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ABSTRACT OF THE THESIS

Statistical Analysis of Short-time Option Prices Based on a Lévy Model

by

Wang, Weiliang

Master of Arts in Mathematics,

Washington University in St. Louis, 2018.

Professor José E. Figueroa-López, Research Advisor

The Black-Scholes model has been widely used to find the prices of option, while

several generalizations have been made due to its limitation. In this thesis, we consider

one of the generalizations—the exponential Lévy model with a mixture of CGMY process

and Brownian motion. We state the main results of the first-, second- and third-order

expansions for close-to-the-money call option prices under this model. Using importance

sampling based on Monte Carlo method, a dataset of call option prices can be simulated.

Comparing the simulated true prices with the three different order approximations, we

find that the higher-order approximation is more accurate than the lower-order in most

cases, which can be used for calibrating the parameters in the model. In order to verify

these results, we use call option prices obtained from the Standard & Poor’s 500 index

options. The third-order approximation of this real dataset is not as accurate as before.
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1. Introduction and Background

In this chapter, we present some basic background for this thesis. The first section

begins by making an elementary introduction to financial derivatives and options. Some

useful information about the Standard & Poor’s 500 index options will be considered in

detail. The second section briefly reviews some mathematics background. We introduce

the definition and simulation of the Brownian motion. Several important concepts and

propositions related to Lévy process will be shown.

1.1 Financial Background

1.1.1 Derivatives and Options

In finance, a derivative is an asset whose value is completely determined by some other

underlying assets. For example, the value of a stock option (the derivative) is determined

by stock (the underlying asset), the value of a crude oil futures contract (the derivative)

is determined by crude oil (the underlying asset).

Options can be divided into two types—call options and put options. A call option

is the right (but not the obligation) to buy an asset at a specified price on or before a

specified date. Accordingly, a put option is the right (but not the obligation) to sell an

asset at a specified price on or before a specified date [1]. The specified price in options

is called strike price, always denoted by K. The specified date in options is known as

maturity or expiration, always denoted by T .
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Options can be American style or European style. An American option may be

exercised any time up until expiration (include expiration date), while European options

can only be exercised at the expiration date.

In this thesis, we work with European call options (put options can be reproduced

from call options by the call/put parity). Suppose St denotes the price of the underlying

asset at time t. Then S0 is the price at t = 0, which is called the spot price. A call option

is called at the money call, or shortly ATM call, if the strike price is equal to the spot

price (K = S0). Similarly, it is called in the money call if K < S0 and out of the money

call if K > S0. Here, we assume no dividends and zero interest rates.

Based on the definition, the payoff of a call option at time t is

(St −K)+ =


St −K, for St ≥ K,

0, for St < K.

Then, the risk-neutral price of a call option is its expectation, which is E [(St −K)+] .

1.1.2 S&P 500 Index Options

In 1973, the Chicago Board Options Exchange(CBOE) introduced the standard call

options firstly. Four years later, the put options were introduced. In 2005, a new type

of option, called weekly options, was introduced by CBOE. This option begins trading

on each Thursday and expires on the following Friday. The popularity of weekly options

cannot be ignored due to its fast growing.

The Standard & Poor’s 500 index, often abbreviated as the S&P 500 index, is one of

the most common benchmarks of the overall U.S. stock market. SPX Option contracts,

introduced by CBOE as products of S&P 500, are the most actively traded index options

in the United States.
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In October 2011, SPXPM, a kind of p.m.-settled traded SPX options, was introduced

by CBOE. Soon after, SPX weekly options, abbreviated as SPXW, were listed under

the SPXPM in 2013. Both standard SPX and SPXW are European options. However,

there are some differences between these two types. The standard SPX is expiring on

the third Friday of each month. It is a.m.-settled and ceases trading on the Thursday

afternoon (one day before the expiration). The SPXW, otherwise, is p.m.-settled and

trading through Friday. In other words, the standard SPX settled based on the opening

price of the market on the third Friday of each month while the SPXW settled based on

the closing price on Friday—its expiration day [2]. Another category of SPXPM options

is called Quarterly SPX (abbreviated as SPXQ), which is expiring at the end of each

quarter. It is noteworthy that if the quarter ends on a Friday, the SPXW will not be

listed for that day [2].

Based on the data from CBOE, at the beginning of 2011, the SPXW only accounted

for roughly 10% of the trading of S&P 500 options. However, by the end of 2014, this

number grew up to 40%, which is an evidence of the popularity of weekly options.

1.2 Mathematical Background

1.2.1 Brownian Motion

A Brownian motion (or a Wiener process) is a continuous-time stochastic process

named after Norbert Wiener. It plays a key role in both pure and applied mathematics.

It has a profound impact on finance, in particular on the Black-Scholes model. The

Brownian motion is defined as follows [3]:
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Definition 1.2.1 A stochastic process {Wt}t≥0 is called a Brownian motion or a Wiener

process with variance parameter σ2 if the following properties are satisfied :

• W0 = 0.

• Independent increments: For any 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ sn ≤ tn, the

random variables Wt1 −Ws1, Wt2 −Ws2, . . . , Wtn −Wsn are independent.

• For any s < t, Wt −Ws ∼ N(0, (t− s)σ2).

• The paths are continuous, i.e., the function t 7−→ Wt is a continuous function of t.

Note that the standard Brownian motion is a Brownian motion with σ2 = 1. Besides,

a Brownian motion is a Markov process (the process that the change at time t is not

determined by the values before time t, but only the value at time t (details see [3])).

Now, we consider the simulation of one dimensional Brownian motion. Based on the

definition, the Brownian motion can be seen as the cumulation of a sequence of variables

following a normal distribution with same mean and variance. In other words, it can be

simulated by the following procedures:

X0 = 0,

X∆t ∼ X0 +N(0,∆tσ
2),

X2∆t ∼ X∆t +N(0,∆tσ
2),

...

Xi∆t ∼ X(i−1)∆t +N(0,∆tσ
2).

We can generate a path of Brownian motion based on these procedures. A realization of

a standard Brownian motion in one dimension with ∆t = 1 and t = 500 is displayed in

Figure 1.1.
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Figure 1.1. A path of a standard Brownian motion in one dimension.
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1.2.2 Itô Diffusion and Geometric Brownian Motion

A diffusion process is a Markov process with almost surely continuous sample path

(details see [4]). It is a solution to a stochastic differential equation. A specific type of

diffusion is Itô diffusion, which is denoted by

dSt = µ(t, St)dt+ σ(t, St)dWt,

where {Wt}t≥0 is a standard Brownian motion.

An important example of Itô diffusion is geometric Brownian motion, which is a

common model for pricing an asset. Suppose µ is the constant excepted return and σ

is the constant volatility, the stochastic differential equation of a geometric Brownian

motion {St}t≥0 is given by

dSt = µStdt+ σStdWt.

Note that lnSt follows a Brownian motion. After some simple calculations using Itô

formula (details see [3]), we can get

St = S0 · exp{(µ− σ2/2)t+ σWt}.

Such result is the basis of the Black-Scholes model.

1.2.3 Lévy Process

Lévy process, named after French mathematician Paul Lévy, plays a significant role

in several fields, especially in mathematical finance. As a stochastic process in continuous

time, it is the basis of many continuous-time financial models.

Definition 1.2.2 A cadlag stochastic process {Xt}t≥0 on Rd is called a Lévy process if

the following properties are satisfied [5]:
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• X0 = 0, almost surely.

• Independent increments: For any 0 ≤ t1 < t2 < · · · < tn, the random variables Xt1,

Xt2 −Xt1, . . . , Xtn −Xtn−1 are independent.

• Stationary increments: The law of Xt+h −Xt does not depend on t.

• Stochastic continuity: For any ε > 0 and t ≥ 0, lim
h→0

P (|Xt+h −Xt| > ε) = 0.

Note that it is easy to verify that a Brownian motion is an example of Lévy process.

Another important concept is infinitely divisible distribution, which is shown as follows:

Definition 1.2.3 A probability distribution F is said to be infinitely divisible if for all

n ∈ N, there exists independent and identically distributed (i.i.d.) random variables X1,

. . . , Xn such that X1 + · · ·+Xn has distribution F.

For example, the normal distribution is infinitely divisible. Consider Y ∼ N(µ, σ2),

we can write Y = X1 + · · · + Xn where X1, . . . , Xn are i.i.d. random variables with

Xk ∼ N(µ/n, σ2/n), k = 1, 2, . . . , n. When the distribution of a random variable X is

infinitely divisible, there exists a triplet (µ, σ2, ν) such that

φX(ω) = E[eiωX ] = exp[iµω − 1

2
σ2ω2 +

∫
R

(eiωx − 1− iωx1|x|<1)ν(dx)]1,

where µ ∈ R, σ2 ∈ R≥0 and a Lévy measure ν which satisfies the following two assump-

tions:

• ν({0}) = 0,

•
∫
R

(1 ∧ |x|2)ν(dx) <∞ 2.

11 is called an indicator function which is 1x∈A =


1, if x ∈ A,

0, if x /∈ A.
2i.e.

∫
R

min{1, |x|2}ν(dx) <∞.
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The representation before is called the Lévy-Khintchine formula, which provides

a complete characterization of a random variable with infinitely divisible distribution

through its characteristic function. Here, µ is the drift term, σ2 is called the diffusion

or Gaussian coefficient, ν is Lévy measure. However, for a Lévy process {Xt}t≥0, Xt is

infinitely divisible(details see [6]). Therefore, for every Lévy process {Xt}t≥0, we have

E[eiωXt ] = exp[iµω − 1

2
σ2ω2 +

∫
R

(eiωx − 1− iωx1|x|<1)ν(dx)].

On the other hand, when we have a random variable Y which is infinitely divisible, we

can construct a Lévy process {Xt}t≥0 such that Y and Xt follow the same law. This

conclusion can be obtained by Lévy-Itô decomposition (details see [5]). The Lévy-Itô

decomposition and Lévy-Khintchine formula make a connection between Lévy processes

and infinitely divisible distribution [7].

The Lévy measure ν of a Lévy processes {Xt}t≥0 is defined by:

ν(A) = E[#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}].

We have seen that the Lévy measure ν is a measure satisfying:

ν({0}) = 0 and

∫
R

(1 ∧ |x|2)ν(dx) <∞.

Based on the definition, it can be seen as the excepted number of jumps per unit time

of a certain size belonged to A. The Lévy measure ensures that only a finite number

of large jumps can occur, while small jumps may occur finitely or infinitely many times

[6]. Besides, a Lévy measure should be quadratic integrable around the origin. The Lévy

measure determine the properties of Lévy process, several propositions (proof see [5]) are

listed as follows:

Proposition 1.2.1 Let {Xt}t≥0 be a Lévy processes with triplet (µ, σ2, ν).
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• If 0 < ν(R) < ∞, then, almost surely, all paths of {Xt} have a finite excepted

number of small jumps and a finite excepted number of large jumps per unit time,

which is called a finite activity Lévy processes.

• If ν(R) =∞, then, almost surely, all paths of {Xt} have an infinite excepted number

of small jumps and a finite excepted number of large jumps per unit time, which is

called an infinite activity Lévy processes.

• If σ2 = 0 and
∫
|x|≤1
|x| ν(dx) < ∞, then, almost surely, all paths of {Xt} have a

finite variation.

• If σ2 6= 0 and
∫
|x|≤1
|x| ν(dx) = ∞, then, almost surely, all paths of {Xt} have an

infinite variation.

An important subclass of Lévy process is a subordinator. A process {Xt}t≥0 is called a

subordinator if it is a nondecreasing Lévy process almost surely. Since X0 = 0, the value

of a subordinator is non-negative. A subordinated Brownian motion WXt can be obtained

through replacing the time t in Brownian motion Wt by an independent subordinator Xt.

The Gamma process is a common choice for a subordinating. The probability density

at time t is given by

pt(x) =
βαt

Γ(αt)
xαt−1e−βx,

where Γ(z) =
∫∞

0
xz−1e−xdx is the Gamma function.

Based on the density above, the characters of Gamma process is determined by the

parameters α and β. To be more specific, the mean and variance are α/β and α/β2,

respectively. Besides, the Lévy density of Gamma process is ν(x) = αe−βx

x
1x>0dx. The

subordinated Brownian motion of a Gamma process is called a variance gamma prcoess

(details see Section 2.3).

9



2. The Option Pricing Model

The well-known Black-Scholes (B-S) model for a risky asset has been widely used to find

a price of financial derivatives, such as options [8]. However, some assumptions in this

model are not suitable in practice. In this chapter, we will consider the limitation of B-S

model and present a generalization which is called exponential Lévy model. In addition,

several concepts and properties of the CGMY process will be shown in this chapter. As

a special case of CGMY model, some results of the variance gamma model will also be

stated. In the last section, we will show the main results of expansions for close-to-the-

money option prices based on exponential Lévy model with a mixture of CGMY process

and Brownian motion.

2.1 Black-Scholes Model and Its Limitation

In general, the B-S model can be written as the following local form:

dSt
St

= µdt+ σdWt,

or equivalently represented as the exponential form:

St = S0 · exp{(µ− σ2/2)t+ σWt},

where {Wt}t≥0 is a standard Brownian motion. As a model built on Brownian motion

whose sample path is continuous, the B-S model is one of the diffusion models. However,

in practice, several jumps can be found in price behavior, which seems not meet the

10



Figure 2.1. Euro/Dollar exchange rate from Jan. 2014 to Dec. 2015.

property of continuity. For example, Figure 2.1 1 shows the Euro/Dollar exchange rate

from January 2014 to December 2015. We can observe some significant price changes

in the graph. Several models made promotion of the B-S model by allowing the prices

to jump. Two reasons for introducing jumps in financial model will be presented as

follows(details see [7] and [9]):

First, in the “real” world, based on some empirical facts, the jumps exist in price

and the continuous-path models may not deal with this phenomenon appropriately. Let

us consider the returns (increments of the log-price) of an asset in practice (example

see [7]). Several large peaks can be observed which is corresponding to jumps in the

returns. This high variability is a common feature of asset returns, which leads to heavy

1Source of Data: http://www.macrotrends.net
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tails in the distribution of returns. The diffusion models explain the heavy tails by

introducing highly varying coefficients or choosing extreme values of parameters, which

is unreasonable from a statistical aspect. More importantly, even though heavy tails can

be generated by diffusion models, the sudden and discontinuous moves in prices cannot.

However, for a model with jump, such as a Lévy model, we do not need to choose the

extreme values for parameters since it is one of the generic properties of this model. Such

jumps in model are helpful to capture the risk of asset.

Second, the evidence from option market show some weaknesses of diffusion models.

In the “risk neutral world”, consider a European call option with maturity T , strike

price K and no dividends. For a fixed time t, the implied volatility depends on T and

K. Figure 2.2 2 shows a specific volatility surface. The B-S model predicts a constant

value of the implied volatility which is contradicted to the empirical fact that the implied

volatility is not a constant as a function of T or K. The feature of the implied volatility

is known as implied volatility smile. Even though the B-S model can fit the shape of

the implied volatility, it does not give an interpretation of the smile/skew feature. How-

ever, the models with jump can generate several smile/skew patterns with explanation of

phenomenon in market. Moreover, when we consider the options with short maturities,

the implied volatilities show a considerable skew. In continuous model, it can only be

achieved by extreme values which will lead difficulty to explain or use, but jump models

can handle this problem naturally. Besides, the law of returns becomes more Gaussian

in diffusion models for short maturities. However, in reality, it is less Gaussian, which is

the nature of jump models.

2Source of Data: https://www.timera-energy.com
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Figure 2.2. Implied volatility surface of UK gas market.

13



2.2 Exponential Lévy Model

To deal with the problems stated before, a common generalization of the B-S model,

called the exponential Lévy model, had been considered. Suppose X represents a Lévy

process, then we can construct an exponential Lévy model as follows [9]:

St = S0 · exp{rt+Xt},

where r stands for interest rate. In our thesis, we assume zero interest rate. Then, our

model becomes

St = S0 · eXt .

Under this model, we can derive that

ln(
St
S0

) = Xt.

Therefore, in finance, a process St is modeled as an exponential of a Lévy process means

that the log-return follows a Lévy process.

2.3 Variance Gamma Model

So far, we have shown that a Lévy process can be finite activity or infinite activity.

Jump processes with finite activity are studied by [10]. We will focus on pure jump

processes with infinite activity. A common choice is the variance gamma(VG) process,

which is studied by [11].

The VG process is a Brownian motion with drift at a random time which is changed

by a gamma process. It can be described as a Brownian motion subject to a gamma

subordinator. Suppose b(t; θ, σ) is a process which is a Brownian motion with drift θ and

volatility σ, then

b(t; θ, σ) = θt+ σWt.

14



Suppose γ(t;µ, ν) is a gamma process with mean rate µ and variance rate ν. Based on

the density given in Section 1.2.3, we can derive the density of a gamma process at time

t in this case, which is

pt(x) =
1

νt/νΓ(t/ν)
xt/ν−1e−x/ν .

The VG process is defined as

XV G(t;σ, ν, θ) = b(γ(t; 1, ν), θ, σ) = θγ(t; 1, ν) + σWγ(t;1,ν),

where θ, σ and ν are three constants. It can also be represented as the difference of two

independent gamma processes, which is

XV G(t;σ, ν, θ) = γp(t;µp, νp)− γn(t;µn, νn)

with the parameters given by (see [11] for details)

µp =
1

2

√
θ2 +

2σ2

v
+
θ

2
,

µn =
1

2

√
θ2 +

2σ2

v
− θ

2
,

νp = (
1

2

√
θ2 +

2σ2

v
+
θ

2
)2ν,

νn = (
1

2

√
θ2 +

2σ2

v
− θ

2
)2ν.

Besides, the Lévy density for a VG process is also shown in [11], which is

KV G(x) =


µ2n
νn

exp{−µn
νn
|x|}

|x| , for x < 0,

µ2p
νp

exp{−µp
νp
|x|}

|x| , for x > 0.

2.4 CGMY Model

As a generalization of a VG process, a CGMY process [12] has the Lévy density with

four parameters, C, G, M and Y , which is

KCGMY (x) =


C exp{−G|x|}

|x|1+Y , for x < 0,

C exp{−M |x|}
|x|1+Y , for x > 0,
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where C > 0, G ≥ 0, M ≥ 0 and Y < 2. As we can see, when Y = 0, the CGMY process

is exactly the VG process with parameters

C =
1

ν
, G =

1

µn
, M =

1

µp
.

The four parameters in CGMY process play distinct roles to capture the characters

of the model. The parameter C, which is a multiplier factor appeared both sides, can

be seen as a measure of the overall level of activity. The parameter G and M , which

appears in the case of x < 0 and x > 0 separately, control the rate of exponential decay

on both sides of the Lévy density. When G = M , it is easy to verify that the density

of CGMY process is symmetric. However, when G < M , the left tail of the distribution

is heavier than the right tail, which is consistent to our observation from option market

(details see [12]). The Y in different range will lead the process have different properties.

The condition that 1 < Y < 2 will be consider in our thesis. In this range, the process is

completely monotone with infinite activity and infinite variation. For properties in other

ranges, see [12] for details.

In fact, CGMY process is one of a tempered stable process. The tempered stable

process has the Lévy density of the following form:

ν(x) =
c−

|x|1+α e
−λ−|x|1x<0 +

c+

|x|1+α e
−λ+|x|1x>0,

where c− > 0, c+ > 0, λ− > 0, λ+ > 0 and α < 2. It is actually the CGMY process if

c+ = c− = C, λ− = G, λ+ = M , α = Y .

Besides, if we allow different α for positive and negative half-lines, we call it generalized

tempered stable model with Lévy measure

ν(x) =
c−

|x|1+α−
e−λ−|x|1x<0 +

c+

|x|1+α+
e−λ+|x|1x>0

with α− < 2 and α+ < 2.
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2.5 Expansions for Close-to-the-Money Option Prices

In this thesis, we study the behavior of close-to-the-money European call option prices.

Consider the Exponential Lévy model with the form

St = S0 · eXt with Xt = Lt + σWt.

Here L = {Lt}t≥0 is a CGMY Lévy Process and W = {Wt}t≥0 is an independent standard

Brownian motion. This model can be classified into two groups—mixed model (σ 6= 0)

and pure-jump model (σ = 0). We focus on the former case since several empirical

evidence support that the mixed model performs better than the pure-jump one (details

see [13]). For simplicity, we call our model mixed CGMY model.

Suppose t 7−→ κt is a deterministic function such that κt 7−→ 0 as t 7−→ 0. Here, κt is

called log-moneyness. The strike price can be represented as K = S0e
κt . If K = S0, we

have κt = 0. Based on the model mentioned above, the option prices can be represented

as

E
[
(St −K)+

]
= E

[
(St − S0e

κt)+
]

= S0E
[
(eXt − eκt)+

]
.

Consider the asymptotic behavior for close-to-the-money option prices under the

mixed CGMY model. The second-order expansions for ATM call option prices have

been shown as the following form3 (details see [14]):

1

S0

E[(St − S0)
+

] = d1t
1
2 + d2t

3−Y
2 + o(t

3−Y
2 ), t→ 0,

where

d1 =
σ√
2π

and d2 =
C2

1−Y
2 σ1−Y

√
πY (Y − 1)

Γ(1− Y

2
).

3A function f(t) is said to be ”little O” of g(t) at t0, denoted as o(g(t)), if f(t)/g(t) → 0 as t → t0.
Accordingly, a function f(t) is said to be ”big O” of g(t) at t0, denoted as O(g(t)), if there exists M > 0
such that |f(t)| ≤M |g(t)| as t→ t0.
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Based on the expressions of d1 and d2, only limit information contained in the second-

order expansions. Specifically, d1 only involves continuous volatility σ, while the overall

level of activity C, the property parameter Y and σ are contained in d2. However, as

mentioned in Section 2.4, the parameter G and M also play important roles in the model,

respectively. Therefore, in order to get more accurate results, a higher order expansion

is considered, which is shown in following theorem [15]:

Theorem 2.5.1 Suppose t 7−→ κt is a deterministic function such that κt = o(1) as

t→ 0. Let

d31 :=
CΓ(−Y )

2
[(M − 1)Y −MY − (G+ 1)Y +GY ],

d32 := − 1

π
σ1−2YC2 cos2(

πY

2
)Γ2(−Y )2Y−

1
2 Γ(Y − 1

2
),

cκ,σ(t) := κt

∫ 1

0

P (σWt ≥ ktw)dw.

Then for a mixed CGMY model with an independent Brownian component,

e−κt

S0

E[(St−S0e
κt)

+

]+cκ,σ(t) = d1t
1
2 +d2t

3−Y
2 +d31t+d32t

5
2
−Y +o(κt)+o(t)+o(t

5
2
−Y ), t→ 0,

where d1 and d2 are same as before and both o(t) and o(t
5
2
−Y ) are independent from κt.

Moreover, if we assume κt = o(
√
t) when t→ 0, the expansion becomes

e−κt

S0

E[(St−S0e
κt)

+

] +
κt
2

= d1t
1
2 +d2t

3−Y
2 +d31t+d32t

5
2
−Y +o(t) +o(t

5
2
−Y ) +o(κt), t→ 0.

The left side of the equation under this assumption is called the log-moneyness adjusted

price. We can derive that if Y ∈ (1, 1.5) and κt = O(t), the third-order term of the

log-moneyness adjusted price is d31t; if Y = 1.5 and κt = O(t), the third-order term is

(d31 + d32)t; if Y ∈ (1.5, 2) and κt = O(t
5
2
−Y ), the third-order term is d32t. In this thesis,

we choose the options whose strike price is very close to the spot price. Therefore, for

convenience, it is reasonable to treat κt as zero. However, the statements before still hold

since κt = 0 is just a the special case of the assumption κt = O(t) or κt = O(t
5
2
−Y ).
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3. Numerical Results

In this chapter, we firstly make a briefly introduction about our raw dataset. In addition,

we present the motivation of importance sampling, which is a well-known strategy based

on Monte Carlo Method. We use this strategy to simulate option prices under the mixed

CGMY model. After that, the calibration of the model’s parameters will be considered.

We repeat the same procedures on call option prices obtained from our dataset. The

main results and its comparisons will be shown at the end of this chapter. The approach

presented here follows along the lines of [15].

3.1 Dataset

Our raw dataset includes the variables of standard SPX, SPXW and SPXQ in January

2014. The number of trading days in 2014 is counted as 252. The main variables are

spot price S0, option root symbol, strike price K, maturities T , bid/ask price, volume

and open interest. A small part of dataset is shown in Table 3.1.

Option root symbol is a code for a option which contained several basic information.

Consider an example of our dataset which symbol is SPXW140103C01300000. ”SPXW”

is the root symbol of the stock which stands for weekly SPX. ”140103” stands for the

expiration date whose 6-digit arranges in a “yymmd” form. In this example, the date is

January 3rd, 2014. “C” stands for call (“P” stands for put). “01300000” is the strike

price, which is 1300 in this example. The zero before 1300 allows higher strike price to

19



sp
ot

p
ri

ce
op

ti
on

ro
ot

m
at

u
ri

ti
es

st
ri

ke
b
id

as
k

vo
lu

m
e

op
en

in
te

re
st

18
31

.9
8

S
P

X
W

14
01

03
C

01
30

00
00

01
/0

3/
20

14
13

00
52

6.
5

53
8.

3
0

0

18
31

.9
8

S
P

X
W

14
01

03
C

01
32

50
00

01
/0

3/
20

14
13

25
50

1.
5

51
3.

3
0

0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

18
31

.9
8

S
P

X
W

14
01

03
C

01
82

50
00

01
/0

3/
20

14
18

25
9

10
.3

61
94

11
18

0

18
31

.9
8

S
P

X
W

14
01

03
C

01
83

00
00

01
/0

3/
20

14
18

30
5.

8
6.

6
28

85
11

44
5

18
31

.9
8

S
P

X
W

14
01

03
C

01
83

50
00

01
/0

3/
20

14
18

35
3.

3
3.

6
44

25
36

10

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

T
ab

le
3.

1
P

ar
ts

of
ra

w
d
at

as
et

.

20



be shown, and the zero after, which occupied last three digits, allows the strike price

accurate to three decimal places.

The bid/ask price is the latest price to buy/sell a particular option. The difference

between the bid and ask is called the spread. In general, the tighter the bid/ask spread,

the better the liquidity of the options. In this thesis, we take the mid values of bid and

ask prices as the option prices.

The volume represents the number of contracts traded during a given period of a

particular option. The open interest is the number of contracts of a particular option

that have been opened but havent been closed out, exercised or expired. These two

variables describe the activity of options. Generally, large volume and open interest

indicate high liquidity.

Another important variable is VIX (the Volatility Index), which is calculated based

on options of the S&P 500 Index and published by the CBOE. It is the first benchmark

index to measure the stock markets expectation of volatility by calculating the weighted

summation of the prices of S&P 500 Index calls and puts over a wide range of strike

prices. To be more specific, the prices used to compute the VIX are the mid values of

bid and ask prices, which coincide with our setting of option prices. The σ in this thesis

can be measured by VIX divided by 100.

3.2 Call Option Prices Based on Monte Carlo Method

The Monte Carlo method was designed for approximating the integral effectively.

Obviously, this method can be applied to estimate the expectation since integral always
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appears. Suppose X1, . . . , Xn are i.i.d. random variables with density p. Based on the

law of large numbers, the sample mean converges to the expectation, which is

1

n

n∑
i=1

f(Xi)→ Ep[f(X)] =

∫
f(x)p(x)dx.

The approximation follows a normal distribution around the true expectation based on

the central limit theorem when n is large, with a shrinkage of variance like 1/n. Therefore,

we can estimate the expectation efficiently by drawing a large number of samples from

p and calculating the average. However, sometimes drawing samples from p is not easy.

One of strategies to deal with this problem is called importance sampling.

Suppose we can find another density r which is easy to simulate. This r satisfies

r(x) > 0 whenever p(x) > 0. Such assumption allows us to write the equation as

Ep[f(X)] =

∫
f(x)p(x)dx =

∫
f(x)

p(x)

r(x)
r(x)dx = Er[f(X)

p(X)

r(X)
].

Since we can draw samples X1, . . . , Xn from r easily, we estimate the expectation

Ep[f(X)] by

1

n

n∑
i=1

f(Xi)
p(Xi)

r(Xi)
→ Ep[f(X)].

These procedures that we approximate the expectation under one distribution by sam-

pling from another distribution are called importance sampling. The ratios p(Xi)/r(Xi)

are called importcance weight, which are random for different samples.

We use importance sampling to compute the options prices under the mixed CGMY

model. For simplicity, we assume S0 = 1. Consider the option prices under another

probability measure P̃ , rather than the original measure P since it is hard for us to draw

samples. After several calculations, we get the following (details see [15]):

E
[
(eXt − eκt)+

]
= Ẽ

[
e−(M−1)Ūt

(p)
+(G+1)Ūt

(n)−ηt
(

1− eκt−Ūt
(p)−Ūt(n)−γ̃t−σW ∗

t

)+
]
,
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where Ūt
(p)

and −Ūt
(n)

are independent Y-stable random variables1 with skewness 1,

location 0 and scale (tC |cos(πY/2)|Γ(−Y ))1/Y , which can be simulated directly. {W ∗
t }

is a standard Brownian motion, γ̃ = −CΓ(−Y )[(M − 1)Y + (G+ 1)Y −MY −GY ] + σ2

2
,

η = CΓ(−Y )[(M − 1)Y + (G+ 1)Y ].

Our setting of parameters is motivated by the study in [16] where the tempered stable

process was considered. In that paper, based on several analyses of the real data, the

following calibrated parameters were given:

c+ = 0.0028, c− = 0.0025, λ− = 0.4087, λ+ = 1.9320, α = 1.5, σ = 0.1.

For our model, we just take the midvalue of c+ and c− as the value of C. Then the

parameters setting is

C = 0.00265, G = 0.4087, M = 1.9320, Y = 1.5, σ = 0.1.

Based on these setting with sample size 200000, using Monte Carlo method with im-

portance sampling, we simulate the call option prices for one year (252 business days).

Besides, we calculate the first-, second-, third-order approximations. To be more specific,

since Y = 1.5, we get the following result:

d1t
1
2 , the first-order approximation,

d1t
1
2 + d2t

3−1.5
2 , the second-order approximation,

d1t
1
2 + d2t

3−1.5
2 + (d31 + d32)t, the third-order approximation.

Figure 3.1 shows the comparisons of the call option prices using Monte Carlo method

with the first-, second-, third-order approximations. The first-order approximation under-

estimates the true values while the second-order one makes an overestimation. However,

1A distribution is said to be stable if a linear combination of two i.i.d random variables with this
distribution has the same distribution, up to location and scale parameters. A random variable is called
stable random variable if its distribution is stable. A stable distribution is also called the Lévy α-stable
distribution, named after Paul Lévy.
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Figure 3.1. One-year call option prices under the mixed CGMY model
using Monte Carlo method and the first-, second-, third-order approxi-
mations.

the third-order approximation is much precise than the others, which almost coincides

with the true value.

3.3 Calibration of the Model’s Parameters

In reality, errors exist in option prices, which will lead some difficulties of the cali-

bration of model’s parameters. In this section, we will show the approximations before

can be used to make calibration of parameters even though the errors exist. To be more

specific, we focus on the calibration of the parameter C and the volatility σ.
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In fact, only the maturities t and the log-moneyness κ are available. However, we

assume κ = 0 since we only consider ATM option prices or close-to-the-money option

prices. Therefore, let Π?
i := Π?(ti) denote the observed option prices at maturities ti and

εi is the corresponding random errors. Let also Ŷ be an estimate of Y . An obviously

strategy to make an estimation of σ is fitting linear models to the data as follows:

Π?
i = d1t

1
2
i + εi, the first-order approximation,

Π?
i = d1t

1
2
i + d2t

3−Ŷ
2

i + εi, the second-order approximation,

Π?
i = d1t

1
2
i + d2t

3−Ŷ
2

i + d31ti + d32t
5
2
−Ŷ

i + εi, the third-order approximation.

Using the least square estimate, we get the estimation of d1 in these three models, which

can be represented as d̂1

(1)
, d̂1

(2)
, d̂1

(3)
, respectively. Since d1 = σ/

√
2π, the estimates for

σ are then given by

σ̂(m) =
√

2πd̂1

(m)
, m = 1, 2, 3.

Similarly, we can apply the same strategy to estimate the parameter C. Suppose the

estimations of d2 based on the second- and third-order models are represented as d̂2

(2)

and d̂2

(3)
, respectively. Since we have

d2 =
C2

1−Y
2 σ1−Y

√
πY (Y − 1)

Γ(1− Y

2
) =: Cσ1−YmY ,

the estimations of C can be written as

Ĉ(m) = d̂2

(m)
(σ̂(m))Ŷ−1m−1

Ŷ
, m = 2, 3.

Moreover, the numerical results should be generated based on reasonable maturities.

Since the estimates we got are based on short-time asymptotic for option prices, it is

reasonable to only consider relatively small maturities, which will cause the reduction

of sample size. Therefore, we should handle this tradeoff by choosing proper maturities.
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Consider the S&P 500 index options which quote date is January 2nd, 2014. Based on

the discussion above, we select the maturities which is less than one year. Then, we have

the following maturities2 :

ti ∈ {0.003, 0.022, 0.044, 0.060, 0.008, 0.140, 0.217, 0.242, 0.294, 0.467, 0.492, 0.717, 0.967}

Using the same method and same parameters setting in Section 3.2, we simulate the

ATM option prices at ti. Figure 3.2 shows the comparisons of the options prices with the

first-, second-, third-order approximations. Here, Ŷ = 1.5. The conclusion is similar to

Section 3.2 that the third-order approximation is the most precise one which is almost

overlapping with the true values.

Now we consider the sensitivity of the estimate of σ to the value of Y . Since we cannot

get the exactly value of Y most of the times, we calculate the estimations of σ̂(m) in the

range Ŷ ∈ [1.1, 1.8]. Figure 3.3 shows the results of three approximations with different

orders. Even though the second-order approximation is a little better than the first-order,

both of them are far from the exact values. However, the third-order approximation is

accurate to the range of Ŷ with estimations of σ between 0.098 and 0.105. Therefore,

based on third-order approximation, we can estimate σ well even if Ŷ is not accurate.

On the other hand, Figure 3.4 considers the sensitivity of the estimate of C to the

value of Y . The estimations based on the second-order approximation are always far from

the true values, but not sensitive to the value of Ŷ , while that based on the third-order

approximation are sensitive, unlike the estimate of σ(3). However, it is precise if Ŷ around

the true value.

The conclusions we reached before are based on thirteen available maturities. How-

ever, as we stated before, the approximations are under the assumption of short-time

2The maturities are shown in year, which can be calculated directly by the software. Here, only three
decimal places are displayed.
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Figure 3.2. Call option prices under the maturities ti based on the mixed
CGMY model using Monte Carlo method and the first-, second-, third-
order approximations.
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Figure 3.3. Estimates of σ based on the call option prices under the mixed
CGMY model and the maturities ti.
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Figure 3.4. Estimates of C based on the call option prices under the
mixed CGMY model and the maturities ti.
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maturity. A natural question is: If we ask for much closer maturities, i.e., using less

maturities, what results we will get. We then try maturities in three conditions— within

one month (the first five maturities), one quarter (the first eight maturities) and half of a

year (the first eleven maturities). After repeat the procedures before, we get the results

shown in Figure 3.5–3.7.

For the call option prices and the three order approximations, we can find that the

higher-order approximation is always better than the lower. However, when sample size

become smaller, the differences between higher- and lower- order become smaller.

For the estimates of σ, the first-order approximation is always far from the true value

since it only depends on d1, which will give us a constant estimation. The second-order

approximation become better when the number of maturities is small, and it becomes

more accurate when Y is greater than its true value. However, the higher-order approx-

imation is better than the second-order most of times. The sensitivity is reflected by

the figures that we can give a good estimation even if Ŷ is not accurate based on the

higher-order approximation.

The estimates of C is not very similar. We can see that even though the second-order

approximation always give us an underestimation, it is less sensitive to the value of Y ,

The estimates become closer to the true value when the sample size is smaller. On the

other hand, the higher-order approximation can give us an accurate estimate when Y is

around the true value, while it is much more sensitive than the second-order, especially

when sample size is small. Therefore, we may consider the second-order approximation

to estimate σ if we cannot give an accurate estimate of Y or the sample size is very small.
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Figure 3.5. Results under the mixed CGMY model and the first five
maturities using Monte Carlo method. The left panel is the call option
prices and the first-, second-, third-order approximations. The middle
and right panels are the estimates of σ and C, respectively.

Figure 3.6. Results under the mixed CGMY model and the first eight
maturities using Monte Carlo method. The left panel is the call option
prices and the first-, second-, third-order approximations. The middle
and right panels are the estimates of σ and C, respectively.

Figure 3.7. Results under the mixed CGMY model and the first eleven
maturities using Monte Carlo method. The left panel is the call option
prices and the first-, second-, third-order approximations. The middle
and right panels are the estimates of σ and C, respectively.
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Figure 3.8. Five-day close-to-the-money S&P 500 index call option prices
in January 2014.

3.4 Results Based on Real Dataset

In Section 3.3, we show some numerical results based on the call prices generated by

Monte Carlo method. In this section, we apply the strategy to the call option prices

obtained from S&P 500 index options. As we stated before, the option prices (calculated

by mid values of bid and ask) we selected should be very close to the spot price and the

maturities should not be very large. Besides, since the volume and option interest are

major criterion to judge the liquidity of the market, we will drop some data which both

volume and open interest are very low. For illustration, we choose our call option prices

from five different quote dates in January 2014. The graph of the option prices is shown

in Figure 3.8.
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After selecting the call prices, we repeat the procedures in the Section 3.3. Figure 3.9

shows the estimates of σ and C for five different days.

For the estimate of σ, the second-order approximation becomes less sensitive than

the third-order in most cases, which is different from the results we obtained from call

prices generated by Monte Carlo method. Since VIX can reflect the level of volatility,

we compare it with the mean of the volatility. The results are shown in Figure 3.10. We

can see that the results generated by the second-order approximation are consistent. The

trend of σ is same as the VIX and still being underestimated. However, the third-order

approximation give us totally different results. Since it is sensitivity to the value of Y,

especially when Y is greater than 1.5, it is hard for us to obtain a precise estimate of σ

based on the third-order approximation.

For the estimate of C, the sensitivity can be seen as consistent with Section 3.3. The

second-order approximation is much less sensitive than the third-order. Since we do not

have the exact value of C, it may not easy for us to judge whether these approximations

give us correct results. However, one assumption of our model is C > 0. In most cases,

the higher-order approximation gives us a negative estimate, while the estimation based

on second-order approximation is positive, Therefore, the second-order approximation

seems more reasonable if we consider about the real data.
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Figure 3.9. Estimates of σ and C based on the five-day option prices.
Left five panels: the estimates of σ. Right five panels: the estimates of
C.

34



Figure 3.10. Comparisons of the VIX divided by 100 to the estimates of
σ. The left and right panels are based on the second- and third-order
approximation, respectively.
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4. Conclusion

In this thesis, we use the exponential Lévy model with a mixture of CGMY process and

an independent Brownian motion. We consider the expansions for close-to-the-money

call option prices under this model. The results obtained from the call prices generated

by Monte Carlo method show that the third-order approximation is usually better than

the first- and second-order for the estimate of σ, no matter how many maturities we use.

For the estimate of C, the higher-order is more sensitive than the second-order, which

can only give us the accurate results when we know the exact value of Y . However, the

results obtained from the real call prices give us a different conclusion when we consider

the estimate based on the third-order approximation. I think several potential factors

may explain these results.

Firstly, our raw dataset contains three types of call options— SPX, SPXW and SPWQ.

Since we only consider short-time maturities, we have to mix them together to get enough

sample size. It is possible that fitting the model with three types of options lead us get

the different results.

Secondly, the method that we choose call prices is subjective to some degree. In

Monte Carlo method, to generate the call prices precisely, we use the sample size which

is large enough. Therefore, the call prices we obtained are exactly fitted the model, then

the exactness of higher-order approximation is reasonable, even under small numbers of

maturities. However, the prices in real dataset were chosen by hand. Even though we

have our rules such as the call prices should be close to spot price with large volume
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and open interest, we may have lots of choices and all of them seem imperfect but with

some reasonableness. It is hard to expect that our call prices obtained are as ideal as the

simulation results, which makes higher-order approximation not precisely.

In addition, it is probable that our model may not fit the data perfectly. Even though

it makes a generalization of the B-S model, the four parameters, C, G, M and Y , may

not cover all features of the S&P 500 index options. The similar type models such as

tempered stable model or generalized tempered stable model may improve our result

here.

In the future work, we may try to find a reasonable way to select ideal data. Also,

we treat the log-moneyness κ as zero in this thesis, we may think about the value of κ

since it is not exactly equal to zero for close-to-the-money option prices. Besides, we may

consider other generalizations of B-S model and then make a comparison of them, to find

whether we can improve our model.
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