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Abstract 

The Role of Obesity and Dietary Fatty Acid Content in  

Regulating Humeral Bone and Cartilage Homeostasis 

by 

Lauren Votava 

Master of Science in Biomedical Engineering 

Biomedical Engineering 

Washington University in St. Louis, 2018 

Professor Farshid Guilak 

 

 

Objective: The goal of this study was to investigate the effects of different dietary fatty acids in 

the context of diet-induced obesity on bone and cartilage in the humerus. It is known that obesity 

increases the severity of injury-induced osteoarthritis in the knee, however it is not fully 

understood what pathological changes have occurred due to diet alone1. Additionally, while it is 

known that shoulder osteoarthritis has a link to obesity, the alterations in this joint are 

incompletely described.  

Methods: In order to examine diet-induced changes in both bone and cartilage, this research 

utilized mice that had been previously fed diets high in saturated fat (SF), omega-6 fatty 

polyunsaturated fatty acids (ω-6 PUFA) or omega-3 polyunsaturated fatty acids (ω-3 PUFA) for 

an earlier study1. Humeral heads were obtained for testing. Analysis for bone morphometry, bone 

mineral density, cartilage micro-scale mechanical properties using atomic force microscopy, and 

histological grading was performed.  
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Results: Differences in bone morphology and mineral density were seen between diet groups. 

The high-fat diets in general showed decreased bone quality with the ω-3 PUFA diet being 

partially protected. Micro-scale cartilage stiffness and overall modified Mankin scores showed 

no diet-dependence.  

Discussion: This study showed that specific types of fatty acids differentially alter bone 

morphology and mineral density, with no observable changes in the articular cartilage.  These 

findings suggest that in the shoulder, diet-induced obesity by itself may not be a risk factor for 

osteoarthritis, but may result in other musculoskeletal changes. 
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Chapter 1: Introduction 
 

Osteoarthritis is a degenerative joint disease that is characterized by the thinning or loss of 

articulating cartilage surfaces, as well as altered bone remodeling and joint pain during 

movement2. There are currently no disease-modifying pharmacological treatments available for 

osteoarthritis (OA), and the standard of care is to prescribe painkillers until a total joint 

replacement is required3. One of the primary risk factors for OA is obesity; however, little 

research had been performed on this topic until recently, as historically OA was considered to be 

a disease of “wear and tear” or mechanical overloading. Patient data, including the link between 

obesity and hand and shoulder OA indicates that non-weight-bearing joints can be affected as 

well. Investigating this topic further, recent research has revealed that metabolic and 

inflammatory factors, including the content of dietary fatty acids, can significantly interact with 

mechanical factors to influence the pathogenesis of OA1,4.  

Pathogenesis of OA can affect more than just the articulating surface of cartilage. Increasingly 

this disease is known to be an whole-joint disease, and alterations in bone remodeling, bone 

mineral content, and synovitis, are known to occur5. In some studies, these changes have been 

shown to precede cartilage degradation markers of OA5, although different types of OA may be 

initiated by differing mechanisms. While the precise timing of the bone changes leading to joint 

degradation have yet to be elucidated, several animal models of OA show an increase in 

subchondral trabecular separation and a decrease in bone volume fraction and mineral content 

within the affected joint2,6. Ultimately, these factors vary during the course of OA progression, 

but their direct influence on OA remains unknown. Furthermore, the biological factors associated 
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with obesity have also been found to contribute to bone formation and remodeling. Traditionally, 

the increased mechanical loading due to excess weight was thought to have an anabolic effect on 

bone, but studies have shown a decrease in overall bone quality with obesity7. This suggests that 

the increased incidence of OA in obese patients is not simply the result of increased mechanical 

forces. 

Like bone, articular cartilage is sensitive to both mechanical and biological factors. Biological 

signals such as inflammatory cytokines can lead to upregulation of catabolic factors like matrix 

metalloproteinase (MMP) activity and decreases in anabolic cues like basic fibroblast growth 

factor (FGF)8. Both increased MMP activity and a decrease in FGF concentration point to 

amplified catabolic activity and, when accompanied by an upregulation of ADAMTS (a 

disintegrin and metalloproteinase with thrombospondin motifs), induce hallmarks of OA-like 

chondrocyte hypertrophy, osteocyte formation and cartilage matrix degeneration8–10. This 

degeneration can be seen on the microscale using atomic force microscopy to map the matrix 

stiffness in not only the bulk matrix, but also regions surrounding chondrocytes. Chondrocytes 

are surrounded by a region known as the pericellular matrix (PCM), which differs both in 

composition and mechanical properties to the bulk extracellular matrix (ECM). Previous studies 

have seen decreases in the stiffness of the PCM and the ECM with OA, as well as a decrease in 

the stiffness gradient between the softer PCM and stiffer ECM11. Decreases in the matrix 

stiffness would alter the mechanical environment of chondrocytes and are hypothesized to 

increase the forces sensed by the cell, thus leading to release of inflammatory mediators and 

more degeneration12.  

The complex interplay between biological signals and mechanical changes that occurs with OA is 

further complicated in obesity.  Obesity is the result of excess adipose tissue that is now known to 
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be metabolically active and leads to systemic inflammation4. White adipose tissue releases both 

adipokines and cytokines that are implicated in OA progression4. The combination of obesity-

induced pathophysiological loading and systemic inflammation from excess white adipose tissue 

can lead to cartilage degeneration, bone remodeling, and eventually symptomatic OA in multiple 

sites including the shoulder8,13,14. Research has shown correlations between adipokines 

upregulated in obesity and shoulder OA, but little is known about the link beyond observational 

studies15. To study the relationship between obesity and OA, animal models of obesity have been 

generated by feeding a high-fat diet1,14,16–18. Multiple studies have shown increased severity of 

surgically-induced OA for animals fed a high-fat diet, and the composition of the diet affects the 

severity of the disease1,14. High-fat diets composed of mainly saturated fatty acids (SFA) or omega-

6 poly-unsaturated fatty acids (ω-6 PUFA) show considerably worse knee OA than weight-

matched counterparts on a high-fat diet with omega-3 poly-unsaturated fatty acids (ω-3 PUFA)  or 

a normal mouse chow diet1. These studies show that diets rich in ω-3 protect the knee from injury-

induced OA while saturated fat and ω-6 PUFA seem to predispose the joint to increased damage 

after trauma.  

While previous studies have shown OA progression to be dependent on dietary fatty acids after 

trauma to the joint, it is not fully understood whether diet-induced obesity causes OA in joints 

other than the knee. The presence of pathological changes in joint structure and stiffness due to 

diet alone may help to explain the increased degradation seen in certain types of diets and the 

protective effects of others. Additionally, most studies focus on knee or hip OA in the context of 

obesity, yet it is known that adipokine receptors are upregulated in chondrocytes from 

osteoarthritic shoulders and that adipokine concentrations in the joint correlate with body mass 

index (BMI)15. Shoulders are also the next most common site of OA after knees, with a link 



17 

 

between knee pain and shoulder pain19. Clinically, however, there is not a strong association 

between obesity and OA of the shoulder20.  The goal of this investigation is to determine whether 

alterations in bone structure and cartilage integrity can be seen in the absence of trauma-induced 

OA to better understand the link between diet, obesity and predisposition to post-traumatic OA.  
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Chapter 2: Methods 

2.1 Animal Model 
All animal use procedures were approved by the local IACUC. Mice (C57BL/6) were fed diets 

high in saturated fat, omega-6 poly-unsaturated fatty acids (ω-6 PUFA), omega-3 poly-

unsaturated fatty acids (ω-3 PUFA) or normal mouse chow for 24 weeks beginning at 4 weeks of 

age1. Initial reports on knee joints and full diet information can be found in Wu et al. 20141. All 

animal specimens were stored at -20˚C following euthanasia. Prior to analysis, specimens were 

thawed at 4˚C, and humeral heads were isolated. 

2.2 Micro-computed tomographical analysis of trabecular 

and cortical bone regions 
Humeral heads were fixed in 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield 

PA) for 24 hours at room temperature. They were then dehydrated in ethanol and scanned in air 

using microCT at 9μm/pixel resolution, and an x-ray voltage of 55kV (Bruker SkyScan 1176). 

Trabecular regions began at the end of the subchondral plate and ended at the growth plate. 

These regions were thresholded and analyzed using the BoneJ extension in ImageJ21. Bone 

mineral density was calculated in both trabecular and cortical regions and was calibrated using 

hydroxyapatite phantoms obtained from Bruker. Trabecular bone volume fraction and trabecular 

thickness and separation, were calculated (n=12-15). Cortical bone regions were analyzed using 

the automated CTan software package (Bruker). Cortical bone cross-sectional area and thickness 

were calculated in two diaphyseal regions one 0.5mm from the humeral head and another at the 

end of the deltoid tuberosity (n=6-14). 
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2.3 Atomic Force Microscopy 
Mechanical testing with an atomic force microscope was performed as described previously22,23. 

In brief, freshly dissected humeral heads were embedded in optimum cutting temperature 

(O.C.T. Tissue-Tek, Sakura Finetek USA, Inc. Torrance, CA) medium and 5μm thick 

cryosections of humeral head articular cartilage were obtained. Sections were briefly thawed and 

immunologically stained for collagen IV due to its exclusive presence in the PCM (Affinity 

Purified Rabbit Polyclonal Collagen Type VI Antibody; Fitzgerald Industries, Acton, MA, Goat 

Anti-Rabbit Alexa Fluor® 488; abcam, Cambridge, MA). Briefly, sections were washed in PBS, 

blocked in 10% normal goat serum (Life Technologies, Frederick, MD), and incubated with the 

primary antibody diluted 1:200 in blocking solution for 1 hour. Sections were rinsed with PBS 

and stained with Alexa-fluor488 conjugated goat anti rabbit antibody diluted at 1:200. Sections 

were maintained in PBS until analysis to preserve hydration. The local mechanical modulus was 

calculated using an atomic force microscope (MFP-3D, Asylum Research, Santa Barbara, CA) 

cantilever with a 5µm-diameter borosilicate spherical indenter (k = 5.4N/m; Novascan 

Technologies, Ames, IA) that was calibrated daily. Regions of interest were selected 

approximately 1-2 cells away from the outer edges of the sections to avoid edge artifacts while 

remaining out of deep-zone cartilage and subchondral bone. Each region was 10μm2 and an 

indentation was performed every 0.5μm to give a total number of 400 indentations per region. 

The sample was indented at a rate of 10µm/s as previous studies have shown little or no variation 

in modulus values for indentation speeds between 5 and 25µm/s24.  The indentation was 

continued until the trigger force, 300nN, was reached.  

Cantilever deflection and z-piezo movement were obtained from the Asylum Research software 

and analyzed using a custom MATLAB script (The MathWorks, Natick, MA). For determination 
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of the elastic modulus, a modified Hertz model was utilized as it has been previously applied to 

atomic force microscope (AFM) analysis of cartilaginous tissue22,24–27. Contact point 

extrapolation was used to determine the point at which the cantilever contacted the surface as 

previously described28. A threshold was applied to the fluorescent images to be used as an 

overlay for the stiffness maps to assign modulus values to either ECM or PCM. Analysis points 

within the cell body were excluded from further analysis. Data points were excluded if they 

exceeded 2.5 times the surrounding values and were replaced with the mean of the average value 

of the adjacent points. To plot the radially changing modulus, the cell region was thresholded in 

MATLAB and average moduli in increasing 0.5µm thick rings out from the edge of the cell were 

calculated. Due to the close proximity of other chondrocytes in murine cartilage, the data was 

truncated at its maximum value to avoid including the edges of PCM from the neighboring 

chondrocytes.   

2.4 Histology  
Humeral heads were fixed in 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield 

PA), decalcified using Calex II (Fisher) and embedded in paraffin. The samples were sectioned 

at 8μm and stained using safranin-O, fast green and hematoxylin. The cartilage phenotype was 

graded using established procedures for OA grading including a modified Mankin scoring 

system. This consisted of the following categories: cartilage surface structure (0-11), tidemark 

duplication (0-3), Safranin-O staining (0-8), chondrocyte clones in uncalcified cartilage (0-2), 

hypertrophic chondrocytes in calcified cartilage (0-2), and subchondral bone thickness (0-2). The 

total score possible was 28.  
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2.5 Statistical Analysis 
Significance between diet groups for bone and AFM outcomes were determined by one-way 

ANOVA and Tukey post-hoc tests. For discrete histological grading scores, significance was 

determined using a Kruskal-Wallis test. Data is shown as mean ± standard deviation. Outliers 

were determined using a ROUT test (Q=1%). All statistics were performed in GraphPad Prism 

7.03.  
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Chapter 3: Results 

3.1 Epiphyseal bone microstructure 
Micro-computed tomography (microCT) analysis of the humeral epiphyseal trabecular region 

indicated in Figure 3.1A showed no changes in the bone mineral density of the trabeculae 

(Figure 3.1B) or the trabecular thickness (Figure 3.1D). Bone volume fraction (Figure 3.1C) and 

trabecular separation (Figure 3.1E) were significantly different between diet groups. Bone 

volume fraction was significantly decreased in both the ω-6 PUFA and saturated fat diet groups 

whereas trabecular separation increased for the saturated fat diet group alone compared to 

control diet group.   

  

Figure 3.1: Trabecular region micro-computed tomography results. A) Visual of the trabecular region analyzed. The region 
began at the end of the subchondral plate and ended at the growth plate. B) Trabecular bone mineral density. No significant 
differences were seen due to diet. C) Bone volume fraction (bone volume/total volume). Decreases were seen in the ω-6 
PUFA and saturated fat diet groups but the ω-3 PUFA diet group was not different from control. D) Trabecular thickness. 
Trabecular thickness was not dependent on diet. E) Trabecular separation. The saturated fat diet group showed an increase in 
trabecular separation as compared to the control diet. n=12-15 per diet group. Different letters are significantly different 
from each other. Statistical significance was determined using two-way ANOVA, p<0.05. All data is presented as mean ± 
standard error of the mean. 
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3.2 Cortical bone microstructure 
In the cortical bone, two regions were analyzed and are shown as the upper cortical region and 

lower cortical region in Figure 3.2A. More pronounced changes in the bone mineral density can 

be seen in the lower cortical region, but significant differences due to diet are seen in both 

(Figure 3.2B and 3.2C). Interestingly, the saturated fat diet shows a lower bone mineral density 

in the upper region, but not in the lower region. Figure 3.2D and 3.2E show the average total 

cross-sectional area for each diet group. In the lower region, all high-fat diets result in a decrease 

in the total cross-sectional area, however in the upper region, only the ω-3 PUFA diet group had 

a decrease in area. The upper region cortical thickness in the ω-3 PUFA group was also 

decreased from all other diets, but the lower region thickness showed no diet-dependence.  
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Figure 3.2: Cortical bone micro-computed tomography results. A) Visual of the two diaphyseal regions analyzed. The upper 
region begins 0.5mm below the end of the humeral head and is 0.5mm thick. The lower region begins after the deltoid 
tuberosity and is 0.4mm thick. B) Upper cortical region bone mineral density. The ω-6 PUFA and saturated fat diet groups 
were significantly different from the control diet, and the saturated fat diet was significantly different from the ω-3 PUFA 
diet as well. C) Lower cortical region bone mineral density. Contrary to what was seen in the upper region, the ω-6 PUFA 
diet group showed an increase in mineral density in this region as compared to the other diet groups. D) The upper cortical 
region cross-sectional area. A significant decrease in the cross-sectional area is seen in the ω-3 PUFA diet group. E) Lower 
cortical region cross-sectional area. Decreases in the cross-sectional area are seen for all high-fat diets as compared to 
control. F) Upper cortical region thickness. The ω-3 PUFA diet group showed a decrease in the cortical thickness as 
compared to all other diets. G) Lower cortical region thickness. No significant differences were seen between diet groups. 
All statistical significance was determined using a two-way ANOVA. p<0.05, different letters are significantly different from 
each other. All data is presented as mean ± standard error of the mean. 
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3.3 Atomic Force Microscopy 
Immunofluorescence-guided atomic force microscopy mechanical testing showed no changes in 

the modulus values either in the bulk ECM (Figure 3.3A) or the PCM surrounding the cell 

(Figure 3.3B). The progression of the modulus from softer PCM to stiffer ECM was unchanged 

due to diet (Figure 3.3C). An example stiffness map is shown in Figure 3.3D. This map shows 

the softer PCM surrounding the cell and the gradual progression out to stiffer ECM.  

 

Figure 3.3: Atomic force microscopy mechanical mapping results. A) Average ECM Young’s modulus. No significant 
differences were seen due to diet. B) Average PCM Young’s modulus. No significant differences were seen due to diet. C) 
Young’s modulus progression out from the cell in concentric rings of 0.5μm. High variability between mice was seen and no 
significant difference in slope due to diet was observed. D) An example stiffness map. Each pixel represents one force plot 
for a total of 400 indentations for each 10μm2 area. Statistical significance was tested using a two-way ANOVA. All data is 
shown as mean ± standard error of the mean. 
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2.3 Histology 
Example histology images are shown in Figure 3.4. A full humeral head is shown in Figure 3.4A 

and enlarged images of the cartilage surface are shown in Figure 3.4B. Full modified Mankin 

score results are shown in Figure 3.5. 

 

While an overall Mankin score showed no differences with diet (Figure 3.5A), two sub-scores 

that form part of the Mankin scoring system varied with diet. The number of hypertrophic 

chondrocytes in calcified cartilage (Figure 3.5B) was increased in the ω-6 PUFA and saturated 

fat groups and the number of chondrocyte clones in uncalcified cartilage (Figure 3.5C) was 

decreased in the ω-6 PUFA diet. Corroborating the absent cartilage phenotype, the thickness of 

the uncalcified cartilage (Figure 3.5D) was independent of diet, while the thickness of the 

calcified cartilage shows statistically insignificant trends (Figure 3.5E). Possibly due to the same 

Figure 3.4: Representative histology images. A) Full humeral head from a mouse on the control diet. B) Zoomed-in images 
of representative cartilage surfaces for each diet group.  
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mechanisms that caused the decrease in cortical thickness in Figure 3.2F, the thickness of the 

subchondral plate was significantly decreased in the ω-3 PUFA diet (Figure 3.5F).  

 

 

 

Figure 3.5: Histological scoring and thickness results. A) Overall Mankin score. No differences were seen in the total Mankin 
score due to diet. B) Hypertrophy subscore. The hypertrophy subscore of the total Mankin score showed a significant 
increase in the number of hypertrophic chondrocytes in the calcified cartilage in the ω-6 PUFA and saturated fat diet 
groups. C) Clones subscore. The clones subscore of the total Mankin score showed a significant decrease in the number of 
chondrocyte clones in the uncalcified cartilage in the ω-6 PUFA diet group as compared to the saturated fat diet. D) 
Average thickness of uncalcified cartilage. No significant difference was seen due to diet. E) Average thickness of calcified 
cartilage. No significance was seen due to diet but trends are beginning to appear. F) Average thickness of subchondral 
plate. A significant reduction in the thickness of the subchondral plate in the ω-3 PUFA diet group was seen. Outliers were 
eliminated using a ROUT test (Q=1%). Statistical significance for the Mankin scores and subscores was determined using a 
Kruskal-Wallis test, p<0.05. Statistical significance for average thicknesses was determined using a two-way ANOVA, 
p<0.05. All data is shown as mean ± standard error of the mean. 
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Chapter 4: Discussion 
This study showed that a high-fat diet in the absence of joint injury was sufficient to cause 

detrimental changes in bone remodeling in the humerus both in the trabecular region as well as 

the cortical region. The changes seen involved alterations both in bone mineral density as well as 

structural changes that have been linked to an increase in fracture risk like cortical area. Unlike 

bone, the properties of the cartilage were mostly unaffected by a high-fat diet, even on the 

microscale. Matrix stiffness and the gradient between softer PCM and stiffer ECM were 

unchanged. Both stiffness and gradient values have been shown to decrease with OA, and the 

lack of a statistically significant difference in stiffness measurements on this length scale indicate 

the relative mechanical integrity of the cartilage. Corroborating the AFM findings, no significant 

differences in histological scoring for traditional signs of cartilage degeneration were found. Two 

subscores from the modified Mankin scoring system showed significant differences between diet 

groups: the number of hypertrophic chondrocytes in the calcified cartilage and the number of 

chondrocyte clones in the uncalcified region, but the cartilage overall showed few signs of 

alterations. Another histological measurement, the average thickness of the subchondral plate, 

was significantly reduced in the ω-3 PUFA diet group compared to the ω-6 PUFA diet and 

saturated fat diet. 

Similar to the controversy that has surrounded the impact of obesity on OA, the effect of obesity 

on bone quality is currently under investigation. An increase in body weight is expected to lead 

to an increase in bone strength to support the extra weight during daily activities29. However 

obesity has been linked to a site-specific increase in fracture risk, including an increased risk in 

the proximal humerus30. This risk has been partially attributed to a decrease in mineral content, 

but the relationship between obesity and bone mineral density is incompletely understood. Some 
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clinical studies indicate a positive relationship between body mass index (BMI) and bone 

mineral density (BMD), but others show the opposite or no change29. These differences are due 

in part to the differences in age, sex, genetics, and selection of bone region to analyze.  

Differences are also seen in animal models of obesity with some studies showing an increase in 

bone formation and others a decrease31,32. Our results correlate with a study by Cao et al. using 

the same mouse strain and a diet slightly lower in fat (45% as compared with 60%) which saw a 

decrease in cancellous bone mass but not cortical bone mass in the tibia33. This previous study 

showed a decrease in trabecular bone volume fraction as well as trabecular separation as was 

seen in our data33. However Cao et al. show no significant effects of high-fat feeding on tibial 

cortical thickness or total area33. Differences in the diet composition, age of the mice, length of 

the study and tibia versus humerus could all account for the variation in outcomes. It has been 

hypothesized that obesity initially leads to overall bone formation due to the increase in body 

weight, but eventually the systemic inflammation results in a decrease in bone formation34. This 

process has been hypothesized to occur at different rates in different bones, stressing the need for 

further investigation into the response of humeral bone to obesity35.  

While obesity has clearly been shown to affect bone, the type of fat present in the diet has also 

been shown to alter the response of bone to a high-fat diet. ω-3 PUFA have been associated with 

positive cardiovascular health outcomes among others, but a study found a decrease in cortical 

area and maximal load with high levels of supplementation in developing rabbits36. This decrease 

in cortical area agrees with our results in the upper cortical region. The decrease in bone volume 

for the ω-3 PUFA diet has been hypothesized to be caused by the upregulation of adiponectin in 

these mice as reported previously1. Adiponectin, acting through FoxO1 has been shown in some 

situations to decrease osteoblast proliferation and promote apoptosis37. Under what conditions ω-
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3 PUFAs result in catabolic or anabolic affects is still an active area of research, but many 

studies report protective effects of ω-3 PUFA supplementation on bone29. Although awareness of 

ω-3 PUFA benefits is increasing, the average American diet has proportionally more ω-6 PUFA 

and saturated fats38. The relationship between ω-6 PUFA and bone is under investigation, but 

prostaglandin E2, a downstream metabolite of a prevalent ω-6 PUFA, is linked to an increase in 

inflammation and may inhibit bone formation at high doses of ω-6 PUFA31,35. Intermediate doses 

of ω-6 PUFA show conflicting results, with clinical studies finding a positive correlation 

between ω-6 PUFA consumption and overall BMD in a study of post-menopausal women39. 

Saturated fatty acid intake does not show the conflicting results that ω-6 PUFA consumption 

does, with most but not all studies concluding that saturated fats lead to detrimental bone 

changes31,32. An in vitro study showed that saturated fat led to an increase in osteoclast survival 

and an in vivo study showed a decrease in bone volume fraction and an increase in trabecular 

separation after a high-fat diet40,41. These in vivo results correspond with our findings in this 

study.  

The effects of a high-fat diet on cartilage and OA are also investigated in the literature. A series 

of studies showed that dietary supplementation with lard altered the progression but not the 

incidence of OA in mice42,43. Other studies have determined an increase in OA score due to a 

high-fat diet alone, while other studies saw no difference in Mankin scores between a chow diet 

and a high-fat diet17,44. This study found no difference in overall OA scores due to diet alone, 

indicating that, at least in the shoulder, bone changes occur before cartilage degeneration or that 

cartilage degeneration requires an initial trauma to the joint. This was corroborated by the lack of 

microscale cartilage stiffness changes that are known to occur with OA11. The lack of macro- or 

microscale cartilage alterations could be due to a number of factors. Changes may occur on a 
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longer time scale than 14 weeks on a high fat diet, and this time scale as well as the degree of 

damage may be joint-specific.  

In this study, we found diet-specific changes in bone due to obesity in the absence of trauma, 

while the cartilage surface remained relatively unchanged. Studies have shown joint-specific 

differences in response to obesity-related OA, with correlations being seen in knee and hand OA 

but with little or no correlation for hip OA4,15. Literature on shoulder OA is relatively sparse, and 

future work may shed more light on the pathogenesis of shoulder OA as well as the link between 

it and obesity.  
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