
Washington University in St. Louis
Washington University Open Scholarship

Arts & Sciences Electronic Theses and Dissertations Arts & Sciences

Spring 5-18-2018

Variable selection via Lasso with high-dimensional
proteomic data
Hongxuan Zhai
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds

Part of the Statistical Models Commons

This Thesis is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for
inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more
information, please contact digital@wumail.wustl.edu.

Recommended Citation
Zhai, Hongxuan, "Variable selection via Lasso with high-dimensional proteomic data" (2018). Arts & Sciences Electronic Theses and
Dissertations. 1295.
https://openscholarship.wustl.edu/art_sci_etds/1295

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds/1295?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1295&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY IN ST. LOUIS

Department of Mathematics

Variable Selection via Lasso with High-dimensional Proteomic Data

by

Hongxuan Zhai

A thesis presented to

The Graduate School

of Washington University in

partial fulfillment of the

requirements for the degree

of Master of Art

May 2018

St. Louis, Missouri



Table of Contents

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Statistical Models and Regulation Methods . . . . . . . . . . . . . . . . 5
2.1 The Multinomial Logistic Model . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Multinomial Logistic Model with Lasso and Elastic-Net Regulation . 6
2.3 The Uniqueness of Lasso Solutions and Optimization via Coordinate De-

scent Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Sparse Group Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Random Forest Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Support Vector Machine Classifier . . . . . . . . . . . . . . . . . . . . . . 14

3 Data Analysis and Model Selection . . . . . . . . . . . . . . . . . . . . . 16
3.1 Check for Model Assumption . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Data Analysis Using Regularized Multinomial Logistic Regression with Lasso 17
3.3 Data Analysis using Sparse Group Lasso . . . . . . . . . . . . . . . . . . 21
3.4 Bootstrapping for the tuning parameter . . . . . . . . . . . . . . . . . . . 22
3.5 Prediction accuracy and model comparison . . . . . . . . . . . . . . . . . 28

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A Some R code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ii



List of Figures

Figure Page

1.1 Overlay density plot for 10 samples . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Cross-validation plots for λopt . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Shrinkage effect of Lasso. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Coefficient Plot via Lasso. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Truncated version of grid search plot . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Shrinkage effect of elastic net. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Coefficient plot via elastic net. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.8 Boostrapping for lambda in Lasso. . . . . . . . . . . . . . . . . . . . . . . . 27

3.9 Boostrapping for lambda and alpha in elasticnet. . . . . . . . . . . . . . . . 27

iii



List of Tables

Table Page

1.1 Some features of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Description of fitted models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Confidence interval obtained by bootstrap. . . . . . . . . . . . . . . . . . . . 26

3.3 False classification rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



Acknowledgments

I would like first to thank to my families. They supported me to finish my degree and

they encouraged me while I studying abroad. I also want to thank my adviser, professor

Kuffner, and he provided me with detailed guidance and resources. Thanks to all the

professors who have taught me. From their teaching, I obtained knowledge and knew

how to solve problems in scientific ways.

Hongxuan Zhai

Washington University in St. Louis

May 2018

v



ABSTRACT

Variable Selection via Lasso with High-dimensional Proteomic Data

by

Hongxuan Zhai

A.M. in Statistics,

Washington University in St. Louis, 2018.

Professor Todd Kuffner, Chair

Multiclass classification with high-dimensional data is an applied topic both in statis-

tics and machine learning. The classification procedure could be done in various ways.

In this thesis, we review the theory of the Lasso procedure which provides a parameter

estimator while simultaneously achieving dimension reduction due to a property of the

`1 norm. Lasso with elastic net penalty and sparse group lasso are also reviewed. Our

data is high-dimensional proteomic data (iTRAQ ratios) of breast cancer patients with

four subtypes of breast cancer. We use the multinomial logistic regression to train our

classifier and use the false classification rates obtained from cross validation to compare

models.
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1. Introduction

The multinomial logistic model is frequently used in analysis of nominal multi-category

response variables. The model can be regarded as a generalized linear model (GLM)

with a logit link function. To estimate parameters in the multinomial logistic model, the

maximum likelihood estimator (MLE) is typically used. However, MLE has the limitation

that it will not provide a robust result when there are more parameters to be estimated

than observations, or when some of the predictors are highly correlated. In both cases,

MLEs’ tend to deteriorate rapidly. This has a negative effect on model interpretability.

As a result, a variable selection procedure or dimension reduction procedure is needed to

obtain a more robust estimation result when the number of predictors,p, is much greater

than that of observations,n.

The Lasso, proposed by [1], is an acronym for Least Absolute Shrinkage and Selec-

tion Operator, and it has become one of most popular methods for dealing with high-

dimensional estimation problems. The data for our application study contains isobaric

tags for relative and absolute quantitation (iTRAQ) proteome profiling of 77 breast can-

cer samples and 3 duplicate breast cancer samples generated by the Clinical Proteomic

Tumor Analysis Consortium (NCI/NIH). The iTRAQ reporter ion intensity ratio is used

to determine relative abundance of proteins within each sample. Data set contains expres-

sion values for 12546 proteins for each sample, with missing values present when a given

protein could not be quantified in a given sample. Relating to the proteomic data, the

1



response variable is sub-type of breast cancer given a certain sample. The proteomic data

analyses is a "ratio-based" procedure, and the type of predictor variables are continuous

while the type of response variable is categorical.

The data set is generated by an isobaric labeling method used in quantitative pro-

teomics by Mass Spectrometry (MS) method, because proteomic analyses are performed

on tumor fragments that are different from those used in genomic analysis, a pre-specified

sample QC metrics are implemented. All the samples that do not exhibit a unimodal

normal distribution are excluded from the study. The original experiment selected sam-

ples for proteomic analyses from the subset annotated as having at least 130 mg wet

weight residual material, the target amount for proteomics processing between collabo-

rating research teams. After using this criterion, 131 sub-type samples were requisitioned

from TCGA, including 28 basal, 20 HER2-enriched, 39 luminal A, and 39 Luminal B.

126 samples were obtained, of which 105 yielded at least the pre-specified minimum of

0.7 mg of total protein after extraction of proteins with 8M urea buffner. Among the

105 samples, there are 28 of tumor samples exhibiting highly skewed protein distribution.

Finally, researchers obtain 77 tumor samples as well as 3 replicates that exhibited the

expected gaussian unimodal distribution of a log iTRAQ ratio. It was assumed that for

proteomic analyses tumor samples should be normalized samples with a log iTRAQ ratio

centered at zero. As a result, a normalization scheme was employed that attempted to

identify the unregulated proteins and centered the distribution of these log-ratios around

zero in order to nullify the effect of systematic MS variation. There exist missing values

in 77 samples, so an imputation is needed. In order to diminish the effect of outliers, we

use the sample median to impute the missing values. Table (1.1) is the table describing

2



some features of the data and Figure (1.1) is the overlay density plot for 10 of the 80

samples to visualize the centered unimodal density.
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Figure 1.1. Overlay density plot for 10 samples.

There are various well-established methods for variable selection. In the classical

linear regression setup, forward/backward strategies have been utilized [2]. However,

these methods are unstable and computationally costly [3]. For high-dimensional data,

where p� n, the ordinary least squares estimator (OLSE) is not unique and will heavily

overfit the data. Thus, regularized estimation of the regression coefficients is necessary.

When we focus on the regulation with `1 penalty, the parameters in linear regression are

estimated with Lasso. By introducing this `1 regularization method, the Lasso for linear
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Table 1.1
Some features of the data.

Variable predictor variables X response variables Y

number of observations 12546 77

variable type log-based continuous numeric ratio multi-categorical

models will be a convex optimization problem, which at the same time achieves variable

selection, because of the `1-geometry [1]. An alternative regularized regression method

is elastic net method that employs a combination of an `1 penalty and `2 penalty, which

is also a convex optimization [4]. Since both methods perform variable selection, we

want to compare the performance of both methods for our proteomic data. The penalty

parameter will greatly affect the model complexity. A large penalty parameter means

that you will have zero or few variables in the model (a very sparse solution), while

a small penalty parameter gets you closer to the least-squares solution (with as many

predictors as can be estimated from n observations). We also need to do grid searches for

the tuning parameters for the two selected methods under certain criterion. Therefore,

we search for optimal values of the tuning parameters over a grid of candidate values,

where optimality is defined in terms of mean square prediction error (MSPE). We will

use the publicly available R packages glmnet [5] and caret [6].
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2. Statistical Models and Regulation Methods

2.1 The Multinomial Logistic Model

The multinomial logistic regression model is a particular type of GLM [7] which allows

for multi-category response variables, i.e. there are more than two categories for the

response variable. Similar to the logistic model with binary response, the multinomial

logistic model utilizes the logit link function to model the logarithm of the odds ratio as

the linear combination of predictor variables X = (X1, X2, ...Xp). Suppose p is a random

variable taking values between 0 and 1; The logit link function is defined as

logit(p) = log(
p

1− p
);

Since the link function could be regarded as a transformation of the conditional mean

E(Y |X = x), it would naturally give rise to the context of regression. The linear logistic

regression model with multicategory response can be regarded as a generalization of the

binary response linear logistic regression that extends one logit to multiple logits. Suppose

Y is a multicategory response with K levels; A multinomial logistic model with predictors

X = (X1, X2, ...Xp) is defined as

log
Pr(Y = `|x)

Pr(Y = K|x)
= β0` + xTβ`, ` = 1, 2, ..., K − 1,

where βT` = (βl1, ..., βlp) are the regression coefficients.

An equivalent but more symmetric parametrization [4]

Pr(Y = `|x) =
exp(β0` + xTβ`)∑K
k=1 exp(β0k + xTβk)

5



Notice that this equivalent parametrization is not estimable since for parameters (β0`, β`),

a shifted version (β0` − a0, β` − a) will generate the same probability measure. The non-

estimable property will also make the log-likelihood insensitive to the shifting constant

(a0, a) when we do maximum likelihood estimation [8].

2.2 The Multinomial Logistic Model with Lasso and Elastic-Net Regulation

In the classical linear model context, given a collection of N samples (xi, yi)
N
i=1, the

Lasso method finds the solution (β̂0, β̂) of the optimization problem defined by

minimize
β0,β

1

2N

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

subject to
p∑
j=1

|βj| ≤ t;

Notice that the constraint could also be written as ||β||1 ≤ t, where ‖ · ‖ denotes the

`1 norm. Due to Lagrangian duality, the minimization procedure could also be in a

Lagrangian form, defined by

minimize
β0,β

1

2N

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ||β||1,

for some λ ≥ 0. There exists a one-to-one mapping between the solutions for the two con-

strained problems. In a multinomial logistic regression setup, the negative log-likelihood

with `1 penalization is given by

− 1

N

N∑
i=1

log(Pr(Y = yi|xi; (β0, βk)
K
k=1) + λ

K∑
k=1

||βk||1,

where βk is a vector with components β1k, . . . , βpk, and that the different βk correspond

to the vectors of coefficients for the K different classes for the response. Since the multi-

nomial probability measure and the corresponding log-likelihood function are invariant

6



with respect to a constant shift of K coefficients, the penalty function is not invariant

with respect to a constant shift coefficients [9]. Penalty term could resolve the choice of

cj when {βkj + cj} and {βkj} generate same probability from the likelihood function. As

a result, the optimal choice cj for each candidate set {βkj}Kk=1 could be generated by

argmin
c∈R

K∑
k=1

|βkj − c|

and it can be shown that the solution of the objective is the median of {β̂1j, ..., ˆβKj} for

each j = 1, ..., p.

Estimation of the multinomial logistic model via elastic net corresponds to a penalized

estimation problem of the form

minimize
β0,β

− 1

N
log(Pr(Y = yi|xi; (β0, βk)

K
k=1) + λ

p∑
j=1

ρj(1− α)β2
j + ρjα|βj|.

This penalty could be regarded as a compromise between `1 and `2 penalty (also known

as ridge penalty) and this penalty is particularly useful in the p� N situation [4]. The

parameter α is a real number between 0 and 1 serving as the weighting parameter of the

Lasso penalty and ρj is non-negative quantity serving as a penalty modifier. Notice that

elastic net penalty is convex, and hence we can employ convex optimization methods.

2.3 The Uniqueness of Lasso Solutions and Optimization via Coordinate

Descent Algorithm

The Lasso estimator is the solution of the optimization problem

minimize
β0,β

1

2N

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

7



subject to
p∑
j=1

|βj| ≤ t;

It is known that the solution is unique when the rank of the X matrix is equal to the

number of columns. Notice that in high-dimensional data analysis, we have data sets

where the number of variables exceeds the number of observations. As a result, the Lasso

criterion is not strictly convex and there are infinitely many solutions, β̂, that yield a

perfect fit with zero training error. This leads to instability in the estimates, even though

the fitted values of Xβ̂ are unique. For illustration, consider one simple example where

x1 and x2 are predictor variables and y is the response variable, and suppose the Lasso

solution β̂ at a certain λ is (β̂1, β̂2). If there is an additional predictor x3 = x2 in the

model, any vector satisfying β̂(α) = (β̂1, αβ̂2, (1− α)β̂2) for α ∈ [0, 1] produces the same

model fit and has the same `1 norm. Obviously, in this example, there are infinitely many

solutions.

The columns of the matrix X are said to be in general position if for {xj}pj=1, any

affine subspace L in RN of dimension k < N contains at most k + 1 elements of the set

{±x1,±x2, ...,±x3}, excluding antipodal pairs of points. An affine space is a geometric

structure that generalizes the properties of Euclidean spaces in such a way that these

are independent of the concepts of distance and measure of angles, keeping only the

properties related to parallelism and ratio of lengths for parallel line segments. In a high-

dimensional data setting, one can show that if the predictor variables are drawn from a

continuous probability distribution, then with probability one, the columns of X are in

general position form and there exists a unique Lasso solution [10].

8



For a general differentiable convex function f with convex constraint set C ∈ Rp ,

consider the constrained optimization problem defined by

minimize
β∈Rp

f(β) such that β ∈ C;

A necessary and sufficient condition for a vector β∗ ∈ C to be a global optimum is that

< 5f(β∗), β − β∗ > ≥ 0;

When the constraint set C can be described as sublevel sets of certain convex constraint

functions g : Rp → R, the convex optimization problem can be written in the form of

minimize
β∈Rp

f(β) such that gj(β) ≥ 0 for j = 1, ...,m;

The Lagrangian associated with this problem is

L(β, λ) = f(β) +
m∑
j=1

λjgj(β),

where the weights λ ≥ 0 are Lagrange multipliers. Under technical conditions on f

and gi, Lagrangian duality guarantees the existence of an optimal choice of λ∗. The

necessary and sufficient conditions for finding the global optimum β∗ related to λ∗ are

the Karush-Kuhn-Tucker (KKT) conditions.

The Lasso problem involves the `1 norm, and hence the objective function fails to be

differentiable when any of the coordinates βj is exactly equal to zero. In this situation,

the KKT conditions are not directly applicable but there is a generalized notion of the

gradient called the subgradient. Based on the property that for a differentiable convex

function the first-order tangent approximation always provides a lower bound, the notion

of a subgradient of function f at β is defined as a vector z ∈ Rp such that

f(β
′
) ≥ f(β)+ < z, β

′ − β > for all β
′ ∈ Rp;

9



The set of all subgradients of f at β is called the sub-differential, denoted by ∂f(β). For

absolute value function f(β) = |β|, we define

∂f(β) =



1, if β is greater than 0

−1, if β is less than 0

[−1, 1], if β is 0

We will use the notation that z ∈ sign(β) to express the idea that z belongs to the sub-

differential of the absolute value function at β.As a result, the first-order condition, i.e.

the requirement that the gradient is zero for an optimal solution, can be generalized to a

condition involving the sub-differential,

0 ∈ ∂f(β∗) +
m∑
j=1

λ∗j∂gj(β
∗);

Applying this to the Lasso problem, we have the constraint function g specified as g(β) =∑p
j=1 |βj| − R for some positive R. Numerical methods are needed to solve such an

optimization problem. Newton’s method as a second-order method that using knowledge

of Hessian, not just first derivative, has a quadratic rate of convergence; However Newton’s

method has lower computation efficiency. Especially in the multinomial regression setup,

newton’s method can be tedious. Coordinate descent method is an iterative algorithm

that updates parameter β by choosing a single coordinate, and then doing a univariate

minimization over the chosen coordinate using first-order method [9]. To be more specific,

suppose coordinate k is chosen at iteration t; The update for the chosen coordinate is

given by

βt+1
k = argmin

βk

f(βt1, β
t
2, β

t
3, ..., βk, β

t
k+1, ..., β

t
p),

10



and βt+1
j = βtj for j 6= k. This algorithm solves the optimization problem by cycling

through the coordinates in a particular fixed order. One sufficient condition for conver-

gence to the global minimum is that function f is continuously differentiable and strictly

convex with respect to each coordinate. It is obvious that when using the `1 norm penalty,

this restrictive condition is not satisfied. In such cases, a separability condition will en-

sure that coordinate-wise minimization algorithms do not get stuck at sub-optimal values.

The separability condition for a cost function f is defined as an additive decomposition

f(β1, ..., βp) = g(β1, ..., βp) +

p∑
j=1

hj(βj),

where function g : Rp → R is differentiable and convex, while any of the univariate

functions hj : R → R are convex. [11] shows that for any convex cost function f with

separable structure, the coordinate descent algorithm is guaranteed to converge to the

global minimizer.

The coordinate descent method is implemented in regularized multinomial regression

to get the estimate of coefficients. Followed by [8], the optimization procedure utilizes

both partial Newton steps by forming a partial quadratic approximation and the coor-

dinate descent method. As a generalization for regularized logistic regression of binary

response, we model the multinomial case by

Pr(Y = `|x) =
exp(β0` + xTβ`)∑K
k=1 exp(β0k + xTβk)

suggested by [4]. Here the corresponding likelihood function becomes regularized max-

imum multinomial likelihood. We suppose the categorical response variables to be G,

which has K > 2 levels, and gi ∈ {1, 2, ..., K} be the ith response. By introducing Y to

11



be the indicator response matrix with yi` = I(gi = `), the explicit form of unregularized

log-likelihood is given by

`({β0`, β`}K1 ) =
1

N

N∑
i=1

[
K∑
`=1

yi`(β0` + xi
Tβ` − log(

K∑
`=1

eβ0`+xi
T β`)].

First, we utilize partial Newton steps by performing a partial quadratic approximation

to the unregularized log-likelihood and get

`Q`(β0`, β`) = − 1

2N

N∑
i=1

wi`(zi` − β0` − xiTβ`)
2

+ C({β0k, βk}
K
1 )

where

zi` = β̃0` + xi
T β̃` +

yi` − p̃`(xi)
p̃`(xi)(1− p̃`(xi))

wi` = p̃`(xi)(1− p̃`(xi))

Second, we utilize the current parameter estimates(β̃0, β̃) and coordinate descent algo-

rithm to solve the problem with penalization, which allows only one element in (β0`, β`)

to vary at a time. The problem is described as

minimize
β0`,β`

{−`Q`(β0`, β`) + λPα(β`)}.

2.4 Sparse Group Lasso

The sparse group lasso method is a combination between the lasso [1] and the group

lasso [12]. The sparse group lasso also utilizes a gradient descent method to find the

solution to the optimization problem. In the multiclass classification setting, the sparse

group lasso method based on a multinomial regression model takes the structured feature

of parameters into consideration and generally improves the performance of the classifier

in the high-dimensional setting [13]. Compared to the Lasso or group Lasso, the sparse

group Lasso also substantially reduces the number of selected variables.
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Consider we have p features and we decompose the search space in to m blocks

Rp = Rp1 × ...×Rpm

where pi is the dimension of the group i, with p = p1 + p2 + ..+ pm. For coefficient vector

β we have β = (β(1), ..., β(m)) where β(1) ∈ Rp1 , ..., β(m) ∈ Rpm . The subvector β(J) is the

Jth block of β for J = 1, ...,m, and we denote βJi as the ith coordinate of the Jth block

of coefficients.

The sparse group lasso penalty is defined as

Φ(β) = (1− α)
m∑
J=1

γJ ||β(J)||2 + α

p∑
i=1

ξi|βi|,

where α ∈ [0, 1], γ ∈ [0,∞)m are the group weights, and parameter weights ξ =

(ξ(1), ..., ξ(m)) ∈ [0,∞)p for ξ(1) ∈ [0,∞)p1 , ..., ξ(m) ∈ [0,∞)pm . As with the elastic net

method, the tuning parameter α could lead to two different methods by taking α = 1

(lasso penalty) or α = 0 (group lasso penalty).

The multinomial sparse group lasso classifier problem with K classes, N samples and

p features has the N × p design matrix X = (x1, ..., xN)T and yi ∈ {1, ..., K} is the

categorical response. A symmetric parametrization is used in sparse group lasso with

loss function h(l, η) =
exp(η1)∑K
k=1 exp(ηk)

; Together with this penalty function, the sparse

group lasso problem is expressed as a penalized likelihood criterion,

−
N∑
i=1

log(h(yi, β
(0) + βxi)) + λ((1− α)

p∑
J=1

γJ ||β(J)||2 + α

Kp∑
i=1

ξi|βi|);

For computational aspect, the R package msgl citepmsgl uses a decreasing sequence of λ

and three nested main loops to solve the optimization problem.
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2.5 Random Forest Classifier

Decision trees are a non-parametric supervised learning algorithm used for regression

and classification. The goal is to create a model that predicts the value of a target variable

by learning simple decision rules inferred from the data features. Given an input which

is usually represented by a feature vector, decision trees make prediction according to

function in hypothesis space. Decision trees’ performance can be evaluated based on mean

square error and mean square prediction error. Given a data, one could use bootstrap

scheme to establish multiple decision trees, which is called a random forest. The random

forest classifier is defined by {h(x,Θk), k = 1, ...} where Θk are independent identically

distributed random vectors and each tree casts a unit vote for the most "popular" class

at each input x [14]. Random forests are composite methods that consist of decision

trees generated by bootstrapping training data. The variables at each node are random

subsets of the full set of predictor variables, and also each node and the number of nodes

in the decision tree are generated randomly. All the decision trees can be grown to the

desired size. A large number of trees are generated based on B bootstrap samples from n

samples and vote for the most popular class, and such procedure is called random forest.

2.6 Support Vector Machine Classifier

Support vector machines (SVMs) are supervised classification methods which utilize

separating hyperplanes. Given a training dataset with pre-specified labels, SVMs give

classification outputs based on an optimal hyperplane computed by categorizing new data

points. Classical SVMs achieve separation between two classes by making use of a hyper-

plane wTx + b = 0 with maximum value of ρ = 2/||w||. Finding the optimal separating
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hyperplane is equivalent to solving the following optimization problem in Lagrangian

form:

L(w, b, α) =
1

2
||w||2 −

n∑
i=1

αi[yi(w
Txi + b)− 1];

Based on the optimum w∗, b∗, α∗, we can obtain the optimal hyperplane, which is defined

by w∗Tx + b∗ = 0. With each input vector x, outputs are calculated by the function

sign(w∗Tx + b∗); Multiclass SVMs are a multiclass generalization of SVMs for binary

classification. Multiclass SVM builds and combines several binary class SVMs classifiers,

and hence is more computational expensive than binary class SVMs. This method is

called the one-against-one method. The procedure builds k(k−1)/2 classifiers, with each

classifier trained on data obtained from any two classes. The classification problem is

defined by minimizing over w, b, ξ

1

2
(wij)

T
wij + C

∑
t

ξijt ,

subject to

(wij)
T
φ(xt) + bij ≥ 1− ξijt , if yt = i

(wij)
T
φ(xt) + bij ≤ −1 + ξijt , if yt = j

ξijt ≥ 0,

where C
∑

t ξ
ij
t is the penalty term, and training data is from ith and jth classes. The

function φ maps training data into a higher-dimensional space.
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3. Data Analysis and Model Selection

3.1 Check for Model Assumption

One main feature of Lasso regression is that Lasso regression will do variable selection

and model fitting at the same time; However, Lasso regression is also notoriously known as

its instability. As a result, we need to further investigate the credibility of our selection

algorithm and how stable are our findings so that we could have a more efficient and

reasonable statistical procedure. First, we describe the variable selection procedure for

Lasso to be

Ŝ(λ) = {j; β̂j(λ) 6= 0}

for S0 = {j; β0
j 6= 0},

where Ŝ(λ) could be regarded as the selected non-zero coefficient set and S0 could be

regarded as the true non-zero coefficient set. If a variable selection procedure performs

well, we expect that there is high probability that the two sets are essentially equal. In

order to get a stable solution in Lasso regression, some conditions and problems are worth

considering.

• Neighborhood stability condition is restrictive

• Choice of λ will affect the selection of variables

• Small non-zero regression coefficients are hard to detect
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Among these conditions and problems, the neighborhood stability condition is restric-

tive, and it is also a sufficient and necessary condition for consistent model selection with

Lasso. For a matrix X, the neighborhood stability condition is that ,in terms of sub-

matrices, there is no strong linear dependence. Since in Lasso regression, the regression

coefficients are function of the chosen λ, Empirically, λ is chosen to be λopt defined as

λopt = argmin
λ

E(Y −
p∑
j=1

β̂j(λ)X(j))2;

It can be shown that for prediction optimal λopt

Ŝ(λopt) ⊇ S0,

which means that the true active set is contained in the estimated active set including

the selected variables. This is the screening feature of Lasso regression. Considering our

data, the design matrix X has some correlated columns but not strongly correlated since

the number of correlated columns is much smaller than the total number of columns. The

motivating data satisfy the neighborhood stability condition.

3.2 Data Analysis Using Regularized Multinomial Logistic Regression with

Lasso

We label the four breast cancer sub-types (Luminal A, Luminal B, Basal-like, and

HER2-enriched) with categorical variables 1 to 4 and treat them as the response variable

with respect to each sample. We first choose the tuning parameter λ in the Lasso penalty

using cross-validation procedure and choose λopt to be the one that minimize the deviance

with respect to multinomial logistic regression. The cross-validation plot is generated

using R package glmnet. Figure (3.1) illustrated the optimal choice considering the
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prediction oracle. We could also see the obvious shrinkage effect of Lasso regression
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Figure 3.1. Cross-validation plots for λopt.

with increment of λ in figure (3.2). Larger value of λ will eliminate more variables in

the model. Utilizing the λopt via cross-validation to fit the multinomial logistic model by

coordinate descent algorithm, we will do both variable selection and model fitting in one

statistical procedure. Notice that glmnet package uses the "redundant" parameterization

of multinomial logistic regression. As a result, we will get 4 groups of selected variables

and their corresponding coefficients. It is obvious that under λopt, the dimension of the

regression problem is greatly reduced. From each category, Lasso regression select 18,

21, 13, 11 variables respectively. As suggested by [8], the intercept coefficients are always

not penalized. So that in each model for a certain category, there is always an intercept

term. Figure (3.3) displays the coefficient plot for Lasso.

It is worth mentioning that Lasso method is insensitive to the highly correlated data

for doing the variable selection, however, the `2 norm penalty can distinguish the selected
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Figure 3.2. Shrinkage effect of Lasso and coefficient path.

variables from correlated variables, which leads us to do a multinomial regression pro-

cedure using a different penalty function-elastic net method. In order to get the best

tuning parameters in elasticnet model, we need to do a grid search over both the elastic

net mixing parameter α and the penalized parameter λ. Since the elastic net mixing pa-

rameter α ∈ [0, 1], we only need to have an reasonable interval from which we can have

an efficient search over penalized parameter λ. A theorem related to the variable selection

with Lasso suggests that under some conditions, some choices of λ will lead to a good

variable selection procedure. These conditions are described as:

• the design matrix satisfy the neighborhood stability condition [15]

• data has high-dimensionality
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Figure 3.3. Coefficient Plot via Lasso.

• the estimated active set has sparsity

Then if

λ = λn ∼ n−
1
2
− δ

2 (0 < δ <
1

2
)

P[Ŝ(λ) = S0]1 even for relatively small n;

This gives us a tentative guide for the search interval. Figure (3.4) shows the truncated

graph of the grid search with respect to penalized parameter λ under different elasticnet

mixing parameter α. After the grid search using the repeated cross-validation criterion,

we get the tuning parameters to be α = 0.24242 and λ = 0.08636 respectively. The

regression with elasticnet selects 128, 140, 106, 93 variables (include the unpenalized

intercept term) respectively for each category. Figure (3.5) illustrate the relative shrinkage
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effect of elasticnet, from which we conclude that elasticnet method tend to select more

variables into the model. Figure (3.6) displays the coefficient plot for elasticnet.
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Figure 3.4. Truncated version of grid search plot.

3.3 Data Analysis using Sparse Group Lasso

R package msgl allows users to fit a multinomial logistic regression with sparse group

lasso penalty with a sequence of tuning parameters λ. With this setting, users need to

prespecify a minimum value of sequence of λ. In this thesis, we set the minimum of

sequence of λ to be 0.05, hence msgl fit the model with whole data with a λ sequence

ranging from 0.22 to 0.05. The fitted models description is shown in the table. Through-

out the table, one can clearly see the sparsity of coefficients of sparse group lasso method

based on the number of selected features and the number of estimated parameters. To get
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Figure 3.5. Shrinkage effect of elastic net and coefficient path.

the best tuning parameter λ, like the previous method, we do a 10-fold cross validation

to select the best tuning parameter. Also for the mean square prediction error of this

method, 10-fold cross validation is used and an average is taken among the mean square

prediction error.

3.4 Bootstrapping for the tuning parameter

The bootstrap method can provide us with some statistical inference about the es-

timated parameters when there is little prior information about the distribution of the

parameters. The nonparametric resampling method is based on resampling the observed

data with replacement. The vector resampling is one method of nonparametric bootstrap

that generates the new data as a sample from a certain bivariate distribution. Consid-

ering acquiring the distribution of tuning parameters, we have the bootstrap procedure

designed as the follow,
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Table 3.1
Description of fitted models.

Index lambda features Parameters

1 1.00 1 4

20 0.75 6 17

40 0.55 22 55

60 0.41 31 75

80 0.30 50 117

100 0.22 57 135
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Figure 3.6. Coefficient plot via elastic net.

• Sampling with replacement from the original data set of (X,Y ), and generate boot-

strapped pairs and combine them as the bootstrapped sample

• Based on the bootstrapped sample, get the best estimate for the tuning parameters

• Repeat step one and step two

Based on this statistical procedure, we obtain the sample distribution for the tuning

parameters under both "Lasso" model and "elastic net" model that are displayed as fig-

ure(3.7) and figure(3.8). Through the Q-Q plots of the estimates for tuning parameters,
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we can conclude that in "Lasso" model the sample distributions for both λmin and λ1se

are asymptotic normal. However, the sample distributions for tuning parameters α and

λ in elastic net model are highly skewed and do not display normal distribution charac-

teristics. As a results the bootstrap confidence interval for those tuning parameters are

constructed under different assumptions. For the tuning parameters of "Lasso" model, we

construct such interval based on the asymptotic normal-distributed feature of the sample

distribution while for the tuning parameters in "elastic net" model we use the percentile

method. The confidence intervals are described as table (3.2)

It is worth mentioning that based on the bootstrap method, λopt obtained by cross

validation does not lie in the confidence interval of λopt obtained by bootstrap resampling

but it does lies in the confidence interval of λ−1se. And for "elastic net" model, bootstrap

method does not perform very well since α obtained by grid search training does not lie in
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Table 3.2
Confidence interval obtained by bootstrap.

Lasso:λopt Lasso:λ1se Elsticnet:λ Elsticnet:α

(0.0001362765,0.0280269155) (0.02507274,0.09970878) (0.001, 7.515212) (0,0.7368421)
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the confidence interval obtained by bootstrap method. It may be conclude that the basic

bootstrap method under the brute-force searching algorithm does not yield relatively

satisfying results in the context of statistics for high-dimensional data.
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Figure 3.8. Boostrapping for lambda in Lasso.

Boostrapping for lambda in elasticnet
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Boostrapping for alpha in elasticnet
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Figure 3.9. Boostrapping for lambda and alpha in elasticnet.
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3.5 Prediction accuracy and model comparison

Since both regressions with Lasso or elastic net are optimization problems, we have

relative fewer criterion to test that whether the fitted model is good. One criterion that

we can use is the false classification rate of the fitted model. Table (3.3) shows the false

classification rate for 5 methods of classification in high dimensional data setup. In terms

of prediction accuracy, we use 10 fold cross validation to get the false classification rate.

Under our motivated data, the multinomial logistic regression model with sparse group

lasso has the best prediction accuracy, and multinomial logistic regression models with

lasso and elastic net are less powerful in prediction compared with the previous model.

Based on these corresponding results, multinomial logistic regression model with Lasso

provide us with a better fit and a more parsimonious model since Lasso method selects

less variables into the model compared to elastic net method. Due to the fundamental

difference between `1 geometry and `2 geometry, under certain choice of λ, the Lasso

method could guarantee that the coefficients of some groups of variables are exactly zero.

But there are also some issues regarding the criterion and procedure for model selec-

tion and model prediction. First, the false classification rate could be sensitive to the

sample size. In our motivated data, since there are 77 different samples that is relatively

small, the false classification rate might not be representative enough. Second, since in

general the problem of Lasso could be regarded as optimization problem that yield little

statistical test like confidence interval and p-value, we have relatively less information to

combine Lasso with classic statistical test. As a result, we have less information about

the uncertainty of our selected model and hypothesis testing, and the most direct message

we can utilize is the prediction power of our model. Third, since the prediction error is
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Table 3.3
False classification rate.

Lasso:λopt Elsticnet:λopt Sparse group lasso random forest SVMs

25.3% 27.5% 24.5% 29.2% 30.2%

almost zero with Lasso method, we can not rule out the possibility of overfitting phe-

nomenon. Also, in the aspect of optimization algorithm, there exists no test regarding

the convergence.

glmnet pointed out that the code provided in glmnet package does not implement any

checks for divergence, since this check would slow down the computing for the solution,

where the fast speed of computation with coordinate descent is the main advantage

against other optimization algorithm. The coordinate descent algorithm have a closed

form of expression for the starting solutions and subsequent solutions are warm-started

from the previous close-by solutions that generally make the quadratic approximations

very accurate. There is no documented example of divergence problem so far.
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4. Conclusion

In this thesis, we review basic theory of lasso (least absolute shrinkage and selection oper-

ator) regression method and its generalization method that is elastic net. We utilize such

methods to analyze our motivated data that is really a high-dimensional data with the

number of predictors is much greater than the number of samples. Both methods per-

form an obvious dimension-reduction effect and overcome some drawbacks that ordinary

least square method and maximum likelihood estimator intrinsically have. In theory, the

property of `1 geometry guarantee that the Lasso method could do the variable selec-

tion and model fitting at the same time, and the elastic net method as an compromise

between Lasso and ridge regression method could also serve as a variable selection pro-

cedure. Under Lasso and elastic net regression method, the fitted models based on our

motivated data display different complexity. The model fitted by Lasso tends to select

fewer variables compared to the model fitted by elastic net, in which Lasso provides us

with a more parsimonious model. Considering the model selection criterion based on pre-

diction accuracy, Lasso outperforms elastic net method in the analysis of our motivated

data. The best model with smallest false classification rate is multiclass logistic regres-

sion with sparse group lasso penalty that allows sparsity within each selected feature.

Our motivated data has very few samples but huge number of features, and it is highly

possible that among those features exist large amounts of noises. Since all the penalized

regression methods have relatively high false classification rate, we also utilized machine

30



learning algorithms to compare models. It turns out that machine learning methods pro-

vides us with an even worse classification power. Thus, the penalized regression methods

(Lasso, elastic net, and sparse group lasso) achieve performance and results as good as

possible. Also the basic bootstrap method for getting the confidence interval for tuning

parameter does not yield good results and in the future I want to investigate more about

the construction of confidence interval for statistical model based on high-dimensional

data and do more post inference in statistics for high-dimensional data.
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APPENDIX



A. Some R code

Lasso:

Fold=function(Z=10,w,D,seed =7777){

n=nrow(w)

d=1:n;dd=list()

e=levels(w[,D])

T=length(e);set.seed(seed)

for(i in 1:T){

d0=d[w[,D]==e[i]];j=length(d0)

ZT=rep (1:Z,ceiling(j/Z))[1:j]

id=cbind(sample(ZT,length(ZT)),d0);dd[[i]]=id}

mm=list ();for(i in 1:Z)

{u=NULL;for(j in 1:T)u=c(u,dd[[j]][dd[[j]][ ,1]==i,2])

mm[[i]]=u}

return(mm)} # generate cross validation set

w=read.csv(file="/Users/tekinosei/Downloads/data1␣(1). csv",

header=TRUE , sep=",")

w=w[,-1]

con <-as.factor(w[ ,12547])

w=w[ ,-12547]
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w=cbind(w,con) # load data

# 10-fold CV

library(glmnet)

D=12547;Z=10;n=nrow(w);mm=Fold(Z,w,D ,1202)

Z=10

E=rep(0,Z)

for(i in 1:Z){m=mm[[i]]

n1=length(m)

w1<-as.matrix(w[ , -12547])

cvlambda <-cv.glmnet(w1[-m,],w[-m,D],family="multinomial")

a=predict(cvlambda ,newx=w1[m,],s=cvlambda$lambda.min ,type="class")

E[i]=sum(w[m,D]!=a)/n1

show(i)}

mean(E)

Elastic-net:

library(glmnet)

Fold=function(Z=10,w,D,seed =7777){

n=nrow(w)

d=1:n;dd=list()

e=levels(w[,D])

T=length(e);set.seed(seed)

for(i in 1:T){
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d0=d[w[,D]==e[i]];j=length(d0)

ZT=rep (1:Z,ceiling(j/Z))[1:j]

id=cbind(sample(ZT,length(ZT)),d0);dd[[i]]=id}

mm=list ();for(i in 1:Z){u=NULL;for(j in 1:T)

u=c(u,dd[[j]][dd[[j]][ ,1]==i,2])

mm[[i]]=u}

return(mm)} # generate cross validation set

w=read.csv(file="/Users/tekinosei/Downloads/data1␣(1). csv",

header=TRUE , sep=",")

w=w[,-1]

con <-as.factor(w[ ,12547])

w=w[ ,-12547]

w=cbind(w,con) # load data

D=12547;Z=10;n=nrow(w);mm=Fold(Z,w,D ,1202)

Z=10

E=rep(0,Z)

for(i in 1:Z){m=mm[[i]]

n1=length(m)

w1<-as.matrix(w[ , -12547])

glmlambda <-glmnet(w1[-m,],w[-m,D],family="multinomial",

alpha = 0.2424242 , lambda = 0.08636364)

a=predict(glmlambda ,newx=w1[m,],s=0.08636364 , type="class")

E[i]=sum(w[m,D]!=a)/n1
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show(i)}

mean(E)

Sparse group lasso:

library(msgl)

w=read.csv(file="/Users/tekinosei/Downloads/data1␣(1). csv",

header=TRUE , sep=",")

w=w[,-1]

con <-as.factor(w[ ,12547])

w=w[ ,-12547]

w=cbind(w,con) # load data

D=12547;Z=10;n=nrow(w);mm=Fold(Z,w,D ,1202)

Z=10

E=rep(0,Z)

for(i in 1:Z){m=mm[[i]]

n1=length(m)

w1<-as.matrix(w[ , -12547])

lseq <-lambda(w1[-m,],w[-m,D],lambda.min = 0.05)

a=fit(w1[-m,],w[-m,D],lambda =lseq)

E[i]=sum(min(Err(a,w1[m,],w[m,D])))

show(i)}

mean(E)

Random forest:
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D=12547;Z=10;n=nrow(w);mm=Fold(Z,w,D ,1202)

library(randomForest)

set.seed (1202)

Z=10

E=rep(0,Z)

for(i in 1:Z){m=mm[[i]]

n1=length(m)

a=randomForest(con~.,w[-m,])

E[i]=sum(w[m,D]!=predict(a,w[m,]))/n1

show(i)}

mean(E)

Support vector machine:

library(e1071)

D=12547;Z=10;n=nrow(w);mm=Fold(Z,w,D ,1202)

Z=10

E=rep(0,Z)

for(i in 1:Z){m=mm[[i]]

n1=length(m)

a=svm(con~.,data=w[-m,],kernal="sigmoid")

E[i]=sum(w[m,D]!=predict(a,w[m,]))/n1

show(i)}

mean(E) # False classification rate
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