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Abstract of the Dissertation 

Transcriptional Regulation of Arrhythmia: from Mouse to Human 

by 

Yun Qiao 

Doctor of Philosophy in Biomedical Engineering 

School of Engineering and Applied Science 

Washington University in St. Louis, 2018 

Professor Igor R. Efimov, Thesis Advisor 

Professor Stacey Rentschler, Thesis Co-Advisor  
 

In the last two decades, our understanding of cardiac arrhythmias has been accelerated 

immensely by the development of genetically engineered animals. Transgenic and knockout 

mice have been the “gold standard” platforms for delineating disease mechanisms. Much of our 

understanding of the pathogenesis of atrial and ventricular arrhythmias is gained from mouse 

models that alter the expression of specific ion channels or other proteins. However, cardiac 

arrhythmias such as atrial fibrillation are heterogeneous diseases with numerous distinct 

conditions that could not be explained exclusively by the disruption of ionic currents. Increasing 

evidence suggests disruption of signaling pathways in the pathogenesis of cardiac arrhythmias. 

Although crucial for studying disease mechanisms, animal models often fail to predict human 

response to treatments due to inter-species genetic and physiological differences. Cardiac slices 

obtained from human hearts have been demonstrated as an accurate model that more faithfully 

recapitulates human cardiac physiology. However, the use of the human cardiac slices for 

evaluating the transcriptional regulation of arrhythmia is hampered by tissue remodeling and 

dedifferentiation in long-term culture of the slices. 



 xiii 

The first part of this dissertation aims to elucidate one of the potential mechanisms of 

sick sinus syndrome and atrial fibrillation induced by transient reactivation of Notch, a critical 

transcription factor during cardiac development and has been shown to be reactivated in the adult 

heart following cardiac injury. When Notch is transiently reactivated in the adult mice to mimic 

the injury response, the animals exhibits slowed heart rate, increased heart rate variability, 

frequent sinus pauses, and slowed atrial conduction. The electrical remodeling of the atrial 

myocardium results in increased susceptibility to atrial fibrillation. The transient reactivation of 

Notch also significantly altered the atrial gene expression profile, with many of the disrupted 

genes associated with cardiac arrhythmias by genome-wide association study. 

The second part of this dissertation aims to address the lack the translation from animal 

research to human therapies by extending the human cardiac slice viability in culture. With the 

optimized culture parameters, human cardiac slices obtained from the left ventricular free wall 

remained electrically viable for up to 21 days in vitro and routinely maintained normal 

electrophysiology for up to 4 days. To genetically alter the human cardiac slices, a localized gene 

delivery technique was evaluated and optimized. 

The third part of the dissertation aims to further improve long-term culture of human 

cardiac slices and to increase the availability of human tissue for research by developing a self-

contained heart-on-a-chip system for automated culture of human cardiac slices. The system 

maintains optimal culture conditions and provides electrical stimulation and mechanical 

anchoring to minimize tissue dedifferentiation. The work allows for accelerated optimization of 

long-term culturing of human cardiac slice, which will enable study of arrhythmia mechanisms 

on human cardiac tissue via targeted control of transcription factors.  
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Chapter 1: Introduction 
 

With the earliest description tracking back to ancient Egypt, Greece, and India, heart 

disease has been observed and studied for centuries (Davis, Hobbs, & Lip, 2000). However, 

heart disease still remains the leading cause of death for both men and women in the United 

States. Annually in the US, about 610,000 people die of heart disease, which accounts for 

approximately 1 in every 4 deaths (CDC. NCHS., 2015). Cardiac arrhythmia is a significant 

cause of morbidity and mortality, and it increases in prevalence with aging, such that 15 percent 

of the population older than 70 years of age suffers from arrhythmia (Psaty et al., 1997). 

Elucidating the pathogenesis of cardiac arrhythmia is crucial to developing effective treatments. 

This dissertation is focused on delineating a potential mechanism of sick sinus syndrome caused 

by disrupted transcriptional regulation following cardiac injury, and development of a novel 

platform using human cardiac tissue for long-term studies of drugs, exogenous gene expression, 

and transcriptional regulation.  

1.1 Cardiac slice as a model of the heart 
 

Research in experimental cardiac electrophysiology has been primarily limited to animal 

models such as mice, rabbits, dogs, minipigs, and zebrafish (Kaese et al., 2013). Few studies 

have collected electrophysiological measurements from the human heart due to the difficulty in 

obtaining and maintaining electrically viable tissue samples, and lack of reliable model systems 

of the human myocardium (de Boer, Camelliti, Ravens, & Kohl, 2009). Vibratome-cut human 

cardiac slices have recently emerged as a model for electrophysiological and pharmacological 
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testing due to its advantages over existing models (Brandenburger et al., 2012; Camelliti et al., 

2011; Habeler, Peschanski, & Monville, 2009).  When compared with iPSC-derived myocytes, 

human cardiac slices more faithfully replicate adult human cardiac electrophysiology with a 

mature myocyte phenotype. When compared with isolated human myocytes, cardiac slices 

largely preserve the natural extracellular environment and coupling with the surrounding 

myocytes, helping to maintain the fully differentiated phenotype. Maintenance of the native 

tissue context is especially important for testing human gene therapy approaches. When 

compared with human ventricular wedge preparations, cardiac slices do not require intact human 

ventricles and can be obtained from small biopsy samples.  Most importantly, human cardiac 

slices can be prepared at a thickness around the diffusion limit of oxygen, thus allowing them to 

be cultured long-term for studying drug exposure and gene modulation (Brandenburger et al., 

2012; Bussek et al., 2012). 

Despite wide adaptation of tissue slices obtained from brain, kidney, liver, lung, and 

pancreas, reliable methods of producing viable cardiac slices have only been developed only 

recently due to the elasticity of the myocardium making it difficult to cut the tissue without 

deforming it (Bussek et al., 2009).  Most of the published electrophysiological measurements on 

cardiac slice have been recorded using single cell microelectrode techniques or 60 channel multi-

electrode array (MEA) systems (Brandenburger et al., 2012; Bussek et al., 2009, 2012; Camelliti 

et al., 2011).  Few studies on cardiac slices have utilized high resolution optical mapping to 

characterize the conduction parameters of the cardiac slices (Kang et al., 2016; Wang et al., 

2015).  

When cut at less than 400 µm, sufficient tissue oxygenation occurs by diffusion, allowing 

the maintenance of tissue viability in culture (Brandenburger et al., 2012; Bussek et al., 2012; 
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Kang et al., 2016).  Cardiac slices obtained from neonatal rat hearts have maintained long-term 

viability in culture for up to 3 months (Habeler, Pouillot, et al., 2009).  However, to enable 

modeling of adult physiology and pathology, cardiac slices obtained from adult hearts would be 

a better model system.  With conventional culture techniques that do not electrically stimulate 

the tissue, long-term culture of adult cardiac slices can result in altered electrophysiology due to 

myocyte dedifferentiation.  A study using adult rat cardiac slices showed increasing level of 

apoptosis proportional to the number of days in culture (Kaneko, Coppen, Fukushima, Yacoub, 

& Suzuki, 2012).  Gap junctions, which are composed of connexin proteins, play a large role in 

the propagation of electrical impulses in the heart.  Immunolabeling and Western blots for 

connexin 43 (Cx43) revealed reduction in protein expression after just one day in culture, with 

undetectable Cx43 expression after 6 days in culture. Reduction in connexin protein would 

directly affect conduction velocity (CV) and excitability of the tissue.   

Previous reports of organotypic culture of ventricular slices obtained from adult 

mammalian hearts mostly have been limited to 48 hours, and have observed a slightly prolonged 

AP duration, while other conduction parameters remained stable (Bussek et al., 2012).  One 

group has been able to demonstrate viability of adult human ventricular slices for up to 28 days 

in culture (Brandenburger et al., 2012). After 28 days, the majority of cultured slices 

demonstrated normal electrophysiological responses to pharmacological tests, but exhibited 

significant tissue remodeling during culture. Hematoxylin and eosin (H&E) stain revealed loss of 

normal sarcomeric structures and actinin distribution.  Expression of transcripts encoding the 

major ion channel subunits Cav1.2, Nav1.5, and NCX remained stable in the cultured slices.  

However, the cultured slices exhibited some electrophysiological changes such as triangulation 

of the action potential and reduction in CV.   
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Electrical stimulation has been shown to maintain structural and functional properties of 

isolated adult rat ventricular myocytes (Folliguet et al., 2001). In the field of tissue engineering 

of cardiac and skeletal muscles, biomimetic culture conditions incorporating electrical and 

mechanical stimulation have been used to achieve greater maturity of myocytes differentiated 

from stem cells (Hirt et al., 2014; Lu et al., 2012; Maidhof et al., 2012; Tandon et al., 2009).  

Studies have shown that electrical stimulation of cardiomyocytes improved alignment, 

excitability and electrical coupling of the tissue (Rangarajan, Madden, & Bursac, 2014).  

1.2 Cardiac arrhythmia mechanisms 
 

 Cardiac arrhythmia such as atrial and ventricular fibrillation are heterogeneous and 

multifaceted diseases. On the most fundamental level, atrial and ventricular fibrillation is caused 

by reentry, an abnormal propagation of electrical activity in the myocardium. The concept of 

reentry was first described in 1913 by George Mines (Mines, 1913). Using a circular model of 

excitable tissue, Mines demonstrated that the slowing of conduction velocity and shortening of 

refractory periods creates a moving region of excitable tissue that permits reentry to occur (Fig. 

1.1). Walter Garrey later published the “critical mass” theory based on his observation that size 

of the excitable tissue directly corresponds to reentry maintenance, and functional isolation of 

regions of the heart would stop the fibrillation. These observations paved the fundamental 

understanding of fibrillation mechanism and formed the basis for surgical dissection and ablation 

of the atria for atrial fibrillation (Cox, Schuessler, & Boineau, 2000).  
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Figure 1.1 Mine’s representation of reentry in a closed circuit of myocardium. A) A ring model of healthy 
excitable tissue with normal conduction velocity and refractory period. The black region presents tissue in 
absolute refractory. The shaded region represents tissue in relative refractory. The white region represents 
tissue in the excitable state. B) Abnormal tissue with slowed conduction, which allows time for the tissue 
to repolarize back to the resting state and permits the formation of reentry (Mines, 1913). 

The “critical mass” theory was later explained by the concept of reentry wavelength by 

Thomas Lewis and mathematically depicted by Wiener and Rosenblueth (Lewis, 1925; Wiener 

& Rosenblueth, 1946), as shown in equation 1.1. Either slowing of conduction or shortening of 

effective refractory period would reduce the minimal wavelength required for sustained reentry. 

In the context of the “critical mass” theory, as the size of the excitable tissue approaches the 

wavelength of the tissue, the fibrillation is more likely to self-terminate.   

𝜆 = 𝐶𝑉 × 𝐸𝑅𝑃     (1.1) 

 Equation for wavelength calculation, where λ is the wavelength, CV is conduction 

velocity of the excitable tissue, and ERP is effective refractory period of the tissue.  

Action potential alternans are another major contributor of fibrillation, and often occurs 

at high heart rates. Instability of alternans can be predicted by examining the slope of action 

potential (APD) restitution curve. Created by measuring APD at incremental cycle length, APD 

restitution provides a holistic view on the repolarization process of the myocardium. When 

shortening the pacing cycle length, the reduction in APD is mostly contributed by incomplete 
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recovery of time-dependent potassium channels such as IKr and IKs. At shorter pacing cycle 

length when the diastolic interval (DI) is less than 100 ms, the APD is further reduced due to 

incomplete recovery of L-type calcium channel. When the diastolic interval is less than 40 ms, 

incomplete recovery of sodium channel indirectly shortens APD by reducing the amplitude of 

the action potential. The conduction velocity is also reduced at short cycle length due to the 

incomplete recovery of the sodium channel. Instability in alternans is promoted when the slope 

of the APD restitution curve is greater than 1. As demonstrated in Figure 1.2 C, the instability in 

alternans would grow and eventually result in functional block. When combined with CV 

restitution at short pacing cycle length, spatially discordant alternans could occur and result in 

local conduction block that give rise to reentry (Qu, Xie, Garfinkel, & Weiss, 2010). 

 

Figure 1.2 Instability in alternans promoted by steep APD restitution curve. A) An action potential trace 
illustrating action potential duration (APD), pacing cycle length (PCL), and diastolic interval (DI). B) 
Cobweb diagram showing the alternans stabilize when the slope of the APD restitution curve is less than 
1. The grey line represents the APD restitution curve. The cyan line represent the relationship of PCL = 
APD + DI. C) Cobweb diagram showing that the alternans becomes unstable when the slope of the APD 
restitution curve is greater than 1 (Qu et al., 2010). 
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1.3 Optical mapping of the heart 
 

Robust generation and propagation of the electrical impulses in the heart are crucial for 

cardiac function because of excitation-contraction coupling. Any abnormalities in cardiac 

electrophysiology can have profound adverse effects on the mechanical contraction of the 

heart(Lou, Fedorov, et al., 2011). Based on the principles of biophotonic imaging, optical 

mapping serves as an indispensable tool for studying cardiac electrophysiology by measuring 

membrane potential and intracellular calcium concentration. 

As one of the most critical components of an optical mapping system, the photodetector 

must demonstrate exceptional sensitivity as well as sufficient spatial and temporal resolutions.  

As the name suggests, spatial resolution is how well the camera distinguish closely spaced 

features on the sample, and it depends on the number of pixels on the camera sensor and the field 

of view of the imaging system.  Also referred to as the sampling rate, temporal resolution defines 

the camera’s ability to capture fast occurring events. Greater signal to noise ratio can be achieved 

at the expense of lower sampling rate, which allows more photons to hit the sensor during each 

frame. Alternatively, increasing the pixel size of a photodetector improves the low-light 

performance and temporal resolution of a camera sensor by allowing for more photons to be 

captured by each pixel.  However, assuming the total size of the photodetector remains the same, 

enlargement of the individual pixels would result in a lowered pixel density and reduced spatial 

resolution. Some of the camera sensors available today include charge coupled device (CCD), 

complementary metal-oxide semiconductor (CMOS), and photodiode array (PDA) (Efimov, 

Nikolski, & Salama, 2004). Each sensor technology has its own tradeoffs between sensitivity, 

spatial and temporal resolution. The wide adaptation of CMOS sensors in consumer electronics 
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has expedited improvements in the CMOS sensors, which now offer the best of both worlds, 

demonstrating good spatial resolution combined with high temporal resolution. 

Significant efforts have been invested into improving voltage-sensitive fluorescent 

indicators. To measure the cardiac action potential, voltage-sensitive probes such as RH-237 and 

di-4-ANEPPS are commonly used. As the membrane potential changes, the voltage-sensitive 

probes bound to the cell membrane undergo conformation change, which result in a redshift in 

emission peak. However, these voltage-sensitive probes suffer from low signal-to-noise ratio 

(SNR), since the peak fluorescence intensity only changes by less than 5% during recording 

(Efimov et al., 2004). The problem of low SNR of the probes is circumvented by measuring the 

shift in emission spectrum rather than the change in peak fluorescence intensity at a fixed 

wavelength, by using a long-pass filter to measure the changes in total fluorescence intensity 

(Lang, Sulkin, Lou, & Efimov, 2011). 

1.4 Dissertation objective and scope 
 

With numerous distinct underlying conditions, cardiac arrhythmia cannot be faithfully 

recapitulated in transgenic animal models that alter selective ion channels. Disruption in the 

transcriptional signaling pathways has been implicated in the pathogenesis of arrhythmia. The 

objective for the first part of this dissertation is to delineate one of the potential mechanisms of 

sick sinus syndrome and atrial fibrillation induced by transient reactivation of Notch, a critical 

transcription factor during cardiac development and has been shown to be reactivated in the adult 

heart following cardiac injury. The extensive evaluation of the Notch-induced sick sinus 

syndrome model was made possible by significant contribution of two co-first authors. In 
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Chapter 2, I present the disease model, explain the experimental and analysis techniques used, 

and elucidate the altered electrophysiology and increased arrhythmia susceptibility. 

Due to difficulties of translation from animal research to human therapies, the objective 

for the second part of this dissertation is to bridge the gap between bench research and human 

clinical therapy by extending the human cardiac slice viability in culture and optimizing viral 

transduction techniques. In Chapter 3, I present an optimized culture protocol with which human 

cardiac slices obtained from the left ventricular free wall remained electrically viable for up to 21 

days in vitro and routinely maintained normal electrophysiology for up to 4 days.  

To further improve human cardiac slice culture for long-term studies, the objective for 

third part of the dissertation aims to develop a self-contained heart-on-a-chip system for 

automated culture of human cardiac slices. In Chapter 4, I present a culture system that maintains 

optimal culture conditions and provides electrical stimulation and mechanical anchoring to 

minimize tissue dedifferentiation. This work allows for accelerated optimization of long-term 

culturing of human cardiac slice, which will enable study of arrhythmia mechanisms on human 

cardiac tissue via targeted control of transcription factors.  
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Chapter 2: Transient Notch activation 
induces long-term gene expression changes 

leading to sick sinus syndrome in mice 
 

Cardiac arrhythmias are a significant cause of morbidity and mortality with increasing 

prevalence with aging, such that 15 percent of the population older than 70 years of age suffers 

from arrhythmias (Psaty et al., 1997).  Genome-wide association studies (GWAS) have 

associated sick sinus syndrome (SSS) and atrial fibrillation (AF) with mutations in Nkx2-5, a 

transcriptional factor that controls gene regulatory networks of the heart (Marsman, Tan, & 

Bezzina, 2014). Conditional knockout of Nkx2-5 in the atrial myocardium leads to global 

activation of Notch, a critical regulator of cardiac morphogenesis (Nakashima et al., 2014).  

Therefore, we aimed to study effects of Notch activation on atrial electrical remodeling. Though 

it is normally not expressed within adult myocardium, Notch is transiently reactivated in the 

heart following cardiac injuries (Gude et al., 2008; Li, Hiroi, & Liao, 2010; R. Zhang et al., 

2013). Here, we developed a mouse model to study the effects of transient Notch activation on 

electrical remodeling and cardiac arrhythmias.  We found that transient Notch activation in the 

adult heart disrupted expression of major regulators of conduction, which resulted in altered 

atrial electrophysiology, including sinus bradycardia, sinus pauses, slowed atrial conduction, and 

increased susceptibility to atrial fibrillation.  Many of the misregulated genes have been 

associated with sinus bradycardia and AF susceptibility (Van Den Boogaard, Barnett, & 

Christoffels, 2014). 
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2.1 Introduction 
 

The normal rhythmic activation of the heart is governed by an intricate network of 

different types of cardiomyocytes. Each subpopulation of myocytes has unique electrical 

characteristics due to their different composition of ion channels. Atrial and ventricular working 

myocytes have a more hyperpolarized resting action potential with fast upstroke velocity, 

whereas sinus and atrial-ventricular nodal myocytes have a more depolarized resting membrane 

potential with slower upstroke velocity (Park & Fishman, 2011). Understanding the transcription 

factors that control the electrophysiological patterning of the heart has important clinical 

significance.  Reactivation of these factors may have physiological benefits in treating cardiac 

diseases through regenerative medicine. On the other hand, unintended activation of some factors 

may disrupt normal conduction parameters within the heart, making the tissue more susceptible 

to arrhythmias (Rentschler et al., 2011). 

Mutations in non-coding regions near SCN5A have been linked with high AF 

susceptibility in GWAS (Van Den Boogaard et al., 2014). Our preliminary results using a 

genetically engineered murine model to induce Notch within the myocardium demonstrate 

reduced Scn5a expression in Notch activated hearts.  This suggests that Notch-mediated 

reprogramming could alter the epigenetic regulation of the genes associated with arrhythmias.  

Thus, studying the electrical remodeling following Notch activation is important to further the 

understanding of the underlying electrophysiological mechanisms of arrhythmias. 
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2.1.1 Role of Notch during cardiac development 
 

Notch has been shown to be an essential transcription factor regulating development of 

the heart (Rentschler et al., 2011).  Activation and inactivation of Notch during development led 

to dramatically different outcomes.  Transgenic mice with Notch inactivation had hypoplastic 

atrioventricular node (AV) nodes, which manifested as shortening in AV delay during activation 

of the heart. On the other hand, mice with Notch ectopically expressed within the atrioventricular 

region during development exhibited ventricular pre-excitation caused by the presence of 

accessory pathways in the annulus fibrosis. These mice were also more susceptible to atrial 

tachycardias during programmed stimulation (Rentschler et al., 2011). 

2.1.2 Notch-induced reprogramming following organ injury 

 
 Cardiac injury has been shown to cause the activation of Notch in the heart of adult 

mouse and zebra fish (Gude et al., 2008; Li et al., 2010; R. Zhang et al., 2013).  However, the 

effects on conduction parameters and arrhythmias have not been well characterized. On the other 

hand, studies of Notch activation after liver damage have been well characterized (Yanger et al., 

2013).  Injury in the liver tissue causes Notch activation that initiates a reprogramming cascade 

that reprograms hepatocytes to biliary cells.  Studying the effect of Notch-mediated 

reprogramming may provide insights to the cause of increased instances of arrhythmias after 

myocardial infarction in human. 
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2.2 Methods 
2.2.1 Generation of transgenic mice 

 

αMHC-rtTA and tetO_NICD mice were mated to obtain αMHC-rtTA; tetO_NICD mice in 

which the expression of NICD could be turned on by feeding the animal with doxycycline chow. 

To model the adult activation of Notch, the tet-on system is used to activate Notch in myocytes 

after birth. Mice between the ages of 2-5 months were used in the experiment. To compensate for 

the possibility of a doxycycline effect, αMHC-rtTA mice on doxycycline were used as the control 

animals in the functional studies.  For the experimental group, age-matched αMHC-rtTA; 

tetO_NICD littermates on doxycycline were used. All animal protocols were approved by the 

Institutional Animal Care and Use Committee at Washington University in St. Louis. 

2.2.2 ECG recordings 
 

To track the long-term changes in heart rate, electrocardiography (ECG) recordings were 

performed on conscious and anesthetized mice. A physical restrainer with built-in electrodes 

(ECG Tunnel, EMKA Tech) was used for performing ECG recordings on conscious mice. Heart 

rate was calculated from ECG segments with at least 100 identifiable beats. To perform ECG 

recording on anesthetized mice, the animals were anesthetized with 2% isoflurane. Heart rate 

was averaged from the first minute of ECG recordings. For evaluating the diurnal heart rate 

cycle, heart rate variability, and sinus pauses, telemetry studies were performed on mice between 

3-5 months of age from the start of the doxycycline treatment. ETA-F10 implantable radio 

frequency transmitters (Data Sciences International Inc.) were implanted subcutaneously for lead 

II ECG recordings. After one week of post-operative recovery, baseline recording was obtained 
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before the animals were introduced to the doxycycline chow. Ambulatory ECG was recorded 

while the animals were free moving in cages. 4 minutes of recording was taken every hour at 2 

kHz sampling rate for 4 weeks.  

2.2.3 Telemetric ECG analysis 
 

Custom MATLAB algorithms were developed to analyze the telemetric ECG recorded on 

the control and Notch-activated mice. The raw ECG recordings were structured before being 

conditioned for R wave detection. The signal conditioning process involves a band-pass infinite 

impulse response (IIR) Butterworth filter for removing baseline drift, electrical noise, and 

electromyogram signal. A notch filter was implemented to remove the 60Hz interference. The 

amplitude of the ECG was then normalized before implementing peak detection based on the R 

wave amplitude and minimal rejection time interval. The timing of the identified R waves was 

used for calculating heart rate, heart rate variability, and episodes of sinus pauses. Pincaré plots 

were generated by comparing adjacent RR intervals.  

 

Figure 2.1 Telemetric ECG analysis pipeline. 

2.2.4 Optical mapping of Langendorff-perfused murine hearts 
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Optical mapping experiments were conducted to study the electrical conduction 

parameters of the murine hearts. A CMOS camera system was used to detect changes in the 

membrane potential of Langendorff-perfused murine hearts stained with Di-4-ANEPPS, a 

voltage-sensitive dye. The cardiac tissue was kept viable using perfusion with Tyrode's solution 

at 37°C with the pH maintained at 7.4.  Blebbistatin, an excitation-contraction uncoupler, was 

perfused to the tissue to eliminate motion artifacts in the recorded optical signal. A green LED 

light source with the wavelengths of 520 ± 5 nm was used to excite the voltage-sensitive dye. 

The emitted fluorescence was filtered by a long-pass filter at 650 nm and collected by the CMOS 

camera. 

2.2.5 Analysis of optical action potential 
 

The recorded data was analyzed using an open source custom MATLAB program.  Using 

the spatial coordinates and time of the maximum derivatives (dVm/dtmax) of the optical action 

potentials, activation maps of the cardiac tissues was generated. To filter out undesirable 

fluorescent scattering from the ventricles, a mask of the atria was created based on the maximum 

fluorescence intensity during atrial activation. The activation maps were used to calculate the 

conduction velocity. Action potential duration of the atria was calculated by taking the time 

difference between depolarization and 80% repolarization of the optical action potentials and 

averaged. Since the conduction velocity and action potential duration are rate-dependent, optical 

mapping recordings were conducted when the atria was paced at 100ms pacing cycle length. 
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Figure 2.2 Filtering of atrial optical action potential. 

2.2.5 Conduction velocity analysis 
 

 As one of the key electrophysiological parameters of the heart, conduction velocity 

provides insights into the health of the myocardium. Conditions such as ischemia, fibrosis, and 

altered cell coupling can result in significant reduction in conduction velocity (KLEBER, 2004). 

Although conduction velocity can be calculated by simply dividing the distance traveled by an 

activation wave front over a period of time, factors such as electrotonic conduction, curvature of 

the heart, and regions of conduction block significantly complicate the conduction velocity 

calculation. Two methods have been widely implemented to accurately calculate conduction 

velocity in optical mapping data.  The local gradient method calculates the conduction velocity 

by average multiple local gradients of the activation times. However, insufficient spatial and 

temporal resolution of the optical mapping could result in overestimation of longitudinal 

Atrial Activation 

Set maximum fluorescence intensity threshold Specify polygonal region of interest Unmasked activation map 

Masked activation map 
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conduction velocity by the local gradient method (Doshi et al., 2015). With this method, it is also 

difficult to accurately calculate conduction velocity in tissue with conduction blocks. Doshi et al. 

proposed and developed a semi-automated method of calculating conduction velocity based on 

the single vector method. The semi-automated method allows users to accurately select regions 

of linear conduction at every angle to calculate the functional longitudinal and transverse 

conduction velocity (Fig. 2.3). This method was modified and implemented in this dissertation 

for calculating conduction velocity. 

 

 
Figure 2.3 Longitudinal and transverse conduction velocity calculation. A) Activation map of mouse left 
ventricle during point pacing. Red line represents the line from which the activation times were extracted 
for conduction velocity calculation. B) Activation times (red dots) from the site of pacing along the red 
line in panel A. The thick blue line represents the linear region in the activation times from which the 
conduction velocity is calculated. C) Conduction velocity calculated at each angle from the site of pacing. 
The peaks represent the longitudinal conduction velocity, whereas the troughs represent the transverse 
conduction velocity. 
 

2.2.6 Programmed stimulation for testing AF susceptibility 
 

A programmed pacing protocol that consists of a series of single extrastimulus was 

performed on each heart.  The stimulus amplitude used is twice the diastolic capture threshold 

with a pulse duration of 2 ms. For atrial single extrastimulus, a pacing drive train of 20 S1 at a 
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cycle length of 100 ms was used, followed by an S2 with a 50ms coupling interval, which was 

reduced in 5 ms intervals until loss of atrial capture (atrial effective refractory period, AERP).  

For sinus node recovery time determination (SNRT), a 15 second burst pacing at a cycle length 

of 100ms was used.  The SNRT was defined as the interval between the last stimulus in the 

pacing train and the onset of first sinus return beat, and cSNRT (cSNRT) was calculated by 

subtracting the average RR interval from the SNRT.  Episodes of supraventricular tachycardia 

(SVT) were defined as follows: rapid atrial activity faster than ventricular activity lasting greater 

than one second. 

2.2.7 Arrhythmia analysis 
 

Episodes of supraventricular tachycardia was recorded by optical mapping and analyzed 

using phase analysis. Phase analysis has been used for quantifying oscillating behavior in a 

chaotic signal. Extensive work has been done to validate the use of phase analysis for 

quantifying reentrant arrhythmias. Two out of phase periodic signals are required for calculating 

the phase. Hilbert transform was performed to create an analytical signal composed of a real and 

an imaginary component. In the case of arrhythmia analysis, the real component of the signal is 

the optical action potential during supraventricular tachycardia. The imaginary component of the 

analytical signal is the real component phase shifted by –π/2 in all frequencies. When plotted on 

the complex plane, the instantaneous phase is calculated by finding the angle between the 

analytical signal and the real axis.  
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Figure 2.4 Phase analysis of optical action potential during AF. A) Optical action potential (blue) during 
AF and phase shifted signal (red) produced by Hilbert transform. B) Instantaneous phase calculated by 
finding the angle between the analytical signal and the real axis. C) Phase space plot showing how the 
instantaneous phase is calculated. 

Phase maps were created by calculating the instantaneous phase for every pixel of the 

optical mapping data. The reentrant wavefronts were identified by regions with a phase of π/2. 

The centers of reentrant arrhythmias were identified as areas of phase singularities using the 

equation for calculating topological charge shown in equation 2.1. The phase singularities were 

calculated by convolving the phase gradients with the kernels shown in equations 2.2 and 2.3. 

The signs of the phase singularities represent the reentrant chirality. 

(2.1) 

(2.2) 
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(2.3) 

2.2.7 Statistical analysis 
 

All data are expressed as means ± standard error of the mean (SEM).  Statistical analyses 

were performed after assessing for normal distribution using unpaired t tests with Welch’s 

correction for comparison of 2 groups, and one-way ANOVA followed by a Dunnett’s multiple 

comparisons test for comparison of 3 groups. Values of P<0.05 were considered statistically 

significant. 

2.3 Results 
 

Notch is a critical developmental regulator of morphogenesis, and normally it is not 

expressed in the adult heart (Rentschler et al., 2011). However, Notch is transiently reactivated in 

the adult heart following cardiac injuries (Gude et al., 2008; Li et al., 2010).  GWAS have 

associated mutations in Nkx2-5 with SSS and AF susceptibility (Marsman et al., 2014).  

Conditional knockout of Nkx2-5 has been shown to lead to global activation of Notch signaling 

(Nakashima et al., 2014). We hypothesize that transient Notch reactivation may lead to electrical 

reprogramming, increasing susceptibility to sinus bradycardia and AF. 
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2.3.1 Transient reactivation of Notch leads to sinus bradycardia and frequent 
sinus pauses 

 

To model the adult injury response, we utilized the Tet-on transgenic system to activate 

Notch signaling (iNICD) within adult murine myocardium (Corbel & Rossi, 2002).  Notch 

signaling was transiently activated at 8 weeks of age for 3 weeks, followed by cessation of gene 

expression.  This allows us to determine whether the observed electrical changes are stable in the 

absence of ongoing Notch expression, consistent with electrical reprogramming. ECGs and 

telemetry recordings were performed to measure heart rate and occurrences of sinus pause. 

When compared with littermate controls, iNICD mice exhibited bradycardia.  Significant 

differences in HR between control and iNICD mice are observed during conscious ECGs 

(778±20bpm vs 638±14bpm, p=3.6E-5), during ECGs performed under mild anesthesia 

(600±24bpm vs 462±17bpm, p=03.4E-4), and during telemetry recordings of free-moving mice 

(524±13bpm vs 448±27bpm, p=0.047) (Fig. 2.4 A). The ECG recordings demonstrate that the 

reduction in HR is largely due to prolongation in the R-R interval and not AV block (Fig. 2.4 B-

C).  When compared with the controls, iNICD mice also exhibit frequent sinus pauses (Fig. 2.4 

C).   
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Figure 2.5 Transient reactivation of Notch leads to bradycardia and sinus pauses. A) Notch activated mice 
exhibited slowed heart rate. The values were calculated from ECG recordings taken from conscious, 
anesthetized mice, and from conscious telemetry monitoring. B) Telemetric ECG taken from a control 
mouse showing normal sinus rhythm. C) Telemetric ECG taken from a iNICD mouse showing slowed 
heart rate and an episode of sinus pause (highlighted by red bracket).  

As a spatial summation of all electrical activities in the heart, ECG recordings are not 

able to identify the underlying mechanism of the observed sinus bradycardia and sinus pauses.  

Possible explanations include abnormal sinus node (SAN) automaticity, SAN exit block, intra-

atrial conduction block, and abnormal innervation.  To elucidate the mechanism underlying the 

slowed HR, analysis of the telemetric ECG was performed to evaluate the diurnal response of the 

mice. If the slowed HR phenotype observed in the iNICD mice is a result of abnormal 

innervation, the mice would be unresponsive to sympathetic stimulation and only exhibiting a 

lower HR during period of high activity at nighttime. As shown in Figure 2.5, the iNICD mice 

exhibited an overall slowed HR during both high activity and low activity with preserved diurnal 

heart rate response, suggesting normal autonomic innervation. 
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Figure 2.6 Preserved diurnal heart rate responses of iNICD mice. A) Heart rate distribution of control and 
iNICD mice over 24 hours. B) Heart rate distribution of control and iNICD mice during period of high 
activity from 6PM-6AM. C) Heart rate distribution of control and iNICD mice during period of low 
activity from 6AM-6PM. iNICD mice demonstrate preserved diurnal heart rate response, showing lower 
average heart rate during both daytime and nighttime.   

In addition to the slowed HR phenotype, the iNICD mice also exhibited frequent episodes 

of sinus pauses, as observed in Figure 2.4 C. To quantify the sinus pauses, additional analysis 

were performed on the telemetry ECG recordings. Poincaré plot were generated to compare the 

RR interval of every beat with the RR interval of the subsequent beat. As shown in Figure 2.6A, 

the telemetry ECG recordings of a control animal produced a tight, linear cluster representing 

normal diurnal heart rate fluctuation with minimal beat-to-beat variation. On the other hand, the 

poincaré plot of an iNICD mice had a dispersed clustering, suggesting high HR variability and 

frequent sinus pauses. The average numbers of sinus pauses were summarized in figure 2.6C. 

When compared with the control animals, the iNICD mice exhibited significantly more episodes 

of sinus pauses, which are defined as beats with a RR interval that is 70% longer than the 

average baseline cycle length. Together, the sinus bradycardia, high heart rate variability, and 

frequent sinus pauses observed in the iNICD mice closely resembles manifestations of Sick sinus 

syndrome (SSS), also known as sinus node dysfunction. 
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Figure 2.7 iNICD mice exhibit frequent sinus pauses. A) Poincaré plot of a control animal showing a 
stable heart rate response over 24 hours with minimal beat-to-beat variation. B) Poincaré plot of an 
iNICD mouse showing large beat-to-beat variation, which represents high heart rate variability and 
frequent sinus pauses. C). Analysis of telemetry ECG revealed that iNICD mice demonstrate significantly 
more episodes of sinus pauses when compared with the control animals.  

2.3.2 Transient reactivation of Notch causes reduced atrial conduction velocity 
 

To evaluate the extent of Notch induced electrical remodeling in the atrial myocardium, 

optical mapping and far-field ECG recording was performed on the Langendorff-perfused iNICD 

hearts and littermate controls. Under Langendorff perfusion and in the absence of sympathetic 

stimulation, the HR of the iNICD mice remained low, suggesting that the sinus bradycardia 

phenotype is not a result of altered autonomic response. Activation maps of the atria during sinus 
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rhythm were generated as shown in Figure 2.7A. When compared with the control atria, the 

iNICD atria exhibited slowed heart rate with 1:1 conduction from the SAN. The stable 

propagation of the electrical impulses from the SAN to the atrial myocardium in the iNICD atria 

excluded SAN exit block and intra-atrial conduction block as the mechanisms of the observed 

sinus bradycardia phenotype. Since conduction velocity (CV) and action potential duration 

(APD) are rate dependent. To accurately calculate the CV and APD of the isolated atria, 

activation of the atria were recorded via optical mapping under a constant stimulation at 100ms 

pacing cycle length. The activation maps revealed heterogeneous conduction and reduced 

conduction velocity in the right atrium (RA) of iNICD mice when compared with the controls 

(41.1±3.1cm/s vs. 29.0±1.8cm/s, p=0.02) (Fig. 2.7 B,D). The optical mapping experiments also 

revealed that the APD at 80% repolarization (APD80) and the corrected sinus node recovery time 

(cSNRT) were unchanged, as shown in Figure 2.7 E,F. Compared with adult activation of Notch, 

Notch activation in juvenile mice at 3 weeks of age induced more severely altered 

electrophysiology. As shown in Figure 2.7 G, the optical mapping experiments revealed regions 

of the right atrium of the iNICD to be electrically quiescent during sinus rhythm. During 

electrical stimulation, the region of the right atrium remained electrically unexcitable, as shown 

in Figure 2.7 H.  
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Figure 2.8 Transient Notch activation causes reduced atrial conduction velocity. A) Activation maps of 
isolated atria from a control and an iNICD mouse, showing 1:1 conduction from the sinus node. B) 
Activation maps of the right atria obtained from control and iNICD mice during constantly electrical 
stimulation for calculation of CV and APD. The activation maps of the iNICD animals show isochrones 
crowding and areas of conduction block. C) iNICD mice exhibit slowed heart rate when compared with 
the control under Langendorff perfusion. Optical mapping revealed slowed CV in iNICD mice (D), while 
APD and the corrected SAN recovery time (cSNRT) are preserved (E,F). G) Notch activation in juvenile 
mice at 3 weeks of age results in electrical silencing of a portion of the right atria during sinus rhythm. H) 
Electrical stimulation failed to capture the right atrial appendage (white asterisk).  
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2.3.3 Transient Notch activation result in persistent up-regulation of Notch 
target and prolonged bradycardia 

 

Transient reactivation of the Notch signaling pathway in adult heart following cardiac 

injury has been previously demonstrated. To model the injury response, we utilized the tet-on 

system to transiently reactivated Notch in adult mice at eight weeks of age for various durations 

of doxycycline induction followed by washout periods of eight weeks to one year. Following 

three weeks of doxycycline induction, we observed a 7-fold increase in NICD expression and 

significant up-regulation of direct Notch target genes Hrt1 and Hes1 in the iNICD mice (Fig. 2.8 

A, B). With a 2-day doxycycline induction followed by a one-year washout, NICD level returned 

to baseline as expected. In contrast, Hes1 remained persistently up-regulated in the absence of 

on-going Notch expression (Fig. 2.8C). To evaluate the functional effect of the persistent up-

regulation of Hes1, we tracked HR of iNICD mice with various induction periods, ranging from 

12 hours to 6 weeks. The iNICD mice exhibited prolonged sinus bradycardia phenotype one year 

after cessation of Notch induction. 
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Figure 2.9 Transient Notch activation results in persistent up-regulation of Notch target and prolonged 
bradycardia. A) N1ICD level in iNICD mice after three weeks of doxycycline chow. B) Up-regulation of 
direct Notch target genes after 3 weeks of doxycycline chow. C) Persistent up-regulation of Hes1 a year 
after a 2-day doxycycline induction. D) Ratio of heart weight to tibia length after a one-year washout 
period. E) Following various induction periods, the iNICD mice demonstrate prolonged sinus bradycardia 
after a one-year washout period. 

2.3.4 Altered expression of key regulators of conduction 
 

Electrical conduction in the heart can be altered by structural and/or molecular changes, 

such as fibrosis, reduction of gap junctions, and disrupted ion channel expression.  Histology and 

Trichrome staining of the iNICD mice showed healthy atrial myocardium with no signs of 

fibrosis. The absence of fibrosis in the atria suggests that the slowed atrial CV in iNICD mice 

may be due to altered cell coupling and reduced excitability as results of electrical remodeling 

associated with Notch activation.  To verify this hypothesis, we performed RT-qPCR on iNICD 

mice that had undergone the doxycycline induction of two days followed by a one-year washout 
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to quantify the expression levels of Cx40, Scn5a, and Tbx5. Connexin40 (Cx40) is a major gap 

junction protein in the atrial myocardium and an important regulator of excitation and 

propagation. Knockout of Cx40 in mice resulted in conduction slowing and functional block 

(Bagwe, Berenfeld, Vaidya, Morley, & Jalife, 2005). Scn5a encodes for the voltage-gated 

sodium channel that is responsible for the phase 0 depolarization of membrane potential. 

Targeted disruption of Scn5a has revealed a direct role of Nav1.5 channels in SAN conduction 

and sino-atrial conduction, and suggested an indirect role of the sodium channels in maintenance 

of the normal SAN pacemaker activity (Lei et al., 2005). Tbx5, a critical developmental 

transcription factor, has previously been shown to regulate the expression of key regulators of 

conduction including Scn5a in the heart (Arnolds et al., 2012; Nadadur et al., 2016). As shown in 

Figure 2.9 B, the transient activation of Notch results in significant persistent down-regulation of 

Tbx5, Scn5a, and Cx40 in the right atria. To study the extent of the altered gene expression in the 

iNICD mice, RNA-sequencing was performed on RA samples from the iNICD mice. The result 

revealed 888 genes to be differentially expressed, of which the top 25 statistically significant 

genes are shown to be associated with cardiac arrhythmias. Together with the histological 

analysis showing a grossly unchanged atrial structure in the iNICD mice, the results suggest that 

the atrial electrical changes observed from the iNICD mice are likely a direct effect of altered ion 

channel expression and/or function and not secondary to structural changes. 
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Figure 2.10 Altered expressions of key conduction regulators following transient Notch activation. A) 
RNA-sequencing of RA from iNICD animals revealed misregulation of genes associated with cardiac 
arrhythmias. B) RT-qPCR performed on RA samples from iNICD mice showed persistent down-
regulation of Tbx5, Scn5a, and Gja5. The iNICD mice undergone the doxycycline induction for two days 
followed by a one-year washout. 

2.3.5 Disrupted conduction following Notch activation predisposes to atrial 
arrhythmias 

 

Sick sinus syndrome (SSS), also known as sinus node dysfunction, is a group of heart 

rhythm disorders characterized by sinus bradycardia and sinus pauses, and often is associated 

with atrial fibrillation (AF) susceptibility. The iNICD mice exhibit sinus bradycardia and sinus 

pauses, which closely resemble SSS. The reduced CV of in the iNICD RA also results in a 

reduced critical mass to sustain reentrant arrhythmias. Optical mapping with programmed 

electrical stimulation near the pulmonary veins was performed to determine if there is an 

increased susceptibility to AF. The S1S2 programmed stimulation protocol consists of a drive 
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train followed by a single extrastimulus. As shown in figure The iNICD mice demonstrate 

significantly greater AF inducibility when compared with the controls as assessed by the 

percentage of induced AF episodes lasting longer than 1 second (16.7±7.3% vs. 70±18.6%, p = 

0.04). To visualize the complex reentrant dynamics of the induced episodes of AF, phase 

analysis was performed on the optical action potential recorded during AF (Bray, Lin, Aliev, 

Roth, & Wikswo, 2001; Gutbrod et al., 2015). The analysis revealed stable reentrant circuits 

mostly anchored around atrial anatomical landmarks with minimal meandering. The center of the 

reentrant wave was identified by calculating the phase singularity of the phase map using the 

equation for topological charge. In the example shown in Figure 2.10, the phase singularity 

overlaps with the inferior vena cava, which acts as the anchor for the anatomical reentry. 

 

Figure 2.11 iNICD mice exhibited increased SVT inducibility. A) Phase map of an episode of induced 
reentrant atrial arrhythmia. B) Center of the reentrant wave identified by finding the phase singularity of 
the phase map using the equation for topological charge. C) The iNICD mice were significantly more 
susceptible to supraventricular tachycardia (SVT) following S1S2 stimulation. 

2.4 Discussion 
 

Here, we have demonstrated that the transient reactivation of Notch in adult mice 

electrically reprograms the atrial myocardium, resulting in prolonged sinus bradycardia, frequent 
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sinus pauses, slow heterogeneous conduction, and an increased susceptibility to AF. The 

phenotype exhibited by our murine model closely resembles SSS. A number of analyses were 

performed on the telemetry ECG and the optical mapping data to evaluate the sinus bradycardia 

phenotype. The iNICD mice exhibited preserved diurnal HR response, with slower HR during 

both periods of high and low activities when compared with the controls. The frequent sinus 

pauses observed in the iNICD mice had intervals that are not multiples of baseline HR intervals. 

Optical mapping also revealed 1:1 conduction from the SAN to the distant atrial myocardium. 

Taken together, these results suggest that impaired response to the autonomic nervous system, 

intra-atrial block, SAN exit block do not account for the bradycardia observed in iNICD mice. 

The slowed HR phenotype of the iNICD mice is likely due to slowing of the intrinsic sinus 

pacemaker rate.  

Mutations in genes encoding ion channels or structural proteins have been associated 

with SSS. Similar to our observation, many of the SSS-associated genes are primarily expressed 

in the atrial myocardium and not directly in the SAN (Dobrzynski, Boyett, & Anderson, 2007; 

Mezzano et al., 2016). The qPRC results revealed that Notch activation significantly 

downregulates Tbx5, Scn5a, and Cx40 in the atria. Studies on Scn5a+/- mice suggested that 

disrupted Nav1.5 expression in periphery SAN cells impede their electrical coupling to primary 

pacemaker cells at the SAN center and result in slowed pacemaker activity (Lei et al., 2005). 

Numerical modeling has shown that reduction of sodium currents (INa) in the SAN periphery 

cells lead to SAN conduction slowing and eventually SAN exit block, which was occasionally 

observed in the Scn5a+/- mice (H. Zhang et al., 2006). In addition, only around 70% of SSS 

human patients exhibit an abnormal cSNRT (Burnett, Abi-Samra, & Vacek, 1999). The iNICD 

mice also exhibited no change in cSNRT following programmed stimulation, suggesting there 
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may be multiple distinct mechanisms causing SSS. A prolonged P wave duration, representing 

slowed atrial CV, is often a precursor of SSS (De Sisti et al., 1999; Ferrer, 1968) and was also 

observed in our murine model. 

The transient activation of Notch in the adult mice results in transcriptional down-

regulation of Tbx5, which has been linked with abnormal atrial rhythm and AF susceptibility via 

the mis-regulation of a number of key regulators of conduction, as shown in figure 2.11 

(Nadadur et al., 2016). The reduced Scn5a expression in the iNICD mice results in reduced atrial 

CV and could cause reduced sodium current and diminished atrial cardiomyocyte excitability. 

Based on the critical mass theory, the slowed CV in the iNICD atria contribute to a vulnerable 

substrate for reentrant arrhythmia, evident by the increased SVT susceptibility following 

programmed stimulation. Taken together, we interpret the increased incidence of pacing-induced 

SVT together with the paucity of spontaneous atrial arrhythmia episodes during telemetric 

monitoring of iNICD mice to indicate that although an arrhythmic substrate is present, initiating 

triggers do not frequently occur in this model. 
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Figure 2.12 Tbx5 and Pitx2 interact in a feed forward loop to regulate pacemaking. A) Knockdown of 
Tbx5 result in disrupted atrial electrophysiology and AF. B) Tbx5 and Pitx2 controls expression of key 
regulators of conduction in a incoherent feed forward loop (Nadadur et al., 2016). 
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Chapter 3: Prolonged culture of human 
cardiac slices and murine atria 

 

Human cardiac slices have emerged as a promising model of the human heart for 

scientific research and drug testing. Retaining the normal tissue architecture, multiple cell type 

environment, and the native extracellular matrix, human cardiac slices faithfully replicate the 

organ-level adult cardiac physiology. In this project, we optimized the organotypic culture 

condition to maintain normal electrophysiology of the human cardiac slices for 4 days, and 

demonstrated the capability of cultured isolated murine atrial preparation as a model for studying 

cardiac pacemaking and exogenous gene expression. The prolonged culture of human cardiac 

slices and isolated murine atrial preparation demonstrated here enable the ex vivo study of 

chronic drug effects, gene therapies, and gene editing on tissue with organ-level physiology. 

3.1 Introduction 
 

Physiologically and genetically accurate models of the human heart are indispensable for 

studying human cardiac physiology and for pre-clinical screening of candidate biological and 

drug therapies for their efficacy and/or toxicity. Although crucial for fundamental biological 

discovery, animal models often fail to predict human response to treatments due to inter-species 

genetic and physiological differences (Hasenfuss, 1998; Mak, Evaniew, & Ghert, 2014; 

Nerbonne, Nichols, Schwarz, & Escande, 2001; The FANTOM Consortium and the RIKEN PMI 

and CLST (dgt), 2014). In recent years, human cardiac slices from donor and end-stage failing 

hearts have emerged as a promising model of the human heart for electrophysiological and 



37 
 

pharmacological studies (Brandenburger et al., 2012; Camelliti et al., 2011). We have previously 

demonstrated that human cardiac slices faithfully recapitulate tissue level human cardiac 

physiology, exhibiting normal conduction velocity (CV), action potential duration (APD), 

intracellular calcium dynamics, heart rate dependence of these parameters and their response to 

α- and β-adrenergic stimulation (Kang et al., 2016). 

3.1.1 Human cardiac slices exhibit preserved electrophysiology 
 

Optical mapping of human cardiac slices is an intricate process. To record optical action 

potential with high signal to noise ratio from the slices, every step of the process from tissue 

collection to dye loading requires optimization (Fig. 3.1). We have previously optimized optical 

mapping of acutely sectioned slices and have been able to reproducibly record electrical activity 

from almost all acute slices. When compared with ventricular wedge preparations that can be 

kept alive for only hours, the major benefit of cardiac slices as a model of human myocardium is 

its potential ability to test for long-term effect of drugs and exogenous gene modulation. We 

have invested considerable efforts to improve slice viability in culture and viral transduction 

efficiency by adapting and improving the culture conditions described in the background section. 

Figure 3.1 Slice preparation pipeline. A) Samples were acquired from atrial and ventricular myocardium 
of non-failing human donor hearts and end-stage failing hearts. B) The samples were mounted onto a 
tissue holder with surgical glue. C) A vibratome was used to section the samples into 380µm thick slices 
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while the tissue is preserved in oxygenated, ice-cold Tyrode’s slicing solution. D) The cardiac slices were 
transferred to Tyrode’s washout solution at room temperature to washout BDM. E) After 20 minutes of 
recovery in the Tyrode’s washout solution, the cardiac slices were studied via optical mapping or cultured 
in 6-well plates (Kang et al., 2016). 

To maintain tissue viability in culture, cardiac slices require sufficient oxygen and 

nutrients. Both factors need to be carefully examined to improve slice viability in culture. In 

conventional cell culture, oxygen is supplied to the cells via passive diffusion of air across the 

culture medium. At 380 µm thick, cardiac slices are mostly consisted of myocytes and 

fibroblasts densely packed in their native three-dimensional extracellular environment, thus may 

require direct exposure to air for oxygen to sufficiently diffuse across the slices. In the field of 

neuroscience, Transwell inserts have been widely adopted for the long-term culture of brain 

slices, since the inserts create a liquid-air interface for greater air diffusion into the tissue 

(Gahwiler, Capogna, Debanne, McKinney, & Thompson, 1997). To prolong slice viability in 

culture, we have cultured slices from the same hearts on hydrophilic polytetrafluoroethylene 

(PTFE) transwell inserts, polyester transwell inserts, and in regular 6-well plates to test the 

efficacy of different culture conditions. After 24 hours in culture, we were able to electrically 

stimulate and observe contraction from a significantly greater percentage of slices cultured on 

PTFE transwell when compared with slices grown in other conditions. Based on this initial 

observation, the PTFE transwell inserts were used to culture slices for our subsequent work on 

functional characterization of the slices cultured for 24 hours and for performing viral 

transduction on the cardiac slices. 

Since the culture medium supplies all the necessary nutrients to the slices, the 

composition of the medium is critical to maintaining slice viability. Three different culture media 

previously used during culture of cardiac slices or isolated myocytes were compared 
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(Brandenburger et al., 2012; Habeler, Pouillot, et al., 2009; Habeler, Peschanski, et al., 2009). 

Since myocytes damage can occur during sectioning of slices which could lead to automaticity, 

addition of an excitation contraction coupler such as 2,3-butanedione monoxime (BDM) in the 

medium, which is able to be washed out during subsequent stages, would prevent contraction of 

the slices and depletion of nutrients in the culture medium. We found that culture medium 

consisted of M199, 1% penicillin-streptomycin, ITS (Insulin, Transferrin, Selenium) liquid 

media supplement, and 10 mM BDM. 

We have extensively characterized acute human ventricular slices, acute human atrial 

slices, and ventricular slices that have been cultured for 24 hours.  Cardiac slices were obtained 

from both failing and non-failing donor human hearts.  We have been able to optimize the optical 

mapping procedure to achieve high signal to noise ratio when recording from human cardiac 

slices (Fig. 3.2A).  Since the intensity of the fluorescent signal emitted from the tissue is 

proportional to tissue thickness, it was difficult to achieve good signal to noise ratio (Efimov et 

al., 2004; Lang et al., 2011).  Extra care is required during the loading of voltage sensitive dye to 

maintain the health of the tissue and achieve sufficient signal quality. To demonstrate that the 

cardiac slices are a suitable model for pharmacological assessments, we tested the effect of β - 

adrenergic stimulation by exposing the slices to 10 nM isoproterenol (Fig. 3.2B).  β - Adrenergic 

stimulation resulted in an expected increase in CV and shortening in APD (Fig. 3.2 D, F). To 

further compare the cardiac slices with published data on human cardiac tissue, we performed 

programmed stimulation to measure the APD restitution.  The result closely resemble published 

findings from human ventricular wedge preparations (Fig. 3.2F) (Lang et al., 2015). 
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Figure 1.2 Human cardiac slices exhibit normal electrophysiology. A) High signal to noise ratio are 
achieved when mapping cardiac slices. B) Comparison of AP morphology of failing and non-failing 
donor slices at baseline and with β-adrenergic stimulation. C) Map of activation sequence of slice under 
field stimulation. D) Comparison of CVs of acute and cultured donor and failing slices with β-adrenergic 
stimulation. E) Map of action potential duration 80% at 1 Hz pacing frequency. F) Comparison of APDs 
of acute and cultured cardiac slices with human ventricular wedge preparation with β-adrenergic 
stimulation (Kang et al., 2016). 

The human cardiac slices also demonstrate physiological CV, similar to what have been 

reported in human ventricular wedge preparations (Lang et al., 2015). As shown in figure 3.2 D, 

ventricular slices cultured for 24 hours maintained its normal CV under baseline condition. The 

acute and cultured ventricular slices exhibit normal APD and CV characterizes similar to what 

have been reported in perfused human ventricular wedge preparations (Lang et al., 2015). These 
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data demonstrated our ability to maintain electrophysiology of the ventricular slices for 24 hours 

in culture.   

Due to the limited supply of fully intact human atria, studying human atrial 

electrophysiology using perfused atrial preparation is extremely challenging. It is also difficult 

and impractical to maintain perfusion-based tissue preparations for long term studies of chronic 

drug exposure or gene therapy. We have been able to obtain human atrial slices with 

electrophysiology similar to what have been reported from perfused human atrial preparations 

(Fig. 3.3) (Fedorov et al., 2011). The atrial slices are obtained from the crista terminalis (CT) 

because of the difficulties in obtaining intact slices from the highly trabeculated atrial free wall. 

Optical mapping revealed the presence of pacemaker cells in the atrial slices, as demonstrated by 

the difference in the morphologies of calcium (Ca2+) transients (Fig. 3.3 B and C). The Ca2+ 

transient recorded from atrial myocardium exhibits fast upstroke and recovery, while the Ca2+ 

transient from the SAN has slow upstroke and prolonged recovery period. Some of the atrial 

slices also demonstrated automaticity. Extra beats can be observed at lower pacing rates (Fig. 3.3 

E). Without electrical stimulation, some of the atrial slices collected from the CT exhibit 

automaticity at approximately 1Hz.   
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Figure 3.3 Electrophysiology of acute human atrial slices. A) Atrial slices are obtained from crista 
terminalis. B) High signal to noise ratio can be obtained when mapping Calcium (Ca2+) transient on atrial 
slices. C) Heterogeneity can be observed in the Ca2+ morphology.  Faster Ca upstroke and recovery 
corresponds to atrial working myocytes. Slow Ca2+ upstroke and recovery corresponds to SAN cells. D) 
At 1Hz pacing, both cell types are fully captured. However, the SNA cells fails to capture at higher 
pacing rates.  E) Optical mapping of AP revealed automaticity in the atrial slices. F) Restitution curves of 
AP and Ca2+ in atrial myocytes are significantly lower than those of ventricular slices (Kang et al., 2016). 

Translating our knowledge of viral transduction on murine atria to the human cardiac 

slices, we were able to transduce the slices with adenovirus encoding for eGFP (Ad5-GFP) and 

observe eGFP expression 2 days after transduction. However, the combination of trypsin and 

collagenase resulted in significant loss of tissue integrity in the slices. To preserve tissue 

integrity while maximize viral transduction efficiency, we tested a number of conditions and 

found that treating the slices with virus-collagenase mixture for only for 10 minutes produced the 

best outcome. As shown in Figure 3.4, the virally transduced cardiac slices exhibited strong 
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expression of the virally-encoded eGFP for 96 hours. The expression of the exogenous gene in 

cardiomyocytes was verified by co-staining the tissue with a myocyte specific marker α-Actinin. 

To examine the degree of tissue remodeling during culture, immunohistochemical staining of 

Connexin 43 (Cx43), the major gap junction protein in the ventricles, was performed on the 

virally transduced slices. As shown in figure 3.4, the expression of Cx43 at the intercalated discs 

was largely preserved for 96 hours.  

  

Figure 3.4 Viral transduction of human cardiac slices with adenovirus. A) Expression of eGFP after viral 
transduction with Ad5-eGFP. The merged images show eGFP (green), α-Actinin (red), and nuclei DAPI 
staining (blue). B) Masson’s trichrome stain shows preserved structure of the ventricular cardiac slices. C) 
Immunohistochemical examination of Cx43 in the cardiac slices shows preserved gap junction expression 
(Kang et al., 2016). 
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3.1.2 Isolated murine atria as a platform for studying cardiac pacemaking and 
transcriptional reprogramming of the atrial myocardium 

 

The rhythmic contraction of the heart is initiated and maintained by the spontaneous 

firing of the SAN pacemaker cells.  The spontaneous activity of the SAN cells are triggered by a 

slow diastolic depolarization till the membrane potential reaches the threshold of T-type and L-

type Ca2+ channel activation1. The diastolic depolarization of SAN cells is mainly due to the 

activation of the funny current (If), which is governed by the hyperpolarization and cyclic 

nucleotide (HCN) channel2. In addition to the voltage clock, SAN cells also require a Ca2+ clock 

that maintains the spontaneous Ca2+ release from the sarcoplasmic reticulum3. Failure of the 

SAN to generate electrical impulses is common and can have severe consequences. The isolated 

murine atria have been extensively studied as a platform for studying cardiac pacemaking (Di 

paper). The organotypic culture of the murine atria would enable the use of the tissue for 

studying the effect of transcriptional reprogramming ex vivo. The native tissue environment 

preserved in the atria culture maintains the normal extracellular matrix and allows for 

intercellular communication, which is crucial for the differentiation and maintenance of native 

morphology of cardiomyocytes. 

3.2 Methods 

3.2.1 Collection of human heart 
 

Experimental protocols were approved by the George Washington University 

Institutional Review Board and were in accordance with human research guidelines. Human 

donor hearts rejected for organ transplantation were procured from Washington Regional 
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Transplant Service (Washington, DC).  Consents were obtained either from donors as previously 

granted or from family members allowing use of the hearts for research purpose. Following 

aortic cross-clamp, the hearts were cardioplegically arrested using University of Wisconsin 

(UW) solution (ViaSpan) in the operating room. The hearts were transported in the UW solution 

on ice. 

3.2.2 Slice preparation 
 

The procedures for slice preparation and culturing were described previously in detail 

(Kang et al., 2016). A sample approximately 1cm x 1cm x 1cm was cut from the left ventricular 

(LV) free wall. Care must be taken to ensure that the tissue is submerged in solutions at all times. 

The tissue samples were mounted onto the tissue holder of a vibrating microtome (Campden 

Instruments, UK) and sectioned into 380 µm thick slices while submerged in a modified 

Tyrode’s solution (140mM NaCl, 6mM KCl, 10mM Glucose, 10mM Hepes, 1mM MgCl2, 

1.8mM CaCl2, 10mM BDM, pH 7.4). The cutting chamber was surrounded by ice to maintain a 

stable low temperature. The vibrating microtome was set to 0.4 mm/s advance speed, 2 mm 

horizontal vibration amplitude at 80 Hz. Importantly, to minimize trauma to the tissue during 

sectioning, the undesired vertical vibration of the blade was laser-calibrated to less than 0.5 µm. 

After sectioning, each slice was placed in a cell straining and weight down with a meshed ring 

and transferred to a bath of modified Tyrode’s washout solution (140mM NaCl, 4.5mM KCl, 

10mM Glucose, 10mM Hepes, 1mM MgCl2, 1.8mM CaCl2, pH 7.4). The slices were kept in the 

washout solution for 20 minutes before optical mapping or culturing to washout BDM and 

reduce temperature shock. 
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3.2.3 Culture of human cardiac slices in a tri-gas incubator 
 

To prevent contamination, the cardiac slices were rinsed three times in sterile phosphate 

buffered saline (PBS) before culturing. The forceps used to handle the slices were sterilized with 

a bead sterilizer between each rinse. The slice culture medium consisted of Medium 199 

(M4530, Sigma-Aldrich, St. Louis, MO), 1 x ITS (I3146, Sigma-Aldrich, St. Louis, MO), and 

2% penicillin streptomycin (P4333, Sigma-Aldrich, St. Louis, MO). The slices were cultured in 

6-well plates with one slice in each well and 3 mL of the culture medium. To facilitate oxygen 

diffusion into the slices, the plates were agitated on an orbital shaker at 20 rpm placed inside a 

tri-gas incubator (Thermo Fisher Scientific, Waltham, MA) with 30% O2 and 5% CO2 at 37°C. 

The culture medium was changed every two days. 

3.2.4 Optical mapping of human cardiac slices 
 

A CMOS camera imaging system (ULTIMA-L, SciMedia, Costa Mesa, CA) was used to 

measure changes in transmembrane potential in the acutely isolated and cultured murine atria 

and human slices. Both types of tissue were superfused in Tyrode's washout solution at 37°C 

with the pH maintained at 7.4.  To eliminate motion artifacts in the recorded optical signal, the 

isolated atrial tissue was immobilized using the excitation-contraction uncoupling agent, 

blebbistatin (10µM), which has been shown to have no significant effects in action potential 

(AP) morphology.  Subsequently, the tissue was stained via superfusion with a voltage-sensitive 

dye, Di-4-ANEPPS (61010, Biotium, Fremont, CA). A green LED light source (Prizmatix, 

Southfield, MI) with the wavelengths of 520±45 nm was used to excite the voltage-sensitive dye.  
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The emitted fluorescence was filtered by a long-pass filter at 650 nm and collected by the 

ULTIMA-L camera as previously descried (Kang et al., 2016).  

3.2.5 Optical mapping data analysis 
 

The recorded data was first visualized using Brainvision software and then analyzed 

using Rhythm, our open source custom developed MATLAB program (Laughner, Ng, Sulkin, 

Arthur, & Efimov, 2012). The optical action potential signal was filtered with a 100Hz low-pass 

filter, 3x3 binning, and a 1st order drift correction. Activation maps of the isolated atrial tissues 

were generated based on the maximum derivatives of the optical signals (dVm/dtmax).  Activation 

maps of the human tissue paced at a cycle length of 1000 ms were used to calculate the 

conduction velocity. Action potential duration was calculated by measuring the time elapsed 

between depolarization and 80% repolarization. 

3.2.6 Viral transduction on cardiac slices  
 

To maximize viral transduction efficiency, 5 uL of type 2 collagenase (375 units/mL) are 

mixed with 2uL of adenovirus expressing green fluorescent protein (Ad5-GFP) (10^12 v.p/mL) 

and added to a cardiac slice.  After incubating for 10 minutes, the tissue is washed with DMEM 

with 10% FBS and PBS.  The slice culture medium is added to each well before the plate is 

placed back into the incubator. 

3.2.7 Dissection of murine atria 
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Mice were anesthetized with Ketamine and injected with heparin in accordance with 

approved animal protocol.  After loss of withdraw reflex, thoracotomy will be performed to 

excise the heart.  The excised heart will be placed in oxygenated Tyrode's solution with pH 

equilibrated to 7.4 at 37°C.  With the posterior side of the heart facing up, a cut will be made 

slightly above the midsection of the heart to remove the ventricles.  Facing the same orientation, 

an incision from the tricuspid valve to the superior vena cava along the atrial septum will be 

made under a surgical microscope.  Subsequently, portions of the atrial septum will be removed 

to open the left atria.  The edges of the atria will be slightly stretched and pinned to expose the 

endocardial surface.  The resulting isolated atria preparation will contain the intact SAN region, 

delimited by the crista terminalis, atrial septum, and orifice of the superior vena cava. 

3.2.8 Culturing of murine atria 
 

To culture the isolated murine atria, the tissue will be sterilized by rinsing in sterilized 

phosphate buffered saline (PBS) for multiple times.  The sterilized tissue will be immediately 

transferred to six-well dishes coated with silicon.  The edges of the isolated atria will be slightly 

stretched and pinned to the bottom of each well.  The basic culture media will be consisted of 

Medium 199, 10% Fetal Bovine Serum (FBS), and 1% penicillin streptomycin (PS).  The 

isolated atria will be cultured in a tissue culture incubator with constant humidity at 37°C and at 

5% CO2.  To promote superfusion of the media, the six-well dishes containing the atrial tissue 

will be placed on top of an adjustable speed orbital shaker set at 20 rpm.  The culture media will 

be changed daily to reduce the chance of contamination.   

3.2.9 Gene painting on isolated murine atrial preparation 
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The isolated murine atria preparations will be painted immediately after the tissue is 

pinned in the culturing plate.  A gel mixture will be made with 20% poloxamer and 0.5% trypsin 

in PBS.  Recombinant adenovirus expressing plasmid for the genes of interest will be added to 

the mixture for a final viral titer of at least 1 x 1011 virus particles per mL.  The mixture is liquid 

in consistency at 4°C, but gels at room temperature.  Using a soft fine painter's brush, 5 µL of the 

gel mixture containing the adenovirus will be applied directly to specific regions of the isolated 

atria. 

3.3 Results 
 

With preserved extracellular matrix and native cell-cell coupling, vibratome-cut human 

cardiac slices have been demonstrated as an authentic model of the adult human heart for 

physiological studies and pharmacological testing (Brandenburger et al., 2012; Camelliti et al., 

2011; Kang et al., 2016). We have previously established a protocol for obtaining viable human 

cardiac slices from non-failing donor hearts that were rejected for transplantation and from end-

stage failing hearts (Kang et al., 2016). In this project, we further optimized the culture condition 

to extend viability length of the cardiac slices in vitro. Using optical mapping, we evaluated the 

conduction parameters of the culture cardiac slices. 

3.3.1 Long-term culture of human cardiac slices 

 
Extending the culture length of the cardiac slices while preserving the mature phenotype 

would enable the study of human cardiac physiology and the test of chronic pharmacological 

perturbation and gene therapies. Without microvasculature perfusion, the cardiac slices rely 

entirely on passive diffusion of oxygen and nutrients. At 380µm, the thickness of the slices 
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approaches the diffusion limit of oxygen in soft tissue (Barclay, 2005). We previously cultured 

the cardiac slices on a liquid air interface to facilitate oxygenation of the slices and were able to 

preserve normal electrophysiology for 24 hours (Kang et al., 2016). In this project, we modified 

the culture protocol to increase oxygenation of the liquid culture medium. A tri-gas incubator 

with 30% O2, 5% CO2 at 37°C was used to culture the slices. The slices were individually 

cultured in 6 well plates with 3mL of medium in each well. The culture plates were placed on an 

orbital shaker set at 20 rpm to further increase the dissolved oxygen concentration in the liquid 

culture medium (Fig 3.5). 

 

Figure 3.5 Setup for culturing human cardiac slice in a tri-gas incubator. 

Human cardiac slices obtained from the left ventricular free wall remained electrically 

viable for up to 21 days in vitro and routinely maintained normal electrophysiology for up to 4 

days, as shown in Figure 3.6. We performed optical mapping to measure the conduction 

parameters of the cardiac slices. The conduction velocity was measured at 1 Hz pacing. When 

compared with fresh slices, the cultured slices maintained anisotropic conduction (Fig. 3.6 D), 

and uniform repolarization across the entire slice (Fig. 3.6 F). The slices demonstrated preserved 

physiological conduction velocity for 4 days in culture (Day 0: 21.3±4.5 cm/s, Day 2: 
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19.7±1.8cm/s, Day 4: 17.2±1.7cm/s, Day 0 vs. Day 2: p = 0.76, Day 0 vs. Day 4: p = 0.14), as 

shown in Figure 1A. However, significant reduction in CV was observed in the slices cultured 

for 21 days (6.7 cm/s). The slowed conduction in the long-term slice culture may be a 

manifestation of tissue remodeling and dedifferentiation due to the lack of electrical and 

mechanical loading. 

 

Figure 3.6 Cultured human cardiac slice electrophysiology. A) CV of cultured human cardiac slices 
overtime. No significant changes in conduction velocity were observed in slices cultured for 2 days and 4 
days when compared with fresh slices. B) Comparison of action potentials of a fresh human cardiac slice 
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and a slice cultured for 21 days. C) Activation map of the fresh slice. The colorbars represent activation 
times in ms. D) Activation map of the cardiac slice cultured for 21 days. E) APD map of the slice shown 
in panel C. F) APD map of the slice shown in panel D.  

3.3.2 Long-term culture of isolated murine atrial preparation 

 
As a platform for testing varies reprogramming strategies, organotypic culture of isolated 

adult murine atria has been developed.  Organotypic culture of the atria has unique advantages 

over isolated cardiomyocytes culture.  The native tissue environment preserved in the atria 

culture maintains the normal extracellular matrix and allows for intercellular communication, 

which is crucial for the differentiation and maintenance of native morphology of 

cardiomyocytes.  Organotypic culture is well established and widely used in the study of brain, 

kidney, liver, lung, and pancreas in the form of tissue slices (Parrish, Gandolfi, & Brendel, 

1995). Our results (Fig. 3.7) are the first to demonstrate the feasibility of culturing electrically 

viable isolated adult murine atria for extended period of time. After 5 days in culture, the isolated 

atria demonstrated stable HR, physiological atrial CV, and stable pacemaker site within the SAN 

area.  
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Figure 3.7 Culture of isolated murine atrial preparation. A) Photograph of the adult murine atrial 
isolation. B-C) Maps of activation recorded optically on day 0 and day 5 of culture near the SAN. The 
activation time is shown in ms. D) Map of activation during pacing. E) Representative optical action 
potentials from sites 1 and 2 shown in panel D. F) Stability of heart rate when cultured with different 
media.  

To obtain the tissue preparation, atria was removed from a Langendorff-perfused heart 

and dissected open, as shown in Figure 3.7 A. The isolated atria were cultured in 6-well plates 

coated with polydimethylsiloxane (PDMS) for anchoring the tissue with micro dissection pins.  

The first sites of atrial activation in acutely isolated atria are represented by the blue dots in 

Figure 3.7 A; whereas the orange dots are the first sites of activation in the cultured atria. The 

location of the pacemaker site remained stable in the cultured atria when compared with the 

acute conditions. As shown in Figure 3.7 B and C, the pacemaker sites of the acutely isolated and 

cultured atria remained in the anatomically defined SAN region, and the normal activation 

pattern was preserved. A magnified activation map of cultured atria that was paced at a cycle 

length of 100 ms is shown in Figure 3.7 D. The conduction velocity of the cultured atrial tissue 

was within the normal physiological range, and it was calculated by taking the distance and 
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activation times at location 1 and 2.  The optical signals at the two locations and the difference in 

their activation times are illustrated in Figure 3.7 E.  As shown in Figure 3.7 F, murine atria 

cultured in the medium supplemented with 10% FBS maintained the highest viability (ITS: 

Medium 199 (M199), 1% ITS Liquid Media Supplement, 1% penicillin-streptomycin (PS); 10% 

FBS: M199, 10% Fetal Bovine Serum (FBS), 1% PS; 20% FBS: M199, 20% FBS, 1% PS).  Far-

field electrocardiography was performed daily on the cultured atria.  The sinus rhythm of the 

isolated atria remained stable throughout the duration of the culture.  These results show that 

isolated murine atria can be consistently cultured for an extended period of time while 

maintaining their normal electrophysiology. 

Isolated and cultured murine atria are a useful platform for optimizing viral transduction.  

When compared with viral transduction in cell culture, achieving high transduction efficiency is 

much more difficult when working with ex vivo tissue due to the dense extracellular matrix.  We 

adapted a localized gene delivery technique called “gene painting” to deliver adenovirus to 

murine atria (Kikuchi, McDonald, Sasano, & Donahue, 2005; Swaminathan et al., 2011).  

Proteases such as trypsin and collagenase were mixed with the virus to digested part of the 

extracellular matrix to allow transmural penetration of the virus into the tissue.  Adenovirus 

expressing green fluorescent protein (Ad5-GFP) is used since the resulting eGFP expression 

would be an easy readout for transduction efficiency.  As shown in Figure 3.8, gene painting of 

the cultured murine atria with Ad5-eGFP resulted in localized eGFP expression 2 days after the 

viral transduction. 
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Figure 3.8 Viral transduction of cultured mouse atrial preparation with gene painting. 

 

3.4 Discussion  
 

We have previously demonstrated the advantages of human cardiac slices as a model for 

studying human cardiac physiology and for drug efficacy and toxicity testing (Kang et al., 2016). 

However, the limited culture duration and the intricate culture protocol impeded the use of 

human cardiac slices for long-term studies. Here, we present an improved culturing method that 

maintains normal electrophysiology of the human cardiac slices for 4 days, which enables 

research of chronic drug exposure and exogenous gene expression. 

Several studies have demonstrated the feasibility of maintaining cardiac slice viability in 

culture, but have observed significant tissue remodeling in the slices cultured long term. In the 

absence of electrical and/or mechanical stimulations, cardiomyocytes undergo significant 

remodeling and dedifferentiation, evident by diminished contractile force, triangulation of action 
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potential morphology, and reduced gap junction expression(Brandenburger et al., 2012; Kaneko 

et al., 2012). We demonstrated that the cultured human cardiac slices maintain normal 

electrophysiology for up to 4 days and remain electrically viable for up to 21 days when cultured 

inside a high oxygen environment. Significant reduction in CV was observed in the cardiac slices 

cultured longer than 4 days. The reduction in CV of the cultured slice is likely due to tissue 

dedifferentiation in the absence of electrical and mechanical stimulation. To overcome this, we 

subsequently developed a culture system with electrical stimulation and mechanical anchoring 

capabilities as a platform to optimize organotypic culture of the human cardiac slices. 

We utilized optical mapping to characterize the conduction parameters of the cardiac 

slices at a high spatial and temporal resolution. Optical mapping is also capable of measuring 

other functional parameters such as the intracellular calcium and the metabolic state, using 

calcium-sensitive fluorescent dyes and NADH fluorescence (Lou, Li, & Efimov, 2011; Moreno, 

Kuzmiak-Glancy, Jaimes, & Kay, 2017). However, the use of fluorescent probes in optical 

mapping hampers its ability to take repeated measurements on the same slice over the length of 

culture. To overcome this, other techniques such as intracellular microelectrode recording and 

multi-electrode array recording can be applied to study the cardiac slices (Camelliti et al., 2011).  

The prolonged culture of human cardiac slices demonstrated here enables the study of chronic 

drug effects, gene therapies, and gene editing. Adenoviral (Ad) vectors are a promising approach 

for in vivo gene delivery because the ease of producing high titer when compared with lentivirus 

and the larger packaging capacity when compared with adeno-associated virus (Thomas, 

Ehrhardt, & Kay, 2003). However, the clinical adoption of Ad vectors for gene therapy has been 

limited by its dependence on the coxsackievirus and adenovirus receptor (CAR) for transduction 

(Dmitriev et al., 1998). With the preserved native extracellular matrix, the cardiac slices are a 
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powerful platform for testing advancements in vector technology, such as tropism-modified 

CAR-independent Ad5 vectors.  

With the prolonged culture length, human cardiac slices can be used as an accurate model 

of the human myocardium for testing the effect of exogenous gene expression. Optogenetic 

stimulation and inhibition with light-gated ion channels such as Channelrhodopsin-2 (ChR2) and 

anion channel rhodopsins (ACRs) has been proposed as a selective and safe method of cardiac 

pacing and cardioversion (Govorunova, Sineshchekov, Janz, Liu, & Spudich, 2015; Jia et al., 

2011). With built-in LED light source and far field-sensing electrodes, our culture system can 

perform automated evaluations of optogenetic stimulation on specific regions of the adult human 

heart. RNA interference (RNAi) has been proposed as a potential therapeutic and research tool. 

The ability to silence specific genes of interest with small interfering RNA (siRNA) and short 

hairpin RNA (shRNA) makes RNAi a powerful tool for studying cardiac physiology (Poller, 

Hajjar, Schultheiss, & Fechner, 2010; Suckau et al., 2009). The approach has been used for 

suppressing inflammatory response and oxidative stress to improve cardiac function following 

myocardial infarction in animal models (Hong et al., 2014; Somasuntharam et al., 2013). When 

applied to human cardiac slices, RNAi can be used to gain valuable insights to human cardiac 

physiology by selective knockdown of specific ion channels and subunits. 

With preserved SAN function and anatomical structures, the isolated murine atrial 

preparation is an accurate platform of the atria for studying cardiac pacemaking and for 

developing transcriptional reprogramming protocols for the generation of biological pacemakers 

(Choate & Feldman, 2003; Schmidt & Nygren, 2006). Most commonly due to age-related 

degeneration, SSS exhibits symptoms such as irregular prolonged pauses between heartbeats, 

pathologically slow resting HR, and inadequate activity-related increase in HR (Ferrer, 1968). 
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Currently, transvenous implantation of permanent electronic pacemakers is the only effective 

treatment for patients with SAN dysfunction. Pacemaker therapy using implantable electronic 

devices has a number of significant limitations. Major risks associated with electronic 

pacemakers include infection at the surgical site, limited battery life, lack of activity-related 

modulation of HR, and device or electrodes failure (Kiviniemi, Pirnes, Eränen, Kettunen, & 

Hartikainen, 1999).  Unique issues may arise in pacemaker therapy for pediatric patients such as 

lead migration due to heart development.  Due to these complications and malfunctions, majority 

of patients with pacemakers require reoperation (Fleck, Khazen, Wolner, & Grabenwoger, 2006).   

The need for a smarter and more reliable pacemaker has driven the biological pacemaker 

research, with the goal of generating a permanent and autonomically sensitive pacemaker using 

cell-based approaches or viral-based gene therapy.  To create a functional biological pacemaker, 

the engineered cells not only need to have appropriate gene expressions and functional behavior, 

but also need to exhibit correct three-dimensional anatomical and molecular architecture to allow 

for source-sink matching. One approach is to differentiate pluripotent stem cells into pacemaker 

cells in vitro by recapitulating normal developmental programs, followed by direct injection of 

cells into the heart (Kehat et al., 2004). However, it would be difficult to produce a highly 

functional pacemaker since the 3D anatomical structure of the biological pacemaker cannot be 

effectively controlled due to low cell retention and engraftment after myocardial injection. Atria 

would also be a more ideal location to generate a biological pacemaker to treat SAN dysfunction. 

Another approach is to directly reprogram adult atrial cardiomyocytes to pacemaker cells in situ 

using viral-based delivery of transcription factors (Kapoor, Liang, Marbán, & Cho, 2013; Miake, 

Marbán, & Nuss, 2002). Reactivation of developmental programs in adult tissue to promote 

tissue regeneration during injury responses has been well studied. Terminally differentiated cells 
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are currently being directly converted into a new cell type of interest for therapeutic benefits via 

reactivation of developmental programs (Hanna et al., 2008). The benefit of the transcriptional 

reprogramming approach is that maintenance of gene expression will not be required for 

phenotypic maintenance once cellular reprogramming has occurred.  It has been demonstrated 

that reprogramming of murine ventricular cardiomyocytes into specialized conducting Purkinje-

like cells via activation of the Notch signaling pathway, which is a developmental signaling 

cascade that regulates specification of the conduction system (Rentschler et al., 2012).  Using a 

similar approach, Tbx18 has been recently demonstrated to reprogram adult guinea pig 

ventricular cardiomyocytes into induced-SAN cells (Kapoor et al., 2013).  However, the 

reprogramming effect of Tbx18 was not tested in the atrium, which is the ideal location for a 

biological pacemaker to approximate normal physiology. In addition to Tbx18, several other 

transcription factors have also been demonstrated to be involved in the development of the SAN, 

including Tbx3, Shox2, and canonical Wnt signaling (Bressan, Liu, & Mikawa, 2013; Liu et al., 

2012; Wiese et al., 2009). In this project, we have developed a robust protocol for organotypic 

culturing of adult murine atria and explored a targeted gene delivery technique for spatial 

specific genetic manipulation. The organotypic culture of isolated murine atrial preparation 

enables efficient screening of various transcription factors for their effects in direct 

reprogramming of mature working atrial myocardium into a biological pacemaker. 
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Chapter 4: Novel platform for the 
investigation of normal and pathological 

human cardiac physiology 
 

Human cardiac slices have emerged as a promising model of the human heart for 

scientific research and drug testing. Retaining the normal tissue architecture, multiple cell type 

environment, and the native extracellular matrix, human cardiac slices faithfully replicate the 

organ-level adult cardiac physiology. In this project, we optimized the organotypic culture 

condition to maintain normal electrophysiology of the human cardiac slices for 4 days and 

developed an automated, self-contained heart-on-a-chip system for maintaining tissue viability 

and for transporting live tissue. The prolonged culture of human cardiac slices demonstrated here 

enables the study of chronic drug effects, gene therapies, and gene editing. To achieve long-term 

culture and to minimize tissue dedifferentiation, the culture system supports media circulation, 

oxygenation, temperature control, electrical stimulation, and mechanical loading. The culture 

parameters can be individually adjusted to establish the optimal culture condition. The 

development of the heart-on-a-chip technology presented here further facilitate the use of 

organotypic human cardiac slices as a platform for pre-clinical drug testing and research in 

human cardiac physiology. 

4.1 Introduction 
 

Extensive efforts have been invested into developing an authentic model of the human 

heart. Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are widely 

used in modeling diseases and drug screening (Chi, 2013; Itzhaki et al., 2011). However, the 
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development of hiPSC-CMs with mature atrial or ventricular phenotype has been challenging so 

far (Karakikes, Ameen, Termglinchan, & Wu, 2015; Robertson, Tran, & George, 2013). Another 

approach to study human cardiac cell biology involved isolated primary human cardiomyocytes, 

which are functionally mature, but have limited experimental duration since they dedifferentiate 

in cell culture (Bird et al., 2003; Coppini et al., 2014). Different cardiomyocyte subpopulations 

can be obtained by altering the cell isolation process. However, they exhibit altered 

electrophysiology, i.e. action potential morphology, due to the lack of cell-cell coupling and 

membrane protein alterations caused by the tissue digestion procedure. The cell isolation 

procedure is also time consuming and labor intensive, thus limiting the use of isolated 

cardiomyocytes to low-throughput testing. Another approach is based on the human ventricular 

wedge preparations, which allow for studying CV, conduction heterogeneity, and arrhythmia 

susceptibility (Glukhov et al., 2012; Glukhov, Fedorov, et al., 2010; Lou, Fedorov, et al., 2011). 

Due to the complexity and variability of the coronary system and the size constraint of the 

preparation, the ventricular wedge preparation is also severely limited in terms of throughput. 

Primary cells, cell lines, and tissue also have significantly different gene expression profiles, as 

reported by the functional annotation of the mammalian genome 5 consortium (The FANTOM 

Consortium and the RIKEN PMI and CLST (dgt), 2014). Human cardiac slices faithfully 

replicate the organ-level adult cardiac physiology because they retain the normal tissue 

architecture, multiple cell type environment, extracellular matrix, etc (Kang et al., 2016). At the 

diffusion limit for oxygen, human cardiac slices can be cultured long-term for studying chronic 

drug treatment, gene expression regulation, and genetic engineering (Barclay, 2005; 

Brandenburger et al., 2012; Bussek et al., 2012; Kang et al., 2016). 
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Previous studies on the organotypic culture of ventricular slices obtained from adult 

mammalian hearts mostly have been limited to 48 hours, which diminishes the usefulness of the 

preparation for testing effect of chronic drug and gene therapies (Brandenburger et al., 2012; 

Bussek et al., 2012; Kang et al., 2016). Lacking pacemaking abilities, slices collected from the 

ventricles of the heart undergo significant dedifferentiation, when cultured with conventional 

tissue culture techniques that lack electrical or mechanical stimulation and loading 

(Brandenburger et al., 2012; Kaneko et al., 2012). Human tissue and primary cells have been 

implemented in numerous body-on-a-chip systems designed for drug testing (Esch, Ueno, 

Applegate, & Shuler, 2016; Loskill et al., 2017; Phan et al., 2017). However, due to difficulties 

in maintaining the mature phenotype of adult human cardiac tissue in vitro, thus far there has not 

been a heart-on-a-chip system that supports long term organotypic culture of the human cardiac 

tissue. To achieve long-term culture of human cardiac slices while maintaining adult 

cardiomyocyte phenotype, we have developed a human-heart-on-a-chip system for organotypic 

culture of human cardiac tissue slices. The culture system supports media circulation, 

oxygenation, temperature control, electrical stimulation, and mechanical loading. The system is 

also entirely self-contained to allow for the transport of live cardiac slices to share for scientific 

research and drug testing. 

4.2 Methods 
4.2.1 Human cardiac slice preparation 

 
Procurement of human cardiac tissue and procedures for obtaining viable human cardiac 

slices were described in Chapter 3.2.1 and 3.2.2. Experimental protocols were approved by the 
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George Washington University Institutional Review Board and were in accordance with human 

research guidelines.  

4.2.2 Isolation of murine atrial preparation 

 
Procedures for isolating murine atria for culture were discussed in Chapter 3.2.7. Mice 

were anesthetized in accordance with animal protocol approved by the George Washington 

University IACUC.  

4.2.3 Optical mapping of human cardiac slices 

 
Methods for optical mapping of human cardiac slices and data analysis were described 

previously in Chapter 3.2.4 and 3.2.5.  

4.2.4 ECG data analysis 

 
A custom MATLAB program (Fig. 4.5) was used to analyze the pseudo ECG recorded 

from the culture chambers. First, the signals were filtered with a 60Hz notch filter to remove the 

60-cycle noise. The signal was then filtered with a 5th order band-pass Butterworth filter with a 

lower cutoff frequency at 5Hz and a higher cutoff frequency at 100Hz before peak detection was 

performed on the signal for heart rate calculation. 

4.2.5 Microcontroller-controlled slice culture system 

 
Custom electromechanical components were developed and fabricated to monitor and 

control the fundamental culture conditions, including media circulation, temperature adjustment, 

medium oxygenation, electrical stimulation, optical stimulation, and ECG recording.  A 
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microcontroller (Teensy 3.2, PJRC, Sherwood, OR) was used to monitor and actively control 

each component of the system. The microcontroller interfaced with the rest of the system via a 

custom breakout board. To achieve medium circulation, we prototyped a peristaltic pump using 

3D printing technique to achieve the appropriate flow rate with low power consumption. To 

maintain medium temperature and oxygenation, we fabricated a gas-exchanger with built in 

thermofoil heater (Minco, Minneapolis, MN) using a 3-axis CNC mill (Roland DGA, Irvine, 

CA). Since a 5.5 V battery was used to power the entire system, a voltage boost regulator 

(LMR62010, Texas Instrument, Dallas, TX) was used to drive the heater at 12V. A gas 

permeable PDMS sheet separated the oxygen from the culture medium. A humidity and 

temperature sensor (HTU21D, SparkFun, Boulder, CO) was mounted onto the thermofoil heater 

to prevent overheating of the culture medium and to detect system leakage. 

Each tissue chamber is instrumented with an array of sensors and actuators to monitor the 

culture condition and stimulate the tissue to minimize dedifferentiation. To monitor the 

temperature inside the culture chambers, a high-precision platinum temperature sensor (Digikey, 

Thief River Falls, MN) was embedded into each chamber. The temperature signal was digitized 

by a high-precision analog-to-digital converter (ADS1220, Texas Instrument, Dallas, TX) and 

recorded by the microcontroller. Using the culture chamber temperature, a negative feedback 

control loop is used to control the heaters to actively maintain a stable culture medium 

temperature. To record far-field pseudo ECG of cultured tissue, silver/silver chloride sensing 

electrodes were fabricated into the culture chambers. The pseudo ECG was amplified 1000 times 

with an operational amplifier, and digitized via a multichannel high sampling rate analog-to-

digital converter (ADS131A04, Texas Instrument, Dallas, TX). The ECG data was recorded by 

the microcontroller at 2kHz sampling rate for further processing. Electrical stimulation of the 
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slices is achieved with field stimulation via platinum/iridium electrodes. For optical stimulation 

of the cultured optogenetic tissue, a 470±10 nm LED (Wurth Electronics, Niedernhall, Germany) 

was built into each well. All mechanical components were designed in AutoCAD and fabricated 

with a 3D printer, a laser cutter, and a 3-axis CNC mill. 

4.2.6 Statistical analysis 

 
All data presented here are shown as mean ± standard deviation. The statistical analysis 

was performed using one-way ANOVA followed by a Dunnett’s multiple comparisons test. 

4.3 Results 
 

With preserved extracellular matrix and native cell-cell coupling, vibratome-cut human 

cardiac slices have been demonstrated as an authentic model of the adult human heart for 

physiological studies and pharmacological testing (Brandenburger et al., 2012; Camelliti et al., 

2011; Kang et al., 2016). We have previously established a protocol for obtaining viable human 

cardiac slices from non-failing donor hearts that were rejected for transplantation and from end-

stage failing hearts (Kang et al., 2016). In this project, we further optimized the culture condition 

to extend viability length of the cardiac slices in vitro. Using optical mapping, we evaluated the 

conduction parameters of the culture cardiac slices. To achieve long-term culture of human 

cardiac slices, we developed an automated heart-on-a-chip system for organotypic culture of 

cardiac slices that supports electrical stimulation to minimize tissue dedifferentiation. The system 

is also entirely self-contained to allow for shipping of live human cardiac tissue.  
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4.3.2 Heart-on-a-chip system 

 
To prolong the culture period of human cardiac slices and prevent tissue 

dedifferentiation, we developed a heart-on-a-chip electronic and microfluidic system for 

organotypic culture of human cardiac slices in vitro, as shown in Figure 4.1. The culture system 

continuously monitors and maintains stable culture conditions, including culture medium 

temperature, circulation, and oxygenation. The culture chambers include actuators and sensors 

for electrical stimulation, sensing, and optical stimulation. Unlike cell lines that could be 

cryopreserved for shipping, live human cardiac slices are susceptible to hypoxia when not 

maintained properly, thus complicating shipping of live slices across the country or 

internationally. The culture system that we developed is also fully self-contained with integrated 

power supply, oxygen source, and media reservoir, allowing the maintenance of tissue viability 

during transportation. To increase culture capacity and reduce the cost of repair, we designed the 

culture system to be modular for plug and play operation.  
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Figure 4.1 Human heart-on-a-chip system. A) Block diagram of the culture system. The system consists 
of custom electronics and electromechanical components to maintain stable culture conditions. B) 
Pictures of the assembled system. Insulation foam was removed from the sides of the enclosure for 
illustration. C) Modular electronic control unit. The electronic components consist of an acquisition 
module, a motor driver, a microcontroller, and a power module (from left to right). 

The culture conditions inside the heart-on-a-chip system are closely monitored and 

adjusted by an array of sensors and actuators controlled by a microcontroller, as shown in Figure 

4.1A. The system consists of a custom control module, multiple culture chambers, pumps, 
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heaters, a gas exchanger, a culture medium reservoir, a gas pressure regulator, and an oxygen 

tank. With an average current draw of below 600mA, the culture system has an operation time of 

three days on a single portable 40,000 mAh battery, which is sufficient for over-night shipping.  

All culture parameters can be independently adjusted in real time to determine and maintain the 

optimal culture condition for human cardiac slices. 

4.3.3 Smart tissue culture chamber 

 
Electrical stimulation has been shown to maintain the structural and functional properties 

of isolated adult rat ventricular myocytes(Berger et al., 1994; Folliguet et al., 2001). To minimize 

tissue dedifferentiation and to monitor the culture parameters, we instrumented each culture 

chamber with an array of actuators and sensors, including field-pacing electrodes, sensing 

electrodes, a temperature sensor, and a light source for optogenetic stimulation and fluorescence 

recordings (Fig. 4.2 B). The chamber bottoms are coated with polydimethylsiloxane (PDMS) for 

mechanical anchoring of the slices using miniature dissection pins. To avoid physical damage to 

the slice from point pacing electrodes, platinum-iridium (Pt/Ir) electrodes, which have proven 

biocompatibility and low electrical resistance, are fabricated into the culture chamber for field 

stimulation. The default stimulation parameters are set at 3V pulse amplitude, 2 ms pulse 

duration, and 1 second pacing cycle length. As shown in Figure 4.2 D, no undesirable voltage 

fluctuations were observed in the recorded stimulation waveform. The pacing parameters are 

user or software adjustable to allow for optimization of the pacing protocol during culture in case 

of changes in pacing threshold or specific protocol requirements.  



70 
 

 

Figure 4.2 Smart tissue culture chamber. A) A fully integrated culture device for compactness. B) Culture 
chambers are instrumented with sensing electrodes, field pacing electrodes, a temperature sensor, and a 
LED. C) Modular culture system for each of scaling up culture capacity. D) Recorded waveform during 
electrical field stimulation with 3V pulse amplitude, 5ms pulse duration, and 1 second pacing cycle 
length. 

Temperature of the culture medium is maintained by a feedback control system based on 

the temperature inside the chamber via a platinum resistance thermometer. Based on platinum’s 

linear resistance-temperature relationship, an analog temperature signal is obtained by comparing 

the voltage from the platinum thermometer to a reference voltage with an instrumentation 

amplifier. The analog signal is then digitized with an analog to digital converter before being 

recorded and converted to Celsius by the microcontroller. We developed two configurations of 

the culture chambers, as shown in Figure 4.2 A, C. While both configurations perform similarly, 

the design shown in Figure 4.2 A is much more compact, with all electronic components 

integrated onto the same printed circuit board, whereas the system in Figure 4.2 C utilizes a 

modular design for the ease of scaling up culture capacity with plug and play operation. 
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Due to the scarcity of human heart tissue, isolated murine atrial preparation containing sinus 

node was used to test and optimize the culture system during development. Viability of the 

culture murine atrial preparation was measured by the intrinsic heart rate of the sinus node. To 

monitor the murine atrial sinus rhythm in culture, we fabricated Pt/Ir sensing electrodes into the 

culture chambers for pseudo ECG recording. The pseudo ECG was amplified 1,000x with an 

operational amplifier and digitized via a multichannel high sampling rate analog-to-digital at 

2kHz sampling rate. The ECG data was recorded by the microcontroller for post processing.  

4.3.4 Custom gas exchanger 

 
Since the thickness of human cardiac slices approaches the limit of oxygen diffusion, 

sufficient oxygenation of the culture medium is critical to maintaining tissue viability (Barclay, 

2005). When cultured in a regular incubator with 20% O2, the core of the tissue slice may 

experience hypoxia, causing altered gene expression and reducing tissue viability (Giordano, 

2005; Huang, 2004). To supply sufficient oxygen to the slices, a custom gas exchanger was 

developed to oxygenate the culture medium before it is circulated to the culture chambers, as 

shown in Figure 4.3 A. The gas exchanger consists of two mirrored chambers separated by a 

0.35mm thick gas-permeable PDMS membrane. One chamber of the gas exchanger is 

pressurized with pure oxygen at 15psi, while the culture medium flows through the mirrored 

chamber. The total oxygen exchange surface is 17cm2. Using an oxygen sensor (ADInstruments, 

Colorado Springs, CO), we measured a dissolved oxygen concentration of 1.3 mM in the culture 

medium, 5-6 times higher than that of conventional culture in a cell incubator (McMurtrey, 

2016). As shown in Figure 4.3 E, gas exchange occurs rapidly inside the culture system. When 

the gas exchanger was filled with pure oxygen, the diffused oxygen level reached saturation in 
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approximately 15 minutes. Vice versa, when the oxygen was purged and nitrogen was fed into 

the gas exchanger, the oxygen concentration in the culture medium was depleted in 

approximately 15 minutes. To maintain tissue viability during transportation, the culture system 

also contains a portable small gas tank and a miniature pressure regulator (Fig. 4.3 C). The gas 

tank can be pressurized to 2100 psi, allowing for an estimated 3 weeks of oxygen supply. 

 

Figure 4.3 Custom gas exchanger, heater, and pump for maintaining culture medium oxygenation, 
temperature, and circulation. A) Rendering od the CNC milled gas exchanger. The top chamber is made 
of polycarbonate for liquid medium to pass through. The bottom chamber is made of stainless steel and is 
heated with a thermofoil heater. B) Rendering of the 3D printed peristaltic pump. C) Portable gas tank 
and miniature pressure regulator. D) Recorded temperatures of the heater and the culture chamber. The 
culture chamber temperature rapidly reaches and maintained physiological temperature with minimal 
fluctuation. E) Dissolved oxygen level in culture medium with different gas. The oxygen concentration in 
the liquid medium rapidly reached saturation when the gas exchanger is filled with oxygen. The dissolved 
oxygen was depleted when the gas exchanger was filled with nitrogen. 
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4.3.5 Maintenance of stable culture temperature 

 
Since most enzymes denature rapidly at high temperatures and ion channel conductance 

is temperature dependent, the ability to maintain stable temperature inside the culture chambers 

is critical for preserving viability and normal electrophysiology of cardiac slices (Dumaine et al., 

1999; Milburn, Saint, & Chung, 1995; Voets et al., 2004). We implemented a proportional 

control, a type of feedback control system, to maintain a stable culture medium temperature and 

to compensate for changing ambient temperature. Two thermofoil heaters were built into the gas 

exchanger and the medium reservoir, where the liquid medium has the greatest surface-to-

volume ratio. Since heat transfer to the culture medium does not stop immediately when the 

heaters are powered off due to the large heat capacitance of the heaters, a proportional control 

system was implemented to avoid undesirable temperature fluctuations in the culture chambers, 

as shown in the following equation. To prevent overheating of the culture medium, the 

temperature of the heaters is monitored and limited to a maximum of 45°C, well below the 

inactivation temperature of fetal bovine serum. As shown in Figure 4.3 D, the culture medium 

inside the culture chamber reached 37°C from room temperature within 20 minutes with minimal 

overshoot. The temperature was subsequently maintained without fluctuations.  

𝑃!"# = 𝐾! 𝑒 𝑡 + 𝑝0       (4.1) 

Equation for proportional control, where p0 is output with zero error and is set at 37°C, 

e(t) is the instantaneous error at time t and is the difference between p0 and culture chamber 

temperature, Kp is a proportional gain and is set at 1, Pout is the target temperature of the heater. 

The upper bound of Pout is set to 45°C to avoid overheating of the culture medium. 
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4.3.6 Low-power pump for medium circulation 

 
Both heating and oxygenation of the culture media require circulation of the perfusion 

medium. A robust means of driving steady flow is critical for maintaining stable heat and gas 

exchange. We evaluated several pumps for their long-term dependability and low power 

consumption, and adopted a piezoelectric pump and a custom peristaltic pump for two different 

versions the culture system. With a low power consumption of 250mW, the piezoelectric pump 

is preferred when power is limited, such as during transportation of the culture system. However, 

since the piezoelectric pump works by rapidly deforming and releasing a piezo element when 

voltage is applied at a high frequency, the pump requires direct contact with the culture medium 

and can potentially increase the chance of contamination. For the long-term culture of the cardiac 

slices when the culture system is connected to an external power source, we developed a custom 

3D printed peristaltic pump as shown in Figure 4.3 B. Since the liquid is forced through a tube 

when compressed by rollers in a peristaltic pump, the tubing can be sterilized by ethylene oxide 

or autoclave to minimize the chance of contamination. With a power consumption of 1W, our 

custom peristaltic pump is 10-15 times more power efficient than similar commercially available 

pumps. With built-in reduction gears, our peristaltic pump is also significantly more reliable than 

other low cost peristaltic pumps that drive the rollers via friction coupling. To avoid excess 

pressure buildup in the gas exchanger, the piezoelectric pump and the peristaltic pump are 

controlled by pulse width modulation to achieve a stable 2mL/min flow rate.  

4.3.7 Tissue viability in the heart-on-a-chip system 

 
To evaluate the effectiveness of our culture system in maintaining viability of human 

cardiac slices, we performed optical mapping of the cardiac slices cultured in the system, and 
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tracked the automaticity of cultured murine atria. As a preliminary attempt to minimize tissue 

dedifferentiation, the human cardiac slices were paced at 1Hz with 5ms pulse width for 10 

minutes every hour. As shown in Figure 4.4 A-C, the human cardiac slices cultured in the heart-

on-a-chip system remained electrically viable for up to 3 days. When compared with a freshly 

sectioned slice (Fig. 4.4 A), the slices cultured for 1 day (Fig. 4.4 B) and 3 days (Fig. 4.4 C) 

demonstrated preserved anisotropic conduction and normal action potential morphology (Fig. 4.4 

D). Greater noise was observed in the optical action potential recorded from the human cardiac 

slice cultured for 3 days, suggesting declining tissue viability. To achieve long-term culture of 

human cardiac slices, more optimization need to be performed in terms of the medium flow rate, 

oxygenation, medium composition, and the electrical stimulation protocol, which are all easily 

adjustable with our culture system.  

 

Figure 4.4 Organotypic culture of human and murine cardiac tissue in the heart-on-a-chip system. A-C) Activation 
maps of an acute human cardiac slice and slices cultured for 1 and 3 days in the culture system. The colorbars 
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represent activation times in ms. D) Action potential recorded from the slices using optical mapping. E) The heart-
on-a-chip system maintained stable heart rate of the culture murine atrial preparation. F) Far-field recording of 
cultured murine atrial preparation. 

Isolated murine atrial preparation has been used to study atrial conduction and 

pacemaking (Choate & Feldman, 2003; Glukhov, Flagg, Fedorov, Efimov, & Nichols, 2010; 

Swaminathan et al., 2011). The preparation can also be maintained in culture for extended period 

due to the thickness of the tissue. During development of the culture system, isolated murine 

atrial preparation was used to test the culture system. Since the sinoatrial node is preserved on 

the preparation, automaticity of the murine atria can be tracked as a measure of tissue viability. 

As shown in Figure 4.4 E, the cultured murine atria exhibited stable physiological heart rate in 

the culture system. To reduce motion artifacts in the far-field electrical recording, the system was 

programmed to power down medium circulation and heating during recording. As shown in 

Figure 4.4 F, a clean atrial electrical signal could be recorded for heart rate calculation. 

We developed custom MATLAB program and a graphic user interface (GUI) to monitor 

the performance of the culture chamber and the condition of culture murine atria, as shown in 

Figure 4.5. The top panel in the GUI shows the temperatures of the heaters and the culture 

chambers over time for tracking heater and pump malfunction. The bottom 3 panels show far-

field electrical recordings from the culture chambers. The recorded signal was filtered by a 2nd 

order Butterworth notch filter to remove the 60Hz power line interference and a 5th order band-

pass Butterworth filter with a lower cutoff frequency at 5Hz and a higher cutoff frequency at 

100Hz to remove drift and additional noise in the signal. Peak detection with user selectable 

settings can be performed on the electrical recordings for heart rate calculation. 
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Figure 4.5 Custom monitoring and analysis software. The main graphical user interface consists of 4 sections. 
Section 1 is for loading the device log and for selecting ECG recordings. Section 2 shows a history of the device 
temperature. Section 3 shows the psudo ECG recorded from the culture chambers. Section 4 is used for performing 
heart rate calculation with user selectable peak detection parameters. 

4.4 Discussion  
 

Previously, we demonstrated the advantages of human cardiac slices as a model for 

studying human cardiac physiology and for drug efficacy and toxicity testing (Kang et al., 2016). 

However, the limited culture duration and the intricate culture protocol impeded the use of 

human cardiac slices for long-term studies. Here, we developed an automated, self-contained 

heart-on-a-chip system for maintaining tissue viability and for transporting live tissue.  
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To achieve long-term culture of human cardiac slices while preserving normal 

physiology, we developed a heart-on-a-chip system in which different culture parameters can be 

individually adjusted to establish the optimal culture condition. We also designed our system to 

be entirely self-contained to support shipping of live cardiac slices. Using preset parameters and 

a feedback control system, the culture system maintains stable temperature, circulation, and 

oxygenation of the culture medium. The culture chambers are instrumented with an array of 

actuators and sensors for electrical stimulation, mechanical anchoring, electrical recording, and 

optogenetic stimulation and sensing. 

Continual stimulation of isolated adult rat cardiomyocytes was found to preserve 

contractility, evident by the preserved amplitude of contraction, the velocities of shortening and 

relaxation, and the peak calcium current density (Berger et al., 1994). In the field of tissue 

engineering, electrical stimulation was also shown to improve expression of major cardiac 

markers and induced cell alignment and coupling in hiPSC-CMs (Radisic et al., 2004). With 

built-in field pacing electrodes, our culture system allows for testing of electrical stimulation 

protocols with different frequencies and durations to establish the optimal protocol for 

minimizing tissue dedifferentiation. Pt/Ir was chosen as the material for the pacing electrodes to 

avoid release of free radicals that could cause oxidative stress to the tissue. Any proton gradient 

generated by the electrical field would be dissipated by the circulation of the culture medium. In 

extreme cases where continuous high frequency pacing might be required to maintain tissue 

phenotype, electrolysis of the culture medium would break down sodium chloride and water 

molecules to form sodium hydroxide, causing an increase in pH of the culture medium. A 

collaborative effort to develop a miniature pH sensor with minimal baseline drift is underway. 
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The addition of a pH sensor will allow for real-time adjustment of the culture medium pH in near 

future. 

To maintain a stable temperature in the culture system, we evaluated the effectiveness of 

three types of feedback control systems, including on-off control, proportional control, and 

proportional-integral-derivative (PID) control. Also known as a hysteresis controller, an on-off 

controller rapidly switches the power state of the heaters based on the temperature inside the 

culture chambers and is the easiest to implement. However, the on-off controller does not 

compensate for the delayed heat exchange between the heaters and the culture medium, causing 

large temperature oscillations. On the other hand, a PID controller can achieve stable 

temperature control for a given system configuration when the proportion, integral, and 

derivative terms are well characterized. However, the stringentness of a PID controller hinders 

its ability to adjust to changing system configurations. Therefore, the proportional controller was 

implemented in our culture system to achieve a stable temperature while allowing for plug and 

play operation of the culture chambers when expanding the culture capacity.  

Here, we developed an automated, self-contained heart-on-a-chip system that maintains 

optimal condition for organotypic culture of human cardiac slices while providing electrical 

stimulation and mechanical anchoring for minimizing tissue dedifferentiation. The development 

of this culture system along with the human cardiac slice platform would accelerate pre-clinical 

drug testing and research in human cardiac physiology.  

4.5 Acknowledgement 
 

We are grateful to the Washington Regional Transplant Community and the families of 

donors. We also thank all members of the Efimov lab and the Kay Lab at George Washington 



80 
 

University, especially Dr. Chaoyi Kang, Jaclyn Brennan, Dr. Sharon George, Dr. Kedar Aras, 

Dr. Rokhaya Faye, and Frederick Zasadny for critical discussion of the project. We are grateful 

to Dr. Stacey Rentschler and Dr. Nathaniel Huebsch for their expert technical advice. This 

project was funded by National Institutes of Health (grants R01 HL114395 and R01 HL126802) 

and the Leducq Foundation (grant RHYTHM).  

 

 

 

 

  



81 
 

Chapter 5: Summary and future directions 
 

Disruption in the transcriptional signaling pathways has been implicated in the 

pathogenesis of cardiac arrhythmia. To delineate one of the potential mechanisms of sick sinus 

syndrome and atrial fibrillation, I presented the extent of electrical remodeling in mice following 

a transient reactivation of Notch. The result of the study demonstrated that the transient 

reactivation of Notch in adult animals leads to prolonged sinus bradycardia, frequent sinus 

pauses, slow heterogeneous conduction, and an increased susceptibility to AF, as a result of the 

altered expression of several key regulators of conduction and pacemaking. To bridge the gap 

between bench research and human clinical therapy, I presented the prolonged culture of human 

cardiac slices as an accurate model of the human heart for research and drug testing. With the 

optimized culture protocol, the human cardiac slices obtained from the left ventricular free wall 

remained electrically viable for up to 21 days in vitro and routinely maintained normal 

electrophysiology for up to 4 days. To further improve human cardiac slice culture for long-term 

studies, I also presented a self-contained heart-on-a-chip system for automated culture of human 

cardiac slices. The culture system maintains optimal culture conditions and provides electrical 

stimulation and mechanical anchoring to minimize tissue dedifferentiation. This work allows for 

accelerated optimization of long-term culturing of human cardiac slice, which will enable study 

of arrhythmia mechanisms on human cardiac tissue via targeted control of transcription factors.  

5.1 Optimizing human slice culture condition 
 

Tissue remodeling has been observed in several studies that attempted to establish long-

term culture of cardiac slices and primary cardiomyocytes. In the absence of electrical and/or 
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mechanical stimulations, cardiomyocytes undergo significant remodeling and dedifferentiation, 

evident by diminished contractile force, triangulation of action potential morphology, and 

reduced gap junction expression (Brandenburger et al., 2012; Kaneko et al., 2012). On the other 

hand, excessive electrical stimulation without electromechanical uncoupling may result in 

mitochondrial hypoxia (Kuzmiak-Glancy et al., 2017a). Therefore, optimization of the 

programmed stimulation protocol is critical to minimizing tissue dedifferentiation in the long-

term culture of human cardiac slices, evident by the slowed conduction velocity (Fig. 3.6). A key 

feature of the automated heart-on-a-chip system presented in Chapter 4 is that the pulse 

amplitude, pulse duration, pacing cycle length, and total duration of the pacing train can be easily 

programmed for individual culture chambers, allowing simultaneous comparison of multiple 

pacing parameters. The culture condition can be further optimized by introducing 

perfluorocarbon (PFC), a synthetic oxygen carrier, to the culture medium. PFC has been shown 

to increase the oxygen carrying capacity of liquid medium by 3.6-fold (Kuzmiak-Glancy et al., 

2017b). With the addition of PFC, extended electrical stimulation may be implemented without 

electromechanical uncoupling, which allows for mechanical stimulation of the slices when 

anchored. The healthy myocardium has a stiffness measured around 10 kPa Young’s modules 

(Engler et al., 2008). To simulate mechanical loading on the cardiac slices, we plan to use soft 

lithography to create PDMS pillars of appropriate stiffness as a substrate where the slices will be 

mounted using permeable hydrogel adhesives. During electrical stimulation, the cardiac slices 

will contract against these pillars of matching stiffness. 

Appropriate oxygenation and pH of the culture medium is critical for maintaining normal 

cellular function (Davies, 1995; Orchard & Kentish, 1990). To achieve greater control of the 

culture conditions, we plan to implement feedback control systems that monitor and adjust the 
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oxygenation and pH of the culture medium. Typical flow-through oxygen and pH sensors are 

electrochemical sensors that are susceptible to baseline drift and require periodic calibration. 

With advancements in sensor technologies, we hope to achieve real-time monitoring and 

adjustment of medium oxygenation and pH by adding a portable CO2 tank and changing the 

partial pressure of CO2 and O2 in the gas exchanger using electronically controlled gas valves. 

5.2 Real-time multiparametric characterization of cultured 
human cardiac slices 
 

To achieve automated testing of drugs, gene therapies, and gene editing, we plan to 

develop technologies for multiparametric functional characterization of cultured human cardiac 

slices, as illustrated in Figure 4.6. Building on our current heart-on-a-chip system, we plan to 

develop a microelectrode array system for real-time monitoring of CV and APD and a compact 

optical detection system for measuring transmembrane potential, intracellular calcium dynamics, 

and metabolic function. A major advantage of the optical mapping technique is its ability to 

measure multiple functional parameters simultaneously with careful selection of voltage and 

calcium sensitive fluorescent probes. An optical mapping system can be built on a motorized 

stage for automated functional characterization of the cultured slices. The tissue will be epi-

illuminated with the light source built into each culture chamber. Appropriate dichroic mirrors 

and filters can be implemented into the optical mapping system for simultaneous recording of 

voltage-sensitive fluorescent probe, calcium-sensitive fluorescent probe, and NADH 

autofluorescence. Since the stiffness of the substrate that the slices are mounted on could be 

easily controlled, the imaging system can also be used to calculate the contractility of the 
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cultured slices by tracking the displacement of the contraction during electrical stimulation 

(Norman, Mukundan, Bernstein, & Pruitt, 2008). 

 

Figure 5.1 Future work on automated multiparametric characterization of cardiac slices. Miniaturized optical 
mapping system will be used for measuring action potential, calcium transient, and metabolic state of cultured slices 
on a motorized stage. A multi-electrode array system will be implemented in the culture chambers for real-time 
functional monitoring of the slices. 

To increase the spatial specificity of stimulation and sensing inside the culture chambers 

of the heart-on-a-chip system, previously developed high-density actuators and sensors on a 

flexible and stretchable circuit could be implemented (Gutbrod, Sulkin, Rogers, & Efimov, 

2014). The actuators and sensors include pacing electrodes, pH sensor, temperature sensor, ECG 

sensor, and strain gauge. The flexibility of the conformal circuits allows for real-time high-

resolution electrogram mapping of the cultured slices with minimal motion artifact. To mount the 

cardiac slices to the conformal electronics inside the culture chambers, a suitable adhesive with 

appropriate biocompatibility, conductivity, and permeability is required. Chitosan-based 

adhesive is becoming a promising biomaterial for tissue repair and regenerative medicine 
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(Martins et al., 2014; Mihic et al., 2015; Yamada et al., 2000). The polymer hydrogel has been 

shown to have no cyctotoxicity to cardiomyocyte culture, support electrical coupling, and stable 

in water-based solutions. Different biocompatible adhesives including the chitosan-based 

adhesive should be evaluated for use in maintaining human cardiac slice culture. 

The development of a heart-on-a-chip system with automated multiparametric 

characterization would accelerate pre-clinical drug testing and research in human cardiac 

physiology. In addition, integration of heart-on-a-chip with other human organ tissue slices 

and/or human iPSC derived cell/tissues would enable physiological investigations on a human-

on-a-chip system. The development of the heart-on-a-chip technology presented here further 

facilitates the use of organotypic human cardiac slices as a platform for pre-clinical drug testing 

and research in human cardiac physiology. 

 

  



86 
 

References 
 

Arnolds, D. E., Liu, F., Fahrenbach, J. P., Kim, G. H., Schillinger, K. J., Smemo, S., … 

Moskowitz, I. P. (2012). TBX5 drives Scn5a expression to regulate cardiac conduction 

system function. Journal of Clinical Investigation, 122(7), 2509–2518. 

https://doi.org/10.1172/JCI62617 

Bagwe, S., Berenfeld, O., Vaidya, D., Morley, G. E., & Jalife, J. (2005). Altered right atrial 

excitation and propagation in connexin40 knockout mice. Circulation, 112(15), 2245–2253. 

https://doi.org/10.1161/CIRCULATIONAHA.104.527325 

Barclay, C. J. (2005). Modelling diffusive O2 supply to isolated preparations of mammalian 

skeletal and cardiac muscle. Journal of Muscle Research and Cell Motility, 26(4–5), 225–

235. https://doi.org/10.1007/s10974-005-9013-x 

Berger, H. J., Prasad, S. K., Davidoff, A. J., Pimental, D., Ellingsen, O., Marsh, J. D., … Kelly, 

R. A. (1994). Continual electric field stimulation preserves contractile function of adult 

ventricular myocytes in primary culture. The American Journal of Physiology, 266(1 Pt 2), 

H341-9. https://doi.org/10.1152/ajpheart.1994.266.1.H341 

Bird, S. D., Doevendans, P. A., Van Rooijen, M. A., Brutel De La Riviere, A., Hassink, R. J., 

Passier, R., & Mummery, C. L. (2003). The human adult cardiomyocyte phenotype. 

Cardiovascular Research, 58(2), 423–434. https://doi.org/10.1016/S0008-6363(03)00253-0 

Brandenburger, M., Wenzel, J., Bogdan, R., Richardt, D., Nguemo, F., Reppel, M., … 

Dendorfer, A. (2012). Organotypic slice culture from human adult ventricular myocardium. 



87 
 

Cardiovascular Research, 93(1), 50–59. https://doi.org/10.1093/cvr/cvr259 

Bray, M. a, Lin, S. F., Aliev, R. R., Roth, B. J., & Wikswo, J. P. (2001). Experimental and 

theoretical analysis of phase singularity dynamics in cardiac tissue. Journal of 

Cardiovascular Electrophysiology, 12(6), 716–722. https://doi.org/10.1046/j.1540-

8167.2001.00716.x 

Bressan, M., Liu, G., & Mikawa, T. (2013). Early mesodermal cues assign avian cardiac 

pacemaker fate potential in a tertiary heart field. Science, 340(6133), 744–748. 

https://doi.org/10.1126/science.1232877 

Burnett, D., Abi-Samra, F., & Vacek, J. L. (1999). Use of intravenous adenosine as a 

noninvasive diagnostic test for sick sinus syndrome. American Heart Journal, 137(3), 435–

438. https://doi.org/10.1016/S0002-8703(99)70488-6 

Bussek, A., Schmidt, M., Bauriedl, J., Ravens, U., Wettwer, E., & Lohmann, H. (2012). Cardiac 

tissue slices with prolonged survival for in vitro drug safety screening. Journal of 

Pharmacological and Toxicological Methods, 66(2), 145–151. 

https://doi.org/10.1016/j.vascn.2011.12.002 

Bussek, A., Wettwer, E., Christ, T., Lohmann, H., Camelliti, P., & Ravens, U. (2009). Tissue 

slices from adult mammalian hearts as a model for pharmacological drug testing. Cellular 

Physiology and Biochemistry, 24(5–6), 527–536. https://doi.org/10.1159/000257528 

Camelliti, P., Al-Saud, S. A., Smolenski, R. T., Al-Ayoubi, S., Bussek, A., Wettwer, E., … 

Terracciano, C. M. (2011). Adult human heart slices are a multicellular system suitable for 

electrophysiological and pharmacological studies. Journal of Molecular and Cellular 



88 
 

Cardiology, 51(3), 390–398. https://doi.org/10.1016/j.yjmcc.2011.06.018 

CDC. NCHS. (2015). Underlying Cause of Death 1999-2014 on CDC WONDER Online 

Database. Retrieved from http://wonder.cdc.gov/ucd-icd10.html 

Chi, K. R. (2013). Revolution dawning in cardiotoxicity testing. Nature Reviews Drug 

Discovery, 12(8), 565–567. https://doi.org/10.1038/nrd4083 

Choate, J. K., & Feldman, R. (2003). Neuronal control of heart rate in isolated mouse atria. 

American Journal of Physiology - Heart and Circulatory Physiology, 285(3), H1340–

H1346. https://doi.org/10.1152/ajpheart.01119.2002 

Coppini, R., Ferrantini, C., Aiazzi, A., Mazzoni, L., Sartiani, L., Mugelli, A., … Cerbai, E. 

(2014). Isolation and functional characterization of human ventricular cardiomyocytes from 

fresh surgical samples. Journal of Visualized Experiments : JoVE, (April), 1–14. 

https://doi.org/10.3791/51116 

Corbel, S. Y., & Rossi, F. M. V. (2002). Latest developments and in vivo use of the Tet system: 

Ex vivo and in vivo delivery of tetracycline-regulated genes. Current Opinion in 

Biotechnology. https://doi.org/10.1016/S0958-1669(02)00361-0 

Cox, J. L., Schuessler, R. B., & Boineau, J. P. (2000). The development of the Maze procedure 

for the treatment of atrial fibrillation. Seminars in Thoracic and Cardiovascular Surgery. 

https://doi.org/10.1016/S1043-0679(00)70010-4 

Davies, K. J. (1995). Oxidative stress: the paradox of aerobic life. Biochemical Society 

Symposium, 61, 1–31. https://doi.org/10.1042/bss0610001 



89 
 

Davis, R. C., Hobbs, F. D., & Lip, G. Y. (2000). ABC of heart failure. History and 

epidemiology. BMJ (Clinical Research Ed.), 320(7226), 39–42. 

https://doi.org/10.1136/bmj.320.7226.39 

de Boer, T. P., Camelliti, P., Ravens, U., & Kohl, P. (2009). Myocardial tissue slices: 

organotypic pseudo-2D models for cardiac research &amp; development. Future 

Cardiology, 5(5), 425–430. https://doi.org/10.2217/fca.09.32 

De Sisti, A., Leclercq, J. F., Fiorello, P., Di Lorenzo, M., Manot, S., Halimi, F., & Attuel, P. 

(1999). Sick sinus syndrome with and without atrial fibrillation: atrial refractoriness and 

conduction characteristics. Cardiologia, 44(4), 361–367. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/10371788 

Dmitriev, I., Krasnykh, V., Miller, C. R., Wang, M., Kashentseva, E., Mikheeva, G., … Curiel, 

D. T. (1998). An adenovirus vector with genetically modified fibers demonstrates expanded 

tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry 

mechanism. Journal of Virology, 72(12), 9706–13. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/9811704%5Cnhttp://www.pubmedcentral.nih.gov/art

iclerender.fcgi?artid=PMC110480 

Dobrzynski, H., Boyett, M. R., & Anderson, R. H. (2007). New insights into pacemaker activity: 

Promoting understanding of sick sinus syndrome. Circulation. 

https://doi.org/10.1161/CIRCULATIONAHA.106.616011 

Doshi, A. N., Walton, R. D., Krul, S. P., de Groot, J. R., Bernus, O., Efimov, I. R., … Coronel, 

R. (2015). Feasibility of a semi-automated method for cardiac conduction velocity analysis 



90 
 

of high-resolution activation maps. Computers in Biology and Medicine, 65, 177–183. 

https://doi.org/10.1016/j.compbiomed.2015.05.008 

Dumaine, R., Towbin, J., Brugada, P., Vatta, M., Nesterenko, D. V, Nesterenko, V. V, … 

Antzelevitch, C. (1999). Ionic mechanisms responsible for the electrocardiographic 

phenotype of the Brugada syndrome are temperature dependent. Circulation Research, 

85(9), 803–809. https://doi.org/10.1161/01.RES.85.9.803 

Efimov, I. R., Nikolski, V. P., & Salama, G. (2004). Optical imaging of the heart. Circulation 

Research. https://doi.org/10.1161/01.RES.0000130529.18016.35 

Engler, A. J., Carag-Krieger, C., Johnson, C. P., Raab, M., Tang, H.-Y., Speicher, D. W., … 

Discher, D. E. (2008). Embryonic cardiomyocytes beat best on a matrix with heart-like 

elasticity: scar-like rigidity inhibits beating. Journal of Cell Science, 121(22), 3794–3802. 

https://doi.org/10.1242/jcs.029678 

Esch, M. B., Ueno, H., Applegate, D. R., & Shuler, M. L. (2016). Modular, pumpless body-on-a-

chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab 

Chip, 16(14), 2719–2729. https://doi.org/10.1039/C6LC00461J 

Fedorov, V. V., Glukhov, A. V., Ambrosi, C. M., Kostecki, G., Chang, R., Janks, D., … Efimov, 

I. R. (2011). Effects of KATP channel openers diazoxide and pinacidil in coronary-perfused 

atria and ventricles from failing and non-failing human hearts. Journal of Molecular and 

Cellular Cardiology, 51(2), 215–225. https://doi.org/10.1016/j.yjmcc.2011.04.016 

Ferrer, M. I. (1968). The Sick Sinus Syndrome in Atrial Disease. JAMA: The Journal of the 

American Medical Association, 206(3), 645–646. 



91 
 

https://doi.org/10.1001/jama.1968.03150030101028 

Fleck, T., Khazen, C., Wolner, E., & Grabenwoger, M. (2006). The incidence of reoperations in 

pacemaker recipients. Heart Surgery Forum, 9(5), 306–309. 

https://doi.org/10.1532/HSF98.20061057 

Folliguet, T. A., Rücker-Martin, C., Pavoine, C., Deroubaix, E., Henaff, M., Mercadier, J. J., & 

Hatem, S. N. (2001). Adult cardiac myocytes survive and remain excitable during long-term 

culture on synthetic supports. Journal of Thoracic and Cardiovascular Surgery, 121(3), 

510–519. https://doi.org/10.1067/mtc.2001.112528 

Gahwiler, B. H., Capogna, M., Debanne, D., McKinney, R. A., & Thompson, S. M. (1997). 

Organotypic slice cultures: a technique has come of age. Trends Neurosci, 20(10), 471–477. 

https://doi.org/S0166-2236(97)01122-3 [pii] 

Giordano, F. J. (2005). Oxygen, oxidative stress, hypoxia, and heart failure. Journal of Clinical 

Investigation. https://doi.org/10.1172/JCI200524408 

Glukhov, A. V., Fedorov, V. V., Kalish, P. W., Ravikumar, V. K., Lou, Q., Janks, D., … Efimov, 

I. R. (2012). Conduction remodeling in human end-stage nonischemic left ventricular 

cardiomyopathy. Circulation, 125(15), 1835–1847. 

https://doi.org/10.1161/CIRCULATIONAHA.111.047274 

Glukhov, A. V., Fedorov, V. V., Lou, Q., Ravikumar, V. K., Kalish, P. W., Schuessler, R. B., … 

Efimov, I. R. (2010). Transmural dispersion of repolarization in failing and nonfailing 

human ventricle. Circulation Research, 106(5), 981–991. 

https://doi.org/10.1161/CIRCRESAHA.109.204891 



92 
 

Glukhov, A. V., Flagg, T. P., Fedorov, V. V., Efimov, I. R., & Nichols, C. G. (2010). 

Differential KATP channel pharmacology in intact mouse heart. Journal of Molecular and 

Cellular Cardiology, 48(1), 152–160. https://doi.org/10.1016/j.yjmcc.2009.08.026 

Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X., & Spudich, J. L. (2015). Natural 

light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics. 

Science, 349(6248), 647–650. https://doi.org/10.1126/science.aaa7484 

Gude, N. A., Emmanuel, G., Wu, W., Cottage, C. T., Fischer, K., Quijada, P., … Sussman, M. A. 

(2008). Activation of Notch-mediated protective signaling in the myocardium. Circulation 

Research, 102(9), 1025–1035. https://doi.org/10.1161/CIRCRESAHA.107.164749 

Gutbrod, S. R., Sulkin, M. S., Rogers, J. A., & Efimov, I. R. (2014). Patient-specific flexible and 

stretchable devices for cardiac diagnostics and therapy. Progress in Biophysics and 

Molecular Biology. https://doi.org/10.1016/j.pbiomolbio.2014.07.011 

Gutbrod, S. R., Walton, R., Gilbert, S., Meillet, V., Jaïs, P., Hocini, M., … Efimov, I. R. (2015). 

Quantification of the transmural dynamics of atrial fibrillation by simultaneous endocardial 

and epicardial optical mapping in an acute sheep model. Circulation: Arrhythmia and 

Electrophysiology, 8(2), 456–465. https://doi.org/10.1161/CIRCEP.114.002545 

Habeler, W., Peschanski, M., & Monville, C. (2009). Organotypic heart slices for cell 

transplantation and physiological studies. Organogenesis, 5(2), 62–6. 

https://doi.org/10.4161/org.5.2.9091 

Habeler, W., Pouillot, S., Plancheron, A., Puc??at, M., Peschanski, M., & Monville, C. (2009). 

An in vitro beating heart model for long-term assessment of experimental therapeutics. 



93 
 

Cardiovascular Research, 81(2), 253–259. https://doi.org/10.1093/cvr/cvn299 

Hanna, J., Markoulaki, S., Schroderet, P., Carey, B. W., Beard, C., Wering, M., … Jaenisch, R. 

(2008). Direct reprogramming of terminally differentiated mature B lymphocytes to 

pluripotency. Cell, 133(2), 250–264. https://doi.org/10.1016/j.cell.2008.03.028 

Hasenfuss, G. (1998). Animal models of human cardiovascular disease, heart failure and 

hypertrophy. Cardiovascular Research, 39(1), 60–76. https://doi.org/10.1016/S0008-

6363(98)00110-2 

Hirt, M. N., Boeddinghaus, J., Mitchell, A., Schaaf, S., Börnchen, C., Müller, C., … 

Eschenhagen, T. (2014). Functional improvement and maturation of rat and human 

engineered heart tissue by chronic electrical stimulation. Journal of Molecular and Cellular 

Cardiology, 74, 151–161. https://doi.org/10.1016/j.yjmcc.2014.05.009 

Hong, J., Ku, S. H., Lee, M. S., Jeong, J. H., Mok, H., Choi, D., & Kim, S. H. (2014). Cardiac 

RNAi therapy using RAGE siRNA/deoxycholic acid-modified polyethylenimine complexes 

for myocardial infarction. Biomaterials, 35(26), 7562–7573. 

https://doi.org/10.1016/j.biomaterials.2014.05.025 

Huang, Y. (2004). Cardiac myocyte-specific HIF-1  deletion alters vascularization, energy 

availability, calcium flux, and contractility in the normoxic heart. The FASEB Journal. 

https://doi.org/10.1096/fj.04-1510fje 

Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., … Gepstein, L. 

(2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 

471(7337), 225–230. https://doi.org/10.1038/nature09747 



94 
 

Jia, Z., Valiunas, V., Lu, Z., Bien, H., Liu, H., Wang, H. Z., … Entcheva, E. (2011). Stimulating 

cardiac muscle by light cardiac optogenetics by cell delivery. Circulation: Arrhythmia and 

Electrophysiology, 4(5), 753–760. https://doi.org/10.1161/CIRCEP.111.964247 

Kaese, S., Frommeyer, G., Verheule, S., Van Loon, G., Gehrmann, J., Breithardt, G., & Eckardt, 

L. (2013). The ECG in cardiovascular-relevant animal models of electrophysiology. 

Herzschrittmachertherapie Und Elektrophysiologie, 24(2), 84–91. 

https://doi.org/10.1007/s00399-013-0260-z 

Kaneko, M., Coppen, S. R., Fukushima, S., Yacoub, M. H., & Suzuki, K. (2012). Histological 

Validation of Heart Slices as a Model in Cardiac Research. Journal of Cell Science & 

Therapy, 3(4). https://doi.org/10.4172/2157-7013.1000126 

Kang, C., Qiao, Y., Li, G., Baechle, K., Camelliti, P., Rentschler, S., & Efimov, I. R. (2016). 

Human Organotypic Cultured Cardiac Slices: New Platform For High Throughput 

Preclinical Human Trials. Scientific Reports, 6. https://doi.org/10.1038/srep28798 

Kapoor, N., Liang, W., Marbán, E., & Cho, H. C. (2013). Direct conversion of quiescent 

cardiomyocytes to pacemaker cells by expression of Tbx18. Nature Biotechnology, 31(1), 

54–62. https://doi.org/10.1038/nbt.2465 

Karakikes, I., Ameen, M., Termglinchan, V., & Wu, J. C. (2015). Human Induced Pluripotent 

Stem Cell-Derived Cardiomyocytes: Insights into Molecular, Cellular, and Functional 

Phenotypes. Circulation Research. https://doi.org/10.1161/CIRCRESAHA.117.305365 

Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., … Gepstein, L. (2004). 

Electromechanical integration of cardiomyocytes derived from human embryonic stem 



95 
 

cells. Nature Biotechnology, 22(10), 1282–1289. https://doi.org/10.1038/nbt1014 

Kikuchi, K., McDonald, A. D., Sasano, T., & Donahue, J. K. (2005). Targeted modification of 

atrial electrophysiology by homogeneous transmural atrial gene transfer. Circulation, 

111(3), 264–270. https://doi.org/10.1161/01.CIR.0000153338.47507.83 

Kiviniemi, M. S., Pirnes, M. A., Eränen, H. J. K., Kettunen, R. V. J., & Hartikainen, J. E. K. 

(1999). Complications related to permanent pacemaker therapy. PACE - Pacing and 

Clinical Electrophysiology, 22(5), 711–720. https://doi.org/10.1111/j.1540-

8159.1999.tb00534.x 

KLEBER, A. G. (2004). Basic Mechanisms of Cardiac Impulse Propagation and Associated 

Arrhythmias. Physiological Reviews, 84(2), 431–488. 

https://doi.org/10.1152/physrev.00025.2003 

Kuzmiak-Glancy, S., Covian, R., Femnou, A. N., Glancy, B., Jaimes, R., Wengrowski, A. M., … 

Kay, M. W. (2017a). Cardiac performance is limited by oxygen delivery to the 

mitochondria in the crystalloid-perfused working heart. American Journal of Physiology - 

Heart and Circulatory Physiology, ajpheart.00321.2017. 

https://doi.org/10.1152/ajpheart.00321.2017 

Kuzmiak-Glancy, S., Covian, R., Femnou, A. N., Glancy, B., Jaimes, R., Wengrowski, A. M., … 

Kay, M. W. (2017b). Cardiac performance is limited by oxygen delivery to the 

mitochondria in the crystalloid-perfused working heart. American Journal of Physiology - 

Heart and Circulatory Physiology, ajpheart.00321.2017. 

https://doi.org/10.1152/ajpheart.00321.2017 



96 
 

Lang, D., Holzem, K., Kang, C., Xiao, M., Hwang, H. J., Ewald, G. A., … Efimov, I. R. (2015). 

Arrhythmogenic remodeling of β<inf>2</inf> versus β<inf>1</inf> adrenergic signaling in 

the human failing heart. Circulation: Arrhythmia and Electrophysiology, 8(2), 409–419. 

https://doi.org/10.1161/CIRCEP.114.002065 

Lang, D., Sulkin, M., Lou, Q., & Efimov, I. R. (2011). Optical mapping of action potentials and 

calcium transients in the mouse heart. Journal of Visualized Experiments : JoVE, (55), 

e3275. https://doi.org/10.3791/3275 

Laughner, J. I., Ng, F. S., Sulkin, M. S., Arthur, R. M., & Efimov, I. R. (2012). Processing and 

analysis of cardiac optical mapping data obtained with potentiometric dyes. American 

Journal of Physiology. Heart and Circulatory Physiology, 303(7), H753-65. 

https://doi.org/10.1152/ajpheart.00404.2012 

Lei, M., Goddard, C., Liu, J., Leoni, A. L., Royer, A., Fung, S. S., … Huang, C. L. (2005). Sinus 

node dysfunction following targeted disruption of the murine cardiac sodium channel gene 

Scn5a. J Physiol, 567(Pt 2), 387–400. https://doi.org/10.1113/jphysiol.2005.083188 

Lewis, T. (1925). The Mechanism and Graphic Registration of the Heart Beat (3rd ed.). London: 

Shaw & Sons. 

Li, Y., Hiroi, Y., & Liao, J. K. (2010). Notch Signaling as an Important Mediator of Cardiac 

Repair and Regeneration After Myocardial Infarction. Trends in Cardiovascular Medicine. 

https://doi.org/10.1016/j.tcm.2011.11.006 

Liu, H., Espinoza-Lewis, R. A., Chen, C., Hu, X., Zhang, Y., & Chen, Y. P. (2012). The role of 

Shox2 in SAN development and function. In Pediatric Cardiology (Vol. 33, pp. 882–889). 



97 
 

https://doi.org/10.1007/s00246-012-0179-x 

Loskill, P., Sezhian, T., Tharp, K. M., Lee-Montiel, F. T., Jeeawoody, S., Reese, W. M., … 

Healy, K. E. (2017). WAT-on-a-chip: a physiologically relevant microfluidic system 

incorporating white adipose tissue. Lab Chip, 17(9), 1645–1654. 

https://doi.org/10.1039/C6LC01590E 

Lou, Q., Fedorov, V. V., Glukhov, A. V., Moazami, N., Fast, V. G., & Efimov, I. R. (2011). 

Transmural heterogeneity and remodeling of ventricular excitation- contraction coupling in 

human heart failure. Circulation, 123(17), 1881–1890. 

https://doi.org/10.1161/CIRCULATIONAHA.110.989707 

Lou, Q., Li, W., & Efimov, I. R. (2011). Multiparametric Optical Mapping of the Langendorff-

perfused Rabbit Heart. Journal of Visualized Experiments, (55). 

https://doi.org/10.3791/3160 

Lu, L., Mende, M., Yang, X., Körber, H.-F., Schnittler, H.-J., Weinert, S., … Ravens, U. (2012). 

Design and validation of a bioreactor for simulating the cardiac niche: a system 

incorporating cyclic stretch, electrical stimulation and constant perfusion. Tissue 

Engineering Part A, 19, 120919081657001. https://doi.org/10.1089/ten.TEA.2012.0135 

Maidhof, R., Tandon, N., Lee, E. J., Luo, J., Duan, Y., Yeager, K., … Vunjak-Novakovic, G. 

(2012). Biomimetic perfusion and electrical stimulation applied in concert improved the 

assembly of engineered cardiac tissue. Journal of Tissue Engineering and Regenerative 

Medicine, 6(10). https://doi.org/10.1002/term.525 

Mak, I. W. Y., Evaniew, N., & Ghert, M. (2014). Lost in translation: Animal models and clinical 



98 
 

trials in cancer treatment. American Journal of Translational Research. 

https://doi.org/1943-8141/AJTR1312010 

Marsman, R. F., Tan, H. L., & Bezzina, C. R. (2014). Genetics of sudden cardiac death caused 

by ventricular arrhythmias. Nature Reviews Cardiology. 

https://doi.org/10.1038/nrcardio.2013.186 

Martins, A. M., Eng, G., Caridade, S. G., Mano, J. F., Reis, R. L., & Vunjak-Novakovic, G. 

(2014). Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. 

Biomacromolecules, 15(2), 635–643. https://doi.org/10.1021/bm401679q 

McMurtrey, R. J. (2016). Analytic Models of Oxygen and Nutrient Diffusion, Metabolism 

Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with 

Applications and Insights in Cerebral Organoids. Tissue Engineering Part C: Methods, 

22(3), 221–249. https://doi.org/10.1089/ten.tec.2015.0375 

Mezzano, V., Liang, Y., Wright, A. T., Lyon, R. C., Pfeiffer, E., Song, M. Y., … Sheikh, F. 

(2016). Desmosomal junctions are necessary for adult sinus node function. Cardiovascular 

Research, 111(3), 274–286. https://doi.org/10.1093/cvr/cvw083 

Miake, J., Marbán, E., & Nuss, H. B. (2002). Gene therapy: Biological pacemaker created by 

gene transfer. Nature, 419(6903), 132–133. https://doi.org/10.1038/419132b 

Mihic, A., Cui, Z., Wu, J., Vlacic, G., Miyagi, Y., Li, S. H., … Li, R. K. (2015). A conductive 

polymer hydrogel supports cell electrical signaling and improves cardiac function after 

implantation into myocardial infarct. Circulation, 132(8), 772–784. 

https://doi.org/10.1161/CIRCULATIONAHA.114.014937 



99 
 

Milburn, T., Saint, D. A., & Chung, S. H. (1995). The temperature dependence of conductance of 

the sodium channel: implications for mechanisms of ion permeation. Receptors & 

Channels, 3(3), 201–211. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8821793 

Mines, G. R. (1913). On dynamic equilibrium in the heart. The Journal of Physiology, 46(4–5), 

349–383. https://doi.org/10.1113/jphysiol.1913.sp001596 

Moreno, A., Kuzmiak-Glancy, S., Jaimes, R., & Kay, M. W. (2017). Enzyme-dependent 

fluorescence recovery of NADH after photobleaching to assess dehydrogenase activity of 

isolated perfused hearts. Scientific Reports, 7. https://doi.org/10.1038/srep45744 

Nadadur, R. D., Broman, M. T., Boukens, B., Mazurek, S. R., Yang, X., Van Den Boogaard, M., 

… Moskowitz, I. P. (2016). Pitx2 modulates a Tbx5-dependent gene regulatory network to 

maintain atrial rhythm. Science Translational Medicine, 8(354). 

https://doi.org/10.1126/scitranslmed.aaf4891 

Nakashima, Y., Yanez, D. A., Touma, M., Nakano, H., Jaroszewicz, A., Jordan, M. C., … 

Nakano, A. (2014). Nkx2-5 suppresses the proliferation of atrial myocytes and conduction 

system. Circulation Research, 114(7), 1103–1113. 

https://doi.org/10.1161/CIRCRESAHA.114.303219 

Nerbonne, J. M., Nichols, C. G., Schwarz, T. L., & Escande, D. (2001). Genetic manipulation of 

cardiac K(+) channel function in mice: what have we learned, and where do we go from 

here? Circulation Research, 89(11), 944–56. https://doi.org/10.1161/hh2301.100349 

Norman, J. J., Mukundan, V., Bernstein, D., & Pruitt, B. L. (2008). Microsystems for 

biomechanical measurements. Pediatric Research. 



100 
 

https://doi.org/10.1203/PDR.0b013e31816b2ec4 

Orchard, C. H., & Kentish, J. C. (1990). Effects of changes of pH on the contractile function of 

cardiac muscle. The American Journal of Physiology, 258(6 Pt 1), C967-81. 

Park, D. S., & Fishman, G. I. (2011). The cardiac conduction system. Circulation. 

https://doi.org/10.1161/CIRCULATIONAHA.110.942284 

Parrish, A. R., Gandolfi, A. J., & Brendel, K. (1995). Precision-cut tissue slices: Applications in 

pharmacology and toxicology. Life Sciences. https://doi.org/10.1016/0024-3205(95)02176-J 

Phan, D. T. T., Wang, X., Craver, B. M., Sobrino, A., Zhao, D., Chen, J. C., … Hughes, C. C. W. 

(2017). A vascularized and perfused organ-on-a-chip platform for large-scale drug 

screening applications. Lab Chip, 17(3), 511–520. https://doi.org/10.1039/C6LC01422D 

Poller, W., Hajjar, R., Schultheiss, H. P., & Fechner, H. (2010). Cardiac-targeted delivery of 

regulatory RNA molecules and genes for the treatment of heart failure. Cardiovascular 

Research. https://doi.org/10.1093/cvr/cvq056 

Psaty, B. M., Manolio, T. A., Kuller, L. H., Kronmal, R. A., Cushman, M., Fried, L. P., … 

Rautaharju, P. M. (1997). Incidence of and Risk Factors for Atrial Fibrillation in Older 

Adults. Circulation, 96(7), 2455–2461. https://doi.org/10.1161/01.CIR.96.7.2455 

Qu, Z., Xie, Y., Garfinkel, A., & Weiss, J. N. (2010). T-wave alternans and arrhythmogenesis in 

cardiac diseases. Frontiers in Physiology, 1 NOV. https://doi.org/10.3389/fphys.2010.00154 

Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., … Vunjak-Novakovic, G. 

(2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac 



101 
 

myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences, 101(52), 

18129–18134. https://doi.org/10.1073/pnas.0407817101 

Rangarajan, S., Madden, L., & Bursac, N. (2014). Use of flow, electrical, and mechanical 

stimulation to promote engineering of striated muscles. Annals of Biomedical Engineering, 

42(7), 1391–1405. https://doi.org/10.1007/s10439-013-0966-4 

Rentschler, S., Harris, B. S., Kuznekoff, L., Jain, R., Manderfield, L., Lu, M. M., … Epstein, J. 

A. (2011). Notch signaling regulates murine atrioventricular conduction and the formation 

of accessory pathways. Journal of Clinical Investigation, 121(2), 525–533. 

https://doi.org/10.1172/JCI44470 

Rentschler, S., Yen, A. H., Lu, J., Petrenko, N. B., Lu, M. M., Manderfield, L. J., … Epstein, J. 

A. (2012). Myocardial notch signaling reprograms cardiomyocytes to a conduction-like 

phenotype. Circulation, 126(9), 1058–1066. 

https://doi.org/10.1161/CIRCULATIONAHA.112.103390 

Robertson, C., Tran, D. D., & George, S. C. (2013). Concise review: Maturation phases of 

human pluripotent stem cell-derived cardiomyocytes. Stem Cells. 

https://doi.org/10.1002/stem.1331 

Schmidt, R., & Nygren, A. (2006). Optical mapping system for visualizing arrhythmias in 

isolated mouse atria. In Annual International Conference of the IEEE Engineering in 

Medicine and Biology - Proceedings (pp. 4002–4005). 

https://doi.org/10.1109/IEMBS.2006.259600 

Somasuntharam, I., Boopathy, A. V., Khan, R. S., Martinez, M. D., Brown, M. E., Murthy, N., & 



102 
 

Davis, M. E. (2013). Delivery of Nox2-NADPH oxidase siRNA with polyketal 

nanoparticles for improving cardiac function following myocardial infarction. Biomaterials, 

34(31), 7790–7798. https://doi.org/10.1016/j.biomaterials.2013.06.051 

Suckau, L., Fechner, H., Chemaly, E., Krohn, S., Hadri, L., Kockskamper, J., … Poller, W. C. 

(2009). Long-term cardiac-targeted RNA interference for the treatment of heart failure 

restores cardiac function and reduces pathological hypertrophy. Circulation, 119(9), 1241–

1252. https://doi.org/10.1161/CIRCULATIONAHA.108.783852 

Swaminathan, P. D., Purohit, A., Soni, S., Voigt, N., Singh, M. V., Glukhov, A. V., … 

Anderson, M. E. (2011). Oxidized CaMKII causes cardiac sinus node dysfunction in mice. 

Journal of Clinical Investigation, 121(8), 3277–3288. https://doi.org/10.1172/JCI57833 

Tandon, N., Cannizzaro, C., Chao, P.-H. G., Maidhof, R., Marsano, A., Au, H. T. H., … Vunjak-

Novakovic, G. (2009). Electrical stimulation systems for cardiac tissue engineering. Nature 

Protocols, 4(2), 155–173. https://doi.org/10.1038/nprot.2008.183 

The FANTOM Consortium and the RIKEN PMI and CLST (dgt). (2014). A promoter-level 

mammalian expression atlas. Nature, 507(7493), 462–470. 

https://doi.org/10.1038/nature13182 

Thomas, C. E., Ehrhardt, A., & Kay, M. A. (2003). Progress and problems with the use of viral 

vectors for gene therapy. Nat Rev Genet, 4(5), 346–358. https://doi.org/10.1038/nrg1066 

Van Den Boogaard, M., Barnett, P., & Christoffels, V. M. (2014). From GWAS to function: 

Genetic variation in sodium channel gene enhancer influences electrical patterning. Trends 

in Cardiovascular Medicine. https://doi.org/10.1016/j.tcm.2013.09.001 



103 
 

Voets, T., Droogmans, G., Wissenbach, U., Janssens, A., Flockerzi, V., & Nilius, B. (2004). The 

principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature, 

430(7001), 748–754. https://doi.org/10.1038/nature02732 

Wang, K., Lee, P., Mirams, G. R., Sarathchandra, P., Borg, T. K., Gavaghan, D. J., … 

Bollensdorff, C. (2015). Cardiac tissue slices: preparation, handling, and successful optical 

mapping. American Journal of Physiology - Heart and Circulatory Physiology, 308(9), 

H1112–H1125. https://doi.org/10.1152/ajpheart.00556.2014 

Wiener, N., & Rosenblueth, A. (1946). The mathematical formulation of the problem of 

conduction of impulses in a network of connected excitable elements, specifically in cardiac 

muscle. Arch Inst Cardiol Mex, Jul(3), 205–65. 

Wiese, C., Grieskamp, T., Airik, R., Mommersteeg, M. T. M., Gardiwal, A., De Gier-De Vries, 

C., … Christoffels, V. M. (2009). Formation of the sinus node head and differentiation of 

sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circulation 

Research, 104(3), 388–397. https://doi.org/10.1161/CIRCRESAHA.108.187062 

Yamada, K., Chen, T., Kumar, G., Vesnovsky, O., Topoleski, L. D. T., & Payne, G. F. (2000). 

Chitosan Based Water-Resistant Adhesive. Analogy to Mussel Glue. Biomacromolecules, 

1(2), 252–258. https://doi.org/10.1021/bm0003009 

Yanger, K., Zong, Y., Maggs, L. R., Shapira, S. N., Maddipati, R., Aiello, N. M., … Stanger, B. 

Z. (2013). Robust cellular reprogramming occurs spontaneously during liver regeneration. 

Genes and Development, 27(7), 719–724. https://doi.org/10.1101/gad.207803.112 

Zhang, H., Zhao, Y., Lei, M., Dobrzynski, H., Liu, J. H., Holden, A. V., & Boyett, M. R. (2006). 



104 
 

Computational evaluation of the roles of Na+ current, iNa, and cell death in cardiac 

pacemaking and driving. AJP: Heart and Circulatory Physiology, 292(1), H165–H174. 

https://doi.org/10.1152/ajpheart.01101.2005 

Zhang, R., Han, P., Yang, H., Ouyang, K., Lee, D., Lin, Y. F., … Chi, N. C. (2013). In vivo 

cardiac reprogramming contributes to zebrafish hearT regeneration. Nature, 498(7455), 

497–501. https://doi.org/10.1038/nature12322 



14 
 

 


	Washington University in St. Louis
	Washington University Open Scholarship
	Spring 5-15-2018

	Transcriptional Regulation of Arrhythmia: from Mouse to Human
	Yun Qiao
	Recommended Citation


	Microsoft Word - Qiao_Dissertation_draft5.docx

