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Geometric earthen enclosures are some of the best known pre-Columbian monuments in North 

America. Across the Eastern Woodlands, many have been preserved as state and national parks. 

However, their chronological placement is poorly understood as they relate to the rise of 

complex social behaviors associated with the Adena-Hopewell florescence (500 BC–AD 500) in 

the Middle Ohio Valley. This is especially true for communities who built smaller enclosures 

referred to by archaeologists as ‘scared circles’. To better understand the timing, tempo, and 

nature of their construction I examined the Bluegrass Region in Central Kentucky using aerial 

and terrestrial remote sensing methods to learn if more enclosures were built than previously 

known. My results indicate the remnants of many sites exist but have been greatly damaged by 

modern agricultural activities and development. I then excavated a series of seven sites, 

examining their embankments, ditches, and internal use-areas. I found the communities who 

built these monuments did so in ways unique to their local histories of participation in the 

Adena-Hopewell social movement. Chronological modeling suggests the construction of all 

earthen enclosures in the Bluegrass region likely occurred in 170 years or less and the spread 

came from the north, possibly Central Ohio. Burial mounds, however, were built as early as 400 

BC and the switch to building enclosures signals a major social change in the need for ritual 
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space. From the sum of these results I argue that the traditional definition of Adena is indeed 

earlier than the major Hopewell climax in Ohio. However, I argue that this may indicate the 

material evidence for Hopewell ritual cycles, of which local populations in Kentucky were likely 

active participants in, do not represent a separate culture but instead a different context and 

situation for interregional integration. 
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Chapter 1: 
Adena, Hopewell, and the Awkward Past and Present of Archaeology in the 

Eastern Woodlands of North America 

1.1 Introduction 

When European settlers began colonizing the interior portions of eastern North America 

they encountered a diverse range of earthen monuments, some of which were constructed more 

than two millennia before their arrival. These landscape features promoted a sense of awe among 

those participating in the migratory wave of colonial expansion into the Ohio and Mississippi 

River drainages that was so great, many could not accept that they were built by the ancestors of 

the same American Indian tribes they were killing and displacing. From this Euro-American 

fascination with the various mounds, enclosures, and animal effigies shaped from earth and 

spread across the Eastern Woodlands came a thesis that they were built by a lost race of people 

that had been killed and replaced by the American Indians settler communities were clashing 

with as the American Republic’s territorial expansion moved west. The historical effects of the 

‘myth of the mound builder’ narrative explicitly helped legitimize the forced removal of 

American Indian groups from their ancestral lands and erase any historical connection they had 

to these monumental places in eastern North America (Howey 2012; Silverberg 1986). 

With the elaboration of colonial ‘origin stories’ for mounds in the eastern U.S., 

nineteenth-century hypotheses appeared that proposed ‘lost tribes of Israel’, Vikings, and other 

white European-based populations had once lived on the North American continent and created 

the mounds and enclosures. These hypotheses created an alternate narrative that effectively 

rewrote the history of pre-Columbian North America, a history that endured much after research 

conducted by the Smithsonian Institution (Thomas 1894) demonstrated that earthen monuments 

were erected by the ancient ancestors to then-modern American Indian nations. In fact, this 
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counter-narrative is being reprised today amidst the rise in White nationalism across the United 

States. While archaeologists have long emphasized the indigenous nature of these monuments 

and worked to broadly understand the long and varied history of pre-Columbian human 

occupation in eastern North America.  

Less attention has been directed toward detailing local participation in regional-scale 

social movements that influenced how communities began constructing and using certain kinds 

of earthen monuments. In addition, rarely does research on or at earthen monuments allow 

archaeologists to trace how pre-Columbian societies who lived centuries after their construction 

interacted with these sites. As America’s own history involving the myth of the mound builder 

shows, monuments have the potential to outlast numerous social movements and migrations, and 

these social changes often come with different meanings, memories, and myths associated with 

monuments—even their modification (Bradley 1998; Connerton 1989; Dillehay 2007; Henry 

2017; Sherwood and Kidder 2011; Osborne, ed. 2014; Parker Pearson 2013; Pauketat 2014; 

Pauketat and Alt 2003; Pollard 2012). 

Perhaps part of the reason why historical contingencies underlying the creation and use of 

earthen monuments in the eastern Woodlands can be lost in the focus of archaeological research 

comes from the origins of archaeology as a discipline. Pre-dating chronometric dating methods, 

the development of archaeology first relied on stratigraphy and ceramic chronologies to 

understand the order of cultural and material change through time. Modern scientific methods 

now allow archaeologists to chronometrically date ancient social phenomena in a highly precise 

manner and model chronological information in ways that allow histories of people in the past to 

be examined at the scale of a human generation (cf. Barrier 2017; Bayliss et al. 2007; Bronk 

Ramsey 1995, 2009; Buck et al. 1994; Kennett et al. 2014; Kennett et al. 2017; Kidder 2006; 
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Pluckhahn and Thompson 2017; Randall 2013). Yet, the results of these interpretations can be 

hindered by the intellectual remnants of the pre-chronometric age in archaeology. The 

persistence of early twentieth-century culture histories and typologies can create situations in 

which archaeologists do not critically engage with their results, instead opting to situate ill-fitting 

or divergent data within the boundaries of familiar typological boxes (cf. Henry et al. 2017). The 

Adena-Hopewell social movement that arose during the Middle Woodland period (ca. 200 BC–

AD 500) in eastern North America, and built the geometric earthen enclosures in this region, is a 

great example of this issue and the focus of this dissertation. 

In many ways typologies are good. They provide a starting point for research questions 

and a vocabulary that allows archaeologists across regions to converse with one another. 

However, when their boundaries grow blurry and gray areas between typologies continue to 

increase, the focus of archaeological analyses should turn to “useful distinctions that help us 

understand variability and dynamics in the past” (Henry et al. 2017:30). Adena and Hopewell 

encompass two cultural typologies that have grown increasingly unstable over the last 40 years, 

yet little research has been focused on what ‘Adena’ represents within the context of ‘Hopewell’. 

Background information for this problem should begin in the late-nineteenth and early-twentieth 

century. 

1.2 Adena, Hopewell, Adena-Hopewell, or Adena Hopewell? 

The term Adena was originally developed to describe Early Woodland (1000–200 BC) 

social complexity in the Middle Ohio Valley (Clay 1998; Dragoo 1963; Greenman 1932; Hays 

2010; Railey 1996; Seeman 1986; Webb and Snow 1945; Figure 1.1). Early archaeologists 

generally characterized this time period by the adoption and spread of ceramic technology, an 

increasing reliance on low-level food production, and the appearance of new ritual practices that 

include 
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Figure 1.1.  Map of North America showing the geographic extent of traditionally-defined Adena (500 BC–AD 250) societies (red 

polygon) and Hopewell (200 BC–AD 500) societies (yellow polygon). 
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small geometric enclosures and burial mound construction (Abrams and Freter, eds. 2005; 

Farnsworth and Emerson, eds. 1986; Milner 2004:54-96; Otto and Redmond, eds. 2008; Smith 

2001, 2006). Elaboration on Early Woodland ritual practices are generally considered to have 

intensified and spread across eastern North America during the Middle Woodland (200 BC–AD 

500) period. In the Middle Ohio Valley, archaeologists often use the term Hopewell to refer to 

this increase in social complexity—indicated by escalations in the scale and intricacy of 

enclosure and burial mound constructions (Brose and Greber, eds. 1979; Charles and Buikstra, 

eds. 2006; Carr and Case, eds. 2005; Dancey and Pacheco, eds. 1997; Prufer 1964; Shetrone 

1920). 

The excavation of the ‘Adena Mound’ outside Chillicothe, Ohio (named by a former 

governor who once owned the land it was on) in the early 1900s led to the creation of the cultural 

category, which was first based on mortuary practices like cremation and inhumation, and their 

associated artifacts (Mills 1902, 1917; Shetrone 1920). This Adena ‘culture’ was considered a 

precursor to the then already defined ‘Hopewell culture’, an archaeological taxon also based on 

mortuary traits, albeit from larger burial mounds and large multi-shape geometric earthen 

enclosures, as well as artifacts recovered from these sites like stone platform pipes, carved 

marine shell, iconography of animal, geometric, and human forms cut from mica and copper, as 

well as and large caches of obsidian bifaces (Mills 1906; Shetrone 1920; see also Applegate 

2005 and Lynott 2015 for excellent histories of these developments). Archaeologists once 

considered Adena to originate as early as 1000 BC in the Middle Ohio Valley, however 

researchers have narrowed this time span to 500 BC–AD 250 (Applegate 2008; Hays 2010; Otto 

and Redmond, eds. 2008; Railey 1996). Nevertheless, because Adena (as a cultural concept) was 

based on material remains from a few burial sites and developed before the advent of 14C dating, 
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an agreed upon chronology and definition for Adena is lacking. The recent AMS radiocarbon 

dating of materials curated from the lower portions of the original Adena mound in Ohio 

returned dates that straddle the BC/AD transition (Lepper et al. 2014), placing it at least 200 

years into the ‘Hopewell’ timeframe at the geographic center for Hopewell material culture. This 

reiterates that Early and Middle Woodland chronologies need redefining, something scholars 

have recently been vocal about (see contributions to Applegate and Mainfort, eds. 2005). 

The division between Adena and Hopewell was fortified when Greenman (1932) 

published a list of traits defining Adena after the excavation of 70 burial mounds in the Ohio 

Valley. When William S. Webb and colleagues (who founded the Anthropology Department at 

the University of Kentucky) began excavating mounds and small circular earthen enclosures 

referred to as ‘sacred circles’ across Kentucky with the funding from Depression-era relief 

agencies like the Works Progress Administration (WPA), the Adena trait lists grew in number 

and detail (Webb and Snow 1945; Webb and Baby 1956). Webb’s work in Kentucky 

strengthened the notion in Americanist archaeology that Adena cultures were predecessors to 

Hopewell, and the main occupants of areas of the Middle Ohio Valley south of the Ohio River, 

despite the evidence that a few large Hopewellian enclosure complexes and other material 

culture, such as sites with tetrapodal ceramic vessels, existed in the state (Henderson et al. 1988; 

Fenton and Jefferies 1991; Lewis 1887). Contemporary archaeologists working in the Middle 

Ohio Valley continue to define Adena as a more regionally-contained cultural expression (cf. 

Abrams and Le Rouge 2008; Burks and Cook 2011; Pollack and Schlarb 2013). Outside of the 

Ohio Valley, material evidence for late-Early and Middle Woodland-era ceremonialism (i.e., 

Adena and Hopewell) are more often referred to as Hopewell (Hermann et al. 2014; Kimball et 

al. 2011, 2013; Perri et al. 2015; Wright 2014, 2017). More recently, archaeologists have used 
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the term Adena-Hopewell (Henry 2017; Henry and Barrier 2016; Mueller 2018; Wright 2017) or 

talked broadly of Middle Woodland ceremonialism that begins earlier in the Middle Ohio Valley 

than elsewhere in the Eastern Woodlands (Clay 2014).  

This begs the question of what archaeologists refer to when they use terms like Adena, 

Hopewell, or Adena-Hopewell. Most notions of Adena and Hopewell are largely built on 

mortuary data from burial mounds and understandings of large and small geometric enclosures. 

Therefore, some archaeologists refer to their associated material remains more as evidence for 

mortuary and ritual systems, or broad religious beliefs or religious movements rather than ethnic 

or cultural divisions (Beck, Jr. and Brown 2011; Brown 1997, 2006; Carr 2005, 2008; Dragoo 

1963; Prufer 1964). This view bears importance to the study of Adena-Hopewell mounds and 

enclosures. Both are considered monumental ritual contexts; their construction alone likely 

served to locally reproduce social and religious needs (Kidder and Sherwood 2017). At the same 

time, their continued use and modification signaled cosmological principles that maintained and 

renewed the organization and conceptualization of what archaeologists consider a general three-

tiered Eastern Amerind worldview (Upper World, Middle World that humans inhabit, and a 

watery Underworld) that cross-cut language groups in the Eastern U.S. and is informed by 

Native American ethnology and archaeoastronomy (Brown 1997; Hall 1997; Hudson 1976; 

Lankford 1987; Reilly, III and Garber, eds. 2010; Romain 2000, 2009, 2015). 

Evidence for a common Adena-Hopewell cosmology comes from widespread animistic 

and shamanic themes present in non-quotidian artifacts recovered from ritual architecture such as 

burial mounds and enclosures (Brown 1997, 2006; Carr and McCord 2013, 2014; Romain 2009), 

the construction of common enclosure and burial mound types (Byers 2011; Burks 2014; Burks 

and Cook 2011; Carr and Case, eds. 2005; Clay 1998; Lynott, ed. 2009; Mainfort and Sullivan 
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1998), and the alignment of these architectural forms to astronomical phenomena (Romain 

2000). Participatory engagement in such a common worldview has been identified as one 

mechanism that helps propel economic structures among small-scale societies (Caldwell 1964; 

Spielmann 2002; Struever and Houart 1972; Wright and Loveland 2015). In Adena-Hopewell 

societies this is evidenced through exotic material exchanges that draw upon resources and 

networks encompassing eastern North America and reaching as far west as the Rocky Mountains 

(Brose and Greber, eds. 1979; Charles and Buikstra, eds. 2006; Carr and Case, eds. 2005; 

Dancey and Pacheco, eds. 1997). Caldwell (1964) named this institutionalized system of trade 

and exchange the Hopewell Interaction Sphere, whereby religious regalia and symbols—

constructed from regionally specific exotic materials—served as markers for ritual performance.  

If what archaeologists refer to as Adena-Hopewell may be better conceived of as the 

material evidence for a larger system of cosmological or religious understandings common 

among diverse ethnic and language groups in pre-Columbian North America (the extent of 

Hopewell material culture denoted in Figure 1.1 covers more than four million square 

kilometers), then societies in present-day Kentucky who participated in this belief system might 

better be considered Adena Hopewell in the same manner that archaeologists refer to Ohio 

Hopewell or Illinois Valley Hopewell. As Railey (1996:100) put it, “Adena should be viewed as 

an early regional expression of Hopewell rather than its predecessor.” However, very little 

modern research has been conducted in Kentucky to understand exactly how and when localized 

communities engaged in this sphere of religious interaction. Situating Adena societies that once 

inhabited the Kentucky landscape in this interpretive framework allows the archaeological study 

of ritual earthen monuments to focus on the ways separate communities adopted general ideas 

about worldview and made it work on a local scale. Moreover, this perspective allows 
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archaeologists to test ideas about the spread of religious institutions insofar that they can trace 

the histories of ritual infrastructure like mounds and enclosures as they spread across the 

landscape—learning what directions ideas about them come from, where they go, and the rate at 

which they spread.  

1.3 Geometric enclosures as ritual infrastructure and material expression of religious 

institutions. 

Geometric Enclosures have long been considered locales of ritual practice. Ritual 

behaviors documented by other archaeologists working on enclosures in the Middle Ohio Valley 

include their initial construction and periodic modification. This is seen in the selection and 

manipulation of specific colors and textures of sediments during the process of construction 

(Charles 2012; Kidder and Sherwood 2017; Lynott and Mandel 2009; Sherwood and Kidder 

2011), in addition to the building, burning, and renovation of non-domestic wooden structures 

within them (Byers 2011; Lynott and Mandel 2009; Webb 1941), feasting (Carr 2005; Clay 

1985; Ruby et al. 2005), burying the dead within their spaces (Clay 1998:10; Hardesty 1965; 

Henry et al. 2014), the association of enclosures with natural features (e.g., springs) interpreted 

as possible world renewal features (Byers 2011; Henry 2011; Sunderhaus and Blosser 2006), and 

the disposal of exotic goods—some iconographic in nature (Spielmann 2009). They are also 

commonly oriented to astronomical phenomena like solstices, equinoxes, and lunar maximums 

and minimums (Romain 2000; Hively and Horn; 2013; Turner 2011). Moreover, there is no 

evidence for domestic structures or dense midden accumulation inside enclosures that might 

suggest anyone ever lived within them. Therefore, I follow the many scholars who view these 

sites as spaces for ritual gatherings and locales for regional pilgrimage journeys (Byers 2011; 

Lepper 2004, 2006; Wright 1990; Wright and Loveland). 
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Catherine Bell (1992, 1997) has approached the study of ritual through avenues of 

structured social practices apart from the broader context of religion. She considers ritual a 

practice-based integration of thought and action that is prescribed and repetitive, serving to 

construct symbols that can be communicated across society. Her notion that ritual can be set 

aside from quotidian spaces and times is applicable here since the astronomical alignments of 

many enclosures point to their temporary but cyclical uses within a situational context for world 

renewal ceremonies (Byers 2011; Sunderhaus and Blosser 2006). However ritual practice can 

penetrate many more aspects of society, serving to contest sociopolitical structures and 

consolidate social consensus (DeMarrais 2016; DeMarrais et al. 1996). Swenson (2015) 

emphasizes the practical and material nature of ritual practices and performance that creates the 

possibility for situational shifts in agency, providing the space for different people and things to 

contribute to the creation of social influence and change. To this end, Kidder and Sherwood 

(2017:1078) suggest questions pertaining to ritual should focus on the ways ritual provides a 

framework for social practice. In their view, the ritual construction of earthen monuments, “is 

presumed to be both a functional way of bringing people together to undertake these tasks as 

well as a participatory process to perpetuate social systems” (Kidder and Sherwood 2017:1080).  

In the context of geometric enclosures, the ritual production of sacred space through the 

construction of enclosures served to provide a form of religious or cosmological infrastructure 

that pilgrims and travelers would be familiar with, understanding the prescriptions required to 

interact with them. Brian Larkin (2013:328) refers to infrastructure as material networks that 

facilitate the exchange of people, goods, and ideas over space. In short, they are “matter that 

enable the movement of other matter” and also the ambient environment of everyday life (Larkin 

2013:328-9). This serves as an excellent descriptor for earthen enclosures of the Middle Ohio 
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Valley because these places were where exotic, highly crafted, material goods were brought 

during long distance travel (i.e., pilgrimages) from as far as the Gulf Coast, Great Lakes, and 

Rocky Mountains of the present-day United States. However, participation in large cyclical ritual 

gatherings that unfolded in Central Ohio (where many of the most complex multi-form 

enclosures are located and integrated to one another by earthen-walled roadways) would have 

required local communities spread throughout eastern North America to have their own forms of 

ritual infrastructure that served to perpetuate larger cosmological notions on a regular basis, and 

these can be seen in the construction of smaller sacred circles and burial mounds spread 

throughout this area. This highlights the very effective nature of burial monuments and 

enclosures to be that ambient environment of everyday life that served to encode notions of 

cosmological knowledge and provide an arena for ritual performance to occur on a more regular 

basis so that social structures could be maintained and changed apart from the ritual cycles 

occurring within Central Ohio.  

Fowles’ (2013) concept of “doings” resonates with local participation in broader non-

western religious forms and provides a response to scholars of religion who are shying away 

from comprehensive definitions of the concept and its application in a sacred-secular divide (e.g., 

Asad 2003; Bowen 2012; Keane 2008; Latour 1993). His work among Puebloan societies and 

the material remnants of their ancestors opts to examine how humans interact with ideas, objects, 

and one another—working to maintain and recreate their worlds in ways that transcend a sacred-

secular divide. “Doings,” as he regards them, are a way to circumvent an opaque category and 

focus instead on assemblages of places, practices, and histories that are associated with the ways 

humans activate their origins and orientations through social action. The fact that archaeologists 

have identified contemporary forms of monumental earthen architecture used in similar ways 
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across more than four million square kilometers of eastern North America suggests that larger 

underlying systems of belief were present that transcended language and ethnic boundaries. 

Therefore, we might regard these ritual infrastructure as the material evidence for other social 

institutions (e.g., cosmologies). 

Institutions can be defined as the normative rules of society, the mechanisms that 

maintain cooperation and consensus by providing permanent platforms though which individuals 

can participate in society (Bowen et al. 2013; Mantzavinos 2011). However, as Bowen et al. 

(2013:12) note of institutions where multi-ethnic participation is common, “[i]nstitutions are not 

simple receptacles of existing ideas about what [people] must do, or the passive sponges 

of…identity principles. [People] participate in the production of these principles as well.” While 

institutions can help remove uncertainty from the decision-making processes of individuals and 

how they should act, they also provide individuals the space for social creativity. Sometimes it is 

within the dissonance of competing ideas about what is valued within institutions that novel 

social forms emerge (Henry and Barrier 2016; Stark 2009). In this sense, a study of institutions 

should pay particular attention to the interplay between the individual and group, or in this case 

the local and what Wright (2017) calls the ‘Global’ (i.e., the Hopewellian world of eastern North 

America) nature of Middle Woodland interaction as it applies to institutions like cosmology as it 

becomes materialized through the construction and use of ritual earthen enclosures. For instance, 

how do local communities adopt ideas underlying the practice of constructing and using earthen 

enclosures? Do local reinterpretations of cosmology in turn alter how other Adena-Hopewell 

communities perceive of these ideas and transform their practices? Can archaeologists trace these 

forms of stability and change through time and across space? In addition, if Adena-Hopewell can 

be considered a social (or religious) movement (sensu Beck, Jr. and Brown 2011) how quickly 
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does this movement take hold in the Eastern Woodlands and from where does it originate and 

spread? 

1.4 The structure of the dissertation 

In this dissertation I examine small geometric enclosures referred to as ‘scared circles’ 

(Webb 1941; Webb and Snow 1945) in the Bluegrass Region of Central Kentucky to learn how 

and when local communities began participating in the institution of Middle Woodland 

ceremonialism through the construction of ritual infrastructure. In doing so, I structure my 

research questions around three themes: 

1. What was the magnitude of participation in Adena-Hopewell among late-Early and 

Middle Woodland period societies who lived in Central Kentucky? 

2. How did local communities participate in Adena-Hopewell through the construction and 

use of earthen enclosures, and how were local practices of construction and use unique? 

3. What was the timing and tempo of enclosure construction and use across the Bluegrass 

Region of Central Kentucky?  

4. How did late prehistoric populations (post–AD 1000) in Central Kentucky interact with 

earthen enclosures? 

Chapter 2: Mapping the Adena-Hopewell Landscape in the Middle Ohio Valley, USA: A 

Landscape-scale Analysis of LiDAR Data from Central Kentucky addresses question one. 

Specifically, my co-author (Carl Shields) and I use high-tech aerial remote sensing methods 

(e.g., LiDAR, aerial photography) to explore the Central Kentucky landscape for remnants of 

earthen enclosures that are unknown to modern archaeologists. When potentially unknown 

enclosures were located, we negotiated access to private properties to examine these topographic 

anomalies with geophysical remote sensing methods (e.g., magnetometry, electromagnetic 

induction, ground-penetrating radar). In some cases, geoarchaeological coring was also 
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employed to understand subsurface variation identified using geophysical methods. This article 

highlights the benefit of integrating multiple approaches to the examination of lost landscapes. 

Carl Shields’ contributions to this article included providing early access to Kentucky’s State 

LiDAR data and assistance with portions of the LiDAR survey. I conducted additional LiDAR 

processing and analyses, analyses of aerial photographs, and all on-ground data collection. As 

director of the Geoarchaeology Laboratory at Washington University in St. Louis, Tristram R. 

Kidder oversaw fieldwork and data analyses relating to geophysical surveys and 

geoarchaeological analyses. I am solely responsible for the text in Chapter Two.  

Chapter 3: Ritual Dispositions, Adena-Hopewell Enclosures, and the Passing of Time: A 

Monumental Itinerary for the Winchester Farm Enclosure in Central Kentucky, USA addresses 

questions 2-4. Drawing on a very detailed excavation regime, geoarchaeology, 

paleoethnobotany, zooarchaeology, and artifact analyses my co-authors (Natalie G. Mueller and 

Mica B. Jones) and I provide a ‘thick description’ of how one enclosure in Central Kentucky was 

built, used, and treated after it was abandoned. We employ Bayesian statistical analyses that 

incorporated 16 radiocarbon assays into a chronological model that provides context for the 

reason the enclosure was built in its specific location and identifies an abnormally long period of 

site-maintenance prior to being intentionally deconstructed. The contributions of my co-authors 

included Natalie Mueller’s analysis of the archaeobotanical assemblage, and Mica Jones’ 

analysis of the faunal assemblage, recovered during excavations. I am responsible for all other 

data collection and analyses. Mueller and Jones wrote short reports of their results that I edited 

and incorporated into the text of Chapter Three. The rest of the text was authored by myself. 

Chapter 4: The Temporality of Adena-Hopewell Monuments: Bayesian Perspectives on 

the Chronology of Mounds and Enclosures in the Bluegrass Region of Central Kentucky 
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addresses questions 3 and 4. Utilizing over 60 chronometric measurements from earthen 

monuments across Central Kentucky, I draw on Bayesian chronological modeling to place the 

practice of monumentalizing the Bluegrass landscape within a historical framework. This 

research speaks to the unique histories of individual monuments and the durability of Adena-

Hopewell monuments in the region for late prehistoric populations (post–AD 1000). I am solely 

responsible for all the data collection, analyses, and writing of this chapter. 

Data collected and produced as a result of the researched discussed in this dissertation 

will be curated in two places. All images and digital data will be curated in the digital repository 

of the Washington University in St. Louis Library system. All artifacts, original notes and maps, 

as well as copies of all digital data will be curated at the William S. Webb museum of 

Anthropology at the University of Kentucky.  
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Chapter 2 
Mapping the Adena-Hopewell Landscape in the Middle Ohio Valley, USA: 

A Landscape-scale Analysis of LiDAR Data from Central Kentucky 

Edward R. Henry, Carl Shields, and Tristram R. Kidder 

2.1 Introduction 

Light-detection and ranging (LiDAR; also known as airborne laser scanning or ALS) is a 

popular tool for the exploration and interpretation of topography associated with archaeology 

(Crutchley and Crow 2013; Hesse 2010; Opitz 2013; Opitz and Cowley 2013; Schindling and 

Gibbes 2014). The success of this method has led some archaeologists to declare that it has 

triggered a scientific revolution (Chase et al. 2012). Recently published examples of LiDAR 

survey data integrated into archaeological research around the world have shown that this 

technique can unambiguously depict the remains of both monumental and non-monumental 

architecture across a range of cultural contexts (Baires 2014; Bewley et al. 2005; Chase et al. 

2011; Chase et al. 2012; Evans et al. 2013; Evans 2016; Fisher et al. 2016; Howey et al. 2016; 

Johnson and Ouimet 2014; Pluckhahn and Thompson 2012; Randall 2014; Rosenwig et al. 

2013). In archaeological contexts where architecture is constructed from stone, results can be 

impressive (Chase et al. 2011; Chase et al. 2012; Evans et al. 2013; Evans 2016; Harmon et al. 

2006). However, archaeologists using LiDAR in the Eastern United States have had to confront 

various challenges related to examining ancient architecture that include dense vegetation, 

destructive modern land-use practices (e.g., agriculture), in addition to urban and rural 

development (e.g., home and business construction, barns, roads) (Baires 2014; Howey et al. 

2016; Pluckhahn and Thompson 2012; Randall 2014; Riley and Tiffany 2014; Rochelo et al. 

2015). Because most topographically visible archaeological constructions in the Eastern U.S. 

were constructed from some form of earth, agricultural practices and modern development 
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significantly constrain the utility of LiDAR to investigate ancient architecture. These historic 

impacts have altered the size and shapes of earthworks, making them appear obscure in LiDAR 

datasets, or rendering them invisible (Baires 2014; Burks and Cook 2011; Pluckhahn and 

Thompson 2012; Randall 2014; Riley and Tiffany 2014). Thus, exclusively relying on LiDAR to 

identify and explore the architectural remains of pre-Contact societies in this portion of the U.S. 

can be problematic. 

With these issues in mind, we initiated the first landscape-scale analysis of LiDAR from 

Central Kentucky, a portion of the larger Middle Ohio River Valley (Figure 2.1). Our research 

objectives included identifying burial mound and enclosure sites not currently known to 

archaeologists, with the broader goals of learning where these forms of ritual infrastructure are 

spatially situated across Central Kentucky. The research presented here includes qualitative 

assessments of topographic anomalies that resemble burial mounds and enclosures. These 

monuments correspond to Early and Middle Woodland-era Adena-Hopewell societies (500 BC-

AD 500). Our LiDAR survey identified over 200 potential archaeological sites unknown to 

present-day researchers. However, geophysical surveys, geoarchaeological coring, and test 

excavations conducted at a sample of the potential sites demonstrate that relying on LiDAR data 

to rediscover the Early and Middle Woodland-period landscape in this region is problematic. Our 

investigations show that, for interior portions of the Eastern U.S., the use of LiDAR alone may 

not be a reliable method for identifying ancient earthen architecture. Instead, we suggest that 

landscape-scale examinations of LiDAR data in these regions are best incorporated into research 

strategies that combine diverse aerial and terrestrial remote sensing methods. Our use of this 

approach led to the rediscovery of four Adena-Hopewell earthen enclosures.  
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Figure 2.1.  Location of physiographic regions in Kentucky and LiDAR examinations carried out in this study.
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2.2 Study Area: Ritual Infrastructure on the Early and Middle Woodland Landscape in 

the Middle Ohio Valley 

Between ca. 500 BC and AD 500 in the Eastern U.S. a near continental-scale trade 

network in exotic and ritually-charged craft items emerged alongside the shift from hunting and 

gathering to forms of low-level food production (Anderson and Mainfort, eds. 2002; Caldwell 

1964; Milner 2004:54-96; Mueller et al. 2017; Smith 2001; Struever and Hoart 1972; Wright and 

Loveland 2015). In the Middle Ohio Valley, considered the center for these social trends, these 

changes coincide with the appearance of ceramic technologies, as well as new forms of ritual 

infrastructure seen in the construction of Adena-Hopewell burial mounds and geometric 

enclosures (Brose and Greber, eds. 1979; Abrams and Freter, eds. 2005; Farnsworth and 

Emerson, eds. 1986; Charles and Buikstra, eds. 2006; Clay 1998; Carr and Case, eds. 2005; 

Dancey and Pacheco, eds. 1997; Lynott 2015; Webb and Baby 1957; Webb and Snow 1945). 

Archaeologists have drawn upon the distribution and similarities in these changes to propose a 

religious vernacular existed—evidenced by common iconographic themes materialized in exotic 

artifacts recovered from Adena-Hopewell mounds and enclosures, in addition to the alignment of 

some sites to astronomical phenomena (e.g., solstices, equinoxes, and lunar maximums) (Beck 

and Brown 2011; Brown 1997, 2005, 2006; Carr 2008; Carr and Case, eds. 2005; Carr and 

McCord 2013, 2015; Romain 2000, 2009).  

 A great amount of contemporary Early and Middle Woodland archaeology in the Middle 

Ohio Valley has focused on investigating ritual-religious symbolism and settlement practices in 

modern-day Central Ohio, considered the Adena-Hopewell Core (Byers 2011; Charles and 

Buikstra, eds. 2006; Carr and Case, eds. 2005; Case and Carr, eds. 2008; Lynott 2015; Otto and 

Redmond, eds. 2008). Traditionally, much less Adena-Hopewell archaeology has occurred to the 

south in present-day Central Kentucky, but this trend is changing (see Applegate 2013; Henry 
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2011, 2013, 2017; Henry et al. 2014; Jefferies et al. 2013; Pollack et al. 2005; Pollack and 

Schlarb 2013; Richmond and Kerr 2005; Schlarb 2005). Our examination of Kentucky’s LiDAR 

data follows the rediscovery of earthen monuments in Ohio through intensive aerial and 

terrestrial remote sensing (Burks 2010, 2013a, 2013b, 2014; Burks and Cook 2014; Romain and 

Burks 2008; Hermann et al. 2014) to explore where in Kentucky participation in social 

movements and institutions contemporary with Ohio Hopewell took place at local scales. 

New perspectives on past and present social movements, institutions, and infrastructure 

(e.g., Beck, Jr. and Brown 2011; Bowen et al., eds. 2014; Frachetti 2012; Klandermans and 

Stekelenburg 2013; Larkin 2013; Maeckelbergh 2016; Mantzavinos 2011) offer innovative ways 

to frame the spread of Adena-Hopewell ideas and practices through the construction of mound 

and enclosure infrastructure. For the purposes of this paper, we follow Larkin (2013:328) to 

emphasize the notion of infrastructure as “built networks that facilitate the flow of goods, people, 

or ideas and allow for their exchange over space” and through time. Although Larkin’s 

theoretical review of infrastructure references modern day constructions like roads, power grids, 

and buildings, we contend that similar perspectives on the physical forms and materialities of 

constructed networks can be applied to our study of Adena-Hopewell earthen architecture. This 

is primarily because studies of mound building as a process have established ways that these 

built features served symbolic roles that incorporated diverse notions of world renewal through 

ritual practices (Byers 2004; Charles 2012; Charles et al. 2004; Howey 2012; Kidder and 

Sherwood 2017; Sherwood and Kidder 2011; Wright and Henry, eds. 2013). Moreover, the 

literature on Adena-Hopewell interaction has long proposed that events occurring at mounds and 

enclosures offered diverse interpersonal experiences the moved objects, practices, and ideas 

across space and through time (Caldwell 1964; Carr and Case, eds. 2005; Charles and Buikstra, 
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eds. 2006; Charles and Buikstra 2002; Henry 2017; Henry and Barrier 2016; Mueller 2013; 

Streuver and Hoart 1972; Wright 2014, 2017; Wright and Loveland 2015). From this 

perspective, we consider Early and Middle Woodland burial mounds and earthworks ritual 

infrastructure insofar that they encoded social information pertaining to the past and present, and 

passed on such information to the participants building and interacting at them (Henry 2017; 

Howey 2012). Drawing on these notions, our survey of Kentucky’s LiDAR data seeks to reassess 

the scale of participation in Adena-Hopewell institutions by seeking to better understand the 

density and distribution of ritual infrastructure across the Central Kentucky landscape. 

2.2.1 Physiographic Setting of the Study Area: The Bluegrass and Knobs Regions of Kentucky 

 Kentucky’s high-resolution LiDAR data covers most of the state. However, we confined 

our analyses to two physiographic regions where known Adena-Hopewell earthworks have been 

identified: The Bluegrass and Knobs Regions (see Figure 1). The Bluegrass Region covers the 

north-central portion of the state and is separated into Inner and Outer zones. Both sit atop a 

geology that spans the Ordovician, Silurian, and Devonian periods (McGrain 1983). The Inner 

Bluegrass is characterized by the uplift of the Cincinnati Arch, which contains thick-bedded 

limestones. As a result, is contains a gently rolling terrain with deep fertile soils and some karst 

development in the form of sinkholes, sinking streams, and springs (McGrain 1983:38; McGrain 

and Currens 1978). Alternatively, the Outer Bluegrass is distinguished by an inter-bedded 

limestone and shale geology that is less resistant to erosion, creating a more dissected upland 

geography with steep slopes and little flat land (McGrain 1983:42). This dissected topography 

continues into the Knobs where isolated conical hills (monadnocks) comprised of erosion-

resistant rock are common (McGrain 1983:46). The majority of currently known Early and 

Middle Woodland monuments are situated within the Bluegrass Region; however, some lie in the 
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Knobs. For this reason, we focused most of our efforts in the Bluegrass, supplementing our 

research with small sections of the Knobs. 

2.3 Methods 

Archaeologists have argued that the discipline is currently undergoing a geospatial 

revolution where LiDAR is transforming how landscape-scale research is being conducted 

(Bewley et al. 2005; Chase et al. 2011; Chase et al. 2012). However, some of the most successful 

LiDAR applications in archaeology occur within research on state-level societies where stone 

architecture is common and produces a high-contrast in light reflectance between buildings, 

foundations, and the surrounding landscape (see Chase et al. 2011; Chase et al. 2012; Evans 

2016; Evans et al. 2013; Fernández-Lozano et al. 2015; Harmon et al. 2006; Johnson and Ouimet 

2014; Rosenswig et al. 2013). Successfully applying LiDAR to find, delineate, and study earthen 

architecture and other material remnants of small-scale societies is much more challenging, but 

still achievable (see Bewley et al. 2005; Fisher et al. 2016; Howey et al. 2016; Pluckhahn and 

Thompson 2012; Riley and Tiffany 2014; Rochelo et al. 2015; Romain and Burks 2008). In the 

case of small-scale societies, on-the-ground examinations if often required to test interpretations 

made from LiDAR data, particularly when they involve assessing partially destroyed and/or 

eroded earthen monuments. Incorporating aerial photographs, terrestrial geophysics (e.g., 

magnetometry, ground-penetrating radar (GPR), earthen resistance, electromagnetic induction), 

in addition to geoarchaeological methods (e.g., coring and sediment analyses) helps inform 

archaeological understandings of past human activities originating from LiDAR-based 

exploration of modern-day landscapes. 

2.3.1 LiDAR Collection, DTM creation, and Analyses 

 Aerial LiDAR methods typically incorporate a laser scanner mounted in some way to an 

airborne device (e.g., airplane, helicopter, or unmanned aerial vehicle), geospatial positioning 
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and referencing equipment (e.g., survey-grade GPS), and a data recorder to collect information 

accumulated during flight (Crutchley and Crow 2009; Opitz 2013). As Opitz (2013:15) has 

summarized, LiDAR systems typically come in two varieties: discrete return and full waveform. 

Discrete return LiDAR devices measure the position of a pre-selected number of waveform 

returns that fall between defined thresholds. Alternatively, full wave devices record the entire 

returned waveform. Full waveform systems allow users to more easily separate returns from tree 

canopy, scrub brush, and final ground returns used to create digital terrain models (DTMs).  

 LiDAR data analyzed for this project were collected for the State of Kentucky. The data 

were collected in full waveform and divided into multiple discrete returns comprised of at least 

three returns per pulse, whereby the intensity values were recorded for each return. Collection 

strategies were such that a highly accurate bare-earth model could be generated from the data. 

For instance, flights occurred during leaf-off seasonal conditions with cloud-free and fog-free 

atmosphere between the aircraft and the ground to maximize ground returns and minimize 

spectral interference. In addition, ground conditions were snow-free with no unusual flooding. 

Nominal Pulse Spacing (NPS) was no greater than a meter and the collection angle was no 

greater than 40-degrees. Flight lines overlapped by at least 20-percent to ensure no gaps in 

coverage. Vertical accuracy of the resulting data is ±12 cm.  

 Raw LiDAR data were delivered as classified point clouds, a bare earth surface (raster 

DTM), breaklines, and ground control points. The point cloud data were coded as follows: 1-

processed, but unclassified; 2-bare-earth ground; 7-noise (low or high, manually identified, if 

needed); 9-water; 10-ignored ground (breakline proximity). These data were processed to create 

bare-earth surface DTMs whereby buildings were removed, and water bodies were hydro-

flattened. The result was a raster-based image server delivered to the Kentucky’s Aerial 
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Photography and Elevation Data Program (KYAPED). Data are projected in Kentucky Single 

Zone State Plane coordinates under NAD83 FIPS 1600 and U.S. Survey Feet.  

 Analytical procedures that we could apply to the LiDAR data were constrained by 

modern land-use and development in the region. Although buildings in urban and rural areas 

were removed (i.e., flattened) during data processing, patterned shapes that resemble ancient 

monuments like mounds and enclosures (e.g., circles and squares) remained (Figure 2.2). 

Therefore, it was not practical to begin our analyses with automated unsupervised classification 

of the LiDAR data with remote sensing software. Moreover, modern agricultural practices (e.g., 

plowing, mowing, and tilling) and horse racing farms common to the region also leave patterned 

remnants of those practices on the landscape similar in form and topographic relief to extant 

Adena-Hopewell monuments. Therefore, we conducted qualitative examinations of the LiDAR 

data to maintain control over what topographic anomalies we considered important. 

 Qualitative inspection of the LiDAR data included viewing DTMs in ESRI’s ArcMap (v. 

10.1-10.3) at a 1:4000 ft. scale with display properties manipulated to enhance bare-surface 

variability. Manipulation of display properties included utilizing cubic convolution raster 

resampling to create sharper visualization for the continuous DTM offered as an image server 

through KYAPED. Contrast of the DTM raster was set between 20 and 35-percent depending on 

the amount of slope present within the viewable area. When slope was greater, less contrast was 

applied. Additional enhancements to the DTM’s visual properties were made within the 

symbology window. The hillshade effect was always implemented and Z factors between three 

and 35 were selected. These factors were applied because higher vertical relief within the DTM 

rendered slopes invisible if the Z factor was not adjusted. As with contrast, Z factor values varied 
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Figure 2.2.  Examples of geometric features on the Central Kentucky Landscape that compare to Adena-Hopewell enclosures: A.) 

Horse racing track; B.) Flattened water tower; C.) Subtle topography of Winchester Farm Enclosure (15Fa153), an Adena-

Hopewell enclosure site. 
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depending on the amount of slope present on the landform being viewed. When the percentage of 

slope was higher, smaller Z factors were applied to enhance the LiDAR imagery. 

 DTMs were visualized using a gray-scale color ramp. Depending on the nature of the 

topography, either no stretch (None) was applied, or Standard Deviations were selected. If 

Standard Deviations were utilized, it was typically set to two. However, some experimentation 

did take place, with 2.5 or 3 standard deviations selected to clarify visualization. No gamma 

stretch was applied, and the statistics from the image server were always accepted. Depending on 

the topography and modern disturbances (i.e., farms, roads, and buildings), each area was 

systematically examined between 30 seconds and two minutes. Visual scans assessed the 

viewing area for topographic anomalies comparable to three types of Woodland-era monuments: 

irregular enclosures, geometric enclosures, or burial mounds (Figure 2.3). After an area was 

scanned, the viewing area was moved to provide approximately 20-percent overlap with the 

previous area. 

Our viewing pattern generally shifted vertically, following the boundaries of the 

Kentucky Quad Index Grid. For quality control, shapefile markers (points) were placed along the 

upper and lower edges of the index lines to ensure proper alignment and overlap of viewing 

areas. If a point did not appear along the grid line within the viewing area, the entire section was 

reexamined. When anomalies of interest were identified, they were marked with polygons and 

cross-examined using available aerial photographs to rule out correlations with historic or recent 

activities (Table 2.1). If no topographic anomalies were identified, the viewing area was briefly 

reexamined using recent aerial photographs. We initiated these cursory reexaminations to
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Figure 2.3.  Topographic signatures in LiDAR data from: A.) Irregular Enclosure, Peter Village (15Fa166); B.) Circular enclosure, 

LeBus Circle (15Bb01); and C.) Burial mound, Elam Mound (15Fa12).  
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Table 2.1.  Sources of aerial imagery used to cross-check LiDAR anomalies for historic disturbance. 

Source of Aerial Imagery  Year Resolution Colour or Black & White 

USGS EarthExplorer 1950s & 1960s varied B&W 

USGS 1990s 1 m B&W 

KY NAIP 2004 1 m Colour 

KY NAIP 2006 60 cm Colour 

Fayette County Aerial Photography 2006 15 cm Colour 

KY NAIP 2008 1 m Colour 

Fayette County Aerial Photography 2010 30 cm Colour 

KY NAIP 2010 1 m Colour 

KY NAIP 2012 2 m Colour 
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quickly determine if topographically invisible sites (e.g., plowed-down) might be visible in aerial 

photography as crop marks. Aerial photographs we often used for this aspect of our analyses 

were taken during drought conditions in the summer of 2012, which turned out to be an ideal 

environmental condition for detecting flattened enclosures. 

 Our assessment of Kentucky’s LiDAR data identified 244 potential anomalies that may 

represent currently unknown constructions of Adena-Hopewell ritual infrastructure, including 

burial mounds (n=206), enclosures (n=28), and mound/enclosure combinations (n=10) (Figure 

2.4). Burial mounds represent the greatest number of LiDAR anomalies in our study, but they 

contain the ancestors of present-day American Indians. To avoid disturbing these culturally 

sensitive ancestors and sites, we concentrated on enclosures. Due to the long history of Euro-

American occupation in the region, however, as well as the likelihood for some potential 

enclosure sites to be the result of modern activities, we decided to more intensively examine a 

sample of LiDAR anomalies using a multi-staged ground-based approach (sensu Henry 2011). 

As we discuss below, this included using various geophysical methods, in addition to 

geoarchaeological studies of soil cores, before we considered confirming an anomaly was likely 

an archaeological site. During ground-based investigations at a one potential enclosure site we 

did encounter a probable burial mound that our LiDAR surveys had not identified. However, this 

was not part of our research strategy. 

2.3.2 Geophysical Methods 

 Geophysical surveys focus on detecting and documenting a range of subsurface 

phenomena (Aspinall et al. 2008; Conyers 2004; Gaffney and Gater 2003; Johnson, ed. 2006; 

Schmidt 2013). Because geophysical methods provide a way to quickly assess subsurface 

variation tied to various types and quantities of buried archaeological features, they make an 

excellent tool for archaeologists working with the multi-scalar nature of landscapes (Campana



40 

 

 
Figure 2.4.  Location of known and potentially unknown sites of Early to Middle Woodland ritual infrastructure. 
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and Piro 2008; Kvamme 2003; Wright and Henry, eds. 2013). This includes surveys over 

extensive amounts of contiguous space (Gaffney et al. 2000; Gaffney et al. 2012; Field et al. 

2014) or surveys of smaller to moderate amounts of space across a given cultural landscape 

(Barrier and Horsley 2014; Burks 2013a, 2013b; Burks and Cook 2011; Horsley et al. 2014; 

McKinnon 2009; VanValkenburgh et al. 2015). Our work falls within the latter category because 

we implemented geophysical surveys over enough space to assess a given LiDAR anomaly, and 

these surveys all fall within the Adena-Hopewell landscape of Central Kentucky. 

Our geophysical approach to examining LiDAR anomalies began with magnetometry 

surveys. Magnetometry has proven extremely useful in identifying and mapping Adena-

Hopewell ritual infrastructure (Burks 2014, 2015; Burks and Cook 2011; Henry 2011; Henry et 

al. 2014; Herrmann et al. 2014; Horsley et al. 2014). The ability to rapidly collect dense datasets 

over large survey areas, as well as the ability of local magnetic variation to be associated with 

diverse human behaviors, makes magnetometry an ideal method to initiate a geophysical survey 

(Kvamme 2003, 2006). However, it was possible that the history of modern anthropogenic 

alteration in Central Kentucky impacted the success of a magnetic survey and their ability to 

accurately distinguish discrete features. Given this possibility, magnetic data were referenced 

during decisions to integrate different geophysical methods (e.g., electromagnetic induction and 

GPR) to better identify subsurface archaeological remnants. This has been referred to as a multi-

staged approach (Henry 2011), where use of one instrument informs the decision to utilize 

another that measures different subsurface properties. The use of multiple instruments provides a 

better understanding of subsurface variation (Clay 2001). Our surveys employed three 

instruments, including a Foerster Ferex 4-sensor fluxgate gradiometer to collect magnetic data. A 

Geonics Ltd. EM38-MK2 electromagnetic induction meter (EMI) was used to collect 
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conductivity and magnetic susceptibility from two coil separations, 50-cm and 1-meter. The 50-

cm coil collects conductivity data from roughly 75-cm below ground surface (cmbs) and 

magnetic susceptibility data from 30-cmbs. The 1-meter coil targets variations in earthen 

conductivity approximately 1.5 meters below surface and magnetic susceptibility around 60-

cmbs. Finally, we utilized a GSSI, Inc. SIR-3000 GPR unit with a 400 MHz antenna capable of 

penetrating approximately 1.5-1.75 meters below surface in the clayey upland soils of the 

Bluegrass and Knobs Regions. 

Geophysical surveys over the last 15 years have provided clear expectations for how 

various instrumentation should respond to enclosures in various states of preservation. For 

instance, ditches often refill with magnetically enhanced topsoil or culturally modified 

sediments, presenting the ditch as an enhanced magnetic feature. Alternatively, embankments 

can appear as negative magnetic features because the magnetic orientation of ferrous minerals in 

their sediment fills has been altered. Finally, a ‘ring’ of enhanced magnetism from erosion 

accumulations is often mapped at the exterior of embankments and can denote the boundaries of 

embankments long since destroyed (Burks 2014; Burks and Cook 2011; Henry 2011; Henry et 

al. 2014; Horsley et al. 2014; Jefferies et al. 2013). EMI surveys typically exhibit high earthen 

conductivity associated with embankments due to the clay-rich sediments that comprise them 

retaining moisture. Low conductivity is typically recorded over ditches, possibly due to the 

higher porosity of eroded fills impeding the EMI signal (Clay 2006; Henry 2011; Jefferies et al. 

2013). However, the inverse of these responses has been identified, presumably relating to the 

density of embankment materials and their ability to repel moisture, thus lowering conductivity 

values (Henry et al. 2014). In these cases, a high conductivity response to ditches may 

corresponds to shallow ditches or ditch fills with less porosity, both of which would retain more 



43 

 

moisture. GPR is not typically used to locate buried enclosures, but ditch fills have produced 

clear high-amplitude reflections where it has been applied (Horsley et al. 2014). One might 

expect the fills of surviving embankments to produce similar results. 

2.3.3 Coring 

 Coring was implemented during this project when understanding differences between 

LiDAR and geophysical data required an examination of soils and sediments underlying the 

ground surface. In some cases, this involved using cores to elucidate the spatial boundaries of 

some sites. In other cases, cores were used to explore the subsurface sedimentology of probable 

sites if LiDAR and geophysical data demonstrated the presence of subsurface archaeological 

features. Coring involved the use of two methods. The first, and most expedient, was the use of a 

3-cm diameter Oakfield split-spoon soil sampler. The second method involved removing 6.3-cm 

diameter solid soil cores with a truck-mounted hydraulic bull auger. This latter method allowed 

us to examine and characterize subsurface soil profiles with more detail in the field. When 

necessary, solid cores were packaged and transported to the Geoarchaeology Laboratory at 

Washington University in St. Louis for further analysis. 

2.4 Survey Results 

In this section, we present our ground-based examinations of LiDAR anomalies that 

potentially represented unknown enclosures (Figure 2.5). Anomalies we could negotiate access 

to were given name-based identifications that correspond to landowners or farms that granted us 

permission to conduct research on their properties. We refer to these anomalies as ‘features’ 

below. We examined eight topographic features identified in our LiDAR analyses using a 

combination of methods described above. Our sample represented two forms of ritual 

infrastructure that Clay (1998) has considered essential to Adena-Hopewell societies in the 

region: small geometric enclosures (i.e., sacred or ceremonial circles) and larger irregular 
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enclosures often regarded as temporary villages (see Figure 2.3a and b; Table 1). These types of 

enclosures were constructed by excavating a ditch and mounding the sediments inside or outside 

of the ditch, which accentuated an interior platform for ritual activities (Clay 1985; Webb and 

Snow 1945:30-31). An unexcavated portion of the ditch served as a causeway to enter and exit 

the interior space. 

2.4.1 The Mahan Feature 

 The Mahan Feature is located in the Outer Bluegrass Region in an upland geographical 

context comprised of residual soils. It is characterized by a ditch-like topographic depression 

approximately five meters wide, enclosing 1.82 ha. We considered it a potential irregular 

enclosure because it encloses more area than any small geometric enclosure in the region and has 

a non-uniform shape, (Figure 2.6). Magnetic survey over the southern half of the feature revealed 

numerous linear dipolar anomalies trending with the natural slope of the survey area. These may 

represent shallow erosion scars or other natural phenomena, such as subsurface concentrations of 

ferrous minerals known to exist in areas surrounding this location. A Y-shaped drainage scar 

extends through the southeastern portion of the survey area. However, the magnetic signature of 

the ditch does not compare with other Adena-Hopewell ditches from the Middle Ohio Valley. 

Instead of exhibiting enhanced magnetism from refilling sediments, we recorded areas of slightly 

negative magnetism. Moreover, the magnetic signature we did record was not consistent with the 

position of the ditch in all areas of our survey. 

EMI data collected over a sample of our survey area further indicates this feature may not 

be a ditched enclosure (Figure 2.7). Conductivity data from the 50-cm coil reveals a pattern of 

high conductivity over the depression, as well as other isolated clusters of high and low 

conductivity; the 1-meter coil exhibits linear noise and non-continuous areas of high conductivity 
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Figure 2.5.  Location of features examined during this study with reference to adjacent known enclosures.  
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Figure 2.6.  A.) LiDAR imagery depicting the Mahan Feature. B.) Magnetic data from the Mahan Feature displayed at two standard 

deviations with additional geophysical survey areas depicted. 
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Figure 2.7  EMI data from the Mahan Feature overlaid onto magnetic data with 50-percent transparency. A.) Conductivity data from 

0.5m coil; B.) Conductivity data from 1m coil; C.) Magnetic susceptibility data from 0.5m coil; D.) Magnetic 

susceptibility data from 1m coil. 
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that have little relation to the location of the potential ditch. The shallow depth of the high 

conductivity signature over the ditch is unusual because Adena-Hopewell ditches in this region 

often extend roughly 2-meters in depth (Clay 1985; Henry 2011; Webb 1941). The magnetic 

susceptibility component of our EMI survey recorded parallel but discontinuous bands of low 

and high susceptibility over one area of the ditch in the 50-cm coil data. However, the 1-meter 

coil data did not reveal a similar signature over the ditch, suggesting the source of the 

topographic depression we documented in the LiDAR data was not originally very deep. GPR 

survey covering the same areas as the EMI meter corroborated this hypothesis by revealing high 

amplitude reflections over the “ditch” no deeper than 50 cm below ground surface (Figure 2.8). 

 Drawing on data derived from our multi-instrument geophysical surveys, we propose that 

the Mahan Feature is the result of currently unknown historic activities. It is possible that this 

feature relates to horse training or other agricultural practices such as driving farm machinery in 

circular patterns to unroll large circular hay bales for livestock. 

2.4.2 The Denali Feature 

The Denali Feature is situated in the Inner Bluegrass region and is also located in an 

upland context dominated by residual soil development. This LiDAR anomaly represents another 

potential irregular enclosure characterized by an oval ditch-like depression approximately six-

meters wide enclosing 3.12 ha of space and numerous topographic depressions (Figure 2.9). 

Magnetic survey at Denali identified numerous variations associated with drainage scars and 

lightning strikes, as well as faint evidence for historic plow scars trending generally east-west 

(Figure 2.10). However, the magnetic signature from what we considered to be a ditch at Denali 

does not conform to the published magnetic responses to ditches at other Adena-Hopewell 

enclosures. Instead of appearing as a solid band of enhanced magnetism, the data exhibits 
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Figure 2.8.  GPR amplitude slice maps from the Mahan Feature. A.) 22-38cm below surface; B.) 33-48cm below surface.
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Figure 2.9.  LiDAR data depicting the Denali Feature. Arrows point to the potential ditch. 

Geophysical survey areas denoted and contours of small topographic rise discussed 

in text are highlighted.  
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Figure 2.10.  Magnetic data from the Denali Feature displayed at 2 standard deviations. 
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parallel lines of positive and negative magnetism. The cause of these anomalies became clear 

during the end of data collection when farm machinery entered the field and began tossing 

manure and hay from the stalls of a nearby horse barn. At this point we knew the Denali Feature 

was not a prehistoric enclosure, instead a result of tire impressions from farm machinery. Prior to 

abandoning the feature, however, we identified a small conical rise (~30 cm tall) (see Figure 

2.9). Upon reviewing the magnetic data in this location, we found the rise was associated with 

multiple magnetically-enhanced isolated anomalies beneath and around it. Because this rise 

exhibits a similar morphology to small burial mounds (see Clay 1983; Pollack et al. 2005), we 

decided to survey the feature with EMI and GPR. 

 The 50-cm coil dataset from the EMI survey depicted extensive areas of moderately low 

conductivity associated with the rise, as well as isolated areas of high magnetic susceptibility 

under and around it (Figure 2.11). Alternatively, data from the 1-meter coil revealed low 

conductivity and high magnetic susceptibility around the rise. Variations in EMI data from both 

coils likely represent sediment differences inside the rise, as well as underlying it. If this feature 

is indeed a small burial mound, the magnetic susceptibility data may reflect differences within 

and just under the rise, especially considering the rise may have been taller before historic 

plowing occurred in the area. These factors led us to hypothesize that the high susceptibility 

values we documented correlated with different sediment fills or zoned fills like those identified 

at the Walker-Noe Mound (Pollack et al. 2005). GPR survey over this area at Denali exhibits 

high amplitude reflections associated with, and around, the rise ranging from 9 to 46 cmbs 

(Figure 2.12). Some correspond with the location of magnetic anomalies (Figure 2.12d). 

Correlations between the magnetic, EMI, and GPR datasets led us to examine the 

sediments along the flanks of the rise to search for sediment fills and buried A soil horizons
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Figure 2.11.  EMI data from the topographic rise at the Denali Feature. A.) Conductivity data from 0.5m coil; B.) Conductivity data 

from 1m coil; C.) Magnetic susceptibility data from 0.5m coil; D.) Magnetic susceptibility data from 1m coil.  
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Figure 2.12.  GPR amplitude slice maps from the topographic rise at the Denali Feature. A.) Reflections from 9-21cm below surface; 

B.) Reflections from 26-38cm below surface; C.) Reflections from 34-46cm below surface; D.) Location of Oakfield soil 

cores in proximity to the topographic rise. 
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common to mound architecture in Eastern North America (Sherwood and Kidder 2011). To 

examine the sediments in the least invasive manner possible, we used an Oakfield soil core. Four 

cores were placed on the eastern and southern flanks of the rise, over magnetic and GPR 

anomalies (Figure 2.12d). We also examined the natural soil profile through one core placed 22 

meters southeast of the rise. All cores were compared to NRCS surveys of the local soil series 

(Table 2). Core One exhibited a natural soil profile in the upper 38cm, progressing through Ap, 

and Bt soil horizons natural to the Bluegrass-Maury silt loam soil series on this landform (Soil 

Survey Staff 2017). However, between 38 and 51 cmbs, sediments exhibited clear yellow clay 

mottles trending into a buried A horizon (Ab) before transitioning back into a Bt horizon that 

exhibited a natural profile (e.g., culturally sterile) to a depth of 83 cmbs. Core Two, placed 

slightly higher on the flank of the topographic rise, exhibited a natural soil profile in the upper 45 

cm. However, from 45 and 53 cmbs an Ab soil horizon was encountered. This buried horizon 

exhibited a burned reddish hue and ferrous concretions. Core Three exhibited an Ab horizon with 

fragments of burned earth between 44 and 52 cmbs. Core Four exhibited an Ab horizon 

overlaying a deep reddish-orange soil zone like the layer identified in Core Two. Core Five, 

positioned away from the rise, exhibited a natural soil sequence that fits the NRCS soil series 

description for this landform. The irregularities observed in sediments underlying this subtle 

topographic feature suggests culturally-altered sediment fills are covering an ancient land 

surface. Thus, we conclude that our research at Denali could indicate a small burial mound exists 

there.



56 

 

Table 2.2.  Sediment descriptions from Oakfield cores removed near the topographic rise at the Denali Feature. 

 

Core No. Depth (cm) Below Surface Physical Characterization Horizon Designation Sediment Colour Inclusions

0-19 Silt Loam Ap 10YR 3/3: Dark Brown N/A

19-38 Silty Clay Loam Bt 10YR 4/4: Dark Yellowish Brown N/A

38-47 Silt Loam/Clay Loam Mix Bt/C
10YR 4/4: Dark Yellowish Brown 

10YR 5/6: Yellowish Brown
Yellow Clay Mottles

47-51 Silt Loam 2Ab 10YR 4/3: Brown N/A

51-83 Clay Loam 2Bt 10YR 5/6: Yellowish Brown N/A

0-16 Silt Loam Ap 10 YR 4/2: Brown N/A

16-45 Silty Clay Loam Bt 10YR 3/4: Dark Yellowish Brown N/A

45-53 Silt Loam 2Ab 7.5YR 3/3: Dark Brown Numerous Ferrous Concretions; Burned?

53-76 Clay Loam 2Bt 10YR 5/8: Yellowish Brown N/A

0-15 Silt Loam Ap 10YR 4/3: Brown N/A

15-44 Silty Clay Loam Bt 10YR 4/6: Dark Yellowish Brown N/A

44-52 Silt Loam 2Ab? 10YR 4/3: Brown Fragments of Burned Earth

52-96 Clay Loam 2Bt 10YR 5/8: Yellowish Brown N/A

0-17 Silt Loam Ap 10YR 4/3: Brown N/A

17-58 Silty Clay Loam Bt 10YR 4/4: Dark Yellowish Brown N/A

58-66 Silt Loam 2Ab 7.5YR 4/6: Strong Brown Numerous Ferrous Concretions; Burned?

66-88 Clay Loam 2Bt 10YR 5/6: Yellowish Brown N/A

0-12 Silt Loam Ap 10YR 4/3: Brown N/A

12-64 Clay Loam Bt 10YR 5/6: Yellowish Brown N/A

1

2

3

4

5
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2.4.3 The Normandy Feature 

After investigating two possible irregular enclosures that we concluded were historic and 

modern disturbances, we began examining potential small geometric enclosures. The first we 

examined was the Normandy Feature, located in the Inner Bluegrass Region atop residual soil 

development. Normandy is characterized by a potential circular ditch-and-embankment 

enclosing 2,306.6 m2 (Figure 2.13). A modern farm road bisects the feature. Consultation with 

the landowners indicated no modern buildings were located there in recent history. Results of our 

magnetic survey suggests much historic disturbance has occurred in this area (Figure 2.14). 

Numerous metallic pipes are buried under the survey area, some of which extend to the center of 

the circle where a large monopolar anomaly is present. The outer portion of the internal platform 

is marked by numerous dipolar and monopolar anomalies consistent with a response to ferrous 

materials. Areas outside the circle exhibit a network of linear magnetic highs, possibly relating to 

compacted horse paths or subsurface disturbances. No clear magnetic anomalies were associated 

with the potential ditch or embankment at this feature. The magnetic characteristics of Normandy 

indicated it was not a Woodland enclosure. However, additional landowner consultations 

suggested no known historic architecture was buried in this area, leading us to conduct 

abbreviated EMI and GPR surveys over a sample of the magnetic survey. 

Data from both the 50-cm and 1-meter coils of the EMI survey showed little subsurface 

variation apart from responses to metal debris and metal pipes (Figure 2.15). However, data from 

our GPR survey offered an entirely different subsurface view of the Normandy Feature (Figure 

2.16). Amplitude slice maps between 8 and 89 cmbs exhibit a 5.5-meter wide band of high 

amplitude reflections. This anomaly is situated outside the internal platform identified in the 

LiDAR data, leaving a possibility that the anomaly could represent a refilled ditch. However, 
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Figure 2.13.  LiDAR data depicting the Normandy Feature. Geophysical survey areas and 

placement of 2” solid soil cores are denoted.  
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Figure 2.14.  Magnetic data from the Normandy Feature displayed at 0.2 standard deviations. 
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Figure 2.15.  EMI data from the Normandy Feature. A.) Conductivity data from 0.5m coil; B.) Conductivity data from 1m coil; C.) 

Magnetic susceptibility data from 0.5m coil; D.) Magnetic susceptibility data from 1m coil.  
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Figure 2.16.  GPR amplitude slice maps from the Normandy Feature. A.) Reflections from 23-34cm below surface; B.) Reflections 

from 39-50cm below surface; C.) Reflections from 46-57cm below surface. 
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beyond 42 cmbs the GPR data depicts linear features running toward the center of the circle that 

are not present in the EMI or gradiometer data. Thus, the question remained whether the GPR 

was depicting a ditch or deeper historic features. 

We extracted three bull auger soil cores across different portions of the feature to 

examine the soil profile at Normandy (see Figure 2.13). Cores One and Two extended only 43 

and 12 cmbs before terminating at a concrete surface. Core Three extended 94 centimeters below 

surface and exhibited a natural soil profile for the landform (Table 2.3). Therefore, we can only 

assume that the circular feature at Normandy is a concrete structure possibly associated with an 

early historic horse farm. The circular pattern of high amplitude reflections in the GPR data 

likely represents the outer boundary of this structure. The circular pattern of magnetic monopoles 

and dipoles may be iron rebar associated with the concrete structure.  

2.4.4 The Exline Feature 

After confirming that three of our LiDAR anomalies situated in the Inner Bluegrass 

Region—where most horse farms are located—were non-enclosures, we shifted focus to 

examine a topographic anomaly on the southern boundaries of the Outer Bluegrass Region. The 

Exline Feature can be characterized as a circular ditch-like depression with an exterior 

embankment-like rise enclosing 1,432.4 m2 (Figure 2.17a). Like other previously discussed 

LiDAR anomalies, Exline is situated on residual upland soils. Magnetic data from the area 

depicts faint inner and outer circular patterns. A natural gas pipeline runs through the southwest 

portion of the survey area (Figure 2.17b). EMI data from the 1-meter coil shows enhanced 

susceptibility along the exterior of the circle and low susceptibility in the ditch (Figure 2.18). 

Conductivity data from the two coil separations show low conductivity values over the potential 

embankment and elevated conductivity in the ditch. In both the conductivity and susceptibility 

data, we mapped inverse responses to what is generally observed for enclosures in the region. 
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Table 2.3.  Sediment descriptions from 2” bull auger cores removed at the Normandy Feature. 

Core 

No. 

Depth (cm) Below 

Surface 

Physical 

Characterization 

Horizon 

Designation 
Sediment Colour Inclusions 

1 

0-19 Silt Loam Ap 10YR 3/3: Dark Brown N/A 

19-43 Clay Loam B 10YR 3/3: Dark Brown 
Core Terminates in 

Concrete 

2 0-12 Silt Loam Ap 10YR 3/3: Dark Brown 
Core Terminates in 

Concrete 

3 

0-18 Silt Loam Ap 10YR 3/3: Dark Brown N/A 

18-49 Silty Clay Loam Bt1 
10YR 3/6: Dark Yellowish 

Brown 
N/A 

49-94 Clay Loam Bt2 
10YR 4/4: Dark Yellowish 

Brown 
N/A 

 

  



64 

 

 
Figure 2.17.  A). The Exline Feature depicted in the LiDAR data. B.) Magnetic data from the Exline Feature displayed at 0.25 

standard deviations. 
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Figure 2.18.  EMI data from the Exline Feature. A.) Conductivity data from 0.5m coil; B.) Conductivity data from 1m coil; C.) 

Magnetic susceptibility data from 0.5m coil; D.) Magnetic susceptibility data from 1m coil. 
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Figure 2.19.  GPR amplitude slice maps from the Exline Feature. A.) Reflections from 41-51cm below surface; B.) Reflections from 

48-58cm below surface with locations of bull auger soil cores. 
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GPR data from survey over the ditch and embankment exhibits a faint patterning in high 

amplitude reflections along the potential embankment. This pattern is most evident between 

depths of 41 and 58 cmbs (Figure 2.19). 

Although geophysical survey documented subsurface variation associated with the Exline 

Feature, no clear evidence for an enclosure was detected. To be sure this was not an enclosure, 

we extracted three bull auger soil cores (Figure 2.19b). Core One was located inside the 

enclosure to examine what should be a natural soil profile that could be compared to Core Two 

(located in the potential ditch) and Core Three (situated over the potential embankment). All 

three cores exhibited soil profiles consistent with the natural profile reported by the NRCS for 

the landform (Table 2.4). None of these cores exhibited evidence for buried A horizons or any 

irregular sediment fills that could relate to ancient human alteration. Like the potential enclosures 

discussed above, our geophysical surveys and coring regime at Exline confirmed the feature was 

not an Adena-Hopewell enclosure. We currently have no suitable explanation for this 

topographic anomaly. 

2.4.5 The Bogie West Feature 

The Bogie West Feature was identified as a ditch-like anomaly in aerial photography 

during the examination of LiDAR data adjacent to the well-preserved Bogie Circle (15Ma44). 

Situated 140-meters west of this known enclosure on a residual terrace, the potential Bogie West 

Feature is not topographically visible in LiDAR data or on the ground. However, the feature’s 

ditch-like appearance is visible in 2012 NAIP aerial photographs because of differences in 

vegetation growth (Figure 2.20). Magnetic survey of the feature revealed an enhanced magnetic 

response common at other enclosure sites in the Middle Ohio Valley. These data suggest an 

internal area measuring 1,917.2 m2 represents the internal platform where a faint circular 
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Table 2.4.  Sediment descriptions from 2” bull auger cores removed at the Exline Feature. 

Core 

No. 

Depth (cm) Below 

Surface 

Physical 

Characterization 

Horizon 

Designation 
Sediment Colour 

1 

0-15 Silt Loam Ap 10YR 3/3: Dark Brown 

15-67 Silty Clay Bt1 
10YR 3/6: Dark Yellowish 

Brown 

67-89  Silty Clay Bt2 
10YR 4/4: Dark Yellowish 

Brown 

2 

0-17  Silt Loam Ap 10YR 3/3: Dark Brown 

17-58  Silty Clay Bt1 
10YR 3/6: Dark Yellowish 

Brown 

58-93  Silty Clay Bt2 
10YR 4/4: Dark Yellowish 

Brown 

3 

0-18  Silt Loam Ap 10YR 3/3: Dark Brown 

18-63  Silty Clay Bt1 
10YR 3/6: Dark Yellowish 

Brown 

63-94  Silty Clay Bt2 
10YR 4/4: Dark Yellowish 

Brown 
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Figure 2.20.  A.) LiDAR data from the area around the Bogie Enclosure (15Ma44). B.) 2012 NAIP aerial photography from the area 

around the Bogie Enclosure (15Ma44). Note the dark green vegetation growing in a circle west of the Bogie Enclosure. 
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Figure 2.21.  A.) Magnetic data from the Bogie West Feature displayed at 0.2 standard deviations. B.) Magnetic data with ditch, 

internal post-circle, and location of bull auger cores denoted.  
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magnetic anomaly 32.7-meter in diameter is present. This may indicate the presence of a post-

enclosure (Figure 2.21). Magnetic evidence for the refilled ditch suggests the causeway opens to 

the south-southwest. No additional geophysical surveys were conducted due to the amount of 

historic alteration to this area and amount of metal debris that would limit the ability of EMI to 

detect enclosure features like embankment remnants. Furthermore, the magnetic signature of the 

ditch was clear and replicated what we observed in aerial imagery. However, we did remove a 

series of bull auger cores to examine how the ditch refilled, in addition to searching for buried 

sediment fills used in embankment construction (Figure 2.21b). Another core placed inside the 

enclosure was removed to examine the natural soil profile for the landform. Cores in the ditch 

extended roughly 1.7m below surface and exhibited alternating clay and silt loam strata. 

Ongoing sediment analyses should help inform our understandings of how the ditch refilled 

through time. In this case, magnetic survey confirmed the presence of a buried ditch first seen in 

aerial imagery and geoarchaeological coring revealed how deep the ditch was initially excavated. 

2.4.6 The Goff Feature 

The Goff Feature represents another case where 2012 NAIP aerial photography revealed 

the presence of a possible enclosure during the examination of LiDAR data near a known burial 

mound (i.e., Goff Mound). Like the Bogie West Feature, Goff Feature is not visible in LiDAR 

data, but differences in the color of vegetation growth indicated the presence of a ditch enclosing 

1,470.5m2 (Figure 2.22). Goff is located within the heavily dissected upland residual soils of the 

Knobs Region of Central Kentucky. Results of our magnetic survey at Goff revealed a faint 

circular band of enhanced magnetism amidst evidence for intensive plowing (Figure 2.23), 

confirming the presence of a site. The prominence of plow scars in the magnetic data, paired 

with the width of the ditch made us question whether intact embankment fills would exist below 

the surface, so we collected EMI data over a sample of the magnetic survey. Results of our EMI 
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Figure 2.22.  A.) LiDAR data encompassing the Goff Mound. B.) 2012 NAIP aerial photography from the area around the Goff 

Mound. Note the circular dark green vegetation growing south of the mound.  
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Figure 2.23.  Magnetic data from the Goff Feature displayed at 2 standard deviations. 
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survey exhibits no clear evidence for an embankment exterior to the ditch, suggesting that 

plowing has significantly impacted the site (Figure 2.24). However, enhanced magnetic 

susceptibility recorded near the center of the enclosure in the susceptibility data from the 1-meter 

coil may provide evidence for an activity area not visible in the magnetic data. Trench and block 

excavations conducted after our surveys revealed the ditch had a maximum depth of 2.1-meters 

below surface, terminating in unconsolidated bedrock. Refilling events associated with the ditch 

are distinct and include the deposition of sediments with dense amounts of charcoal and 

unconsolidated bedrock fragments, in addition to intact charred logs. Future analyses of these 

deposits will provide information on the timing and nature of abandonment at the Goff Circle. 

2.4.7 The Earthwalker Feature 

 The Earthwalker Feature is another potential enclosure site we identified in the 2012 

NAIP aerial photographs during our LiDAR examinations (Figure 2.25). It is positioned in the 

Knobs Region on residual upland soils. Like the Goff and Bogie West enclosures, Earthwalker is 

topographically invisible in LiDAR data but the ditch is visible in aerial imagery as dark green 

vegetation growing in a circular pattern. Results of our magnetic survey show an enhanced 

response to a ditch, confirming the presence of a site that encloses 269.85 m2 with a causeway 

opening to the northeast (Figure 2.26). Ferrous magnetic dipoles located south of the enclosure 

are likely associated with a nearby historic farmstead. EMI data collected over the enclosure 

indicates the ditch fills are low in magnetic susceptibility, but the conductivity data exhibit no 

evidence for buried intact embankment fills (Figure 2.27). Subsequent trench and block 

excavations revealed the ditch extended a maximum of 1.5-meters deep, and that the ancient
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Figure 2.24.  EMI data from the Goff Feature. A.) Conductivity data from 0.5m coil; B.) Conductivity data from 1m coil; C.) 

Magnetic susceptibility data from 0.5m coil; D.) Magnetic susceptibility data from 1m coil. 
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Figure 2.25.  A.) LiDAR data around the Earthwalker Feature. B.) 2012 NAIP aerial photography from the Earthwalker Feature. 



77 

 

 
Figure 2.26.  Magnetic data from the Earthwalker Feature displayed at 1.5 standard deviations. 
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Figure 2.27.  EMI data from the Earthwalker Feature. A.) Conductivity data from 0.5m coil; B.) Conductivity data from 1m coil; C.) 

Magnetic susceptibility data from 0.5m coil; D.) Magnetic susceptibility data from 1m coil. 
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builders of Earthwalker site excavated through multiple layers of residual shale before stopping. 

Irregular refilling sequences comprised of diverse sediment fills were identified in the ditch 

profiles. Some of these strata held large pieces of displaced shale, others contained dense 

concentrations of charcoal. Like the Goff site, the ditch deposits at Earthwalker will provide 

important information for future geoarchaeological research that examines how ditches refill at 

enclosure sites. Block excavations identified numerous post-features that extended around the 

opening of the enclosure. Some of these were set with large pieces of non-local sandstone. 

Ongoing research at Earthwalker site will focus on identifying when these posts were placed at 

the site and whether they once served as markers of the site after it was abandoned (sensu Wright 

2014). 

2.4.8 The Minerich Feature 

 The Minerich Feature is located approximately 1.5-kilometers northwest of the Bogie 

enclosures in an alluvial floodplain (Figure 2.28). We identified this circular topographic 

anomaly in the LiDAR data but were unable to gain permission to conduct geophysical survey or 

coring from the landowner. Nevertheless, the feature is 150 meters from a known burial mound 

(site 15Ma112) and exhibits a clear ditch signature in the 2012 NAIP aerial photography. The 

placement of enclosures near burial mounds is common. We identified the close placement of 

Goff Circle to Goff Mound in this research, and spatial relatedness between burial mounds and 

enclosures has been noted elsewhere in Kentucky, including the well-known Mount Horeb 

earthwork complex (Henry et al. 2014; Jefferies et al. 2013; Webb and Snow 1945:29-30). In 

addition, the rediscovery of enclosures in our current work has identified the association between 

buried enclosures and ditch patterns visible in aerial photographs from 2012 as vegetation 

differences. The correlation between the 2012 NAIP aerial photography and LiDAR-based 
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Figure 2.28.  A.) LiDAR data encompassing burial mound 15Ma112 and a potential adjacent enclosure. B.) 2012 NAIP aerial 

photography encompassing burial mound 15Ma112. Note the circular pattern of dark vegetation growth. 
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topography at the Minerich Feature provides strong evidence that the topographic anomaly 

adjacent to mound site 15Ma112 is an Adena-Hopewell enclosure. Based on the 2012 aerial 

photographs, the site encloses approximately 1,656.2 m2. 

2.5 Discussion 

Our geophysical and geoarchaeological evaluations of new possible Adena-Hopewell 

enclosure sites found during LiDAR examinations highlights the problem with relying on 

LiDAR alone to uncover and interpret archaeological landscapes in the Eastern U.S. LiDAR has 

been repeatedly demonstrated to be a powerful tool for archaeological survey, capable of 

providing otherwise inaccessible topographic data at the landscape-scale. However, using multi-

scalar approaches to consider the cultural and historical subtleties of landscapes should be 

fundamental to integrating LiDAR into any archaeological research program. As we have shown 

in our case study from Central Kentucky, LiDAR data only provides one temporal aspect of 

surface variation. 

The synchronistic perspective LiDAR provides requires archaeologists to use other 

methods that can corroborate what is being observed topographically. This is especially true in 

areas subject to a long history of diverse landscape modifications that have not been well 

documented, and where archaeological sites being investigated include monumental architecture 

made from earth. As we move forward with our investigations of the Adena-Hopewell landscape 

it is becoming clear that Historical-era ground surface modifications are requiring us to use 

more, not less, methods to reassess the density of ritual infrastructure in Central Kentucky. 

 Considerable landscape modification has occurred across urban and rural areas of the 

U.S. during the nineteenth and early twentieth centuries. While the construction and modification 

of urban spaces in the Eastern U.S. is well documented historically, landscape modification in 

rural areas is seldom documented through media such as aerial photographs or other accessible 
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historical records that archaeologists can use to corroborate LiDAR data. As our research shows, 

this creates numerous possibilities for LiDAR anomalies to exist that are morphologically similar 

to Adena-Hopewell mounds and enclosures but originate from relatively recent agrarian 

practices.  

Potential sites we examined within the Inner Bluegrass region (i.e., Mahan, Denali, and 

Normandy) were likely remnants of activities related to raising and training horses. We know 

this to be true at Denali, where we observed the farm machinery that made the topographic 

signature we were investigating. The Normandy Feature is located on a property that has been a 

horse farm since the mid-nineteenth century. The buried pipelines and concrete structure we 

encountered indicate that this LiDAR anomaly may predate aerial photographs of the area. Since 

the Mahan Feature is presently part of a horse farm, it too may be the result of the historical 

horse industry, and thus aerial photographs that document when or how it was created may not 

exist. Given how clearly these anomalies appeared in LiDAR, in the future we should pause to 

consider why other unknown potential sites were not mentioned or documented by early 

antiquarians (e.g., Constantine Rafinesque) who mapped so many enclosures and mounds in 

Central Kentucky. Nevertheless, features like Exline in the Outer Bluegrass prove that historical 

landscape features resembling Adena-Hopewell enclosures can exist away from areas with 

historical ties to the horse racing industry. This reinforces the need to conduct multi-scalar 

investigations of LiDAR data using multiple aerial and terrestrial approaches before assuming 

any topographic anomaly represents an archaeological site. 

Because the ritual enclosures built by Adena-Hopewell societies were made from earthen 

fills and not stone, their heights and shapes have been dramatically reshaped by Euro-Americans 

occupying Central Kentucky since the late-1700s. However, even heavily altered earthen 
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monuments can leave visible signatures in aerial and terrestrial remote sensing methods. For 

instance, our re-examinations of LiDAR data using aerial photographs allowed us to identify 

three enclosures (i.e., Earthwalker, Goff, and Bogie West) that exhibited no topographic relief 

because the ditches retained significantly more moisture during a heavy drought year (2012) and 

produced darker vegetation. In the case of the Minerich enclosure, which exhibited very little 

topographic relief, we could draw on multiple lines of evidence to propose it was an Adena-

Hopewell enclosure. For instance, it was situated near a known burial mound (15Ma112), 

exhibited a ditch and embankment topography visible in LiDAR, and its ditch appeared in the 

2012 NAIP aerial imagery. 

Although our work to date has only confirmed the location of four new enclosure sites, 

they correlate well with spatial attributes of known enclosures. For instance, our ongoing efforts 

to rediscover ritual infrastructure built and used by Adena-Hopewell societies indicate that all 

known enclosures in our study area are situated within a very close proximity to annually-

flowing waterways. This could indicate that waterways served as another form of infrastructure 

relating to the distribution of enclosure sites, movement across the Central Kentucky landscape, 

and transmission of ritual ideas and practices (sensu Baires 2015; Hall 1976; Sunderhaus and 

Blosser 2006; Figure 2.29). Using spatial analyses to verify our observations about the proximity 

of enclosures to water, we identified rivers and streams in Central Kentucky that flow annually1 

and measured the Euclidean distance of enclosures to those streams (Table 2.5). The furthest 

                                                 
1 We selected this flow rate based on stream gages with continuous measurement systems reported on the United 

States Geological Survey’s (USGS) stream stats website (https://streamstats.usgs.gov/ss/). Our assumption (based on 

the USGS data) is that small narrow streams in the upper sections of the Kentucky and Licking River basins—the 

two drainages in our study area where enclosures are found—will flow throughout the year if their average annual 

flow is greater than 30 cubic feet per second (cfs). Thus, any river or stream with an annual flow rate greater than 30 

cfs was selected as an annual stream to ensure both large and small annually-flowing rivers and streams in the Ohio 

River basin would be included in our measurements of Euclidean distance. All spatial calculations were performed 

in ESRI’s ArcGIS 10.5. 

https://streamstats.usgs.gov/ss/


84 

 

distance a known enclosure was built from an annually flowing stream is roughly 4 km; for 

enclosures identified in this study the furthest distance is 3.4 km. These distances could easily be 

covered on foot in less than half a day, which indicates that proximity to water was a crucial 

aspect to the placement of enclosures. While we acknowledge the functional benefits of 

proximity to water during laborious construction projects like building earthen monuments, 

Hudson’s (1976) compilation of perspectives on rivers and streams among indigenous societies 

in the Southeast highlight their association with ritual ideas and practices. They include: 

personhood, purification, human longevity, underworld entities common to Amerind myths and 

cosmologies, as well as general access to underworlds (see also Carr 2008). Therefore, we 

should recognize the combined and multivalent importance of waterways and enclosures to 

facilitate the movement of people, materials, and ideas across space and time. This is especially 

true if we consider enclosures as sites of, and for, indigenous pilgrimages during the Middle 

Woodland period (Carr 2006; Lepper 2004, 2006; Wright and Loveland 2015). From this 

perspective, positioning enclosures near waterways may imply they served as stopping points on 

travel routes to larger pilgrimage centers (e.g., those in the Scioto Valley of Ohio). However, 

future research focused on whether enclosures were all constructed within a small amount of 

time will be needed to support this interpretation. Nevertheless, the enclosures we have identified 

provide a series of sites to begin exploring and testing such questions at a landscape scale. 

2.6 Conclusions 

There is no doubt LiDAR is a powerful tool capable of providing incredible topographic 

data that can be integrated into landscape-scale research in archaeology. We agree with others 

(e.g., Chase et al. 2012) that having access to these compelling geospatial tools has triggered a 

revolution in how we think about issues of space and scale in archaeology. However, as 

archaeological practitioners and consumers of geospatial tools like LiDAR we must remain
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Figure 2.29.  Location of known enclosures and newly identified enclosures related to annual flowing waterways in Central Kentucky. 
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Table 2.5.  Euclidean distance of known and newly identified enclosures to annual-flowing waterways in Central Kentucky. 

 Site Distance to Annual Waterway (km) 
 Minimum 

(km) 

Maximum 

(km) 

Mean 

(km) 

New Enclosures 

Bogie West Circle 0.285 

0.146 3.420 1.728 
Minerich Circle 0.146 

Earthwalker Circle 3.059 

Goff Cricle 3.420 

Known 

Enclosures 

LeBus Circle 0.075 

0.075 4.062 1.265 

Winchester Farm 0.300 

Peter Village 0.601 

Mount Horeb Circle 0.100 

Bogie Circle 0.293 

15Ma25 4.062 

15Ck363 2.460 

Nelson-Gay Mound & 

Circle 
0.351 

15Mm30a 2.674 

15Mm30b 2.674 

15Wd2 0.090 

15Ms4 1.498 
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vigilant in maintaining a responsibility to critically examine these datasets before building 

interpretations from them. Using multi-scalar approaches to consider the cultural and historical 

subtleties of landscapes being studied should be fundamental to integrating LiDAR into any 

archaeological research program. As we have shown in our case study from Central Kentucky, 

LiDAR data only provides one temporal aspect of surface variation. 

The synchronistic perspective LiDAR provides requires archaeologists to use other 

methods that can corroborate what is being observed topographically. This is especially true in 

areas subject to a long history of diverse landscape modifications that have not been well 

documented, and where archaeological sites being investigated include monumental architecture 

made from earth. Our ongoing efforts to rediscover ritual infrastructure built and used by Adena-

Hopewell societies indicate that enclosures are built within a very close proximity to annually-

flowing waterways. Further GIS-based spatial analyses will be crucial to further interrogating 

Kentucky’s LiDAR data and our continued assessment of potential Adena-Hopewell 

monuments. Integrating these sorts of spatial data into our examinations of LiDAR data should 

help restrict the number of sites we have identified as potential enclosures. In fact, the 

application of spatial modelling presents another methodology that could help frame multi-

method analyses of LiDAR datasets. As we move forward with our investigations of the Adena-

Hopewell landscape it is becoming clear that historic-era ground surface modifications are 

requiring us to use more, not less, methods to reassess the density of ritual infrastructure in 

Central Kentucky. 
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Chapter 3 
Ritual Dispositions, Adena-Hopewell Enclosures, and the Passing of Time: 

A Monumental Itinerary for the Winchester Farm Enclosure in Central Kentucky, USA 

Edward R. Henry, Natalie G. Mueller, and Mica B. Jones 

3.1 Introduction 

The essential foundations of archaeology include a focus on understanding change among 

landscapes, sites, people, and artifacts. As Roberta Gilchrist (2000) remarked, the advantage 

archaeology holds over history lies in our ability to work with and understand great depths of 

time. Yet, in contrast with history, archaeology has a harder time tacking back and forth between 

short and long timescales in a manner that allows us to create constructive understandings of the 

past (Pauketat and Alt 2005; Wylie 1989, 2002:161-7). In fact, apart from our understandings of 

individuals derived from bioarchaeology, we have only recently begun to explore scales of time 

that individual humans would have experienced through methods such as Bayesian chronological 

modeling (Bayliss 2009; Bronk Ramsey 1995, 2009; Buck and Meson 2015; Litton and Buck 

1995). Archaeologists cannot afford to ignore the importance of understanding the thick and thin 

of time as it relates to social change, because it is at the intersection of these intervals that we can 

identify the impacts history and cultural process have within society. Recent research suggests 

that, in conjunction with American Indian community outreach, working toward these forms of 

archaeological understanding can potentially serve a therapeutic role (Schaepe et al. 2017). That 

said, the degree to which we can use material culture to identify change in the ways humans 

orient themselves socially with respect to cultural norms and rules is often limited to the data 

available from the diverse scales at which archaeology takes place. This becomes problematic 

when research centers on very durable archaeological remnants that exist for centuries or 

millennia, such as monuments, heirlooms, or socially-important natural places on a landscape. In 

these cases, only identifying when monuments are constructed, natural locales become socially 
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significant, or objects become heirlooms neglects the long-term changes in social dispositions 

(e.g., values, meaning, attitudes) attached to these things as new cultural contexts develop 

through interactions with diverse people and other things. 

When archaeologists can trace changes in the ways socially-situated objects and places 

are regarded over long periods of time, it is possible to situate our analyses within the realm of 

life histories or biographies (sensu Gosden and Lock 1998; Gosden and Marshall 1999; Holtorf 

1998; Kolen et al., eds. 2015; Kopytoff 1986; Meskell 2004; Walker 1999, 2002; Zedeño 1997). 

It is not easy for archaeologists to successfully establish biographical understandings of places, 

people, and objects. Nevertheless, doing so facilitates the ability to create thick levels of 

description about the past that Geertz (1977) advocated for many years ago, and archaeologists 

are now achieving (Baires and Baltus 2017; Pearson and Meskell 2014; Weismantel and Meskell 

2014; Wright 2014a). These detail-rich understandings of the past provide an opportunity to go 

beyond describing what transpired in the past, and instead begin examining causal effects of 

human-thing and thing-thing entanglements (Hodder 2011, 2012). As Mills and Walker 

(2008:10-13) have noted, the genealogy of the biographical approach is diverse. Archaeologists 

have used a variety of terms and approaches to highlight the ways social attachments to places 

and things emerge and shift through time, sometimes becoming ways to remember or forget 

resolved understandings of the past through various kinds of memory work (Mills and Walker, 

eds. 2008; Mixter and Henry 2017). They include: ‘life histories’ (Holtorf 1998, 2002; LaMotta 

and Schiffer 2001; Schiffer 2002; Walker 1999, 2002), speak of various kinds of ‘deposition’ 

(Baires and Baltus 2017; Kassabaum and Nelson 2016; Nelson and Kassabaum 2014; Pollard 

2001, 2008; Richards and Thomas 1984), and trace historical changes in the social attitudes 

toward objects and places to create ‘biographies’ or ‘itineraries’ (Bayliss et al. 2016; Hamilakis 
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1999; Joyce 2012; Joyce and Gillespie 2015; Kolen et al., eds. 2015; Lillos 1999; Meskell 2004). 

These approaches are not exactly congruent with one another, but they seek to delineate changes 

in what Ashmore (2002) refers to as social “decisions and dispositions” across time and space. 

In this paper, we work toward a biographical approach to earthen monuments that 

historicizes the actions of pre-Columbian American Indian societies in eastern North America. 

We borrow from many of the diverse concepts on biographies and itineraries in archaeology that 

complement relational perspectives and worldviews held by American Indians whereby people, 

places, and things work in concert to arrange and transform societies through time (Deloria, Jr. 

1992; Norton-Smith 2010; TallBear 2015; C. Watts 2013; V. Watts 2013). Our approach 

employs a socially-centered geoarchaeology that seeks to understand how earth was manipulated 

during the construction of, and interactions with, monuments (Contreras 2014; Jusseret 2010; 

McAnany and Hodder 2009; Kidder and Sherwood 2017; Roos and Wells 2017; Sherwood and 

Kidder 2011), and explores the temporality of these interactions by using highly precise 

understandings of time derived from the Bayesian chronological modeling of radiocarbon dates 

(Bayliss 2009, 2015; Bronk Ramsey 1995, 2009a; Buck 1999; Buck and Meson 2015; Littleton 

and Buck 1995). 

We apply this approach to examine—in detail—one of the most prevalent institutions of 

the Adena-Hopewell world (cal 500 BC–AD 500): the geometric earthen enclosure. Data 

obtained during our work at the Winchester Farm enclosure in Central Kentucky, USA (Figure 3. 

1) allows us to identify changes in social activities that occurred at the site before, during, and 

after its construction. Furthermore, we can situate these activities within a precise temporal 

sequence that shows how the monument, and past behaviors associated with it, influence late 
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Figure 3.1.  Sites and regions discussed in Chapter 3. 
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behavior and have identified clear evidence that the site was ritually closed through an 

intentional deconstruction event. Drawing upon analyses of geoarchaeological data, artifacts, and 

Bayesian chronological models, we outline an itinerary for Winchester Farm enclosure that 

highlights how social groups and objects became entangled within changing forms of 

cooperative ritual action at the site for roughly a millennium. Our work reveals what influence 

the enclosure, and objects bounded within it, had on these gatherings through time. 

3.2 Archaeological Circuits: Multiple Approaches to a Detailed Past 

3.2.1 Approaching Biographies and Itineraries of the Past 

 Creating biographical understandings of the different ways humans valued and interacted 

with durable things and places over long periods of time is challenging. Perhaps due to the 

intricacies of identifying and understanding shifts in the cultural contexts and relationships 

between humans and things through time, many approaches to the long-term studies, or life 

histories, of materials and materiality have emerged in archaeology. Many of these approaches 

cite the work of Kopytoff (1986) who was among the early sociocultural anthropologists 

interested in the roles things played in the creation and maintenance of social relationships (cf. 

Appadurai, ed. 1986). His emphasis on the different ways meaning and value are attributed to 

things through time and space underscored the importance of recognizing different statuses 

attached to objects, commodities, and people throughout their life history. Being able to identify 

and understand these changes can expose the ways society is constructed on notions of people 

and objects simultaneously (Kopytoff 1986:90). An emphasis on examining the life history of 

material culture to trace changes in social attitudes toward objects and places has influenced 

many branches of archaeology, including the Behavioral approaches (cf. LaMotta and Schiffer 

2001; Schiffer [1976] 2002) that seek to examine links between sequences of material 

acquisition, artifact production, use, recycling, and deposition, as well as the recovery of artifacts 
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by archaeologists (LaMotta and Schiffer 2001; Schiffer [1976] 2002; Walker 1999, 2002; 

Walker and Lucero 2000; Walker and Schiffer 2006). These entire ‘life histories’ of artifacts 

(spanning their systemic and archaeological contexts) elucidate ‘behavioral chains’—what one 

can use to infer past human activity and the formation of the archaeological record (Walker and 

Schiffer 2006:71). 

Archaeologists such as Walker (1999, 2002) use this approach to study ritual practices in 

the American Southwest, focusing on how everyday objects were transformed into powerful 

ritually-charged items. He argues that ritual objects even take on after-lives when they are 

deposited in meaningful places like the floors and walls of kivas during ritual closing (i.e., 

deconstruction) activities. From this perspective, the life history of an object can be traced from 

its production, to use, and later deposition in a sacred place, with the assumption being that 

during this process the object (e.g., a ceramic pot or projectile point) becomes a different, 

potentially more powerful, object in society. Another important aspect of the behavioral life 

history approach is the notion of cadenas. Cadenas reference the diverse social spheres that 

interact with an object throughout its life history (Walker and Schiffer 2006:71-3). This includes 

various people, other objects, and different places and seeks to place equal social and analytical 

significance on people and things, following perspectives from the ontological turn (e.g., Barad 

2003, 2007; Gell 1998; Latour 1993, 2005). 

The emphasis on symmetry underlying the social roles and life histories of humans and 

things (sensu Olsen 2010), adds another viewpoint on biographical understandings of the past. 

What archaeologists refer to as object biographies involves ascertaining information such as the 

social context within an object originated and how it was used (Gosden 2005; Gosden and 

Marshall 1999). These pieces of information become jumping off points to explore the 
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movement of objects from their origins and serve to inform archaeologists what social changes 

an object endures and how it influences specific cultural and historical contexts (Holtorf 2002). 

In this sense, Gosden (2005:193) reminds us to consider, “the obligations objects place upon us 

when they are operating as a group.” Thus, object biographies provide archaeologists insight to 

the important and influential roles objects such as heirlooms, figurines, or repurposed stone 

carvings had in society (Joyce 2012; Lillos 1999; Meskell 2004; Meskell et al. 2008). Most 

recently, archaeologists have pushed this idea in two different directions. The first emphasizes 

itineraries rather than biographies of objects. Itineraries focus on the paths of movement and 

stasis objects encounter as they influence social fields and actions in the past, as well as in the 

present, when they become the center of archaeological inquiry (Joyce and Gillespie, eds. 2015; 

Joyce 2012, 2015). This avoids the need to focus on the ‘birth’, ‘life’, and ‘death’ cycles of 

objects since it is challenging to access these stages archaeologically. Furthermore, object 

itineraries realize death and life metaphors are counterproductive. Instead, more attention can be 

given to the association of spatial and temporal relationships objects help produce (Joyce and 

Gillespie 2015:11-12). The second direction archaeologists are taking with combined notions of 

materiality and temporality situates objects within the framework of multiplicity coming from 

science studies (e.g., Mol 2002, 2006). For Merion Jones et al. (2016:126-7), objects are always 

in a state of instability and becoming, which creates multiple meanings and contexts, leading to 

multiple social productions of the object itself. This notion is akin to the ways some researchers 

describe personhood on ‘dividual’ terms (e.g., Fowler 2004). Citing commonalities with actor-

network concepts, Merion Jones et al. (2016:127) states that their approach seeks to, “emphasize 

that objects are composed of multiple relations, and to emphasize the symmetry between subjects 

and objects.” 
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Of course, understanding how or why objects were deposited helps support broader 

claims to their biographies or itineraries. Depositional perspectives can be traced to the work of 

Richards and Thomas (1984) who argued that ritual deposition was structured differently than 

everyday refuse deposits (i.e., an ‘everyday’ midden). Deposition is also important to Behavioral 

archaeologists through a pursuit to examine the formation process of the archaeological record 

(e.g., LaMotta and Schiffer 2001:40-7; Walker 2002; Walker and Lucero 2000). The importance 

of understanding deposition when considering the itinerary of an object or place centers on 

identifying human intentionality over natural post-deposition processes, as Richards and Thomas 

(1984:214-15) emphasized. However, as Pollard (2001, 2008) notes, any act of disposal or 

deposition requires a negotiation between the body, materials being engaged, and the physical 

and cultural environmental contexts in which deposition occurs. Following Brück (1999), Pollard 

(2008) argues against placing depositional practices in a sacred/secular dichotomy. Instead, he 

notes that all depositional practices fall within a functional domain that is meant to explore and 

negotiate the complex and constantly shifting obligatory relationships between people, animals, 

and things (Pollard 2001:328-30; 2008:58-9)—a point made by Meskell et al. (2008) in their 

study of figurines recovered from communal depositional contexts at Çatalhöyük. 

These diverse views offer multiple lenses through which one can situate the study of 

deposition, behaviors, and place-based object itineraries as they relate to earthen monuments. 

Moreover, they complement common themes in American Indian relational philosophies on 

places and time (Basso 1996; Deloria, Jr. 1992; Hunt 2014; Norton-Smith 2010; Tallbear 2015). 

Among the place-time notions advocated for by American Indian scholars is an emphasis on the 

unified importance of objects, places and people in the creation of society and the impetus for 

social change. The creation histories of American Indian Nations underline these important 
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connections and archaeology that integrates oral histories and traditions into their interpretations 

can create what Echo-Hawk (2000) calls ancient American history. Watts (2013:26) argues that 

oral histories reside in place-thought, or the integration of particular places and events that were 

the result of actions made by humans and non-humans. By centering our work within a Bayesian 

chronological framework supported by a socially-focused geoarchaeology, we seek to identify 

and explore how objects, places, and humans become influential to the arrangement and 

transformation of social contexts over long periods of time.  

3.2.2 Social Geoarchaeology, Bayesian Chronologies, and the Biographical Approach 

As a set of methodological tools in archaeology, geoarchaeologists typically focus on 

delimiting site stratigraphy and formation processes, as well as environmental and climatic 

changes that societies responded to through time (Dalan and Bevan 2002; Goldberg and 

Macphail 2006; Kidder et al. 2018; Shahack-Gross 2017; Tolksdorf et al. 2013; Wegman et al. 

2013; Woodson et al. 2015). This is indeed crucial information for understanding how social 

fields are arranged and transformed, in addition to how depositional activities were organized 

and carried out. However, geoarchaeologists are increasingly calling attention to the ways the 

discipline can explicitly address issues of social organization and change at multiple scales of 

analysis (Contreras 2017; Kidder and Sherwood 2017; Jusseret 2010; McAnany and Hodder 

2009; Milek and Roberts 2013; Roos and Wells 2017; Sherwood and Kidder 2011; Van Keuren 

and Roos 2013). In these studies, the analysis of formation processes, sediments, and soils are 

used to illuminate larger patterns of human behavior that can be linked back to broader 

anthropological and social questions. Roos and Wells (2017:1002) use the term behavioral 

geoarchaeology to align their geoarchaeological approach with the emphasis on life histories 

from Behavioral Archaeology. However, following Roddick (2015) we employ the term social 

geoarchaeology to accentuate the ways soils, sediments, and geologies themselves help 
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constitute and rearrange social fields. This approach aligns with notions of social stratigraphy as 

defined by McAnany and Hodder (2009), and like Conneller (2011), seeks to show how 

materials (in this case geological materials like rocks, clays, and minerals) matter to the 

formation of social fields.  

Kidder and Sherwood (2017; see also Sherwood and Kidder 2011) have emphasized the 

importance of understanding the construction of earthen monuments as more than ritual practices 

that communicate social relationships, and instead considering their construction as the actual 

production and innovative recombinations of social relationships. Therefore, thorough 

geoarchaeological examinations of depositional practices in mounds, including how they may 

have been used differently through time, are paramount to studying the itineraries of earthen 

monuments in the eastern U.S. Soils and sediments used to construct these landscape features 

were routinely mined for their color and texture, in addition to being manipulated to create 

unique combinations of loads and fills during the ongoing processes of construction and 

refurbishment (Charles et al. 2004; DeBoer 2005; Sherwood and Kidder 2011; Pursell 2013; Van 

Nest et al. 2001). The performative acts required to build ritual infrastructure like earthen 

monuments bundled together the social roles of humans and substances in ways that initiated 

networks of action. Extending beyond the initial act of construction, such networks of action 

became resolved understandings of the past and were drawn upon at later times to negotiate the 

continuation, or rearrangement, of social fields (Henry 2017). Thus, the complex itineraries of 

sediments used to build earthen monuments affect more than the functional placement and 

persistence of mounds on the landscape (Kidder and Sherwood 2017:1095) they manipulated 

social and ritual dispositions through time. 
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The tempos and rhythms of change in social practices associated with earthen monuments can be 

used to identify stasis and shifts in social dispositions. However, it is important to understand 

time as precisely as possible when tracing itineraries in the past. Therefore, we apply Bayesian 

statistical methods to model different phases of social activity that are evident archaeologically. 

We use our case study of Winchester Farm, an Adena-Hopewell geometric earthen enclosure, to 

operationalize this approach. Our work at the site has identified how this place existed as a nexus 

for multiple overlapping social groups for roughly a millennium. During this time, the landform 

where Winchester Farm was built was first a locale where people from diverse distances shared 

experiences tied to small-scale feasting and pilgrimage journeys. Later, a shift in monumentality 

and ritual action took place, followed by a long period of durable attitudes toward site 

preservation. Finally, the site was ritually closed through a period of intentional deconstruction. 

We outline evidence for these changes by situating the Winchester Farm enclosure within its 

cultural context and describing our recent work at the site. We then present our methodological 

approach to the site and explain our understandings of the archaeological contexts identified 

through our excavations. The subsequent presentation of our Bayesian models for the enclosure 

allow us to outline the temporality of shifting ritual dispositions at the site. We end by discussing 

the monumental itinerary for Winchester Farm, showing how the history of human and non-

human interactions at the site influenced each phase of use. 

3.3 The Winchester Farm Enclosure: An Adena-Hopewell Monument 

 Toward the end of the Early (cal 1000–200 BC) and beginning of the Middle Woodland 

(cal 200 BC–AD 500) periods in the Middle Ohio Valley of eastern North America, a major 

surge in social and religious elaboration occurred. Novel ritual practices, including the first 

appearance of burial mounds and earthen enclosures, materialized alongside the intensification of 

ceramic technologies and the domestication of starchy-seed food crops (Abrams and Freter, eds. 



109 

 

2005; Applegate and Mainfort, eds. 2005; Charles and Buikstra, eds.  2006; Carr and Case, eds. 

2005; Dancey and Pacheco, eds. 1997; Fritz 1990; Gremillion 2004; Milner 2004:54-96; Mueller 

2018; Smith 2001; Webb and Snow 1945). Archaeologists traditionally separated this cultural 

florescence into two phases: Adena (cal 500 BC-AD 250) groups, defined by smaller less 

complex material culture, were once considered to be a precursor to the more complex Hopewell 

(cal 200 BC-AD 500) societies of central Ohio. However, modern chronological considerations 

have noted that the timing of Adena significantly overlaps with traditional Hopewell sites, 

making the boundaries of these typological constraints blurry (Hays 2010; Lepper et al. 2014; 

Railey 1996). For these reasons we use the term Adena-Hopewell to recognize the likelihood that 

differences in material culture may relate to temporal differences but were almost certainly 

related to different situationally-based social contexts and historical contingencies archaeologists 

have yet to identify. The tension between time and Adena-Hopewell material culture is 

especially evident in our understandings of earthen enclosures. 

Alongside burial mounds, geometric earthen enclosures (large and small) are the most 

prevalent landscape features of Adena-Hopewell societies in the Middle Ohio Valley. However, 

partially due to their scale—they can be multiple hectares in size—and the general absence of 

internal features, they remain somewhat enigmatic; usually only the details of their construction 

are left to be examined (Mainfort and Sullivan 1998:1). Enclosures vary in size and shape, with 

small to moderate-sized sites usually built like henges in western Europe (Burks 2014; Burks and 

Cook 2011; Gibson, ed. 2012). This included excavating a ditch in a near-complete geometric 

shape and mounding the sediments outward to create an embankment. This construction 

technique isolated an internal platform for ritual activities that was accessible via a causeway left 
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from an unexcavated portion of the ditch. The embankments of the largest enclosures were 

constructed from various sediments without the excavation of adjacent ditches (see Lynott 2015). 

Often, the interior spaces of geometric enclosures are virtually devoid of material culture 

(see Henry 2011; Webb 1941). However, sometimes burial mounds and wooden post-enclosures 

were constructed inside the embankments, and archaeologists have identified a scant number of 

deposits where exotic craft items, presumably used in ritual practices and offerings, were 

recovered (Brown 2012; Lynott 2015; Wright and Loveland 2015). Many enclosures have 

alignments with astronomical events like solstices and equinoxes or lunar maximums and 

minimums (Hivley and Horn 2013; Romain 2000; Turner 2011). Together, these lines of 

evidence have led archaeologists to interpret these places as the delineation of sacred space—

possibly pilgrimage centers (Lepper 2004, 2006)—where periodic ritual gatherings probably 

emphasized world renewal (Byers 2011; Carr 2005; Clay 1998; Lynott 2015; Sunderhaus and 

Blosser 2006). Small enclosures were integrated into the planning principles of larger enclosure 

complexes (see Plate XXV from Squire and Davis [1848]1998 for examples from the Newark 

earthworks) but also situated apart from larger social centers. This indicates large and small 

enclosures may have served different ritual purposes and were used for diverse social situations.  

However, these kinds of interpretations are hard to support; very few enclosures have 

been securely dated in a way that allows archaeologists to contemplate their historical 

trajectories with respect to their Adena-Hopewell builders and later inhabitants of the landscape. 

However, Burks and Cook (2011) have compiled available chronometric information on 

enclosures and suggest that small circles were the first enclosure forms to appear, followed by 

more intricate forms and clusters of small enclosures before the largest multi-form enclosures 

were built. The significance of Adena-Hopewell monuments to later inhabitants of the landscape 
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is even more ambiguous. While the ‘intrusive’ reuse of burial mounds by pre-Columbian Late 

Woodland (cal AD 500-1000) societies, as well as Historic-era American Indian Nations, has 

been documented in the eastern U.S. (Seeman 1992; Mann 2005), very little information exists 

on how enclosures were regarded by social groups after roughly cal AD 500. Because of this 

temporal ambiguity our work at the Winchester Farm site specifically focused on seeking 

evidence for the long-term historical significance of the site. 

3.3.1 The History of Research at Winchester Farm 

Winchester Farm is one of six earthen monuments that antiquarian Constantine 

Rafinesque ([1821]1949, 1820) mapped north of present-day Lexington, Kentucky (Figure 3.2). 

Known today as the Mount Horeb Complex, this landscape includes small burial mounds (Webb 

and Haag 1947), a large irregular enclosure (9.2 ha) known as Peter Village (Clay 1985), and the 

well-known Mount Horeb enclosure that was excavated in the early twentieth century (Webb 

1941). These mounds and enclosures have become foundational to understanding Adena-

Hopewell societies, and especially enclosures, south of the Ohio River (Clay 1987, 1991, 1998; 

Webb and Snow 1945). However, much of what archaeologists now know of this complex 

originated before chronometric dating techniques. Therefore, the historical understanding of 

monument construction is poorly understood. For example, despite the near total excavation of 

the Mount Horeb enclosure (Webb 1941), only 11 artifacts were recovered. Information obtained 

from excavations proved that this site was probably built in one phase and a post-enclosure 

roughly 30 m in diameter once lined the interior space. One unique aspect of the post-enclosure 

was that it was a complete circle with no clear gap for entrance or exit (Webb 1941:154-55). This 

point will become important to our discussion at the end of this article. 
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Figure 3.2.  A.) Portion of Rafinesque’s 1820 map of the Mount Horeb area. Enclosures denoted. 

Image courtesy of University of Kentucky Special Collections Library B.) 1.5 m 

LiDAR imagery showing present-day topographic variation from enclosure sites. 
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After Rafinesque’s cartographic exploration of the Mount Horeb landscape, no 

archaeological research was carried out at Winchester Farm until 1985 when the site was mapped 

by George Milner and Richard Jefferies to identify micro-topographic changes (Jefferies et al. 

2013:97-8). Their work revealed the subtle ditch-and-embankment topography first described by 

Rafinesque, but also identified a small 15 cm rise at the center of the enclosure’s interior space. 

This feature is slight but visible in modern LiDAR data (Figure 3.3d) and corresponds to 

elevated levels of magnetic susceptibility mapped during recent geophysical surveys of the site 

(Jefferies et al. 2013) (Figure 3.3c). Geophysical data clearly show the site, enclosing ca. 317 m2, 

is a ‘squircle’ (square with rounded corners) as defined by Burks (2015, 2017). This earthwork 

form is ubiquitous across central Ohio (Burks 2017, 2015, 2017; Burks and Cook 2011) but has 

only been found outside of Ohio at the Garden Creek site in western North Carolina (Horsley et 

al. 2014; Wright 2014), near present-day New Castle in east-central Indiana (Cochran and 

McCord 2001; McCord and Cochran 2008), and Winchester Farm (see Fig. 1). Our excavations 

at Winchester Farm built on the geophysical and mapping work of Jefferies et al. (2013) with the 

explicit goals of understanding the site biographically—when it was constructed, how and for 

how long the site was used, and finally, to learn when the site was abandoned. 

3.4 Methodologically Considering the Itinerary of an Enclosure 

 Our approach to understanding the itinerary of the Winchester Farm site required us to 

obtain many lines of evidence from diverse excavation contexts at the enclosure. Excavations 

were conducted by hand and all excavated materials were passed through 0.635 cm mesh. This 

included a 1 m x 16 m trench across the ditch and embankment of the enclosure (Figure 3.4). 

Inside the enclosure, two 1x2 m units were excavated at a right angle to our trench to examine 

the outer boundary of the interior platform. Lastly, a 14 m2 excavation block overlying the 
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Figure 3.3.  Geophysical data from Winchester Farm A.) Magnetic gradiometer B.) Conductivity C.) Magnetic Susceptibility D.) 

Topographic profile of the enclosure from LiDAR imagery. 
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Figure 3.4.  Excavation areas (red) overlaid onto magnetic gradiometer data.  
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topographic rise was situated at the center of the enclosure. We recovered artifacts, 

archaeobotanical, and zooarchaeological data from the enclosure, in addition to 

geoarchaeological data from the embankment and ditch. These datasets allow us to explore how 

the site was constructed, used, and what happen after the initial use of the enclosure ended. 

3.4.1 Geoarchaeological Data from Winchester Farm 

We recorded the physical characterizations of sediments and collected sediment and 

flotation column samples from two contexts in our large trench, the embankment and ditch. 

Samples from the sediment column in the ditch and embankment were subjected to analyses of 

mass magnetic susceptibility (χ), frequency dependence of susceptibility (χfd), loss-on-ignition 

(LOI), particle size (ldPSA), and geochemical properties (i.e., P and Ca)2. Magnetic 

susceptibility and frequency dependence studies have been shown to demonstrate links between 

the enhanced magnetism of soils and human-related activities like subtle fire regimes, midden 

accumulation, and the deposition of magnetically-enhanced artifacts (e.g., burned daub and 

ceramics), in addition to long-term natural pedogenic processes and landform stability (Dalan 

2006, 2008; Dalan and Banerjee 1998; Dalan and Bevan 2002; Dearing 1999; Dearing et al. 

1996; Lowe et al. 2016a,b; Park et al. 2012). LOI studies are usually applied in environmental 

studies to examine the percent of organic content (OM%) and calcium carbonate (CaCO3%) in 

sediments (Dean 1974; Heiri et al. 2001; Milek and Roberts 2013; Santisteban et al. 2004; 

Tolksdorf et al. 2013), which can be used to infer patterns of landform stability via pedogenic 

                                                 
2 Mass magnetic susceptibility (χ), loss-on-ignition (LOI), and particle size (ldPSA) analyses were conducted at the 

Geoarchaeological Laboratory at Washington University in St. Louis by ERH. Magnetic susceptibility data were 

collected using a Bartington MS3 unit and the MS2B sensor. LOI data were collected following the methodologies 

outlined in Dean (1974), Heiri et al. (2001), and Santisteban et al. (2004). Sediment particle size was measured using 

laser diffraction (see Blott and Pye 2006; Eshel et al. 2004; Sperazza et al. 2004) with a Micromeritics Saturn 

Digisizer II. Geochemical analyses were conducted at the University of Kentucky’s Soil Testing Laboratories in 

Lexington, KY (http://soils.rs.uky.edu) using ICP (inductively coupled plasma spectroscopy) and are presented here 

in parts-per-thousand (ppt) (see: http://soils.rs.uky.edu/tests/methods.php#Routine for more information). 

http://soils.rs.uky.edu/
http://soils.rs.uky.edu/tests/methods.php#Routine
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development and human occupation debris (OM%), or periods of aridity and the deposition of 

ash and calcined bone (CaCO3%). Particle size analyses determine the percent of clast size (e.g., 

sand, silt, clay) that comprise a given soil or sediment. Understanding particle size can help 

geoarchaeologists determine what kinds of depositional processes occurred and how much 

pedogenic activity has transpired (cf. Canti 2015:37-8). Geochemical analyses can provide 

archaeologists with an understanding of a sediment’s geological origins and provide insight into 

how much humans have altered a depositional context (see Canti and Huisman 2015:100-2). We 

focused on phosphate (P) and calcium (Ca) for several reasons. First, P can be used to examine 

how humans altered the organic content of soils and sediments and can be paired with 

considerations of Ca to search for stratigraphic contexts where ash deposition has occurred (see 

Holliday and Gartner 2007; Roos and Nolan 2012; Van Keuren and Roos 2013). Because the 

bedrock geology underlying the Winchester Farm enclosure is limestone (i.e., calcium 

carbonate—CaCO3), Ca was also examined in conjunction with CaCO3% to help examine the 

depths at which sediments originated.  

3.4.2 Archaeobotanical and Zooarchaeological Data from Winchester Farm 

 The Adena-Hopewell florescence has been associated with broader trends of reliance on 

domesticated plants native to North America. Often referred to as the Eastern Agricultural 

Complex (EAC) (see Struever 1962; Struever and Vickery 1973), this suite of starchy and oily 

seeded plants is typically found in Middle Woodland contexts. Recently, archaeologists have 

argued that mound centers may be one venue where knowledge about the EAC was exchanged 

(Mueller 2013, 2018). We collected flotation column samples from the ditch and collected 

sediment from features encountered inside the enclosure to search for plant remains that might 
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provide clues as to how people used the site.3 Excavations over the topographic rise inside the 

Winchester Farm enclosure recovered a diverse assemblage of faunal remains. Concentrations of 

faunal debris are not typically found inside enclosures. However, feasting is often discussed as a 

common social mechanism in Middle Woodland societies of the Ohio Valley and Southeast 

(Carr 2005; Wright 2017). Medium to large mammals often dominate faunal assemblages at sites 

in the Eastern U.S., with deer comprising a large portion of most assemblages (Jackson and Scott 

2002). Fauna from Winchester Farm was sorted, quantified, and analyzed following 

zooarchaeological methods common to North America (Kelly 1997; Reitz and Wing 2008).4 

3.4.3 Artifact Analyses at Winchester Farm 

 We recovered small amounts of ceramic, lithic, and ‘special use’ artifacts from our 

excavations. Ceramic sherds were classified according to size, major temper type, sherd type 

(e.g., rim, body, basal), and surface treatment. Measurements of weight and diagnostic features 

(e.g., wall, rim) were also recorded. When possible, sherds were assigned to type descriptions for 

cultural phases. Lithic debitage was assessed for raw material type and assigned to a stage in a 

general bifacial reduction typology. What we refer to as ‘special use’ artifacts include items like 

pipe fragments, quartz crystal, celt fragments, and other geologic specimens that have some 

                                                 
3 Archaeobotanical analyses were carried out by NGM. In total, 94.25 L of sediment were floated. Light fractions 

were weighed and passed through nested sieves (2 mm, 1.4 mm, 0.71 mm, and 0.425 mm) to ease the process of 

sorting and analyzed according to North American standards discussed in Fritz (2005). All wood charcoal, nutshell, 

and other unidentifiable plant fragments larger than 2mm were sorted and weighed. Seeds/fruits and seed/fruit 

fragments greater than 2mm would have been both weighed and counted, but none were present. Only seeds/fruits 

and fragments of seeds/fruits were pulled from materials smaller than 2mm. All material larger than 0.71mm was 

scanned for identifiable plant remains. One-third of each fraction from the 0.425mm sieve was subsampled because 

of the dearth of identifiable seeds. None of these subsamples contained identifiable plant remains, so the remaining 

two-thirds of the 0.425mm fractions were not scanned. Heavy fractions were not analyzed for this analysis. There 

were two samples that contained tiny fragments of what is probably walnut shell (cf. Juglans sp.) in the light fraction 

(see Table 3.5). It is possible that analysis of the heavy fractions would have increased this sample somewhat, as 

nutshell is frequently recovered from heavy fractions. 
4 Two broad categories of identifiability were used when sorting the bones from the central feature: identifiable (ID) 

and non-identifiable (NID) (Gifford and Crader 1977). All data are reported in NISP (number of identifiable 

specimens). ID specimens were sorted by body part, taxonomic classification, and size using comparative 

collections from Washington University in St. Louis. 
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unique association with the enclosure (e.g., non-local origins or unusual context at the site). We 

note their presence here and, in the cases where they are of non-local origins, we note the closest 

sources in straight-line distances. 

3.4.4 Bayesian Chronological Modeling of Radiocarbon Dates from Winchester Farm 

To understand the temporality of enclosure-use throughout its various phases, we 

submitted 16 samples comprised of charred wood and Cervidae bone for radiocarbon (14C) 

dating through accelerated mass spectrometry. However, the errors of individual dates are so 

large that archaeologists can’t explore time on the order of a human life. Bayesian chronological 

modeling has become one way to explore more precise understandings of time based on 14C 

dates in conjunction with archaeological information (e.g., stratigraphy or phases of site use) 

(Bayliss 2009, 2015; Bayliss et al., 2016; Bronk Ramsey 1995, 2009a, 2009b; Buck, 1999; Buck 

and Meson, 2015; Hamilton and Krus 2018).5 Bayesian chronological modeling has allowed 

archaeologists around the world to statistically interrogate 14C data to produce robust 

interpretations on the timing and tempo of social change (Barrier 2017; Darvill et al. 2012; 

Hamilton and Kenney 2015; Kidder 2006; Kidder et al. 2018; Krus et al. 2013; Lulewicz 2018; 

Pluckhahn and Thompson 2017; Quinn 2015; Whittle et al. 2011; Wright 2014b). However, like 

archaeological biographies, Bayesian chronological models can change as more information 

from 14C and other chronometric data become integrated into models with substantial contextual 

information. Therefore, chronological models of the past should be considered as evolving, 

rather than a final say on the sequence of past events. 

                                                 
5 Our chronological modeling was conducted by ERH in the OxCal software package (OxCal v4.3; 

http://c14.arch.ox.ac.uk/). The posterior density estimates (i.e., modeled age ranges) from our models are rounded to 

the nearest 5 years and presented in italics. In OxCal, models must pass an agreement index of 60 percent for the 

dates and models to be considered consistent; indices above 60 percent do not mean a model is more consistent 

when compared to another model (see Bronk Ramsey 1995; Hamilton and Krus 2018). Specific mention of 

functions in OxCal are made in the Courier font so they are clearly identified (sensu Hamilton and Kenney 2015). 

The coding for our models is included in Appendix 1 
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3.5 Identifying and Understanding the Contexts of Itineraries at Winchester Farm 

 Here we describe each excavation context in detail to situate our interpretations of, what 

we argue, are the primary contexts through which we can assess itineraries of the enclosure. 

These include the embankment, the ditch, a post-enclosure we identified inside the enclosure, 

and a sheet midden our excavations identified as the source of the internal topographic rise. 

3.5.1 The Embankment 

 Our excavation trench across the ditch and embankment identified dense clay-rich 

sediment fills used to construct the embankment and exposed a complex series of refilling events 

in the ditch (Figure 3.5). The physical descriptions of these contexts are presented in Table 3.1. 

The general stratigraphy suggests no intact sediment fills are present on the outer sloping 

boundary of the embankment. This implies the builders of the enclosure incorporated the natural 

terrace-edge of the landform into the design plan for Winchester Farm. This decision may have 

required less sediment to be incorporated into the embankment along its southeastern boundaries, 

compared to the opposite sides of the embankment situated, which were built at lower elevations 

in the floodplain. This would have made more sediment from the ditch around the southeastern 

portions of the enclosure available to construct sections of the embankment elsewhere. We have 

classified the sediments used to construct the embankment as ‘homogenous fills’ (following 

Sherwood and Kidder 2011:77-8). This matrix would have been created by mixing shallow A 

and B-horizon soils with deeper B- and C-horizon soils to establish a consistent fabric. Evidence 

from physical characterization that support this interpretation can be identified in the varied 

amounts of moderate-to-small-sized mottled clasts of deep brownish-yellow Bt-horizon silty clay 

loams that have been incorporated with shallow Bt-horizon silt loams in a way that makes any 

gradational differences between the Bt-horizons (i.e., Bt1-3) indistinguishable. Moreover, the 

embankment fills exhibit varying concentrations of residual bedrock fragments and ferrous 
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Figure 3.5.  West profile of Trench 1. Descriptions of physical characteristics are listed in Table 3.1. 
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Table 3.1  Physical characterizations of strata in Trench 1 (Figure 3.5).  

Stratum No. Sediment Color Physical Characterization Horizon Designation Notes 

1 10YR 3/3: Dark Brown Silt Loam Ap N/A 

2 10YR 3/4: Dark Yellowish Brown Silty Clay Loam Bt1 light density of very small ferrous concretions  

3 10YR 3/2: Very Dark Grayish Brown Silt Loam 2Ab very light density of charcoal flecking 

4 7.5YR 4/6: Strong Brown Silty Clay Loam Bt2/3 
moderate density of small to medium ferrous concretions; 

angular rock fragments increasing with depth 

5 10YR 3/2: Very Dark Grayish Brown Silt Loam Ab moderate density of charcoal flecking 

6 

10YR 3/4: Dark Yellowish Brown; 10YR 

5/6 Yellowish Brown; 10YR 6/8 

Brownish Yellow 

Clay Loam Bt2/3/C 
moderate to heavy density of medium ferrous concretions; 

angular rock fragments 

7 10YR 3/4: Dark Yellowish Brown Silty Clay Loam Bt1/2 moderate density of small to medium charcoal flecking  

8 7.5YR 4/6: Strong Brown Silty Clay Loam A/Bt1 light density of charcoal flecking; embankment erosion? 

9 10YR 3/4: Dark Yellowish Brown Silty Clay Loam Bt1 mottled with 8 & 12; charcoal abundant 

10 10YR 3/4: Dark Yellowish Brown Silty Clay Loam Bt1/2? N/A 

11 10YR 3/3: Dark Brown Silty Clay Loam ? light to moderate charcoal density 

12 10YR 2/2: Very Dark Brown Silt Loam A moderate charcoal density 

13 10YR 3/6: Dark Yellowish Brown Silty Clay Loam Bt2 heavy charcoal density 

14 10YR 3/3: Dark Brown Silty Clay Loam A/Bt1 light density of charcoal flecking 

15 10YR 3/2: Very Dark Grayish Brown Silty Clay Loam ? 
heavy charcoal density; heavy density of burned earth (incl. large 

nodules) 

16 10YR 4/3: Brown Silty Clay Loam ? very wet; light to moderate charcoal density 

17 7.5YR 4/4: Brown Silty Clay Loam Bt2/3 very light density of charcoal flecking 

18 10YR 7/8: Yellow Clay C void of inclusions; soil formation on bedrock 

Post 10YR 3/6: Dark Yellowish Brown Silt Loam – N/A 
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inclusions, also indicating a consistent mixing of the entire soil column. Producing this type of 

fill would have required the complete excavation of the whole soil sequence from the ditch, 

followed by the blending of sediments from that sequence to produce a homogenous fabric. No 

major differences in sediment fills were observed across the embankment as visible in our trench 

profile, which indicates the enclosure could have been constructed in one event. Webb’s (1941) 

excavations suggest the larger Mount Horeb enclosure, located 210 meters North of Winchester 

Farm, was built in a single event.  

Beneath the embankment fill we documented a buried-A (Ab) soil horizon that exhibited 

moderate amounts of charcoal-flecking. The angle of this ancient ground surface reveals the 

natural slope of the alluvial terrace prior to the construction of the enclosure. However, there are 

portions of the embankment fill that do not cover an Ab, implying that the builders of 

Winchester Farm stripped some areas of the natural ground surface before construction. The very 

uneven interface between the embankment fills and the Bt1 horizon adjacent to the northern 

extent of the Ab likely represent excavation marks left when the builders of the enclosure 

penetrated the Bt1 horizon during removal of the A horizon. The practice of removing topsoil 

prior to embankment construction has been documented at larger enclosure complexes in Ohio 

(e.g., at Hopeton by Lynott and Mandel 2009). 

3.5.2 The Ditch 

Our trench excavations also revealed that the ancient builders of Winchester Farm 

excavated the ditch to limestone bedrock, situated roughly 135-140 cm below the ground 

surface. During our characterizations of the ditch profile, 10-20 cm of water continually refilled 

this bedrock surface, requiring us to regularly bail water from the ditch. The refilling sequence of 

the ditch can be characterized by non-uniform sediment packages (Figure 3.5). Some refilling 

strata contained large nodules of burned earth; others were rich in charcoal and contained large 
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fragments of burned wood. We also observed strata comprised of mixed sediments and no 

charcoal. No clear evidence for erosion or A-horizon soil development were observed that might 

indicate the ditch was left open for long periods of time to refill naturally. We tested our 

interpretations of the enclosure construction and ditch refilling using the laboratory methods 

described above. 

3.5.3 Laboratory-based Analyses of Sediments from the Embankment and Ditch 

We measured the mass magnetic susceptibility (χ), loss-on-ignition (LOI), particle size 

(ldPSA), and geochemical properties (i.e., P and Ca) of sediment columns taken from the 

embankment and ditch. LOI data from the embankment profile exhibits consistently elevated 

levels of calcium carbonate (CaCO3%) in the embankment fills, with a linear decrease occurring 

with depth in the Ab and Bt1 horizons (Figure 3.6). Because the underlying bedrock geology is 

limestone (i.e., CaCO3) these data support our notion that the creation of the embankment fill 

matrix included the homogenization of sediments from throughout the soil column. Organic 

matter (OM%) in this profile is elevated near the interface of the modern Ap horizon and the 

embankment fills but decreases with depth to the Bt1 horizon. The embankment fills overlying 

the Ab in this area contained more OM% than the Ab, which may attest to the degree of 

pedogenic activity the embankment fills have endured. Low-frequency mass magnetic 

susceptibility (χ) and frequency dependence (χfd) both exhibit increased values in the Ab 

sediments, highlighting its enhanced magnetism. This paired increase could be a result of surface 

stability (i.e., natural organic and pedogenic activity; see Dearing et al. 1996), but it likely 

signifies human manipulation of the landscape through low-heat fires when the surface was 

exposed (see Dalan and Banerjee 1998; Lowe et al. 2016). This scenario is supported by the 

presence of visible charcoal flecking in the Ab horizon, the low amount of OM% in this portion 

of the sample column, and the relatively high concentrations of CaCO3% in the Ab, which can
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Figure 3.6.  Data from geoarchaeological analyses of sediment samples from the embankment in Trench 1. 
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indicate the presence of ash from low-heat fires (see Canti 2014; Canti and Huisman 2015).  

Phosphate (P) levels increase with depth in the embankment column. Because this P trend 

does not match an increase in OM%, but does match the increases in χ and χfd, there is support 

for an interpretation that the increases in P at the Ab are indicative of ash being incorporated into 

the ground surface from fires (see Holliday and Gartner 2007; Roos and Nolan 2012). This 

scenario supports an interpretation that the pre-enclosure landscape was manipulated with fire. 

Moderately high levels of P in the embankment fills, higher than near-surface values, suggests 

the homogenous embankment fills included A horizon in the composition. This interpretation is 

further supported by our observation that some of the A horizon was removed prior to 

embankment construction. The elevated levels of calcium (Ca) in the embankment fills and 

moderate levels corresponding with the Ab reinforces our explanations of the other sediment 

analyses. The increase in Ca matches trends in CaCO3% as measured by LOI. Thus, the Ca and 

CaO3% in the embankment fills are probably so high because the fills incorporate some of the 

Ab, which has enhanced levels of CaCO3% from ash in the matrix, and B-C horizon soils that 

have high backgrounds of CaCO3% from the limestone parent material. Because the soil column 

is dominated by silty loams and silty clay loams, particle size analysis (ldPSA) provides little 

information beyond confirming the soil column is dominated by silts. However, slight increases 

in the percentage of clays can be seen in the embankment fills—further support for our 

interpretations of homogenous sediment fill production. 

In the ditch column we observed six refilling strata, in addition to modern pedogenic 

activity in the upper 25 cm of the soil column and a few centimeters of C horizon development 

resting on top of the limestone bedrock. LOI data from the ditch exhibit generally higher 

amounts of CaCO3% than the embankment, but with intermittent increases and decreases in 
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percentages with depth (Figure 3.7). The percent of CaCO3% near the surface is moderate and 

values take a decreasing trend until the bottom of refilling stratum four (RS4). Another increase 

in CaCO3% occurs near the middle of RS2, continuing until the base of the sample column. 

OM% in the sample column is high near the surface and decreases with depth until the bottom of 

RS2, where a slight increase occurs. The low frequency χ data almost mirrors the trend of OM% 

in the sample column, exhibiting elevated magnetism in near-surface sediments and decreasing 

with depth. The χfd shows a general increase throughout the sample column with a spike in the 

data situated in the middle of RS4. These four datasets show no evidence for any long-term 

surface stability in the ditch (e.g., A horizon development). With exception of the near-surface 

(e.g., 20-30 cm below surface), all elevated levels of OM% and χ correlate with RS that exhibit 

high amounts of charcoal and/or fragments of burned earth, which would elevate the organic 

content and magnetism of these strata. Percentages of χfd continually increase from RS6-2. 

Because there are no obvious paired increases in OM% and χ in these sediments that would 

indicate long-term pedogenic activity, we suggest these trends indicate the magnetic 

enhancement of paramagnetic grains occurred through fire.  

P enrichment is moderate at the near-surface in the ditch column and decreases until 

approximately 60 cm below surface (the middle of RS4). From there, values increase until RS1 

where a slight decrease is noted. A similar pattern can be seen in Ca, where values at the near-

surface are elevated but decrease until approximately 40 cm below surface (the top of RS4). At 

this point, an increasing trend in Ca begins that spikes near the base of the ditch. Spikes in Ca 

and CaCO3% near the base of the ditch may be affected by the limestone bedrock geology. 

However, this does not account for the high levels of P at this depth. When compared with the 

LOI and χfd data in the ditch column, P and Ca may indicate concentrations of ash as they did for 
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Figure 3.7.  Data from geoarchaeological analyses of sediment samples from the ditch in Trench 1. 
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our embankment context. For instance, increasing trends in these measurements occur below 50 

cm in the sample column. RS at these depths are characterized by moderate-to-heavy charcoal 

densities and RS2 exhibits a high density of burned earth inclusions. Therefore, we find it 

probable that these depositional episodes in the ditch coincide with burning events. Other 

increases in CaCO3% and Ca in the ditch column may relate to the deposition of fills used in 

embankment construction. These correlations can be seen at approximately 55, 85, and 115-135 

cm below surface. However, these fills may not be readily observable in profile because, as the 

ldPSA data show, enough pedogenic activity has occurred in the ditch to create a clear fining-

downward sequence; approximately one-third of the particles near the base of the ditch are clay. 

Nevertheless, a scenario where people break apart the embankment fills and redeposit them in 

the ditch while burning them would account for the elevated values of P, Ca, CaCO3%, χfd, and 

OM% near the base of the ditch, in addition to the high density of burned earth in RS2 and the 

dense amounts of wood charcoal in RS3 and RS4. 

Together, our physical characterizations and lab-based analyses of sediments in the 

embankment and ditch show how ancient Adena-Hopewell groups built the Winchester Farm 

enclosure and provide insights into how the ditch refilled. First, a ditch was excavated to bedrock 

near the edge of an alluvial terrace that had experienced landscape manipulation through low-

heat fires. During this process, portions of the A horizon adjacent to the ditch was removed from 

areas where the embankment would be placed. Next, the sediments removed from inside and 

around the ditch were mixed together to form a homogenous fill. This fill was then used to build 

an embankment exterior to the ditch, covering areas where the A-horizon had been removed and 

areas where it was still intact. Later, presumably sometime after the enclosure was abandoned, 

the ditch refilled very quickly. From the geoarchaeological analyses of the ditch strata, we 
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surmise the refilling involved humans breaking up embankment fills, tossing them in the ditch, 

and burning them. With the history of enclosure construction and ditch refilling outlined for 

Winchester Farm enclosure, we now move to discuss how the interior of the enclosure was used. 

3.5.4 Identifying What Took Place Inside the Enclosure 

 In our ditch-and-embankment trench, we encountered two posts at the edge of the interior 

platform (one in profile, another in the floor) (see Figure 3.5). Like the posts described by Webb 

(1941:152-3) at the nearby Mount Horeb enclosure, these posts were barely distinguishable from 

the surrounding Bt1 horizon. We identified additional posts after expanding our excavations 

along the edge of the interior platform (Figure 3.8). A total of 13 posts were exposed over 

approximately 5 linear meters of excavation trench. Reevaluation of the magnetic data from the 

enclosure revealed a faint linear magnetic anomaly that surrounds the interior platform and 

aligns to the orientation of posts identified in our excavations. Using the combination of our 

excavation and geophysical data, we estimate the internal post enclosure was comprised of 

roughly 110 posts and enclosed 132-m2. The silty clay loam matrix that refilled the post holes 

does not suggest the posts were burned in situ; however, light densities of charcoal flecking were 

observed in the refilling sediments. 

The post-enclosure surrounded the topographic rise inside Winchester Farm enclosure. 

Our excavations over this central feature recovered minimal amounts of lithic, ceramic, and 

faunal debris, in addition to a quartz crystal and fragmented portions of a pipe, a celt, and small 

galena nodules. Clusters of limestone were observed during excavation of this feature, some of 

which were burned and positioned in an ovular pattern (Figure 3.9). However, no stratigraphic 

differences could be identified in the 50-cm thick organic-rich sediment matrix. For this reason, 

we characterize the rise as a sheet midden. Nevertheless, the diversity and quantities of artifacts 

we recovered from this internal feature provide insights as to how people used this interior space
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Figure 3.8.  Planview map of posts identified in Trench 1 and adjacent excavation units. Sherd denoted above was Adena Plain. 
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Figure 3.9.  Planview map of Block 1 excavations over internal rise. Surface is approximately 30 

cmbs. Note the ovular arrangement of limestone rock. 
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Figure 3.10.  Artifacts recovered from Winchester Farm excavations A.) Adena Plain rim sherd. B.) Wright Check Stamped sherds. 

C.) Sandstone celt fragment (poll end). D.) Interior fragment of slate pipe. E.) Quartz crystal. F.) Galena debitage. G.) 

Shaped pieces of micaceous schist recovered from upper depths of the ditch.   
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Table 3.2.  Ceramic data from sherds recovered within Winchester Farm enclosure. 

Context Ceramic Type 
Sherd 

Type 
Temper 

< 2cm2 

(n) 

> 2cm2  

(n) 

Weight 

(g) 

Thickness 

(mm) 
Post from 

Enclosure 
Adena Plain Body Limestone  2 21.56 9.7 

Central Midden 

Adena Plain 

Rim Limestone  1 19.85 8.3 

Body Limestone 4  4.67 6.025 

Body Limestone  1 3.48 6.3 

Basal Limestone 1  2.48 7.6 

Body Limestone  1 2.25 N/A 

Body Limestone 1  0.83 4.3 

Body Limestone  1 9.98 9.3 

Body Limestone 1  0.88 N/A 

Body Limestone  1 2.6 5.1 

Body Limestone 1  1.75 4.7 

Body Limestone 2  4.88 7.1 

Body Limestone 3  2.36 5.75 

Body Limestone 1  1 N/A 

Wright Check Stamped  

Body Limestone  1 3.12 5 

Body Limestone 2  3.35 5.9 

Body Limestone  1 6.8 5.9 

Body Limestone  1 3.76 5.9 

Body Limestone  1 3.48 5.6 

 Total Adena Plain   14 7 78.57 μ=6.74 σ=1.73 

 

Total Wright Check 

Stamp   2 4 20.51 μ=5.66 σ=0.35 
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(Figure 3.10). For instance, sherds recovered from the central feature included Adena Plain, a 

local plain-surface ware (Webb 1940), and non-local Wright Check-Stamped ceramics, which is 

ubiquitous across portions of the Middle Tennessee River Valley in northeastern and central 

Alabama, southeastern Tennessee and northwestern Georgia (ca. 400 km away; see Haag 1939, 

1942) (Table 3.2). An Adena Plain sherd was also recovered from a post in the enclosure. The 

low standard deviation in the measured thickness of the Wright Check Stamped sherds, in 

addition to the size and distribution of the checks in the stamp, alludes to their belonging to a 

single vessel. The weight of the Adena Plain and Wright Check Stamped ceramics we recovered 

is low, suggesting this feature was probably used sporadically and by small numbers of people. 

In addition, the greater amount of Adena Plain sherds might indicate that the enclosure was used 

primarily by local groups, with occasional visits from distant travelers. The lithic debitage we 

recovered from the central midden point to a similar scenario. 

 Although lithic debitage was recovered from many excavation contexts, the vast majority 

came from the interior portions of the enclosure—the post enclosure and central midden (Table 

3.3). These contexts are the foundations of our discussion here. Debitage from inside the 

enclosure suggest that a small amount, but wide-range, of lithic reduction took place when 

people were gathered inside Winchester Farm. For instance, all types of reduction debitage were 

recovered, from early stage initial reduction flakes, to late stage pressure-flaked resharpening 

chips (Figure 3.11a). While each flake type was found in low quantities, shatter—often the result 

of thermal alteration (65.7%)—dominated the assemblage. This suggests the heating of raw 

materials was a common preparatory approach to tool production. No evidence for utilized flakes 

was identified during our analyses. This suggests that the focus of lithic manufacture inside 

Winchester Farm was on non-expedient tools. Raw materials identified in this assemblage 



136 

 

include local (available within a few kilometers), semi-local (accessible within 50-75 km), and 

non-local (accessible beyond 75 km) chert types. Cane Run and Grier are local cherts that would 

have been available in drainages surrounding the enclosure (McDowell et al. 1988; Figure 

3.11b). Boyle chert is semi-local to the Winchester Farm area, accessible in the east-Central 

portion of Kentucky. Muldraugh and St. Louis cherts could have been obtained in either the 

western parts of Kentucky or the east Central area (McDowell et al. 1988), making them semi-

local or non-local in nature. Only one flake of non-local Kanawha chert was recovered from the 

central midden; its origins are around central West Virginia. In sum, the debitage assemblage 

from Winchester Farm suggests small numbers of people were periodically making and 

refurbishing bifacial stone tools when gathered at the site. Those people were either locals who 

had access to a spatially diverse range of stone materials, or—given the influential role of 

earthen enclosures in pilgrimages in and out of the Ohio Valley—it is possible that small 

numbers of local, semi-local, and non-local people were moving through this portion of 

Kentucky and stopped to participate in gatherings at Winchester Farm.  

 The notion that small groups of people, some from distant places, were using Winchester 

Farm for special events is supported by the recovery of ‘unique’ artifacts from the site. Shaped 

fragments of a micaceous schist were recovered from a shallow refilling zone in the ditch. 

However, from the central midden we recovered the poll-end fragment of a sandstone celt, a 

quartz crystal, fragments of burned earth, a slate pipe fragment, and galena debitage (Table 3.4). 

Galena debitage suggests people who used the enclosure were manufacturing ornaments from 

this lead ore mineral. Clay (1985) documented similar evidence for galena artifact production in 

his research at the nearby Peter Village enclosure. Quartz is considered a powerful substance 
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Table 3.3.  Lithic data from debitage recovered at Winchester Farm. 

Context 
Raw 

Material 
Flake Type 

Heat 

Treated 

Not Heat 

Treated 
N 

Weight 

(g) 

Ditch 
Boyle Shatter 1 0 1 0.38 

Cane Run Biface Initial Reduction 0 2 2 5 

Posts from 

Enclosure 

Boyle 
Biface Finishing & 

Trimming 
1 0 1 0.8 

Boyle Flake Frag. 0 1 1 0.05 

Boyle Flake Frag. 0 1 1 2 

Boyle Shatter 0 1 1 0.15 

Boyle Shatter 2 0 3 25.64 

Cane Run Flake Frag. 0 1 1 0.2 

Kanawha 

(W.Va) 
Biface Thinning & Shaping 0 1 1 0.12 

Muldraugh 
Biface Finishing & 

Trimming 
0 1 1 0.09 

St. Louis Biface Initial Reduction 1 0 1 0.68 

UID Chip 1 0 1 0.11 

Central 

Midden 

Boyle 
Biface Finishing & 

Trimming 
1 0 2 0.75 

Boyle Biface Initial Reduction 0 1 1 0.75 

Boyle Biface Initial Reduction 3 0 3 37.4 

Boyle Biface Thinning & Shaping 0 2 2 10.09 

Boyle Biface Thinning & Shaping 1 0 1 1.55 

Boyle Bifacial Preform 0 1 1 101.43 

Boyle Chip 9 0 9 1.64 

Boyle Flake Frag. 0 6 6 3.62 

Boyle Flake Frag. 20 0 20 35.11 

Boyle Shatter 0 1 1 0.54 

Boyle Shatter 52 0 52 231.83 

Cane Run 
Biface Finishing & 

Trimming 
0 1 1 0.42 

Cane Run Biface Initial Reduction 0 2 2 14.18 

Cane Run Biface Initial Reduction 1 0 1 8.39 

Cane Run Biface Thinning & Shaping 0 1 1 0.58 

Cane Run Biface Thinning & Shaping 1 0 1 6.5 

Cane Run Flake Frag. 0 6 6 3.14 

Cane Run Flake Frag. 3 0 3 4.19 

Cane Run Shatter 0 1 1 14.68 

Cane Run Shatter 5 0 5 4.3 

Grier 
Biface Finishing & 

Trimming 
1 0 1 0.38 
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Grier Biface Thinning & Shaping 0 1 1 1.04 

Grier Bifacial Core 0 1 1 36.15 

Grier Flake Frag. 4 0 4 4.7 

Grier Shatter 2 0 2 10.88 

Grier Shatter 0 1 1 6.25 

TOTALS   109 33 144 575.71 

Raw 

Material 

Summary 

 Production Trajectory 

Summary 
    

Total Non-

local (g) 
0.12 

Total Biface Initial 

Reduction (n) 
10    

Total Semi-

Local (g) 
454.5 

Total Biface Thinning & 

Shaping (n) 
7    

Total Local 

(g) 
120.98 

Total Biface Finishing and 

Trimming (n) 
5    

Total UID 

(g) 
0.11 Total Chips (n) 10    

  Total Flake Frag. (n) 42    

  Total Shatter (n) 67    

  Total Bifacial Preform (n) 1    

  Total Bifacial Core (n) 1    
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Figure 3.11.  Distribution of lithic debitage recovered from Winchester Farm excavations. A.) 

Quantity of flake types in production trajectory. B.) Weight of raw material types 

recovered.  
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imbued with spiritual energies (Carr 2005:582, Wright and Loveland 2017:149). It could have 

been obtained in the same geographies as Boyle chert. However, the presence of micaceous 

schist, a metamorphic rock from the Appalachian Mountains, in the enclosure suggests the quartz 

may have been procured in that region too. The sandstone celt fragment is another artifact we 

recovered that originated in the southeasterly geographies of Kentucky. The slate pipe fragment 

provides an indication that smoking rituals occurred inside the enclosure (see Carmody et al. 

2018).  

 In addition to the artifacts recovered from the central midden, botanical and faunal 

remains recovered during our work provides further insight into how people used the site. 

Minimal amounts of botanical information (three identifiable seeds) were recovered from the 

central midden (Table 3.5). This includes maygrass (Pharlaris caroliniana), purslane (Portulaca

Table 3.4.  Weight and quantity of unique artifacts recovered from central midden at Winchester 

Farm. 

Context Artifact Type N Weight (g) 

Ditch Mica Schist 5 5.20 

Central Midden Sandstone Celt Fragment 1 54.48 

Central Midden Burned Earth Fragments 16 27.35 

Central Midden Quartz Crystal 1 1.64 

Central Midden Galena Debitage 3 4.19 

Central Midden Slate Pipe Fragment 1 2.3 

 

oleracea), and a probable locust seed (cf. Robinia sp.). While maygrass was widely consumed 

along the Ohio River and its tributaries at this time (Wymer 1993; 1996), the Ohio River is 

outside of its natural range, so this seed must have come from a cultivated plant. Maygrass may 

have been of ritual and nutritional importance to the ancient peoples of eastern North America—

it often appears in special contexts from the Middle Woodland through the Mississippi era (ca. 

cal AD 1050-1600) (Fritz 2014). Portulaca is an edible weedy plant. Its seeds may appear at 

archaeological sites because it tends to colonize open spaces, but it was also consumed in the  
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Table 3.5.  Synthesis of botanical remains recovered from flotation samples collected during excavations at Winchester Farm. 

Feature FS 

Light 

Fraction 

wt. (g) 

Volume 

(L) 

Wood 

weight (g) 

cf. Juglans sp. 

nutshell 

weight (g) 

cf. Cucurbita 

sp. rind 

weight (g) 

Phalaris 

caroliniana (g) 

Portulaca 

sp. (g) 

cf. Robinia 

sp. (g) 

UID seed/seed 

frag (g) 

Carbonized 

root (g) 

Unknown, not a 

seed (g) 

Wood 

density 

Seed 

total 

Ditch 

101 84.15 6 22.56 0.01       198 3.76  

129 14.7 5 0.11  0.01     2 2 0.02  

130 23.41 3.5 0.44         0.13  

111 96.14 6 4.15        28 0.69  

126 14.38 4.5 0.47         0.10  

122 67.63 4 1.25      2  1 0.31  

119 267.51 6 0.58         0.10  

Feature 

Total  567.92 
35 29.56 0.01 0.01 0 0  2 2 229 0.84 0 

Midden 

114 28.8 6 0.35   1   1  15 0.06  

97 7.1 3.5 0.11     1    0.03  

99 62.07 4 0.31 0.01   1    1 0.08  

115 44.88 8.5 0.34         0.04  

109 74.69 5 0.06         0.01  

104 13.07 3.5 0.03         0.01  

100 22.02 1.5 0.69         0.46  

Feature 

Total  252.63 
32 1.89 0.01 0 1 1  1 0 16 0.06 3 

Posts 

116 20.5 4 0.07      2  1 0.02  

19 15.55 1 0.13        2 0.13  

117 14.49 4 0.04         0.01  

110 12.04 2 0.81         0.41  

113 17.12 1.5 0         0.00  

131 60.62 5 0.21  0.01       0.04  

107 9.33 3.5 0.14      1   0.04  

105 8.16 1.5 0.01         0.01  

118 14.73 1.5 0.01         0.01  

102 4.54 1.5 0.04         0.03  

103 1.92 0.75 0         0.00  

98 5.28 1 0         0.00  

Feature 

Total  184.28 
27.25 1.46 0 0.01 0 0  3 0 3 0.05 0 

Total  1004.83 94.25 32.91 0.02 0.02 1 1 0 6 2 248 0.04 3 
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form of leafy greens and used as a medicine (Moerman 2009). The Robinia seed is probably 

from bristly locust (Robinia hispida), a shrubby relative of the black locust tree (Robinia 

pseudoacacia). The seed morphology is too small to be black locust and is somewhat small for 

bristly locust as well. However, it is unknown how much locust seeds shrink when carbonized. 

Bristly locust is an attractive flowering shrub whose branches and bark have various 

technological and medicinal uses (Moerman 2009). A few small fragments of probable walnut 

shell (cf. Juglans sp.) and squash rind (cf. Cucurbita sp.) were also recovered in the ditch fill. 

When compared to assemblages from contexts within other enclosures in the Ohio Valley (e.g., 

Seip Earthworks in Ohio; Wymer 2009) the assemblage is comparable. However, Winchester 

Farm is a unique enclosure site because of the central midden feature, but when compared to 

other Middle Woodland monumental sites like burial mounds in Kentucky (cf. Mueller 2018; 

Pollack et al. 2005), the archaeobotanical assemblage is sparse. 

 A total of 658 faunal specimens were recovered from the central midden (Table 3.6). 

Mammals make up 99.2% (607/612) of all ID specimens, the majority of which could not be 

classified further. All but two indeterminate mammalian specimens are categorized as either 

 

Table 3.6.  Synthesis of faunal remains recovered from excavation of the central midden. 

TAXON NISP 

cf O. virginianus 1 

Cervidae 20 

Large mammal (>35 kg) 106 

S. carolinensis 3 

Sylvatragus 1 

Medium mammal (1-35 kg) 476 

Aves 3 

Serpentes 1 

Anura 1 

Non-identifiable bone 46 

TOTAL 658 
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large (>35 kg) or medium (1-35 kg) sized mammals. Mammalian taxa identified beyond class 

include the family Cervidae (deer), genus Sylvilagus (cottontail rabbits), and species Odocoileus 

virginianus (white-tailed deer) and Sciurus carolinensis (eastern grey squirrel). Identified non-

mammalian taxa include the class Aves (birds), order Anura (frogs), and suborder Serpentes 

(snakes). Taphonomically, the bones from Winchester Farm are fairly uniform. Most of the 

faunal remains are burned (71.1%; 467/657) and 73.0% (341/467) of the burned specimens show 

signs of calcination (light gray/white coloration). Calcined bone indicates direct exposure to 

coals at temperatures of ~600° C or higher (Nicholson 1993; Stiner et al. 1995). In addition to 

burning, most of the faunal specimens are highly fragmented, most measuring 1 cm or less, 

which limits taxonomic classification. 

The small quantities of local, semi-local, and non-local material culture found clustered at 

the center of this ritual enclosure points to evidence for ritual integration among local 

populations of the Mount Horeb landscape. However, they also signal what Carr (2005:582-6) 

describes as long-distance pilgrimage journeys where medicine persons, among others, seek to 

gain visions, power, and the knowledge of ceremonial rites. In these instances, individuals or 

small groups of people travel long distances to experience a powerful natural place and obtain a 

material token of that power. Alternatively, an individual or group may seek knowledge to 

perform a ceremonial rite that may have healing properties or the ability to help initiates cross 

into a new age-grade. While these scenarios for local and non-local organization rituals are 

somewhat different, they have similar material correlates that would include the acquisition and 

deposition of small quantities of powerful items from distant places. Moreover, the sharing of 

knowledge by situational and temporary shaman-like leaders can include feasting, a potential 

explanation for the small amount of faunal remains found in the midden fill. An alternative 
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scenario for the faunal debris might include local leaders providing food to small groups of 

travelers who were passing through the Mount Horeb area during their pilgrimage journeys. 

Either scenario could explain the mixture of material and faunal remains encapsulated within the 

midden fills at the center of Winchester Farm. Whether Winchester Farm served as a stopping 

point for ritual journeys, a point for ritual integration among local inhabitants, or both, the timing 

and tempo of ritual practices must be understood to consider the itinerant influence and draw of 

the enclosure through time. 

3.6 Winchester Farm and the Temporality of Ritual Dispositions 

 To understand the temporality of changing ritual dispositions that inspired the 

construction, use, and deconstruction of the enclosure, we initiated a robust 14C dating system. 

We selected samples of charred wood, charred round wood, and uncharred bone to date diverse 

biographical contexts at the site. A total of 16 14C samples were submitted from contexts that 

include the Ab horizon beneath the embankment, the posts from the interior wooden enclosure, 

the central midden, and refilling sequences in the ditch (Table 3.7). We then situated those dates 

within different phases of site use and subjected them to multiple constraints in Bayesian 

chronological models. Our first model (Model 1) assessed the dates as belonging to three 

separate but sequential events: 1) enclosure construction; 2) use of the interior space; and 3) 

refilling of the ditch. Because we have little stratigraphic control outside of the ditch, we cannot 

be sure how much time elapsed between the construction of the enclosure and the use of the 

interior platform. Therefore, we created two sequential phases (i.e., TPQ for construction and 

interior use) and treated the refilling of the ditch as a contiguous sequence. Model 1 would not 

run because the model could not resolve the order of the dates as we had arranged them in the 

phases. This problem with Model 1 lies in how we used archaeological information from the site 

to structure our prior assumptions of phases from the Ab and central midden. For instance, four  
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Table 3.7.  Radiocarbon assays obtained from Winchester Farm implemented in Bayesian chronological models. 

Provenience 

Context and 

Event 

Interpretation 

Date 

of 

Assay 

Lab Lab # Material 
δ13C 

(‰) 
D14C 

pM

C 
± 

Fraction 

modern 

(Fm) 

Fm Error RCYBP 1σ Error Cal BC-AD (2σ - 95.4%)* 
Media

n 

FS101; Trench 

1; Ditch - 115-

132 cmbs 

Ditch Refilling 

(refilling event 1-

2) 

2014 
UGA 

CAIS 

UGAMS-

17003 

UID charred 

wood 
-25.0 n/a 86.77 0.28 n/a n/a 1140 25 AD 770-980 AD 920 

FS106; Trench 

1; 

Embankment-

Ab interface 

Terminus Post 

Quem for 

Enclosure 

Construction 

2014 
UGA 

CAIS 

UGAMS-

17004 

UID charred 

wood 
-27.6 n/a 77.57 0.26 n/a n/a 2040 30 170 BC - AD 50 50 BC 

FS110; Unit 13; 

Fea. 8 - Post Fill 

Terminus Post 

Quem for 

Construction of 

Wooden Post 

Enclosure 

2014 
UGA 

CAIS 

UGAMS-

17005 

UID charred 

wood 
-22.9 n/a 79.1 0.25 n/a n/a 1880 25 AD 70-220 AD 120 

FS114; Unit 11; 

Fea. 4 - 50-55 

cmbs 

Interior Use of 

Enclosure 
2014 

UGA 

CAIS 

UGAMS-

17006 

UID charred 

wood 
-23.3 n/a 79.07 0.26 n/a n/a 1890 25 AD 50-220 AD 110 

FS14-1; Unit 

14; Fea. 4 - 20-

30 cmbs 

Interior Use of 

Enclosure 
2017 

NOSAM

S 
OS-136446 

Cervidae Rib 

(bone) 

-21.6 

-

223.9

3 

n/a n/a 0.7820 0.0023 1980 25 50 BC - AD 70 AD 20 

FS41; Unit 11; 

Fea. 4 - 30-40 

cmbs 

Interior Use of 

Enclosure 
2017 

NOSAM

S 
OS-136447 Cervidae (bone) 

-21.8 

-

234.5

7 

n/a n/a 0.7713 0.0017 2090 20 180-40 BC 110 BC 

FS108; Unit 12; 

Fea. 4 - 40-54 

cmbs 

Interior Use of 

Enclosure 
2017 

NOSAM

S 
OS-136888 

UID charred 

wood 
n/a n/a n/a n/a 

0.7820 0.0016 

1980 15 40 BC - AD 70 AD 30 

FS117; Unit 15; 

Fea. 13 - Post 

Fill 

Terminus Post 

Quem for 

Construction of 

Wooden Post 

Enclosure 

2017 
NOSAM

S 

OS-136889 

UID charred 

roundwood 
n/a n/a n/a n/a 

0.7374 0.0021 

2450 25 760-410 BC 580 BC 

FS106; Trench 

1; 

Embankment-

Ab interface 

Terminus Post 

Quem for 

Enclosure 

Construction 

2017 
NOSAM

S 

OS-136890 

UID charred 

wood 
n/a n/a n/a n/a 

0.7887 0.0021 

1910 20 AD 50-140 AD 90 

FS111; Trench 

1; Ditch - 125-

135 cmbs 

Ditch Refilling 

(refilling event 1) 
2017 

NOSAM

S 
OS-136891 

UID charred 

roundwood 
n/a n/a n/a n/a 

0.8665 0.0018 

1150 15 AD 770-970 AD 900 

FS129; Trench 

1; Ditch - 110-

120 cmbs 

Ditch Refilling 

(refilling event 2 

bottom) 

2017 
NOSAM

S 
OS-136892 

UID charred 

wood 
n/a n/a n/a n/a 

0.7839 0.0018 

1960 20 30 BC - AD 90 AD 40 

FS128; Trench 

1; Ditch - 100-

110 cmbs 

Ditch Refilling 

(refilling event 2 

top) 

2017 
NOSAM

S 
OS-136893 

UID charred 

roundwood 
n/a n/a n/a n/a 

0.8735 0.0021 

1090 20 AD 890-1020 AD 960 

FS127; Trench 

1; Ditch - 90-

100 cmbs 

Ditch Refilling 

(refilling event 3) 
2017 

NOSAM

S 
OS-136894 

UID charred 

roundwood 
n/a n/a n/a n/a 

0.8665 0.0019 

1150 15 AD 770-970 AD 900 
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FS126; Trench 

1; Ditch - 80-90 

cmbs 

Ditch Refilling 

(refilling event 4 

bottom) 

2017 
NOSAM

S 
OS-136895 

UID charred 

wood 
n/a n/a n/a n/a 

0.8713 0.0019 

1110 20 AD 890-990 AD 940 

FS125; Trench 

1; Ditch - 70-80 

cmbs 

Ditch Refilling 

(refilling event 4 

middle) 

2017 
NOSAM

S 
OS-136896 

UID charred 

roundwood 
n/a n/a n/a n/a 

0.8679 0.0018 

1140 15 AD 780-980 AD 930 

FS124; Trench 

1; Ditch - 60-70 

cmbs 

Ditch Refilling 

(refilling event 4 

upper) 

2017 
NOSAM

S 
OS-136897 

UID charred 

roundwood 
n/a n/a n/a n/a 

0.8656 0.0021 

1160 20 AD 770-970 AD 870 

* Calibrations made in OxCal v4.3 (Bronk Ramsey 2017), using the IntCal13 calibration curve (Reimer et al. 2013). Dates have 

been rounded to the nearest 10 years. The OxCal software is accessible at http://c14.arch.ox.ac.uk/   

  

  

 

 

 

Table 3.8.  Structure and results of Model 2. 

Name Modelled (BC/AD) Indices: Amodel 99; Aoverall 98.9 

 from to % from to % median A C   

End: Site Use Boundary 105 240 

68.2 

85 455 

95.4 

185  97.1   

Span 570 yrs. 860 yrs. 525 yrs. 1185 yrs. 745 yrs.     

UGAMS-17005: F.8 Post R_Date (1880,25) 80 135 60 210 110 103 98.7   

UGAMS-17006: Midn. 50-55 cmbs R_Date (1890,25) 80 130 55 205 105 102 98.2   

OS-136890: Ab2 R_Date (1910,20) 70 125 50 130 90 99.5 98.8   

OS-136888: Midn. 40-54 cmbs R_Date (1980,15) 5 55 -40 65 25 99 99.1   

OS-136446: Midn. 20-30 cmbs R_Date (1980,25) -20 60 -45 70 20 99.5 98.7   

UGAMS-17004: Ab1 R_Date (2040,30) -95 5 -165 30 -45 99.6 97.1   

OS-136447: Midn. 30-40 cmbs R_Date (2090,20) -165 -55 -175 -50 -110 99.6 98.3   

OS-136889: F.13 Post R_Date (2450,25) -530 -410 -725 -405 -475 96.1 98.1   

 Phase          

Start: Site Use Boundary -610 -425 -855 -410 -545  98   

Winchester Farm Site Use Sequence            
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uncalibrated dates (OS-136889, OS-136447, OS-136446, and OS-136888) precede the latest of 

our radiocarbon determinations from the Ab (i.e., OS-136890), suggesting there is a very good 

chance that use of the central midden began before the enclosure was constructed. This is not 

surprising. Evidence for pre-monumental use of Adena-Hopewell sites is prevalent beneath many 

burial mounds in the Middle Ohio Valley (Brown 2004; Webb 1940; Webb and Elliot 1942). 

To obtain prior information that would allow us to statistically assess which dates should be 

assigned to a pre-enclosure phase of site use, we created a phase-based model (Model 2; Table 

3.8) and incorporated all dates from the Ab beneath the embankment, posts, and the central 

midden. Model 2 shows good agreement (Amodel = 99%) with our assumption that the dates from 

the Ab, posts, and the central midden are associated with repeated ritual gatherings (Figure 

3.12a) but it estimates that use of the locale where Winchester Farm was constructed began in 

cal 855–410 BC (95.4% probability) and likely in cal 610–425 BC (68.2% probability). The end 

of site use is estimated to have occurred at cal AD 85–455 (95.4% probability) and likely in cal 

AD 105–240 (68.2% probability). The overall span of site use at Winchester Farm is estimated 

(using the Span function in Model 2) to have persisted for 525-1185 years (95.4% probability) 

and likely for 570-860 years (68.2% probability) (Figure 3.12b). However, this long span of site 

use is not commensurate with the material culture recovered from excavations. Even if we 

consider the likely span of site use at 570-860 years, we would expect to see a different ceramic 

assemblage from the site that includes a thick and crude type called Fayette Thick (Clay 1985).  

An Order function we included in Model 2 statistically assesses the probability that any 

given date in the phase occurred prior to another. We considered dates suitable for placement in 

a pre-construction phase if the Order function evaluated any date as at least 60% probable to 

have occurred before our latest date from the embankment (i.e., OS-136890). Our threshold of 
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Figure 3.12.  Results of Model 2 visualized in OxCal 4.3. A.) Posterior density estimates of 

Model 2. B.) Modeled span of site use.  
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Table 3.9.  Results of the Order function applied to Model 2. Table displays the probability that 

any modeled date from Model 2 listed in the column “Order Function Table” came 

before date OS-136890. 

Order Function Table OS-136890: Ab2 

OS-136889: F.13 Post 1.00 

OS-136447: Midn. 30-40 cmbs 1.00 

UGAMS-17004: Ab1 1.00 

OS-136446: Midn. 20-30 cmbs 0.98 

OS-136888: Midn. 40-54 cmbs 0.99 

OS-136890: Ab2 0.00 

UGAMS-17006: Midn. 50-55 cmbs 0.34 

UGAMS-17005: F.8 Post 0.26 
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60% was selected to maintain a consistency with the OxCal threshold for the agreement index 

(also 60%). The Order function indicates four dates (e.g., OS-136889, UGAMS-17004, OS-

136446, and OS-136888) could represent pre-construction use of the site. None of these dates 

fall below a 98% probability that they were earlier than OS-136890 (Table 3.9). Using this 

information as a prior, we created a three-phase sequential model that assumed a period of pre-

enclosure use occurred, followed by construction of the enclosure, continued use of the interior 

platform, and finally the refilling of the ditch (Model 3). 

Like Model 1, Model 3 would not run because OxCal could not resolve the order of the 

dates with our assumptions as we had structured them. At this point we felt outliers could be 

affecting our models and decided to test that assumption in another model (Model 4) using the 

Outlier function on two 14C determinations. The first, OS-136889, was situated in the pre-

enclosure phase of site use. This date is from one of the posts in the wooden enclosure. Because 

this sample was taken from post fill, it was possible charred wood that predated any cultural use 

of the landscape entered the fill during the excavation of the post hole, or during the placement 

and removal of the wooden posts. Moreover, Purtill et al.’s (2014) regional synthesis of directly 

dated posts from open-air post enclosures shows that the calibrated date range for these features 

extends to approximately cal 400 BC in the Middle Ohio Valley. The posterior density estimate 

for OS-136889 in Model 2 (i.e., cal 725–405 BC, 95.4% probability) is roughly 300 years earlier 

than Purtill et al.’s time-frame. Therefore, we treated OS-136889 as an outlier in our fourth 

model. Another date we suspected to be an outlier was OS-136892 from the ditch sequence. This 

date did not conform to the distribution of dates above or below it. Moreover, ditch refilling was 

almost certainly the result of human activity. Therefore, it is possible OS-136889 potentially 

entered the ditch as a result of mixing Adena-Hopewell and later deposits into the ditch fills. 
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Table 3.10.  Structure and results of Model 3. 

Name Modelled (BC/AD) Indices: Amodel 87.9; Aoverall 93.2 

 from to % from to % median A P C  
Difference: (End post-Enclosure Use, Begin Ditch Refilling) 825 yrs. -740 

68.2 

-850 -665 

95.4 

-775   98.3  
End: Ditch Refilling Boundary 925 960 890 985 945   98.6  
Span: Ditch Refilling 0 yrs. 55 yrs. 0 yrs. 75 yrs. 20 yrs.   99.1  
OS-136897: Ditch 60-70 cmbs R_Date(1160,20) 925 955 890 970 940 87  99.4  
OS-136896: Ditch 70-80 cmbs R_Date(1140,15) 920 950 890 965 935 123  99.6  
OS-136895: Ditch 80-90 cmbs R_Date(1110,20) 920 950 890 960 930 84.7  99.5  
OS-136894: Ditch 90-100 cmbs R_Date(1150,15) 915 945 890 955 930 104.8  99.4  
OS-136893: Ditch 100-110 cmbs R_Date(1090,20) 905 945 890 950 925 61.4  99.3  
OS-136892: Ditch 110-120 cmbs R_Date(1960,20) 20 70 -25 85 40  0 99.8  
UGAMS-17003: Ditch 115-132 cmbs R_Date(1140,25) 885 940 885 950 920 132.6  99.4  
OS-136891: Ditch 125-135 cmbs R_Date(1150,15) 880 940 875 950 915 123.1  99.3  
Ditch Sequence          

Begin: Ditch Refilling Boundary 875 940 850 950 905   98.8  
 Sequence          

End: post-Enclosure Use Boundary 90 145 80 220 130   99  
Span: post-Enclosure Use 0 yrs. 15 yrs. 0 yrs. 40 yrs. 5 yrs.   100  
UGAMS-17005: F.8 Post R_Date(1880,25) 90 135 75 205 115 120.3  99.6  
UGAMS-17006: Midn. 50-55 cmbs R_Date(1890,25) 90 135 75 210 115 111.4  99.6  
post-Enclosure Phase          

Begin: post-Enclosure Use Boundary 80 125 65 170 105   99.6  
End: Embankment Boundary 65 105 50 140 90   99.8  
OS-136890: Ab2 R_Date(1910,20) 60 95 50 125 80 95.4  99.9  
Embankment Phase          

Begin: Embankment Boundary 40 90 10 115 65   99.9  
End: pre-Enclosure Use Boundary 1 60 -30 75 30   99.9  
Span: pre-Enclosure Use 30 yrs. 115 yrs. 0 yrs. 145 yrs. 75 yrs.   99.7  
OS-136888: Midn. 40-54 cmbs R_Date(1980,15) -40 30 -45 50 5 79  99.9  
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OS-136446: Midn. 20-30 cmbs R_Date(1980,25) -40 20 -45 50 -5 89.3  99.9  
UGAMS-17004: Ab1 R_Date(2040,30) -60 5 -100 25 -30 115.9  99.8  
OS-136447: Midn. 30-40 cmbs R_Date(2090,20) -80 -1 -130 5 -60 77.4  99.6  
OS-136889: F.13 Post R_Date(2450,25) -745 -430 -755 -410 -575  0 99.7  
pre-Enclosure Use Phase          

Begin: pre-Enclosure Use Boundary -115 -45 -170 -1 -75   98.3  
Winchester Sequence            
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Figure 3.13.  Results of Model 3 visualized in OxCal 4.3. A.) Posterior density estimates of 

Model 3. B.) Modeled Span of site use, including central midden, prior to 

enclosure construction.  
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Model 4 shows good agreement (Amodel = 88%) and provides our best temporal 

evaluation of changing ritual practices at Winchester Farm (Table 3.10, Figure 3.13a). This 

model estimates pre-enclosure use of the site began in cal 165 BC–AD 5 (95.4% probability) and 

likely in cal 115–45 BC (68.2% probability). Pre-Enclosure use of the site ended at cal 30 BC–

AD 80 (95.4% probability) and likely at cal AD 1–60 (68.2% probability), the span of use lasting 

0-145 years (95.4% probability) but likely 30-115 years (68.2% probability, Figure 3.13b). The 

construction of the enclosure had taken place by cal AD 50–140 (95.4% probability; End 

Embankment Boundary) and likely by cal AD 65–105 (68.2% probability). After the enclosure 

was constructed, the interior platform continued to be used. Use of this redesigned ritual space 

continued until cal AD 80–225 (95.4% probability) but likely until cal AD 90–145 (68.2% 

probability). Our current work shows that use of the site after the enclosure was built did not last 

long. Model 4 estimates it lasted only 0-40 years (95.4% probability) and likely 0-15 years 

(68.2% probability; Table 3.10, Figure 3.14a). 

After the use of the site ended, a long period of time passed before the ditch began 

refilling. Our model suggests refilling began by cal AD 850–950 (95.4% probability) and likely 

by cal AD 875–940 (68.2% probability), ending by cal AD 890–990 (95.4% probability) and 

likely by cal AD 925–960 (68.2% probability). The duration of refilling is estimated to have 

lasted 0–75 years (95.4% probability) and likely 0–55 years (68.2% probability; Figure 3.14b), 

but potentially lasting only 20 years (median). A Difference function we applied in this 

model assessed the amount of time that passed between the last evidence for the interior use of 

the enclosure (i.e., End post-Enclosure Use Boundary) and the first evidence we have for the 

ditch refilling (i.e., Begin Ditch Refilling Boundary). This parameter indicates that 670–850 

years (95.4% probability) and likely 740–825 years (68.2% probability), or potentially 775 years  
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Figure 3.14.  Further results of Model 3. A.) Modeled Span of time that interior of enclosure 

was used after construction of the ditch and embankment. B.) Modeled Span of 

time that transpired for the ditch to be refilled. C.) Time that elapsed between the 

end of the enclosure’s interior use and the beginning of ditch refilling modeled 

using the Difference function. 
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(median) passed from the time the enclosure quit being used for ritual gatherings and the ditch 

began to be intentionally refilled (Figure 3.14c). 

3.7 The Monumental Itinerary of Winchester Farm: A Discussion 

 Integrating our geoarchaeological, artifact, and chronological data allow us to detail the 

construction, use, and abandonment of the Winchester Farm enclosure. In addition, our ability to 

discern what activities preceded construction of the site, and therefore what influences may have 

led to the enclosure’s construction of the site, permit us to examine the itineraries of movement 

through space and time. However, our task is not only to describe these temporal changes in 

material culture and landscape change, but to also address why these changes might have 

occurred. This responsibility requires us to rely on the material correlates of American Indian 

ethnohistory and the philosophical foundations for American Indian worldviews. In the 

discussion that follows we outline the monumental nature of itineraries related to the Winchester 

Farm enclosure through time. To begin, we must consider use of the landscape before the 

enclosure was constructed. Excavation of the topographic rise that became the center of the 

enclosure showed that it developed from numerous depositional events. We refer to this feature 

as the central midden because it had no stratigraphic integrity discernable through 

geoarchaeology or chronology. Artifacts and ecofacts deposited in this midden include ceramics 

and lithic debris from a variety of near and far distances, as well as unique materials like 

fragments of a smoking pipe and celt, crystals, and galena debitage. Faunal remains indicate 

people were consuming small amounts of medium to large mammals, and possibly small 

quantities of bird, reptiles, and amphibians. 

 Adena-Hopewell enclosures have long been considered ceremonial places where 

participation in ritual practices (e.g., feasting, dance, games) emphasized social integration at 

multiple scales (Byers 2011; Carr 2005; Clay 1987; Lynott 2015; Ruby et al. 2005; Webb 1941; 
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Wright and Loveland 2015). However, our work shows it is highly likely that small groups of 

people were engaging in cooperative ceremonies, evidenced by use of the central midden feature 

and the surrounding landscape, for 0-145 years (95.4% probability) sometime between cal 165 

BC–AD 5 and cal 30 BC–AD 80 (95.4% probability) before Winchester Farm enclosure was 

built. Gathering at this particular place on the landscape may have been simply a historical 

contingency or it may relate to cosmological principles retold in the myths of many American 

Indian tribes. For instance, the central midden is situated in close proximity to the confluence of 

a small tributary stream and North Elkhorn Creek. Water features like rivers, springs, and the 

confluence of streams are generally seen as places of spiritual significance in the cosmologies of 

American Indian tribes of the Eastern Woodlands. Often, they are associated with either the 

creation of, or emergence into, the world and/or the Under World (Bastian and Mitchell 2004: 

89-91; Hall 1997:84; Hudson 1976:130; Romain 2009:160; Rooth 1957; Spencer 1909). 

Therefore, meeting at this place may have held a cosmological significance prior to the gathering 

of people wherein small-scale feasting and the deposition of geological items like crystal and 

galena occurred. However, once social gatherings began, they set in place a cycle of movement 

to and from this place for over a century. 

Because we cannot directly date any of the ‘unique artifacts’ we described above, we 

cannot know if the pre-enclosure uses of the central midden feature included their deposition. 

However, our dating of deer bone from this feature shows that food consumption took place 

before the enclosure was built. Following Kassabaum’s (2014:314-31) reconceptualized 

continuum of feasting, we argue the small quantities of animal bone from the central midden 

indicate gatherings that occurred there before the enclosure was built were between small groups 

of people and likely reinforced group cohesion and equality rather than sociopolitical 
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competition. When the deposition of local exotic and distant materials entered this feature the 

context of the midden may have shifted. In the case of the crystal and galena, and possibly the 

celt and pipe fragments, gathering the materials for these objects almost always requires entering 

the earth or traveling to a place where a material outcropped. In either case, there would have 

been a strong power, and potentially supernatural beings, associated with these materials (Carr 

2005:582) and their places of origin, as has been documented for the social contexts of copper 

(Fox 1992; Trevelyan 2004). If the deposition of these items in the central midden represents the 

bundling of material and spiritual power with other communal forms of ritual practice like small-

scale feasting and/or the passing of ritual knowledge, this place would have become powerful, 

and the people who participated in the creation of this place may have been bounded to it 

through their sense of place as defined Viola Cordova (2007:192-200). For instance, Pluckhahn 

et al. (2006:264) note that, “(p)lant remains are less commonly utilized in the archaeological 

identification of feasting”, but when they are, botanical assemblages are highly diverse and rich. 

This is not the case for Winchester Farm. Therefore, we consider the low density of maygrass 

(Pharlaris caroliniana), purslane (Portulaca oleracea), and probable bristly locust (Robinia 

hispida) to imply the passing of medicinal or ritual knowledge.  

Approaching the placement and use of the central midden from a perspective that 

recognizes it as cosmologically significant and accreting power as groups continued to use it for 

ritual gatherings, allows us to address why people continued to revisit the locale and eventually 

construct an earthen enclosure around it. When the enclosure was constructed, our 

geoarchaeological analyses of the Ab under the embankment suggests that the ground surface 

had been subjected to low-heat fires. When synthesizing ceremony among southeastern 

American Indian Nations, Hudson (1976:317-18) outlines ways human purity was maintained 
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through separation from pollution. In a general sense, the use of fire was important to this 

separation as Hudson (1976:318) writes, “Fire was itself the ultimate symbol of [a person’s] 

struggle against pollution.” Using this notion, we might consider the burning of the landscape an 

act intended to purify the area where Winchester Farm was constructed. Functionally, this would 

have also made excavation of the ditch easier by removing any small wood and plant debris.  

Our examination of the embankment and ditch shows that construction of the enclosure 

included the excavation of the ditch to bedrock. Sediments removed from the ditch were then 

manipulated to create a homogenized sediment fabric that was used to build the exterior 

embankments of the enclosure. This act may have served as a metaphor for kinship relations and 

world renewal, as those who participated in the construction of this enclosure came together to 

create what would be an enduring monument. In general, monumentalizing a place can serve as a 

mechanism to solidify notions of social consensus (Bradley 1998; DeMarrais 2016; DeMarrais et 

al. 1996; Dillehay 1990; Notroff et al 2014; Osborne 2014). In eastern North America mound 

construction has been considered an embodied ritual reflecting the recreation of the world, as 

expressed in origin myths from numerous American Indian language groups. In what are known 

as ‘Earth Diver’ myths, a water-based entity such as a turtle, crawfish, duck, muskrat, or water 

beetle dives into primordial seas to acquire the mud that land is made from (Hall 1997:19). 

However, the creation of monuments, even if an act of world renewal, also suggests that people 

interact with them on a regular basis for unknown periods of time. It is these cyclical interactions 

that can lead to unintended consequences (Pauketat 2000), whereby the process of remembering 

the past construction of a monument perpetuates notions of belonging and a sense of place or 

power (Henry 2017; Pauketat and Alt 2003). In the case of Winchester Farm, we must call 

attention to how the enclosure was meant to define a space that contained people and things 
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within it, even if only temporarily. In doing so, the enclosure also facilitated the movement of 

some people and things from a diverse geographical range into and out of it. As we identified 

through our excavations, other local and non-local objects were left inside—bound within the 

enclosure forever.  

As we experienced during excavation of the ditch, water would seep from the bedrock, 

filling it roughly 20-30 cm deep. Bounding the central midden with a geometric shape and water 

correlates well with Hall’s (1976) ethnographic synthesis on the creation of boundaries for 

supernatural forces by American Indian Nations. He points out that water, including streams, 

served as a barrier that supernatural beings could not cross; these boundaries could be enhanced 

by their placement in a circular or geometric form and were used to repel the movement of spirits 

across them (Hall 1976:362). ‘Sacred enclosures’ like Winchester Farm are explicitly addressed 

as potentially being used in this way. However, Winchester Farm is the first enclosure that has 

been identified to have likely held water in the ditch. The symbolism of ditched enclosures in 

Western Europe, specifically Ireland, have been explained in similar terms. Warner (2000) 

describes the dichotomy of ditched hengiform enclosures and Iron Age hillforts as a 

juxtaposition of ‘keeping in’ and ‘keeping out’. Hillforts are known to be defensive features and 

exhibit a ditch to the outside of an embankment, effectively keeping dangerous entities outside of 

the internal space. Alternatively, Warner (2000:41-2) draws on Irish mythology to propose that 

ritual leaders engaging the ‘Otherworld’ wanted to contain those forces to an internally-ditched 

enclosure space so they could not harm the outside world (Figure 3.15). Similarly, Hall’s (1976) 

ethnohistory showed that many American Indian Nations (including those who lived in the 

Eastern Woodlands) used water barriers in ways similar to those described by Warner, including 

to impede the movement of spirits. Therefore, we argue that the construction of this enclosure 
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Figure 3.15.  Schematic of differences in how the arrangements of ditches and embankments bound spirits and forces. Redrawn from 

Warner 2000 (Figure 2). 



162 

 

was, at least in part, intended to contain powerful forces entangled with the ritual gatherings and 

supernatural objects located inside it. 

Our chronological models suggest that the enclosure had been built by cal AD 50–140 

(95.4% probability). After the construction of the ditch and embankment, groups from near and 

far continued to visit Winchester Farm enclosure for ritual gatherings. However, we can’t ignore 

the notion that this earthwork was understood to be of great importance on a daily scale (Kidder 

and Sherwood 2017), beyond its use for periodic gatherings and a container for great and 

potentially dangerous power. The small fragments of non-local objects suggest the enclosure 

may have become a way point on pilgrimage journeys to sacred places and/or other enclosure 

complexes in the Eastern Woodlands, such as the large tripartite enclosures of the Scioto River 

Valley in present-day Central Ohio. Our chronological model suggests that use of the enclosure 

continued for another 0-40 years (95.4% probability), ending sometime between cal AD 80–225 

(95.4% probability). While we cannot confidently discern when the internal post-enclosure was 

erected after the construction of the enclosure, information from the magnetic data and nearby 

Mount Horeb Circle offers one potential scenario. As we mentioned earlier, the post-enclosure 

discovered by Webb (1941) inside Mount Horeb had no clear gap in posts that would indicate an 

entrance or exit. Likewise, the magnetic data at Winchester Farm indicates the enclosure encased 

the entire internal platform. If, as we have argued for the ditched enclosure, the post-enclosures 

signify another boundary or means of containing supernatural forces, then they may be a 

component of site abandonment. The post enclosures may be a final act of closing off powerful 

animate entities from affecting the outside world. If this is the case, our temporal understandings 

of the ditch refilling can be properly placed in an interpretive context that reinforces this notion. 
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Excavation and geoarchaeological analyses of the ditch indicate the ditch did not refill 

through a long and alternating history of erosion or wash events followed by landform 

(pedogenic) development. Instead, we have argued the ditch likely refilled through human action 

that involved breaking apart portions of the embankment sediments, depositing them in the ditch, 

and burning them. Similar scenarios have been documented for kivas in the American Southwest 

(Van Keuren and Roos 2013; Walker 1995; Walker et al. 2000). However, our chronological 

model suggests refilling of the ditch began by cal AD 850–950 (95.4% probability), some 670–

850 years (95.4% probability) after the enclosure was abandoned. The problem with this 

scenario is that we have absolutely no evidence the ditch refilled naturally during this time. 

Therefore, we can only assume the ditch was being maintained after the interior was no longer 

being used. We do not accept that no natural infilling of the ditch would have occurred over the 

course of 670-850 years. While we would venture that this pre-Columbian landscape was more 

stable than it is today, experimental work on the ditches of henge enclosures in Great Britain 

have shown how significant vegetation growth and natural infilling can occur in three to eight 

years, with accumulations of more than 20 cm of infill occurring by year eight (Bell et al. 1996; 

Crabtree 1971). Other experimental projects on henges propose a 10 to 20-year timespan before 

revegetation of an embankment and ditch occurs and infill erosion ceases (Reynolds 1999). An 

alternative scenario for the refilling of the ditch at Winchester Farm might have involved the 

ditch being cleaned out prior to the deconstruction event. However, we suggest that some form 

of evidence for this act would endure, visible in the presence of older or displaced sediments at 

the edges and base of the ditch. 

The refilling of the ditch was rapid. Our 14C modeling indicates the closure of the site 

occurred over 0–75 years (95.4% probability) and potentially only 20 years (median). The 
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refilling as we have documented using 14C dating ended by cal AD 890–990 (95.4% probability). 

However, our geoarchaeological work shows no lull in refilling that might indicate pedogenic 

activity took place in between refilling episodes. Therefore, the paired geoarchaeological and 

chronological evidence from the ditch and the modeling of a potential 20-year span of refilling 

lead us to believe that this may have taken place in a single event. At the end of this event, 

shaped fragments of micaceous schist were deposited in the ditch. Their placement in this 

location may be related to the mixing and movement of sediments once comprising part of the 

central midden. However, if this were the case we should have recovered additional materials 

like bone, ceramic sherds, and lithic debris from the refilling sediments. It is possible that the 

schist was placed there to signal past connections to distant places, people, and power once 

contained within the enclosure.  

3.8 Conclusion 

 Monuments are stationary on the landscape, but they serve as forms of ritual 

infrastructure that reflect and influence shifts in the ritual dispositions of others. Infrastructure in 

this sense facilitates and restricts the travel, or flow, of objects, ideas, power, and people across 

space and through time (Larkin 2013). From this perspective we might see how moving through 

time provides a way to view different roles and expectations placed upon, and expected of, 

monuments like Winchester Farm. Our work shows how the enclosure was not constructed as a 

place for people to gather within. Instead, it reflected shifts in the ritual dispositions of Adena-

Hopewell societies who used the central midden prior to constructing it. This enclosure 

contained powerful objects and the residues of ritual gatherings that had happened earlier. In this 

sense, it was an animate object that acted to enclose various supernatural powers associated with 

human actions and objects found within its center. However, that was just one purpose along its 

journey through time. After construction, people from near and far continued to be drawn to the 
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site for gatherings where ritual knowledge was shared, and foreign objects continued to be 

deposited. Some may have stopped at the site as part of longer prescribed pilgrimage journeys to 

other natural and built places in the Eastern Woodlands. In this sense, the itinerary of Winchester 

Farm is not only about time, it also concerns the movement of people, things, and ideas in and 

around it. 

 After Adena-Hopewell societies stopped using the site, later inhabitants of the landscape 

continued to remember the power bound inside the enclosure and worked to maintain the 

boundaries that contained it. Again, the dispositions of ritual practice had changed but movement 

associated with the site continued through the travel to and from it, and the labor required to 

maintain the ditch and embankment for up to eight centuries. When the ditch was refilled, some 

time in the mid-9th to early-10th centuries AD, another shift was signaled in how ritual 

dispositions were oriented toward the site. Had the occupants of the landscape forgotten what lie 

inside the enclosure? Perhaps the power contained in the enclosure had weakened, making it safe 

to cleanse the landscape of past materials associated with Winchester Farm. This era in the pre-

Columbian history of the Eastern Woodlands is represented by a significant shift in settlement 

patterns, subsistence strategies, material culture, and sociopolitical dynamics (Cook 2008; 

Henderson 1992; Railey 1996). Earthen monuments ceased to be constructed in the Middle Ohio 

Valley, and evidence for long distance exchange virtually disappears. Perhaps, these changes 

accompanied a shift in ideology as well that resulted in the need to erase previous ritual places 

from the landscape. Nevertheless, our work shows that the itinerary of Winchester Farm played a 

role in the movement of people during this phase of cultural reorganization. 

 While another biographical approach might end there, with the ‘death’ of the enclosure, 

we recognize that movement is still structured with respect to the enclosure’s modern itinerary. 
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Constantine Rafinesque was drawn to map the site even though he was less impressed with it 

than other landscape features that surrounded it. Modern archaeologists (including ourselves) 

have been affected by the itinerary of this near-invisible place on the landscape. It structured the 

ways Milner and Jefferies (personal communication) moved about to map its topography on a 

particularly frigid winter day in December 1985, in addition to the ritualistic movement of 

geophysical survey conducted by one of us (ERH). Moreover, we acknowledge how recent 

archaeological excavations, another form of movement across space and time, were organized 

with respect to the remains of this buried monument. For now, the site rests in the pasture of a 

thoroughbred horse farm, where its slight topographic nature does not impede the movement of 

these multi-million-dollar animals. However, as time passes and itineraries change, Winchester 

Farm may influence the movement of people, animals, and things once more. 
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Chapter 4 
The Temporality of Adena-Hopewell Monuments: 

Bayesian Perspectives on the Chronology of Mounds and Enclosures in the 

Bluegrass Region of Central Kentucky 

4.1 Introduction 

The temporality of earthen monuments continues to be problematic for archaeologists 

investigating social developments in the Middle Ohio Valley of eastern North America. Small 

burial mounds and circular enclosures were once attributed to an “Adena” cultural entity dating 

to the Early Woodland period (ca. 1000–200 BC) (Figure 4.1). Alternatively, larger burial 

mounds and multi-shape geometric enclosures have been affiliated with Hopewellian societies 

who inhabited this region during the Middle Woodland era (ca. 200 BC–AD 500). However, 

over the last thirty years archaeologists have identified considerably more temporal overlap in 

the radiocarbon chronologies associated with the material signatures of what was once 

traditionally considered Adena and Hopewell (Clay 1991, 2014; Lepper et al. 2014; Lynott, ed. 

2009; Lynott 2015; Miller 2018; Purtill et al. 2014; Railey 1991, 1996). This overlap has now 

created a confusing mixture of understandings related to culture history in the Middle Ohio 

Valley and what Adena and Hopewell should represent in the archaeological vocabulary. Both 

have been referred to within the context of interaction spheres, clans, cults, mortuary programs, 

religion, and more vaguely, a “phenomenon” (Abrams 2009; Beck, Jr. and Brown 2006; Brown 

1997; Byers 2004, 2011; Caldwell 1964; Carr and Case, eds. 2005; Charles and Buikstra, eds. 

2006; Clay 2014; Dragoo 1963; Hays 2010; Prufer 1964; Struever and Hoart 1972; Webb and 

Snow 1945; see also Applegate and Mainfort, Jr., eds. 2005). 

While a continued trend in Adena-Hopewell studies centers on identifying regional 

variability in how societies participated in, and contributed to, the elaboration of ceremonialism 

that pervades this period of pre-Columbian history in the eastern United States, many
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Figure 4.1.  Extent of Adena (500 BC–AD 250) cultural sphere (red boundary) and Hopewell (200 BC–AD 500) cultural sphere 

(yellow boundary). 
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archaeologists still recognize Adena as fundamentally distinct from Hopewell. Those that do 

consider the Adena to span approximately 500 BC–AD 250 and Hopewell approximately 200 

BC–AD 500. The near 500-year overlap between these time ranges have led other scholars to 

emphasize the need for archaeologists to consider the material evidence for ritual behaviors, not 

as separate cultural developments, but instead a broad historical trajectory of mortuary ritual, 

ceremonial exchange of elaborate craft items, and the construction of unique earthen monuments 

(cf. Clay 2014). It has been argued that these perspectives should involve multi-scalar analyses 

allowing one to tack back-and-forth between “local and global perspectives” on Adena-Hopewell 

societies (Wright 2017). Following Greber’s (2005) proposal that archaeologists focus more on 

local histories of ritual development between roughly 500 BC and AD 500 would likewise 

provide a better understanding of when, and under what contexts, the initial construction of 

monuments began in the Middle Ohio Valley. In addition, this chronological approach to local 

histories would provide an opportunity through which to examine how and when shifts in 

attitudes toward monuments occurred, potentially identifiable in how later inhabitants of the 

Middle Ohio Valley landscape interacted at sites constructed hundreds of years earlier.  

Here I explore the localized nature of monument construction in the Bluegrass Region of 

Central Kentucky by using Bayesian chronological modeling on published and unpublished 

chronometric dates for two types of earthen monuments: burial mounds and geometric earthen 

enclosures. The modeling of more than 60 radiocarbon (n=66) and two Optically Stimulated 

Luminescence (OSL) dates from 14 sites suggests burial monuments were the first earthen 

constructions to appear in the region during the late-Early Woodland (Figure 4.2). This research 

also identified that earthen enclosures appeared in the late first-century BC, suggesting a 

temporal shift in how communities on Kentucky’s Bluegrass landscape coalesced to participate
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Figure 4.2.  Sites discussed in text. Circles = enclosures, Triangles = burial mounds. 1.) Mount Horeb & Winchester Farm enclosures; 

2.) LeBus Circle; 3.) Nelson-Gay mound & enclosure; 4.) Bogie Circle & Bogie West; 5.) Earthwalker & Goff Circles; 6.) 

Walker-Noe mound; 7.) Auvergne mound; 8.) Wright mounds; 9.) Dover mound; 10.) Hopeton enclosure & Adena 

mound; 11.) Garden Creek mound & enclosure complex. 



189 

 

in organized monument construction. Moreover, this research identified differences in how 

communities who inhabited the Bluegrass after Adena-Hopewell societies interacted with 

enclosure monuments. Together, these data speak to the long temporal nature of place-based 

interactions among pre-Columbian Native American communities. In the subsequent 

chronological examination of monuments from Central Kentucky, I first present background 

information and previous considerations of monument construction in the region. I then 

introduce the basic concepts underlying Bayesian statistics and their application to chronological 

modeling. The presentation and discussion of the results for the chronological models developed 

for this study follows. I end by discussing the implications of these results within the broader 

context of monumentality and Adena-Hopewell in the Eastern U.S. 

4.2 Models for Adena-Hopewell Monumentality in Kentucky’s Bluegrass Region 

  Most archaeologists agree that there is “discontinuous” material evidence that traditional 

Hopewellian societies inhabited Kentucky (see Applegate 2008:356-81). Enclosures situated on 

Kentucky’s side of the Ohio River opposite the mouth of the Scioto River, in addition to the 

Camargo complex in the southeastern portion of the Bluegrass, offer evidence for monumental 

constructions that exhibit Hopewellian characteristics (Hardesty 1965; Henderson et al. 1988; 

Lewis 1887). However, most ideas about the development of monumentality in Kentucky, and 

especially the Bluegrass Region, come from mound and enclosure sites typically resigned to an 

Adena designation. There are three main views on the development of monumentality in the 

Bluegrass Region. Clay (1991) and Railey (1991) offer two contrasting, but not incompatible, 

models for ritual development that involve the construction of monuments in a diachronic 

framework. Clay’s (1991) model separates ritual development into three phases: Early (500–150 

BC), Middle (150 BC–AD1), and Late (AD 1–250) Adena. Early Adena is characterized by the 

appearance of burial mounds that served multiple communities and were situated at the 
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intersection, or peripheries, of social boundaries (Clay 1991:31-2). Middle Adena included an 

increase in local community-centered monument construction, often over the remnants of ritual 

post-enclosures. Clay (1991:33) proposes that these facilities shifted to serve individual, rather 

than multiple, communities at this time. Finally, Late Adena is considered the apogee of cultural 

and monumental development as geometric enclosures, enclosure complexes, and mound 

complexes that include very large burial mounds appear on the Bluegrass landscape (Clay 

1991:34). Applegate’s (2008) recent reconsideration of earthen monuments and ritual behaviors 

in Kentucky led to slight modifications of this organizational scheme, placing large irregular 

enclosures in the Early Adena phase and large hilltop enclosures in the Late Adena phase. 

An alternative to these two views comes from Railey (1991), who argues that 

monumental architecture served as territorial markers for dispersed lineage-based kinship 

communities. He does not separate the chronology into developmental phases, however, because 

the chronological data are too sparse. Instead, he promotes the notion that monumentality grows 

increasingly more important from 500 BC–AD 250 (Adena) when Newtown community 

organization (ca. AD 250–700) shifted focus from dispersed societies to settlement aggregation 

and the formation of incipient villages (Railey 1991:66). This implies that monumental 

architecture was rendered unnecessary because there was no longer a need for dispersed 

populations to maintain centralized gathering locales after villages emerged. 

While these models help explain how monuments of different types (e.g., burial mounds 

and enclosures) may have served as places for social integration on the landscape, they lack any 

solid chronological footing. Nevertheless, they can serve as testable hypotheses for the current 

study that emphasizes chronology building by using robust chronometric data sets. These models 

for ritual development also provide some prior knowledge that can be tested using the Bayesian 
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approach to chronological modeling. The outcomes of this research are not intended to provide a 

clear division of Adena or Hopewell in the region. In this sense, Clay’s (2014:183) statement on 

the nature of chronologies in the region is appropriate, “…there seems to be an underlying faith 

that if we only had a good run of modern dates it would all straighten out and Adena would be 

unambiguously early, fully justifying its misplaced appellation as [Middle] Ohio Valley Early 

Woodland and somehow, in some unspecified manner, developing into Hopewell.” While this 

research does present ‘a good run of modern dates’, it also uses what we know about the nature 

of monument construction and use to inform the models presented below. In doing so, I am less 

concerned with whether the people who created these monuments self-identified as something 

approximating ‘Adena’ or ‘Hopewell’. Instead, I am interested in tracing the history of landscape 

modification in this region and learning if it fits with previously conceived notions of monument 

construction that earlier archaeologists have labelled ‘Adena’ and ‘Hopewell’. Moreover, I am 

interested in any evidence that reveals ways in which later societies treated these monuments—

something that has received very little attention by archaeologists (but see Mann 2005; Seeman 

1992; and Chapter 3 here).  

4.3 A Bayesian Approach to Chronology Building and the Past 

 Since the 1990s archaeologists have been using Bayesian statistics to inform the creation 

of chronological and historical frameworks based on the pairing of chronometric data and 

archaeological knowledge (Buck 1999; Buck et al. 1994; Bronk Ramsey 1995; Litton and Buck 

1995). The statistical foundations and mathematics underlying Bayes’ theorem and the Bayesian 

process has been discussed extensively in a variety of European and American publications 

(Bayliss 2015; Bayliss et al. 2007a; Buck and Meson 2015; Buck et al. 1994; Bronk Ramsey 

1995, 2009a; Hamilton and Krus 2018; Lulewicz 2018). For this reason, I provide only a brief 

discussion that focuses on terminology of modeling used here. First, Bayesian analyses allow 
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researchers to consider new data or interpretations pertaining to a question within the context of 

former knowledge about that question (Figure 4.3). In this sense, Bayesian models are constantly 

in flux, changing with the addition of new data (e.g., chronometric dates). 

 
Figure 4.3.  Schematic representation of Bayes’s theorem. 

 

In the OxCal software package (Bronk Ramsey 1995, 2017), Bayesian analyses of 

chronometric dates are structured in phases and sequences. A phase assumes that an unordered 

group of events (e.g., dates for moundbuilding) takes place over a uniform prior distribution. 

Any of the events in a phase are as likely to be occurring within a single period of activity. 

Sequences assume some form of order and rely on information such as stratigraphy in 

archaeology. Boundaries mark the start and end of phases, sequences, or even phases within a 

sequence. The standard boundaries assume a uniform prior distribution of events transpires, but 

alternative boundaries (e.g., Sigma and Tau boundaries) can be use when there is valuable 

archaeological evidence that suggests a given material phenomenon may appear very quickly and 

slowly fade from use or vice versa, or overlap with another phenomenon. Dates in phases and 

sequences are considered statistically significant if they pass the 60% agreement index. 
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However, because OxCal’s agreement indices are considered pseudo-Bayes factors (Hamilton 

and Krus 2018), larger agreement indices should not be used to argue for any model being more 

probable. Finally, as with any statistical analysis, there can be outliers. In radiocarbon dating, 

especially, outliers are an issue because charcoal can move up and down soil columns via 

bioturbation, charcoal can be moved around a site by ancient inhabitants, ‘old wood’ effects are 

present when dating unidentified pieces of charcoal, and there can be lab inconsistencies—

particularly when it comes to integrating legacy radiocarbon assays into models. However, there 

are ways of accounting for outliers through various general and/or exponential charcoal-based 

outlier models that can be incorporated into an overall model structure, as well as exponential 

boundaries that account for events that do not fall within a uniform distribution (Bronk Ramsey 

2009b; Dee and Bronk Ramsey 2014). 

The application of Bayesian methods to chronological modeling have transformed the 

creation of (pre)histories in European archaeology, where interpretive attention can now be 

turned to discussions of lifetimes, generations, and singular events rather than cultural periods 

(e.g., the Neolithic or Bronze Age) (Bayliss et al. 2007b; Darvill et al. 2012; Hamilton and 

Kenny 2015; Hamilton et al. 2015; Whittle et al. 2007; Whittle et al. 2001). Archaeologists 

working in the New World have lagged behind their European counterparts in adopting Bayesian 

approaches. However, this is rapidly changing, particularly in North America where 

archaeologists are beginning to assess the archaeological record from a historical standpoint 

(Barrier 2017; Cobb et al. 2015; Kidder 2006; Krus et al. 2013; Krus et al. 2015; Lulewicz 2018; 

McNutt et al. 2012; Overholtzer 2015; Pluckhahn et al. 2015; Schilling 2013). Among Middle 

Woodland scholars in the eastern U.S., Bayesian methods have been sporadic (Hermann et al. 

2014; Miller 2018; Wallis et al. 2015; Wright 2014) but offer the potential to elucidate the 
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chronological boundaries of problematic cultural history units that were developed prior to 

chronometric dating techniques. 

4.4 Bayesian Models from the Bluegrass: Burial Mounds and Earthen Enclosures 

 Models were structured around the dates presented in Tables 4.1 and 4.2. When the 14C 

dates are examined at their 95.4% calibration ranges we see use of the landscape from 

approximately 1000 BC to the present day (see Table 4.1). However, incorporating prior 

knowledge into the modeling of these dates allow us to examine them within their archaeological 

contexts. From this perspective, multiple Bayesian models were created to examine the 

chronology for two types of earthen monuments constructed in the Bluegrass Region of Central 

Kentucky and generally assigned to an Adena-Hopewell cultural affiliation: burial mounds and 

earthen enclosures. While all dates in Table 4.1 could not be effectively incorporated into models 

I present, they represent the calibrated range of cultural activity for monuments that have been 

identified as constructed by Adena-Hopewell societies in this region. In this section I first 

discuss dates and models from enclosure sites, followed by models that examine the construction 

of burial mounds. Modeled age ranges are rounded to the nearest five years and presented in 

italics. When I refer to a particular command used in OxCal it is written in a Courier font to 

reference the Chronological Query Language (CQL2) coding used. All codes mentioned here can 

be found in the appendix. 

4.4.1 Earthen enclosures 

 Chronometric dates were available from seven earthen enclosures across Central 

Kentucky. Dates from buried ground surfaces that were preserved beneath the embankments fills 

were available for four of these enclosures. In each case, the ground surfaces were burned prior 

to construction, creating a sealed context that served as a terminus post quem (TPQ) for dating 

each enclosure’s construction (Figure 4.4). Model 1 tests the assumption that all dates from these
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Table 4.1.  Radiocarbon assays used in this study. 
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15Fa153 
(Winchester Farm 
Enclosure) 

Trench 1; Ditch - 115-132 
cmbs 

Ditch Refilling (refilling 
event 1-2) 

2014 This Study UGA CAIS 
UGAMS-

17003 
UID charred 

wood 
-25.0 ̶̶― 86.77 0.28 ̶̶― ̶̶― 1140 25 

AD 770–
980 

AD 
920 

15Fa153 
(Winchester Farm 
Enclosure) 

Trench 1; Embankment-Ab 
interface 

Terminus Post Quem for 
Enclosure Construction 

2014 This Study UGA CAIS 
UGAMS-

17004 
UID charred 

wood 
-27.6 ̶̶― 77.57 0.26 ̶̶― ̶̶― 2040 30 

170 BC–
AD 50 

50 
BC 

15Fa153 
(Winchester Farm 
Enclosure) 

Unit 13; Fea. 8 - Post Fill 
Terminus Post Quem for 
Construction of Wooden 

Post Enclosure 
2014 This Study UGA CAIS 

UGAMS-
17005 

UID charred 
wood 

-22.9 ̶̶― 79.10 0.25 ̶̶― ̶̶― 1880 25 
AD 70–

220 
AD 
120 

15Fa153 
(Winchester Farm 
Enclosure) 

Unit 11; Fea. 4 - 50-55 cmbs Interior Use of Enclosure 2014 This Study UGA CAIS 
UGAMS-

17006 
UID charred 

wood 
-23.3 ̶̶― 79.07 0.26 ̶̶― ̶̶― 1890 25 

AD 50–
220 

AD 
110 

15Fa153 
(Winchester Farm 
Enclosure) 

Unit 14; Fea. 4 - 20-30 cmbs Interior Use of Enclosure 2017 This Study NOSAMS OS-
136446 

Cervidae sp. Rib 
(bone) 

-21.6 
-223.93 

̶̶― ̶̶― 0.7820 0.0023 1980 25 
50 BC–AD 

70 
AD 
20 

15Fa153 
(Winchester Farm 
Enclosure) 

Unit 11; Fea. 4 - 30-40 cmbs Interior Use of Enclosure 2017 This Study NOSAMS OS-
136447 

Cervidae sp. 
(bone) 

-21.8 
-234.57 

̶̶― ̶̶― 0.7713 0.0017 2090 20 
180–40 

BC 
110 
BC 

15Fa153 
(Winchester Farm 
Enclosure) Unit 12; Fea. 4 - 40-54 cmbs 

Interior Use of Enclosure 2017 This Study NOSAMS OS-
136888 

UID charred 
wood 

̶̶― ̶̶― ̶̶― ̶̶― 
0.7820 0.0016 

1980 15 
40 BC–AD 

70 
AD 
30 

15Fa153 
(Winchester Farm 
Enclosure) Unit 15; Fea. 13 - Post Fill 

Terminus Post Quem for 
Construction of Wooden 

Post Enclosure 
2017 This Study NOSAMS OS-

136889 

UID charred 
roundwood 

̶̶― ̶̶― ̶̶― ̶̶― 
0.7374 0.0021 

2450 25 
760–410 

BC 
580 
BC 

15Fa153 
(Winchester Farm 
Enclosure) 

Trench 1; Embankment-Ab 
interface 

Terminus Post Quem for 
Enclosure Construction 

2017 This Study NOSAMS OS-
136890 

UID charred 
wood 

̶̶― ̶̶― ̶̶― ̶̶― 
0.7887 0.0021 

1910 20 
AD 50–

140 
AD 
90 

15Fa153 
(Winchester Farm 
Enclosure) 

Trench 1; Ditch - 125-135 
cmbs 

Teminus Ante Quem for 
the Start of Ditch Refilling 

(refilling event 1) 
2017 This Study NOSAMS OS-

136891 

UID charred 
roundwood 

̶̶― ̶̶― ̶̶― ̶̶― 
0.8665 0.0018 

1150 15 
AD 770–

970 
AD 
900 

15Fa153 
(Winchester Farm 
Enclosure) 

Trench 1; Ditch - 110-120 
cmbs 

Ditch Refilling (refilling 
event 2 bottom) 

2017 This Study NOSAMS OS-
136892 

UID charred 
wood 

̶̶― ̶̶― ̶̶― ̶̶― 
0.7839 0.0018 

1960 20 
30 BC–AD 

90 
AD 
40 

15Fa153 
(Winchester Farm 
Enclosure) 

Trench 1; Ditch - 100-110 
cmbs 

Ditch Refilling (refilling 
event 2 top) 

2017 This Study NOSAMS OS-
136893 

UID charred 
roundwood 

̶̶― ̶̶― ̶̶― ̶̶― 
0.8735 0.0021 

1090 20 
AD 890–

1020 
AD 
960 

15Fa153 
(Winchester Farm 
Enclosure) 

Trench 1; Ditch - 90-100 cmbs 
Ditch Refilling (refilling 

event 3) 
2017 This Study NOSAMS 

OS-
136894 

UID charred 
roundwood 

̶̶― ̶̶― ̶̶― ̶̶― 
0.8665 0.0019 

1150 15 
AD 770–

970 
AD 
900 
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15Fa153 
(Winchester Farm 
Enclosure) Trench 1; Ditch - 80-90 cmbs 

Ditch Refilling (refilling 
event 4 bottom) 

2017 This Study NOSAMS 
OS-

136895 
UID charred 

wood 
̶̶― ̶̶― ̶̶― ̶̶― 

0.8713 0.0019 
1110 20 

AD 890–
990 

AD 
940 

15Fa153 
(Winchester Farm 
Enclosure) Trench 1; Ditch - 70-80 cmbs 

Ditch Refilling (refilling 
event 4 middle) 

2017 This Study NOSAMS 
OS-

136896 
UID charred 
roundwood 

̶̶― ̶̶― ̶̶― ̶̶― 
0.8679 0.0018 

1140 15 
AD 780–

980 
AD 
930 

15Fa153 
(Winchester Farm 
Enclosure) Trench 1; Ditch - 60-70 cmbs 

Ditch Refilling (refilling 
event 4 upper) 

2017 This Study NOSAMS 
OS-

136897 
UID charred 
roundwood 

̶̶― ̶̶― ̶̶― ̶̶― 
0.8656 0.0021 

1160 20 
AD 770–

970 
AD 
870 

15Fa1 (Mount 
Horeb Circle) 

Downhole Mag. Sus. Core 2: 
130 cmbs 

Beneath Embankment 
Fills; Prior to Any 

Construction 
2010 This Study ISGS 

ISGS-
6586 

UID charred 
wood 

-25.0 ̶̶― ̶̶― ̶̶― ̶̶― ̶̶― 2070 80 
360 BC–
AD 80 

100 
BC 

15Fa1 (Mount 
Horeb Circle) 

Downhole Mag. Sus. Core 2: 
130 cmbs 

Beneath Embankment 
Fills; Prior to Any 

Construction 
2010 This Study ISGS 

ISGS-
A3568 

UID charred 
wood 

-24.8 -218.4 ̶̶― ̶̶― 
0.7816 0.0015 

1980 20 
40 BC–AD 

70 
AD 
20 

15Fa1 (Mount 
Horeb Circle) 

Trench 1; East Wall; upper 
hearth 

Beneath Embankment Fills 
of Phase 2; Prior to End of 

Construction 
2016 This Study NOSAMS OS-

125719 

UID charred 
wood 

̶̶― 
-216.87 

̶̶― ̶̶― 
0.7893 0.0018 1900 

20 
AD 50–

210 
AD 
100 

15Fa1 (Mount 
Horeb Circle) 

Trench 1; East Wall; bottom 
hearth 

Beneath Embankment Fills 
of Phase 2; Prior to of End 

Construction 
2016 This Study NOSAMS OS-

125720 

UID charred 
wood 

̶̶― 
-219.99 

̶̶― ̶̶― 
0.7862 0.0019 1930 

20 
AD 20–

130 
AD 
70 

15Fa1 (Mount 
Horeb Circle) 

Trench 1; Unit 3; East Wall; 
Orig. Ab "activity area" 

Beneath Embankment Fills 
of Phase 1; Prior to Any 

Construction 
2016 This Study NOSAMS OS-

125721 

UID charred 
wood 

̶̶― 
-220.75 

̶̶― ̶̶― 
0.7854 0.0020 1940 

20 
AD 10–

130 
AD 
60 

15Bb01 (LeBus 
Circle) 

Trench 2; Embankment-Ab 
interface 

Terminus Post Quem for 
Enclosure Construction 

2009 Henry 2011 ISGS 
ISGS-

A1425 
UID charred 

wood 
-26.1 -224.6 77.50 

0.001
3 

̶̶― ̶̶― 2045 15 
110 BC–
AD 10 

50 
BC 

15Bb01 (LeBus 
Circle) 

Trench 2; Embankment-Ab 
interface 

Terminus Post Quem for 
Enclosure Construction 

2009 Henry 2009 ISGS 
ISGS-

A1256 
Bulk Sediment 

from Ab ̶― ̶― 
70.56 

̶― ̶― ̶― 
2800 20 

1010–900 
BC 

950 
BC 

15Bb01 (LeBus 
Circle) Trench 1; 260-270 cmbs 

Terminus Post Quem for 
Refilling of Expired Spring 

(i.e., pit) 
2009 Henry 2009 ISGS ISGS-

A1258 

UID charred 
wood 

̶― ̶― 
98.02 

̶― ̶― ̶― 
160 20 

AD 1660–
post-
1910 

AD 
1770 

15Bb01 (LeBus 
Circle) Trench 2; Base of Ditch 

Terminus Post Quem for 
the Beginning of Ditch 

Refilling 
2009 Henry 2009 ISGS 

ISGS-
A1262 

UID charred 
wood 

̶― ̶― 
95.58 

̶― ̶― ̶― 
365 25 

AD 1450–
1640 

AD 
1520 

15Bb01 (LeBus 
Circle) 

Trench 2; Embankment-Ab 
interface (14C) 

Terminus Post Quem for 
Enclosure Construction 

2017 This Study 
NOSAMS 

OS-
136791 

UID charred 
roundwood ̶― -224.67 ̶― ̶― 0.7808 0.0027 

1990 30 
50 BC–AD 

80 
AD 
10 

15Ck10 (Nelson-
Gay Mound) Block 1; Ceramic scatter 1 

Use of Feature 2016 This Study 
NOSAMS 

OS-
125677 

UID charred 
roundwood ̶― -231.51 ̶― ̶― 

0.7746 0.0023 2050 25 
170 BC–
AD 20 

60 
BC 

15Ck10 (Nelson-
Gay Mound) 

Block 2; interior area of post 
enclosure 

Internal Use of Post 
Enclosure 

2016 This Study 
NOSAMS 

OS-
125674 

UID charred 
wood ̶― 

-124.29 
̶― ̶― 

0.8826 0.0031 1000 30 
AD 980–

1160 
AD 

1030 

15Ma44 (Bogie 
Circle) 

Core 1.1; 70-75 cmbs; 
Embankment-Ab interface 

Terminus Post Quem for 
Enclosure Construction 

2015 This Study 
DirectAMS 

D-AMS-
012514 

UID charred 
wood 

-24.4 
̶― 

79.32 
0.26 ̶― ̶― 

1861 26 
AD 80–

230 
AD 
150 

15Ma44 (Bogie 
Circle) 

Core 4.1; 15-20 cmbs; base of 
ditch 

Beginning of Ditch 
Refilling 

2015 This Study 
DirectAMS 

D-AMS-
012515 

UID charred 
wood 

-27.0 
̶― 

98.94 
0.28 ̶― ̶― 

86 23 
AD 1690–

1930 
AD 

1850 

15Ma44 (Bogie 
Circle) 

Trench 1; South Profile; 
Embankment-Ab interface 

Terminus Post Quem for 
Enclosure Construction 

2016 This Study 
NOSAMS 

OS-
125679 

UID charred 
wood ̶― ̶― ̶― ̶― ̶― ̶― 

1920 20 
AD 20–

130 
AD 
80 
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Bogie Circle West 
(no site no.) 

Interior post enclosure; Post 
#4 

Terminus Post Quem for 
Enclosure Construction 

2017 This Study 
NOSAMS 

OS-
136792 

UID charred 
wood ̶― ̶― ̶― ̶― ̶― ̶― 

1940 20 
AD 10–

130 
AD 
60 

Bogie Circle West 
(no site no.) 

Interior post enclosure; Post 
#2 

Terminus Post Quem for 
Enclosure Construction 

2017 This Study 
NOSAMS 

OS-
136930 

UID charred 
wood ̶― ̶― ̶― ̶― ̶― ̶― 

960 25 
AD 1020–

1160 
AD 

1100 

15Jo02 (C&O 
Mounds) 

Post under mound; Acc. # 
1938.006 B13 

Pre-dates Mound 
Construction 

2017 This Study 
NOSAMS 

OS-
136445 

Cervidae sp. 
antler tine 

-
22.45 -240.38 ̶― ̶― 0.7585 0.0017 

2200 20 
360–200 

BC 
290 
BC 

15Ck07 (Goff 
Circle) 

Block 1; sub. Feature 1 
 Terminus Post Quem for 

Ditch Refilling 
2015 This Study 

DirectAMS 
D-AMS-
012516 

UID charred 
wood 

-34.5 
̶― 

101.1
0 0.36 ̶― ̶― 

Modern Modern 

15Ck07 (Goff 
Circle) 

Trench 1; East Wall; charred 
log at base of ditch 

Teminus Ante Quem for 
the Start of Ditch Refilling 

2015 This Study 
DirectAMS 

D-AMS-
012517 

UID charred 
wood 

-22.9 
̶― 

80.10 
0.27 ̶― ̶― 

1779 27 
AD 130–

340 
AD 
250 

15Ck07 (Goff 
Circle) 

Trench 1; Ditch; 70-80 cmbs Refilling of Ditch at Depth 2015 This Study 
DirectAMS 

D-AMS-
012520 

UID charred 
wood 

-24.8 
̶― 

93.40 
0.27 ̶― ̶― 

545 23 
AD 1310–

1440 
AD 

1400 

15Ck07 (Goff 
Circle) Trench 1; Ditch; 60-70 cmbs 

Refilling of Ditch at Depth 2016 This Study 
NOSAMS 

OS-
125671 

Juglandaceae 
sp. Charred Nut 

Shell ̶― 
-43.55 

̶― ̶― 
0.9640 0.0020 295 15 

AD 1520–
1650 

AD 
1550 

15Ck07 (Goff 
Circle) 

Block 1; Ditch trench; burned 
log  

Refilling of Ditch 2016 This Study 
NOSAMS 

OS-
125678 

UID charred 
wood ̶― 

-209.52 
̶― ̶― 

0.7967 0.0019 1830 20 
AD 130–

240 
AD 
180 

Earthwalker Circle 
(no site no.) 

Trench 1; Mid-Fills of Ditch 
(sample #2) 

Teminus Ante Quem for 
the Start of Ditch Refilling 

2015 This Study 
DirectAMS 

D-AMS-
012518 

UID charred 
wood 

-22.7 
̶― 

77.15 0.26 
̶― ̶― 

2084 27 
190–40 

BC 
110 
BC 

Earthwalker Circle 
(no site no.) 

Trench 1; Burned matrix in 
upper ditch fill; East Profile 

Upper Refilling of Ditch 2015 This Study 
DirectAMS 

D-AMS-
012519 

UID charred 
wood 

-27.4 
̶― 

99.37 
0.33 ̶― ̶― 

51 27 
AD 1690–

1920 
AD 

1880 

Earthwalker Circle 
(no site no.) Block 1; Post 3 

Terminus Post Quem for 
Placement of Wooden 

Post 
2015 This Study 

DirectAMS 
D-AMS-
012521 

UID charred 
wood 

-24.4 
̶― 

99.00 
0.27 ̶― ̶― 

81 22 
AD 1690–

1920 
AD 

1850 

Earthwalker Circle 
(no site no.) 

Trench 1; Bottom of Ditch 
(sample #1) 

Teminus Ante Quem for 
the Start of Ditch Refilling 

2016 This Study 
NOAMS 

OS-
125669 

UID charred 
wood ̶― -209.13 ̶― ̶― 

0.7971 0.0024 1820 25 
AD 120–

320 
AD 
190 

Earthwalker Circle 
(no site no.) 

Block 1; Ditch; 14C on 
bedrock 

Teminus Ante Quem for 
the Start of Ditch Refilling 

2016 This Study 
NOAMS 

OS-
125670 

UID charred 
wood ̶― 

-187.63 
̶― ̶― 

0.8188 0.0019 1610 20 
AD 390–

540 
AD 
460 

Earthwalker Circle 
(no site no.) Block 1; Post 2 

Terminus Post Quem for 
Placement of Wooden 

Post 
2016 This Study 

NOAMS 
OS-

125672 

UID charred 
wood 

̶― 
-30.27 

̶― ̶― 
0.9774 0.0020 185 15 

AD 1660–
post-
1930 

AD 
1770 

Earthwalker Circle 
(no site no.) Block 1; Post 4 

Terminus Post Quem for 
Placement of Wooden 

Post 
2016 This Study 

NOAMS 
OS-

125673 

UID charred 
wood 

̶― 
-12.02 

̶― ̶― 
0.9958 0.0022 35 20 

AD 1700–
1920 

AD 
1900 

Earthwalker Circle 
(no site no.) Block 1; Post 1 

Terminus Post Quem for 
Placement of Wooden 

Post 
2016 This Study 

NOAMS 
OS-

125675 

UID charred 
wood 

̶― 
-23.55 

̶― ̶― 
0.9842 0.0023 130 20 

AD 1670–
1940 

AD 
1830 

Earthwalker Circle 
(no site no.) Block 1; Rock Post 

Terminus Post Quem for 
Placement of Wooden 

Post 
2016 This Study 

NOAMS 
OS-

125676 

UID charred 
wood 

̶― 
-72.66 

̶― ̶― 
0.9347 0.0019 545 15 

AD 1320–
1430 

AD 
1410 

15Ms27 (Dover 
Mound) Surface of mound phase three 

Terminus Post Quem for 
Construction of Mound 

Phase Three 
2017 This Study 

NOAMS 
OS-

136343 

UID charred 
wood 

̶― -221.04 ̶― ̶― 0.7790 0.0019 
2010 20 

50 BC–AD 
60 

10 
BC 

15Ms27 (Dover 
Mound) 

Surface of mound phase 
three; Sample 117 (v42) 

Terminus Post Quem for 
Construction of Mound 

Phase Three 
1952-3 Libby 1954 

Chicago C-759 

UID charred 
wood 

̶― ̶― ̶― ̶― ̶― ̶― 
2650 

17
0 

1230–390 
BC 

810 
BC 
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15Ms27 (Dover 
Mound) 

Charred wood associated with 
Burial 55; Sample L48 (v38); 
Average of 2 dates from same 
sample 

Terminus Post Quem for 
Burial 55 & Construction 

of Phase Five 
1952-3 Libby 1954 

Chicago C-760a 

UID charred 
wood 

̶― ̶― ̶― ̶― ̶― ̶― 

2169 
17
5 

770 BC–
AD 130 

260 
BC 

15Ms27 (Dover 
Mound) 

Charred wood near Burial 9 
Teminus Ante Quem for 

Burial 9 
1972 

Crane & 
Griffin 1972 Michigan M-2239 

UID charred 
wood ̶― ̶― ̶― ̶― ̶― ̶― 

2260 
14
0 

770–1 BC 
330 
BC 

15Ms27 (Dover 
Mound) 

Charred wood near Burial 9; 
Acc. # 1950.001 V13 

Teminus Ante Quem for 
Burial 9 

2017 This Study 
NOSAMS 

OS-
136344 

UID charred 
wood ̶― -220.87 ̶― ̶― 0.7791 0.0018 

2010 20 
50 BC–AD 

60 
10 
BC 

15Mm7 (smaller 
Wright Mound) 

Near Burial 2; Acc. # 1937.002 
V1 

Teminus Ante Quem for 
Burial 2 

2017 This Study 
NOSAMS 

OS-
136346 

Charred 
Arundinaria 

gigantea ̶― -226.24 ̶― ̶― 0.7725 0.0018 
2070 20 

170–40 
BC 

90 
BC 

15Mm6 (Wright 
Mound) 

Surface of mound phase one; 
Acc. # 1938.013 V34 

Terminus Ante Quem for 
Construction of Mound 

Phase One 
2017 This Study 

NOSAMS 
OS-

136347 

Charred 
Arundinaria 

gigantea ̶― -236.73 ̶― ̶― 0.7622 0.0018 
2180 20 

360–170 
BC 

300 
BC 

15Mm6 (Wright 
Mound) 

Within mound phase two; 
Acc. # 1938.013 V24 

Terminus Post Quem for 
Completion of Mound 

Phase Two 
2017 This Study 

NOSAMS 
OS-

136348 

Charred 
Arundinaria 

gigantea ̶― -222.02 ̶― ̶― 0.7768 0.0024 
2030 25 

120 BC–
AD 60 

30 
BC 

15Mm6 (Wright 
Mound) 

Feature 10 (Burials 6 & 7); 
mound phase three; Acc. # 
1938.013 V10 

Terminus Post Quem for 
Construction of Mound 

Phase Three 
2017 This Study 

NOSAMS 
OS-

136943 

UID charred 
wood 

̶― -243.83 ̶― ̶― 0.7551 0.0026 
2260 30 

400–200 
BC 

290 
BC 

15Mm6 (Wright 
Mound) 

Feature 8 (Burial 2); Mound 
phase four; Acc. # 1938.013 
V13 (with copper residue) 

Terminus Post Quem for 
Completion of Mound 

Phase Four 
2017 This Study 

NOSAMS 
OS-

136882 
UID wood bark 

̶― -215.61 ̶― ̶― 0.7832 0.0021 
1960 20 

30 BC–AD 
90 

AD 
40 

15Mm6 (Wright 
Mound) 

Feature 19 (Inside Burial 13) 
Terminus Post Quem for 
Construction of Mound 

Phase Two 
1972 

Crane and 
Griffin 1972 

Michigan M-2238 

Charred wood 
(Gleditsia 

triacantros or 
Gymnocladus 

diocica) 

̶― ̶― ̶― ̶― ̶― ̶― 1740 
14
0 

30 BC–AD 
600 

AD 
290 

15Mm6 (Wright 
Mound) 

Charred logs covering primary 
mound 

Terminus Ante Quem for 
Construction of Mound 

Phase One 
1972 

Crane and 
Griffin 1972 

Nuclear 
Science 

and 
Engineerin

g, Inc. N. R. 

UID charred 
wood 

̶― ̶― ̶― ̶― ̶― ̶― 

1900 50 AD 1–240 
AD 
110 

15Gd56 (Walker-
Noe Mound) 

Concentration of Cremations; 
Unit 9, Zone 2 Level 2 

Terminus Post Quem for 
Cremations Under Mound 

2005 
Pollack et al. 

2005 
Beta 

Analytic 
Beta-

152838 
Polygonum 

erectum ̶― ̶― ̶― ̶― ̶― ̶― 
2000 60 

170 BC–
AD 130 

10 
BC 

15Gd56 (Walker-
Noe Mound) Concentration of Cremations 

Terminus Post Quem for 
Cremations Under Mound 

2005 
Pollack et al. 

2005 
Beta 

Analytic 
Beta-

152839 
UID Charred 

Wood ̶― ̶― ̶― ̶― ̶― ̶― 
1990 60 

170 BC–
AD 130 

AD 
10 

15Gd56 (Walker-
Noe Mound) 

Concentration of Cremations; 
Feature 2 

Terminus Post Quem for 
Cremations Under Mound 

2017 Mueller 2018 
NOSAMS 

OS-
134355 

Polygonum 
erectum ̶― ̶― ̶― ̶― ̶― ̶― 

1950 25 
30 BC–AD 

130 
AD 
50 

15Bb16 (Auvergne 
Mound) 

Charcoal Associated with 
Central Inhumation 

Terminus Post Quem for 
Mound Construction 

pre-1983 Clay 1983 
UGA 

UGA-
1239 

UID charred 
wood ̶― ̶― ̶― ̶― ̶― ̶― 

2945 
22
5 

1750–550 
BC 

1170 
BC 

15Bb16 (Auvergne 
Mound) 

Charcoal Associated with 
Central Inhumation 

Terminus Post Quem for 
Mound Construction 

pre-1983 Clay 1983 
UGA 

UGA-
3617 

UID charred 
wood ̶― ̶― ̶― ̶― ̶― ̶― 

1680 
11
5 

AD 80–
600 

AD 
360 

* Calibrations made in OxCal v4.3 (Bronk Ramsey 2017), using the IntCal13 calibration curve (Reimer et al. 2013). Dates have been rounded to the nearest 10 years. The OxCal software is accessible at http://c14.arch.ox.ac.uk/ 
a This radiocarbon determination was first reported as a calculated average of two assays made on the same sample material. The individual assays were 2260 ± 220 & 2078 ± 290. In calibrating this sample I have used an R_Combine function 
rather than using the average reported by Libby (1954) 
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Table 4.2.  Optically Stimulated Luminescence (OSL) dates used in this study. 
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15Fa153 (Winchester 
Farm Enclosure) 

Core 1.1; Interface of Embankment Fills 
and Ab 

Terminus Post 
Quem for Enclosure 

Construction 
2015 This Study 

Baylor 
Geochronology 

Lab 
OSLHL Single Aliquot 4-11 15.80 ± 0.91 3780 325 2425–1120 BC 1770 BC 

15Ma44 (Winchester Farm 
Enclosure) 

Core 2.1; Embankment-Ab interface 
Terminus Post 

Quem for Enclosure 
Construction 

2015 This Study 
Baylor 

Geochronology 
Lab 

OSL1F1 Single Aliquot 4-11 7.40 ± 0.45 2005 175 350 BC–AD 355 AD 5 

* Calibrations made with reference to datum year of 2010. Calibrated age ranges rounded to the nearest five years. 
a Equivalent dose calculated on a pure quartz fraction and analyzed under blue-light excitation (470 ± 20 nm) 
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 surfaces represent a uniform distribution of TPQs for construction using a Phase with standard 

boundaries. However, this model does not provide a good fit with data; the agreement index falls 

below 60% (Amodel = 59). 

Model 2 applies additional priors to the collection of dates in the phase. For instance, 

OSL date OSLHL (3780 ± 325) from the Winchester Farm (15Fa153) site only has a 14% 

agreement index in Model 1 and likely represents a problem with securing a quartz grain from 

the upper levels of the Ab soil horizon for dating. Moreover, it contrasts with 14C dates from the 

upper 2 cm of the Ab horizon at the interface with the embankment fills at the site. Therefore, it 

could be an outlier. In addition, 14C date ISGS-A1256 (2800 ± 20) is a bulk sediment date from 

the Ab horizon at the LeBus Circle (15Bb01) site. Sediment dates are notorious for carbon 

intrusions that can come from ground water and other natural sources of contaminants (see Wang 

et al. 1996). For this reason, I decided to test whether these two dates could be outliers using 

OxCal’s general Outlier analysis. Finally, dates ISGS-6586 (2070 ± 80) and ISGS-A3568 

(1980 ± 20) were assays made on the same piece of charcoal from a push-tube soil core prior to 

excavations at the Mount Horeb (15Fa1) site. Because ISGS-6586 is the only conventional date 

from the sealed contexts beneath embankments (the other 14C dates are AMS) in this phase I also 

removed it from the model using the Outlier analysis. 

The results for Model 2 shows good agreement (Amodel = 105) between the data and the 

assumptions I applied. The model shows that there is 0% probability that dates OSLHL and 

ISGS-A1256 should be situated in the positions denoted in Model 1. The conventional date from 

Mount Horeb (ISGS-6586) shows only a 30% probability that it should be situated in the model. 

The start boundary for Model 2 indicate that the Ab surfaces began being burned and sealed by 

embankment fills in cal 125 BC–AD 10 (95% probability; Figure 4.5; Start: pre-Construction 
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Surface Boundary) and likely in cal 70–5 BC (68% probability). These construction-related 

activities ended in cal 80–200 AD (95% probability; Figure 4.5; End: pre-Construction Surface 

Boundary) and likely in cal 95–150 AD (68% probability). A Span function applied to the 

modeled dates in this phase estimates the duration of activity, or the amount of time that passed 

before the enclosures in this dataset all appeared on the landscape. This function estimates that 

the enclosures in this dataset appeared within 75-225 years (95% probability; Figure 4.6; 

Enclosure Span) or likely within 105-175 years (68% probability).  

While Model 2 provides a good fit between the assumptions inherent to the model and 

the data, some further steps can be taken to generate priors that can lead to a more precise 

understanding of enclosure construction in this context. For instance, OSL date OSL1F1 (2005 ± 

175) shows good agreement in Model 2 (Amodel = 132.5) but the nature of OSL dating this far 

back in time presents large error ranges in the dates. The nature of 14C dating also introduces the 

possibility that materials are susceptible to inbuilt age errors (e.g., old wood and heartwood 

offsets). In these cases, an exponential outlier can be applied that shifts the distribution of data 

toward younger ages that are derived from an exponential probability function (a.k.a.: Charcoal 

Outlier model) (Dee and Bronk Ramsey 2014:85). 

In Model 3, charcoal outlier and general outlier models were applied individually to dates 

depending if they were assays on unidentified charred wood (Charcoal Model applied) or on 

small pieces of charred roundwood (General Outlier Model applied). The OSL date OSL1F1 was 

removed from this analysis to test only the 14C chronology of the enclosures. Model 3 shows 

good overall agreement (Amodel = 95) but convergence values fall below 95%, an indication that 

the model is unstable, and the results should not be used (Bayliss et al. 2007:6). In this case, I 

reexamined the data being inserted into the model (i.e., the dates) and considered the
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Figure 4.4.  Results of Model 2 plotted in OxCal.  
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Figure 4.5.  Span of enclosure construction for Model 2. 

 

Table 4.3.  Results of χ2 test using R_Combine function in OxCal. 

Site Dates RCYBP Error T' (5%) Threshold  T' value Pass/Fail 

Mount Horeb 1 

ISGS-A3568 1980 20 

7.8 8.195 Fail 
OS-125721 1940 20 

OS-125720 1930 20 

OS-125719 1900 20 

Mount Horeb 2 

OS-125721 1940 20 

6 2.2 Pass OS-125720 1930 20 

OS-125719 1900 20 

Winchester Farm 
UGAMS-17004 2040 30 

3.8 13.08 Fail 
OS-136890 1910 20 

LeBus Circle 
ISGS-A1425 2045 15 

3.8 2.7 Pass 
OS-136791 1990 30 

Bogie Circle 
OS-125679 1920 20 

3.8 3.2 Pass 
D-AMS-012514 1861 26 

 

 

 

 



204 

 

possibility that multiple dates from an identical context (e.g., a series of dates from an Ab 

horizon at a given enclosure) may not be the best representation of the last activity before that 

Ab was covered by embankment construction. To test whether multiple dates from identical 

contexts at an enclosure were statistically significant I used a χ2 test (Ward and Wilson 1978) 

using the R_Combine feature to determine which dates might represent the same event (i.e., 

embankment construction). Results of the χ2 test suggests ISGS-A3568 from the Mount Horeb 

site and UGAMS-17004 from the Winchester Farm site do not date similar events (Table 4.3). 

Therefore, I excluded them from Model 4 where a Sum function was applied to sites with 

multiple dates from the Ab surfaces. 

Model 4 shows good overall agreement (Amodel = 95) and convergence above 95% (Figure 

4.7). The results of Model 4 suggest Ab surfaces began being burned and sealed by embankment 

fills in cal 140 BC–AD 25 (95% probability; Figure 4.7; Start: pre-Construction Surface 

Boundary) and likely in cal 70 BC–0 BC/AD (68% probability). These construction-related 

activities ended in cal 80–225 AD (95% probability; Figure 4.7; End: pre-Construction Surface 

Boundary) and likely in cal 100–165 AD (68% probability). Model 4 estimates that all of the 

enclosures in this dataset appeared within 70-225 years (95% probability; Figure 4.8; Span) or 

likely within 100-170 years (68% probability). In addition, an Order function applied to these 

modeled dates suggests Lebus Circle may have been constructed first, followed by Mount Horeb, 

and Winchester Farm and Bogie Circle. The latter two were built very close in time to one 

another, Bogie possibly being the last of the two constructed (Table 4.4). 

The results of Model 4 show it is likely that all enclosures on the Bluegrass landscape 

were built in less than 170 years. However, this applies to only four of the seven earthen 

enclosures examined because the three others (i.e., Bogie West, Earthwalker, and Goff Circle) do 
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Figure 4.6.  Results of Model 4 plotted in OxCal. 
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Figure 4.7.  Span of enclosure construction for Model 4. 

 

not have embankments preserved that would protect any original ground surfaces beneath them. 

However, there are still dates from contexts such as the refilling of ditches at other sites that can 

provide chronological information pointing to when they were used, including terminus ante 

quems (TAQs) for the construction of these sites. Moreover, contexts such as refilling events in 

ditches can provide insights into how long people continued to interact with these sites, even if it 

was to deconstruct them (see Chapter 3). To model this information and incorporate dates from 

enclosures with no surviving embankments that might lead to understanding when, and for how 

long, Native American groups continued to interact with the sacred sites, I added all dates from 

ditch contexts at the Earthwalker and Goff Circle sites into individual phases.  
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Table 4.4.  Results of Order function applied in Model 4. Table shows the probability that any 

date situated in the column under the ‘Order’ title came before a date in the Order 

‘row’.  

Order 
ISGS-
A1425 

OS-
136791 

OS-
125721 

OS-
125720 

OS-
125719 

OS-
136890 

OS-
125679 

D-AMS-
012514 

ISGS-
A1425 

0 0.8686 0.9943 0.9977 0.9999 0.9997 0.9991 1 

OS-136791 0.13144 0 0.8673 0.9224 0.9882 0.9789 0.9583 0.9952 

OS-125721 0.00567 0.13275 0 0.6324 0.8733 0.8273 0.7465 0.9341 

OS-125720 0.00228 0.07759 0.3676 0 0.7774 0.7175 0.6232 0.8743 

OS-125719 0.00012 0.01176 0.12674 0.2226 0 0.4267 0.3278 0.6797 

OS-136890 0.00034 0.02105 0.17266 0.28254 0.5733 0 0.3981 0.7358 

OS-125679 0.00088 0.04168 0.25348 0.3768 0.6722 0.6019 0 0.8046 

D-AMS-
012514 

0.00001 0.00479 0.06588 0.12567 0.3203 0.26418 0.19544 0 

 

Model 5 incorporated dates from the refilling of the Goff enclosure in two phases. This 

included two samples from burned timbers lying on and near the floor of the ditch (OS-125678; 

D-AMS-012517), as well as another two samples from a charcoal dense upper zone that 

represents the near completion of the ditch refilling (D-AMS-012520; OS-125671). The results 

of Model 5 show good overall agreement (Amodel = 94.6) and appropriate convergence values. 

This model suggests that the ditch at Goff Circle began refilling in cal 355 BC–AD 310 (95% 

probability; Figure 4.9; Start: Lower Refilling Boundary) and likely in cal AD 55–230 (68% 

probability). The ditch had almost refilled entirely by cal AD 1515–present (95% probability; 

Figure 4.9; End: Upper Refilling Boundary) and likely by cal AD 1530–1755 (68% probability). 

However, the start boundary for this model exhibits a left-skewed distribution. This suggests the 

68% probability values for the model likely best represent the chronological range for the 

beginning of ditch refilling. If this is the case, Model 5 suggests that Goff Circle was constructed 

within the same timeframe of enclosures outlined in Model 4 (see Figure 4.9). In addition, this 

model points to the possible terminal deconstruction of Goff Circle by Shawnee groups. Goff 

Circle is located within an area referred to as ‘Indian Old Fields’. This area was 
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Figure 4.8.  Results of Model 5 plotted in OxCal. 
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reported by early European explorers of Kentucky to have been the location of the last Shawnee 

village in the state, called Eskippakithiki (blue lick place) and built possibly as early as the late 

1600s, is recorded as being potentially occupied in a French census in 1736, and abandoned by 

1754 (Clark 2015:1, 15, 16). The likely date range of the final burned refilling zone in the ditch 

at Goff overlaps with this historical account well. 

A similar phase-based model was used to understand the chronology of ditch refilling at 

the Earthwalker enclosure. A second phase model that examined the posts identified in 

excavation outside the ditch was not possible because all but one date (OS-125676) exhibit 

multiple late intercepts with the radiocarbon calibration curve (see Table 4.1) that indicate they 

are the result of modern activity. However, the morphology of the posts suggests a pre-European 

origin. For instance, the size of the post molds and the shape of their bases indicate they were not 

shaped using metal tools. Because a clear in situ burning event in the upper layers of the ditch 

dates very late (D-AMS-012519), it is possible that Early European landscape modifications that 

utilized fire led to relatively modern carbon material intruding into the fill of post molds. 

Nevertheless, adding outlier analyses to all but one date in a phase renders the model unstable 

even if the model indicates good agreement. The non-modern date associated with a post mold 

(OS-125676), suggests that the posts were set sometime near cal AD 1320–1430 (95.4%; Table 

4.1). 

For the ditch refilling phase, an outlier analysis was applied to two dates because one (D-

AMS-012518) was collected stratigraphically above a much later date (OS-125669) and the other 

(D-AMS-012519) likely represents modern modification of the landscape. Model 6 shows good 

overall agreement (Amodel = 98.3) and appropriate convergence values. Model 6 estimates that the 

ditch at Earthwalker began refilling in cal 570 BC–AD 240 (95% probability; Figure 4.10; Start: 
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Ditch Boundary) and likely in cal 570 BC–AD 235 (68% probability). The start boundary is left-

skewed and the similarity of the 95% and 68% probabilities suggest that these data may not be 

best modeled as a uniform prior distribution. However, archaeology cannot inform the model any 

further. If the median (cal AD 5) can be appropriately drawn upon as an estimate for the 

beginning of ditch refilling, then Earthwalker was likely built within the same time range of 

other enclosures in the region. Nevertheless, more data are needed from this site to make a 

stronger argument for this statement. 

4.4.2 Burial Mounds 

 Radiocarbon assays are available from five burial mounds that range in size from under a 

meter tall (e.g., Walker-Noe and Auvergne) to a maximum of almost 10 meters in height (e.g., 

Wright Mound; 15Mm6). Radiocarbon dates from these sites include both legacy dates (assays 

measured before 1990; n=9) and modern dates (n=8) acquired for this study. Here I examine 

phase-based models that examine broader historical patterns of monument construction in 

Central Kentucky. The first model combined all dates, including some of the original Libby 

dates, into a single phase. The results of this model (Model 7) do not produce a good agreement 

between the dates and the assumption that the data resemble of uniform distribution (Amodel = 48). 

While only three of the legacy dates fell below the 60% agreement index (UGA-1239; C-759; 

UGA-3617), Model 8 used additional information to test the efficacy of multiple legacy dates 

using the Outlier analysis. In fact, the only date not subjected to this test was UGA-3617, 

which Clay (1983) suggests was the best representation for a central inhumation at the Auvergne 

Mound. 

 Model 8 shows good overall agreement (Amodel = 62) and appropriate convergence values. 

This uniform distribution of the dates estimates that burial mounds began being used and 
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Figure 4.9.  Results of Model 6 plotted in OxCal. 
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Figure 4.10.  Results of Model 8 plotted in OxCal. 
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constructed in cal 440–205 BC (95% probability; Figure 4.11; Start: Mounds Boundary) and 

likely in cal 330–215 BC (68% probability). The end of mound use in this model is estimated at 

cal AD 20–325 (95% probability; Figure 4.11; End: Mounds Boundary) and likely in cal AD 45–

170 (68% probability). UGA-3617 still exhibited poor agreement with the model (A = 28.2%), 

therefore it was removed from further models. None of the other legacy dates that had an 

outlier analysis applied to them reached a probability threshold over 60%, therefore they 

were also removed from additional analyses. 

 In a final model for the dates from burial mounds, all legacy dates measured prior to 1990 

were removed and a general Charcoal Outlier model was applied to the data. The outlier 

model was applied to test the assumption that any dates on unidentified charred wood in this 

model might not represent the actual date of construction or act of burial, and instead may be 

material incorporated from elsewhere, affected by old wood, or and assay comprised of 

heartwood. A general outlier model (5% probability) was applied to other dates on short-lived 

plant species from mound contexts. Model 9 exhibits good overall agreement (Amodel = 94.5), 

appropriate convergence values, and estimates that the construction of burial mounds in Central 

Kentucky began in cal 455–175 BC (95% probability; Figure 4.12; Start: Mounds Boundary) 

and likely in cal 330–205 BC (68% probability). The end of mound use in Model 9 is estimated 

at cal AD 20–230 (95% probability; Figure 4.12; End: Mounds Boundary) and likely in cal AD 

45–130 (68% probability). The model estimates that mounds were built and used, at least for 

their initial mortuary purposes, for cal 220–450 years (95% probability; Figure 4.13; Span) and 

likely over cal 245–355 years (68% probability). 

4.5 Discussion 

 The Bayesian chronologies for Adena-Hopewell earthen enclosures presented here 

suggests that the first monuments to appear on Kentucky’s Woodland-period Bluegrass 
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Figure 4.11.  Results of Model 9 plotted in OxCal. 
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Figure 4.12.  Span of burial mound construction and use for Model 9.
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landscape were burial mounds and they likely emerged sometime between 330–205 BC The 

other earthen monument built and used by Adena-Hopewell societies in this region, the earthen 

enclosure, likely began being built and used sometime around 70 BC and the BC/AD transition. 

This shift in the construction and use of sacred ritual spaces on the Middle Woodland landscape 

in this area suggests an increasing need to integrate diverse populations that may be dispersed on 

the landscape or maintaining a relatively frequent state of mobility. In this sense, individuals 

and/or small groups of people would be traveling between regions at this time. Such mobility 

patterns have been confirmed among populations contemporary with the Bluegrass Adena-

Hopewell societies considered here, through ancient-DNA analyses of skeletal material from 

burial mounds in Central Ohio and the Illinois River Valley (Bolnick and Smith 2007; Mills 

2003). In this case study, the authors conclude their data represent gene flow coinciding with 

social exchanges that:  

reflected the movement of a small number of individuals each generation. 

These individuals may have moved directly between Ohio and Illinois, but 

the genetic patterns reported here could also be due to the cumulative 

effects of short-range and incremental movements, perhaps via local and 

regional mating networks. [Bolnick and Smith 2007:640] 

 

If similar patterns of social mobility were occurring in and across the Bluegrass Region—and the 

material evidence suggests this is the case—the construction of earthen monuments would have 

served two purposes. First, they would have reinforced a shared sense of consensus and 

cooperation among those who constructed them. This connection to the landscape essentially 

provided material mnemonics for the actions of past labor events and provided expectations for 

future social interactions (Henry 2017; Henry and Barrier 2016). Second, they would have 

provided a familiarity for those who were moving through the landscape, offering something 

recognizable in a non-locale setting (see Pluckhahn and Thompson 2013). In this sense, the move 
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to create regional ties through the construction of earthen monuments in similar methods and 

forms served to create not only familiarity but also set expectations and created possibilities for 

how people interacted with reference to these places (Bradley 1998; Howey 2012; Osborne 

2014). 

The shift from mortuary monuments to earthen enclosures might indicate the steep 

increase in the movement of people, ideas, and crafted ritual materials (e.g., mica, carved shell, 

obsidian, copper). While regional models for the construction of geometric enclosures have 

considered them to be later in the Middle Woodland cultural sequence in the Bluegrass Region 

(ca. post-0 AD) (Applegate 2008; Clay 1991), this study suggests the practice occurs as early as 

the mid-second century BC but likely somewhere around the BC/AD transition. Scholars in the 

Ohio Valley are finding other ‘Hopewell’ material indicators like Flint Ridge blades to date to a 

similar era, and enclosures outside the region (e.g., the Appalachian Mountains) have dated 

contexts suggesting construction before the first century AD, therefore potentially contemporary 

with enclosure construction occurring further north (Miller 2018; Wright 2014:290). The 

chronologies of these material suggest is that the BC/AD transition was a time of quick and 

intensive interregional interaction and the spread of ideas. In fact, this work suggests all the 

enclosures examined in this study were likely built in less than 170 years. The timing of 

individual enclosures suggests a potential north-to-south spread of ritual ideas pertaining to the 

creation of enclosures and ritual space. If this is the case, LeBus Circle was the first enclosure 

constructed in the Bluegrass Region. This is consistent with the geographical position of the 

enclosure, at the confluence of two major creeks that create a fork of the Licking River before 

draining north toward the Ohio River. This system of tributaries would have been easily 

navigated by canoe travel. 
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After LeBus, Mount Horeb was constructed, followed by Winchester Farm and Bogie 

Circle. While I can confidently argue for Goff and Earthwalker having been built during this 

span of time I cannot place them in the sequence of regional enclosure construction. 

Interestingly, where the construction of all enclosures occurred quickly at a regional-scale, this 

research indicates that the abandonment or disuse of enclosures each followed a unique 

trajectory likely related to the outcomes of historical contingency at local scales. For instance, as 

I discuss in Chapter 3, Winchester Farm was potentially maintained for centuries after people 

quit using it before the ‘deconstruction’ of the enclosure occurred. Alternatively, the ditch at 

Goff Circle likely started refilling after AD 55–203. Likewise, the ditch at Earthwalker probably 

began refilling around AD 5 but more work is needed to determine the chronology of this 

enclosure. Other enclosures like Bogie Circle and Mount Horeb never refilled, while sites like 

LeBus Circle began to refill very late (ca. post–AD1450). I argue that the variation in when and 

how quickly these ditches refilled speaks to the differing ritual needs and dispositions of local 

communities who continued to engage with the landscape as they saw fit. 

The timing for the start of burial mound construction presented here complements the 

proposed chronology of ritual organization in the region (Clay 1991; Railey 1991). However, the 

models incorporating dates from burial mounds suggest the construction and use of these 

features ended earlier than previously suggested AD 250. My work estimates that burial mounds 

were no longer used after AD 230. Moreover, models explored during this study show that larger 

complex burial mounds like Wright (15Mm6) were not the products of late interregional 

interactions but had very long histories beginning as early as the mid-4th century BC. These 

histories included the potential for competitive displays of monumentality if the smaller Wright 

Mound (15Mm7) is any indication. The smaller monument has long been considered to pre-date 
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the larger burial monument, but this study suggests they were contemporary at the early stages of 

construction. 

4.6 Conclusions 

 This study used Bayesian statistics to model the chronologies of multiple burial 

monuments and earthen enclosures on the Bluegrass landscape of Central Kentucky. The results 

show that burial monuments were constructed first and used for centuries before geometric 

earthen enclosures began being built and used for periodic ritual gatherings. While both forms of 

monumentality fall within the temporal boundaries of ‘Adena’ as it is defined by archaeologists 

(e.g., 500 BC–AD 250) this study shows how ideas spread through the region and temporal 

overlap with other monuments in areas far removed from the Bluegrass. Temporal overlap for 

burial mounds occur in the context of the original Adena mound in Ohio (Lepper et al. 2014), 

which has been confirmed to be a Middle Woodland monument. 

In the case of earthen enclosures, significant temporal overlap can be identified with the 

construction of the large Hopeton enclosure in Central Ohio, a ‘Classic Hopewell’ site (see 

Schilling in Lynott 2015:265). I would argue that the data from this study can be interpreted in 

two different ways. One is to use these data to reinforce the Adena and Hopewell cultural divide. 

However, the amount of overlap and the near instantaneous construction of enclosures in Central 

Kentucky after the BC/AD transition indicates that ideas were spreading rapidly with the 

movement of people and ritual objects across the Eastern Woodlands. Therefore, it might be 

more useful to consider Adena, as it has previously been conceived of in Kentucky, to be a 

regional variant of Hopewell (sensu Railey 1996) that helps drive the movement and 

development of Middle Woodland ceremonialism outside of Ohio, rather than a separate cultural 

entity that faded into history as Hopewell societies reached their apogee. In this sense, in 
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Kentucky perhaps what occurs is a social milieu that can be referred to as ‘Adena Hopewell’ in 

the same ways people refer to ‘Illinois Valley Hopewell’. 

Stepping away from the chronological issues with Adena-Hopewell for a moment, this 

research highlights the broad temporal depth in which pre-Columbian Native American societies 

engage with places on the landscape. The models for enclosures in this study suggest social 

groups continued to interact with these monuments long after they quit being used. In many 

cases (e.g., Winchester Farm, Earthwalker, Goff), this evidently involved deconstructing the sites 

and refilling the ditches. However, at Earthwalker posts placed outside the entrance to the site 

suggest markers were erected that denoted where sites once existed. Similar uses of posts to 

mark ceremonial places on the landscape have been reported elsewhere through pre-Columbian 

time in the eastern U.S. (Redmond 2016; Wright 2014). These long-term forms of placemaking 

exhibit the dynamic nature of Native American interactions with the landscape and reinforce ties 

to the deep past through them. 
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Chapter 5 
Conclusions 

5.1 Introduction 

 This collection of research helps fill in a variety of gaps in the knowledge of ancient 

Native American societies who inhabited eastern North America from approximately 500 BC–

European contact. In many ways, what I learned of the ways people interacted with enclosure 

sites centuries after they had fallen out of use surprised me. However, I’m not sure it should 

have. While earning my Master’s degree in anthropology at the University of Mississippi I had 

discovered that late Fort Ancient societies (post-AD 1400 societies in the Middle Ohio Valley) 

had continued to visit and alter the environment in and around the LeBus Circle (Henry 2009, 

2011). Moreover, American Indian nations have long tried to call attention to the connections 

themselves and their ancestors had with natural and built places on the landscape. Moreover, 

Native American philosophers and scholars have emphasized the importance of relational 

connections between person, place, and notions of the past and present, including the ways these 

work together to afford people future possibilities (Cordova 2007; Deloria, Jr. 1992; Norton-

Smith 2010; Watts 2013). Ethnographies of Native American place-based interactions have 

shown how performed myths and stories can encode the histories of past people on the landscape 

(Basso 1996). 

Apart from these ideas pertaining to the long history of placemaking in Central 

Kentucky, I also identified some interesting new information on the ways Adena 

Hopewell societies made their places on the Bluegrass landscape. In the following 

sections I will summarize the research chapters and then discuss where the research 

presented here leaves us regarding the Adena vs. Hopewell problem in North American 

archaeology. I will then back out and reconsider why later inhabitants of the Central 
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Kentucky landscape were revisting earthen enclosures. I will end with some thoughts on future 

research directions and unanswered questions relating to late-Early and Middle Woodland 

societies in Central Kentucky. 

5.2 Chapter Summaries 

 In Chapter 1, I laid out the research problems that lie at the foundation of this research. I 

covered the historical development of Adena and Hopewell cultural units in Americanist 

archaeology. I noted how the mounds and earthen enclosures of the Middle Ohio Valley had 

once been considered the remnants of a lost race of humans that were killed out by American 

Indian groups encountered by European settlers. I outlined how the development of archaeology 

as a discipline paralleled the notion Adena was a less complex predecessor to Hopewell and how 

this had affected modern research and understandings of early complex societies in eastern North 

America. Further, I mentioned how this was restraining our understandings of ancient histories in 

the Eastern Woodlands. I challenged the meaning archaeologists had attributed to words like 

Adena and Hopewell. In doing so, I asked whether these terms might be best used to refer to 

different aspects of the same social movement that lay at the intersection of the development of a 

common worldview (or cosmology) and the materialization of new institutions and infrastructure 

that helped frame the spread of this worldview through ritual practice and performance. 

 In chapter two, my colleague Carl Shields and I explored the degree at which late-Early 

and Middle Woodland societies on the Bluegrass landscape of Central Kentucky participated in 

the Adena-Hopewell movement by examining the region for previously unknown earthen 

monuments that once served as ritual infrastructure. We discussed the advantages and 

disadvantages of using novel aerial remote sensing technologies to search for new sites. We also 

outlined how a multi-staged approach to examining the landscape for new sites benefited from 

the integration of geophysical and geoarchaeological methods that not only help test assumptions 
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made from LiDAR and aerial imagery, but also geophysical imagery. We concluded that there 

are probably many more enclosure and mound sites in the region, but LiDAR was not necessarily 

the best tool to search for these unknown sites. Instead, the best approach relied on the 

integration of multiple methods that helped test hypotheses made from one, in a following stage 

of research. 

 The ‘thick description’ of one Middle Woodland enclosure was the focus of Chapter 3, 

co-authored with Natalie Mueller and Mica Jones. In this chapter we used a variety of 

approaches that included geoarchaeology, paleoethnobotany, zooarchaeology, artifact analyses, 

and Bayesian chronological modeling, to examine the construction, use, and abandonment of the 

Winchester Farm enclosure in detail. We discovered that the enclosure was probably built after a 

long period of site-use for ritual gatherings that included small-scale feasting and other forms of 

ritual deposition. When the enclosure was built, the sediments that were removed from the ditch 

were manipulated into a homogenous fill that was used for embankment construction. The ditch 

was excavated to bedrock. The enclosure was then used for a short period of time before a post-

enclosure was built inside it and the site was no longer used for ritual gatherings. However, our 

understanding of the sediments that refilled the ditch implied that humans maintained the ditch 

feature for more than six centuries. This maintenance abruptly ended with the intentional and 

rapid deconstruction of the site, which involved the breaking-up of embankment fills, 

redepositing them in the ditch, and burning them. 

 In Chapter 4, I modeled the chronology of Adena-Hopewell earthen monuments in 

Central Kentucky using a large suite of 14C dates and two OSL dates. Using Bayesian statistics 

and a working knowledge of how each site related to one another, I explored the chronology of 

earthen enclosures versus burial mounds. I learned that burial mounds had unique histories that 
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began as early as the 5th century BC and likely extended into mid-2nd century AD (i.e., roughly 

four centuries) However, I defined how the largest burial mounds in the region were not late 

products of interregional interaction, but instead the product of longer histories of mortuary 

practice and social integration. My chronological models for earthen enclosures suggest that they 

were all built very rapidly, likely in 170 years or less. This understanding suggests the Adena-

Hopewell ‘movement’ was rapid and may have included the spread of ritual ideas from the north, 

possibly Central Ohio. However, unlike burial mounds, earthen enclosures were places where 

later Native American groups continued to visit, often with the intent to refill ditches and 

effectively ‘erase’ these pieces of ritual infrastructure from the landscape. 

5.3 Synthesis 

 In sum, this research showed that more communities in the Central Kentucky Bluegrass 

Region were participating in the Adena-Hopewell movement than previously thought. In the 

contexts where ritual practice showed the ways in which people were building and using sacred 

space, I was able to trace unique historical trajectories of site construction, use, and 

abandonment. This suggests that local communities had the autonomy to take larger 

cosmological ideas and reinterpret them to work within their local social systems. This shows the 

complex interplay between institutions guiding human action and human practice invoking 

change within institutions. In the cases where I was able to identify rather quick refilling of 

ditches after the construction and use of enclosures, there may be evidence that Adena-Hopewell 

religious institutions were no longer viable to maintain an appropriate degree of social 

consensus. In other cases, enclosures are used for much later than archaeologists conceive of 

Adena-Hopewell, suggesting social institutions were more effective. 

 Most enclosures were being deconstructed around or after AD 1000. This is interesting 

given the social changes that accompany this time. For instance, there is a shift to intensive 
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maize agriculture and sedentary village formation. With these subsistence and domestic changes 

came shifts in ideologies as well, evidenced by a significant transformation in ritual iconography 

(Cook 2008; Henderson, ed. 1992; Pollack et al. 2002). Archaeologists refer to these broad 

cultural changes as Fort Ancient. If there was a major shift in worldview related to the 

development of Fort Ancient societies, one of their priorities may have been erasing evidence of 

past ritual infrastructure from the landscape. Regardless this long trajectory of place-based 

interaction provides further evidence to counter the ‘noble savage’ trope for American Indians. 

While this research speaks to the ways American Indian societies valued and maintained a deep 

historical connection to places (built and natural) on the landscape, that doesn’t mean a place 

such as an enclosure that was sacred at one time stayed that way forever. History is always at 

work. Dillehay (2007) refers to the process whereby meanings and attitudes toward particular 

places remain in flux as, landscapes in motion. The Bluegrass landscape in Central Kentucky 

was certainly in motion, affording the movement of ideas, sacred objects, and people during the 

Middle Woodland period, and moving toward becoming something new in the aftermath of 

Adena-Hopewell. 

 So, what does all of this say about the nature of separating Adena and Hopewell as 

cultural types? This research supports the idea that monumental activity occurs early in this 

region. However, it also traces a significant shift in the focus of monumentality around the 

BC/AD transition. The construction of earthen enclosures at a very rapid pace indicates 

something important had changed socially and the reverberations of this change can be seen 

across the entire Eastern Woodlands. This this change in ritual practice occurred about 200 years 

after the earliest evidence for large multi-form geometric enclosures in the Scioto River Valley 

of Central Ohio (known as the epicenter for Classic Ohio Hopewell). If larger ideas about 
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cosmology and world renewal spread and are evidenced in the construction and use of earthen 

enclosures at a local scale among small communities, then the stage was set for participation in 

larger cycles of situational gatherings in Central Ohio. If, as many archaeologists have argued, 

Central Ohio was a center for pilgrimage journeys (Lepper 2004, 2006; Wright and Loveland 

2015), there has to be a way that local practices help instill a sense of what is to be expected 

when the journey takes place. I believe that the local adoption and use of earthen enclosure as 

ritual infrastructure helped prepare new age groups, sodalities, or other forms of non-affinal kin 

groups for these journeys. This may help explain why monuments are not being built after 

roughly AD 300 in the Bluegrass Region. If the focus of ritual cycles was on journeys into 

Central Ohio, there was no need to keep building new infrastructure locally. It was already 

available for local events and as stop-overs for travelers from further away. 

 Archaeologists have recently started paying attention to the situational and temporary 

nature of social phenomena. This includes a range of behaviors that relate things such as 

leadership structures and the nature of self-identity (Angelbeck and Grier 2012; Wengrow and 

Graeber 2015). I think it is good to consider these perspectives as they relate to the historical 

divide of Adena and Hopewell. Adena could represent the local representation of cosmological 

beliefs materialized through ritual practice. Alternatively, Hopewell may represent something 

much larger than a cultural unit, but a cycle of ritual gatherings that draws on the majority of 

populations who once inhabited the Eastern U.S. After all, many of the enclosures in the region 

align to the 18.6-year cycle of the lunar standstill. Moreover, there is a precedent for similar 

phenomena in pre-Columbian eastern North America at Poverty Point, where pilgrimage may 

have influenced the draw of people and material culture from across the Mississippi and Ohio 

River drainages and along the Gulf Coast (Spivey et al. 2015). 
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5.4 Future Research Directions 

 The work that is presented here, like any piece of research, offers more questions than is 

answers. Future research on enclosures in the Central Kentucky area would benefit from more 

dates and additional chronological modeling. Some of the ditch refilling sequences I have 

presented relied on only four dates. Additional dates would allow archaeologists to understand 

the histories of all enclosures in the same ways we analyzed the Winchester Farm enclosure. 

Tieing down these chronological sequences would also offer an opportunity to learn the cycles of 

time in which each enclosure was built. Could this be happening roughly every 20 years, in time 

with the ritual cycles suggested by the astronomical alignments of enclosures? Bayesian 

modeling would help answer that question. 

 Advanced spatial modeling would help inform the search for additional unknown 

enclosures and other earthen monuments. The examination of LiDAR presented here was 

primarily qualitative. Using artificial intelligence to ‘seek out’ particular topographic patterns is 

something that is becoming used in other scientific disciplines and it would benefit the 

archaeology of Middle Woodland geometric earthworks as well. 

 Finally, the sealed ground surfaces identified beneath the preserved embankment have the 

potential for preserving paleoenvironmental data (e.g., pollen, diatoms) that may provide the 

environmental and climatological context for the rise of Middle Woodland Ceremonialism. 

Likewise, the lower portions of ditches could provide the context for its decline. 
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Appendix A: OxCal Codes for Bayesian Chronological Models 

Presented in Chapter 3 
 

Model 1 

 
Plot() 

 { 

  Sequence() 

  { 

   Boundary("pre-Construction"); 

   Phase("Enclosure Construction") 

   { 

    R_Date("UGAMS-17004: Ab1", 2040, 30); 

    R_Date("OS-136890: Ab2", 1910, 20); 

   }; 

   Boundary("post-Construction"); 

   Phase("Interior Use") 

   { 

    R_Date("OS-136889: F.13 Post", 2450, 25); 

    R_Date("OS-136447: Midn. 30-40 cmbs", 2090, 20); 

    R_Date("OS-136446: Midn. 20-30 cmbs", 1980, 25); 

    R_Date("OS-136888: Midn. 40-54 cmbs", 1980, 15); 

    R_Date("UGAMS-17006: Midn. 50-55 cmbs", 1890, 25); 

    R_Date("UGAMS-17005: F.8 Post", 1880, 25); 

   }; 

   Boundary("End of Interior Use"); 

   Sequence() 

   { 

    Boundary("Begin Ditch Refilling"); 

    Sequence("Ditch Refilling") 

    { 

     R_Date("OS-136891: Ditch 125-135 cmbs", 1150, 15); 

     R_Date("UGAMS-17003: Ditch 115-132 cmbs", 1140, 25); 

     R_Date("OS-136892: Ditch 110-120 cmbs", 1960, 20); 

     R_Date("OS-136893: Ditch 100-110 cmbs", 1090, 20); 

     R_Date("OS-136894: Ditch 90-100 cmbs", 1150, 15); 

     R_Date("OS-136895: Ditch 80-90 cmbs", 1110, 20); 

     R_Date("OS-136896: Ditch 70-80 cmbs", 1140, 15); 

     R_Date("OS-136897: Ditch 60-70 cmbs", 1160, 20); 

    }; 

    Boundary("End Ditch Refilling"); 

   }; 

  }; 

 }; 

 

Model 2 
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Plot() 

 { 

  Sequence("Winchester Farm Site Use") 

  { 

   Boundary("Start Site Use"); 

   Phase() 

   { 

    R_Date("OS-136889: F.13 Post", 2450, 25); 

    R_Date("OS-136447: Midn. 30-40 cmbs", 2090, 20); 

    R_Date("UGAMS-17004: Ab1", 2040, 30); 

    R_Date("OS-136446: Midn. 20-30 cmbs", 1980, 25); 

    R_Date("OS-136888: Midn. 40-54 cmbs", 1980, 15); 

    R_Date("OS-136890: Ab2", 1910, 20); 

    R_Date("UGAMS-17006: Midn. 50-55 cmbs", 1890, 25); 

    R_Date("UGAMS-17005: F.8 Post", 1880, 25); 

    Order() 

    { 

    }; 

   }; 

   Span("Site Use"); 

   Boundary("End Site Use"); 

  }; 

 }; 

 

Model 3 

 
Plot() 

 { 

  Sequence(Winchester Farm) 

  { 

   Boundary("Begin pre-Enclosure Use"); 

   Phase("pre-Enclosure Use") 

   { 

    R_Date("OS-136889: F.13 Post", 2450, 25) 

    { 

     Outlier(); 

    }; 

    R_Date("OS-136447: Midn. 30-40 cmbs", 2090, 20); 

    R_Date("UGAMS-17004: Ab1", 2040, 30); 

    R_Date("OS-136446: Midn. 20-30 cmbs", 1980, 25); 

    R_Date("OS-136888: Midn. 40-54 cmbs", 1980, 15); 

    Span("pre-Enclosure Use"); 

   }; 

   Boundary("End pre-Enclosure Use"); 

   Boundary("Begin Embankment"); 

   Phase("Embankment") 
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   { 

    R_Date("OS-136890: Ab2", 1910, 20); 

   }; 

   Boundary("End Embankment"); 

   Boundary("Begin post-Enclosure Use"); 

   Phase("post-Enclosure") 

   { 

    R_Date("UGAMS-17006: Midn. 50-55 cmbs", 1890, 25); 

    R_Date("UGAMS-17005: F.8 Post", 1880, 25); 

    Span("post-Enclosure Use"); 

   }; 

   Boundary("End post-Enclosure Use"); 

   Sequence() 

   { 

    Boundary("Begin Ditch Refilling"); 

    Sequence("Ditch") 

    { 

     R_Date("OS-136891: Ditch 125-135 cmbs", 1150, 15); 

     R_Date("UGAMS-17003: Ditch 115-132 cmbs", 1140, 25); 

     R_Date("OS-136892: Ditch 110-120 cmbs", 1960, 20) 

     { 

      Outlier(); 

     }; 

     R_Date("OS-136893: Ditch 100-110 cmbs", 1090, 20); 

     R_Date("OS-136894: Ditch 90-100 cmbs", 1150, 15); 

     R_Date("OS-136895: Ditch 80-90 cmbs", 1110, 20); 

     R_Date("OS-136896: Ditch 70-80 cmbs", 1140, 15); 

     R_Date("OS-136897: Ditch 60-70 cmbs", 1160, 20); 

     Span("Ditch Refilling"); 

    }; 

    Boundary("End Ditch Refilling"); 

    Difference("Duration", "End post-Enclosure Use", "Begin 

Ditch Refilling"); 

   }; 

  }; 

 }; 

 

Appendix B: OxCal Codes for Bayesian Chronological Models 

Presented in Chapter 4 
 

Model 1 

 
Plot() 

 { 

  Sequence() 

  { 
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   Boundary("Start: pre-Construction Surface"); 

   Phase("") 

   { 

    Date("OSLHL",N(2010-3870,325)); 

    R_Date("ISGS-A1256", 2800, 20); 

    R_Date("ISGS-6586", 2070, 80); 

    R_Date("ISGS-A1425", 2045, 15); 

    R_Date("UGAMS-17004", 2040, 30); 

    Date("OSL1F1",N(2010-2005,175)); 

    R_Date("OS-136791", 1990, 30); 

    R_Date("ISGS-A3568", 1980, 20); 

    R_Date("OS-125721", 1940, 20); 

    R_Date("OS-125720", 1930, 20); 

    R_Date("OS-125679", 1920, 20); 

    R_Date("OS-136890", 1910, 20); 

    R_Date("OS-125719", 1900, 20); 

    R_Date("D-AMS-012514", 1861, 26); 

    Span(Enclosure Construction); 

   }; 

   Boundary("End: pre-Construction Surface"); 

  }; 

 }; 

 

Model 2 

 
Plot() 

 { 

  Sequence() 

  { 

   Boundary("Start: pre-Construction Surface"); 

   Phase("") 

   { 

    Date("OSLHL",N(2010-3870,325)) 

    { 

     Outlier(); 

    }; 

    R_Date("ISGS-A1256", 2800, 20) 

    { 

     Outlier(); 

    }; 

    R_Combine("Mt Horeb") 

    { 

     R_Date("ISGS-6586", 2070, 80); 

     R_Date("ISGS-A3568", 1980, 20); 

    }; 

    R_Date("ISGS-A1425", 2045, 15); 

    R_Date("UGAMS-17004", 2040, 30); 
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    Date("OSL1F1",N(2010-2005,175)); 

    R_Date("OS-136791", 1990, 30); 

    R_Date("OS-125721", 1940, 20); 

    R_Date("OS-125720", 1930, 20); 

    R_Date("OS-125679", 1920, 20); 

    R_Date("OS-136890", 1910, 20); 

    R_Date("OS-125719", 1900, 20); 

    R_Date("D-AMS-012514", 1861, 26); 

    Span(Enclosure Construction); 

   }; 

   Boundary("End: pre-Construction Surface"); 

  }; 

 }; 

 

Model 3 

 
Plot() 

 { 

  Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); 

  Outlier_Model("General",T(5),U(0,4),"t"); 

  Sequence() 

  { 

   Boundary("Start: pre-Construction Surface"); 

   Phase("") 

   { 

    R_Date("ISGS-A1425", 2045, 15) 

    { 

     Outlier("Charcoal",1); 

    }; 

    R_Date("UGAMS-17004", 2040, 30) 

    { 

     Outlier("Charcoal",1); 

    }; 

    R_Date("OS-136791", 1990, 30) 

    { 

     Outlier("General",0.05); 

    }; 

    R_Date("ISGS-A3568", 1980, 20) 

    { 

     Outlier("Charcoal",1); 

    }; 

    R_Date("OS-125721", 1940, 20) 

    { 

     Outlier("Charcoal",1); 

    }; 

    R_Date("OS-125720", 1930, 20) 

    { 
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     Outlier("Charcoal",1); 

    }; 

    R_Date("OS-125679", 1920, 20) 

    { 

     Outlier("Charcoal",1); 

    }; 

    R_Date("OS-136890", 1910, 20) 

    { 

     Outlier("Charcoal",1); 

    }; 

    R_Date("OS-125719", 1900, 20) 

    { 

     Outlier("Charcoal",1); 

    }; 

    R_Date("D-AMS-012514", 1861, 26) 

    { 

     Outlier("Charcoal",1); 

    }; 

    Span(Enclosure Construction); 

   }; 

   Boundary("End: pre-Construction Surface"); 

  }; 

 }; 

 

Model 4 

 
Plot() 

 { 

  Sequence() 

  { 

   Boundary("Start: pre-Construction Surface"); 

   Phase("") 

   { 

    Sum("LeBus") 

    { 

     R_Date("ISGS-A1425", 2045, 15); 

     R_Date("OS-136791", 1990, 30); 

    }; 

    Sum("Mount Horeb") 

    { 

     R_Date("OS-125721", 1940, 20); 

     R_Date("OS-125720", 1930, 20); 

     R_Date("OS-125719", 1900, 20); 

    }; 

    R_Date("Win. Farm", 1910, 20); 

    Sum("Bogie") 

    { 
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     R_Date("OS-125679", 1920, 20); 

     R_Date("D-AMS-012514", 1861, 26); 

    }; 

    Span(); 

    Order(); 

   }; 

   Boundary("End: pre-Construction Surface"); 

  }; 

 }; 

 

Model 5 

 
Plot() 

 { 

  Sequence() 

  { 

   Boundary("Start: Lower Refilling"); 

   Phase("") 

   { 

    R_Date("OS-125678", 1830, 20); 

    R_Date("D-AMS-012517", 1779, 27); 

   }; 

   Boundary("End: Lower Refilling"); 

   Boundary("Start: Upper Refilling"); 

   Phase("") 

   { 

    R_Date("D-AMS-012520", 545, 23); 

    R_Date("OS-125671  ", 295, 15); 

   }; 

   Span(); 

   Boundary("End: Upper Refilling"); 

  }; 

 }; 

 

Model 6 

 
Plot() 

 { 

  Sequence() 

  { 

   Boundary("Start: Ditch"); 

   Phase("") 

   { 

    Curve("IntCal13","IntCal13.14c"); 

    R_Date("D-AMS-012518", 2084, 27) 

    { 

     Outlier(); 



244 

 

    }; 

    R_Date("OS-125669", 1820, 25); 

    R_Date("OS-125670", 1610, 20); 

    R_Date("D-AMS-012519", 51, 27) 

    { 

     Outlier(); 

    }; 

   }; 

   Boundary("End: Ditch"); 

  }; 

 }; 

 

Model 7 

 
Plot() 

 { 

  Sequence() 

  { 

   Boundary("Start: Mounds"); 

   Phase("") 

   { 

    R_Date("UGA-1239", 2945, 225); 

    R_Date("C-759", 2650, 170); 

    R_Date("M-2239", 2260, 140); 

    R_Date("OS-136943", 2260, 30); 

    R_Date("OS-136347", 2180, 20); 

    R_Combine(C-760) 

    { 

     R_Date("C-760a", 2260, 220); 

     R_Date("C-760b", 2078, 290); 

    }; 

    R_Date("OS-136346", 2070, 20); 

    R_Date("OS-136348", 2030, 25); 

    R_Date("OS-136343", 2010, 20); 

    R_Date("OS-136344", 2010, 20); 

    R_Date("Beta-152838", 2000, 60); 

    R_Date("Beta-152839", 1990, 60); 

    R_Date("OS-136882", 1960, 20); 

    R_Date("OS-134355", 1950, 25); 

    R_Date("N. R.", 1900, 50); 

    R_Date("M-2238", 1740, 140); 

    R_Date("UGA-3617", 1680, 115); 

   }; 

   Boundary("End: Mounds"); 

  }; 

 }; 
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Model 8 

 
Plot() 

 { 

  Sequence() 

  { 

   Boundary("Start: Mounds"); 

   Phase("") 

   { 

    R_Date("UGA-1239", 2945, 225) 

    { 

     Outlier(); 

    }; 

    R_Date("C-759", 2650, 170) 

    { 

     Outlier(); 

    }; 

    R_Date("M-2239", 2260, 140) 

    { 

     Outlier(); 

    }; 

    R_Date("OS-136943", 2260, 30); 

    R_Date("OS-136347", 2180, 20); 

    R_Combine(C-760) 

    { 

     Outlier(); 

     R_Date("C-760a", 2260, 220); 

     R_Date("C-760b", 2078, 290); 

    }; 

    R_Date("OS-136346", 2070, 20); 

    R_Date("OS-136348", 2030, 25); 

    R_Date("OS-136343", 2010, 20); 

    R_Date("OS-136344", 2010, 20); 

    R_Date("Beta-152838", 2000, 60); 

    R_Date("Beta-152839", 1990, 60); 

    R_Date("OS-136882", 1960, 20); 

    R_Date("OS-134355", 1950, 25); 

    R_Date("N. R.", 1900, 50) 

    { 

     Outlier(); 

    }; 

    R_Date("M-2238", 1740, 140) 

    { 

     Outlier(); 

    }; 

    R_Date("UGA-3617", 1680, 115); 

   }; 
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   Boundary("End: Mounds"); 

  }; 

 }; 

 

Model 9 

 
Plot() 

 { 

  Outlier_Model("General",T(5),U(0,4),"t"); 

  Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); 

  Sequence() 

  { 

   Boundary("Start: Mounds"); 

   Phase("") 

   { 

    R_Date("OS-136943", 2260, 30) 

    { 

     Outlier("Charcoal", 1); 

    }; 

    R_Date("OS-136347", 2180, 20) 

    { 

     Outlier("General", 0.05); 

    }; 

    R_Date("OS-136346", 2070, 20) 

    { 

     Outlier("General", 0.05); 

    }; 

    R_Date("OS-136348", 2030, 25) 

    { 

     Outlier("General", 0.05); 

    }; 

    R_Date("OS-136343", 2010, 20) 

    { 

     Outlier("Charcoal", 1); 

    }; 

    R_Date("OS-136344", 2010, 20) 

    { 

     Outlier("Charcoal", 1); 

    }; 

    R_Date("Beta-152838", 2000, 60) 

    { 

     Outlier("General", 0.05); 

    }; 

    R_Date("Beta-152839", 1990, 60) 

    { 

     Outlier("Charcoal", 1); 

    }; 
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    R_Date("OS-136882", 1960, 20) 

    { 

     Outlier("Charcoal", 1); 

    }; 

    R_Date("OS-134355", 1950, 25) 

    { 

     Outlier("General", 0.05); 

    }; 

    Span(); 

   }; 

   Boundary("End: Mounds"); 

  }; 

 }; 
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