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Abstract 

Optical imaging for medical applications is a growing field, and it has the potential to 

improve medical outcomes through its increased sensitivity and specificity, lower cost, and small 

instrumentation footprint as compared to other imaging modalities. The method holds great 

promise, ranging from direct clinical use as a diagnostic or therapeutic tool, to pre-clinical 

applications for increased understanding of pathology. Additionally, optical imaging uses non-

ionizing radiation which is safe for patients, so it can be used for repeated imaging procedures to 

monitor therapy, guide treatment, and provide real-time feedback. The versatile features of 

fluorescence-based optical imaging make it suited for cancer related imaging applications to 

increase patient survival and improve clinical outcomes. This dissertation focuses on the 

development of image processing methods to obtain semi-quantitative fluorescence imaging data. 

These methods allow for the standardization of fluorescence imaging data for tumor 

characterization. 

When a fluorophore is located within tissue, changes in the fluorescence intensity can be 

used to isolate structures of interest. Typically, this is done through the accumulation of a dye in a 

target tissue either by the enhanced permeation and retention effect (EPR), or through targeted 
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peptide sequences that bind receptors present in specific tissue types. When imaged, the contrast 

generated by a fluorescent probe can be used to indicate the presence or absence of a structure, 

bio-chemical compound, or receptor. Fluorescence intensity contrast can answer many biological 

and clinical questions effectively; however, we were interested in analyzing more than solely 

contrast when using planar fluorescence imaging.  

To better understand tumor properties, we developed a series of algorithms that harness 

additional pieces of information present in the fluorescence signal. We demonstrated that adding 

novel image processing algorithms enhanced the knowledge obtained from planar fluorescence 

images. Through this work, we gained an understanding of alternative approaches for processing 

planar fluorescence imaging data with the goal of improving future cancer diagnostics and 

therapeutics.  
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Chapter 1 :  

Introduction 
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Optical imaging has the potential to improve medical outcomes in a number of areas. Using 

light to interrogate tissues is appealing due to the increased sensitivity and specificity, lower cost, 

and small instrumentation footprint as compared to other imaging modalities. Optical imaging 

consists of various techniques including, ballistic imaging, optical coherence tomography (OCT), 

spectroscopy, planar fluorescence imaging, diffuse optical tomography (DOT), and fluorescence 

molecular tomography (FMT). Each of these techniques has its advantages and is suited for 

different clinical and pre-clinical applications. This dissertation focuses on planar fluorescence 

imaging, specifically for the purpose of identifying and characterizing tumors. 

Fluorescence is generated by the emission of a photon from a material that has absorbed 

energy from another source. Often the input energy is in the form of a light source causing the 

excitation of an electron to a higher energy state. When the electron relaxes back down to its 

ground state a photon is emitted (Figure 1-1).  Fluorescence imaging uses a device to capture these 

photons and create an image. The device can be a camera, photo multiplier tube (PMT), or other 

instrumentation that is light sensitive in the spectral range of he emitted fluorescence.  

 

Figure 1-1: Jablonski diagram showing the mechanism of fluorescence. A material is excited by 

absorbing energy, then when it relaxes back to the ground state a photon is emitted causing 

fluorescence. Figure courtesy of Dr. Rebecca Gilson. 
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The majority of fluorescence imaging has been conducted using ballistic light for 

microscopy, planar imaging for wide-field tissue visualization, or diffuse optical imaging for 

tomographic analysis. When light passes through a turbid medium the photons are scattered and 

absorbed according to the optical properties of the tissue. The optical parameters of interest are the 

attenuation (μa) and reduced scattering (μ’s) coefficients that vary with different tissues. Ballistic 

light, or light that is reflected and refracted in a predictable manner, occurs when the tissue 

properties cause negligible light attenuation. Ballistic light largely only occurs at shallow tissue 

depths, or in biological tissues such as the eyes where light can pass through the medium. In turbid 

tissue, the number of un-attenuated photons decrease exponentially with propagation distance 

according to the radiative transport equation. Ballistic light can be used for analysis in techniques 

such as two-photon imaging, however the depths imaged with this approach are primarily limited 

to microscopy.  

To image at greater depths, optical imaging relies on diffuse optics and solving the radiative 

transport equation. Tomography involves collecting measurements from multiple angles to 

computationally determine the spatial location of an inclusion. DOT collects measurements of a 

3D volume using a source-detector array, and these multiple measurements are then used to 

mathematically localize each volume element’s relative contribution to the overall signal. FMT 

employs the same principles of DOT, however the source light excites a fluorophore, which is then 

detected at the surface. FMT can image to depths in the centimeter range and has been employed 

clinically for applications such as brain imaging. One of the drawbacks of FMT is that the 

calculations require extensive computational capacity, which limit real-time feedback 

applications. 
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Planar fluorescence imaging bridges the gap between ballistic light analysis and 

tomography, by using both forms of light to obtain wide-field surface weighted projected images 

of fluorescence in tissue. This surface weighted image can be readily obtained for rapid feedback 

making it attractive for a multitude of pre-clinical and clinical applications. When a fluorophore is 

present, changes in the fluorescence intensity can be used to isolate structures of interest. 

Typically, this is done through the accumulation of a dye in a target tissue either by the enhanced 

permeation and retention effect (EPR), or through targeted peptide sequences that bind receptors 

present in specific tissue types. The contrast generated by a fluorescent probe can indicate the 

presence or absence of a structure, bio-chemical compound, or receptor. Fluorescence intensity 

generated contrast can answer many biological and clinical questions very effectively. When near-

infrared (NIR) fluorescent dyes are used, tissues can be interrogated to greater depths than with 

visible light due to the NIR optical window. The NIR optical window is a band of wavelengths at 

which the attenuation of light in tissue due to endogenous fluorophores is minimized. The optical 

window is from around 700 nm to 1100 nm. Within this window light can penetrate to centimeter 

depths in tissue and the spectral interference of tissue autofluorescence is limited.  

The deep penetration of NIR light provides additional information as compared to visible 

light, however it also poses potential challenges for planar imaging modalities. This is because the 

signal projected to the surface of the tissue is a composite of each layer of underlying tissue. The 

deconvolution of this signal is complex and has proven to be difficult to conduct without using 

tomography. In this dissertation we explored methods to de-convolve this signal in order to obtain 

more information than simply using fluorescence intensity contrast. A series of methods were 

developed that each harness additional pieces of information in the convolved signal to better 

understand tumor properties through planar fluorescence imaging. We demonstrate this by 
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characterizing tumor volume with static fluorescence imaging, delineating the tumor boundary 

using structured illumination, estimating tumor depth using dual-wavelength imaging, then 

moving to dynamic imaging to identify tumors based on perfusion and stratify circulating tumor 

cells. Finally, we demonstrate the ability to monitor and treat tumors using light.   
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Tumor Fluorescence Imaging 
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2.1 Tumor Florescence Imaging 

In cancer research, molecular probes targeting specific biomarkers have been developed to 

give insight into tissue specific properties 1,2. These probes allow for the rapid detection of a tumor, 

assessment of tumor-associated protein expression levels, and relative size of tumors. Targeted 

molecular fluorescence imaging has the potential to improve patient care by facilitating the 

understanding of tumor characteristics in small animal models. Additionally, preclinical testing of 

new cancer therapies is often conducted in small animal models to determine therapeutic efficacy3. 

Our lab has previously reported on a near infrared (NIR) fluorescent probe that selectively 

accumulates in tumors in vivo4. This probe, LS301, has demonstrated efficacy in a number of 

different tumor types, and has been a useful tool in visualizing and characterizing cancer in vivo. 

Typically, the probe is injected via the tail vein, then allowed to accumulate in tumors. Initially, 

the probe is present in all tissues, then at approximately 24 hours post injection the tumor exhibits 

more signal than the surrounding tissue. Figure 2-1a shows LS301 injected into a HT1080 (human 

fibrosarcoma) xenograft model. At short time points there is no contrast between the tumor and 

the surrounding tissue, however at 24 hours post injection the contrast is at a maximum Figure 

2-1c. In this study, by 96 hours post injection there was minimal contrast remaining between the 

tumor and the surrounding tissue.    
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Figure 2-1: a) Time course images of a HT1080 xenograft model injected with a targeted 

fluorescent dye, from pre-injection to 96 hours post injection. Tumor identified by the white arrow 

and non-tumor region identified by the outlined arrow. b) Fluorescent dye in vivo kinetics, with 24 

hours post injection showing largest difference between tumor and non-tumor regions. c) Tumor 

to non-tumor ratio showing maximum contrast at 24 hours post injection. 

 

2.2 Skin Cancer Imaging 

LS301 has been previously used in various tumor types, however we were interested in 

imaging those that were on surfaces that were readily accessible for optical imaging. Skin and 

mucosal sites were an attractive target because of the ability to image non-invasively or minimally 

invasively.  

We used an orthotopic model of SCC-12 cells (human cutaneous squamous cell carcinoma) 

to develop methods for skin cancer identification and characterization. The SCC-12 xenografts 

were generated by injecting 2.5x106 cells into 6-week-old female athymic nude mice in the 

bilateral shoulder and flank regions within the intradermal compartment. All studies were in 

compliance with the Washington University Animal Welfare Committee’s requirements for the 

care and use of laboratory animals in research. 
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NIR fluorescence images were obtained using the Pearl Small Animal NIR fluorescence 

imaging system (LICOR Biosciences, NE, USA), ex/em 785/820 nm. LS301 was injected via the 

tail vein (0.40 mg/kg), and animals were imaged at 24 hours post injection (Figure 2-2a). We 

quantified the in vivo fluorescence signal, and the tumors exhibited a higher signal than the skin 

regions at 0.26 ± 0.012 to 0.42 ± 0.044, respectively (Figure 2-2b). After the conclusion of our 

study we sacrificed the mouse and confirmed the presence of our fluorophore in the tumor tissue. 

Figure 2-2c shows the tumor histology, and Figure 2-2d shows the fluorophore distribution within 

the tumor. Figure 2-2e shows the magnified view of the fluorophore along with skin cancer cells.  

 

Figure 2-2: a) Fluorescence image of LS301 injected into a SCC-12 skin cancer model. Tumors 

visible at 24 hours post injection (white arrows). b) In vivo fluorescence signal for the tumor and 

non-tumor regions. c) Histology of a tumor section at 4x magnification. d) Fluorescence intensity 

of the histological section shown in (c). e) 40x view of a region with high fluorescence.  

 

2.3 Bladder Cancer 

We were also interested in imaging bladder cancer as cystoscopy is an optical method that 

is routinely used clinically to diagnose and monitor patients with bladder cancer. An endoscope 

could be utilized to image fluorescence contrast from within the bladder to detect the presence of 
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a tumor. We used a MCB6 (murine bladder cancer) model to test the ability of LS301 to identify 

bladder tumors. Bladder tumor cells were induced in one mouse, then the cells were harvested and 

injected into the side of another different mouse. LS301 was injected via the tail vein (0.40 mg/kg), 

and animals were imaged at 24 hours post injection. Figure 2-3a shows in vivo tumor contrast and 

Figure 2-3b shows the quantification of the tumor and non-tumor fluorescence intensity. As in the 

case of the fibrosarcoma (HT1080) and skin cancer (SCC-12) imaging, the bladder cell tumors 

showed greater contrast than the surrounding tissue. Figure 2-3c shows the ex vivo bio-

distribution of LS301, with the values quantified in Figure 2-3d. The tumor showed higher signal 

than the surrounding subcutaneous tissue and muscle, and we were interested in determining if the 

tumor would exhibit contrast as compared to the normal bladder tissue. We harvested the bladder 

and imaged it alongside the tumor. In this case we saw higher signal in the tumor as compared to 

the bladder Figure 2-3e. This finding indicates that fluorescence contrast could potentially be used 

to image bladder tumors via an intravenously injected agent that localizes to tumors.              
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Figure 2-3: a) Fluorescence image of LS301 injected into a MCB6 bladder cancer model at 24 

hours post injection. b) In vivo fluorescence signal for the tumor and non-tumor regions. c) 

Fluorescence image of the bio-distribution of the signal in various organs. d) Quantification of the 

bio-distribution. e) Fluorescence image of the tumor and bladder showing higher signal in the 

tumor as compared to the bladder. f) Quantification of the tumor and bladder fluorescence signals. 

 

2.4 Conclusions 

We demonstrated that LS301 is adequate to generate tumor contrast in vivo for tumor 

visualization in a variety of tumor types. While this is valuable for identifying tumors, other data 

such as tumor burden and tumor characteristics remain unknown when solely using fluorescence 

intensity. In the upcoming chapters we investigate using fluorescence contrast to obtain additional 

data about the tumor, such as tumor volume and tumor depth.    
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3.1 Introduction 

Compared with conventional imaging modalities such as computed tomography (CT), 

positron emission tomography (PET), and magnetic resonance imaging (MRI), optical imaging of 

small animal models can serve as a high-throughput, accurate, low learning curve, and low-cost 

method for measuring pathophysiologic parameters using non-ionizing radiation.  As a result, 

thousands of laboratories worldwide have adopted planar optical imaging as the preferred imaging 

modality for assessing drug efficacy, developing new molecular imaging probes, and 

understanding the molecular basis of pathophysiological processes.  

Tumor volume assessment is a typical primary output in interventional studies 

investigating new therapies. Preclinical tumor volume is most often estimated using calipers to 

measure the length and width of a tumor, and then using the equation 𝑉 = 0.5 × 𝐿 × 𝑊2 to report 

tumor volume, where V is the tumor volume, L is the tumor length, and W is the tumor width. This 

approach is simple, fast, and fairly reliable 5. However, the potential for user dependent variability 

introduces intractable errors in data analysis 6,7. When the tumor grows in an infiltrative manner 

and invades the underlying tissue, identification of the tumor margin using calipers presents 

additional challenges. Moreover, if a measurement is not taken for a given day, the data cannot be 

obtained at a later time.  

 Using fluorescence imaging to determine tumor volume has been a challenge, largely due 

to the attenuation of light within tissue. For in vivo imaging, light is reflected, scattered, and 

absorbed as it passes through a heterogeneous medium, thereby obscuring the true boundary of the 

target object within the tissue. There are two ways to solve the inverse problem of locating the 

boundaries of a fluorescent target: mathematically and empirically. Mathematical approaches have 

been developed that are based on stochastic modeling of light propagation through a medium. 
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Three dimensional quantitative fluorescence imaging has been accomplished through using 

fluorescence molecular tomography (FMT) to measure tumor geometry 8,9. The drawback of FMT 

is that it requires a complex setup that is not accessible to most biological laboratories. 

Additionally, the process necessary to extract the signal can be computationally intensive and time 

consuming, limiting real-time feedback.  

 Because of the complexity of FMT, planar optical imaging platforms that utilize empirical 

methods have become the hallmark of most biological imaging studies. Empirical approaches have 

been successfully adopted for tumor cell viability testing with technologies such as 

bioluminescence imaging (BLI) 10. BLI projects light generated from the interaction of a 

bioluminescent enzyme with its substrate to the skin surface, and modern cameras can use this to 

detect cancer cells with exceptionally high sensitivity. However, tumor volume measurements 

obtained from BLI are anecdotal because the method measures viable tumor cells, which does not 

represent the actual tumor volume. As tumor cells proliferate, some of the daughter cells do not 

express the reporter protein, which confounds the tumor volume assessment.  

In this study, we sought to develop a simple optical method for determining tumor volume 

from planar fluorescence images. Currently, the inverse problem in tissue optics can be solved 

empirically if the target geometry dimensions are known, and parameters to compensate light 

attenuation are determined. Because small animal imaging uses similar tumor models to screen for 

therapies, the empirical approach can be employed with very few parameters necessary to obtain 

an adequate fit between the calculated volume and the actual volume. By using a cancer-targeting 

molecular probe, we were able to investigate the application of our model to diverse tumors. 

Compared to conventional methods, our new PV-TVA approach was simpler and more accurate.  
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3.2 Methods 

3.2.1 Tumor Models 

We used two subcutaneous tumor models in this study: HT1080 (human fibrosarcoma) to 

develop and test the algorithm, and 4T1-Luc (murine mammary cancer) to compare the algorithm 

to BLI, which requires luciferase-expressing cells. HT1080 xenografts were generated by the 

subcutaneous injection of 3x106 cells into 8-week old female athymic nude mice in either the right 

shoulder or the left flank region. The right shoulder region was used to determine the optimal time 

point for imaging (n = 2), and the left flank region was used for the development of the algorithm 

(n = 3). 4T1-Luc xenografts were generated by the subcutaneous injection of 1x106 cells into 6-

week old female Balb/c mice in the left flank region (n = 5). The longitudinal therapeutic study 

was conducted using the HT1080 flank model (n = 4). Tumors were allowed to develop until 

palpable, and length and width measurements were taken using calipers. Mice were anesthetized 

with isoflurane (3-5%) during all experimental procedures, including inoculation of tumor cells, 

caliper tumor measurement, and image acquisition. All studies were conducted in compliance with 

the Washington University Animal Welfare Committee’s requirements for the care and use of 

laboratory animals in research. 

3.2.2 Fluorescence Imaging Studies 

For imaging studies, the mice were injected with a 0.40 mg/kg or 0.80 mg/kg dose of 

LS30111. LS301 was suspended in 100 L of DPBS and injected into the mouse xenografts through 

lateral tail vein injection. Using excitation and emission wavelengths of 785 nm and 810 nm, 

respectively, fluorescence imaging was performed with the Pearl Small Animal Imaging System 

(Li-Cor Biosciences, Inc., Lincoln, NE). Animals were imaged from a dorsal view at either 0, 1, 

4, 24, 48, and 96 hours post injection, or a single image at 24 hours post injection. After the final 



16 

 

imaging time point the mice were euthanized and the skin was reflected from the tumor surface. 

In situ length and width were measured using calipers and the volume was calculated using the 

equation, 𝑉 = 0.5 × 𝐿 × 𝑊2. The tumors were then carefully excised using the tumor capsule as 

a guide, and the tumor volume was measured using a water displacement method. Grayscale 

fluorescence images from the 800 nm channel were output in jpg format using the PearlCam 

software (Li-Cor Biosciences, Inc., Lincoln, NE). The image processing and analysis were 

conducted via custom code written in MATLAB (Mathworks, Inc., Natick, MA). 

3.2.3 Bioluminescence Imaging Studies 

Five mice with 4T1-GFP-FL xenografts received intra-peritoneal injection of 150 mg/kg 

D-luciferin in PBS (Gold Biotechnology, St. Louis, MO) for BLI. Mice were then imaged at 10 

minutes under isoflurane anesthesia with an IVIS 50 (PerkinElmer, Waltham, MA; Living Image 

4.3, 1 or 10 second exposures, bin8, FOV 12 cm, f/stop1, open filter). The total photon flux 

(photons/sec) was measured from software-defined contour regions of interest (ROIs) over the 

tumors using Living Image 2.6. Bioluminescence from viable tumor cells was used to estimate 

tumor burden.  

3.2.4 Longitudinal Therapeutic Studies 

One of the benefits of using the PV-TVA to measure tumor volume is to determine the 

efficacy of therapy over time. To investigate the treatment response, we obtained longitudinal 

images using an HT1080 xenograft model. Four mice were injected with a 0.40 mg/kg dose of 

cypate-cGRD via the tail vein, once a week for 4 weeks. In two of the mice, doxorubicin was 

administered at a dose of 10 mg/kg after a baseline image was obtained. The doxorubicin was 

dissolved in DMSO, and then mixed in DPBS to obtain the desired dose in 100 L of solution. 
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3.3 Results 

3.3.1 Gradient-Based Algorithm Development  

The Pearl Small Animal Imaging System has the ability to create images using a color jet 

map, grayscale, and numerous other visualization options. The color jet map image provides for a 

rapid method to visualize tumor contrast from the surrounding tissue, however slight changes in 

the intensity scale may produce significant changes in the apparent tumor outline (Figure 3-1A). 

Color images rely on the user’s visual interpretation to create the best guess for how to threshold 

the tumor boundary, therefore leading to variability. A more reliable approach was to reduce the 

need for perceptive input from the user. When analyzed, grayscale images produced a consistent 

tumor region as the contrast settings were varied (Figure 3-1B). To further standardize the 

approach, the grayscale images for output were selected by increasing the maximum intensity in 

the image until just below the point where the image became saturated. This technique allowed for 

maximum contrast between the signal and background without losing information in the image. 

 

Figure 3-1: A) Color images of a fluorescent tumor and surrounding tissue with the maximum 

intensity set to different values (from left to right): 1.0x100, 1.5x100, 2.0x100, 2.5 x100, and 3.0x100 

a.u. B) Grayscale images of the same tumor set to the same maximum intensity values as (A). C 
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and D) Side and top images of light scattering in tissue, with the apparent width of the source at 

the top of the finger (red arrow) larger than the actual width of the light source (green arrow). E) 

Illustration of a light emitting fluorescent tumor (light source) within scattering medium. The red 

arrow shows the observed width at the surface of the tissue, and the green arrow shows the actual 

width of the tumor within the surrounding tissue. 

 

Even with the consistent tumor image produced using grayscale, the light attenuation due 

to tissue scattering still remained a confounding factor in determining the true tumor outline. This 

is similar to what is observed in Figure 3-1C and Figure 3-1D, where the light source is smaller 

than the observe light after it passes through tissue. Image processing allowed for an algorithm to 

account for the amount of scattering for a given tissue system. Because xenograft models of a 

particular tumor type were relatively consistent, the parameters to account for scattering were set 

for all other samples once they were known for a given tumor model.  

To initiate the PV-TVA, two points were selected by the user approximately along the 

horizontal axis of the tumor from the grayscale image. This line was long enough to go from 

uninvolved tissue, through the tumor, and into back to uninvolved tissue (Figure 3-2A). An 

intensity curve was created using the intensity values from the pixels along the length of the line 

(Figure 3-2B). The slope of the intensity curve was calculated for each point along the line using 

the subsequent number of pixels that the user specified (user input parameter) (Figure 3-2C). 

Using a larger number of pixels to calculate the slope acted as a smoothing operation, making the 

algorithm less sensitive to local variability. Once the slopes were calculated along the length of 

the line, the maximum and minimum slope values were identified as the inflection points of the 

intensity plot along the line (Figure 3-2D). The average of these intensity values was used to 

determine the average value of the edge of intensity observed at the surface of the skin (Figure 

3-2E). All values above this intensity were found within the user selected region (Figure 3-2F). 

Once this procedure was completed, it became evident that the scattered light caused the apparent 
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tumor outline to be larger than the actual tumor outline, as was later verified using post mortem in 

situ measurements.  

 

 

Figure 3-2: A) Input image with an illustrated user selected line for region of interest 

identification. B) Intensity profile along the line (pink curve) with a Threshold value (green dashed 

line). C) Moving slope (blue lines) of the intensity profile calculated along the line. D) Plot of the 

moving slopes (blue points) calculated along the line, with the inflection points of the intensity 

(red points). E) Two inflection points identified (red points) and the average used for the tumor 

boundary determination (red line). F) Algorithm determined tumor outline overlaid on image 

without using the Threshold value. G) Algorithm determined tumor outline overlaid on image 

using the Threshold value to account for scattering. H) Tumor length (blue solid line) and tumor 

width (cyan dashed line) overlaid on image. 

 

To account for this variability, a threshold value was created to decrease the outline of the 

tumor with the verified assumption that the scattered light contributes to increasing the imaged 

tumor outline dimensions. For example, a Threshold value of 0.25 would select the highest 25% 

of values that were along the user selected line and calculate the inflection points based on only 

those values. Once the threshold was determined, the slopes of the intensity values were calculated 

using only the values that fell above that threshold value (Figure 3-2C). Adding a Threshold 

parameter to the PV-TVA resulted in a more accurate identification of the tumor from the images 

(Figure 3-2G). The threshold was defined in Equation 3-1 as: 
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𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝐼𝑚𝑎𝑥 − 𝑃𝑒𝑟𝑐𝑒𝑛𝑡(𝐼𝑚𝑎𝑥 −  𝐼𝑎𝑣𝑔)    Eq. 3-1 

Where Threshold was the minimum intensity value accepted as potentially originating from tumor 

tissue, Imax was the maximum intensity value originating from the mouse, Iavg was the average 

intensity value for the entire mouse, and Percent was a user input value specific to the system 

being analyzed. 

Percent was chosen as the user input value rather than Threshold, because inputting the 

Percent parameter allowed for the contrast of the intensity between the tumor and the surrounding 

tissue to be incorporated into determining the threshold value. This approach balanced the need 

for tuning the threshold based on the system properties (the tumor morphological appearance, dye 

kinetics, and dye attenuation properties at the emission wavelength), with preserving the 

relationship of the tumor contrast within the image. By changing the Percent value, this tunable 

threshold allowed for versatility of the algorithm for different biological systems and dye 

concentrations. The Percent value was initially determined by using the post mortem tumor 

volume value from one mouse, and then that value was subsequently used to analyze the images 

for all of the following mice. This Percent value was validated after the study by running the PV-

TVA at various Percent values, and then comparing each resultant tumor volume to the actual 

value (Figure 3-3E). The validation confirmed that the initially selected Percent was valid for all 

of the tumors of this type.  

The final tumor volume was calculated by determining the length and width of the outlined 

tumor (Figure 3-2H). The length was defined as the longest distance between two points on the 

outline. The width was defined as the distance between the two points, on opposite sides of the 

line defining the length, with the maximum perpendicular distance from the line defining the 

length. The volume was calculated using the same equation as the caliper method. 
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There was a tradeoff between versatility and variability when conducting automated image 

analysis. As a result, the PV-TVA had some inherent variability based on the initial two points that 

the user selected. Allowing the user to select the initial two points allowed for the independent 

analysis of multiple tumors on the same mouse, and was therefore an essential part of the algorithm 

training. The potential variability from this was compared to the variability in the tumor volume 

caliper measurement method. The PV-TVA was run ten times for a given set of images, with the 

user selecting different input points, to understand the precision and accuracy of the calculated 

values. The tumors were measured using calipers ten times by two users who were blinded to the 

previous readings to capture the inherent variation in measurements using calipers. 

3.3.2 Tumor Volume Calculations 

Three HT1080 tumors were analyzed to test the capabilities of the PV-TVA. We used 

caliper measurements as our control, and blinded the user to the previous caliper measurement. To 

capture inter-user variability, two users measured each tumor five different times, for a total of ten 

measurements. Figure 3-3A shows the caliper measured tumor volumes separated by user. T1 and 

T3 produced similar results, however T2 showed a difference in caliper calculated volume between 

users (p = 0.010). We binned the caliper measurements of both users for each tumor and repeated 

the PV-TVA 10 times for each tumor. The results were compared to the actual tumor volume 

obtained from the volume of water displaced by the tumor, and the deviations from the calculated 

vs. actual tumor volume were compared for the caliper method and the PV-TVA method (Figure 

3-3B). The accuracy of each method was assessed by calculating the average of the absolute value 

of the deviations for the caliper and PV-TVA methods. The caliper average deviation was 18% 

(204.34 ± 115.35 mm3) and the PV-TVA average deviation was 9% (97.24 ± 70.45 mm3), p < 

0.001 (Figure 3-3C). Comparison of the precision of each method using the standard deviations 
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of the ten calculations showed that the average standard deviations for the methods were 11% 

(131.95 mm3) and 8% (96.51 mm3) for the caliper and the PV-TVA, respectively (Figure 3-3D). 

 

Figure 3-3: A) Tumor volumes for three HT1080 tumors (T1, T2, and T3) as determined using 

the caliper measurement method for two users (C-U1 and C-U2), and the PV-TVA (Percent = 

0.55). B) Tumor volume calculation deviations from the actual volume as measured using post 

resection water displacement. C) Absolute value of the deviations of the tumor volume calculation 

methods to measure the accuracy. D) Average standard deviations of 10 measurements for each of 

the three tumors to measure the precision. E) Validation for the Percent value selected to calculate 

tumor volume. * (p < 0.05), ** (p < 0.005), *** (p < 0.001). 

 

The in situ length and width were measured by reflecting the skin and measuring the tumor 

prior to complete resection. Our result showed that the absolute value of the length deviations from 

the in situ dimensions were on average 10% (1.21 ± 0.44 mm) for the calipers and 5% (0.68 ± 0.21 

mm) for the PV-TVA, p < 0.001 (Figure 3-4A and Figure 3-4B).The absolute value of the width 

deviations were on average 8% (0.81 ± 0.48 mm) for the calipers and 5% (0.55 ± 0.31 mm) for the 

PV-TVA, p = 0.001 (Figure 3-4C).  
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Figure 3-4: A) PV-TVA Length deviations for three HT1080 tumors (T1, T2, and T3) from the in 

situ length measurement. The algorithm was run 10 times for each image. B) Width deviations 

from the in situ width measurement. C) Absolute value of the deviations of the length and width 

for both calculation methods to measure the accuracy. 

 

We next examined how this algorithm compared to other planar optical methods for 

determining tumor burden. BLI was conducted on a set of 4T1-Luc tumors and the results were 

compared with those of the caliper and PV-TVA methods. Because BLI does not give a tumor 

volume, the measurements for five tumors were all normalized to the value of the first tumor (T1). 

This analysis allowed us to compare the trend in tumor burden between the different tumors. The 

same normalization to T1 was done using the actual tumor volumes as measured by the water 

displacement method, and for the caliper and PV-TVA methods. The analysis revealed that the 

BLI measurements had a similar trend to the actual tumor volumes (Figure 3-5B), except for the 

case of T3 where the BLI would have predicted a much smaller tumor than what was observed 

(Figure 3-5A). In this case, the PV-TVA predicted a similar burden as the ground truth 

measurement obtained using the water displacement method. The deviations of each normalized 

value from the actual normalized value were calculated for the BLI, caliper, and PV-TVA methods 

(Figure 3-5C). When comparing the deviations, BLI had an absolute value average deviation of 

36% of T1, the caliper method 19% of T1, and the PV-TVA 10% of T1. Normalization for 
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comparative analysis allowed for the comparison of trends, but did not give insight into the 

absolute deviations without extrapolation. Figure 3-5D shows the signed deviation from actual for 

the caliper and the PV-TVA methods. The average absolute value of the deviations was 37% 

(112.9 ± 93.62 mm3) for the calipers, and 18% (60.52 ± 62.65 mm3) for the PV-TVA, p = 0.105. 

The Percent value for this tumor model was determined to be 0.25. The PV-TVA was run at 

various Percent values and compared to the actual volume for validation (Figure 3-5E). 

 

Figure 3-5: A) BLI images for five 4T1-Luc tumors (T1, T2, T3, T4, and T5). B) Normalized 

tumor burden values for the actual volume, caliper, BLI, and the PV-TVA. All measurements were 

normalized to the T1 value for the specific type of measurement. The PV-TVA result was obtained 

using Percent = 0.25. C) Normalized tumor volume deviation from actual as a percentage of T1 

for each method. D) Tumor volume percent deviation from actual for the caliper and PV-TVA 

methods. E) Validation for the Percent value selected to calculate tumor volume using post mortem 

tumor volumes. The tumor volume deviations were calculated at various Percent values for the 

4T1-Luc tumor model. 

 

We next examined the ability of the PV-TVA to monitor the tumor response to a given 

treatment. We used the HT1080 tumor model because it previously demonstrated a treatment 
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response to doxorubicin. We took a baseline NIR image of each of the mice to establish the pre-

treatment tumor volume. Two of the mice were treated with doxorubicin, and all of the mice were 

followed for three additional weeks. The NIR images showed the range of tumor-to-background 

signals obtained using planar fluorescence imaging (Figure 3-6A). Because the PV-TVA 

calculated a threshold based on a combination of a user input Percent value and the inherent image 

contrast, the PV-TVA was able to calculate the tumor volume, despite the varied appearance of 

the images, in all but one of the images (T4-Wk2). In the case of the image that did not produce a 

solution, there was insufficient contrast at the location of the tumor to calculate a tumor volume. 

To account for various initial tumor volumes at the time of treatment, the tumor response was 

calculated as a percentage of the pre-treatment volume. At each time point the PV-TVA was run 

three times. The mice treated with doxorubicin demonstrated a suppression of tumor growth over 

time as compared to the control mice (Figure 3-6B). This result was obtainable even with varying 

image properties such as tumor signal and average mouse signal (Figure 3-7). We also confirmed 

that the Percent value used to calculate tumor volume did not change as a result of multiple 

fluorophore injections. The PV-TVA was run at the final time point (fourth fluorophore injection), 

for various Percent values, to confirm that the original HT1080 Percent value remained valid 

(Figure 3-6C). A Percent value of 0.55 produced the smallest deviation from the actual value, 

consistent with the single time point study using an HT1080 tumor model (Figure 3-3E). 
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Figure 3-6: A) NIR images of four HT1080 mice with left flank tumors (T1, T2, T3, and T4) 

indicated by the arrows. Each mouse was imaged once a week for 4 weeks. Images had different 

tumor signals, average mouse signals, and tumor to mouse contrast. B) Tumor volumes over time 

normalized to the pre-treatment volume. Mice treated with doxorubicin (dashed line) had 

suppressed tumor growth as compared to the control mice following the administered dose (white 

arrow). C) Validation for the Percent value used in the HT1080 longitudinal treatment study after 

multiple fluorophore injections over time (Percent = 0.55).  

 

 

Figure 3-7: A) Maximum and average grayscale values for the images shown in Figure 5A. B) 

Maximum minus average grayscale values for each of the images demonstrating the range of 

values analyzed that produced a result. (T4-Wk2 is not included because there was inadequate 

contrast to generate a tumor volume). C) Signal to background ratios for each of the images. 
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(Assumes that the maximum value is the signal and the average is the background. Calculated: 

[M-A]/A, where M is the maximum and A is the average.) D) Tumor volume deviation from actual 

for each mouse at Week 4. The PV-TVA was run 3 times for each tumor and the percent deviation 

was determined using the post mortem water displacement method. 

 

3.4 Discussion 

When determining tumor volume, calipers are cost effective and relatively straightforward. 

However, they introduced variability that was in excess of what we observed from our PV-TVA 

data. Using an algorithm-based approach minimized the user induced measurement variability. 

The PV-TVA worked by allowing the user to input a fluorescence image, converting the image to 

a matrix of grayscale values, using user selected points to determine the region of interest, and 

then using a gradient based calculation to calculate the tumor volume (Figure 3-8). The gradient 

based calculation accounted for light scattering of fluorescence in a given system, allowing the 

algorithm to select the apparent tumor outline in a number of different systems. By combining the 

inherent image properties, along with a user input parameter, the tumor volume was reproducibly 

calculated. 
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Figure 3-8: Planar view tumor volume algorithm (PV-TVA) schematic. The user inputs the image, 

Percent value, and selects two points on opposite sides of the tumor. The algorithm then calculates 

the tumor volume based on the gradient along the line connecting the two points the user selected. 

 

The user input value, Percent, was be determined for different systems by acquiring 

empirical data. The Percent value used for the group of 4T1-Luc tumors in Figure 3-5 was 

different than the value used in the HT1080 group of tumors in Figure 3-3. It was important to 

note that the injected fluorescent probe concentration also differed between the groups. This 

emphasized the versatility of the PV-TVA, along with the importance of calibration for a given 

system to obtain the ideal Percent value. Once this parameter was obtained, the value was used on 

subsequent images. Moreover, we demonstrated that this parameter remained consistent even after 

multiple fluorophore injections. 
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In addition to reducing variability, using an imaging approach to measure tumor volume 

had other advantages. Obtaining an image over a direct measurement allowed for retrospective 

analysis and calculations to be made after the study was completed. The PV-TVA could be used 

with any targeted fluorescent probe with enhanced signal within the tumor making it highly 

versatile.  

A goal of this study was to provide a rapid and retrievable quantitative analysis method 

using planar fluorescence images. We illustrated the application of the PV-TVA in subcutaneous 

tumor models because of the wide use of these models in cancer research. The PV-TVA performed 

better than calipers, and as well as, or better than BLI for optically measuring and tracking tumor 

volume.  

 

3.5 Conclusions 

We demonstrated that pre-clinical tumor models could be monitored via fluorescence 

imaging using the quantitative output of tumor volume. The development of our PV-TVA allowed 

for planar imaging to accurately measure tumor volume without the need to measure tumors. The 

goal of the analysis was to develop a tool to track tumor volumes in pre-clinical settings, and a 

limitation of the approach was the need to for a priori information to determine the appropriate 

Percent threshold. A priori information is possible for pre-clinical studies, however it is not always 

available when techniques are translated to clinical applications. In order to understand tumor 

volume in a wider array of applications, both the tumor boundary and the tumor depth are 

necessary.  

In the next chapter we investigated using fluorescence to obtain the tumor boundary 

without needing to know the threshold value prior to the application. The ability to identify tumor 
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boundaries in diverse situations, along with the tumor depth, would allow for fluorescence-based 

volumetric calculations without the need for the volume approximation equation currently used in 

pre-clinical tumor evaluation. 
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Chapter 4 :  

Enhancing in vivo tumor boundary delineation 

with structured illumination fluorescence 

molecular imaging and spatial gradient 

mapping 
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4.1 Introduction 

Surgical resection is the primary cancer treatment for many tumor types. Cancer is difficult 

to distinguish from adjacent non-tumor tissues, resulting in inadequate margins of resection and a 

high rate of repeat operations.12 Surgical resection of tumors in the head and neck can be 

complicated by proximity to vital structures and could benefit from intraoperative fluorescence 

molecular imaging strategies.13,14  

Intraoperative fluorescence imaging utilizing harmless light, and digital camera 

technology, to rapidly measure fluorescence over a large field of view. Real-time tumor 

localization can improve procedural outcomes.15,16 Accurate tumor boundary determination is 

essential in resection of head and neck cancer tumors, where preservation of healthy tissue is vital 

for the essential tasks of eating and breathing.13  

Fluorescence imaging is depth-limited due to signal attenuation from scattering and 

absorption. Attenuation results in signal weighting that scales exponentially with depth such that 

even low levels of dye in overlying tissues can obfuscate tumor-specific contrast.17,18  Signal 

attenuation from surface weighting of fluorescence is compounded by reflected excitation light, of 

which even a few percent bleed-through can significantly confound fluorescence quantification.19 

Elimination of signal from overlying tissue is necessary to improve cancer-specific fluorescence 

contrast and better define tumor boundaries. Therefore, we investigated structured illumination 

techniques to separate the fluorescent signal from a head and neck cancer tumor and overlying 

healthy tissue.   

Structured illumination microscopy (SIM) employs patterned illumination and image 

deconvolution to enhance axial resolution by rejecting out of focus light.20 Optical sectioning with 

structured illumination, as demonstrated by Neil et al., uses fluorescence excitation in striped 



33 

 

patterns to isolate in-plane vs. out-of-plane fluorescence.21  Thus planar imaged light (I0), can be 

de-convolved into the spatially modulated signal (Is) and the constant, unmodulated signal (IC):  

Tissue acts as an optical low-pass filter, such that patterns projected on the surface are 

effectively blurred within a few millimeters of the surface.22,23 Using striped patterns of different 

frequencies allows for effectively adjusting the light that is allowed to pass through the tissue, and 

therefore we can selectively eliminate fluorescence of different depths by modulating the signal. 

When illumination patterns are sequentially phase-shifted by 2π/3, (I1, I2 and I3), I0 and IS can be 

de-convolved according to Eq. 4-2 and Eq. 4-3, respectively: 

The peak-to-trough distance of the excitation pattern is equivalent to fixed source-detector 

separation of diffuse optical imaging24,25, allowing for selective imaging of the desired 

fluorescence signal.26 Therefore, the non-depth dependent signal coming from the tumor (IC), can 

be isolated by subtracting of the unwanted plane of the shallow signal (IS) from total fluorescence 

signal (I0).  Because the I0 obtained in conventional planar fluorescence imaging contains both the 

unwanted background fluorescence (IS), along with the tumor signal (IC), the tumor to background 

ratio is reduced. Extracting the IC signal from the total I0 signal more effectively isolates the tumor 

fluorescence. 

Herein we investigated fluorescent molecular imaging for identifying tumor location and 

boundaries of a mouse model of solitary extramedullary plasmacytoma (SEP). SEP is a 

malignancy that originates from plasma cells, which most commonly occurs in the head and neck 

region, and expresses high levels of the α4β1 integrin receptor.15,27 We compared structured 

 𝐼0 = 𝐼𝑆 + 𝐼𝐶   Eq. 4-1 

 𝐼0 = (𝐼1 + 𝐼2 + 𝐼3)/3  Eq. 4-2 

 𝐼𝑆 =
√2

3
√(𝐼1 − 𝐼2)2 + (𝐼2 − 𝐼3)2 + (𝐼3 − 𝐼1)2  Eq. 4-3 
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illumination fluorescence molecular imaging (SIFMI) with conventional, uniform illumination 

planar fluorescence reflectance imaging (PFRI), planar fluorescence imaging normalized by 

reflectance (Normalized)28, and diffuse optical spectroscopy imaging (DOSI)29. Spatial-frequency 

domain imaging (SFDI) using structured illumination has previously demonstrated improved 

contrast over conventional planar illumination imaging for improving spatial resolution in 

phantoms26 and tissues22, but this was the first application of structured illumination for in vivo 

tumor-specific fluorescence contrast enhancement.  We demonstrated that SIFMI, in combination 

with tumor-selective fluorescent molecular probes, enhanced contrast to better identify tumors and 

tumor boundaries in vivo. 

 

4.2 Methods 

4.2.1 Illumination Pattern Generation 

Structured illumination patterns were projected by digital micromirror device (DMD)-

based projector (DLP Lightcrafter 4500, Texas Instruments) using only the red light emitting diode 

(LED) (624 ± 18 nm) for fluorescence excitation of the fluorescent molecular probe, LLP2A-Cy5 

(peak λex/λem = 657/676 nm)27. A NIR-sensitive complementary metal oxide sensor (CMOS) 

camera (Firefly MV FMVU-03MTM-CS, Point Grey Research, Canada) captured images after 

excitation light was blocked by optical bandpass filter (720 ± 20 nm, 720AF20, Omega Optical, 

Brattleboro, VT). The projector was positioned such that the offset projection uniformly 

illuminated the imaging platform over the camera field of view (Figure 4-1a). Pattern projection 

and image acquisition were controlled by customized MATLAB (The Mathworks, Inc., Natick, 

MA) code.30 Premade 8-bit grayscale sinusoidal fringe pattern images, each offset by 2π/3, were 

projected onto the subject using the red channel of the projector (Figure 4-1b). Images were 
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acquired and as 16-bit tagged image file format (TIFF) for each pattern, followed by full-field 

illumination and no illumination (dark) captures. This routine was repeated with neutral density 

emission filter in place of bandpass filter for illumination reference. Initial studies were performed 

using silicone-based phantoms with optical properties similar to biological tissues and fluorescent 

inclusions.31 These studies indicated that fluorescence contrast enhancement was maximized when 

using a low frequency sinusoidal pattern of 0.66 cm-1, which was subsequently used for all in vivo 

animal studies.  

 

 

Figure 4-1: (a) Design of SIFMI imaging system including DLP projector providing patterned 

excitaion and CMOS camera for fluorescence detection. (b) Excitation patterns (3) projected onto 

subject for optical sectioning of superficial and deep fluorescence. Figure courtesy of Dr. Walter 

Akers. 

 

4.2.2 Animal Model Development 

All animal studies were conducted according to protocols approved by the Washington 

University Animal Studies Committee. Human multiple myeloma (U266) tumor xenografts were 

grown (Charles River Laboratories, Wilmington, MA) by subcutaneous injection of 1 million cells 

in the right flank of 8-week old male NCR nude mice (n = 2).  
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4.2.3 Fluorescence Imaging 

When tumors were 1 cm in maximum diameter, mice were anesthetized with isoflurane 

(2% v/v in 100% O2) and injected with 2.5 nmol LLP2A-Cy5 in 0.1 mL 4% dimethylsulfoxide 

(DMSO) in sterile water via lateral tail vein. LLP2A-Cy5 accumulates in tumors expressing α4β1 

integrin and has absorption and emission spectra suitable for our custom developed imaging 

system.27 Eighteen hours post-injection, mice were anesthetized and placed prone on the imaging 

platform of the SIFMI system (Figure 4-1a). Image processing and analysis were performed using 

NIH ImageJ and MATLAB. Imaging was also performed using the Optix MX3 time-domain DOSI 

system (λex/λem = 670/695 nm) in single point source-detector setup with raster scanning (3 mm 

separation).25  

We chose an animal model of SEP for this proof-of-concept study as this cancer presents 

clinically in regions where preservation of healthy tissue is necessary and expresses a marker that 

can be targeted for molecular imaging.32,33 We intentionally positioned the tumors underneath the 

skin to demonstrate the performance of various fluorescent imaging techniques when the tumor 

was not directly visible by the operator.  

 

4.3 Results 

4.3.1 Image De-convolution 

Summation of the three phase-shifted fluorescence images using Eq. 4-2 resulted in I0 

(Figure 4-2a), which was equivalent to planar fluorescence images acquired with uniform 

illumination. These I0 images contained both tumor and background fluorescence, showing high 

signal throughout the mouse body with highest signal from the subcutaneous xenograft on the right 

flank. High signal was also present from the stomach and intestines, presumably from dietary 
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sources. Superficial signals were isolated by demodulation of phase-shifted images with 

frequency-dependent characteristics according to Eq. 4-3, yielding the surface components in IS 

(Figure 4-2b). Further image analysis indicated true surface fluorescence signal was equal to twice 

the values in IS and subtraction of 2*IS improved tumor isolation and reduced background 

fluorescence, correlating with ex vivo fluorescence measurements (Figure 4-2c). The linear 

artifacts present in IS and passed through processing to IC can be minimized by further optimization 

of projected excitation patterns.22 

 

 

Figure 4-2: Demonstration of SIFMI process with subcutaneous tumor xenograft model and NIR 

fluorescent molecular probe with high affinity for multiple myeloma cancer cells in solid tumor 

(arrow). (a) Planar fluorescence uniform illumination equivalent image (I0) reconstructed using 

the sum of the projected light patterns (Eq. 4-2). (b) Surface signal image (IS) from the modulated 

signals (Eq. 4-3). (c) Subsurface, diffuse signal (IC) according to a modified Eq. 4-1. Figure 

courtesy of Dr. Walter Akers. 

 

4.3.2 Gradient-Based Algorithm 

For comparison of SIFMI to other in vivo fluorescence imaging techniques, region-of-

interest (ROI) analysis was performed for data acquired using uniform illumination PFRI, 

fluorescence/reflectance normalization, and DOSI. The normalization of PFRI was performed 

using the ratio of fluorescence to excitation.28 We first compared the fluorescence intensity spatial 
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distributions obtained using the various methods (Figure 4-3a). PFRI tumor imaging resulted in 

the highest signal emitted from within the tumor with a gradual reduction until the signal was that 

of the background fluorescence. The normalized image resulted in a reduction in bleed-through 

reflectance, however there was still significant background signal from the non-tumor regions. The 

DOSI image showed the fluorescence localized to the tumor, with background fluorescence limited 

to the scattered light traveling to the tissue adjoining the tumor. The SIFMI approach resulted in 

high signal from the tumor, and a striped artifact pattern from incomplete modulated signal 

subtraction. When the fluorescence intensity for all images were compared (Figure 4-3c), using 

the cross section shown in Figure 4-3b, it was apparent that the SIFMI approach had the highest 

signal from within the tumor as compared to the signal on either side of the tumor.  
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Figure 4-3: (a) Fluorescence signal intensity for the same mouse imaged using planar imaging, 

fluorescence/reflectance imaging, diffuse imaging, and structured illumination. (b) Example of 

ROI analyzed, with yellow line indicating the origin for the values plotted in (c) and (d). (c) Signal 

intensity plot from non-tumor region (background), through tumor region, then back to non-tumor 

region. (d) Absolute value of the gradient of intensity plotted along the line selected. (e) Signal 

intensity quantified for the tumor region and the non-tumor region. (f) Tumor-to-background ratio 

calculated using the signal intensity. (g) Absolute value of the gradient of intensity visualized over 

the ROI for the different imaging methods. 

 

We then calculated the tumor to background ratios by selecting ten points from the center 

of the tumor, and ten points from outside of the tumor, but still within the ROI and on the mouse 

surface. The quantitative results of fluorescence intensity followed the initial visual inspection 
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with the PFRI and SIFMI having a high tumor signal (Figure 4-3e). SIFMI resulted in higher 

tumor contrast due to background subtraction, resulting in a five-fold higher tumor to background 

ratio than other full-field fluorescence imaging methods (Figure 4-3f).   

We further applied spatial gradient mapping to enhanced tumor boundary display.34 In 

doing so, we preserve the sensitivity of SIFMI, while still providing useful spatial feedback to the 

operator. The rate of the change in fluorescence intensity in space was quantified, and the absolute 

value of the gradient was compared for each method (Figure 4-3d). Spatial gradient maps were 

calculated in both the x- and y-directions, and the maximum absolute value of the intensity 

gradients chosen for each pixel. The tumor intensity gradient of the SIFMI image was much higher 

than other methods, providing well-defined boundaries of the tumor (Figure 4-3g).  

 

4.4 Discussion 

We demonstrated that structured illumination fluorescence molecular imaging (SIFMI) 

isolated subsurface fluorescence from subcutaneous tumor xenografts, eliminating background 

signals from reflected excitation light, auto-fluorescence, and nonspecific fluorescent reporter 

accumulation in overlying skin. SIFMI allowed for rapid optical sectioning which provided similar 

results to more time-consuming raster scanning35, line scanning36, and tomographic 

reconstruction35,37,38 methods. The use of striped patterns of different frequencies allowed for clear 

delineation between the tumor and the background fluorescence. In doing so, tumor contrast 

enhancement did not rely on arbitrary, user-defined thresholding13.  
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4.5 Conclusions 

SIFMI analysis using a gradient-based analysis method highlighted the tumor boundary 

without the need for a priori information. A key challenge in the translation of fluorescence-based 

imaging to clinical application has been removing background fluorescence. We demonstrated that 

structured illumination allowed for tumor boundary delineation without the need for thresholding 

out the background fluorescence. The next piece of valuable information to structurally 

characterize tumors is understanding the extent of tumor invasion. Tumor extent is often clinically 

classified based on penetration depth into the surrounding tissue. We next examined the research 

field of fluorescence depth imaging to determine appropriate techniques to accurately calculate 

tumor depth. 
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Chapter 5 :  

Fluorescence Depth Imaging 
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5.1 Introduction 

The attenuation of light in tissue results in more than just a decreased signal, it also causes 

a fundamental challenge when attempting to locate a light source within tissue at an unknown 

depth. A fluorescent inclusion of small size with a shallow depth will result in the same signal at 

the surface as a large inclusion at a greater depth. Additionally, tissues are by nature heterogeneous 

and cannot be easily modeled by fixed optical parameters. To further complicate the inverse 

problem, the fluorophore concentration and quantum efficiency also must be considered because 

they impact the fluorescence intensity observed at the tissue surface. The result of these unknowns 

is an ill-posed inverse problem where the number of unknowns is greater than the number of 

equations to represent the system. The ill-posed nature of the system renders depth estimation of 

a fluorescent signal in tissue complex.   

Many approaches have been investigated to solve the inverse problem. The approaches can 

be divided into categories that largely overlap with each other. Some examples include analytical 

methods, empirical methods, and combination approaches. Specific modalities utilize solving the 

diffusion equation using a priori information, spectral imaging, temporal imaging, diffuse optical 

tomography (DOT), fluorescence molecular tomography (FMT), and structured illumination 

imaging. Many of these approaches have been validated in tissue simulating phantoms, however 

few have been used in vivo.  

 

5.2 Depth Imaging: A Historical Overview 

Here we have summarized the various techniques to identify fluorescent inclusions in 

turbid media. We have focused on fluorescence guided techniques, but some absorption-based 
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techniques that could be modified to fluorescence were included where indicated. We divided the 

approaches into planar, tomographic, and hybrid imaging methods, and the light behavior 

representation into ballistic, diffuse, and empirical. Hybrid imaging techniques drew from both 

planar and tomographic imaging modalities. Empirical light modeling representations are based 

on observations of optical behavior rather than analytical solutions to ray diagrams, or solving the 

radiative transport equation. A summary of the classification system used to describe the 

techniques is shown in Table 5-1. 

 

Table 5-1: Overview of approaches used to estimate depth using fluorescence in a turbid media.  
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Diffuse Light  

Representation 

Empirical Light  

Representation 

Im
ag

in
g

 M
et

h
o

d
 

P
la

n
ar

 Optical Gate* Diffusion Equation Approximation Relative Fluorescence Intensity 

Two-Photon Random Walk Equation Approximation Temporal 

    Multi-Wavelength 

T
o

m
o

g
ra

p
h

ic
 

  

 

Diffuse Optical Tomography* 

  Fluorescence Molecular Tomography 

 

H
y

b
ri

d
 

 Dual Offset Detectors* 

Dual Offset Light Sources 

Frequency-Domain Phase Cancellation 

Masked Detection 

Structured Illumination 

* Methods using absorbance that could presumably be modified to use fluorescence. 

 

5.2.1 Summary of Approaches 

The purpose of our literature review was to provide a comprehensive overview of the field 

of fluorescence guided depth estimation. As part of our literature review we summarized each of 

the methods in Table 5-2. The maximum depth imaged to, along with the associated error, is listed 

where reported by the authors or inferred based on the figures in the original publication. Methods 
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based on absorbance have been noted, along with whether the method was applied in an imaging 

phantom or in tissue. 
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5.2.2 Analysis of Approaches 

Each method was associated with a tradeoff of the depth imaged to and the error associated 

with imaging at that depth. We have provided an overview of the accuracy and imaging depth for 

each modality in Figure 5-1. 

 

 

Figure 5-1: Overview of depth estimate vs. accuracy by imaging modality. Figure courtesy of Dr. 

Karla Bergonzi. 

 

To analyze the different methods, we plotted the error of a method against the depth imaged 

to for each study (Figure 5-2a). The best-fit line representing all methods is shown to demonstrate 

the average performance. Studies falling below and to the right of the curve exhibited more 
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accurate depth calculations than methods to the left and above the line. It is important to note that 

this analysis does not consider the robustness or versatility of the method. Because many of the 

methods were empirical in nature, there is the possibility that a study performed well under the 

conditions tested without defining the boundaries for method performance. Additionally, whether 

the method was used solely for depth estimation, or if an image was reconstructed using the depth 

information was not considered in this analysis. 

In Figure 5-2b we examined the overall depth for the estimates by method type. Note that 

this analysis is not necessarily indicative of the method overall, however it is indicative of the 

performance of the methods that reported depth values and were therefore included in this review. 

Not unexpectedly, approaches that were based on absorbance were capable of imaging to greater 

depths. This is because the quantum efficiency of the fluorescent probe is not a factor with 

absorbance, making it useful for deeper applications. For methods utilizing fluorescence for depth 

estimation, temporal-based, FMT, and analytical approaches achieved the deepest estimations. 

Figure 5-2c considers the imaging depth divided by the error, highlighting the methods capable 

of detecting fluorescence the deepest with the least amount of error. Temporal-based and hybrid 

imaging with offset detectors were the most accurate per depth, followed by FMT, dual-

wavelength imaging, and the analytical approaches. 
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Figure 5-2: (a) Error vs. depth for each of the studies where data were available. Studies based on 

absorbance are indicated (*), as well as studies conducted in tissue rather than an imaging phantom 

(**). (b) Overall depth imaged to for each approach. (c) Depth-to-error score for each approach.  

 

5.2.3 Conclusions 

The field of optical fluorescence imaging holds much promise for future medical 

applications and scientific innovations. Using non-ionizing light allows for safe, rapid, and low-

cost solutions to many medical imaging challenges. Although imaging with light in tissue is 

currently limited to a few centimeters in depth, having improved resolution in depth will only 

improve the field.  In reviewing the approaches mentioned herein, we found that the accuracy and 

precision of the methods varied, and there were tradeoffs depending on the type of method 

selected.  

When stratifying methods based on depth, the approaches can be divided into shallow (< 1 

mm), intermediate (1 – 10 mm), and deep (> 10 mm) tissue imaging. For shallow depths, where 

high resolution depth information is required, ballistic light methods such as two-photon imaging 

will produce the most detailed images. Intermediate depth information was best obtained using 

dual-wavelength imaging, the analytical approaches, and the hybrid approach using dual offset 

sources. The dual-wavelength approach had 0.6 mm accuracy at up to 10 mm depths with images 
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formed down to 5 mm. This approach may lend itself well to translational applications such as 

intraoperative imaging, because multiple wavelengths can be rapidly imaged without a complex 

setup. Deep tissue depth imaging was most accurately accomplished using temporal-based 

estimation and FMT imaging. Temporal estimation used point-source detection, and the time of 

flight of a photon, to estimate the depth to 16 mm with an accuracy of 1 mm. A strength of 

temporal-based depth estimation was the insensitivity to changes in fluorophore concentration, 

although the fiber-based method was not used to recreate an image. FMT achieved wide-field 

imaging to 1 mm accuracy at depths up to 12 mm when using estimates of tissue geometry and 

optical properties. DOT/FMT also has the advantage that it has already been used to image in vivo.  

In general, planar methods are advantageous because they are simple to implement, but 

inherent in their simplicity is the potential for greater error in depth estimation. Tomography is a 

more robust approach because it can account for solving the inverse problem computationally, 

however it comes with the tradeoff of increased complexity. Empirical approaches possess the 

simplicity of planar imaging; however, they rely on managing error through making mathematical 

assumptions to reduce the number of parameters that model the system. Hybrid planar-

tomographic techniques show promise in that they combine the simplicity of planar methods, with 

the situationally appropriate assumptions of empirical methods, and still harness the power of 

tomography.  

Many of the depth estimate methods we reviewed here may be bounded by certain 

unknown imaging conditions. These conditions could include unknowns about the tissue optical 

properties, variables between imaging systems, variation in fluorescent probe targeting of the 

tissue of interest, as well as many more factors. Because of these potential confounding factors, 

the superiority of a specific approach may depend on imaging need.  
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5.2.4 Perspectives 

To date, few fluorescence guided depth estimation methods have been translated into pre-

clinical or clinical applications. Choosing the proper method for a given application may be the 

best solution, as there may not be a “Holy Grail” to optical depth estimation for fluorescence 

imaging. For example, when the tissue parameters are expected to change greatly within the field 

of view, choosing a technique that is less impacted by the tissue optical parameters would be best 

suited. In other cases, the impact of the concentration of the fluorophore or the size of the inclusion 

may be the desired parameter to have the effects of unknown variability minimized. Further, by 

bounding an approach to a specific application, the true degree of depth estimation accuracy in a 

tissue type can be more precisely captured. Once an application and an approach have been 

selected, validation of the method is key to determine the robustness. 

Because many of the approaches use overlapping principles, one can foresee using different 

combinations of methods that minimize the error based on the application. For example, structured 

illumination could be used to obtain the tissue optical parameters that could in turn be used as input 

values for an analytical or hybrid approach. Temporal-based imaging fundamentals are already 

incorporated into methods such as FMT/DOT, so the combination of different approaches seems 

like the logical next step in the field.   

Overall the optimal solution for estimating the depth of a fluorescent inclusion in tissue 

remains elusive. The field shows great promise moving forward, with many techniques already 

developed to tackle this challenge. Identifying the relative strengths and weaknesses of each 

technique will allow for selecting the proper approach for each imaging situation. Identifying 
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specific translational applications, and then selecting the proper approach or combination of 

approaches, may prove to be the most suitable answer. 

 

5.3 Fluorescence-Reflectance Imaging 

From our analysis of the methods used to image fluorescence depth it was apparent that 

multiple sources of input data would be necessary for an accurate depth estimation method. Planar 

methods using empirical data were most accurate when there were multiple-sources, multiple-

detectors, or multiple-wavelengths present. Swartling et al used a multi-wavelength approach to 

calculate the depth for a point-like fluorescence source, then Kolste et al expanded this to depth 

estimation using planar imaging 39,40. We first investigated depth estimation using a fluorescence-

reflectance method. This method was a simplified dual-wavelength imaging approach, where the 

fluorescence image was considered one wavelength, and the reflectance image was considered a 

different wavelength. By taking the natural log of the intensities at both distinct wavelengths, the 

depth was estimated. We added our fluorescence gradient approach to automatically define the 

tumor ROIs for analysis.   

One important distinction to highlight is that there are multiple different depths that can be 

referenced when using the term “depth”, each with their own implications and clinical importance. 

The sub-surface depth (dss) represents the distance of a fluorescent inclusion beneath the surface 

(Figure 5-3). The total depth (dtotal) represents the depth of the fluorescent inclusion from the 

surface. The object depth (dobj) can be obtained by subtracting dss from dtotal. In this study we 

obtained dtotal using NIR light and fluorescence-reflectance imaging. 
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Figure 5-3: Diagram of a fluorescent inclusion in tissue covered by layers of tissue. dss represents 

the distance of a fluorescent inclusion beneath the surface. dtotal represents the depth of the 

fluorescent inclusion from the surface, and dobj = dtotal from dss. 

 

5.3.2 Methods 

After injecting LS301, we took fluorescence (Figure 5-4a) and reflectance (Figure 5-4b) 

images of our mice, and defined tumor vs. non-tumor using the same gradient-based approach that 

we used to obtain the tumor volume. For pixels defined as tumor, we divided the fluorescence 

signal by the reflectance signal, and then took the natural log of the ratio. This method required 

knowledge of the tissue optical parameters at the wavelengths of interest. We estimated these 

values using a previously developed model for tissue property estimation as a function of 

wavelength41.  

The fluorescence wavelength was 810 (λ2), and the reflectance wavelength was the 

excitation light wavelength of 790 nm (λ1). The following equations were used to calculate the 

depth as a function of the natural log of the ratio of the intensity at the two wavelengths.  

  ln(𝛤) = (
1

𝛿𝜆2 −
1

𝛿𝜆1) × 𝐷 + ln (
Α𝜆2

Α𝜆1)     Eq. 5-1 
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Α =  
1

3(𝜇𝑎+𝜇𝑠
′)

        Eq. 5-2 

𝛿 =  √
Α

𝜇𝑎
        Eq. 5-3 

ln(𝛤) = 𝑚 × 𝐷 + 𝑏       Eq. 5-4 

𝐷 =  
ln(𝛤)−𝑏

𝑚
        Eq. 5-5 

 

 

Where Г was the ratio of fluorescence intensity, δ was the penetration depth, A was the diffusivity 

based on the optical properties at each wavelength (λ1 and λ2), and D was the depth. The general 

form of Eq. 5-4 can be rearranged and solved for depth using Eq. 5-5. The slope and y-intercept 

were calculated as m and b, respectively.  

The input tissue optical parameters for Eq. 5-2 and Eq. 5-3, µα and µ’S, were estimated at 

our wavelengths of interest (790 and 810 nm) from a model developed by Jacques et al 41. Using 

this model, we assumed the fraction of melanin as 3.8% for mice (average for a light skinned adult 

human) and the model predicted µα 790 = 5.867, µα 810 = 5.208, µ’S 790 = 14.142, µ’S 810 = 12.941. 

When these values were used in Eq. 5-1 through Eq. 5-4, m = -1.927 and b = 0.098. We used these 

parameters to solve for depth pixel-by-pixel using Eq. 5-5.  

 

5.3.3 Results 

We found that the depth estimation method was very sensitive to the parameters that 

dictated the y-intercept value of the curve fit, which were in turn impacted by the optical 

parameters selected. To stabilize the depth estimation output, we calculated the difference in depth 

between the maximum and minimum depth values within the tumor region and recorded this value 
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as the estimated depth (Figure 5-4c). Saturated pixels were excluded from the analysis, and tumors 

that returned no depth values were represented as negative values in the plot. The method did not 

return values in two tumors (M1 left flank and M5 left shoulder) due to saturation, and one tumor 

(M3 left shoulder) due to inadequate fluorescence signal. The estimated tumor depths were 

compared to the caliper measured tumor depths in Figure 5-4d. The red line shows the ideal case 

of correlation between the method estimates and the measured depths, and the black line shows 

the curve fit of the actual correlation. While there was some difference between the estimated 

result and the idealized values, the average deviation from the caliper measurement was ±1.244 

mm. 

 

Figure 5-4: a) Fluorescence image of LS301 in a SCC-12 skin cancer model. b) Reflectance image 

of the same mouse in (a). c) Estimated tumor depth using the natural log of the ratio of the 

fluorescence divided by the reflectance image. d) Estimated depth using the fluorescence-

reflectance vs. the measured depth. Red line showing the ideal case of correlation between the 

measured and estimated, and the black line showing the actual correlation.  
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5.4 Dual-Wavelength Imaging 

Once we determined that fluorescence-reflectance imaging could be correlated with total 

depth, we sought to estimate the sub-surface depth using a related dual-wavelength approach. To 

calculate dss, we developed a custom fluorescent probe to clearly identify the two fluorescent 

signals at different wavelengths. This allowed us to gain greater control over the wavelengths 

imaged by having distinct excitation and emission wavelengths, and this greater control translated 

into increased depth resolution in our calculation. Our fluorescent probe consisted of two 

fluorophores conjugated together in a 1:1 molar ratio. In adopting this method, we demonstrated 

the feasibility of dual-wavelength imaging for both vessel depth determination and tumor sub-

surface depth characterization.  

Vessel sub-surface depth determination is important for intricate applications such as 

determining the distance from a vessel during complex dissection procedures and in tumor 

angiogenesis evaluation. Tumor sub-surface depth determination is important for determining 

margins in the z-direction during intraoperative imaging. Surgeons attempt to preserve a negative 

margin around a tumor. By understanding the distance between the exposed tissue and the tumor 

capsule, margins can be more effectively determined. Our method demonstrated a platform for 

dual-wavelength imaging using fluorescent probes specifically designed to resolve the sub-surface 

depth in tissue. 
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5.4.2 Methods 

5.4.2.1 Imaging Agents  

The dual-wavelength imaging agent LS903 (Figure 5-5a) was synthesized using cypate42 

and fluorescein isothiocyanate (FITC, Sigma). The FITC portion of the probe was used to produce 

green fluorescence, and the cypate portion of the probe to produce near infrared (NIR) 

fluorescence. A rigid polypropline linker consisting of 6 prolines (~2.28 nm) was used to flank the 

two dyes in order to increase the distance and minimize the probability of energy transfer43. LS904 

was synthesized by conjugating m(PEG)2000 amine (Laysan Bio, Inc) to the free carboxyl group 

on cypate in LS903. This was done to increase the enhanced permeation and retention tumor effect 

of the probe in vivo.  

 

Figure 5-5: Molecular structure (a), absorption spectra (b), and emission spectra at excitation 

wavelength 475 nm (c) and 720 nm (d) for dual emission probe LS903. All spectra were taken in 

a solution of 1% bovine serum albumin in PBS, pH 7.4. Figure courtesy of Dr. Dolonchampa Maji. 
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The compounds were diluted in PBS, pH 7.4 with 1% bovine serum albumin milliQ water 

to simulate in vivo conditions. Absorption spectra were measured on a DU 640 spectrophotometer 

(Beckman-Coulter, Brea, CA). Fluorescence emission spectra were recorded on a FluoroLog 3 

spectrofluorometer (Horiba Jobin Yvon, Edison, NJ) using 475 nm/490-900 nm and 720 nm/735-

900 nm as excitation/emission wavelength with 5 nm slits for FITC and cypate respectively.  

The absorption spectra of LS903 shows the existence of both the cypate and FITC moieties 

(Figure 5-5b). When excited at 475 nm, FITC emission can be seen as well as a relatively faint 

cypate signal around 800 nm indicating existence of energy transfer (Figure 5-5c). Cypate 

emission can be seen when excited at 720 nm (Figure 5-5d). The presence of two distinct 

fluorescent peaks allows for the imaging at dual-wavelengths to calculate the relative signal change 

as a function of depth.  

5.4.2.2 In Vitro Imaging  

All dyes were prepared in a 1% BSA solution prior to in vitro imaging. In vitro imaging 

was conducted using LS903 obscured by various materials layered on top. Our initial study was 

using lunchmeat (turkey breast, Budding) 0.65 mm thick to obscure a 32 μM LS903 sample in an 

Eppendorf tube. To obtain higher depth resolution we moved to silicone sheets 0.254 mm thick, 

and plastic sheets 0.13 mm thick, (Mc. Master-Carr, Elmhurst, IL). Simulated vessels were created 

using polyurethane tubing 0.015” ID x 0.033” OD (Braintree Scientific, Braintree, MA), and 

LS903 was imaged at two different concentrations (25 and 50 μM) for vessel studies. All dual-

wavelength imaging was conducted using the Optix MX3 system (ART Advanced Research 

Technologies, Montreal, CA) with excitation and emission wavelengths at 480/535 nm for the 

green channel, and 785/810 nm for the NIR channel. Normalized fluorescence was used for dual-
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wavelength image analysis, with the fluorescence signal normalized by the excitation power for 

each pixel.   

5.4.2.3 In Vivo Imaging  

Balb/c mice were injected with 106 4T1 murine breast carcinoma cells on the flanks and 

the resulting subcutaneous orthotropic tumors were allowed to grow until they were approximately 

10 mm in diameter. Mice were shaved prior to injection and imaging. Tumor fluorescence imaging 

was conducted using the Optix for dual-wavelength analysis, and the Pearl small animal imaging 

system (Licor, Lincoln, NE) for NIR-specific analysis. For intra-tumor injections (n = 3), LS903 

was prepared in a 1% MSA solution in PBS, for a final dye concentration of 60 μM in 20 μL of 

solution per tumor. For intravenous injections (n = 3) LS904 was prepared in a 1% MSA solution 

in PBS, for a final dye concentration of 60 μM in 100 μL of solution per mouse. Animals were 

imaged both before and after injection for intra-tumor injections, and at 0, 2, and 4, hours post 

injection for intravenous injections. The maximum in vivo contrast was detected at 2 hours post 

injection, so the 2-hour images were used for depth analysis. All studies were conducted in 

compliance with the Washington University Animal Welfare Committee’s requirements for the 

care and use of laboratory animals in research. 

 

5.4.3 Results 

When describing tumor depth there are multiple depths that are of clinical significance. In 

the case of intraoperative imaging, the distance from the edge of the tumor to the edge of the 

healthy tissue is important in margin determination in the vertical direction. This distance is 

analogous to the sub surface depth (dss) when delineating the tumor margin in the z-direction 

(Figure 5-6a), or locating the depth of a fluorescent vessel under a tissue surface. There is also a 
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depth of the tumor itself (dobj), and the overall depth of the tumor from the surface of the tissue 

(dtotal). The dtotal depth is important in tumor staging for malignancies that invade deeper structures. 

For our analysis we quantified the signal from dual-wavelengths as a function of depth to 

determine the dss for the application of in vivo tumor margin estimation, and in vitro simulated 

vessel depth determination.  

5.4.3.1 In Vitro Depth Imaging  

We obscured a solution of LS903 in a 1.5 ml Eppendorf tube under an increasing number 

of lunchmeat slices to represent increasing depth of a fluorescent inclusion below the surface. 

Figure 5-6b shows the NIR signal (cypate) was visible at greater depths than the signal in the 

green channel (FITC). We plotted the signal for each channel vs. depth (Figure 5-6c). The natural 

log of the ratio was plotted as a function of depth (Figure 5-6d), and the linear equation of the 

relationship was obtained (slope = 3.44, y-int = -0.27). 

 

Figure 5-6: a) Diagram showing depth configuration of fluorescent inclusion overlaid by a 

medium (lunchmeat, silicone, plastic, or skin). The layers represent the depth layers used for in 

vitro testing, the absolute number of layers varied depending on the test. b) Images in both the 

cypate and FITC channels (rows) of an Eppendorf tube obscured by increasing layers of 
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lunchmeat. No overlying lunchmeat in the left column, 1 layer of overlying lunchmeat in the 

middle column, and 2 layers of overlying lunchmeat in the right column. c) Fluorescence signal 

vs. depth curve for the fluorescent ROI for LS903. d) Natural log of the ratio of cypate-to-FITC 

for LS903.  

 

We simulated a vessel running beneath a layer of tissue by using silicone as our tissue 

phantom and polyurethane tubing as our vessel. LS903 was flowed through the vessel at varying 

concentrations and curves for the natural log of the ratios were generated (slope = 2.08, y-int = 

0.43; slope = 2.10, y-int = 0.37). Next, we tested the performance of our method using a different 

material of unknown depth to obscure our vessel and imaged at both wavelengths (Figure 5-7a). 

The predicted depth values for the vessel were mapped in Figure 5-7b by using the ratio-curves 

previously generated. The average estimated depth was 0.40 mm and the measured depth was 0.52 

mm.  

Varying the optical properties, by changing the overlying material, impacted our depth 

estimate (Figure 5-7c). Materials that attenuated light more produced a higher slope value than 

materials that attenuated light less. Ideally this slope would be predictable prior to estimating the 

depth. We quantified the difference in accuracy of our depth estimates using average parameters 

from different materials and specific parameters using the same material (Figure 5-7d). There was 

a significant difference when using the different values (p < 0.001), thus indicating the importance 

of calibration studies with the same material that the depth estimate will be performed on. To 

translate this approach to in vivo imaging, we needed to generate a curve fit equation using the 

same material that we planned to image in. To accomplish this, we layered mouse skin at varying 

depths to obtain our tissue-specific curve (slope = 3.08, y-int = 0.05) (Figure 5-7e). 
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Figure 5-7: a) Dual-wavelength images of the fluorescent vessel under layers of plastic with 

unknown depth and optical properties. b) Depth map of estimated depth of vessel below the 

surface. c) Natural log of the ratio of dual signals vs. measured depth for different overlying 

materials and concentrations showing differing slopes depending on the medium. d) Comparison 

of the method accuracy for estimating depth in when using the average slope parameters and the 

specific slope parameter for a given medium. e) Calibration curve using the fluorescent vessel 

under ex vivo mouse skin to determine the curve fit parameters for skin. 

 

5.4.3.2 In Vivo Tumor Depth Estimation 

For in vivo depth estimation, we injected LS903 directly into 4T1 mouse flank tumors. M1 

was injected bilaterally, and M2 was only injected in the left flank tumor. The two mice were 

imaged using a NIR-specific imaging system, and a dual-wavelength imaging system. The NIR-

specific imaging system shows the fluorescence distribution of LS903 in the mice (Figure 5-8b 

and Figure 5-8c). The dual-wavelength imaging system shows the fluorescence in the tumors in 

both the cypate and FITC channels (Figure 5-8d to Figure 5-8f). The relative tumor signals were 

calculated in Figure 5-8g, and in both channels the treated tumors had higher fluorescence signal 

than the untreated control tumor (M2-RF). 



65 

 

 

Figure 5-8: a) Bright field image of 4T1 cells injected for xenograft model. NIR image of LS903 

distribution using the cypate channel for b) M1 and c) M2. Dual-wavelength images of the tumor 

ROI in the cypate channel (top row) and FITC channel (bottom row) for column (d) M1-left flank, 

(e) M1-right flank, and (f) M2-left flank. g) Quantification of the in vivo tumor ROI signals for the 

cypate channel (top) and FITC channel (bottom). 

 

To estimate the depth of the fluorescence in the tumors, regions of interest (ROIs) were 

generated that included only the tumor in both the cypate (Figure 5-9a) and FITC channels 

(Figure 5-9b). The image from the cypate image was thresholded to create the tumor ROI. This 

ROI was then applied to the FITC channel, and the auto-fluorescence was subtracted by using a 

pre-injection image. The ratio of the two wavelengths was used to create a map of the tumor depth 

for each of the tumors (Figure 5-9c).  

The depth values for each pixel were plotted in Figure 5-9d showing the distribution 

throughout the ROI. The tumor was then excised and prepared for histological analysis. The cypate 

and FITC channels were imaged, and areas of co-localization were analyzed (Figure 5-9e). The 

apparent outline of the co-localized fluorescence region was determined by visual analysis, then 
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10 measurements from this outline of the co-localized area to the surface were taken. The average 

measured tumor sub-surface depths were 1.31 ± 0.442 mm, 1.07 ± 0.187 mm, and 1.42 ± 0.182 

mm, and the average estimated depths were 0.972 ± 0.308 mm, 1.11 ± 0.428 mm, 1.21 ± 0.492 

mm, respectively (Figure 5-9f).  

 

Figure 5-9: In vivo tumor images used for post processing. a) Cypate images (top row), and b) 

FITC images (bottom row) of the tumor region. The FITC image has the pre-injected auto-

fluorescence subtracted from the tumor ROI. c) Depth estimate maps for each of the tumors. d) 

Pixel-by-pixel depth estimates for each tumor ROI. e) Representative tumor histology (M2-LF) 

showing cypate fluorescence (top left), FITC fluorescence (bottom left), overlay of both channels 

(top right), and bright field image (bottom right). f) Comparison of average measured depth vs. 

average estimated depth for each tumor. 

 

To evaluate if our dye could be used to estimate depth when administered systemically, we 

conjugated PEG2000 to LS903 to obtain LS904. The signals were measured in both channels as a 

function of depth and the natural log of the ratios for the native and PEGylated forms of the probe 

were comparable. A 4T1 tumor bearing mouse was injected via the tail vein with LS904 and then 



67 

 

imaged using the NIR-specific and dual-wavelength imaging systems. The kidney was likely not 

visible in the FITC channel because it was deeper in the tissue than the green light could penetrate. 

The cypate image shows that LS904 was present in the tumor region, as well as at the 

injection site in the tail, and in the kidneys when the mouse was viewed from the dorsal orientation 

(Figure 5-10a). The dual-wavelength images show that there was signal present in the tumor ROI 

in both channels (Figure 5-10b and Figure 5-10c). The bio-distribution shows the compound was 

primarily in the tumor, as well as the kidney and liver (clearance organs) (Figure 5-10d). The 

signals from each organ were quantified in (Figure 5-10e). The ex vivo signals were measured in 

both channels for both a control mouse tumor and the treated mouse tumors (Figure 5-10f), and 

the signals were quantified in Figure 5-10g. 

 

Figure 5-10: a) NIR image of LS904 distribution using the cypate channel. Dual-wavelength 

images of the tumor ROI in the (b) cypate, and (c) FITC channel. d) Cypate ex vivo bio-distribution 

showing organ distribution of the dye, with (e) quantification. f) Ex vivo tumor images of a mouse 

that was not injected with dye (left) and injected with LS904 (right). g) Quantification of the ex 

vivo image signals for cypate and FITC. 
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Depth maps were created for three tumors using the dual-wavelength images shown in 

Figure 5-10. Figure 5-11a shows the cypate images with the FITC images of the tumor ROIs in 

Figure 5-11b. Depth maps were created using our dual-wavelength images and are shown in 

Figure 5-11c. Figure 5-11d shows a pixel-by-pixel representation of the depth estimates, and 

Figure 5-11e shows the dual-wavelength histological analysis used for validation. The average 

measured depth values vs. the average estimated depth values for each of the tumors are shown in 

Figure 5-11f. The measured tumor sub-surface depths were 1.28 ± 0.168 mm, and 1.50 ± 0.394 

mm, and the estimated depths were 1.46 ± 0.314 mm, and 1.60 ± 0.409 mm, respectively (Figure 

5-11e).  

 

Figure 5-11: In vivo tumor images used for post processing. a) Cypate images (top row), and (b) 

FITC images (bottom row) of the tumor region. The FITC image has the pre-injected auto-

fluorescence subtracted from the tumor ROI. c) Depth estimate maps for each of the tumors. d) 

Pixel-by-pixel depth estimates for each tumor ROI. e) Representative tumor histology (T2) 
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showing cypate fluorescence (top left), FITC fluorescence (bottom left), overlay of both channels 

(top right), and bright field image (bottom right). f) Comparison of average measured depth vs. 

average estimated depth for each tumor. 

 

5.4.4 Discussion 

We outlined a method for determining the sub-surface depth of a fluorescent inclusion 

obscured by a scattering medium for the applications of depth determination of blood vessels and 

tumors. Using a monomolecular dual-wavelength probe eliminated the unknown of the 

concentration of the dye, as both dyes were present in equal molar quantities. As such, the ratio of 

the signal obtained from each was predictable and used to calculate depth. Because our green light 

signal was attenuated rapidly by the tissue, we were only able to apply this technique to determine 

the sub-surface depth when the fluorescent inclusion was near the surface. To accomplish deeper 

tissue imaging, a fluorescent probe could be developed that uses two different NIR dyes conjugated 

together to take advantage of the NIR optical window. Deeper tissue imaging would allow for the 

expansion of this method into translational and clinical applications.  

The dual-wavelength approach for sub-surface depth estimation was impacted by tissue 

optical properties, so with the a priori knowledge of the type of tissue imaging through, the 

approach could be applied in a feed-forward manner for translational imaging. Our method 

involved a preliminary calibration study to correlate the expected signal at measured depths for 

the medium that we would image through. Others in the field have developed methods for 

estimating tissue optical properties including parameterized mathematical models44 and in vivo 

spatial-frequency domain imaging45. By combining these techniques with a dual-wavelength 

probe, accurate depth resolved tissue imaging may be achievable in many different tissue types. 
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An advantage of using an optical probe over auto-fluorescence spectral data alone, is that 

dyes also can be readily targeted to specific biologic structures using cellular receptors. The 

specificity of optical imaging allows for flexibility in the approach for different clinical uses. The 

simplicity of real-time planar optical imaging is advantageous for applications such as 

intraoperative imaging and screening procedures. In the context of intraoperative imaging, 

understanding the sub-surface depth of a tumor may decrease the rate of positive margins in the z-

direction during tumor resection. Further, once a gross pathological specimen is removed from the 

body, real-time margin assessment could be performed via imaging prior to histological 

evaluation.  

5.4.5 Conclusions 

In the previous section we demonstrated the feasibility of the fluorescence-reflectance 

method to determine the overall depth of the signal (dtotal). Here we demonstrated the feasibility of 

using a dual-wavelength custom developed fluorescent probe to determine the sub-surface depth 

(dss) of structures in tissue. The dual-wavelength method utilized LS903 with a green-emitting, 

and a NIR-emitting portion. Because there was a NIR portion of the LS903, the fluorescence-

reflectance method could also be implemented using the same probe. The future combination of 

these methods would allow for a full understanding of the depth of an object beneath the surface 

for margin determination, and the depth of penetration of the object for extent evaluation. 

We demonstrated methods to determine the tumor boundary, tumor total depth, and tumor 

sub-surface depth using fluorescence as a guide. Through combining these techniques, a tumor 

could be identified, then structurally evaluated to understand the depth and extent. Utilizing these 

methods will allow for the translation of tumor evaluation from a pre-clinical model, where many 

parameters are known, to a clinical application with additional unknowns.  
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We have now described static fluorescence imaging to both identify, and structurally 

evaluate, a tumor in tissue. Next, we will focus on dynamic fluorescence imaging for tumor 

evaluation. We will use fluorophore perfusion to extract tumor structure, then we will identify and 

characterize moving fluorescent tumor cells in the circulation.  
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Chapter 6 :  

Perfusion Based Fluorescence Imaging for 

the Identification of Multifocal Orthotopic 

Breast Cancer Tumors in vivo 
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6.1 Introduction 

Integral to the success of any imaging modality is the ability to generate contrast between 

the structure of interest and the surrounding tissue. In the field of optical imaging, contrast is 

primarily generated due to the accumulation of a dye, or changes in the absorbance or fluorescence 

of a dye. Each method has advantages and disadvantages depending on the imaging scenario and 

the desired output information. Accumulation of a dye is appropriate when there is a targeting 

moiety available for the structure of interest that is both sensitive and specific. Nonspecific binding 

can confound the result, and the accumulation of the dye often takes time on the order of hours 

post administration. Changes in absorbance or fluorescence can be achieved via activatable probes 

that change their chemical structure in the presence of an outside factor such as an enzyme. The 

time course may be rapid in this case; however, depending on the specificity of the enzyme, 

contrast may be difficult to obtain. Inherent in both approaches is the lack of additional structural 

information available when evaluating a tumor using fluorescence.  

Static fluorescence imaging is often unable to delineate multiple structures of different 

tissue types due to the inability to simultaneously generate adequate fluorescence contrast in 

multiple tissue types. Dynamic contrast enhanced small animal imaging (DyCE) involves taking a 

time-series of images to understand the interaction of a fluorescent dye with tissue46. It relies on 

the time changes of a fluorescent molecular probe in vivo based on perfusion, circulation, dye 

kinetics, molecular interactions, and additional parameters. DyCE allows for the generation of 

spatiotemporal fluorescence images in a short amount of time while achieving imaging contrast, 

and without relying on dye targeting or activation47. Because the differentiation of structures is 

based on the dye kinetics, different tissue types can be analyzed using the same dye all at the same 
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time. DyCE has been used to investigate many applications including: vascular disease models48, 

brain tumor hemisphere identification49, and anti-angiogenic therapy monitoring50. Near infrared 

(NIR) perfusion based imaging has been extended from preclinical to clinical uses, highlighting 

the translatability of the approach51.      

For our dynamic imaging studies, we used a basis function approach with least-squares 

fitting to analyze our perfusion NIR images. Previous work suggested that using a basis function 

approach for data analysis would provide increased sensitivity and specificity for structural 

analysis as compared to a principal component analysis approach46,47. We chose dyes within the 

NIR optical window, as opposed to visible dyes, to allow for maximum light tissue penetration for 

sub-surface structural delineation. Even within the NIR optical window, dye properties could be 

varied such that their in vivo kinetics highlighted different structures. Harnessing this versatility 

allowed the method to be tailored to obtain optimal contrast based on the structures of interest 

while still achieving adequate contrast and maintaining short imaging times. Most studies 

previously used indocyanine green (ICG) to conduct perfusion imaging, however we used a 

cyanine-based dye. We demonstrated our approach to identify tumor pathology in vivo by 

identifying multifocal tumors when only the primary tumor location was known. Simultaneous 

imaging of the surrounding non-tumor structures was executed, and the sensitivity and specificity 

of perfusion-based imaging was evaluated. We demonstrated our approach in multifocal breast 

cancer tumors, for the eventual translational application of real-time intraoperative guidance. 
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6.2 Methods 

6.2.1 Animal Model Development 

Female athymic nude mice were used for all imaging studies. The HT1080 (human 

fibrosarcoma) mouse model was created by injecting 5 x 106 cells into the flank of the mouse. The 

orthotopic 4T1-Luc (murine mammary cancer) mouse models were created by injecting 0.1 x 106 

cells into the mammary fat pads bilaterally. The HT1080 tumors grew for 3 weeks prior to imaging, 

and the 4T1-Luc tumors grew for 2 weeks prior to imaging. Imaging was conducted under 

anesthesia using 2.5% isoflurane in oxygen.  Animals were sacrificed after imaging, and the 4T1-

Luc tumors were harvested for histology. All studies were conducted in compliance with the 

Washington University Animal Welfare Committee’s requirements for the care and use of 

laboratory animals in research. 

6.2.2 Perfusion Imaging 

Perfusion imaging studies were conducted following the general setup outlined by Hillman 

et al., with a dorsal or ventral view, and both orthogonal side views visible47. A cooled CCD 

camera (ORCA-ER C4742-80, Hamamatsu, JP), with an 830±10 nm BP filter (ThorLabs, NJ), was 

used for detection. Imaging was conducted at a frame rate of 1.3 frames/sec, with a 400 msec 

exposure time, and the f-stop set to 2.0. Excitation was achieved using a wide-field LED 

illumination source consisting of 16 mounted IR high power single chip LEDs (Roithner 

LaserTechnik, AU). Peak illumination at 760 nm, with power output of 0.6 mW/cm2.  

The NIR fluorescent dyes cypate and LS288 were synthesized in our laboratory, as 

previously reported. Cypate and LS288 possess hydrophobic and hydrophilic properties, 

respectively. Using spectrophotometry, the peak emission of cypate was 809 nm and the peak 
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emission of LS288 was 770 nm. We selected an excitation and emission wavelength that would 

minimize reflected light in our imaging, while at the same time capturing sufficient fluorescent 

light to detect changes over time. Our BP filter allowed light from 820 nm to 840 nm to pass with 

high efficiency. The filter range selected was higher than the peak wavelengths of our dyes, 

however the emission spectra were sufficiently broad such that satisfactory fluorescence was 

visible through the filter for imaging. In selecting a slightly higher BP filter window, we eliminated 

all reflected light from our 760 nm light source.  

For imaging studies, each dye was mixed to a concentration of 100 μM in PBS with 20% 

DMSO, and 100 μL of total volume was injected into the mouse using tail vein catheters. The 

catheters were constructed of 0.015 in. ID x 0.033 in. OD polyurethane tubing (PU-033, SAI 

Infusion Technologies) and 29-gauge needles. Because of the extended length of the catheters, we 

accounted for the dead-space within the catheter (50 μL) when the total volume of dye was 

calculated. 

6.2.3 Bioluminescence Imaging 

Bioluminescence imaging was conducted on the 4T1-Luc xenograft mice expressing 

luciferase to confirm bilateral tumor location. These mice received an intra-peritoneal injection of 

150 mg/kg D-luciferin in PBS (Gold Biotechnology, St. Louis, MO). Mice were then imaged at 

10 minutes post injection under isoflurane anesthesia with an IVIS Lumina (PerkinElmer, 

Waltham, MA; Living Image 3.2, 10 second exposures, bin8, FOV 12.5 cm, f/stop1, open filter). 

The total photon flux (photons/sec) was measured from software-defined contour regions of 

interest (ROIs) over the tumors using Living Image 2.6.  
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6.2.4 Immunohistochemistry 

Frozen tissue slides (5µm) were fixed by immersing slides in acetone for 5 minutes and air 

dried. Slides were rehydrated in DPBS and treated with dual endogenous enzyme block (Dako), 

TBS/0.1% Tween-20 (TBST) wash buffer, and 10 minutes of serum-free protein block (Dako). 

Rabbit anti-mouse CD31 antibody (D8V9E, Cell Signaling Technology) was used as primary 

antibody at 1:100 dilution. Following primary antibody incubation, slides were extensively washed 

in TBST. Anti-Rabbit EnVision+ System-HRP (Dako) used as the secondary antibody, followed 

by Liquid DAB+ (3,3'-Diaminobenzidine) Substrate system (Dako), both according to the 

manufacturer’s protocol. Nuclear hematoxylin counterstain was applied, followed by dehydration 

through 70% ethanol, 95% ethanol, 100% ethanol, and xylene. Slides were mounted with Cytoseal 

XYL (Thermo Scientific). For each experiment, all slides were stained in parallel, using identical 

staining conditions. 

6.2.5 Perfusion Algorithm Development 

Our method was developed as outlined by Hillman et al., then modified to meet the needs 

of the current application. For our study, images were obtained in grayscale in individual tiff files 

over the imaging time. The image files were read into MATLAB (Mathworks, Inc., MA), where 

they were combined into a stack of images. A single image was used to select the center point of 

the ROIs to obtain the basis functions from. These center points were termed seeds, and were 

selected by the operator. The surrounding ROI area could be altered by the user, with increased 

stability obtained with a larger ROI. Because the goal of the method was to allow the method to 

determine the similar pixels rather than have the user define this, a small ROI of 5 x 5 pixels was 

selected for analysis. The average fluorescence intensity value of the ROI was calculated for each 
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time point, and this time course of values was the representative basis function for that tissue type. 

This process was repeated until each tissue type of interest was identified in the field of view.  

Once each basis function was identified, the pixels in the field of view were analyzed using 

the nonnegative least-squares fit function in MATLAB (lsqnonneg). Each pixel was fit to each of 

the basis functions, and the degree of the fit for each basis function determined the extent of the 

color represented in each pixel. To generate the image, each pixel was assigned a color with the 

normalized percentage of the color shading matching the degree of fit to each basis function (more 

opaque coloring relates to a higher degree of fit). The DyCE method used normalized and 

background subtracted basis functions for the pixel time courses, however we did not see an 

improvement in our results by using these additional mathematic steps, so we utilized the raw 

fluorescence intensity for our analysis. Our perfusion-based algorithm was able to generate pixel-

based images that represented both spatial and temporal data.     

  

6.3 Results 

In order to determine the appropriate dye for perfusion-based tumor identification, we used 

an HT1080 flank tumor model as our test case and varied the dye. We started with cypate, a near-

infrared (NIR) dye that has been previously described. Figure 6-1a shows the in vivo imaging 

setup used to capture the dorsal and side views of the animal. Figure 6-1b shows the pixel 

fluorescence intensities for the basis functions for each tissue type. The in vivo kinetics of cypate 

were consistent with previous studies, with strong liver localization at short time points. As a result, 

other tissues exhibited decreasing fluorescence over time. Figure 6-1c shows the visual 

representation of the nonnegative least-squares fitting of each pixel to the appropriate basis 

function. Pixels with similar kinetics to the basis function were represented with the same color. 
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Differentiation between tissue types was apparent due to their differing characteristic perfusion 

kinetics.  

We next injected LS288, another NIR dye that has hydrophilic characteristics as opposed 

to the hydrophobic characteristics of cypate (Figure 6-1d). Previous work has shown that the 

hydrophilic nature of LS288 contributes to increased tissue permeation as compared to cypate54. 

Hydrophobic dyes, such as cypate, have a higher binding affinity to albumin and are therefore 

more readily removed from the circulation by the liver. Figure 6-1e shows the LS288 basis 

functions and Figure 6-1f shows the visual representation of the basis function curve fits. In the 

case of the LS288 basis functions, each of the different tissues exhibited increased differentiation 

as time progressed as opposed to cypate that exhibited decreased differentiation over time (with 

the exception of the liver). We determined that the increased differentiation between tissues with 

increasing time was advantageous for our method, so we moved forward using LS288 for future 

injections.  
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Figure 6-1: a) Imaging setup for perfusion imaging. Mirrors mounted at 45-degree angles on both 

sides of the mouse for additional views. Fluorescence image of cypate injected via the tail vein. b) 

Fluorescence intensity vs. time for cypate (organ specific basis functions). c) Visual representation 

of the pixel least-squares fit to the cypate basis functions. Each pixel is represented by the 

corresponding basis function color. The tumor located on the left flank is indicated by the arrow. 

d) Chemical structures for cypate and LS288. e) Fluorescence intensity vs. time for LS288. f) 

Visual representation of the pixel least-squares fit to the LS288 basis functions.  g) Dorsal view 

LS288 basis functions obtained when imaging in an enclosed box without external light. The skin 

signal was lower than in (e) when no external light was present. h) Dorsal view fit to the LS288 

basis functions. i) Area on the flank selected (asterisks) to confirm that the method does not give 

a tumor false positive when no tumor is present. j) Ventral view LS288 basis functions obtained 

when imaging in an enclosed box without external light. k) Ventral view fit to the LS288 basis 

functions. 
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Our next step was to optimize the method to reduce imaging artifact from motion and 

external light. We moved to a catheter-based injection, where the catheter was inserted into the tail 

vein, and the mouse was housed in an enclosed black box. The dye was injected into the tail vein 

without the need to open the box and expose the field of view to external light. In doing so, we 

were able to control the light such that only the fluorescence from the injected dye was visible. As 

expected, the shapes of the basis function curves for the kidney, liver, brain and tail (Figure 6-1g) 

were similar to the open box imaging. However, in this case the skin basis function curve had a 

lower signal relative to the other tissues. In this imaging method, the term skin is used to represent 

any tissue that does not have recognizable organs or structures beneath it. Likely skin represents a 

combination of skin, subcutaneous tissue, and fat. Because skin is highly reflective, any 

uncontrolled external light may impact the result more so than the other organs. Figure 6-1h shows 

the visual representation of the nonnegative least-squares fitting of each pixel to the appropriate 

basis function.  

To make sure that the method was not automatically associating the flank location with a 

tumor, a region on the flank was selected in a similar position to where a tumor would be if present 

and pseudo-colored pink. For this run, the mouse did not have a tumor, so the expected result 

would be for the skin region and tumor region to be similar. Figure 6-1i shows that the least-

squares fit associated with the artificial tumor selection was consistent with the skin, as should 

have been the case. From this we were confident that the method was assigning pixels to a tumor 

basis function only when a tumor was present. In Figure 6-1j and Figure 6-1k we imaged the 

ventral side of the mouse to visualize additional organs.  
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Once we determined that a tail vein catheter and eliminating light variability produced 

superior results, we investigated if the method could identify multifocal tumors. We used a 4T1-

Luc orthotopic model, with bilateral mammary fat pad tumors. One mouse had tumors visible from 

the dorsal side, and the other had tumors visible from the ventral side (Figure 6-2Error! Reference 

source not found.a). When the mice were imaged using planar fluorescence intensity alone, 

without considering perfusion time, there was minimal contrast outlining the various tissue types 

and organs (Figure 6-2Error! Reference source not found.b). We confirmed the location of the 

tumor cells via bioluminescence imaging (BLI) in Figure 6-2c. Because we were interested in 

testing the ability of the method to locate a secondary tumor when the primary tumor location was 

known, we used the BLI image to determine our primary tumor for analysis. The tumor with the 

higher BLI signal was considered the primary tumor, and the tumor with the lower BLI signal was 

considered the secondary tumor.  

For tumor visualization using perfusion imaging, the primary tumor was selected on one 

side of the mouse, and all other tissue with similar kinetics was identified by the method. In both 

mice the secondary tumor on the contralateral side of the mouse was identified when only the 

primary tumor was selected (Figure 6-2d). The perfusion method largely identified tumors in the 

same locations as the BLI, with the exception of regions of the dorsal view that showed a false 

positive on the back, and the ventral view that identified an area on the periphery of the secondary 

tumor. Because this method is based on perfusion kinetics, it is possible that the regions identified 

as tumor had similar vascular kinetics although they did not contain the actual tumor cells.  
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Figure 6-2: Multifocal tumor identification. (a) Bright field image of a 4T1-Luc orthotopic mouse 

model with bilateral tumors. Mouse from a dorsal view (top row), and a different mouse from a 

ventral view (bottom row).  (b) Static fluorescence image of LS288 showing limited organ 

contrast. (c) BLI of tumor signal localizing the tumors and identifying the primary and secondary 

tumor based on the BLI signal. (d) Visual representation of the pixel least-squares fit to the basis 

functions. Tumor locations indicated by arrows, and primary tumor location selected for the basis 

function indicated by the asterisks. The images in (e) and (f) show the seed locations selected for 

the individual basis functions.  

 

Figure 6-3a shows two large blood vessels feeding the surgically reflected primary tumor. 

Because the vessels were large, and the overlying tumor tissue was less thick around the periphery, 

this may explain the propensity of the method for increased localization of the tumor to the 

periphery compared to the BLI tumor locations. To examine the ability of the method to detect the 
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presence of a tumor, we investigated the tumor basis functions for each of the three LS288 

injections as well as the cypate injection (Figure 6-3b). We found that the LS288 injections 

exhibited similar tumor perfusion kinetics, and that these basis functions differed from that of 

cypate. Because the perfusion kinetics were similar for a given dye in tumor tissue, this method 

may be amenable to using a predictive basis function curve to identify tumors. Using a predictive 

curve may allow for use of the method without a priori information from the image itself.  

Histological evaluation of the tissue using CD-31 staining showed that there was increased 

vasculature in the tumor as compared to the surrounding muscle (Figure 6-3c). The connective 

tissue directly surrounding the tumor showed the greatest degree of vascular density, consistent 

with our gross pathological findings (Figure 6-3d). 

 

 

Figure 6-3: Tumor vasculature and tissue evaluation. (a) Image showing the primary tumor from 

the ventral view with two large vessels feeding the tumor located on the periphery (arrows). (b) 
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Tumor perfusion time courses for cypate and LS288 across different injection runs. (c) CD-31 

staining (brown) of tumor showing increased vascularity in the connective tissue (CT) directly 

surrounding the tumor cells (T), and underlying the skin (S). Scale bar = 500 μm. (d) Muscle (M) 

tissue sample showing lower CD-31 staining than the tumor or subcutaneous tissue surrounding 

the tumor. Scale bar = 500 μm.    

 

To further investigate the sensitivity and specificity of the method, we created a mask to 

represent the tumor region and considered this as our ground truth Figure 6-4.  

 

 

Figure 6-4: a) Bright field image of a mouse with bilateral 4T1-Luc orthotopic tumors. b) Seed 

locations selected for perfusion analysis. c) Pixels that fit the tumor basis function colored cyan. 

d) Masks were outlined manually in ImageJ to correspond with the tumor locations visible in (b). 

e) Overlay of mask region and method-generated tumor regions. Overlay was used for the 

sensitivity and specificity calculations.   

 

The perfusion results for the tumors were compared to the mask as is visually demonstrated 

in Figure 6-5a. The sensitivity and specificity were calculated on a pixel-by-pixel basis, and were 

plotted for the cypate injection and the three LS288 injections (Figure 6-5b and Figure 6-5c). A 
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receiver operating characteristic (ROC) curve was generated and shows that the sensitivity and 

specificity of the method were superior to the random guess line (Figure 6-5d).  

To investigate the effect of imaging time post injection on sensitivity and specificity, we 

considered the case of the mouse imaged from the ventral view and plotted the sensitivity and 

specificity as we varied the length of video analyzed (Figure 6-5e). In this case, the sensitivity 

was high at short imaging times (< 13 sec post injection), then fell for intermediate times (24 – 90 

sec post injection), then rose again at longer imaging times (90 – 120 sec post injection). The 

specificity increased with increased imaging time until it reached an asymptote at around 24 

seconds post injection. A ROC curve was created to simultaneously consider sensitivity and 

specificity, and three distinct groupings were apparent (Figure 6-5f). Group A had high sensitivity 

and was imaged for the least amount of time; however, this group also had the highest false positive 

rate. Group B balanced the sensitivity and specificity, and consisted of primarily of longer imaging 

times. Interestingly, Group C had the lowest sensitivity and was of the moderate imaging times, 

suggesting that there is a period of time post injection that the dye kinetics are similar in different 

tissues limiting differentiation. Figure 6-5g shows the basis functions for tumor and skin. 

Sensitivity at early time points may be driven by the slope difference between the curves, with 

tumors having a more rapid early uptake of dye. Specificity appears to be driven more by the 

magnitude of the difference between the curves.   
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Figure 6-5: a) Mask used to calculate sensitivity and specificity. b) Sensitivity and c) specificity 

for a single cypate run and three LS288 runs (1), (2), (3). d) Receiver operating characteristic curve 

for each run. e) Sensitivity and specificity vs. analysis interval time post injection for LS288 run 

3. f) Receiver operating characteristic curve for different analysis intervals post injection for 

LS288 run 3. g) Tumor and skin fluorescence vs. time for LS288 run 3. Injection at t = 9 sec (red 

arrow).Group A = 0 – 13 sec post injection, Group B = 13 – 24 sec and 90 – 120 sec post injection, 

and Group C = 24 – 90 sec post injection. 

 

6.4 Discussion 

We demonstrated a perfusion-based imaging method for tumor identification in vivo. The 

perfusion method was previously published for organ identification47,49, however we expanded the 

approach to include the identification of multifocal tumor pathology while still observing non-

tumor structural information. Static fluorescence imaging of targeted fluorescent dyes can give 

tumor contrast; however, this often takes a number of hours until the dye accumulates in the tumor. 

By simply imaging a few minutes of dye perfusion, tumors were identified more rapidly than with 

targeted dye accumulation. The sensitivity and specificity of the approach showed that it was 

effective in localizing tumor pathology when in a controlled light environment. 



88 

 

Tumors often exhibit increased angiogenesis, with larger blood vessels, as compared to 

healthy tissue 55,56, making a perfusion based approach useful to aid in tumor detection. Because 

tumors have different vascularity compared to other tissues and organs, the introduction of a 

fluorescent dye gave insight into the tumor perfusion kinetics which may be useful in better 

understanding tumor physiology. Our studies showed that using the same dye produced similar 

tumor perfusion kinetics regardless of the tumor model imaged. Perhaps there are other fluorescent 

dyes that have kinetics that vary as a function of specific tumor types. Factors such as the 

hydrophobicity of the dye can be considered to obtain the optimal dye for imaging the tissue of 

interest. 

We demonstrated our method in both a single tumor model and a bilateral tumor model. In 

the single tumor model, a 5 x 5 pixel area was selected, and all of the other similar pixels were 

clustered and represented as such. Previous work selected the entire organ within a ROI to obtain 

the basis functions. Our approach utilized a seed-based approach where only a small number of 

pixels were needed to determine the proper basis function. Because the method relied on a seed-

based approach for obtaining the basis functions, there was inherent variability in the method. 

Optimization of this method would allow for an automated approach to determining the proper 

seed locations to generate the most representative basis functions. The multifocal bilateral tumor 

model is of significance because by selecting only the primary tumor, we were able to extract the 

secondary tumor locations.  

Identifying multifocal tumors using perfusion imaging holds promise in the field of 

translational optical imaging, because it allows a clinician to rapidly check for additional pathology 

at the point of care. We selected an orthotopic breast cancer model to test our theory for secondary 

tumor identification, because breast cancers can often be multifocal in nature57,58. Routine breast 
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cancer screening is conducted using mammography, and then if a tumor is suspected additional 

imaging modalities such as ultrasound and MRI are employed59,60. Mammography is a widely used 

screening modality, however it has limited sensitivity in identifying multifocal lesions making it 

less than ideal for preoperative planning61. MRI is more sensitive than mammography and is used 

in preoperative planning62, however it is largely unable to provide real-time image guidance during 

a procedure. The location of tumor foci impacts surgical and clinical planning, so effective 

identification of all potential tumor foci before or at the time of a procedure is important. 

Positive tumor margins are present in 20-70% of breast cancer surgeries, with multifocal 

tumors increasing the risk of a positive margin63,64. Previous studies have shown that intraoperative 

evaluation during tumor resection procedures can reduce the risk of leaving a positive margin, and 

therefore residual disease65. Optical imaging allows for real-time imaging, and tumor foci 

identification, making it useful for intraoperative guidance and tissue evaluation18. Once within a 

procedure, a surgeon could use fluorescence guidance to reduce the probability of leaving an 

unidentified residual tumor. Fluorescence imaging has already been employed intraoperatively to 

identify sentinel lymph nodes and visualize primary tumors11,66. Our perfusion-based imaging 

approach, when combined with intraoperative imaging, could reduce the chance of leaving small 

tumor loci post a surgical procedure. Presumably perfusion-based imaging could be applied to 

additional multifocal tumor models for pathology identification, such as for tumor metastases or 

to determine the extent of local-regional invasion.  

  

6.5 Conclusions 

We used dynamic fluorescence to identify tumor structure, in the next chapter we will use 

dynamic fluorescence imaging to identify and characterize circulating tumor cells.   
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All-near-infrared planar fluorescence 

imaging platform for identification and size 

stratification of circulating tumor entities 
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7.1 Introduction 

In the recent past, rare biomarkers in blood circulation have demonstrated great clinical 

potential in the diagnosis and management of killer diseases such as cancer.  Circulating tumor 

cells (CTCs), CTC clusters, and tumor derived endothelial cell clusters have been detected in many 

forms of aggressive cancer.67-72 These entities have each been suggested as potential cancer 

associated biomarkers, such as for early diagnosis of cancer metastasis. Interestingly, the 

metastatic potential of such entities depends greatly on constitution in terms of number and/or type 

of cells in the circulating cluster. For example, current data indicates that multicellular aggregates 

of tumor cells (two or more tumor cells) may show a much greater potential (up to 50 times) to 

cause distant organ metastatic than single CTCs.73,74. Alongside single CTCs, CTC clusters have 

been investigated for early diagnosis of cancer metastasis, monitoring therapy responses, and as 

prognosis indicators. Given this, in order to accurately use such cancer associated biomarkers it 

becomes necessary to not only reliably detect CTCs, but to also determine the size and other 

properties of these circulating entities in addition to their frequency of appearance. 

There are various techniques available to detect and potentially classify CTCs based of 

size, however many of these involve taking a blood sample from a patient and analyzing it ex vivo. 

In vivo methods offer several advantages over ex vivo methods. Ex vivo methods rely on liquid 

biopsies that have limited sensitivity to detect rare CTCs in a patient blood sample (1-10 CTCs per 

10 mL peripheral blood) due to the small volume of blood examined (~0.2% of total volume).75 

This limitation is complicated further by the extremely rare population of circulating entities in 

blood amidst an overwhelming number of normal hematopoietic cells. Ex vivo methods also are 

limited to peripheral sampling and may overlook certain CTC rich regions of the circulation. 

Additionally, ex vivo monitoring does not allow for longitudinal real-time surveillance.  
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Fluorescence based in vivo detection/imaging approaches circumvent the limitations of ex 

vivo methods and include imaging methods such as confocal and diffuse optics flow cytometry.76-

78 Many of these imaging systems use bulky and expensive hardware components such as 

photomultiplier tubes and complicated light collection optics.12 None of these system operate 

completely (both excitation and emission) in the near infrared (NIR) wavelength range which is 

advantageous for in vivo imaging. NIR excitation and emission because of its greater tissue 

penetration than visible light and minimal interference from tissue auto-fluorescence. NIR light 

allows for imaging/detection of fluorescence clusters in blood with greater sensitivity and may 

allow applications in deeply seated and larger blood vessels. 

In this study, we designed and validated an approach that allows for all near infrared (NIR) 

planar fluorescence imaging (Excitation/Emission – 784 nm/ >808 nm) for imaging and size 

stratification of rapidly circulating fluorescent entities in blood. To achieve NIR contract in 

circulating cells, we treated cancer cells ex vivo with a NIR fluorescent molecular probe (LS301) 

which has been shown to target cancers in vivo in mice with high specificity.79  Our planar imaging 

system uses CCD sensor based imaging, which can be easily integrated into a miniaturized set-up 

as needed. We developed an algorithm for size stratification of entities flowing through a field of 

view, and demonstrated the performance of our algorithm by accurately detecting the size of 

fluorescent microbeads flowing through a capillary mimicking blood flow. We then employed the 

same algorithm for the detection of a mixture of tumor cells and clusters in blood. Finally, we 

demonstrated longitudinal imaging of fluorescently labelled cells in vivo. In vivo imaging 

highlights that this approach could be executed by monitoring a patient peripherally or via an 

implant in a CTC rich region of the circulation. This affordable and compact technology has 
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several advantages including the ability for rapid miniaturization for the translation and 

implementation of this technique.  

 

7.2 Methods 

7.2.1 Cell Culture and Treatment 

All experiments were performed using murine breast carcinoma cell line (4T1-Luc-GFP). 

The cells were cultured in DMEM supplemented with 10% fetal bovine serum and 1% Pen-Strep. 

For the cell experiments, the cells plated in culture plates in culture media with 40 μM LS301 and 

400 mg/L calcium chloride (to enhance probe internalization) and incubated for 6 h at (37˚C, 5% 

atmospheric CO2). Cells were washed and imaged using an epifluorescence microscope (Olympus 

BX51), λex/em = 775nm/810 nm LP. After the initial images were obtained, cells were treated 

with trypsin and re-suspended in either PBS or heparinized porcine blood. To obtain single cell 

rich suspensions, post trypsinization cells were pipetted (1mL pipette tip) gently ~20 times and 

filtered through a cell strainer (40 μM mesh size). In contrast, to obtain clusters rich suspension 

cells were incubated in trypsin for lesser time and exposed to minimal pipetting. 

7.2.2 In vitro Imaging 

In order to test our method of detecting CTCs, we developed an imaging setup consisting 

of a microscope and an excitation light source. The microsphere in water, tumor cell in media, or 

tumor cell in blood mixture was passed through a 0.015 in ID x 0.033 in OD polyurethane tube 

(PU-033, SAI Infusion Technologies) at a flow rate of 3 mm/sec. Imaging was conducted using a 

microscope (Leica MZ10F) at 80x magnification. Calibration imaging was conducted using 

Fluoresbrite® YG Microspheres (Polysciences, Inc.) with a 10 µm diameter because NIR 
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microspheres in a cellular diameter were not available. Excitation was provided via a 460 nm LED 

(ThorLabs), with a 515 nm LP filter, for microsphere imaging. Excitation light power was 

measured at 0.8 mW/cm2. NIR imaging was conducted using a 793 nm laser (BWT Beijing), set 

to a power output of 10 mW/cm2, and the emission light was filtered using an 808 nm LP filter. 

The in vitro imaging configuration is shown in Figure 7-1a. The microspheres were imaged using 

the microscope input light port instead of external illumination. Image files were recorded in video 

files using a NIR sensitive camera (Fluorvivo 1500 BG, INDEC Biosystems) with an exposure 

time of 100 msec. 

7.2.3 In vivo Imaging 

In vivo imaging was conducted using the same microscope as in vitro imaging, however 

the light configuration was modified (Figure 7-1b). Excitation was provided via the microscope 

light port using a 780 nm LED (ThorLabs), with an 808 nm LP filter. Excitation light power was 

measured at 7.3 mW/cm2. Internal thoracic artery imaging was conducted with an exposure time 

of 500 msec. 50 μL of PBS containing CTCs was injected into the left ventricle of a sacrificed 

mouse while the heart remained beating. Cells were imaged as they were pumped from the heart 

into the circulation (Figure 7-1c). 
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Figure 7-1: a) In vitro setup showing the optical configuration. An external light source was used 

to illuminate tubing containing CTCs in either PBS or blood. The image was magnified using the 

objective and recorded in video files using a NIR sensitive CCD. b) In vivo setup showing LED 

illumination through the microscope. c) View of in vivo imaging cavity showing the heart and 

thoracic artery. The yellow box highlights the area that was imaged. 

 

7.2.4 Algorithm to Distinguish CTCs from Cell Clusters 

We developed an image processing algorithm to analyze video recordings of circulating 

objects in our imaging setup. We developed our algorithm first using fluorescent tumor cells in 

media before moving to cells in blood and then in vivo imaging. The algorithm was validated using 

microspheres with known diameters. The algorithm analyzes the video files frame-by-frame with 

the user selecting a vertical line within the first frame (Figure 7-2a).  That vertical line is used 

frame-by-frame to generate intensity profiles along that line (Figure 7-2b). The user inputs a 

threshold value, above which any pixels are considered an object. Subsequent pixels along the line 

are followed until the values rise above and then fall below the threshold. The length of subsequent 
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pixels above threshold are the object height (h). The midpoint of the pixels above the threshold is 

recorded as the midpoint of a unique object. The same line is examined in the subsequent frame, 

and if the midpoint is within a certain distance of the first midpoint, it is considered the same 

object. The object is tracked until a frame is reached where an object with the same midpoint is 

absent, thus ending the object. 

The time for an object to completely pass through the vertical line is captured using the 

width in time (τ) as calculated using Eq. 1. Where fn is the number of frames, and fr is the frame 

rate. The velocity (v) is calculated by assuming that the distance the object is occupying in the y-

dimension is similar to the distance in the x-dimension, and then using Eq. 2. The object area (A) 

is calculated by multiplying the height by the physical width (w) in Eq. 3. The object physical 

width is a function of the velocity and time for the object to pass, so it is estimated using Eq. 4, 

which is substituted into Eq. 3, to derive Eq. 5. Eq. 5 is then used to calculate the relative object 

area. The term relative is applied in this case because the area is represented by a height multiplied 

by a width, using the simplifying assumption that the object is rectangular. However, even with 

this assumption, the relative sizes of single cells and cell clusters can be compared. 
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Figure 7-2: a) Single frame showing a CTC in media. b) Signal intensity along a vertical line for 

a single frame. c) Method for estimating the number of objects passing through the vertical line. 

d) Method for detecting the relative object velocity.  e) Method for calculating the relative object 

2D area. 
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7.3 Results 

7.3.1 Algorithm Validation 

Our algorithm was validated using fluorescent microspheres in media. We selected 

microspheres with diameters similar to that of our CTCs. Figure 7-3a shows a frame containing 

multiple microspheres, with the relative fluorescence intensities frame-by-frame (along the vertical 

line) in Figure 7-3b. The relative velocities of each object detected are shown in Figure 7-3c 

overlying the intensity map. The relative areas are represented visually as a function of time in 

Figure 7-3d, and the histogram of the calculated areas is shown in Figure 7-3e. The microspheres 

had a diameter of 10 µm, and using the algorithm area calculation method the idealized area would 

be 100 µm2 (assumes 2D square geometry). The algorithm histogram predicted object areas 

clustered around 100 µm2, thus confirming the accuracy of the algorithm. The detected object 

heights were output and plotted in Figure 7-3f, and they closely represent the microsphere 

diameter values, with a mean value of 10.81 ± 6.643 µm. Some of the cause of error may have 

been from multiple spheres passing at the same time, background fluorescence, and out of plane 

scattered light. 



99 

 

 

Figure 7-3: a) Circulating microspheres in media (yellow arrows). b) Microsphere signal intensity 

vs. time. c) Relative object velocity. Line of squares indicates the same object, and the length of 

the line of squares indicates the duration that the object took to pass through the vertical line. The 

color of the squares represents the relative velocity (red max and blue min). d) The relative object 

areas shown visually over time. e) Histogram of the distribution of object areas over the full time 

of imaging. f) Plot of individual microsphere diameters detected using the algorithm.   

 

7.3.2 CTCs in Media 

We then tested our detection system and post-processing algorithm by imaging CTCs in 

media. The cells were incubated in our fluorescent dye, and then imaged using NIR light. Figure 

7-4a to Figure 7-4c show the fluorescent tumor cells in culture. For the initial study the cells were 

harvested and re-suspended in media, for later studies they were re-suspended in blood as shown 

in Figure 7-4d to Figure 7-4f.  
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Figure 7-4: a) Bright field image showing cells in culture prior to re-suspension. b) NIR 

fluorescence image of labeled cells.  c) Overlay image showing correspondence of NIR signal with 

cellular location. d) Bright field image showing CTCs after resuspension in blood. e) NIR 

fluorescence image of cells in blood.  f) Overlay image showing the location of the fluorescence 

signal within the blood. 

 

The goal of our algorithm was to differentiate small individual CTCs from large CTC 

clusters. To accomplish this, we first suspended individual cells in media via vigorous pipetting 

during re-suspension, then we compared our findings to larger clusters with reduced pipetting. 

Figure 7-5a shows a video frame containing a fluorescent CTC passing through the field of view. 

Figure 7-5b is an intensity map of the vertical line across all of the video frames under analysis 

(sub-frames). The relative velocities for each object detected were represented by boxes overlying 

the intensity map (Figure 7-5c), and the relatives areas are represented in Figure 7-5d. The 

distribution of object areas observed within the sub-frames analyzed were displayed in a histogram 

(Figure 7-5e). The algorithm was able to detect 10 objects out of the 13 objects observed in the 

video for a sensitivity of 76.9%. Some objects were below the fluorescence intensity threshold and 

were not detectable. We then analyzed our video containing large clusters. In this video the clusters 
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were traveling faster at the beginning of the video, and then slower over time. This trend is 

reflected in the relative velocities reducing at later time points (Figure 7-5f). The relative areas 

were significantly larger than the previous video, as evident in Figure 7-5g and Figure 7-5h. 

Because the cells were moving very rapidly at the beginning of the video, it was not possible to 

discern the sensitivity of detection. Of the clusters that were detected the algorithm was able to 

detect a difference in size as compared to individual cells, with the clusters much larger than the 

individual CTCs.  

 

 

Figure 7-5: a) NIR image of CTC in media (yellow arrow). b) Relative velocity of each CTC 

detected. c) Relative area of each CTC detected. d) Histogram of the object areas for individual 

CTCs. e) NIR image of CTC clusters in media (yellow arrows). Red arrow indicates bubble that 

was not a CTC cluster. f) Relative velocity of each CTC cluster detected. g) Relative area of each 

CTC cluster detected. h) Histogram of the object areas for CTC clusters. 

 

7.3.3 CTCs in Blood 

Next, we imaged CTCs in blood to determine if our detection system was capable of 

detecting fluorescence in a scattering medium. The blood was opaque in appearance, and the red 

blood cells (RBCs) scattered our excitation light (Figure 7-6a). We were able to obtain video as 
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shown in Figure 7-6b, however individual changes in intensity due to CTCs were not as readily 

apparent as when imaging through media. Figure 7-6c shows the detected cells and velocities, and 

Figure 7-6d and Figure 7-6e show the areas of the CTCs detected. When we ran the post-

processing algorithm on our control groups of blood only, and non-fluorescent CTCs, the 

algorithm did not return any detected cells. Therefore, the algorithm was able to detect the presence 

of CTCs, although the relative areas cannot be verified visually do to the reduced contrast between 

the fluorescent cells and blood. 

 

Figure 7-6: a) Bright field image of CTCs in blood in tubing. b) NIR image of CTCs (not visible) 

in blood. c) Relative velocity of CTCs in blood as detected using the algorithm. d) Relative areas 

of CTCs in blood. e) Histogram of the object areas detected. 

 

7.3.4 CTCs in vivo 

Next, we imaged CTCs in vivo by injecting labeled cells into the left ventricle then imaging 

the CTCs in the circulation. Figure 7-7a shows a bright field image of the internal thoracic artery 

of a mouse. We first injected a NIR dye to visualize the vessel (Figure 7-7b). The NIR dye showed 

a local area of intensity (red arrow), however this object was not flowing with the circulation and 
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was present prior to injecting our CTCs, so it was not a CTC. We then injected our CTCs into the 

heart and imaged the downstream artery to visualize the movement through the circulation (Figure 

7-7c). A single CTC was visible as it passed through the field of view, and it was detected using 

our algorithm (Figure 7-7e and Figure 7-7f). The estimated object area was 113 μm2, supporting 

the detection of a single CTC rather than a cluster (Figure 7-7g). We next injected cell clusters 

into the heart and repeated our imaging and analysis (Figure 7-7h and Figure 7-7i). The algorithm 

detected the presence of multiple objects of larger areas than single CTCs, suggesting the presence 

of clusters (Figure 7-7j). 

 

 

Figure 7-7: a) Bright field image of internal thoracic artery. b) NIR dye injected into artery 

highlighting it with arterial borders outlined in blue. Static fluorescent object that was not a CTC 

(red arrow). c) NIR image of CTCs post intra-cardiac injection (yellow arrow). d) Enhanced NIR 

image to aid in visualization of CTC from c (yellow arrow). e)  Relative velocity of individual 

CTCs in vivo. f) Relative area of the individual CTC detected. g) Histogram of the object area for 

the CTC. h) Relative velocity of each CTC cluster detected. i) Relative area of each CTC cluster 

detected. j) Histogram of the object areas for CTC clusters. 
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7.4 Discussion 

We developed a detection scheme that allowed for the imaging and detection of CTC, and 

the differentiated the single CTCs from CTC clusters. Additionally, we validated our method and 

demonstrated the in vivo application. NIR light has advantages over visible light of reduced 

scattering in blood, increased imaging penetration depth, and decreased auto-fluorescence due to 

endogenous fluorophores. We chose to use a CCD for our detection device to allow for future 

translation of our technique. Because we use a simple CCD along with magnification and a light 

source, a device could be constructed that combines these elements for versatile imaging.  

One limitation of the technique was that the CTCs needed to emit a bright signal to be 

detectable in blood. We achieved this via incubation of cells with calcium ex vivo. Presumably, 

and in vivo labeling technique could be developed that allows for bright signal emission from cells, 

possibly using nanoparticle technology. Another limitation of the technology was that the 

threshold used to determine the presence of a CTC was determined at the time of image analysis. 

This was necessary because the light and location of detection would need to be consistent in order 

to set a consistent threshold. Achieving a consistent threshold would be achievable with the 

development of a stand-alone device with consistent lighting and imaging configurations. A stand-

alone device would be ideal for the versatile imaging of CTCs in different anatomical locations. 

Developing this technology could aid in the fight against cancer through the early detection and 

prevention of tumor metastases. Patients could be stratified based on size of CTC clusters and their 

therapy and surveillance programs could be tailored to match their individual prognosis. 

Our imaging method for CTC size stratification demonstrates that CTCs and CTC clusters 

can be detected and assessed in vivo using NIR fluorescence. We demonstrated that an algorithm 

could be used to classify moving fluorescent structures based on minimal input data. 
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Improvements in the miniaturization of the technology, and increasing the cellular fluorescence 

signal, would allow for the translation of this technology to improve cancer treatment for the 

numerous patients impacted each year. 

 

7.5 Conclusions 

We have now explored the structural characterization of primary tumors, the identification 

of secondary tumors, and the size stratification of circulating tumor cells. Each of these methods 

focuses on the diagnostic aspects of fluorescence imaging. In the next chapter we focus on tumor 

therapy; using light to treat disease.   
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Chapter 8 :  

Theranostic Molecular System Comprising a 

Photosensitizer and a Near Infrared 

Fluorescent Probe Enables Spatiotemporal 

Imaging and Treatment of Squamous Cell 

Carcinoma 
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8.1 Introduction 

Non-melanoma skin cancer (NMSC) is comprised of both squamous cell carcinoma (SCC) 

and basal cell carcinoma, and is the most common cancer worldwide impacting an estimated 2 to 

3 million people each year.   SCC accounts for approximately 20% of NMSC diagnosed, making 

it a considerable portion of all cancers. 80 Cutaneous SCC is caused by a malignant transformation 

of epidermal keratinocytes that leads to tumor formation, and has been linked to a number of risk 

factors including exposure to ultraviolet light, aging, light skin type, and chronic inflammation. 81-

85 Unlike basal cell carcinomas, SCCs have high metastatic potential, requiring the development 

of effective treatment strategies. 80 

Numerous treatment options are available for cutaneous SCC. However, large-scale 

clinical studies have yet to determine a superior treatment option. 86,87 One option for treating SCC 

is photodynamic therapy (PDT), where light is used to activate a photosensitizer (PS) that in turn 

induces cell death. Methyl-δ-aminolevulinic acid-PDT (MAL-PDT) is the most common form of 

PDT for NMSC. Although MAL-PDT can successfully treat 70 to 90% of NMSC, it has not been 

successful in treating invasive SCC cases. This unfavorable result is likely because MAL-PDT 

relies on the focal nature of lesions, as the PS is topically applied in suspicious regions. When 

invasion occurs in more advanced cases of SCC, the topical application of methyl-δ-

aminolevulinic acid becomes less practical because of the difficulty in identifying the exact tumor 

location.  

To overcome the limitations in delivering the PS to metastases and invasive portions of the 

tumor, several targeting methods have been used, such as: nanoparticle formulations, antibodies, 

and peptide ligands. 88-90 For visualization, most of these compounds rely on the fluorescence 
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produced by the PS, which tends to have low quantum yields, and therefore low signal. In addition, 

the fluorescence is the visible range which interferes with auto-fluorescence.  

Therefore, we developed a theranostic bioconjugate (LS797) which combines a peptide 

targeting ligand (cGRD) 79,91, an efficient PS (Ce6), and a NIR imaging molecule (cypate), to 

create a compound that addressed some of the challenges of clinical PDT. We used LS797 in a 

skin cancer model (SCC-12) to conduct PDT in vivo. 

 

8.2 Methods 

8.2.1 In vitro Cell Uptake  

Uptake assays were conducted using the human skin cancer cell line, SCC-12, and the 

murine fibroblast cell line, 3T3. Cells were cultured on an 8-well slide, (BD Biosciences, NJ, 

USA), with a 4:1 ratio of SCC-12 cells to fibroblasts. The fibroblasts were GFP-expressing. Cells 

were incubated with 1 μM of LS797 for 4 or 24 hours, washed with PBS and imaged. Confocal 

microscopy was performed using an FV1000 confocal microscope with a UPLanApo/IR 

60X/1.20W water immersion objective lens (Olympus, PA, USA) at 488 nm (GFP) or 785 nm 

(cypate) excitation laser, and fluorescence was detected at 550/50 nm (GFP), or 850 LP (cypate).  

8.2.2 In vitro Photodynamic Therapy  

SCC-12 cells were cultured in MatTek dishes (MatTek, MA, USA). Individual dishes were 

either left untreated, exposed to light at 35 mW/cm2, for 5, 15, or 30 minutes, incubated with LS797 

for 4 hours, or incubated with LS797 for 4 hours and then irradiated. After each treatment was 

completed, cells were incubated with 1 μM of the caspase-9 sensor, CaspaLux® 9-M2D2, 

(OncoImmunin, MD, USA) for 30 minutes, and imaged using a confocal microscope (details in 
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above) at 543 nm excitation, and 600/25 nm emission. The cultures were then grown for 3 days, 

after which they were stained with 0.5 μM of the cell death marker, EthD-1, for 45 minutes and 

imaged on the confocal at 543 nm excitation and 600/25 nm emission. 

8.2.3 Tumor Model Development 

All animal studies were performed in compliance with the Washington University Animal 

Study Committee’s requirements for the care and use of laboratory animals in research. Squamous 

cell carcinoma xenografts were initiated using SCC-12 by injecting approximately 2.5 x 106 cells 

into the bilateral shoulder and flank regions of 6-8 week old female athymic NCR-nu/nu mice (22 

– 25 g). The SCC-12 cells were injected into the intradermal compartment. Tumors were allowed 

to grow until they were visible and measurable. In some cases, the tumors did not graft, and these 

regions were not included in the study. The tumor volume was calculated by measuring the length 

and width of each tumor, and recorded as calculated 𝑉 = 𝐿𝑊2, where V, L, and W are the tumor 

volume, length, and width, respectively. 

8.2.4 In vivo and ex vivo Imaging  

LS797 was dissolved in 20% DMSO and diluted in 80% PBS to a final concentration of 

0.5 mg/kg dose for imaging, or a 6.8 mg/kg dose for therapy. All doses were administered via a 

100 μl tail vein injection. The corresponding Ce6 doses were 0.1 mg/kg and 2.0 mg/kg for imaging 

and therapy studies, respectively. 92,93 Fluorescent imaging was performed using the Pearl NIR 

fluorescence imaging system, ex/em 785/820 nm (LICOR Biosciences, NE, USA) before injection 

and up to 24 hours post injection. After 24 hours, the mice were euthanized and organs of interests 

were removed, placed on a petri dish, and imaged with the Pearl imager. The region of interest 

(ROI) analysis was performed with the Pearl imaging software. The mean fluorescence intensities 

were measured for each tissue type to assess the bio-distribution of each compound. 
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8.2.5 In vitro Photodynamic Therapy  

At 4, 8, and 24 hours after a 6.8 mg/kg injection of LS797, the treated tumors were 

irradiated for 30 minutes. Therapeutic light doses were administered using a 650 nm laser with a 

power output of 35 mW and a beam area of 1.0 cm2. For control mice, there was no injection of 

LS797 and a subset of the tumors was irradiated to obtain untreated controls and light only 

controls, respectively. For mice injected with LS797, a subset of the tumors was irradiated to obtain 

LS797 only controls and PDT (LS797 + light).  

8.2.6 Histological Analysis 

Excised tumor tissues were flash-frozen in OCT (Tissue Tek, CA, USA) and stored at –20 

oC. The tumors were sliced at a thickness of 10 μm (Cryocut 1800, IL, USA). 

Immunohistochemical staining of excised tumor and surrounding tissues was used for histologic 

validation of tissue types. Immunohistochemistry (IHC) was conducted using an immune-

peroxidase method. Primary antibody was diluted in DaVinci Green (BioCare, CA, USA) at the 

following dilutions: Ki-67 (Thermo Scientific, MA, USA) 1:400, CK-10 (Abcam, MA, USA) 

1:400, CK-8/18 (Abcam, MA, USA) 1:200, E-Cad (Abcam, MA, USA) 1:200. Anti-rabbit 

secondary antibody (Perkin-Elmer, MA, USA) was diluted in PBST at a dilution of 1:800, 

Streptavidin (Jackson Labs, PA, USA) in PBST at a dilution of 1:1600. A polymer method was 

used for p53 and CC3 staining with the following dilutions: p53 (Cell Signaling Technology, MA, 

USA) 1:100, and CC3 (Cell Signaling Technology, MA, USA) 1:10,000. Universal Polymer 

(Biocare, CA, USA) secondary antibody was diluted in PBST 1:4. All IHC was conducted by the 

Digestive Diseases Research Core Center – Advanced Imaging and Tissue Analysis Core 

(DDRCC-AITAC) at the Washington University School of Medicine, St. Louis, MO. Microscopy 

was performed with an Olympus BX51 upright microscope (Olympus America, PA, USA).  
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8.3 Results 

8.3.1 Skin Cancer Model Characterization 

We first sought to develop a cutaneous SCC model that would be appropriate for the 

assessment of PS accumulation in tumors and subsequent PDT. Chemical carcinogenesis animal 

models have previously been developed using a two-step approach of initiation and promotion. 

This method generates tumors on the skin after a progression from normal, to papilloma, to 

differentiated SCC, and then to poorly differentiated SCC. 94 Typically, this process occurs within 

20 to 50 weeks, with varying percentages of carcinoma formation. We investigated an orthotopic 

model in order to decrease the time to tumor development and increase the yield of tumors. An 

SCC-12 orthotopic model was first developed by culturing cells derived from cutaneous SCC 

biopsies and injected them into nude mice. 95  

We sub-dermally injected SCC-12 cells into the shoulders and flanks of nude mice, and 

were able to develop tumors within 14 days. These tumors grew in volume for over a month with 

a doubling rate of 9.45 ± 3.91 days, and progressed through different morphological states (Figure 

8-1a). The tumors initially appeared as small bumps, next they became erythemic with cystic 

spaces, and finally they became ulcerative with a central clearing. This final state resembled the 

gross appearance of cutaneous SCC in humans (Figure 8-1b). 96 

After establishing the growth characteristics, the cutaneous SCC-12 model was examined 

using immunohistochemistry (IHC) staining (Figure 8-1c, Figure 8-1d). The tumor was sectioned 

so that the epidermal and dermal layers were visible. Cytokeratin-10 (CK-10) is a type-1 keratin 

that is produced by keratinocytes and is typically located in the epidermis of normal skin. 

Mutations in the gene encoding CK-10 are linked to hyperproliferative disorders. 97 CK-10 was 

expressed in the epidermis of both the normal skin and the tumor. However, the tumor had 
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epidermal thickening and more extensive CK-10 expression. There were small regions of CK-10 

expression found throughout the dermis and within the tumor, but these dermal regions of CK-10 

expression were not present in healthy skin. Cytokeratin-8 and 18 (CK-8/18) are expressed by 

secretory epithelia, absent from non-secretory epithelia, and expressed by a range of malignant 

cells. CK-8/18 was absent from the normal skin, however it was found throughout the tumor 

section in both the glandular regions and the cellular tumor region. The tumor suppressor gene 

protein p53 expression is common in cutaneous SCC tumors that originate from ultraviolet DNA 

damage 80, and has been shown to be expressed in SCC at higher levels than normal skin. 5,98  p53 

was largely absent from the normal skin section and present in the tumor section. 99,100 E-Cadherin 

was the same between the skin and tumor, indicating that the intracellular epithelial junctions 

remained intact in our tumor model. Ki-67 is a marker of cell proliferation that is upregulated in 

cutaneous SCCs compared to normal skin. 99,100 Our model demonstrated increased Ki-67 staining 

as compared to the healthy skin. Cleaved caspase 3 (CC3) is a marker for cell apoptosis, which 

was present in the tumor section and largely absent from the skin. The presence of both Ki-67 and 

CC3 in the tumor indicated that there was increased cellular turnover.   
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Figure 8-1: Characterization of SCC-12 model formed through subdermal injections of SCC-12 

cells.  a) Morphologic growth characteristics of SCC-12 xenograft, b) Human SCC, image adapted 

from 96. c) SCC-12 IHC of tumor, and d) normal skin. Microscopy conducted at 10x magnification.  

 

 

8.3.2 LS797 Spectral Properties 

LS797 was synthesized through the conjugation of LS301 11 to Ce6. LS301 served as the 

tumor targeting and NIR imaging agent (cypate), while the Ce6 acted as the PS. The resulting 

LS797 bioconjugate contains the three characteristic absorption peaks of Ce6 at 400 nm, 500 nm 

and 650 nm, and the absorption peak for cypate at 780 nm. The emission peak of Ce6 was seen at 

660 nm when excited at 630 nm and the emission peak of cypate was seen at 800 nm when excited 

at 720 nm. Due to the minimal spectral overlap of the two fluorophores, there were no spectral 

changes in the integrated molecule compared to the fluorophores on their own.  

8.3.3 LS797 Targeting in vitro 

To determine the tumor targeting ability of LS797, GFP-expressing 3T3 fibroblasts and 

SCC-12 cells were co-cultured before adding LS797 to the cultures for 4 or 24 hours.  The mean 

LS797 fluorescence was greater in the SCC-12 cells compared to the fibroblasts, and the contrast 
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of signal from SCC-12 cells compared to fibroblasts increased over time, from 1.6 ± 0.3 at 4 hours 

to 2.8 ± 0.3 at 24 hours (Figure 8-2a).  

8.3.4 LS797 Targeting in vivo 

After determining that LS797 targeted tumor cells in vitro, we then moved to in vivo studies 

using an SCC-12 orthotopic model. An imaging dose of LS797 (0.5 mg/kg, 0.1 mg/kg Ce6) 

successfully identified tumors from the surrounding normal skin in each of the tumors imaged 

(Figure 8-2b), with an in vivo tumor to skin contrast of 1.5 ± 0.09 at 24 hours (Figure 8-2e). The 

kinetics of LS797 show that the compound was primarily localized to the tumors within 4 hours, 

and was retained after 24 hours.  Twenty-four hours after LS797 injection, the mice were sacrificed 

to obtain a biological distribution of the compound (Figure 8-2c). LS797 accumulated in the tumor 

and the major excretion organs (Figure 8-2d). Because the region of interest for the tumors was 

the skin, the signal from the excretion organs did not obscure visualization of the tumors. The ex 

vivo signal contrast between the tumor and skin was 4.6 ± 0.4. 

A therapeutic dose of LS797 (6.8 mg/kg,) was administered to elicit a dose response to 

PDT. The kinetics of the therapeutic dose mimicked those of the imaging dose, with initial entry 

into all tissues followed by localization in the tumor within 24 hours. The kinetics of LS797 at 

therapy dose were virtually the same as imaging dose, with the maximum tumor fluorescence value 

occurring at 4 hours, and a higher tumor to skin contrast value at 24 hours.  
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Figure 8-2: Targeting of LS797 in vitro and in vivo. a) Quantitative analysis of LS797 

internalization into co-cultures of SCC-12 cells and 3T3/GFP fibroblasts. Each point represents 

fluorescence in a single cell.  Representative images show LS797 (red) in SCC-12 cells and GFP 

(green) to distinguish the 3T3 fibroblasts. b) Bright field mouse image and NIR dorsal and ventral 

images at 24 hours post injection. Tumors (white arrows) apparent at 24 hours post injection. 

Fluorescence in the kidneys (black arrows), bladder (red arrow), and liver (blue arrow), show the 

renal and hepatic routes of excretion of the dye. c) Bio-distribution of a mouse injected with LS797. 

LS797 visible in tumors and excretion organs. d) In vivo and ex vivo tumor to skin contrast (n = 

4). Figure courtesy of Dr. Rebecca Gilson. 

 

8.3.5 LS797 Therapy in vitro 

Once the imaging efficacy of LS797 was demonstrated, its therapeutic efficacy was tested. 

SCC-12 cells were incubated with LS797 (30 μM) for 4 hours and then irradiated with light (35 

mW/cm2) for 5, 15, or 30 minutes to obtain total doses of, 10.5, 31.5, and 63 J/cm2, respectively. 

Caspase 9 activity indicates the activation of apoptotic pathways. Increased caspase 9 activation 

was seen in cells that were irradiated for 15 or 30 minutes. In contrast, only a baseline activation 

was seen in cells irradiated for 5 minutes (Figure 8-3a and Figure 8-3b). Three days after PDT, 

the cultures were stained with EthD-1 to visualize the dead cells remaining in the culture (Figure 
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8-3c and Figure 8-3d). EthD-1 stains the nuclei of dead cells. Control cell cultures showed sheets 

of cells with normal cell morphology and minimal EthD-1 staining, indicating cellular damage did 

not occur. The PDT cultures irradiated for 30 minutes showed high EthD-1 staining along with 

regions without intact cells. The PDT cultures irradiated for 15 minutes showed regions of 

morphologically healthy cells and regions of only debris. This variable regional morphology was 

supported by high levels of EthD-1 staining in some regions and low staining in others. The 15-

minute irradiation group also exhibited lower caspase 9 activation, which may explain the limited 

cell death. The cells irradiated for 5 minutes showed normal morphology. The caspase 9 activation 

in these cells was similar to the baseline activation seen in the control cells. Based on the three 

light power settings examined, these findings suggest that cell death occurred in a light-dose 

dependent manner, and that 63 J/cm2 was the minimum light power needed to achieve complete 

cell death in vitro. With lower light doses, caspase 9 activation was still observed, but it was not 

sufficient to cause apoptosis.  
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Figure 8-3: Photodynamic therapy in cells shows caspase 9 activation and subsequent cell death. 

SCC-12 were exposed to light, LS797 or both to determine the efficacy of PDT with LS797. a) 

Quantification of caspase 9 activation, 30 minutes after light delivery or at the corresponding time 

for cells that were not treated with light.  b) Representative images of caspase 9 activation for the 

PDT-treated cells at different light exposures. c) Three days after PDT or control treatment, cells 

were stained with EthD-1, imaged to determine to morphology and the cellular viability. d) Cell 

death only occurred in the condition where both light and LS797 were present as shown by the 

quantification of the fluorescence of EthD-1 per cell. Figure courtesy of Dr. Rebecca Gilson. 

 

8.3.6 LS797 Therapy in vivo 

For in vivo PDT, LS797 was administered via tail vein injection and a 650 nm laser was 

applied at 4, 8 and 24 hours post-injection. The tumors that were not undergoing light therapy were 

masked. This approach allowed us to delineate the effects of PDT on tumor growth from LS797 

treatment alone. The PDT setup consisted of an LED controller that modulated a 650 nm LED. 

The LED was used with a power output of 35 mW and a spot size of 1 cm2, giving a total power 

density of 35 mW/cm2. Each tumor received a total dose of 189 J/cm2 over a 24-hour period. 
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The tumor growth was tracked by measuring the length and width of each tumor, and 

recorded as a volume. The tumor growth analysis consisted of an average change in tumor growth 

as a function of the original size, allowing each tumor to serve as its own control. The 24 hours 

between injection and the final light treatment were considered day zero. Tumor volumes were 

measured for 6 days before and after day zero and were compared. An average change in tumor 

volume (ACTV) was calculated for each tumor using Eq. 8-1. 

 

ACTV = (Average(VD(1) to VD(6))- Average(VD(-6) to VD(-1)))/ Average(VD(-6) to VD(-1))        Eq. 8-1

   

Where day 0 is the day PDT occurred, VD(-1) is the tumor volume 1 day prior to PDT, VD(-6) is the 

tumor volume 6 days prior to PDT, VD(1) is 1 day post-PDT, and VD(6) is 6 days post PDT.  

The tumors treated with LS797 and light initially swelled with PDT, then scabbed and 

shrank in size over a few days, as is common in PDT. The data showed that the tumors treated 

with LS797 and light resulted in a lower growth rate (ACTV) as compared to other treatment 

groups (Figure 8-4a). When tumors within a single mouse were compared for LS797 only vs. 

LS797 with light, the PDT tumors were visibly altered by the therapy (Figure 8-4b). Although the 

tumors exposed to solely light had a reduction in growth rate, the decrease was less than the PDT 

group, nor exhibit a scabbed appearance. This difference in appearance indicated that LS797 

contributed to the enhanced cell death in the PDT group as compared to light alone.   
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Figure 8-4: Photodynamic therapy in animals shows scabbing and decrease in tumor volume.  a) 

Average change in tumor volume, ACTV, demonstrating a decrease in tumor growth for LS797 + 

light (n = 4), as compared to untreated (n = 3), light only (n = 3), and LS797 only (n = 3). b) Bright 

field images of a mouse receiving PDT or light, before and 24 hours after the start of therapy. 

Irradiated tumors indicated by yellow arrows and non-irradiated tumors indicated by white arrows.  

 

The therapy resulted in a reduction in ACTV of 78% compared to untreated tumors. PDT 

suppressed the tumor volume for 6 days on average after initial treatment resulting in an overall 

decrease in tumor volume post therapy of 81% compared to the untreated controls (Figure 8-5a).  

At the conclusion of the study, only a small papule was present in the original location of the 

tumors treated with PDT (Figure 8-5b). IHC analysis of the tumor sections revealed that the PDT 

tumors had larger regions of apoptosis (CC3 staining) and smaller regions of cell proliferation (Ki-

67 staining) compared to the untreated tumors (Figure 8-5c), indicating that a mechanism of 

reduced tumor volume can be attributed to the induction of apoptosis.     
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Figure 8-5: Long-term effects of photodynamic therapy. a) Tumor volume at 6 days post therapy, 

untreated (n = 3), light only (n = 3), LS797 only (n = 2), and LS797 + light (n = 2). b) Tumor 

morphological appearance pre and post therapy. c) IHC of the untreated tumor, PDT tumor, and 

skin stained for proliferation (Ki-67) and apoptosis (CC3). Microscopy conducted at 10x 

magnification.   

 

8.4 Discussion 

We characterized an orthotopic cutaneous SCC model that morphologically resembled 

human SCC.  This orthotopic model developed measurable tumors within 2 weeks after cell 

injection. We demonstrated that this SCC-12 model had differential IHC expression of CK-10, 

CK-8/18, p53, Ki-67 and CC3, relative to normal skin. The increased Ki-67 and CC3 expression 

was indicative of the rapid growth and turnover of tumor cells in the dermis. 101 An increase in 

CK-10 expression was indicative of the increased activity of keratinocytes because of the 

underlying tumor. This finding was consistent with clinical findings such as hyperkeratosis and 

keratin horn development in cutaneous SCC. 96 The combination of the IHC profile, the presence 
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of CK-8/18, the upregulation of p53, and the tumor morphological appearance from benign to 

ulcerating indicated that this orthotopic model recapitulated the pathophysiologic behavior of 

cutaneous SCC. In contrast to the 50 weeks needed for the two-step chemical carcinogenesis 

model, our model developed tumors within 2 weeks, which is advantageous for rapid screening 

and optimization of drugs and imaging agents in vivo. Another advantage of an orthotopic model 

was that injection of tumor cells allows the researcher to know exactly where the tumors will grow 

on the animal for more precise design of experiments, while avoiding inducing skin pigmentation 

that is a side-effect of the promotion phase of the chemically-induced model.  

 

8.5 Conclusions 

The multifunctional theranostic agent LS797 allowed for tumor visualization via optical 

imaging, followed by PDT. The dual excitation of cypate for imaging, and Ce6 for PDT, provided 

image guidance for spatiotemporal generation of cytotoxic reactive oxygen species in the tumor 

region. LS797 may be used to guide surgical resection or tumor margin assessment before or after 

PDT. LS797 caused visible contrast between the tumor and surrounding skin that could provide 

feedback to a clinician when resecting a tumor surgically; particularly for real-time feedback 

during Mohs surgery. LS797 may provide an alternative to MAL-PDT as it did not require the 

treated tumors to be focal in nature due to intravenous administration and tumor targeting of the 

compound. Tumor targeting would allow for wide-field light application for the induction of 

tumor-specific therapy with a reduction in off-target side effects.  

We demonstrated that LS797 was able to identify all tumors via NIR fluorescence imaging. 

LS797-mediated PDT inhibited tumor growth, and activated apoptosis of cells in vitro. The tumor 

targeting, NIR imaging, and PDT capabilities of LS797 made it a unique theranostic agent for skin 
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cancer therapy. Further optimization of LS797 dose, light dose, and drug-light interval would be 

necessary to reveal the full potential of LS797.  
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Chapter 9 :  

Conclusions on Fluorescence Guided Tumor 

Imaging  
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Through this body of work, we have demonstrated that planar fluorescence imaging can be 

used to identify and structurally characterize tumors. We showed that fluorescence has many 

potential applications in oncologic medical imaging. The first step in the clinical translation of a 

technology is to determine the appropriate applications. Here we showed that tumor imaging, in 

structures such as skin and blood vessels, is a natural fit for real-time fluorescence imaging. The 

NIR optical window, when combined with custom fluorophores and innovative algorithms, 

allowed for the development and validation of dual-wavelength depth imaging in tissue. Clinical 

questions, such as the tumor boundary and the depth of tumor invasion, remain relevant to 

improving patient care and outcomes. 

To push the science further, we developed algorithms that allowed us to examine the role 

of dynamic imaging. The vascular perfusion technique was demonstrated using fluorescence 

imaging. This technique could be adapted for oncologic or rheumatologic applications examining 

vascular perfusion of tissue. Understanding the number of circulating tumor cells in vivo may 

prove to be a method for monitoring disease progression and the risk of metastasis. We also 

focused on the role of therapy and demonstrated photodynamic therapy in skin. Photodynamic 

therapy has been conducted previously; however, we added simultaneous imaging to our 

application. 

In summary, we showed that fluorescence imaging has many potential oncologic 

applications. Real-time fluorescence guided imaging is used currently in several medical fields. 

Through the addition of novel image processing algorithms, fluorescence guided imaging can be 

expanded to provide increasingly quantitative output. Our results demonstrate the potential for 

semi-quantitative tumor fluorescence imaging, and thereby lay the groundwork for translation into 

future clinical applications.   
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