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ABSTRACT OF THE THESIS 

 

Finite Element Optimization of  a Mechanical Device 

For 

Connecting Dissimilar Materials 

by 

Dong Hwan Yoon 

Master of  Science in Mechanical Engineering 

Washington University in St. Louis, 2018 

Research Advisor:  Professor Guy Genin 

 

 

The tendon to bone attachment is a major challenge from the surgical, mechanical, and tissue 

engineering perspectives. From the surgical perspective, repair is plagued with high failure rates. 

From the mechanical perspective, the attachment of two highly dissimilar materials, tendon and 

bone, poses a perennial challenge. From the tissue engineering perspective, surgical reattachment 

presents a major opportunity. In this context, this thesis explored how soft-to-hard tissue 

attachments occurs in animal predation. A two-dimensional simulation of a tooth was 

implemented in a commercial finite element program. The tooth varied in shape so as to vary 

from a canine shape to a python shape. Stress and displacement fields shifted as a function of 

shape, with python-like teeth showing special features that enhance gripping of the soft tissue. 
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Chapter 1 

Introduction 

The context in which this study was undertaken is the attachment of  tendon to bone, which is a 

major challenge from the surgical, mechanical engineering, and tissue engineering perspectives 

[1-3]. For surgery, up to 94% of  rotator cuff  reattachments fail [4]. From the mechanical 

engineering perspective, the mechanisms of  resilience at the insertion site are an area of  ongoing 

research [5-11], and must overcome the free edge singularity problem [12-29]. From the tissue 

engineering perspective, the natural tendon to bone attachment does not grow back [4], and it is 

important to find ways to stabilize tissue without this attachment [20-23] and to guide regrowth 

of  the transitional tissue [24-28]. Stabilization of  tissue during healing is a topic that I am 

focusing on and have contributed to a conference paper on [29]. The question of  resilience of  

tissues motivated my ongoing study of  how carnivores capture and tear through flesh. 

 

Carnivores have a broad variety of  teeth, many of  which are believed to be optimized for 

specific purposes [48]. For example, within the human mouth, molars are believed to be best 

optimized for grinding, and canines and incisors are believed to serve the function of  biting and 

tearing. The dentition of  a Tyrannosaurus rex is optimized for cutting, consistent with its supposed 

mode predation involving removal of  chunks of  flesh from its prey (Figure 1b). Some of  the 

teeth are curved slightly, which I hypothesize to be for the purpose of  helping hold onto chunks 

of  flesh as the animal fed upon its prey. The dentition of  a python, however, differs still further. 

Here, the teeth are curved still further back (Figure 1a.) This might be consistent with the 

predatory habits of  the python, which swallows live animals whole. The jaws of  the python 

become unhinged, and the teeth must serve a purpose that differs from those of  the 
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Tyrannosaurus rex. Whereas the Tyrannosaurus rex removes chunks of  flesh for the purpose of  

consumption, and possibly used its jaws as weapons to kill its prey by laceration or suffocation, 

the python’s teeth must accomplish a diametrically different purpose. If  the python teeth cut a 

chunk from the animal it hunts, the animal stands a chance of  escaping. A reasonable hypothesis 

is therefore that the teeth of  a python are designed to grip soft tissue without tearing.  

 

Fascinating support for this hypothesis comes from the study of  Acomys, also known as the 

African spiny mouse. This mouse has skin that is brittle and that tears off  in chunks when it is 

stressed beyond a critical threshold [50]. The mouse is also fascinating from the perspective of  

regeneration, as it grows back this flesh without scarring. Even hair grows back in the injured 

regions of  tissue. This feature is hypothesized to be an escape mechanism that might give the 

African spiny mouse an advantage in its efforts to avoid predation: by overcoming the gripping 

design of  the python’s teeth to turn them into teeth that tear.  Clearly, this suggests that there is 

an interplay between tooth design and soft tissue material properties that can be tailored to 

change the specific function of  a tooth. 

 

The challenge of  gripping instead of  tearing underlies the problem of  surgical reattachment of  

tendon to bone. Here, a key problem is that the sutures in a repair act like teeth that can tear 

through a reattached tendon early in the healing interval following a surgery, and thereby cause 

the surgery to fail through re-tearing of  the tendon-to-bone enthesis. However, we know from 

recent work in the literature, including much work from my colleagues, that certain, sometimes 

subtle, changes to the material properties of  a tissue can lead to dramatic changes in its 

toughness and its ability to resist tearing [51-60]. Such material changes are the subject of  a 

tremendous body of  work, and also of  new technologies for surgical repair [55]. 
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In this thesis, I address the opposite question, and ask whether teeth, or anchoring technology, 

might be optimized to make attachment of  soft tissue more like a python and less like a 

Tyrannosaurus rex. The first step in this study was a review of  basic solid mechanics solutions for 

curved beams [30], and a study in an introduction to finite element analysis [31] was done. The 

upshot of  these was the realization that several features of  the design of  a tooth serve to 

mitigate high stresses in the tooth itself. However, it was clear from our preliminary analyses that 

structural failures such as buckling dominate over material failure in the design of  teeth. 

 

We therefore evaluated how teeth both stress and constrain soft tissues. The goal was to 

determine what shapes lead to high stresses at tooth tip, and what shapes lead to constriction of  

the soft tissue against a rigid gumline. The shape of  the model was inspired from how a python 

tooth would capture its prey and lock on to it, and a range of  teeth that span the shark-to-

Tyrannosaurus rex-to-python spectrum was studied parametrically. 
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Figure 1a. Photo of  Python Snake Skull that shows the curved shape of  the teeth [47]. 

We hypothesize that a tooth-shaped hook can grip in the early stages of  repair and insure a tight 

contact between the tendon and bone. 
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Figure 1b.  Photo of  a Tyrannosarus rex skull that shows the less curved shape of  the teeth [48]. 

We hypothesize that a pyramid-shaped hook can tear flesh. 

  



6 

 

Chapter 2  

Methods 

Numerical simulations were performed to assess how teeth might be optimized to switch from 

cutting teeth that induce high principal stresses on an isotropic continuum to trapping teeth that 

induce compression of  an isotropic continuum against a rigid simulated gumline. The first step 

in this study was a review of  basic solid mechanics solutions for curved beams [30]. Thereafter, I 

evaluated how teeth both stress and constrain soft tissues. As mentioned above, the goal was to 

determine what shapes lead to high stresses at tooth tip, and what shapes lead to constriction of  

the soft tissue against a rigid gumline. The shape of  the model was inspired from how a python 

tooth would capture its prey and lock on to it, and a range of  teeth that span the shark-to-

Tyrannosaurus rex-to-python spectrum was studied parametrically. 

 

The numerical portion of  the study was conducted using the finite element method, and using 

commercial software (Abaqus/CAE) for the analysis. The steps involved in a finite element 

analysis are coming up with an idealized geometry, assigning idealized material properties, 

choosing boundary conditions, making a mesh, implementing the boundary conditions, solving 

the equations (equilibrium, strain displacement, and constitutive equations) by a matrix-based 

energy minimization method, and then validating results by mesh refinement [31]. 

 

2.1 Idealized geometry 

Teeth were modeled parametrically to shift from a nearly pyramidal canine to a hooked python-

like tooth. Analyses were performed under plane strain conditions. Each tooth was treated as a 

pair of  splines that intersected at a curved top. The teeth were each of  a base w and a height of  
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2w.  The curvature of  the tooth was determined by moving the tip (sharp end) to the right in the 

Abaqus/CAE sketch interface, thereby increasing the distance w’ (Figure 2). The tooth has a 

dimension of  2 x 4 x 1 (length, height, width) in arbitrary units (in this study mm). The top 

region of  the tooth from the left end to the tip is referred to w’ and the base of  the tooth is 

referred to w. The parameter that determines the degree of  curvature can be expressed as w’/w 

where in this study ranges from 0.5 to 2.25 (Figure 2).  

 

Figure 2. General view of  tooth model with annotations of  w and w’. 

 

Clearly, setting the parameter as w’/w equal to 0.5 yielded a shape that is representative of  the 

cross-section of  a conical tooth.  As the parameter w’/w increased, the tooth adopted a shape 

that was increasingly swept to the right, a direction meant to represent the direction from the 

mouth to the throat of  an animal.  A key outcome of  the study was to determine the shape w’/w 

at which the response of  the tissue penetrated by the tooth shifted from cutting to gripping, and 

another was to identify the limits at which the tooth began to “hook into” and potentially injure 

tissue through elevated principal stresses. 

 

A tissue was placed over the tooth (Figure 3). The right and left boundaries of  the tissues, placed 

a distance 4w away from the middle of  the tooth. The height of  the tissue was 4w away from the 

base of  the tooth. A gumline was placed at the bottom of  the tooth and was assigned the same 
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material properties as the tooth, described below. The tooth/gumline and the tissue were not 

allowed to interpenetrate. 

 

2.2 Material properties 

The problems studied here were idealized teeth on an elastic foundation contacting with a softer 

material, which would ideally resemble a tendon. As a first approximation, the teeth and softer 

tissue were modeled as linear hyperelastic and as isotropic. The hyperelasticity was irrelevant for 

the tooth due to its high relative stiffness and strength. Also, the tooth was modeled as a solid 

rather than multilayered structure due to the stresses that were very small compared to its failure 

strength: the tooth was effectively rigid compared to the soft tissue. The Young’s modulus and 

Poisson’s ratio were set to 14 GPa and 0.3 for the tooth, respectively. These values correspond to 

human cortical bone which I have used as a reference material that would allow me to gain 

insight [32-36]. The values that were used can be changed easily which can be later analyzed 

when I have a firm idea on what the actual material will be used to create a device that would 

assist in the human rotator cuff  repair.  

 

The tendon properties were a Young’s modulus of  0.14 GPa and Poisson’s ratio of  0.3. These 

are reasonable values for tendon that is under tension [6-8], [14]. The isotropy of  the tendon is a 

poor approximation in general, but is slightly better in cases when healing tissue is involved. [6-8] 
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2.3 Boundary conditions 

The boundary conditions were as follow. The base of  the gumline and the tooth was restrained 

from moving. The right and left boundaries of  the tissue were displaced a prescribed amount in 

the horizontal direction, and kept shear-free.  The top boundary of  the tissue was traction free. 

The lower boundary of  the tissue and the portions contacting the tooth were shear free, meaning 

that there was frictionless contact between the tooth and tissue.  The normal boundary 

condition (that is, in the direction normal to the tooth or gumline surface at a particular point) 

could shift from one of  constrained displacement that prevented interpenetration to one of  zero 

traction, depending on the solution. The solution procedure was therefore nonlinear not only 

because of  the large strain kinematic framework employed, but also because of  the need to 

iterate on this contact boundary condition.  

 

The master-slave algorithm built into Abaqus was used for this purpose.  This algorithm 

penalized interpenetration with a large, nonlinear interfacial stiffness in compression. 

 

2.4 Mesh 

The models were two dimensional, and plane strain, linear interpolation quadrilateral and 

triangular elements were used.  

 

Abaqus was used to refine the mesh until the strain energy and peak principal stress in a model 

did not change more than a few percent with additional refinement. The corresponding plots of  

the maximum principal stress, strain tensor energy and the strain energy density were studied. 

 

The mesh size can be controlled through the graphical user interface in Abaqus/CAE. However 

for the purpose of  this study the finer upper is the part which simulates the soft tendon, is the 



10 

 

part of  more interest, therefore used a finer mesh (Figure 3). The bottom part which resembles 

the tooth has a larger mesh. The graphic interface in Abaqus/CAE allows the user to change the 

mesh size and element type (quadratic or linear). For the purpose of  this study, quadratic 

elements were used. 
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2.5 Mesh refinement 

The analysis was repeated for increasingly small mesh sizes until the peak principal stress ceased 

to change.  A typical study required approximately 4 minutes of  time on a modern laptop.  

 

Note that the sharp tooth led to exceptionally high stress concentrations. The mesh convergence 

study therefore had to proceed with extra care. Additional confidence in these simulations was 

achieved by observing an asymptote in behavior of  the model and associated stress and 

displacement fields as the parameter w’/w was varied.  

 

Figure 3. Example mesh of  tooth and tendon model in contact 

 

 

  



12 

 

2.6 Limit: Buckling 

As the curvature increases, the length of  the tooth also increases therefore the buckling effect 

had to be considered. As compressive load is applied to the tooth in the horizontal direction 

when seen from the top, the tooth may deflect which may cause unwanted problems to the 

tendon. To examine the effects of  buckling, a top view of  the tooth model was use and a 

horizontal load was applied to check the magnitude of  deflection with respect to the curvature 

length w’/w.  

 

 

Figure 4. Example mesh size of  0.1 of  buckling model w’/w=9.5 
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Chapter 3  

Results 

Results showed that stresses in the tendon were highly localized to the tip of  the tooth, with 

stress concentrations well above 10 at the contact point (Figure 11). This is consistent with the 

sharp nature of  the rounded tip of  a tooth, and is expected for an appendage that must 

penetrate tissue. In subsequent analyses, the objective was to determine the degree to which 

changes to the tooth affected the degree of  this stress concentration. The deformed shape of  

the tendon and tooth model implies that the model created acts as expected. (Figure 12). 

 

Before pursuing that further, the stress field within the tooth itself  was explored. The maximum 

tensile principal stress follows what would be expected in a cantilever beam with the boundary 

conditions used. For the curved tooth, the tensile stresses were in general higher on the loaded 

face, and the principal stress was zero on the back face, consistent with what is expected for 

flexure of  a beam [30]. In the simulations where the bottom boundary was “encastre” [31], 

meaning that the displacement was fixed to zero, a stress concentration known as a Williams 

free-edge singularity appeared at that corner [44].  The stress concentrations or stress 

singularities can be suppressed by choosing different boundary conditions, such as a foundation 

that is elastic in shear or a cohesive zone model, which is used in fracture studies [31,46]. This is 

where the rectangular base for the tooth model comes in to eliminate any singularities (Figure 6). 

Although the understanding of  these mechanisms falls under multi-scale modeling that is beyond 

the scope of  what is needed for this study, phenomenological models can be used to account for 

how microstructure relates to continuum behavior [45-46]. The second is an hourglass effect 

[31].  Here, the oscillatory nature of  the free edge singularity shows up as a series of  errors in 

the estimation of  displacements, which makes neighboring quadrilateral elements look like 
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hourglasses [31]. The hourglass effect can be suppressed by choosing elements with “hourglass 

control” or by choosing triangular elements [31]. 

 

The normal strain in the vertical direction also shows what would be expected from Euler-

Bernoulli beam theory (Figure 7).  The strains are generally tensile on the loaded face and 

compressive on the free face.  A strain concentration is evident at the curve of  the curved tooth.  

Both teeth also show the free edge singularity at the point that is fixed. 

 

We next explored the response of  the tissue. The first value of  interest was the maximum 

principal stress (S.Max.Prin. in the terminology of  Abaqus). This was plotted normalized by the 

applied stress, which was estimated by summing the total nodal forces on the two vertical faces 

and dividing this by twice the cross-sectional area. These forces were found by evaluating the 

NFORC1 parameter returned by Abaqus. 

 

At lower levels of  curvature, the maximum principal stress reached an asymptote. Note that for 

values of  the curvature parameter w’/w less than 0.5, the problem was not stable: the flesh 

would be fly off  of  the tooth without a top jaw crunching the flesh back downwards. Because 

this upper surface is not of  interest in the biomaterial attachment problem studied, no values of  

w’/w less than 0.5 could be studied. 

 

Beyond a critical value of  the parameter w’/w, the already high peak principal stress 

concentration began to rise further. This was true for both levels of  deflection studied, a 

displacement of  .5% and 1% of  w.  For both of  these cases, the critical value of  the parameter 

w’/w was just over 1.5. 
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The next value of  interest was how well the tooth forces the tissue onto the substratum. In the 

case of  a tendon-to-bone healing scenario, an increased normal stress is advantageous for 

healing. The value studied was the average stress in the Y direction along the gumline (Avg.S22 in 

Abaqus), again divided by the average applied stress.  This value was nearly zero for low values 

of  the parameter w’/w, but then increased linearly with w’/w beyond a threshold of  about 

w’/w=1.25. 

 

Finally, the fraction of  the tissue that was in contact with the gumline was studied. The contact 

area fraction increases as the curvature increases where it seems to hit an asymptote as 

w’/w=2.0. (Figure 10). It can be inferred that as stress concentration increases, the contact area 

fraction increases. 

 

The results up to this point showed that increasing the tooth length and curving the tooth more 

towards a python shape caused an increase in the contact area and improved the normal force. 

The next question we asked was how far the tooth could be loaded without causing injury to the 

tooth. The mode of  failure that was explored was a buckling mode. To estimate the buckling 

load, a simple 2D model was studied (Figure 5). The load on the tip of  this model was increased 

gradually, and the displacement was tracked.  For shorter teeth, buckling was not possible. For 

longer teeth, buckling was evident by an increase in the lateral and total displacements of  the 

tooth as a function of  load. 

 

When these factors were plotted as a function of  the parameter w’/w, the point at which 

buckling became possible was clearly evident. This appeared as a dramatic increase in the total 

displacement of  the tip on the tooth in the finite element results.  The critical value of  the 

parameter w’/w at which this occurred was approximately w’/w = 4. The buckling effect comes 

into consideration, therefore, at a value of  the parameter w’/w=4 which is far above the 
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curvature of  a desired tooth shape (Figure 11). Buckling should therefore not be an issue in 

these designs, and more careful three dimensional buckling analyses that incorporate the 

stabilizing effect of  the tissue were not needed. 
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Figure 5. Maximum principal stress contour on tooth model 
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Figure 6. Normal strain in the vertical direction of tooth model  
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Figure 7. Plot of  maximum normalized principal Stress for tendon model  
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Figure 8. Plot of  normalized contact stress for tendon model 
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Figure 9. Plot of  contact area fraction 
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Figure 10. Plot of  displacement magnitude of  buckling 
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Figure 11. Stress contour of  maximum normalized principal stress 
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Figure 12. Deformed tendon and tooth model with scale factor of  30  
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Chapter 4  

Discussion 

A foundation of  this study was to start with the simplest possible shape for a tooth, where a 

simple triangle was subject to a horizontal surface load. The stress values were analyzed and was 

found that a singularity occurred at the base of  the shape. In order to remove this singularity, the 

next step was to analyze a simple triangle model with a base.  

 

In order to improve the reattachment rate of  the human rotator cuff  repair, a model resembling 

a Python tooth was considered. A tooth model with various mesh size and curvatures were 

analyzed to find an optimal shape. The most important aspects for an optimal shape were to 

have a firm grip on the tendon, while having low stress values. In order to relieve edge effects, 

the tooth model was set to penetrate the tendon model until half  its total height. As expected the 

highest region of  stress was found to be near the tip area. 

 

The results showed a trend of  steady increase in principal stress values as the curvature 

increased. However, a dramatic increase happened at the curvature point higher than w’/w=1.5. 

This suggests that the best shape for a tooth is w’/w ≤ 1.5 for the purpose of  minimizing stress 

concentrations. 

 

Furthermore, it was seen that as curvature parameter w’/w increased, the contact area fraction 

increased. The more curved the tooth, the greater the area of  tissue that is constrained to be in 

contact with the gumline due to tooth-tissue interactions. The rate of  increase of  contact area 

with respect to tooth curvature decreased around w’/w = 1.5, with a substantial downturn that 

approached an asymptote (Figure 10). 
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Finally, the normal stress between the tooth and the gumline increased linearly above w’/w = 

1.25. From this perspective, the more curved the tooth the better the vertical constraint.  The 

contact stress was, on average, nearly zero for w’/w ≤ 1.25. 

 

Considering the trade-off  between these three factors, the optimum shape can be determined to 

be in the vicinity of  w’/w=1.5. This enables a moderate normal force to develop and enables a 

reasonable fraction of  the tissue and gumline to stay in contact, while not substantially increasing 

the risk of  failure associated with higher principal stresses within the tissue. 
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Chapter 5  

Conclusion and Future Directions 

In conclusion, a python tooth model in contact with a tendon model was analyzed. The peak 

stress values in correspondence with the curvature over displacement time interval data were 

gathered and plotted. Analyzing the curves, it was found that as the curvature increased, the 

stress values also increased as well as the contact area. However, the stress values showed an 

increasing trend as the contact area increased. Considering the trade-off  values for contact area, 

stress values and buckling, the most optimal curvature shape was found to in the vicinity of  

w’/w = 1.5.  

 

This study introduces an interesting approach to improve the repair rate of  the human rotator 

cuff  tear. In future studies, it would be advantageous to research in material mismatches, tooth 

spacing, and the orthotropy of  the tooth shape. The study has many opportunities for further 

research and would be beneficial to perform more experiments to finalize a product.  

 

A range of  simplifying assumptions were made in this study, and future work that relaxes some 

of  these assumptions would be of  interest and value. The domain considered for these analyses 

was meant to mimic an infinitely long array of  teeth through the application of  periodic 

boundary conditions. The modeling of  isolated teeth near the edge of  the tissue would be of  

interest. The tissue was modeled as isotropic, but many tissues of  interest are orthotropic or 

anisotropic. Modeling the interplay between tissue orthotropy and optimal tooth shape would be 

another interesting future direction. The specific trade-off  between gripping and tearing that 

various predator teeth make would be interesting to study through application of  the approaches 



28 

 

developed in this thesis. Finally, it would be interesting to explore these tooth shapes in 3D, and 

to check how 3D optimization can further define the optimal parameter space. 

 

Despite these assumptions, the thesis establishes that shape optimization can yield a tooth shape 

that balances the need to avoid tearing flesh with the need to clamp it down to a gumline. The 

work establishes how an optimized shape might be applied to cinch a tendon-like material to a 

bone-like material, and lends support to the idea of  adapting “teeth” to aid in strengthening and 

improving the efficacy of  tendon-to-bone repairs. 
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