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ABSTRACT OF THE DISSERTATION 

Discovering Rare Hematopoietic Clones Harboring Leukemia-Associated Mutations Using 

Error-Corrected Sequencing 

by 

Andrew Lee Young 
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Washington University in St. Louis, 2018 

Associate Professor Todd E. Druley, Chair 

 

Cancer is a heterogeneous group of diseases that currently takes over half a million lives 

per year in the United States alone. Our understanding of cancer has improved dramatically over 

the last forty years, beginning with the discovery that cancer is a disease of the genome. 

Currently, the set of somatic mutations found in malignancy are largely known. The specific 

somatic mutations driving an individual’s disease can be readily assessed at clinical presentation. 

Additionally, the functional consequences for many of these mutations are known as well as their 

role in tumorigenesis. Despite this understanding, a cure for cancer remains elusive. 

Acute myeloid leukemia (AML) is a particularly deadly example, which currently kills 

about 10,000 people per year and has a 5-year survival rate of only 25%. While the current 

outlook for these patients is grim, much is known about the disease, which will fuel future 

improvements in detection and therapy. Existing research has identified the spectrum of somatic 

mutations driving most cases of AML and has elucidated the oligoclonal nature of the disease. 

Following treatment, relapse often arises from a minor clone that was inconspicuous at 
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presentation, but resistant to treatment. The current gold standard for assessing response to 

treatment is multiparameter flow cytometry (MPFC), which identifies persistent leukemic cells 

marked by a patient-specific leukemia-associated immunophenotype. Unfortunately, MPFC is 

only useful in a subset of patients and not sensitive to the clonal diversity present in many 

tumors. Conversely, virtually every case of AML is marked by leukemia-specific somatic 

mutations that theoretically distinguish every leukemic cell from its normal counterparts.  

These limitations of MPFC and the general need for improved residual disease detection 

were early motivations for this thesis work: to develop a sequencing-based modality for rare 

leukemic-clone detection. Previous efforts to develop a sequencing-based platform for residual 

disease detection had largely failed because of the intrinsic error rate of next-generation 

sequencing (NGS) technology, which precludes the detection of leukemic clones less common 

than 1:20 cells (0.025 variant allele fraction for heterozygous mutations). For comparison, MPFC 

is sensitive and prognostic to a detection limit of 1:10,000 cells. To address this limitation, we 

developed methods for targeted error-corrected sequencing that mitigated the effect of 

sequencing errors. After an extensive development and validation process, we applied this 

technology to study two fundamental questions in AML and hematopoiesis in general.  

First, we applied our error-corrected sequencing methods to study leukemogenesis in 

therapy-related AML (t-AML). This aggressive form of leukemia arises months to years 

following treatment with chemotherapy or radiation for a primary malignancy. The prevailing 

notion was that antecedent therapy introduced somatic mutations in hematopoietic stem and 

progenitor cells (HSPCs) that directly caused the development of t-AML. We used error-

corrected sequencing to demonstrate that leukemogenic TP53 mutations were present at low 

frequency months to years before the diagnosis of t-AML and in some cases preceded the initial 
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chemotherapy exposure. These findings redefined the etiology of t-AML. Instead of being 

introduced by chemotherapy, these TP53 mutations likely arose stochastically in HSPCs 

throughout the patient’s lifetime and were selected for by cytotoxic therapy, eventually spawning 

malignancy. 

Second, we applied error-corrected sequencing to further our understanding of benign 

clonal hematopoiesis in healthy individuals over time. Recent work had identified benign 

hematopoietic clones harboring leukemia-specific somatic mutations in the blood of healthy 

individuals. The prevalence of this phenomenon increased as a function of age; while rare below 

50, clones were detected in up to 10% of individuals by 70 years-old. These findings were made 

with conventional NGS and, likewise, did not detect rare clonal mutations in fewer than 1:20 

cells. We sought to characterize the prevalence, stability and mutation spectrum of benign 

hematopoietic clones below this threshold. Using our error-corrected sequencing approach, we 

demonstrated that approximately 95% of disease-free individuals have hematopoietic clones 

harboring leukemia-associated mutations by 50-60 years of age. We also demonstrated that these 

clonal mutations were stable over time and originated in long-lived HSPCs. 

These findings demonstrate the utility of our error-corrected sequencing platform to 

identify and characterize previously undetectable leukemia-associated somatic mutations. We 

applied these techniques to unveiled new insights into clonal HSPC biology and the development 

of t-AML. Future work will apply this technology as a sequencing-based modality for residual 

disease detection in pediatric AML. We believe this technology will improve the detection of 

residual leukemia, identify the step-by-step molecular perturbations driving relapse, inform 

therapeutic selection, and improve clinical outcomes and survival.  
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Chapter 1: Introduction 

1.1 Cancer is a Genetic Disease 

Cancer is the second most common cause of death in the United States, predicted to take 

over half a million lives in 20161. History has demonstrated that effective treatment of this 

heterogeneous disease requires a thorough understanding of the molecular alterations that drive 

each individual’s malignancy2. Forty years ago it was postulated by Peter Nowell that cancer is 

an evolutionary process by which normal cells sequentially acquire somatic mutations, 

experience drift and are selected for by the environment3. This theory built upon the 

groundbreaking discoveries by Janet Rowley, who first characterized the t(8;21)(q22;q22) 

RUNX1/RUNX1T1 translocation found in 5% of acute myeloid leukemia (AML) cases, the 

universal Philadelphia chromosome t(9;22)(q34;q11) BCR/ABL translocation found in chronic 

myeloid leukemia (CML), and the canonical t(15;17)(q24.1;q21) PML/RARA translocation found 

in acute promyelocytic leukemia4–7. Additional contemporary work characterized X-inactivation 

skewing in tumor samples from female patients, which characterized the monoclonal (CML, 

Burkitt’s lymphoma, polycythemia vera, myelofibrosis) or polyclonal (hereditary neurofibromas) 

origin of several neoplasms8–13. Interestingly, while neurofibromas had a polyclonal origin, 

malignant transformation into a neurofibrosarcoma arose from a single cell14. These findings 

definitively demonstrated that cancer is a genetic disease, likely originating from a single cell, 

and founded the field of cancer genetics15. These concepts were further bolstered by studies 

examining clonal evolution and heterogeneity at the chromosomal level via karyotype 

analysis16,17. This was followed by the seminal discovery of the first cancer-causing DNA 

sequence change—a guanine to thymine substitution in codon 12 of HRAS18,19. This discovery 
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utilized Maxam-Gilbert sequencing—a newly developed technique for quickly reading the 

nucleotide sequence of short DNA fragments20. This technology and another concurrently 

developed sequencing technology—Sanger sequencing—were the primary workhorses for 

cancer sequencing studies over the next 20 years and launched a new era of cancer genomics21.  

1.2 The Human Genome Project, Sequencing Cancer 

Genomes, A Catalog of Cancer Associated Genes 

Shortly after the turn of the 21st century, completing the first reference human genome 

sequence provided a framework to map the evolutionary process of tumorigenesis at the level of 

individual nucleotides22,23. Focusing on malignancy, early exome-sequencing studies leveraged 

this reference genome to provide the first characterization of mutations in breast and colorectal 

cancer24,25. These herculean efforts sequenced hundreds of thousands of PCR amplicons to 

discover thousands of germline and somatic mutations present in the tumor samples. These 

studies highlighted the necessity of comparing the sequencing results from individually matched 

tumor and normal samples in order to distinguish somatic mutations from constitutional variants 

that differed from the reference genome sequence. Through targeted sequencing of candidate 

gene panels, other large collaborative sequencing studies identified a spectrum of somatic 

mutations in multiple types of malignancies including glioblastoma, colorectal cancer, 

adenocarcinoma, renal carcinoma, myeloproliferative neoplasms and pancreatic cancer26–32. 

Together these observations elucidated the vast heterogeneity of somatic mutation burden and 

substitution types between different tumor types that resulted from the specific environmental 

exposures, such as UV light in melanoma, carcinogen exposure in lung cancer and DNA damage 

repair defects33,34. During this period, each new discovery expanded the list of specific genetic 

alterations that caused cancer, estimating that only a few hundred out of the 20,000-25,000 



3 

 

protein-coding genes in the human genome routinely contribute to malignant transformation35,36. 

Today, these lists of curated cancer-associated genes and detected somatic mutations are 

maintained at the Cancer Gene Census and Catalogue of Somatic Mutations in Cancer 

(COSMIC), respectively35,37,38. 

The subsequent development of massively parallel sequencing—also known as next-

generation sequencing (NGS) or second-generation sequencing—reduced costs by two orders of 

magnitude and moved nucleic acid sequencing out of the a global network of large production 

facilities that generated the first human reference genome and into smaller research labs studying 

the panoply of biological processes and diseases39–42. This technology enabled the first matched 

tumor/normal whole genome sequencing (WGS) study, which characterized the spectrum of 

somatic single nucleotide substitutions and small insertion/deletion (indel) mutations within a 

single case of normal karyotype adult de novo AML43. Surprisingly, this study identified only 10 

coding somatic mutations, again, highlighting the importance of a matched normal sample to 

filter out inherited constitutional variants43. A subsequent study of another normal karyotype 

AML case revealed only 12 coding somatic mutations including the hot spot IDH1 R132C 

mutation, which was subsequently identified in several other AML cases44. Reanalysis of the 

first AML case to undergo WGS identified a frameshift mutation in DNMT3A—a DNA 

methyltransferase that catalyzes the de novo methylation of cytosine in CpG dinucleotides45. 

Abnormal DNA methylation leading to epigenetic dysregulation was hypothesized to contribute 

to the development of cancer46. This finding led to the characterization of recurrent mutations in 

DNMT3A (present in one-third of normal karyotype AML cases) and hotspot mutations affecting 

the arginine 882 amino acid (present in almost two thirds of DNMT3A mutations in AML)45. A 

similar German study characterized the spectrum and prevalence of IDH1 and IDH2 mutations 
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(found in the second AML WGS study) identifying IDH1 or IDH2 mutations in 16% of adults 

with AML47. These studies highlight the power of unbiased WGS studies to uncover potent 

drivers of malignancy and subsequently quantify the prevalence of those mutations and outcomes 

in affected individuals.  

These early studies opened the floodgates for the unbiased detection of somatic mutations 

in any and all forms of malignancy. Subsequent studies characterized the spectrum of somatic 

mutations in multiple malignancies including breast cancer, malignant melanoma, and small-cell 

lung cancer48–52. These studies provided the first broad characterization of “cancer genome 

landscapes,” specifically identifying the few genes that harbor somatic mutations in a wide 

variety of malignancies and the many genes that are less frequently mutated53. A comprehensive 

review from Bert Vogelstein et al. summarized the following observations: 1) the number of 

non-synonymous mutations per cancer type was highly variable with up to 1000 in colorectal 

cancer with microsatellite instability, 100-200 in lung cancer and melanoma (due to 

environmental mutagen exposure), and approximately 10 in liquid tumors (e.g. AML and CML) 

and pediatric cancers (e.g. glioblastoma, neuroblastoma and medulloblastoma); 2) a typical 

tumor only contained 2-8 “driver” mutations and the rest were inconsequential passenger 

mutations that arose throughout the natural history of the cell that founded the malignancy; 3) 

tumors were almost universally heterogeneous, which would impact response to treatment53. 

Subsequently, the Cancer Genome Atlas’ analysis of 3,281 tumors across 12 cancer types and 

The Broad Institute’s analysis of 4,742 tumors across 21 cancer types cemented these concepts, 

producing a comprehensive catalog of cancer associated genes54,55. In AML the genomic 

landscape of somatic mutations was further refined by leukemia/normal WGS or whole exome 

sequencing (WES) for 200 cases of AML56. The overwhelming amount of data generated by 
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these studies required the development of new tools to distinguish putative driver mutations from 

the bevy of passenger mutations that were also detected57. These discoveries established the 

foundation necessary to realize the goal of personalized medicine, where each patient’s cancer 

will be genotyped accurately at diagnosis, the cancer-specific pathways and susceptibilities will 

be identified, and a personalized therapeutic plan will be initialized58. However, as our 

understanding of the cancer genome has progressed, so has our understanding of clonal 

heterogeneity and evolution, curtailing early hopes for an easily produced, genomically forged 

cure for cancer. 

1.3 Clonal Heterogeneity and Clonal Evolution 

With an accurate reference set of cancer associated genes and mutations, the next 

important step in understanding the genomic basis of malignancy was to describe the 

heterogeneity within a single individual’s malignancy and the clonal evolution of that 

malignancy over time. Heterogeneity within an individual’s tumor was first observed long ago 

using karyotype analysis17,59. However, NGS made it possible to characterize this heterogeneity 

throughout the genome. One elegant study sequenced multiple sections from a single pancreas 

inundated with carcinoma along with several distant metastases to clearly show that genomic 

heterogeneity increased geographically across the primary lesion. Additionally, peritoneal 

metastases were similar to the primary tumor, and the liver and lung metastases were drastically 

different from the primary tumor60. Another study described likely convergent evolution within a 

single case of renal cell carcinoma in which three different, geographically separated somatic 

mutations in SETD2 were identified in a tumor already missing the other copy of SETD2 because 

of a ubiquitous chromosome 3p deletion61. These initial studies demonstrated the geographic 
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heterogeneity found within solid malignancies and provide some insights into the mechanisms 

for metastasizing, treatment resistance and recurrence.  

Focusing on liquid tumors, while a rare group of diseases overall, there are several key 

advantages regarding the study of clonal evolution that are worth noting. For liquid tumors, 

samples are often serially banked over the disease course of a single individual, samples are 

relatively free of contaminating normal tissue, phenotypically identical cells are easily sorted for 

analysis of specific subpopulations of cells, and comparable healthy tissue is easily obtained. 

These features enable the in-depth study of clonal heterogeneity within an individual’s disease. 

The clonal structure of AML was elegantly described by John Welch et al. in a study utilizing 

WGS to characterize the somatic mutations present in 12 cases of French-American-British 

(FAB) classified M3 AML (each containing the canonical PML-RAR translocation) and 12 

cases of M1 AML with an unknown initiating lesion62. This study presented several interesting 

findings: 1) most somatic mutations found in AML were benign events that occur during the 

natural history of the initiating cell before leukemic transformation; 2) the AML samples were 

almost universally oligoclonal with multiple clones present at diagnosis; and 3) the founding 

clone in M1 AML frequently had mutations in DNMT3A, IDH1, TET2 or NPM162. Another 

important study described the clonal architecture of secondary AML (sAML)—AML that arises 

from antecedent myelodysplastic syndrome (MDS) in the setting of ineffective hematopoiesis63. 

This study observed that clonal hematopoiesis in the bone marrow was indistinguishable between 

MDS and sAML, all of the sAML samples were oligoclonal (2-5 clones detected per person), 

and sAML arose from persistent MDS clones that acquired additional functional mutations. 

While these were both groundbreaking studies, it is humbling to think that these observations 

were predicted by Peter Nowell, Janet Rowley and others nearly 40 years earlier. Interestingly, 
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the Welch et al. study demonstrated that AML arose in cells with a somatic mutation burden 

similar to healthy age-matched hematopoietic stem and progenitor cells (HSPCs), suggesting that 

AML could arise without an elevated intrinsic mutation rate required for other cell types to 

undergo malignant transformation58,62.  

The effect of therapy on the clonal characteristics of AML were demonstrated by studies 

of relapsed AML. The clonal evolution of relapsed AML was described in a WGS study of eight 

cases of AML at diagnosis and relapse, which found that relapse clones could either arise 

directly from the primary leukemia (three cases) or arise from a subclone that survived the initial 

treatment (five cases)64. The vast majority of somatic mutations detected were shared between 

the primary sample and the relapsed sample, again demonstrating that most somatic mutations in 

AML arose prior to leukemic transformation. Additionally, these cases frequently acquired 

additional mutations at relapse (even if recurring directly from the primary leukemia). This 

reiterates the challenge of effectively treating this disease, which necessitates the eradication of 

the primary tumor and all subclones that could seed relapse. A subsequent study of clonal 

evolution in NPM1-mutated AML observed that at relapse DNMT3A mutations co-occurring at 

diagnosis were almost universally retained, but NPM1 mutations were occasionally lost, 

suggesting that DNMT3A mutations might have occurred earlier in the founding clone than the 

NPM1 mutations65. Another interesting case report described the clonal evolution of a single 

IDH1 R132L-mutated AML, which acquired a canonical spliceosome SF3B1 K700E mutation at 

relapse 19 years later66. Similar findings were also described in acute lymphoblastic leukemia 

(ALL), chronic lymphocytic leukemia (CLL), CML and multiple myeloma67–74. These are just a 

handful of the studies that demonstrated the dynamics of clonal complexity in liquid tumors that 

have relapsed following treatment.  
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The recent development of single-cell sequencing technology has enabled further study 

of clonal heterogeneity in malignancy. The earliest forms of this technology were applied to 

solid malignancies to enable the separation of malignant cells from adjacent non-malignant 

stroma. An early single-cell sequencing approach utilized whole-genome amplification of flow 

sorted nuclei and low coverage sequencing to assess clonal diversity at the level of copy-number 

changes, demonstrating a large phylogenetic separation between a primary breast tumor and 

hepatic metastases75. Another early study used single-cell whole exome sequencing to describe 

the clonal architecture of clear cell renal carcinoma76. Surprisingly, while the normal cells 

clustered tightly together, the malignant cells did not, suggesting that clear cell renal carcinoma 

may be more clonally diverse than expected76. A concurrent study reported the monoclonal 

origin of a single case of JAK2-negative essential thrombocythemia77. While this technology has 

matured in recent years there are still many associated technical challenges such as single cell 

isolation, unbiased amplification of genomic DNA and sequence data analysis78. The single-cell 

analysis of liquid tumors is somewhat easier, but still developing. One of the largest single cell 

studies to date analyzed approximately 800 cells from 6 pediatric ALL patients using targeted 

resequencing of mutations identified in their bulk tumors79. Despite a high level of allelic 

dropout, the investigators were able to accurately describe the clonal architecture of each 

individual’s disease and the hierarchy of clonal mutations. Surprisingly, they demonstrated that 

mutations present at similar variant allele fractions (VAFs) often occurred in separate clones of 

similar size. In a separate study, the single-cell analysis of three individuals with sAML refined 

the clonal hierarchy predicted by prior bulk sequencing, which enabled the accurate clustering of 

variants that were outliers in the bulk sequencing analysis63,80. Another contemporary study 

examined the functional consequences of clonal heterogeneity in AML and discovered that most 
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clones circulate in the peripheral blood, subclonal mutations appeared in non-leukemic normal 

hematopoietic compartments, and engraftment potential in xenograft models varied drastically 

and unpredictably between subclones81. This study also used single-cell sequencing to verify the 

clonal hierarchy predicted by bulk sequencing. Even when a single participant of this study, 

AML31, was re-sequenced at 10-fold greater coverage (yielding 11-fold more “platinum” variant 

calls) in a follow-up study, the clonal hierarchy was still informed by the previous single-cell 

sequencing results81,82. Additionally, this ultra-deep sequencing study demonstrated that clonal 

diversity was much more complicated than previously thought; standard WGS identifying 3 

clones at diagnosis and one at relapse compared to deep sequencing which identified 1 founding 

clone, 3 subclones in the primary tumor, 1 separate clone enriched from diagnosis to relapse, and 

at least 1 clone gained in relapse64,82. These studies have expanded our understanding of clonal 

dynamics and heterogeneity in AML. As the technology improves, the vast complexity of AML, 

and malignancy in general, is slowly being unveiled.  

1.4 Pre-Leukemic Hematopoietic Stem Cells 

The studies mentioned previously also supported the growing understanding of pre-

leukemic HSPCs, which carry several of the activating mutations necessary for leukemic 

transformation, but still maintain ostensibly normal hematopoiesis. Early evidence from this 

theory came from the observation of RUNX1-RUNX1T1 (AML-ETO) t(8;21)(q22;q22) 

translocation in normal-appearing long-term remission samples from individuals treated for 

AML83. They observed expression of the RUNX1-RUNX1T1 translocation in healthy 

hematopoietic stem cells (HSCs), monocytes and B lymphocytes, suggesting that HSCs with the 

translocation were capable of self-renewal and differentiation into mature blood cells. In another 

case, pre-leukemic HSCs were detected in two year-old twins discordant for ALL containing the 
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ETV6-RUNX1 t(12;21)(p13;q22) translocation84. An early application of genomics to this field 

utilized exome sequencing to identify somatic mutations in six cases of AML (3-19 per person) 

and then examined the prevalence of these mutations in non-leukemic HSCs85. Non-leukemic 

HSCs were isolated by fluorescence activated cell sorting (FACS) and functionally validated by 

xenograft transplant into immunodeficient mice. In five out of six cases they identified some, but 

not all, of the leukemia-associated mutations in these HSCs that preceded the AML clone. Using 

single-cell colony formation and genotyping, the researchers temporally ordered the sequence of 

mutation acquisition from non-leukemic HSCs containing different subsets of the leukemia-

associated mutations. Follow-up work from the same group examined the clonal evolution of 

these pre-leukemic HSCs and how they respond to induction chemotherapy86. Interestingly, they 

observed that mutations affecting epigenetic regulation (DNA methylation, histone modification 

and chromatin looping) occurred early in the development of disease and mutations conferring a 

proliferative advantage occurred late. Using single-cell genotyping, they elegantly and 

convincingly demonstrated the multistep process of mutation acquisition within individual HSCs 

that contain increasing subsets of the somatic mutations present in the leukemic sample. 

Furthermore, this work demonstrated that pre-leukemic HSCs harboring early driver mutations 

survive induction chemotherapy and may be an important cause of relapse. A concurrent study 

made similar observations in cases of DNMT3A and NPM1 mutated AML, where pre-leukemic 

HSCs with only the DNMT3A mutation survived chemotherapy treatment and were capable of 

multilineage engraftment in mice87. More recent studies reported persistent DNMT3A R882 and 

IDH2 R140Q mutations in long-term remission following treatment for AML88,89. These findings 

supported the theory that the somatic mutations in AML arise through the sequential acquisition 
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of (largely non-functional) mutations in self-renewing HSCs and that pre-leukemic HSCs exist at 

diagnosis that harbor some, but not all, of the mutations present in the founding AML clone.  

1.5 Residual Disease Detection 

At the beginning of this thesis work, virtually all of the driver mutations in AML had 

been uncovered, the clonal structure and temporal evolution of several AML cases had been 

described, and there was growing evidence that pre-leukemic HSCs harboring a subset of the 

AML-associated somatic mutations survived chemotherapy and could spawn relapse. The 

genomic tools and understanding were in place to develop a sequencing-based modality for 

residual disease detection in AML. Specifically, following induction therapy, could persistent 

leukemia-associated mutations in peripheral blood or bone marrow samples predict relapse and 

overall survival? While initially unsuccessful, we made several advancements in the detection of 

rare hematopoietic clonal mutations that will hopefully be useful in the future realization of this 

goal.   

The current gold standard for assessing residual disease following treatment for AML is 

multiparameter flow cytometry (MPFC)90. Leukemic cells are identified by a leukemia-

associated immunophenotype (LAIP) that is not present on normal hematopoietic cells. These 

differences can manifest as different expression levels of normal cell surface markers, 

abnormalities in timing of marker expression given the normal differentiation program or the co-

occurrence of markers not normally present on the same cell90,91. In pediatric AML, detecting 

any residual disease by MPFC (using a different-from-normal approach) at the end of induction 

(1 or 2) or end of therapy was associated with an increased risk of relapse and shorter relapse 

free survival92. In a separate study of pediatric AML, detecting residual disease above 1 leukemic 

cell in 1,000 mononuclear bone-marrow cells by MPFC (using a LAIP approach) was also 
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associated with an increased risk of relapse and shorter relapse free survival93. These results 

extended to young adults (<60 years old) and older adults (>=60 years old) treated for AML94,95. 

While most studies simply reported presence or absence of an LAIP during assessment, one 

study suggested that a detection cutoff of 0.15% maximized the receiver operator characteristics 

for predicting relapse96. However, other groups advocated for a more sensitive cutoff for positive 

residual disease of 0.035% residual leukemic cells in the bone marrow97. This variability 

between study designs reflects a broader lack of standardization in the field that hinders large-

scale application and prevents comparison of results from different studies98,99. Another 

alternative method for residual disease detection is quantitative PCR (qPCR), which targets 

leukemia-associated translocations. This method is sensitive to detect residual leukemic cells 

present at 1:10,000-1:1,000,000 cells, about two orders of magnitude lower that MPFC100. 

However, it is only suitable in the 15-60% of AML patients with a canonical translocation or a 

suitable NPM1 frameshift mutation for which PCR primers have already been designed98,101. 

Despite these limitations, both methods have been used successfully to stratify patient outcomes 

based on detecting residual leukemic cells following treatment.  

Even with these findings, there was mounting evidence that the LAIP identified at 

diagnosis frequently changed by relapse (up to 91% of AML cases)102. Additionally, 

heterogeneity in the primary AML tumor made the detection of residual or relapsed disease 

originating from previously uncharacterized subclones more challenging103. In B-ALL this was 

an especially dire problem as treatment often directly targeted CD19, the antigen primarily used 

for detection, such that relapse clones often lacked the CD19 antigen104. These are phenotypic 

manifestations of the underlying genomic clonal evolution and selection richly characterized by 

the aforementioned sequencing studies that nonetheless limits the efficacy of MPFC for detecting 
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recurrent disease. Conversely, virtually all cases of AML have somatic mutations that uniquely 

mark the primary tumor, subclones or the pre-leukemic clone that will seed relapse. In broad 

strokes, sequencing could determine the spectrum of somatic mutations in the primary tumor and 

predominant subclones at diagnosis to inform targeted treatment selection and sequencing-based 

residual disease detection. While useful for tracking, knowing the spectrum of somatic mutations 

at diagnosis would not be essential for residual disease detection. By querying all of the 

recurrently mutated genes in AML, the assay would detect relapsing clones with or without the 

somatic mutations identified at diagnosis. Early applications of NGS for residual disease 

detection focused on simply detecting indels in recurrently mutated loci that were easy to capture 

by PCR amplification for sequencing. One report demonstrated that FLT3 internal tandem 

duplications (15-300 bp long) could be reliably captured from genomic DNA, sequenced with 

short paired-end NGS (101 bp paired-end reads), and aligned/assembled using a combination of 

bioinformatics tools to identify the  samples with the mutation105. Subsequent studies could also 

assess somatic single nucleotide variants for residual disease detection. One early example in T-

lineage acute lymphoblastic leukemia/lymphoma demonstrated that sequencing the T-cell 

receptor—which is a unique clonal marker for disease—at post-treatment day 29 was much more 

sensitive than MPFC for detecting residual disease106. Similar results were observed by the same 

group when sequencing the immunoglobulin heavy chain locus in cases of B lymphoblastic 

leukemia107. Interestingly, in both studies, MPFC failed to detect residual disease in several cases 

where sequencing identified residual disease in greater than 1:1,000 cells, well above the usual 

limit of detection for MPFC106,107. In AML, residual disease was reliably detected in studies 

specifically sequencing NPM1, RUNX1, and FLT3-ITD and often detected in cases originally 

deemed negative by MPFC108–110. In the RUNX1 study, the frequency of detected residual 
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RUNX1 mutations was also prognostic of event-free survival and overall survival109. These 

proof of principle studies clearly demonstrated the feasibility of sequencing-based residual 

disease detection. However, each of these genes were only mutated in a subset of AML cases and 

broad application of NGS as a residual disease detection modality required expanding 

sequencing to encompass the spectrum of somatic mutations in AML. 

Subsequent studies have expanded somatic mutation detection at remission using WGS 

or WES, attempting to predict relapse risk by assessing clonal expansion after therapy. A study 

of 50 patients sequenced at remission with enhanced exome sequencing (exome sequencing 

supplemented with capture reagents for AML-specific genes) or targeted capture of diagnosis-

specific variants determined that mutation persistence was associated with an increased risk of 

relapse, shorter relapse-free survival and reduced overall survival111. Interestingly, this study 

characterized a mutation as cleared if it was not detected above 0.025 VAF, the limit of detection 

for NGS, even when MPFC has demonstrated prognostic value in detecting residual AML at 

1:1,000 cells or less. Even in individuals who cleared all of their mutations at remission, median 

event free survival was still only 17.9 months. This suggested that a lower limit of detection 

would perhaps improve risk stratification by identifying rare persistent clones in individuals 

destined to relapse. In follow-up study, deeper analysis of 15 of cases identified five cases where 

clonal expansion occurred following therapy, but harbored different somatic mutations than the 

diagnostic AML sample112. These “rising clones” appeared to expand following therapy, were 

non-leukemic and did not appear related to the founding AML clone. These findings highlighted 

two additional challenges facing NGS as a platform for residual disease detection, namely, 

residual disease with prognostic value was likely present below the 0.025 VAF threshold of 

detection for NGS and clonal expansion occurred in relapse-free individuals.  
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Had these findings been known at the outset of this thesis work, the goals and design may 

have differed. However, at the genesis of this project the limit of detection for NGS appeared to 

be the primary constraint on sequencing-based residual disease detection. Specifically, the error-

rate of NGS precluded the detection of somatic mutations below approximately 0.02 VAF113. 

Based on the literature from residual disease detection with MPFC and qPCR we knew that there 

was prognostic information in detecting as few as 1:1,000-1:10,000 residual leukemic cells114–116. 

Additionally, as described previously, individuals frequently relapsed when the detection cutoff 

was 0.025 VAF or 1:20 cells for heterozygous mutations111. Fortunately, several tools had been 

recently developed to mitigate the effect of sequencing errors enabling the reliable detection of 

variants as rare as 0.0001 VAF117–125. In general, these methods capitalized on the same 

experimental trick, tag each individual DNA molecule with a unique molecular identifier (UMI), 

sequence each tagged molecule multiple times, use the UMI to identify sequence reads 

originating from the same molecule and correct the sequencing errors. These tools have been 

applied to study a variety of biological processes including HIV virus diversity124,126,  early 

detection of ovarian and endometrial cancers127, age-associated somatic mutations in 

mitochondria128, transcriptome analysis125,129, and resequencing of tumor samples for hotspot 

mutation identification130,131. Our goal was to adapt these techniques to determine whether a 

more sensitive sequencing approach that could identify rare leukemia-associated somatic 

mutations would improve residual disease detection and outcome prognostication.  

We created a novel platform for amplicon-based error-corrected sequencing (ECS) that 

enable the reliable detection of rare clonal somatic mutations. Our first application of this 

technique was through a collaboration with Daniel C. Link and Terrence N. Wong in the 

Department of Medicine at Washington University School of Medicine in St. Louis, who were 
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studying the role of TP53 mutations in therapy-related AML (t-AML) and therapy-related 

myelodysplastic syndrome (t-MDS). These diseases arise following treatment with 

chemotherapy, radiation therapy and/or immunotherapy; are marked by poor outcomes; and 

often do not respond to treatment132. At the time, the prevailing theory was that DNA damage 

introduced by antecedent cytotoxic therapy introduced the somatic mutations that drove later 

disease133. Surprisingly, tumor/normal sequencing of several t-AML/t-MDS cases did not 

identify an increased number of somatic mutations compared to de novo AML. However, they 

did observe a different spectrum of mutations with lower rates of DNMT3A, NPM1 and FLT3 

mutations and increased rates of TP53 and ABC transporter mutations. They were interested in 

determining when the leukemogenic TP53 mutations arose in the intervening years between the 

cytotoxic therapy exposure and development of t-AML/t-MDS. Shockingly, using our targeted 

ECS approach, we demonstrated that leukemogenic TP53 mutations were present at very low 

frequencies years before the development of t-AML/t-MDS and in two cases before 

chemotherapy exposure (Chapter 3)134. We subsequently used this approach to demonstrate that 

other non-TP53 mutations were present months to years before the development of t-AML/t-

MDS135. These paradigm-shifting findings suggested that the leukemia-associated mutations 

were not introduced by the chemotherapy, but were already present in the individuals and were 

selected for by the treatment. Additionally, we demonstrated that ECS could reliably detect rare 

clonal mutations below the error-rate of NGS. These findings also suggested that the detection of 

rare clonal leukemia-associated mutations in healthy individuals could predict who would later 

develop hematological malignancy.  
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1.6 Clonal Hematopoiesis in Disease-Free Individuals 

The concept of aberrant clonal expansion preceding and predicting leukemic 

transformation has grown in recent decades. Early evidence of benign clonal expansion in the 

hematopoietic compartment was demonstrated using X-inactivation studies in healthy 

women136,137. They observed that X-inactivation skewing increased as a function of age and 

presciently suggested stem cell exhaustion or clonal hematopoiesis as likely culprits. Later it was 

shown that X-inactivation skewing predominantly occurred in the myeloid compartment138. 

Subsequently, somatic mutations in TET2 were identified in individuals with hematopoietic X-

inactivation skewing, establishing a genetic cause for this phenomenon139. These findings were 

quickly bolstered by large scale microarray and sequencing studies of healthy blood samples. 

Somatic mosaicism of large chromosomal anomalies (duplications, deletions and uniparental 

disomy) was detected using microarray data from blood samples in <0.5% of individuals <=50 

years old and 2-3% of individuals >50 years old, which was associated with a 10-fold increased 

risk of developing hematological malignancy140. Similarly, a concurrent study observed clonal 

mosaicism in 2% of individuals over 50 years-old and 20% of individuals who later developed 

myeloid or lymphocytic leukemia141. While these were examples of clinically silent clonal 

expansion in healthy individuals, there are also well described benign conditions that precede 

malignancy. Monoclonal gammopathy of undetermined significance (MGUS) is a benign 

condition occurring in up to 2% of individuals 50 years-old or older and progresses to multiple 

myeloma or a related disease at a rate of 1% per year142. Similarly, monoclonal B-cell 

lymphocytosis, another benign condition, progresses to CLL at a rate of 1.1% per year143. Recent 

genome sequencing efforts have sought to determine the spectrum of somatic mutations driving 

clonal hematopoiesis and understand the additional steps required for transformation into 
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fulminant malignancy. One study examined the normal blood samples analyzed as control tissue 

from 2,728 participants in The Cancer Genome Atlas project and identified 77 clonal blood-

specific somatic mutations in 58 individuals144. These clones frequently harbored mutations in 

leukemia-associated genes such as DNMT3A, TET2 and JAK2 and were more prevalent in older 

individuals. Two subsequent reports characterized clonal hematopoiesis in two large (>12,000 

person) cohorts unselected for hematological malignancy and observed that clonal hematopoiesis 

increased with age (rare at 50 years-old and present in approximately 10% of 70 year-olds) and 

frequently harbored mutations in DNMT3A145,146. Interestingly, they only observed the canonical 

leukemia-associated DNMT3A R882H mutation in a sixth of clones with a DNMT3A mutation 

compared to two thirds of AML cases with a DNMT3A mutation45,145. An additional report 

studying hot spots recurrently mutated in AML demonstrated that clonal hematopoiesis 

harboring DNMT3A R882H/R882C and JAK2 V617F mutations arose in younger-aged 

participants and mutations affecting spliceosome genes arose in older participants147. In an 

interesting case report, WGS of a single 115 year-old woman’s blood suggested that the majority 

of her hematopoietic compartment originated from two clonally related HSCs, as they identified 

two clusters of somatic mutations at 0.22 and 0.32 VAF148. Even the Welch et al. report 

describing clonal evolution of AML observed leukemia associated mutations in the blood of 

health individuals, which became more prevalent with age62. This type of clinically silent benign 

clonal expansion has been termed clonal hematopoiesis of indeterminate potential (CHIP)149. 

Despite these provocative findings, all of these studies could only detect common 

hematopoietic clones due to the error-rate of NGS. We sought to characterize the prevalence and 

spectrum of mutations below the detection limit of NGS and establish whether these mutations 

arose in long-lived HSPCs or more terminally differentiated cells. Fortunately, in our ill-fated 
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efforts to create a platform for sequencing-based residual disease detection, we had created the 

perfect tools to answer this question. Through collaboration with the Nurses’ Health Study at 

Brigham and Women’s Hospital and Harvard University, we were able to study serially banked 

blood samples from healthy women. Characterizing these samples with targeted error-corrected 

sequencing, we discovered that clonal hematopoiesis is a ubiquitous finding by middle age and 

revealed new insights into the biology or normal and leukemogenic clonal hematopoiesis 

(Chapter 4)150.  

Together this body of work demonstrates the inherent complexity of hematopoiesis and 

leukemogenesis. Outlined in these chapters are the steps we took to develop our platform for 

error-corrected sequencing (Chapter 2) and the discoveries made with this technology (Chapters 

3&4). This process has been an exciting and humbling experience. It is fascinating and terrifying 

to think that everybody has a hematopoietic compartment chock-full of expanding clones 

harboring leukemogenic mutations by middle age. Yet, AML is such a rare disease that virtually 

all of these clones must benignly co-exist with their host. Witnessing this phenomenon makes me 

optimistic for the future, when we will have to tools and knowledge to accurately predict which 

clonal mutations, groups of mutations or epigenetic signatures are harbingers of disease and 

which mark stable benign clonal hematopoiesis. 
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Chapter 2: Creating a Platform for Targeted 

Error-Corrected Sequencing 

2.1 Introduction 

Our initial goal was to develop a sequencing-based modality for residual disease 

detection in cases of AML. Specifically, we sought to replace MPFC—the gold standard for 

residual disease detection—because it was only useful in a subset of individuals and insensitive 

to clonal diversity. In contrast, a sequencing-based approach would be applicable in virtually 

every case of AML and sensitive to the clonal diversity present within an individual’s tumor. 

This platform would target some or all of the leukemia-specific somatic mutations present in 

persistent leukemic and pre-leukemic clones that survived therapy and could initiate relapse. 

Additionally, founder mutations—the initiating lesions acquired early during leukemogenesis—

would tag all leukemia-specific clones and a subset of pre-leukemic clones that could initiate 

relapse. 

We initially viewed the sequencing error rate of NGS, which precluded detection of 

SNVs rarer than 0.02 VAF, as the predominant limitation of sequencing-based residual disease 

detection113. Conversely, MPFC, when applicable, provided prognostic information to a 

detection limit of 1 leukemic cell in 1,000 total cells93. At the outset of this project, one NGS-

based residual disease detection study had achieved a limit of detection similar to MPFC by 

targeting indel events in FLT3 and NPM1110. This was possible because indel errors were rarely 

made by the NGS platform. Unfortunately, SNVs occur approximately 10-times more frequently 

than indels in AML56. Likewise, the sensitive detection of SNVs was essential to capture the 

spectrum of somatic mutations in leukemic clones. To address this limitation, we focused on 

improving the limit of detection for accurate SNV calling.  
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Fortunately, when we began this project, two papers had been recently published that 

circumvented the error-rate of NGS using unique-molecular identifiers (UMIs)117,120. One 

method termed Safe-SeqS tagged each strand of individual DNA fragments with a unique 12- or 

14-base random oligonucleotide index (UMI) during library preparation120. When sequenced, 

multiple sequence reads containing the same UMI originated from the same original single-

stranded DNA molecule. Computationally, these reads were compared to each other and 

sequencing errors present in a single read were corrected by comparison to the other reads from 

the same original tagged molecule. This mitigated the effect of sequencing errors and enabled the 

detection of mutations as rare as 0.001 VAF for most classes of substitutions. Specifically, the 

limit of detection for G to T and C to T mutations was still closer to 0.01 VAF due. The source 

of these errors are described below. Despite this limitation, we developed our targeted error-

corrected sequencing (ECS) approach based on these techniques.  

Another method termed Duplex Sequencing enabled a lower limit of detection than Safe-

SeqS by tagging both strands of each DNA fragment with complementary UMIs117. While every 

double-stranded DNA (dsDNA) molecule in the library was tagged with a different UMI, each 

complementary strand comprising a single dsDNA molecule was tagged with a complementary 

UMI. This enabled linking of sequenced reads from each strand of the original dsDNA molecule, 

enabling the correction of strand-specific artifacts and PCR errors introduced early during library 

preparation. Interestingly, by tagging both complementary DNA strands, they were able to 

demonstrate that most errors present in libraries only UMI-tagging single-strands of DNA (e.g. 

Safe-SeqS) were due to DNA damage. Specifically, they observed guanine oxidation to 8-

oxoguanine (G to T mutations) and cytosine deamination to uracil (C to T mutations), which 

were both well characterized mechanisms of DNA degradation151,152. When DNA was treated 
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with an oxidizing agent, they observed an increase in G to T mutations in single-strand 

consensus sequences, but not in duplex consensus sequences117. Unfortunately, this improvement 

in error-correction required four times more sequencing than the Safe-SeqS methods. While 

useful in in small model systems (e.g. the mitochondrial genome), Duplex Sequencing was not 

suited to target large regions of the human genome. Conversely, the Safe-SeqS approach could 

be adapted to enable the identification of clonal somatic mutations in all of the recurrently 

mutated genes in AML.   

Having settled on a framework for generating ECS libraries, we next developed methods 

to target specific loci in the genome. Previous applications of ECS were in small systems 

(mitochondrial DNA, plasmids) that could be sequenced entirely. To apply these techniques for 

residual disease detection in patients with AML, we needed to target specific loci in the genome. 

Initially, we attempted this using liquid-phase hybridization capture with biotinylated 

oligonucleotide baits, which was the primary capture strategy for exome sequencing153. This 

method enabled sampling from diverse, randomly sheared genomic DNA libraries and avoided 

many of the issues found with PCR amplification (jackpotting, allelic skewing). However, we 

were totally unsuccessful. The capture yield for individual targets was exceptionally low and the 

off-target rate was unacceptably high. Granted we were trying to capture a handful of loci 

(hundreds of bp) from the entirety of the genome (3 billion bp), so even a 1000-fold enrichment 

by capture still resulted in an unusable library.  

We next moved on to PCR-based capture. This method could reliably capture individual 

exons from the genome, variant calls were quantitative, and PCR artifacts were minimal. This 

technique enabled targeted-ECS for our collaboration with Dan Link and Terrence Wong 

(Chapter 3), studying TP53 mutations in therapy-related AML (t-AML). We were able to 
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identify variants identified at diagnosis for t-AML at low frequency in samples banked years 

prior to diagnosis. However, with this method, we still noticed a high rate of G to T substitutions, 

indicative of guanine oxidation to 8-oxoguanine in the primary sample. Initially, this precluded 

the detection rare clonal G to T substitutions. However, we later developed a binomial statistical 

framework to model position specific error profiles. This enabled us to identify likely clonal G to 

T (and C to T) mutations above the background error rate due to DNA damage artifacts. For 

other substitutions, this model us to reliably identify variants as rare as 0.0001 VAF.  

The effect of DNA damage was also observed in artefactual false positives observed in 

our validation experiments using droplet digital PCR (ddPCR)154. With this technique, DNA was 

partitioned into microfluidic droplets that were genotyped individually. Genotyping was 

accomplished by amplification with primers spanning the variant of interest and querying with a 

variant-specific TaqMan probe. Droplets receiving a copy of the wild-type allele would fluoresce 

with the wild-type probe and droplets receiving a copy of the mutant allele would fluoresce with 

the mutant probe. Occasionally, we observed droplets that received two different alleles from 

separate genomic DNA molecules. These double-positive droplets occurred at predicable, low 

rates. However, when the wild-type allele was guanine and the mutant allele was thymine 

(guanine oxidation), we observed many more double-positive droplets than expected by chance. 

The same was true for cytosine to thymine substitutions (cytosine deamination). Due to these 

known sources of artifacts, we modified Bio-Rad’s approach to calculating VAF to improve the 

accuracy of rare variant quantification.  

The final set of methods that we developed were for multiplex capture with ECS. PCR-

based capture, described previously, enabled targeting at a handful of loci within a single sample. 

This was useful when resequencing samples with known mutations. However, a different 
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approach was required to create a single reagent that could detect rare leukemia-associated clonal 

mutations in nearly all individual with AML. A broad panel was necessary as every case of AML 

contains a different spectrum of somatic mutations and the clonal mutations that drive relapse are 

often undetectable at diagnosis56,64. We combined the Illumina TruSight Myeloid panel with our 

ECS library preparation to enable rare variant detection at multiple loci recurrently mutated in 

AML. With this reagent, we targeted a tractable subset of the genome (141 kb covering 54 

genes) that covered recurrently mutated loci in AML. By combining these two protocol, we were 

able to reliably detect leukemia-associated variants as rare as 0.0003 VAF. Unfortunately, our 

initial application of this technology as a modality for residual disease detection ended in failure. 

We received a bad lot of reagents from Illumina that introduced an unacceptably number of PCR 

artifacts during library preparation. While initially unsuccessful, future planned studies in the lab 

will compare targeted-ECS to MPFC for residual disease detection in AML. 

While applied here to the study of AML and clonal hematopoiesis, these tools are broadly 

applicable for rare variant detect with any set of genes and in any tissue type. Presented here are 

some of the key experimental successes and failures conducted to develop our targeted error-

corrected sequencing protocol. 

2.2 Protocol Development 

2.2.1 General principles for ECS 

Our adaptation of error-corrected sequencing built upon the established Safe-SeqS 

design120. In general, DNA molecules were tagged with unique molecular identifiers (UMIs), 

amplified by PCR and sequenced to yield multiple sequenced reads per original tagged molecule. 

Sequencing errors present at one position in one of the sequenced reads would be identified by 

observing the correct nucleotide call in the other reads originating from the same tagged 
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molecule (Figure 2.1). Practically, random 16-bp UMIs were introduced into the standard 

Illumina Y-shaped adapters (Figure 2.2). These adapters were ligated to genomic DNA 

fragments during library preparation such that each molecule was tagged with a different UMI. 

Multiple identical copies of each tagged molecule were created by PCR amplification. This 

amplified library was then submitted for sequencing. After sequencing, the reads originating 

from the same original molecule were grouped together based on their UMI sequence. Initially, 

we allowed up to two mismatches per UMI to allow for sequencing errors in the 16-bp UMI 

sequence. However, further analysis demonstrated that the UMI sequences were not as random 

as advertised by Integrated DNA Technologies, our oligonucleotide vendor. Allowing a UMI 

mismatch correction frequently grouped together reads from two separate uniquely tagged 

molecules that differed in UMI sequence by only a single nucleotide (Figure 2.3). Based on these 

observations, we did not allow mismatches in the UMI sequence when generating read 

families—groups of reads originating from the same tagged molecule. 

Several parameters of the ECS library preparation protocol were determined 

experimentally. One critical parameter was library concentration after ligation with the UMI-

tagged adapters. In the t-AML study, library concentration was quantified using quantitative 

PCR (qPCR). Later, experiments used ddPCR to more accurately quantify library concentration. 

Regardless, successful rare variant detection with ECS absolutely required that multiple copies 

of each original UMI-tagged molecule were sequenced concurrently. Likewise, the number of 

UMI-tagged molecules had to be accurately restricted before a final amplification step, so 

amplicons would be sequenced for each tagged molecule. If the library was too dilute, 

sequencing bandwidth would be wasted with too many reads covering a handful of UMIs. 

Conversely, if the library was too concentrated then each UMI would only be covered by a single 
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read at most, preventing error-correction by multiple sequence alignment. This calculation was 

based on the sequencing bandwidth of the machine run planned, the number of samples 

multiplexed on the run, the number of targets per samples, the number of sequenced reads per 

UMI, and the desired limit of detection. After several experiments, we decided that 10x coverage 

per UMI resulted in the optimal balance between sequencing coverage per UMI and number of 

UMI-tagged molecules per library. The remaining parameters were decided for each unique 

experiment. For example, to target a single-loci in a single sample with an Illumina MiSeq Nano 

(1M reads) run, the library must contain 100,000 UMI-tagged molecules that would be amplified 

for sequencing. If the calculation was incorrect and 500,000 molecules were selected instead, the 

average coverage per UMI would only be 2x and the results would be uninterpretable. Given the 

precision required at the steps, extra care was taken to accurately quantify library concentration 

before dilution.  

The second set of parameters that factored into experiment planning were the number of 

genome equivalents entering the reaction, the expected yield of capture and the desired limit of 

detection. In the previous example, to query 100,000 genome equivalents, the reaction needed to 

start with 330 ng of human genomic DNA (3.3 pg per haploid human genome). Capture 

efficiencies varied dramatically depending on the targeting protocol. For the clonal 

hematopoiesis studies (Chapter 4), the capture reagent had a capture efficiency of approximately 

5%. Based on that estimate, we used 250-500 ng of input DNA (75,000-150,000 genome 

equivalents) to ensure a limit of detection of at least 1:1,000 variant allele fraction (VAF). 

Reducing the amount of input DNA would worsen the limit of detection irrespective of 

sequencing depth. 
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Several other bioinformatics parameters we empirically derived. We established a 

minimum read family size of five reads. Other groups had generated read families from two or 

three reads sharing the same UMI120. However, we found a lower false positive rate when using a 

higher minimum read family size. Additionally, we required that 90% of the reads present at a 

given position within a read family call the same nucleotide to call a consensus nucleotide, 

otherwise we reported an N at that position. Finally, consensus sequences were not reported if 

more that 10% of the positions were called as an N. We found that modifying these last two 

parameters did not significantly affect the specificity of the variant calls. While the capture 

methods differed significantly over the projects presented here, the fundamental parameters for 

read family generation and variant calling remained constant. 

2.2.1 Co-opting liquid-phase hybridization capture for ECS 

The first attempt at selecting genomic loci for targeted ECS was with liquid-phase 

hybridization capture (Figure 2.4). With this method, randomly sheared genomic DNA was 

hybridized to biotinylated oligonucleotide baits (complementary to a region of interest). 

Genomic DNA fragments hybridizing to the biotinylated baits were captured with streptavidin 

coated magnetic beads. These steps were identical to standard exome capture protocols. The 

adapter sequences were designed to be compatible with the Illumina sequencing chemistry 

(Figure 2.2). While standard exome sequencing often targeted 30-70 Mb or approximately 1% of 

the human genome, we sought to target individual regions that were approximately 300 bp long 

or 0.00001% of the human genome. Initially, this didn’t seem like such a foolish idea, but 

hindsight tells a different story of youthful optimism. Using 90-bp long oligonucleotide baits 

(Table 2.1), we attempted to recreate the hybridization conditions used with standard exome 

capture. The primary experimental condition that we varied was the molar ratio of bait molecules 
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to target loci in the genomic DNA. We initially started with a bait:target molar ratio of 100:1, but 

did not pull down any DNA. Subsequently, we tested molar ratios of bait:target from 105:1 to 

109:1 using 8 baits simultaneously for a single locus (Table 2.2). The optimal molar ratio was 

107:1, where we observed approximately 10% of the reads were on target. However, these reads 

were generated from only a couple hundred molecules and reported coverage was inflated by 

sequencing PCR duplicates of these few molecules. Alone, the low on target rate would have 

been acceptable. However, few of the genome equivalents present in the hybridization reaction 

were successfully captured for sequencing. We started these experiments with 500 ng of genomic 

DNA, which was approximately 150,000 genome equivalents. After accounting for PCR 

duplicates, we recovered at most 500 distinct molecules from the targeted reaction or 0.3% of 

target genome equivalents present. As outlined previously, this low capture efficiency precluded 

the detection of rare clonal mutations. 

We attempted to improve capture efficiency by reversing the adapter ligation and capture 

steps. We believed the adapter sequences, especially the long UMI index, would interfere with 

the hybridization stoichiometry or lead to daisy-chaining. Daisy-chaining occurred when one 

molecule was hybridized correctly to a biotinylated bait, but the adapter sequence for that 

molecule was hybridized to another molecule that would be unintentionally pulled down in the 

capture step. Theoretically, by reversing the steps, only fragmented genomic DNA would be 

captured by the baits without the risk of daisy-chaining. However, this was unsuccessful because 

too little DNA was captured for the subsequent library preparation steps. To troubleshoot this 

problem, we added synthesized amplicons during the ligation step to improve the ligation 

stoichiometry. These amplicons all contained uracil instead of thymine and we degraded after 

ligation with uracil DNA glycosylase (Figure 2.5). Unfortunately, this was also unsuccessful as 
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the synthetic amplicons that escaped cleavage by UDG were more than enough to overwhelm the 

few captured genomic DNA molecules.  

Given this limitation of liquid-phase hybridization capture, we were forced to abandon 

this as a method for capturing genomic loci. For sequencing-based residual disease detection, we 

required reliable identification of genomic variants from one leukemic cell out of 1,000 normal 

cells. Given the limitations observed, the amount of input genomic DNA necessary to achieve 

this limit of detection was unreasonably high. Likewise, we redirected our efforts to different 

methods for capturing genomic loci.  

2.2.3 PCR amplification-based targeting of genomic loci 

We next sought to capture individual loci from genomic DNA using PCR primers 

spanning the region of interest. This was a much easier method than the original liquid phase-

hybridization capture, but there were several potential drawbacks. First, errors introduced during 

the early steps of PCR amplification, before UMI-tagging, would be indistinguishable from true 

rare variants. Second, PCR jackpotting could skew allelic ratios, especially for the low frequency 

variants we intended to detect155. Jackpotting occurred when a low number of template 

molecules were not uniformly amplified during PCR. The most extreme example is the loss of a 

constitutional heterozygous polymorphism due to selective amplification of one allele, which 

frequently occurs during whole genome amplification. To circumvent this limitation, we split 

template samples into eight separate reactions for amplification, mixed the samples back together 

after purification and then repeated the process. This allowed us to dilute out the effect of 

jackpotting. Additionally, we used the Q5 High-Fidelity DNA Polymerase (NEB) to minimize 

the number of error introduced during PCR amplification. 
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The general workflow for amplicon-targeted ECS was straightforward (Figure 2.6). 

Primers were designed to target regions of interest (e.g. exons 4-7 of TP53). The resulting 

amplicons were individually tagged with UMI-containing adapter sequences by ligation. The 

libraries were diluted to restrict the number of molecules seeding the sequencing run, amplified 

by PCR and then submitted for sequencing. The resulting sequenced reads were grouped into 

read families based on their UMI, sequencing errors were identified, and an error-corrected 

consensus sequence was generated.  

2.2.4 Multiplex hybridization-extension-ligation for leukemia-associated 

target capture 

PCR amplification-based capture enabled the analysis of up to about a dozen loci 

simultaneously. The primary limitation to targeting more loci with PCR was the amount of 

starting template material required. To detect rare clonal mutation (at 0.001 VAF) approximately 

500 ng of genomic DNA was required per experiment. Other methods could target up to 50 loci 

simultaneously by introducing a pre-amplification step with all of the primers followed by 

individual amplification with each primer pair156. However, for our study of clonal 

hematopoiesis in healthy individuals (Chapter 4), we needed to increase the number of target loci 

by yet another order of magnitude to query all of the recurrently mutated genes in AML. Our 

ultimate goal was to develop a broadly applicable platform for residual disease assessment in 

AML. This broad utility hinged on being able to detect leukemia-associated mutations in virtual 

every unique case of AML.  

To accomplish this goal, we sought to adapt our error-corrected sequencing indexing 

strategy to a pre-existing capture reagent that had been already balanced and benchmarked. 

Ultimately, we selected the Illumina TruSight Myeloid Panel, which targeted 141 kb of the 
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human genome with 568 amplicons in 54 genes. The method for capture was similar to 

molecular inversion probes, where primers were designed to span a given locus of interest and 

anneal to the same strand of DNA (Figure 2.7a-c)130. Beginning from the upstream primer, a 

single step of extension would fill in the gap between the primers (Figure 2.7b). Next a ligation 

step would connect the filled in strand with the annealed downstream primer (Figure 2.7c).  

Similar to the Y-shaped adapters described previously, these capture primers each had 

asymmetrical, non-complementary tails that were compatible with the Illumina sequencing 

chemistry. While the sequences of the Y-shaped adapters were reported by Illumina, they did not 

disclose the sequences flanking each primer pair in the TruSight Myeloid panel. When we tried 

to use our existing UMI adapter chemistry with the TruSight Myeloid panel, the library 

preparation failed. We suspected that the adapter sequences had changed, but Illumina could not 

confirm our suspicions. Since we could not use the standard TruSight Myeloid adapters for ECS, 

we needed design our own compatible UMI-adapters. We determined the Illumina adapter 

design by Sanger sequencing a library generated with the standard TruSight Myeloid protocol 

and subsequently designed our own UMI-adapters (Figure 2.8). With this information, we 

continued adapting ECS to the TruSight panel (Figure 2.7d-g). We used PCR to add in our 

custom designed adapter sequences that contained a fixed-index for sample multiplexing and a 

UMI-index to enable ECS. Once these molecules were generated, the same process of accurate 

quantification, dilution, amplification, sequencing and analysis were conducted to call rare 

variants. This platform was used for novel rare variant detection in our study of clonal 

hematopoiesis in healthy individuals (Chapter 4).  

We conducted several experiments to assess library quality and technical reproducibility. 

We determined that the coverage per target was highly concordant between the standard Illumina 



32 

 

TruSight Myeloid protocol and our modified protocol to introduce adapters with UMIs (Figure 

2.9). We also observed that coverage per target was highly correlated between replicate libraries 

produced from the same samples (Figure 2.10). We also observed that generating the error-

corrected consensus sequence did not bias coverage per amplicon. While some amplicons were 

covered poorly in these experiments, they were covered poorly with the standard protocol as 

well. These findings demonstrated that the ECS protocol integrated into the TruSight Myeloid 

protocol without disrupting the capture efficiency.  

2.2.5 Binomial error modelling 

The predominant limitation of our method for error-corrected sequencing was that only 

single strands of DNA were UMI-tagged. Likewise, we could not correct substitutions 

originating from DNA degradation of the original template or early PCR errors. The errors that 

we observed were usually G to T substitutions, due to guanine oxidation to 8-oxo guanine, and C 

to T substitutions, due to cytosine deamination to uracil. We modeled the prevalence of these 

artifacts to observe their position-specific distribution to potentially distinguish rare variants 

from artifacts introduced by DNA damage.  

Surprisingly, we observed a strong position specific effect on the substitution error rate. 

While the G to T substitution rate varied widely across a specific region, the error rate at a single 

position was consistent between samples. Based on this observation we modeled the position 

specific error profile as a binomial process, analogous to a coin-flipping experiment. The variant 

calls made by the error-corrected consensus sequences (ECCSs) were treated as a series of coin 

flips. If we observed 1000x coverage at a given position, that corresponded to 1000 coin flips. At 

each independent position, we counted ECCSs identifying the wild-type or variant nucleotide 

(heads vs tails). By sequencing multiple individuals and replicates, we could build a robust 
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model of the substitution error rate at every position captured by the panel. Thus, for each variant 

observed in a sample, we could estimate the probability that variant was artefactual given the 

error profile at that position.  

We also accounted for multiple hypothesis testing to reduce the rate of false positive 

calls. Since the capture panel targeted 141 kb of sequence and there were three substitution types 

per position, there were almost half a million hypothesis tests per sample. We employed a 

stringent Bonferroni correction on our variant calls that corrected for the number of samples, 

replicates, bases covered and substitution classes in the entire cohort. As a result, our variant 

calls were highly specific. While the sensitive of the assay was never directly assessed, this 

statistical framework likely grossly underreported the number of true rare variants present. 

Conversely, every substitution called by ECS, that we subsequently validated with ddPCR, was 

observed at nearly identical VAFs (Chapters 3 and 4).  

2.2.6 Validation with ddPCR 

Given the extremely low VAFs identified by ECS, we needed an equally sensitive 

method for validation. While expensive to implement, we use the Bio-Rad QX200 ddPCR 

platform to validate our findings. This technology combined allele-specific TaqMan probes with 

microfluidic partitioning to permit extremely sensitive and specific variant quantification. 

Similar to ECS, the primary constraint on the limit of detection was the number of genome 

equivalents used in the assay. Experimentally, primers and probes were designed to target a 

specific single nucleotide variant or small indel. Genomic DNA was partitioned into microfluidic 

droplets such that on average one or fewer genome equivalents of the region of interest was 

present in a single droplet. The region of interest was amplified by PCR and subsequently 

assayed with the allele-specific TaqMan probes. The droplets were then analyzed to assess 
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fluorescence intensity for the wild-type or variant probe. Variant calls as rare as 0.0001 VAF 

were easily validated on this platform. For negative controls, we selected samples from the same 

cohort where the variant of interest was not observed. Surprisingly, we frequently observed zero 

positive mutant droplets in our negative control experiments, which often had up to 500,000 total 

droplets. 

Interestingly, the platform was so sensitive that we observed the effect of DNA 

degradation on our genomic DNA samples. These were predominantly C to T (cytosine 

deamination) and G to T (guanine oxidation) mutations, as described previously. These artifacts 

manifested as a higher number of “double positive” droplets than expected in experiments with a 

G to T or C to T mutation. These double positive droplets arose normally when a droplet was 

formed containing a wild-type genomic DNA fragment and a fragment harboring the variant. We 

could estimate the number of expected double positive droplets from the frequency of wild-type 

only and variant only droplets because they were independent processes that followed a Poisson 

distribution. To prevent these artefactual double-positive droplets from inflating the VAF 

estimated by ddPCR, we ignored the double positive droplets during analysis. Instead, we 

estimated the VAF from the number of mutant only positive droplets and the Poisson estimated 

number of singleton droplets. Since the variants were rare we assumed that variant positive 

droplets only contained a single genome equivalent of the variant allele. Likewise, we calculated 

the VAF by dividing the number of variant only droplets by the estimated number of droplets 

containing one genome equivalent of genomic DNA, which harbored either the wild-type or 

variant allele. For low frequency variants, where the rate of cytosine deamination could double 

or triple the estimated VAF, this method provided a more accurate approximation of the VAF. 
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This method was used for validation experiments in both the t-AML study (Chapter 3) and the 

study of clonal hematopoiesis in healthy individuals (Chapter 4). 

2.3 Discussion 

These are some of the key experiments undertaken to develop our platform for targeted 

ECS-based rare variant detection. These experiments underlie the decisions made regarding 

choice of reagents, protocol design and bioinformatics analysis. These parameters were not 

selected randomly. We strove to enable leukemia-associated rare variant detection in the most 

efficacious manner possible. Every decision was a compromise that optimized many factors 

including cost of sequencing, efficient biospecimen use, ease of application, breadth of utility, 

limit of detection and false positive rate. For example, we opted not to implement Duplex 

Sequencing because we did not believe the lower limit of detection was worth the dramatically 

higher cost of sequencing and amount of input material required. To compensate, the statistical 

framework for variant calling was very stringent to reduce the rate of false positive variant calls. 

Conversely, many true positives were likely missed.  

There are many ways to improve this technology. Future development of targeted-ECS 

could proceed down several avenues. First, the efficiency of capture could be dramatically 

improved. We used the Illumina TruSight Myeloid panel to target genomic loci that were 

recurrently mutated in AML. While almost all of the captured molecules were on target, only 

approximately 5% of the genome equivalents present were captured. Liquid-phase hybridization 

capture had many off target reads and poor capture efficiency. As capture technology improves, 

it will directly benefit the detection of rare clonal mutations.  

Second, improvements to the sequencing technology may make capture unnecessary. 

Instead of targeting regions of interest and accepting the limitations of capture, whole genome 
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ECS would enable the unbiased identification of rare clonal mutations. Already, one study 

sequenced UMI-tagged molecules from a whole genome library preparation to demonstrate that 

somatic mutation rates differ based on age and tissue of origin157. As throughput increases and 

cost decreases these types of studies may become more feasible. 

Third, single-cell sequencing technology has the potential to revolutionize this field. With 

our approach, we could not determine which rare variants co-occurred in the same cells. Robust 

single cell sequencing could cleanly describe how clonal mutations are partitioned within a 

biological sample, such as a tumor, peripheral blood or sorted stem cells. Already, these 

techniques have been applied crudely to describe clonal architecture in pediatric ALL and pre-

leukemic clonal hematopoiesis79,85,86. However, these studies relied on bulk sequencing to 

identify the somatic mutations that were re-sequenced in single cells. Improvements in single-

cell genomic DNA isolation and capture would enable a new world of discovery into the biology 

of clonal hematopoiesis.  

In conclusion, the technology developed here enabled the characterization of previously 

undetectable rare hematopoietic clonal mutations. We have further refined our understanding of 

the intricate and complicated biological processes that underlie stem cell homeostasis, clonal 

evolution and leukemogenesis. Fortunately, the technology is advancing rapidly and studies that 

are now strictly theoretical will soon become feasible. 
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Figure 2.1 General schematic for error-corrected sequencing. a) Individual molecules of 

genomic DNA were tagged with a unique molecular identifier (blue and magenta). b) PCR 

amplification and sequencing produced multiple sequenced reads from each originally tagged 

molecule. Errors introduced by PCR or by sequencing (yellow) were randomly distributed across 

the sequenced reads. c) By comparing the sequenced reads from the same original molecule 

(marked by the same UMI) the sequencing errors were identified and corrected revealing true 

variant (red).    
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Figure 2.2 Adapter sequences that enabled error-corrected sequencing. The two sequences in 

black were the Y-shaped Illumina adapter sequences. The homopolymer run of N’s in the top 

half of the Y-shaped adapter encoded the random unique molecular identifier for each adapter 

sequence. The bottom half of the Y-shaped adapter was a fixed sequence. In blue were the PCR 

primers that amplify these molecules during library preparation after the ligation step. The other 

colored-coded sequences were the Illumina-specific sequencing primers. Sequences were placed 

to demonstrate annealing orientation. The star denoted the 5-prime end of the oligonucleotides 

and the lower-case “p” denoted the phosphorylated 5-prime end of the adapter, which enabled 

ligation.  
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Figure 2.3 Hamming distance correction in UMI sequence. Each plot depicted the histogram of 

read family sizes (sequenced reads that shared the same UMI). The top and bottom rows depicted 

the same data with different scales on the y-axis. As the hamming distance increased, the number 

of read families of size one decreased, which indicated that indexes with a single nucleotide error 

in the UMI were correctly grouped. However, these histograms also demonstrated that many 

average-sized read families were collapsed with a hamming distance of 1 or 2. This suggested 

that the UMI sequences were not as random as originally thought.  
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Figure 2.4 Hybridization capture with biotinylated baits. Genomic DNA was sheared into 300 

bp fragments. Adapters were ligated to the fragmented DNA molecules that contained random 

unique molecular identifiers for error-corrected sequencing. Hybridization-capture pulled down 

the fraction of the library in the region of interest based on the biotinylated oligonucleotide baits. 

These captured fragments were amplified and sequenced.  
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Figure 2.5 Troubleshooting Illumina Y-shaped adapter ligation. a) Under normal conditions, 

DNA fragments (black) and Y-shaped adapters (green) were in favorable molar ratios resulting 

in the ligation of one adapter to each end of the DNA fragments. b) When too few DNA 

molecules were present, adapter dimers formed instead. c) Adding synthesized amplicons (cyan) 

containing uracil to the few captured DNA fragments improved the ligation stoichiometry. The 

synthetic amplicons were degraded by uracil DNA glycosylase (UDG) after the ligation step. 
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Figure 2.6 Schematic for amplicon-targeted error-corrected sequencing. Step 1: Amplification of 

genomic DNA with target-specific primers (green arrows) yielded a subset of amplicons 

containing a rare clonal mutation (red). Step 2: Randomly indexed adapters (tan and orange) 

were ligated to each amplicon. Step 3: Read families containing the same index sequence 

originated from a single UMI-tagged molecule. Sequencing errors (yellow) were randomly 

distributed across the sequenced reads within a read family. Step 4: Multi-sequence alignment of 

reads within a single read family enabled the identification of sequencing errors and the 

subsequent generation of an error-corrected consensus sequence.  
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Figure 2.7 Illumina TruSight Myeloid capture and error-corrected sequencing. a) Primers 

(black) designed to flank a region of interest were annealed to genomic DNA (blue). b) Single 

strand extension filled in the nucleotides between the two primers, recording the genomic 

information from the template molecule. c) Ligation connected the extended strand to the 

downstream primer. d) The single hybridization-extension-ligation step enabled the simultaneous 

capture of 568 amplicons from the genomic DNA sample. e) The ends of each primer were 

compatible with the Illumina sequencing chemistry. We introduced the sequencing adapter and a 

fixed sample-specific index (cyan) using PCR directed to one end of the captured molecule. f) 

We introduced another sequencing adapter containing the random UMI index (green) to the other 

end of the molecule with PCR. g) The resulting molecules were then further prepared for 

sequencing.   
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Figure 2.8 Illumina TruSight Myeloid adapter sequences revealed by Sanger sequencing. By 

designing Sanger sequencing primers that annealed within one of the target regions, we were 

able to sequence out into the adapter sequence and determine the differences between the 

TruSight Myeloid adapter and the original Y-shaped Illumina adapter. The known Y-shaped 

adapter sequences (grey) were used to map the Sanger reads from both sequencing experiments. 

a) The upstream (i5) adapter sequence contained the index sequence we wished to replace with 

our random UMI index. Sanger sequencing of the adapter (alignments in black in the box, 

mismatches in cyan) revealed that the TruSight Myeloid kit used the same i5 adapter. b) The 

downstream (i7) adapter sequence contained the fixed index sequence we used for sample 

multiplexing. Sanger sequencing of the adapter (alignments in black in the box, mismatches in 

cyan) revealed that the i7 adapter sequence was different than the original Y-shaped adapter. 
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Figure 2.9 Coverage per target amplicon for standard vs ECS protocol. Sequencing of a library 

prepared with the Illumina TruSight Myeloid kit protocol (x-axis) was compared to the modified 

protocol to incorporate UMIs and ECS (y-axis). Coverage per amplicon was highly concordant 

between the two protocols.  
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Figure 2.10 Coverage per target amplicon for two replicate ECS libraries. While the second 

experiment had more total coverage (y-axis), coverage per target was highly correlated with the 

first experiment (x-axis). 
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Table 2.1 Biotinylated baits example. These baits were designed for an early experiment 

targeting TP53 exon 7. The 5’-biotin label was denoted as /5Biotin/.  

 
Target Sequence 

P53exon7

Bait1 

/5Biotin/ATGGGTAGTAGTATGGAAGAAATCGGTAAGAGGTGGGCCCAGGGGTCAGAGGCAAGCAGAG

GCTGGGGCACAGCAGGCCAGTGTGCAGGG 

P53exon7

Bait2 

/5Biotin/TCAGAGGCAAGCAGAGGCTGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGTGGCTCCTG

ACCTGGAGTCTTCCAGTGTGATGATGGTG 

P53exon7

Bait3 

/5Biotin/TGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGATGGGCCTCCGGTTC

ATGCCGCCCATGCAGGAACTGTTACAC 

P53exon7

Bait4 

/5Biotin/AGGATGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACACATGTAGTTGTAGTGGAT

GGTGGTACAGTCAGAGCCAACCTAGGAG 

P53exon7

Bait5 

/5Biotin/ATGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCAACCTAGGAGATAACACAGGCCCAAGA

TGAGGCCAGTGCGCCTTGGGGAGACCTG 

P53exon7

Bait6 

/5Biotin/ATAACACAGGCCCAAGATGAGGCCAGTGCGCCTTGGGGAGACCTGTGGCAAGCAGGGGAGG

CCTTTTTTTTTTTTTTTTGAGATGGAATC 

 

  



49 

 

Table 2.2 Biotinylated bait capture efficiency. The capture efficiency for hybridization capture 

for 8 baits designed against TP53 exon 7. Capture efficiency was poor throughout the 

experiment. At a bait:target molar ratio of 107:1 the on target fraction was close to 10%, however 

these reads were PCR duplicates from only a couple hundred captured molecules.  

 

Molar Ratio Bait:Target On Target Reads Total Reads Fraction 

109:1 366 136,991 0.0027 

108:1 9,522 145,036 0.0657 

107:1 12,267 126,691 0.0968 

106:1 418 166,583 0.0025 

105:1 1,615 117,851 0.0137 

NC 0:1 2 201,205 0 
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Chapter 3: Rare Pre-Leukemic Clone 

Detection in Therapy-Related AML 

3.1 Introduction 

The quantification of rare clonal and subclonal populations from a heterogeneous DNA 

sample has multiple clinical and research applications for the study and treatment of leukemia. 

Specifically, in the hematopoietic compartment, recent reports demonstrate the presence of 

subclonal variation in normal and malignant hematopoiesis63,148, and leukemia is now recognized 

as an oligoclonal disease62. Currently, clonal heterogeneity in leukemia is studied using next-

generation sequencing (NGS) targeting subclone-specific mutations. With this method, detecting 

mutations at 0.02-0.05 variant allele fraction (VAF) requires costly and time-intensive deep re-

sequencing and identifying lower-frequency variants is impractical regardless of sequencing 

depth. Recently, various methods have been developed to circumvent the error rate of NGS117,120. 

These methods tag individual DNA molecules with unique oligonucleotide indexes or unique 

molecular identifiers (UMIs), which enable error-correction after sequencing.  

Expanding upon these techniques, we developed methods for error-corrected sequencing 

(ECS) that enabled the study of clonal heterogeneity during leukemogenesis. We benchmarked 

these methods with dilution series experiments, which demonstrated quantitative SNV detection. 

Separately, the ECS error-profile revealed highly specific variant detection down to 1-2:10,000 

molecules for all substitutions, except for G to T transversions. These substitutions were only 

detectable down to 1:500 due to oxidative DNA damage in the original samples.  

As a pilot study for potential clinical utility, we applied ECS to identify leukemia-specific 

mutations in banked pre-leukemic blood and bone marrow samples from patients who later 

developed therapy-related acute myeloid leukemia (t-AML) or therapy-related myelodysplastic 
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syndrome (t-MDS). These diseases occur in 1-10% of individuals who receive alkylator- or 

epipodophyllotoxin-based chemotherapy or radiation to treat a primary malignancy132. For the 

nine individuals surveyed in this study, matched leukemia/normal whole genome sequencing 

identified the t-AML/t-MDS-specific somatic mutations present at diagnosis. We applied our 

method for ECS to identify leukemia-specific mutations in six out of nine individuals using DNA 

extracted from blood and bone marrow samples collected years prior to diagnosis.  

Results from two of these individuals (UPN530447, UPN341666) were published in a 

study specifically describing the role of TP53 mutations in the development of t-AML/t-MDS134. 

Surprisingly, in two separate individuals in that study (not reported here), clonal TP53 mutations 

were detected before chemotherapy exposure, changing the established theory of leukemogenesis 

in t-AML/t-MDS. Previously, the chemotherapy or radiation exposure was thought to directly 

introduce the somatic mutations necessary for the development of t-AML/t-MDS133. Instead, 

these mutations were likely acquired in the hematopoietic compartment stochastically over the 

patient’s lifetime and not introduced by therapy. This presented a testable hypothesis: were 

clonal TP53 mutations detectable in the blood of healthy elderly individuals? Using our error-

corrected sequencing approach for novel variant discovery (instead of resequencing known 

mutations), we demonstrated that 9/19 healthy elderly individuals harbored clonal TP53 

mutations in their peripheral blood.  

Results from the remaining seven individuals were published in a subsequent study that 

expanded upon the methodological advancements made to enable rare pre-leukemic clone 

detection. In two of these seven individuals, clonal mutations were identified below the 1% 

threshold of detection governed by conventional NGS. These results highlighted the ability of 

targeted-ECS to identify clinically silent single nucleotide variations (SNV).  
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3.2 Methods 

3.2.1 Study Design 

Blood and bone marrow samples from patients treated for t-AML/t-MDS at Washington 

University were banked or accessed following informed consent under Human Research 

Protection Protocol #201011766. Patients included in this study underwent matched leukemia 

and non-cancer (skin) whole genome sequencing on the Illumina HiSeq 2500 platform, which 

identified tumor-specific somatic coding mutations in leukemia samples. Our study focused on 

identifying these known mutations from matched blood or bone marrow samples banked 1-13 

years prior to the initial diagnosis of t-AML/t-MDS.  

3.2.2 Sample Preparation 

Genomic DNA was isolated from either FFPE or cryopreserved peripheral blood or bone 

marrow samples using the QIAamp DNA FFPE Tissue or DNA Mini Kit (Qiagen). PCR primers 

were designed using primer3158 to amplify regions harboring individual leukemia-specific 

mutations from the banked biological samples (Table 3.1). The concentration of each purified 

DNA sample was determined using the Qubit dsDNA HS Assay Kit (Life Technologies). 

Genomic DNA (400-800 ng) was amplified using the Q5 High-Fidelity 2X Master Mix (New 

England Biolabs) in a 25 uL reaction with 0.5 uM primers (Figure 3.1a). The following 

conditions were used: 98C for 30s; 16-30 cycles of 98C for 10s, 62-72C (based on a separate 

optimization) for 30s and 72C for 30s; 72C for 2m; hold 10C. The PCR reactions were purified 

using the Agencourt AMPure XP (Beckman Coulter) bead-based protocol without modification.  

For a few of the patient samples, the amount of input genomic DNA was limited. In these 

cases, modifications were made to the protocol to amplify multiple leukemia-specific mutations 

from the same biological sample (multiplex PCR). Patient-specific primers were pooled during a 
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first round of PCR and amplified for roughly 16 cycles, similar to pre-amplification described in 

TAm-Seq156. After purification the DNA was split into a single PCR reaction per patient-specific 

SNVs and amplified using only that specific primer pair, again for roughly 16 cycles. This 

allowed us to generate diverse amplicon pools for multiple loci using only 400-800 ng of starting 

DNA.  

3.2.3 ECS Library Preparation 

The concentration of the purified PCR products was measured using the Qubit dsDNA 

HS Assay Kit (Life Technologies). NGS libraries were prepared from 800 ng of amplicons for 

each sample/mutation using the Illumina TruSeq DNA Sample Preparation Kit (Illumina). We 

replaced the Illumina-provided Y-shaped adapters with custom adapters containing a random 16 

base pair oligonucleotide index sequence (Table 3.2). Adapters were diluted to 40 uM in Tris-

EDTA with 5 nM NaCl and annealed using the following conditions: 95C for 5m then decreased 

by 1C every 30s to 4C. Aside from the custom adapters used for ligation, the library preparation 

protocol from Illumina was mostly unchanged (Figure 3.1b). Enrichment for correctly ligated 

products was completed using a 50 uL Q5 PCR amplification with 2 uL of ligation product and 

0.5 uM Illumina specific primers under the following conditions: 98C for 30s; 6 cycles of 98C 

for 10s, 57C for 30s and 72C for 30s; 72C for 2m; hold 10C The PCR reaction was purified 

using a modified Ampure bead cleanup, which increased the size range of purification to remove 

adapter dimers. 100 uL of beads were washed twice with ddH2O to remove the stock poly-

ethylene glycol (PEG) solution. The solution was replaced with 25.5 uL 50% wt/vol PEG 

(Sigma), 37.5 uL 5M NaCl and 37 uL ddH2O. The PCR reaction was added to this solution and 

purified per the standard Ampure protocol.   
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3.2.4 Quantification by qPCR 

We sought to generate read families from a single randomly-indexed molecule with 

roughly seven-fold coverage. Given the bandwidth of a single Illumina MiSeq run was roughly 

15-18 million read pairs, we sought to generate sequencing libraries from roughly 2.5 million 

molecules. To achieve this, we quantified the concentration of each library using the qPCR NGS 

Library Quantification Kit, Illumina GA (Agilent Technologies). Based on the measured 

concentration, each library was diluted to 0.4 pM such that a 10 uL volume of the diluted library 

would contain ~2.5 million molecules. The 10 uL aliquot of diluted sequencing library was then 

amplified for 16-20 cycles and purified with the same Q5 and modified Ampure bead protocol 

used for the previous enrichment PCR step. The final library was visualized on a 2% SYBR Safe 

gel (Life Technologies) and quantified using Qubit dsDNA HS Assay Kit. When multiplexing 

samples on a single lane of sequencing, individual sequencing libraries were combined in 

equimolar amounts after enrichment PCR and the pooled sample was diluted and quantified 

using qPCR as stated previously. However, we also found it possible to pool amplicons in 

equimolar amounts after the initial genomic DNA amplification and make a single sequencing 

library. Up to 7 different amplicons were multiplexed on a single MiSeq run. Multiplexing was 

only possible with mutations in different genes or within different exons of the same gene 

because the samples were demultiplexed by alignment. 

3.2.5 Sequencing 

Each library was sequenced on the Illumina MiSeq instrument as specified by the 

manufacturer (Figure 3.1c). Approximately, 5-10% of PhiX control DNA was spiked into each 

sequencing experiment. Each completed sequencing run contained roughly 15-18M paired-end 

150 bp reads. Raw sequence reads were aligned to the PhiX genome using Bowtie 2159. Sequence 
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reads aligning to PhiX were removed from further analysis. The remaining sequence reads were 

aligned to UCSC hg19/GRCh37 using Bowtie 2 for comparison against error-corrected 

consensus sequences (ECCS) derived from read families (below). 

3.2.6 Error Corrected Consensus Sequences 

Sequence reads containing the same index sequence (originated from the same randomly-

indexed molecule) were aligned to each other to generate read families in a fashion similar to 

previously published methods117,120 (Figure 3.1d). Previous studies used a minimum read family 

size of three117. We found using a more stringent cutoff of five reduced the error rate in the read 

families (Figure 3.2). The median read family size was seven reads per index (Figure 3.3). 

Paired-end reads within a read family were error corrected in a stepwise fashion (Figure 3.1e). 

First, at every position, the nucleotides called by each sequence read were compared and a 

consensus nucleotide was called if there was at least 90% agreement between the reads. If there 

was less than 90% agreement, an N was called in the consensus sequence at that position. Errors 

that occurred during library preparation and sequencing were removed because they were not 

shared between different reads within a read family. Second, an ECCS was thrown out if less 

than 90% of the 300 nucleotides comprising the paired-end read were assigned a non-N 

nucleotide. These ECCSs were locally aligned to UCSC hg19/GRCh30 using Bowtie2159 (Figure 

3.1f). The aligned ECCSs were processed with Mpileup160 using the parameters –BQ0 –d 

10000000000000. This removed the coverage thresholds to ensure that all of the pileup output 

was returned regardless of variant allele fraction (VAF) or coverage. Variant allele factions 

comprised of both the expected mutations and the background errors for each sample were 

visualized using IGV161 and graphically represented using ggplot2162. Each known variant was 

plotted relative to the error-profile of that specific substitution class (e.g. an expected C to T 
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transition was compared against the C to T error profile). Variants distinguishable from the noise 

for that specific error class and located at the expected position within the amplicon were called 

true positives. The threshold for calling true variants varied based on the error profile of that 

substitution class. Based on our benchmarking studies we were 99% specific to detect variants 

above 0.0034 VAF for G to T (C to A) substitutions, 0.00020 VAF for C to T (G to A) 

substitutions and 0.000079 VAF for the other eight possible substitutions.  

3.2.7 Healthy control methods 

Amplicons were prepared from healthy control genomic DNA samples using primers 

designed to amplify exons four through eight of TP53 (Table 3.3). Patient specific barcodes, six 

nucleotides in length, were appended to the 5-prime end of each primer to enable pooling of 

multiple samples for sequencing. Amplicons generated from each TP53 exon/patient sample 

combination were generated as previously described and purified products were pooled in 

equimolar amounts. The pooled barcoded amplicons were prepared for error-corrected 

sequencing as previously described. Sequencing was completed on the Illumina Hi-Seq 2500 

platform. Sequenced reads were demultiplexed based on the known patient-specific barcode 

sequences using a two nucleotide hamming distance. Demultiplexed sequence reads were 

organized into read families based on their random oligonucleotide index sequence and error-

corrected as outlined previously. Read families comprised of three reads or more were used for 

analysis. A binomial distribution of the substitution rate at each covered base in TP53 was used 

to identify individuals with TP53 mutations. A variant was called if the binomial p-value was 

less than 10-6, the VAF was greater than 1:10,000, the individual read family coverage was 

greater than 10,000x, at least 10 read families called the variant and the VAF in the individual 

was greater than five times the mean VAF for all individuals with greater than 10,000x coverage 
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at that specific nucleotide. Read families from one patient sample (barcode GTACGGC) were 

removed from analysis due to a high error rate.  

3.3 Results 

3.3.1 Design and Validation 

We employed ECS by tagging individual DNA molecules with adapters containing 16 bp 

random oligonucleotide molecular indexes in a manner similar to other reports117,120,163. Our 

implementation of ECS easily targeted loci of interest through single or multiplex PCR and 

inserted seamlessly into the standard NGS library preparation (Figure 3.1). Our only deviations 

from the standard protocol were ligation of customized adapters containing random indexes 

instead of the manufacturer’s supplied adapters and a qPCR quantification step prior to 

sequencing (Table 3.2). Following sequencing, sequence reads containing the same index and 

originating from the same molecule were grouped into read families. Sequencing errors were 

identified by comparing reads within a read family and removed to create an error corrected 

consensus sequence (ECCS).  

We performed two dilution series experiments to assess bias during library preparation 

and determine the limit of detection for ECS. For the first experiment, we spiked DNA from a t-

AML sample into control human DNA, which was serially diluted over five orders of magnitude. 

The experiment was comprised of two technical replicates targeting two separate mutations (20 

total independent libraries). The results demonstrate that ECS is quantitative to a VAF of 

1:10,000 molecules and provides a highly reproducible digital readout of tumor DNA prevalence 

in a heterogeneous DNA sample (r2 of 0.9999 and 0.9991, Figure 3.4). A second dilution series 

experiment using a leukemia sample with a somatic TP53 H179L mutation highlighted the 

background rate of G to T (C to A) substitutions that likely arose from DNA damage in the 
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original samples (Figure 3.5). The limit of detection for ECS was approximately 0.002 VAF and 

the limit of detection for substitutions other than G to T (C to A) was approximately 0.0002 VAF 

(Figure 3.6).  

3.3.2 Error Profile of Error-Corrected Consensus Sequences 

We next characterized the error profile based on the wild-type nucleotides included in the 

first dilution series experiment. Variant identification using the ECCSs was 99% specific at a 

VAF of 0.0016 versus 0.0140 for deep sequencing alone (Figure 3.7a). We noticed that ECCS 

errors were heavily biased towards G to T transversions and to a lesser degree C to T transitions 

(Figure 3.7b, Figure 3.8), as previously observed117,122. When separated by substitution type, 

variants identified from the ECCSs were 99% specific at a VAF of 0.0034 for G to T (C to A) 

mutations, 0.00020 for C to T (G to A) mutations and 0.000079 for the other eight possible 

substitutions. While excess G to T mutations were a known consequence of DNA oxidation 

leading to 8-oxo-guanine conversion117, the pre-treatment of samples with 

formamidopyrimidine-DNA glycosylase (Fpg) prior to PCR amplification did not appreciably 

improve the error profile of G to T mutations (Figure 3.9).  

3.3.3 Rare Clonal Mutation Detection in Pre-Leukemic Samples 

As proof of principle, we applied ECS to study rare pre-leukemic clonal hematopoiesis in 

nine individuals who later developed t-AML/t-MDS. Leukemia/normal whole genome 

sequencing at diagnosis was used to identify the leukemia-specific somatic mutations in each 

patient’s malignancy (Table 3.4). We applied targeted ECS to query these 26 different loci in 12 

cryopreserved or formalin-fixed paraffin-embedded (FFPE) blood and bone marrow samples that 

were 9-22 years-old and banked up to 12 years prior to diagnosis (Table 3.5).  
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We generated approximately 50 Gb of 150 bp paired-end reads from 11 Illumina MiSeq 

runs. We targeted 1-7 somatic mutations per individual (26 mutations spanning 6.5 kb from 18 

genes in total) and identified leukemia-specific clonal populations in six individuals up to 12 

years prior to diagnosis (Table 3.6). For each sequencing library, we tagged approximately 2.5 

million locus-specific amplicons generated from genomic DNA using high-fidelity PCR with 

UMI-indexed custom adapters. Sequencing errors were removed to create ECCSs as described 

above. Each ECCS was then aligned to the reference genome for variant calling (Figure 2.6). 

Using conventional deep sequencing, we detected t-AML/t-MDS-specific mutations in 

prior banked samples at variant allele fractions between 0.03 and 0.87 (data not shown). In one 

individual (UPN 684949), deep sequencing alone was insufficient to distinguish known ASXL1 

and U2AF1 mutations from the sequencing errors in samples banked five and three years prior to 

t-MDS diagnosis, respectively (Figure 3.10a,b). However, ECS identified the L866* nonsense 

mutation in ASXL1 at a VAF of 0.004 (Figure 3.10c) and the S34Y missense mutation in U2AF1 

at a VAF of 0.009 (Figure 3.10d). In addition, ECS was able to temporally quantify these 

mutations from three pre-t-MDS samples banked yearly from 3 to 5 years prior to diagnosis 

(Figure 3.11, Figure 3.12). In two cases (UPN643006 and UPN942008), only a subset of the 

variants identified at diagnosis were present in the prior banked sample (Table 3.6). Specifically, 

in the UPN643006 sample, banked twelve years prior to diagnosis, a single nucleotide deletion in 

ASXL1 was present at VAF 0.03. But, the G to T substitution in ASXL1, CTT deletion in GATA2 

and G to T substitution in U2AF1 were not detectable in this prior banked sample. In two 

additional cases TP53 mutations were detected prior to the developed of t-AML/t-MDS. In 

UPN530447, somatic TP53 K139N and TP53 R248Q mutations were detected six years prior to 

t-AML diagnosis at 0.007 VAF and 0.005 VAF, respectively (Figure 3.13). A co-occurring 
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CSMD1 mutation was also detected in the prior-banked sample at 0.004 VAF. But, the NUP98 

Q1532H and TET2 K1299M mutations that were detected at t-AML diagnosis were not detected 

in the prior-banked sample. In UPN341666, a TP53 R196* mutation was detected at 

approximately 0.001 VAF three years prior to the development of t-MDS (Figure 3.14). 

Interestingly, a RUNX1 W279* mutation that co-occurred at t-MDS diagnosis was not detected 

in the prior-banked sample, suggesting that this mutation was acquired later during the 

development of disease. 

3.3.4 Rare Clonal TP53 Mutations in Healthy Individuals 

The frequency and profile of somatic single nucleotide mutations in the hematopoietic 

stem cells (HSCs) of normal individuals have been previously measured62. The number of 

somatic mutations increased with age and was estimated to occur at a rate of 3.2 x 10-9 

mutations/nucleotide/year (95% CI 2.4-4.0 x 10-9) for the average nucleotide in the exome. Thus, 

we predicted that an average 50-year-old person would have 1.6 x 10-7 mutations/position. These 

mutations would not be randomly distributed but biased towards C to T (G to A) transitions62. 

Previous studies have proposed that an individual possesses approximately 10,000 distinct 

HSCs164. We used a randomized Monte Carlo simulation to model the prevalence of somatic 

single nucleotide mutations in healthy 50-year-old individuals with 10,000 HSCs given a normal 

somatic mutational profile and mutation rate. Repeated simulation (n=100,000) allowed us to 

predict the distribution of aging-induced TP53 somatic mutations. As expected, this simulation 

modeled a Poisson process. Mutations were deemed detrimental if they had a SIFT score less 

than 0.05 and on a list of putative driver TP53 mutations37,38,165. Using this simulation, we 

predicted that 44% of 50-year-old individuals harbored one or more HSCs with a detrimental 

TP53 mutation (Figure 3.15). We likely underestimated that number of functional TP53 
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mutations per individuals, as we are accounting only for single nucleotide somatic missense 

mutations in our model. Insertions, deletions, nonsense mutations, and splicing-altering 

mutations are not accounted for. Thus, 44% is likely a lower estimate for the number of healthy 

individuals with a detrimental TP53 somatic mutation in at least one HSC.   

We also sought to experimentally determine the number of hematopoietic stem and 

progenitor cells (HSPCs) harboring TP53 mutations in healthy individuals. We analyzed 

peripheral blood leukocytes from 20 elderly (68–89 years old) cancer-free donors, who had not 

received prior cytotoxic therapy. We targeted the DNA binding domain of TP53 (exons 4-8) as 

most leukemogenic mutations occurred in this region. Using ECS, we identified TP53 mutations 

in 9 of 19 evaluable cases, at 0.0001 VAF to 0.0037 VAF (Table 3.7). We used droplet digital 

PCR to validate these findings in all three cases tested. Most mutations detected had been 

observed previously in malignancy based on the COSMIC dataset37,38. Interestingly, we likely 

underreported the number of functional TP53 mutations in healthy individuals because we only 

targeted a subset of the coding sequence and did not detect indel or splicing mutations. These 

findings suggested that somatically acquired functional TP53 mutations in HSPCs may confer a 

subtle competitive advantage over time even without cytotoxic exposure.  

3.4 Discussion 

Here, we present a practical and clinically oriented application for targeted error-

corrected NGS utilizing unique molecular identifiers (UMIs). This method easily integrated into 

existing NGS library preparation protocols and enabled the quantification of previously 

undetectable mutations in heterogeneous DNA samples. The only modification to the standard 

NGS library preparation was the replacement of the stock adapters with our randomly indexed 

adapters and the addition of a qPCR step before sequencing. The qPCR step limited the number 
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of molecules sequenced, ensuring adequate coverage for each read family. With these two 

modifications, we achieve highly specific detection for rare mutations. The bioinformatics 

analysis was straightforward and did not require proprietary algorithms or tools (Supplementary 

Methods). Our results highlight the ability of this method to identify rare subclonal populations 

in a heterogeneous biological sample. As applied to t-AML/t-MDS, we demonstrated these 

previously undetectable mutations were present years prior to diagnosis and fluctuated in 

prevalence over time.  

A clinical application of ECS is to quantify minimal residual disease (MRD). As the 

genomic characterization of leukemia becomes more readily available, identifying causative 

genetic lesions and rare therapy-resistant subclones will become increasingly useful for risk 

stratification, therapeutic selection and disease monitoring. Already, whole genome sequencing 

of AML has demonstrated that nearly every case of AML harbors one or more somatic single 

nucleotide variations (SNV)56. These SNVs are more reliable clonal markers of malignancy than 

cell surface markers, which can change over time. Leveraging this information, conventional 

NGS was implemented retrospectively to detect residual disease harboring leukemia-specific 

insertions/deletions (indels) as rare as 0.00001 VAF in NPM1108 and 0.0001 VAF in RUNX1109. 

This was possible because indels were only rarely generated erroneously by NGS. Unfortunately, 

measuring rare leukemia-associated substitutions is limited due to the relatively high error profile 

of conventional NGS166. However, ECS can achieve the 1:10,000 limit of detection featured by 

conventional MRD platforms116. For patients whose leukemia lacks suitable markers for 

conventional MRD, ECS could offer an alternative with comparable sensitivity and specificity 

that is easy to implement in a clinical sequencing lab. Furthermore, the ability to multiplex 

targets for ECS enables the surveillance of known mutations and the simultaneous discovery of 
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new somatic mutations. Ongoing work will directly compare gold-standard MRD methods to 

targeted ECS in patients with and without relapsed leukemia. 
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Figure 3.1 Schematic for amplicon-targeted error-corrected sequencing. a) Primers designed to 

span a locus of interest enabled the recovery of variants (orange) in that region. b) Adapter 

sequences containing a unique molecular identifier (UMI) were ligated to each captured 

amplicon. c) Amplification and sequencing for a restricted subset of these UMI-tagged 

molecules produced multiple sequenced reads per UMI. Sequencing errors (yellow) were 

randomly distributed across the sequenced reads. d) These errors were distinguishable from the 

correctly sequenced nucleotide in other reads from the same read family. e) Correcting the 

sequencing errors produced an error-corrected consensus sequence. f) The comparison of 

multiple error-corrected consensus sequences from different UMI-tagged read families enabled 

the detection of rare variants present below the error rate of conventional sequencing. 
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Figure 3.2 Error profile observed with increased read family size. Read families generated with 

3x or greater coverage (solid line) had a higher cumulative distribution of erroneous substitutions 

called compared to read families with 5x or greater coverage (dotted line). 
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Figure 3.3 Representative distribution of read family size. Singletons predominantly represented 

index sequences containing a sequencing error. Excluding singletons, the median read family 

size was 7x (mean 7.4x). Only read families with 5-20 reads were included in ECS analysis. 
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Figure 3.4 Benchmarking for ECS and the identification of rare pre-leukemic mutations. DNA 

extracted from a diagnostic leukemia sample with known mutations in a) RUNX1 and b) IDH2 

was serially diluted into non-cancer, unrelated human DNA. Two replicates were analyzed per 

sample/dilution. The coefficient of determination (r2) between diluted tumor concentration in the 

sample and VAF in the generated read families was 0.9999 and 0.9991 for RUNX1 and IDH2, 

respectively. 
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Figure 3.5 Second dilution series experiment. A leukemia sample with a somatic TP53 H179L 

mutation at 0.37 VAF was serially diluted with normal genomic DNA as described by the labels 

on the left. The observed VAFs across the amplicon of interest with conventional sequencing 

(left panels) or error-corrected sequencing (middle and right panels) were plotted. Artifacts due 

to guanine oxidation lead to an increased rate of C to A (G to T) mutations. These data were also 

analyzed after removing C to A (G to T) substitutions as the variant of interest was a T to A 

substitution (right panel). The TP53 variant allele was circled in blue. 
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Figure 3.6 Threshold of variant detection for the second dilution series experiment. Given the 

second dilution series experiment, this was that range of detection for mutant alleles relative to 

the error rates of raw sequencing reads (red) and error-corrected read families (yellow). A DNA 

damage-specific C to A (G to T) error bias was observed in the read families. Sensitivity was 

further improved after removing C to A (G to T) substitutions (blue).  
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Figure 3.7 Characteristics of substitutions called from the error-corrected sequencing 

experiments. a) The VAF at every nucleotide not expected to contain somatic mutations in the 

first dilution series experiment were analyzed to determine the error profile of the error-corrected 

consensus sequences compared to conventional deep sequencing. A cumulative distribution 

function of VAF demonstrated a reduced error-profile in read families relative to conventional 

deep sequenced reads. b) The most frequent class of substitution seen in read families was the G 

to T (C to A) transversion, which was consistent with oxidative conversion of guanine to 8-oxo-

guanine. 
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Figure 3.8 Cumulative distribution function of the error profile comparing error-corrected 

sequencing to conventional deep sequencing.  The variant allele fraction for each non-variant 

position covered in the dilution series experiment was sorted and plotted cumulatively. The 

variant allele fractions of errors were higher in every nucleotide covered across all substitution 

types for the raw sequenced reads compared the error-corrected consensus sequences generated 

from read families. 
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Figure 3.9 Cumulative distribution function of read family error profile per specific substitution 

type with and without FPG pretreatment. The error profile of G to T (C to A) substitutions, 

consistent with guanine oxidation to 8-oxo guanine, was higher than the other classes of 

mutations. The C to T (G to A) substitutions, consistent with cytosine deamination to uracil, was 

visible just over the error profile for the remaining 8 types of substitutions (inset). FPG 

pretreatment did not appreciably change the error profile.  
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Figure 3.10 Identification of rare clonal ASXL1 and U2AF1 pre-leukemic mutations. a,b) The 

leukemia-specific variants identified in ASXL1 and U2AF1 at diagnosis (circled) were not 

distinguishable from sequencing errors in the same substitution class by conventional deep 

sequencing. c,d) Targeted error-corrected sequencing identified the ASXL1 variant in the 2002 

banked sample at 0.004 VAF and the U2AF1 variant in the 2004 banked sample at 0.009 VAF.  
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Figure 3.11 ASXL1 mutations over time in UPN684949. Formalin-fixed paraffin-embedded bone 

marrow samples were banked over three years from this individual. a-c) Conventional deep 

sequencing only distinguished the ASXL1 variant from the T to G sequencing errors in the 2003 

banked sample at 0.097 VAF. d-f) Correcting the sequencing errors with ECS identified the 

ASXL1 variant at 0.0042 VAF in 2002, 0.092 VAF in 2003 and 0.029 VAF in 2004. 
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Figure 3.12 U2AF1 mutations over time in UPN684949. Formalin-fixed paraffin-embedded 

bone marrow samples were banked over three years from this individual. a-c) Conventional deep 

sequencing only distinguished the U2AF1 variant from the G to T sequencing errors in the 2003 

banked sample at 0.036 VAF. d-f) Correcting the sequencing errors with molecular indexing did 

not identify the U2AF1 variant in 2002, but did identify the U2AF1 variant at 0.031 VAF in 2003 

and 0.0089 VAF in 2004.  
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Figure 3.13 Rare clonal somatic mutations identified by error-corrected sequencing in individual 

UPN530447. Rare clonal TP53 K139N and TP53 R248Q mutations were detected at 0.007 VAF 

and 0.005 VAF, respectively (blue circles). These mutations were not distinguishable from the 

sequencing errors in the raw reads (row 1), but detectable in the error-corrected read families 

(row 2). The frequency of other mutations detected at t-AML diagnosis was also measured. The 

CSMD1 mutation was observed at 0.004 VAF in the error-corrected read families and not 

distinguishable from sequencing noise in the raw reads. The NUP98 Q1532H and TET2 K1299M 

mutations were not detected.  
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Figure 3.14 Rare clonal somatic mutations identified by error-corrected sequencing in individual 

UPN341666. A clonal TP53 R196* mutation was identified at 0.0009 VAF (blue circle). This 

mutation was not distinguishable from the sequencing errors in the raw reads (row 1) or read 

families (row 2). However, removing systematic C to A (G to T) substitution errors enabled 

identification of the true mutation above the noise threshold (row 4). A RUNX1 W279* mutation 

that was detected at diagnosis was not detected in prior-banked sample. The raw sequencing 

results (row 3) and read family results (row 5) for a control sample without the mutations were 

included for comparison.  

  



78 

 

 
 

Figure 3.15 Simulated burden of predicted damaging TP53 mutations in hematopoietic stem 

cells (HSCs) from healthy 50-year-old individuals. Using Monte Carlo simulation (n=100,000) 

with the observed exome-wide mutation rate and substitution distribution, we estimated that 

approximately 44% of healthy 50-year-old individuals had at least one HSC with a detrimental 

TP53 mutation. The randomly distributed mutations were deemed detrimental if the SIFT score 

was less than 0.05 and the mutation was a putative TP53 driver mutation. 
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Table 3.1 Primers targeting leukemia-specific variants. Primer sequences used to generate 

variant-specific amplicons from banked genomic DNA samples.  

 

UPN Gene FWD Primer Reverse Primer 

341666 TP53 CCCAGGCCTCTGATTCCTCAC GGCCACTGACAACCACCCTTAACC 

 RUNX1 GGAAAGTTCTGCAGAGAGGGTTGTCAT CCTTTCTGATTCTCTTCAGATACAAGGC 

446294 OBSCN GGAGCCTCTGACCCTGCATCCCTCC CCCGCCTCACAGCTGTACTCCCCAG 

 
TP53 AGACCTCAGGCGGCTCATAGGGCAC GGGGCTGGAGAGACGACAGGGCTG 

499258 RUNX1 
TCACTAGAATTTTGAAATGTGGGTTTGTTG

CC 
GCACTCTGGTCACTGTGATGGCTGGC 

530447 TP53 K139N AGTTGCTTTATCTGTTCACTTGTGC CTCCGTCATGTGCTGTGACTGC 

 TP53 R248Q CCCTGCTTGCCACAGGTCTCC AGTGTGCAGGGTGGCAAGTGG 

 CSMD1 AAAGCATCTCCAAAACCATTGCCCTGCC AAAATCCGGTACAGCTGCCTCCCTG 

 NUP98 GCAGGAGGACAAAGATGGCCCAC GACTACCGCCTAAGCTGGCACTTG 

 TET2 TGGGTCATCCCCAAGCAGCTTAAAC CAGGAGAACTTGCGCCTGTCAGG 

574214 DMD GGCGATGTTGAATGCATGTTCCAGT AGGACTATGGGCATTGGTTGTCAAT 

643006 ASXL1 GGACCCTCGCAGACATTAAAGCCCGT GCCTCACCACCATCACCACTGCTGC 

 
GATA2 CCACAGGTGCCATGTGTCCAGCCAG CTGTGGCGGGGTGGGAGGAATGTTG 

 
U2AF1 

TGAACACAAATGGAAAATACAACTACGAG

AGAAAA 

CCCAGCAAAATAATCAGCTCTCATTTTC

CC 

684949 ASXL1 
CACTATGAAGGATCCTGTAAATGTGACCC

C 
TGGTTTGGGCTGTTTCACTACCTCA 

 
U2AF1 

TGAACACAAATGGAAAATACAACTACGAG

AGAAAA 

CCCAGCAAAATAATCAGCTCTCATTTTC

CC 

856024 S100A4 CCACGTGGGGACTCACTCAGGCA AATAAGACGGTCTCTGTGCCTCCTG 

 
IGSF8 TGGTACACGCCTTCATCCTCGGG GCTCAGCTCTGTCCCTGCCCAGCT 

 
PLA2R1 ACCCTGGTGTCTGTGGCATTCTCTG AGTCACAGCATCATTCCTCTTGCGGT 

 
POU3F2 CAAATGCGCGGCTCCTTTAACCGGA GCGTGGCTGAGCGGGTGTCC 

 
ANKRD18B TACCACATTCGGGACTGGGAACTGC CTCCCAGGGTCCCGGCGAACTCC 

 
ESR2 TGGCAATCACCCAAACCAAAGCATCGGT AACCCAGATCACCTCGGAGCAGGCG 

 
FBN3 GGGGACACAGTTCGCAGGGGTC GACTGGGGTGCGGGAGGTCACAGG 

942008 IDH2 GGCGTGCCTGCCAATGGTGATGGG CCGTCTGGCTGTGTTGTTGCTTGGGG 

 
RUNX1 ACATGGTCCCTGAGTATACCAGCCT GGCCACCAACCTCATTCTGTTTTGT 
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Table 3.2 Random 16-mer molecular indexed adapters. A terminal 5-prime phosphorylation on 

the complementary adapter sequence was used to enable ligation (*). 

 

Label Sequence 

16N Index 

Adapter 

AGACGGCATACGAGATNNNNNNNNNNNNNNNNGTGACTGGAGTTCAGA

CGTGTGCTCTTCCGATCT 

Complementary 

Adapter 

*GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGC

CGTATCATT 
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Table 3.3 Primers used for amplification of TP53 DNA binding domain in healthy individuals. 

 

Primer Sequence 

4a fwd GGATACGGCCAGGCATTGAAGTCTCA 

4a rev ACCCAGGTCCAGATGAAGCTCCCAG 

5 fwd GCCCTGTCGTCTCTCCAGCCCCAG 

5 rev GACTTTCAACTCTGTCTCCTTCCTCTTCCT 

6 fwd GGCCACTGACAACCACCCTTAACCCC 

6 rev GGCCTCTGATTCCTCACTGATTGCTCTT 

7 fwd CCCAGGGGTCAGAGGCAAGCAGAGG 

7 rev CTCCCCTGCTTGCCACAGGTCTCCC 

8 fwd CCTCCACCGCTTCTTGTCCTGCTTGC 

8 rev GGGTGGTTGGGAGTAGATGGAGCCTGG 

  



82 

 

Table 3.4 Whole-genome sequencing of diagnosis t-AML/t-MDS samples. 

 

UPN Gene Chr Position Mutation AA Change 

Reference 

Reads 

Variant 

Reads VAF 

341666 TP53 17 7578263 G to A R196* 60 53 0.47 

 
RUNX1 21 36171728 C to T W279* 41 36 0.47 

446294 OBSCN 1 228461129 A to G H1857R 3 5 0.63 

 
TP53 17 7578271 T to A H193L 79 106 0.57 

499258 RUNX1 21 36252865 C to G R139P 122 17 0.12 

530447 TP53 17 7578513 C to G K139N 67 43 0.39 

 
TP53 17 7577538 C to T R248Q 91 109 0.54 

 
CSMD1 8 3889461 A to C G192 119 89 0.43 

 
NUP98 11 3707283 C to G Q1532H 66 59 0.47 

 
TET2 4 106180868 A to T K1299M 193 147 0.43 

574214 DMD X 32827676 G to A R187* 103 73 0.41 

643006 ASXL1 20 31022448 G to T G645C 36 32 0.47 

 
ASXL1 20 31022442 del G G645fs 33 32 0.49 

 
GATA2 3 128200135 del CTT K390in_frame_del 8 10 0.56 

 
U2AF1 21 44524456 G to T S34Y 24 27 0.53 

684949 ASXL1 20 31023112 T to G L866* 75 14 0.16 

 
U2AF1 21 44524456 G to T S34Y 57 9 0.14 

856024 S100A4 1 153517192 A to G F27L 103 48 0.32 

 
IGSF8 1 160062252 G to A P516S 28 42 0.60 

 
PLA2R1 2 160798389 A to G L1431P 45 33 0.42 

 
POU3F2 6 99282794 C to A S15R 15 15 0.50 

 
ANKRD18B 9 33524645 G to A C53Y 26 20 0.43 

 
ESR2 14 64701847 G to A A416V 40 22 0.35 

 
FBN3 19 8155081 G to A P2029L 54 38 0.41 

942008 IDH2 15 90631934 C to T R88Q 10 10 0.50 

 
RUNX1 21 36231791 T to C D171G 15 35 0.70 
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Table 3.5 Summary of patient information. The type of primary malignancy, the date of primary 

malignancy diagnosis, the date and type of blood/bone marrow banked prior to t-AML/t-MDS 

diagnosis and the date of t-AML/t-MDS diagnosis are included in the table below. At t-AML/t-

MDS diagnosis, tumor/normal whole genome sequencing identified leukemia-specific mutations. 

Some of the prior banked blood/bone marrow samples showed evidence of clonal populations 

harboring those leukemia-specific mutations before the clinical detection of disease. 

 

UPN 

Primary 

Malignancy 

Diagnosis 

Date 

Primary 

Malignancy 

Banked 

Samples 

Banking 

Type 

Date 

Banked 

t-AML/t-

MDS 

Diagnosis 

Evidence of 

Pre-Leukemic 

Subclones 

341666 NHL 04/2002 22.04 Cryo 11/2002 2005 (t-MDS) Yes 

446294 Breast cancer 2002 75.02 FFPE 07/2005 2006 (t-MDS) Yes 

499258 Hodgkin’s lymphoma 1998 24.06 Cryo 02/2002 2004 (t-MDS) No 

530447 Hodgkin’s lymphoma 1993 25.01 Cryo 02/2001 2007 (t-AML) Yes 

574214 Breast cancer 1998 26.04 Cryo 01/2000 2007 (t-MDS) No 

643006 AML 1989 80.01 FFPE 04/1992 2004 (t-MDS) Yes 

684949 CLL 09/1991 91.01 FFPE 11/2002 2007 (t-MDS) Yes 

      92.02 FFPE 09/2003   Yes 

      93.01 FFPE 10/2004   Yes 

856024 NHL 11/2004 30.02 Cryo 03/2005 2006 (t-AML) No 

942008 NHL 08/1992 33.04 Cryo 09/1996 2005 (t-AML) Yes 

      107.01 FFPE 11/2005   Yes 
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Table 3.6 Patient-specific leukemia-associated somatic mutations identified by ECS. Two to 

seven mutations were queried per individual and the number of read families (RF) containing the 

variant allele or reference allele were reported and used to calculate the variant allele faction 

(VAF). 
  

UPN 

Sam-

ple 

Yrs 

Prior Gene Chr Position Mut 

AA 

Change 

Variant 

RFs 

Reference 

RFs VAF 

341666 22.04 3 TP53 17 7578263 G to A R196* 431 500,828 0.0009 

   RUNX1 21 36171728 C to T W279* 2 99,421 0.0000 

446294 75.02 1 OBSCN 1 228461129 A to G H1857R 61,238 156,986 0.2806 

   
TP53 17 7578271 T to A H193L 220,551 110,047 0.6671 

499258 24.06 2 RUNX1 21 36252865 C to G R139P 2 486,196 0.0000 

530447 25.01 6 TP53 17 7578513 C to G K139N 3,551 489,368 0.0073 

   TP53 17 7577538 C to T R248Q 3,377 632,791 0.0053 

   CSMD1 8 3889461 A to C G192 2472 555,704 0.0044 

   NUP98 11 3707283 C to G Q1532H 97 636,713 0.0002 

   TET2 4 106180868 A to T K1299M 17 451,219 0.0000 

574214 26.04 7 DMD X 32827676 G to A R187* 7 199,945 0.0000 

643006 80.01 12 ASXL1 20 31022448 G to T G645C 7 85,781 0.0001 

   
ASXL1 20 31022442 del G G645fs 2,898 82,245 0.0340 

   
GATA2 3 128200135 

del 

CTT 

K390in_fr

_del 
0 4,187 0.0000 

   
U2AF1 21 44524456 G to T S34Y 85 414,613 0.0002 

684949 91.01 5 ASXL1 20 31023112 T to G L866* 3,583 853,598 0.0042 

   
U2AF1 21 44524456 G to T S34Y 545 514,410 0.0011 

 
92.02 4 ASXL1 20 31023112 T to G L866* 54,074 535,976 0.0916 

   
U2AF1 21 44524456 G to T S34Y 11,195 355,276 0.0305 

 
93.01 3 ASXL1 20 31023112 T to G L866* 17,319 573,629 0.0293 

   
U2AF1 21 44524456 G to T S34Y 827 92,104 0.0089 

856024 30.02 1 S100A4 1 153517192 A to G F27L 0 211,512 0.0000 

   
IGSF8 1 160062252 G to A P516S 0 22,614 0.0000 

   
PLA2R1 2 160798389 A to G L1431P 2 338,616 0.0000 

   
POU3F2 6 99282794 C to A S15R 8 201,240 0.0000 

   

ANKRD

18B 
9 33524645 G to A C53Y 7 214,836 0.0000 

   
ESR2 14 64701847 G to A A416V 10 135,861 0.0001 

   
FBN3 19 8155081 G to A P2029L 0 152,304 0.0000 

942008 33.04 9 IDH2 15 90631934 C to T R88Q 23,170 236,587 0.0892 

   
RUNX1 21 36231791 T to C D171G 40 253,168 0.0002 

 
107.01 <1 IDH2 15 90631934 C to T R88Q 138,180 161,371 0.4613 

   
RUNX1 21 36231791 T to C D171G 368,438 50,796 0.8788 
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Table 3.7 Rare clonal TP53 mutations identified in healthy individuals. Mutations were 

identified by ECS in exons 4-8 in TP53 in 9/19 healthy 50-year-old individuals. Most of the 

mutations had been observed previously in malignancy as reported in the COSMIC database. 

Three variants were also assayed by ddPCR and the expected variants were observed at similar 

VAFs (last column). 

 

ID Chr Pos Ref Var AA Change COSMIC Var RF Total RF VAF (ECS) VAF (ddPCR) 

34 17 7577505 T G D259A 

 

13 33,085 0.0004 - 

99 17 7577124 C T V272M 10891 26 81,015 0.0003 - 

99 17 7577548 C T G245S 6932 18 41,836 0.0004 - 

269 17 7577120 C T R273H 10660 489 420,026 0.0012 - 

271 17 7577209 C T Intronic 

 

36 333,996 0.0001 - 

271 17 7578413 C T V173M 11084 177 182,809 0.0010 0.0008 

271 17 7578449 C T A161T 10739 25 164,591 0.0002 - 

271 17 7579310 A T Splicing 1522474 23 165,672 0.0001 - 

273 17 7578265 A G I195T 11089 57 15,540 0.0037 0.0028 

300 17 7578190 T C Y220C 10758 91 316,765 0.0003 0.0003 

324 17 7577094 G A R282W 10704 51 86,090 0.0006 - 

335 17 7577539 G C R248G 11564 245 218,077 0.0011 - 

338 17 7577539 G A R248W 10656 188 51,001 0.0037 - 
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Chapter 4: Clonal Hematopoiesis in Healthy 

Individuals 

4.1 Introduction 

The advent of cost-effective, next-generation sequencing (NGS) has permitted in-depth 

analysis of the spectrum of somatic mutations driving clonal evolution in malignancy3,54,56. 

Subsequently, benign clonal hematopoiesis has been identified in healthy individuals136,139,143,167. 

Recent studies revealed that malignant and benign hematopoietic clones frequently harbor 

mutations in the epigenetic modifiers DNMT3A and TET256,144–147. Benign clones were rarely 

detected before 60 years old, but were detected in 10-20% of individuals older than 70 years 

old144–147. While compelling, these previous studies could only detect common clonal 

mutations—greater than 0.02 variant allele fraction (VAF)—due to the NGS error-rate. 

Hematopoietic clones detected above this 0.02 VAF threshold have been termed clonal 

hematopoiesis of indeterminate potential (CHIP) and are associated with an increased risk of 

developing hematological malignancy149. 

Recently, the development of error-corrected sequencing (ECS) using single molecule 

tagging with unique molecular identifiers (UMIs) has permitted the detection of rare variants 

below the error-rate of NGS117–120,134,135. Here, we combined ECS with targeted capture for 54 

genes recurrently mutated in acute myeloid leukemia (AML) to enable the detection of clonal 

mutations at VAFs two orders of magnitude lower than the detection limit of NGS. Using these 

methods, we sought to thoroughly describe the prevalence and mutation profile of rare 

hematopoietic clones in healthy individuals, determine if these clones are stable longitudinally, 

and determine if clonal mutations arise in long-lived hematopoietic stem and progenitor cells 

(HSPCs) or in more committed progenitors. We studied clonal hematopoiesis in longitudinally 
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banked blood samples from middle-aged healthy participants in the Nurses’ Health Study. We 

found clonal hematopoiesis, predominantly harboring mutations in DNMT3A and TET2, in 95% 

of individuals studied. Many clonal mutations were stable longitudinally and detected in both 

myeloid and lymphoid lineages, suggesting they arose in long-lived HSPCs. 

4.2 Methods 

4.2.1 Study Population 

The Nurses’ Health Study (NHS) began in 1976 with 121,701 female United States 

registered nurses age 30 to 55 years old who returned an enrollment questionnaire, which queried 

medical history, anthropometric measures, and lifestyle/environmental risk factors168. Since 

enrollment the participants have returned biennial follow-up questionnaires to update 

information on potential exposures and diagnoses of chronic disease. To date, follow-up rates 

have been consistently high (>90%). In 1989-1990, 32,826 women provided a heparinized whole 

blood sample by methods described previously169. In 2000-2001, 18,743 of the women who had 

provided a sample in 1989-1990 provided a second whole blood sample using the same 

protocol170. Briefly, participants willing to provide blood samples received kits that included all 

supplies necessary for their collection and overnight return (including a chill pack), and a brief 

questionnaire. Upon receipt, specimens were separated into plasma, buffy coat and red blood cell 

fractions and frozen in liquid nitrogen. Informed consent to participate in the NHS was implied 

by return of the enrollment and follow-up questionnaires; written informed consent was obtained 

for biomarker studies at time of blood collection.   

Among women who provided blood samples in 1989-1990 and 2000-2001, we identified 

20 with no history of cancer or other major chronic disease.  De-identified aliquots from those 40 

buffy coat samples were prepared and shipped overnight to Washington University for the 
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detection of persistent rare hematopoietic clones harboring AML-associated somatic mutations 

as described below. Since each sample was de-identified and the capture space for targeted 

genomic DNA sequencing was not enough to enable individual identification (141 kb per 

person), the Washington University Human Research Protection Office deemed this study as 

non-human research.  

4.2.2 Sample Preparation for Error-Corrected Sequencing 

Genomic DNA was extracted from 50 uL of purified buffy coat from each sample using 

the QIAmp DNeasy Blood and Tissue Kit (Qiagen) with MinElute columns (Qiagen) instead of 

standard columns to facilitate elution in a lower volume (three 30 uL elutions). The 

concentration of extracted genomic DNA was measured using the Qubit dsDNA HS Assay Kit 

(Life Technologies). Enrichment of 568 amplicons in 54 genes (141 kb) commonly mutated in 

AML was performed using 250 ng of genomic DNA via the Illumina TruSight Myeloid Panel 

(Illumina). Technical replicates were prepared for each sample (80 libraries total). Following 

extension-ligation, the amplified fragments were eluted in 50 mM NaOH. Recovered fragments 

were amplified using the Q5 High-Fidelity 2x Master Mix (New England Biolabs) in a 75 uL 

reaction (37.5 uL 2x master mix, 20 uL DNA in 50 uM NaOH, 2 uL Tris-HCl pH 7.5, 0.4 uM 

i5/i7 primers). Illumina’s standard i7 primers were used to enable sample multiplexing. The i5 

primer was redesigned to contain a random 16 nucleotide index to facilitate error-corrected 

sequencing (Table 5.1). The following conditions were used for amplification: 98C for 30s; 6 

cycles of 98C for 10s, 66C for 30s, 72C for 30s; 72C for 2m; hold 10C. The PCR reaction was 

purified using a modified Ampure bead (Beckman Coulter) cleanup to purify the amplified 

fragments (>400 bp). A modified poly-ethylene glycol (PEG) solution was made containing 

382.5 uL 50% wt/vol PEG (Sigma), and 562.5 uL 5M NaCl and 555 uL ddH2O. 100 uL of beads 
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were washed twice with ddH2O to remove the stock PEG solution. 150 uL of the modified PEG 

solution was added to the washed Ampure beads with the 75 uL PCR reaction and otherwise 

purified using the standard Ampure protocol. The fragments were eluted in 20 uL ddH2O and the 

concentration of each library was quantified with Qubit (Life Technologies).  

4.2.3 Quantification by ddPCR 

Our goal was to generate each error-corrected sequencing (ECS) library from 4M 

uniquely tagged molecules. We quantified each library’s concentration using the QX200 droplet 

digital PCR (ddPCR) platform (Bio-Rad). A 2 uL aliquot of each library was diluted 1000-fold 

and quantified in duplicate wells. Each well contained the following reaction mixture: 10 uL 2x 

EvaGreen 2x ddPCR master mix (Bio-Rad), 5 uL 1:1,000 diluted ECS library, 100 nM P5/P7 

primers (Table 4.1), and ddH2O added to 20 uL total. Droplets were generated using the standard 

Bio-Rad protocol. Amplification was completed using the following conditions: 95C for 5m; 40 

cycles of 95C for 30s, 66C for 1m; 4C for 5m; 90C for 5m; 4C hold. With the calculated 

concentration, we aliquoted the appropriate volume of each library to introduce 4M molecules 

into the subsequent amplification step. 

4.2.4 Amplification and Normalization  

Following ddPCR quantification, 4M molecules for each library were amplified using Q5 

High-Fidelity 2x Master Mix (New England Biolabs) using 1 uM P5/P7 primers (Table 4.1) in a 

50 uL reaction under the following conditions: 98C for 30s; 16 cycles of 98C for 10s, 66C for 

30s, 72C for 30s; 72C for 2m; 4C hold. The PCR reaction was purified using the modified 

Ampure bead cleanup. 100 uL of beads were washed twice with ddH2O and replaced with 100 

uL of the modified PEG solution described above. The PCR reaction was then added to the 

mixture and purified using the standard protocol. The fragments were eluted in 20 uL ddH2O. A 
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2 uL aliquot of each library was diluted 10-fold and quantified on the Agilent 2200 Tape Station. 

Libraries were then pooled in equimolar groups of eight. Once pooled, each library was again 

quantified on the Tape Station and submitted for sequencing.  

4.2.5 Sequencing 

Each library was sequenced on the Illumina NextSeq platform using a 300 cycle high 

output kit as specified by the manufacturer. Approximately 5-10% of PhiX control DNA was 

spiked into each sequencing experiment. Each sequencing run contained roughly 400M paired-

end 144 bp reads with corresponding 16bp unique molecular index (UMI) and 8bp sample-

specific index sequences. Sequenced reads were demultiplexed by sample-specific index 

allowing for at most one mismatch in the index sequence (Table 4.2). Raw sequence reads were 

aligned to the PhiX genome using Bowtie 2159. Sequence reads that did not align to PhiX were 

retained for subsequent analysis (below). 

4.2.6 Error Corrected Sequencing Analysis 

The first 30 nucleotides of each sequenced read were hard clipped to remove the primer 

sequences from the TruSight Myeloid panel. Next, the sequenced read pairs tagged with the 

same random index sequence (originating from the same uniquely tagged DNA molecule) were 

aligned to each other to generate read families in a fashion similar to previously published 

methods117,120,134,135. Read families were required to have five or more reads sharing the same 

index sequence. Paired-end reads within a read family were error corrected to generate an error-

corrected consensus sequence (ECCS) in a stepwise fashion. First, at every position, the 

nucleotides called by each sequence read were compared and a consensus nucleotide was called 

if there was at least 90% agreement between the reads. If there was less than 90% agreement, an 

N was called in the consensus sequence at that position. Errors that occurred during library 
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preparation and sequencing were corrected or removed because they were not shared between 

different reads within a read family. Second, an ECCS was discarded if >10% of the 228 

nucleotides comprising the paired-end read were reported as N nucleotides. ECCSs were then 

locally aligned to UCSC hg19/GRCh37 using Bowtie2 and realigned with GATK’s Indel 

Realigner171.  Next, the aligned ECCSs were processed with Mpileup using the parameters -BQ0 

-d 10000000000000. This removed the coverage thresholds to ensure that all of the pileup output 

was returned regardless of variant allele fraction (VAF) or coverage. The parsed pileup output 

was further filtered to ignore positions with less than 1000x ECCS coverage or outside of the 

Illumina TruSight Myeloid target space. Additionally, germline variants identified by the 1000 

Genomes Project above a 0.01 minor allele fraction were excluded from analysis. 

We implemented a position-specific binomial error model to improve rare clonal single 

nucleotide variants (SNVs) calling as described previously134. For each sample, we generated a 

nucleotide position-specific error profile using all sequenced libraries that were not from the 

same individual. A variant was called if the binomial p-value was: a) less than 0.05 after 

Bonferroni correction, b) the variant was observed in at least 5 ECCSs, c) the VAF was greater 

than 0.0001, and d) the variant was identified with criteria a-c in at least two replicates from one 

of the two time points. Likely clonal SNVs (<0.2 VAF) were reported and annotated using 

Annovar172 with the COSMIC 6837 and 1000 Genomes (Oct 2014 release)173 databases. The 

amino acid substitutions were predicted based on the canonical transcript reported in the 

GENCODE (v22)174 as retrieved from the UCSC Table Browser175.  

We identified potential insertion/deletion (indel) events using VarScan 2176, from the 

filtered Mpileup output (described above), with the following parameters --min-coverage 1000 --

min-reads2  5 --min-var-freq 0.001 --strand-filter 0 --output-vcf 1. We filtered out single 
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nucleotide indels in homopolymer runs at least four nucleotides long and indels that were 

observed in multiple samples to remove technical artifacts in the variant calling. We reported 

likely clonal indels (<0.2 VAF) that were detected in at least two replicates from one of the 

collection time points. Reported indels were annotated with Annovar172 as described previously. 

4.2.7 Droplet Digital PCR Validation 

We validated 21 SNVs and 1 indel using the droplet digital PCR (ddPCR) probe assay 

(Bio-Rad)154. Probes were designed by Bio-Rad based on MIQE guidelines for quantitative 

digital PCR177. All reagents were purchased from Bio-Rad. For each sample and control, 45 ng 

of genomic DNA was aliquoted per well of generated droplets. We generated between 8 and 32 

wells of droplets for each validation experiment, depending on the expected VAF for the assayed 

mutation. Each control sample was assayed with the same number of wells as the corresponding 

sample. Droplets were generated on the QX200 Droplet Generator (Bio-Rad) and assayed on the 

QX200 droplet reader (Bio-Rad) using the standard protocol154. The VAF was estimated from 

droplets lacking the reference allele and the Poisson-estimated number of singleton droplets as 

described previously134.   

4.2.8 Flow cytometry 

Cells were sorted from buffy coat samples using a Sony iCyt Synergy SY3200 BSC 17-

color, 5-laser cell sorter (Sony Biotechnology Inc.) and analyzed with FlowJo (Treestar) using 

standard protocols (Figure 4.1). Cells were stained with the following antibodies (BioLegend): 

CD45 (BV-421), CD33 (APC), CD19 (FITC), CD3 (PE-CY7) per the manufacturer’s 

instructions. Variants were detected in purified cell populations using the ddPCR assay described 

previously. 
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4.2.9 Data Availability 

The sequencing data have been deposited into the NCBI Sequence Read Archive under 

accession number SRP078948. All other relevant data are included in the article or 

supplementary files, or available from the authors upon request. 

4.3 Results 

4.3.1 Variant Quantification in Rare Hematopoietic Clones 

We obtained paired buffy coat blood samples, banked approximately 10 years apart, from 

20 healthy participants in the Nurses’ Health Study (Table 4.3)—a cohort of 121,701 female 

registered nurses longitudinally studied since 1976168–170. The median ages at sample collection 

were 56.6 and 68.1 years old. This facilitated the investigation of benign clonal hematopoiesis in 

younger individuals previously thought to only rarely harbor hematopoietic clones144–147,149. To 

identify hematopoietic clones, we combined ECS with targeted-capture for 568 amplicons in 54 

genes frequently mutated in AML (Methods)117,120,134,135. This enabled us to sequence a tractable 

subset of the genome, while still querying loci associated with clonal hematopoiesis and AML. 

Samples were prepared and sequenced in duplicate. We generated an average of 47.7 million 

paired-end sequencing reads, which yielded an average of 3.4 million error-corrected consensus 

sequences (ECCSs), per library (Table 4.2). 

We modeled position-specific errors in the ECCSs using binomial statistics to identify 

clonal mutations (Methods). We identified 109 clonal single nucleotide variants (SNVs) in at 

least one time point below 0.2 VAF in 95% (19/20) of individuals. We detected 1-17, mostly 

exonic, SNVs per individual at 0.0003-0.1451 (median 0.0024) VAF (Figure 4.2a, Table 4.4). Of 

note, the median VAF we observed was 10-fold less than the detection limit governing previous 

studies of clonal hematopoiesis144–146. Separately, we identified 9 clonal insertion/deletion 
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variants (indels) in 6 individuals (Table 4.5). Indels were identified by ECCS coverage alone, as 

indel errors were not appropriately modeled by the same statistical framework implemented to 

identify SNVs.  

We were initially concerned that most of the identified rare variants were artifacts 

introduced during library preparation or sequencing. We first determined that SNV calls were not 

biased by coverage per amplicon (Figure 4.3) or by the number of bases captured per gene 

(Figure 4.4). Next, we validated these findings using droplet digital PCR (ddPCR)—an 

orthogonal non-sequencing-based technique for VAF quantification. We designed ddPCR assays 

for 21 SNVs that had been previously observed in malignancy37 and for one indel (Figure 4.5). 

The VAFs measured by ECS and ddPCR were highly correlated (R2=0.98, Figure 4.6, Table 

4.6), consistent with the previously observed accuracy of ECS134.  

We next compared the mutation profile observed in these rare hematopoietic clones to 

previous findings in CHIP and AML. We detected 88 exonic clonal SNVs with 58 missense 

SNVs, 17 nonsense SNVs, 9 synonymous SNVs, 3 splicing SNVs, and 1 SNV in a 3’UTR 

(Figure 4.2b). While exonic variants were detected in only 18 of the 54 genes in the panel, 64% 

(56/88) occurred in the epigenetic regulators DNMT3A and TET2 (Figure 4.2c). We frequently 

detected multiple DNMT3A and TET2 mutations in the same individual, which were not 

necessarily in the same clone (Figure 4.7). The DNMT3A SNVs were predominantly nonsense 

mutations in the 5’ end of the gene or missense mutations in the three functional domains (Figure 

4.8). For comparison, TET2 SNVs were primarily missense mutations in the functional domains 

or nonsense mutations throughout the gene (Figure 4.9), consistent with previous observations of 

AML178. While less prevalent, intronic clonal SNVs were observed in 12 genes with 29% (6/21) 

detected in DNMT3A and 5% (1/21) detected in TET2 (Figure 4.10, Figure 4.11). The most 
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common type of exonic substitution was the cytosine to thymine (C to T) transition (Figure 

4.2d), as previously observed in CHIP144–146. Conversely, intronic SNVs were evenly distributed 

across substitution types.  

4.3.2 Temporal Stability of Rare Clonal Mutations 

We characterized the temporal stability of these clones by tracking clonal mutations 

longitudinally within our 20 study participants. Variants were called independently from paired 

samples banked approximately 10 years apart (Figure 4.12). Of the 109 clonal SNVs identified, 

27.5% (30/109) were detected at both time points, 13.8% (15/109) were detected at only the first 

time point, and 58.7% (64/109) were detected at only the second time point (Table 4.4). The 

stability of VAFs observed here was consistent with previous observations at higher VAFs in a 

few instances of CHIP145. The presence of the same clonal mutations longitudinally suggested 

that these mutations arose in long-lived HSPCs or committed progenitors.  

4.3.3 Clonal Mutations Arise in Hematopoietic Stem and Progenitors 

To further elucidate the cell of origin for clonal hematopoiesis, we sorted 26 samples 

from 13 individuals into B lymphocyte (CD45+CD33-CD19+), T lymphocyte (CD45+CD33-

CD3+) and myeloid (CD45+CD33+) compartments using flow cytometry (Figure 4.1). While 

cell recovery was variable per sample, we observed the same clonal SNVs in both myeloid and 

lymphoid compartments in 10/13 individuals (Figure 4.13, Table 4.7). Frequently, the VAF 

measured in the bulk sample was approximately equal to the VAF measured in each 

compartment. These observations were unlikely to have arisen due to contamination, given that 

variants were often detected at similar VAFs in different sorted compartments.  
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4.4 Discussion 

These findings suggest that clonal hematopoiesis harboring mutations in AML-associated 

genes is nearly ubiquitous (95%) in 50-70 year olds—an age group in which previous studies 

identified hematopoietic clones in only 5% of individuals144–147. Clonal mutations were detected 

in both the myeloid and lymphoid compartments in samples banked a decade apart in these 

healthy individuals, clearly demonstrating that these mutations arose in long-lived HSPCs. 

However, these clonal mutations conferred only a modest proliferation advantage, as most clonal 

mutations were rare (median 0.0024 VAF) and stable longitudinally.  One possible explanation 

for these observations was that these mutations, often in epigenetic regulators, augmented self-

renewal capacity without a concomitant increase in proliferation. This hypothesis may also 

explain why HSPC number increases and quiescence decreases as a function of age179,180. As 

HSPCs gradually senesce throughout life, the acquisition of these mutations may allow benign 

clonal hematopoiesis to maintain ostensibly normal blood production years after it would 

otherwise decline148. This hypothesis is supported by work in mice demonstrating that DNMT3A 

loss-of-function mutations in HSCs are associated with an increase in HSC self-renewal without 

increasing proliferation181. Comparably, TET2 loss-of-function mutations in mice increase HSC 

self-renewal and proliferation182.  

While DNMT3A mutations are frequently observed in CHIP and AML56,144–147, we 

observed a different distribution of DNMT3A mutations, specifically at the arginine 882 (R882) 

residue. Previous studies showed that mutations in DNMT3A R882 comprised approximately 

two-thirds of total DNMT3A mutations in AML45 and one-sixth of DNMT3A mutations in 

CHIP145,146. However, we observed only a single DNMT3A R882H variant. These findings 

suggest that DNMT3A R882 mutations potently drive clonal expansion, explaining their prior 
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detection in common CHIP clones (median 0.11 VAF)145 and their rarity in these lower 

frequency clones.  

The detection limit of ECS was approximately 1:10,000 cells. Thus, given an estimated 

11,000 hematopoietic stem cells (HSCs) in adults, of which only a fraction actively contribute to 

hematopoiesis at any given time164, we expected to observe unique somatic mutations marking 

each active HSC (a random distribution of synonymous and nonsynonymous mutations 

throughout the 54 AML-associated genes captured). Instead, over half of the detected mutations 

were in DNMT3A or TET2. This observation alone could have occurred if DNMT3A and TET2 

were hotspots of somatic mutation. However, 89% (78/88) of the detected exonic mutations were 

nonsynonymous, truncating or splicing mutations. Given this skew towards presumed functional 

mutations, it was more likely that these hematopoietic clones were enriched by selection. 

Due to technical limitations of our methods, we likely underreported the number of clonal 

mutations present in each individual. Specifically, we likely underreported the number of C to T 

(G to A) substitutions present in these rare hematopoietic clones due to the stringency of the 

binomial variant calling strategy and the background rate of cytosine deamination, which is a 

predominant artifact of error-corrected sequencing117,122,135. Here 38/109 substitutions identified 

were C to T (G to A) substitutions. Conversely, in previous studies of CHIP and AML, C to T (G 

to A) substitutions comprised approximately 50-60% of identified substitutions62,145,146. 

Additionally, the binomial statistical framework underreported hotspot mutations occurring in 

multiple individuals. However, in our raw data we only observed a single likely instance of an 

uncalled hotspot mutation—a DNMT3A R882H variant in individual 5 observed at a lower VAF 

than the variant reported in individual 13. Additionally, we could not routinely co-localize 

mutations within the same hematopoietic clone. However, we co-localized mutations in three 
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instances where they co-occurred in the same sequenced reads (PID 2, TET2 R1216G/A1217A; 

PID 13, DNMT3A G498V/C494F; PID 14, KRAS A66A/S65S).  Future adaptations of this 

technology could address these limitations by targeting a larger capture panel and implementing 

single-cell sequencing approaches.  

In summary, we demonstrate that clonal hematopoiesis, originating in long-lived HSPCs, 

is far more common than previously thought in healthy middle-aged adults. Despite its 

prevalence, clonal hematopoiesis shares many mutations with AML, raising additional questions 

regarding the sequence of mutation acquisition and cooperating events necessary for malignant 

transformation. Furthermore, in previous studies of CHIP the detection of a hematopoietic clone 

(at any age) was associated with an 11-13 fold increased risk of developing a hematological 

malignancy145,146. These earlier findings suggested that CHIP was comparable to monoclonal 

gammopathy of undetermined significance and monoclonal B-cell lymphocytosis, which are 

benign clonal proliferative conditions that occasionally progress to hematological 

malignancy143,149,167. Conversely, our findings suggest that clinically silent clonal hematopoiesis 

is present in almost all individuals by middle age, and that progression to hematological 

malignancy is exceptionally rare. Given the current public interest in precision medicine183, these 

findings have practical implications for sequencing-based screening of nascent malignancy or 

recurrence. Future research must focus on reliably distinguishing benign clonal hematopoiesis, 

however rare, from malignant clonal hematopoiesis that could drive transformation and relapse. 

This imperative extends to sequencing-based non-invasive screening184, which will require even 

finer discrimination between nascent malignancy and benign clonal expansion. 
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Figure 4.1 Representative flow cytometry gating strategy. These results were generated from 

NHS participant 5, time point 1 to isolate B lymphocytes, T lymphocytes and myeloid cells. 
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Figure 4.2 Number and characteristics of clonal SNVs detected by ECS in the peripheral blood 

of healthy adult nurses. a) Clonal SNVs detected in each individual, color-coded by annotation.  

b) Exonic clonal SNVs detected in each individual, color-coded by predicted effect. c) Detected 

exonic clonal SNVs organized by gene, color-coded by predicted effect. d) Distribution of 

substitution types observed in clonal SNVs. 
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Figure 4.3 Coverage per amplicon for error-corrected sequencing experiments. Error-corrected 

consensus sequence (ECCS) coverage was calculated for each of the 568 amplicons in the 

capture panel. a) Histogram of ECCS coverage for all amplicons. b) Histogram of ECCS 

coverage in amplicons in which a variant was detected. 
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Figure 4.4 Number of mutations detected compared to target space per gene. Mutations detected 

in exons (top panel) and introns (bottom panel) were plotted relative to the capture space (bp = 

base pairs) targeting that gene in the panel.  
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Figure 4.5 Representative droplet digital PCR (ddPCR) results. These results originated from 

NHS participant 12 for the detected DNMT3A G543A clonal variant. The wild-type probe 

intensity in arbitrary units (A.U.) was plotted relative to the DNMT3A G543A (mutant) probe 

intensity for each droplet. a-d) Variant quantification at the first time point for a) all cells; b) B 

lymphocytes; c) T lymphocytes; and d) myeloid cells. e-h) Variant quantification at the second 

time point for e, all cells; f) B lymphocytes; g) T lymphocytes; and h) myeloid cells. i) The 

DNMT3A G543A variant was not detected in the negative control sample from participant 2, 

time point 2. j) Only DNMT3A G543A positive (or empty) droplets were detected in the gblock 

positive control.  
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Figure 4.6 Concordance of variant allele fraction (VAF) measured by error-corrected sequencing 

(ECS) and droplet digital PCR (ddPCR). Several mutations identified by ECS were verified 

using ddPCR. The variant allele fractions (VAFs) identified ECS and ddPCR were highly 

correlated (R2=0.98). 
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Figure 4.7 Heat map depicting the number of exonic single nucleotide variants (SNVs) detected 

in each gene per study participant.  
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Figure 4.8 Detected exonic clonal single nucleotide variants (SNVs) in DNMT3A. The detected 

SNVs were predominantly nonsense mutations (blue) in the first half of the gene or missense 

mutations (red) in the three functional domains—a proline-tryptophan-tryptophan-proline 

(PWWP) chromatin targeting domain, a zinc finger nuclease (ZFN) domain and a S-

adenosylmethionine (SAM) dependent methyltransferase (MTase) domain. 
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Figure 4.9 Detected exonic clonal single nucleotide variants in TET2. 
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Figure 4.10 Number of intronic clonal single nucleotide variants (SNVs) detected by gene. 
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Figure 4.11 Heat map depicting the number of intronic single nucleotide variants (SNVs) 

detected in each gene per individual. 
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Figure 4.12 Longitudinal detection of clonal SNVs in NHS participants. Clonal SNVs were detected by 

ECS in both time points for 16/20 NHS participants. For each participant ID (PID), the VAF measured by 

ECS was plotted relative to the age at sample collection. Variants detected in both time points were 

connected with a line. 
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Figure 4.13 Hematopoietic compartment-specific detection of clonal SNVs in NHS participants. 

Paired buffy coat samples from 13 individuals were sorted into B lymphocyte (pink), T 

lymphocyte (purple), and myeloid (blue) compartments using flow cytometry. For each NHS 

participant (PID), a single SNV, detected by ECS, was selected for compartment-specific 

quantification by ddPCR. Variants detected in both time points were connected with a line. The 

VAF measured by ddPCR in the bulk sample (green) was included for comparison. 
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Table 4.1 Primer sequences for library preparation. 

 
Primer 

Name Sequence 

i5 16N 

Random 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNNNNNNNACACTCTT

TCCCTACACGACGCTCTTCCGATCT 

P5 AATGATACGGCGACCACCGA 

P7 CAAGCAGAAGACGGCATACGA 
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Table 4.2 Sequenced reads and error-corrected consensus sequences (ECCS) generated for each 

library. 

 

 

Collection 1 Replicate 1 Collection 1 Replicate 2 Collection 2 Replicate 1 Collection 2 Replicate 2 

PID Raw Reads ECCS Raw Reads ECCS Raw Reads ECCS Raw Reads ECCS 

1 38,483,255 3,333,626 33,448,218 2,804,567 35,427,539 2,987,274 33,392,978 2,784,229 

2 39,268,072 3,318,173 41,984,812 3,558,516 35,157,811 3,027,607 33,657,209 2,860,180 

3 32,603,819 2,581,039 36,107,671 2,959,152 48,998,142 3,584,046 40,599,238 3,291,215 

4 30,932,163 2,212,764 30,623,846 2,501,632 39,579,433 3,254,544 48,529,452 3,503,765 

5 35,011,143 2,727,030 34,151,207 2,411,821 52,302,285 3,759,106 55,049,072 4,017,037 

6 34,207,169 2,863,690 35,084,657 2,946,669 50,852,817 3,682,303 48,351,486 3,514,019 

7 41,658,678 2,663,917 42,508,068 2,714,869 45,885,262 3,233,300 44,468,353 3,548,708 

8 44,771,597 2,734,288 41,632,517 2,528,357 50,072,031 3,399,553 50,378,471 3,698,270 

9 39,449,116 2,531,229 41,067,140 2,599,127 60,014,462 4,197,532 50,347,145 3,993,077 

10 40,492,765 2,554,060 38,729,489 2,400,500 59,870,612 4,034,423 58,962,293 3,996,550 

11 48,940,303 3,684,038 44,034,692 3,456,949 64,520,183 4,096,893 56,501,287 3,797,404 

12 57,115,177 4,245,185 48,446,875 3,692,857 61,813,583 4,322,748 59,452,070 4,110,288 

13 39,368,839 3,059,660 41,269,631 3,343,408 59,327,495 4,213,628 52,689,305 4,173,008 

14 38,837,743 3,076,601 37,306,017 2,976,419 60,366,370 4,053,326 58,109,532 4,501,213 

15 54,605,075 3,407,283 44,547,457 2,490,226 58,101,101 3,908,542 51,539,869 4,104,014 

16 52,226,742 2,986,829 60,744,391 3,907,372 45,532,881 3,414,608 60,632,143 4,027,633 

17 57,985,852 4,079,429 51,835,232 3,373,746 55,355,241 3,721,052 59,501,527 4,096,858 

18 54,185,217 3,337,380 54,495,083 3,388,504 57,117,288 4,147,180 58,064,485 3,999,074 

19 52,213,946 2,947,031 51,028,264 3,343,682 53,983,868 3,723,161 48,268,843 3,796,565 

20 51,521,626 3,376,026 41,417,619 2,806,990 58,651,106 4,092,482 56,692,728 3,793,691 
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Table 4.3 Age at sample collection for each NHS participant. 

 
Participant 

ID 

Collection 1 

Age 

Collection 2 

Age 

1 53.5 64.6 

2 51.2 63.0 

3 52.3 64.4 

4 53.4 64.2 

5 52.2 64.4 

6 57.9 69.2 

7 60.1 71.4 

8 56.5 68.5 

9 58.0 69.0 

10 54.7 66.9 

11 63.5 74.5 

12 56.4 67.3 

13 56.6 68.5 

14 60.1 71.8 

15 57.6 67.7 

16 54.1 65.4 

17 51.7 63.1 

18 65.1 76.2 

19 64.0 75.1 

20 62.8 74.6 
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Table 4.4 Clonal SNVs detected by error-corrected sequencing. 

 
PID Chr Pos Ref Alt Gene AA Change COSMIC VAF1.1 VAF1.2 VAF2.1 VAF2.2 

1 7 50444517 T C IKZF1 intronic   0.0009 - 0.0010 0.0029 

1 X 123185174 G T STAG2 V376L   0.0028 0.0012 0.0180 0.0170 

2 2 25463271 G T DNMT3A A741E   0.0011 - 0.0010 0.0010 

2 2 25463277 T G DNMT3A H739P   0.0017 0.0003 0.0004 0.0005 

2 2 25466793 A G DNMT3A L637P   0.0014 0.0034 0.0035 0.0056 

2 2 25468153 A G DNMT3A L508P   - 0.0012 0.0076 0.0085 

2 2 25470573 G A DNMT3A R301W   - - 0.0026 0.0035 

2 4 106164778 C G TET2 R1216G   - - 0.0011 0.0010 

2 4 106164783 T A TET2 A1217A   - - 0.0011 0.0010 

2 12 11803160 G C ETV6 intronic   0.0012 0.0006 - - 

4 2 25470516 G A DNMT3A R320X 133724 0.0036 0.0036 0.0052 0.0026 

4 9 139391179 G A NOTCH1 Q2338X   0.0011 0.0010 - - 

4 X 123184056 G T STAG2 R305L 254953 0.0091 0.0078 0.0149 0.0185 

5 2 25466799 C T DNMT3A R635Q 1583088 - - 0.0015 0.0027 

6 2 25471183 C G DNMT3A intronic   0.0016 0.0015 - - 

6 3 38181952 C T MYD88 I192I   - - 0.0018 0.0016 

6 4 106180899 T G TET2 F1309L   0.0014 0.0013 0.0009 0.0008 

6 7 101843537 T G CUX1 intronic   0.0040 0.0042 0.0017 0.0052 

6 11 119148929 A G CBL I383M   0.0014 0.0004 - - 

7 2 25457176 G A DNMT3A P904L 87007 0.0024 - 0.0085 0.0104 

7 2 25458673 T C DNMT3A T834A   0.0029 0.0035 0.0026 0.0040 

7 2 25462012 G A DNMT3A P799S   - - 0.0023 0.0048 

7 2 25463372 G A DNMT3A intronic   0.0042 0.0039 0.0034 - 

7 2 25463384 G A DNMT3A intronic   0.0066 0.0082 0.0029 - 

7 2 25463385 C G DNMT3A intronic   - - 0.0066 0.0087 

7 2 25463387 C G DNMT3A intronic   0.0067 0.0079 0.0032 - 

7 2 25463389 G A DNMT3A intronic   0.0068 0.0077 0.0038 - 

7 2 25464441 G A DNMT3A T691I   - - 0.0036 0.0025 

7 2 25464514 C A DNMT3A E667X   - - 0.0011 0.0032 

7 2 25466788 G A DNMT3A L639F   0.0216 0.0206 0.0407 0.0295 

7 2 25467449 C T DNMT3A G543S   - - 0.0048 0.0033 

7 4 106158509 G A TET2 splicing 87117 - - 0.0010 0.0015 

7 4 153249632 T C FBXW7 intronic   0.0004 0.0003 - - 

7 7 50367256 C T IKZF1 S21S   0.0035 0.0041 0.0021 - 

7 X 76874262 A T ATRX intronic   - - 0.0005 0.0003 

7 X 123199914 G T STAG2 intronic   - - 0.0008 0.0009 

8 2 25468919 C A DNMT3A E482X   - - 0.0031 0.0040 

8 4 106180834 G A TET2 G1288S 110780 0.0012 0.0024 0.0020 0.0011 

9 2 25459821 T C DNMT3A H821R   - 0.0022 0.0017 0.0025 
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PID Chr Pos Ref Alt Gene AA Change COSMIC VAF1.1 VAF1.2 VAF2.1 VAF2.2 

9 2 25462086 T C DNMT3A splicing   0.0026 - 0.0015 0.0015 

9 2 25463247 C T DNMT3A R749H   0.0203 0.0177 0.0333 0.0356 

9 2 25463541 G C DNMT3A S714C 87011 0.0273 0.0303 0.0412 0.0341 

9 2 25466800 G A DNMT3A R635W 87012 0.0019 0.0036 - 0.0012 

9 2 25467160 G T DNMT3A A572D   - - 0.0010 0.0021 

9 2 25469632 C T DNMT3A R379H   - - 0.0029 0.0057 

9 2 25470588 C T DNMT3A V296M   - - 0.0035 0.0032 

9 2 25471016 G A DNMT3A Q249X   0.0014 - 0.0013 0.0013 

9 4 106193995 C G TET2 S1486X 211625 - - 0.0005 0.0006 

9 20 31023091 A G ASXL1 N859S   0.0041 0.0029 0.0044 0.0032 

9 X 44733267 T G KDM6A intronic   - - 0.0017 0.0013 

10 12 25380459 G C KRAS intronic   - - 0.0010 0.0009 

10 X 129162659 C G BCORL1 H1376Q   0.0049 0.0023 0.0018 - 

11 2 25458595 A G DNMT3A W860R 231568 0.0009 0.0015 0.0020 0.0025 

11 2 25470914 C A DNMT3A E283X   0.0042 0.0056 0.0129 0.0143 

11 2 25505372 G C DNMT3A S129X   - - 0.0007 0.0005 

11 3 38182245 T A MYD88 intronic   - - 0.0019 0.0022 

11 17 7577129 A G TP53 F270S 11305 - - 0.0007 0.0016 

11 20 31023606 A T ASXL1 K1031X   0.0007 0.0008 - - 

11 X 39933358 G A BCOR A414V   - - 0.0006 0.0009 

11 X 44733249 G T KDM6A intronic   - - 0.0009 0.0008 

11 X 76814150 A T ATRX F2165Y   0.0007 0.0007 - - 

11 X 129148158 A G BCORL1 L470L   - - 0.0003 0.0005 

12 2 25467448 C G DNMT3A G543A 256033 0.0014 - 0.0038 0.0039 

12 4 106155048 C G TET2 intronic   - - 0.0010 0.0020 

12 10 112342324 C T SMC3 S243F   - - 0.0014 0.0018 

13 2 25457192 G C DNMT3A R899G   0.0025 0.0015 0.0013 0.0018 

13 2 25457242 C T DNMT3A R882H 52944 - - 0.0018 0.0017 

13 2 25458658 A G DNMT3A S839P   0.0003 - 0.0011 0.0006 

13 2 25463298 A G DNMT3A F732S   0.0015 - 0.0030 0.0032 

13 2 25467466 C A DNMT3A C537F   - - 0.0019 0.0034 

13 2 25468183 C A DNMT3A G498V   0.0009 - 0.0037 0.0060 

13 2 25468195 C A DNMT3A C494F   0.0009 - 0.0037 0.0060 

13 2 25470532 C T DNMT3A W314X   - - 0.0021 0.0026 

13 2 25470570 C A DNMT3A G302C   - - 0.0016 0.0010 

13 8 117859842 T C RAD21 Y598C   - - 0.0005 0.0006 

14 2 25470464 G C DNMT3A S337X   0.0252 0.0240 0.0423 0.0448 

14 12 25380260 T G KRAS A66A   - - 0.0063 0.0055 

14 12 25380263 A G KRAS S65S   - - 0.0064 0.0056 

14 X 44911015 C T KDM6A A239V   - - 0.0043 0.0056 

15 2 25458670 T C DNMT3A T835A   - - 0.0005 0.0005 
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PID Chr Pos Ref Alt Gene AA Change COSMIC VAF1.1 VAF1.2 VAF2.1 VAF2.2 

15 10 112342321 T C SMC3 L242P   0.0028 0.0034 0.0036 0.0047 

15 17 7577105 G T TP53 P278H 43755 0.0162 0.0163 0.0317 0.0395 

15 20 31024085 G T ASXL1 R1190S   - - 0.0011 0.0005 

15 X 123234540 T A STAG2 UTR3   - - 0.0007 0.0006 

16 2 25463568 A G DNMT3A I705T 1583102 0.0663 0.0788 0.0457 0.0582 

17 2 25463301 A G DNMT3A F731S   0.0012 - 0.0019 0.0026 

17 4 106156436 T G TET2 L446X   - - 0.0007 0.0009 

17 4 106197045 C T TET2 T1793I   - - 0.0013 0.0019 

17 X 39932643 G A BCOR P652P   0.0055 0.0058 0.0019 0.0029 

17 X 123224536 A T STAG2 K1130I   0.0008 0.0009 0.0009 0.0010 

17 X 129173203 G A BCORL1 G1522S   - - 0.0004 0.0004 

18 2 25471070 G A DNMT3A Q231X   0.0015 0.0014 0.0019 0.0009 

18 4 106157961 G A TET2 W954X 87110 - - 0.0023 0.0009 

18 4 106182972 T A TET2 Y1337X 87145 - - 0.0015 0.0013 

18 7 101840496 G A CUX1 R602H   0.1479 0.1424 0.0828 0.0693 

18 7 148515272 A G EZH2 intronic   - - 0.0013 0.0013 

18 X 44938634 A G KDM6A intronic   0.0138 0.0121 0.0146 0.0137 

18 X 129149098 C T BCORL1 R784X 1319521 - - 0.0186 0.0173 

19 4 106196434 T G TET2 Y1589X   - 0.0021 0.0023 0.0025 

19 11 119148922 G A CBL C381Y 34073 0.0010 0.0014 0.0011 0.0018 

19 17 7578427 T C TP53 H168R 43545 0.0007 0.0010 0.0033 0.0032 

19 X 76813170 A G ATRX intronic   - - 0.0007 0.0010 

19 X 123179344 C T STAG2 intronic   0.0190 0.0160 0.0202 0.0222 

20 2 25505559 T C DNMT3A K67E   0.0052 0.0080 0.0076 0.0100 

20 4 106190798 G A TET2 R1359H   0.0035 0.0032 - - 

20 4 106194076 G A TET2 splicing   - - 0.0015 0.0017 

20 8 117878873 C A RAD21 V32V   0.0043 0.0040 0.0075 0.0071 

20 12 12022854 C A ETV6 V320V   - - 0.0010 0.0016 

20 12 25398284 C T KRAS G12D 521 - - 0.0009 0.0014 
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Table 4.5 Clonal insertion/deletion variants detected by error-corrected sequencing. We reported 

the variant allele fraction (VAF) for each variant detected in two replicates from at least one of 

the two time points. 

 
PID Chr Start End Ref Alt Gene AA VAF1.1 VAF1.2 VAF2.1 VAF2.2 

7 2 25463381 25463381 - GTG DNMT3A intronic 0.0068 0.0070 0.0030 - 

7 4 106155858 106155861 CAGT - TET2 N253fs 0.0063 0.0063 0.0133 0.0126 

7 4 106164895 106164895 - A TET2 
Y1255_G1
256delinsX 

0.0072 0.0052 0.0074 0.0090 

9 2 25463567 25463567 A - DNMT3A I705fs 0.0331 0.0229 0.0601 0.0801 

9 2 25467528 25467547 

AGCAG

CGGGA
AGGGT

CAGAA 

- DNMT3A intronic - - 0.0038 0.0041 

11 2 25468168 25468168 - T DNMT3A T503fs - - 0.0030 0.0031 

15 8 117862892 117862895 TCTC - RAD21 E528fs 0.0068 0.0065 0.0142 0.0128 

18 X 123179310 123179318 
ATTAAT

TTT 
- STAG2 intronic 0.0277 0.0255 0.1193 0.1207 

20 4 106190864 106190864 C - TET2 A1381fs 0.0052 0.0032 0.0400 0.0256 
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Table 4.6 Summary of droplet digital PCR validation experiments. The variant allele fraction 

(VAF) determined by error-corrected sequencing (ECS) was included for comparison. For each 

experiment, a control sample was selected where the variant of interest was not observed in the 

ECS data. For the control samples, the same number of genome equivalents were analyzed as the 

experimental sample.  

 

PID Gene AA 

ECS 

VAF 

1.1 

ECS 

VAF 

1.2 

ddPCR 

VAF 1 

ECS 

VAF 2.1 

ECS 

VAF 2.2 

ddPCR 

VAF 2 
Control 

Control 

VAF 

4 DNMT3A R320X 0.0036 0.0036 0.0068 0.0052 0.0026 0.0063 1.2 0.0000 

4 STAG2 R305L 0.0091 0.0078 0.0101 0.0149 0.0185 0.0176 1.1 0.0000 

5 DNMT3A R635Q - - 0.0009 0.0015 0.0027 0.0020 15.1 0.0000 

7 DNMT3A P904L 0.0024 - 0.0020 0.0085 0.0104 0.0088 3.1 0.0000 

7 TET2 splice - - 0.0009 0.0010 0.0015 0.0014 3.2 0.0000 

8 TET2 G1288S 0.0012 0.0024 0.0017 0.0020 0.0011 0.0016 2.1 0.0000 

9 DNMT3A S714C 0.0273 0.0303 0.0282 0.0412 0.0341 0.0385 2.2 0.0000 

9 DNMT3A R635W 0.0019 0.0036 0.0035 - 0.0012 0.0020 10.2 0.0000 

9 TET2 S1486X - - - 0.0005 0.0006 0.0004 6.1 0.0000 

11 TP53 F270S - - 0.0005 0.0007 0.0016 0.0006 2.1 0.0000 

11 DNMT3A W860R 0.0009 0.0015 0.0007 0.0020 0.0025 0.0022 6.2 0.0000 

12 DNMT3A G543A 0.0014 - 0.0007 0.0038 0.0039 0.0027 2.2 0.0000 

13 DNMT3A R882H - - 0.0002 0.0018 0.0017 0.0020 14.1 0.0000 

15 TP53 P278H 0.0162 0.0163 0.0143 0.0317 0.0395 0.0378 10.2 0.0001 

16 DNMT3A I705T 0.0663 0.0788 0.0753 0.0457 0.0582 0.0545 14.1 0.0000 

18 TET2 W954X - - 0.0002 0.0023 0.0009 0.0012 10.1 0.0000 

18 TET2 Y1337X - - 0.0000 0.0015 0.0013 0.0012 6.1 0.0000 

18 BCORL1 R784X - - 0.0031 0.0186 0.0173 0.0171 14.2 0.0000 

19 CBL C381Y 0.0010 0.0014 0.0010 0.0011 0.0018 0.0013 17.2 0.0000 

19 TP53 H168R 0.0007 0.0010 0.0008 0.0033 0.0032 0.0029 6.2 0.0000 

20 KRAS G12D - - 0.0001 0.0009 0.0014 0.0010 17.1 0.0000 

20 TET2 A1381fs 0.0052 0.0032 0.0035 0.0400 0.0256 0.0357 13.1 0.0000 
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Table 4.7 Summary of variant allele fractions (VAF) detected by droplet digital PCR in sorted 

hematopoietic compartments.  

 

PID Gene AA COSMIC Collection Bulk B T M 

4 DNMT3A R320X 133724 1 0.0068 0.0048 0.0005 0.0019 

    
2 0.0063 0.0063 0.0012 0.0039 

5 DNMT3A R635Q 1583088 1 0.0009 0.0006 0.0005 0.0005 

        2 0.0020 0.0020 0.0015 0.0018 

7 DNMT3A P904L 87007 1 0.0020 0.0025 0.0001 0.0009 

    
2 0.0088 0.0135 0.0018 0.0037 

8 TET2 G1288S 110780 1 0.0017 0.0000 0.0000 0.0006 

        2 0.0016 0.0000 0.0000 0.0001 

9 DNMT3A S714C 87011 1 0.0282 0.0060 0.0018 0.0028 

    
2 0.0385 0.0066 0.0044 0.0058 

11 DNMT3A W860R 231568 1 0.0007 0.0000 0.0000 0.0001 

        2 0.0022 0.0000 0.0000 0.0019 

12 DNMT3A G543A 256033 1 0.0007 0.0000 0.0043 0.0048 

    
2 0.0027 0.0015 0.0123 0.0121 

13 DNMT3A R882H 52944 1 0.0002 0.0000 0.0000 0.0001 

        2 0.0020 0.0018 0.0000 0.0002 

15 TP53 P278H 43755 1 0.0143 0.0234 0.0046 0.0035 

    
2 0.0378 0.0231 0.0358 0.0084 

16 DNMT3A I705T 1583102 1 0.0753 0.0760 0.0084 0.0350 

        2 0.0545 0.0701 0.0218 0.0408 

18 TET2 W954X 87110 1 0.0002 0.0000 0.0000 0.0000 

    
2 0.0012 0.0033 0.0004 0.0003 

19 TP53 H168R 43545 1 0.0008 0.0007 0.0000 0.0000 

        2 0.0029 0.0027 0.0006 0.0000 

20 KRAS G12D 521 1 0.0001 0.0000 0.0002 0.0007 

    
2 0.0010 0.0037 0.0001 0.0036 
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Chapter 5: Discussion 

5.1 Change 

Change is the only constant in genomics. Every day as our cells divide, differentiate and 

replenish our body, the underlying genomic blueprint of each cell changes. Every cell division 

propagates these new genetic and epigenetic modifications. Fortunately, the genome is large and 

most of these changes are inconsequential. Now the technology exists to deeply study these 

genomic changes within an organism. Change is also a central tenet of the sequencing 

technology that drives our growing understanding of genomics. During the Sanger-sequencing 

era, the cost of sequencing decreased yearly at a rate paralleling Moore’s Law, culminating in the 

three billion dollar effort to sequencing the first human genome22,185,186. Since the development 

of NGS, sequencing costs have decreased even more rapidly and a human genome can now be 

sequenced for approximately one thousand dollars185. This democratization of sequencing has 

fostered a genomics renaissance illuminating the fundamentals of life and evolution. Ironically, 

this explosion of knowledge did not immediately provide cures for the panoply of human 

ailments. Instead, it exposed the vast complexity of human biology and malignancy. Regardless, 

the foundation of knowledge is growing and slowly being translated into targeted therapeutics, 

sensitive diagnostic and screening tools, and novel immunotherapies. It is exciting to imagine 

how future advancements will enhance this knowledge and improve treatment for patients 

battling cancer. 

Here, we developed novel experimental and computational methods to improve rare 

variant detection with standard NGS technology. We characterized previously undetectable rare 

clonal populations in pre-chemotherapy blood and bone marrow samples from individuals who 

later developed t-AML/t-MDS and in the peripheral blood of healthy individuals. We were the 
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first to describe the ubiquitous presence of rare hematopoietic clones harboring leukemia-

associated mutations in healthy individuals. While these were interesting findings, it is exciting 

to look forward and wonder when this cutting edge technology will become obsolete. While the 

cost of sequencing has dramatically decreased over the past decade, the accuracy of sequencing 

has not significantly improved. We were able to circumvent the NGS error rate using our 

methods for ECS. However, future advancements in this field must improve sequencing 

accuracy, throughput and seamless integration with single-cell techniques. 

5.2 Future Exploration in Clonal Hematopoiesis 

Presented here is the first application of targeted-ECS to study clonal hematopoiesis in 

healthy middle-aged individuals. However, the causes and effects of clonal hematopoiesis are 

still not well understood. Given our current understanding of leukemogenesis and the age-

dependent increase in risk of leukemia, we hypothesize that clonal expansion rarely occurs in 

younger individuals. To directly answer this question, we designed a study using targeted-ECS to 

identify rare hematopoietic clones in cord blood samples. The capture panel for this study was 

expanded to include genes recurrently mutated in pediatric AML. Future work could expand the 

study to include samples collected in adolescence and young adulthood. While difficult to obtain, 

longitudinal studies of healthy individuals are essential to understand the stability of these 

hematopoietic clones over time. Additionally, similar studies in individuals with germline 

mutations in cancer predisposition genes would help describe the transition from benign clonal 

hematopoiesis to fulminant leukemia187. These studies would be well suited to unveil the discrete 

steps that transform benign clonal expansion into a founding leukemic clone.  

Another feasible study, given the current ECS technology, is the examination of rare 

clones in different hematopoietic compartments. Using flow cytometry, we were able to detect 
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rare clonal mutations in both myeloid and lymphoid cells. Thus, these clonal mutations most 

likely arose in hematopoietic stem and progenitor cells (HSPCs). However, the functional effect 

of these leukemia-associated mutations in HSPCs is largely unknown. Previous work in mice 

demonstrated that loss-of-function mutations in DNMT3A resulted in increased hematopoietic 

stem cell (HSC) self-renewal, but not proliferation181. In a separate study, TET2 loss-of-function 

mutations increased HSC self-renewal and proliferation182. Now the technology exists to 

examine the characteristics of clonal HSPC expansion in healthy adults who spontaneously 

acquire these mutations, but do not acquire leukemia. Future work could quantify compartment-

specific expansion and skewing during differentiation. In this type of study, clonal mutations that 

block differentiation would appear as clonal expansion in a specific progenitor population. 

So far, these proposed studies would examine the cell intrinsic characteristics of 

leukemia-associated mutations on clonal expansion. However, HSPCs do not exist in isolation 

from their environment. Instead there is a rich milieu of cytokines, circulating hematopoietic 

cells and the bone marrow niche that directly modulate the quiescence and activity of HSPCs. 

The interplay of these extrinsic factors and HSPCs harboring leukemia-associated mutations is 

totally unknown. One puzzling observation from our study of clonal hematopoiesis in healthy 

individuals was the spectrum of somatic mutations. Given the sensitivity of our technology and 

the estimated number of HSCs in humans, we expected to observe a random pattern of mutations 

mirroring the rate of somatic mutation and genetic drift in individual HSPCs. Instead, two-thirds 

of the observed mutations were in the epigenetic modifiers DNMT3A and TET2, suggesting that 

selection was already acting to enrich these clonal mutations that were in as few as 1:10,000 

peripheral blood cells. Understanding the source of this selection could potentially explain why 

human HSCs increase in frequency, become more myeloid biased and decrease quiescence as a 
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function of age179. It is possible that these two phenomenon are related. Perhaps a lifetime of 

infections, inflammatory processes and environmental exposures select for HSPCs that acquired 

these mutations in epigenetic modifiers. As a consequence, an oligoclonal marrow harboring 

leukemia-associated mutations may be necessary to maintain ostensibly normal blood production 

late in life. Using standard flow sorting techniques and ECS, it is currently possible to study the 

effect of inflammation and infection on clonal selection in the hematopoietic compartment.  

5.3 Residual disease detection in AML with ECS 

Current work in the lab will produce the first comparison of targeted-ECS to 

multiparameter flow cytometry (MPFC) for residual disease detection in AML. This 

collaboration with the Children’s Oncology Group will enable us to test ECS-based residual 

disease detection in a large cohort of pediatric AML cases. There are several possible outcomes 

from this study. One outcome is that detected leukemic clones or subclones persist following 

treatment and predict a poor outcome. Alternatively, pre-leukemic clones harboring a subset of 

the leukemia-associated mutations may predominate post-induction, repopulate the marrow, and 

reconstitute an ostensibly normal hematopoietic compartment. Yet another possibility, therapy 

may select for a clonal population unrelated to the leukemia that expands post-induction. 

Regardless, this study will explore the characteristics of clonal expansion and mutation clearance 

post-induction that predict patient outcomes. Already, in adult AML the clearance of all 

leukemia-associated mutations to a detection limit of 0.025 variant allele fraction (VAF) was 

associated with better event-free survival and overall survival111. However, 70% of individuals 

who cleared all of their mutations at that limit of detection relapsed by 40 months. Using ECS, 

the limit of detection for clonal mutations is much lower. Likewise, this study will determine if 

mutation clearance at a lower limit of detection corresponds with longer event free survivals. 
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Complicating this analysis is the observation that non-leukemic hematopoietic clones expand 

following induction therapy in adult AML112. While a challenging task, future work will help 

discriminate between benign clonal expansion following treatment and malignant clonal 

expansion that precedes relapse. 

5.4 Clonal evolution in solid organs 

The hematopoietic compartment is the ideal system to study clonal evolution for a variety 

of reasons. Samples are routinely acquired from healthy individuals and often serially banked 

during the natural history of hematological disease. Conversely, it is difficult to study clonal 

evolution in solid organs. Focusing on malignancy, two pioneering studies described the 

exquisite geographical diversity of clonal mutations in renal cell carcinoma and pancreatic 

cancer60,61. However, a similar study of benign clonal expansion in a disease-free kidney or 

pancreas is not feasible. The only sequencing-based clonal evolution study of a solid organ 

characterized somatic mutations in eyelid epidermis, one of the only disease-free tissues 

routinely removed from healthy individuals188. Interestingly, they observed a high burden of 

somatic mutations, similar to many cases of skin cancer, that reflected the spectrum of mutations 

introduced by UV light. It would be fascinating to explore clonal evolution in other organ 

systems that do not experience the same level of DNA damage as sun-exposed skin. Studying 

somatic mutation acquisition and clonal evolution in a variety of organ systems would help 

clarify the effect of “bad luck”—spontaneous random mutations arising in disease-free stem 

cells—on the organ-specific risk of developing malignancy189. Regardless, the characterization 

of rare clonal expansion in non-hematopoietic organ systems is an important and necessary 

undertaking in order to understand the process of malignant transformation. 
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5.5 Predicting solid tumor development and relapse with 

circulating cell-free DNA 

One challenge when treating solid malignancies is the accurate assessment of response to 

treatment and risk of relapse. While neoadjuvant chemotherapy and surgery can often effectively 

remove the primary tumor, distant metastases often escape therapy and may spawn recurrence. 

Currently, response to treatment is measured with the Response Evaluation Criteria in Solid 

Tumours (RECIST) criteria, which assesses disease burden using imaging modalities such as X-

ray computed tomography (CT) and fluorodeoxyglucose-positron emission tomography (FDG-

PET)190,191. Unfortunately, these methods are insensitive to detect occult lesions that frequently 

seed relapse. Interestingly, circulating tumor cells (CTCs) have been detected in the blood of 

individuals with metastatic breast cancer, prostate cancer, colorectal cancer, and a variety of 

other carcinomas192–194. Detecting as few as five CTCs per 7.5 mL vial of whole blood was 

associated with shorter progression free survival and lower overall survival. This method 

routinely detected residual malignant cells that were invisible using imaging modalities. 

However, by targeting epithelial cell surface markers, these methods miss many malignant cells 

such as tumor stem cells and CTCs that have undergone epithelial to mesenchymal transition195. 

These methods have improved over the years, but the primary challenge will always concern the 

identification of a sensitive and specific cell surface marker of disease.  

More recent advancements circumvent this limitation by targeting the genomic DNA 

from malignant cells directly in the circulating cell-free fraction of the peripheral blood 

(cfDNA)196. In an early study of a few cases of metastatic breast cancer, tumor-specific 

mutations were detected in cfDNA and correlated with disease course197. More recent studies 

have utilized targeted sequencing of cancer-associated hot spots and whole genome sequencing 
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to identify malignancy-associated mutations in cfDNA156,198. Interestingly, these methods could 

detect malignancy-associated mutations not observed in the primary tumor. While these methods 

were sensitive to detect malignancy-associated somatic mutations, the prognostic value of 

mutation burden in the cfDNA is still largely unknown. While the relative abundance of tumor-

specific cfDNA may not directly correlate with disease burden or risk of disease progression, the 

absence of tumor-specific cell-free DNA may reflect disease clearance. Likewise, a binary 

readout of tumor DNA burden may be the most efficacious application of cfDNA sequencing. In 

that case, detecting rare tumor-specific mutations will be a critical component of disease 

assessment. Our ECS methods could improve the limit of detection for these rare malignancy-

associated somatic mutations in cfDNA. While proposed, ECS has not yet been applied to rare 

tumor-associated mutations detection in cfDNA196. These proposed studies focus on cfDNA in 

peripheral blood; however, any medium is suitable for detecting the genomic signature of occult 

disease. One pioneering study retrospectively identified cases of ovarian and endometrial cancer 

by identifying tumor-specific mutations in Papanicolaou (Pap) smear samples using targeted-

ECS127. In general, there is great potential for the application of ECS to quantify response to 

treatment for solid malignancies. 

Another exciting application of cfDNA analysis is for the identification of malignancy 

before clinical presentation. Currently, only the sequencing company Illumina is pursuing this 

goal with the creation of a separate entity, Grail. This is a high risk venture for several reasons. 

First, the amount of sequencing required per person is nontrivial. Tumor-specific cfDNA will 

likely make up only a small portion of the total cfDNA and will only be detectable with ECS. 

Additionally, the target-space for capture must be large to recover a broad set of driver mutations 

across multiple cancer types. Second, the relationship between detecting malignancy-associated 
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mutations in cfDNA and the development of cancer are totally unknown. While initially 

optimistic about this venture, our study of clonal hematopoiesis in healthy individuals 

demonstrated that virtually all healthy individuals have detectable leukemia-associated somatic 

mutations in their peripheral blood by late adulthood. The shear breadth of sequencing and low 

limit of detection will invariably lead to the detection of benign clonal expansions and rare 

mosaic populations in healthy individuals. The discrimination between these benign processes 

and actionable pre-clinical malignant disease will be a monumental challenge.  

5.6 Leveraging improvements in sequencing technology to 

study clonal evolution 

Now, we are on the cusp of several advancements in sequencing technology. It is exciting 

and humbling to think that our cutting edge ECS technology will likely be obsolete in only a few 

years. It will be exciting to how improving this fundamental tool will enable future studies of 

clonal evolution and the development of malignancy. Two emerging technologies are Single-

Molecule Real-Time (SMRT) sequencing and nanopore sequencing. The two major limitations 

of NGS are that sequenced reads are short (300-600 bp long) and the error-rate is approximately 

1%. While we can circumvent the error rate with ECS, the short reads are an intrinsic limitation 

of NGS. Conversely, SMRT sequencing can generate much longer reads (>1,000 bp long), but 

have a high error rate (up to 14%)199. This technology works by observing replication of a single 

DNA strand in a restricted space called a zero-mode waveguide. So far, this technology has been 

instrumental in genome assembly, which is nearly impossible in repetitive regions using short 

NGS-generated reads200. Likewise, these long reads have improved structural variant mapping in 

the human genome201. Nanopore sequencing generates long sequence reads by monitoring 

changes in ionic current as a DNA molecule passes through a membrane-bound nanopore202. 
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While these long nanopore-generated reads also have a high intrinsic error rate, their 

combination with NGS-reads and statistical modelling have generated accurate genome 

assemblies203,204. More recent advancements allowed polarity reversal in individual pores to 

reject molecules that have already been sequenced205. Together these technologies are currently 

well suited for de novo genome assembly and structural variant identification. 

While a fascinating group of technologies, currently, they are ill-suited for rare variant 

detection. If future versions of these technologies can achieve an error-rate similar ECS, then this 

tool will enable key experiments regarding clonal evolution. Specifically, this tool would enable 

the phasing of mutations occurring in the same gene and the reliable detection of rare clonal 

translocations and rearrangements. It is not farfetched to envision a future technology, which 

could phase mutations along an entire chromosome. However, those advancements may be a 

way off. Even if current nanopore technology could sequence an entire chromosome, it would 

take 41 days at 70bp/s to read chromosome 1, which is 249 million bp long205. Despite these 

hypothetical applications for long-read sequencing, their development alone will not likely 

dramatically improve our understanding of clonal evolution and malignant transformation. 

However, combining these technologies with future advancements in single-cell partitioning and 

sequencing will revolutionize our understanding of malignancy, clonal evolution and 

fundamental cellular biology.  

5.7 Future applications of single-cell sequencing. 

Single-cell sequencing technologies are rapidly improving. Already, single-cell RNA 

sequencing approaches can tag transcripts from individual cells and distinguish cell types based 

on commonly expressed transcripts206. Single-cell genomic DNA sequencing approaches enabled 

the identification of the clonal architecture within a few cases of pediatric ALL79. This approach 
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queried individual loci, identified by bulk sequencing at diagnosis, to uncover the clonal 

architecture and infer the clonal evolution of these tumors. More recent advancements leverage 

microfluidic partitioning of genomic DNA to phase and haplotype inherited germline variants 

and cancer-associated somatic mutations207. Whereas previous studies targeted specific loci in 

the genome, this study surveyed the entire genome. Soon this technology will enable the 

partitioning of single-cell genomes into microfluidic droplets for sequencing. Small but 

necessary advancements in single-cell partitioning and accurate long-read sequencing would 

enable fascinating studies into the evolution of single cells within an organism. 

Ideally, pairing these technologies would reveal the somatic mutation profile of each 

individual cell isolated from any biological sample (solid tumor, metastatic lesion, leukemia). 

With this information, it would be possible to reconstruct the exact phylogenetic tree in a single 

tumor and infer the step-by-step acquisition of mutations during the development of disease. This 

type of study will be possible with several key improvements to the current technology. First, the 

throughput of single-cell partitioning and genomic DNA isolation must be improved. While 

current reports have targeted a handful of loci in hundreds of cells, moving to whole genome 

sequencing for thousands of cells is a necessity. Second, allelic dropout during sample 

preparation is a key limitation of current single-cell sequencing platforms. Currently, this 

limitation is partially addressed by targeting many cells. Addressing these two limitation would 

permit several insightful studies into clonal evolution and the development of malignancy.  

Already, we understand that AML is an oligoclonal disease with multiple subclones often 

present at diagnosis62. Currently, MPFC enables the detection of these leukemic cells based on 

leukemia-specific cell surface markers that are not present on healthy cells92. The prevailing 

notion is that the founding AML mutations drive the leukemia-associated immunophenotype 
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(LAIP) and subclonal mutations do not alter that phenotype. This theory may need revision 

based on a couple of observations. First, LAIP almost universally changes between diagnosis and 

relapse for AML, even though relapse often arises directly from the founding clone64,102. 

Additionally, single-cell sequencing studies of ALL demonstrated that clonal heterogeneity for 

VDJ recombination at the immunoglobulin heavy chain (IgH) locus was linked to specific 

subclonal somatic mutations79. In one case, a subclone-specific EYA4 mutation allowed 

precursor B-cell populations to develop further resulting in VDJ recombination at the IgH locus, 

while other clones without the mutation were arrested in earlier stages of B-cell development. 

These B-cell maturation steps are tightly regulated and would result in subclone-specific 

immunophenotypes within the same tumor. The same process likely occurs in AML. Single-cell 

sequencing of AML samples could co-localize subclone-specific mutations and may predict 

immunophenotypic heterogeneity. A separate study could employ MPFC to partition various 

cellular compartments of an AML sample. Targeted ECS could then identify the subclonal 

mutations that govern each subclonal LAIP. These types of studies would further elucidate the 

clonal structure in AML. 

  Future advancements in single-cell and long-read sequencing could also dramatically 

improve residual disease detection in hematological malignancies. In the future, following 

treatment for AML, residual disease could be assessed with the following hypothetical protocol. 

The patient’s bone marrow is flow sorted to isolate individual HSCs and any persistent leukemic 

stem cells. Those sorted cells are partitioned into microfluidic chambers bound by a membrane 

studded with nanopores. Each cell is lysed and the entire genome is read, one chromosome at a 

time, through the nanopores. Bioinformatics analysis identifies the cell-specific somatic 

mutations and reconstructs the clonal architecture of the sample. The likelihood of relapse is 
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assessed based on the specific somatic mutations present and their clonal co-localization. If 

additional treatment is warranted, the specific somatic mutations present would inform 

therapeutic selection. While purely hypothetical, the tools will soon exist to make this type of 

personalized care a reality.  

The cytotoxic therapy given to eradicate a hematological malignancy wreaks havoc on 

the healthy hematological compartment. A robust single-cell sequencing approach would be able 

to examine the kinetics and genetics driving clonal expansion during recovery after 

chemotherapy exposure. Already, clonal expansion of nonleukemic clones has been observed 

following treatment for AML112. This phenomenon is probably closely related to the 

development of t-AML/t-MDS, which we already demonstrated can arise from pre-existing 

clones harboring TP53 mutations134. A sensitive single-cell sequencing approach could identify 

these clones before chemotherapy exposure, track them longitudinally, and identify the co-

operating mutations within a single cell that initiate leukemic transformation.  

5.8 Normal hematopoietic stem cell biology 

These techniques would also enhance our understanding of clonal hematopoiesis in 

healthy individuals. We have demonstrated that clonal expansion harboring leukemia-associated 

mutations are a common phenomenon in healthy elderly individuals. While we know these 

clones are pervasive, stable longitudinally and accumulate as a function of age, it is unknown 

what specific events are necessary to develop AML. While we identified many mutations per 

individual, we are unable to determine if they arise in the same HSPCs or occur in isolation. A 

whole genome single-cell sequencing approach could co-localize mutations. Expanding these 

techniques with longitudinal banking of pre-leukemic samples, would elucidate the stepwise 

process of mutation acquisition within single cells that drive leukemic transformation. This 
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information will be essential for developing a sequencing-based screening tool for hematological 

malignancy. Thoroughly understanding this phenomenon in liquid tumors may someday permit 

screening for nascent solid malignancies in cfDNA.  

One interesting observation made in our study of benign clonal hematopoiesis was that 

rare somatic mutations were not randomly distributed across the target space. We initially 

hypothesized that with a limit of detection of 0.0001 VAF and an estimated 10,000 HSCs in an 

adult, we would observe the private passenger mutations present in the specific HSCs 

contributing to hematopoiesis at the time. Instead we observed strong selection for mutations in 

the epigenetic modifiers DNMT3A and TET2. However, even in the first WGS study of a single 

case of AML, most of the somatic mutations identified were passenger mutations that reflected 

the life history of the initiating cell43. If single-cell sequencing can approach the accuracy of 

ECS, it would be possible to identify the progeny of each HSC based on their unique somatic 

mutation fingerprint. This would enable us to study the clonal dynamics of the hematopoietic 

compartment in healthy individuals. Currently, HSC dynamics are studied using viral barcoding, 

which perturbs the hematopoietic compartment and is confounded by the mutagenic effects of 

barcode insertion208,209. More recent approaches in mice have leveraged the Sleeping Beauty 

transposase to avoid transplantation to demonstrate that most blood production originates from 

long-lived progenitor cells, rather than HSCs210. Still, the mutagenic effect of random transposon 

insertion is unknown and none of these studies have examined native hematopoiesis in humans. 

All of these limitations could be addressed by a study using accurate single-cell whole-genome 

sequencing.  
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5.9 Targeting therapy in the AML genome 

Currently, treatment for AML (except acute promyelocytic leukemia) consists primarily 

of chemotherapy that targets rapidly dividing cells. The primary drugs used for induction therapy 

are cytarabine (a nucleoside analog) and an anthracycline drug (an intercalating agent). 

Following induction, consolidation therapy with cycles of high dose cytarabine attempts to 

eradicate persistent disease. Many of these patients will receive a stem cell transplant to replace 

their hematopoietic compartment with healthy hematopoietic stem cells from a donor or 

themselves. Regardless, many patients go on to relapse and the five-year survival for AML is 

26%211. Outcomes are particularly bleak in older individuals who cannot tolerate intensive 

chemotherapy or stem cell transplant, and most relapse within two years. The primary limitation 

of these treatments is that they do not target the leukemic cells directly, but rather all rapidly 

dividing cells.  

In contrast, targeted therapeutics interact with specific molecular targets that directly 

disrupt tumor growth. The most famous example, imatinib mesylate, directly targets the BCR-

ABL translocation, which is the initiating lesion in CML212. Unfortunately, there are currently 

few targeted therapeutics for treating AML, but many are currently in development213. 

Optimistically, in the future, AML may be treated as a chronic illness instead of a death 

sentence. At diagnosis, rapid, accurate sequencing of the tumor could inform selection of 

targeted therapeutics to eradicate the primary tumor and mitigate the clinical symptoms of 

disease. Following initial treatment, sensitive single-cell sequencing (described previously) could 

identify the persistent leukemic clones and their assortment of co-occurring somatic mutations. 

Here, multiple targeted therapeutics could target these specific residual clones. The process 

would be repeated months to years later to again selectively target and remove persistent disease. 
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This treatment approach has several key advantages over the current standard of care. First, 

therapy would not target healthy rapidly dividing cells, reducing the side effects of treatment. 

Second, targeted therapy would remove the severe selective pressure on the HSC compartment 

introduced by current chemotherapies that drive clonal expansion of pre-leukemic and non-

leukemic clones112,134. Third, a lower side effect profile would enable treatment in older 

individuals that cannot tolerate current induction therapy. Advancements in AML residual 

disease detection, prognostication and therapy will be applicable to other types of malignancy. 

Together, these advancements will empower future clinician scientists to personalize effective 

care for these devastating malignancies. 

5.10 Conclusion 

Upon reflection, it is humbling to realize the small contribution that all of this work has 

made to our understanding of leukemia and normal hematopoiesis. We developed novel methods 

that enhanced current sequencing technology to characterize previously undetectable rare clonal 

mutations. However, the technology is always improving. Soon the protocols developed here 

will be hopelessly outdated. I welcome that day and optimistically look forward to the 

technological advancements that will embellish and challenge our conception of biology, and 

improve the health and survival of our species.  
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