal to trade up to the border of the no trading region as in the proportional

only case: in particular, there are four corridors and four corners delimited by wavy dashed

lines. Inside each corridor it is optimal to trade (buy or sell) along straight lines only one

asset at a time, while at each corner it is optimal to trade (buy/sell) two assets until the

nearest no-trading region corner is reached.

2.3.5 Example 5: Asset-Specific Fixed and Proportional Costs

A similar but slightly more complex pattern emerges when we look at the the case of asset-

specific fixed and proportional costs. Figure 2.5 visualizes of the (no-)trading regions for the

case of both asset specific fixed and proportional costs. The parameters, except for the fixed

cost K = 0.00075, are those of Figure 2.1 and the inner parallelogram is indeed the same:

this is the region where the investor will optimally trade to if the fixed costs are not too

big. Each fixed cost, albeit asset-specific, is taken as identical in the figure. The presence of

asset specific costs rather than an overall fixed cost, on top of the asset specific proportional

components, has similar effects, and an analogous intuition, as those described in Figure

2.4 in the presence of an overall fixed cost in place of the asset-specific fixed ones with two

notable differences: 1 - the corridors inside which only one asset at time is traded up to the
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border of the no trading region are wider pushing the corner regions further away from the

unconstrained optimum. 2 - the thresholds where the investor is indifferent between paying

the fixed costs and trade to the border of the no trading region or do not trade at all are

different with respect to Figure 2.4 and feature a couple of intersections along the 45 degree

line passing through the unconstrained optimum.

2.3.6 Example 6: Futures Overlay

In this example we suggest an improvement over traditional future overlay strategies.

It is increasingly common for plan sponsors to use futures as well as (or instead of) equities

for managing exposure to market risk. One popular example of a transaction-cost-aware

strategy is to use futures as an inexpensive way of keeping effective asset allocation in line

with a benchmark or ideal allocation. For example, if we think the ideal weighting in equities

is 60%, then as the market rises we become over-weighted and as the market falls we become

under-weighted (since the fixed-income part of the portfolio moves less than proportionately

with moves in the equity market). Maintaining a weighting near the ideal weighting by

trading equities is very expensive. A futures overlay might correct for minor deviations from

the ideal weighting by trading in futures, which are highly correlated with equities but much

cheaper to trade.

For a futures strategy, we normally think that the correlation between the equity position

and futures is close to one, so that holding futures and bonds is a close substitute for trading

the underlying equities. We also usually believe that futures are much less expensive to trade

than the underlying, which is why it is appealing to consider substituting futures trades for
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trades in equities. The expected returns (“alphas”) are however not usually discussed much,

but they turn out to be very important.

Generally, we might expect the return on the underlying equities to be higher than the return

on synthetic equity due to the benefits of active management. Or, moving somewhat outside

the model, the extra return on the underlying may be due to the cost of rolling the futures

or the tax-timing advantages to equity. Figure 2.6 illustrates an example in which equities,

Security 1, have a significantly higher expected return than the synthetic equity strategy

using futures, Security 2. In this case, there is a trade-off between transaction costs and

expected return and it is optimal to use futures to substitute for trading in the underlying

only for some trade. In practice, most plan sponsors use a “symmetric” futures overlay

that uses futures to the same extent for correcting over- and under-exposure to the market.

However, the analysis here prescribes an asymmetric strategy that makes good economic

sense. If the market exposure must be reduced, we sell futures,54 which allows us to keep the

extra return on the underlying equities. On the other hand, if the market exposure must be

increased, we buy equities, which have the extra return, rather than futures, which don’t.

2.3.7 Example 7: Bundles

If it is possible to purchase a bundle of securities more cheaply than its constituents, then it

might be possible to shrink the non-trading region and get closer, at least in some directions,

to the unconstrained optimum.

In the presence of proportional costs only Figure 2.7 illustrates an example identical to that

in Figure 2.1 except the additional opportunity of buying or selling a 50-50 mix of the two

54This is the normal situation but extreme cases may be different. For example, in Figure 2.6 we would
sell equities rather than futures if we found ourselves 210% long equities and 140% short futures.
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securities with a transaction cost of 0.0025. The dashed red lines represents the no trading

region in the absence of the bundle, while the solid lines are the new region boundaries.

Adjacent the region in which we sell the bundle, there are regions where we sell the bundle

and one of the securities. Similarly, adjacent the region in which we buy the bundle, there are

regions where we buy the bundle and one of the securities. To keep the graph simple, we have

considered a case with only two underlying securities, but bundles trading would obviously

be more useful and more interesting with many securities. For example, trading a bundle

might be a cost-effective way of aligning market or sector exposures with a target. With

many securities in the bundle, the trading pattern could be more complex, for example, with

simultaneous buys and sells of different individual securities to compensate for imbalances

caused by trading the bundle.

In the presence of fixed costs we can reach a similar conclusion: Figure 2.8 compares the

inaction regions of Example 2.4 (red) and 2.5 (blue). Even if no explicit bundle of assets is

available, for situations in which it is optimal to simultaneously trade both assets (in case

of negative correlation the no trade regions stretches more along the 45 line) one can think

of the overall cost as the fixed cost for accessing the bundle consisting of asset 1 and 2 thus

coming closer to the unconstrained optimum.

2.3.8 Example 8: Following a Benchmark with Proportional and

Fixed Costs

This last application confirms and generalizes the i.i.d. approximate framework of Leland

(2000): found managers’ performances are usually evaluated relative to a benchmark, θB,

and price fluctuations generate an additional trade-off. While previous examples show that
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for positions that are not too distant from the ideal portfolio it is optimal not to trade, if man-

agers’ performance are evaluated against a benchmark portfolio there might be additional

incentives to trade sooner to keep the strategy relatively near the benchmark. Leland (2000)

studies this situation in a dynamic setting where returns are i.i.d, in the presence of propor-

tional costs only and in the absence of standard preferences. Our one-period framework is

able to put such analysis in the context of (explicit) mean-variance preferences and a more

general cost function (featuring a fixed component on top of the asset-specific proportional

costs).

Figure 2.9 shows two typical such situations: with proportional and an overall fixed cost

(upper plot) and with proportional and asset specific costs (bottom plot). By comparing

these graphs with the equivalent formulations in the absence of a benchmark, Figure 2.4

and 2.5 respectively, we notice how the trade-off works: the presence of the benchmark θB

shrinks and shift the no trading regions towards the benchmark.

2.4 Analytical Characterizations

In this section we formally analyze the different models introduced earlier. The following are

the set of weak technical assumptions that our framework requires in order to be well-defined:

A1: the variance-covariance matrix, V , of risky returns net of any liquidation costs is positive

definite55

55This assumption might be relaxed in an even more flexible setup able to handle all the modeling situations
that require perfect positive or negative correlation between assets. Important examples include the design
of a model to study the closed-end fund puzzle or the more applied need to model situations in which the
same asset is traded in different exchanges (e.g. as an ordinary stock in Country X and as an A.D.R. in the
U.S.). This objective is left for future research.
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A2: the risk and tracking error aversion parameters λ and κ are non-negative and at least

one of them is strictly positive

A3: the cost function c(θ, θ0) ≡ c(P, S, θ0) is

c(P, S, θ0) =



P ′CP + S ′CS with CP > 0, CS > 0 if costs are proportional

1[θ 6=θ0]k with k > 0 if cost is overall fixed∑n
i 1[θi 6=θ0i ]ki with ki > 0 if costs are asset-specific fixed

P ′CP + S ′CS + 1[θ 6=θ0]k if costs are proportional and overall fixed

P ′CP + S ′CS +
∑n

i 1[θi 6=θ0i ]ki if costs are proportional and asset-specific fixed

where P ≥ 0 is the n-dimensional vector of risky assets’ purchases, S ≥ 0 is the

n-dimensional vector of risky assets’ sales, CP is the n-dimensional vector of propor-

tional purchase costs and CS is the n-dimensional vector of proportional sale costs.

The cost function detailed in A3 covers the typical cost structures used in the literature.

Note that such cost function is defined in terms of P and S rather then asset weights θ, as

part of the proof of Theorem 2 below we show that a necessary condition for any solution θ

is that c(P, S, θ0) = c(θ, θ0). That is, the cost function can equivalently be represented as a

(piece-wise linear) function of the n-dimensional vector of risky weights θ.

Under these assumptions we can proof the existence of a solution θ∗ for the class of models

having objective function defined by (2.1)

Theorem 2 Given A1− A3 the problem

max
θ∈Rn

U(θ)
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has solution θ∗ = {θPC , θ\PC}. θPC is the unique solution if costs are only proportional,

for all other cases the solution, θ\PC, is still unique for initial positions outside or inside

the no trading region. For initial positions exactly on the borders of the no-trading region

the investor will choose θ\PC, depending on the actual costs composition, as either θ̂PC (the

solution to a proportional costs problem in which trades are allowed only for a subset of the

assets) or

θu =
V −1

κ+ λ
(µ− r1 + κV θB) (2.2)

which is the unique optimum in the absence of costs. Furthermore the solution θ∗ is such

that U(θ∗) ≤ J(θu) where

J(θ) = r + θ′(µ− r1)− λ

2
θ′Vθ − κ

2
(θ − θB)′V(θ − θB) (2.3)

is the hypothetical utility function in the absence of costs.

Proof. See Appendix B.1

The proof, in conjunction with the algorithm described in section 2.5, gives the recipe to nu-

merically solve the class of problems covered in this paper. Computationally our framework

scale up nicely with the number n of risky assets for which a solution is computationally

feasible. In contrast with the literature, in which solutions are available only up to 2 or

3 risky assets, our one-period setup accommodates large number of assets, especially when

costs are not asset-specific fixed.56

56In this case, since the solution is found by enumerating the potential alternative investments resulting
from any possible combination of the available assets, the number of sub-problems to solve grows at a rate
of 2n with the number n of risky assets, limiting the applicability to a number n of the order of 20.
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The rest of this section covers the in-depth characterization of the solutions for the different

class of proposed models.

2.4.1 Proportional Costs

The Problem

The cost function is defined as c(θ, θ0) ≡ P ′CP + S ′CS. The investor has to choose for

each risky asset by how much to increase or decrease the initial position θ0: the n chosen

increments are stored in the vector of risky purchases, P , while the n chosen decrements

are stored in the vector of risky sales, S. Incrementing the assets’ positions by P entails

a cost, expressed in return units, of P ′CP : i.e. each long trade of risky asset i with size

Pi is taxed at a rate of CP
i . Analogously decreasing the assets’ positions by S entails a

cost of S ′CS: each short trade of risky asset i with size Si is taxed at a rate of CS
i . Thus,

different assets can have different costs for purchasing and selling, which are paid at end-of-

period (or equivalently are measured in future value units). Since utility is also measured in

end-of-period return units, marginal utilities and costs are in identical units.

The problem can be formally described as

Problem 3

max
P,S

U(θ) = r + θ′(µ− r1)− λ

2
θ′Vθ − κ

2
(θ − θB)′V(θ − θB)− P ′CP − S ′CS

subject to

θ = θ0 + P − S
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P ≥ 0

S ≥ 0

where we use the following notation:

θ0: n× 1 vector of initial risky asset weights

P : vector of risky assets’ purchases

S : vector of risky assets’ sales

r: risk-free rate of interest

µ: n× 1 vector of expected risky asset rates net of any liquidation costs

λ: risk aversion parameter

κ: tracking error parameter

V: n× n covariance matrix of risky rates net of any liquidation costs

θB: n× 1 vector of benchmark portfolio weights

CP : n× 1 vector of proportional transaction costs for purchases

CS: n× 1 vector of proportional transaction costs for sales.

Characterization of the solution

This subsection derive by construction the unique solution, θ, in the space of asset weights.

The utility function U(θ) and the constraint vector θ = θ0 + P − S, which yield the end-

of-period portfolio weights, θ, as a function of the chosen sales S and purchases P , define a

quadratic programming which is easy to solve and in which any candidate solution (P, S) has
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to satisfy the First Order Conditions (FOCs) of Problem 3.57 We are assuming that trans-

action costs are the only source of market frictions. In practice, we could add nonnegativity

constraints for portfolio positions, no-borrowing constraints or constraints on proportions in

individual stocks or industries, and the problem would still be easy to solve, but including

such considerations here would only be a distraction from our main message.

If we substitute in Problem 3 the constraints into the objective function we can write the

Lagrangian as

L(P, S, λP , λS) = U(θ) + λ′PP + λ′SS

then the Khun-Tucker (KT) conditions are given by

∂L(P, S, λP , λS)

∂P
=
∂U(θ)

∂P
+ λP = 0 (2.4)

∂L(P, S, λP , λS)

∂S
=
∂U(θ)

∂S
+ λS = 0 (2.5)

with the complementarity slackness conditions

λ′PP = 0 (2.6)

λ′SS = 0 (2.7)

57In the proof of Theorem 2, Problem 3 is rewritten in the equivalent standard quadratic programming
form of

max
x

Ũ(x) = a′x+
1

2
x′Qx

subject to
x ≥ 0

and the Hessian Q is shown to be Semi-Positive Definite implying that any candidate x satisfying the first
order conditions is a solution of the problem.
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and the Lagrange multipliers

λP ≥ 0

λS ≥ 0

In particular, due to the nonegativity of the Lagrange multipliers, equations (2.4) and (2.5)

imply

∂U(θ)

∂P
≤ 0

∂U(θ)

∂S
≤ 0

once we substitute the actual partial derivatives we obtain

m ≡ µ− r − λVθ − κV(θ − θB)

satisfying for each risky asset i with i = 1, ..., n

mi ∈ [−CS
i , C

P
i ] (2.8)

the term mi defines the marginal utility of holding asset i in the absence of transaction costs

(therefore the marginal utility of shorting asset i is given by −mi). At the unconstrained

optimum such marginal utility should equal zero for any asset, however in the presence

of proportional transaction costs equation (2.8) shows that for each asset it lies in in the

compact interval [−CS
i , C

P
i ] around zero instead. Remember that in our framework no trade

in any risky asset i occurs without paying either CS
i or CP

i , thus mi tells us that is optimal

not to trade asset i if the marginal utility mi lies in [−CS
i , C

P
i ].
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If we now substitute the definition of marginal utility in equations (2.4) and (2.5), solve

for the Lagrange multipliers and plug them into equations (2.6) and (2.7), we obtain the

revisited complementarity slackness conditions for each asset i

(mi − CP
i )Pi = 0 (2.9)

(−mi − CS
i )Si = 0 (2.10)

let’s focus our attention on equation (2.9): from equation (2.8) when mi − CP
i ≤ 0 the

marginal utility of holding an extra unit of asset i is smaller or equal to the marginal cost

and we then know that Pi = 0 is optimal. On the other hand, when mi − CP
i > 0 we are

outside of the no trading region, equation (2.8) is violated meaning we are not at optimum

and there exist a choice of either Si > 0 or Pi > 0 or both for some Si and Pi such that the

investor is better off. In particular mi − CP
i > 0 implies −mi − CS

i < 0 thus equation (10)

implies Si = 0. We infer that the only choice available to increase utility is to buy more of

asset i, i.e. set Pi > 0. Note from the definition of mi that it is continuous and decreasing

in Pi, so that the investor has to keep on buying more and more of asset i until mi = CP
i

and condition (2.8) is satisfied. Thus equation (2.9) says that if we are not inside the no

trading region because we are not holding enough of asset i we should buy more of it to the

point in which the marginal benefit equal the marginal cost and we are on the border of the

no-trading region. Similarly the other complementary condition (2.10) says that if we are

not inside the no trading region because we are holding too much of asset i we should keep

selling it to the point in which the marginal benefit of shorting, −mi, equal the marginal

cost CS
i and again we are exactly on the border of the no-trading region.
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The two conditions together imply that it is never optimal to buy and sell any asset i at the

same time, i.e. either Si > 0 or Pi > 0 but not both. Thus there exist only one combination

(P, S) ∈ Rn
+ × Rn

+ satisfying the FOCs of Problem 2.4.1 and the constraint θ = θ0 + P − S:

if this combination is feasible then θ ∈ Rn would be the unique solution of Problem 2.4.1 in

the space of asset weights. The only reason why (P, S) might not be feasible is if there exists

at least one asset i for which setting Pi or Si to +∞ is optimal. By contradiction suppose

there exist such an asset i: because limPi→+∞ θ
′V θ = limSi→+∞ θ

′V θ = +∞, it follows that

U(θ) = −∞. Thus Pi = +∞ or Si = +∞ is never optimal.

The no-trading region and the optimal policy

Absent costs, a standard mean-variance problem with a nonsingular covariance matrix and

strictly concave preferences over mean and standard deviation has a unique optimal portfolio

θu and it is optimal to trade directly to the optimum whatever the initial portfolio θ0. As

a result, there is only a single starting point, the unique optimum θu, from which the agent

would not trade. With transaction costs, however, there is a whole set of portfolios θ,

including θu, from which there would be no trade. Although possibly not at the ideal

portfolio θu, any trade from this region would generate a benefit too small to cover the

transaction costs.

As shown above any optimal portfolio θ in Rn for which there is no trade has to satisfy the

first order conditions: that is it has to be inside the interval defined by (2.8) for each i and

in case it is outside for some component j (asset j) the complementary slackness conditions

(2.6) and (2.7) tell us it needs to be pushed back at the boundary of the interval of asset j

by either buying or selling more of asset j but not both. Thus any optimal portfolio θ satisfy
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condition (2.8) for any asset i suitably re-arranged:

Viθ ≥
1

κ+ λ
(κViθ

B + (µi − r − CP
i )) (2.11)

Viθ ≤
1

κ+ λ
(κViθ

B + (µi − r + CS
i )) (2.12)

where Vi is the i-th row of V . The set of portfolios given by (2.11) defines a half-space such

that it is always optimal not to buy asset i (it may be optimal in some part to actually sell

asset i); this is because (2.11) is equivalent to the statement mi ≤ CP
i . Similarly equation

(2.12) defines a half-space in Rn such that it is never optimal to sell asset i (in some part

is actually optimal to buy asset i). The intersection of these half-spaces for all asset i

characterizes the no trading region. Thus, in contrast to other studies58 that assume linear

edges for the no trading region in the presence of proportional transaction costs, the linearity

of the inaction region boundaries endogenously arises in our setup.

The no trading region is an n dimensional object, with each dimension associated to a risky

asset i for i = 1, ..., n. Figure 2.10 illustrates the no trading region for the case of 2 and

3 risky assets. More generally, there are 2 ×n half-spaces, a pair for each asset i. Note

that for a given asset i, conditions (2.11) and (2.12) with equality defines a pair of n − 1

dimensional hyperplanes which, together with the inequalities’ signs, fully characterize the

respective half-spaces. In particular, the half-spaces are of the form Viθ + bPi ≥ 0 and

Viθ + bSi ≤ 0 with scalars bPi and bSi being the negative of the RHS of (2.11) and (2.12).

Written in this standard way it is easy to see that Vi defines the hyperplanes’ orientations

while the b coefficients characterize their directions in the space. Because the orientation is

the same, the hyperplanes are parallel to each other and their relative distance is given by

|bPi −bSi |
||Vi|| ; simple algebra shows that bPi −bCi =

CP
i +CS

i

κ+λ
which is strictly grater than zero given A2

58e.g. H. Liu (2004) and Leland (2000)
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and at least one between CP
i and CP

i strictly positive, meaning that the hyperplanes do not

overlap. Therefore, the opposite signs in (2.11) and (2.12) reveal that the non-overlapping

hyperplanes define overlapping half-spaces pointing in opposite directions covering a non-

empty corridor in Rn. The convex hull generated by the intersection of this n corridors

defines the boundaries of the no-trading region. The existence of such convex hull is due to

the fact that the covariance matrix V is positive definite, assumption A1, and thus full rank.

This way each of its row, Vi, is linearly independent and thus each hyperplane pair, and

thus corridor, has a unique orientation implying that there will always be 2 ×n intersections

originated from the n pairs of parallel half-spaces and 2n intersections where n half-planes

meet. The 2×n intersections represent the no-trading region edges, while the 2n intersections

are the region’s corners. Finally, each of the 2 ×n half-spaces portions delimited by the 2

×n edges originates the 2 ×n faces of the region.

We can also say more about the shape of this region: the 2 ×n edges are intersections of

parallel hyperplanes thus are linear and symmetric. This also implies that the 2 ×n faces,

being portions of the original half-spaces delimited by the edges, are linear too. Thus the

no-trading region is a parallelogram in the presence of two risky assets and its analogous in

higher dimensions.

In terms of trading rules (optimal policy) by carefully inspecting (2.11) and (2.12) we notice

that each pair of parallel faces (edges excluded) is a function of a single asset only. The

trading rule with respect to asset i, for each initial allocation lying outside the interior of

such faces along the hyperplanes’ normal vector, is to either buy or sell exclusively asset i

until the new allocation lies on the nearest of the two faces; this is by far the most common

trading that can ever occur since the faces of the no-trading region represent the majority

of the entire region. On the other extreme, for allocations lying in the portion of Rn outside
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a region corner defined by the intersection of the n hyperplanes forming that corner, a trade

would entail either buying or selling (but not both at the same time) each of the n risky

asset; this type of trade is the least common among all since the probability of being in the

portion of Rn outside one of the 2n corners is low. Finally, in-between the two extremes,

are the situations in which the initial allocation is outside the trading region in the space

generated by the intersections of up to n − 1 hyperplanes, the ones defining the region’s

edges (corners exuded). In these cases the trading rules entail either buying or selling (but

not both at the same time) up to n − 1 risky assets, each asset associated with one of the

intersecting hyperplanes.

In summary, the FOCs completely characterize the optimal trading rule: equation (2.8) for

all assets n defines the no-trading region while conditions (2.6) and (2.7) tell us the optimal

directions, along straight lines, in which the trades should occur in order to approach the

boundaries of the no trading region.

How the shape of the no-trading region changes as the number of asset increases

Davis and Norman (1990) show how the no trading region for the case of only one asset is

an interval on the real line. Our framework, via (2.11) and (2.12), formally confirms the

linearity of its boundaries for the case of any arbitrary number of risky assets. In particular,

as we saw in Figure 2.10, going from 1 to 3 assets makes the interval first to become a

parallelogram and then a parallelepiped. In sharp contrast with H. Liu (2004), Figure 2.11

reminds us that, as long as the correlation among assets is not zero, we cannot reduce the

dimensionality of a problem involving n assets to a problem involving n − k assets and a

problem involving k assets; in light blue is the slice of the no trading region evaluated in

correspondence of the optimal unconstrained allocation for asset 3 while in red is the optimal
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inaction region for the same problem only involving asset 1 and asset 2. In the H. Liu (2004)

world, in the absence of correlation, the two parallelogram would become two rectangles

(squares) perfectly overlapped (a claim we verified in our framework as well). Thus Figure

2.11 illustrates the inseparability of the problem once the correlations among assets are taken

into account: this is because, as (2.11) and (2.12) show, the weight of any asset is a function

of the covariance with itself and any other (risky) asset.

2.4.2 Fixed Costs

We consider two different models with fixed costs. In one case, there is a fixed cost for any

change in position. In the other case, there is a cost for each risky security traded.

Overall fixed cost: The Problem

The assumption of an overall fixed cost, k, is that we incur a fixed cost of “going to the

market”. The cost function is defined as c(θ, θ0) ≡ 1[θ 6=θ0]k and the choice problem is

Problem 4

max
θ∈Rn

U(θ) = r + θ′(µ− r1)− λ

2
θ′Vθ − κ

2
(θ − θB)′V(θ − θB)− 1[θ 6=θ0]k

Overall fixed cost: Characterization of the Solution

Although Problem 4 is a nonconvex problem, there are only two cases to consider and its

solution is simple. If there is a trade, it is to the same ideal point, θu described in equation
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(2.2), whatever the initial position. Therefore, the no-trade region can be computed as the

set of points, portfolios such that θ = θ0, where the improvement in value from going to

the ideal point does not exceed the fixed cost. This set of portfolios is characterized by the

equation

r + θ′(µ− r1)− λ

2
θ′Vθ − κ

2
(θ − θB)′V(θ − θB) ≥

r + θu′(µ− r1)− λ

2
θu′Vθu − κ

2
(θu − θB)′V(θu − θB)−K

and it is the area inside an ellipse (As we showed in Example 2) or its analogous counterpart

when we deal with more than 2 risky assets.

Asset-specific fixed Costs: The Problem

What may be more plausible than an overall fixed cost is a fixed cost for each security.

Arguably, a security-specific fixed cost comes from a due diligence requirement to monitor

or document any security in the portfolio, although a serious consideration of this moti-

vation probably leads us to informational or strategic considerations outside the current

framework.59

The cost function is defined as c(θ, θ0) ≡
∑n

i+1 1[θi 6=θ0i ]ki and the choice problem is

Problem 5

max
θ

U(θ) = r + θ′(µ− r1)− λ

2
θ′Vθ − κ

2
(θ − θB)′V(θ − θB)−

n∑
i+1

1[θi 6=θ0i ]ki

59For example, why would we have to monitor a position unless new information arrival is possible and
subsequent trade is possible? Perhaps a regulator requires documentation of the trade and a due diligence
study of the firm issuing each share of stock we hold, even though we know we are not going to learn anything
from the exercise. Another question is why we don’t have to do monitoring or due diligence on a stock we
already hold and choose not to sell. Or, it may be that our broker offers to make any trade in a single
maturity, whatever the size, for the same fixed price. It seems much easier to make an argument for why
there are variable costs.
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where ki is the fixed cost incurred to trade (risky) security i

Asset-specific fixed Costs: Characterization of the solution

The solution to Problem 5 is more of a combinatoric problem, since each possible set of

included portfolios gives a different piece of the overall nonconcave objective function. The

existence theorem and the algorithm of Section 2.5 enable us to numerically solve this prob-

lem for n > 2 risky assets. However, in a particular small example we can analytically and

graphically (Figure 2.12 shows the “architecture” behind Example 3) construct the solution,

since the set of boundary points where two subsets are equally preferred is a conic section.

Next we characterize the solution for the case of n = 2 risky assets. There are four basic

regions (which can also be subdivided by the direction of trade):

Region a: no trade

Region b: trade security 1 but not security 2

Region c: trade security 2 but not security 1

Region d: trade both securities

For all the cases, it simplifies the algebra to write the objective function in terms of deviations

from the ideal portfolio θu as we do in the proof of Theorem 2 and, in order to convey the

main intuition, set κ = 0 as well. Let γ = θ − θu (and γ0 = θ0 − θu), then we can rewrite

the objective of Problem 5 as

U(γ) = Uu − λ

2
γ′Vγ −

n∑
i+1

1[γi 6=γ0i ]ki
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where

Uu ≡ r +
1

2λ
(µ− r1)′V −1(µ− r1) (2.13)

In region a, there is no trade so the cost is zero, and the value is the value of the initial

position θ0:

Ua = Uu − λ

2
γ0′Vγ0

this is a strictly concave quadratic function of γ with a maximum of Uu achieved at γ = 0.

In region b, we trade security 1, incurring a cost k1, and the value is

Ub = max
γ1
{Uu − λ

2
(V11γ

2
1 + 2V12γ1γ

0
2 + V22γ

2
2)− k1} = Uu − λ

2

(
V22 −

V 2
12

V11

)
γ0

2
2 − k1

where γ1 = −(V12/V11)γ2 achieves the maximum. In this case, the value function is strictly

concave in γ2 and constant in γ1. It achieves a maximum of Uu = −k1 on the line γ2 = 0.

Region c is symmetric to Region b but with the securities swapped, so we have

Uc = Uu − λ

2

(
V11 −

V 2
12

V22

)
γ0

1
2 − k2

In region d, we go to the ideal point and incur both costs k1 and k2, and the value is

Ud = Uu − k1 − k2

the value is constant independent of the starting position γ0.

Having computed the values in each region, it is straightforward to compute the candidate

boundaries, where Ua = Ub, Ua = Uc, etc. For the example in Figure 2.12, all these candidate
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boundaries are lines except the locus Ua = Ud which is an ellipse. (In general, even in

many dimensions, the boundary solves a quadratic or linear equation.) Near the ideal point

(marked as a red point), not trading is optimal so we mark these regions with a. If we start

in a region a and cross a boundary not involving a (say Ub = Uc), we remain in region a.

However, if we cross a boundary involving a (say Ua = Ud), then we switch regions (in this

case to d). (In principle, there could be a degenerate case in which two regions are equal on

the boundary but the same is better on both sides. However, this does not happen in our

current example.) Going through this exercise confirms the regions in Figure 2.3.

2.4.3 Fixed and Proportional Costs

We now combine the previous analysis to characterize two types of more complex, (perhaps)

more realistic, settings. One in which there is an overall fixed cost on top of asset-specific

proportional costs and another where also the fixed component becomes asset-specific. We

start by analyzing the asset-specific framework in that the overall fixed setup is a special

case and, while discussing the latter, we make a comparison between the two frameworks.

Asset-Specific fixed and Proportional Costs: The Problem

The cost function is defined as c(θ, θ0) ≡ P ′CP + S ′CS +
∑n

i+1 1[θi 6=θ0i ]ki and the choice

problem is

Problem 6

max
P,S

U(θ) = r + θ′(µ− r1)− λ

2
θ′Vθ − κ

2
(θ − θB)′V(θ − θB)− P ′CP − S ′CS −

n∑
i+1

1[θi 6=θ0i ]ki
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subject to

θ = θ0 + P − S

P ≥ 0

S ≥ 0

Asset-Specific fixed and Proportional Costs: Characterization of the solution

As in the case of Problem 5, the presence of asset-specific fixed costs makes Problem 6 more

of a combinatorial problem. The existence theorem and the algorithm of Section 2.5 enable

us to numerically solve this problem for n > 2 risky assets. Nonetheless, in order to convey

the main intuition, it is useful to analytically and graphically solve the problem for the case

of n = 2 risky assets.

For the ease of exposition we set κ to 060 and rewrite the problem in positions γ = θ − θu

relative to the unconstrained optimum θu defined in (2.2) as

U = Uu − λ

2
γ′Vγ − P ′CP − S ′CS −

n∑
i+1

1[γi 6=γ0i ]ki

where Uu is defined as in (2.13).

Analogously to Figure 2.12, Figure 2.13, shows the steps to construct Example 5 (i.e. Figure

2.5). Each asset i now have a fixed and a proportional component; The fixed part is the sunk

cost the investor has to pay to be allowed to trade that asset while the proportional part is

60The steps for solving the problem with κ > 0 are the same and yield a smaller no trading region with
the same shape only shifted towards the target portfolio θB . This is because the optimization takes now into
account, in the spirit of Leland (2000), the trade off between trading costs (a smaller no trade region) and
tracking error benefits (a post-trade position closer to the target θB). This is what we discussed in Example
8 and shown in bottom graph of Figure 2.9.
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the constant rate61 charged to the trade that moves the initial position of asset i, θ0
i , to the

post-trade position θi. The longer the distance the higher the impact of the proportional

component. Thus from any initial position θ0 enough far away from the unconstrained

optimum, the red dot in Figure 2.13, the fixed component of any asset is negligible with

respect to the proportional one. This tells us that from any such initial position we are just

solving a proportional asset specific problem. As a matter of fact the FOCs of Problem 6 are

identical to those of Problem 3 and define the inner parallelogram around the unconstrained

optimum in Figure 2.13. We therefore know that, for any given asset i trade, it is optimal

either to buy or to sell but not both, trades outside the inner parallelogram edges are straight

lines up to the closest edge involving only one asset at a time and trades outside of corners

involve two assets at a time and always end up at the closest corner.

As we move to initial positions θ0 closer to the unconstrained optimum, the impact of fixed

over proportional costs increase up to the point where the investor is indifferent between

paying the fixed costs and trade to the closest boundary of the inner parallelogram or do

not trade.

Suppose the initial position θ0 is somewhere outside the left edge of the inner no trading

region, let UP1 be the investor utility of paying the fixed cost k1 and buy additional units of

asset 1 only (γ2 = γ0
2) up to the left edge, i.e.

UP1 ≡ max
γ1
{Uu − λ

2
[γ1, γ

0
2 ]V

γ1

γ0
2

− (γ1 − γ0
1)CP

1 − k1}

= Uu − λ

2
(V11 −

V 2
12

V11

)(γ0
2)2 +

V 2
12

V11

CP
1 γ

0
2 + CP

1 γ
0
1 +

(CP
1 )2

2λV11

61CSi for a sell trade and CPi for a buy trade.
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where we used the fact that either S1 > 0 or P1 > 0 but not both and θ1 = θ0
1 + P1 − S1.

Recall that, exactly as in Problem 5, the utility of not trading is

UNT = Uu − λ

2
γ0′Vγ0

The locus of points θ0 where the investor is indifferent between paying the fixed cost k1 and

trade to left inner edge or do not trade is given by UP1(γ0) = UNT (γ0). (which can be written

as a function of θ0 via θ0 = γ0 + θu) This corresponds to the leftmost dashed blue line in

Figure 2.13. To the left of this line the investor is better off trading up to the parallel thick

blue line to the immediate right, which defines the left edge of the inner parallelogram. For

initial positions θ0 to the right of the leftmost dashed blue line, the fixed cost k1 is too high

to enter any trade so that the investor does not move.62

Suppose now the initial position θ0 is somewhere outside the right edge of the inner no

trading region, let US1 be the investor utility of paying the fixed cost k1 and sell additional

units of asset 1 only (γ2 = γ0
2) up to the right edge, i.e.

US1 ≡ max
γ1
{Uu − λ

2
[γ1, γ

0
2 ]V

γ1

γ0
2

− (γ0
1 − γ1)CS

1 − k1}

where we used the fact that either S1 > 0 or P1 > 0 but not both and θ1 = θ0
1 +P1−S1. The

locus of points θ0 where the investor is indifferent between paying the fixed cost k1 and trade

to right inner edge or do not trade is given by US1(γ0) = UNT (γ0). (which can be written

as a function of θ0 via θ0 = γ0 + θu) This corresponds to the rightmost dashed blue line in

Figure 2.13. To the right of this line the investor is better off trading up to the inner bold

62The fact that to the left we trade up to the inner edge and to the right we do not move and not the
other way around follows from the fact that the utility increases from every direction as we move closer to
the unconstrained optimum.
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blue line defining the right inner edge. For initial positions θ0 to the left of the rightmost

dashed blue line, the fixed cost k1 is too high to enter any trade so that the investor does

not move.63

The loci of points θ0 where the investor is indifferent between paying the fixed cost k2 and buy

additional units of asset 2 up to the South inner edge or do nothing, UP2(γ0) = UNT (γ0),

and where the investor is indifferent between paying the fixed cost k2 and sell additional

units of asset 2 up to the North inner edge or do nothing, US2(γ0) = UNT (γ0) are derived

in a symmetric fashion with the two securities swapped and are shown by the two parallel

dashed red lines in figure 2.13. Analogous arguments as above show that outside this lines

the investor is better off trading up to the closest thick inner red border while in the corridors

between the two dashed red lines is better not to trade at all.

What happens at and outside corners is what is still left to complete the picture. Each corner

is characterized by three elements: (i) the locus of points θ0 where the investor is indifferent

between trading in the two assets simultaneously (e.g. the North-West corner involve the

additional purchase of asset 1 and the additional sale of asset 2) and go to the nearest inner

corner (one of the intersection of the solid blue and red lines) or do not trade, which is an

ellipse, and (ii) and (iii), the horizontal and vertical black dashed lines defining the loci of

points θ0 where the investor is indifferent between trading the two assets to the nearest inner

corner or trade only one asset to the nearest inner edge.

Let us focus on the North-West corner first: define UP1,S2 as the investor’s utility of trading

from any (feasible) initial position θ0 to the inner North-West corner (the intersection of the

63A similar argument to that of the previous note proof that this is indeed the right thing to do.
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left solid blue line with the upper thick red line), θΓ

UP1,S2(γ0) ≡ Uu − λ

2
γΓ′VγΓ − (γΓ

1 − γ0
1)CP

1 − (γ0
2 − γΓ

2 )CS
2 − k1 − k2

the locus of points θ0 where the investor is indifferent between trading in the two assets

simultaneously (additional purchases in asset 1 and additional sales in asset 2) and go to θΓ

or do not trade is UP1,S2(γ0) = UNT (γ0) (written as a function of θ0 via θ0 = γ0 + θu) which

corresponds to the North-West ellipse in Figure 2.13. Inside the ellipse the investor is better

off not to trade while outside it is optimal to trade up to θΓ. The uppermost horizontal

dashed black line is the locus of points such that the investor is indifferent between trading

asset 1 and 2 to θΓ or buy additional units of asset 1 until the inner left solid blue line, i.e.

UP1,S2(γ0) = UP1(γ0) (written as a function of θ0 via θ0 = γ0 + θu). Below this line it is

better to only buy asset 1 up to the inner left bold blue line while above the best option is

to buy more of asset 1 and sell more of asset 2 and go to θΓ. Note that this line marks the

end of the inner left bold solid blue line as well as the outer left bold dashed blue line.

Similarly the leftmost vertical dashed black line is the locus of points such that the investor

is indifferent between trading asset 1 and 2 to θΓ or sell additional units of asset 2 until

the inner North solid red line, i.e. UP1,S2(γ0) = US2(γ0) (written as a function of θ0 via

θ0 = γ0 + θu). To the right of this line it is better to only sell asset 2 up to the inner North

bold red line while to the left the best option is to buy more of asset 1 and sell more of asset

2 and go to θΓ. Note that this line marks the end of the inner North bold solid red line as

well as the outer North bold dashed red line.

The piece of North-West ellipse in-between the above mentioned vertical and horizontal lines

as well as the part of the horizontal line to the left of the ellipse and the part of the vertical
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line above the ellipse define the North-West corner and are marked in bold dashed black.

From any point θ0 further North-West it is optimal to buy asset 1 and sell asset 2 up to θΓ,

(the North-West corner of the inner parallelogram) from any point θ0 below the horizontal

black bold dashed portion it is optimal to trade up to the left inner bold blue line, from any

point θ0 to the right of the vertical black bold dashed portion it is optimal to trade up to the

inner North bold red line; Finally, from any point θ0 in the approximately triangular region

delimited by the intersection of the horizontal and vertical black dashed lines and the piece

of ellipse between these two lines is better not to trade.64

A symmetrical analysis where the two securities are swapped analogously describe the South-

East corner of Figure 2.13.

Next, let us focus on the South-West corner: due to the positive correlation of asset 1 and

asset 2, the second lowermost horizontal black line (the thick one defined by UP1,P2(γ0) =

UP1(γ0)) and the second leftmost black vertical line (the thick one defined by UP1,P2(γ0) =

UP2(γ0)) intersects outside65 the South-West ellipse (implicitly defined by UP1,P2(γ0) =

UNT (γ0)). This is also a feature of the North-East corner and it is in opposition with what

happens at the other two corners. If the correlation where negative the opposite would have

occurred. As in other corners note how the horizontal dashed black line marks the South end

of the inner left solid blue line as well as the South end of the outer left solid dashed bold

blue line, while the vertical line marks the left end of the inner South solid red line as well

as the left end of the outer South dashed bold red line. This time the corner is defined by a

64The reader might wonder why the corner includes the piece of ellipse in-between the two bold dashed
black lines rather than the portion of the outer left dashed blue line up to the intersection with the outer
North dashed red line and that red line up to the intersection with the ellipse: the reason why this is not
the case is because the region above the horizontal dashed line and to the left of the vertical dashed line is
where it is optimal to trade both assets while the outer left dashed blue line or the outer North dashed red
line only involve one asset at a time.

65Not inside as in the respective cases of the North-West and and South-East corners.
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dashed bold upside down reflected L. For any point θ0 more South-East it is optimal to both

buy more of asset 1 and asset 2 and go to the South-East corner of the inner parallelogram

(defined by the intersection of the inner left solid bold blue line and the inner South solid

bold red line), θL, for any point θ0 above the bold portion of the horizontal dashed line it

is optimal to only buy asset 1 until the inner left bold solid blue line is reached, for any

point θ0 to the right of the bold portion of the vertical dashed line is optimal to buy more of

asset 2 until the inner South bold solid red line. Finally, for any point in the quadrilateral

region formed by the intersection of the horizontal and vertical dashed lines, the vertical line

and the outer South dashed red line, the outer South dashed red line and the the outer left

dashed blue line, and the outer left dashed blue line with the horizontal dashed black line,

it is optimal not to trade.

A symmetrical analysis where the two securities are both sold instead of bought analogously

describes the North-East corner of Figure 2.13.

This analysis verified the optimal policy graphically described in Figure 2.5.

Overall fixed and Proportional Costs: The Problem

The cost function is defined as c(θ, θ0) ≡ P ′CP + S ′CS + 1[θ 6=θ0]k and the choice problem is

Problem 7

max
P,S

U(θ) = r + θ′(µ− r1)− λ

2
θ′Vθ − κ

2
(θ − θB)′V(θ − θB)− P ′CP − S ′CS − 1[θ 6=θ0]k

subject to

θ = θ0 + P − S
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P ≥ 0

S ≥ 0

Overall fixed and Proportional Costs: Characterization of the solution

The existence theorem and the algorithm of Section 2.5 enable us to numerically solve this

problem for n > 2 risky assets. Nonetheless, in order to convey the main intuition, it is

useful to analytically and graphically solve the problem for the case of n = 2 risky assets.

For the ease of exposition we set κ to 066 and rewrite the problem in positions γ = θ − θu

relative to the unconstrained optimum θu defined in (2.2) as

U = Uu − λ

2
γ′Vγ − P ′CP − S ′CS − 1[γ 6=γ0]k

where Uu is defined as in (2.13). In light of the previous subsection, solving this problem is

easy and a graphical representation is provided in Figure 2.14 (which provides the structure

behind Example 4 - i.e. Figure 2.4) for the case of positive correlation between asset 1 and

2.

The steps and the intuition are exactly the same as those of the previous section; The inner

parallelogram and the trades properties are the same since the FOCs are the same and we

still have a locus of points θ0 such that the investor is indifferent between paying the fixed

cost to enter the market and trade up to the closest boundary of the inner parallelogram or

do not trade. What is a bit different is the geometry of this locus of points.

66The steps for solving the problem with κ > 0 are the same and, for the same reasons discussed in the
asset-specific case, yield a smaller no trading region with the same shape only shifted towards the target
portfolio θB as discussed in Example 8 and shown in the upper graph of Figure 2.9.
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While the utility of not trading is always the same, for any trade from initial positions θ0

entailing only one asset at a time the investor’s utility of paying the fixed cost k and going

to the closest edge of the inner parallelogram, UTi with T ∈ {P, S}, is the same as the asset-

specific fixed costs except the fact that k replaces ki. For any trade from initial positions θ0

involving both assets the investor’s utility of paying the fixed cost k and going to the closest

corner of the inner parallelogram, UTi,Rj with T,R ∈ {P, S} and i, j ∈ {1, 2}, is the same as

Problem 5 except the fact that k replaces k1 + k2.

It follows that the locus of points θ0 such that UP1 = UNT and that implied by US1 = UNT

are the two parallel outer blue dashed lines while the locus of points θ0 such that UP2 = UNT

and that implied by US2 = UNT are the two parallel outer red dashed lines. Outside of the

bold dashed portion of the corridors formed by each pair of parallel lines it is optimal to

trade up to the closest inner parallelogram edge, while inside those corridors the investor is

better off not trading.

With respect to corners the situation for the North-West and South-East is analogous to that

of Problem 6, while that concerning the South-West and North-East corner is a bit different.

What is different is that all the intersections of the horizontal and vertical dashed lines that

implicitly define the loci of points such that the investor is indifferent between trading one

or two assets are exactly at the corners of the inner parallelogram as in Problem 3 rather

than outside as in Problem 6. The fact that such intersections are inside the North-West

and South-East ellipses defining the loci of initial positions θ0 where UP1,S2 = UNT and

US1,P2 = UNT is consistent with the asset specific fixed costs case and result in qualitatively

similar corners’ shapes. The latter fact is nonetheless in contrast with what happens in the

South-West and North-East corners where the intersections of the horizontal and vertical

lines also occurs outside of the South-West and North-East ellipses in the present setup.

91



Another remarkable difference is given by the fact that the area covered by the ellipses at

corners is now much wider with respect to the one covered by the regions where it is optimal

to trade only one asset at a time. In relative terms the present structure of the costs favors

the trades in both assets because the investor only need to pay the fixed cost once. This last

important point is made even clearer in Figure 2.15 panel (a).

Panel (a) of Figure 2.15 simultaneously plots the inaction regions for the asset specific fixed

and proportional cost (in blue) and for the overall fixed and asset-specific proportional costs

(in red) where all the fixed costs are set to 0.00075. The fact the the red region is contained

in the blue one67 reinforces our intuition.

Thus, as expected, given all fixed cost are the same, in the presence of asset specific fixed

costs rather than an overall fixed one the investor can only do worse except in the overlapping

portion of regions entailing trades in only one asset at a time. Interestingly, as graphed in

panel (b) of Figure 2.15, the exact opposite occurs if the investor has the chance of trading

the same assets for half of the overall fixed cost; In this case the investor, regardless the

correlation68 is always better off trading each asset with a specific fixed cost which is half

of the overall fixed one and is indifferent in the overlapping portion of corners involving the

simultaneous additional purchases of one asset and additional sales of the other if the corre-

lation is positive or the simultaneous additional purchases or sales of both if the correlation

is negative. When the correlation is zero the investor is indifferent only at corners (a zero

probability event).

We conclude this subsection with a last comparison between the overall and asset specific

fixed costs in the presence of proportional cost. Panel (c) of Figure 2.15 shows a situation

67A result which is independent from the correlation structure. (analogous comparisons in the case of zero
and negative correlations give the same result.)

68Analogous comparisons in the case of zero and negative correlations give the same result.
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which is in-between those illustrated in the two previous panels: we compare the no trading

regions when the fixed cost of asset 1, k1, and asset 2, k2, are 75% of the overall fixed cost.

This time there is no scenario which dominates, it is better to have a lower asset specific cost

when it is optimal only to trade one asset while it is better to have the higher overall fixed

cost when it is optimal either to simultaneously buy and sell the two assets if the correlation

is positive, or simultaneously buy or sell both assets if the correlation is negative. When

the correlation is zero it always better to have the higher overall fixed cost while trading

simultaneously the two assets.

As we discussed in Example 7, the benefits described in the first and last situation here are

similar to those described in the presence of proportional costs only when cheaper bundles

of assets are available in that one can think of the overall cost as the fixed cost for accessing

the bundle consisting of asset 1 and 2.

2.4.4 Comparative statics

Comparative statics for the case of n assets and proportional costs are readily available from

conditions (2.11) and (2.12).

Recall that these conditions with equality define a pair of n − 1 dimensional hyperplanes

and if we let scalars bPi and bSi be the negative of the RHS of (2.11) and (2.12) we can

write each pair as Viθ + bPi ≥ 0 and Viθ + bSi ≤ 0.69 The i-th pair define a corridor in Rn

outside of which it is optimal to trade asset i only up to the closest of the two planes and

the intersection of the n corridors forms the no trading region which is a parallelogram (or

its higher dimensional analog).

69Also recall that Vi corresponds to the i-th row of V .
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Each pair of planes share the same orientation Viθ and a different constant (bPi or bSi re-

spectively), thus the planes are parallel and any change in the correlation structure as well

as in the assets variances primarily affects the orientation of each pair of corridors in Rn.

Specifically, changes in the correlations affects simultaneously all the corridors while changes

in the variance of asset i only affect the orientation of the i-th corridor.

Changes in any other parameter, i.e. λ, κ, r, µi, C
P
i , C

S
i and θB, will not affect the shape of

the no trading region, rather will make it shrink/expand and/or shift. This is because any

such parameters enter each pairs of hyperplanes defined by (2.11) and (2.12) only trhough

their intercepts bPi and bSi . In particular higher (lower) proportional costs CP
i and/or CS

i

increase (decrease) the width of the i-th corridor while higher (lower) risk aversion λ and/or

tracking error aversion κ70 will shrink (expand) the no trading region as a whole: this is

because the i-th corridor width is given by
|bPi −bSi |
||Vi|| and bPi − bCi =

CP
i +CS

i

κ+λ
. Changes in the i-th

mean of asset i, µi, will cause a parallel shift of the i-th corridor only. Finally changes in the

composition of the benchmark θB will simultaneously cause the no trading region to shift

and shrink/expand according to the new directions represented by the modified benchmark

θB.

From the analysis of this entire section we also know that adding a fixed cost (overall or

asset specific) creates a surface which surrounds the no-trading region where the investor is

indifferent between paying the additional fixed cost and trade to the closest boundary of the

no-trading region or do not trade at all. Not considering corners, this amounts to imposing

the surface of an outer parallelogram (or its higher dimension analog) which has at its center

the proportional cost only inaction region. Because the latter object is proportional to the

former, the comparative statics for all parameters except the just discussed fixed (asset

70Positive (negative) changes in κ will also make the no trading region move closer (further) from θB .
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specific or overall) cost component remain the same as those for the proportional costs only

framework.

We also learned that corners are always formed by the intersections of a locus where the

investor is indifferent between trading in all n assets or not trade at all which is an ellipse

(or its higher dimension analog) and n loci where the investor is indifferent among trading

in n− 1 assets or the remaining one which are hyperplanes parallel and perpendicular to the

Cartesian axes.

2.5 Algorithm

In this section we introduce a powerful algorithm to solve problems of the form

max
x

Ũ(x) = a′x+
1

2
x′Qx

subject to

x ≥ 0

where Q is semi-positive definite and symmetric. As we show in the proof of Theorem 1, for

any finite number of risky assets n the building blocks of our solution strategy for the class

of problems having objective function (2.1), can all be re-written in that form.
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As shown in Cottle, Pang, and Stone (1992), the first order conditions from the above

quadratic program can be expressed via the system


x ≥ 0

a+Qx ≥ 0

x′(a+Qx) = 0

(2.14)

Finding a vector x ≥ 0 satisfying the above system is referred to as the linear complemen-

tarity problem LCP (a,Q). The attractiveness of the LCP framework is the availability of

efficient iterative schemes converging to the solution(s) of the problem which are essentially

based upon the characteristics of the matrix M .

Given a decomposition of the matrix Q as Q = B + C it is easy to verify71 that LCP (a,Q)

can be re-expressed as LCP (ax, B) defined as


x ≥ 0

az +Bx ≥ 0

x′(az +Bx) = 0

with az ≡ a+Cx and that a solution x to LCP (a,Q) is a fixed point for LCP (ax, B). The

algorithm that solves the above quadratic program, which is given next, is nothing more

than an iterative scheme to find the fixed point x of LCP (ax, B).

In order to solve the original quadratic program of this section we exploit the following

theorem

71See Chapter 1 of Cottle et al. (1992).
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Theorem 8 Let Q = B + C be positive semi-definite such that B and B −M are positive-

definite and B is a diagonal matrix, if a is such that LCP (a,Q) admits solutions, then the

following algorithm produces a sequence {xv} which converges to some solution of LCP (a,Q)

Step 1: Set arbitrary xv ≥ 0, with v = 0

Step 2: Given xv compute the new vector xv+1 as

xv+1 = max(0, xv −B−1(a+Qxv))

Step 3: Given a pre-determined tolerance ε ≥ 0 stop, otherwise go back to Step 1

Proof. See Theorem 5.6.1., Algorithm 5.2.1 and section 5.10 in Cottle et al. (1992).

It is important to notice that Theorem 8 perfectly fits our needs. Q is positive semi-definite,

exploiting the notion of diagonally dominant matrix it is straightforward to use Q to con-

struct a diagonal positive definite matrix B such that B − M is also positive-definite.72

Remember that LCP (a,Q) are just the FOCs for the quadratic program; Such program

when applied to the building blocks of Theorem 2 it is showed to have a unique and feasible

solution, thus as long as A1−A3 hold a is such that LCP (a,Q) admits solutions. Then the

above algorithm produces a sequence {xv} which converges to some solution of LCP (a,Q),

but we also know from Theorem 2 that such solution is unique so that the algorithm generates

an iterative scheme that uniquely solves the quadratic program of interest.

72A square matrix A is (strictly) diagonally dominant if |aii|(>) ≥
∑
j 6=i |aij | for all i and any such

matrix is positive semi-definite (definite). It is thus enough to define the typical diagonal element of B as
Bii > Mii +

∑
j 6=i |Mij |.
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2.6 Conclusion

We have used a mean-variance analysis of portfolio rebalancing given transaction costs to

illustrate a number of important economic features in a context that is simple to understand

and solved completely. The single-period case is suggestive of good strategies in more realistic

cases, and is a useful benchmark for comparisons.
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Figure 2.1: Mean-Variance Problem with Proportional Transaction Costs

With proportional costs, the non-trading region is the area of a parallelogram. Outside the
non-trading region, it is optimal to trade (along the arrows) to the boundary of the non-
trading region. If returns were uncorrelated, then the non-trading region would be a square
with sides parallel to the axes. In this example, returns are correlated and the two securities
are substitutes and over-weighting in one security is less likely to result in a trade if we are
under-weighted in the other security.
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Figure 2.2: Mean-Variance Problem with an Overall Fixed Transaction Cost

With an overall fixed cost, either there is trade immediately to the ideal point or it is not
worth trading at all. The nontrading region is the area of an ellipse. As with proportional
costs, correlation between the assets implies that it is more damaging (and more likely to do
trade) when both asset positions are out of line in the same direction.
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Figure 2.3: Mean-Variance Problem with Asset-Specific Fixed Transaction Costs

Near the ideal point in the middle, θ∗, is the non-trading region. The North-West and
South-East corners lie on an ellipse reminiscent of the no-trading region of an overall fixed
cost problem while the pairs of parallel outer thick black dashed straight lines and the two
intersecting blue and red lines come from the asset-specific component of the fixed costs. For
analogous reasons as those discussed in the overall fixed cost example, for any initial position
inside the region defined by the above mentioned corners and dashed line it is optimal not
to trade at all. Outside of this area we trade as follows: from the regions in the corners, we
trade both securities to the ideal point θ∗. From the regions on the right and left, we trade
Security 1 but not Security 2 to the thick blue line going through the ideal point. This would
be a vertical line if we had no correlation, but has negative slope in our case. Similarly, from
the regions above and below, we trade only Security 2 to the thick red line running through
the ideal point.
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Figure 2.4: Mean-Variance Problem with Overall Fixed and Asset-Specific Proportional
Costs

The figure shows the different (no-)trading regions for the case in which the investor both
pays an overall fixed cost to enter the market as well as asset specific proportional costs
to (re)balance his portfolio to the desired allocation. The parameters, except for the fixed
cost K = 0.00075, are those of Figure 2.1 and the inner parallelogram is indeed the same:
this is the region where the investor will optimally trade to if the fixed cost of entering the
market is not too big. There is in fact a threshold, pictured as a dash-line, surrounding the
proportional no-trading region; If the initial position θ0 is inside this line the dis-utility from
the fixed cost to enter the market is more than the benefit of trading to the border of the
no-trading region (inner parallelogram) so that it is optimal not to trade at all. Outside of
this line it is optimal to trade up to the border of the no trading region as in the proportional
only case: in particular, there are four corridors and four corners delimited by wavy dashed
lines. Inside each corridor it is optimal to trade (buy or sell) along straight lines only one
asset at a time, while at each corner it is optimal to trade (buy/sell) two assets until the
nearest no-trading region corner is reached.
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Figure 2.5: Mean-Variance Problem with Asset-Specific Fixed and Proportional Costs

Parameters, except for the fixed cost K = 0.00075, are those of Figure 2.1 and the inner
parallelogram is indeed the same: this is the region where the investor will optimally trade to
if the fixed costs are not too big. Each fixed cost, albeit asset-specific, is taken as identical
in the figure. The presence of asset specific costs rather than an overall fixed cost, on top of
the asset specific proportional components, has similar effects, and an analogous intuition,
as those described in Figure 2.4 with two notable differences: 1 - the corridors inside which,
only one asset at time is traded up to the border of the no trading region, are wider pushing
the corner regions further away from the unconstrained optimum. 2 - the thresholds where
the investor is indifferent between paying the fixed costs and trade to the border of the no
trading region or do not trade at all are different, featuring a couple of intersections along
the 45 degree line passing through the unconstrained optimum.
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Figure 2.6: Asymmetric Futures Overlay Strategies

Security 1, the equities, has a significantly higher expected return (“alpha”) than Security 2,
futures. The optimal strategy is an asymmetric “futures overlay” strategy typically selling
futures to correct for overexposure to market risk but buying underlying equities to correct
for underexposure to market risk. This asymmetry is due to the fact that selling futures
allows us to keep the alpha on the exposure we are eliminating, while buying equities allows
us to gain alpha on the exposure we are taking on.
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Figure 2.7: Bundles Trading

With bundle trading it is possible to shrink the no-trading region to get closer, at least in
some directions, to the unconstrained optimum. The new region have additional sides. This
is the same case as in Figure 2.1 but with an additional opportunity to trade a 50-50 portfolio
of the two assets at a cost of 0.0025.
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Figure 2.8: Shrinking the No Trade Region: Overall vs. Asset-Specific Fixed Costs

The figure compares the inaction regions of Example 2.4 (red) and 2.5 (blue). Even if no
explicit bundle of assets is available, for situations in which it is optimal to simultaneously
trade both assets (in case of negative correlation the no trade regions stretches more along
the 45 line) one can think of the overall cost as the fixed cost for accessing the bundle
consisting of asset 1 and 2 thus coming closer to the unconstrained optimum.
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Figure 2.9: Optimal Trading in the Presence of a Benchmark

Trades with proportional and an overall fixed cost (top) and with proportional and asset
specific costs (bottom). Benchmark θB shrinks and shift the no trading regions towards it
(Compare with Figure 2.4 and 2.5).
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Figure 2.10: No Trade Region with Proportional Costs: Case of 2 and 3 Risky Securities

The no trading regions with proportional transaction costs for two typical cases with 2 and
3 positively correlated assets.
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Figure 2.11: Indivisibility of the Mean-Variance Problem with Transaction Costs

In contrast to the H. Liu (2004) framework, in the presence of nonzero correlations among
assets it is not possible to separately solve n different sub-problems involving the allocation
between a risky asset and the risk free. In light blue it is plotted the slice of the optimal
no trading region (the parallelepiped of Figure 2.10) evaluated at the optimal level of asset
3 together with the no trading region of a problem only involving asset 1 and asset 2. If
the assets where uncorrelated the two plotted parallelograms would be perfectly overlapped
squares as in H. Liu (2004) but in general they are different.
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Figure 2.12: Architecture Behind the Asset-Specific Fixed No Trade Region

This figure illustrates the construction of the different trading regions for the case of security-
specific fixed costs and it shows the “architecture” behind Figure 2.3.
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Figure 2.13: Architecture Behind the Asset-Specific Fixed and Proportional No Trade Region

This figure illustrates the construction of the different trading regions for the case of security-
specific fixed and proportional costs and it shows the “architecture” behind Figure 2.5.

111



Figure 2.14: Architecture Behind the Overall Fixed and Proportional No Trade Region

This figure illustrates the construction of the different trading regions for the case of asset-
specific proportional costs with an overall fixed costs and it shows the “architecture” behind
Figure 2.4.
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Figure 2.15: No Trade Region Under Different Types of Fixed Costs

This figure compares the optimal trading in the presence of asset specific proportional costs
and an overall fixed cost versus asset specific proportional and fixed costs for different fixed
costs. In panel (a) all fixed cost are equal to 0.00075, in panel (b) the asset specific fixed
costs k1 and k2 are half the overall fixed cost k, while in panel (c) the asset specific fixed
costs k1 and k2 are 0.75 the overall fixed cost k.
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Chapter 3

Importance of Transaction Costs for

Asset Allocations in FX Markets

3.1 Introduction

A large body of theoretical research studies the implications of transaction costs on the

optimal portfolio choice. However, it is unclear whether accounting for transaction costs

when optimizing a portfolio is empirically relevant. Even though a portfolio optimized over

transaction costs is theoretically different from a portfolio that ignores costs, the out-of-

sample performance of these two portfolios may or may not be significantly different.

Using foreign exchange (FX) market returns of 29 developed and emerging currencies from

1976 to 2016, we show that taking transaction costs into account in a mean-variance portfolio

optimization leads to an economically large and statistically significant improvement in the

out-of-sample performance. We document that the out-of-sample Sharpe ratio after costs is

0.7 for a mean-variance efficient portfolio which ignores transaction costs (MV ), while the

Sharpe ratio is 0.9 for a portfolio which takes costs into account in the optimization (MVTC).

Other moments of the return distributions and in particular the crash risk exposures are
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similar across the two strategies. To our knowledge we are the first to empirically quantify

the substantial out-of-sample benefit of accounting for transaction costs in the construction

of mean-variance optimized portfolios. This is an important contribution to the literature

and has interesting implications for practitioners.

We employ the algorithm proposed by Dybvig and Pezzo (2018) to construct MVTC . They

characterize the theoretical shape of the no trading region for multiple risky assets and

explain how it depends on the cost structure in a single period mean-variance framework.

We quantify and assess the empirical importance of four theoretical predictions.

First, we expect MV to outperform MVTC if the performance is measured in returns before

transaction costs.73 This first prediction is empirically irrelevant in FX markets. The Sharpe

ratios before transaction costs are almost identical, i.e., 0.99 for MV and 1 for MVTC .

Second, we expect transaction costs to be larger for MV than for MVTC . This second

prediction is empirically important. MVTC pays 1.28% of the portfolio value per year in

transaction costs which is substantially lower than the 3.71% paid by MV .

Third, we expect MVTC to outperform MV after transaction costs. Moreover, the out-

performance is expected to depend on the size of the no trading region of MVTC , which

in turn, is expected to be increasing in the size of transaction costs and in the correlation

between assets. This third prediction is important in the data. MVTC has a Sharpe ratio

after transaction costs of 0.9, while the Sharpe ratio of MV is only 0.7. This is driven

by the significant reduction of unnecessary trading, which substantially lowers the turnover

and transaction costs and increases the performance after costs of MVTC compared to MV .

Therefore, optimizing over transaction costs is particularly important if costs are large.

73This is because theoretically MV is the mean-variance portfolio with the highest Sharpe ratio.
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Fourth, if assets are positively correlated, then we expect the no trading region of MVTC to

be larger than the one of MVTC\Corr, a strategy which accounts for transaction costs in the

optimization but for simplicity assumes that assets are uncorrelated when constructing the

no trading region. Thus, transaction costs of MVTC are expected to be lower than the costs

of MVTC\Corr, and we expect MVTC to outperform MVTC\Corr. This fourth prediction is also

empirically relevant. The no trading region of MVTC is larger than the one of MVTC\Corr.

Transaction costs paid by MVTC\Corr are 2.56% per year and its Sharpe ratio after costs is

only 0.76, which is inferior to its counter-part in MVTC . Thus, accounting for correlations be-

tween assets is important for the superior performance of MVTC . In contrast, the MVTC\Corr

does not significantly outperform MV . This result has important theoretical implications:

it invalidates the setup of H. Liu (2004), based on the assumption of uncorrelated assets.

Unfortunately, this is the only framework that, so far, can solve continuous-time portfolio

optimizations in the presence of transaction costs with more than two or three risky assets.

Figure 3.1 further illustrates that our mean-variance efficient portfolios dominate other pop-

ular currency strategies (DOL, DDOL, HML, MOM , V AL) in terms of out-of-sample

Sharpe ratios before and after transaction costs. DOL invests equally in all bilateral carry

trades. DDOL takes a long position in DOL if the median exchange rate forward discount

is positive, and a short position otherwise. HML sorts bilateral carry trades according to

the forward discount into quintiles and short sells the bottom and invests in the top quin-

tile. MOM sorts bilateral carry trades according to their past 12 month performance into

quintiles and short sells the bottom and invests in the top quintile. V AL sorts bilateral

carry trades according to the power purchase parity adjusted exchange rate into quintiles

and short sells the top quintile (overvalued currencies with high real exchange rates) and

invests in the bottom quintile (undervalued currencies with low real exchange rates).
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An empirical challenge when constructing mean-variance efficient portfolios is that we need

sensible estimates of conditional expected returns and the covariance matrix. If estimation

errors are large, then a mean-variance optimization often leads to extreme portfolio weights

and a poor out-of-sample performance (Brandt (2005)). For instance, DeMiguel, Garlappi,

and Uppal (2009) show that in US stock markets an equally weighted portfolio outperforms

optimized portfolios out-of-sample. Fortunately, estimation errors are less severe in FX

markets. The set of excess returns is described by bilateral carry trades, i.e., uncovered

positions in forward exchange rates. First, forward discounts are good proxies for conditional

expected excess returns of carry trades because exchange rate growths are well-described by

a random walk (Meese and Rogoff (1983)). Second, there is a strong factor structure to

describe the covariance matrix (Lustig, Roussanov, and Verdelhan (2011)). This is helpful

to reduce estimation errors. These properties are exploited in several recent papers and

mean-variance optimized portfolios in FX markets are shown to be very profitable out-of-

sample (Baz, Breedon, Naik, and Peress (2001), Della Corte, Sarno, and Tsiakas (2009),

Daniel, Hodrick, and Lu (2017), Ackermann, Pohl, and Schmedders (2016), Maurer, To, and

Tran (2018)). We follow this literature and construct mean-variance optimized portfolios in

FX markets to determine the importance of transaction costs.

FX markets are more liquid and have a higher trading volume than stock markets. More-

over, carry trade strategies are known to outperform stock markets over the past 4 decades.

Therefore, FX markets do not only provide a useful environment to study mean-variance

efficient portfolios but they are also among the most important asset markets to investors.

Our results have important practical implications. First, accounting for costs when optimiz-

ing a portfolio is beneficial and improves the out-of-sample performance. Second, transaction

costs are declining over time, and thus, traders who specialize in developed currencies may
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be tempted to ignore transaction costs when constructing mean-variance efficient portfo-

lios. However, even if transaction costs are low during normal times, they substantially

increase during crises and become relevant (Karnaukh, Ranaldo, and Soederlind (2015)).

Third, many currency traders have shifted their focus to emerging and frontier markets be-

cause exchange rate forward discounts among developed currencies are close to zero for the

past decade. Transaction costs in emerging and frontier markets are generally larger than

the costs considered in our analysis, and thus, the implications of transaction costs on the

optimal portfolio choice are even more important for these traders.

Our paper is related to the literature on portfolio optimization in the presence of transaction

costs. Due to the complexity of the problem most of the literature solves frameworks with

only two assets, either directly (Taksar et al. (1988), Davis and Norman (1990), Dumas and

Luciano (1991), Shreve and Soner (1994), Balduzzi and Lynch (1999, 2000), H. Liu and

Loewenstein (2002), Dumas and Buss (2017)) or through the indirect martingale approach

(e.g. Goodman and Ostrov (2010), see Schachermayer (2017) for a comprehensive summary

of this approach). H. Liu (2004) solves a multi-asset model but requires the simplifying as-

sumption that assets are uncorrelated and preferences exponential. Leland (2000), Donohue

and Yip (2003), Muthuraman and Kumar (2006), Irle and Prelle (2008), Myers (2009) and

Lynch and Tan (2009) propose numerical or heuristic approximations. However, except for

the case of uncorrelated assets, these numerical solutions are only feasible for a maximum

of two and in rare cases three risky assets. Dybvig and Pezzo (2018) provide an algorithm

to solve a general multi-asset model with correlated assets restricting to a single period

mean-variance framework.
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3.2 Theory framework

We quantify the empirical importance of transaction costs in a mean-variance portfolio op-

timization. Therefore, we implement a generalized version of the algorithm proposed by

Dybvig and Pezzo (2018) to construct optimal portfolios using FX market returns of 29 de-

veloped and emerging currencies from 1976 to 2016. We use bid-ask spreads as a proxy for

proportional transaction costs and assume that there are no fixed costs to trade. We denote

the mean-variance efficient strategy without optimizing over transaction costs by MV , and

the strategy that takes transaction costs into account in the optimization problem by MVTC .

The investment opportunity set at time t consists of one risk-free asset with risk-free rate of

return rf,t and N risky assets with conditional expected excess returns over the risk-free rate

(or risk premia) µe
t and conditional covariance matrix Vt. If there are no transaction costs,

then an investor with mean-variance preferences with risk aversion λ selects the N -vector

of risky asset portfolio weights θMV
t = arg max{θt∈RN}

{
θt
′µe

t − λ
2
θt
′Vtθt

}
to maximize her

utility. The optimal investment in the N risky assets is θMV
t = 1

λ
Vt
−1µe

t and the investment

in the risk-free asset is θMV
0,t = 1− 1′{N×1}θ

MV
t , where 1{N×1} is a N -vector with all elements

equal to 1 Ma1952. We denote this strategy by MV .

Next, we describe the optimization problem if the investor takes into account transaction

costs and we denote this strategy by MVTC . Let θ0
t be the N -vector of “initial” weights before

trading at time t. The initial weights are equal to the portfolio chosen at time t−1 and held

until time t. Further, let θ0+
t = max {θ0

t , 0} describe the initial long and θ0−
t = min {θ0

t , 0}

the initial short positions74. The investor has to choose by how much to increase (∆P+
t ≥ 0)

or decrease (∆S+
t ≥ 0) her long positions, and by how much to increase (∆S−

t ≥ 0) or

74Note that θ0−t ≤ 0 and a large absolute value (i.e. a small value) means that there are many short
positions.
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decrease (∆P−
t ≥ 0) her short positions. The allocation after trading at time t is given by

the weights vector θt = θ+
t + θ−t where θ+

t = θ0+
t + ∆P+

t −∆S+
t and θ−t = θ0−

t + ∆P−
t −∆S−

t

describe the long and short positions. Element i of N -vector CP+
t denotes the cost of an

increase in the long position of asset i per dollar at time t. Similarly, vector CS+
t describes

the per dollar cost of closing long positions, and CS−
t respectively CP−

t the per dollar costs

to open respectively close short positions. Costs are proportional, asset specific and depend

on whether we open or close a long or a short position. We assume there are no fixed

transaction costs. Therefore, the trades ∆P+
t , ∆S+

t , ∆P−
t and ∆S−

t reduce the portfolio

return by ∆P+
t

′
CP+

t + ∆P−
t

′
CP−

t + ∆S+
t

′
CS+

t + ∆S−
t

′
CS−

t . Our setting is a straightforward

extension of the case studied by (Dybvig & Pezzo, 2018) where costs to adjust long and short

positions are identical, i.e., CP+
t = CP−

t and CS+
t = CS−

t . The optimization problem is:

Problem 9 (Strategy MVTC)

max
{∆P+

t ≥0,∆P−
t ≥0,∆S+

t ≥0,∆S−
t ≥0}

{
θt
′µe

t −
λ

2
θt
′Vtθt −∆P+

t

′
CP+

t −∆P−
t

′
CP−

t −∆S+
t

′
CS+

t −∆S−
t

′
CS−

t

}

s.t. θt = θ+
t + θ−t

θ+
t = θ0+

t + ∆P+
t −∆S+

t , ∆P+
t ≥ 0, ∆S+

t ≤ θ0+
t , θ0+

t = max
{
θ0

t , 0
}

θ−t = θ0−
t + ∆P−

t −∆S−
t , ∆P−

t ≤ −θ0−
t , ∆S−

t ≥ 0, θ0−
t = min

{
θ0

t , 0
}
.

We provide an algorithm to solve Problem 9 in Appendix C.1.2.

The mean-variance setup without transaction costs (CP+
t = CP−

t = CS+
t = CS−

t = 0) is a

special case of Problem 9. The portfolio of strategy MV is independent of the initial position

θ0
t , and it is always optimal to trade all the way to θMV

t . In contrast, if there are transaction

costs (CP+
t > 0, CP−

t > 0, CS+
t > 0, or CS−

t > 0), then θMVTC
t crucially depends on the
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origin θ0
t . Intuitively, there is a trade-off between paying transaction costs (which are linear

in portfolio weight changes) and utility gains (which are convex) when moving towards θMV
t .

If the initial allocation θ0
t is close enough to θMV

t , it is optimal not to trade at all since

the marginal cost required to move towards θMV
t is higher than the marginal utility gain.

Thus, there is a no trading region. If the initial allocation θ0
t is far enough from θMV

t , then

it is optimal to move towards θMV
t but only until θMVTC

t which lies on the boundary of the

no trading region. This is because the marginal utility gain from moving towards θMV
t is

decreasing while the marginal transaction cost is constant.

Figure 3.2 illustrates the optimal solution to Problem 9 in a setting with two risky assets (and

one risk-free asset) and CP+
t = CP−

t = CS+
t = CS−

t > 0. The horizontal axis describes the

weight placed on asset 1 and the vertical axis the weight on asset 2. The weight on the risk-

free asset is 1 minus the sum of the weights on the two risky assets. The blue dot labeled

θMV
t is the optimal portfolio if there were no transaction costs. The blue parallelogram

surrounding θMV
t defines the no trading region when the two assets are positively correlated.

If the initial allocation θ0
t is inside the no trading region (i.e., within the blue parallelogram),

then there is no trade and θMVTC
t = θ0

t , because the marginal cost to trade towards θMV
t

exceeds the marginal utility gain.

If the initial portfolio θ0
t lies outside of the no trading region, then the investor wants to move

towards θMV
t but stops trading once she reaches the boundary of the no trading region. The

arrows indicate the direction of trade and the arrow heads show how far to trade. Suppose

the initial portfolio θ0
t lies in the bottom, right corner of the figure (anywhere below and to

the right of the bottom, right corner of the blue parallelogram). Then, the arrows indicate

that the investor sells asset 1 (∆S
1,t > 0) until she reaches the vertical line (extending from

the bottom, right corner of the parallelogram) and buys asset 2 (∆P
2,t > 0) until she reaches
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the horizontal line (extending from the bottom, right corner of the parallelogram).75 Thus,

the optimal portfolio θMVTC
t is exactly on the bottom, right corner of the no trading region

parallelogram.

Next, suppose that the initial portfolio θ0
t lies below the no trading region and between

the two vertical lines extending downward from the bottom, left and right corners of the

parallelogram. Then, the arrows indicate that the investor does not change her position

in asset 1 but only buys asset 2 and θMVTC
t lies on the boundary of the no trading region

parallelogram vertically above θ0
t .

Analogous arguments apply for initial portfolios θ0
t farther to the left or above the no trading

region. Thus, if the initial portfolio θ0
t lies outside of the no trading region, the optimal

portfolio θMVTC
t always lies on an edge (and often exactly in one of the corners) of the no

trading region parallelogram.

Finally, if we change the setting to two uncorrelated assets, then the no trading region reduces

to the red checkered square. For instance, H. Liu (2004) assumes uncorrelated assets, which

simplifies the optimization problem, to derive a solution for the optimal trading strategy.76

We denote this approximate solution by MVTC\Corr and provide details about the solution

algorithm in Appendix C.1.2.

75Note that we do not distinguish between opening long and closing short positions and closing long and
opening short position in our illustration because the costs of both actions are identical in this example. For
a more general example where the costs are not identical we refer to Appendix C.1.1.

76Constructing optimal trading strategies in the presence of transaction costs and non-zero correlations is
complex. Dynamic optimization models can only be solved heuristically or using numerical approximations
for two or three risky assets (Balduzzi and Lynch (1999, 2000), Leland (2000), Donohue and Yip (2003),
Han (2005), Muthuraman and Kumar (2006), Irle and Prelle (2008), Lynch and Tan (2009), Myers (2009)).
Assuming uncorrelated assets greatly simplifies the problem because the original problem can then be split
into independent sub-problems, each one handling one asset at a time.
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If the two assets are positively correlated, then the no trading region of MVTC is larger along

the −45◦ line than the one of MVTC\Corr. This is because the two assets are substitutes if

they are positively correlated, while they are not substitutable if they are uncorrelated. Note

that if the two assets were perfect substitutes (i.e. a correlation equal to 1), then selling

asset 1 would be identical (in terms of risk exposure) to buying asset 2. In the same spirit,

if the two assets are (imperfect) substitutes (i.e. correlation between 0 and 1), then there

is less benefit in selling one and at the same time buying the other asset than if they are

not substitutable at all (i.e. correlation equal to 0). Since an initial position θ0
t close to the

−45◦ line requires the investor to buy one and sell the other asset, the marginal utility gain

from trading towards θMV
t is smaller and the no trading region larger if the two assets are

positively correlated than if they are uncorrelated. Conversely, a similar argument can be

applied to the case of a negative correlation, and the no trading region of MVTC is larger

along the 45◦ line but smaller than the one of MVTC\Corr (see Appendix C.1.1 for more

details).

In summary, constructing a portfolio without taking into account transaction costs in the

optimization leads to more trading and higher costs than what is optimal. Second, if assets

are positively correlated but an investor assumes that assets are uncorrelated (to simplify the

optimization problem and obtain an approximate solution for the optimal trading strategy),

then the constructed portfolio also leads to more trading and higher transaction costs than

what is optimal. In the following we show that taking into account transaction costs in the

optimal trading strategy is quantitatively important in FX markets.

We obtain four theoretical predictions. First, we expect MV to outperform MVTC if the

performance is measured in returns before transaction costs. This is because, by definition,

MV is the optimal portfolio when evaluated before transaction costs. Second, we expect
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transaction costs to be larger for MV than for MVTC . Third, we expect MVTC to outperform

MV after transaction costs. Moreover, the size of these differences between MV and MVTC

are expected to depend on the size of the no trading region of MVTC . In turn, the no trading

region is expected to be increasing in the size of transaction costs and in the correlation

between assets. Fourth, if assets are positively correlated, then we expect the no trading

region of MVTC to be larger than the one of MVTC\Corr. Thus, transaction costs of MVTC

are expected to be lower than the costs of MVTC\Corr, and we expect MVTC to outperform

MVTC\Corr. In the following we quantify and assess the empirical importance of these four

predictions.

3.3 FX Markets

The investment strategies MV (ignoring transaction costs in the optimization), MVTC (tak-

ing into account costs in the optimization) and MVTC\Corr (taking into account costs in the

optimization but assuming assets are uncorrelated) are based on a mean-variance optimiza-

tion (see Section 3.2 for details). In order to construct mean-variance efficient portfolios that

perform well out-of-sample, we need sensible estimates of conditional expected returns and

the covariance matrix. Estimation errors are a well-known problem in the portfolio opti-

mization literature and can lead to a bad out-of-sample performance of optimized portfolios

(Brandt (2005)). For instance, DeMiguel et al. (2009) show that in the US stock market an

equally weighted portfolio outperforms mean-variance optimized portfolios out-of-sample due

to estimation errors. FX markets are special because exchange rate changes are hard to pre-

dict (Meese and Rogoff (1983)), and current exchange rate forward discounts (in the forward

exchange rate market) are good proxies of conditionally expected excess returns of bilateral
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carry trades (i.e. the excess returns of uncovered positions in forward exchange rates). This

fact has been exploited in several recent papers and mean-variance efficient portfolios in FX

markets are shown to be very profitable out-of-sample (Baz et al. (2001), Della Corte et

al. (2009), Daniel et al. (2017), Ackermann et al. (2016), Maurer et al. (2018)). We follow

this literature and implement MV , MVTC and MVTC\Corr in FX markets to quantify the

importance of accounting for transaction costs in the construction of optimized portfolios.

3.3.1 Investment Opportunity Set in FX Markets

We denote spot and 1-month forward exchange rates as USD (US-dollar) per unit of currency

i at time t by Xi,t and Fi,t. Following the literature, we define the 1-month realized bilateral

carry trade return between currency i and the USD (denominated in USD) by

CTi,t+1 ≡ ln

(
Xi,t+1

Fi,t

)
= fdi,t + ∆xi,t+1,

where fdi,t = ln
(
Xi,t

Fi,t

)
(known at time t) is the forward discount, and ∆xi,t+1 = ln

(
Xi,t+1

Xi,t

)
(realized at time t+1) is the exchange rate growth. CTi,t+1 is the excess return (over the risk-

free rate in USD) of entering an uncovered long position in the 1-month forward exchange

rate contract.77

We use the bilateral carry trade returns for N currencies (against the USD) as our universe

of N risky assets. Due to data availability the number of currencies N changes through

77Under the premise of the covered interest rate parity (CIP), the forward discount is equal to the interest

rate differential fdi,t = ln
(
Ri,t

RUS,t

)
where RUS,t(= erf,t) and Ri,t are 1-month risk-free interest rates in the

USD and currency i, and the carry trade return is equivalent to borrow 1
RUS,t

USD and lend 1
RUS,tXi,t

units

of currency i. Note that we do not require the CIP to hold for the construction of our portfolios or the
out-of-sample performance analysis. We implement all carry trade returns using forward and spot exchange
rates and do not need information about interest rates.
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time; for notational simplicity, we drop the time subscript for N . The excess returns from

time t to t + 1 of strategies MV , MVTC and MVTC\Corr are CT ′t+1θ
MV
t , CT ′t+1θ

MVTC
t and

CT ′t+1θ
MVTC\Corr

t , where CTt+1 is the vector of excess returns of all N bilateral carry trades.

The constructions of MV , MVTC and MVTC\Corr require estimates of conditional expected

excess returns µe
t and the covariance matrix Vt. We follow the literature and use the current

forward discount fdi,t as a proxy for conditional expected excess return µe
i,t (Baz et al. (2001),

Della Corte et al. (2009), Daniel et al. (2017), Ackermann et al. (2016), Maurer et al. (2018)).

This is motivated by the empirical finding that exchange rate changes are difficult to predict

over a short horizon, i.e., Et [∆xi,t+1] ≈ 0 (Meese and Rogoff (1983)).

To estimate the conditional covariance matrix Vt we follow the literature on portfolio op-

timization under parameter uncertainty and use the shrinkage method of Ledoit and Wolf

(2003). In particular, our estimate of Vt is a convex combination of the sample covariance

matrix of daily exchange rate growths and the covariance matrix implied by a single index

model with the first principal component of daily exchange rate growths as the factor. Both

the sample covariance matrix and the principal component analysis use daily exchange rate

growths within a 9 month window preceding month t such that our estimate uses only in-

formation available prior to t and the subsequent portfolio construction is out-of-sample.

The first principal component is well-known to capture most of the time-series variation in

exchange rate growths (Lustig et al. (2011)), and thus, using it as the target in the shrinkage

estimation is a natural choice.

Using shrinkage to estimate Vt is similar to the estimation by Maurer et al. (2018) based on

principal component analysis and removing components which capture only a small fraction

of the common variation in exchange rate growths. Both approaches mitigate estimation

errors and avoid the presence of near-arbitrage opportunities in the underlying model (Ross
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(1976), Kozak, Nagel, and Santosh (2015)). Moreover, trading strategies based on either ap-

proach are very profitable out-of-sample. We choose shrinkage over the principal component

analysis based approach because a positive definite covariance matrix red is required in our

algorithm to solve Problem 9 (see Appendix C.1.2 for details).

The constructions of MVTC and MVTC\Corr further require estimates of transaction costs.

We compute carry trade returns before and after transaction costs. We use mid exchange

rate quotes for Xi,t and Fi,t to compute returns before transaction costs. To account for

transaction costs we use bid-ask quotes, indicated by superscripts b and a. Since it is relatively

cheap to roll a contract over from month to month, the literature typically assumes no roll-

over fees and only accounts for transaction costs if there is a change in a position (Menkhoff,

Sarno, Schmeling, and Schrimpf (2012), Della Corte, Ramadorai, and Sarno (2016), Maurer

et al. (2018)). Alternatively, we could quantify full round-trip costs (i.e. assume that a

position is completely closed and re-opened every month), which would lead to substantially

larger transaction costs and a quantitatively larger effect in our analysis. Full round-trip

costs are considered too conservative and larger than the trading costs paid in practice. Our

estimates of the per dollar transaction costs to open new long positions (CP+
i,t ), close existing

long positions (CS+
i,t ), open new short positions (CS−

i,t ) and close existing short positions

(CP−
i,t ) are

CP+
i,t ≡ ln

(
Xi,t+t

Fi,t

)
− ln

(
Xi,t+1

F a
i,t

)
= ln

(
F a
i,t

Fi,t

)
CS+

i,t ≡ ln

(
Xi,t

Fi,t−1

)
− ln

(
Xb
i,t

Fi,t−1

)
= ln

(
Xi,t

Xb
i,t

)

CS−
i,t ≡ − ln

(
Xi,t+1

Fi,t

)
+ ln

(
Xi,t+1

F b
i,t

)
= ln

(
Fi,t
F b
i,t

)

CP−
i,t ≡ − ln

(
Xi,t

Fi,t−1

)
+ ln

(
Xa
i,t

Fi,t−1

)
= ln

(
Xa
i,t

Xi,t

)
.
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Figure 3.3 plots the time-series of the cross-sectional average of annualized costs (cents per

dollar trade) for a set of 29 developed and emerging currencies (green solid line), a subsets

of 14 emerging currencies (red dashed line), and a subset of 15 developed currencies (black

dotted line).78 As expected, transaction costs to trade emerging currencies are substantially

larger than developed currencies. Transaction costs generally decrease over time, except

during FX market crises, which do not necessarily coincide with NBER recessions (grey

shaded areas). The costs reach low levels between 0.04 and 0.06 cents per dollar trade in the

final year of our sample. Notice, however, that these low numbers do not necessarily imply

that transaction costs are unimportant nowadays. Since forward discounts in FX markets

of developed and many emerging currencies have approached zero in the past decade, carry

traders have often started to shift their focus towards carry trades in frontier markets, which

feature substantially higher transaction costs.

Notice that all strategies (MV , MVTC , MVTC\Corr) use information (i.e. estimates for µe
t ,

Vt, and Cz
i,t ∀z ∈ {P+, S+, P−, S−}) available at the end of month t to construct a

portfolio which we then hold until the end of the subsequent month t+ 1. Thus, all returns

are out-of-sample and none of the trading strategies suffers from a look-ahead bias.

3.3.2 Data

We collect daily spot and 1-month forward bid, ask and mid exchange rates from Barclays

Bank International and Reuters via Datastream. We use quotes of the last day of the month

to compute monthly returns CTi,t+1. A concern with currencies of emerging countries is

that there are capital controls and major trading frictions. Menkhoff et al. (2012) and

78The cross-sectional average of costs is computed as 1
4×N

∑N
i=1

(
CP

i,t + CP−
i,t + CS+

i,t + CS−
i,t

)
, where N is

the number of exchange rates for which we have data available at time t.
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Della Corte et al. (2016) suggest to exclude countries with a negative score on the capital

account openness index of Chinn and Ito (2006).79 Following this literature, we include

currencies of 29 countries in our analysis. According to Lustig et al. (2011) 15 of them are

classified as “developed”, while the remaining 14 are “emerging” countries. The 15 developed

countries are: Australia, Belgium, Canada, Denmark, Euro Area, France, Germany, Italy,

Japan, Netherlands, New Zealand, Norway, Sweden, Switzerland, United Kingdom. The 14

emerging countries are: Brazil, Czech Republic, Greece, Hungary, Iceland, Ireland, Mexico,

Poland, Portugal, Singapore, South Africa, South Korea, Spain, Taiwan. The Euro was

introduced in January 1999 and we exclude all countries which have joined the Euro after

that date and only keep the Euro as a currency.

Exchange rates of all 29 currencies are quoted against the USD for the sample starting on

October 11th, 1983 and ending on March 2nd, 2016. We are able to extend our sample

further back to January 2nd, 1976 for the following subset of 14 countries with exchange

rates quoted against the GBP (Great British Pound): Austria, Canada, France, Germany,

Ireland, Italy, Japan, Netherland, Norway, Portugal, Spain, Sweden, Switzerland, USA. For

the period from January 2nd, 1976 to October 11th, 1983 we convert all data to exchange

rates quoted against the USD using mid exchange rate quotes of USD/GBP.

79We further exclude a currency at time t if more than 20% of its daily exchange rate growths are missing
over the past 9 months, or if the absolute value of the annualized forward discount 12× |fdi,t| is larger than
25%. Forward discounts of more than 25% are rare and we believe that such large values likely indicate
non-tradable outliers in the data, the presence of severe trading frictions, sizable sovereign default risk or an
extraordinary large expected currency devaluation. Under these conditions, a currency trader is likely not
able or willing to consider a currency as part of the investment opportunity set.

129



3.4 Results

Our main result is that the out-of-sample performance after transaction costs of mean-

variance efficient portfolios substantially improves if transaction costs are taken into account

in the optimization. We document a statistically significant and economically large outper-

formance (after transaction costs) of MVTC over MV . Moreover, we quantify the empirical

importance of the four theoretical predictions discussed in Section 3.2.

3.4.1 Performance Before Transaction Costs

Prediction 1: MV is expected to outperform MVTC if the performance is measured in

returns before transaction costs.

Table 3.1 quantifies the difference between MV and MVTC and summarizes the monthly

out-of-sample excess returns of both strategies for our full set of 29 currencies (columns 1

and 2) and the subset of 15 developed currencies (columns 3 and 4) from January 1976 to

February 2016. The first panel of Table 3.1 reports the Sharpe ratios (SR) and average

excess returns (Mean) before transaction costs. The annualized Sharpe ratios of MV and

MVTC are almost identical: 0.99 and 1.00 for the set of all 29 currencies, and 0.87 and 0.82

for the set of 15 developed currencies. The difference in Sharpe ratios between MV and

MVTC is not significant (neither in the set of all 29 nor the 15 developed currencies). The

average annual return before transaction costs of MVTC is about 1.5% lower than the average

return of MV (denoted by ∆Mean in Table 3.1), but the volatility (Vol) of MVTC is also

proportionally lower, which implies almost identical Sharpe ratios across the two strategies.
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The top panel of Figure 3.4 displays the cumulative returns of MV (black dashed line) and

MVTC (red solid line) before transaction costs for our full set of 29 currencies. The two

time-series closely track each other and the returns of the two strategies are almost identical

at every point in time. We highlight two crash periods: (i) the 1992 European Monetary

System (ERM) crisis, which led to a temporary suspension of the Italian Lira and the UK

Sterling from the ERM, and (ii) the 1997 Asian financial crisis and 1998 default of Russia.

In both periods the before transaction cost returns of MV and MVTC are almost identical,

i.e., our results are not affected by these extreme events. In Section 3.5 we provide results

from a robustness analysis where we exclude these crises.

To conclude, we do not find a significant difference in the performance before transaction

costs between MV and MVTC . Although MVTC trades less actively than MV due to the

no trading region and generally holds an ex-ante sub-optimal position80, the ex-post perfor-

mance before transaction costs is almost identical. That is, while it is theoretically true that

MVTC is sub-optimal in terms of a before transaction costs evaluation, this first theoretical

prediction is empirically irrelevant.

3.4.2 Transaction Costs

Prediction 2: Transaction costs paid by MV are expected to be higher than by MVTC.

The second panel in Table 3.1 reports the average transaction costs paid per year as a

percentage of the portfolio value (or alternatively as a reduction in the portfolio return).

The costs paid by MV are substantial, i.e., 3.71% for the set of 29 currencies and 1.97%

for the set of 15 developed currencies. That is, 20%-30% of MV ’s expected return is lost to

80Sub-optimal if there are no transaction costs.
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transaction costs. The costs paid by MVTC are less than half the size of the costs paid by

MV , i.e., 1.28% for the set of 29 currencies and 0.8% for the set of 15 developed currencies.

These savings in transaction costs are economically large. Moreover, the difference in costs

between MV and MVTC is highly statistically significant for both the set of 29 currencies

and the subset of 15 developed currencies.

Figure 3.5 visualizes this striking result by plotting the time-series of cumulative transaction

costs (top panel) and the monthly costs (bottom panel) paid by MV (black dashed line) and

MVTC (red solid line) for our full set of 29 currencies. The spread between the cumulative

costs of MV and MVTC is steadily increasing, while the monthly costs incurred by MV

are without exception always larger than the costs of MVTC . Therefore, our second theo-

retical prediction that MV is subject to larger transaction costs than MVTC is empirically

important.

3.4.3 Performance After Transaction Costs

Prediction 3: MVTC is expected to outperform MV after transaction costs. Moreover, the

outperformance is expected to be more substantial if transaction costs are large.

The third panel in Table 3.1 compares returns after transaction costs. The Sharpe ratios after

transaction costs are highlighted in boldface. For the full set of 29 currencies, the annualized

Sharpe ratio of MV is 0.7 and the one of MVTC is 0.9. The difference of ∆SR = 0.19 is

economically meaningful. MVTC is compensated by an almost 2% higher annual expected

return than MV per 10% return volatility (which is roughly equal to the unconditional

volatility of a typical carry trade strategy). We further find that this difference is statistically

significant with a p-value of 0.007. We employ the test proposed by Ledoit and Wolf (2008),
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which uses block bootstrapping and is robust to heteroskedasticity and cross- and auto-

correlation.81 The bottom panel in Figure 3.4 illustrates this striking dominance of MVTC

by plotting cumulative returns after transaction costs. The spread in cumulative returns after

costs is steadily opening. Neither the aforementioned crises have a noteworthy effect nor are

our result driven by outliers.82 This result suggests that our third theoretical prediction is

empirically important. Optimizing over transaction costs when constructing mean-variance

efficient portfolios substantially improves the out-of-sample performance.

For the set of 15 developed currencies, we also find that MVTC outperforms MV after

transaction costs. The Sharpe ratios are 0.75 for MVTC and 0.7 for MV . While the difference

in Sharpe ratios ∆SR = 0.05 is smaller than in the case of the full set of 29 countries,

it is still economically important. Per 10% volatility, MVTC earns 0.5% more per year

than MV . The difference in Sharpe ratios is not statistically significant with a p-value of

0.385. This may be due to the low power, i.e., transaction costs are relatively small among

the developed currencies and thus, we would need a lot of data to identify a statistically

significant difference. The finding that ∆SR is larger for the full set of 29 currencies is

consistent with the fact that transaction costs are larger among emerging than developed

currencies. Indeed, we expect that the implications of transaction costs are more important

if average costs and the no trading region of MVTC are large.

In addition to the Sharpe ratio analysis, we investigate the (ex-post) utility gain when

switching from MV to MVTC . The last four rows of Table 3.1 report the annualized return

or certainty equivalent CEλ a mean-variance investor with risk aversion λ ∈ {1, 5, 10, 50} is

81We choose a block size of 10 observations for the block bootstrapping. This is a conservative value and
our results are stronger if we use smaller block sizes which are closer to what Ledoit and Wolf (2008) suggest
in their illustrations.

82As a robustness we repeat our analysis excluding the two crises and find similar results. The robustness
results are in Section 3.5.
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willing to give up in order to switch from MV to MVTC . In parenthesis next to CEλ we

report the percentage of months with a certainty equivalent larger than 0 (% of CEλ > 0),

or equivalently the months in which the investor with risk aversion λ (ex-post) prefers MVTC

over MV . The monthly certainty equivalent at time t is calculated using the realized return

in month t as a proxy for the conditional expected return and the daily returns within the

month to estimate the conditional variance. For our set of 29 currencies, a log investor

(λ = 1) is willing to give up 1.16% to switch from MV to MVTC , and CEλ > 0 in 75% of

all months. For an investor with λ equal to 5, 10 or 50, CEλ increases to 1.89%, 2.8% or

10.1% and the percentage of monthly observations with CEλ > 0 increases to 80%, 82% or

83%. For the set of 15 developed currencies, the certainty equivalents are smaller, i.e., for

λ ∈ {1, 5, 10, 50}, CEλ ∈ {−0.31%, 0.22%, 0.87%, 6.11%} and the percentage of CEλ > 0 are

50%, 63%, 66% and 72%. The monotonically increasing relation highlights that more risk

averse investors have a stronger desire to manage transaction costs efficiently.

We further investigate how much less MVTC is trading compared to MV due to the no

trading region. Therefore, we plot the time-series of the turnover
∑

i ‖θi,t − θi,t−1‖ of MV

(black dashed line) and MVTC (red solid line) in the top panel in Figure 3.6 for our full

set of 29 currencies. The turnover of MV is on average 2.5 times larger than the turnover

of MVTC . In the bottom panel of Figure 3.6, we report the average portfolio holdings and

1-standard deviation error bars of MV (downward pointing triangles and thin black lines)

and MVTC (upward pointing triangles and thick red lines). The average portfolio holdings

are similar across the two strategies but the standard deviation is substantially larger for

MV , which indicates more trading activity.
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All other moments of returns after transaction costs are comparable across MV and MVTC .

Table 3.1 lists the monthly return skewness (Skew), kurtosis (Kurt), the percentage of pos-

itive monthly returns (% Positive), the maximum draw down (MDD), which measures the

maximum loss from peak to trough of the strategy in the entire sample, and the auto-

correlation (AC). If anything the skewness and the MDD of MVTC are more favorable than

the ones of MV , suggesting that MVTC has less crash risk exposure than MV .

Finally, we plot the time-series of the notional value or total dollar exposure
∑

i ‖θi,t‖ of

MV (black dashed line) and MVTC (red solid line) for our full set of 29 currencies in Figure

3.7. The notional value is slightly smaller for MVTC than for MV and almost always below

15. Only during the 1997 Asian financial crisis and the 1998 default of Russia the notional

value spiked to levels of around 35. Margin requirements in FX derivatives markets are low

and implementing a strategy with a notional value of 35 is typically unproblematic.

To sum up, we recall that the performance before transaction costs of MV and MVTC are

almost identical, which implies that our first theoretical prediction is empirically irrelevant.

However, MV faces substantially larger transaction costs than MVTC , and in turn, MVTC

substantially outperforms MV after transaction costs. Thus, the second and third theoretical

predictions are empirically important. The results are driven by the significant reduction

of unnecessary trading, which substantially lowers the turnover and transaction costs and

increases the performance after transaction costs of MVTC compared to MV . Accounting

for transaction costs in the portfolio optimization is particularly important if costs are large.

These results have important practical implications. First, accounting for costs when opti-

mizing a portfolio is beneficial and improves the out-of-sample performance. Second, trans-

action costs are declining over time, and thus, traders who specialize in developed currencies
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may be tempted to ignore transaction costs when constructing mean-variance efficient port-

folios. However, even if transaction costs are low during normal times, they substantially

increase during crises and become relevant (Karnaukh et al. (2015)). Third, many currency

traders have shifted their focus to emerging and frontier markets because exchange rate for-

ward discounts among developed currencies are close to zero for the past decade. Transaction

costs in emerging and frontier markets are generally larger than the costs considered in our

analysis, and thus, the implications of transaction costs on the optimal portfolio choice are

even more important for these traders.

3.4.4 Importance of Correlations between Assets

Prediction 4: If assets are positively correlated, then the no trading region of MVTC is

expected to be larger than the one of MVTC\Corr.
83 Moreover, transaction costs of MVTC are

expected be lower than the costs of MVTC\Corr, and we expect MVTC to outperform MVTC\Corr

after costs.

Figure 3.8 shows the time-series of the average conditional correlation of each exchange rate

growth i with all other exchange rate growths, ρi,t = 1
N−1

∑N−1
j=1 Corrt (∆xi,t,∆xj,t) for our

full set of 29 currencies. To estimate the conditional correlation Corrt (∆xi,t,∆xj,t) between

exchange rate growths i and j in month t we use daily exchange rate growths within the

month. The bold black line is the average of all correlations ρt = 1
N−1

∑N
i=1 ρi,t in month

t. Correlations ρi,t are almost always positive and on average close to 0.5. The average

correlation ρt is always between 0.1 and 0.8.

83Recall that MVTC\Corr is the strategy which optimizes over transaction costs similar to MVTC but
assumes that assets are uncorrelated to simplify the construction of the no trading region and obtain an
approximate solution.
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Table 3.2 summarizes the monthly excess returns of MV , MVTC\Corr and MVTC for our

full set of 29 currencies from 1976 to 2016.84 Note that MV and MVTC are also described

above and in Table 3.1. Consistent with the previous finding, the average returns and Sharpe

ratios before transaction costs are almost identical across the three strategies. MVTC\Corr

has transaction costs of 2.56% per year, which is a 1.14% saving in costs compared to MV

but 1.24% larger than the costs incurred by MVTC . After transaction costs, the Sharpe

ratio of MVTC\Corr is 0.76, which is 0.06 higher than the ratio of MV but 0.14 lower than

the ratio of MVTC . The difference in Sharpe ratios between MV and MVTC\Corr is not

statistically significant (p-value of 0.428) but the difference between MVTC\Corr and MVTC

is significant (p-value of 0.084). Therefore, accounting for correlations in the optimization is

important to significantly increase the Sharpe ratio when optimizing over transaction costs.

Employing the approximate solution MVTC\Corr to optimize over transaction costs adds not

much benefit.

The certainty equivalent CEλ an investor with risk aversion λ ∈ {1, 5, 10, 50} is willing to pay

to switch from MVTC\Corr to MV is mostly slightly negative (i.e., MVTC\Corr is preferred to

MV ), but when λ = 50, it is positive (i.e., MV is preferred to MVTC\Corr). The percentages

of months where MV is preferred to MVTC\Corr are 29%, 32%, 35% and 44% when λ is 1,

5, 10 and 50. In contrast, the certainty equivalent is substantially larger for a switch from

MVTC\Corr to MVTC , and it is increasing in the risk aversion λ of the investor. The CEλ

to switch from MVTC\Corr to MVTC are 0.26%, 1.15%, 2.27% and 11.19% when λ is 1,5,10

and 50. The corresponding percentages of months when MVTC is preferred to MVTC\Corr

are 57%, 68%, 72% and 78%.

84We focus on our full set of 29 currencies and do not report the the results for our subset of 15 developed
currencies. Latter results are available on request.
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We conclude that the no trading regions of MVTC\Corr and MVTC are not only theoretically

but also quantitatively very different. Accounting for correlations in the optimization over

transaction costs is empirically important and the out-of-sample outperformance of MVTC

over MVTC\Corr is economically and statistically significant. On the other hand, the out-

performance of MVTC\Corr over MV is empirically small. Therefore, it is not beneficial

to account for transaction costs in the portfolio optimization while imposing the simplify-

ing assumption that assets are uncorrelated when constructing the no trading region. This

empirical finding is an important contribution to the literature: it invalidates the general

usefulness of the continuous time framework of H. Liu (2004), where assets are considered un-

correlated. This is unfortunate since H. Liu (2004)’s setup provides so far the only available

model able to deliver a solution in dynamic portfolio optimization settings in the presence

of transaction costs with many risky assets.

3.4.5 Size of the No Trading Region and Trade Aggressiveness

In our theoretical discussion in Section 3.2 we establish that if the investor optimizes over

transaction costs (i.e. MVTC or MVTC\Corr), she trades from her initial position θ0
t towards

θMV
t but stops at the boundary of the no trading region. We measure the size of the no

trading region by 1 − TA
(
θS

t

)
, where the trade aggressiveness TA

(
θS

t

)
of strategy S ∈

{MVTC ,MVTC\Corr} is defined as the ratio of the turnover of strategy S and MV ,

TA
(
θS

t

)
=

∑
i ‖θS

i,t − θ0
i,t‖∑

i ‖θMV
i,t − θ0

i,t‖
∈ [0, 1] .

The turnover as a distance measure is suitable because we want to quantify the total amount

of trade. Normalizing by the turnover of MV helps to put this distance into perspective.
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A large TA(θS
t ) indicates that the investor trades aggressively and chooses a position θS

t

close to θMV
t , which in turn implies that the no trading region is small. In the extreme case

where TA(θS
t ) = 1, θS

t = θMV
t and there does not exist a no trading region. In contrast, a

small value indicates that the investor does not trade aggressively and θS
t is far away from

θMV
t , which in turn means that the no trading region is large. In the extreme case where

TA(θS
t ) = 0, strategy S does not trade at all, θS

t = θ0
t , and the initial position lies within

the no trading region. Thus, TA
(
θS

t

)
measures how aggressive an investor trades from the

initial position θ0
t towards the optimum without transaction costs θMV

t , and 1 − TA
(
θS

t

)
quantifies the size of the no trading region of strategy S.

In the one period model discussed in Section 3.2 we choose the initial position θ0
t exogenously.

However, in our empirical implementation the initial position in month t is equal to the

portfolio allocation chosen in month t− 1. Thus, the initial position for strategy S is θS
t−1,

while it is θMV
t−1 for strategy MV . These initial positions are generally not identical, and

therefore, our actual trade aggressiveness measure TA(θS
t ) =

∑
i ‖θSi,t−θ

S
i,t−1‖∑

i ‖θMV
i,t −θ

MV
i,t−1‖

≈ TA
(
θS

t

)
is

not anymore bounded above by 1.

Table 3.3 summarizes the monthly realizations of TA
(
θS

t

)
for strategies S ∈ {MVTC ,

MVTC\Corr} for our full set of 29 currencies from 1976 to 2016.85 On average the trade

aggressiveness of strategy MVTC is 0.41. That is, the investor reduces trading by 59% com-

pared to MV . Moreover, the 5- and 95-percentiles of the trade aggressiveness of MVTC

are 0.14 and 0.74, which means that the trading activity of MVTC is most of the time sub-

stantially lower compared to MV . An investor, who follows strategy MVTC\Corr on average

has a trade aggressiveness of 0.98, i.e., reduces trading by only 2% compared to MV . The

5- and 95-percentiles are 0.69 and 1.39. The value larger than 1 indicates that MVTC\Corr

85We focus on our full set of 29 currencies and do not report the the results for our subset of 15 developed
currencies. Latter results are available on request.
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sometimes trades even more than MV . As explained above, this is possible because the

initial position of MVTC\Corr can be quite different from the initial position of MV . Our

empirical measure is not bounded above by 1 as it is in the single period setting where both

strategies have the same initial position.

The difference between the two measures, ∆TA = TA
(
θ

MVTC\Corr

t

)
− TA

(
θMVTC

t

)
, is of

particular interest. It measures how much more aggressively an investor, who implements

MVTC\Corr, trades compared to an investor, who invests in MVTC . We expect ∆TA > 0

if correlations between assets are (predominantly) positive, and ∆TA < 0 if correlations

between assets are (predominantly) negative. This is because the no trading region of MVTC

is larger (smaller) than the one of MVTC\Corr when correlations are positive (negative) (the

intuition is that when assets are positively correlated they act as substitutes while if they are

negatively correlated they function as complements, see the discussion in Section 3.2). We

find that ∆TA is on average 0.57 and statistically significantly different from 0 (top panel in

Table 3.3). The median of ∆TA is 0.54 and the 5- and 95-percentiles are 0.2 and 1.03. This

implies that the no trading region of MVTC is generally larger than the one of MVTC\Corr,

which is consistent with the fact that correlations between exchange rates are on average

positive (Figure 3.8).

Figure 3.9 further analyzes the time series of ∆TA (solid line). The horizontal dashed line

highlights its sample median. The gray shaded areas indicate NBER recessions. Although

MVTC generally trades less aggressive than MVTC\Corr, there are a couple of monthly obser-

vations where the opposite is true. Finally, we highlight the Asian financial crisis in 1997,

when ∆TA spikes. The striking increase is not surprising since correlations typically sharply

increase during crises.
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3.4.6 Heuristic Adjustment of Static Solution to Approximate the

Dynamic Problem

MVTC is the optimal solution in a single period but not necessarily in a multi-period frame-

work. Suppose we extend our model to T periods. The investor trades in every period t

and her utility at time t is Ut = Et

[∑T
τ=t β

τ−tuτ

]
where Et[.] is the conditional expectation

operator, β ∈ [0, 1] is a subjective time discount factor of future period τ mean-variance

utility uτ = θτ
′µe
τ − λ

2
θτ
′Vτθτ − ∆P+

τ
′
CP+
τ − ∆P−

τ
′
CP−
τ − ∆S+

τ
′
CS+
τ − ∆S−

τ
′
CS−
τ . More-

over, suppose the investment opportunity set is constant, i.e., µe
τ = µe, Vτ = V, Cz

τ = Cz

∀z ∈ {P+, S+, P−, S−}. If there are no transaction costs (CP+ = CS+ = CP− = CS− = 0),

then it is well-known that the optimal solution in every period t is the same as the solution in

the single period model, θMVT

t = θMV = 1
λ
V−1µe, where the superscript T indicates that the

portfolio is the solution to the T-period setting. In contrast, if there are positive transaction

costs (CP+ > 0,CS+ > 0,CP− > 0,CS− > 0), then in general the optimal solution is not

equal to the single period solution, θ
MVT

TC
t 6= θMVTC .

Unfortunately, we do not have reliable algorithms to solve the multi-period model in the

presence of many assets.86 Dybvig and Pezzo (2018) only provide a solution to the sin-

gle period model. Intuitively, we expect the no trading region of the multi-period strategy

MV T
TC to be smaller than for the single period strategy MVTC . The marginal utility gain

from moving towards θMV should be larger in the multi-period than in the single period

model because the benefit of being close to θMV can be reaped for multiple periods instead

86Our results show how important it is to properly account for correlations among assets: a fact that
empirically invalidate the H. Liu (2004)’ setup, based on the assumption of no correlation among the available
assets. H. Liu (2004)’s model is the only framework that so far has been able to deliver solutions for dynamic
portfolio optimizations in the presence of transaction costs with many assets. Due to the complexity of the
general problem, the current literature on transaction costs only provide heuristic/approximate solutions
when dealing with two and in rare cases three risky assets.
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of only once. This intuition carries over to settings with stochastic changes in the investment

opportunity set (though there is an additional level of complexity due to hedging demands).

In particular, we expect the size of the no trading region to depend inversely on the persis-

tence in the state variables. Two extreme cases are (i) independent shocks to the investment

opportunity set where the no trading region is expected to be large, and (ii) the constant

investment opportunity set where we expect a relatively small no trading region.

Following our intuition, we propose the following heuristic solution to the multi-period model.

We define the cost multiplier Mi(c, a) = c + a × ρ
(
µei,t
σ2
i,t

)
, where ρ(xt) is the first auto-

correlation operator of the time-series xt and σ2
i,t is the ith diagonal element of Vt, and

the adjusted transaction costs associated with asset i are Cz
i,t(c, a) = Mi(c, a)Cz

i,t ∀z ∈

{P+, S+, P−, S−}. We conjecture that the solution θMVM
TC(c, a) of Problem 9 with the

adjusted transaction costs approximates the true solution θ
MVT

TC
t in the multi-period model.

Notice that θMVM
TC(c=1,a=0) = θMVTC and θMVM

TC(c=0,a=0) = θMV nests the single period

model solutions with and without transaction costs.

We empirically assess the importance of our proposed approximate solution of the multi-

period model for our full set of 29 currencies from 1976 to 2016.87 We construct θMVM
TC(c,a)

for c ∈ [0,+∞) and a ∈ (−∞,+∞) and compute out-of-sample returns. Figure 3.10 plots

the annualized out-of-sample Sharpe ratios against parameters (c, a) ∈ [0, 2] × [0, 1], which

represent the neighborhood of the global optimum. The point highlighted by a blue arrow

indicates MVTC with a Sharpe ratio of 0.90. The point highlighted by a red arrow indi-

cates MV M
TC(c = 0.7, a = 0.8) with a Sharpe ratio of 0.92. This portfolio yields the highest

Sharpe ratio for any combination of (c, a). The point highlighted by a black arrow indicates

MV M
TC(c = 1.3, a = 0) with a Sharpe ratio of 0.91. This portfolio yields the highest Sharpe

87We focus on our full set of 29 currencies and do not report the the results for our subset of 15 developed
currencies. Latter results are available on request.
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ratio for any value c and a = 0. Points indicated by blue crosses are portfolios MV M
TC(c, a)

with Sharpe ratios which are statistically significantly different from the Sharpe ratio of

MVTC (using the test of Ledoit and Wolf (2008) and a p-value of 0.05). Figure 3.10 sug-

gests that the Sharpe ratio is not sensitive to changes in parameters c and a within a large

neighborhood around the maximum with (c, a) = (0.7, 0.8), including strategy MVTC with

(c, a) = (1, 0). Thus, our proposed heuristic approximation of the multi-period model solu-

tion does not improve the out-of-sample performance over the single period model solution

MVTC .88

A potential reason for the just discussed heuristic approximation not to find significant re-

sults is the lack of consideration of any mean-reversion effects in the optimal weights θMVT
TC .

Under the assumption of a constant investment opportunity set there exists a true (but

unobservable) stationary optimum θMV, which can be thought of as the vector of long run

mean weights absent costs. We take the average of the optimal weights {θMV
t }t in our sample

from January 1976 to February 2016 as such a proxy. By construction, the actual time-series

of θMV
t hoovers around it, more or less closely (depending on the width of the no-trading

region) followed by the time series of θMVTC
t . In a dynamic setting at generic date t we

should expect any re-balancing decision θ
MVT

TC
t to be sub-optimal if it does not bring the

inherited position θ
MVT

TC
t−1 any closer to our proxy for the true long-run optimum θMV. We

therefore expect two different multipliers of the form M(c1, a1) and M(c2, a2) to be respec-

tively smaller and bigger than the vector of ones 1{N×N} when they push θMVTC
t towards

respectively away from θMVTC . Accordingly, we construct the new approximate solution

by designing costs of the form Cz
i,t(c1, a1, c2, a2) = [αi,tMi(c1, a1) + (1− αi,t)Mi(c2, a2)] Cz

i,t

88However, we cannot exclude the possibility that the true solution of the multi-period model outperforms
MVTC in out-of-sample tests, because we do not know how different our conjectured approximate solution
is from the true solution.
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∀z ∈ {P+, S+, P−, S−} where αi,t is an indicator that turns on when θMVTC
i,t pushes θMVTC

i,t−1

towards θMVTC
i .

Again, we empirically assess the importance of the new approximate dynamic solution for

ci ∈ [0,+∞) and ai ∈ (−∞,+∞) with i ∈ {1, 2} in terms of the out-of-sample returns for

our full set of 29 currencies from 1976 to 2016.89 The new maximal Sharpe ratio is 0.92,

the same generated by the former heuristic, and it is not statistically different from the 0.90

Sharpe ratio of our MVTC strategy.

Overall, based on the insights from our heuristic analysis, we expect the myopic MVTC

strategy not to be very far from the true optimal dynamic strategy.

3.5 Robustness

Table 3.4, 3.5 and 3.6 provide robustness results of our main findings in Table 3.1. Our

focus is on our full set of 29 developed and emerging currencies because transaction costs

are generally larger and more relevant than in the subset of 15 developed currencies (see

discussion in Section 3.4 for details). Results for our subset of 15 developed currencies are

available on request.

3.5.1 Sample without Crises, 1976-2016

The first two columns of Table 3.4 report the out-of-sample performance of MV and MVTC

for our full set of 29 currencies from 1976 to 2016 but excluding observations during the 1992

89We focus on our full set of 29 currencies and do not report the the results for our subset of 15 developed
currencies. Latter results are available on request.
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ERM crisis, the 1997 Asian Financial crisis and 1998 Russian default. These portfolios are

not actually traded since we would not have been able to predict these crises in real time.

However, the analysis is still useful to understand whether any of our results are driven by

these periods.

Not surprisingly the performance of both strategies improves when we remove the observa-

tions during the crises. The Sharpe ratios before transaction costs of MV and MVTC increase

from 0.99 and 1.00 to 1.15 and 1.17. The Sharpe ratios before transaction costs across the

two strategies are almost identical. On the other hand, the excluded crises do not impact the

costs: the implementation of MV costs 3.63% per year and MVTC 1.22% (including crises

3.71% and 1.28% respectively). MVTC saves a significant amount compared to MV and the

difference in costs between MV and MVTC is highly statistically significant. The Sharpe

ratios after transaction costs are higher in the sample without crises than in the full sample.

MV earns a Sharpe ratio of 0.81 and MVTC 1.04. The difference between the strategies is

0.23 and statistically significant with a p-value of 0.005, which is similar to the result from

full sample. To sum up, the first theoretical prediction is empirically irrelevant while the

second and third predictions are economically large and statistically significant. Therefore,

our conclusions drawn from our sample without crises are the same as the conclusions in

Section 3.4.

3.5.2 Sample from November 1983 to February 2016

Our main analysis uses the sample from January 2nd, 1976 to March 2nd, 2016. The data

before October 11th, 1983 is quoted against the Great British Pound (GBP), and we convert

all data to exchange rates quoted against the USD (using mid quotes between the USD and
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GBP). The data quoted against the GBP are less reliable compared to the later sample

quoted against the USD. Moreover, the bid and ask quotes after converting the 1976-1983

data to quotes against the USD do not exactly reflect the true bid and ask quotes against

the USD, i.e., they are the bid and ask quotes against the GBP converted by the mid quote

between USD and GBP. We show that our results are robust independent of whether we use

the full sample from 1976 to 2016 or the shorter sample from 1983 to 2016.

Columns 3-4 of Table 3.4 summarize the out-of-sample excess returns of MV and MVTC

for our full set of 29 currencies from November 1983 to February 2016. The Sharpe ratios

before transaction costs of MV and MVTC are 0.87 and 0.88, which is 0.12 lower than in the

full sample from 1976 to 2016. The costs paid by MV and MVTC are 2.80% and 1.08% per

year. These numbers are lower than in the full sample, which is consistent with the fact that

average transaction costs are decreasing over time (Figure 3.3). MVTC costs less than 40%

of MV to implement. The difference in costs between MV and MVTC is highly statistically

significant. The Sharpe ratios after transaction costs are also lower in the sample starting

in 1983 than in the full sample. The Sharpe ratio of MV is 0.66 and the one of MVTC

is 0.79. The difference between the strategies is 0.14 and statistically significant with a p-

value of 0.025. Therefore, consistent with our main results, the first theoretical prediction is

empirically irrelevant while the second and third predictions are important.

3.5.3 NBER Recessions

Next we investigate the impact of recessions. We confirm our results in both NBER recessions

and non-recession periods. Table 3.5 summarizes the monthly excess returns of MV and

MVTC during NBER recessions (columns 1-2) and during non-recession periods (columns
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3-4) for our full set fo 29 currencies from 1976 to 2016. Sharpe ratios before transaction

costs are twice in non-recession periods than during recessions. This difference is driven by

a large difference in average returns while volatilities are almost constant across recession

and non-recession periods. The difference in Sharpe ratios before transaction costs between

MV and MVTC are close to zero in recession and non-recession periods. Transaction costs

in and out of recessions are identical. MVTC saves on average 2.4% in costs compared to

MV . The difference in costs between MV and MVTC is highly statistically significant.

MVTC outperforms MV and the difference in Sharpe ratios is 0.22 in recessions and 0.19

during non-recession periods. This difference in Sharpe ratios after transaction costs is only

significant in non-recession periods (p-value of 0.006), while the p-value during recessions is

0.366. The p-value in recession periods is relatively large because we only have 56 monthly

observations during recessions and the power of the test is low. However, the economic

magnitude of our result is identical in and out of recessions. We conclude, that our findings

in Section 3.4 are present both in and out of recession periods.

3.5.4 Subsamples before and after the Introduction of the Euro

The introduction of the Euro non-trivially affected the investment opportunity set in FX

markets. Our results from Section 3.4 are present in the subsamples before and after the

introduction of the Euro. The results are stronger in the earlier subsample, which is mostly

due to the general decline in average transaction costs over time (Figure 3.3).

Table 3.6 summarizes the monthly excess returns of MV and MVTC for our full set of

29 currencies before (columns 1-2) and after (columns 3-4) the introduction of the Euro on

January 2nd, 1999. In both samples, there is no difference in Sharpe ratios before transaction
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costs between MV and MVTC . Sharpe ratios are slightly larger in the sample after the

introduction of the Euro. Transaction costs are substantially larger in the pre-Euro sample.

Costs incurred by MV and MVTC are 5.58% and 1.19% per year (a difference of 3.67%)

in the pre-Euro, and 1.18% and 0.44% per year (a difference of 0.74%) in the post-Euro

sample. The difference in costs between MV and MVTC is highly statistically significant

in both pre- and post-Euro samples. The Sharpe ratios after transaction costs of MV and

MVTC are 0.69 and 0.91 in the pre-Euro and 0.95 and 1.09 in the post-Euro sample. The

difference of 0.22 in the pre-Euro sample is economically and statistically significant with a

p-value of 0.004. The difference of 0.14 in the post-Euro sample is economically large but

not statistically significant (p-value of 0.307). The decline in the difference in Sharpe ratios

after costs between MVTC and MV from the pre- to the post-Euro sample is mostly due to

the strong decline in average transaction costs. However, this does not mean that optimizing

over transaction costs is useless in the post-Euro era. The superior performance of MVTC

over MV is steady over the entire period. The cumulative returns after costs of MVTC are

always above those of MV and the spread is monotonically increasing. To conclude, the main

results of Section 3.4 are confirmed in both subsamples before and after the introduction of

the Euro.

3.6 Conclusion

Using foreign exchange (FX) market returns for 29 developed and emerging currencies from

1976 to 2016, we show that taking transaction costs into account in a mean-variance portfolio

optimization leads to an economically large and statistically significant improvement in the

out-of-sample performance.
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We present four main findings. First, we document that the out-of-sample Sharpe ratios

before transaction costs of MV (which is the mean-variance efficient portfolio which ignores

transaction costs in the optimization) and MVTC (which takes costs into account in the

optimization) are identical and equal to 1. Second, MVTC pays 1.28% of the portfolio value

per year in transaction costs which is substantially lower than the 3.71% paid by MV . Third,

MVTC has an out-of-sample Sharpe ratio after transaction costs of 0.9, while the Sharpe

ratio of MV is only 0.7. Other moments of the return distribution are similar across the

two strategies. Thus, taking costs into account in the optimization significantly improves

the out-of-sample performance after transaction costs. Fourth, transaction costs paid by

MVTC\Corr (the strategy which accounts for transaction costs in the optimization but for

simplicity assumes that assets are uncorrelated when constructing the no trading region) are

2.56% per year and its Sharpe ratio after costs is only 0.76, which is significantly inferior to

its counter-part in MVTC . Thus, accounting for correlations between assets is important for

the superior performance of MVTC . In contrast, the approximate solution MVTC\Corr has

no benefit. This result invalidates the insights coming from the continuous-time model of

H. Liu (2004), the only setup so far able, by assuming independence across assets, to deliver

solutions to large scale dynamic portfolio optimizations in the presence of transaction costs.

Our results have important practical implications. First, accounting for costs when optimiz-

ing a portfolio is beneficial and improves the out-of-sample performance. Second, transaction

costs are declining over time, and thus, traders who specialize in developed currencies may

be tempted to ignore transaction costs when constructing mean-variance efficient portfolios.

However, even if transaction costs are low during normal times, they substantially increase

during crises and become relevant (Karnaukh et al. (2015)). Third, many currency traders

have shifted their focus to emerging and frontier markets because exchange rate forward

discounts among developed currencies are close to zero for the past decade. Transaction
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costs in emerging and frontier markets are generally larger than the costs considered in our

analysis, and thus, the implications of transaction costs on the optimal portfolio choice are

even more important for these traders.
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Figure 3.1: Importance of Transaction Costs in FX Markets

Annualized out-of-sample Sharpe ratios before (blue bars to the left) and after (green bars in the middle)

transaction costs of various currency trading strategies and transaction costs (yellow bar to the right) paid

by them. MV is the mean-variance optimized portfolio without taking into account transaction costs in the

optimization. MVTC\Corr is the mean-variance optimized portfolio which optimizes over transaction costs

but makes the simplifying assumption that assets are uncorrelated. MVTC is the mean-variance optimized

portfolio which optimizes over transaction costs. DOL invests equally in all bilateral carry trades. DDOL

takes a long position in DOL if the median exchange rate forward discount is positive, and a short position

otherwise. HML sorts bilateral carry trades according to the forward discount into quintiles and shorts

the bottom and invests in the top quintile. MOM sorts bilateral carry trades according to their past 12

month performance into quintiles and shorts the bottom and invests in the top quintile. V AL sorts bilateral

carry trades according to the power purchase parity adjusted exchange rate into quintiles and shorts the top

quintile (overvalued currencies with high real exchange rates) and invests in the bottom quintile (undervalued

currencies with low real exchange rates). The data are monthly returns for our full set of 29 currencies from

January 1976 to February 2016.
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Figure 3.2: Mean-Variance Problem with TC: Case of 2 Risky Assets

The investment opportunity set consists of two risky assets which are positively correlated. The horizontal

axis measures the weight a portfolio places on asset 1, and the vertical axis the weight on asset 2. The point

labeled θMV is the optimal portfolio if there were no transaction costs. The blue parallelogram illustrates

the no trading region of MVTC , which optimizes over transaction costs. The red checkered square (within

the blue parallelogram) determines the no trading region of MVTC\Corr, which optimizes over transaction

costs but assumes that the two assets are uncorrelated. If the initial position is within the no trading region,

then the investor does not trade. If it is outside, then the investor trades along vertical and horizontal

lines (indicated by black arrows) towards θMV until to the boundary of the no trading region. ∆P
i > 0

respecively ∆S
i > 0 indicate the regions where the investor increases respectively decreases her position in

asset i ∀i ∈ {1, 2}.
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Figure 3.3: Average Annualized Transaction Costs

Average (across currencies) annualized costs (in percentage points) to change a position in a bilateral carry

trade for the the full set of 29 currencies (green solid line), the subset of 15 developed currencies (black

dotted line), and the subset of 14 emerging currencies (red dashed line) from January 1976 to February

2016. Grey shaded areas indicate NBER recessions.
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Figure 3.4: Cumulative Returns of MV and MVTC

Time series of cumulative returns of MV (black dashed line) and MVTC (red solid line) for our set of 29

currencies from January 1976 to February 2016. Returns before transaction costs are shown in the top panel,

and returns after transaction costs in the bottom panel. Grey shaded areas indicate NBER recessions.

Cumulative Returns Before Transaction Costs:

Cumulative Returns After Transaction Costs:
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Figure 3.5: Transaction Costs of MV and MVTC

Time series of transaction costs of MV (black dashed line) and MVTC (red solid line) for our set of 29

currencies from January 1976 to February 2016. Cumulative costs are shown in the top panel, and monthly

costs in the bottom panel. Grey shaded areas indicate NBER recessions.

Cumulative Transaction Costs:

Monthly Transaction Costs:
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Figure 3.6: Trading Activity of MV and MVTC

Top panel: Time series of the turnover
∑
i ‖θi,t − θi,t−1‖ of MV (black dashed line) and MVTC (red solid

line) for our set of 29 currencies from January 1976 to February 2016. Grey shaded areas indicate NBER

recessions. Bottom panel: Average portfolio weights and 1-standard deviation error bars of MV (downward

pointing triangle and thin black line) and MVTC (upward pointing triangle and thick red line).

Turnover:

Average Portfolio Weights and Standard Deviation Bars:
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Figure 3.7: Notional Value of MV and MVTC

Time series of the notional value or total dollar exposure
∑
i ‖θi,t‖ of MV (black dashed line) and MVTC

(red solid line) for our set of 29 currencies from January 1976 to February 2016. Grey shaded areas indicate

NBER recessions.
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Figure 3.8: Average Correlations

Time-series of the average conditional correlation of each exchange rate growth i with all other exchange rate

growths for our full set of N = 29 currencies, ρi,t = 1
N−1

∑N−1
j=1 Corrt (∆xi,t,∆xj,t) estimated using daily

data within each month from January 1976 to February 2016. The bold black line captures the time-series

of the cross-sectional average across all correlations, ρt = 1
N−1

∑N
i=1 ρi,t. Grey shaded areas indicate NBER

recessions.

158



Figure 3.9: Difference in Trade Aggressiveness (∆TA)

Time-series of the difference in trade aggressiveness between MVTC\Corr and MVTC , ∆TA =

TA
(
θMVTC\Corr − θMVTC

)
(solid line), where the trade aggressiveness is defined as TA(θSt ) =∑

i ‖θ
S
i,t−θ

S
i,t−1‖∑

i ‖θMV
i,t −θ

MV
i,t−1‖

. The horizontal black dashed line is the sample median of ∆TA. The gray shaded ar-

eas indicate NBER recessions. The data refers to our full set of 29 currencies from January 1976 to February

2016. Reported values are in percentage points.
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Figure 3.10: Sharpe Ratios of Approximate Solutions in Multi-Period Model

Annualized out-of-sample Sharpe ratios of θMVM
TC(c, a) for (c, a) ∈ [0, 2]×[0, 1] for our full set of 29 currencies

from 1976 to 2016 (see details in Section 3.4.6). The point highlighted by a blue arrow indicates MVTC

with a Sharpe ratio of 0.90. The point highlighted by a red arrow indicates θMVM
TC(c = 0.7, a = 0.8) with a

Sharpe ratio of 0.92, which is the highest Sharpe ratio for any combination of (c, a). The point highlighted

by a black arrow indicates θMVM
TC(c = 1.3, a = 0) with a Sharpe ratio of 0.91, which is the highest Sharpe

ratio for any value c and a = 0. Points indicated by blue crosses are portfolios θMVM
TC(c, a) with Sharpe

ratios which are statistically significantly different from the Sharpe ratio of θMVTC (using the test of Ledoit

and Wolf (2008) and a p-value of 0.05).
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Table 3.1: Mean-Variance Strategies: MV vs. MVTC

Summary statistics of monthly excess returns of MV and MVTC , described in Section 3.2. First two

columns report results for all 29 currencies, last two columns for 15 developed currencies. The sample period

is 1976-2016. SR is the annualized Sharpe ratio, Mean the annualized average return (in percentage points),

Mean Costs the average annualized transaction costs measured in percentage of the portfolio value, Vol the

annualized standard deviation (in percentage points), Skew the skewness, Kurt the kurtosis, % Positive the

percentage of positive monthly returns, MDD the Maximum Draw Down, AC the autocorrelation, CEλ the

annualized rate of return (Certainty Equivalent) an investor with mean-variance preferences and risk aversion

λ is willing to give up in order to switch from strategy MV to strategy MVTC . % of CEλ > 0 indicates

the percentage of months with positive CEλ. ∆Mean, ∆Mean Costs, ∆SR are the differences in the Mean,

Mean Costs, SR between MVTC and MV . Standard errors of ∆SR are estimated using block bootstrapping

with block sizes of 10 observations to account for heteroskedasticity, cross- and auto-correlation (Ledoit and

Wolf (2008)). Standard errors of ∆Mean Costs are estimated using Newey and West (1987) to account for

heteroskedasticity and auto-correlation. ∗∗∗, ∗∗, ∗ indicate a statistical significance at the 1%, 5%, 10% level

of ∆SR and ∆Mean Costs. We only report the p-value for ∆SR after costs.

All 29 Currencies 15 Developed Currencies

MV MVTC MV MVTC

Before Transaction Costs:

SR 0.99 1.00 0.87 0.82
Mean 12.26 10.81 9.09 7.49
∆Mean - -1.45 - -1.60

Transaction Costs:

Mean Costs 3.71 1.28 1.97 0.80
∆Mean Costs - -2.42∗∗∗ - -1.17∗∗∗

After Transaction Costs:

SR 0.70 0.90 0.70 0.75
∆SR - 0.19∗∗∗ - 0.05
(p-value) - (0.007) - (0.385)

Mean 8.55 9.53 7.13 6.69
Vol 12.15 10.62 10.23 8.93
Skew -1.20 -0.65 2.96 4.22
Kurt 28.58 30.73 82.53 100.15
% Positive 66.38 67.87 66.60 67.02
MDD -54.10 -43.47 -43.57 -29.43
AC -0.07 -0.05 -0.03 -0.03

CEλ=1 (% of CEλ=1 > 0) - 1.16 (75%) - -0.31 (50%)
CEλ=5 (% of CEλ=5 > 0) - 1.89 (80%) - 0.22 (63%)
CEλ=10 (% of CEλ=10 > 0) - 2.80 (82%) - 0.87 (66%)
CEλ=50 (% of CEλ=50 > 0) - 10.10 (83%) - 6.11 (72%)
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Table 3.2: Mean-Variance Strategies: Importance of Correlations

Summary statistics of monthly excess returns of MV , MVTC and MVTC\Corr (described in Section 3.2) for

all 29 currencies from 1976 to 2016. SR is the annualized Sharpe ratio, Mean the annualized average return

(in percentage points), Mean Costs the average annualized transaction costs measured in percentage of the

portfolio value, Vol the annualized standard deviation (in percentage points), Skew the skewness, Kurt the

kurtosis, % Positive the percentage of positive monthly returns, MDD the Maximum Draw Down, AC the

autocorrelation. CEλ is the annualized rate of return (Certainty Equivalent) an investor with mean-variance

preferences and risk aversion λ is willing to give up in order to switch from strategy MVTC\Corr to strategy

MV or MVTC . % of CEλ > 0 indicates the percentage of months with positive CEλ. ∆Mean, ∆Mean Costs,

∆SR are the differences in the Mean, Mean Costs, SR between MVTC and MV . Standard errors of ∆SR are

estimated using block bootstrapping with block sizes of 10 observations to account for heteroskedasticity,

cross- and auto-correlation (Ledoit and Wolf (2008)). Standard errors of ∆Mean Costs are estimated using

Newey and West (1987) to account for heteroskedasticity and auto-correlation. ∗∗∗, ∗∗, ∗ indicate a statistical

significance at the 1%, 5%, 10% level of ∆SR and ∆Mean Costs. We only report the p-value for ∆SR after

costs.

MV MVTC\Corr MVTC

Before Transaction Costs:

SR 0.99 0.95 1.00
Mean 12.26 12.05 10.81
∆Mean 0.21 - -1.24

Transaction Costs:

Mean Costs 3.71 2.56 1.28
∆Mean Costs 1.14∗∗∗ - -1.28∗∗∗

After Transaction Costs:

SR 0.70 0.76 0.90
∆SR -0.06 - 0.14∗

(p-value) (0.428) - (0.084)

Mean 8.55 9.49 9.53
Vol 12.15 12.50 10.62
Skew -1.20 -0.10 -0.65
Kurt 28.58 28.06 30.73
% Positive 66.38 66.81 67.87
MDD -54.10 -50.00 -43.47
AC -0.07 -0.06 -0.05

CEλ=1 (% of CEλ=1 > 0) -0.90 (29%) - 0.26 (57%)
CEλ=5 (% of CEλ=5 > 0) -0.73 (32%) - 1.15 (68%)
CEλ=10 (% of CEλ=10 > 0) -0.53 (35%) - 2.27 (72%)
CEλ=50 (% of CEλ=50 > 0) 1.09 (44%) - 11.19 (78%)
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Table 3.3: Trade Aggressiveness (TA)

Summary statistics of monthly trade aggressiveness TA(θSt ) =
∑

i ‖θ
S
i,t−θ

S
i,t−1‖∑

i ‖θMV
i,t −θ

MV
i,t−1‖

for strategies S ∈
{MV TC,MVTC\Corr}. Strategies MV,MV TC and MVTC\Corr are described in Section 3.2. Mean TA

reports the time-series average of monthly TA(θSt ). In parenthesis below we report p-values, which are cal-

culated using standard errors robust to heteroskedasticity and auto-correlation (Newey and West (1987)).

Median TA reports the median of monthly TA(θSt ). 5-%ile and 95-%ile report the 5 and 95 percentiles of

the monthly TA(θSt ) distribution. The data is our full set of 29 currencies from January 1976 to February

2016. ∗∗∗, ∗∗, ∗ indicate a statistical significance at the 1%, 5%, 10% level.

MVTC MVTC\Corr ∆TA

Mean TA 0.41∗∗∗ 0.98∗∗∗ 0.57∗∗∗

(p-value) (0.000) (0.000) (0.000)

95-%ile 0.74 1.39 1.03

Median TA 0.40 0.96 0.54

5-%ile 0.14 0.69 0.20
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Table 3.4: Mean-Variance Strategies: 1976-2016 without Crises & 1983-2016

Summary statistics of monthly excess returns of MV and MVTC for all 29 currencies. First two columns

report results for the sample 1976-2016 excluding the 1992 ERM crisis and the 1997 Asian financial and

1998 Russian crisis, last two columns report results for 1983-2016. SR is the annualized Sharpe ratio,

Mean the annualized average return (in percentage points), Mean Costs the average annualized transaction

costs measured in percentage of the portfolio value, Vol the annualized standard deviation (in percentage

points), Skew the skewness, Kurt the kurtosis, % Positive the percentage of positive monthly returns, MDD

the Maximum Draw Down, AC the autocorrelation, CEλ the annualized Certainty Equivalent an investor

with mean-variance preferences and risk aversion λ is willing to give up in order to switch from strategy

MV to strategy MVTC . % of CEλ > 0 indicates the percentage of months with positive CEλ. ∆Mean,

∆Mean Costs, ∆SR are the differences in the Mean, Mean Costs, SR between MVTC and MV . Standard

errors of ∆SR are estimated using block bootstrapping with block sizes of 10 observations to account for

heteroskedasticity, cross- and auto-correlation (Ledoit and Wolf (2008)). Standard errors of ∆Mean Costs

are estimated using Newey and West (1987) to account for heteroskedasticity and auto-correlation. ∗∗∗, ∗∗,
∗ indicate a statistical significance at the 1%, 5%, 10% level of ∆SR and ∆Mean Costs.

1976-2016 without Crises 1983-2016

MV MVTC MV MVTC

Before Transaction Costs:

SR 1.15 1.17 0.87 0.88

Mean 11.96 10.50 10.91 9.73
∆Mean - -1.47 - -1.18

Transaction Costs:

Mean Costs 3.63 1.22 2.80 1.08
∆Mean Costs - -2.41∗∗∗ - -1.72∗∗∗

After Transaction Costs:

SR 0.81 1.04 0.66 0.79
∆SR - 0.23∗∗∗ - 0.14∗∗

(p-value) - (0.005) - (0.025)

Mean 8.33 9.28 8.11 8.65
Vol 10.31 8.92 12.36 10.94
Skew -1.20 -1.86 -1.76 -0.69
Kurt 14.81 15.21 31.75 32.96
Positive 66.17 67.87 65.81 66.58
MDD -51.42 -43.47 -54.10 -43.47
AC 0.01 0.05 -0.06 -0.04

CEλ=1 (% of CEλ=1 > 0) - 1.09 (75%) - 0.71 (72%)
CEλ=5 (% of CEλ=5 > 0) - 1.66 (80%) - 1.39 (77%)
CEλ=10 (% of CEλ=10 > 0) - 2.37 (82%) - 2.23 (80%)
CEλ=50 (% of CEλ=50 > 0) - 8.09 (83%) - 9.00 (81%)
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Table 3.5: Mean-Variance Strategies: NBER Recessions vs. Non-Recessions

Summary statistics of monthly excess returns of MV and MVTC for all 29 currencies for the sample 1976-

2016. First two columns report results for NBER recession periods, last two columns report results for

non-recession periods. SR is the annualized Sharpe ratio, Mean the annualized average return (in percentage

points), Mean Costs the average annualized transaction costs measured in percentage of the portfolio value,

Vol the annualized standard deviation (in percentage points), Skew the skewness, Kurt the kurtosis, % Pos-

itive the percentage of positive monthly returns, MDD the Maximum Draw Down, AC the autocorrelation,

CEλ the annualized rate of return (Certainty Equivalent) an investor with mean-variance preferences and

risk aversion λ is willing to give up in order to switch from strategy MV to strategy MVTC . % of CEλ > 0

indicates the percentage of months with positive CEλ. ∆Mean, ∆Mean Costs, ∆SR are the differences in the

Mean, Mean Costs, SR between MVTC and MV . Standard errors of ∆SR are estimated using block boot-

strapping with block sizes of 10 observations to account for heteroskedasticity, cross- and auto-correlation

(Ledoit and Wolf (2008)). Standard errors of ∆Mean Costs are estimated using Newey and West (1987) to

account for heteroskedasticity and auto-correlation. ∗∗∗, ∗∗, ∗ indicate a statistical significance at the 1%,

5%, 10% level of ∆SR and ∆Mean Costs. We only report the p-value for ∆SR after costs.

NBER Recessions Non-Recessions

MV MVTC MV MVTC

Before Transaction Costs:

SR 0.47 0.51 1.07 1.07

Mean 5.83 5.54 13.10 11.50
∆Mean - -0.29 - -1.60

Transaction Costs:

Mean Costs 3.96 1.60 3.67 1.24
∆Mean Costs - -2.36∗∗∗ - -2.43∗∗∗

After Transaction Costs:

SR 0.14 0.37 0.78 0.97
∆SR - 0.22 - 0.19∗∗∗

(p-value) - (0.366) - (0.006)

Mean 1.87 3.94 9.43 10.26
Vol 12.98 10.81 12.03 10.59
Skew -0.55 -0.14 -1.30 -0.72
Kurt 6.71 6.37 32.47 34.28
Positive 55.36 55.36 67.87 69.57
MDD -17.29 -17.38 -54.10 -43.47
AC -0.15 -0.06 -0.06 -0.06

CEλ=1 (% of CEλ=1 > 0) - 2.28 (70%) - 1.01 (76%)
CEλ=5 (% of CEλ=5 > 0) - 3.10 (75%) - 1.73 (80%)
CEλ=10 (% of CEλ=10 > 0) - 4.13 (77%) - 2.62 (83%)
CEλ=50 (% of CEλ=50 > 0) - 12.37 (82%) - 9.79 (83%)
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Table 3.6: Mean-Variance Strategies: Pre- vs. Post-Euro

Summary statistics of monthly excess returns of MV and MVTC for all 29 currencies. First two columns

report results for pre-Euro period (1976-1999), last two columns report results for post-Euro period (1999-

2016). SR is the annualized Sharpe ratio, Mean the annualized average return (in percentage points),

Mean Costs the average annualized transaction costs measured in percentage of the portfolio value, Vol the

annualized standard deviation (in percentage points), Skew the skewness, Kurt the kurtosis, % Positive the

percentage of positive monthly returns, MDD the Maximum Draw Down, AC the autocorrelation, CEλ the

annualized rate of return (Certainty Equivalent) an investor with mean-variance preferences and risk aversion

λ is willing to give up in order to switch from strategy MV to strategy MVTC . % of CEλ > 0 indicates

the percentage of months with positive CEλ. ∆Mean, ∆Mean Costs, ∆SR are the differences in the Mean,

Mean Costs, SR between MVTC and MV . Standard errors of ∆SR are estimated using block bootstrapping

with block sizes of 10 observations to account for heteroskedasticity, cross- and auto-correlation (Ledoit and

Wolf (2008)). Standard errors of ∆Mean Costs are estimated using (Newey & West, 1987) to account for

heteroskedasticity and auto-correlation. ∗∗∗, ∗∗, ∗ indicate a statistical significance at the 1%, 5%, 10% level

of ∆SR and ∆Mean Costs. We only report the p-value for ∆SR after costs.

Pre-Euro Post-Euro

MV MVTC MV MVTC

Before Transaction Costs:

SR 1.05 1.05 1.14 1.16

Mean 15.98 13.82 7.25 6.75
∆Mean - -2.16 - -0.50

Transaction Costs:

Mean Costs 5.58 1.91 1.18 0.44
∆Mean Costs - -3.67∗∗∗ - -0.74∗∗∗

After Transaction Costs:

SR 0.69 0.91 0.95 1.09
∆SR - 0.22∗∗∗ - 0.14
(p-value) - (0.004) - (0.307)

Mean 10.40 11.91 6.07 6.32
Vol 15.06 13.07 6.37 5.80
Skew -1.17 -0.70 -0.28 -0.55
Kurt 21.11 23.27 5.09 6.72
Positive 67.17 70.94 65.37 63.90
MDD -54.10 -43.47 -17.76 -20.75
AC -0.11 -0.11 0.21 0.31

CEλ=1 (% of CEλ=1 > 0) - 1.81 (80%) - 0.29 (69%)
CEλ=5 (% of CEλ=5 > 0) - 2.97 (85%) - 0.41 (72%)
CEλ=10 (% of CEλ=10 > 0) - 4.41 (88%) - 0.58 (75%)
CEλ=50 (% of CEλ=50 > 0) - 16.00 (87%) - 1.89 (78%)
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Appendix A

A Non-Parametric Test For

Representative Agent Pricing

A.1 Appendix A - Martin (2017) Lower Bound Exis-

tence Proof

First I show why LBt is a lower bound for the market risk premium Et[Rt+1 − Rt,f ] then I

derive equation (1.3).

Suppose there exist a stochastic discount factor Mt+1 > 0 satisfying the pricing equa-

tion (1.1), then by the Fundamental Theorem of Asset Pricing (FTAP, Ross (1973, 1978),

Harrison and Kreps (1979), Dybvig and Ross (1987)) there exist an equivalent risk-neutral

measure Q such that Rf = E[Ri] for any gross return Ri (thus for the market return R as

well).
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By definition the conditional risk neutral variance for the market return at horizon t+ 1 can

be written as

V arQt (Rt+1) ≡ EQ
t [R2

t+1]− EQ
t [Rt+1]2

where Rt+1 is the gross cum-dividend market return. Still from FTAP we can go back

and forth from the physical probability measure and the risk-neutral one, thus EQ
t [R2

t+1] =

Et[Rt,fMt+1R
2
t+1] and by definition of the risk-neutral measure, EQ

t [Rt+1]2 = Rt,f
2, hence

V arQt (Rt+1) = Et[Rt,fMt+1R
2
t+1]−R2

t,f

dividing the above equation by the gross risk-free return Rt,f and rearranging

V arQt (Rt+1)

Rt,f

= Et[Rt+1 −Rt,f ] + Covt(Mt+1Rt+1, Rt+1)

if Covt(Mt+1Rt+1, Rt+1) ≤ 0, which together with Mt+1 > 0 defines the NCC, then LBt ≡
V arQt (Rt+1)

Rt,f
is a lower bound for RPt ≡ Et[Rt+1 −Rt,f ].

Next, I derive equation (1.3). From the definition of variance, using hats to denotes ex-

dividend quantities and letting S be the cum-dividend market level

V arQt (Rt+1) ≡ EQ
t

[(
St+1

St

)2
]
− EQ

t

[
St+1

St

]2

= EQ
t

( Ŝt+1

Ŝt
DYt

)2
−Rt,f

2

=
(DYt)

2Rt,f

(Ŝt)2
EQ
t

[
Ŝ2
t+1

Rt,f

]
−Rt,f

2
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by no arbitrage (see Martin (2017)), since the options are written on Ŝt

EQ
t

[
Ŝ2
t+1

Rt,f

]
= 2

∫ ∞
0

ˆcallt(k)dK = 2

(∫ F̂t

0

ˆcallt(k)dK +

∫ ∞
F̂t

ˆcallt(k)dK

)

since deep-in-the-money call options are neither liquid in practice nor intuitive to think

about, it is convenient to split the range of integration for EQ
t

[
Ŝ2
t+1

Rt,f

]
into two and use the

put-call parity to replace in-the-money call prices with out- of-the-money put prices. Assume

that Market Dividends are paid as lump sums Dt+1 at the and of the period [t : t + 1] but

before t+ 1, then the following is true

max(St+1 −Dt+1 − k, 0) = max(k − St+1 +Dt+1, 0) + (St+1 −Dt+1)− k

since Ŝt+1 = St+1 −Dt+1

max(Ŝt+1 − k, 0) = max(k − Ŝt+1, 0) + (St+1 −Dt+1)− k

by linearity of the pricing equation

ˆcallt(k) = ˆputt(k) + Ŝt − PV (Dt+1)− k

Rt,f

where PV (Dt+1) = EQt
[
Dt+1

Rt,f

]
= (1−DYt)EQt

[
Ŝt+1

Rt,f

]
= DYt−1

DYt
Ŝt and the last equality comes

from Rt,f = EQt
[
St+1

St

]
. Applying the put-call parity

∫ F̂t

0

ˆcallt(k)dK =

∫ F̂t

0

ˆputt(k)dK + F̂t

(
Ŝt −

DYt − 1

DYt
Ŝt

)
− F̂ 2

t

2Rt,f

=

∫ F̂t

0

ˆputt(k)dK + F̂t

(
Ŝt
DYt

− F̂t
2Rt,f

)
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which implies

EQ
t

[
Ŝ2
t+1

Rt,f

]
= 2

[∫ F̂t

0

ˆputt(k)dK + F̂t

(
Ŝt
DYt

− F̂t
2Rt,f

)
+

∫ ∞
F̂t

ˆcallt(k)dK

]

plugging EQ
t

[
Ŝ2
t+1

Rt,f

]
in V arQt (Rt+1) =

(DYt)2Rt,f

(Ŝt)2
EQ
t

[
Ŝ2
t+1

Rt,f

]
−Rt,f

2 delivers equation (1.3)

LBt = 2
(DYt)

2

(Ŝt)2

(∫ F̂t

0

ˆputt(k)dK + ˆcallt(k)dK

)
(A.1)

setting DY = 1 delivers the original Martin (2017)’ measure used in the current study.

A.2 Appendix B - Linear vs. cubic spline Lower Bound

approximations

In order to compute the lower bound measure at time t, LBt, according to equation (1.3) I

use the SPX options (Put and Call) bid quotes at horizon 1 month for the different available

strikes as at the of the first business day of month t from Optsum and Optionmetrics.

To approximate the integral in (1.3) we first need to interpolate the functions ˆput(k) and

ˆcall(k) over a continuum of strikes. In the study, following Martin (2017), I have used a

linear interpolation. Another popular interpolant option is the cubic spline.
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The figure shows the time-series of lower bounds in the main sample MS computed with the

linear as well as the cubic-spline method with and without dividends as an explicit argument

of LBt (see proof of Proposition 1 for an explicit formula of LBt as a function of dividends:

i.e. eq.(A.1)): the top panel uses the full available data: note how, independently from

the presence of dividends, the spline and the linear interpolation almost perfectly overlap

except for isolated points in the pre-1996 period. I adopt the most conservative of the

approaches by excluding from the main sample all instances in which the spline and the

linear interpolation differ proportionally (with respect to the linear scheme) by more than

50%. The new resulting sample (which is the one used in the main analysis), along with the
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lower bound estimates, is shown in the middle panel. All the estimates are now very close;

The same point can be more precisely appreciated by looking at the bottom graph which

plots the absolute percentage difference between the lower bound measures (with respect to

the linear scheme) when computed using the linear as opposed to the spline approximation

for the case the bound features dividends and for the case it does not. Again, it is impossible

to distinguish between the case in which dividends are included from the case in which they

are not, furthermore, the maximum discrepancy is now around 30% and on average the two

scheme only differ by 2%.

A.3 Appendix C - Rationale behind the choice of the

market risk premium predictors

In order to tackle the potential data-snooping issue discussed in Section 1.3, the selection

of the actual list Zt is disciplined by a constructive economic rationale. In particular, the

objective of this study is to find, if any, violations of the Martin’s class of representative

agent pricing: a key subclass is represented by the Consumption-based Representative Agent

Models (as we show in Section 1.2 all the mainstream CRAMs are inside the Martin’s class).

Any violation will thus contain instances of simultaneous failure of CRAMs; because these

are systematic failures they must be associated with the failure of, at least one, of the key

assumptions of these models. The key assumptions of CRAMs are: (CRA1) the existence

of a representative agent, (CRA2) the absence of market frictions, (CRA3) the absence of

arbitrage, and (CRA4) the presence of (closed) and real economies. Thus, predictors in Zt

will be selected as proxies against CRA1-CRA4. In other words, the predictors in Zt can be

viewed as state variables that should not be able to predict the excess market return πt+1
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under the null that CRAMs hold. While the selection does not require each predictor to

be uniquely associated with a single dimension going against the key CRAM assumptions,

to streamline the exposition, I offer a possible mapping of the variables into proxies against

each of the assumptions separately.

A representative agent exists (assumption CRA1) under symmetric information,90 market

completeness, and in general91 independence of preferences from wealth distribution. Because

market completeness is not easy to proxy for, I focus on proxies for wealth distribution and

asymmetric information. In particular, I exploit the percentage changes in the GINI index,

GINIchg, from the United States Census Bureau to capture the wealth distribution effect,

while proxying for informational asymmetries through the Rapach et al. (2016) short interest

index SII and the Ludvigson et al. (2016) financial uncertainty index F . SII seizes “ the

superior informational content of short seller in anticipating future aggregate cash flows and

associated market returns” , while F , originally designed to capture the latent degree of

unpredictability in financial markets, has zero correlation with SII92 and can be considered

as an asymmetric information proxy.93

90This is true even in frameworks such as Basak (2005) or Bhamra and Uppal (2013) that allow aggregation
under heterogeneity in beliefs.

91Unless preference are homotetic and identical.
92See Table 1.2
93Empirically Moeller, Schlingemann, and Stulz (2007) and the literature therein refer to uncertainty and

analyst forecasts dispersion measures as asymmetric information proxies, while from a theoretical point
of view, standard predictions of asymmetric information models, such as Grossman and Stigliz (1980) or
Kyle (1985), dictates a positive correlation with price impact measures, proxied in this study by the Pastor
and Stambaugh (2003) (il)liquidity index ILLIQpi. The following table displays the correlation coefficients
over the overlapping period [1992 − 2005] of F and classical information asymmetry proxies such as the
I/B/E/S analysts earning growth forecast dispersions, (AnlystForecastsDispIBES for the SP500 and
AnlystForecastsDispY u for an average of individual stocks forecasts as in Yu (2011)) and market volatility
proxies such as the CBOE V IX index or a GARCH(1,1) on the SP500 return GARCH

Corr ILLIQpi AnlystForecastsDispIBES AnlystForecastsDispY u
F 0.30 0.67 0.63
GARCH 0.17 0.72 0.35
V IX 0.31 0.62 0.44
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Turning to trading frictions, the opposite of CRA2, I track this dimension either by looking

at the impact of taxes, through the annual percentage changes in the aggregate dollar amount

paid in capital gain taxes, TAXchg, or by employing two popular (il)liquidity indexes: the

Pastor and Stambaugh (2003) index, ILLIQpi, designed to capture the percentage cost

incurred in a 1 million 1962 USD trade in the market,94 and the mimicking portfolio for

the W. Liu (2006) index, ILLIQts, constructed with the aim of seizing the trading speed

dimension of liquidity.95

The absence of arbitrage, assumption CRA3, is a sufficient condition for the Law of One

Price (LoP) to hold thus if LoP fails there is arbitrage. Following the standard equilibrium

framework I look at price relations in the financial rather than the commodity markets96 and

track significant departures from the LoP through the Pasquariello (2014) market dislocation

index MDI which measures abnormal discrepancies between actual (mid-quote) and theo-

retical prices using three textbook arbitrage parities in stock, foreign exchange, and money

markets: the Covered Interest Rate Parity, the Triangular Arbitrage Parity and the Ameri-

can Depository Receipt Parity. I also add two more general and popular mispricing proxies:

the Baker and Wurgler (2006) sentiment index, Sent, designed to capture miss-pricing due to

subjective valuations not reflecting rational risk compensation, and the Dow-Jones Industrial

Average book-to-market ratio BM .

Finally CRA4 dictates CRA models to be embedded in real and closed economies. I take

into account the effect of nominal forces and the impact of foreign markets by including

F and GARCH are the only proxies available throughout the required sample period {1973 : 2− 2014 : 12}.
Note how F is the measure of uncertainty which simultaneously correlates the most with the price impact
proxy ILLIQpi and with the analyst forecast dispersions.

94Similarly to the Amihud (2002) proxy, it is a price impact measure.
95Another proxy constructed with the same aim is designed in Hou and Moskowitz (2005).
96In the context of commodity markets Horvth, Rtfai, and Dome (2008), Pippenger and Phillips (2008)

and Crucini and Shintani (2008) find contrasting results concerning the validity of the LoP.

181



the growth rate of the U.S. money supply, M1g,97 and the rate at which the U.S. dollar

appreciate, USDg,98 into the list of candidates.

A.4 Appendix D - ICM vs. OLS horse-race to forecast

the market risk premium

As shown by Goyal and Welch (2008), a naive OLS regression of excess market returns

on a large number of predictors will over-parametrize the model and lead to poor out-of-

sample forecasts, I therefore combine the information from the set of predictors to obtain

optimal forecasts using the Iterated Combination Method (ICM) of Lin et al. (2016). First,

predictive regressions are run on each predictor and a constant to obtain individual forecasts.

Then a weighted average of the mean of all of the individual forecasts and the prevailing

mean of the excess market return using all observations till time t, serves as the t forecast.

This methodology basically amounts to a weighted average of a shrinked OLS regression, in

which the out-of-diagonal elements in the regressors’ matrix are set to zero and the regressors’

coefficients are divided by the number of regressors, and the prevailing dependent variable

mean.99

97For the sake of parsimony and due to the high correlation of 0.55 with inflation I do not include the
latter.

98The index is a weighted (over the volume of bilateral transactions) average of the foreign exchange value
of the U.S. dollar against the currencies of a broad group of major U.S. trading partners. The index captures
the impact of foreign financial markets on the domestic stock market through the weights: since the third
quarter of 1982 the U.S. runs a deficit in the current account (see Balance on Current Account, available
through FRED at https://fred.stlouisfed.org/series/NETFI.html), and, as reported by Bertaut and Judson
(2014) on behalf of the Board of Governors of the Federal Reserve System, the excess of imports over exports
has been funded primarily by foreign acquisitions of U.S. securities. See also Walker (2015).

99The weights are designed to minimize the out-of-sample mean squared error and increase the out of
sample R2. (See Lin et al. (2016))
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The next table compares the performance of the ICM and OLS approaches for the 6 selected

specifications
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for a given model (a specific panel among (1) trhough (6)) the in-sample (training) and out-

of-sample (main) time series of next month excess return estimates100 πMt+1 are produced with

M ∈ {OLS, ICM}. The performances of the two different methods are judged using the

out-of-sample mean squared error statistic, MSE, and the following regression benchmark

πt+1 = α + βπMt+1 + εt+1

in terms of the produced coefficient and R2. A good performance entails a (relatively) small

MSE, a (relatively) high R2, α = 0 and β = 1. No matter which model we look at OLS beats

ICM in-sample (especially in terms of R2 and MSE101) but ICM consistently out-perform

OLS exactly where we care the most: out-of-sample in the period from January 1990 to

December 2014. The ICM method, while producing similar out-of-sample R2, generates a

MSE 1.5 smaller, non significant αs, and βs which on average are much closer to 1 and 2.7

times bigger. In particular. according to the DM statistic, we always reject at the 95% the

null of out-of-sample OLS MSE grater than the ICM ones. These results ex-post validate the

choice of adopting the Lin et al. (2016) ICM method to generate the out-of-sample forecasts

for the market excess return.

100Such estimates produced by either methods in either sample and for each model are not spurious: their
first autocorrelation parameters safely lies at least 2 standard errors below 0.95.
101The Diebold and Mariano (1995) (DM) statistic has to be interpreted as the usual t-statistic design to

compare the OLS and ICM MSEs.
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A.5 Appendix E - Lower Bound violations imply too

high model-based Sharpe ratios

This subsection shows how the rejection periods are times in which representative agents with

preferences satisfying the NCC have ex-ante market Sharpe ratios systematically higher then

ex-post (empirical) counterparts and how this can be seen as a direct consequence of the

non-parametric test outcomes.

SinceNCC is a restriction imposed on the SDF , it is linked to the preferences of any Martin’s

model representative agent; In particular, Martin (2017) shows how for the representative

log investor the NCC holds with equality and LBt = Elogt [πt+1]. Given an objective proxy102

for the conditional market volatility at time t, σt(Rt+1) ≡ σt(πt+1), we can compute the time-

series of conditional ex-ante Sharpe Ratios from the log investor perspective as SREx−Ante
t ≡

LBt

σt(Rt+1)
and thus get an estimated average for the rejection periods as ˆE[SREx−Ante

t |Iv = 1].

Note that since the conditional log investor risk premium is the lowest possible among

the Martin’s models, any representative agent from these models will have an (average)

market assessment in the rejection periods of at least ˆE[SREx−Ante
t |Iv = 1]. It is therefore

instructive to compare ˆE[SREx−Ante
t |Iv = 1] with the estimate for the ex-post Sharpe Ratio:

i.e. ( ˆSREx−Post|Iv = 1) ≡
ˆE[πt+1|Iv=1]
ˆσ(πt+1|Iv=1)

. Results from this exercise are illustrated in the next

table

102Computed as the out-of-sample prediction from a GARCH(1, 1) model on the market return using a
rolling window of either 120, 60 or 30 observations.
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the first column contains the estimates for (SREx−Post|Iv = 1)−E[SREx−Ante
t |Iv = 1] as well

as two different ways103 to compute its p-value against the alternative of (SREx−Post|Iv =

103The econometric challenge here is to make inference on the ex-post Sharpe Ratio estimate while simul-
taneously taking into account the parameter uncertainty surrounding the estimates of E[SREx−Antet |Iv = 1]
and (SREx−Post|Iv = 1). With respect to the first challenge I use the results from Lo (2002), Mertens
(2002), Christie (2005) and Opdyke (2007) who derive the normal limiting distribution for the Sharpe
Ratio measure only imposing stationarity and ergodicity on πt+1: this gives us a way to compute the stan-

dard error of ( ˆSREx−Post|Iv = 1) as SE(SREx−Post) =

√
1−λ3( ˆSREx−Post|Iv=1)+0.25(λ4−1)( ˆSREx−Post|Iv=1)2

nIv=1−1
with λ3 and λ4 representing the skewness and kurtosis of (πt+1|Iv = 1) and nIv=1 being the number of
rejection observations. Since the estimate for E[SREx−Antet |Iv = 1] is a canonical OLS coefficient from re-
gressing a constant on the available time series (SREx−Antet |Iv = 1), its standard error, which we denote as
SE(E[SREx−Antet |Iv = 1]), is an ordinary Newey and West (1987) corrected standard error. The second chal-
lenge is therefore tackled by estimating the standard error for (SREx−Post|Iv = 1)−E[SREx−Antet |Iv = 1], as√
SE(SREx−Post)2 + 2SE(SREx−Post)SE(E[SREx−Antet |Iv = 1]) + SE(E[SREx−Antet |Iv = 1])2 which cor-

rectly accounts for the potential correlation among the two estimates. I use such standard error to compute
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1) < E[SREx−Ante
t |Iv = 1], each row refers to a different rule except the last raw which reports

the analogous results while conditioning on the non-rejection periods for the representative

case of the first rule Ivt .104

The ex-ante Sharpe Ratios of the Martin’s Models are systematically above their ex-post

counter parts in the rejection periods: ( ˆSREx−Post|Iv)− ˆE[SREx−Ante
t |Iv] is always negative

only when Iv = 1 (5 out of 6 case at the 5% level and 1 out of 6 at the 10%). As column 2

and 3 show, this patter is generated by economically negative, albeit insignificant, average

ex-post Sharpe ratios and statistically positive ex ante counter-parts. Note how the situation

reverses when we condition on Iv = 1: there things seem to work with ex-ante Sharpe ratios

implied by the Martin’s class solidly below their ex-post realizations.

These results can be viewed as a direct implication of the non-parametric test outcomes:

this is because

ˆE[SREx−Ante
t |Iv] ≡

ˆ
E
[

LBt

σt(πt+1)
|Iv
]
≈

ˆE[LBt|Iv]
ˆE[σt(πt+1)|Iv]

where the approximation is justified by the fact that, across the six analyzed cases, the first

estimate is on average 1.07 the second with a maximum of 1.11, and these differences are never

statistically significant. Then ˆE[SREx−Ante
t |Iv = 1] > ( ˆSREx−Post|Iv = 1) is approximately

equal to
ˆE[LBt|Iv]
ˆE[σt(πt+1)|Iv]

>
ˆE[πt+1|Iv = 1]

ˆσ(πt+1|Iv = 1)
(A.2)

In light of this approximation column 4 and 5 of the above table compare the numerators

and the denominators of eq. (A.2): column 4 says that E[πt+1|Iv = 1] − E[LBt|Iv = 1] ≡

E[yt+1|Iv = 1] is significantly samller than zero while according to column 5 we cannot reject

the first (base) p-value. As a robustness check I also compute the the p-value in the case λ3 and λ4 represent
the skewness and kurtosis of πt+1 over the entire available sample: this is the second p-value reported in the
table.
104The other rules yield virtually identical results.
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the null of σ(πt+1|Iv = 1) = E[σt(πt+1)|Iv]. This means that the results from this subsection

are implied by the lower bound LBt being on average above the risk premium in the rejection

periods which is the exact same statement made by the non-parametric test.

A.6 Appendix F - Performance of actual representa-

tive models

The non-parametric test rejects the entire class of Martin’s models conditional on periods

t such that Ivt = 1. One of the advantage of the test is its ability to make inference over

equilibrium models which are usually difficult to test either because based on unobservable

state variables or because such variables, when available, are very noisy in the data. This

section, subject to the just mentioned data caveat, can be viewed as a robustness check

on the ability of the non-parametric test to correctly identify periods where indeed actual

mainstream models of the Martin’s class perform worse as well as a useful exercise to quantify

their performance.

I compare three cornerstone consumption-based models belonging to the Martin’s class: the

Campbell and Cochrane (1999) external habit model, CC99, the Bansal and Yaron (2004)

long run risk model, BY 04, and the J. A. Wachter (2013) time-varying rare disaster model,105

W13. To ensure, by the logic of the test, that bed performance conditional on Iv = 1 come

from the failure of the models’ FOCs, I use the original calibrations of these models (for

which Martin (2017) proofs the NCC holds) as shown in the following table

105I am thankful to Professor Wachter for providing the original code used to perform the simulations in
her model.
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each model is reported detailing its state variables, parameters and SDF functional form.106

The last 2 columns display the parameters’ values in the original calibration as well as the

estimates for the current (main) sample of this study. Consumption is computed as in CC99

by the sum of non-durables and services, the state variables in BY 04 are recovered using the

procedure detailed in Bansal, Kiku, and Yaron (2011), and the time-varying disaster prob-

abilities (intensities) are proxied using the monthly average daily SP500 crash probabilities

as computed in Bollerslev and Todorov (2011) (BT).107

106The SDF formula for the case of W13 is derived using J. A. Wachter (2013) and the appendix of
J. Wachter and Seo (2016).
107Because, as reported, the 95% confidence interval of such estimates contains the original values of the

parameters when applied to consumption crashes via simulations in W13, for reasons already explained, I
use the original values.
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Having at disposal the SDFs time series I can compute the pricing errors for model i at

time t as PEi
t ≡ M i

tRt − 1. Specifically, I evaluate the performance of these models via the

estimates of the following metric

|PEi ratio| ≡
E[PEi

t+1|Ivt = 1]

E[PEi
t+1|Ivt = 0]

and report the result in the following graph

for each of the six rules each model’s |PE ratio| is strictly grater than 1; The average

absolute pricing errors during rejection periods, Ivt = 1, are on average 41% higher than in

the rest of the sample, with the average ratio being 44%,25% and 55% for CC99, BT04 and

W13 respectively. The table immediately below the bar graph reveals how in most cases the
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PE ratios are statistically grater than 1.108 The displayed results use the real gross market

return (deflated by the CPI), but are robust to the usage of the nominal gross market return

as well.

Finally, an unreported analysis,109 also rank these models in terms of their performance. The

ranking is found independent of the conditioning, (Ivt = 1 or Ivt = 0), and tells us that the

absolute pricing errors from W13 are on average statistically smaller than those produced

by CC99 and BY 04 which are on average indistinguishable.

108Standard errors are computed using the delta method.
109Available upon request.
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Appendix B

Mean-Variance Portfolio Rebalancing

with Transaction Costs

B.1 Existence of Solutions to the Mean-Variance Setup

Under Transaction Costs

This appendix contains the proof of Theorem 2.

We start by assuming the cost function described in A3 to be such that c(P, S, θ0) = c(θ, θ0)

and verify the claim later. Let us define

Uu ≡ r +
1

2(κ+ λ)
(κV θB + µ− r1)′V −1(κV θB + µ− r1)− κ

2
θB ′V θB

and

γ ≡ θ − θu

where θu is the ideal portfolio absent costs, defined in equation (2.2).
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We observe that

U(θ) = U(γ) = Uu − κ+ λ

2
γ′V γ − c(γ, γ0)

where c(γ, γ0) = c(θ, θ0) follows from the definition of γ and the fact that c(P, S, θ0) =

c(θ, θ0). The problem class to solve is thus

max
γ∈Rn

U(γ)

subject to

γ = γ0 + P − S

P ≥ 0

S ≥ 0

Note that since the cost function is non-negative by construction U(θ) = U(γ) ≤ Uu −
κ+λ

2
γ′V γ ≡ J(γ) = J(θ) ≤ J(θu) therefore any solution θ∗, if it exists, is such that U(θ∗) ≤

J(θu).

From mathematical convenience the problem can be equivalently restated as

Problem 10

max
γ∈Rn

Ũ(γ)

subject to

γ = γ0 + P − S

P ≥ 0

S ≥ 0
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where

Ũ(γ) ≡ −κ+ λ

2
γ′V γ − c(γ, γ0)

The aim of Theorem 2 is to show the existence of solutions to Problem 10. We proof this

statement by first looking at four special sub-problems.

Sub-problem 1: Optimum Absent Costs

max
γ∈Rn

−κ+ λ

2
γ′V γ −K

This is the classical unconstrained mean-variance problem in which we subtract a constant,

K, from the objective function. For this problem K can be thought as c(γ, γ0), where

c(γ, γ0) = c(θ, θ0) = c(0, θ0) = c(θ0) = c(0, 0, θ0) = c(P, S, θ0) which is trivially linear

in γ and θ. The unique solution, γ = 0, of this problem is the unconstrained optimum

corresponding to θ = θu and an optimal objective function value of −K. The result follows

from the fact that the objective function is continuous, strictly concave and bounded above

(since V is positive-definite), and γ = 0 is feasible.

The next couple of sub-problems benefit from the following lemma

Lemma 1 Given the positive definite variance covariance matrix V , the matrix Ī ′V Ī, with

Ī ≡ [−In, In] where In is the n× n identity matrix, is positive semi-definite

Proof. Since Ī ′V Ī is a square matrix we just need to show that its eigenvalues are non-

negative. By definition any eigenvalue λ of Ī ′V Ī is such that Ī ′V Īx = λx where x is the

associated non-zero eigenvector. Note that Ī ′V Ī =

 V −V

−V V

. Then we can re-write the
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eigenvalue representation of the matrix Ī ′V Ī as

 V −V

−V V


x1

x2

 = λ

x1

x2

. We now have

two cases:

λ = 0 case: in this case any non-zero x = x1 = x2 is a solution

λ 6= 0 case: the solution is x1 = −x2 which implies 2V x1 = λx1, but V is p.d. implying

0 < 2x′1V x1 = λx′1x1 which is only possible if λ > 0

Sub-problem 2

max
P,S

−κ+ λ

2
γ′V γ − P ′CP − S ′CS −K

subject to

γ = γ0 + P − S

P ≥ 0

S ≥ 0

This problem is the proportional cost setup of Problem 3 in which a constant, K, is subtracted

from the objective function: thus we already know (see Section 2.4.1) the existence of a

unique solution θ = θ + P − S such that for any risky asset i either Pi ≥ 0 or Si ≥ 0 but

Pi > 0 and Si > 0 cannot happen. In this sub-problem c(P, S, θ0) ≡ P ′CP +S ′CS +K which

is linear in P and S, furthermore, due to the FOCs for every i, Pi and Si are linear functions

of θi trhough θi = θ0
i +Pi1[Si=0] +Si1[Pi=0] thus c(P, S, θ0) = c(P (θ), S(θ), θ0) = c(θ, θ0) with

the latter still being a linear function of its arguments.
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The above problem can be more compactly re-written in the standard quadratic form

max
x

Ũ(x) = a′x+
1

2
x′Qx

subject to

x ≥ 0

where x′ ≡ [P ′, S ′], c′ ≡ [CP ′, CS ′], a′ ≡ [c′ − (κ + λ)γ0′V Ī] and Q ≡ (κ + λ)Ī ′V Ī. From

lemma 1, Q is positive semi-definite thus, from standard quadratic programing theory,110

any x satisfying the FOCs is a solution. As shown in Section 2.5, such x, for any arbitrary

n ∈ N solves LCP (a,Q). Furthermore, from Section 2.4.1 we know such x always exists and

it is unique so that the algorithm of Section 2.5 will provide it.

Sub-problem 3

max
P,S

−κ+ λ

2
γ′V γ − P ′CP − S ′CS − (K̄ ′Dj)1

subject to

γ = γ0 + P − S

DjP = 0

DjS = 0

P ≥ 0

S ≥ 0

110See for e.g. Cottle et al. (1992).
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where K̄ ′ = [k1, ..., kn], Dj ≡

1j 0

0 0−j

 with 1j being a 1 × j > 0 vector of ones and 0−j

being a 1× (n− j) vector of zeros; 1j and 0−j together form the main diagonal of Dj. The

vector 1j contains the j assets which are constrained not to be traded while 0−j contains the

(n − j) assets that are allowed to be traded in this sub-problem; Note that setting j = 0

reduces the setup to the one of the previous sub-problem.

Because the domain of this sub-problem is a linear sub-space of that of sub-problem 2, given

γ′ = [γ′j = γ0
j
′, γ−j], γ−j is the optimal solution of sub-problem 2 restricted to the (n − j)

traded assets with K ≡ (K̄ ′Dj)1.

Sub-problem 4

max
γ−j∈Rn−j

−κ+ λ

2
γ′V γ − (K̄ ′Dj)1

where γ′ = [γ′j = γ0
j
′, γ−j] and we solve for the optimal weights difference γ−j corresponding

to the subset of assets i ∈ {j + 1, ..., n} that are allowed to trade. The cost function for this

sub-problem is c(P, S, θ0) = (K̄ ′Dj)1 ≡ K which is the same as the one discussed in sub-

problem 1. Thus c(P, S, θ0) = c(θ, θ0) = c(γ, γ0) and it is trivially linear in all its arguments.

In terms of solutions we note that by decomposing the variance-covariance matrix V as

V ≡

 Vj Vj,−j

V ′j,−j V−j

 we can solve the equivalent problem instead

min
γ−j∈Rn−j

(κ+ λ)γ0
j
′
Vj,−jγ−j +

κ+ λ

2
γ′−jV−jγ−j

since V is positive definite, also V−j is positive definite. Thus this is an unconstrained

minimization problem with a strictly concave continuous and differentiable objective function

which unique (feasible) solution is γ∗−j = (V−j)
−1V ′j,−jγ

0
j .
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In summary, sub-problems 1-4 admit a unique fisible solution θ∗, or the equivalent charac-

terization γ∗ in the space of weights difference. Moreover the cost function c(P, S, θ0) =

c(θ, θ0) = c(γ, γ0) and it is linear in its arguments.

Putting the pieces together we can now proof the existence of solutions γ∗ for Problem 10

which is equivalent to the existence of solutions θ∗ for the class of problems having objective

function 2.1 under assumption A1−A3. By doing so we also provide the algorithm to solve

the general problem. We proof Theorem 2 case-wise:

Proportional costs: Look at Problem 10 with c(γ, γ0) = P ′CP +S ′CS: this is sub-problem

3 with K = 0 thus we know that for this case there exist a unique feasible solution,

γ∗, or θ\PC in the space of weights θ, easily computable for large n via the algorithm

presented in Section 2.5.

Overall fixed cost: Look at Problem 10 with c(γ, γ0) = 1[γ 6=γ0]k and P = S = 0 and solve

for γ: only two things can happen:

1. The investor does not trade: γ = γ0, c(γ, γ0) = 0. This is feasible and yields an

utility of Ũ(γ0) = −κ+λ
2
γ0′V γ0

2. The investor trades to the unconstrained optimum: γ = γu = 0, c(γ, γ0) = k > 0.

This (feasible) strategy yields an utility of Ũ(γu) = −k and corresponds to the

solution of sub-problem 1

The solution to the overall fixed cost problem is

γ∗ = argmax(Ũ(γ0), Ũ(γu))
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or, in the space of weights θ

θ\PC = γ∗ + θu

such solution exists because the arguments of the argmax function are well-defined.

Asset-specific fixed costs: Look at Problem 10 with c(γ, γ0) =
∑n

i 1[γi 6=γ0i ]ki, P = S = 0

and solve for γ: a finite number of cases might occur:

1. The investor does not trade: γ = γ0, c(γ, γ0) = 0 which is (trivially) linear in γ.

This is feasible and yields an utility of Ũ(γ0) = −κ+λ
2
γ0′V γ0

2. The investor trades in a subset of cardinality (n − j) > 0 of assets: This is sub-

problem 4 for which we know that the unique (feasible) optimal solution is γj∗ ≡ γ0
j

(V−j)
−1V ′j,−jγ

0
j

 and the optimal value is Ũ(γj∗) = −κ+λ
2
γj∗
′
V γj∗ − (K̄ ′Dj)1.

Note that there are N =
∑n−1

j=1

(
n
j

)
different subsets jk with k = 1, ..., N , so that

we have that many sub-problems 4 to solve, each one yielding solution γjk∗.

3. The investor trades in all assets: this is sub-problem 1. Thus the unique (feasible)

optimum is γ = γu = 0, yielding an utility of Ũ(γu) = −k.

The solution to the asset-specific fixed costs case is

γ∗ = argmax(Ũ(γ0), Ũ(γj1∗), ..., Ũ(γjN∗), Ũ(γu))

or, in the space of weights θ

θ\PC = γ∗ + θu

which exists because the arguments of the argmax function are well-defined. The

computation of such solution is practically feasible only for relatively small number
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of risky assets: with 10 assets there are 1022 sub-problems, with 20 already 1049574

many, while with 30 a total of 536870910. In general the number of sub-problems grows

at a rate of 2n with the n number of risky assets. This type of problem does not scale

up as nicely as the previous ones. Yet, it nonetheless represents a big improvement

over the current state-of-the-art in the literature where this kind of setups are only

solvable numerically with n ≤ 3.

Proportional and overall fixed costs: Look at Problem 10 with c(γ, γ0) = P ′CP +

S ′CS + 1[γ 6=γ0]k, solve for P and S to get to γ = γ0 + P − S: only two things can

happen:

1. The investor does not trade: γ = γ0, P = S = 0 and c(γ, γ0) = 0 which is

(trivially) linear in γ. This is feasible and yields an utility of Ũ(γ0) = −κ+λ
2
γ0′V γ0

2. The investor trades: γ 6= γ0, this is sub-problem 2 with K = k. The solution γT

exists and it is unique, and is computable through the algorithm of Section 2.5.

The cost function is linear in γ (and θ).

The solution to the proportional and overall fixed costs case is

γ∗ = argmax(Ũ(γ0), Ũ(γT ))

or, in the space of weights θ

θ\PC = {θ0, θPC}

with θPC = γT + θu. This solution exists because the arguments of the argmax

function are well-defined. Because the overall fixed cost applies to all assets we avoid

the combinatorial issues arising with asset specific fix cost and our setup can thus

deliver the solution for large number of risky assets n.
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Proportional and asset-specific fixed costs: Look at Problem 10 with c(γ, γ0) = P ′CP+

S ′CS +
∑n

i 1[γi 6=γ0i ]ki, solve for P and S to get to γ = γ0 + P − S: a finite number of

cases might occur:

1. The investor does not trade: γ = γ0, P = S = 0 and c(γ, γ0) = 0 which is

(trivially) linear in γ. This is feasible and yields an utility of Ũ(γ0) = −κ+λ
2
γ0′V γ0

2. The investor trades in a subset of cardinality (n − j) > 0 of assets: this is sub-

problem 3 for which we know that the unique (feasible) optimal solution is γj∗, ,

or θPC in the space of weights θ, computable with the aid of Section 2.5 algorithm,

the cost function is linear in γ and the optimal value is Ũ(γj∗). Note that there are

N =
∑n−1

j=1

(
n
j

)
different subsets jk with k = 1, ..., N , so that we have that many

sub-problems 3 to solve, each one yielding solution γjk∗ (respectively θPCjk∗).

3. The investor trades in all assets: this is sub-problem 2 with K ≡
∑n

i ki: thus the

unique (feasible) optimum is γTAll, yielding an utility of Ũ(γTAll) with a linear

cost function.

The solution to the proportional and asset-specific fixed costs case is

γ∗ = argmax(Ũ(γ0), Ũ(γj1∗), ..., Ũ(γjN∗), Ũ(γTAll))

or, in the space of weights θ

θ\PC = {θ0, θPCj1∗ , ..., θPCjN∗ , θPCTAll}

with θPC(.) = γ(.) + θu. The solution exists because the arguments of the argmax

function are well-defined. Since this problem involves asset specific fixed costs, as
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shown above, combinatorial issues limit the actual number of risky assets for which

the problem is computationally feasible.
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Appendix C

Importance of Transaction Costs for

Asset Allocations in FX Markets

C.1 Details on Portfolio Optimization Problem

C.1.1 Characterization of the No Trading Region

In the main text we provide a graphical visualization of the no trading region of the optimal

trading strategy for the case of 2 risky assets when CP+
t = CP−

t = CS+
t = CS−

t (Figure 3.2).

Figure C.1 generalizes the cost structure in this illustration. From left to right Figure C.1

illustrates the no trading regions in the case of asset correlations equal to (1) ρ = 0.5, (2)

ρ = 0, and (3) ρ = −0.5. We choose the other parameters of the investment opportunity

set such that the 2 risky assets match the mean values of our full set of 29 currencies

from 1976 to 2016. In particular, we set µe
t = 2.4%, σt = 10% (the diagonal elements of

Vt), CP+
t = 1.45% for the costs of increasing long positions, CS+

t = 0.71% for the costs

of decreasing long positions, CP−
t = 0.71% for the costs of reducing short positions, and
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CS−
t = 1.45% for the costs of increasing short positions.We set the coefficient of risk aversion

λ = 5.

The no trading regions are described as follows: blue for MVTC , red for MVTC\Corr, black

for MVTC if CP+
t = CP−

t = 1.45% and CS+
t = CS−

t = 0.71%, and yellow MVTC if CP+
t =

CP−
t = 0.71% and CS+

t = CS−
t = 1.45%. The arrows indicate the optimal actions ∆P+

t ,

∆S+
t , ∆P−

t , ∆S−
t from any initial position θ0

t outside the blue no trading region.

Under the black no trading region parallelogram (MVTC), it is optimal to either not trade

at all (if the initial position is inside the parallelogram), trade only 1 asset at a time, along

vertical or horizontal straight lines up to the closest edge of the parallelogram, or trade in

both assets in the regions beyond the corners and outside the parallelogram up to the closest

corner. Under MVTC with CP+
t = CS−

t = 1.45% and CS+
t = CP−

t = 0.71% (i.e. the blue

no trading region), the closest to the actual MVTC performed in the data, the same trading

behavior occurs most of the time. The two no trading regions and optimal trading activity

only differ for the case of ρ = 0.5 in the neighborhood of the lower right and upper-left corners

of the black parallelogram, where the borders of the blue no trading region are horizontal

and vertical respectively, with trades in only one asset at a time proceeding vertically or

horizontally inside the area of the black no trading region. These two additional edges of

the blue no trading region are on a horizontal respectively vertical line that passes through

the origin.

Consider for instance an initial position θ0
t to the left of the vertical line that passes through

the origin. The initial weight of asset 1 is negative and below the optimal level. The investor

would like to increase her position in this asset, ideally moving horizontally all the way to

the nearest edge of the yellow parallelogram, given the costs CP−
t = 0.71%. But as soon as

the weight becomes positive the no trading region switches to the black parallelogram with
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the higher costs CP+
t = 1.45%. In other words, given the costs increase to CP+

t = 1.45%

when the position on asset 1 switches from negative to positive but the marginal benefit of

moving closer to θMV remains unchanged, the investor stops trading earlier than what she

has originally intended when facing the the lower costs CP−
t = 0.71%.

Because the all trading regions in case (2) with ρ = 0 and case (3) with ρ = −0.5 lie in

the positive quadrant, the blue and the black no trading regions coincide while the yellow is

shifted towards the upper-right corner. Finally, in case (2) with ρ = 0 the red and the blue

no trading regions coincide because they are solving the same problem.

C.1.2 Algorithms

Problem 9

Following the solution approach of Dybvig and Pezzo (2018), we can rewrite Problem 9 as a

standard quadratic program of the form

min
x

q′x +
1

2
x′Hx

subject to

x ≤ x ≤ x

where q′ ≡ b′ + λθ̂0
t
′Q¯̄I − µe

t Ī̄̄I with b′ ≡ [CP+
t
′,CP−

t
′,CS+

t
′,CS−

t
′], θ̂0

t
′ ≡ [θ0+

t
′
, θ0−

t
′
], Q ≡

Ī′VtĪ, Ī ≡ [In, In], ¯̄I ≡ [I2n,−I2n] and Ia is the a × a identity matrix, and the hessian H

is given by λ¯̄I
′
Q¯̄I. The program returns the solution x ≡ [∆P+

t

′
,∆P−

t

′
,∆S+

t

′
,∆S−

t

′
] from
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which the optimal portfolio θMVTC
t is obtained by

θMVTC
t = θ0

t + ¯̄Ix.

We solve this strictly convex quadratic program using the Matlab Optimization ToolBox.

Simplifying Problem 9: Uncorrelated Assets

H. Liu (2004) suggests that the assumption of uncorrelated assets greatly reduces the com-

plexity to optimize a portfolio subject to transaction costs. This is because with uncorrelated

assets we can solve N independent problems each one associated with only one asset. We

continue to use the true correlation matrix to compute θMV
t but impose the assumption of

uncorrelated assets when we construct the no trading region surrounding θMV
t .

We proceed in two steps. First, we solve two sub-problems. The frist one assumes that

the costs of opening new long or closing existing short positions both are CP,1
t ≡ CP−

t ,

and closing existing long or opening new short positions both are CS,1
t ≡ CS+

t . The second

sub-problem assumes that the costs of opening new long or closing existing short positions

both are CP,2
t ≡ CP+

t , and closing existing long or opening new short positions both are

CS,2
t ≡ CS−

t . Both sub-problems ignore correlations between assets when we construct the

no trading region around θMV
t . Given µe

t , Vt and θ0
t and the generic costs CP,j

t and CS,j
t for

sub-problem j ∈ {1, 2}, the First Order Conditions (FOCs) are DyPe2018

θ
(j)
t ≡

V−1
t

λ
(µe

t −CP,j
t ) ≤ θ

(j)
t ≤

V−1
t

λ
(µe

t + CS,j
t ) ≡ θ

(j)

t .
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When the correlations between assets are ignored, the solution is given for each asset i by

θ
(j)
i,t =


θ0

i,t if θ
(j)
i,t ≤ θ0

i,t ≤ θ
(j)

i,t

θ
(j)

i,t if θ0
i,t > θ

(j)

i,t

θ
(j)
i,t if θ0

i,t < θ
(j)
i,t .

In the second step, conditional on the initial position θ0
i,t we decide for each asset i which of

the two sub-problem solutions θ
(1)
i,t or θ

(2)
i,t is the correct solution for θ

MVTC\Corr

i,t . Because (in

the data) CS+
i,t ≤ CS−

i,t and CP−
i,t ≤ CP+

i,t , it follows that if θ0
i,t > 0 and θ

(1)
i,t ≥ 0 or θ0

i,t < 0

and θ
(1)
i,t ≤ 0 then θ

MVTC\Corr

i,t = θ
(1)
i,t , otherwise θ

MVTC\Corr

i,t = θ
(2)
i,t .
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Figure C.1: No Trading Regions: General Cost Structures and Correlations between Assets

No trading regions for setting of two risky assets with correlations (1) ρ = 0.5, (2) ρ = 0, and (3) ρ = −0.5, and
µe

t = 2.4%, σt = 10% (the diagonal elements of Vt), CP+
t = 1.45%, CS+

t = 0.71%, CP−
t = 0.71% , CS−

t = 1.45%, and
λ = 5. The no trading regions are: blue for MVTC , red for MVTC\Corr, black for MVTC if CP+

t = CP−
t = 1.45% and

CS+
t = CS−

t = 0.71%, and yellow MVTC if CP+
t = CP−

t = 0.71% and CS+
t = CS−

t = 1.45%. The arrows indicate the
optimal actions ∆P+

t , ∆S+
t , ∆P−

t , ∆S−
t from any initial position θ0

t outside the blue no trading region.
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C.2 Data Sources: Spot and Forward Exchange Rates

In Table C.1 we list the Datastream mnemonics for spot and forward exchange rate quotes

against the GBP, whereas those against the USD are listed in Table C.2. To obtain mid-, bid-

and ask-exchange rates, the suffixes (ER), (EB) and (EO) are added to the corresponding

mnemonics.
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Table C.1: Datastream mnemonics for currency quotes against the British pound

Currency Spot rate Forward rate Quote convention

Canadian dollar CNDOLLR CNDOL1F FCU/GBP
Danish krone DANISHK DANIS1F FCU/GBP
French franc FRENFRA FRENF1F FCU/GBP
German mark DMARKER DMARK1F FCU/GBP
Irish punt IPUNTER IPUNT1F FCU/GBP
Italian lira ITALIRE ITALY1F FCU/GBP
Japanese yen JAPAYEN JAPYN1F FCU/GBP
Netherlands guilder GUILDER GUILD1F FCU/GBP
Norwegian krone NORKRON NORKN1F FCU/GBP
Portuguese escudo PORTESC PORTS1F FCU/GBP
Spanish peseta SPANPES SPANP1F FCU/GBP
Swedish krona SWEKRON SWEDK1F FCU/GBP
Swiss franc SWISSFR SWISF1F FCU/GBP
U.S. dollar USDOLLR USDOL1F FCU/GBP
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Table C.2: Datastream mnemonics for currency quotes against the U.S. dollar

Currency Spot rate Forward rate Quote convention
Australian dollar BBAUDSP BBAUD1F FCU/USD
Brazilian real BRACRU$ USBRL1F FCU/USD
British pound BBGBPSP BBGBP1F USD/FCU
Canadian dollar BBCADSP BBCAD1F FCU/USD
Czech koruna CZECHC$ USCZK1F FCU/USD
Danish krone BBDKKSP BBDKK1F FCU/USD
Euro BBEURSP BBEUR1F FCU/USD
French franc BBFRFSP BBFRF1F FCU/USD
German mark BBDEMSP BBDEM1F FCU/USD
Greek Drachma GREDRA$ USGRD1F FCU/USD
Hungarian forint HUNFOR$ USHUF1F FCU/USD
Icelandic krona ICEKRO$ USISK1F FCU/USD
Irish punt BBIEPSP BBIEP1F USD/FCU
Italian lira BBITLSP BBITL1F FCU/USD
Japanese yen BBJPYSP BBJPY1F FCU/USD
Mexican peso MEXPES$ USMXN1F FCU/USD
Netherland guilder BBNLGSP BBNLG1F FCU/USD
New Zealand dollar BBNZDSP BBNZD1F FCU/USD
Norwegian krone BBNOKSP BBNOK1F FCU/USD
Polish zloty POLZLO$ USPLN1F FCU/USD
Portuguese escudo PORTES$ USPTE1F FCU/USD
Singapore dollar BBSGDSP BBSGD1F FCU/USD
South Africa rand BBZARSP BBZAR1F FCU/USD
South Korean won KORSWO$ USKRW1F FCU/USD
Spanish peseta SPANPE$ USESP1F FCU/USD
Swedish krona BBSEKSP BBSEK1F FCU/USD
Swiss france BBCHFSP BBCHF1F FCU/USD
Taiwan new dollar TAIWDO$ USTWD1F FCU/USD
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