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ABSTRACT OF THE DISSERTATION 

Robust odorant recognition in biological and artificial olfaction 

by 

Nalin Katta 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2017 

Professor Baranidharan Raman, Chair 

 
 

Accurate detection and identification of gases pose a number of challenges for chemical 

sensory systems. The stimulus space is enormous; volatile compounds vary in size, charge, 

functional groups, and isomerization among others. Furthermore, variability arises from intrinsic 

(poisoning of the sensors or degradation due to aging) and extrinsic (environmental: humidity, 

temperature, flow patterns) sources. Nonetheless, biological olfactory systems have been refined 

over time to overcome these challenges. The main objective of this work is to understand how 

the biological olfactory system deals with these challenges, and translate them to artificial 

olfaction to achieve comparable capabilities. In particular, this thesis focuses on the design and 

computing mechanisms that allow a relatively simple invertebrate olfactory system to robustly 

recognize odorants even though the sensory neurons inputs may vary due to the identified 

intrinsic, or extrinsic factors.  

In biological olfaction, signal processing in the central circuits is largely shielded from 

the variations in the periphery arising from the constant replacement of older olfactory sensory 

neurons with newer ones. Inspired by this design principle, we developed an analytical method 

where the operation of a temperature programmed chemiresistor is treated akin to a mathematical 
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input/output (I/O) transform. Results show that the I/O transform is unique for each analyte-

transducer combination, robust with respect to sensor aging, and is highly reproducible across 

sensors of equal manufacture. This enables decoupling of the signal processing algorithms from 

the chemical transducer, and thereby allows seamless replacement of sensor array, while the 

signal processing approach was kept a constant. This is a key advance necessary for achieving 

long-term, non-invasive chemical sensing.  

Next, we explored how the biological system maintains invariance while environmental 

conditions, particularly with respect to changes in humidity levels. At the sensory level, odor-

evoked responses to odorants did not vary with changes in humidity levels, however, the 

spontaneous activity varied significantly. Nevertheless, in the central antennal lobe circuits, 

ensembles of projection neurons robustly encoded information about odorant identity and 

intensity irrespective of the humidity levels. Interestingly, variations in humidity levels led to 

variable compression of intensity information which was carried forward to behavior. Taken 

together, these results indicate how the influence of humidity is diminished by central neural 

circuits in the biological olfactory system. 

Finally, we explored a potential biomedical application where a robust chemical sensing 

approach will be immensely useful: non-invasive assay for malaria diagnosis based on exhaled 

breath analysis. We developed a method to screen gas chromatography/mass spectroscopy 

(GC/MS) traces of human breath and identified 6 compounds that have abundance changes in 

malaria infected patients and can potentially serve as biomarkers in exhaled breath for their 

diagnosis. We will conclude with a discussion of on-going efforts to develop a non-invasive 

solution for diagnosing malaria based on breath volatiles.  
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In sum, this work seeks to understand the basis for robust odor recognition in biological 

olfaction and proposes bioinspired and statistical solutions for achieving the same abilities in 

artificial chemical sensing systems. 
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Chapter 1: Introduction 

Chemical sensory systems face several challenges in accurately detecting and identifying 

gases. The stimulus space is enormous; volatile compounds vary in size, charge, functional 

groups, and isomerization among others. Efforts to quantify the size of this space have calculated 

166.4 billion possible compounds of 17 or fewer C, N, O, S, and halogen atoms [1]. The number 

would vastly increase as the possible number or type of atoms increases. Further variability 

arises from environmental factors such as air flow, temperature, and humidity. The biological 

chemical sensing systems, however, have been refined over time to overcome these challenges. 

Strikingly, features of biological olfaction are largely conserved across phyla [2], suggesting that 

biology has come up with one solution for these challenges. The work in this thesis will 

investigate a simple olfactory system of the american locust Schistocerca Americana. 

1.1 The locust olfactory system 
The biological olfactory system is a finely tuned machine that has been refined by 

evolution over eons. It serves many purposes including, but not limited to, foraging for food, 

threat or predator detection, finding mates, as well as for receiving signals and communication. 

While there are subtle differences in the system and design across species, olfaction is widely 

conserved across phyla [2]. The work in this thesis uses the American locust, Schistocerca 

americana, as a model system. Locusts have been a popular system for olfaction research for 

decades. Their use has a number of key advantages: they are well characterized, they are of a 

manageable size, and their sensory organs as well as central nervous system are readily 

accessible. Furthermore, recent studies have shown the ability and utility of this system in 

behavioral assays [3, 4]. In this section, we will examine the locust olfactory system and take a 
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look at its physiology and function. We will begin with the sensory organ for locusts, the 

antenna. Then proceed to the primary processing center, the antennal lobe. And finally we will 

examine the mushroom bodies and other downstream centers involved in olfactory processing. 

1.1.1 The antenna 
The locust antenna is composed of several flagellar segments called annuli. On these 

segments are hundreds of small cone-like structures called sensilla, which house the olfactory 

receptor neurons (ORNs). ORNs are sensory neurons through which airborne odorants are first 

transduced into electrical signals and transmitted to the brain. Each odor activates a 

combinatorial response across the array of ORNs, and each ORN in turn responds to several 

ligands. Both the number of spikes (firing rate) and the temporal pattern of spike trains tend to be 

odor specific [5]. Typical ORNs send a dendrite into the sensilar projection, while the cell body 

is located at the base. The ends of these dendrites have small cilia with pores for receiving 

odorant molecules [6]. ORNs express a specific receptor from a large multifamily receptor gene 

[7, 8]. While each ORN only expresses one receptor, each receptor is capable of detecting a 

variety of odorants and concentrations [9].  

There are four main types of sensilla present on locust antenna (Figure 1.1), basiconica, 

trichodea, coeloconica, and chaetica. They each have a different function, different distributions 

across different development stages and antennal segments, as well as house different numbers 

of ORNs. In general, they house ORNs whose axons are bundled in an antennal nerve and 

synapse directly to the antennal lobe. The specific details for many of these features can be found 

in the fine work by Ochieng’ et al. [10], here I will present an overview of the structure of the 

antenna and its components. 
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Sensilla basiconica are the primary sensilla type involved in odorant detection. These are 

the largest sensilla type. They are 5 µm in diameter at the base and have an average length of 16 

µm. They house the most number of ORNs, typically between 20-50 ORNs per sensilla [10, 11]. 

They have been shown to respond to general odors as well as aggregation pheromones [12]. 

Basiconica are also the most common sensilla type in both adult and immature locusts (nymphs) 

[10]. These correspond to type-A sensilla basiconica in Locusta migratoria reported in works by 

Chapman and Greenwood [13, 14]. 

Sensilla trichodea are smaller, thin sensilla. They have a base diameter of 3 µm and a 

length of 8-10 µm and only contain 1-3 ORNs [10]. Some works have reported that there is only 

one apical pore on these sensilla, suggesting that they must be contact chemoreceptors [13, 14]. 

Others have reported that there are several pores [10], suggesting that there might be an alternate 

role for these sensilla as general olfactory receptors or pheromone receptors [12, 15]. These 

correspond to type-B sensilla basiconica in Locusta migratoria reported in works by Chapman 

and Greenwood [13, 14]. 
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Sensilla coeloconica are the second most common sensilla on the locust antenna. They do 

not extrude externally like the other sensilla types, but rather are located in small circular pits 5 

µm in diameter. Coeloconica are found in two main varieties and are among the more interesting 

sensilla types. One variety is double-walled, has radial pores throughout its surface [16], and 

contains three ORNs. The second has no pores and contains four ORNs [10]. This second type of 

sensilla is responsible for detecting changes in humidity and temperature and does not respond to 

the presence of odorants [17]. The first type, on the other hand, has been shown to respond 

strongly to caproic acid, butyric acid, and hexanal [6, 18, 19]. Interestingly, these two types are 

un-evenly distributed across the antenna. The first type represents 96% of the coeloconica 

sensilla present, while the second represents only about 4% [17]. 

Sensilla chaetica are between basiconica and trichodea in size and shape. They have a 

diameter of 4µm at the base and are 13-16 µm long. While the exact function of these sensilla 

 
 
Figure 1.1. SEM image of antenna from adult locust, S. gregaria. The four different sensilla 
types are marked on this segment; bs = basiconica, tr = trichodea, co = coeloconica, ch = 
chaetica. Scale bar indicates 50 µm. Image reproduced as is from [10]. 
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remains unclear, their physical properties suggest possible functional roles. They are based in a 

flexible socket, suggesting they might be used as mechanoreceptors [10]. Furthermore, they only 

have one apical pore and no pores along the external wall, contributing to the notion that they are 

not meant to detect odorants in the air. 

1.1.2 The antennal lobe 
The locust antennal lobe is the insect equivalent of the mammalian olfactory bulb. Here, 

inputs from the sensory neurons, ORNs, are integrated and processed before being passed 

downstream to higher level centers (Figure 1.2). The antennal lobe primarily consists of two 

neuron types.  

The first neuron type we will discuss are projection neurons (PNs). PNs receive inputs 

from 50 thousand ORNs in the antenna and ‘project’ them to two areas of the brain, the 

mushroom body and lateral horn. There are 830 PNs in a locust antennal lobe, 10-15% of which 

are activated by any one olfactory stimulus [20-23]. PN cell bodies are all located on the surface 

of the antennal lobe, while the bulk of the volume is made up of thousands of small bundles of 

neuropils called glomeruli [24]. Dendrites from PNs extend into glomeruli and receive inputs 

from the antenna. Several different PNs branch into the same glomerulus, and one PN branches 

to 10-20 glomeruli [20, 24]. Inputs from ORNs are also collected in the glomeruli. Interestingly, 

as shown in both vertebrate and invertebrate systems, ORNs expressing the same receptor 

synapse into the same glomeruli [25, 26].  

The second type of neurons, local neurons (LNs), are an integral part of the antennal lobe 

computations and stimulus processing. LNs are GABAergic inhibitory neurons which synapse 

with PNs and other LNs in the antennal lobe [20]. There are approximately 300 LNs, all of 

which extensively arborize throughout the antennal lobe[22, 27]. The antennal lobe network is 
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driven to oscillatory synchrony during an odorant stimulus to help drive signaling and odor 

identification in downstream centers. Blocking LN activity disrupts that synchronization [27]. 

LNs are unique neurons in two ways. First, they do not have axons; instead they arborize the 

antennal lobe entirely with dendritic projections. Second, they do not fire full action potentials, 

but rather have spikelets, which are smaller more wavelike changes in electrical potential.  
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1.1.3 The mushroom body 
The mushroom body is a region of the insect brain where inputs from PNs in the antennal 

lobe are received and undergo further processing. These areas are generally accepted to be 

responsible for memory and learning [28]. Axons from PNs branch widely in the mushroom 

bodies and synapse with the primary cells of this region, Kenyon cells (KCs).  

There are nearly 50,000 KCs in each mushroom body. Each one receives inputs from 10-

20 PNs and each PN connects to nearly 600 KCs [21, 28]. Given the number of PNs that synapse 

with each KC, one would expect them to respond to a wide variety of odorants. The opposite, 

however, is true: an individual KC will respond to very few odorants in a specific concentration 

 
Figure 1.2. Schematic of locust olfactory circuit from antenna to antennal lobe. ORNs 
expressing the same receptor are colored the same and synapse to the same glomeruli. PNs 
(brown) and LNs (green) can synapse in several glomeruli. Figure adapted from [9]. 
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range [29, 30].  Furthermore, stimulus-evoked action potentials in the KCs are sparse, firing only 

1-2 spikes in response to an odor stimulus and they have almost no baseline activity [29, 30].  

Several factors account for the sparse activity in KCs. One is that KCs have high 

thresholds for firing caused by the inhibitory giant GABAergic neuron (GGN). This neuron is bi-

directionally connected to all KCs and is broadly responsive to any odorant stimulus [30, 31]. It 

thus depresses the activity of KCs. A second factor is that, in addition to excitatory inputs from 

PNs, KCs also receive phase-delayed inhibition from neurons in the lateral horn, another region 

of the insect brain [9, 20, 27, 28]. Therefore, in order to initiate action potentials in KCs, a group 

of PNs must execute synchronized firing during the short period when the KCs are not being 

inhibited by the lateral horn neurons. 

1.2 Artificial chemical sensing 
Methods to detect and identify gases first began in the early 1940’s with chromatographic 

techniques and followed advances in resonant devices, semi-conductors, conducting polymers, 

and fiber optics (Figure 1.3). This section, briefly reviews the history of gas sensor development 

and the primary devices used. Two sensor technologies used in this dissertation are gas 

chromatography/mass spectroscopy and solid-state sensors. 

1.3 Gas chromatography 
The first mention of chromatography being applied to gases was suggested by Martin and 

Synge in their 1941 paper advancing chromatography theory [32]. This Nobel Prize winning 

work was later developed by James and Martin into a working method for a gas chromatogram 

[33]. Gas chromatography (GC) primarily relies on the general chromatography principle that the 

separation of any mixture requires a mobile phase which moves the mixture down or through a 

stationary phase (i.e., a column) which has different partition coefficients or affinities to the 
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components of the mixture [33-35]. Essentially, different components of a mixture travel through 

a column at different speeds, depending on their affinity for the column materials. Originally, 

GC started with large columns, meters in length and millimeters in inner diameter (I.D.), 

‘packed’ with particles coated in a stationary phase material [33, 35]. But the idea of using am 

internally coated capillary column, first implemented by Golay in 1958 [35], has now become 

the standard for modern gas chromatography. 

 

1.3.1 Modern gas chromatography 
Modern GC still relies on a column as the primary mechanism to elute a gas. Unlike the 

first gas chromatograms, which used tubes packed with the stationary phase, modern GCs 

DEVICE CATEGORY SENSING PRINCIPLE 

COLUMN BASED Gas chromatography[ 
 

SPECTROSCOPIC[9] Mass spectroscopy 
Ion mobility spectroscopy 

ELECTRICALLY-
BASED/CHEMIRESISTANCE[10] 

Metal oxide films 
Field effect transistors 
Conducting polymers 

GRAVIMETRIC[11] Surface acoustic wave 
Bulk acoustic wave 
Thin-film bulk acoustic wave 
Quartz crystal microbalance 

OPTICAL[12, 13] Colorometric arrays 
Fluorescence 
Reflectometric interference spectroscopy 
Infrared spectroscopy 

BIOLOGICALLY-BASED Olfactory receptors expressed in cells 
Olfactory receptors bound to Field effect 
transistors[14] 

 
Figure 1.3. Current gas sensor device categories and sensor modalities. 
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instead use capillaries which are coated with the stationary phase along their inner diameter. 

While packed columns had dimensions of 1-5 mm in inner diameter (I.D.) and up to 5 m in 

length, capillary columns are much thinner and longer, less than 1 mm in I.D. and up to 100 m in 

length [35]. Furthermore, as with all methods of chromatography, GC separates the components 

of gases, but lacks a specific way to identify the components. For identification, a detector, must 

be attached in line with the column output. There are a number of detectors available for GC, 

operating on principles as diverse as flame ionization, thermal conductivity, and atomic emission 

detection. The detector can be chosen based on selectivity, limits of detection, and range of 

detection [36].  

1.3.2 Applications areas for gas chromatography 
Since its invention in 1952, GC has become the gold standard for gas identification. 

While its initial use was primarily in the oil industry for identifying components of different 

petroleum products, the uses have greatly expanded since. Benefiting from the variety of 

techniques and advancements for GC now, can be used for such purposes as detecting airborne 

volatiles and chemical composition analysis of solids (e.g., soil samples, plant matter, 

pharmaceuticals). Furthermore, interest has expanded in miniaturization and portability [35], 

opening the door for even further applications. 

1.4 Solid-state sensors 
There are several other classes of chemical vapor sensing devices. Commonly used 

devices include quartz crystal microbalances, surface acoustic wave devices, and chemiresistive 

films (conducting polymers, nanoparticle monolayers, and metal-oxides) [37]. All of these have 

different signaling modalities, but share a common principle: A volatile organic compound 

(VOC) interacts with the surface of the sensor, resulting in a change in a measureable property. 
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In the case of chemiresistive sensors, the conductance/resistance is changed. The work in this 

thesis will focus on chemiresistive film-based gas sensing devices, specifically metal-oxide 

(MOX) films. 

1.4.1 Metal-oxide films 
The usage of MOXs in gas sensing applications was initiated by Seiyama et al. in 1962 

when they reported the use of a ZnO based gas sensor [38, 39]. Since then, several other MOXs 

have come in use for gas sensing applications, including: ZnO, TiO2, and, one of the most 

popular, SnO2 (Figure 1.4). As mentioned above, the conductance of these films change as the 

result of reactions in which the concentration of surface oxygen changes [40, 41] and bulk 

reactions, that rely on point defects in the MOX crystal [40]. 

 

Downsides of MOX-based sensors include low selectivity and required heating to high 

temperatures (> 200°C) [43, 44], mostly to overcome the interference of environmental water 

 
Figure 1.4. SEM micrographs of SnO2 films. Films were deposited using different metal seed 
layers in a chemical vapor deposition technique. Note that seed metal Uns (atomic number 
107) is now know as Bohrium. Figure as is from [42]. 
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vapor [45]. The need for heating results in increased device complexity and energy requirements. 

There is, however, a silver lining. Changes in film temperature can change reaction kinetics and 

film conductance, among other material properties [42]. The resulting optimal temperature zones 

for different VOCs, impart greater selectivity to the sensor. 

To reduce energy expenditures for heating, researchers have sought to miniaturize the 

heating and sensing elements. Modulating temperature has been one of the techniques used to 

increase the dimensionality of response from a sensor. Through CMOS (see Figure 2.4) and 

other miniaturization techniques, devices with rapid thermal time constants and individually 

addressable sensors can rapidly cycle through temperatures [42]. This rapid cycling allows for 

the use of “pseudo-sensors”, sensors which are based on the same material, but have different 

reaction properties at different operating temperature [46, 47].  

1.5 Limitations of artificial olfaction 
In this work, I will focus on addressing three current challenges in artificial olfaction, or 

electronic noses, which are solved in biological olfaction. The first aim focuses on the problem 

of drift, or deviation of the response over time, and finding a means to overcome it in almost any 

chemical sensor. The second aim focuses on overcoming environmental variability, specifically 

variations in humidity, which also cause changes in sensor responses. In the third and final aim, 

will explore sensitivity and selectivity of detection. 

1.5.1 Sensor drift 
Drift is an issue faced by almost all chemical sensors that severely limits their long-term 

use [46, 48-54]. It is thought to be primarily an effect of either aging or poisoning of the sensing 

film [55], which profoundly alters absolute transducer measurements, making these measures 

unreliable for long term analyte identification. Aging is caused by intrinsic changes to the sensor 
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over time and with use [40]. For chemiresistive films, it can be brought about by changes in the 

internal bonds and material properties of the film. Poisoning, on the other hand, is the result of 

extrinsic changes to the chemical film caused by permanent or semi-permanent binding of test 

gases or by environmental conditions. Because of these effects, there is a long-standing, unmet 

need for portable, accurate, and precise chemical sensors which remain viable for extended 

periods of operation. 

Natural systems, however, have developed mechanisms to overcome the effects of aging 

and poisoning. One such mechanism is the turnover of ORNs, the individual sensors that are 

responsible for primary chemical detection. It is well known that olfactory sensory neurons 

which transduce chemical cues into electrical signals are constantly regenerated[56] and 

integrated into the circuit in an unsupervised fashion[57-59]. Regeneration of olfactory receptors 

has been shown across phyla in both simple organisms, such as insects[23], and higher 

organisms, such as mammals [56, 57, 60]. 

A second mechanism is the remarkable ability of regenerated ORNs to re-innervate the 

brain during regular regeneration of the olfactory sensors and primary signal processing cells 

during regeneration after injury [23, 57, 61] or apoptosis. Hence, the central circuitry in the brain 

can remain largely unaffected by changes to the peripheral sensory systems, allowing for long 

term viability of the system.  

1.5.2 Sensor environmental invariance 
Another difficulty for chemical sensors is a constantly fluctuating environment. In 

practical applications, sensors will be deployed in areas where conditions regularly change; the 

background gas will have varying components and concentrations, air flows will change in speed 

and direction, temperatures will fluctuate, and humidity levels will change. Humidity, in 
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particular, has drastic effects on a chemical sensor signal [45]. All of these things are affected by 

generally uncontrollable parameters such as time of day, season, etc. Nevertheless, to be 

successful, detection and recognition of targets must remain invariant to these fluctuations. 

Biological olfaction has excellent invariance to environmental variation. Your ability to 

smell does not change much with temperature fluctuations between summer and winter, nor does 

it change much between rainy and dry days. What enables this invariance in natural systems? 

 

Several studies have been performed assessing the olfactory system’s ability to pick out a 

target in changing or complicated background composition [4, 63-65]. Studies that have 

examined the mechanisms for allowing this invariance have found that it comes primarily from 

the processing performed by the olfactory system [4, 63]. In locusts exposed to mono-molecular 

odorants as well as their binary mixtures, Saha et al. found that the spatiotemporal code encoding 

odorants shifted depending on the background (Figure 1.5). But, their results showed that a 

partial match in the spatiotemporal code was sufficient to achieve recognition as assayed in an 

appetitive conditioning paradigm [4]. Similarly, Rokni et al. showed that discriminability, or 

identification of a target odorant, decreased as similarity with the background increased. 

Difficulty of the task could be measured by the extent of overlap in glomerular activity; the 

Figure 1.5. Spatiotemporal code encoding of stimulus sequences. Neural trajectory shifts 
during the stimulus sequence. Depending on the offset between background and target 
odorant, or foreground, the extent of pattern match changes, yet match with the target odorant 
remains. Figure adapted from [62]. 
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greater the overlap, the more difficult the task [63]. Still, the system is able to adapt and 

identifying targets in varying background conditions. 

Similarly, a study performed in Drosophila melanogaster has shown that responses of 

ORNs are invariant to changes in airspeed as long as stimulus concentrations are maintained 

[66]. Other systems, however, have been shown to manipulate changes in airflow to better 

extract information content. In both mouse and locust models, manipulation of airflow was 

shown to increase information about the odorant or source[67, 68]. 

Humidity is also a variable that influences detection or recognition of an odorant. 

Previous work understanding the role of relative humidity (RH) in olfaction has focused 

primarily on the odorant percept and identification. Studies conducted with both human subjects 

[69] and animal models report that higher humidity levels allow for lower concentrations of an 

odorant to be detected or that behavioral response is altered [70]. However, many others report 

no significant changes in behavioral performance under varying RH conditions [71, 72]. 

Detection of humidity is so important for insects that several species including, but not limited 

to, fruit flies (D. melanogaster) [73] and locusts [10, 17] have specialized sensors for its 

detection. 

Biological olfaction has found numerous different solutions to remain invariant to 

environmental changes or to hijack properties of those changes to better extract information. 

1.5.3 Sensor sensitivity and specificity 
The final shortcoming of artificial olfaction I will discuss is in this section is achieving a 

high degree of specificity, or accurate identification of an odorant. There are many techniques 

used in electronic nose implementations with varying success, but as of yet nothing comes close 
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to the versatility of biological olfactory systems in correctly identifying a large variety of 

odorants.  

Natural olfactory systems have a number of features that enhance odorant discrimination. 

The first is a very large sensor array. Systems are made up of thousands of sensors, ORNs, which 

add a great deal of redundancy and improve signal to noise. For example, there are up to 1,200 

ORNs in drosophila [74] and 50,000 ORNs in locusts [21, 23].  

There is also a reorganization of the information as it proceeds through the pathway. 

Each ORN expresses only one type of olfactory receptor and all ORNs expressing the same 

receptors converge on the same groups of glomeruli. This convergence must allow for noise 

reduction [7, 8]. Since several PNs synapse to each glomeruli, and each PN can synapse into 

more than one glomerulus, they tend to have a broad response range. There is further 

reorganziation, as signals from the antennal lobe re-diverge in the KCs. In this reorganization, 

~830 PNs are projected onto 50,000 KCs [21]. The divergence onto KCs as well as activation of 

inhibitory circuits in the mushroom body and lateral horn is hypothesized to create an action 

potential coincidence detector in which different KCs will respond to different odorants and 

concentrations [30]. 

Designers of electronic noses have attempted to replicate features of the olfactory system 

in order to better improve their sensors. To mimic the number of ORNs, a large array of sensors 

or pseudo-sensors is often utilized [47, 75-80]. However, fully replicating the scale of the sensor 

array in biological systems has of yet been infeasible and impractical. Furthermore, attempts to 

replicate the processing of the olfactory circuits have also been made. Techniques such as multi-

layer perceptron (MLP), k-nearest-neighbor (kNN) classification, partial-least-squares 

discriminant analysis (PLS-DA), and dimensionality reduction, among other techniques have 
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been attempted [81]. Despite numerous attempts, a true electronic nose still eludes proponents of 

the technology. 

1.6 Thesis outline 
In this thesis I will explore the three limitations of electronic noses and either propose 

solutions and alternatives to those challenges or elucidate the mechanisms in biological olfaction 

that overcome those issues. First, I will first detail all experimental and analytical methods in 

Chapter 2. Then in Chapter 3, I will describe a stimulation and analysis method to overcome 

sensor drift from both use and aging. Importantly, this technique allows for device replacement 

after sensor failure. Portions of this work have been published in Sensors and Actuators B: 

Chemical (2016). Chapter 4 will explore the effects of humidity modulation in a biological 

olfactory system. Here we gain insight in the mechanisms of humidity invariance as well as how 

changes in humidity are encoded in olfactory processing. In chapter 5, I will show analysis 

identifying malaria biomakers from human breath collected from children in Malawi. Finally, I 

will conclude this work in Chapter 6 explaining how it all integrates together as well as describe 

on going work developing a novel sensor that allows for high sensitivity and specificity to a 

target VOC used in malaria diagnosis. 
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Chapter 2: Methods 

2.1 Sensor testing and development 

2.1.1 Development of a fully automated analyte delivery system 
Precise generation and delivery of gases and their mixtures at relevant concentrations is 

critical for our chemical sensor studies. A schematic of the designed and validated odor delivery 

system is shown in Figure 2.1. The current gas generation system has been designed to fulfill the 

following goals: (i) continuous generation of gas mixtures of known composition up to 24 hours; 

(ii) generation of a wide range of gas flow from 10 mL/min to 2000 mL/min; (iii) wide dynamic 

range (from parts-per-billion to percentage levels); (iv) dynamic and real-time control over the 

gas concentration and the flow rate across the sensor array, and (v) fully automated chemical 

delivery setup where flow rate, concentration and exposure time can be controlled via a graphical 

user interface software.  

Our odor delivery system has five input flow lines and can generate complex mixtures of 

various concentrations which can be delivered at varying flow rates. The gas sources are from 

either a gas cylinder or a gas bubbler. Gas bubblers are bottles partially filled with an odorant 

through which clean air is bubbled. This maintains a constantly saturated headspace in the 

remaining volume of the bubbler. This saturated headspace is injected into the system to create a 

high-concentration gas streams, which are diluted by separate background flow and dilutions 

lines. Maximum flowrates from each mass flow controller are indicated in Fig. 2.1. Lower 

concentration (sub-ppb range) can be obtained by using a second or even a third dilution step 

before injecting the flow into the sensing manifold. This flow system was used for all sensor 

testing and validation experiments. 
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Figure 2.1. Analyte-delivery system for chemical sensing experiments. Flow system allows 
for precise control of gas concentration, mixture, and flow rate for testing and development of 
gas sensors. Flow rates to the sensing manifold range from 0.01 to 2.1 SLM. Concentrations 
of chemicals delivered span from the high PPB range to percentiles. 
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2.1.2 Analyte delivery 

Consistent I/O transforms 

Liquid chemicals were vaporized in 500 mL gas washing bottles (Pyrex, Corning, NY) 

using zero air (Airgas, St. Louis, MO). 0.1 standard l/min (slm) of this saturated vapor was 

diluted in a 1 slm stream of filtered, dehumidified air. Only 100 standard cm3/min (sccm) of this 

diluted stream mixed with 650 sccm of filtered, dehumidified air was finally directed to the 

sensor manifold. Regardless of whether an analyte was present, a constant air flow of 750 sccm 

across the sensor was maintained at all times. The analyte for each trial was selected pseudo-

randomly to reduce effects of long-term chemical hysteresis. The analytes were presented in a 

pulsed fashion as shown in Figure 2.2.

 

For altering analyte concentrations, we varied the relative volume of the saturated output 

from the bubblers and the first carrier stream, before sub-sampling (i.e. during the first dilution 

stage). Note that only the volume of the first carrier stream was changed; the flowrate through 

the bubbler was kept constant. The total flow rate of the first carrier stream was varied from a 1 

Figure 2.2. M-sequence stimulation profile. Valve state of 0 indicates analyte gas is vented. 
Valve state of 1 indicates analyte gas is flowing to sensor manifold.  
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slm flow rate to 0.5, 0.75, or 1.25 slm. The resulting analyte concentrations achieved as a result 

of this flow modulation are shown in Figure 2.3. 

The following five chemicals were used in this study: ethanol (Pharmco-Aaper, 

Brookfield, CT), acetone, hexanol, 2-octanol, and 2-octanone (Sigma-Aldrich, St. Louis, MO). 

 

Crumpled graphene oxide chemiresistive sensors 

Liquid chemicals were vaporized in customized airfree bubblers (Chemglass Life 

Sciences, Vineland, NJ) using zero air (Airgas, St. Louis, MO). Flow rates through the system 

varied and depended on the concentration to be delivered. Carrier airstreams were filtered, 

dehumidified compressed air. Total airflow rate to the sensing manifold was a constant 750 

sccm, regardless of whether an analyte was present. The analyte for each trial was selected 

pseudo-randomly. The analytes were presented in 5 minute pulses with 5 minutes between 

sequential pulses.  

The following 4 chemicals were used in this study: 1-octanol, 2-octanol, geraniol, and α-

pinene (Sigma-Aldrich, St. Louis, MO). 

Analyte Concentration (µmol/mol) 
Acetone 6.7E+03 4.7E+03 3.6E+03 3.0E+03 
Ethanol 1.72E+03 1.21E+03 9.36E+02 7.63E+02 
Hexanol 1.918E+01 1.354E+01 1.046E+01 8.526E+00
2-Octanol 7.0E+00 4.9E+00 3.8E+00 3.1E+00 
2-Octanone 3.2E+01 2.3E+01 1.8E+01 1.4E+01 
Dilution Line Flowrate (SLM) 0.5 0.75 1 1.25

Figure 2.3. Analyte concentration as a function of dilution line flow rate. Concentration 
differences arise from differences in analyte vapor pressure; note that flow rates were kept 
consistent across analytes. Table and legend as is from [1]. 
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2.1.3 Metal oxide sensor 
A microsensor array with four individually controllable elements covered by SnO2 

sensing films was used in this study (Figure 2.4). Other sensing elements in the array were left 

idle. The manufacture of these devices has been thoroughly described previously [2-7]. Briefly, 

each sensor element is a multilayer, suspended device. From the top, the functional layers are: a 

polycrystalline SnO2 sensing film, two interdigitated platinum electrodes, an insulating layer, 

and a polysilicon heater. The operating temperature of the sensor was modulated between 55 °C 

and 435 °C. Sensor responses of four copies of the SnO2 microsensors were measured. Each 

sensor was cycled through 28 temperature steps (Figure 2.5), with each temperature treated as a 

perturbed-isotherm [8]. 

Previous work by us [9], has shown that at least two different correlated bands of 

information were generated at low and high temperatures for most analytes. Therefore, we used a 

temperature program that sampled a range of temperatures between 55 °C – 435 °C. 
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Sensor responses of four copies of the SnO2 microsensors were measured. Each sensor 

was cycled through 28 temperature steps (Figure 2.5), with each temperature treated as a 

perturbed-isotherm [8] for that particular microsensor. Conductance measurements were made at 

each of the operation steps for each sensor. Each measurement cycle lasted 38 s as all four 

sensors used were cycled through 28 temperatures. A logarithm (base 10) was calculated to 

compress the sensor responses (note that this step is not critical for results reported here). 

Analysis in this paper was performed using three sensors that lasted the entire data collection 

period of approximately 7 months. 

 

 

Figure 2.4. Micro-hotplate sensor array platform. (A) An optical microscopy image of a 
single microhotplate microsensor element. (B) A layered schematic showing the three 
primary components of the microsensor elements: polycrystalline silicon heater, interdigitated 
platinum electrodes, and metal oxide sensing film. (C) A microsensor array with 16 
individually addressable, temperature-controlled elements. (D) A 40-pin dual in-line 
packaged microsensor device. Figure as is from [9]. 
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2.1.4 Calculation of the I/O transforms 
The sensor response ( ) at a particular temperature was treated as the dependent variable 

to be predicted given the most recent stimulus history ( ; series of 1 and 0 indicating analyte 

valve open or closed during each measurement). Note, the length of the moving window (i.e. 

dimensionality of vector ( )) is a free parameter. For each sensor, temperature combination:  

	 ⋅    (2.1) 

 

Figure 2.5. Temperature cycle employed for micro-hotplates. A data point was collected from 
each sensor, at these temperatures, for every time point. The sensor was allowed to dwell at a 
temperature for 750 ms before a measurement was taken and each temperature was treated as 
a single trace. The star marks the 20th temperature index on which most of the analysis was 
performed. Figure and legend as is from [1]. 
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where  is the transform that maps the stimulus history (the input) onto the sensor’s 

response (the output) for a given analyte (Figure 2.6). I/O transform for each analyte was 

calculated using a least squares regression estimation method, where the mean squared error of 

prediction is defined as: 

⋅    (2.2) 

A moving window was continuously shifted and the sensor response at the end of the 

stimulus history was recorded to construct a sensor input matrix ( ), and a sensor response 

vector ( ; a column vector of sensor responses at the end of each stimulus history). A bias term 

was added to account for average signal baseline (DC offset) throughout the experiment. This 

bias-term was not used in any further analysis as the goal was to focus primarily on the changes 

in response dynamics. Note that the reconstruction error is minimized when: 

  (2.3) 

 

Figure 2.6. Schematic of I/O transform. A) Top row) Schematic illustration of the proposed 
approach. An analyte is pulsed over the sensor and causes changes in resistance across a 
metal oxide sensing film. Bottom row) A schematic of a sensor response reconstruction is 
shown. Given a specific stimulus sequence, the sensor’s operation is akin to a mathematical 
transformation that is specific for a given analyte. Convolving the analyte-specific filter with 
the most recent stimulus history will generate a prediction for the sensor’s response that can 
be expected at the end of that period. 
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i.e. the pseudo-inverse solution. 

For results shown in this manuscript, a stimulus history of eight recent stimulus states 

was chosen as the window size. This selection was based on the minimum window length for 

which the error of reconstruction converged (Figure 2.7). This was done to provide a sufficient 

tradeoff between minimizing reconstruction error and reducing over-fitting to the training data. 

Note that the response of the sensor at each temperature was treated separately. 

Therefore, we created 28 I/O transforms for each analyte one for each operating temperature. 

These are shown in Fig. 3.2C. 

 

2.1.5 Training and testing datasets 
First dataset: The sensor response measurements were collected over a period of a month. Each 

analyte was presented in a random binary pulsatile sequence (analyte ON and OFF) as shown in 

Fig. 1. A single pulsatile sequence run resulted in 140 sensor response measurements (~40 with 

 

Figure 2.7. Mean square error of sensor response reconstruction as a function of filter length. 
Colors represent different analytes, each trace is a different run from the first dataset 
collected. 
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analyte ON period and ~100 analyte OFF period). The training data set consisted of 17 such 

measurement sequences; 3 for acetone, 3 for ethanol, 4 for hexanol, 4 for 2-octanol, and 3 for 2-

octanone. Note that this was the training data used for generating the I/O transforms shown in 

Fig 3.2, and 3.4. 

Second dataset: The sensor array was purposely aged for a period of two months during which 

it was intermittently operated with exposure to the same analytes. Subsequent to the aging phase, 

a second experimental run, lasting a 2-3 weeks of data collection, was used to validate our 

approach. The second experimental run consisted of similar sequences as in the training period. 

20 such measurement sequences were made (4 for each analyte). This data was used as the 

testing data for quantifying performance of the models generated using the first training dataset 

(refer Fig. 3.7). 

Third dataset (Concentration dataset): To further assess the limits of our methodology a third 

dataset using a subset of the analytes (acetone, ethanol, hexanol, and 2-octanol) was presented at 

varying concentrations. Note that this third dataset was collected 3 months after the collection of 

the second dataset. This dataset consisted of 13 measurement sequences; 4 for Acetone, 3 for 

Ethanol, 3 for Hexanol, and 3 for 2-Octanol. Also note that the dataset collected during the 

previous data collection phase (i.e. second dataset) were used to create the I/O transforms for 

classifying these responses (Fig. 3.9). 

2.1.6 Dimensionality reduction and classification. 
A linear principle component analysis (PCA) was used for visualizing the I/O transforms 

associated with each analyte. The I/O transforms or response filters were projected onto 

eigenvectors corresponding to the three largest eigenvalues of the correlation matrix. Only the 

training data and their corresponding transforms were used for determining the PCA axes. Both 
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training and testing datasets were projected onto the same axes to aid visualization and 

comparison. 

In order to classify testing data, we implemented a hierarchical, recursive approach. In 

this scheme, we treated one m-class classification problem into a series of m binary classification 

problem. The algorithm is shown in schematic form in Figure 2.8 and can be summarized as 

follows: 

1. Compute the I/O transform of the test analyte that needs to be classified 

2. Perform PCA to reduce dimensionality of the filter (Note that this step was 

performed for visualization, but not strictly necessary for the approach).  

3. Compute the mean centroid of the dimensionally reduced I/O transform of each 

training analyte 

4. Repeat until done:  

a. Based on pairwise distances between the mean I/O transforms, find the 

analyte that is farthest from all others (i.e. the analyte with the most 

unique I/O filter shape; in Fig. 5 this is ethanol).  

b. Project all training and test data onto a difference of mean plane between 

the centroid of the farthest analyte and the centroid of the closest analyte 

(for ethanol the closest response cluster is acetone). 

c. Use a nearest neighbor classifier to assign the test sample to one of the two 

classes: farthest analyte vs. rest of training 

d. If assigned to farthest analyte, then stop recursion.  

e. If only two training analytes remain, then classify the test sample using the 

label of the nearest neighbor in the training sample.  
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f. Else, remove the samples from the farthest analyte from further 

consideration and repeat steps a-e.  

 

 

 

Figure 2.8. A hierarchical classification algorithm for multi-analyte recognition. Hierarchical 
classification algorithm used to identify analytes is schematically shown. At each level, both 
training and testing data were projected onto the differences of means plane between the most 
distinct/farthest class and its nearest neighboring class. The data after this projection is shown 
in the panels on the right. The regions where the class assignment favored the distant class are 
identified in each subplot displaying projected data.  When testing data projects onto un-
colored regions, those points will move down a level in order to be precisely classified. 
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2.1.7 Room temperature sensor fabrication 
Electrode array fabrication 

Interdigitated electrodes were made using standard micro-fabrication techniques. A top-

down fabrication technique was employed, in which a metal layer is deposited onto a substrate 

(glass or Si wafer) and then selectively etched away. Deposition was done in a two-step process 

using thermal evaporation. First, the substrate was cleaned and a thin adhesion layer (~5-10 nm 

Cr) was applied to enable gold deposition. Next, a uniform layer of gold, approximately 50-75 

nm, was deposited as the primary electrode material. Gold was selected as the electrode metal 

because of its high electrical conductivity, surface modification potential, and resistance to 

corrosion. Following metal deposition, photoresist was patterned on in the shape of the sensor 

array using standard photolithography methods. The general steps are outlined in Figure 2.9A. 

 

In a top-down technique, a uniform, 450 nm thick layer of photoresist (S1805, Shipley 

Co.), was spin coated onto a metal deposited substrate. The coated substrate was 'pre-baked' on a 

Figure 2.9. Fabrication of multi-electrode arrays for developing room temperature chemical 
sensing array. a) Top down nano-fabrication methodology to make sensor arrays. Gold is 
adhered to a substrate, a photoresist is spincoated and then patterned on top to protect gold in 
desired locations. Excess or undesired gold is removed or etched away, leaving only a desired 
pattern. b) A fully fabricated gold interdigitated electrode array. Electrode digit width is 
20um, with 20 um between digits. c) Final, device with electrode array bonded and wired to 
DIP socket. 
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hotplate at 115C for 60 seconds and allowed to cool to room temperature. Then, in a mask 

aligner, a custom-made negative photomask was used to expose certain portions of the substrate 

to UV light. The substrate was then 'post-baked' on a hotplate at 115 °C for 60 seconds and 

allowed to cool to room temperature. Following the post-bake, the photoresist was developed for 

40 seconds in MF-319 developer and the pattern shape was removed from the resist layer. 

This photoresist layer protected the underlying gold during a liquid etching process using 

gold etchant TFA (Transene, Inc.). Unprotected gold on the substrate was removed. Next, 

reactive ion etching was used to remove the exposed Cr adhesion layer and any residual gold and 

photoresist along the edges. RIE etching was done using an Oxford Plasmalab 100 ICP-Reactive 

Ion Etcher. The recipe used consisted of a 15 SCCM flow of Cl2 and 5 SCCM flow of Ar in a 

chamber with 2 mT pressure and at 20C. The ICP power was set to 600W and the RF power was 

set to 250W. The standard etching time was 30 seconds, but time was increased or decreased as 

required based on the thickness of the deposited Au and Cr layers. Pre- and post-etching purges 

were done with 50 SCCM Ar for 2 minutes to remove any potential contaminants or hazards 

from the chamber. Finally, the photoresist was removed in Remover PG (MicroChem Corp.), 

leaving only the interdigitated electrode arrays (Figure 2.9B). 

Chemiresistive film deposition 

Prior to film deposition, sensor array was heated and maintained at 50 °C on a hotplate. 

Crumpled graphene oxide was dropcast on electrode in 0.5 – 2 µl drops, while being careful to 

restrict drops to a single electrode. Drops were repeatedly deposited until resistance across dry 

film was ~1MΩ. 
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Socket assembly 

The electrode arrays were mounted to 8-pin DIP sockets (ED90032-ND, Digikey) using a 

small amount of dental wax (6652151, Henry-Schein Dental). Silver wires were pre-soldered to 

the dip socket, then connected to electrode pads with silver print (842, MG Chemicals, Surrey, 

B.C.). The electrode array and wires were permanently sealed into place by apply epoxy (84101, 

Permatex) to the outside edges. A fully assembled sensor is shown in Figure 2.9C. 

2.1.8 Crumpled graphene oxide 
Crumpled graphene oxide (cGO) was made following previously published methods [10]. 

In brief, an aqueous suspension of graphene oxide was aerosolized into 2-4 µm drops and heated 

in a furnace aerosol reactor at a minimum temperature of 400 °C. Compression due to capillary 

forces compressed the sheets into a crumpled 3D structure. The morphology of the sheets can be 

seen in Figure 2.10. 

 

 

Figure 2.10. TEM images of crumpled graphene oxide.  
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2.2 Locust electrophysiology 

2.2.1 Odor bottle preparation 
The following five chemicals were used in this study: isoamyl acetate, hexanol, 1-

octanol, and cyclohexanone (Sigma-Aldrich, St. Louis, MO). Analytes were diluted in paraffin 

oil to a 1% concentration (v/v) and 20 ml were placed in 60 ml glass bottle. Hexanol was also 

tested at 0.1% and 10% to compare stimulus intensities. 

 

2.2.2 Odorant delivery and humidity control 
Analytes were delivered following a standard protocol used in other works [11-14]. 

Analytes were delivered by injecting a constant volume (100 sccm) of the static headspace of the 

odor bottles into a carrier stream of filtered, dehumidified air (750 sccm) flowing continuously to 

the locust. To add humidity, a fraction of the carrier stream was diverted through a water bubbler 

to be humidified before being reintroduced with the remainder stream (Figure 2.12A). Flow rates 

of 0, 250, 500, or 750 sccm were diverted for humidification allowing for control of humidity 

levels at 0%, 33%, 66%, and 100% relative humidity of the carrier stream. Humidity levels were 

validated using traceable hygrometer (Model # 1166118, Fisher Scientific) and actual RH levels 

were close to expected levels (Figure 2.11). A large vacuum was placed behind the preparation 

to remove delivered odorants. 

PREDICTED RH (%) MEASURED RH (%) TEMPERATURE (°C) 
0 12.1 22.6 
33 37.5 22.2 
66 67.5 22.0 
100 99.9 22.1 
0 9.3 22.7 
   

Figure 2.11. Hygrometer measurements of carrier stream humidity levels. 
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2.2.3 Locust electroantennogram (EAG) 
EAGS have been subject to extraneous noise from environmental variability such as 

airflow changes. Furthermore, EAGs are often performed on excised antennae which slowly die 

after amputation [15]. This yields unreliable results over time. To overcome these limitations, we 

employed a novel EAG method that allowed for use of an intact locust prep, yet isolated the 

antenna from external environmental variations. 

Recordings were performed on an intact locust (Schistocerca americana) preparation. 

First, the locust was restrained in a plastic tube which was inserted into a custom made 3D-

printed chamber (Figure 2.13). One antenna was extended and the distal end was dipped in a well 

filled with locust ringer’s solution [16]. The distal most segment was removed to expose 

antennal lymph and allow for electrical conductivity. A silver chloride wire was inserted into the 

saline, for the recording electrode, and another in the contra-lateral eye as a ground electrode. 

Wax was applied around the head to restrict movement and secure the ground wire (Figure 

 

Figure 2.12. Humidification apparatus and Locust EAGs. a) Clean, dehumidified air flows 
through a valve system. Valves deliver air directly to the locust or through a bubbler for 
humidification before mixing with dry air delivered to the locust. The ratio of dry air vs 
humidified air controls overall humidity level of the airstream to the locust. b) Schematic 
drawing of locust EAG. Dorsal tip of an antenna is cut and dipped in a well of Locust 
Ringer’s solution. A recording electrode is inserted in the well and ground electrode is 
inserted in the contra-lateral eye. 
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2.12B, 2.13B). Data was collected at 15 kHz with a custom made LabVIEW data acquisition 

program.   

EAGS were collected from 10 locusts for 3 intensities of hexanol (0.1%, 1%, and 10%) 

under 4 humidity levels (0%, 33%, 66%, and 100% RH). Five trials for each intensity at each 

humidity level were collected. The order of intensity was pseudo-random for each experiment, 

but the order for humidity changes was fixed: 0%, 33%, 66%, and 100% before returning to 0%. 

A 5 minute acclimation period followed every switch from 100% to 0% RH. 

 

2.2.4 EAG normalization and analysis 
To compare EAG response magnitudes, first data was sub-sampled to 100 Hz. Next, DC 

offsets were removed by subtracting mean pre-stimulus for each intensity-humidity pair. For 

comparisons across locusts, all data was normalized to the maximum magnitude of hexanol 1% 

Figure 2.13. Custom designed manifold for locust electroantennogram recordings. a) Image of 
open chamber. Circles indicate important ports or openings. Yellow circle is airflow inlet, 
white circle is saline well, and red circle is opening for locust. Note that there is an airflow 
outlet is present opposite the inlet, so air may flow through unobstructed. b) Locust placed in 
manifold. 
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in 0% RH. Means and S.E.M. were plotted to compare the effect of intensity and RH on EAG 

response and statistical significance for changes with intensity were calculated using a two-tailed 

t-test with a Bonferroni corrected α of 0.05. Significance for changes in magnitude under 

different humidity backgrounds were calculated using a one-tailed t-test with a Bonferroni 

corrected α of 0.05. 

To compare EAG baselines, data was sub-sampled to 100 Hz. Next, DC offsets were 

aligned by subtracting mean pre-stimulus for each stimulus in 0% RH. Significance for changes 

in baseline under different humidity backgrounds were calculated using a one-tailed t-test with a 

Bonferroni corrected α of 0.05. 

2.2.5 Projection neuron recordings 
Extra-cellular recordings were performed using previously published methods [11-13]. In 

brief, a young adult locusts of either sex was secured to a platform and a cup of wax was built 

around its head. The cup was filled with locust Ringer’s solution (locust saline [16]) and a small 

section of the locust skull and underlying support tissue was removed. Approximately 0.3-0.4 mg 

of protease (P5147, Sigma-Aldrich. St. Louis, MO) was applied to sheath directly over the 

antennal lobes for 5-10 seconds then thoroughly rinsed and removed with locust saline. A small 

window was then excised in the sheath directly above each antennal lobe. For recordings, a drip 

line of locust saline flowing at approximately 50 ml/min was added. 



45 
 

 

A ground wire was placed in the saline well and a 4x4 16 channel probe (A2x2-tet-3mm-

150-121, NeuroNexus) was inserted through the window in the sheath so that the electrode pads 

were just touching the surface of the antennal lobe (Figure 2.14). The preparation was allowed to 

rest for at least 15 minutes before recordings were started to allow the electrode to stabilize in the 

tissue.  

Prior to insertion, the electrode was gold plated to obtain impedance values between 200-

300 kΩ. The extracellular signals were amplified 10,000X, bandpass filtered between 0.3-6 kHz, 

and sampled at 15 kHz. 

2.2.6 Spike sorting 
Individual projection neurons were identified from our extracellular using a published 

spike sorting technique previously used in our work [11-13, 17]. Briefly, we used the following 

criteria in order to sort individual spikes: cluster separation was greater than 5 times the noise 

 

Figure 2.14. Projection neuron recording in locust antennal lobe. A) Schematic image of PN 
recording preparation. Window opened in skull allows for access to antennal lobe and 
insertion of electrode. B) Image of locust brain. Antennal lobs are labeled as AL. 
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standard deviation, the number of spikes within 20 ms had to be less than 6.5% of the total 

spikes, and the spike waveform variance was less than 6.5 times the noise standard deviation.  

Two separate datasets were collected. One for 4 odorants at a 1% (v/v) concentration 

yielding 82 PNs from 19 locusts. The other for hexanol at 3 different concentrations (0.1%, 1%, 

and 10% v/v) yielding 94 neurons from 17 locusts.  

2.2.7 Peri-stimulus time histograms 
Actual potentials were summed in 50 ms non-overlapping bins and smoothed by a 5 or 10 

point average zero-phase digital filter. Averages across trials were computed for single unit 

PSTHs and averages across all trials are neurons were calculated for population-level PSTHs. 

2.2.8 Responsive PN selection 
PNs were categorized as selective based on two criteria: 1) Activity criteria: In at least 

one time bin during the stimulus, activity had to exceed 3 S.D. of the average, pre-stimulus 

activity. 2) Consistency criteria: The activity criteria had to be met in at least 3 of the 5 trials. 

2.2.9 Neural correlations 
Correlations for the ensemble PN activity were calculated as follows. Using a custom 

MATLAB (vR2016B, MathWorks, Natick, MA) script, the mean firing rate during the 4 seconds 

of stimulus was calculated for all PNs and assembled in a vector. Correlations of the vectors 

were calculated for two cases: 1) across odorants and humidity levels and 2) across intensities 

and humidity levels.  

2.2.10 Dimensionality reduction analysis 
We used a linear principal component analysis technique for the purpose of visualizing 

high-dimensional neural response trajectories. For this analysis, we binned the PN responses in 

50ms non-overlapping time bins and averaged the responses in a given time bin across trials. PN 
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responses were thus arranged as time series data of n dimensions (where n is number of neurons 

recorded) and m steps (the number of 50 ms time bins). Each high dimensional PN response 

vector in each time bin was projected onto the three leading eigenvectors of the response 

covariance matrix. For the analysis shown in Figure 4.3 D, we obtain covariance matrix from 

response of four odorants and all humidity conditions. The covariance matrices used in Figure 

4.5, however, were obtained separately for each odorant. Finally, the low-dimensional points 

were connected in a temporal order to generate low dimensional response trajectories. The 

response trajectories were smoothed using a five-point moving average filter. 

2.2.11 High dimension neural classification 
High dimensional classification was done as in previous studies [12, 13]. Neural 

responses were binned in 50ms non-overlapping time bins to generate ensemble neural response 

profiles over time. Three, trial and time averaged, reference templates were generated for 

classification, one for each hexanol concentration for activity during the first 2s following onset 

of odor delivery. All reference templates were generated from activity in the 0% RH condition.  

Classification was performed using an angular distance metric. Response vectors with the 

smallest distance to a reference template were classified as belonging to the corresponding class. 

For classification of 0% RH trials, a leave-one-trial-out validation was used. To ensure only 

meaningful responses were classified, a tolerance threshold of 63° was used requiring all 

classified response vectors to be within a certain distance of the reference templates. 

2.3 Locust behavior 

2.3.1 Locust preparation 
Locust behavior experiments were performed following previously published methods 

[12, 13, 18]. In brief, adult locusts of either sex were starved for 24 hours and then immobilized 
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in plastic syringes with an opening cut to ensure the locust antennae, head, and mouthparts were 

visible and accessible. The eyes were closed with a black tape and the distal segments of the 

maxillary palps (mouthparts) were painted green for image tracking purposes with a zero volatile 

organic compound paint (Valspar Ultra). The training sessions began approximately an hour 

after the palps were painted to allow proper drying and to allow the locusts to adjust to being 

immobilized and have paint on their palps.  

2.3.2 Locust training and testing 
1% Hexanol was used as the conditioned stimulus (CS) in training and organic wheat 

grass was the unconditioned stimulus (US). Training was performed in either a 0% or 100% RH 

carrier air stream. Odorant delivery and humidity control were achieved as described above. In 

brief, locusts were exposed to carrier air at 750 sccm at all times. Odor pulses were presented in 

addition to the air at 100 sccm. To clear delivered odorants, a vacuum line was placed behind the 

locusts. A video camera (Microsoft Webcam) was used to record the locusts’ palp opening 

response (POR) at 30 frames per second. Odor delivery and video data acquisition were 

automated using custom written LabVIEW 2009 (National Instruments, Austin, TX) programs 

for precise testing conditions. 

Locusts were trained over 6 training trials, spaced 10 minutes apart, in which the CS was 

presented for 10 seconds and the US was presented 5 seconds after the start of the CS for 

approximately 10 seconds. Only locusts which ate wheat grass in at least four out of the six 

training trials and performed a satisfactory palp-opening response (POR) in at least three of the 

six trials were retained for the testing phase (67% of the locusts in 100% RH (20/30) training and 

73% of the locusts in 0% RH (22/30) training, note that 2 trained in the dry condition were later 

removed due to poor palp-tracking). 
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In the testing phase (results reported in Figure 8), locust PORs were collected for a total 

of 6 trials. The 6 trials were a pseudo randomized combination of 0.1%, 1%, and 10% hexanol 

being presented for 4 seconds in the presence of 0% or 100% RH air. The inter-trial delay was 

set to 25 minutes. Locusts were kept on a 12 h day – 12 h night cycle (7 am – 7 pm day). All 

behavioral experiments were performed between 9 am – 3 pm.  

2.3.3 Palp-tracking algorithm  
Maxillary palp movement videos acquired from LabVIEW were analyzed using a custom 

written Matlab script. The goal of the processing was to provide contrast to enable accurate 

tracking of the painted palps. Each trial was saved as a separate 30 second video that recorded 

both pre- and post-stimulus palp movements. The videos were cropped to focus on the region of 

the palps to minimize background noise and then converted into a time series of RGB color 

frames. It was ensured that the videos still contained 30 frames per second and that no data had 

been lost.  

For each frame of a video, the grayscale image was subtracted from the green channel. A 

2-D averaging filter (10 pixels by 10 pixels) was then applied to remove background noise and 

emphasize the green painted palps. Since no two locusts were identical, a number of parameters 

were manipulated to accommodate for differences in palp size, position, movement intensity, and 

visibility of the painted region as the palps moved. Details of these procedures have been 

previously published [13]. 

Despite these manipulations, if the program lost track of a palp for a frame due to 

antennal movements blocking the view or low pixel intensity, it would estimate the position of 

the palp using its position in the previous frame. The position of the centroid of each painted palp 

was tracked in every frame and the distance between the centroids was used as an estimate of the 
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distance between the palps throughout the trial. The results of each video analysis were manually 

inspected and the program was re-run until the results reflected the movements accurately. The 

distance curve obtained was then smoothed using an 8 point zero-phase digital filter. 1 of the 22 

locusts that were trained in 0% RH and subsequently tested was excluded from analyses due to 

rapid antenna movements that hindered accurate palp tracking. Another was removed due to poor 

palp tracking, due to insufficient paint being applied. All 20 locusts trained in 100% RH were 

included. 

2.4 Identifying malaria biomarkers 

2.4.1 Breath collection sampling methodology 
Alveolar air samples were collected form patients as detailed in other studies [19]. At 

least 1 L of breath was collected in 3 L sample bags (SamplePro Flexfilm sample bags, SKC 

Inc.). To transport samples back to St. Louis for analysis, exactly 1 L of the collected breath was 

pumped through an inert stainless steel sorbent tube (Tenax 60/80/ Carbograph 1 60/80/ 

Carboxen 1003 40/60, Camsco). The use of a set flow pump (ACTI-VOC, Markes International) 

calibrated to 100 mL/min ensured the correct volume from the collection bag was sampled. 
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2.4.2 Data extraction and pre-processing 
Upon return, samples were desorbed from the collection tubes using a TurboMatrix 650 

ATD (Perkin Elmer) and analyzed with a Leco Pegasus 4D GCxGC-TOFMS system. Details of 

the analysis are detailed in our manuscript [20]. A brief overview of the method is as follows. 

Prior to desorption a standards mixture of known quantities of flourobenzene, tolune-D8, 

bromofluorobenzene, and 1,2-dichlorobenzene-D. Samples went through a 2-phase desorption 

process before being injected into the GC/MS. The GC column was a DB-5 column of 30m 

length, 0.25 mm ID, and 0.25 µm film thickness. GC spectra were analyzed and base ion peaks 

were normalized to the base ion peak area of the 1,2-dichlorobenzene-D4 standard. An aligned, 

standardized compound list generated by Mass Profiler Professional was exported and internal 

standards and silicone/siloxane contaminants were manually removed. A representative GC 

spectra at different stages of processing is shown in Figure 2.15. Note the change in spike 

abundance and density as the spectra is normalized and contaminants are removed (Fig. 2.15 A-

B). Peaks present in only one patient were removed and the spectra were put into a log2 scale for 

analysis. 

Figure 2.15. Representative GC/MS spectra collected from pediatric patients in Malawi. A) 
Unprocessed GC/MS spectra. B) Spectra normalized to 1,2-dichlorobenzene-D4 internal 
standard with siloxane contaminants removed as well as compounds present in only 1 patient. 
C) Logarithmic compression of spectra from b used to emphasize differences. 
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2.4.3 Cumulative abundance classifier 
The aligned, standardized compound list was used for further analysis to determine 

malaria biomarkers. Only VOCs that were present in at least 20 participants were used in this 

analysis, leaving 42 potential biomarkers of 144 identified after contaminant removal. Class 

labels were assigned to each subject based on their diagnosis, as follows: 1 for malaria negative 

and 2 for malaria positive.   

First VOCs were sorted based on their correlation with class labels. Higher correlation 

magnitudes indicated greater suitability as a biomarker for malaria. To classify a subject, the 

abundances of the six most correlated VOCs were summed in order of correlation magnitude. 

For negatively correlated VOCs, abundances were subtracted from the overall cumulative value. 

A nearest mean classification algorithm (binary classification) with leave-one-breath-sample-out 

cross validation scheme was followed. In this approach, mean cumulative VOC abundances for 

both classes were computed, excluding the breath sample from the subject to be classified. The 

left out breath sample was classified based on the class mean to which it was closest. This was 

repeated systematically leaving out each sample in the dataset. The predicted label [malaria (+) 

or malaria (-)], was compared with the actual values in order to quantify the performance as 

shown in Fig. 5.7C-D. A detailed characterization of how the performance varies with the 

number of VOCs selected is provided in Fig. 5.4. 

The classification performance as a function of number of VOCs included was used to 

determine the optimal number of VOCs needed for identification of subject disease state. Based 

on this metric, six VOCs were selected as promising components for a diagnostic breathprint.
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Chapter 3: The I/O transform of a chemical 

sensor 

3.1 Introduction 
Chemical sensing involves detection of a target analyte of interest by measuring a change 

in a signal that is generated by either the analyte’s contact or remote interaction with the sensor. 

The minimum signal that evokes a measurable output above noise levels is the sensor’s detection 

limit, and the minimum change in the signal levels that can be distinguished is its resolution or 

sensitivity. In this context, a sensor’s operation is akin to a mathematical input/output (I/O) 

transform [1, 2]. Ideally, the sensing operation will be meaningful if this transform is different 

for different inputs. Assuming that this hypothesis is true, the proposed formalism faces several 

practical challenges: 

i. how does one estimate the I/O transform of a sensor?  

ii. how robust is the I/O transform to changes of parameters relevant to the sensing 

task such as identity and intensity of the target signal?  

iii. how invariant is the I/O transform to changes in irrelevant parameters such as 

sensor age[3-8]?, and finally 

iv. how reproducible are the I/O transforms for different sensors of equal 

manufacture? 

We examined these issues in the context of chemical sensing with an array of 

chemiresistive microsensors.  

Current approaches for chemical sensing have been inspired by the biological principle of 

using an array of cross-selective chemical sensors to create unique multivariate fingerprints for 
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different odorants. A number of sensing technologies have been proposed for sensitive detection 

and selective recognition of chemicals [9-20]. Irrespective of the transduction mechanism used, 

all chemical-sensing approaches must employ a readout mechanism that would allow extraction 

of meaningful features from the sensor’s response. Two strategies seem popular depending on 

the segment of the response that is assumed to contain most discriminatory information: transient 

or steady-state responses. 

For steady-state response analysis, the ultimate change in the sensor signal after exposure 

to an analyte is typically the measurement used for further processing [8, 21-24]. In the case of 

response transients, time-domain features such as sensor‘s response time constants [25-29] or 

frequency-domain features such as spectral content [30-32] have been popularly used. In general, 

it is widely accepted in both artificial and biological chemical sensing systems that the sensor 

response during transient periods tends to carry richer analyte specific information and therefore 

can provide better recognition performances[28, 33-44]. 

Irrespective of the signal readout from the sensor (steady-state vs. transient or time-

domain vs. frequency domain), another issue faced by almost all chemical sensors that severely 

limits their long-term use is the issue of sensor drift, or deviation of the response, over time[3, 7, 

26, 45-49]. Drift in artificial chemical sensors has been suggested to primarily be an effect of 

aging or poisoning of the sensing film [5]. Drift has a profound effect on absolute transducer 

measurements, making these measures unreliable for long term analyte identification. Therefore, 

the long-standing need for the development of portable, accurate, and precise chemical sensors, 

which remain viable for extended periods of operation, still remains unmet. 

In this work, we propose a simple but elegant approach to characterize the sensor’s 

operation as an I/O transform. The proposed approach exploits the richness of a sensor’s 
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response to a temporally structured pulsatile sampling of analytes similar to those used in 

biological olfaction [37, 38, 41, 50]. It is worth noting that the sensor responses following 

stimulus onsets, offsets and during their steady-state are all used to characterize a sensor’s 

response to an analyte. We reveal that this approach, to a certain degree, is robust with respect to 

changes in analyte intensity and to changes due to sensor drift. More importantly, we also show 

that this approach facilitates generalization between sensors of equal manufacture and therefore 

provides a way to allow seamless replacement of sensors in a chemical sensing system. The latter 

problem is fundamental for successful deployment of sensors in commercial applications. 

3.2 Results 

3.2.1 Responses of a chemical sensor to pulsatile stimuli 
We began by examining the response of a metal-oxide chemiresistor to a few analytes 

that varied in their functional group, carbon chain length, and vapor pressure. Unlike most 

chemical sensing studies, we delivered stimuli in a pulsatile fashion to exaggerate the response 

transients. The pulses delivered varied in duration, (1 to 3) min, and inter-pulse interval, (1 to 4) 

min. The mean response of the sensor (±standard deviation (S.D.)) at one particular operating 

temperature (435 °C; see Fig. 2.5) is shown in Figure 3.1. Note that sensor responses to the 

exposed gas were measured at twenty eight operating temperatures (Fig. 2.5).  

In general, irrespective of the operating temperatures, we found that all gases used 

increased sensor’s conductance (i.e. all were reducing gases) with the absolute magnitude of the 

response being greater for ethanol and acetone (blue and green) compared to the others. We 

found that the pulsed stimulus sequence emphasized differences in the transient responses 

generated by different analytes. During a relatively lengthy pulse, there was a discernable 

difference in time to peak response between different analytes (Fig. 3.1, inset 1). Similarly, when 
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the inter-pulse interval was reduced, responses to the non-leading pulses decreased substantially 

for all analytes (Fig. 3.1, inset 2). Note that the magnitude of response reduction was analyte 

specific. Hence, we hypothesized that the pulsed mode of stimulus exposures could enhance 

discriminability between analytes. Furthermore, since some of the response dynamics were 

governed by the differences in stimulus dynamics, we expected these transient portions to remain 

invariant to sensor drift, consistent with previously shown results [51].  

 

3.2.2 Chemical sensing as an I/O transform 
For any given analyte, and at any particular point in time, the state of the valve delivering 

the stimulus (open or closed) and the sensor’s response were both known. We viewed the 

 
Figure 3.1. Responses of a metal-oxide sensor (SnO2) to five different analytes presented in 
pulsatile fashion. Each trace represents the mean sensor response to an analyte with the sensor 
operating at 435 °C. Color bands represent standard deviations. Gray bars indicate periods 
when the sensor was exposed to the analyte. First inset reveals response onset differences 
during a prolonged single pulse. Second inset reveals diminishing of responses when probed 
with short, back-to-back stimulus pulses. 
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sensor’s operation as a transform that when applied to the stimulus state produced a 

corresponding response. If the sensor was extremely rapid and there was no hysteresis, then the 

I/O transform could be regarded to be instantaneous. However, this was not true for our sensor 

and for most chemical sensors studied in general. Therefore, we assumed that the sensor 

response at any given time is not instantaneous but a weighted linear function of the recent 

stimulus history. Note that this I/O operation or transformation must still be unique for each 

analyte in order for the sensor to generate unique fingerprints. 

To estimate the linear transform from the training data, we recorded the stimulus history, 

as determined by the valve state, in a given time window ( ) and the sensor response at the end 

of this period (y; a scalar value). For example, the following valve-states for last eight 

measurements [closedt-7, opent-6, opent-5, opent-4, closedt-3, closedt-2, closedt-1, closedt], would 

result in the following stimulus history vector [0, 1, 1, 1, 0, 0, 0, 0]. For each stimulus and each 

trial, or run, we systematically moved the stimulus history window in time to generate a matrix 

of stimulus histories (X; 8 columns but multiple rows) and a vector of sensor responses measured 

at the end of each stimulus history (Y; column vector with the same number of components as 

the rows of X). The sensor response model to a given analyte could now be viewed as the 

optimal linear transform that reconstructs Y given X (schematically shown in Fig. 2.6). Since 

this results in an over-determined system of equations (more rows than columns), we calculated 

the I/O transform to minimize the mean-squared error of reconstruction (i.e. pseudo-inverse 

solution). 

The optimal linear transform ( ; vector of the same dimensions as ), and the comparison 

between the actual vs. reconstructed sensor responses for the different analytes used are shown in 

Fig. 3.2A and 3.2B. Note that each component of the I/O transform is a weight for the 



60 
 

stimulus/valve state at a particular point in time/history. The overall sensor’s response that is 

reconstructed in this fashion is merely a weighted sum of valve states in the recent past. As can 

be observed, the actual sensor response (black traces) and the predicted sensor response (red 

traces) are well-matched for all analytes (see Fig. 3.3).  

The I/O transform of each analyte for each of the 28 operating temperatures used in the 

study is shown in Fig. 3.2C.  
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Figure 3.2. I/O transforms of a metal-oxide chemiresistor. A) I/O transforms ( ) generated 
using sensor’s response at 435 °C for each of the five analytes examined in the study. C) 
Comparison of the sensor’s actual response at 435 °C (black) and reconstructions (red) 
obtained for all five analytes. D) I/O transformations for each analyte at all twenty-eight 
temperatures used (see Figure 2.5). Higher intensity of color indicates higher temperature. 
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3.2.3 Recognition of chemicals based on Sensor’s I/O transform 
As can be noted from Fig. 3.2, the I/O transform was unique for each analyte examined. 

Furthermore, as shown in Fig. 3.4a, the I/O transform was reliable across multiple training runs 

for each analyte used. These results suggest that the estimated I/O transform of a sensor may be 

used as a fingerprint to identify each analyte. To confirm this hypothesis, we first visualized the 

eight-dimensional I/O transform using principal component analysis (Figure 3.4b). Note that 

each complete training run or trial, resulted in a single estimate of the I/O transform, and 

therefore is represented as a single point/symbol after PCA dimensionality reduction. Different 

runs corresponding to a particular analyte generally clustered together and were discriminable 

from clusters representing other analytes. Therefore, this result suggests that the sensor’s I/O 

transform can indeed be used for analyte recognition. 

 

Figure 3.3. Root mean squared error for prediction of analyte response at each temperature in 
the cycle. Note that error is typically lower at higher temperature bands. 
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3.2.4 Sensor’s I/O transforms are drift tolerant 
As mentioned before, drift can be a major issue with chemical sensors, as it can 

significantly reduce the viability of sensors operating over an extended period of time. To test the 

stability of the sensor’s I/O transform to each analyte, we aged the sensor for a period of two 

months (see 2.1.5: second dataset). Subsequent exposures of the same five analytes generated 

raw sensor responses that were substantially drifted. We note that sensor baseline response 

decreased and the sensor response magnitude varied as a result of this drift (Figure 3.5). 

Figure 3.4. I/O transforms for different analytes are consistent across different training trials. 
A) I/O transforms obtained using sensor response at 435 °C are shown for each analyte and 
for each training run. B) Visualization of the I/O transforms ( ) of different analytes and for 
different runs using principle component analysis is shown. 
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We made a qualitative comparison of sensor response profiles before (training dataset) 

and after (testing dataset) aging using a linear principle component analysis (Figure 3.6a). Note 

that sensor response from the training dataset is indicated using circles, whereas raw sensor 

responses during the validation phase are identified as squares. As can be noted, although 

groupings within datasets are well-defined, drift in sensor responses across datasets shifted the 

overall response profiles. Complementing this qualitative visualization analysis, we performed a 

quantitative nearest-neighbor classification. The overall results from this classification analysis 

are summarized in the confusion matrix shown in Figure 3.6b. Note that the main diagonal 

elements were low indicating misclassification. These results qualitatively and quantitatively 

confirm that the raw responses of the sensor before and after aging were inconsistent. 

 

 

Figure 3.5. Sensor 1 response to each analyte before and after (2 to 3) months of aging. Each 
trace represents the mean sensor response to an analyte with the sensor operating at 435 °C 
(temperature index 20). Responses to acetone and ethanol vapors (a and b, respectively) are 
shown. Note the decrease in conductance caused by sensor aging. Although the traces look 
qualitatively similar, the black arrows indicate regions where relative response magnitude 
differs pre- and post- drift.  
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Next, we compared the I/O transform for different analytes before and after sensor aging 

(Fig. 3.7). Despite the evident drift, the I/O transforms were relatively consistent (Fig. 3.7a). 

Further, to quantify the performance results we performed a classification analysis (Fig. 2.8). We 

reduced the overall classification problem into a series of two-class discriminations to determine 

similarity with ethanol vs. others (step1), acetone vs. remaining others (step2), 2-octanol vs. 

remaining others (step3), and finally hexanol vs. 2-octanone (step4). Note that this scheme 

allows progressive refinement at each step, focusing primarily on determining membership to the 

most distant response cluster (see methods). The discriminations are shown on the right in Fig. 

2.8. The colored bands indicate regions, of the projection, where analytes would be successfully 

classified at that step and the gray bands indicate regions of the projection where analytes would 

be parsed through subsequent stages. The confusion matrix (Fig. 3.8A) shows that most of the 

analytes were recognized well above the chance level (17 % to 24 %), and significantly higher 

than a direct PCA approach (Fig. 3.8B). 

 
 
Figure 3.6. PCA clustering of sensor’s data shows strong shift due to drift. A) Principle 
component analysis of sensor’s responses to analytes at 435° C. The entire trace used to 
calculate the I/O transform was used to derive the three principle components.  B) 
Classification of responses using same method as described in Figure 2.8. 
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Figure 3.7. I/O transforms are robust with respect to sensor aging. A) All I/O transforms of 
sensor responses at 435 °C after aging are shown. Black line represents mean transforms 
obtained from pre-aged sensor (i.e. training data). Each colored line represents I/O transform 
obtained for an individual test phase trial. B) Principle component analysis of I/O transforms 
before (filled symbols) and after (open symbols) sensor aging. Only training data was used to 
calculate the principal component axes.

 
 
Figure 3.8. A hierarchical classification algorithm improves performance for multi-analyte 
recognition. A) Confusion matrix quantitatively summarizing the performance of the 
hierarchical classification approach. B) Confusion matrix quantifying classification 
performance using k-nearest-neighbors of only the dimensionality reduced space. Training 
data are from sensor 1 pre-aging. Testing data are from sensor 1 post-aging. 
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3.2.5 Concentration invariant recognition 
Changes in concentration are also known to alter the sensor response magnitudes [52, 

53]. Such response variations can lead to significant overlap in the responses generated by 

different analytes. Since the I/O transforms of the sensor to each analyte are predominantly 

focused on the response dynamics, we next examined how robust these were with respect to 

changes in stimulus intensity. We repeated the experiments with acetone, ethanol, hexanol, and 

2-octanol but presented at different intensities.  

We found that the I/O transforms were consistent even when the analyte concentrations 

were changed (Fig. 3.9a). In addition, we used a correlation based distant metric in our 

dimensionality reduction (Fig. 3.9b) to focus primarily in the shape of the I/O transform and not 

on its magnitude to further reduce sensitivity to variations that might arise due to stimulus 

intensity. As can be noted, the classification performance was well above the chance levels for 

all analytes tested in this fashion (Fig. 3.9c).  

To further clarify these results, we scaled the response of a particular analyte using three 

different values (x1, x2, and x5). Such scaling provided responses that had similar transients and 

time constants, but with varying magnitude (Fig. 3.10). As expected, we found that the I/O 

transforms obtained for these three responses were identical in shape but differed substantially in 

their magnitude. Further, we note that a distance metric based on the correlation values would 

classify these I/O transforms to be identical thereby providing the analytical basis for invariance 

with respect to the changes in response magnitude.  
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Figure 3.9. I/O transforms are robust with respect to analyte concentration. A) Each panel 
reveals I/O transforms estimated from a sensor’s responses at 435 °C to analytes presented at 
varying concentrations. Black line represents mean transforms obtained from sensor response 
to a fixed concentration (i.e. training data). Each colored line represents an I/O transform 
obtained for an individual test phase trial. B) Visualization of I/O transforms obtained at 
varying concentrations of analytes are shown (filled symbols – training datapoints; asterisks – 
test datapoints). Only training data were used to calculate the principle component axes. C) 
Confusion matrix quantifying classification performance. 
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3.2.6 Sensor-invariant analyte recognition 
Finally, we examined how robust the proposed signal extraction approach was across 

different equivalent sensors that were fabricated together. To examine this, we repeated the same 

analyses and compared the I/O transforms obtained between two sensors. We found that for each 

analyte, the I/O transforms were surprisingly consistent and training data from one sensor can 

allow identification of those analytes even when data from a different sensor was used for 

validation (Fig. 3.9). Note that these results are largely consistent with using training and testing 

datasets from the same sensor (refer Fig. 3.7). This further suggests that the response dynamics 

are dominated by the stimulus dynamics of the analyte themselves and may provide a robust 

approach for analyte recognition. Therefore, we expect this approach may also insulate the signal 

processing approaches to changes happening in the sensor array when damaged sensors are 

replaced with copies of the same type of sensor. 

 
 
Figure 3.10. I/O transforms of scaled sensor responses are perfectly correlated. A) Response 
of the sensor to Ethanol vapors scaled using three different values (1x, 2x, and 5 x). B) 
Comparison of the I/O transformations generated for all three scaled versions of the ethanol 
responses are all perfectly correlated.
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3.3 Discussion and conclusions 
In this work, we have presented a method to characterize a chemical sensor’s operation as 

a linear I/O transform. The input to the sensor is the recent stimulus history, which we defined 

here as a short time-series of the valve states (‘ON’ or ‘OFF’). The sensor’s response at the end 

of the stimulus history became the output to be predicted. In this formulation, we showed that for 

each analyte the sensor’s operation became a unique input-output filter or a transform. Such an 

approach for developing a mathematical model of a dynamical system based on the inputs 

provided and the outputs measured  is commonly recognized as a ‘Systems Identification’ 

approach [1, 2, 46, 54-56]. However, in the context of chemical sensing, what is not clear is how 

to use this system identification approach for recognition/differentiation of different analytes, 

how stable are these estimated I/O relationships, and how they vary over time, sensors etc. We 

have carefully explored these issues in this study. 

In order for such a scheme to be feasible, it is first important to test whether the impulse 

response function of a chemical sensor can be reasonably estimated with a random inputs of 

certain finite length. If this assumption is reasonable, then the I/O transform (or alternately 

impulse response function) computed over one segment of random pulsatile binary inputs should 

allow prediction of the sensor’s response to other random patterns of pulsatile binary inputs as 

well. We found that this is indeed feasible and the proposed estimation approach is robust and 

works well even when predicting the response of the sensor to other patterns of random binary 

input pulses (Fig. 3.11). 
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We note that the analyte discriminability was enhanced due to the employment of 

pulsatile stimulus delivery that enhanced information in the transient sensor responses. The 

 
 
Figure 3.11. I/O transforms of a metal-oxide chemiresistor. A) I/O transforms ( ) generated 
using sensor’s response at 435 °C for each of the five analytes are shown. Only half the entire 
stimulus sequence used in Figure 2.2 used to generate these transforms. B) Comparison 
between the sensor’s actual response at 435 °C (black) and reconstructions (red) obtained for 
all five analytes for the first half (training) and second half (testing) of the stimulus sequence 
are provided.  Note that the stimulus sequences during training and testing portions are 
different. C) I/O transformations for each analyte at all twenty-eight temperatures used are 
shown. 
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response dynamics were largely driven by the stimuli themselves possibly due to differences in 

vapor pressure, the physisorption onto the sensor surfaces, etc. Therefore, we found that these 

analyte-specific transforms were robust, to a certain extent, to variations in analyte intensity and 

sensor age. The latter feature allowed reliable recognition of the analytes even when the sensor’s 

baseline and the magnitude of stimulus-evoked responses changed over extended periods of 

operation (see Fig. 3.1, Fig. 3.5, Fig. 3.6). Hence, we believe that this approach may provide a 

drift-invariant analyte recognition scheme, a key requirement towards realizing non-invasive 

chemical sensing. 

The only additional requirement imposed by the proposed technique is the need for active 

sampling approach as opposed to the typical passive methodology used for gas sensing. While 

other efforts that have examined the use of a pulsed stimulus delivery protocol for generating 

information rich datasets from the sensor, these works have either focused on the magnitude of 

the response [23] from a few short pulses or select features from the signal [57]. However, our 

approach markedly differs in that we examined not only the signal from stimulus exposure (onset 

transients and steady-states) but also took into account the transients generated following 

absence of a gas stimulus (i.e. offset transients). It will be worth noting that, although OFF-

responses are informative, they are not considered by most approaches for discriminating 

analytes. 

Such active sampling techniques are routinely used by biological systems to sample the 

chemical stimuli encountered in their environment (“antennal flicks” in invertebrates [58] or 

“sniffs” in vertebrates [59]). Active sampling is thought to extend greater control of the stimulus 

to the system, allowing it to manipulate and define the stimulus dynamics. Previous works have 

shown that stimulus dynamics can be dependent on the analyte or ‘odorant’ [37, 40] and may be 
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exploited by subsequent processing centers in the brain [38, 41]. Several approaches to generate 

spatiotemporal sensor response profiles for analytes to enhance their discrimination have also 

been explored in artificial olfaction [39, 57, 60]. Our work complements these studies and 

focuses on development of schemes that take advantage of such rich data streams for the purpose 

of robust chemical identification.  

Using such as scheme in a real-world scenario could be easily achieved by placing a 

small pump downstream of the sensor and drawing air carrying the encountered analyte over the 

sensor in a known binary pattern. In this scenario, the I/O transform can be estimated if the 

random binary stimuli used to control the pump/valve over a period of time and the output of the 

sensor during this active sampling period are both known. The estimated I/O transform of the 

currently encountered analyte can then be compared and pattern matched with those of the 

training analytes for the purpose of recognition.  
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Figure 3.12. Classification performance is temperature and hysteresis dependent. A) 
Classification accuracy for sensor 1 is shown for each temperature in the cycle for the three 
conditions examined (from top to bottom): (2 to 3) months drift, for varying concentrations, 
and across different sensors. The temperature cycle used in the study is shown at the top of 
the plot. In general, for all three cases, the classification performance is better in the second 
half of the temperature cycle. B-C) Same as A but for sensors 2 and 3 respectively. 
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We note that the proposed scheme has not been optimized for rapid recognition of 

analytes. We envision changes that could be made to increase the sampling rate and therefore 

decrease the duration and spacing of pulses used to address this issue in future studies. 

Furthermore, in agreement with previous studies [26, 61], we found information content across 

temperatures was redundant. Hence, our temperature programs could be optimized by down-

selecting to several high and low temperatures [56, 62-64]. We also found that hysteresis has a 

pervasive effect in metal oxide gas sensors. In general, our results show that I/O transforms of 

responses collected at temperatures above 250 °C, especially those that occur in the later 

segments of the temperature cycle, were more consistent across analytes and therefore resulted in 

higher classification accuracies (Fig. 3.12). In this study, we did not systematically attempt to 

take advantage of the hysteresis related effects we observed, which would provide another free 

parameter for the purpose of optimization. 

Finally, we found that the sensors of equal manufacture generated strikingly similar 

transforms for a given analyte. This allowed the data obtained from one sensor to be used for 

recognizing the training analytes with a different sensor. The transferability of the training data is 

based upon the identification of sensor-independent features for pattern recognition. These can 

then be used to improve the flexibility of sensor arrays for a variety of application areas, 

primarily enabling greater longevity once deployed. Our demonstrated approach of pulsatile 

sampling and I/O transforms has the potential to be a simple, technology-independent technique 

for achieving this capability. 
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Chapter 4: Variable compression of intensity 

in the olfactory circuit 

4.1 Introduction 
An encounter with an odorant can occur under diverse ambient conditions. For example, 

environmental variables that are important to chemical sensing such as flow rate, temperature, 

and humidity can change independently or in combination with one another. Yet, odor detection 

and recognition must remain invariant to such changes in ambient conditions. How such extrinsic 

variations (not related to the sensory stimuli of interest) can be filtered out remains to be 

understood. Here, we examined this issue in the locust olfactory system.  

The impact of humidity, in particular, on olfaction is still not understood. Studies report 

conflicting impacts on the perceptual effects of humidity variations. Some find that limits of 

detection are lowered with increases in humidity for humans [1] and other animal models. 

Others, however, have found no significant changes in perception under varying RH conditions 

[2, 3]. How do changes in relative humidity (RH) influence odor recognition?  

Detection of humidity is important for animals for survival, reproduction, and comfort [4-

8]. Insects, including fruit flies (D. melanogaster) [9] and locusts [10, 11], have specialized 

sensors, olfactory receptors neurons (ORNs), for detecting changes in humidity levels. 

Hygrosensory ORNs come in two varieties, those that detect dry conditions and those moist 

conditions. In locusts, they are housed in a type of sensory hair (Sensillum) on the insect antenna 

referred to as coeloconica.  

Changes in the relative humidity (RH) levels can also be thought of as an interfering 

stimulus on top of which olfactory cues have to be detected. Biological sensory systems have 
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developed robust processing techniques to filter out background or interfering stimuli. Previous 

work by us and others[12, 13] have revealed that changing backgrounds may initially perturb a 

sensory response, yet recognition will remain invariant as long as the same set of neurons, or 

significant subset thereof, is activated. Whether this is the case and the same circuit mechanisms 

that allows background invariant recognition can also facilitate humidity invariance is not clear.  

 In this study, we explored how humidity affects olfactory signal detection and 

processing. Our results reveal that at the ORN level, changes in RH significantly altered the net 

spontaneous activity of the population, but only had minimal effect on the stimulus-induced 

response magnitude. However, this variation in the overall sensory input triggered the following 

antennal lobe circuits to process sensory inputs elicited by the same stimulus in humidity-

dependent fashion. Our results indicate that the odor identity was robustly encoded irrespective 

of the relative humidity level. However, we found that information regarding stimulus intensity 

is compressed at high relative humidity conditions. This alteration in the neural response 

dynamic range resulted in predictable changes in the behavioral responses of locusts to 

conditioned stimulus presented at different intensities. Therefore, our results reveal that olfactory 

systems robustly encode odorant identity and concentration in addition to the effects of 

environmental variability and this information has an effect on behavioral outcomes. 

4.2 Results  

4.2.1 Humidity does not affect sensory responses to stimuli 
We began by examining how changes in relative humidity levels altered the sensory input 

from ORNs. A simple way to measure bulk ORN signal is by monitoring the potential difference 

across the two ends of the antenna, in a recording known as an electroanntenogram (EAG) [14]. 

Increases in EAG signal represent an increase in population ORN activity while decreases reflect 
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a decrease. To reduce the effects of other environmental variations and improve the stability of 

our EAG recordings, we employed a novel EAG method that allowed for use of an intact locust 

prep, yet isolated the antenna from external environmental variations (Figure 4.1 B). 

We measured the EAG responses to 3 concentrations of hexanol delivered in four relative 

humidity levels, 0%, 33%, 66%, and 100% RH. As expected, we observed that the magnitude of 

stimulus-evoked EAG response monotonically varied with the concentration of odorant used. 

The EAG magnitude to hexanol 0.1% was found to be significantly different than the other two 

concentrations tested (Student’s t-test, P < 0.05 with Bonferroni correction). There was not a 

significant difference in the response magnitude between 1% or 10% hexanol at 0% and 100% 

RH (Figure 4.1, C-D). We found that the magnitude of response was largely invariant to the 

background humidity level (Figure 4.1E). However, there was a small portion of cases in which 

there was a significant difference between the 0% and 100% RH.   
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Figure 4.1. Humidification apparatus and Locust EAGs. a) Clean, dehumidified air flows 
through a valve system. Valves deliver air directly to the locust or through a bubbler for 
humidification before mixing with dry air delivered to the locust. The ratio of dry air vs 
humidified air controls overall humidity level of the airstream to the locust. b) Schematic 
drawing of locust EAG. Dorsal tip of an antenna is cut and dipped in a well of Locust 
Ringer’s solution. A recording electrode is inserted in the well and ground electrode is 
inserted in the contra-lateral eye.  c) Representative EAGs showing potential difference when 
locust is exposed to 0% RH and 100% RH carrier air. Signals are baseline aligned and 
normalized to the mean Hexanol 1%, 0% RH response. Shaded bands indicate S.E.M. d) 
Differences in EAG response magnitudes as a function of concentration in both 0% and 100% 
RH conditions. In both RH levels, 0.1% hexanol has a significantly different response 
magnitude (Two-tailed t-test, P < 0.05, Bonferroni corrected) than the higher two 
concentrations. The difference between the 1% and 10% responses was not found to be 
significant in either humidity level. e) Summary statistics of EAG magnitude change between 
0% and 100% RH for 30 locust-odorant pairs. Significant differences are calculated with a 
one tailed t-test (P < 0.05, Bonferroni corrected). A 100% RH carrier stream did not cause 
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4.2.2 Humidity alters the total ORN baseline activity 
Surprisingly, we found that increasing humidity levels changed the baseline activity of 

the EAGs (Figure 4.2). Our results show that in 63% of locust-odorant pairs, there was a 

significant decrease in baseline activity from 0% RH to 100% RH (one tailed t-test, p< 0.05, 

Bonferroni corrected). Furthermore, this result was robust as humidity was cycled from 0% RH 

to 100% RH and back. 

 

4.2.3 Odorant identity is encoded independently of humidity levels 
To examine whether information about the RH influences downstream processing, we 

performed extracellular recordings of projection neurons (PNs) in the locust antennal lobe. We 

found that changing humidity levels did not affect odorant specificity of PNs (Figure 4.2A-B). 

Consistent with previously published results, we found that different odorants elicited different 

responses in neurons [12, 15-18].  

significant changes in the stimulus evoked response magnitude. 
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We found that changes in humidity level generally did not affect a neuron’s 

responsiveness to an odorant. We found that most neurons had correlations of 0.5 or higher for 

neural activity in 0% and 100% RH conditions across odorants tested (Figure 4.3 B). Therefore, 

PNs that were responsive stayed responsive while those that were not responsive remained non-

responsive.  

 To assess how the ensemble antennal lobe response changed to different stimuli under 

different conditions, the total spike count during the stimulus (4 s, mean of 5 trials) was 

correlated across odorants and RH levels (Figure 4.3 B-C). Correlations were found to be low 

across different odorants indicating that different sets of neurons were activated by different 

stimuli. Interestingly, the off-diagonals, comparing responses to the same odorant in 0% and 

100% RH showed high levels of correlation, thus, indicating that a conserved set of neurons was 

activated across humidity conditions.   

To gain a better understanding of the changes occurring in the antennal lobe, we 

performed a qualitative dimensionality reduction using principal component analysis (PCA) to 

visualize the activity across all the PNs. The activity of 82 PNs was condensed to 3 dimensions 

which captured 33.23% of the variance (Figure 4.3 D). Note that different odorants elicited 

trajectories that evolved in different directions after dimensionality reduction. However, 

variation in RH did not alter the direction of the trajectory for any odorant. In sum, the 

correlation and dimensionality reduction analyses suggest that the stimulus identity is robustly 

maintained across different humidity conditions.  
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Figure 4.3. Odorant identity is preserved across RH changes. A) PN tuning does not change 
with RH changes. Responses of 4 PNs to 4 odorants (Hexanol, 1-Octanol, Isoamyl Acetate, 
and Cyclohexanone, all 1% (v/v)). Rasters show 10 trials for each odorant: top 5 (red 
background) are in 0% RH, bottom 5 (blue background) are in 100% RH. B) Probability 
density function histograms for correlations of 10 second (2s pre-stimulus, 4s stimulus, 4s 
post-stimulus) projection neuron PSTHs in 0% and 100% RH environments. C) Correlogram 
of total neural activity during 4 second stimulus. Correlations are higher for the same odorant 
across RH levels than across odorants. D) Principle component analysis (PCA) of 4 odorants 
in 0% RH (solid lines) and 100% RH (dashed lines) during 4 second odor evoked response. 
Trajectories for odorants lie in the same sub-space indicating odorant identity is conserved 
across humidity levels. 
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4.2.4 Odorant intensity is compressed at high humidity conditions 
As stimulus intensity decreases, typically fewer neurons respond (Figure 4.4) and the 

activity in many responding neurons reduces, thereby resulting in a reduction in the total 

population activity (i.e. decreasing the trajectory length). We found that for most odorants the 

length of the PN response trajectories decreased when the same odorant was presented in 100% 

RH conditions (Figure 4.5). This trend was observed for all odorants tested except IAA, for 

which there was little to no change in trajectory length across humidity extremes. It has been 

previously reported that when stimulus intensity is changed, the trajectory length 

correspondingly changes [18]. Therefore, we next examined whether changes in RH altered how 

stimulus intensity was encoded. 

 

Does the same mechanism also cause reduction in ensemble PN activity across the two 

humidity conditions? To determine this, we examined the PN activity in response to a hexanol 
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stimulus delivered at 3 concentrations in both 0% and 100% RH conditions. At 0% RH, as the 

odor concentration decreased, PNs tended to respond more weakly and the stimulus recruited 

fewer neurons (Figure 4.6 A). The trend is also evident in raster plots and trial-averaged PSTHs 

showing the responses of single neurons (Figure 4.6 B). The responses to the same stimuli was 

presented at 100% RH conditions are shown in the right panels for comparison. Two 

observations are noteworthy: (i) the response of the PN at the high concentration reduces. (ii) the 

response of the PNs at the lower concentration increases.  

 

 

Population PSTHs averaging across all 94 PNs in the dataset also show concentration 

dependent responses (Figure 4.6 C-D). The difference in response peaks, however, are 

compressed compared to the 0% RH conditions. Note that in 100% RH conditions there are still 

subtle decreases with decreasing concentration. Interestingly, no noticeable change in response 
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latency, post-stimulus activity, or spontaneous pre-stimulus activity were observed. The latter is 

surprising given the changes in the bulk ORN signals that showed a significant change in the 

baseline response across 0% and 100% RH conditions.  

Next, we performed a PCA dimensionality reduction analysis to visualize the PN 

ensemble neural activity across concentrations and at different relative humidity conditions. 

Consistent with previously reported results [18], as concentration decreases, the trajectory length 

decreases, but the direction of evolution remained the same. At the higher humidity conditions, 

we noticed that the differences between the length and span of the trajectories across 

concentrations decreased noticeably (Figure 4.6 E-F). Interestingly, the length of the trajectories 

notably decreased at higher intensities, while there was a modest increase in the low intensity 

responses. Our results taken together indicate that the compression of intensity information can 

vary depending on the ambient conditions.  
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4.2.5 Decoding stimulus intensities in different ambient conditions 
Increases in RH decrease neural activity in a manner similar to stimulus intensity 

changes. Yet, it is unclear whether the mechanisms behind both phenomena are the same. To 

 
Figure 4.6. Projection neurons have concentration dependent responses in dry conditions but 
not in humid conditions. a1-3) Raster plots of PNs responding to 3 concentrations of hexanol, 
0.1%, 1%, and 10% (v/v) with 5 trials for each concentration. Shaded color bar indicates 
stimulus delivery duration of 4 seconds.  0% RH conditions are shown on the left for each PN 
and 100% RH shown on the right for each PN. b1-3) Peri-stimulus time histograms 
corresponding to PNs in a1-3. Three traces are shown, 1 for each concentration delivered. 0% 
RH conditions are shown on the left for each PN and 100% RH shown on the right for each 
PN. c) Population PSTHs of 94 PNs in 0% RH. One trace is shown for each concentration 
delivered. Colored circles indicate peak response magnitudes and shaded regions indicate 
S.E.M. d) Same as c, but for 100% RH. e) PN response trajectories in 0% RH. Over 27% of 
the variance is captured in the first two principle components.  f) PN response trajectories in 
100% RH. 
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better understand and quantify the changes in the stimulus-evoked activity, we compared the 

changes in neural activity across stimulus intensity (Figure 4.7 A). We found that the ensemble 

response correlations are higher within an intensity across RH levels than they are across 

stimulus intensities (Figure 4.7 B, off-diagonals). Furthermore, the correlations were more 

similar between hexanol 1% and 10% than it was for hexanol 1% and 0.1%. Therefore, although 

the firing rates of many individual PNs change with humidity level, our results indicate that the 

information about stimulus intensity is preserved as combinations of activated PNs are conserved 

across conditions. These observations were validated using a quantitative classification analysis 

using the high-dimensional PN response vectors. 
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Figure 4.7. Different populations of neurons respond to presence of humidity effects than 
changes in concentration. a) Mean firing rate for population of PNs during a Hexanol 
stimulus. Neurons are sorted in descending order based on firing rate a 1% Hexanol stimulus 
in 0% RH (red trace). Neural variability for other concentrations (0.1% and 10%; pink and 
brown traces, respectively) in 0% RH is higher than in 1% Hexanol in 100% RH (blue trace).  
b) Correlogram of total neural activity during 4 second stimulus across intensities and 
humidity levels. c) Correlations of stimulus evoked response of different conditions to 1% 
Hexanol in 0% RH.  Correlation values decrease primarily as a function of concentration. 
Note, that stimuli in 100% RH conditions have lower correlations than comparable stimuli in 
0% RH. d) Bin-by-bin, high dimensionality classification shows concentration identity is 
preserved. Rows represent trials and each tick represents a 50ms time bin, 9 seconds of each 
trial are shown. Lines under each subplot reflect the stimulus duration and the color represents 
the concentration. All stimuli delivered in 0% RH. e) Probability of classification for each 
concentration over the 4 second stimulus duration. f) Bar plots reflecting area under the curve 
in panel d. g-i) Same as d-f but for stimuli delivered in 100% RH. 
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4.2.6 Neural response variations correlate with changes in behavioral output  
Finally, to assess the effect of the observed changes in the neural activity, we performed a 

behavioral analysis using a previously reported appetitive conditioning paradigm [12, 19]. We 

trained locusts in a 0% RH (n = 20 locusts) background (Figure 4.8 A). Training was done using 

1% hexanol (v/v) as the conditioned stimulus and organic wheat grass as the unconditioned 

stimulus. Testing was performed under both 0% RH and 100% RH to determine whether 

humidity levels had an effect on behavioral performance as measured by the palp opening 

response (POR). We also tested the performance to the three concentrations of hexanol used in 

our electrophysiology experiments. The order of concentrations used was pseudo-random for 

each experimental day.  

We found that locusts responded robustly to the trained odorant irrespective of the 

humidity conditions. There was a small but significant reduction in the POR responses at the 

lowest intensity (hexanol 0.1%) in the 0% RH case (Figure 4.8 B). However, this difference was 

largely eliminated when the same locusts were tested in 100% RH conditions and there were no 

significant differences between POR magnitudes (t-test, P > 0.05, Bonferroni corrected). These 

results are in direct agreement with our physiological findings that the concentration information 

in compressed at high relative humidity conditions.  

We examined how different features of the neural activity in the antennal lobe (the 

magnitude of the population response (‘coarse feature’) as well as similarity with the conditioned 

odor’s population vector (‘fine feature’)) correlated with the observed behavioral responses. We 

found that both the coarse and fine neural response features had good linear fits with POR 
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magnitudes (Figure 4.8 C). The correlations to neural activity, however, were better predictors of 

peak POR magnitude (Rcorr vs. Rmag = 0.83 vs 0.69). Taken together, these results indicate that 

subtle variations in neural response, when present, translate to corresponding changes in 

behavioral responses. 
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Figure 4.8.  Palp opening response is invariant to RH levels.  a) Schematic of Locust POR 
recordings. PORs are measured as distance between the distal segments of two palps (painted 
green). b) PORs for 3 concentrations of Hexanol in 00RH and 100RH conditions. There is no 
significant difference between PORs in RH levels. Locusts were trained with Hexanol 1% in 
00 RH. Shaded bands indicate S.E.M. c-d) Comparison of peak POR to peak PSTH 
magnitude (c) and peak POR to neural activity correlations (d). PORs from locusts trained 
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4.3 Discussion 
The olfactory system is robust to changes in the environment. These changes include, but 

are not limited to changes in flow rate, temperature, background volatiles present, light, circadian 

rhythms, and many others. In olfactory neuroscience, these parameters are generally held 

constant as controls. Olfactory systems, however, are able to perform under constantly varying 

external conditions. Here we have examined one aspect of environmental variability, relative 

humidity, and determined the mechanisms by which the olfactory system is able to cope or adapt 

to changes in those levels. We observed that the system is able to not only identify an odorant 

under different humidity conditions, but also retains information about intensity. 

There are extrinsic and intrinsic parameters that can be used to alter the activity of the 

neural system. In this study we can think of modulating RH as a means to alter the intrinsic 

activity of the system. RH is relatively slow to change and is a persistent effector on the olfactory 

system. Changes in the RH change the dynamics under which the system is operating and the 

underlying set point from which other stimuli will be perceived. An odorant stimulus, on the 

other hand, is an extrinsic parameter that also modulates the activity in the system, but is 

transient and results in a deviation from the systems set point which is restored soon after the 

stimulus’s removal. Here we found that increases in the environmental RH tend to decrease 

stimulus evoked activity, but do not alter the neural code enough to change odorant identity 

information.  

The full effects of changes in environmental humidity remain to be assessed. We limited 

our study to the sensor level and primary processing stage, the antenna and antennal lobe, 

under 00RH conditions. Linear fit indicates that neural activity correlations are a stronger 
indicator of POR performance than PSTH magnitudes. 
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respectively. Further studies need to be performed to determine how the changes observed in the 

antennal lobe are translated downstream in the mushroom bodies and their Kenyon cells. We 

would also want to assess how changes in RH effect local field potentials (LFP) in the mushroom 

bodies.  

At the sensor level, this study focused on the effects of RH on EAG magnitude. We also 

found that there was an effect of RH change on EAG baseline. Trends showed that EAG baseline 

potentials decreased with RH increases (Figure 4.2). This indicates that overall activity of ORNs 

decrease with RH increases and that a weaker input is delivered to the antennal lobe circuits. 

These trends proved to be too unreliable to report in this study but are a strong candidate for 

future studies. We also attempted to collect data for an even lower concentration, Hexanol 

0.01%. In our attempts, we found that the odorant source was quickly depleted thus providing 

unreliable data, and not feasible to accomplish with our experimental methods. 

We found that humidity did not cause compression in the trajectories for isoamyl acetate 

1% (Figure 4.5), unlike the other three odorants tested. There are a few possible explanations for 

why this may have occurred. First, a 1% concentration of IAA maybe too low to evoke this 

effect. Our results for Hexanol 0.1% also did not show compression; IAA may have the same 

phenomenon at higher concentrations. Second, IAA, has been thought to be a pheromone for 

locusts and maybe sensed by different sensilla (sensilla trichodea). It may be that this class of 

sensilla is affected differently by water vapor than the primary sensilla for the other odorants 

(sensilla basiconica). 

In our behavioral experiments we also trained locusts under 100% RH conditions. The 

PORs for these locusts were quite different than those trained in 0% RH (Supplemental Figure 

5). Two aspects stand out as particularly distinct. The first is that concentration dependence is 
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restored for PORs in 0% RH. The second is that when these locusts are tested in 100% RH 

conditions, compression of the response across concentrations is no longer observed. Instead, we 

see that the POR for Hexanol 1% and 10% are actually larger than in the dry cases and their 

peaks are significantly (p< 0.05, Bonferroni corrected) higher than the peak of Hexanol 0.1%. 

Interestingly, we see the same relation between the Peak POR and neural information from the 

peak PSTH and neural correlation with the training stimulus. Here we also see, through linear 

fitting, that while both parameters are related to the behavioral response, the neural correlation 

has a stronger relation to the peak POR. 
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Figure 4.9. Palp opening response is stronger in locusts trained in 100% RH.  a) Schematic of 
Locust POR recordings. PORs are measured as distance between the distal segments of two 
palps (painted green). b) PORs for 3 concentrations of Hexanol in 00RH and 100RH 
conditions. There is no significant difference between PORs in RH levels. Locusts were 
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This study has explored the effects of variations in environmental conditions on olfactory 

coding and behavioral output in a simple olfactory system. We found that increases in RH cause 

compression of the neural activity in the antennal lobe, which is not seen at the upstream 

antenna. Furthermore, we found that the mechanism by which this compression occurs is 

different than that which occurs for different stimulus intensities. This suggests that there two 

different mechanisms by which the neural responses can be perturbed: 1) by changing the 

stimulus intensity or 2) by changing the environment in which the stimulus is delivered. These 

changes affect different sub-populations of neurons but have similar results. The neural activity 

changes but odorant identity is preserved. Our findings show that RH can be used to alter the 

intrinsic operation of the system and put it in a different regime opening further avenues to test 

the operation of the olfactory system and its edge cases.  

4.4 Author contributions 
The work in this chapter is part of the manuscript entitled: Katta, N., Zhang, L., Chandak, 

R., O’Neill, M. and Raman, B. (2017). "Variable compression of stimulus intensity in an 

olfactory circuit." 

Experiments were designed by NK, MO, and BR. EAG and PN data was collected by 

NK. Behavior data was collected by RC. Data analysis was performed by NK, LZ, and RC. 

  

trained with Hexanol 1% in 00 RH. Shaded bands indicate S.E.M. c-d) Comparison of peak 
POR to peak PSTH magnitude (c) and peak POR to neural activity correlations (d). PORs 
from locusts trained under 00RH conditions. Linear fit indicates that neural activity 
correlations are a stronger indicator of POR performance than PSTH magnitudes. 
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Chapter 5: Developing a non-invasive 

chemical sensing approach for detection of 

malaria biomarkers 

In the previous chapter, we considered how non-invasive chemical sensing approaches 

(both artificial and biological) can be made robust against sensor degradation and variations in 

environmental factors. Here, I consider a potential target application where a robust chemical 

sensing solution can be applied. First, I will discuss my recent collaborative work1 identifying 

breath biomarkers of malaria in exhaled breath. In particular, I will explain in detail my 

contributions to this work in developing an analytical approach for the identification of disease 

biomarkers, in exhaled breath, based on GC/MS datasets. 

5.1 Breathprinting malaria 

5.1.1 The malaria parasite: Prevalence, symptoms, and diagnosis 
Malaria is a disease caused by infection of erythrocytes by parasites in the Plasmodium 

genus. The common symptoms of malaria are fever, headache, chills, and vomiting, which can 

often be confused with symptoms of other diseases common to regions with malaria. There are 

currently 91 countries and territories with endemic malaria. In 2015, there were an estimated 212 

million cases of infection, which resulted in 429,000 deaths. Of these, 70% were of children 

under the age of 5 [1]. The African continent accounted for 90% of the infections and 92% of the 

deaths from malaria in 2015 [2]. 

                                                 
1 Schabler et al. Breathprinting Reveals Malaria-Associated Biomarkers and Mosquito Attractants, 2017 (in review). 
NK contributions: developed an analytical approach for identifying malaria biomarkers in an unbiased fashion. This 
contribution is detailed in this chapter. 
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Globally, there are five main species responsible for malaria: P. falciparum, P. vivax, P. 

ovale, P. malariae, and P. knowlesi [3]. The parasite is most commonly spread by bites from 

infected females of the Anopheles mosquito. There are two dominant species of the malaria 

parasite: P. falciparum, which is found mostly in the African continent, and P. vivax which is 

found primarily in Southeast Asia [2].  

P. vivax is an especially potent form of the parasite. Reports as early as 1989 suggested 

P. vivax resistance to chloroquine [4], with more recent evidence of spread of resistant strains 

[5]. Furthermore, radical cure is difficult for this form because of its dormant liver stage [1, 3] 

which often causes relapses after treatment [5]. This strain, however, is not prevalent in Africa 

because of the Duffy-negative phenotype, present in central and west Africa, which prevents 

invasion of the parasite into erythrocytes [3]. Growth of P. vivax is particularly seen in regions 

were the spread of P. falciparum has been controlled, such as Southeast Asia. 

Despite the success of methods to control P. falciparum spread in certain regions, it 

remains the dominant source of malaria infection and deaths globally. It is primarily endemic to 

sub-Saharan Africa, where it is responsible for most of the world’s malaria-related death and 

disability [2, 3]. While it is a dominant cause of child death, distinguishing malaria from other 

diseases remains difficult. The primary symptoms overlap with other illnesses, such as severe 

sepsis [3]. The parasite sequesters itself in the body by causing infected red blood cells to attach 

to the lining of small blood vessels, which can restrict blood flow and correlates to with lactic 

acidosis, particularly in children [6]. Although recent efforts have had excellent results reducing 

the prevalence and effects of malaria, there remain many challenges. For example, reports 

indicate the evolution of an artemisinin resistant strain of P. falciparum in Southeast Asia [7]. 
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There are a number of different diagnostic methods for malaria, which vary based on 

location and the available standard of healthcare. The gold standards for diagnosis are thick and 

thin blood smears [8]. Typical detection limits for trained microscopists are on the order of 100 

parasites per 100 µL of blood, the lower limit of pyrogenic density [9]. Lower parasitaemia is 

more likely to be incidental to another illness, so tests with lower detection limits have higher 

false positives [9]. Other methods include detection of parasite antigens or nucleic acids. These 

are commonly referred to a rapid diagnostic tests (RDTs) and are becoming more prevalent 

worldwide [1, 8, 9]. While both methods have respective advantages, they also come with 

tradeoffs. Blood smears require maintenance of laboratory equipment as well as training and 

supervision of staff to ensure proper diagnoses. RDTs, while cheaper and easier to use, cannot 

detect all strains of malaria, cannot distinguish new infections from recently treated ones, and are 

not suitable in all regions because of variations in antigen production [9]. Furthermore, RDTs 

cannot be used to evaluate treatment response and can also lead to false positives due to the 

presence of residual antigens [8]. Thus, there is a need for a specific, sensitive malaria test which 

does not require high levels of maintenance or training to perform. Here, I will explore the 

potential of an alternate diagnostic methodology using exhaled breath to diagnose malaria. 

5.1.2 Breath VOC analysis 
To identify breath biomarkers, we used a GC/MS dataset provided by our collaborators2. 

Details about sampling collection and processing are discussed in the methods (Sec. 2.4.1-2.4.2) 

Briefly, breath samples from pediatric patients  (children 3-15 years age) at two ambulatory 

pediatric centers in Lilongwe, Malawi, were included in this dataset. Children requiring urgent 

                                                 
2 Samples were collected by Dr. Indi Trehan and Lucy Bollinger and processed by Chad Schaber and Dr. Audrey R. 
John Odom. Data to be published in Schaber et al., 201710. Schaber, C., et al., Breathpriting Reveals Malaria-
Associated Biomarkers and Mosquito Attractants. Manuscript in preparation, 2017.. 
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treatment, having severe or cerebral malaria, having received anti-malarial therapy in the 

previous week, known to have diabetes, chronic kidney disease or liver disease, or being 

uncooperative with breath collection were excluded from the study. Details about the children’s 

age, gender, symptoms, and other factors are displayed in Figure 5.1. In brief, the average ages 

of children with malaria and without malaria were 8 and 7 respectively. Out of 35 total children, 

31 had fevers, 30 had headaches, and 30 had abdominal pain.  

Breath samples were analyzed with a GC/MS, after which traces were normalized to 

internal standards and contaminants were removed (See methods 2.4.2 and Figure 2.1.4). For 

visualization and examination of the collected breath profiles, the abundance of VOCs was 

plotted as a heatmap (Figure 5.2). The VOCs are plotted along the x-axis in order of elution time. 

Each row represents a different patient. Patients 1-18 are malaria negative while patients 19-35 

are malaria positive. The colors represent the relative abundance for each VOC (note that blue 

indicates that the VOC had a very low abundance or was not present). The heatmap appears to 

show no clear differences in VOC composition across the two patient populations.  
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To better assess which biomarkers were indicative of malaria infection we computed 

correlations between the VOC profiles across patients and their known infection status, 1 for 

malaria (+) patients and 2 for malaria (-) patients (i.e. a class label for each breath sample ). 

Correlations between the abundance of a VOC across samples with the assigned class labels 

ranged from -0.361 to 0.373. In a heatmap sorted by correlation values (Figure 5.3), we found 

that there was a distinction in VOC abundances between the two patient classes. The first 25 

VOCs, those that are most positively correlated with class labels, have lower abundances for 

malaria (-) patients than malaria (+) patients. The reverse is true for the last 25 VOCs, those that 

 Malaria Positive 
(n = 17)

Malaria Negative
 (n = 18)

p value 

Demographics    

Age, median years (IQR) 8 (6-10) 7 (5-8.5) 0.33 
Female, n (%) 8 (47) 10/17 (59) 0.73 
Reported Symptoms, n (%)  
Fever 16 (94%) 15 (83) 0.60 
Diarrhea 0 (0%) 2 (11) 0.49 
Vomiting 5 (29%) 4 (22) 0.71 
Headache 16 ( 94%) 14 (78) 0.34 
Abdominal Pain 13 (76%) 17 (94) 0.18 
Muscle/Joint Pain 12 (71) 4 (22) 0.007 
Other, n (%)    

Chronic Malnutrition* 5/16 (31) 3 (17) 0.43 
Acute Malnutrition* 0/16 (0) 1 (6) 1 
Use Bednet 9 (53) 10 (56) 1 
Malaria within past 3 months 3 (18) 5/17 (29) 0.69 

Figure 5.1. Patient population characteristics. Patient data are represented as number (%) 
except for age. IQR = interquartile range. If one or more patients were excluded, the number 
given is a fraction of total. Chronic and acute malnutrition defined respectively as height-for-
age Z-score or BMI-for-age Z-score two or more standard deviations below median. Fisher’s 
exact test or the Mann-Whitney U-test was used as appropriate to calculate p values. Table 
and legend are adapted from [5].  
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are the most negatively correlated with the class labels. 

 

While no individual VOC is indicative of malarial infection, and the same set of VOCs 

were not clearly present in all breath samples, we nevertheless hypothesized that the abundance 

profile across several VOCs could accurately predict malarial infection.  
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To test this hypothesis we created a classifier based on cumulative abundance of the 

VOCs selecting those with highest correlation values with the class labels. The cumulative 

abundance was calculated by adding the abundance of positively correlated features and 

subtracting the abundance of negatively correlated features. Refer to Figure 5.4 for a schematic 

diagram of the data pre-processing and the cumulative abundance classifier. Classification was 

 
 
Figure 5.3. Sorted heatmaps of VOC abundance in patient breath. VOCs are sorted in order of 
decreasing correlation with patient labels. Y-axis indicates patient. Colors indicate abundance. 
Black line segments dividing malaria (-) patients (top) from malaria (+) patients (bottom). 
Subplots zoom into regions of high magnitude correlation. Cyan bordered box (left) shows 
positively correlated VOC where abundances are higher in malaria(+) patients. The red 
bordered box (right) shows negatively correlated VOCS where abundances are higher in 
malaria(-) patients. 
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done using a nearest-mean classification approach (malaria (+) or malaria (-)).

 

When using all the patients to calculate VOC correlations and pick biomarkers, we were 

able to achieve a classification rate of up to 94% incorporating just 25 VOCs with the highest 

absolute correlation values. This classification rate was relatively stable, because increasing the 

number of VOCs used, up to 100, did not change the classification rate significantly (Figure 

5.5A). Since highly correlated features were selected first, each additional feature is less 

correlated than the last until we reach generally uncorrelated features. The abundances of these 

later features added no unique information to the classifier and did not substantially change the 

output classification; sometimes they even lowered it. We also found that, with the exception of 

2 persistently falsely classified patients, correct classifications were common (Figure, 5.BB, 

patients 4 and 22). These results indicate that there is information that can be used to generally 

 
 
Figure 5.4 Schematic of data processing and analysis. A) Pre-processing steps for GC-MS 
spectra. B) Cumulative abundance classifier. VOCs with highest correlation magnitudes are 
selected for use in the classifier. Those with positive correlations are added and those with 
negative correlations are subtracted. Based on the final summation relative to a threshold, the 
patient is classified as malaria positive or malaria negative. 
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classify whether or not a patient is infected by malaria, based on the cumulative abundances of 

certain VOCs in exhaled breath. 

 

5.1.3 Validation of the cumulative abundance metric 
A leave-one-patient-out validation was performed to assess the robustness of our 

classifier. We selected which VOCs to use in the classifier by using 34 out of 35 patients and 

used the resulting classifier to classify the single remaining patient. This process was repeated 

for all 35 patients. As can be expected, the classification performance reduced compared to the 

case when all the samples were used for feature selection and classification (Figure 5.5 C). Peak 

classification performance was only at 69%, much lower than the 94% seen earlier. Examining 

the change in features selected, we found that some features with relatively high correlation 

magnitudes were sparsely present in just a few patients (refer Figure 5.2-5.3). While this did not 

 
 
Figure 5.5. The cumulative abundance classifier yields highly accurate patient classifications. 
A) Classification rate as a function of number of markers used. Red point indicates first 
instance of peak classification B) Classified malarial state for each patient as a function of
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pose a problem when using all patients to generate a classifier in a leave-one-out or leave-k-out 

validation, the absence of sparse, yet highly correlated features, lowered classification accuracy. 

 

To address the effects of VOC sparsity on our classifier, we explored the use of a 

threshold for the minimum number of patients in which a VOC had to be present to be 

considered a biomarker. The profile of features remaining as a function of the sparsity threshold 

is shown in Figure 5.6A. The number of VOCs decreased monotonically and reached a minimum 

of 7 features which were present in all 35 patients. A sparsity threshold of 20 was selected based 

on performance in the overall classification as well as the leave-out-validation (Figure 5.6 B and 

C). To be conservative, this point was local minimum in both plots and represented a number just 

over half the total patients. Note that correlations at this threshold ranged from -0.361 to 0.360, 

similar to the correlation range without a threshold. 

 
 
Figure 5 6 Eliminating sparse features increased classification validation performance A)
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We found that using a sparsity threshold to pre-screen features greatly improved 

classification performance. Overall classification reached a rate of 83%, and the leave-one-out 

validation rate of 77%, both using as few as 6 biomarkers. We found that 83% was a relatively 

stable classification rate with these parameters and that classification rates did not change 

significantly by adding more VOCs to the classifier (Figure 5.7 A). This stability is also apparent 

from the classification state heatmap (Figure 5.7 B) which shows that few patients change with 

an increasing number of VOCs.  

 

Having selected optimal parameters for this classifier, we examined the abundances of 

the six most correlated biomarkers and how they varied with disease state. Whether or not a 

patient has malaria is marked by abundance decreases in exhaled breath of certain compounds 

(methyl undecane, nonanal, isoprene, tridecane) as well as increases of other compounds 

(dimethyl decane and trimethyl hexane, Figure 5.8A). Three of these compounds (marked by *) 

were identified through comparison with pure standards. The other three were manually 

annotated by reference to a spectral library. All of these compounds are known components of 
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human breath [11]. Isoprene is endogenous in humans, and other VOCs are generated by 

oxidative stress-induced peroxidation [12, 13].  

 

The cumulative abundance metric provides a more nearly Gaussian distribution than 

individual component features, enabling better classification (Figure 5.8 B). Critically, with an 

appropriate cumulative abundance threshold, we found that as few as six VOCs correctly 

classified malaria infection status with 83% accuracy (Figure 5.8 C and D). Five patients who 

were actually malaria-positive were classified as being negative, and one patient who was 

 
 
Figure 5.8. Classification of malarial state using VOCs abundant in at least 20 of 35 patients. 
A) Expression patterns of human breath biomarkers with largest absolute correlations to 
malarial state * marks biomarkers identified by comparison with a pure standard B)
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malaria-negative was classified as being malaria-positive. Thus, the classifier has a specificity of 

94% and sensitivity of 71%. 

5.1.4 Diagnosing malaria 
 In previous studies, the presence of malaria has shown to increase the attractiveness of 

host vectors such as mosquitoes [14-18]. Specifically, 10-carbon monoterpenes, such as α-

pinene, have been identified as influencing the attraction and feeding behavior of mosquitoes 

[17]. Our work complements these studies and identifies other compounds of interest as strong 

candidate markers for the diagnosis of malaria. All of these chemicals can potentially serve as 

biomarkers for diagnosis of malaria based on exhaled breath analysis. However, they impose 

different design constraints on the detection system. Given that malaria is endemic to resource 

poor regions with limited healthcare infrastructure, a diagnostic test would need to be 

inexpensive as well as simple to use and maintain. Our future work will focus on developing 

such sensors and their associated technologies to detect and identify malaria biomarkers at 

medically relevant concentrations. 
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Chapter 6: Conclusions and future work 

Although there are many challenges to sensory detection in the chemical space, 

biological systems have evolved an exquisite system capable of overcoming them. In this work 

we took inspiration from biological olfactory systems to address three main challenges: 

overcoming sensor degradation, providing robust performance in the face of environmental 

variations, and detecting and identifying individual compounds. 

6.1 Overcoming sensor drift 
Sensor degradation is overcome in biological systems through constant regeneration of 

ORNs and their ability to re-innervate the same central circuitry. The turnover of olfactory 

receptor neurons has been well studied[1,] and has been shown across phyla in both simple 

organisms such as insects[2] and higher organisms such as mammals [1, 3, 4]. Remarkably, 

regenerated ORNs re-innervate the brain during regular regeneration of the olfactory sensors and 

primary signal processing cells as well as after injury [1-3, 5-7] or apoptosis. This is an attribute 

not found in any other sensory system. An important feature of both these features is that the 

central circuitry in the brain remains unaffected by changes at the sensory level, allowing for 

long term reliability of the system.  

A number of sensing technologies have been proposed for non-invasive chemical 

sensing, yet they all share the fundamental problem of determining what features of the 

transducer’s signal constitute a chemical fingerprint, allowing for precise analyte recognition. It 

is particularly important to be able to extract features that are robust with respect to the sensor’s 

age or use, factors which cause drift in the signal. In this work we show that using pulsed 

stimulus delivery allows a sensor’s operation to be modeled as a linear input/output (I/O) 
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transform. The I/O transform is analyte specific and can be used to precisely predict a 

chemiresistor’s response to the analyte, given the recent stimulus history. We have shown that 

the I/O transforms improve invariance to stimulus intensity and remain consistent despite 

considerable aging of the sensor. Significantly, the I/O transforms for a given analyte are highly 

conserved across sensors of equal manufacture, thereby allowing training data obtained from one 

sensor to be used for recognition of the same set of chemical species with another sensor. Thus, 

as do biological systems, this proposed approach facilitates decoupling of the signal processing 

algorithms from the chemical transducer, a key advance necessary for achieving long-term, non-

invasive chemical sensing.  

6.2 Invariance to environmental variation 
In chemical sensing, especially vapor phase sensing, the environment is constantly 

fluctuating: The background gas will have varying components and concentrations, air flows will 

change in speed and direction, temperatures will fluctuate, and humidity levels will change. As 

seen in this work and published reports [8], humidity, in particular, has drastic effects on a 

chemical sensor signal. Nonetheless, biological systems are able to remain invariant to these 

fluctuations and robustly detect and recognize targets. In this work, we elucidated the central 

processing that enables this invariance, with the ultimate goal of replicating this technique in 

artificial olfactory systems. 

We examined the effect of humidity on odorant identity and intensity coding. Our results 

reveal that, at the sensory level, humidity primarily affected the spontaneous baseline activity 

and had limited effects on stimulus intensity. The central circuits, on the other hand, had the 

reverse effects. There were limited changes to the spontaneous baseline activity, but stimulus 

intensity information was variably compressed in the antennal lobe. Our results also indicate that 
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the odorant identity was robustly encoded, irrespective of the relative humidity level. 

Interestingly, the changes in the dynamic range of PN responses carried forward to behavior 

suggesting incomplete invariance of biological systems to humidity changes. 

6.3 Specific detection 
Biological systems rely on large arrays of odor-specific sensors to detect and discriminate 

among odorants. The locust antenna, for example, has approximately 50,000 individual sensors 

(ORNs) [2, 9]. Redundancy in this array improves the signal to noise ratio and facilitates 

detection over a large dynamic range. Many techniques have been employed in chemical sensing 

implementations with varying success, but as of yet nothing has come close to the versatility of 

biological olfactory systems in correctly identifying a large variety of odorants.  

Biological sensors have also evolved to specifically sense biologically relevant 

compounds. In this work, we first developed a method to identify molecules relevant to the task 

of diagnosing malaria. Our cumulative abundance algorithm uses a GC/MS dataset to identify 

compounds indicative of a malaria infection. It incorporates the relative changes in VOC 

abundance in exhaled breath to make a diagnosis. We identified six compounds with different 

abundances in patients that were infected with malaria and those who were not. 

While in this work we targeted malaria, which has large impacts on global health, this 

algorithm can be extended to any illness that would result in changes in exhaled breath 

composition due to metabolic health. Biomarkers have already been identified for several 

ailments, such as lung cancer [10] and fungal infections [11]. Having an expanded library of 

biomarkers and their abundance changes would enable the design of sensors targeting disease-

specific biomarkers. The ultimate goal is the development of non-invasive diagnostic tools for a 

broad spectrum of human diseases and ailments. 
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6.4 Ongoing and future work 

6.4.1 Detection of malaria biomarkers 
The overarching goal of artificial olfaction has been the creation of a sensor that can 

detect and identify a wide range of chemical compounds with high specificity and sensitivity. 

Many groups have mimicked the size of biological sensor arrays to achieve this goal [12-18]. 

Here, instead, we explore an alternate approach of making a sensor specific to a narrowly 

defined problem, detecting biomarkers indicative of malaria. We show the use of a novel 

graphene-based chemiresistive sensor capable of specifically detecting low levels of a malaria 

biomarker. Targeting specific compounds in this manner allows for refinement of the sensor and 

opens the possibility of creating an array of several of such sensors for cross-selective sensing.  

Studies have found that certain compounds, such as terpenes, are attractants to Anopheles 

mosquitoes, a primary vector for the spread of malaria [19, 20]. Other studies have shown that α-

pinene is produced by P. falciparum-infected erythrocytes, and directly activates Anopheles 

odorant receptors (AgOR21 and AgOR50), and modulates mosquito feeding behavior [21, 22].  

Malaria is endemic to and primarily found in Southeast Asia and sub-Saharan Africa. 

These regions have limited resources and infrastructure. Ultimately, a diagnostic sensor deployed 

there should have low manufacturing costs and be simple to manufacture and use. Typical metal-

oxide sensors, such as the one discussed in Chapter 3, require built-in heaters which add 

complexity and expense to their design and use. Here we show the use of a novel graphene based 

chemiresistive sensor capable of detecting low levels of α-pinene without a heater. 

Details of the manufacture of the sensing film and sensor can be found in the methods, 

but are briefly discussed here. We micro-fabricated an interdigitated electrode array. Crumpled 
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graphene oxide was provided to us by collaborators3 who followed previously published 

manufactured methods [23] and was provided to us by. The cGO was dropcast onto the sensor 

until a resistance of ~1 MΩ was achieved. The sensor was then wired and packaged on a DIP 

socket for use. 

6.4.2 Sensor Responses to malaria α-pinene  
We probed the response of this sensor with four analytes: 1-octanol, 2-octanol, geraniol, 

and α-pinene. We selected 1- and 2-octanol because of their structural similarity to see if the 

sensor could differentiate such structurally similar compounds. Similarly, geraniol and α-pinene 

were selected because they are both plant-derived terpenes. Representative responses to these 

compounds are shown in Figure 6.1. The sensor was exposed to successive stimulus pulses with 

each pulse greater in concentration than the last. Stimulus periods were 5 minutes in duration and 

there were 5 minutes between successive stimulations. 

When the VOC stimulus is presented to the sensor (gray shading), the bandpass filtered 

(1-10 mHz) film resistance, represented by signal-to-noise ratio (SNR, R/RSTD), rapidly 

increases. The response quickly reaches as steady state, a level at which the activity is steady or 

very slowly changing. Once the stimulus is removed, the signal rapidly returns to or near 

baseline levels. We observed strong concentration-dependent behavior for three of the four 

analytes: geraniol, 1-octanol, and 2-octanol (Figure 6.1A-C). However, α-pinene had an inverse 

relationship with concentration. Each successive stimulation resulted in a weaker response 

magnitude (Figure 6.1D). The mechanism behind the response behavior to α-pinene is yet to be 

                                                 
3 Crumpled graphene oxide was provided to us by our collaborator Dr. Ramesh Raliya in the 
group of Dr. Pratim Biswas. Details of its manufacture and morphology are published as: Wang, 
W.-N., Y. Jiang and P. Biswas (2012). "Evaporation-Induced Crumpling of Graphene Oxide 
Nanosheets in Aerosolized Droplets: Confinement Force Relationship." The Journal of Physical 
Chemistry Letters 3(21): 3228-3233. 
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determined. Interestingly, despite the weakening response with each pulse, the signal 

consistently returned to baseline levels with time constants similar to those of responses to other 

concentrations and analytes, suggesting that it is not a simple case of saturation or poisoning. 

 

6.4.3 Limits of detection for a cGO based sensor 
Interestingly, the sensitivity of this sensor is strongly analyte dependent. In assessing the 

limit of detection (LOD), we found that 1- and 2-octanol had similar sensitivities, with detection 

 
Figure 6.1. Representative responses of a cGO based sensor to four different analytes. Four 
pulses of each analyte are presented, with each pulse increasing in concentration. Gray bars 
indicate periods of analyte exposure. Concentrations for each analyte (in PPM) are as follows: 
geraniol: 0.02, 0.05, 0.07, 0.09; 1-octanol: 0.4, 0.8, 1.1, 1.5; 2-octanol: 0.8, 1.5, 2.2, 2.9; α-
pinene: 15.5, 30.2, 44.3, 57.8. Signal from sensors was band-pass filtered between 1 and 10 
mHz. 
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limits of 1.5E-1 PPM (Figure 6.2 A-B). Geraniol, however, evokes response magnitudes of 

similar strength (SNR of 10-30) to those of other analytes tested, but at concentrations 1-2 orders 

of magnitude lower, with a LOD of 8E-3PPM (Figure 6.2C). Conversely, we found that α-pinene 

evoked responses at concentrations 1-2 orders of magnitude higher than the other analytes, with 

a LOD of 7.7 PPM. The differences in sensitivity are clear from the LOD for each analyte. This 

material is most sensitive to geraniol and least to α-pinene. 

 

6.4.4 Selective sensing of α-pinene 
Designing a sensing system for biomarker detection requires both sensitivity and 

specificity. Although the cGO film was least sensitive to α-pinene, there was a unique saturation 

effect which could be used to impart high levels of specificity. The response magnitude of the 
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sensor decreased to successive pulses of α-pinene. The exact reason for this effect is uncertain, 

but it opens the possibility of selectively sensing this analyte based on hysteresis. We 

hypothesized that repeated presentations of α-pinene would decrease response magnitudes until 

little to no response was elicited. Other analytes, however, would not be subject to this 

phenomenon and would have similar responses to repeated stimulations. To test this, we 

performed back-to-back trials of four pulses with increasing concentrations for each analyte 

(Figure 6.3). Overlaying these trials, we find that the responses are very consistent in shape and 

magnitude for geraniol, 1-octanol, and 2-octanol (Figure 6.3 A-C left panel). The responses to α-

pinene, however, see a great decrease in strength over time, and there is almost no response in 

the second trial (Figure 6.3 D, left panel). Subtracting the repeated trials, we find that the 

resulting signal is canceled out for all the analytes except α-pinene (Figure 6.3, right panel). 

Thresholding the resulting response difference provides a selective indicator for the presence of 

α-pinene (Figure 5.11 D, right panel). 
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Figure 6.3. Sensor response for 1-octanol, 2-octanol and geraniol cancels out in back-to-back 
trials, but not for alpha-pinene. Left plots show two, back-to-back trials of analyte exposures. 
Right plots show the difference between the two trials. Gray bars reflect analyte exposure. 
Dotted red line is a threshold indicating when α-pinene is detected. Concentrations for each 
analyte (in PPM) are as follows: Geraniol: 0.008, 0.01, 0.02, 0.03; 1-octanol: 0.07,0. 2, 0.2, 
0.3; 2-octanol: 0.4, 0.8, 1.1, 1.5; Pinene: 15.5, 30.2, 44.3, 57.8. Signal from sensors was band-
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6.4.5  Limitations of cGO sensor for α-pinene detection 
This cGO based sensor shows promising results for selectively sensing α-pinene. 

Nonetheless, limitations remain which must be addressed before a sensor based on this 

technology can be deployed for actual diagnostic purposes. There two most salient issues which 

concern the properties of exhaled breath. The first is that exhaled breath is highly humidified, 

with reported RH levels up to 80% [24]. Our sensor, however, fails under humidified conditions 

(Figure 6.4). Through testing, we found that the addition of humidified air increases film 

resistance and prevents the interaction of analytes that would introduce a response. The other 

issue is that our sensor is increasingly insensitive to α-pinene at biological relevant ranges. While 

the LOD for α-pinene established in this work is 7.7 PPM, actual concentrations calculated from 

the breath samples we collected were in the hundreds of parts-per-trillion (PPT) range. There are 

readily available solutions to address these issues. Breath samples could be pre-concentrated 

prior to analysis, which would remove humidity as a factor as well as address the sensitivity 

issue. This, however, would increase complexity and cost of the testing and thus eliminate some 

of the benefits of this test over existing methods.  

Other limitations of this sensor that still need to be assessed are the reliability of response 

and its longevity. Reliability of response is particularly important in diagnostic applications. In 

our testing, we found some instances of unexplained variations in the response strength. These 

need to be explored in detail and resolved. We also need to verify the longevity of the sensor. It 

is important to know how long or how often the sensor can be used before response strength and 

reliability are affected. Given the relatively simplicity of this sensor and the film, we presume it 

will have minimal production costs and can be designed for single use testing.  

 

[1] 
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Addressing the limitations of this sensor would open exciting possibilities for non-

invasive diagnostics. For malaria in particular, there is a need to improve low-cost testing 

modalities because the parasite is primarily endemic to the developing world. Here we have 

presented an alternative indicator for the presence of malaria in pediatric patients, as well as an 

exciting new gas sensing film that is specific to this analyte.  
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