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ABSTRACT OF THE DISSERTATION

Quantum Fields in Extreme Backgrounds

by

Leandro Medina de Oliveira

Doctor of Philosophy in Physics

Washington University in St. Louis, 2018

Professor Michael C. Ogilvie, Chair

Quantumfield theories behave in interesting andnontrivial ways in the presence of intense elec-

tric and/or magnetic fields. Describing such behavior correctly, particularly at finite (nonzero)

temperature and density, is of importance for particle physics, nuclear physics, astrophysics,

condensed matter physics, and cosmology. Incorporating these conditions as external parame-

ters also provides useful probes into the nonperturbative structure of gauge theories.

In thiswork, formalism for describingmatter in a variety of extreme conditions is developed and

implemented. We develop several expansions of one-loop finite temperature effects for spinor

particles in the presence of magnetic fields, including the effects of confinement, encoded

in a nontrivial Polyakov loop. The worldline instanton formalism is extended to the case of

finite temperature, which yields a long-sought thermal extension to the celebrated formula of

Schwinger for pair production in a constant electric field. The technique is further extended

to include the effects of finite density and confinement, as well as some restricted classes of

nonabelian electric fields.
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A persistent source of difficulty in the study of gauge theories at finite density, and/or in the

presence of external electric fields, is the so-called sign problem. We advance a novel duality-

based approach for lattice simulation of scalar field theories with complex actions, which yields

new insights on the old problem of spatial modulations arising in systems with competing

interactions. The approach shows promise for simulating scalar theories at finite density and

in the presence of external electric fields, and is capable of handling systems in the universality

class of the iφ3 theory, which determines the critical indices of the Lee-Yang edge transition.
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CHAPTER 1

INTRODUCT ION

The standard model of particle physics depicts fundamental interactions in terms of gauge

theories, which incorporate local symmetries as a preeminent part of the description of charges

and forces. However, gauge theories can be very difficult to study, partly because, once distilled

to their simplest realization, they contain no adjustable parameters, and standard perturbative

techniques that rely on the smallness of a coupling constant are of limited utility. Naively, it does

not appear possible to improve understanding by studying these theories in regimes where

they simplify, and then restore the complexity gradually. They seem, in a sense, irreducibly

complex.

Fortunately, the naive picture is not correct. There are useful probes into the structure of

gauge theories which also correspond to quantities of phenomenological interest. Such probes

include, for example, finite (nonzero) temperature and density, as well as external fields. At

high temperatures, because of asymptotic freedom, the coupling constant is expected to be

small, and it is possible to contrast perturbative and semiclassical techniques with fully non-

perturbative lattice gauge theory calculations. At high temperatures, field theories reduce in

dimensionality by 1, which potentially enables interesting relationships betweenmodels that

can greatly aid understanding. At finite density, the situation is complicated by the so-called

sign problem—the Euclidean path integral is represented as a sumover complex weights, which
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makes lattice simulations considerably more difficult. Therefore, our understanding relies

mostly on other tools, which include, for example, effective models and strong coupling ex-

pansions. Interestingly, in the presence of external fields, we have examples of both situations:

as a consequence of Landau quantization [1], systems subjected to strong magnetic fields

have their dimensionality reduced by 2 (rather than by 1 as the case of high temperature), and

electric fields are associated with complex weights. External fields therefore provide a useful

environment in which to test the limits of our calculational tools, which, if validated, may be

usefully applied to regimes not accessible to lattice simulations.

Recently there has been considerable progress in understanding the most striking features

of QCD with analytical tools. Perturbatively, the expression for the free energy of an SU (N )

gauge theory at finite temperature naturally favors the deconfined phase. The development of

various gauge theorymodels that are confining when the radius of a compact direction is small,

and small coupling expansions are expected to be reliable, has enabled study of confinement

within perturbation theory. The most developed case is that of R3 ×S1, familiar from the study

of field theories at finite temperature, where the length L of S1 can be usefully identified with

the inverse temperature β= 1/T . In these models, the length of the compact direction can be

tuned to interpolate between the high temperature regime, where small-coupling expansions

are reliable, and a confined phase at low temperature. It is possible to do so in such a way

that there is no discontinuity or phase transition in between, and so insights gained where

theoretical tools are known to work may be applied to regimes where study is much more

challenging [2].

Electric fields are of special interest. The vacuum is unstable in the presence of an electric field,

and decays by producing pairs of particles. Many distinct perspectives equivalently describe

this wholly nonpertubative phenomenon. It may be viewed as a tunneling process [3], a loss of
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unitarity due to amodification of the propagator in the presence of the electric field [4], or a ge-

ometrical effect analogous to Hawking radiation, with a Bogoliubov transformation connecting

the number operators in the asymptotic past and future [5]. Many different techniques have

been developedwithin each broad theme. Since it is a nonperturbative effect, it is exponentially

suppressed with a factor of e−m2
e /eE . The exponent is of order unity only for fields exceeding

Ec = m2/e ≈ 1018 V/m. For this reason, the effect has never been experimentally observed. The

development of novel calculational approaches that make it possible to compute the decay

rate for fields with realistic inhomogeneities has revealed that certain configurations permit a

significant enhancement of the particle production rate, making the effect potentially within

the observational capability of near-future intense light facilities [5]. Interestingly, some of

these approaches have yielded a result that interpolates between the nonperturbative static

field particle production process described here, and a perturbative many-photon process [6].

The nonperturbative aspect of pair production is of interest formodels of parton fragmentation

due to its suspected connection to hadronization and string breaking. Heuristically speaking,

as a bound quark and antiquark pair separates, the chromoelectric field lines between them

gather in a narrow tube-shaped region, giving rise to a linear potential. For sufficiently large sep-

arations, the energy stored in the field exceeds twice the quark mass, pair production becomes

energetically possible and the string breaks [7–9]. In (noncentral) heavy-ion collisions there are

q q̄

Figure 1.1: Chromoelectric flux tube between a qq̄ pair.

also significant magnetic interactions between the two nuclei that must be considered in the
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description of the quark-gluon plasma. Large electric and magnetic fields are experimentally

accessible to heavy-ion collider experiments such as ALICE or the RHIC [10].

In condensed matter physics, the discovery of the quantumHall effect in 1975 has enabled a

fruitful investigation of a variety of phenomena in two-dimensional systems, from topological

insulators to particles with fractional statistics [11]. Some of these systems, due to their rich

topological structure, are potential laboratories for experimental investigation of exotic field

theories.

In cosmology and astrophysics there is consistent interest in describing the properties of

nuclear matter in the presence of strong external fields. Both electric and magnetic fields

were present in the hot environment of the early universe [12, 13]. On the surface of compact

stars, magnetic fields can reach energies comparable to the current quark masses. In the core,

the fields can reach energies comparable to the pion mass, well into the QCD scale. There,

effects due to the magnetic field are certainly expected to be important [14]. In fact, one of

the most intriguing predictions of the theory of quantum fields in a magnetic background has

been recently confirmed by observational evidence from a neutron star [15]. A large degree of

polarization, expected only if the quantum electrodynamics prediction of birefringence of the

magnetized vacuum is realized in nature, was found in radiation from source RX J1856.5–3754.

The study of gauge theories in the presence of external fields lies at the intersection between

particle physics, condensed matter physics, astrophysics, and cosmology. Understanding a

number of physical systems requires a solid appreciation of how quantumfields behave when a

background field is imposed. For systems that are hot and/or dense, it is additionally necessary

to understand how the effects of temperature and density operate when external fields are

also present. Where applicable, the striking features of QCD, such as confinement and chiral

symmetry breaking, may also play a role, and, in turn, be affected by the background.
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The subject has a long and venerable history, which in fact predates quantum field theory itself.

An important early development was the effective Lagrangian of Heisenberg and Euler [16].

Even though the authors were not aware of the many subtle conceptual issues underlying

quantum field theory more generally, such as the correct treatment of infinities, they were able

to write down an expression which encodes essentially all lowest-order quantum effects due to

constant (or slowly varying) external fields, in what later would become known as quantum

electrodynamics. Their results are central to this subject and will be approachedmany times,

in many different ways, throughout this text.

The numerous experimental applications of gauge theories in external fields, particularly at

finite temperature and density, together with ample theoretical motivation, make this study

both relevant and timely.

This dissertation is structured as follows. In chapter 2, the fundamentals of quantummechan-

ics in the presence of background fields are reviewed, with special attention to the effective

Lagrangian of Heisenberg and Euler, as well as the nonperturbative Schwinger process of pair

production in a constant electric field. Chapter 3 introduces the powerful and elegant worldline

formalism, which is used to rederive Schwinger’s pair production formula. The method is then

extended to allow calculation of the transverse momentum distribution of created particles.

Chapter 4 is an introduction to finite temperature field theory. In chapter 5 I present a treat-

ment of thermal magnetic effects, with intended application to the quark-gluon plasma. New

expressions that smoothly connect the weak and strong field regimes are derived. In chapter 6,

Schwinger’s pair production result is generalized to scalar QED at finite temperature using the

worldline instanton formalism; various further generalizations are presented in chapter 7. I give

the finite-temperature version of the transverse momentum distribution formula. A derivation

of the finite temperature decay rate in a uniformWKB framework is also provided.
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Chapter 8 concerns the so-called sign problem and its relevance to lattice simulations of systems

in extreme backgrounds. I present a counter-argument to the well-known NP-hardness result.

A duality-based technique for simulating scalar fields with complex actions is introduced, and

simulation results are presented. Lastly, I explain how this technique can be used to simulate a

Bose gas at finite density, or a system of charged scalars in an electric field.

Usual particle physics conventions apply: natural units (ħ = c = kb = ε0 = µ0 = 1) are used

throughout, spacetime indices are written as lower-case Greek letters, repeated indices are

summed over, etc.
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CHAPTER 2

QUANTUM THEORY IN EXTERNAL F IELDS

In classical mechanics, the interactions of particles with electric andmagnetic fields are gov-

erned by the Lorentz force law

F = q(E+v×B). (2.1)

It results that trajectories in a constant magnetic field are circles, where the angular rotation

frequency is given by the usual cyclotron frequency ω= qB/m, and radius R = p/qB , with p

the particle’s linear momentum. Using De Broglie’s relation p = h/λ, and demanding that the

wave be single-valued over the circle, we conclude that the wavelength λ andmomentum p

can attain only discrete values

λ=
√

2πh

nqB
, p =

√
ħqBn, n = 1,2,3 . . . (2.2)

Therefore, the kinetic energy of this particle is also restricted to discrete values Tn ,

Tn =ħ qB

2m
n. n = 1,2,3 . . . (2.3)

This is almost right—in fact, the correct energies, which we will derive in detail in section 2.1,

are the so-called Landau levels, given by [1]

En =ħqB

m

(
n + 1

2

)
, n = 1,2,3 . . . (2.4)

7



which differs from the above by a factor of 2 and a zero-point energy contribution. Nevertheless,

this simple heuristic derivation illustrates one of the interesting features of quantum particles

in a magnetic field. The energy levels are quantized, as they are for a particle in a confining

potential, even though the magnetic portion of the Lorentz force (2.1) is nonconservative and

cannot be written as the gradient of a potential, of any type.Unlike a particle in a confining

potential, the energy of a classical particle in a magnetic field is the same irrespective of where

the orbit is centered, which suggests that the quantummechanical energy levels are highly

degenerate. This is indeed the case, and this fact carries profound consequences. Examples

include the quantum Hall effect [11], which is the observation of quantized conductivities

in cold two-dimensional electron systems when a strong magnetic field is applied, and the

magnetic catalysis of the chiral condensate [17], which I discuss in detail in chapter 5.

Electric fields present their own subtle issues. Maxwell’s equations absent sources

∇·E = 0 ∇·B = 0 (2.5)

∇×E =−∂B

∂t
∇×B = ∂E

∂t
(2.6)

are completely symmetric with respect to an exchange between electric andmagnetic fields

B ⇔ E together with the time reversal t →−t , so, even though the Lorentz force law (2.1) treats

electric andmagnetic fields asymmetrically, it might appear reasonable to expect a behavior

similar to that described above for magnetic fields. As we will see, this is not the case: while, at

least in some examples, much of the mathematical technology used to handle systems with an

infinite number of discrete Landau levels does carry over to the case of electric fields, there are

also qualitative differences that require some conceptual refinement.
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Anonrelativistic particle subject to the action of a homogeneous, uniform electric field pointing

in the ẑ direction may be described by the following Hamiltonian:

H = p2

2m
+eE z. (2.7)

It is immediately apparent that this Hamiltonian is not bounded from below. This is of course

not a fundamental difficulty (though it may be a calculational one, particularly at finite tem-

perature [18]), since any electric or magnetic field corresponding to a real, physical system

should have finite extent, but the fact that there is a difficulty at all (which does not seem

present formagnetic fields) hints at possible issues concerning the stability of the vacuum. This

intuition happens to be correct; sufficiently strong electric fields can induce vacuum decay via

production of particle-antiparticle pairs. In honor of Schwinger’s calculation of the effective

action [4], this has come to be known as the Schwinger effect, but the subject has a longer

history well worth visiting.

It was found early on that a potential barrier presented paradoxical issues for a relativistic wave

theory of electrons. Klein found that an electron incident on an infinitely high, infinitely steep

potential wall is, contrary to expectation, always transmitted [19, 20]. Sauter then considered

the problem of an electron incident on a potential wall of finite slope, which corresponds to a

region with a finite electric field, obtaining similar results [21]. Over time it was realized that

the correct theory of relativistic electrons is not a theory of particles, but of fields. These early

paradoxical results were hinting at the interesting effect of particle production by a constant

electric field.

The work of Heisenberg and Euler was prescient: evenwithout a full understanding of quantum

field theory, they were able to write the correct effective Lagrangian incorporating quantumme-

chanical effects in the description of electromagnetic fields [16]. While a proper understanding

of the subtleties underlying these phenomena in quantum field theory would not be available
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until Schwinger’s important 1951 paper [4], Heisenberg and Euler were able to anticipate many

of the physical effects expected to happen when external fields are sufficiently large, such as

the production of particles mentioned above, as well as scattering of light by light.

Unfortunately, many of these effects are extraordinarily faint, and have thus far eluded exper-

imental confirmation. The production of particles by intense electric fields has never been

observed, though it is hoped that the effectmight be accessible to current or near future extreme

light facilities such as XFEL or ELI [5]. While such facilities cannot attain the required static

field strengths, evidence suggests that skillful shaping of laser pulses may lower the required

intensities to an attainable level (see for example [6]). Scattering of light by light has been

recently observed in the ATLAS experiment [22], but Heisenberg and Euler’s prediction pertains

to constant or slowly varying electromagnetic fields, rather than the photon-photon processes

that take place in a collider experiment. Thus, while encouraging, the result is not a direct test

of Euler and Heisenberg’s results in the regimes where these are applicable.

In this chapter I review various important calculations of zero temperature effects in the

presence of external fields, with especial attention to the effective Lagrangian of Euler and

Heisenberg. These results are both historically important and physically illuminating; the final

results will also be referred to constantly in the remainder of this text.

2.1 MAGNETIC FIELDS IN QUANTUM MECHANICS

Consider a spinless particle with electric charge q in a constant, uniform magnetic field of

strength B pointing in the ẑ direction. The Hamiltonian describing the dynamics is

Ĥ = 1

2m
(p̂−qÂ)2. (2.8)
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In the gauge where Â = (0,B x,0), we have

H = 1

2m

[
p̂2

x + (p̂y −qB x̂)2 + p̂2
z

]
. (2.9)

Clearly, p̂y and p̂z commute with H , which can be readily expressed in diagonal form:

H = 1

2m

[
p̂2

x + (qB)2
(

x̂ − py

qB

)2

+p2
z

]
. (2.10)

For simplicity, in the remainder of this discussion the irrelevant z direction will be suppressed.

Notice that this is the Hamiltonian of a harmonic oscillator in the x direction, centered at

py /qB , with frequency ω= qB/m. The wavefunctions in the 12-plane are, therefore, given in

terms of Hermite polynomials

ψn(x) = 1p
2nn!

(ω
π

)1/4
Hn

(
ω1/2x

)
e−ωx2/2. (2.11)

with energies

En = qB

m

(
n + 1

2

)
. (2.12)

The seemingly different treatment of the two spatial directions is merely an artifact of our

choice of gauge. Wavefunctions are not directly observable and are thus not required to be

gauge invariant. The important point to notice is that the energies En do not depend on the

value of py : as suggested by the heuristic derivation, each Landau level is highly degenerate.

To quantify this degeneracy, place the system in a cubic box of side L À m/(qB)2. There are

two constraints on py :

• Periodic boundary conditions require py = 2πn
L , n ∈Z.

• The center of the oscillator must be inside the box, so py

qB < L.
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Taken together, these two constraints give

n < L2 qB

2π
(2.13)

for a density of states of qB/2π per unit area.

In symmetric gauge, there is an elegant method for calculating this density of states. The

reader interested in this argument, as well as the theory of magnetic fields in condensedmatter

systems, may refer to David Tong’s lecture notes on the quantumHall effect [23].

2.2 THE KLEIN PARADOX

The earliest work suggesting issues of fundamental importance in the quantummechanical

treatment of electric fields was that of Klein [19, 20]. Klein solved the one-dimensional Dirac

equation in a step potential of the form

V (x) =




0 x < 0

V0 x ≥ 0.
(2.14)

The reflection and transmission coefficients are given by

RK =
(

1−κ
1+κ

)2

TK = 4κ

(1+κ)2
(2.15)

where

κ≡
√

(V −E +m)(E +m)

(V −E −m)(E −m)
. (2.16)

The surprising conclusion, unexplainable in the wave mechanics paradigm of 1929, is that the

transmission coefficient is nonvanishing for E <V0, and in fact, approaches unity as V0 →∞

and E À m. This counterintuitive result became known as the “Klein paradox”.

Sauter subsequently refined this picture by considering a continuous potential of the form [21]
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V (x) =





0 x < 0

V0(x/L) 0 ≤ x < L

V0 x ≥ L

(2.17)

which corresponds to a uniform, homogeneous electric field E =−V0/L in the region 0 ≤ x < L.

For sufficiently narrow barriers (L <V0/m2) the transmission and reflection coefficients reduce

to those of the step function (2.15); but even for shallow barriers the transmission coefficient is

nonzero and given by

TS = e−πm2/eE . (2.18)

Shortly thereafter Dirac published his famous work on the negative energy solutions of his

equation [24], signaling a departure from the wavefunction point of view towards the modern

field theoretic perspective. In light of these developments, the correct interpretation of the Klein

paradox finally became clear: the solutions of the Dirac equation do not represent particle

wavefunctions directly but rather quantized modes; the nonzero transmission coefficient

represents a probability of creation of an electron positron pair. The first work to asses the

paradox within quantum field theory was due to Hund [25].

2.3 WKB CALCULATION

The previous results have been suggestive of a tunneling interpretation for the process of pair

production. A WKB type calculation should be able to reveal that more directly. For a review

of this calculation, as well as an assortment of various other methods, refer to the article by

Holstein [3].

The spectrumof aKlein-Gordonparticle ofmassm containsbothpositive andnegative energies,

separated by a gapofwidth 2m. In the presence of aweak electric field, the energy levels become

13



tilted, as indicated in figure 2.1. If all negative energy levels are filled, as in the Dirac sea picture,

a process where a particle tunnels from a level in the negative portion of the spectrum to one

in the positive portion, leaving behind a hole, becomes possible. The barrier penetration factor

given in the WKB approximation is

TS = exp

[
−

∫ z+

z−
dz kz(z)

]
(2.19)

where z− and z+ are the turning points of the classical motion. For a particle of frequency ω

the momentum kz in the forbidden region is

kz =
√

m2 +k2
⊥− (ω−eE z)2 (2.20)

with turning points

z± =± 1

eE

√
m2 +k2

⊥−ω. (2.21)

The potential barrier is thus in the shape of a semicircle, and the barrier penetration factor is

simply

TS = exp
[
−πm2+p2

⊥
eE

]
. (2.22)

This, as we will see in section 2.4.2, leads to the correct pair production probability once

integrated over all modes.

14



−m

m

z− z+

negative energy modes

positive energy modes

z

E

Figure 2.1: Semiclassical picture of tunneling between negative and positive energymodes, for a charged
particle in an electric field of finite extent. The shaded region is classically forbidden.

2.4 EULER–HEISENBERG EFFECTIVE LAGRANGIAN

A natural question is whether the interactions between light and matter can manifest as mod-

ifications of Maxwell’s equations encoding quantum effects such as the polarization of the

vacuum or the possibility of matter creation by intense electric fields. Euler and Heisenberg’s

1935 computation of the effective action demonstrated that they can [16].

Effective actions can be informally described as objects which modify the classical action in

order to take into account quantummechanical effects up to a given order in perturbation

theory. When extremized, suchmodified actions yield a set of classical equations of motion

which incorporate some quantum effects. Euler and Heisenberg’s effective action is an object

of this type. The modifiedMaxwell’s equations obtained from it are nonlinear, which is often

regarded as a dielectric-like behavior of the vacuum [26], but this is not essential: equally valid

is the point of view that quantum mechanics induces interactions between light and light.

The Euler–Heisenberg Lagrangian is a function of E and B, the values of external electric and
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magnetic fields, which are taken as constant and uniform. If the fields are inhomogeneous

and/or nonconstant, it may still be useful as the leading term in a derivative expansion.

The case of a charged spinless particle, studied first by Weisskopf in 1936 [27], is simplest.

Consider a complex scalar in the background of a gauge field, assumed to be classical. The

purpose of this assumption is twofold: first, it allows for a semi-phenomenological study of

quantum corrections to Maxwell’s equations. Second, it provides a useful means with which to

nonperturbatively probe the structure of the quantum vacuum [26]. The matter portion of the

partition function reads

Z [A] =
∫

[dφ∗][dφ]exp
{

i
∫

d 4x
[
(Dµφ

∗)(Dµφ)+m2φ∗φ
]}

, (2.23)

where m is the scalar’s mass, Dµ ≡ ∂µ+ ie Aµ is the gauge covariant derivative, and Aµ aU (1)

gauge field with corresponding field strength tensor Fµν = ∂µAν−∂νAµ. As written, this func-

tional integral is defined only up to an arbitrary normalization. The appropriate choice of

normalization generically depends on the specific problem being considered; for example, if

the masses are dynamically generated, it might be desirable to normalize with respect to the

massless theory, a situation which will be relevant in section 5.4. Here, I assume that the mass

is some fundamental parameter that does not depend on the magnetic field, and normalize

with respect to the partition function associated with a scalar of the samemass and vanishing

external background. With this choice, the effective action W (1)[A] is given by

e iW (1)[A] = Z [A]

Z [0]
, (2.24)

or equivalently

W (1)[A] ≡−i log

{
Z [A]

Z [0]

}
. (2.25)

The superscript (1) indicates a one-loop result. This definition is natural when studying the

properties of quantumfields in the presence of an external background, and appears frequently
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in discussions of spontaneous symmetry breaking beyond tree level [28]. An alternate definition

of the effective action is often given where it is a functional of classical external sources, rather

than fields. In that form it can be understood as the generating functional of connected Green’s

functions; the form given here generates one-particle irreducible Green’s functions. Both forms

are thus important for perturbation theory, and are related to one another by a Legendre

transform. A clear and comprehensive treatment of the various aspects of effective actions can

be found in Brown’s quantum field theory textbook [29].

It is easier to compute the effective action if the action functional is Wick-rotated to Euclidean

space, with the replacement t → i x4. It is also useful to define the effective Lagrangian in the

obvious way,

W (1)[A] =
∫

dt d 3x LM [A] = i
∫

d 4x LE [A]. (2.26)

The subscripts M and E stand forMinkowski and Euclidean, respectively. The Euclidean La-

grangian in particular is also often called the effective potential. Following common practice

in the literature, all effective Lagrangians in this text are assumed to be defined in Euclidean

space, and the subscript E will be dropped; the term “effective potential” will be regarded as

synonymous. An integration by parts places the partition function in the standard Gaussian

form

Z [A] =
∫

[dφ∗][dφ]exp
{
−

∫
d 4x φ∗(−D2 +m2)φ

}
. (2.27)

The Lagrangian is quadratic on the scalar fields, so they can be integrated out. In the general

case where there are higher-order interactions, a suitable linearization allows this expression to

be evaluated perturbatively. With the choice of normalization mentioned above, the effective

action is easily written in terms of functional determinants [30]:

Z [A]

Z [0]
= det−1[−D2 +m2

]

det−1[−∂2 +m2
] . (2.28)

17



Using the standard identity logdet = tr log, we obtain the convenient representation

W (1)[A] = i tr log

[−D2 +m2

−∂2 +m2

]
(2.29)

where the trace is over spacetime indices. The problem has been reduced to finding the spec-

trum of the operator (−D2+m2), and computing the (suitably regularized) product of eigenval-

ues.

The physical case of spinor electrodynamics is similar. The theory is defined by the Lagrangian

L = ψ̄(i /D −m)ψ− 1

4
FµνFµν (2.30)

where /a ≡ γµaµ. After integrating out the matter fields, the effective action (normalized with

respect to zero field) reads

S(1)[A] =−i log

[
det(i /D −m)

det(i /∂−m)

]
. (2.31)

Once again using logdet = tr log, we can write

S(1)[A] =−i tr log

(
i /D −m

i /∂−m

)
=−i tr log

(
1− e /A

i /∂−m

)
(2.32)

where the trace is over both spacetime and spinor indices. Expansion of the logarithm yields a

familiar perturbative expansion [31]

= + + + ·· · (2.33)

Note that, as a consequence of charge conjugation invariance, diagrams with odd numbers of

external photon lines vanish (Furry’s theorem [32]).

This perturbative expansion encodes the leading contributions to several important processes,

such as vacuum polarization and light by light scattering (see for example the second term in
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the right-hand side), and is useful in its own right. However, for us it is chiefly of theoretical

interest (see section 2.4.3). We will concentrate instead on an evaluation of the left-hand side

in the soluble special case of constant fields.

The cyclic property of the trace, together with γ2
5 = 1, shows

det
(
i /D −m

)= det
(
γ2

5(i /D −m)
)= det

(
γ5(i /D −m)γ5

)= det
(−i /D −m

)
, (2.34)

which yields immediately

logdet
(
i /D −m

)= 1
2 logdet

(
/D2 +m2). (2.35)

The effective action can nowbewritten in terms of a positive-definite operator, in a form similar

to the scalar expression (2.29):

S(1) =− i

2
log

[
det( /D2 +m2)

det(/∂2 +m2)

]
=− i

2
tr log

[
/D2 +m2

/∂2 +m2

]
(2.36)

=− i

2
tr log

[− /D2 +m2

−/∂2 +m2

]
. (2.37)

In the second line, I performed aWick-rotation to Euclidean space. The squared Dirac operator

/D2 differs from the scalar Klein-Gordon operator by the addition of a spin term,

/D2 =γµγν(∂µ+ ie Aµ

)(
∂ν+ ie Aν

)
(2.38)

=γµγν(∂µ∂ν+ ie
(
∂µAν+ Aµ∂ν

)−e2 AµAν

)
(2.39)

= {γµ,γν}
2

(
∂µ∂ν+ ie

(
(∂µAν)+ Aν∂µ+ Aµ∂ν

)−e2 AµAν

)

+ ie [γµ,γν]
2 (∂µAν)

(2.40)

=(
∂2 +2ie Aµ∂µ−e2 A2 + i e(∂µAµ)+ 1

2 eσµνFµν
)

(2.41)

=D2 + 1
2 eσµνFµν. (2.42)
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In the fourth equality, I defined σµν ≡ i
2 [γµ,γν]. In the third, the chain rule was used. The four-

divergence term ie(∂µAµ) is irrelevant provided field configurations fall off sufficiently fast at

infinity; it will be omitted from now on. Note that the solutions of the Dirac equation are easily

obtained from the solutions of the “squared” Dirac equation by the following observation [33]:

( /D2 +m2)Ψ= (i /D −m)
[
(−i /D −m)Ψ

]= 0. (2.43)

In other words, ifΨ is a solution of the squared Dirac equation, the spinorψ= (−i /D −m)Ψ is a

solution of the usual Dirac equation.

We are now in position to evaluate the determinant directly in the case of constant fields. The

eigenvalues of the (Euclidean) squared Dirac operator are given by

(−∂2 −2ie Aµ∂µ+e2 A2 − 1
2 eσµνFµν+m2)Ψ= EΨ. (2.44)

For a constant magnetic field pointing in the ẑ direction, the eigenvalues have contributions

from free particle degrees of freedom in the 34-plane, plus the usual Landau levels

E = 2eB
(
n + 1

2 ± 1
2

)+p2
3 +p2

4 +m2. (2.45)

The same considerations for density of states shown in section 2.1 apply here—the Landau

levels are highly degenerate, with a density of states factor of eB/2π per unit area. The one-loop

contribution to the effective action then reads,

L (1)[B ] =−
∑
n,±

eB

2π

∫
d 2p⊥
(2π)2

log
[
2eB

(
n + 1

2 ± 1
2

)+p2
⊥+m2] (2.46)

where the normalization factor has been temporarily suppressed. The logarithm is represented

as a Schwinger proper-time integral,

L (1)[B ] =
∑
n,±

eB

2π

∫
d 2p⊥
(2π)2

∫ ∞

0

ds

s
e
−s

[
2eB

(
n+1

2±
1
2

)
+p2

⊥+m2
]
. (2.47)
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The integral over p⊥ is a Gaussian and can be done immediately. Notice that, for dimensional

consistency, the proper time parameter s must have dimensions of inverse energy squared.

It will be convenient in what follows to define it as dimensionless, so I make the substitution

s → s/eB . Then effecting the sum over polarizations we have

L (1)[B ] =
∑
n

(eB)2

8π2

∫ ∞

0

ds

s2
e−s(m2/eB)e−2sn[

1+e−2s]. (2.48)

The sum over Landau levels is a geometric series,

∞∑
n=0

e2sn = 1

1−e2s
, (2.49)

so we may write

L (1)[B ] = (eB)2

8π2

∫ ∞

0

ds

s2
e−s(m2/eB) coth(s). (2.50)

This integral is divergent at small s, which corresponds to the usual ultraviolet divergences of

quantum field theory. Let us split the finite and infinite parts:

L (1)[B ] = (eB)2

8π2

∫ ∞

0

ds

s2
e−s(m2/eB)

(
coth(s)− 1

s
− s

3

)

+ (eB)2

8π2

∫ ∞

0

ds

s2
e−s(m2/eB)

(
1

s
+ s

3

)
.

(2.51)

The most severe divergence is quadratic and appears in the first term in the second line. This

divergence is cured by restoring the normalization factor neglected in equation (2.46), which is

written in terms of the functional determinant at zero field. After performing a Wick rotation

/∂2 →−/∂2, and with the aid of a proper time representation for the logarithm, as in equation

(2.47), we may write

tr log
[−/∂2 +m2]= 2

∫
d 4k

(2π)4

∫ ∞

0

ds

s
e−s(k2+m2) (2.52)

= 1

8π2

∫ ∞

0

ds

s3
e−sm2 (2.53)

= (eB)2

8π2

∫ ∞

0

ds

s3
e−s(m2/eB). (2.54)
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Agreeably, this is identical to the offending term, so the quadratic divergence cancels. Only the

second divergent term in equation (2.51) is left.

(eB)2

24π2

∫ ∞

0

ds

s
e−s(m2/eB) = (eB)2

24π2
log

(
eB

m2

)
. (2.55)

This term is physical: it represents the renormalization of electric charge. Its significance was

not fully realized until the later work of Schwinger [4], which I describe in section 2.5.

We are now free to focus on the finite part of the effective Lagrangian. It reads

L (1)[B ] = (eB)2

8π2

∫ ∞

0

ds

s2
e−s(m2/eB)

(
coth(s)− 1

s
− s

3

)
. (2.56)

This is the famous Euler–Heisenberg effective Lagrangian for the case of a constant magnetic

field. For more details on what follows, refer to the review by Dunne [26].

This expression can be related to a representation of the Hurwitz zeta function,

ζH(s; z) ≡
∞∑

n=0

1

(n + z)s
, (2.57)

or rather, its derivativewith respect to the first argument, which appears naturally in the context

of zeta-function regularization of functional determinants:

ζ′H(−1; z) = 1

12
− z2

4
−ζH(−1, z) log z − 1

4

∫ ∞

0

dt

t 2
e−2zt

(
coth(t )− 1

t
− t

3

)
. (2.58)

This identity will be derived in detail in Appendix A.1.

The case of a constant electric field can be obtained via the analytic continuation B → iE ,

s → is. This formal substitution is motivated by the fact that, if only one of E or B is nonzero,

the unique Lorentz invariant is B 2 −E 2, thus the change B 2 →−E 2 should leave the physics

unchanged [26]. However, the argument fails if rotational invariance in Euclidean space is lost
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(as in, for example, the case of finite temperature, c.f. chapter 6). The result is

L (1)[E ] = (eE)2

8π2

∫ ∞

0

ds

s2
e−s(m2/eE)

(
cot(s)− 1

s
+ s

3

)
. (2.59)

The complete expression for a general constant background field is given by

L (1)[A] = 1

8π2

∫ ∞

0

ds

s2
e−sm2

(
e2bas

tanh(ebs) tan(eas)
− 1

s
− s

3
(b2 −a2)

)
(2.60)

where a and b are defined in terms of the Lorentz invariants as1

a2 −b2 = E2 −B2 =−1

2
FµνFµν (2.61)

ab = E ·B =−1

4
FµνF̃µν. (2.62)

Expanding this expression to lowest nonlinear order we obtain

L (1)[A] = e2

360π2m4

[
(E2 −B2)2 +7(E ·B)2]+·· · (2.63)

which encodes the low-energy limit of the amplitude for scattering of light by light (see the

second term on the RHS of equation (2.33)), and is the leading quantummechanical correction

to Maxwell’s equations.

The corresponding expression for spinless particles was obtained by Weisskopf [27]. It reads

L (1)
scalar[A] =− 1

16π2

∫ ∞

0

ds

s2
e−sm2

(
e2bas

sinh(ebs)sin(eas)
− 1

s
+ s

6
(b2 −a2)

)
. (2.64)

2.4.1 Vacuum decay

The Euler–Heisenberg effective Lagrangian (2.60) encodes all of the physics of constant fields

accessible at one-loop. It may be expected that the particle-antiparticle production process
1An alternate convention where a and b are swapped can be encountered in the literature [34–36]. The

conventions presented here are those of reference [26].
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suggested in the work of Klein and Sauter [19, 21] is manifested in some form. As determined by

Schwinger, this is indeed the case [4]. In Minkowski space, the state vector overlap between the

vacuumstate in the asymptotic past and in the asymptotic future canbe computed immediately

in the functional integral formalism

〈0out|0in〉 =
Z [A]

Z [0]
= e iW [A], (2.65)

which coincideswith the defining expression for the effective action. This quantity is sometimes

called the vacuum persistence amplitude. If the effective action is purely real, the vacuum

persistence amplitude is a pure phase—a system initially in the vacuum state will remain

there. On the other hand, if the effective action is complex, the amplitude of the vacuum state

will, depending on the choice of boundary conditions, grow or decay over time, and particle-

antiparticle pairs will be produced (or destroyed). The probability of detecting the system in its

vacuum state in the asymptotic far future is given by

|〈0out|0in〉|2 = e−2Im
{
W (1)[A]

}
≈ 1−2VT Im

{
L (1)[A]

}
. (2.66)

An important difference between the cases of electric and magnetic backgrounds is that, in

the case of electric fields, because of the cotangent in equation (2.59), the integrand has poles

on the real axis. The expression thus requires disambiguation. The correct sense in which to

avoid the poles is given by the usual convergence prescription for Minkowski space functional

integrals, m2 → m2 − iε. This is equivalent to avoiding each pole by a semicircular path in the

upper half-plane. The effective Lagrangian will thus acquire an imaginary contribution from

the residues at each pole.
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Im s

Figure 2.2: Proper-time integration contour in the Euler–Heisenberg effective Lagrangian for a constant
electric field, equation (2.59). Note that there is no pole at the origin—ultraviolet divergences
have been subtracted off.

Thus the vacuum decay rate per unit volume may be computed from the Euler–Heisenberg

Lagrangian with the aid of the residue theorem:

Γ= 2Im
{
L (1)[E ]

}= (eE)2

4π3

∞∑
n=1

1

n2
e−m2

eE πn . (2.67)

This is known as Schwinger’s formula. Notice that the expression is non-perturbative in the

coupling constant e, which is typical of tunneling processes. We will recast it in the familiar

form of an instanton calculation in section 3.2.

2.4.2 Nikishov’s virial representation

For physical applications it may be necessary to know not only the mean rate of vacuum

decay, but also the momentum distribution of created pairs. This information is obscured in

equation (2.67). To address this difficulty we may return to equation (2.47) and proceed while

leaving the p⊥ integration undone. The counterpart of equation (2.67) then reads

Γ= 2Im
{
L (1)[E ]

}= eE

π

∫
d 2p⊥
(2π)2

∞∑
n=1

1

n
e−m2+p2

⊥
eE πn . (2.68)
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The series is recognized as a Taylor expansion of the logarithm,

Γ= 2Im
{
L (1)[E ]

}=−eE

π

∫
d 2p⊥
(2π)2

log
(
1−e−m2+p2

⊥
eE π

)
. (2.69)

This formula is closely related to the virial representation of Nikishov [37, 38],

2VT Im
{
L (1)[E ]

}=±V
∑

r

∫
d 3p

(2π)3
log

(
1± n̄p,r

)
,

n̄p,r = exp
(
−m2+p2

⊥
eE π

) (2.70)

where n̄p,r is the mean number of particles produced with momentum p and spin projection

r , and the upper (lower) signs refer to the production of charged scalars (spinors). Notice that,

even though this expression seems reminiscent of a one-loop thermal effective action, the sign

is opposite to what would be expected for a particle’s statistics. The distribution is degenerate

with respect to both r and p3, the component of momentum along the direction parallel to the

electric field.

The appearance of p3 in this formula might be surprising. To understand it, note that the

quantity p3/eE it is analogous to the center of the oscillator coordinate in the case of a constant

magnetic field (see section 2.1). For an electric field, the oscillator is inverted; the motion in

the field in the classical limit approaches a hyperbolic trajectory rather than a circular one.

The coordinate p3/eE then represents the time at the center of the hyperbola: the particle

decelerates for t < p3/eE and accelerates for t > p3/eE . In other words, the integration over p3

in equation (2.70) is tantamount to an integration over particle production time [37].

2.4.3 Borel summability

The decay rate of the vacuum in the presence of a constant electric field is a non-perturbative

expression, that is, the process appears in no finite order in perturbation theory. It is reasonable

to ask, however, whether it is possible to extract this nonperturbative result from an appropriate
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resummation of the perturbative series. Indeed it is [39, 26]. I outline Dunne’s argument below.

For more details on Borel summation, refer to the book on divergent series by Hardy [40].

A useful tool for the analysis of divergent series is Borel summation. As an example, consider

an alternating, divergent series

f (g ) =
∞∑

n=0
(−1)n n! g n . (2.71)

A new function f̃ (g ) can be formally defined by inserting the definition of the Gamma function

n! = ∫ ∞
0 dt t ne−t , and swapping integration and summation:

f̃ (g ) =
∫ ∞

0
dt e−t

∞∑
n=0

(−1)n (t g )n = 1

g

∫ ∞

0
dt

e−t/g

1+ t
. (2.72)

This expression, called the Borel sum of f , is well-defined and convergent for all g > 0. The

original, divergent series is then best understood as an asymptotic expansion for this finite

function of g .

For a more general power series A(z)

A(z) =
∞∑

n=0
an zn (2.73)

we define the Borel transform BA(t )

BA(t ) =
∞∑

n=0

an

n!
t n . (2.74)

The Borel sum Ã(z) is

Ã(z) =
∫ ∞

0
dt e−tBA(t z). (2.75)

The Borel transform BA(t ) need not converge for all t in order for the method to be useful. If

BA(t ) converges to an analytic function in a finite region containing t = 0, it is natural to use its

analytic continuation to define the Borel sum, provided the resulting integral exists.
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One class of series that are particularly useful in physics is given by [41]

f (g ) ∼
∞∑

n=0
(−1)nαnΓ(βn +γ)g n (2.76)

f̃ (g ) = 1

β

∫ ∞

0

dt

t

(
1

1+ t

)(
t

αg

)γ/β

exp

[
−

(
t

αg

)1/β
]

. (2.77)

Such series arise naturally in the context of perturbation expansions with a small coupling g .

2.4.4 Constant magnetic field

We will make use of the previous result for studying the Euler–Heisenberg Lagrangian. We start

by inserting the expansion [42]

z coth z =
∞∑

n=0

22k B2n

(2n)!
z2n , (2.78)

where B2n are the Bernoulli numbers, into equation (2.56), which yields

L (1)[B ] = m4

8π2

∞∑
n=0

B2n+4

(2n +4)(2n +3)(2n +2)

(
2eB

m2

)2n+4

. (2.79)

As anticipated in equation (2.33), only even powers of e appear. The series is of the form∑
an g n ,

where g = (2eB/m2)2 and

an = B2n+4

(2n +4)(2n +3)(2n +2)
(2.80)

= (−1)n+1 2

(2π)2n+4
Γ(2n +2)ζ(2n +4) (2.81)

∼ (−1)n+1 2

(2π)2n+4
Γ(2n +2)

[
1+ 1

22n+4
+·· ·

]
(2.82)

where in the last step the Riemann zeta function

ζ(s) ≡
∞∑

n=1

1

ns
(2.83)
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was expanded about large argument. The leading-order term now has the form of equa-

tion (2.76), and thus

L̃ (1)[B ] ∼ (eB)2

8π4

∫ ∞

0

dt

1+ t
exp

(
−m2

eB
π
p

t

)
(2.84)

∼
(

eB

2π2

)2 ∫ ∞

0
ds

s

π2 + s2
e−s(m2/eB). (2.85)

Just as in the example series (equation (2.71)), this is a well-defined, unambiguous result. It

represents the leading term in the Borel sum ofL (1)[B ]. In fact, the full Borel sum recovers the

original expression (2.56) for the Euler–Heisenberg Lagrangian [26].

2.4.5 Constant electric field

The power series expansion of the Euler–Heisenberg Lagrangian for the case of a constant

electric field (2.59) reads

L (1)[E ] = m4

8π2

∞∑
n=0

(−1)nB2n+4

(2n +4)(2n +3)(2n +2)

(
2eE

m2

)2n+4

. (2.86)

This series is non-alternating, so it can be expected that Borel summation will fail. Given the

leading term,

L (1)[E ] ∼ m4

8π2

∞∑
n=0

2

(2π)2n+4
Γ(2n +2)

(
2eE

m2

)2n+4

, (2.87)

we may write formally

L̃ (1)[E ] ∼ (eE)2

8π4

∫ ∞

0

dt

1− t
exp

(
−m2

eE
π
p

t

)
(2.88)

∼
(

eE

2π2

)2 ∫ ∞

0
ds

s

π2 − s2
e−s(m2/eE). (2.89)

Notice that this expression can also be obtained from the Borel sum for a constant magnetic

background (2.85) by the formal substitution B → iE and contour rotation s → is, as in the full

Euler–Heisenberg Lagrangian.
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Once more, our formal substitutions have resulted in an expression that is ill-defined due to a

pole in the integrand—Borel summation has indeed failed. However, here too the ambiguity

can be lifted by taking into account the correct causal boundary conditions codified in the

iε prescription [43]. Once this is done, an imaginary part can be obtained which coincides

with the leading term in equation (2.67). Remarkably, we were able to obtain nonperturbative

information solely by analyzing the large order behavior of perturbation theory. By taking into

account further terms in the asymptotic expansion (2.87), it is possible to reconstitute the full

Schwinger formula (2.67).

2.5 SCHWINGER’S PROPER TIME METHOD

Heisenberg and Euler were able to derive an impressive array of effects in quantum electrody-

namics in the presence of external fields, but at the time their derivations could be considered

somewhat heuristic due to the lack of a firm field theoretic understanding of key concepts

such as renormalization and gauge invariance. This was rectified by Schwinger, who placed

several of the results of previous sections on a firmer field theoretic foundation [4, 44]. Several

things are worth noting about this derivation. First, gauge invariance is manifest in every step

of the calculation. Second, unlike in the previous calculation of Euler and Heisenberg, the

role of logarithmic divergences and charge renormalization was properly understood. Third,

Schwinger was able to reduce the computation of correlation functions in a quantum field

theory to the conceptually simpler task of solving a nonrelativistic Schrödinger equation. It is

this latter property that will be of most use for our purposes.

Schwinger’s key insight comes from the following observation: in Minkowski space, the Green’s

function for QED satisfies the equation

(i /D −m)G(x, x ′) = δ4(x −x ′). (2.90)
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Spinor indices are suppressed. Note that this is an operator equation, as Aµ is not at this point a

classical vector field, but rather an operator valued distribution. If we writeG(x, x ′) as a matrix

element of an operatorG , that is,G(x, x ′) ≡ 〈x ′|G|x〉, we can rewrite the above as

( /P −m)G = 1 (2.91)

where Pµ = i Dµ. Hereafter I write 1 simply as 1. Now recall the observation in equation (2.43).

Wemay represent the Green’s function as

G =−( /P +m)
1

−/P 2 +m2
(2.92)

=−( /P +m)i
∫ ∞

0
ds exp

[−i (−/P 2 +m2)s
]
. (2.93)

If we now write H ≡−/P 2 and restore the spacetime dependence,

G(x, x ′) =−i (i /D +m)
∫ ∞

0
ds e−i m2s〈x ′|e−i H s |x〉, (2.94)

we notice something remarkable. The factor 〈x ′|e−i H s |x〉 has the exact form of amatrix element

of the time-evolution operator in nonrelativistic quantummechanics, with the “proper time” s

taking on the role of the time variable

U (x, x ′; s) ≡ 〈x ′|e−i H s |x〉. (2.95)

The time-evolution matrix elementU (x, x ′; s) contains essentially all of the physics. We can

say loosely that this theory of quantum fields in d spacetime dimensions is equivalent to the

quantummechanics of nonrelativistic particles in d “spatial” dimensions and one proper time

dimension.

There is now a clear objective. The differential equation satisfied by the time-evolution operator

is

i∂sU (x, x ′; s) = H U (x, x ′; s), (2.96)
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where

H =−/P 2 = D2 − 1

2
eσµνFµν, (2.97)

subject to the boundary conditions

U (x, x ′;0) = δ4(x −x ′) (2.98)

lim
s→∞U (x, x ′; s) = 0. (2.99)

We seek the matrix elements of H in the appropriate basis so that the equations above are easy

to solve. To proceed we need the commutation relations

[xµ, pν] =−igµν, [Pµ,Pν] =−ieFµν. (2.100)

In the cases of interest to us, it will be convenient to employ the Heisenberg picture. The

time-dependent operators xµ(s) and Pµ(s) satisfy the equations of motion

dxµ

ds
= i [H , xµ] =−2Pµ (2.101)

dPµ

ds
= i [H ,Pµ] =−2eFµρPρ− ie ∂ρFµρ− 1

2 e∂µσ
µνFρν. (2.102)

In the second equation above, all terms but the first vanish for the case of a constant field, and

thus the systemmay be readily integrated. Using a matrix notation for compactness, we write

P (s) = e−2eF s P (0) (2.103)

x(s)−x(0) =
(

e−2eF s −1

eF

)
P (0). (2.104)

These two expressions can be combined to write P (s) as a function of x(s) and x(0).

P (s) =− eFe−eF s

2sinh(eF s)

[
x(s)−x(0)

]
(2.105)
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and then, using the antisymmetry of F , we establish

P 2(s) = [
x(s)−x(0)

]ᵀK
[
x(s)−x(0)

]
, (2.106)

K ≡ e2F 2

4sinh2(eF s)
. (2.107)

We wish to order the operators so that all the x(s) is to the left of the x(0). By making use of the

commutator
[
xµ(s), xν(0)

]= i

(
e−2eF s −1

eF

)

µν

, (2.108)

the Hamiltonian may be written as

H =−x(s)ᵀK x(s) + 2x(s)ᵀK x(0) − x(0)ᵀK x(0)+ i
2 tr[eF coth(eF s)]− 1

2 eσF. (2.109)

The differential equation satisfied by the time-evolution operator matrix element is

i∂sU (x, x ′; s) =
{
−(x −x ′)ᵀK (x −x ′)+ i

2 tr[eF coth(eF s)]− 1
2 eσF

}
U (x, x ′; s). (2.110)

This may be integrated immediately, which yields

U (x, x ′; s) =C (x, x ′)s−2 exp
{
− i

4 (x −x ′)ᵀeF coth(eF s)(x −x ′)

− 1
2 tr log

[
sinh(eF s)

eF s

]
+ i

2 eσF s
}

.
(2.111)

The factorC (x, x ′) can be found by solving the equations

〈x ′|e−i H sPµ(s)|x〉 =
[

i∂x
µ−e Aµ(x)

]
〈x ′|e−i H s |x〉 (2.112)

〈x ′|e−i H sPµ(0)|x〉 =
[
−i∂x ′

µ −e Aµ(x ′)
]
〈x ′|e−i H s |x〉 (2.113)

which lead to

[
i∂x

µ−e Aµ(x)− 1
2 eF (x −x ′)

]
C (x, x ′) = 0 (2.114)

[
−i∂x ′

µ −e Aµ(x ′)− 1
2 eF (x −x ′)

]
C (x, x ′) = 0. (2.115)
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The solution is just an Aharanov-Bohm phase factor:

C (x, x ′) = −i

(4π)2
exp

[
−ie

∫ x

x ′
dy · A(y)

]
, (2.116)

whose presence wemight expect on physical grounds. The normalization is fixed by the bound-

ary condition (2.98). Finally we obtain

U (x, x ′; s) = −i

(4πs)2
exp

{
− i

4 (x −x ′)ᵀeF coth(eF s)(x −x ′)

− 1
2 tr log

[
sinh(eF s)

eF s

]
− ie

∫ x

x ′
dy · A(y)+ i

2 eσF s
}

.
(2.117)

This expression can be combined with equation (2.94) to give the full, nonperturbative expres-

sion for the fermion propagator in the presence of a constant external field. This can then be

used to compute directly a number of quantum electrodynamics effects in nontrivial back-

grounds, such as the birefringence of the vacuum, photon splitting, or external-field-enhanced

variants of scattering of light by light, such as Delbrück scattering [45, 46, 33].

I will use equation (2.117) to compute the effective action in the presence of a constant external

field. In the proper time language wemay express the one-loop effective Lagrangian as

L (1) = i

2

∫ ∞

0

ds

s
e−i s(m2−iε) trU (x, x; s), (2.118)

c.f. equation (2.33). For brevity, I will omit the −iε term in the following expressions, but keep

in mind that it is always there. Equation (2.117) simplifies somewhat in the coincident limit

that appears in this expression. Deforming the contour by making the substitution s →−i s,

L (1) =− 1

32π2

∫ ∞

0

ds

s3
e−sm2

exp

(
−1

2 tr log

[
sin(eF s)

eF s

])
tre

1
2 eσF s . (2.119)
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To illustrate the use of the formula we specialize to the case of a constant electric field pointing

in the ẑ-direction:

L (1) =− 1

32π2

∫ ∞

0

ds

s3
e−sm2 eE s

sin(eE s)
·4cos(eE s) (2.120)

=− 1

8π2

∫ ∞

0

ds

s3
e−sm2 eE s

tan(eE s)
. (2.121)

As in equation (2.50), this expression is divergent as s → 0, so thedivergencesmust be subtracted

off. The finite part is, after making the substitution s → s/eE andWick-rotating to Euclidean

space,

L (1) = (eE)2

8π2

∫ ∞

0

ds

s2
e−sm2

(
cot(s)− 1

s
− s

3

)
(2.122)

where, as before, the first subtraction is chosen to make the effective action vanish at zero

external field, and the second is a charge renormalization. Analogously, for a constantmagnetic

field,

L (1) = (eB)2

8π2

∫ ∞

0

ds

s2
e−sm2

(
coth(s)− 1

s
− s

3

)
. (2.123)

We have been able to rederive the exact form of the Euler–Heisenberg Lagrangian in the proper-

timemethod (compare equations (2.56) and (2.59)). However, this was done without a need

for the formal substitution B → iE . Expression (2.119) allows for any choice of constant, homo-

geneous background field. By diagonalizing the F and σF matrices it is possible to evaluate

the Dirac traces exactly, which recovers equation (2.60) for the effective action, in terms of the

Lorentz invariants defined in equations (2.61) and (2.62). It is worth emphasizing that at no

point a gauge was chosen; the expression was explicitly gauge invariant at every step of the

calculation.
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CHAPTER 3

THE WORLDL INE FORMAL I SM

Schwinger’s method is powerful and elegant, and was historically important both for clarifying

the role of renormalization that was unknown to Heisenberg and Euler, as well as a clear

demonstration that it is possible to maintain manifest gauge invariance at every step of the

calculation in QED. However, obscures the simple tunneling interpretation suggested by the

calculation of Sauter (sections 2.2 and 2.3). In field theories, tunneling processes are typically

realized by incorporating the effect of saddle point approximations to the path integral. The

field configurations at the saddle point are known as instantons. It is worthwhile to ask whether

the process of pair production in an electric field can be understood in terms of instanton-type

contributions.

This interpretation was obtained by Affleck et al. [47], who, building on the earlier work of

Feynman [48, 49], sought a semiclassical expansion of Schwinger’s expression for the electron

propagator (2.117). Consider the representation given in equation (2.95), which is just the

observation that the kernel U (x, x ′; s) can be seen as a time-evolution matrix element in a

(5-dimensional) nonrelativistic quantum theory. Schwinger’s approach was to compute this

matrix element directly via the Heisenberg equations of motion. An equivalent choice is to

express the nonrelativistic quantummechanics problem using the path integral formalism,

which, as we will see, suggests a powerful approximation scheme.
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There is also a suggestive derivation of this formalism from string theory [50–52], where the

proper-time parameter is identified with one of the coordinates describing the worldsheet.

From such a point of view, the gauge theory diagrams have the same form as perturbative

contributions in a string theory in the limit of infinite string tension. This point of view has

been immensely useful in the computation of amplitudes in nonabelian gauge theory [53].

However, this rich subject falls outside the scope of this dissertation.

3.1 PRELIMINARIES

In the calculations of section 2.5 I followed some of the conventions set by Schwinger; namely,

the proper-time was defined such that the formal analogy between the Green’s function and a

nonrelativistic quantummechanics time evolution operator is clearest. In what follows I use

different conventions, which agreewith those of Dunne and Schubert [54]. For clarity, the initial

presentation is restricted to the case of a charged scalar, with Euclidean Lagrangian density

L = (Dµφ
∗)(Dµφ)+m2φ∗φ. (3.1)

We write the Green’s function

G = 1

P 2 +m2
=

∫ ∞

0
ds exp

[−s(P 2 +m2)
]

(3.2)

(c.f. equation (2.93)), which implicitly defines a Euclidean proper time s. The spacetime matrix

elements of the Green’s function are then

G(x, x ′) =
∫ ∞

0
ds e−sm2〈x ′|e−sP 2 |x〉 (3.3)

with the corresponding Euclidean proper-time evolution operator

U (x, x ′; s) ≡ 〈x ′|e−sP 2 |x〉. (3.4)

37



Though the role of proper-time is slightly obscured in this formulation, standard functional

integration methods are still applicable [52, 55]. As usual, one subdivides the proper-time

interval (0, s) into sufficiently small segments so that the noncommutativity of the operators in

the exponential can be ignored. For the n-th interval (sn , sn +δs), we may write

〈xn+1|e−P 2δs |xn〉 =
∫

dp

2π
e−δsP 2〈xn+1|p〉〈p|xn〉 (3.5)

=
∫

dp

2π
e−δs(pµ+e Aµ)2−i p(xn+1−xn ) (3.6)

=Nne−δs
(1

4 ẋ2
n−ie A·ẋn

)
(3.7)

where ẋ ≡ (xn+1 − xn)/δs and Nn is a normalization factor to be absorbed in the functional

integral measure. We can now write the path integral corresponding to the kernel (3.4),

U (x, x ′; s) =
∫ x ′

x
[dx]exp

[
−

∫ s

0
dτ

(1
4 ẋ2 + ie A · ẋ

)]
. (3.8)

3.2 ZERO-TEMPERATURE EFFECTIVE ACTION

One of the conceptual advantages of Feynman’s path integral is the clarity of the semiclassical

limit, which is used to great effect in the instanton method. That is the role of expression (3.8):

it provides a means for finding semiclassical expressions for propagators and quantities that

can be written directly in terms of propagators, such as the effective action. This insight was

first applied to the problem of pair production in an external electric field by Affleck et al. [47],

but, due in part to our choice of conventions, the exposition below parallels that of Dunne and

Schubert [54]. Recalling expression (2.118), we write

S(1)
eff =

∫ ∞

0

ds

s
e−sm2

∮
[dx]exp

[
−

∫ s

0
dτ

(1
4 ẋ2 + ie A · ẋ

)]
, (3.9)

where the circle in the integral symbol indicates the functional integral is over all closed paths,

that is, those satisfying xµ(s) = xµ(0). This condition requires comment. In reference [54], the
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authors state the integral is to be taken over periodic paths, not merely closed ones. This is

based on the beautiful work of Gutzwiller [56] and Littlejohn [57], who established that, in trace

formulas (which have a very similar structure to equation (3.9)), only periodic orbits contribute.

If the spacetimemanifold is topologically trivial, this implies the condition of periodicity of

the paths themselves. However, nontrivial manifolds will eventually appear in the study of

vacuum decay at finite temperature; the periodicity of the orbits does not necessarily imply the

periodicity of the paths, and the weaker condition of merely closed paths is more appropriate.

See chapter 6 for details.

The above expression can be simplified further. If we effect the rescaling τ= su, s → s/m2, we

can write

S(1)
eff =

∫ ∞

0

ds

s
e−s

∮
[dx]exp

[
−

∫ 1

0
du

(m2

4s ẋ2 + ie A · ẋ
)]

. (3.10)

It is now possible to perform the proper time integral explicitly, which yields

S(1)
eff = 2

∮
[dx]K0

(
m

√∫ 1
0 du ẋ2

)
exp

[
−ie

∫ 1

0
du A · ẋ

]
. (3.11)

Using the large argument formula [58]

K0(z) ∼
( π

2z

)1/2
e−z , (3.12)

it is then possible to write

S(1)
eff ∼

√
2π

m

∮
[dx]

(∫ 1
0 du ẋ2

)−1/4
exp

[
−

(
m

√∫ 1
0 du ẋ2 + ie

∫ 1

0
du A · ẋ

)]
. (3.13)

This expression could also have been obtained from equation (3.10) directly via Laplace’s

method, as was done in the work of Affleck et al. [47]. The critical point is

s0 =
m

2

√∫ 1
0 du ẋ2. (3.14)
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Physically, the large-argument condition for the reliability of this approximation corresponds

to a weak field limit, such as eE ¿ m2, as we will see when we specialize to an electric back-

ground [54].

3.2.1 Worldline instantons

Weare now in position to derive a semiclassical approximation for equation (3.13). The problem

reduces to finding instanton solutions for the associated wordline action

S̄ = m
√∫ 1

0 du ẋ2 + ie
∫ 1

0
du A · ẋ. (3.15)

This entails solving the following equations of motion:

1√∫ 1
0 du ẋ2

mẋµ = ieFµνẋν. (3.16)

Notice that
√∫ 1

0 du ẋ2 is a constant of the motion, as can be verified by contracting the above

with ẋµ.

We impose a constant and uniform (Minkowski-space) electric field in the ẑ-direction by taking

A3 =−iE x4, with the other three components either zero or constant. Then the only non-zero

components of F are F34 =−F43 =+iE . The general solution of the equations of motion (3.16)

for xµ(τ) is a circular orbit of radius R = m/eE centered about (x̄3, x̄4)

x3 =
m

eE
cos

( a

R
u +ϕ

)
+ x̄3 (3.17)

x4 =
m

eE
sin

( a

R
u +ϕ

)
+ x̄4 (3.18)

where the parameter a =
√∫ 1

0 du ẋ2 is determined from the condition that the paths be closed,

as required by the path integral (3.9), and the phase ϕ is an arbitrary (modulus) parameter. In

the case of constant field, a equals the arc length, so clearly we must have a = 2πpR, with p a
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x3

x4

Figure 3.1: A worldline instanton for the case of a constant electric field with p = 1. The trajectory is a
circle of radius r = m/eE . The arrow indicates the direction of increasing proper-time u.

positive integer. The solution is then

xp
3 = m

eE
cos

(
2πpu +ϕ)+ x̄3 (3.19)

xp
4 = m

eE
sin

(
2πpu +ϕ)+ x̄4. (3.20)

Such paths are known asworldline instantons. The value of the action for a worldline instanton

of winding p is

S̄0p = m2

eE
πp. (3.21)

The 0 in the subscript stands for 0 winding and indicates that this is a zero-temperature result.

This notation will be introduced properly in Chapter 6, but is retained here for consistency.

The values of S̄0p coincide with the exponents in Schwinger’s formula, equation (2.67), as they

must if this formalism is to reproduce the known results in Chapter 2.
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3.2.2 Fluctuation prefactors

Calculating the pre-exponential factor in the semiclassical evaluation of the effective ac-

tion (3.13) requires characterizing small oscillations about the classical solution. The case

of circle instantons with winding p = 1 was treated by Affleck et al. [47]. I generalize their

derivation to the case p > 1 below [59]. Expanding the effective action about its functional

extremumwe obtain
S(1)

eff ∼
∞∑

p=1

√
2πeE

m2ϑ0p
N det−

1
2
(
Mp,µν

)
e−S̄0p ,

Mp,µν ≡
δ2S̄

δxµδxν

∣∣∣∣
xp

.

(3.22)

In this formula, N is a normalization factor to be fixed shortly, and ϑ0p = 2πp is the total

angle swept by a wordline instanton which winds around its center p times (with a0p defined

analogously as the arc length parameter of such a solution). These definitions are special to

the case of a constant electric field. If the field has spatial or temporal inhomogeneities, the

instanton is no longer circular [54]; a0p and ϑ0p can no longer be identified as arc lengths or

angles andmust be defined directly in terms of s0p = m
2

(∫ 1
0 du ẋ2

)1/2, equation (3.14).

The determinant factor is often the most difficult to determine. However, in the case of a

constant electric field, it is possible to compute explicitly the full spectrum of small fluctuations

about the wordline instanton. The second variation operator is

Mp,µν = eE

[(
−δµν
ϑ0p

∂2

∂u2
+ ieFµν

∂

∂u

)
δ(u −u′)− ϑ0p

R2
xp
µ (u)xp

ν (u′)
]

. (3.23)

The determinant of this operator is defined as the product of all eigenvalues (subject to pe-

riodic boundary conditions), together with some suitable regularization prescription, which

we handle simultaneously with the normalization factorN . The last term is problematic in

general, as it is nonlocal in the proper-time u; solving the fluctuation problem for spacetime

dependent electric fields would typically require solving an integro-differential eigenvalue
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eigenvalue eigenvector(s)

2πeE q2

p

(
cos(2πqu),0,0,0

)
,(

sin(2πqu),0,0,0
)

2πeE
(

q2

p −q
) (

0,0,cos(2πqu),sin(2πqu)
)
,(

0,0,sin(2πqu),−cos(2πqu)
) q 6= p

-2πpeE
(
0,0,cos(2πpu),sin(2πpu)

)

Figure 3.2: Eigenvalues and eigenvectors of the second variation operator about circle worldline instan-
ton solutions for a constant electric field, with winding p. The parameter q takes values over
all nonzero integers unless otherwise stated. Translational zero modes are not listed.

problem. However, for the specific case of circle instantons, all eigenfunctions may be found

by inspection.

The oscillations in the 1 and 2 directions are trivially sines and cosines, as there is no electric

field and the second term inside the parentheses vanishes. In the 3 and 4 directions, because F34

is nonzero, oscillations in both directions are coupled together. There are also five zero modes:

four corresponding to the usual spacetime translations of the instanton, and one corresponding

to translationsof the startingpoint of the solution, that is, translationsof themodulusparameter

ϕ in equations (3.19) and (3.20). Because of the orthogonality of trigonometric functions,

the nonlocal term from the functional Hessian (3.23) vanishes for all modes except the one

associated with expansions and contractions of the circle solution, and the corresponding

eigenvalue is negative as a result. There are also p −1 pairs of unstable modes associated with

fluctuations in the 34 plane with frequency q < p. The full set of eigenvalues and eigenvectors

of the functional Hessian can be found in Table 3.2.

The presence of negative eigenvalues indicates that this trajectory is a saddle (rather than a

maximumor aminimum) in functional space. If there is an oddnumber of negative eigenvalues,

the determinant is overall negative and the square root in equation (3.22) yields anoverall purely

imaginary prefactor. Thus, one expects such worldline instantons represent contributions to

43



the vacuum decay rate. However, if there is more than one negative eigenvalue, as in the case

of worldline instantons with p > 1, there are subtle interpretational issues [60–62]. Here we

have guidance from the treatment of Schwinger [4] and the various derivations in Chapter 2,

which establishes that the naive prescription is correct and all eigenvalues are included; the

pairs of minus signs cancel as expected.

The zero mode associated with translations of the proper-time variable xµ(u) → xµ(u +ϕ/2πp)

is handled as follows. One considers an infinitesimal translation

xµ(u +ϕ/2πp) ≈ xµ(u)+ϕ d

dϕ
xµ(u +ϕ/2πp)

∣∣∣∣
ϕ=0

(3.24)

and writes the second term in terms of normalized eigenfunctions. Per this standard argu-

ment [63], a factor of

R
∫ 2π

0

dϕp
2π

=
p

2π
m

eE
(3.25)

must be included in the functional integral.

The product of eigenvalues in Table 3.2 is clearly divergent. This divergence associated with the

normalization of the functional integral. We fix this normalization by evaluating the following

exactly solvable path integral
∮

[dx]exp

[
− m2

4s0p

∫ 1

0
du ẋ2

]
=

∫
d 4x 〈x|e−s0p (p/m)2 |x〉 (3.26)

in two different ways. Inserting a complete set of states in the integrand on the right we obtain

〈x|e−s0p (p/m)2 |x〉 =
∫

d 4p

(2π)4
e−s0p (p/m)2 = m4

(4πs0p )2
. (3.27)

One may also evaluate the left-hand side as a functional Gaussian, which gives
∮

[dx]exp

[
− m2

4s0p

∫ 1

0
du ẋ2

]
= (∫

d 4x
)
N

[
det′

(
M free

p,µν
)]−1/2

,

M free
p,µν ≡− m2

4s0p

d 2

du2

(3.28)
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where the prime indicates that the determinant is computed with the zero modes removed. I

define the “free” second variation operator as the operator obtained from Mp,µν by removing

terms corresponding to the effect of the external field. Comparing with equation (3.22), we can

write

L (1) ∼ (eE)2

16π4

∞∑
p=1

1

p2

√
2π

peE


det′

(
Mp,µν

)

det′
(
M free

p,µν
)



−1/2

e−S̄0p . (3.29)

The eigenvalues problem for M free
p,µν is trivial for all four directions, that is, its eigenvalues are

the same as those given in the first row of Table 3.2. Thus wemay write

det′
(
Mp,µν

)

det′
(
M free

p,µν
) =

(−2πpeE)

(2πpeE)2

∏
q 6=0
q 6=p

(
q2

p −q
)2

(
q2

p

)2 (3.30)

=− 1

2πpeE

[
lim
z→1

sin
(
πpz

)

πpz(1− z)

]2

(3.31)

=− 1

2πpeE

[
(−1)p+1]2

. (3.32)

The second line comes from a standard identity [42],

sin(x)

x
=

∞∏
n=1

(
1− x2

n2π2

)
=

∏
n 6=0

(
1− x

nπ

)
. (3.33)

As mentioned previously, the determinant is negative. The factor in brackets is positive or

negative depending onwhether there is an even or odd number of pairs of negative eigenvalues

from the second line in Table 3.2. Finally we can assemble the final expression

L (1) ∼ i

2

(eE)2

(2π)3

∞∑
p=1

(−1)p+1

p2
e−m2

eE πp , (3.34)

in agreement with the results of Weisskopf for the vacuum decay rate in scalar electrodynam-

ics [27]. An additional factor of 1/2 was included in accordance with a standard argument [63].

A functional integral can formally be decomposed by expressing the integrand in an orthonor-

mal basis and integrating over the coefficient. An appropriate basis for the integration over

fluctuations about the worldline instanton is the one given in Table 3.2. However, since there
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are negative eigenvalues, the individual integrals over each direction in functional space do not

converge. Considering specifically the lone negative eigenvalue corresponding to expansions

and contractions of the circle, one may write the action as a function of the radius ρ for a

circular trajectory (which satisfies the equations of motion (3.16) only when ρ = R = m/eE),

S(ρ) = m

eE
2π

(
ρ− ρ2

2R

)
. (3.35)

This action is plotted in Figure 3.3. It approaches negative infinity for large ρ, which means

the integration over ρ diverges exponentially2. Thus, the functional integral (3.13) must be

defined together with a prescription for analytic continuation, which is in turn determined

by the causal boundary conditions. This is in correspondence with the iε prescription used in

the various derivations in Chapter 2. The appropriate steepest descent contour is composed

of two straight lines: one from the origin (0,0) to the saddle point at (R,0), and one from the

saddle point to (R,+i∞). The integration in the imaginary direction is done over only one half

of the Gaussian peak, which explains the factor of 1/2 that was included in equation (3.34).

2Note that, in the formulation I employed, inwhich the integral over proper-timewasdonebefore the functional
integral (see the steps between equation (3.10) and (3.13)), ρ is by definition a non-negative number.
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R = m
eE ρ

S(ρ)

Figure 3.3: Action for a circular trajectory of arbitrary radius ρ. Only when ρ = R = m/eE this solution
satisfies the equations of motion (3.16).

R = m
eE

Figure 3.4: Integration contour for the direction in functional space corresponding to the negative
eigenvalue in the spectrumof small fluctuations about the circleworldline instanton solution.
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3.3 SPINORS

The various expressions for one-loop effective actions in the presence of external fields devel-

oped in Chapter 2 give great insight into the structure of such formulas. This understanding

allows for a straightforward generalization of the results of the preceding sections to the phys-

ically relevant case of spinor electrodynamics. Inspecting equations (2.36) and (2.97), it is

possible to deduce that the path integral representation for the effective action in the case of a

charged fermion differs from the corresponding charged scalar expression by a global factor

−1/2 as well as the last term in equation (2.97), which represents the coupling of spin to the

external electromagnetic field. As explained in the article of Dunne and Schubert [54], this

term can be accounted for by including a ’spin factor’

Sp[x, A] = TrP exp

[
i
2σµν

∫ τ

0
ds Fµν(x(τ))

]
(3.36)

under the path integral [54]. The trace is over Dirac indices and the symbol P denotes path-

ordering, which is irrelevant for the case of constant fields as all Fµν commute. For an external

Euclidean electric field, the exponent in equation (3.36) is purely imaginary. It does not, there-

fore, affect the location of the saddle point in the integral over proper-time s, nor the functional

saddle point identified by the equations of motion (3.16). Most of the analysis performed in

the previous sections is therefore still applicable. The spin factor is simply carried along the

worldline instanton. For the case of a constant electric field, it reduces to

Sp[x, A] = 4cos(eE s) = 4cos(πp) = 4(−1)p (3.37)

(c.f. equation (2.120)). Therefore, the vacuumdecay rate due to the applied electric field reduces

to

ImL (1) ∼ (eE)2

(2π)3

∞∑
p=1

1

p2
e−m2

eE πp , (3.38)
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which is Schwinger’s formula (2.67). Remarkably, even though this result is a saddle-point

approximation, it coincides with the exact result.

Another (perhaps more sophisticated) way of handling spinors in the worldline formalism is

to write the spin factor as an integral over Grassmann variables [52]. The one-loop effective

action in the presence of a gauge field is

L [A] =− 1

2

∫ ∞

0

ds

s
e−sm2

∮
[dx]

∫

A
[dψ]

×exp

[
−

∫ s

0
ds

(1
4 ẋ2 + 1

2ψ · ψ̇+ ie Aµẋµ− ieψµFµνψ
ν
)] (3.39)

where the subscript A on the Grassmann integral indicates anti-periodic boundary conditions.

Thus, the path integral is split into a bosonic “orbital” part and a fermionic “spin” part. This

form is particularly useful for amplitude computations and other applications of the word-

line formalism, as the worldline action, thought of as a one-dimensional field theory, has a

supersymmetry. In fact, the worldline path integral describing a Dirac particle isN =1 super-

gravity. However, the form (3.36) is more appropriate for the purpose of obtaining saddle-point

approximations.

3.4 VIRIAL REPRESENTATION

Nikishov’s virial representation was derived in Chapter 2 in order to determine the momen-

tum distribution of created pairs. It would be useful to be able to obtain the same results

from the worldline formalism, which permits the evaluation of the effective action in various

inhomogeneous field configurations [64].

I give this generalization here. The Green’s function (3.2)

G =
∫ ∞

0
ds exp

[−s(P 2 +m2)
]

(3.40)
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can be written in the position basis in the “parallel” 3,4 directions, and in the momentum basis

in the “perpendicular” 1,2 directions,

G(x∥, x ′
∥, p⊥, p ′

⊥) =
∫ ∞

0
ds e−sm2〈x ′

∥, p ′
⊥|e−sP 2 |x∥, p⊥〉. (3.41)

The remaining transformations that were used to obtain the wordline representation can

proceed only along the 3,4 directions and leave the 1,2 directions untouched. The one-loop

effective action for a scalar in “partial” wordline form is

S(1)
eff =

∫
d 2p⊥
(2π)2

∫ ∞

0

ds

s
e−s(m2+p2

⊥)
∮

[dx]exp

[
−

∫ s

0
dτ

(1
4 ẋ2 + ie A · ẋ

)]
. (3.42)

This form suggests defining the quantity

m2
⊥ ≡ m2 +p2

⊥ (3.43)

which has a physical interpretation as the relativistic mass squared of the created particles.

With the replacement m → m⊥, all manipulations proceed as before, with only minor modifica-

tions. In particular, the target space for the path integral in (3.42) is two-dimensional, so the

relevant normalization is
∮

[dx]exp

[
− m2

⊥
4s0p

∫ 1

0
du ẋ2

]
= m2

⊥
4πs0p

(3.44)

(c.f. equations (3.26) and (3.27)). The remainder of the calculation is the same regardless of

dimensionality. The instanton radius R⊥ = m⊥/eE is larger than m/eE , reflecting the fact that

the production of particles with larger transverse momentum is more strongly suppressed. The

one-loop effective action results

L (1) ∼ i
eE

2π

∫
d 2p⊥
(2π)2

∞∑
p=1

(−1)p+1

p
e−m2

⊥
eE πp . (3.45)
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Doing the p⊥ integral recovers equation (3.34). Doing the sum over p gives

L (1) ∼ i
eE

2π

∫
d 2p⊥
(2π)2

log
(
1+e−m2+p2

⊥
eE π

)
, (3.46)

in agreement with equations (2.69) and (2.70). Of course, the same derivation is valid for spinor

particles as well; the end result differs only by an overall sum over polarizations and the sign

in the logarithm. Once again it bears emphasizing that the sign is opposite what should be

expected from spin-statistics: the virial expression for fermions contains a minus sign, while

the one for bosons contains a plus sign.

This construction provides an interesting means of investigating pair production of massless

particles, whichmay be relevant, for example, inQCD. The parameterm⊥ is generically nonzero

even if m = 0, and the above argument applies. The total decay rate is given by

2L (1)
bosons =

∑ (eE)2

48π
, 2L (1)

fermions =
∑ (eE)2

24π
, (3.47)

where the sum is over polarization states.
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CHAPTER 4

F IN ITE TEMPERATURE F IELD THEORY

In this chapter I briefly review various concepts, definitions and conventions useful for dis-

cussing the thermodynamics of quantum fields. The subject, of course, is vast, and only a small

portion of it will be reproduced here. The interested reader may refer to the book of Kapusta

and Gale [65] for details.

The fundamental object in the description of quantummechanical systems when full knowl-

edge of the quantum state is unavailable is the density matrix

ρ̂ = exp

{
−β(Ĥ −

∑

i
µi N̂i )

}
(4.1)

whereβ= 1/T is the inverse temperature,H theHamiltonian, and theµi are chemical potentials

corresponding to conserved charges N̂i . The ensemble average of any observable Â can be

computed with the prescription

〈Â〉 = Tr Âρ̂

Tr ρ̂
(4.2)

The quantity in the denominator

Z = Tr ρ̂ (4.3)

is called the grand canonical partition function. We define the free energy F by

Z = exp
(−βV F

)
, (4.4)
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which should be reminiscent of the definition of the quantummechanical free energy encoun-

tered earlier in the context of zero temperature effective actions (2.25). This analogy may be

taken further for computing of the partition function for field theories at finite temperature.

For example, for a scalar field φ in four dimensions, we can write the partition function

Z =
∫

[dφ]exp

(
−

∫ β

0
dx4

∫
d 3x LE

(
φ,∂µφ

))
, (4.5)

where the fields are assumed to satisfy periodic boundary conditions on the Euclidean time

direction

φ(x, x4) =φ(x, x4 +β). (4.6)

Ananalogous expressionholds for the thermalpartition functiondescribinga fermionicparticle,

with the fieldsψ satisfying anti-periodic boundary conditions

ψ(x, x4) =−ψ(x, x4 +β). (4.7)

The spectrumof oscillations in the Euclidean time direction is discrete. The angular frequencies

associated with such oscillations are

ωn =




(2n)πT bosons
(2n +1)πT fermions,

(4.8)

known asMatsubara frequencies. The discreteness of the spectrum has marked consequences

for the effective action defined in (2.25). For example, to one loop, the zero-temperature ef-

fective potential for a real scalar field φ in the presence of suitable sources that set 〈φ〉 =φc is

given by

V (T=0)
eff =V (φc )+ 1

2

∫
d 4k

(2π)4
log

(
k2 +V ′′(φc )

)
(4.9)

At finite temperature, the integral over momentummodes is replaced by a sum, so

Veff =V (φc )+ 1

2β

∑
n

∫
d 3k

(2π)3
log

[(
2πn

β

)2

+k2 +V ′′(φc )

]
. (4.10)
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The sum over Matsubara modes can be brought into the logarithm as a product. With the

notation ω2
k ≡ k+V ′′(φc ) we can write

Veff =V (φc )+ 1

2β

∫
d 3k

(2π)3
log

[∏
n

(
ω2

n +ω2
k

)]
. (4.11)

A factor of∏nω
2
n canbe removed from theproduct, as it represents only an infinite, temperature

dependent constant contribution to the normalization of the functional integral [66]. Thus

Veff =V (φc )+ 1

β

∫
d 3k

(2π)3
log

[
βωk

∞∏
n=1

(
1+

ω2
k

ω2
n

)]
(4.12)

=V (φc )+ 1

β

∫
d 3k

(2π)3
log

[
βωk

∞∏
n=1

(
1+

β2ω2
k

4π2n2

)]
. (4.13)

The argument of the logarithm is recognized as a representation of the hyperbolic sine [42]

sinh(z) = z
∞∏

k=1

(
1+ z2

π2k2

)
, (4.14)

therefore

Veff =V (φc )+ 1

β

∫
d 3k

(2π)3
log

[
2sinh(βωk)

]
(4.15)

=V (φc )+
∫

d 3k

(2π)3

{
ωk +

1

β
log

(
1−e−βωk

)}
. (4.16)

The first term in braces is recognized as a vacuum energy contribution, while the second is

−p, where p is the pressure of a relativistic Bose gas with mass m =
√

V ′′(φc ). This justifies the

interpretation of the one-loop effective potential as the free energy of the system, when this

expression is evaluated on a global minimum.

4.1 GAUGE THEORIES AT FINITE TEMPERATURE

The study of phase transitions and critical phenomena, particularly the Landau-Ginsburg

theory and related developments [67], has generated fruitful results for many areas of physics.
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There, the free energy is taken to be a functional a set of order parameterswhose abrupt changes

across phase transitions typically (but not always) represent the breaking of various symmetries.

More details on the Landau-Ginsburg picture in the context of gauge theories may be found

in Ogilvie [2]. The prototypical example of a phase transition is that of a ferromagnetic spin

system, where the order parameter is the net magnetization, and the corresponding symmetry

is rotational invariance.

There is a natural analogue of magnetization which can be defined for a nonabelian gauge

theory and acts as the order parameter for the deconfinement transition. The Polyakov loop

operator for a gauge field Aµ, abelian or nonabelian, is defined as the path-ordered exponential

P (x) ≡T exp

[
i g

∫ β

0
dy4 A4(x, y4)

]
(4.17)

wherewhere the symbolT stands for ordering in the Euclidean timedirection3, and the timelike

pathbegins andendsat (x, x4). TheoperatorP takesonvalues in thegaugegroupand transforms

according to its adjoint representation: P (x) → g (x)P (x)g †(x) so that the trace of powers of

P , TrP n , is gauge-invariant. The usefulness of this quantity stems from the fact that it can be

related to the free energy of a static isolated quark in the representation R of the gauge group:

e−βFR = 〈TrR P (x)〉, (4.18)

as the Polyakov loop factor can be understood as a nonabelian Aharanov-Bohm-like geometric

phase accumulated by a heavy particle in the representation R which winds around once in the

Euclidean time direction. Clearly, if 〈TrR P (x)〉 vanishes, the free energy FR =∞, which indicates

that static isolated particles in the representation R are confined.
3For all cases considered in this dissertation this is of no consequence: external fields are taken to be constant,

or gauge-transformable to constant, and thus all the A4 commute.
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The symmetry associated with the confinement transition is the center symmetry of the global

symmetry implied by the gauge symmetry of the theory. The center of a group is the set of

elements which commute with every other element. For SU (N ), this is Z (N ). Under a rotation

by an element z ∈ Z (N ), the Polyakov loop transforms as

TrR P (x) → zkR TrR P (x) (4.19)

where kR is an integer known as the N-ality of the representation R. If kR is nonzero, unbroken

center symmetry implies the vanishing of the Polyakov loop expectation value

〈TrR P (x)〉 = 0 (4.20)

and therefore confinement of particles in representation R. The trace of P is an order parameter

for the deconfinement phase transition in pure gauge theories, which is associated with loss

of center symmetry above a critical temperature Td . When quark effects are included, 〈TrP〉

may or may not indicate a phase transition. However, 〈TrP〉 is quite generally small at low

temperatures and densities, indicating a large free energy cost for the presence of a single

added static quark, and tends towards larger values at temperatures and/or densities are

increased. In the absence of a real phase transition, in the case where quark effects prevent

exact unbroken center symmetry frombeing realized, there is still a crossover between confined

and deconfined regimes.

For sufficiently high temperatures, the dimensionality of the system is reduced and the dy-

namics are effectively those of a Z (N ) spin system. Note that the situation in gauge theory is

opposite the most common case in condensed matter systems, in which a symmetry which is

broken at low temperatures is restored at high temperatures for entropic reasons.

In particular we may be interested in the groups SU (2) and SU (3). For SU (2) it will be useful to

employ the parameterization

56



P =
(

e iθ 0

0 e−iθ

)
(4.21)

and for SU (3)

P =




e i (θ+ψ) 0 0

0 e−i (θ+ψ) 0

0 0 e−2iψ


. (4.22)

In both cases, it was assumed that the gauge field can be made diagonal by an appropriate

transformation. Generically for SU (N ), the Polyakov loopmay bewritten asdiag
(
e iθ1 , . . . ,e iθn−1

)
,

where the θj , are commonly, if inaccurately, referred to as Polyakov loop eigenvalues.

4.2 EFFECTIVE ACTION IN THE PRESENCE OF A POLYAKOV LOOP

In this section, low and high temperature expansions of the effective action in the presence

of a Polyakov look background are derived. These results are useful for applications, and in

particular they elucidate how the center symmetry becomesbrokenat high temperatures. These

derivations will also be the template for some further extensions, particularly in Chapter 5, and

some of the results obtained here will are useful as a benchmark for checking the correctness

of results obtained by other methods. The development presented here is that of Meisinger

and Ogilvie [68].

The steps leading to equation (4.16) may be retraced in the presence of a nontrivial Polyakov

loop. This is accomplished by replacing theMatsubara frequency contribution to the spectrum

in each of the copies of (4.10) as

ω2
n → (

ωn +ϕ)2 (4.23)
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where ϕ≡ θj is one of the Polyakov loop eigenvalues defined above. In d +1 dimensions, the

finite temperature contribution to the effective potential will be a sum of terms of the form

1

β

∫
d dk

(2π)d
log

(
1±e−βωk+iϕ)+ 1

β

∫
d dk

(2π)d
log

(
1±e−βωk−iϕ)

(4.24)

where the minus (plus) sign is taken for bosonic (fermionic) contributions. The first term

corresponds to the sum over positive Matsubara frequencies and can thus be identified with

particle contributions, and the second, respectively, with antiparticle contributions. In what

follows I will specialize to the case of a single bosonic particle moving in a Polyakov loop

background, with the understanding that the corresponding fermionic expression may be

obtained with the replacement [68]

VF (ϕ) =−VB (π+ϕ). (4.25)

Note that these expressions are valid for a single bosonic (resp. fermionic) degree of freedom:

degeneracies associated with e.g. spin degrees of freedom or the dimensionality of the group

representation are not included. The effective potential for a boson of spin s in the fundamental

representation of SU (N ) is thus

fB = s
∑

j
VB

(
θ j

)
(4.26)

where s is a spin degeneracy factor, which is 2 if the particle ismassless and 2s+1 otherwise [69].

For a gauge boson, which is in the adjoint representation, we may write

fgauge =
s

2

N∑

j ,k=1

(
1− 1

N
δjk

)
VB

(
θ j −θk

)
(4.27)

where the factor fo 1/2 corrects for overcounting the particle and antiparticle contributions

present in VB , and the δjk removes a singlet contribution.
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4.2.1 Low temperature expansions

At low temperatures, the Boltzmann factor e−βωk is likely small, so a Taylor expansion of the

logarithm is reliable. Additionally performing the angular integrations we obtain

VB =
∑
±

1

β

∫
d dk

(2π)d
log

(
1−e−βωk+iϕ)

(4.28)

=− 4πd/2

Γ(d/2)(2π)dβ

∫
dk kd−1

∞∑
n=1

1

n
e−nβωk cos(nϕ). (4.29)

With the substitution k = m sinh t this becomes

VB =− 4πd/2

Γ(d/2)(2π)d

∞∑
n=1

cos(nϕ)

nβ
md

∫ ∞

0
dt cosh t (sinh t )d−1e−nβm cosh t (4.30)

= 4πd/2

Γ(d/2)(2π)d

∞∑
n=1

cos(nϕ)

n2β2
md d

dm

∫ ∞

0
dt (sinh t )d−1e−nβm cosh t (4.31)

= 4πd/2

Γ(d/2)(2π)d

∞∑
n=1

cos(nϕ)

n2β2
md d

dm

[
Γ(d/2)p

π

(
2

nβm

)(d−1)/2

K(d−1)/2(nβm)

]
. (4.32)

The derivative can be computed with use of recursion relations for modified Bessel functions:

K ′
ν(z) =−Kν+1(z)+ ν

z
Kν(z) (4.33)

which imply
d

dz

[(
2

z

)ν
Kν(z)

]
=

(
2

z

)ν(
K ′
ν(z)− ν

z
Kν(z)

)
=−

(
2

z

)ν
Kν+1(z). (4.34)
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Therefore

VB = 4π(d−1)/2

(2π)d
md

∞∑
n=1

cos(nϕ)

nβ

d

dz

[(
2

z

)ν
Kν(z)

]

z=nβm,
ν=(d−1)/2

(4.35)

= 4π(d−1)/2

(2π)d
md

∞∑
n=1

cos(nϕ)

nβ

[
−

(
2

z

)ν
Kν+1(z)

]

z=nβm,
ν=(d−1)/2

(4.36)

=−4π(d−1)/2

(2π)d
md

∞∑
n=1

cos(nϕ)

nβ

(
2

nβm

) d−1
2

K(d+1)/2(nβm) (4.37)

=− 4md+1

(2π)(d+1)/2

∞∑
n=1

cos(nϕ)

(nβm)(d+1)/2
K(d+1)/2(nβm). (4.38)

The corresponding expression for fermions is

VF = 4md+1

(2π)(d+1)/2

∞∑
n=1

(−1)n cos(nϕ)

(nβm)(d+1)/2
K(d+1)/2(nβm) (4.39)

where the powers (−1)n correspond to antiperiodic boundary conditions on the path integral.

4.2.2 High temperature expansions

If the number of spatial dimensions d is odd, it is possible to resumexpressions (4.38) and (4.39)

to obtain asymptotic expressions valid at high temperature. The startingpoint is the identity [42]

∞∑
p=1

K0(pz)cos(pϕ) =1

2

[
γ+ log

( z

4π

)]
+ π

2

∑′

`

[
1√

z2 + (ϕ−2π`)2
− 1

2π|`|

]
(4.40)

where the notation ∑′
`
indicates that the singular term 1/2π|`| is omitted when ` = 0. With

repeated application of recurrence relation (4.33) it is possible to derive similar expressions for

∞∑
ν=1

1

pν
Kν(pr )cos(pϕ) (4.41)
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which is the main result needed for the desired expansions. The details may be found in

reference [68]; I quote only the final results relevant for d = 1 and d = 3:
∞∑

p=1

1

p
K1(pz)cos(pϕ) =− 1

4

[
log

( z

4π

)
+γ− 1

2

]
+ 1

z

[
1

4
ϕ2 − π

2
ϕ+ π2

6

]

− π

2z

∑′

`

[√
z2 + (ϕ−2π`)2 −|ϕ−2π`|− z2

4π|`|

] (4.42)

∞∑
p=1

1

p2
K2(pz)cos(pϕ) = 1

16
z2

[
log

( z

4π

)
+γ− 3

4

]

− 1

2

[
1

4
ϕ2 − π

2
ϕ+ π2

6

]
+ 2

z2

[
− 1

48
ϕ4 + π

12
ϕ3 − π2

12
ϕ2 + π4

90

]

− π

2z2

∑′

`

{
1

3

[
z2 + (ϕ−2π`)2]3/2 − 1

3
|ϕ−2π`|3

− 1

2
|ϕ−2π`|z2 − z4

16π|`|

}
.

(4.43)

In both formulas, ϕ is assumed to lie in the range (0,2π) With this, we have the complete

expression for the high temperature expansion of VB in three spatial dimensions:

VB (ϕ) =− m2

π2β2

∞∑
n=1

1

n2
K2(nβm)cos(nϕ) (4.44)

=− 2

π2β4

[
π4

90
− π2

12
ϕ2 + π

12
ϕ3 − 1

48
ϕ4

]

+ m2

2π2β2

[
1

4
ϕ2 − π

2
ϕ+ π2

6

]
− m4

16π2

[
log

(
βm

4π

)
+γ− 3

4

]

− 1

2πβ4

∑′

`

{
1

3

[
(βm)2 + (ϕ−2π`)2]3/2 − 1

3
|ϕ−2π`|3

− 1

2
|ϕ−2π`|β2m2 − (βm)4

16π|`|

}
.

(4.45)

The first term in the first line of (4.45) is the black body free energy for two degrees of freedom.

This leading term is minimized when ϕ= 0, which, as we will see, means that the deconfined

phase is favored at high temperatures. The second term is the one commonly associated with

symmetry restoration at finite temperature, as the m2T 2/12 term contributes a positive mass

of order T—notice that m is not a bare mass and may depend on the expectation values of
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fields. The logarithm in the third term often combines with similar contributions from zero-

temperature effective actions in such a way that the temperature sets the scale for running

coupling constants. The last term is associated with the loss of analyticity in finite temperature

perturbation theory [68].

4.3 RECOVERING CONFINEMENT

The high-temperature expansion of the one-loop effective potential for a boson moving in

a Polyakov loop background, equation (4.45), together with equation (4.27), can be used to

build the high temperature expansion of the one-loop effective potential for the gauge bosons,

which shows that the free energy isminimizedwhen all the Polyakov loop eigenvalues are equal

(and zero, as demanded by the fact that of elements of SU (N ) have unit determinant). At high

temperatures, the Polyakov loop approaches the identity matrix, which is not invariant under

the center group Z (N ), signaling deconfinement.

It is worth asking whether it is possible to recover a confined regime at sufficiently high tem-

peratures, where, as a consequence of asymptotic freedom, the one-loop result is reliable. One

clear possibility is to consider theories with fermions in the adjoint representation, satisfying

periodic boundary conditions on the Euclidean time direction [70, 71]. This type of model

maintains center symmetry at arbitrarily small values of β, which permits confinement to be

studied analytically. However, since our main goal in this section is to obtain a deconfinement

transition in rough agreement with lattice data [2], I will introduce the twomodels given in [72],

which for our purposes may be regarded as phenomenological. Both models have a physical

inspiration, but of two very different types; it is hoped that the differences might give insight

intowhat features are universal. Phenomenological studies of QCDat finite density have indeed

revealed regimes in which the twomodels differ [73].
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4.3.1 Model A

For bosons in the adjoint representation, the second term in (4.27) is minimized when ϕ =

θj −θk =π, which means that the model favors phases e iθj as far apart as possible on the unit

circle. This is known as eigenvalue repulsion and it is precisely the sort of behavior that is

required in order to favor unbroken center symmetry. However, such a term does not appear in

the pure gauge theory since it represents a mass contribution.

Inmodel A, I ignore this difficulty and simply add to the free energy, by hand, the second term

in (4.27), and adjust the parameterm so that the confinement-deconfinement transition occurs

at the correct temperature Td = 270 MeV for the pure gauge theory. The phase transition then

occurs as a result of the competition between the perturbative free energy, which dominates

at high temperatures, and the deformation, which dominates for temperatures T < Td . An

equivalent way to write the deforming term is

V A
d = M 2T 2

2π2

∞∑
n=1

1

n2
TrAdj P n . (4.46)

For SU (2), we have Td = (3/2)1/2M/π so the mass parameter must be set to m = 693 MeV. This

parameter should not be thought of as a mass for the gauge bosons: it is purely phenomeno-

logical.

4.3.2 Model B

Model B begins from the assumption that color confinement operates on a specific length

scale R. Net color charges are allowed only in volumes smaller than R3, with color neutrality

enforced on larger scales. Space is then divided into cells of volume R3, each with partition
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function given by

Zcell = exp
[−βR3 fcell

]=
∫

(dθ)exp
[−βR3 fgauge(θ)

]
(4.47)

with fgauge(θ) given by equation (4.27), and (dθ) the SU (N ) Haar measure. I then make the

further assumption that the eigenvalues θ are the same in every cell, so that a true phase

transition is possible in the infinite volume limit. The deformation term for model B is then,

V B
d (θ) =− 1

βR3
log[J (θ)] (4.48)

where J (θ) is the Jacobian

J (θ) = A
∏

j<k
sin2

(
θj −θk

2

)
, (4.49)

with A a normalization constant to be determined from the requirement
∫

(dθ) = 1. This mea-

sure is maximized when the angles θj are spread out over the unit circle as far from one another

as possible, a clear manifestation of eigenvalue repulsion. At temperatures much higher than

the inverse of the scale set by R, the center-breaking perturbative one-loop free energy domi-

nates. For SU (2), the correct deconfinement temperature Td = 270 MeV is obtained by setting

the distance R = 1.315 fm.

An alternate, equivalent form of the deforming potential is

V B
d = T

R3

∞∑
n=1

1

n
TrAdj P n . (4.50)

Comparing this expression with the corresponding one frommodel A, equation (4.46), shows

that even though both models were obtained by very different methods, starting from very

different assumptions, the final expressions are closely related.
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CHAPTER 5

MAGNET IC F IELDS AT F IN ITE TEMPERATURE

As outlined in the introduction, a number of physical systems are characterized by strong

external fields as well as high temperatures and/or densities. If such systems are gauge theories,

itmay also be necessary to contendwith confinement and chiral symmetry breaking. Therefore,

an understanding of the interplay between these different conditions, as well as mathematical

technology for calculating their effects accurately, are of great importance. Examples of hot

and/or dense systems where external magnetic fields are significant include the early universe,

where the energy scale of magnetic fields
p

eB is of the order of ≈ 2 GeV, heavy ion collisions

such as at the ALICE or RHIC experiments, where
p

eB ≈ 0.1...0.5 GeV, and compact stars,

where
p

eB ≈ 1 MeV [33, 74].

As we have seen in chapter 2, a perturbative understanding of systems with intense magnetic

fields is centered on the concept of Landau levels, which are the discrete energy eigenvalues

found in a magnetic system. At finite temperature, Landau levels naturally play a pronounced

role, as more levels become accessible with increasing temperature. With strong magnetic

fields, the lowest Landau level is particularly important. The density of states enhancement

that accompanies the squeezing of a continuous energy spectrum into a discrete one also

has profound physical consequences. The low-lying eigenvalues are of special importance to
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the formation of the chiral condensate [75], and to the restoration of chiral symmetry at high

temperatures.

The goal in this chapter is to develop expansions that may be used for computing thermal

magnetic effects in nonabelian gauge theories. Our focus is on the physical case of charged

spinors in aU (1)magnetic field, but the techniques presented heremay be easily generalized to

treat charged scalars or vector particles, and abelian chromomagnetic backgrounds, if desired.

5.1 EFFECTIVE ACTION FOR SPINORS IN A MAGNETIC FIELD

First I develop techniques for computing the fermion determinant in the presence of an abelian

magnetic field as well as a nonabelian gauge field background which is meant to represent

a nontrivial Polyakov loop. I take the fermion field to be in the fundamental representation

of the gauge group and to satisfy anti-periodic boundary conditions, but the method can be

generalized to periodic and/or adjoint fermions without difficulty. The procedure presented

here is adapted from the work of Meisinger and Ogilvie [76], which concerns the case of an

SU (2) gauge bosonmoving in an abelian chromomagnetic background.

In previous chapters the letter A was used to denote an external gauge field, assumed to be

inU (1). In this chapter we have bothU (1) fields, which I continue to denote as A, as well as

SU (2) fields, which are denotedG . The electric charge will be denoted q , while SU (2) charges

are absorbed within the fieldG .

The background fields are taken to be

A2 = B x1 G4 =
θ

β
τ3 (5.1)

where β is the inverse temperature 1/T and τ3 is the third Pauli matrix diag(1,−1). This corre-

sponds to a magnetic field in the ẑ-direction and an abelian Polyakov loop parameterized by
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the angle θ in the 3-direction of the gauge group. The corresponding covariant derivative is

given by

γ ·D = γ ·∂− iγ4G4 − i qγ2 A2 (5.2)

I follow a similar procedure as the one used in section 2.4 to evaluate the effective Lagrangian

of Euler and Heisenberg , where the functional determinant was computed directly from the

spectrum. The energy of a fermionic mode in the given background (5.1) is

E 2
mode =

(
ωn ± θ

β

)2
+ω2

±(r, p3) (5.3)

where ωn = (2n +1)πT are the Matsubara frequencies and

ω2
±(r, p3) = 2qB

(
r + 1

2 ± 1
2

)+p2
3 +m2. (5.4)

Notice that the energy of the lowest Landau level r = 0 has no magnetic contribution, which is

understood as a consequence of the Atiyah–Singer index theorem [77–79]. Then the effective

potential

V =−
∞∑

r=0

∑
n,±,±

qB

2πβ

∫
dp3

2π
log

[(
ωn ± θ

β

)2 +ω2
±(r, p3)

]
. (5.5)

By using a standard identity (see equation (4.16) and its derivation) this can be split into a finite

temperature contribution

VT =−
∞∑

r=0

∑
±,±

qB

2π

∫
dp3

2π

[
1

β
log

(
1+e−βω±(r,p3)±iθ

)]
(5.6)

and a sum over zero-point energies, written in unregularized form,

V(T=0) =−2
∞∑
r

∑
±

qB

2π

∫
dp3

2π
ω±(r, p3). (5.7)

In fact, this is just the Euler–Heisenberg Lagrangian (2.56) for two spinorsmoving in amagnetic

field, with one important difference. In section 2.4, I regarded the fermionmass as a parameter;

here, for typical applications we may be interested in how this mass is dynamically generated,

67



so there is no corresponding term in the normalization of the path integral to subtract the 1/s3

divergence. I compute both divergent terms using a Lorentz-invariant proper-time cutoff,

(qB)2

6π

∫ ∞

1/Λ2

ds

s
e−m2s = (qB)2

12π2
Γ
(
0, m2

Λ2

)
(5.8)

1

2π

∫ ∞

1/Λ2

ds

s3
e−m2s = 1

8π2

[
e−m2

Λ2 Λ2(Λ2 −m2)−m4 Ei
(
−m2

Λ2

)]
, (5.9)

where Γ(s, x) is the upper incomplete Gamma function, and Ei(x) is the exponential integral.

Note that the proper-time variable is dimensionful in these expressions; the shift s → s/qB done

in equation (2.48) has been left undone. Otherwise, the physical cutoff value would depend on

the applied magnetic field, which is undesirable.

Wemay use expression (2.58), derived in Appendix A.1, to write the finite part in terms of the

Hurwitz zeta function,

∫ ∞

0

dt

t 2
e−2zt

(
coth t − 1

t
− t

3

)
= 1

3
− z2 −ζ′(−1, z)−4

(
z −2z2 − 1

3

)
log z, (5.10)

where the prime denotes differentiation with respect to the first argument. Thus the finite

portion can be written

V finite
(T=0) =− (qB)2

12π2

(
log

(
2qB

m2

)
−1

)
− m4

8π2

(
log

(
2qB

m2

)
+ 1

2

)

− (qB)m2

4π2
log

(
m2

2qB

)
− (qB)2

π2
ζ′H

(
−1,

m2

2qB

)
.

(5.11)

The final expression for the zero-temperature contribution to the effective potential is obtained

by adding to this expression the divergent terms calculated in (5.8) and (5.9).

I now proceed to develop various asymptotic expansions of the one-loop finite-temperature ef-

fective action which aremore convenient for applications than the integral representation (5.6).
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5.1.1 Strong field expansion

Expanding the logarithm in equation (5.6) we obtain

VT =−
∞∑

r=0

∑
±

qB

2π

∫
dp3

2π

[
2

β

∞∑
n=1

(−1)n+1 cos(nθ)

n
e−nβω±(r,p3)

]
. (5.12)

The contribution of each Landau level r has the form

u(±,r ) =− 2

β

qB

2π

∞∑
n=1

(−1)n+1 cos(nθ)

n

×
∫

dp3

2π
exp

[
−nβ

√
2qB

(
r + 1

2 ± 1
2

)+p2
3 +m2

] (5.13)

which is rewritten using the representation [42]

K1(nβα) = 1

2α

∫ ∞

−∞
dk e−nβ

p
k2+α2 (5.14)

yielding

u(±,r ) =− qB

π2β

√
2qB

(
r + 1

2 ± 1
2

)+m2

×
∞∑

n=1
(−1)n+1 cos(nθ)

n
K1

[
nβ

√
2qB

(
r + 1

2 ± 1
2

)+m2

]
.

(5.15)

Note that u(+,r ) = u(−,r +1), and the lowest Landau level contribution u(−,0) stands alone.

Adding all of them we obtain the final strong field expansion

VT =− qB

π2β

∞∑
n=1

(−1)n+1 cos(nθ)

n

[
mK1(nβm)

+2
∞∑

r=0

√
qB(2r +1)+m2 K1

(
nβ

√
qB(2r +1)+m2

)]
.

(5.16)

The density of states factor qB/2π justifies regarding this expression as a strong field expansion:

clearly, a number O(qB/mT ) of terms must be taken for this series to approach the correct

expression for zero field (4.39).
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5.2 HIGH TEMPERATURE EXPANSION

Expanding the logarithm in (5.6) as a proper-time integral, the effective potential may be

written

V =
∞∑

r=0

∑
n,±

qB

2πβ

∫
dp3

2π

∫ ∞

0

ds

s
e
−s

[(
ωn± θβ

)2
+2qB

(
r+1

2±
1
2

)
+p2

3+m2
]

. (5.17)

Notice that
(
ωn + θ

β

)2 = (
ω−(n+1) − θ

β

)2, and the sum over Matsubara frequencies runs over all n,

so we can without prejudice choose either the plus or minus sign in the corresponding term

and include an overall factor of 2, the dimension of the fundamental representation of the

gauge group. The integral over 3-momentummay be done exactly,

V =
∞∑

r=0

∑
n,±

qB
p
π

2π2β

∫ ∞

0

ds

s3/2
e
−s

[(
ωn− θβ

)2
+2qB

(
r+1

2±
1
2

)
+m2

]
, (5.18)

and, as was done in the steps between equations (2.47) and (2.51), we can effect the sum over

Landau levels and polarization states,
∞∑

r=0

∑
±

e−s2qB
(

r+1
2±

1
2

)
= (

1+e−s2qB ) ∞∑
r=0

e−r (s2qB)

= 1+e−s2qB

1−e−s2qB
= coth(qB s),

(5.19)

so

V =
∑
n

qB
p
π

2π2β

∫ ∞

0

ds

s3/2
coth(qB s)e

−s
[(
ωn− θβ

)2
+m2

]
. (5.20)

To extract the high temperature asymptotic behavior we employ a ϑ4 resummation identity:

∑
n

exp

[
− s

β2
((θ−π)−2πn)2

]
= βp

4πs

∑
p

exp

[
−β

2p2

4s
+ i p(θ−π)

]
. (5.21)

Because e iπ = e−iπ =−1,

V =
∑
p

qB

4π2

∫ ∞

0

ds

s2
coth(qB s)e−sm2−β2p2

4s +i p(θ+π) (5.22)
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The term with p = 0 does not depend on temperature, so I will discard it for now; it will be

treated shortly. The remaining sum is symmetric under p ↔−p, so we can collect like terms

and write

VT = qB

2π2

∫ ∞

0

ds

s2
e−sm2

coth(qB s)
∞∑

p=1
e−β2p2

4s cos(p(θ+π)). (5.23)

I now shift s → s/qB in order to remove any dimensionful factors from the hyperbolic cotangent

VT = (qB)2

2π2

∫ ∞

0

ds

s2
e−sm2/qB coth(s)

∞∑
p=1

e−β2p2

4s qB cos(p(θ+π)), (5.24)

as the first two terms in the series expansion

coth(s) =
∞∑

k=0

22k B2k

(2k)!
s2k−1 = 1

s
+ s

3
+

∞∑

k=2

22k B2k

(2k)!
s2k−1 (5.25)

are especially important for determining the high temperature behavior. We define

f0 =
(qB)2

2π2

∫ ∞

0

ds

s2
e−sm2/qB

[
1

s

] ∞∑
p=1

e−β2p2

4s qB cos(p(θ+π)) (5.26)

f1 =
(qB)2

2π2

∫ ∞

0

ds

s2
e−sm2/qB

[ s

3

] ∞∑
p=1

e−β2p2

4s qB cos(p(θ+π)) (5.27)

fk≥2 =
(qB)2

2π2

∫ ∞

0

ds

s2
e−sm2/qB

[
∞∑

k=2

22k B2k

(2k)!
s2k−1

]
×

∞∑
p=1

e−β2p2

4s qB cos(p(θ+π)) (5.28)

So that

VT = f0 + f1 + fk≥2. (5.29)

Now we use integral representations of the modified Bessel functions of the second kind [42]

Kν(z) = 1

2

(z

2

)ν ∫ ∞

0

ds

sν+1
exp

[
−s − z2

4s

]
(5.30)
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to rewrite

f0 =
4m2

π2β2

∞∑
p=1

cos(p(θ+π))

p2
K2(pβm) (5.31)

f1 =
(qB)2

3π2

∞∑
p=1

cos(p(θ+π))K0(pβm). (5.32)

To do these sums we use the known identities (equation 8.526 in reference [42]):

∞∑
p=1

(−1)p K0(pz)cos(pθ) =1

2

[
log

( z

4π

)
+γ

]
+ π

2

∑′

`

[
1√

z2 + (θ− (2`−1)π)2
− 1

2π|`|

]
(5.33)

∞∑
p=1

(−1)p

p
K1(pz)cos(pθ) =− 1

4
z

[
log

( z

4π

)
+γ− 1

2

]
+ 1

z

[
θ2

4
− π2

12

]

− π

2z

∑′

`

[√
z2 + (θ− (2`−1)π)2 −|θ− (2`−1)π|− z2

4π|`|

] (5.34)

∞∑
p=1

(−1)p

p2
K2(pz)cos(pθ) =− 2

z2

[
7π4

720
− π2θ2

24
+ θ4

48

]
− 1

2

[
θ2

4
− π2

12

]

+ 1

16
z2

[
log

( z

4π

)
+γ− 3

4

]

+ π

2z2

∑′

`

{
1

3

[
z2 + (θ− (2`−1)π)2]3/2 − 1

3
|θ− (2`−1)π|3

− 1

2
|θ− (2`−1)π|z2 − z4

16π|`|

}

(5.35)

where γ is the Euler-Mascheroni constant. Here the notation ∑′
`
indicates that the singular

term 1/|`| is omitted when `= 0. Then

f0 =− 8

π2β4

[
7π4

720
− π2θ2

24
+ θ4

48

]
− 2m2

π2β2

[
θ2

4
− π2

12

]

+ m4

4π2

[
log

(
βm

4π

)
+γ− 3

4

]

+ 2

πβ4

∑′

`

{
1

3

[
β2m2 + (θ− (2`−1)π)2]3/2 − 1

3
|θ− (2`−1)π|3

− 1

2
|θ− (2`−1)π|β2m2 − β4m4

16π|`|

}
,

(5.36)

f1 =
(qB)2

3π2

{
1

2

[
log

(
βm

4π

)
+γ

]
+ π

2

∑′

`

[
1√

β2m2 + (θ− (2`−1)π)2
− 1

2π|`|

]}
. (5.37)
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Now we turn to fk≥2,

fk≥2 =
(qB)2

4π2

∫ ∞

0

ds

s2
e−sm2/qB

[
∞∑

k=2

22k B2k

(2k)!
t 2k−1

]
∑
p 6=0

exp

[
−p2

4s
β2qB + ip(θ+π)

]
, (5.38)

where we undo the ϑ4 transformation:

fk≥2 =− (qB)3/2

2π3/2β

∞∑

k=2

22k B2k

(2k)!

∫ ∞

0
ds s2k−5/2e−sm2/qB

×
{
β
√

qBp
4πs

−
∑

`

exp

[
−s

1

β2qB
(θ− (2`−1)π)2

]}
.

(5.39)

To evaluate the sum over Bernoulli numbers we use the generating function

s

e s −1
=

∞∑

k=0

1

k !
Bk sk = 1− s

2
+ s2

12
+

∞∑

k=2

B2k

(2k)!
s2k . (5.40)

With the above, the first term in fk≥2 gives a zero temperature contribution

fk≥2,(T=0) =− (qB)2

4π2

∞∑

k=2

22k B2k

(2k)!

∫ ∞

0
ds s2k−3e−sm2/qB

=− (qB)2

4π2

∫ ∞

0

ds

s3
e−sm2/qB

∞∑

k=2

22k B2k

(2k)!
s2k

=− (qB)2

4π2

∫ ∞

0

ds

s3
e−sm2/qB

[
2s

e2s −1
−1+ s − s2

3

]

=− (qB)2

4π2

∫ ∞

0

ds

s2
e−sm2/qB

[
coth(s)− 1

s
− s

3

]

(5.41)

which of course can be recognized as the negative of the expression of Heisenberg and Eu-

ler (2.56) for two charged fermion fields in a magnetic field. Recall the p = 0 contribution from

equation (5.22)

V(T=0) =
(qB)2

4π2

∫ ∞

0

ds

s2
e−sm2/qB coth(s), (5.42)
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which is now canceled exactly by the first term in the last line of equation (5.41). We are left

with the second and third terms, which we have already computed,

V(T=0) =
(qB)2

4π2

∫ ∞

1/Λ2

ds

s3
e−sm2/qB

[
1+ s2

3

]

= (qB)2

12π2
Γ
(
0, m2

Λ2

)
+ 1

8π2

[
e−m2

Λ2 Λ2(Λ2 −m2)−m4 Ei
(
−m2

Λ2

)]
,

(5.43)

whereΛ is an energy scale determining the proper time cutoff. As before, the second termon the

last line represents charge renormalization [4]. However, note that, unlike the case discussed in

section 2.4, here we may be interested on the question of dynamically generated masses, and

so the divergence associated with the 1/s3 subtraction does not cancel out a corresponding

term in the normalization of the path integral.

The remaining finite temperature part of fk≥2 reads

fk≥2 =
(qB)3/2

2π3/2β

∞∑

k=2

22k B2k

(2k)!

∫ ∞

0
ds s2k−5/2

∑

`

[
−s

(
m2

qB
+ (θ− (2`−1)π)2

β2qB

)]
(5.44)

= (qB)3/2

2π3/2β

∞∑

k=2

22k B2k

(2k)!
Γ

(
2k − 3

2

)∑

`

(
qBβ2

m2β2 + (θ− (2`−1)π)2

)2k−3/2

. (5.45)
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With all the necessary pieces computed, we can finally write the full expression for the high

temperature expansion of the effective potential as

V = (qB)2

12π2
Γ
(
0, m2

Λ2

)
+ 1

8π2

[
e−m2

Λ2 Λ2(Λ2 −m2)−m4 Ei
(
−m2

Λ2

)]

− 8

π2β4

[
7π4

720
− π2θ2

24
+ θ4

48

]
− 2m2

π2β2

[
θ2

4
− π2

12

]

+ m4

4π2

[
log

(
βm

4π

)
+γ− 3

4

]
+ (qB)2

6π2

[
log

(
βm

4π

)
+γ

]

+ (qB)2

6π

∑′

`

[
1√

β2m2 + (θ− (2`−1)π)2
− 1

2π|`|

]

+ 2

πβ4

∑′

`

{
1

3
[β2m2 + (θ− (2`−1)π)2]3/2 − 1

3
|θ− (2`−1)π|3

− 1

2
|θ− (2`−1)π|β2m2 − β4m4

16π|`|

}

+ (qB)3/2

2π3/2β

∞∑

k=2

22k B2k

(2k)!
Γ

(
2k − 3

2

)∑

`

(
qBβ2

m2β2 + (θ− (2`−1)π)2

)2k−3/2

.

(5.46)

5.3 LOW TEMPERATURE EXPANSION

One of the weaknesses of the high temperature expansion derived above is that it is based on a

Taylor series expansion of the hyperbolic cotangent, which has a finite radius of convergence.

Formodestly strongmagnetic fields (qB >πm2), a substantial portion of the integration volume

lies outside the region of convergence and the expansion is likely to be unreliable. The final

expression still exhibits the correct asymptoticbehavior, even though it is divergent, bututilizing

it properly in a real application requires great care. It is worth asking whether an expansion

with better convergence properties can be obtained.

Our procedure is to rewrite the hyperbolic cotangent as

coth s = e−2s(coth s +1)+1, (5.47)
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and expand the inner cotangent in a Taylor series,

coth s = e−2s(1
s + s

3 +1+ . . .
)+1. (5.48)

This expansion still has a finite radius of convergence, but unlike the simple Taylor expan-

sion (5.25), it has the correct leading order asymptotic behavior as s → ∞ built in. When

truncated after just the first two terms, the relative error of the approximation is less than 0.3%.

This approximation can be further improved by iterating,

coth s = e−4s(coth s +1)+2e−2s +1, (5.49)

or more generally

coth s = 1+
N∑

n=1
2e−2ns +e−2(N+1)s(coth s +1). (5.50)

If the iteration is carried out infinitely many times, this becomes a well-known asymptotic

expansion of the hyperbolic cotangent.

I now use this expansion to develop an approximate expression for the thermal one-loop

effective action in a magnetic field. The calculation is carried out in the simplest case N = 0;

the generalization for larger N , should one be desired, is entirely straightforward. The starting

point is equation (5.23), which after a shift s → s/qB becomes

VT = (qB)2

2π2

∫ ∞

0

ds

s2
e−sm2/qB coth s

∞∑
p=1

e−β2p2

4s qB (−1)p cos(pθ). (5.51)

We replace the hyperbolic cotangent by our approximation, obtaining

VT = (qB)2

2π2

∫ ∞

0

ds

s2
e−sm2/qB[

e−2s(1
s + s

3 +1
)+1

] ∞∑
p=1

e−β2p2

4s qB (−1)p cos(pθ). (5.52)
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There are now four integrals, which can be written after appropriate substitutions as

VT = (m2 +2qB)2

2π2

∞∑
p=1

(−1)p
∫ ∞

0

ds

s3
e−s−β2p2

4s (m2+2qB) cos(pθ)

+ qB(m2 +2qB)

2π2

∞∑
p=1

(−1)p
∫ ∞

0

ds

s2
e−s−β2p2

4s (m2+2qB) cos(pθ)

+ qBm2

2π2

∞∑
p=1

(−1)p
∫ ∞

0

ds

s2
e−s−β2p2

4s m2
cos(pθ)

+ (qB)2

6π2

∞∑
p=1

(−1)p
∫ ∞

0

ds

s
e−s−β2p2

4s (m2+2qB) cos(pθ).

(5.53)

Each of these is easily done with the integral representations of modified Bessel functions,

(5.30).

VT =4(m2 +2qB)

π2β2

∞∑
p=1

(−1)p

p2
K2(pβ

√
m2 +2qB)cos(pθ)

+ 2qB
√

m2 +2qB

π2β

∞∑
p=1

(−1)p

p
K1(pβ

√
m2 +2qB)cos(pθ)

+ 2qBm

π2β

∞∑
p=1

(−1)p

p
K1(pβm)cos(pθ)

+ (qB)2

3π2

∞∑
p=1

(−1)p K0(pβ
√

m2 +2qB)cos(pθ).

(5.54)

This expression has one clear advantage: the first line, in the limit when qB → 0, reduces to the

correct low temperature expansion of the free energy of a three-dimensional gas of relativistic

fermions, equation (4.39). The third line, for qB Àβm, reduces to the free energy of a Fermi

gas in one spatial dimension. It is muchmore difficult to obtain both limits simultaneously in

either of the previous expansions.
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5.3.1 Alternate high temperature expansion

Using the same identities (5.33), (5.34), and (5.35), these sums can be performed. We define

g2 =
4(m2 +2qB)

π2β2

∞∑
p=1

(−1)p

p2
K2(pβ

√
m2 +2qB)cos(pθ), (5.55)

g1a = 2qBm

π2β

∞∑
p=1

(−1)p

p
K1(pβm)cos(pθ), (5.56)

g1b = 2qB
√

m2 +2qB

π2β

∞∑
p=1

(−1)p

p
K1(pβ

√
m2 +2qB)cos(pθ), (5.57)

g0 =
(qB)2

3π2

∞∑
p=1

(−1)p K0(pβ
√

m2 +2qB)cos(pθ), (5.58)

such that

VT = g0 + g1a + g1b + g2. (5.59)

In what follows I shorten mB ≡
√

m2 +2qB . We obtain immediately

g0 =
(qB)2

6π2

[
log

(
βmB

4π

)
+γ

]
+ (qB)2

6π

∑′

`

[
1√

β2m2
B + (θ− (2`−1)π)2

− 1

2π|`|

]
. (5.60)

The terms g1a and g1a have the exact same functional dependence on the “mass” parameter,

but g1a is slightly simpler:

g1a =− qBm2

2π2

[
log

(
βm

4π

)
+γ− 1

2

]
+ 2qB

π2β2

[
θ2

4
− π2

12

]

− qB

πβ2

∑′

`

[√
(βm)2 + (θ− (2`−1)π)2 −|θ− (2`−1)π|− β2m2

4π|`|

]
,

(5.61)
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and g1b can be obtained with the replacement m → mB . The remaining term dominates the

high-temperature behavior,

g2 =− 8

π2β4

[
7π4

720
− π2θ2

24
+ θ4

48

]
− 2m2

B

π2β2

[
θ2

4
− π2

12

]

+ m4
B

4π2

[
log

(
βmB

4π

)
+γ− 3

4

]

+ 2

πβ4

∑′

`

{
1

3

[
β2m2

B + (θ− (2`−1)π)2]3/2 − 1

3
|θ− (2`−1)π|3

− 1

2
|θ− (2`−1)π|β2m2

B − β4m4
B

16π|`|

}
.

(5.62)

5.3.2 Discussion

It is instructive to compare these expressions with the previous high temperature expansion,

equations (5.36) and (5.37). Clearly, g2 is just f0
4 with the replacement m → mB , and the two

expressions obviously agree as qB → 0. This indicates that the leading thermal effect due to an

intense magnetic field is to suppress the dynamics of the particle. This makes good physical

sense: as the magnetic field is increased, a larger portion of the spectral weight is concentrated

in the lowest Landau levels, and the system becomes effectively 1+1-dimensional. This high-

temperature expansion implements this effective loss of degrees of freedom by increasing the

effective particle mass. Similar remarks apply to g0, which corresponds to f1.

The g1 terms seem reminiscent of the strong field expansion derived in section 5.1.1, equa-

tion (5.16). In particular, g1a is recognized as the contribution from the lowest Landau level, and

in this expansion it is the only one that does not become suppressed with increasing magnetic

field. This term has the exact form of the one-loop effective potential for a spinor particle

moving in 1+1 dimensions [68].
4Note that the magnetic field does not appear anywhere in f0: it is, in fact, the one-loop effective potential of a

Fermi gas at high temperature, in the background of a nontrivial Polyakov loop [68].
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It is remarkable that this representation of the effective action encodes both weak and strong

field effects in a natural way. It smoothly interpolates between a strong field regime, in which

the dynamics are dimensionally reduced, dominated by the lowest Landau level, and a weak

field, high-temperature regime, in which the magnetic field is a small correction to a free,

3+1-dimensional gas.

5.4 EXAMPLE APPLICATION: MAGNETIC CATALYSIS

It is interesting to consider how the presence of an external field may affect deconfinement

and the breaking of chiral symmetry, which could be said to be the twomost striking features

of QCD [2]. The Banks-Casher relation [75]
∫

d 4x 〈ψ̄ψ〉 = lim
m→0

〈∫
dµρ(µ)

m

µ2 +m2

〉
, (5.63)

where ρ(µ) is the fermionic spectral density function, implies that the value of the chiral con-

densate 〈ψ̄ψ〉 is chiefly controlled by the spectral density at small energies. As seen in chapter 1,

the presence of a magnetic field results in a discrete spectrum of highly degenerate Landau lev-

els. The lowest-lying Landau level for massless fermions has zero energy (see equation (2.46)),

so it can be expected that a magnetic field has the effect of enhancing the chiral condensate, a

phenomenon known asmagnetic catalysis. This is indeed observed in lattice simulations at

zero temperature. However, the situation at finite temperature is substantially less clear, and

lattice evidence points to the opposite effect: for a range of temperatures, the value of the chiral

condensate decreases as the appliedmagnetic field is increased, which has been termed inverse

magnetic catalysis. The causes and detailed workings of this phenomenon are at present poorly

understood, though various possible explanations have been advanced in the literature [80–84].

The reader interested in magnetic catalysis may consult Shovkovy’s review [17].
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Figure 5.1: Constituent quark mass M for the PNJL model, as a function of temperature, for several
values of the magnetic field B .

An explanation of inversemagnetic catalysis is beyond the scope of thiswork. I will show instead

an example of how the expansions derived above can be used in a typical physical application.

One common approach for investigating the deconfinement transition and the breaking of

chiral symmetry at finite temperatures and densities is the so-called Polyakov–Nambu–Jona-

Lasinio model. In such models, one constructs an effective potential for the Polyakov loop

P as well as the chiral condensate 〈ψ̄ψ〉. This is accomplished by adding to the perturbative

expression for the free energy a nonrenormalizable interaction potential of the type

VF = gS

2

[
(ψ̄λaψ)2 + (ψ̄iγ5λ

aψ)2]+ gD
[
detψ̄(1−γ5)ψ+h.c.

]
. (5.64)

Here λa are the generators of the flavor symmetry group, gS is the four-fermion coupling

constant, and gD encodes the strength of an anomaly-induced term. It is possible to show that

this interaction can be written in the form [85–88]

VF =
∑

j
gSσ

2
j +2gD (N f −1)

∏

j
σj (5.65)
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Figure 5.2: The expectation value of the trace of thePolyakov loopTrP in the fundamental representation,
as a function of temperature, for several values of the magnetic field B .

where σj = 〈ψ̄jψj 〉 is the chiral condensate corresponding to the j -th fermion flavor, whose

mass is given by

Mj = m0j −2gSσj −2gD
∏

k 6= j
σk . (5.66)

It is convenient to take gD = 0, and to take the masses m0j to be equal to a commonmass m0.

Thus the common constituent mass is written M = m0 −2gSσ, and the potential term is

VF = N f

4gS
(M −m0)2. (5.67)

The model also requires an effective potential for the Polyakov loop. I will use model B of

reference [72], introduced here in section 4.3. I take the concrete form

Vg =− π2

15β4
+ 4

3π2β4
θ2(θ−π)2 − 1

(4R)3β
log

(
2

π
sin2θ

)
, (5.68)

where the parameter R = 1.315 fm is chosen to fix the correct deconfinement temperature

Td = 270 MeV in the pure gauge theory. The proper-time cutoff scale Λ and the coupling gS are

free parameters of the model. Since the model is not renormalizable, the physics will depend

sensitively onΛ. These parameters are typically fixed, at zeromagnetic field, by demanding that

the model give correct values for the chiral condensate as well as the pion decay constant fπ. I
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do not perform a realistic fit of this simple SU (2) model, but merely choose parameters which

lead to plausible behavior. SettingΛ= 880 MeV and gS = 16.48 GeV2, with a current quarkmass

m0 = 5 MeV, the zero-temperature constituent mass M0 = 250 MeV. With massless quarks, the

same parameters lead to the restoration of chiral symmetry at a temperature T = 200 MeV.

Results from the model are given in figures 5.1 and 5.2.

The constituent masses generated in this model are in broad agreement with similar NJL-type

studies [89–91]. The Polyakov loop, however, behaves differently: in these previous studies, the

temperature of the deconfinemenent transition is found to increase in response to the applied

magnetic field. Here, the trace of the Polyakov loop is largely insensitive to the magnetic back-

ground, which seems to have a weak deconfining effect. Lattice results show that a magnetic

field does decrease the deconfinement temperature, but the effect is larger than that seen here.
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CHAPTER 6

ELECTR IC F IELDS AT F IN ITE TEMPERATURE

Some of the material in this chapter has been previously published [59]. This work was done in

collaboration with and under the supervision of Dr. Michael Ogilvie.

Pair production in an external field is a form of semiclassical tunneling with applications in

many areas of physics [12, 92, 93, 7, 94, 95].Here I present a complete first-principles calculation

of the one-loop thermal correction to the pair production rate of charged scalars in a static

electric field. The effect of pair production in a background electric field at zero temperatuewas

derived first by Euler and Heisenberg [16] and subsequently rederived by Schwinger [4] using

modern field-theoretic techniques. The physics of the pair production is simple: when the

energy contained in an external electric field is large enough, it becomes energetically favorable

to produce charged pairs which screen the external field. From a modern perspective, the

presence of an external electric field over a large spatial region creates ametastable state, which

decays by the nucleation of charged-particle pairs. In this way, it is similar to the false vacuum

decay [96–98]. This similarity is most clearly seen in the worldline formalism, as shown in the

calculation of the zero-temperature pair production rate by Affleck et al. [47]. The inclusion of

thermal effects naturally increases the rate at which the metastable state decays [99].
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Schwinger’s expression for the decay rate is obtained from the imaginary part of the one-loop

effective action of charged particles in a constant external electric field. For charged scalars,

the one-loop decay rate at zero-temperature is

Γ= (eE)2

(2π)3

∞∑
p=1

(−1)p+1

p2
exp

[
−m2

eE
πp

]
(6.1)

with a similar result for fermions. The factor of 1/e in the exponent signals that this is a nonper-

turbative result. These results have been extended in a number of ways [100–102, 26, 103, 54,

64, 104]. One obvious extension is to finite temperature and density. In the case of externalmag-

netic fields, the properties of the thermal one-loop effective action are well-known [105, 106].

However, in the case of electric fields, there has been no clear consensus on the form or even

the existence of one-loop thermal corrections to the zero-temperature decay rate [107, 18, 108–

110, 34, 111]. Although the formal expression for the decay rate can be readily constructed

using, say, Schwinger’s proper time formulation, the analytic structure of the resulting formu-

lae is quite intricate and leads to structural ambiguities [34]. It has been suggested that the

one-loop thermal contribution to the decay rate may be zero, but there is no obvious symme-

try principle that would lead to this conclusion. The worldline formalism has proven to be a

very powerful tool in quantum field theory at zero temperature, capable of reproducing and

extending Schwinger’s result [47, 54, 64] as well as providing a compact, powerful framework

for the calculation of gauge theory amplitudes [50, 51]. It will be shown that the worldine

formalism can be used to calculate thermal corrections to Schwinger’s one-loop result. To the

best of my knowledge, this is the first time the worldline formalism has been used to calculate

a nonperturbative finite-temperature effect in a four-dimensional gauge theory. Worldline

methods have previously been used in a nonperturbative analysis of the phase diagram of the

two-dimensional Gross-Neveu model [112].
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I restrict the initial presentation to the simplest case of charged scalars inQED, andwill return to

the case of fermions in QED and QCD in chapter 7. The case of QCD is relevant, for instance, in

phenomenological flux-tube models of quark-antiquark pair production during hadronization

in heavy ion collisions [7, 8, 113].

6.1 THE WORLDLINE FORMALISM AT FINITE TEMPERATURE

For simplicity, initially we consider a theory with a charged scalar in a constant Minkowski-

space electric field. The Lagrangian is given by

L = (
Dµφ

)∗(
Dµφ

)+m2φ∗φ (6.2)

with a covariant derivative Dµ ≡ ∂µ+ ie Aµ where Aµ provides the constant background electric

field in Euclidean space. As in the zero temperature derivation, the effective action may be

placed in the form [54],

S(1)
eff = 2

∮
[dx]K0

(
m

√∫ 1
0 du ẋ2

)
exp

[
−ie

∫ 1

0
du A · ẋ

]
, (6.3)

where thepath integral is takenover closedworldlinepaths. In theworldline formalism,nonzero

temperature may be introduced via the replacement [114, 115]

〈x|e−s(−D2)|x〉→
∑

n∈Z
〈x|e−s(−D2)|x +nβê4〉 (6.4)

in the functional determinant, which corresponds to the boundary condition xµ(0) = xµ(1)+

δµ4nβ.

The effective action is simplified by replacing the modified Bessel function with its asymptotic

form for large argument,

S(1)
eff ∼

√
2π

m

∮
[dx]

(∫ 1
0 du ẋ2

)−1/4
exp

[
−

(
m

√∫ 1
0 du ẋ2 + ie

∫ 1

0
du A · ẋ

)]
. (6.5)
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This is equivalent to performing a saddle point approximation on the integral over s, with the

saddle point given by

s2
0 =

m2

4

∫ 1

0
du ẋ2. (6.6)

This is a good approximation if s0 À 1, which at zero temperature corresponds to a weak field

condition [54]. Wemay now evaluate the functional integral in steepest descents, thus reducing

the problem to finding instanton solutions to the worldline action

Seff = m
√∫ 1

0 du ẋ2 + ie
∫ 1

0
du A(x(u)) · ẋ, (6.7)

which, as before entails solving the following equations of motion:

1√∫ 1
0 du ẋ2

mẋµ = ieFµνẋν, (6.8)

but now with the finite-temperature boundary conditions. Notice that the quantity in the

square root is still a constant of the motion, as can be verified by contracting the above with ẋµ.

We impose a constant (Minkowski-space) electric field by taking A3 = −iE x4 with the other

three components either zero or constant. Then the only non-zero components of F are F34 =

−F43 =+iE . The general solution of the equations of motion (3.16) for xµ(u) is a circular orbit

of radius R = m/eE centered about (x̄3, x̄4)

x3 =
m

eE
cos

(
eaE

m
u +ϕ

)
+ x̄3 (6.9)

x4 =
m

eE
sin

(
eaE

m
u +ϕ

)
+ x̄4 (6.10)

where the parameter a =
√∫ 1

0 du ẋ2 is determined from the boundary conditions on the finite-

temperature worldline path integral. Finite temperature worldline instantons are sections of

the T = 0 circle solutions whose endpoints are separated by nβ in the time direction. In order
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θn2π−θn





nβ

m
eE

an = m
eE θn

Figure 6.1: The four basic finite-temperature classical paths in the x3 −x4 plane with a winding of ±n in
the timelike direction, shown as portions of zero-temperature circular paths. All four paths
begin and end on the same two points, which are separated by nβ in Euclidean time. From
left to right, the paths are an antiparticle long path, an antiparticle short path, a particle short
path and a particle long path. The radius R is m/eE and the length of the short arcs an is Rθn .

for such solutions to exist at all, the diameter of the T = 0 solution must be greater than nβ,

2R = 2m

eE
> nβ. (6.11)

In other words, the maximum value of n, nmax is given by

nmax =
⌊

2mT

eE

⌋
. (6.12)

This implies that there arenoone-loop thermal effects fromworldline instantons forT < eE/2m,

i.e., at sufficiently low temperatures [111].

For any value of nβ for which solutions exist, there is a short path of central angle less than π

corresponding to a particle trajectory and another corresponding to an antiparticle trajectory;

both trajectories contribute to the free energy of the metastable phase. There are are also two

long paths of central angle greater than π which contribute to the decay rate. All four paths

are shown in Fig. 6.1. From the geometry we see that the arc length of a short path Rθn is

determined by R sin(θn/2) = nβ/2. The arc length of a corresponding long path is R(2π−θn).

Appending a short path of arc length Rθn to a corresponding long path of arc length R(2π−θn)

gives the T = 0 circular solution found in Ref. [47].
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Such solutions can be extended by adding on p windings. The actions of these solutions are

given by

S(s)
np = m2

2eE

[(
θn +2πp

)+ sinθn
]

(6.13)

S(l )
np = m2

2eE

[(
2π−θn +2πp

)− sinθn
]
, (6.14)

where the superscripts (s) and (l ) stand for short and long solutions, respectively. Note that

S(s)
np = S(s)

n0 +S0p (6.15)

S(l )
np = S(l )

n0 +S0p (6.16)

and that the two solutions become degenerate when θn =π.

6.1.1 Fluctuation prefactors

The prefactors K (s)
np and K (l )

np are given in terms of the functional determinant of the second

variation operator, which is the sum of a local and a nonlocal term [47]. For a solution centered

at x̄, we have

Mµν ≡
δSeff

δxνδxµ

∣∣∣∣
xcl

= Lµν−ϑ
eE

R2

(
xµ(u)− x̄µ

)(
xν(u′)− x̄ν

)
(6.17)

where

Lµν =
[
−eE

ϑ
δµν

d 2

du2
+ ieFµν

d

du

]
δ(u −u′) (6.18)

and ϑ is the total angle spanned by the instanton solution, that is, ϑ = 2πp + θn for short

paths and ϑ= 2π(p +1)−θn for long paths. For fluctuations about zero temperature solutions,

the eigenvalue problem for Mµν can be solved by inspection. For fluctuations about finite

temperature solutions this is made difficult by the boundary conditions at the endpoints.

Fortunately, the functional determinant may be computed without any explicit knowledge

of the spectrum. The matrix determinant lemma [116] can be used to isolate the effect of the
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nonlocal term,

det ′
[
Mµν

]= det ′
[
Lµν

][
1−ϑeE

R2

Ï
du du′ (x(u)− x̄

)
µ

(
L−1)

µν

(
x(u′)− x̄

)
ν

]
(6.19)

and the local part of the functional determinant is computed using the method of Gel’fand

and Yaglom [117, 118]. Consider the following set of initial value problems (ρ = 1,2,3,4):

Lµνη
(ρ)
ν = 0 (6.20)

η
(ρ)
ν (0) = 0 (6.21)

η̇
(ρ)
ν (0) = δνρ. (6.22)

Up to a phase, the local prefactor can be written

(
N det ′

[
Lµν

])−1/2 = (eE)2

(2πϑ)2

√√√√√√
det

[
η̃(ν)
µ (1)

]

det
[
η(ν)
µ (1)

] (6.23)

where N is a normalization factor and η̃(ν)
µ are the solutions of the corresponding free initial

value problem, with L̃µν =− eE
ϑ

d 2

du2δµν. It is then straightforward to show

(
N det ′

[
Lµν

])−1/2 = (−1)p (eE)2

(2πϑ)2

√
ϑ2

2(1−cosϑ)
. (6.24)

As we will see in section 6.2.1, the overall phase e i 2πp/2 = (−1)p is related to the Morse index

of the classical path. Note that this quantity is manifestly real, which means any imaginary

contribution must come from the nonlocal part.

To compute the nonlocal part we find the Green’s function directly, by solving the equation

LµρGρν(u −u′) = δµνδ(u −u′) (6.25)
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with Dirichlet boundary conditions. A lengthy but straightforward calculation gives, for the

nontrivial componentsG33 =G44 andG43 =−G34,

G33 =
1

2eE

[
− sin(ϑ|u −u′|)+ sin(ϑu′)+ sin(ϑu)

− 4sin(ϑu/2)sin(ϑu′/2)cos(ϑ(u −u′)/2)

tan(ϑ/2)

] (6.26)

G43 =
1

2eE

[
sgn(u −u′)

(
cos(ϑ|u −u′|)−1

)+cos(ϑu′)−cos(ϑu)

− sin(ϑ(u −u′))+ sin(ϑu′)− sin(ϑu)

tan(ϑ/2)

]
.

(6.27)

The nonlocal part of the determinant can now be computed directly:
[

1−ϑeE

R2

Ï
du du′ xµ(u)Gµν(u −u′)xν(u′)

]
= ϑ

2
cot

(
ϑ

2

)
. (6.28)

Note that for long paths π < ϑ < 2π (modulo 2π), so the nonlocal part of the determinant is

negative. Because of this, it is clear that it is the long paths that contribute to the imaginary

part of the effective action.

The prefactor can now be assembled as before

(∫
d 4x

) p
2π/m

[∫ 1
0 du ẋ2

]1/4

(
det′

[
δSeff

δxµδxν

∣∣∣∣
xcl

])−1/2

=V3β
(eE)2

(2π)3/2
(
nmβ

)1/2
ϑ2

[
1−

(
nβeE

2m

)2]−1/4

.

(6.29)

For long paths, an extra factor of ±i /2 should be included because the contribution to the

imaginary part results from an integration over only one half of the Gaussian peak in the

imaginary direction [63]. The sign depends on the way in which the analytic continuation is

performed.

The functional determinant for the short paths is always positive, and the functional determi-

nant for the long paths is always negative, in agreement with arguments given in section 6.2.1.
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The sum of the short path contributions represents the free energy density of the metastable

phase, and is given by

f =−
∞∑

p=0

nmax∑
n=1

2K (s)
np e−S(s)

np (6.30)

where

K (s)
np = (−1)p (eE)2

(2π)3/2
(
nβm

)1/2
·

[
1−

(
nβeE

2m

)2]−1/4

[
2πp +2sin−1

(
nβeE

2m

)]2 (6.31)

S(s)
np = m2

2eE

[
2πp+2sin−1

(
nβeE

2m

)
+ nβeE

m

√
1−

(
nβeE

2m

)2
]

. (6.32)

In the limit E → 0, equation (6.30) precisely reproduces the free energy of a free relativistic

particle in the limit βm À 1. Compare the limiting form of equation (6.30) with the exact

expression [68]

f =− m2

π2β2

∞∑
n=1

1

n2
K2(nβm). (6.33)

As β→∞we have

f ∼−
∞∑

n=1
2

m3/2

(2π)3/2(nβ)5/2
e−nβm (6.34)

which is the precise form of equation (6.30) as E → 0. Figure 6.2 is a plot of the exact result

for − f /m4, as given by equation (6.33) versus T /m, along with the approximate form given by

equation (6.34).

The long paths, on the other hand, give a thermal correction ΓT to the zero-temperature decay

rate Γ0. Our final result for scalars is

ΓT = 2Im

{
∞∑

p=0

nmax∑
n=1

2K (l )
np e−S(l )

np

}
(6.35)
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Figure 6.2: The worldline instanton expression for − f /m4 versus T /m compared with the exact expan-
sion in the limit E → 0.

where

K (l )
np = i

2
· (−1)p (eE)2

(2π)3/2
(
nβm

)1/2
·

[
1−

(
nβeE

2m

)2]−1/4

[
2π(p +1)−2sin−1

(
nβeE

2m

)]2 (6.36)

S(l )
np = m2

2eE

[
2π(p +1)−2sin−1

(
nβeE

2m

)
− nβeE

m

√
1−

(
nβeE

2m

)2
]

. (6.37)

This concludes the derivation of our results for scalars in an external electric field.

6.2 DISCUSSION

In this section, I discuss some of the unusual features of our results, and their generalization to

related problems. In Fig. 6.3, the total decay rate Γ= Γ0 +ΓT is plotted as a function of T /m for

three values of eE/m2. The leftmost part of each curve represents the contribution of Γ0 alone,

which is independent of temperature. Each curve shows singularities, indicated by dotted lines,

at T /m = neE/2m2. Each singularity occurs at a threshold temperature, above which a new

93



0.5 1

1 ·10−3

2 ·10−3

3 ·10−3

4 ·10−3

T /m

Γ/m4

eE = 0.70m2

eE = 0.85m2

eE = 1.00m2

Figure 6.3: The total one-loop decay rate Γ = Γ0 +ΓT divided by m4 versus T /m for various values of
eE/m2. The dotted lines represent the singularities at T /m = neE/2m2, which are rendered
finite by effects not included at one loop. The leftmost part of each curve represents the
contribution of Γ0 alone.

worldline instanton solution becomes possible. It can be shown that, wherever it is nonzero, ΓT

is always larger than Γ0. By examining the reliable values of Γ/m4 to the left of each singularity,

we see that the overall rise in the decay rate envelope appears to be linear in T .

The locations of the set of thresholds are controlled by the dimensionless parameter 2mT /eE ,

and by the associated integer part nmax. Any finite temperature instanton must satisfy 2R =

2m/eE > nβ. If nmax = 0, i.e. T < eE/2m, there are no finite temperature instantons, and there-

fore no corrections to the zero-temperature decay rate. As T is increased, the threshold for a

new solution is crossed whenever nmax increases by one. This has some similarity with the

problemof vacuumdecay at finite temperature. In the problemof the decay of the false vacuum,

the Euclidean bounce solution in the thin wall approximation is a critical bubble of radius

Rc , obtained from the competition between volume and surface tension contributions to the

bounce action. At nonzero temperature, this solution is unmodified until 2Rc >β, that is, until

the bubble diameter exceeds the length of the compact direction [119, 120]. There are also

94



some similarities with the problem of one-loop stability of gauge fields at finite temperature

in an external field, but the mechanism there is different and results from the competition

between positive contributions to the energy eigenvalues fromMatsubara frequencies with

the negative contribution from the lowest Landau level [76].

6.2.1 Morse-theoretic analysis

One of the striking features of our result for the decay rate, associated with the behavior at

thresholds, is the singular behavior of the decay rate ΓT . This singularity is due to the factor

[
1−

(
nβeE

2m

)2]−1/4
(6.38)

in eqns. (6.31) and (6.36) for the fluctuation prefactorsK (s)
np andK (l )

np . The origin of the singularity

can be understood at the classical level, however. In Figure 6.4, the action S is plotted for a

family of arc-shaped paths spanning a total angle θ, with nβm = 1, and endpoint separation

fixed to nβê4. Classical solutions are only obtained at the extrema, where R = m/eE , and are

given by S(s)
n0 and S(l )

n0. We see that for eE/m2 < 2, there is a local minimum corresponding to the

short path, and a local maximum corresponding to the long path. The instability of the long

path is obvious. At eE/m2 = 2, the two extremamerge and nmax changes by one. The long and

short paths are local maxima andminima of the action, respectively, along a given direction

in functional space. Recall that nmax is the greatest integer less than 2R/β= 2mT /eE . When

2mT /eE is an integer, the long and short paths are degenerate, and both are arcs of angle π

and arc length πR. If T is increased slightly, the degeneracy is lifted and a newmaximum and

minimum of the action exist. The singularity in K (s)
np and K (l )

np is associated with the degeneracy

of the two solutions. This behavior is reminiscent of the behavior associated with the classical

spinodal, where a local maximum andminimummerge and the quadratic approximation fails.
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eE = 1.0m2

eE = 1.3m2

eE = 1.7m2

eE = 2.0m2

Figure 6.4: The action S for an arc solution as a function of θ with nβm = 1. Only the extrema, indicated
by dots, represent classical solutions, with the short path solution a local minimum and the
long path solution a local maximum. The values of the action at the extrema are given by S(s)

n0

and S(l )
n0, respectively. At eE/m2 = 2, the two extremamerge.

This behavior is not restricted to the case of a constant, homogeneous electric field, but will

occur generally for an inhomogeneous electric field when the temperature is nonzero and a

zero-temperature instanton exists.

Morse theoryprovides auseful characterizationof the eigenvalues of second variationoperators

about a functional extremum [121, 118]. The caustic is the envelope of trajectories obtained

by fixing xµ(0) and varying ẋµ(0). A focal point of a classical path is defined as a contact point

between the path and the caustic surface. The central point ofMorse theorymay be stated thus:

the number of negative eigenvalues of the second variation operator about a given classical

path equals the number of focal points strictly between its endpoints, where each focal point is

counted with its multiplicity. This number is theMorse index of the path.

In the present case, all classical solutions are circles of constant radius R = m/eE . Therefore,

the caustic is the union of a larger circle of radius 2R with a single point at xµ(0). A diagram
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illustrating this caustic is in figure 6.5. Zero-temperature wordline instanton solutions of wind-

ing p (as well as our long paths of the same winding) contact the caustic 2p +1 times, which

establishes their imaginary contribution to the effective action. Short paths of winding p con-

tact the caustic 2p times, which nets a real contribution to the effective action. In either case,

the 2p negative eigenvalues associated with additional windings result in an overall factor of

(−1)p in the prefactor, as shown in equation (6.24). The appearance of such pairs of negative

eigenvalues can be seen explicitly in the derivation of the functional determinant prefactor for

zero-temperature solutions (see Appendix 6.4).

I emphasize that these features do not depend on the exact shape of the wordline instanton

solution. Exact worldline instanton trajectories are known for several inhomogeneous field

configurations [64]. Those orbits are no longer circles, but they are closed and periodic5, which

is sufficient to establish that the striking qualitative features of our results—the singularities

and thresholds, as well as the fact that short paths contribute to the free energy while long

paths contribute the decay rate—are expected for inhomogeneous field configurations as well.

6.2.2 Higher-order effects

We have seen in previous sections that the singularities in the effective action result from the

inadequacy of the Gaussian approximation at points in functional space where two critical

points become degenerate. At such points, the quadratic coefficient in the Hessian operator

vanishes, and higher-order terms are necessary for a correct computation of the effective

action. The inclusion of such higher-order effects is difficult even at zero temperature. At finite

temperature, higher-order effects will give rise to finite lifetimes for quasiparticle excitations in

the thermal medium. These lifetimes may be calculated within the hard thermal loop (HTL)

framework [122]. It is at least plausible that these finite lifetime effects smear out the threshold
5As, of course, they must [56, 57].
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Figure 6.5: A set of trajectories formed by varying ẋ(0). The envelope of such trajectories is the caus-
tic, indicated in red. A representative path is in blue. As the path touches the caustic, the
fluctuation operator about it acquires a negative eigenvalue.

singularities, rendering the decay rate finite. A complete calculation of this type is far beyond

our grasp. However, the singularities can be eliminated heuristically by including the effect of a

damping rate for the charged scalars. A damping rate for scalar QED can be obtained from a

hard-thermal-loop calculation of the imaginary part of the scalar self energy. We include this

effect by replacing m → m − iγ in equation (6.38), where γ ∼ 0.04e2T is the scalar damping

rate [123, 124]. This amounts to replacing the singular factor

[
1−

(
nβeE

2m

)2]−1/4

→




1−
(

nβeE
2m

)2

(
1−

(
nβeE

2m

)2)2
+

(
2γ
m

(
nβeE

2m

)2)2




1/4

(6.39)

in equation (6.36).

In Fig. 6.6 the total decay rate Γ= Γ0 +ΓT with the modified threshold behavior is plotted as a

functionofT /m for the same three values of eE/m2 used inFig. 6.3. As in that figure, the leftmost

part of each curve represents the contribution ofΓ0 alone, which is independent of temperature.

Each curve shows local maxima at T /m = neE/2m2. There is very little difference between

98



0.5 1

1 ·10−3

2 ·10−3

3 ·10−3

4 ·10−3

T /m

Γ/m4

eE = 0.70m2

eE = 0.85m2

eE = 1.00m2

Figure 6.6: The total one-loop decay rate Γ = Γ0 +ΓT divided by m4 versus T /m for various values
of eE/m2, including HTL damping effects. The leftmost part of each curve represents the
contribution of Γ0 alone.

the unmodified and modified decay rates, except in the close vicinity of a threshold. Other

modifications of the vacuum decay rate using the HTL damping rate have been attempted.

The results are not sensitive to the particular modification used, and the decay rate away

from thresholds is virtually unchanged. This indicates that the thermal contribution to the

pair production is substantially larger than the T = 0 contribution once the first threshold is

crossed.

6.3 CONCLUSIONS

I have presented a first-principles worldline instanton method for calculating the thermal

contributions to Schwinger pair production in an electric field, and argued that many of their

features carry over to the case of inhomogeneous fields as well. In section 6.5, I give a formal

derivation of these results by applying a saddle-point approximation to the standard proper

time representation of the effective potential for scalars in an external electric field.
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The decay rate shows unphysical behavior at a series of thresholds, but this is an artifact of

the Gaussian approximation to the functional integral; we have seen that this behavior is

made physical by the phenomenological inclusion of hard thermal loop effects. Once the

first threshold for thermal effects is crossed, the thermal contribution is larger than the the

T = 0 contribution, rising as each successive threshold is crossed. This strongly indicates the

potential importance of thermal effects in all such nonperturbative pair production processes.

These results are extended to cases of more phenomenological interest, such as quarks in

constant nonabelian electric fields, with Polyakov loop and finite density effects included, in

the following chapter.

The worldline formalism is powerful but physically opaque. A simple physical understanding of

these results, analogous to themany physically transparent derivations of the zero temperature

decay rate, would also be highly desirable.

6.4 APPENDIX: ZERO-TEMPERATURE FLUCTUATION PREFACTOR

We illustrate the use of the matrix determinant lemma by computing the prefactor for the zero

temperature worldline solutions. Because the local part Lµν of the second variation operator

(6.18) has zero modes associated with proper time translations and expansions/contractions

of the zero temperature circle, it is noninvertible, which means the spectrummust be known

and there is no benefit over the direct calculation. However, at finite temperature both zero

modes are lifted and the method becomes muchmore convenient. The second variation of

the action about the worldline instanton solution (assumed without loss of generality to be

centered at the origin) is [47]

Mp,µν = eE

[(
− δµν

2πp

∂2

∂u2
+ ieFµν

∂

∂u

)
δ(u −u′)− 2πp

R2
xp
µ (u)xp

ν (u′)
]

. (6.40)
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The determinant can be written as

det ′
[
Mp,µν

]=det ′
[
Lµν

](−2πpeE
)(

1−2πp
eE

R2

Ï
du du′ xp

µ (u)
(
L−1)′

µνxp
ν (u′)

)
(6.41)

Lµν =
[
− eE

2πp

d 2

du2
δµν+ ieFµν

d

du

]
. (6.42)

As usual, the primeddeterminant andGreen’s function are computedwith zeromodes removed.

The factor
(−2πpeE

)
appears because, while changes of the radius of the instanton circle are

associated with a zero mode of the local part, they do not correspond to a zero mode of the full

second variation operator; the corresponding eigenvalue must be handled separately.

The determinant of the local part can be computed by taking the product of eigenvalues, as in

Affleck et al. Ignoring the irrelevant transverse directions we have

det ′
[
Lµν

]=N 2
∏
q 6=0
q 6=p

(
2πeE

(
q2

p
−q

))2

(6.43)

whereN is a normalization factor to be fixed by the identity
∮

[dx]exp

[
−m2

4s0

∫ 1

0
du ẋ2

]
=N

[
det ′

(
M free

p,µν

)]−1/2
= m4

(4πs0)2 (6.44)

with M free
p,µν defined as in equation (3.28). Therefore,

det ′
[
Lµν

]=
(

4πs0

m2

)4 1
(
2πpeE

)2

∏
q 6=0
q 6=p

(
q2

p −q
)2

(
q2

p

)2 (6.45)

=
(

4π2p

eE

)4
1

(
2πpeE

)2

[
lim
z→1

sin
(
πpz

)

πpz(1− z)

]2

(6.46)

=
[(

4π2p

eE

)2
(−1)p+1

2πpeE

]2

, (6.47)

which clearly parallels the zero-temperature derivation (equations (3.30) through (3.32)). The

second line comes from a standard identity [42].
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We now proceed to the nonlocal part which, as we will see, is trivial. The Green’s function
(
L−1

)′
µν can be obtained from the spectral representation

(
L−1)′

µν =
∑
q 6=0
q 6=p

1

λq




cos
(
2πq

(
u −u′)) −sin

(
2πq

(
u −u′))

sin
(
2πq

(
u −u′)) cos

(
2πq

(
u −u′))


 (6.48)

and thus
∫ 1

0
du

∫ 1

0
du′ xµ(u)

(
L−1)′

µνxν(u′) =
∑
q 6=0
q 6=p

1

λq

(
sin

(
π
(
p −q

))

π
(
p −q

)
)2

= 0. (6.49)

The last remaining piece to be evaluated is the contribution of the zero mode associated

with proper time translations xµ(u) → xµ
(
u +ϕ/2πp

)
. As usual, one need only consider an

infinitesimal translation

xµ
(
u +ϕ)≈ xµ(u)+ϕ d

dϕ
xµ

(
u +ϕ/2πp

)∣∣∣∣
ϕ=0

(6.50)

and write the second term in terms of normalized eigenfunctions. Per this standard argument,

a factor of

R
∫ 2π

0

dϕp
2π

=
p

2π
m

eE
(6.51)

must be included in the functional integral.

Collecting everything, we obtain for the prefactor

(∫
d 4x

) p
2π/m

[∫ 1
0 du ẋ2

]1/4

(
det ′

[
Mp,µν

])−1/2 =±V4
i

2

(eE)2

(2π)3p2
(−1)p+1 (6.52)

in agreement with Schwinger’s formula. The factor of 1/2 comes from integrating over only one

half of the Gaussian peak in the imaginary direction, and the sign depends on the way in which

the analytic continuation is performed.
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6.5 APPENDIX: EQUIVALENCE WITH PROPER-TIME FORMALISM

The proper time expression for the one-loop finite temperature contribution to the effective

action of a charged scalar is [34]

L 1T
eff =− (eE)2

8π2

∞∑
n=1

∫ ∞

0

ds

s2
csc(s)e−m2s

eE − eE(nβ)2

4 cot(s). (6.53)

We wish to calculate a Gaussian approximation to this integral. The exponent has pairs of

saddle points given implicitly by

sin(s0) = nβeE

2m
≡ nβ

2R
(6.54)

provided the right side is smaller than 1, that is, n ≤ nmax (see eq. (6.12)). For definiteness and

simplicity s0 is taken to lie in the first quadrant, corresponding to our short path solutions. The

second derivative of the exponent at the saddle point is

∂2

∂s2

(
m2

eE
s + eE(nβ)2

4
cot(s)

)∣∣∣∣
s0

= eE(nβ)2

2
cot(s0)csc2(s0)

= 4m3

(eE)2(nβ)

√

1−
(

nβ

2R

)2

.

(6.55)

The Gaussian approximation to the integral reads

L 1T
(n) =− (eE)2

8π2

nmax∑
n=1

1

s2
0

2R

nβ




2π(eE)2nβ

4m3
√

1− (nβ
2R

)2




1/2

e−S(s0) (6.56)

=− (eE)2

p
2π3

nmax∑
n=1

∞∑
p=0

[
1−

(
nβeE

2m

)2]−1/4

(
nmβ

)1/2
(
2πp +2sin−1

(
nβeE

2m

))2 e−S(s0) (6.57)

where

S(s0) = m2

2eE

[
2πp +2sin−1

(
nβeE

2m

)
+ nβeE

m

√
1−

(
nβeE

2m

)2
]

(6.58)

in complete agreement with equations (6.30) and (6.31).
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CHAPTER 7

ELECTR IC F IELDS AT F IN ITE TEMPERATURE I I

In the previous chapter, we obtained compact expressions representing the effects of a real

space electric field in the thermodynamics of a complex scalar field. For applications, we may

require some generalizations of these expressions, for instance, for the case of spinor particles

moving in the presence of a nontrivial Polyakov loop. This brings these expressions into closer

contact with the physical processes of particle production in flux tubes and the breaking of the

color string. As in the zero temperature case, we could alsomake use of a better characterization

of the momentum distribution of produced particles, so a finite-temperature generalization of

Nikishov’s virial representation [37], equation (2.70) of this text, is of great interest.

To keep the presentation as short and simple as possible, each generalization is presented as a

separate development of the basic formalism. Combining them, if necessary, should present

no difficulty.

7.1 PROPER-TIME FORMULA

We would like to obtain some insight on the proper-time expression (6.53). The derivation of

Gies [34] parallels that of Schwinger [4], which was reproduced in section 2.5, taken together
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with the image charge construction (6.4). The calculation is complex, with many steps; one

wonders whether a simpler, more direct computation is possible.We address this in this section.

Our goal is to calculate the functional determinant of the Klein-Gordon operator for a charged

scalar in the background of a Euclidean electric field E, which is essentially a magnetic field in

the 34-plane,

D ≡−∂2
⊥+m2 −∂2

4 +e2E2x2
4 . (7.1)

We will use the formalism of zeta function regularization. See for example the book of Ramond

for an introduction [125]. Let the zeta function associated with D be defined as the analytic

continuation of

ζD (z) ≡
∑
n

a−z
n , (7.2)

where the an are the eigenvalues of d , to the complex z plane. Of course, D has a continuous

spectrum, so the above sum is over both continuous and discrete indices. The utility of this

construct stems from the formal observation

dζD (z)

dz

∣∣∣∣
z=0

= −
∑
n

log ane−z log an

∣∣∣∣
z=0

=− log

(∏
n

an

)
, (7.3)

thus it is natural to define

detζD ≡ e−ζ′D (0). (7.4)

Hereafter the subscript ζwill be omitted, and it is understood that all functional determinants

are defined in this way. Naturally, the one-loop effective action can be written in terms of this

determinant,

S(1)
eff =−1

2
logdetD = ζ′D (0). (7.5)

Consider first the case of zero temperature. It can be shown that the zeta function can bewritten

as

ζD (z) = 1

Γ(z)

∫ ∞

0
ds sz−1

∫
d 4x K (x, x; s), (7.6)
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where the heat kernel K (x, y ; s) satisfies

∂K (x, y ; s)

∂s
=−DxK (x, y ; s), (7.7)

K (x, y ;0) = δ(4)(x − y). (7.8)

The differential operator D has a free particle portion as well as a harmonic oscillator portion,

with eigenvalues (2n +1)ω, where ω=
p

e2E2, and orthonormal eigenfunctions

ψn(x4) = 1p
2nn!

(ω
π

)1/4
Hn

(
ω1/2x4

)
e−ωx2

4/2. (7.9)

We can then use the spectral representation to decompose K as

K (x, y ; s) = K⊥(x, y ; s)K∥(x, y ; s) (7.10)

where

K⊥(x, y ; s) =
∫

d 2p⊥
(2π)2

e−s(p2
⊥+m2)−i p1(x1−y1)−i p2(x2−y2), (7.11)

K∥(x, y ; s) = eE

2π

(ω
π

)1/2 ∞∑
n=0

e−s(2n+1)ω

2nn!
Hn

(
ω1/2x4

)
Hn

(
ω1/2 y4

)
e−ω(x2

4+y2
4)/2. (7.12)

The factor of eE/2π is the usual density of states due to the degeneracy of the Landau levels.

The sum can be done with the aid of Mehler’s formula [126],

∞∑
n=0

(ρ/2)n

n!
Hn(x)Hn(y)e−(x2+y2)/2 = 1√

1−ρ2
exp

[
4ρx y − (1+ρ2)(x2 + y2)

2(1−ρ2)

]
(7.13)

giving

K∥(x, y ; s) =
√

ω

2πsinh(2ωs)
exp

[
ωx y

sinh(2ωs)
−ωcoth(2ωs)

x2 + y2

2

]
. (7.14)
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With this, it is straightforward to construct the zeta function. Setting x = y and integrating, we

find
∫

d 4x K∥(x, x, s) = 1p
2sinh(2ωs)

1√
coth(2ωs)− 1

sinh(2ωs)

(7.15)

= 1

sinh(ωs)
. (7.16)

Together with the free particle portion we obtain for the zeta function,

ζD (z) = eE(
∫

d 3x)

2πΓ(z)

∫
ds sz−1

∫
d 2p⊥
(2π)2

e−s(p2
⊥+m2) csch(eEs). (7.17)

As in the computation of the zero-temperature Euler–Heisenberg effective Lagrangian (2.56),

the leading behavior of the hyperbolic cosecant is singular at s = 0. Once these are subtracted

in the usual way, the finite part of the functional determinant is easily evaluated: only the term

in which the derivative acts on the Gamma function contributes in the z → 0 limit. Then using

the fact that
d

dz
Γ(z)

∣∣∣∣
z=0

= − Γ′(z)

(Γ(z))2

∣∣∣∣
z=0

= 1 (7.18)

we obtain for the finite part of the effective Lagrangian

L (1)
eff =−eE

4π

∫ ∞

0

ds

s

∫
d 2p⊥
(2π)2

e−sm2
⊥/eE

(
csch(s)− 1

s
+ s

6

)
, (7.19)

wherem2
⊥ ≡ m2+p2

⊥. If theGaussian integrationover p⊥ is performed, this equation is recognized

as the expression of Weisskopf for the effective Lagrangian describing scalars in a magnetic

field (2.64). The corresponding expression for aMinkowski space electric fieldmay be obtained

with the replacements E→ iE , s → is.

The calculation at finite temperature is analogous. In particular, the kernel (7.14) is the same.

The compactness of the timelike direction manifests in the expression for the zeta function in
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terms of the heat kernel,

ζT
D (z) = 1

Γ(z)

∑
n∈Z

∫ ∞

0
ds sz−1

∫
d 3x K (x, x +nβê4; s). (7.20)

Without any loss of generality we consider the symmetrized expression

eE

2π

∑
n

∫
dx4 exp

[
ω

sinh(2ωs)
(x4 −nβ/2)(x4 +nβ/2)

−ωcoth(2ωs)
(x4 −nβ/2)2 + (x4 +nβ/2)2

2

] (7.21)

which can be rewritten as

eE

2π

∑
n

exp

[
−

(
1

sinh(2ωs)
+coth(2ωs)

)
n2β2ω

4

]∫
dx4 exp

[
ω

sinh(2ωs)
x2

4 −ωcoth(2ωs)x2
4

]
. (7.22)

The first factor is the finite temperature part, and the second is the zero temperature part

previously calculated. Using the hyperbolic identity

csch(2ωs)+coth(2ωs) = coth(ωs) (7.23)

we can write the resulting kernel as

K T
∥ (x, x; s) = eE

2π
csch(eEs)

∑
n

e− n2β2eE
4 coth(eEs). (7.24)

The free-particle portion is unchanged by the compactness of the timelike direction. Finally

we can write the finite temperature portion of the effective Lagrangian

L 1T
eff =−eE

4π

∑
n 6=0

∫ ∞

0

ds

s

∫
d 2p⊥
(2π)2

csch(eEs)e−m2
⊥s− eE(nβ)2

4 coth(eEs). (7.25)

This, after performing the integration over transversemomenta p⊥ and rotating to aMinkowski

space electric field E→ iE , s → is, is (6.53).
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Using the generating function for Laguerre polyonomials Lk ,

∞∑

k=0
t k Lk (z) = 1

1− t
exp

(
− zt

1− t

)
(7.26)

together with the identity

coth s = 1+ 2e−2s

1−e−2s
, (7.27)

it is possible to find the alternate representation

L 1T
eff =− (eE)2

2π

∑
n 6=0

∫ ∞

0

ds

s

∫
d 2p⊥
(2π)2

e−(1+m2
⊥/eE)s−eE(nβ)2/4

∞∑

k=0
e−2ksLk

(
(nβ)2eE

2

)
. (7.28)

7.2 CHEMICAL POTENTIAL AND NONABELIAN EFFECTS

Within theworldline formalism, it is straight forward to include the effects of anonzero chemical

as well as some special cases of nonabelian gauge field effects.

We begin by considering the case of a nonzero chemical potential µ. If we temporarily identify

the charge and particle number quantum numbers, the chemical potential can be usefully

considered as a static component of the abelian field such that Aν→ Aν+µδν,0. This changes

the worldline action (3.15) to

S̄ = m
√∫ 1

0 du ẋ2 + i
∫ 1

0
du

[
e A(x(u))+µê4

] · ẋ. (7.29)

It follows that zero-temperature instantons, which are worldline paths with zero winding in

the Euclidean time direction, have no µ dependence. Finite-temperature instanton solutions

begin and end at the same spatial coordinates, but have a net change in x4 of ±nβ. Particle

paths will pick up an extra factor of nβµ and antiparticle paths a factor of −nβµ. Because our

previous results include both particle and antiparticle paths with equal weighting, the effect of
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µ is to add a factor of cosh(nβµ) to the prefactors K (s)
np and K (l )

np .

ΓT = 2Im

{
∞∑

p=0

nmax∑
n=1

K (l )
np e−S(l )

np
(
enβµ+e−nβµ)

}
(7.30)

There are two known classes of constant nonabelian gauge fields which give rise to constant

electric fields: field configurations which generalize constant abelian electric fields, and field

configurations where the matrix-valued gauge field Fµν is nonzero because one or more of the

commutators [Aµ, Aν] 6= 0. I will consider only the former case here. In addition to the effects of

a constant electric field, I will also include the effects of a nontrivial Polyakov loop.

I will consider a limited class of nonabelian fields where, perhaps after a gauge transformation,

A4 and E are nonzero and constant, and both lie in the maximal commuting subalgebra, or

Cartan algebra, of the gauge group. We can then write the matrices E and P in a representation

R as

Eab = Eaδab (7.31)

Pab = e iψaδab . (7.32)

If these eigenvalues are known in the fundamental representation, the case of principal interest,

then eigenvalues of E and P can be constructed for any given larger other representation. All of

our previous formulae can then be taken over to this extended case by the replacements

E → E +Ea (7.33)

µ→µ+ iψa (7.34)

with an overall summation over the index a. The case of production of a nonabelian particle

pair in an abelian electric field can be written succintly as

ΓT = 2Im

{
∞∑

p=0

nmax∑
n=1

K (l )
np e−S(l )

np

(
enβµTrR P n +e−nβµTrR P−n

)}
. (7.35)
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This displays in a clearmanner an important difference between particles carrying only abelian

charge and those carrying nonabelian charge. In a region of the (µ,T ) plane where TrR P is

small, that is to say, where the particles are confined, the thermal production rate is suppressed

by the Polyakov loop. In a region where TrR P is close to its maximal value, TrR 1 ≡ dR , there is

very little suppression.

In the more general case where there is a nonabelian electric field, the decay rate is more

complicated and probably best written as a sum:

ΓT = 2Im

{
∞∑

p=0

nmax∑
n=1

dR∑
a=1

K (l )
np (E +Ea)e−S(l )

np (E+Ea )
(
enβµ+i nψa +e−nβµ−i nψa

)}
, (7.36)

where I have explicitly denoted the dependence of K (l )
np and S(l )

np on E +Ea .

7.3 UNIFORM ASYMPTOTICS

Realizing that the results from the wordline formalism can be obtained from the proper-time

formula (6.53) suggests an alternate way to handle the singularities in the effective action for

scalars in an electric field. Consider an integral of the general form

I =
∫ ∞

0
ds g (s)e− f (s), (7.37)

where f (s) is a reasonably well-behaved function with two saddle points s1 and s2, that is, two

(possibly complex) roots to the equation

f ′(s) = 0. (7.38)

Necessarily, the second derivatives at each saddle have different signs. I arbitrarily take s1 to be

the positive one. If the saddles coalesce, the second derivatives go to zero and the standard
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Gaussian approximation to the contribution of the saddle sk

Ik = g (sk )

√
2π

f ′′(sk )
e− f (sk ) (7.39)

diverges. This is precisely the origin of the singular behavior in the prefactors (6.31) and (6.36).

From here I adopt the notation gk ≡ g (sk ), fk ≡ f (sk ), etc.

There exist standard techniques for deriving asymptotic approximations to expressions of

this type. The exposition below is based on the work of Miller [127], who, in turn, credited

Carrier [128]. We require the integral representations of the Airy functions [129],

Ai(z) = 1

2πi

∫ ∞ei 2π/3

∞e−i 2π/3
ds e− 1

3 s3+sz (7.40)

i Bi(z) = 1

2πi

∫ ∞e−i 2π/3

∞
ds e− 1

3 s3+sz + 1

2πi

∫ ∞ei 2π/3

∞
ds e− 1

3 s3+sz , (7.41)

where the integral limits indicate that the contours start and end at the point at infinity with

the given arguments6. The shape of the contour is otherwise irrelevant.

If f (s) is expanded to third order about each saddle, and further assuming that the integral I is

dominated by the contributions at the saddle points, we can write the approximate expression

Ik = gk e− fk

∫ ∞

∞e−i 2π/3
ds e− f ′′

k (s−sk )2/2− f ′′′
k (s−sk )3/6, (7.42)

which can be placed in a form closer to the integral representations of the Airy functions by

completing the cubic,

Ik = gk

∣∣∣∣
2

f ′′′
k

∣∣∣∣
1/3

e− fk+ 2
3 x3

∫ ∞

∞e−i 2π/3
ds e− 1

3 s3+sxk ,

xk ≡−
( f ′′

k

2

)(
2

f ′′′
k

)2/3

.

(7.43)

6 The arguments are given as multiples of π/3 for definiteness only. In fact, it suffices that the contours begin
and end in the wedge shaped regions where |e−s/3|→ 0 for large s.
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The only remaining difference between this expression and the representations of the Airy

functions (7.40) and (7.41) is the contour. This is easily handled: since the integrand is an entire

function, the contour on this integral corresponds to the linear combination
(
Ai

(
x2

k

)−i Bi
(
x2

k

))
/2.

Finally we obtain

Ik = 2πgk

∣∣∣∣
2

f ′′′
k

∣∣∣∣
1/3

e− fk+ 2
3 x3

k
(
i Ai

(
x2

k

)+Bi
(
x2

k

))
. (7.44)

As pointed out by Miller, there are spurious terms in this expression. Identifying them cor-

rectly requires some information about the problem. In the application to the proper-time

formula (6.53), we have guidance from the worldline formalism, which tells us, for example,

that

4πg1

∣∣∣∣
2

f ′′′
1

∣∣∣∣
1/3

e− f1+ 2
3 x3

1 i Ai
(
x2

1

)
(7.45)

is just a crude approximation to I2, best left out altogether. We thus have

I1 = 2πg1

∣∣∣∣
2

f ′′′
1

∣∣∣∣
1/3

e− f1+ 2
3 x3

1 Bi
(
x2

1

)
, (7.46)

I2 = 2πg2

∣∣∣∣
2

f ′′′
2

∣∣∣∣
1/3

e− f2+ 2
3 x3

2
(
i Ai

(
x2

2

)+Bi
(
x2

2

))
. (7.47)

To carry out the computations we take

f (s) = m2

eE
s + (nβ)2eE

4
cot s, (7.48)

and may choose, for example,

g (s) = (eE)2

4π2

1

s2
cot s (7.49)

for spinors, or

g (s) = (eE)2

8π2

1

s2
csc s (7.50)

for scalars. The worldline formalism also lets us know that there is no contribution to the

imaginary part of the effective action below the threshold at each value of n, because there the
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0.5 1

1 ·10−3
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4 ·10−3

T /m

Γ/m4

eE = 0.7m2

eE = 0.85m2

eE = 1.0m2

Figure 7.1: The total uniformized one-loop decay rate Γ= Γ0 +ΓT divided by m4 versus T /m for various
values of eE/m2. The leftmost part of each curve represents the contribution of Γ0 alone.

contributions to the effective action from the two complex wordline solutions form a complex

conjugate pair.

The uniformized decay rate for scalars is presented in figure 7.1. Note the similarity with

figure 6.6, which was obtained from amodified Gaussian approximation that incorporates a

finite lifetime for the scalars, obtained from the hard thermal loop framework. The argument

given here shows that this earlier construction is not needed: the scalar pair production rate is

finite even without inclusion of a damping rate.

7.4 VIRIAL REPRESENTATION

As in the case of pair production at zero temperature, for applications we require also the

momentum distribution of created pairs. The procedure employed in 3.4 generalizes to the

caseofnonzero temperature in a straightforwardmanner, as the image charge construction (6.4)
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0.5 1

1 ·10−3

2 ·10−3

3 ·10−3

4 ·10−3

T /m

Γ/m4

eE = 0.70m2

eE = 0.85m2

eE = 1.00m2

Figure 7.2: The total one-loop decay rate for scalars Γ= Γ0 +ΓT divided by m4 versus T /m for various
values of eE/m2, obtained by integrating the virial representation (equations (7.58) and
(7.59)) over transverse momenta. Each curve reduces smoothly to the zero-temperature rate
Γ0 for sufficiently small T .

does not affect the essence of the argument. Thus, one makes the substitution m → m⊥, where

m2
⊥ = m2 +p2

⊥ (7.51)

can be interpreted as the relativistic mass squared of the created particles. Then the steps

leading to equations (6.31), (6.32), (6.36), and (6.37) are retraced, with the chief difference being

the dimensionality of the path integral normalization factor (the first factor in equation (6.23)).

One important difference between the cases of zero and nonzero temperature is that, at zero

temperature, the final expression, equation (2.70), can be integrated to recover the original

Schwinger formula (2.67). In the finite temperature calculation, different sets of functional

saddle points contribute to the decay rate depending on whether the transverse modes are

integrated out. In particular, since the radius of the instanton solution corresponding to the
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production of particles with transverse momentum p⊥ is given by

R⊥ = m⊥
eE

= 1

eE

√
m2 +p2

⊥, (7.52)

there are classical trajectories for all timelike windings n. Rather, there is now a minimum

transverse momentum threshold for each n, which corresponds to the minimum instanton

radius that permits a classical trajectory winding around the Euclidean time direction n times.

We thus require 2R⊥ ≥ nβ, or

p⊥ ≥ pmin
⊥ ,

pmin
⊥ ≡ m Re

[√(
nβeE

2m

)2
−1

]
.

(7.53)

Therefore

ReL (1)
T =

∫
d 2p⊥
(2π)2

∞∑
p=0

∞∑
n=1

2K (s)
⊥,np e−S(s)

⊥,np (7.54)

i ImL (1)
T =

∫
d 2p⊥
(2π)2

∞∑
p=0

∞∑
n=1

2K (l )
⊥,np e−S(l )

⊥,np . (7.55)

The relevant instanton actions and prefactors are given by

K (s)
⊥,np = (−1)p (eE)Θ

(|p⊥|−pmin
⊥

)

(2π)1/2
(
nβm⊥

)1/2
·

[
1−

(
nβeE
2m⊥

)2]−1/4

[
2πp +2sin−1

(
nβeE
2m⊥

)] (7.56)

S(s)
⊥,np = m2

⊥
2eE

[
2πp +2sin−1

(
nβeE
2m⊥

)
+ nβeE

m⊥

√
1−

(
nβeE
2m⊥

)2
]

, (7.57)

K (l )
⊥,np = i

2
· (−1)p (eE)Θ

(|p⊥|−pmin
⊥

)

(2π)1/2
(
nβm⊥

)1/2
·

[
1−

(
nβeE
2m⊥

)2]−1/4

[
2π(p +1)−2sin−1

(
nβeE
2m⊥

)] (7.58)

S(l )
⊥,np = m2

⊥
2eE

[
2π(p +1)−2sin−1

(
nβeE
2m⊥

)
− nβeE

m⊥

√
1−

(
nβeE
2m⊥

)2
]

, (7.59)

where
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Θ(x) =




1 x ≥ 0

0 x < 0
(7.60)

is Heaviside’s step function. The resulting total decay rate obtained from integrating these

expressions over p⊥ is given in figure 7.2.

Onemight expect that this representation is dangerous because of the threshold singularities in

the prefactors, which are present at all values of transverse momentum. It could seem that the

use of a uniformization technique such as the one presented in section 7.3would be paramount.

However, the singularities are quite mild, and the results obtained here are largely insensitive

to whether or not they have been removed.

7.5 THE THERMAL SCHWINGER PROCESS IN SPINOR QED

I discussed in section 3.3 how the worldline formalism can be extended to spinor electrody-

namics. The worldline solutions remain identical apart from an overall factor of 1/2 in the

effective action, and the path integral now carries a “spin factor” (3.36)

Sp[x, A] = TrPexp

[
i
2σµν

∫ τ

0
ds Fµν(x(τ))

]
(7.61)

where the symbol P indicates path ordering of the exponential and the trace is the Dirac trace.

For the special case of constant Fµν considered here, path ordering is unnecessary, and the

spin factor is

Sp[x, A] = 4cos

[
e
∫ s

0
dτE(x(τ))

]
(7.62)

which reduces in the saddle-point approximation to

Sp[x, A] = 4cos(es0E). (7.63)
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At zero temperature the spin factor reduces to (−1)p even for various inhomogenous field

configurations. It has been conjectured that this is a general topological property of worldline

instantons [54], which seems likely. The conjecture does not hold at finite temperature, however,

because the solutions are not full circles. With the known values of s0 for short and long path

solutions,

s(s)
0 = θn +2πp

2eE
, s(l )

0 = 2π−θn +2πp

2eE
, (7.64)

we obtain

Sp[x, A] =±4(−1)p

√
1−

(
nβeE

2m

)2
, (7.65)

where the plus sign is taken for short path solutions. Clearly, the spin factor cancels the singu-

larities in the prefactors (6.31) and (6.36), which become zeros. The full prefactors are given

by

K (s)
np = 2(−1)n(eE)2

(2π)3/2
(
nβm

)1/2
·

[
1−

(
nβeE

2m

)2]1/4

[
2πp +2sin−1

(
nβeE

2m

)]2 (7.66)

K (l )
np = i

2
· 2(−1)n(eE)2

(2π)3/2
(
nβm

)1/2
·

[
1−

(
nβeE

2m

)2]1/4

[
2π(p +1)−2sin−1

(
nβeE

2m

)]2 . (7.67)

Additionally, implementing fermions correctly at finite temperature requires antiperiodic

boundary conditions on the Euclidean time direction. This is implemented easily as a factor

of (−1)n in the image charge construction (6.4). The long-path solution with the largest value

of n has the smallest action, so the boundary conditions may cause the decay rate of the

metastable state to become negative. This is surprising, but not unprecedented. An example

is the spectrum of radiation produced by a Kerr black hole. It is well known that black holes

formed from a collapsing body radiate with a thermal spectrum [93]. The spectrum of rotating

black holes differs from the Schwarzschild case by the addition of a “chemical potential” term
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Figure 7.3: The total one-loop decay rate for spinors Γ= Γ0 +ΓT divided by m4 versus T /m for various
values of eE/m2. The leftmost part of each curve represents the contribution of Γ0 alone.

in the Planck factor [130]. For bosonic particles,

ρ(ω,m) = 1

e2πκ−1(ω−rΩ) −1
, (7.68)

where κ is the surface gravity of the black hole, Ω is the angular speed at the event horizon,

and m is an azimuthal quantum number. When ω< mΩ, this factor becomes negative, and for

sufficiently cold black holes, the overall luminosity may be negative. This is connected with the

classical phenomenon of superradiance, which is in fact unrelated to Hawking radiation and is

in place even for rotating stars.

The imaginary part of the effective action and its connection to the decay of metastable states

has been thoroughly studied by Langer [96]; see also Zwerger [131] and Newman and Schul-

mann [132]. Probably themost natural interpretation for the present context is in a steady state

sense: the physical situation is such that the metastable state is replenished continuously, and

the decay rate represents a probability current exiting the metastable region. If the spatial re-

gion containing the electric has finite extent, a negative decay rate simply means that particles

are removed from the region faster than they are produced via the Schwinger process. At finite
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temperature, both the “forward” process, where particles are produced from the vacuum, as

well as the “reverse” process, where real particles from the gas tunnel back into the void, are

possible. Pauli blocking operates in both senses of the reaction, and may suppress either more

strongly depending on the energy spectra inside and outside the metastable region. However,

a detailed physical picture of this process is at present not available.

7.6 DISAGREEMENTS ON THERMAL SCHWINGER EFFECTS

There has been a long-standing lack of clarity on the issue of thermal corrections to Schwinger’s

formula. There has been some disagreement between results computed in different methods,

and some previously published derivations were later found to be incorrect [34]. In fact, prior

to this work, to the best of our knowledge no correct expressions for the effective action in the

presence of an electric field derived in the imaginary-time formalism had been derived. Some

authors [18, 34], upon failing to derive the one-loop thermal correction from first principles,

provided plausibility arguments that this correction should vanish. The same result was found

through different methods [108], which seemed to bolster this conclusion.

Our conclusions differ from this previous apparent consensus, so the contradiction must

be explained. In particular, I will explain why our conclusions differ from those of Hallin

and Liljenberg [108], as their work is a complete derivation of pair production in a thermal

medium using the elegant functional Schrödinger formalism. Their main conclusion is that,

while the thermal medium enhances the production of particles for short times, as t →∞ the

enhancement disappears and the pair production rate reduces to the zero-temperature result

of Schwinger [4]. In fact, I do not dispute this conclusion: their calculation represents how the

presence of an electric field affects a density matrix which initially represents a thermal state.

Clearly, in this type of situation two effects must happen: pair production via the Schwinger

process, and ordinary acceleration of the particles in the gas. Because of this second effect,
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over time the gas is no longer thermally distributed, and positive and negative charges become

separated. Our formalism does not apply straightforwardly to this situation. As pointed out by

Langer [96], the imaginary part of the effective action should be interpreted in a steady-state

sense: the system is held in a given thermal state, which is continuously replenished, and the

imaginary part of the effective action is related to a flux of particles exiting the metastable

region. This set of assumptions, rather than those implemented in the work of Hallin and

Liljenberg, seems to better represent the physical situation inside a flux tube. A flux tube is a

comparatively small region, where chromoelectric fields are large, within the larger thermal

mediumof the quark gluonplasma.Degrees of freedomwithin the flux tube are free to exchange

energy with the outside plasma, which may be thought of as a reservoir. In contrast, if one

seeks a thermal correction to Schwinger’s formula for use in a situation where electric fields

are large throughout the extent of the plasma itself, the expressions of Hallin and Liljenberg

may be more appropriate.

I discussed specifically the work of Hallin and Liljenberg, as there the difference between pair

production in early and late time regimes is striking and clear. Similar remarks apply also to

the work of Gavrilov and Gitman [133], and Kim, Lee, and Yoon [134].

Some recent papers have also considered instanton calculations for Schwinger pair produc-

tion [135, 136]. Both sets of authors argue that a “lens” shaped trajectory, formed essentially

by gluing together two of our short path solutions (see figure 6.1), is the relevant one for com-

puting finite temperature corrections to pair production. Such lens-shaped solutions have

been considered previously [6]: they represent the worldline trajectory of a charged particle

in an electric field comprising both a constant component and a high frequency component.

At either apex of the lens, the particle reflects from a sharp well-like potential, and the overall

effect is to decrease the action of the solution, which corresponds to a dynamical enhancement

of the Schwinger process by the intense high-frequency light. In a finite temperature system
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containing only a constant electric field, there is no such wall potential, and the significance of

such solutions becomes less clear.
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CHAPTER 8

THE S IGN PROBLEM

Some of the material in this chapter has been previously submitted for publication [137]. This

work was done in collaboration with and under the supervision of Dr. Michael Ogilvie.

In previous chapters I discussed the difficult problem of computing thermal corrections to

Schwinger’s pair production formula, and the long-standing lack of clarity surrounding the

issue. A lattice computation of the thermal QED effective action in the presence of an electric

field could have settled the disagreements in a fairly definitive way, and it seems a priori

surprising that the problem remained unsolved for so long. Unfortunately, the simulation of

electrodynamics in the presence of a constant electric background is made very difficult by the

so-called sign problem.

Computational methods for reliably calculating a number of equilibrium quantities have been

highly developed in lattice field theory and statistical physics. Where these techniques are

applicable, they are often considered the standard against which other calculations should

be compared. However, standard Monte Carlo methods require an identification between a

classical probability distribution over configuration space and a representation of the partition

function in terms of positive weights. Unfortunately, there are important systems which for

which a representation of the partition function in terms of positive weights is not known,
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which renders such methods inapplicable. This difficulty is known as the sign problem and is a

significant obstacle in theoretical physics.

Twomore examples of sign problems in lattice field theory are associated with QCD with non-

zero chemical potential µ [138, 139], and the iφ3 field theory, which determines the critical

indices of the Lee-Yang edge transition [140]. The sign problem in QCD with µ 6= 0 is partic-

ularly vexing because many interesting questions in particle physics, nuclear physics, and

astrophysics depend on the properties of hadronic matter at nonzero baryon density. Lattice

simulations have been enormously successful in elucidating the phase structure of QCD and

related theories at finite temperature T , but a complete first-principles understanding of the

QCD phase diagram in the µ−T plane remains unrealized. The difficult problem of simulating

QCD at nonzero µwas clear decades ago [141], but a satisfactory algorithm has been elusive.

There are several approaches to the sign problem of finite density QCD under active devel-

opment, including methods based on duality [142], Lefschetz thimbles [143], and complex

Langevin equations [144].

8.1 COMPUTATIONAL COMPLEXITY OF MONTE CARLO

The failure to develop a general solution to the sign problem led Troyer andWiese to propose

that the sign problem is NP-hard, which would strongly indicate that no general solution

exists [145]. In this section I discuss their demonstration and argue that it fails.

The classes P and NP, as well as the concept of NP-hardness, are central to computational com-

plexity theory. An introduction accessible to physicists can be found in Aaronson’s book [146].

The class P can be described informally as the set of yes-or-no questions that can be efficiently

answered. “Efficiently” here means “in polynomial time”, which in turn means “in a number of

steps bounded by a polynomial on the length of the string specifying the problem instance”.
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For example, the question “is a given list ordered?” can be answered in time proportional to

the length of the list, so it is in the class P. Just as informally, the computational class NP is

defined as the set of yes-or-no questions such that an affirmative7 answer can be efficiently

verified. The name NP comes from an earlier, equivalent definition of this class and stands

for “nondeterministic polynomial time”. Clearly, if a problem is in P, it is also in NP, but the

converse is not known to be true; the question of whether P = NP? is the single most important

open problem in computer science. An example of a problem in NP which is not known to be

in P is: given integers N and M with M < N , does N have a prime factor less than M? There

is no known algorithm for determining N ’s prime factors that runs in a time bounded by a

polynomial in the number of digits, but, given a candidate list of prime factors, verifying that

the answer is yes is simply a matter of multiplying the factors together to make sure they are

indeed prime factors of N , and then checking if any of them are greater than M .

A problem in NP is said to be NP-hard if any problem in NP can be efficiently reduced to it.

A reduction from problem P to problem Q is a map from instances of p of P to “equivalent”

instances of q ofQ, where “equivalent” means that the answer to p is “yes” if and only if the

answer to q is also “yes”. If an efficient reduction from P toQ exists, an algorithm which solves

Q efficiently also solves P efficiently. Thus, a problem which is NP-hard is, in a sense, “at

least as hard as any problem in NP.” This description illustrates a common proof strategy for

demonstrating that a problemQ is NP-hard: it suffices to exhibit a reduction from P toQ, with

P a problem known to be NP-hard.

It is widely believed that P 6= NP, which means it is considered unlikely than an efficient algo-

rithm for solving generic instances of problems in NP exists, and, in particular, at least some

instances of NP-hard problems are expected to be intractable. Thus, the claim that the sign
7 The word “affirmative” is important: the set of yes-or-no questions where a negative answer is efficiently

verifiable is known as the class co-NP. The exact nature of the relationship between NP and co-NP is unknown,
but it is widely believed that co-NP 6= NP.
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problem is NP-hard carries serious consequences: if the problem is expected to be unsolvable

in the general case, a proposed solution must be tightly reliant on specific properties of a given

instance.

Troyer andWiese’s demonstration is based on a reduction from the Ising spin glass, which has

been known to be NP-hard for some time [147]. Specifically, the problem of determining the

ground state energy of a system defined by the Hamiltonian

H =−
∑

j ,k
Jjk σjσk , (8.1)

where the classical spins σj take on values ±1, and the couplings Jjk are either 0 or ±J , is

NP-hard. This problem can be recast as the yes-or-no question of determining whether the

ground state energy is less than some constant E0. This version of the problem is clearly in the

complexity class NP: a proposed assignment of values to the classical spins σj immediately

yields a value of the total energy of the system, which can be compared against the bound E0.

The discreteness of the energy levels implies that it suffices to consider the mean energy 〈E〉 of

the system at sufficiently low temperature. For βJ ≥ N log2+ log(12N ), where N is the number

of sites, 〈E〉 < E0 + J/2 if the ground state energy is less than E0, and 〈E〉 > E0 + J otherwise.

Given an instanceof the Ising spin glass specifiedby the values of the couplings Jjk , the following

quantummechanical model is constructed,

Ĥ =−
∑

j ,k
Jjk σ

x
j σ

x
k . (8.2)

This Hamiltonian commutes with all spins σx
j , so they are each a good quantum number, and

the spectrum is identical to that of the classical system. An alternate representation as a sum

over “worldlines” is given in the Trotter–Suzuki formalism, which is analogous to the usual

thermal field theory Matsubara formalism. An introduction in the context of quantum spin
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glasses can be found in Chakrabarti and Das [148]. The partition function is written

Z = Trexp

(
β

∑

j ,k
Jjk σ

x
j σ

x
k

)
= Tr

{[
exp

(
β

Nt

∑

j ,k
Jjk σ

x
j σ

x
k

)]Nt
}

. (8.3)

In the general case where an external biasing field may be present, this identity is still valid in

the limit as Nt →∞, as a consequence of the Trotter product formula. Inserting a complete set

of eigenvalues of the σz
j and using the cyclic property of the trace we obtain

Z =
∑∏

j ,k

〈
sz

j ,0sz
k,0

∣∣e−∆τĤjk
∣∣sz

j ,1sz
k,1

〉〈
sz

j ,1sz
k,1

∣∣e−∆τĤjk
∣∣sz

j ,2sz
k,2

〉
. . .

· · ·×〈
sz

j ,Nt−1sz
k,Nt−1

∣∣e−∆τĤjk
∣∣sz

j ,0sz
k,0

〉
,

(8.4)

where ∆τ≡β/Nt , Ĥjk ≡ Jjk σ
x
j σ

x
k , and the sum is over classical spin configurations on the space

ofNt copies of the original system. Theproblem then reduces to computing thematrix elements

in this expression. Thus

〈++
∣∣e−∆τĤjk

∣∣++〉= 〈−−
∣∣e−∆τĤjk

∣∣−−〉= cosh(∆τJjk ) (8.5)
〈++

∣∣e−∆τĤjk
∣∣−−〉= 〈−−

∣∣e−∆τĤjk
∣∣++〉= sinh(∆τJjk ) (8.6)

〈+−
∣∣e−∆τĤjk

∣∣−+〉= 〈−+
∣∣e−∆τĤjk

∣∣+−〉= sinh(∆τJjk ), (8.7)

with all other matrix elements vanishing.

The partition function is now represented as a sum over weights. If all the Jjk ≥ 0, that is, in

the case of purely ferromagnetic couplings, all weights are positive, and the loop algorithm

permits an evaluation of thermal averages in polynomial time [149]. If there is at least one

antiferromagnetic coupling Jjk < 0, some of the terms in the partition sum (8.4) are negative,

and no efficient algorithm is known.
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The authors of [145] then conclude that the sign problem is the origin of the NP-hardness of

the quantum spin glass, and thus, that the sign problem itself should be regarded as NP-hard.

This last step seems somewhat suspect, and should be examined carefully.

Implicit in our discussion is the notion of a computational problem, which can be thought of a

mathematical object representing a set of well-defined questions that might be answered by a

computer. The sign problem does not represent a set of well-defined questions, so it is not a

computational problem. Rather, it is a property of certain representations of physical problems.

Strictly speaking, a property cannot be NP-hard. For example, the well-known problem CLIQUE

is NP-hard in general, but can be efficiently solved for planar graphs: it suffices to check

subgraphs with 4 vertices or less, as a complete subgraph with 5 vertices or more always makes

the supergraph nonplanar [150]. This does not establish that nonplanarity itself is NP-hard,

merely that, for the particular case of CLIQUE, restricting oneself to planar instances makes

the problemmore tractable. Similarly, in the specific case of the spin glass, examples with no

antiferromagnetic couplings are easier to solve.

That the sign problem is representation-specific bears emphasizing. Troyer andWiese’s demon-

stration rests upon the property that their representation of the quantum spin glass has a sign

problem if and only if there is at least one antiferromagnetic coupling. It is easy to obtain a

representation with just the opposite property, that is, which has a sign problem if and only if

there is no antiferromagnetic coupling. The reduction is as follows. Given a spin glass defined

by the classical Hamiltonian (8.1), we construct the quantummechanical Hamiltonian

Ĥ =−
∑

j ,k
Jjk σ

z
j σ

z
k (8.8)

if there is at least one antiferromagnetic coupling, and

Ĥ =−
∑

j ,k
Jjk σ

y
j σ

y
k (8.9)
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otherwise. The representation (8.8) is always a sum over positive weights, irrespective of the

signs of the couplings, while (8.9) always has both positive and negative weights. It may seem

undesirable that the reduction selected specifically for antiferromagnetic couplings. This kind

of aesthetic consideration should not be dismissed if one is attempting to construct an elegant,

parsimonious physical theory, but is ultimately irrelevant for computational complexity.

This example shows that the proof strategy employed in [145] is inadequate for characterizing

the computational complexity challenges associated with sign problems. The authors assert

in footnote 4, “Note that the conclusions drawn in this Letter are independent of the repre-

sentation”. What can indeed be concluded independently of representation is that computing

thermal averages in quantum spin glasses is NP-hard. On the other hand, the statements

concerning the sign problem are specific to the choice of representation of quantum spin

glasses. Since a representation of the quantum spin glass solely in terms of positive weights is

immediate, clearly the hardness cannot be due to the sign problem, and is best attributable to

the (representation-independent) nonconvexity of the energy landscape.

The authors define a solution to the sign problem as “an algorithm of polynomial complexity

to evaluate the thermal average 〈A〉”. This definition clearly demands too much: even for

the classical spin glass, straightforwardly representable in terms of positive weights, such an

algorithm does not exist unless P = NP. That the simulation may become trapped in local

minima of the free energy and thus fail to compute the thermal average accurately is not a

failure of the simulation. A physical system described by the same Hamiltonian would also

be expected to become trapped in local minima, and relax to thermal equilibrium only after

an exponential amount of time. If it were otherwise, a strategy for solving NP-hard problems

efficiently would be to build in the laboratory a system described by the Hamiltonian (8.2), cool

it down, and physically measure the spins at each site. Such a strategy is unlikely to work unless

quantum computers can solve NP-hard problems in polynomial time, which is considered
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unlikely8 [151]. The strategy has since been attempted at D-Wave Systems. Whether it results

in any speedup at all over classical algorithms is a matter of contention [152]; an exponential

speedup seems extremely implausible, especially in a realistic material that a physicist may

wish to study using Monte Carlo simulation. In summary, the NP-hardness of the quantum

spin glass is a statement about the physical system itself, not its simulation. The physicist’s

task is not to find thermal averages quickly, but rather to ensure that the simulation accurately

captures the physics of the system, including the exponential time to equilibrium.

Any system described by a self-adjoint Hamiltonian has real energy eigenvalues, and thus a rep-

resentation of the partition function as a sum over positive weights always exists. The difficulty

lies in finding such a representationwithout having to solve the problem completely. Analogous

situations have been encountered previously in computer science. One example is the com-

plexity of Nash equilibria: it can be proven that a mixed Nash equilibrium always exists [153],

but actually finding one can be very difficult. This difficulty has been characterized in various

ways. The problem of finding a Nash equilibrium was demonstrated to be complete for the

class PPAD [154], which is weaker evidence of intractability than NP-hardness. It has also been

shown that determining whether a second Nash equilibrium exists is NP-hard [155]. Similar

approaches may be promising for correctly characterizing the hardness of sign problems.

8.2 DUALITY TRANSFORMATION

The three systems mentioned in the introduction—electrodynamics with an electric back-

ground, iφ3 field theory, and QCD at finite density—have a form of PT symmetry [156–

159, 73]. This symmetry was initially found in the study of generalizations of the i x3 quantum-

mechanical Hamiltonian, where P : x →−x and T : i →−i . A large class of scalar lattice field

theories with sign problems have Lagrangians satisfying L∗(φ) = L(−φ), a form of PT symmetry.
8This point was in fact mentioned in the penultimate paragraph of [145].
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This symmetry can be found in both continuum and lattice models; it implies that any eigen-

value of the Hamiltonian or transfer matrix is either real or part of a complex conjugate pair. If

all the eigenvalues are real, the Hamiltonian or transfer matrix can be made Hermitian by a

similarity transformation [160].

I will present a procedure for finding dual forms of the partition function Z for a large class

of such PT -symmetric scalar field theories; a duality transformation yields representations

with real local actions which are easily simulated by standard lattice field theory methods in

any number of dimensions. This class includes models in the iφ3 universality class as well as

charged scalar fields with nonzero chemical potential. Models in this class exhibit a rich set of

possible behaviors. Because their transfer matrices are non-Hermitian, theymay have complex

eigenvalues. This leads to damped oscillations of correlation functions, a behavior well-known

in the context of improved actions [161]. This represents a loss of spectral positivity, but is seen

in many physical systems, e.g. liquids. In some cases, spatially modulated phases occur [162].

Our starting point is a lattice model with a single real scalar field χ and a Euclidean lattice

action of the form

S(χ) =
∑

x

[1
2 (∂µχ(x))2 +V (χ(x))

]
(8.10)

where the sum is over all lattice sites x, and ∂µχ(x) ≡χ(x + µ̂)−χ(x). The potential V is taken

to satisfy the PT symmetry condition V (−χ) = V (χ)∗. Because of this condition, the Fourier

transform w̃(χ̃) of w(χ) ≡ exp[−V (χ)]with respect to χ is real. If w̃(χ̃) is everywhere positive, we

say that the dual positivity condition is satisfied and define a real function Ṽ (χ̃) =− log(w̃(χ̃)).

The partition function is

Z [h] =
∫ ∏

x
dχ(x)exp

[
−S(χ(x))+

∑
x

i h(x)χ(x)

]
(8.11)
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where h(x) is an arbitrary source. We rewrite Z as

Z =
∫ ∏

x
dπµ dχ̃dχexp

{
−

∑
x

[
1
2π

2
µ+ iπµ∂µχ+ Ṽ (χ̃)+ iχ(χ̃+h)

]}
(8.12)

where the spacetime dependency of the fields φ(x), χ(x) and source h(x) has been suppressed.

After a lattice integration by parts, the integral over χ yields

Z =
∫ ∏

x
dπµexp

{
−

∑
x

[
1
2π

2
µ+ Ṽ (∂ ·π−h)

]}
. (8.13)

This represents a dual form of the partition function where the field π and the action are both

real, similar to dual forms for models with fields defined on compact manifolds. Thus, when

the dual positivity condition is satisfied, the partition function has a manifestly positive form

and the sign problem is solved. In the more general case where the dual positivity condition

does not hold, the same procedure reduces the problem of simulating a complex action to the

simulation of a system with a true sign problem where all weights are real. In the former case,

the strategy for simulation of the model is clear: one simulates the new action

S̃[πµ] =
∑

x

[
1
2π

2
µ(x)+ Ṽ (∂ ·π(x))

]
(8.14)

using standardmethods. There is a clear extension to the case of more than one PT -symmetric

scalar field. Correlation functions of the original field χmay be obtained in the usual way by

differentiation with respect to h(x). In particular, non-coincident correlation functions of χ

are obtained in the new representation using the field i Ṽ ′(∂ ·π(x)). Although the field χ is real,

note that the expectation value of χ is either zero or purely imaginary, as a consequence of

the complex weights in the original form of Z . A real expectation value for χwould violate PT

symmetry.

Conditions on functions w which satisfy the dual positivity condition can be obtained from

Bochner’s theorem, which states that a function w̃(k) on a locally compact abelian group
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is positive if and only if w(x) is positive-definite, that is, the matrix w(x j − xk ) has positive

eigenvalues for any choice of the set {x j }. This theorem is easily understood from the formula
∫

dxψ∗(x)w(x)ψ(x) =
∫

dk

2π

dq

2π
ψ̃∗(k)w̃(k −q)ψ̃(q). (8.15)

The simplest of the constraints imposed by Bochner’s theorem is V (x)+V (−x) > 2V (0). This

constraint excludes the double-well potential and other potentials that lead to conventional

spontaneous symmetry breaking at tree level. This is consistent with PT symmetry which

demands that 〈χ〉∗ = −〈χ〉, i.e., that 〈φ〉 be purely imaginary. This limitation does not seem

fundamental, because this constraint does not appear in other duality-based treatments of

complex actions [163].

In the general case, it may be simplest to take the form of the dual potential Ṽ as given, and

determine the parameters of V from it. In general, V will then contain nonrenormalizable

interactions. Such interactions correspond to irrelevant operators in the continuum limit. They

do not affect, for example, critical indices, which depend only on the universality class. If one

parametrizes V as a polynomial in φ, V =∑
n gnφ

n/n! , then the coefficients gn are naturally

obtained from the generating functional of the zero-dimensional dual theory defined by

gn ≡ ∂nV

∂χn

∣∣∣∣
χ=0

=−(i )n〈
χ̃n〉

c , (8.16)

the cumulant of the dual variable χ̃ averaged with weight w̃(χ̃). The mass parameter of V is

given by g2 = 〈χ̃2〉c = 〈χ̃2〉− 〈χ̃〉2 and is therefore always positive. It follows that in the dual

theory the case g2 = 0 can only be obtained by a limiting process, and the region with g2 < 0

is not directly accessible. Note that g2 is the bare parameter, defined at the scale of a lattice

spacing. For a generic dual potential Ṽ , the coupling g3 is nonzero and imaginary, so critical

behavior is naturally in the iφ3 universality class. An indirect approach to the case g2 < 0 is

discussed in section 8.3.4.
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8.3 APPLICATION TO COUPLED MODELS

It is very interesting to consider the coupling of PT -symmetric fields to normal fields [164]. We

write the action as

S
(
φ

)=
∑

x

[1
2 (∂µφ(x))2 + 1

2 (∂µχ(x))2 +V (φ(x),χ(x))
]

(8.17)

where the potential obeys the conditionV (φ(x),χ(x))∗ =V (φ(x),−χ(x)). Following similar steps

applied to χ as those given above, we arrive at a dual action of the form

S̃ =
∑

x

[
1
2 (∂µφ(x))2 + 1

2π
2
µ(x)+ Ṽ (φ(x),∂ ·π(x)−h(x))

]
. (8.18)

As in the case of a single field, expectation values involving χ can be obtained from i∂Ṽ ′(φ,∂ ·

π)/∂(∂ ·π).

In this class of models φ and χ play roles similar to the real and imaginary parts of the Polyakov

loop, PR and PI , in QCD at finite temperature T and chemical potential µ. The Polyakov loop

P = PR + i PI is associated with the free energy required to insert a very heavy quark into the

system via 〈P〉 = exp(−FQ /T ); 〈P∗〉 is related to the free energy FQ̄ for insertion of a heavy

antiquark. When µ = 0, PR develops a real expected value and 〈PI 〉 = 0 such that FQ = FQ̄ .

When µ 6= 0, QCD has a sign problem, and a variety of techniques show that PI acquires an

imaginary expectation value [165, 166, 73, 159, 167]. This implies that 〈P〉 6= 〈P∗〉 and FQ 6= FQ̄ .

Both phenomenologicalmodels [159, 73] as well as simplified latticemodels of QCD at nonzero

density [167] show that correlation functions may exhibit damped oscillatory behavior for

some range of parameters.

As a demonstration of the technique and the variety of resultswhichmaybe obtained, I consider

three different models. In all three models, S is quadratic in χ so that both V and Ṽ are known

analytically.
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Figure 8.1: Propagator 〈φ(x)φ(y)〉 as a function of |x−y | for the d = 1 ICQmodel on a latticewith 256 sites.
In both curves, m2

φ = 0.001 and g = 0.1. The upper (blue) curves correspond to m2
χ = 0.250,

while the lower (red) curves have m2
χ = 0.002. The solid lines represent the analytical form of

the continuum result. The figure above, 8.1a, shows the propagator plotted on a linear scale,
and the one below, 8.1b, shows the absolute value of the propagator plotted on a logarithmic
scale. In the upper graph, the errors bars on all points are smaller than the points themselves.
In the lower graph, error bars which intersect zero are not drawn.
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8.3.1 ICQmodel

Our first model is exactly solvable but displays nontrivial behavior. This imaginary-coupled

quadratic (ICQ) model has a potential V of the form

V (φ,χ) = 1
2 m2

φφ
2 + 1

2 m2
χχ

2 − i gφχ. (8.19)

The last term in V makes the weight w complex. The eigenvalues of the mass matrix are given

by (m2
φ+m2

χ±
√

(m2
φ−m2

χ)2 −4g 2)/2, so there are either two realmasses or a complex conjugate

pair, as required by the PT symmetry of the model. A quantummechanical model of this form

was considered in [164, 168]. The dual potential takes the form

Ṽ (φ,∂ ·π) = 1
2 m2

φφ
2 + 1

2m2
χ

(∂ ·π− gφ)2. (8.20)

Figure 8.1 shows simulation results for the one-dimensional ICQmodel in the two different

regions, on a lattice of size N = 256: the difference in behavior is striking between the upper

curve where there are two real masses, and the lower curve where there is a complex conjugate

mass pair. Similar results were obtained in two-dimensional simulations. The lines represent

the analytical form of the continuum result for the propagators, and the error bars on the

points are smaller than the points themselves. The nonmonotonicity of the lower curve makes

the violation of spectral positivity obvious; in fact the lower curve is a damped sinusoid. The

analytical result for the upper curve shows that it is the difference of two decaying exponentials,

and therefore also violates spectral positivity. It is interesting to note that with the definition

ψ= (∂ ·π− gφ)/m2
2, the equations of motion obtained from S̃ can be reduced to a set of real

linear equations for φ andψ. These equations may be derived from a Lagrangian of the form

1
2 (∂φ)2 + 1

2 m2
φφ

2 − 1
2 (∂ψ)2 − 1

2 m2
χψ

2 − gφψ, (8.21)

but this Lagrangian is not suitable for lattice simulation due to the negative quadratic terms.
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8.3.2 ICY model

A second interesting model is the imaginary-coupled scalar Yukawa (ICY) model, where the

potential has the form

V (φ,χ) = 1
2 m2

φφ
2 + 1

2 m2
χχ

2 − i gχφ2. (8.22)

This in turn leads to a dual potential

Ṽ (φ,∂ ·π) = 1
2 m2

φφ
2 + 1

2m2
χ

(∂ ·π− gφ2)2. (8.23)

Figure 8.2 shows the typical behavior of the propagator 〈φ(x)φ(y)〉 as a function of |x−y | for the

d = 2 ICY model. An extensive search indicated no signs for a region of parameter space with

complex conjugatemass pairs, but we were unable to rule out violations of spectral positivity of

the type seen in the ICQmodel when bothmasses are real. It seems possible that this is amodel

where masses are always real. This is consistent with the large-mχ limit: After the rescaling

πµ→ mχπµ and the definition λ= g 2/m2
χ we can take the limit mχ→∞ to obtain a potential

λφ4/2. This is a bosonic form of a familiar argument for fermions: the i gχφ2 interaction is

repulsive and in the large mχ limit becomes a repulsive four-boson interaction [169].

8.3.3 ICDWmodel and spatially modulated phases

Our third example also generalizes the first, but in a different way: we define

V (φ,χ) =U (φ)+ 1
2 m2

χχ
2 − i gχφ, (8.24)

which leads to

Ṽ (φ,∂ ·π) =U (φ)+ 1

2m2
χ

(∂ ·π− gφ)2. (8.25)

The potentialU can be chosen to give a first-order or second-order transition as a function

of its parameters when g = 0. I will consider here the specific case of the imaginary-coupled
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Figure 8.2: Typical results for the propagator 〈φ(x)φ(y)〉 as a function of |x − y | for the d = 2 ICY model
for three different parameter sets on a 642 lattice.

double well (ICDW) model, where the potential has the formU (φ) =λ(φ2 − v2)2. Because the

field χ enters quadratically, it may be integrated out, yielding an effective action of the form

S =
∑

x

[1
2 (∂µφ(x))2 +U (φ)

]+ g 2

2

∑
x,y
φ(x)∆(x − y)φ(x) (8.26)

where ∆(x) is a free Euclidean propagator with mass mχ, i.e., a Yukawa potential. This addi-

tional term in the action acts to suppress spontaneous symmetry breaking. Models of this

type have been used to model a wide variety of physical systems and are known to produce

spatially modulated phases [170–173]. In this class of models the complex form of the action

intermediates between a real local form and a real quasilocal form.

If the lowest-energy state is a constant solution φ0, it may be found by minimizing U (φ)+

g 2φ2/2m2
χ with respect to φ. Linearizing the equation of motion around φ0, the inverse propa-

gator is found to be

p2 +U ′′(φ0
)+ g 2

p2 +m2
χ

(8.27)
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Figure 8.3: Configuration snapshots of φ in the two-dimensional ICDWmodel on a 642 lattice for several
values of g . From left to right, top to bottom: g = 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 and 2.5. The
other parameters are m2

χ = 0.5, λ= 0.1 and v = 3.

which has a minimum away from zero when g > m2
χ, given by

p2
min = g −m2

χ. (8.28)

For this value of p2, the inverse propagator has the value 2g −m2
χ+U ′′(φ0). As long as this

quantity is positive, the constant solution is stable to fluctuations at p2 = p2
min. On the other

hand, if the two conditions

U ′′(φ0
)+ g 2

m2
χ

> 0 (8.29)

2g −m2
χ+U ′′(φ0

)< 0 (8.30)
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(a) g = 1.0

(b) g = 1.4

Figure 8.4: Configuration snapshots of φ in the three-dimensional ICDWmodel on a 643 lattice for two
values of g . The other parameters are m2

χ = 0.5, λ= 0.1 and v = 3. The surfaces represent the
domain walls between φ> 0 and φ< 0 regions. The color has no meaning and is meant only
to guide the eye.
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Figure 8.5: The Fourier transform φ̃(k) in the d = 2 ICDW model on a 642 lattice for several val-
ues of g , averaged over 200 Monte Carlo steps. From left to right, top to bottom: g =
0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 and 2.5. The other parameters are m2

χ = 0.5, λ= 0.1 and v = 3.

are simultaneously satisfied, thenφ0 will be unstable tomodulated behavior with wavenumber

pmin. ForU (φ) a double well, this instability leads to a region where spatially modulated behav-

ior occurs in lattice simulations of the dual form of the theory, as shown in the configuration

snapshots for d = 2 in figure 8.3. Light and dark portions represent positive and negative values

of φ, respectively. The length scale of the modulations decreases as g increases and the system

moves toward restoration of the broken symmetry. Figure 8.5 shows that the mean spectral

weight is concentrated on a ring at a specificwavenumber pmin, which increaseswith increasing

g . For g = 0.9,1.0,1.0,1.1,1.2, it is also possible to see distinct peaks at higher wavenumber.

These peaks are harmonics occurring at three times the fundamental frequency determined by

pmin, and correspond to the fact that the value of the field is approximately constant within

each discrete phase. Similar behavior is seen for d = 1 and d = 3.
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8.3.4 The iφ3 theory

The formalism for two coupled fields gives us an interesting construction of a model in the iφ3

universality class. We write the action as

S
(
φ

)=
∑

x

[
1
2 (∂µφ(x))2 + 1

2 (∂µχ(x))2 +U (φ)+ 1
2 m2

χχ
2 − i gχφ

]
, (8.31)

with the potentialU in the form

U (φ) =
N∑

n=2
gn
φn

n!
, (8.32)

with real couplings gn . We can designate g2 as m2
φ, but its sign is unrestricted. If we take the

mass mφ to be heavy compared to, e.g. m2
χ and g , each φ vertex will generate a vertex in an

low-energy effective action for χ of the form gn
(−i gχ

)n/n!M n . The only restriction is that N

must be even with gN > 0 [140].

8.4 THE BOSE GAS AT FINITE DENSITY

In the problem of a complex scalar field in the presence of a chemical potential µ, the sign

problem is associated with the kinetic term, rather than the potential term, so naively it might

appear that the formalism presented here is inapplicable. Fortunately, the naive expectation is

incorrect. Consider the contribution to the action due to the timelike links, given by

K0 =
(
eµΨ′∗−Ψ∗)(

e−µΨ′−Ψ)+ 1

2
m2(Ψ′∗Ψ′+Ψ∗Ψ

)
, (8.33)

where one half of each mass term was allotted to each vertex. This gives the correct mass

contribution when integrated over all links. We write the real and imaginary parts as Ψ =

(φ+ iχ)/
p

2, thus
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K0 =
1

2

(
φ′

φ

)ᵀ
A

(
φ′

φ

)
+ 1

2

(
χ′

χ

)ᵀ
A

(
χ′

χ

)
+Bᵀ

(
χ′

χ

)
;

A ≡ (
1+ 1

2 m2 −σ1 coshµ
)
, B ≡

(
φ′

φ

)
σ2 sinhµ.

(8.34)

Here, σk are the Pauli matrices. The key step is to write

1

2

(
χ′

χ

)ᵀ
A

(
χ′

χ

)
=1

2

(
χ′

χ

)ᵀ(
1+ m2

2
−coshµ

) (
χ′

χ

)
+ 1

2
coshµ

(
χ′

χ

)ᵀ(
1 −1

−1 1

) (
χ′

χ

)
. (8.35)

The term in the second line has the standard form of a kinetic term, only rescaled by a factor

coshµ, and can be dualized without difficulty. The first term on the right-hand side is diagonal,

and thus contributes to the potential V (χ). The potential energy at each site x is obtained by

adding the contributions of both links with x as the endpoint. Therefore, the potential V reads

V (χ(x)) = 1
2 M 2(χ(x))2 − i gχ(x)

[
φ(x + ê4)−φ(x − ê4)

]
;

M 2 ≡ 2
(
1+ 1

2 m2 −coshµ
)
, g ≡ sinhµ.

(8.36)

The continuum form of this result is

V (χ) = m2 −µ2

2
χ2 −2iµχφ̇ (8.37)

where φ̇≡ ∂4φ. Clearly, this reduces to the correct limiting form when µ→ 0. It is now easy to

dualize the action, which gives

S̃ = 1
2 coshµ (∂4φ)+ 1

2 (∇φ)2 + 1
2 M 2φ2 + 1

2π
2
µ+ Ṽ (φ,πµ) (8.38)

Ṽ (φ,πµ) = 1

2M 2

(
coshµ (∂4π4)+∇·~π− sinhµ

[
φ(x + ê4)−φ(x − ê4)

])2
. (8.39)

It has now become clear why the naive belief (that a sign problem in the hopping term defeats

the method) is wrong: only one of the components of the complex field is dualized, and the
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action can be written in such a way that the imaginary hopping parameter is attached to the

component left intact by the dual transformation.

The same construction is also applicable to the case of electric fields. Recall figure 2.1: the

semiclassical spectrum of a particle in the presence of an electric field is identical to that of a

particle subject to a spatially varying chemical potential. Since nothing in this derivation is

contingent on the constancy of µ, it carries over immediately.

Presenting the results of this method will be the subject of future work.

8.5 CONCLUSIONS

For scalar field theories with sign problems satisfying the dual positivity condition, themethods

developed here enable straightforward simulation with a real local action. Relatively simple

models show complicated behaviors that do not occur in conventional field theories, such

as complex conjugate mass eigenstates and spatially modulated phases. These models and

our simulation method provide a benchmark against which other simulation methods and

analytical techniques can be tested. This method allows for simulation of models in the iφ3

universality class as well as field theories with a nonzero chemical potential, or in the presence

of electric fields.
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APPENDIX Appendix

A.1 REPRESENTATIONS OF THE HURWITZ ZETA FUNCTION

The Hurwitz zeta function can be written with aid of the Gamma function as [129]

ζH(s; z) =
∞∑

n=0

1

(n + z)s
=

∞∑
n=0

1

Γ(s)

∫ ∞

0
dt t s−1e−(n+z)t (A.1)

which reduces the sum to a geometric series,

ζH(s; z) = 1

Γ(s)

∫ ∞

0
dt t s−1e−zt 1

1−e−t
(A.2)

= 1

2Γ(s)

∫ ∞

0
dt t s−1e−zt

(
1+coth

(
t

2

))
(A.3)

= z−s

2
+ 2s−1

Γ(s)

∫ ∞

0
dt t s−1e−2zt coth t . (A.4)

We seek the analytic continuation of the Hurwitz zeta function in the vicinity of s =−1, which

is relevant for the effective Lagrangian of Heisenberg and Euler discussed in Chapter 2. We

must thus subtract off the leading behavior of the hyperbolic cotangent, and add it back in,

obtaining

ζH(s; z) = z−s

2
+ z−(s−1)

s −1
+ s

z−(s+1)

12
+ 2s−1

Γ(s)

∫ ∞

0
dt t s−1e−2zt

(
coth t − 1

t
− t

3

)
. (A.5)

Differentiating with respect to s and setting s =−1 we obtain

ζ′H(−1; z) = 1

12
− z2

4
−

(
z

2
− z2

2
− 1

12

)
log z − 1

4

∫ ∞

0

dt

t 2
e−2zt

(
coth t − 1

t
− t

3

)
. (A.6)
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which, with the identification

ζH(−1; z) = z

2
− z2

2
− 1

12
, (A.7)

is equation (2.58).

A.2 PROOF OF MEHLER’S FORMULA

Below we sketch the demonstration of identity (7.13). The reader interested in Mehler’s kernel

may refer to Erdélyi [126].

If the harmonic oscillator ground-state wavefunction is represented as

e−x2 = 1p
π

∫ ∞

−∞
da e−a2+2i ax , (A.8)

application of Rodrigues’ formula leads to the following integral representation of the Hermite

polynomials:
Hn(x) = ex2

(
d

dx

)n 1p
π

∫ ∞

−∞
da e−a2+2i ax = 1p

π

∫ ∞

∞
da (−2i a)ne(a−i x)2

. (A.9)

This is inserted into the left hand side of Mehler’s formula, giving
∞∑

n=0

(ρ/2)n

n!
Hn(x)Hn(y)e−(x2+y2)/2

= 1

π

∞∑
n=0

(ρ/2)n

n!

Ï
da db (−2i a)n(−2i b)ne−(a−i x)2−(b−i y)2

(A.10)

= 1

π

Ï
da db e−(a−i x)2−(b−i y)2−2ρab (A.11)

= 1p
π

∫
da e−(1−ρ2)a2+x2+2i a(x−ρy) (A.12)

= 1√
1−ρ2

exp

[
x2 − (x −ρy)2

1−ρ2

]
(A.13)

= 1√
1−ρ2

exp

[
4ρx y − (1+ρ2)(x2 + y2)

2(1−ρ2)

]
, (A.14)

the desired result.
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