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ABSTRACT OF THE DISSERTATION 

Photodynamic Therapy: Agents and Mechanisms 

By 

Rebecca C. Gilson 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2017 

Advisor: Samuel Achilefu, Ph.D. 

Abstract 

Despite enormous efforts, cancer remains a leading cause of morbidity and mortality world-

wide. The main challenges currently facing cancer therapy include lack of adequate tumor targeting, 

failure to treat hypoxic tumor cells, and induction therapy resistant tumors. A solution to these 

limitations can be found in photodynamic therapy (PDT) which combines light and light activatable 

compounds, photosensitizers (PSs), to produce cytotoxic reactive oxygen species (ROS) to damage 

tumor tissue. This creates a spatiotemporal therapeutic effect, where cell damage only occurs at the 

intersection of the PS and light. PDT can treat tumors through unique mechanisms which reduce 

induction of tumor resistance. Although PDT has had clinical success in treating skin cancer and 

macular degeneration, it has yet to be a widely adopted or accepted therapy.   

In this dissertation, we lay the groundwork for a new PDT strategy which systematically 

addresses and optimizes each aspect of PDT. To overcome the limitation of PDT to treat hypoxic 

tumors, we developed a novel nano-photosensitizer, TiO2-N3, that produces cytotoxic ROS even under 

hypoxic conditions. Next, to determine the optimal intracellular target for TiO2-N3, we compared the 

therapeutic outcome of ROS generated in endosomes, lysosomes, mitochondria, and ER. We identified 

the ER as the organelle most sensitive to ROS damage and therefore the optimal intracellular target for 

TiO2-N3. Finally, to deliver TiO2-N3 to tumors in vivo, we developed two tumor targeting agents, both 
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of which are equipped with near-infrared fluorophores for whole body imaging. This work has laid the 

foundation for a novel PDT strategy by overcoming issues that have limited the clinical adoption of 

PDT.  



 

1 

 

Chapter 1 :  Introduction 

1.1 Cancer therapy 
Despite the continuous development of new therapies and diagnostic techniques, cancer 

remains a leading cause of morbidity and mortality world-wide.1 It is estimated that 90% of 

cancer deaths are due to metastasis, a result of late stage diagnosis, failure to surgically resect the 

entire primary tumor, or development of therapy resistance.2,3 In an attempt to reduce the risk of 

metastasis, multiple therapies can be combined (e.g. surgery, chemotherapy, and molecular 

targeted therapy) in order to inflict damage to the tumor through distinct mechanistic pathways. 

An alternative to conventional treatment is photodynamic therapy (PDT), a single treatment 

method that disrupts cancer growth and metastasis through multiple therapeutic pathways.4  

1.2 Photodynamic therapy of cancer 
PDT combines light with light-activatable drugs, photosensitizers (PSs), to produce 

cytotoxic reactive oxygen species (ROS) (Figure 1). PDT affords high spatiotemporal control of 

the treatment, where cellular damage only occurs at the intersection of the PS and light, 

minimizing off-target toxicity.5 The damage inflicted by PDT can be classified into two 

categories of reactions: type I, oxygen independent free radical production, and type II, oxygen 

dependent singlet oxygen production.6 Type I reactions enable the treatment of both normoxic 

and hypoxic tumors, whereas type II reactions are more effective in highly vascularized and 

oxygenated tumors. ROS and free reactions cause tumor regression through three pathways: (1) 

direct cell death through necrosis or apoptosis, (2) disruption of tumor vasculature to starve the 

tumors of nutrients and oxygen, and (3) activation of the immune system.4,7 This three-pronged 

strategy prevents the tumor from developing resistance, enabling multiple administrations of 
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PDT.  

Administration of PDT begins with delivery of the PS to the tumor, typically through 

intravenous injection, topical application, or intratumoral injection. After the PS has accumulated 

in the tumor, a period called the drug-light-interval (DLI), the tumor is irradiated with a 

wavelength of light that matches the absorption maximum of the PS. The light-activated PS 

generates ROS and free radicals to induce tumor regression.  

 

Figure 1. General scheme for PDT. 

A careful consideration of a PSs’ photophysical properties, pharmacokinetics, and 

structural features is critical for the development of a successful PDT strategy.4,8 Photophysical 

properties dictate the quantity of cytotoxic ROS that will be produced. Pharmacokinetics define 

the DLI, clearance route, and circulation time of the PS. The PS structure controls solubility, 

ease of formulation, and ability to add functional groups or targeting ligands. These properties 

will be discussed further in the following sections.  

1.2.1 Clinical PS 

There are currently over five clinically approved PSs for treatment of diverse cancers, 

such as head and neck, pancreas, liver and prostate, in addition to age-related macular 

degeneration.4 Most of these PSs are structural derivatives of porphyrins, chlorins, 

bacteriochlorins or phthalocyanines and are administrated through an intravenous injection (0.1-

4 mg/kg).4,9,10 After a DLI of 0.25-72 h, the tumors are irradiated with light ranging from 8-200 
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J/cm2.4,9,10 The light is delivered either externally or interstitially depending on the site of the 

tumor. A major side effect of PDT is skin phototoxicity which occurs when PSs have long 

clearance times, sometimes remaining in the body for days after treatment, and requiring patients 

to remain inside under low light conditions.11   

A second class of clinically approved PDT substances are PS precursors, administered 

through topical application. For example, aminolevulinic acid (ALA) enhances the production of 

protoporphyrin IX, an endogenous PS.4,10   

1.2.2 Administration of PS and tumor accumulation 

The PS can be administered to a patient through intravenous injection, intratumoral 

injection, or topical administration. The PS typically accumulates more in the tumor, compared 

to normal tissue, through the enhanced permeability and retention (EPR) effect that exists in 

most solid tumors.4,9,12 However, an increasingly large amount of research focuses on developing 

tumor-targeted PSs to optimize the distribution and uptake in tumors. A variety of methods are 

currently being explored, including nanoparticle formulation, and antibody or small peptide 

based targeting.13,14 Targeted PSs have yet to be translated into the clinic.  

1.2.3 Light delivery  

 Due to the limited penetration of visible light through biological tissue, several 

techniques have been developed to ensure light delivery to all parts of the tumor. External 

radiation from an LED through an optical fiber is used for skin, head and neck,15 or esophageal 

cancer.16 Interstitial irradiation is used for internal organ cancers, such as pancreas and liver 

cancer.10,17 For prostate cancer, light diffusing fibers are placed within the prostate to ensure 

even light dosing.18 In addition, red and near-infrared (NIR) light penetrates deeper into tissue 

due to reduced scattering and absorption of endogenous proteins.19 Therefore, PS that absorption 



 

4 

 

in the red or NIR are more suitable for treating non-superficial lesions.    

1.2.4 Tumor regression mechanism  

 PDT destroys tumor tissue through multiple pathways, including direct cell death, 

disruption of tumor vasculature, and stimulation of the immune system.7 Apoptosis-induced cell 

death occurs when the intracellular ROS activate the caspase signaling cascade. This typically 

occurs when the PS is activated in the mitochondria, lysosome, or ER and ROS production 

results in permeabilization of the organelle’s membrane, releasing its contents into the cytosol. 

Cytochrome c released from the mitochondria activates caspase mediated apoptosis.20,21 

Cathepsins released from the lysosome can activate pro-apoptotic proteins, such as BID, which 

induce mitochondrial apoptosis.22,23 Calcium released from the ER can also induce mitochondrial 

apoptosis.24 Necrosis occurs when the ROS production is so great that the cell loses plasma 

membrane integrity before apoptosis can occur.  

When the PS is activated while in the microvascular, the ROS produced can disrupt the 

tumor vasculature. Damage to endothelial cells cause them to release thrombin which clots the 

vessels,11 starving the tumor of nutrients and oxygen it needs to proliferate. In addition, vascular 

PDT may aid in restoration normal tumor vasculature. Renormalization of tumor vasculature can 

aid in drug and oxygen delivery to the tumor, and has previously been achieved with anti-

angiogenic drugs.25  

Finally, the above two mechanism can produce an inflammatory response.7,26,27  PDT 

activates the innate immune system through release of cytokines from tumor cells and tumor 

associated fibroblasts, resulting in the recruitment of macrophages and neutrophils. In addition, 

PDT can activate the adaptive immune system, through release of tumor antigens into the 

extracellular matrix. Tumor antigens then activate dendritic cell maturation28 and, subsequently, 
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stimulate cytotoxic T cells against the tumor.7,28   

1.2.5 Type I/II PDT 

The mechanisms of tumor regression depend partially on the type of ROS produced. The 

first step in ROS production, is the absorption of light by a PS, exciting an electron from the 

ground singlet state to an excited singlet state (Figure 2). The electron can then relax back to the 

ground state through either emission of a photon, called fluorescence, or through non-radiative 

decay. A third option, is intersystem crossing (ISC) to the triplet state. ISC is considered a 

“forbidden” transition because it requires spin inversion which contradicts the Pauli exclusion 

principle.  The low probability of spin inversion results in a long-lived (~μs to ms) triplet state. 

However, PSs have a higher probability of ISC than fluorophores, meaning they are more likely 

to populate that triplet state and less likely to emit fluorescent photons. Triplet state electrons can 

relax to the ground singlet state: through emitting a photon, this time called phosphorescence, 

through non-radiative decay, or through interactions with molecular oxygen. It is from the triplet 

state that ROS and free radicals are produced. The long-lived triplet state increases the 

probability that the election will be able to interact with its environment and produce ROS.  

The two types of PDT reactions arise from the ability of the triplet state electron to either 

ionize substrates or react with molecular oxygen, called type I and type II reactions, respectively 

(Figure 2).6 Most previous generation PSs rely on type II PDT, which produce singlet oxygen 

through spin-inversion. The triplet state electron reacts with triplet state oxygen, resulting in 

return of the electron to the lowest energy singlet state and the oxygen to the excited singlet 

state.4,6 Type II PDT is only able to produce ROS when molecular oxygen is available and 

therefore is ineffective in hypoxic tumors (Section 1.3.2 ). 
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Figure 2. Type I and type II PDT reactions.  

Fortunately, type I PDT provides an alternative oxygen independent pathway for 

producing ROS and free radicals. In type I reactions, the triplet state electron directly ionizes 

substrates, including biomolecules, to produce ROS such as hydroxyl radicals. Two emerging 

classes of PSs have higher rates of type I reactions, compared to porphyrin and chlorin based 

PSs. The first class are organometallic complexes, usually with ruthenium (II) or iridium (III), 

which have multiple long-lived triplet states, are electron donors, and are less dependent on 

oxygen to produce ROS.29-33 The second class of PSs are metal oxide nanoparticles, such as 

TiO2, which can catalytically produce potent hydroxyl radicals through the oxidation of water, 

and superoxide through the reduction of oxygen.34,35  

1.3 The microenvironment of solid tumors  
 To develop better PDT strategies and understand the mechanism of subsequent tumor 

regression, it is important to understand two aspects of the tumor microenvironment: pH and 

hypoxia. 

1.3.1 Acidic extracellular matrix 

Tumors utilize enhanced glycolysis in lieu of oxidative phosphorylation for energy 

production. This is known as the Warburg Effect and causes a build-up of lactate in the cytosol 
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and subsequent decrease in intracellular pH (pHi). To maintain viable at a normal physiological 

pHi of 7.4, cancer cells actively pump out excess protons.36 These protons are trapped in the 

tumor extracellular environment by poor lymphatic function and chaotic vascularization, 

resulting in a reduction in extracellular pH (pHe) to 6.2–6.9.36-38 

The acidic pHe of tumors correlates with an aggressive phenotype, including increase in 

tumor invasiveness and cell proliferation, as well as a decrease in responsiveness to therapy.36,39-

42 However, neutralization of the tumor pHe, by oral administration of sodium bicarbonate can 

reduced tumor lesions and increase overall survival.39,42-45 Therefore, the tumor’s acidic pHe 

likely provides an environment that supports growth and metastasis.46 

1.3.2 Hypoxia  

Initially tumors are avascular limiting molecular oxygen delivery and resulting in wide 

spread hypoxia.47-49 Moreover, as tumors grow, spatial disorganization of the vasculature 

produces intercapillary distances greater than the diffusion distance of oxygen creating 

heterogeneous pockets of hypoxia. Hypoxia occurs in both solid and hematologic tumors, 

including breast cancer,50 multiple myeloma,51 prostate cancer and pancreatic cancer.52  

Prolonged tumor hypoxia can induce a pro-survival and anti-apoptotic phenotype, a 

switch to anabolic metabolism, epithelial-to-mesenchymal transitional, invasion, metastasis and 

the suppression of immune reactivity.49 Ironically, while starving the tumor of oxygen, hypoxia 

also increases oxidative stress through the generation of ROS which promote DNA damage and 

genetic instability.49   

In fact, hypoxia is one of the many mechanisms that causes tumor resistance to therapy. 

Radiation therapy and chemotherapy, that induce DNA breaks to induce cell death, both rely on 

oxygen to produce free radicals.53 Therefore, to treat hypoxic tumors the dose for ionizing 
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radiation must be increased by 3-fold for equivalent cell killing.54 Moreover, hypoxia induced 

genetic changes prompt resistance to other forms of therapy. For example, hypoxia stabilizes 

HIF-1, increasing expression of ABC transporters, and inducing multi-drug resistance.  

New treatment methods are currently being explored to overcome the therapy resistance 

induced by hypoxia. One such paradigm, bioreductive prodrugs, are activated by enzyme 

reduction in hypoxic tissues to produce DNA damage.49 A second approach uses small molecule 

inhibitors against pro-survival molecular targets expressed in hypoxic cells, such as HIF-1 and 

mTor.55 Unfortunately, with both these approaches a substantial barrier is delivery of the drugs to 

the hypoxic, avascular regions of the tumor. An approach to overcome drug delivery is 

normalization of tumor vasculature, achieved through the use of pro- and anti-angiogenic drugs 

to restructure the tumor’s abnormal vascularization into spatially and functionally normal.25 

Restoration of normal vasculature will additionally aid in delivery oxygen to all parts of the 

tumor.  

1.4 Fluorescence sensors  
In order to understand and study microenvironment of tumors, it is important to have 

methods to non-invasively characterize their phenotypes. Optical imaging using fluorescence 

sensors provides a method for studying the tumor biology from single cells to whole body 

imaging.  Optical imaging can be conducted in real time with inexpensive instrumentation and 

non-ionizing radiation.56,57 Fluorescence probes can be made for specific biomarkers and are 

sensitive (~pM).56,57 There are several fluorescence based methods for in vivo measurements: 

fluorescence intensity, ratiometric fluorescence, and fluorescence lifetime. 
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1.4.1 Intensity based measurements 

Single wavelength fluorescence intensity measurements require the simplest 

instrumentation, data acquisition, and analysis, but lack the ability for adequate quantification, 

mainly due to dependence on the concentration of the sensor. Ratiometric probes provide a solution 

to this problem by using a dual wavelength sensor and calculating the ratio of the fluorescence 

intensities at each wavelength.58 While this method may work well in solution, wavelength 

dependent scattering and absorption can cause unpredictable changes in the ratiometric 

measurements when used for in vivo imaging.59-61 In addition, it can be difficult to spectrally 

resolve short wavelength shifts.  

1.4.2 Fluorescence lifetime based measurements  

In contrast to intensity measurements, fluorescence lifetime is less dependent on the 

concentration of the fluorophore, instrumentation, and application.60,62 Fluorescence lifetime is 

the average time an electron spends in an excited state before emitting a photon and returning to 

the ground state (Figure 2). Following first order kinetics, the average fluorescence lifetime is 

the time constant for an exponential decay (i.e. the time it takes for 36.8% of the excited 

electrons to repopulate the ground state.) Fluorescence lifetime measurements can detect 

conformational changes of proteins (e.g. bound vs unbound)63 and molecular interactions (e.g. 

FRET).60,62 It can also be used for multicomponent separations (e.g. to remove 

autofluorescence),64 environmental sensing (e.g. oxygen, pH),59,65 and tissue characterization by 

autofluorescence (e.g. collagen).66 
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Figure 3. Time correlated single photon counting method of measuring fluorescence lifetime.  

Fluorescence lifetime is measured in either the time67 or frequency domain.68 In the 

following studies, we use a time domain method and therefore it will be explained here (Figure 

3). Time domain methods, including time correlated single photon counting (TCSPC), use 

complex timing in order to count single photons.67 A pulsed laser (~70 ps) excites a fluorescence 

sample and the time of the excitation pulse is recorded as t1. The excited sample emits a photon 

which is detected by an avalanche photodiode and the time of detection is recorded as t2. The 

difference between these times, Δt, is binned into a histogram. This entire process is repeated 

thousands of times until the peak of the histogram reaches ~10,000 counts (or enough counts to 

obtain a reasonable exponential fit). The fluorescence lifetime is the time constant determined by 

fitting the histogram to an exponential decay. To construct an image using TCSPC, the laser is 

simply scanned over the entire image, to create a 3D data set (x,y,t).67 This method can be used for 

spectroscopy, microscopy, and whole-body animal imaging.60  

1.5 References  
 (1) Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D. 

M.; Forman, D.; Bray, F. Int. J. Cancer 2015, 136, E359. 

 (2) Weigelt, B.; Peterse, J. L.; van 't Veer, L. J. Nature reviews. Cancer 2005, 5, 591. 



 

11 

 

 (3) Mehlen, P.; Puisieux, A. Nature reviews. Cancer 2006, 6, 449. 

 (4) Dabrowski, J. M.; Arnaut, L. G. Photochem. Photobiol. Sci. 2015, 14, 1765. 

 (5) Obaid, G.; Broekgaarden, M.; Bulin, A. L.; Huang, H. C.; Kuriakose, J.; Liu, J.; Hasan, 

T. Nanoscale 2016, 8, 12471. 

 (6) Dolmans, E. J. G. J. D.; Fukumura, D.; Jain, R. K. Nat. Rev. Cancer 2003, 3, 380. 

 (7) Castano, A. P.; Mroz, P.; Hamblin, M. R. Nat. Rev. Cancer 2006, 6, 535. 

 (8) Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; 

Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; 

Nowis, D.; Piette, J.; Wilson, B. C.; Golab, J. Ca-Cancer J. Clin. 2011, 61, 250. 

 (9) Allison, R. R.; Sibata, C. H. Photodiagn. Photodyn. Ther. 2010, 7, 61. 

 (10) Huang, Z. Technol. Cancer Res. Treat. 2005, 4, 283. 

 (11) Schmidt-Erfurth, U.; Hasan, T. Surv. Ophthalmol. 2000, 45, 195. 

 (12) Allison, R. R.; Downie, G. H.; Cuenca, R.; Hu, X.-H.; Childs, C. J. H.; Sibata, C. H. 

Photodiagn. Photodyn. Ther. 2004, 1, 27. 

 (13) Spring, B. Q.; Abu-Yousif, A. O.; Palanisami, A.; Rizvi, I.; Zheng, X.; Mai, Z.; Anbil, S.; 

Sears, R. B.; Mensah, L. B.; Goldschmidt, R.; Erdem, S. S.; Oliva, E.; Hasan, T. Proc. Natl. 

Acad. Sci. U. S. A. 2014, 111, E933. 

 (14) Spring, B. Q.; Bryan Sears, R.; Zheng, L. Z.; Mai, Z.; Watanabe, R.; Sherwood, M. E.; 

Schoenfeld, D. A.; Pogue, B. W.; Pereira, S. P.; Villa, E.; Hasan, T. Nat. Nanotechnol. 2016, 11, 

378. 

 (15) Lou, P.-J.; Jones, L.; Hopper, C. Technol. Cancer Res. Treat. 2003, 2, 311. 

 (16) Kelty, C. J.; Marcus, S. L.; Ackroyd, R. Diseases of the Esophagus 2002, 15, 137. 



 

12 

 

 (17) Lustig, R. A.; Vogl, T. J.; Fromm, D.; Cuenca, R.; Alex Hsi, R.; D'Cruz, A. K.; Krajina, 

Z.; Turic, M.; Singhal, A.; Chen, J. C. Cancer 2003, 98, 1767. 

 (18) Moore, C. M.; Pendse, D.; Emberton, M. Nat. Clin. Pract. Urol. 2009, 6, 18. 

 (19) Wang, L. V.; Wu, H.-i. Biomedical Optics: Principles and Imaging; John Wiley & Sons, 

Inc.: Hoboken, New Jersey, 2012. 

 (20) Tait, S. W.; Green, D. R. Nat. Rev. Mol. Cell Biol. 2010, 11, 621. 

 (21) Orrenius, S.; Zhivotovsky, B. Nat. Chem. Bio. 2005, 1, 188. 

 (22) Liu, L.; Zhang, Z.; Xing, D. Free Radic. Biol. Med. 2011, 51, 53. 

 (23) Aits, S.; Jaattela, M. J. Cell Sci. 2013, 126, 1905. 

 (24) Kim, I.; Xu, W.; Reed, J. C. Nat. Rev. Drug Discov. 2008, 7, 1013. 

 (25) Jain, R. K. Science 2005, 307, 58. 

 (26) Barathan, M.; Mariappan, V.; Shankar, E. M.; Abdullah, B. J.; Goh, K. L.; Vadivelu, J. 

Cell Death Dis. 2013, 4, e697. 

 (27) Garg, A. D.; Krysko, D. V.; Vandenabeele, P.; Agostinis, P. Cancer Immunol. & 

Immunother. 2012, 61, 215. 

 (28) Pockley, A. G. Lancet. 2003, 362, 469. 

 (29) Lincoln, R.; Kohler, L.; Monro, S.; Yin, H.; Stephenson, M.; Zong, R.; Chouai, A.; 

Dorsey, C.; Hennigar, R.; Thummel, R. P.; McFarland, S. A. J. Am. Chem. Soc. 2013, 135, 

17161. 

 (30) Reichardt, C.; Pinto, M.; Wachtler, M.; Stephenson, M.; Kupfer, S.; Sainuddin, T.; 

Guthmuller, J.; McFarland, S. A.; Dietzek, B. J. Phys. Chem. A 2015, 119, 3986. 



 

13 

 

 (31) Stephenson, M.; Reichardt, C.; Pinto, M.; Wachtler, M.; Sainuddin, T.; Shi, G.; Yin, H.; 

Monro, S.; Sampson, E.; Dietzek, B.; McFarland, S. A. The journal of physical chemistry. A 

2014, 118, 10507. 

 (32) Shi, G.; Monro, S.; Hennigar, R.; Colpitts, J.; Fong, J.; Kasimova, K.; Yin, H.; DeCoste, 

R.; Spencer, C.; Chamberlain, L.; Mandel, A.; Lilge, L.; McFarland, S. A. Coor. Chem. Rev. 

2015, 282-283, 127. 

 (33) Sun, Y.; Joyce, L. E.; Dickson, N. M.; Turro, C. Chem. Commun. 2010, 46, 2426. 

 (34) Kotagiri, N.; Sudlow, G. P.; Akers, W. J.; Achilefu, S. Nat. Nanotechnol. 2015, 10, 370. 

 (35) Nosaka, Y.; Nosaka, A. Y. In Photocatalysis and Water Purification: From 

Fundamentals to Recent Applications; Pichat, P., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: 

Weinheim, Germany, 2013, p 1. 

 (36) Cardone, R. A.; Casavola, V.; Reshkin, S. J. Nat. Rev. Cancer 2005, 5, 786. 

 (37) Gillies, R. J.; Raghunand, N.; Karczmar, G. S.; Bhujwalla, Z. M. J. Magn. Reson. 

Imaging 2002, 16, 430. 

 (38) Gilson, R. C.; Tang, R.; Som, A.; Klajer, C.; Sarder, P.; Sudlow, G. P.; Akers, W. J.; 

Achilefu, S. Molecular pharmaceutics 2015, 12, 4237. 

 (39) Robey, I. F.; Baggett, B. K.; Kirkpatrick, N. D.; Roe, D. J.; Dosescu, J.; Sloane, B. F.; 

Hashim, A. I.; Morse, D. L.; Raghunand, N.; Gatenby, R. A.; Gillies, R. J. Cancer Res. 2009, 69, 

2260. 

 (40) Wu, X. L.; Kim, J. H.; Koo, H.; Bao, S. M.; Shin, H.; Kim, M. S.; Lee, B.-H.; Park, R.-

W.; Kim, I.-S.; Choi, K.; Kwon, I. C.; Kim, K.; Lee, D. S. Bioconjug. Chem. 2010, 21. 

 (41) Raghunand, N.; He, X.; Sluis, R.; Mahoney, B.; Baggett, B.; Taylor, C.; Paine-Murrieta, 

G.; Roe, D.; Bhujwalla, Z.; Gillies, R. Brit. J. Cancer 1999, 80, 6. 



 

14 

 

 (42) Robey, I. F.; Nesbit, L. A. Biomed. Res. Int. 2013, 2013, 485196. 

 (43) Muller, V.; Riethdorf, S.; Rack, B.; Janni, W.; Fasching, P. A.; Solomayer, E.; Aktas, B.; 

Kasimir-Bauer, S.; Zeitz, J.; Pantel, K.; Fehm, T. Breast Cancer Res. 2011, 13, R71. 

 (44) Neri, D.; Supuran, C. T. Nat. Rev. Drug Discov. 2011, 10, 767. 

 (45) Robey, I. F.; Martin, N. K. BMC cancer 2011, 11, 235. 

 (46) Webb, B. A.; Chimenti, M.; Jacobson, M. P.; Barber, D. L. Nat. Rev. Cancer 2011, 11, 

671. 

 (47) Maxwell, P. H.; Dachs, G. U.; Gleadle, J. M.; Nicholls, L. G.; Harris, A. L.; Stratford, I. 

J.; Hankinson, O.; Pugh, C. W.; Ratcliffe, P. J. Proc. Natl. Acad. Sci. U S A 1997, 94, 8104. 

 (48) Hockel, M.; Vaupel, P. J. Natl. Cancer Inst. 2001, 93, 266. 

 (49) Wilson, W. R.; Hay, M. P. Nat. Rev. Cancer 2011, 11, 393. 

 (50) Semenza, G. L. Biochim. Biophys. Acta 2016, 1863, 382. 

 (51) Hu, J.; Van Valckenborgh, E.; Menu, E.; De Bruyne, E.; Vanderkerken, K. Dis. Model & 

Mech. 2012, 5, 763. 

 (52) Erickson, L. A.; Highsmith, W. E., Jr.; Fei, P.; Zhang, J. Drug Des. Devel. Ther. 2015, 9, 

2029. 

 (53) Teicher, B. A.; Lazo, J. S.; Sartorelli, A. C. Cancer Res. 1981, 41, 73. 

 (54) Gray, L. H.; Conger, A. D.; Ebert, M.; Hornsey, S.; Scott, O. C. A. Br. J. Radiol. 1953, 

26, 638. 

 (55) Tennant, D. A.; Duran, R. V.; Gottlieb, E. Nat. Rev. Cancer 2010, 10, 267. 

 (56) Terai, T.; Nagano, T. Curr. Opin. Chem. Biol. 2008, 12, 515. 

 (57) Zhang, X.; Bloch, S.; Akers, W.; Achilefu, S. Curr. Protoc. Cytom. 2012, Chapter 12, 

Unit12 27. 



 

15 

 

 (58) Han, K.; Wang, S. B.; Lei, Q.; Zhu, J. Y.; Zhang, X. Z. ACS Nano 2015, 9, 10268. 

 (59) Orte, A.; Alvarez-Pez, J. M.; Ruedas-Rama, M. J. ACS Nano 2013, 7, 6387. 

 (60) Sarder, P.; Maji, D.; Achilefu, S. Bioconjug. Chem. 2015, 26, 963. 

 (61) Izquierdo, M. A.; Aurimas, V.; Lermontova, S. A.; Grigoryev, S.; Shilyagina, N. Y.; 

Balalaeva, I. V.; Klapshina, L. G.; Kuimova, M. K. J. Mater. Chem. B. 2015, 8, 1089. 

 (62) Berezin, M.; Achilefu, S. Chem. Rev. 2010, 110, 2641. 

 (63) Calleja, V.; Ameer-Beg, S. M.; Vojnovic, B.; Woscholski, R.; Downward, J.; Larijani, B. 

Biochem J. 2003, 372, 33. 

 (64) Kumar, A. T. N.; Chung, E.; Raymond, S. B.; Water, J. A. J. M. v. d.; Shah, K.; 

Fukumura, D.; Jain, R. K.; Bacskai, B. J.; Boas, D. A. Opt. Lett. 2009, 34, 2066. 

 (65) Szmacinski, H.; Lakowicz, J. R. Sens. Actuators, B 1995, 29, 16. 

 (66) Schweitzer, D.; Schenke, S.; Hammer, M.; Schweitzer, F.; Jentsch, S.; Birckner, E.; 

Becker, W.; Bergmann, A. Microsc. Res. Tech. 2007, 5, 410. 

 (67) Suhling, K.; French, P. M.; Phillips, D. Photochem. Photobio.l Sci. 2005, 4, 13. 

 (68) Gadella, T. W. J.; Jovin, T. M.; Clegg, R. M. Biophys. Chem. 1993, 48, 221. 

 

 

  



 

16 

 

Chapter 2 :  Hybrid TiO2-Ruthenium Nano-

photosensitizer Synergistically Produces 

Reactive Oxygen Species in Both Hypoxic 

and Normoxic Conditions 
 

This chapter is based on a pending article:  

Rebecca C. Gilson, Kvar Black, Daniel Lane, and Samuel Achilefu. Hybrid TiO2-Ruthenium 

Nano-photosensitizer Synergistically Produces Reactive Oxygen Species in Both Hypoxic and 

Normoxic Conditions. Angewandte Chemie International Edition (Under Review)  
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2.1 Chapter summary 
Photodynamic therapy (PDT) is widely used to treat diverse diseases, but its dependence 

on oxygen to produce cytotoxic reactive oxygen species (ROS) diminishes the therapeutic effect 

in a hypoxic environment such as solid tumors. Here, we developed a ROS-producing hybrid 

nanoparticle-based photosensitizer capable of maintaining high levels of ROS under both 

normoxic and hypoxic conditions. Conjugation of an organometallic ruthenium complex (N3), a 

photo-inducible electron donor, to a TiO2 nanoparticle, an efficient ROS generator, afforded 

TiO2-N3. Upon exposure of TiO2-N3 to light, the N3 injected electrons into TiO2 to produce 

three- and four-fold greater hydroxyl radicals and hydrogen peroxide, respectively, than TiO2 at 

160 mmHg. Whereas TiO2 was unable to generate hydrogen peroxide and only able to produced 

small amounts of hydroxyl radicals at low oxygen tension (8 mmHg), TiO2-N3 maintained three-

fold higher hydroxyl radicals via N3-facilitated electron hole reduction of adsorbed water 

molecules and an efficient conversion of low oxygen concentration into hydroxyl radicals to 

increase the net concentration of this ROS. All the photosensitizers produced high levels of 

singlet oxygen, except under hypoxic conditions. We delineated the various pathways that TiO2-

N3 uses to enhance hydroxyl production and maintain a significant level of these species in both 

normoxic and hypoxic conditions. This work demonstrates that the incorporation of N3 

transformed TiO2 from a dual type I and II PDT agent to a predominantly type I photosensitizer, 

irrespective of the oxygen content. Our findings could enable the application of this strategy to 

develop highly efficient nano-photosensitizers for PDT.  
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2.2  Hybrid TiO2-ruthenium nano-photosensitizer synergistically 

produces reactive oxygen species in both hypoxic and normoxic 

conditions 

ROS are products of normal metabolic processes in living organisms. At low 

concentrations, these species play vital roles in cell signaling, but they can become cytotoxic at 

elevated levels via reaction with proteins, DNAs, lipids, and other biological molecules. PDT is a 

treatment paradigm that selectively elevates ROS levels to induce cell death by multiple 

pathways.1 Some molecules, known as photosensitizers (PSs), absorb light of the appropriate 

wavelengths to produce cytotoxic free radicals and ROS. Many organic PSs mainly produce singlet 

oxygen (1O2) formed via spin inversion of triplet oxygen to singlet oxygen (type II PDT).2 Specific 

organic PSs can also produce hydrogen peroxide (H2O2) and hydroxyl (•OH) radicals, formed from 

direct ionization events (type I PDT).2 While the highly reactive •OH and 1O2 rapidly interact with 

adjacent biomolecules to disrupt normal cell functions and induce cell death, the more stable H2O2 

can travel across cell membranes.3 Intracellular scavengers, such as catalases or peroxidases can 

convert H2O2 to superoxide radicals.4 However, ferrous ions can rapidly oxidize H2O2 to reactive 

•OH radicals (Fenton reaction) to enhance the PDT effect, especially in tumor cells where the 

increased demand for iron is high.5 Despite these advantages, the reliance of many organic PSs on 

molecular oxygen limits the effectiveness of PDT in hypoxic environments, which include many 

solid tumors.6 During PDT, local oxygen is rapidly consumed, creating transient hypoxia that 

further decreases the therapeutic effects.7 Moreover, most organic PSs can react with 1O2 produced 

during PDT, leading to a depletion of the PSs’ concentration via a photobleaching process.8 As a 

result, a recent trend in PDT research includes the development of new PSs that are capable of 

producing cytotoxic ROS, irrespective of the oxygenation status of the microenvironment.  
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Some studies have shown that organometallic PSs can damage DNA under normoxic and 

hypoxic conditions.9 One of such complexes is cis-bis(isothiocyanato)bis(2,2’-bipyridyl-4,4’-

dicarboxylato)ruthenium(II), abbreviated N3. This complex, which absorbs light in the UV and 

visible wavelengths, possesses multiple triplet states that can be populated by both metal to ligand 

charge transfer (3MLCT) and intra-ligand charge transfer (3π-π*) mechanisms.10 Organometallic 

PSs have long triplet state lifetimes (~ms) that enhances the interaction with oxygen species and 

subsequent ROS production.11 Although N3 can produce damage regardless of molecular oxygen 

content, metal oxides such as TiO2 produce higher amounts of ROS in the presence of oxygen. 

The excitation of TiO2 with radiative energy greater than its band gap of 3.2 eV (387 nm) promotes 

an electron to the conduction band, creating an electron hole pair.12 The electrons primarily reduce 

adsorbed molecular oxygen to superoxide, and the holes largely oxidize substrates such water into 

a hydrogen ion and an •OH.12 These processes allow TiO2 to produce higher amounts of diverse 

ROS compared to traditional small molecule PS, making TiO2 a viable PDT agent. However, 

hypoxic conditions significantly deplete the amount of ROS that TiO2 forms.  

In this study, we synthesized TiO2-N3 nanoparticles, consisting of a regenerative ROS-

producing TiO2 core that is coated with N3 to enhance ROS production at different levels of 

oxygen pressure. TiO2 materials are excellent electron acceptors from organometallic ruthenium 

complexes, a phenomenon that has been used for converting sunlight into current.13 By coating the 

surface of TiO2 nanoparticles with N3, each ruthenium complex can inject an electron into TiO2, 

building up electrons that increase ROS production.12, 13b, 14  

TiO2-N3 nanoparticles were prepared by shaking a mixture of 25 nm sized anatase TiO2 

particles and N3 in an ethanol overnight. The particles were then centrifuged and the supernatant 

discarded, followed by the addition of water to the residue. Subsequent sonication (45 seconds) 
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dispersed and evenly coat the particles. Filtration through a 0.45 um pore removed large 

aggregates. The absorption spectra of N3 blue-shifts when coated on TiO2, suggesting that TiO2 

increased the excited state energies of the N3 (Figure 4a). The TiO2-N3 particles contain an 

average of 125,000 N3 molecules per nanoparticle (Figure 4b) with an average hydrodynamic 

size of 135 nm based on dynamic light scattering measurement (Figure 4c). Transmission electron 

microscopy of TiO2-N3 showed that the 25 nm TiO2 cores were maintained in the 135 nm clusters. 

(Figure 4d). 

 

Figure 4. Characterization of TiO2-N3 nanoparticles. (a) Absorption spectra for N3 and TiO2-N3. 

(b) Number of N3 incorporated into a 25 nm TiO2 particle. (c) Average size of TiO2-N3 particles 

after sonication and filtering. (d) Transmission electron microscopy of TiO2-N3 particles.  



 

21 

 

To determine the ROS produced by TiO2-N3, bare TiO2, and N3, we used hydroxyphenyl 

fluorescein (HPF), singlet oxygen sensor green (SOSG), and Amplex Red assay for •OH, 1O2, and 

H2O2, respectively. For these assays TiO2-N3 was not sonicated or filtered. A solution of 10 µM 

HPF or SOSG and PS (0.1 mg/mL TiO2, 0.1 mg/mL TiO2-N3, or 7 µM N3) was irradiated at 1.69 

mW/cm2 using a 365 nm light source. For •OH, measurements, aliquots of 100 µL of HPF were 

diluted in Tris buffer (pH 8.0; 900 µL) at different time points (Figure 6a) and the fluorescence 

of each sample was measured at ex/em 478/515 nm. 1O2 measurements were accomplished by 

irradiating SOSG in a quartz cuvette continuously for 60 min and the fluorescence was measured 

every 1 min (ex/em 504/525 nm). H2O2 measurements were performed in a 96 well plate (50 µL) 

using the same concentrations of each PS as above and an irradiation power of 2.39 mW/cm2. The 

fluorescence at ex/em 545/590 nm and a reference standard were used to calculate the 

concentration of H2O2 in each well. To quantify the amount of the different types of ROS produced, 

each activation curve was fitted to an exponential plot (Figure 6a-c).  
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Figure 5. Schematic description of ROS generation by TiO2 and electron injection to TiO2 by N3. 

Figure 5 illustrates the different pathways to generate ROS (•OH, H2O2, and 1O2) from 

TiO2-N3. Under normal oxygen pressure (160 mmHg), the photo-activation of TiO2-N3 resulted 

in about 3-fold higher •OH production compared to TiO2 and N3 (Figure 6a). These radicals could 

be produced by two mechanisms. Reaction 1 is a one-step oxidation of water to a •OH, a primary 

pathway used by bare TiO2 nanoparticles (Figure 5a). The observed increase in •OH suggested the 

involvement of another mechanism, Reaction 2, which reduces a precursor H2O2 to an •OH. Two 

pathways are available for H2O2 formation (Figure 5b). In Reaction 3, two conduction band 

electrons from TiO2 are used to first reduce oxygen to superoxide, which is subsequently reduced 

to H2O2. In the second mechanism, Reaction 4, two holes on the TiO2 nanoparticles oxidize 

adsorbed water molecules to H2O2. The complementary molecular oxygen dependent (Reaction 3) 
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and independent (Reaction 4) pathways to produce H2O2 ensures the generation of hydroxyl 

radicals. The bare TiO2 particles probably rely more on Reaction 1 than 2 for •OH production 

because of the direct oxidation of abundant water molecules. Alternatively, the TiO2 in TiO2-N3 

has higher numbers of conduction band elections due to the injection of electrons from photo-

activated N3. This process creates more electrons for Reactions 3 and 2, accounting for the 

observed 3-fold increase in the •OH produced (Figure 5d).   

We next postulated that the high •OH levels in TiO2-N3 are associated with a corresponding 

increase in H2O2 production.  Upon photoactivation, TiO2-N3 generated about 4-fold higher H2O2 

than TiO2 (Figure 6b). The low yield of H2O2 from N3 indicates that its contribution to •OH 

production was minimal. These results support a mechanism where N3 injected electrons into TiO2 

to increase the conversion of oxygen to H2O2 via Reaction 3 and a rapid transformation of H2O2 

to •OH through Reaction 2.  

 

Figure 6. ROS production and characterization. Time course of (a) hydroxyl radical, (b) hydrogen 

peroxide, and (c) singlet oxygen production, respectively, as PSs are irradiated with 365 nm light. 

The other reactive ROS, 1O2, is the primary species involved in oxygen dependent type II 

PDT. The ease of electron–hole pair generation upon exposure of TiO2 nanoparticles to light, 
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facilitates concerted reduction of oxygen to super oxide and subsequent oxidation to 1O2 (Figure 

5c). Expectedly, our results show that TiO2-generated 1O2 was an order of magnitude higher than 

TiO2-N3 or N3 (Figure 6c). In contrast to the synergistic effects of N3 on •OH and H2O2 

production by TiO2-N3, N3 effectively inhibited 1O2 generation. Alone, N3 can produce singlet 

oxygen through intersystem crossing to the triplet state and spin-inversion of the triplet state of N3 

and triplet state of oxygen. Whereas this process takes place on the time scale of microseconds,11 

electron injection into TiO2 occurs on the time scale femtoseconds.15 As a result, when N3 is 

adsorbed onto TiO2, the probability of electron injection is higher than intersystem crossing and 

spin-inversion. Thus, N3 favors reduction reactions, which enhances H2O2 production that is 

subsequently used to increase •OH. Effectively, N3 converts TiO2 from a dual type I and II PDT 

agent to a predominantly type I PS under normoxic conditions.  

 

Figure 7. Oxygen dependence on hydroxyl radical production. ROS production of (a) hydroxyl 

radical, (b) hydrogen peroxide, and (c) singlet oxygen at 8 mmHg oxygen pressure. Rate of (d) 
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hydroxyl radical, (e) hydrogen peroxide, and (f) singlet oxygen production under hypoxic 

conditions. 

To test the performance of the PSs under severe hypoxic conditions, we bubbled nitrogen 

in a suspension of the PSs and the appropriate sensors to attain 8 mmHg for all ROS measurements. 

For H2O2 and •OH measurements, the solution was then added to a 96-well plate and incubated in 

8 mmHg oxygen pressure atmosphere for an hour. Measurements were taken at different time 

points after UV irradiation of the solution (Figure 7). We found that the •OH production followed 

the same trend as in normoxic conditions, with TiO2-N3 generating about 3-fold greater •OH than 

either TiO2 or N3 (Figure 7a). In addition, the rate of •OH production for TiO2-N3 was 3-fold 

higher than TiO2. These results demonstrate that the reductive effect of N3 on TiO2 allowed the 

efficient utilization of oxygen, even at low pressures, to maintain •OH production (Figure 7d).  

N3 was the only PS that generated H2O2 in hypoxic conditions (Figure 7b, e). The slopes 

of H2O2 generation for TiO2 and TiO2-N3 were both negative in hypoxic conditions, indicating a 

decrease in baseline H2O2 over time. The dependence of the initial on the reduction of oxygen 

reaction to produce H2O2 led to the observed effect for TiO2 or TiO2-N3 (Reaction 3). Irrespective 

of the PS used, the minimal availability of molecular oxygen under hypoxic conditions prevented 

the production of 1O2 (Figure 7c, f). 

This work demonstrates that combining the two PSs resulted in changes to their 

photophysical properties, which altered both the type and amount of ROS produced. It also 

delineates the various pathways that TiO2-N3 uses to enhance •OH production and maintain a 

significant level of these species in normoxic and hypoxic conditions. The addition of N3 to TiO2 

causes a build-up of electrons on the TiO2 surface, which likely accounts for the synergistic 

production of H2O2 and •OH (Figure 6a, b and Figure 5d). Furthermore, the inability of TiO2 to 
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produce H2O2 under hypoxic conditions suggests that N3 facilitated the depletion of residual H2O2 

(Figure 7b, e) and the rapid conversion of the low oxygen concentration into •OH, thus increasing 

the concentration of this species (Figure 7a, d). The ensemble of these results demonstrates a 

mechanism to convert and maintain cytotoxic •OH production by harnessing the reductive power 

of ruthenium complexes, which efficiently reduces low levels of oxygen for ROS production. Our 

findings could enable the application of this strategy to develop highly efficient nano-

photosensitizers in the future for PDT.   
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Chapter 3 :  Detection and Selective 

Destruction of Lysosomes Using Chlorin e6 

pH Dependent Lifetime Shifts and ROS 

Production 
 

This chapter is based on a pending article:  

Rebecca C. Gilson, Rui Tang, Daniel Foust, and Samuel Achilefu. Detection and Selective 

Destruction of Lysosomes Using Chlorin e6 pH Dependent Lifetime Shifts and ROS Production. 

ACS Sensors (To be submitted)  

  



 

30 

 

3.1 Chapter summary  
 Specific selection of therapeutic targets and detection of subsequent damage is vital to 

understand and optimize photodynamic therapy (PDT) of cancer. Here we present a PS, PS1, 

which can be used to monitor and disrupt lysosomal function by fluorescence lifetime imaging 

and light activated ROS production, respectively. As PS1 traffics from early endosomes to 

lysosomes, its lifetime decreases from 4.8±0.2 to 4.5±0.1 ns, corresponding to a pH change of 

5.8±0.5 to 4.9±0.4. Furthermore, inhibition V-ATPases, preventing acidification of lysosomes, 

resulted in a pH increase to 5.3 as measured by PS1’s lifetime. Time-dependent light activation 

of PS1 produced ROS, inducing lysosomal damage and pH neutralization. This study illustrates 

the potential use of PS1 to monitor the trafficking of PSs in cells and to spatiotemporally apply 

PDT to induce cell death. In addition, the fluorescence lifetime of PS1 provides a readout of 

intracellular pH and lifetime changes can predict cellular response to PDT.  

3.2 Introduction 
PDT is a treatment method that uses a light activatable drug (PS) to produce cytotoxic 

ROS. The outcome of the therapy depends on many factors, including the photophysical properties 

and subcellular location of the PS. Understanding the interplay between these variables is vital in 

developing an optimal therapy.  

 Endocytosis serves as the primary mechanism for PS internalization into cells. Throughout 

endocytosis, the PS encounters a decreasing pH gradient as it traffics through early endosomes 

(pH 6.5), late endosomes (pH 6.0), and lysosomes (pH 4.5-5).1  Lysosomes are responsible for the 

degradation of macromolecules and contain over 50 different enzymes that are optimally active at 

pH 4.7.2 In addition, lysosomes contain hydrolases such as cathepsin B/D/L which, when released 

from the lysosome, can activate caspase mediated apoptosis.3-4 Release of the lysosome content 
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can occur through lysosomal membrane permeabilization (LMP).  LMP can be formed through 

several methods: lysosomotropic drugs, microtubule-disrupting anti-cancer drugs, VepA 

activation which inhibits V-ATPase the proton pump responsible for acidifying lysosomes,5 and 

intralysosomal ROS. ROS, such as hydroxyl radicals, can be formed endogenously through 

processes such as the Fenton reaction,6-7 or through light activation of a PS localized to the 

lysosome.8-9  

When PSs are activated in lysosomes, the ROS produced can trigger LMP, releasing 

lysosomal contents, and activating apoptosis. LMP will also result in neutralization of the 

lysosomal pH. Alternatively, activation of the PS in endosomes, before it reaches the lysosome, 

may result in less damage as endosomes do not contain apoptosis activating cathepsins. Therefore, 

a PS’s subcellular localization can alter the effectiveness of PDT. It is important to determine the 

time it takes for the PS to traffic from endosomes to lysosomes, as this time indicates when the PS 

should be irradiated for PDT. This time is called the drug-light interval (DLI). 

To detect differences in damage to endocytic vesicles post PDT, we developed a pH sensor 

to measure the vesicles’ ability to maintain a physiological pH gradient. There are several 

fluorescence based methods for measuring pH in vivo: fluorescence intensity, ratiometric 

fluorescence, and fluorescence lifetime. Single wavelength fluorescence intensity measurements 

require the simplest instrumentation, data acquisition, and analysis; however, this method lacks 

the ability to adequately quantify absolute pH due to dependence on sensor concentration. 

Ratiometric probes provide a solution to this problem by using a dual channel sensor in which the 

pH is determined by calculating the ratio of the fluorescence intensities at each channel.10 While 

this method may work well for sensors in solution, wavelength dependent scattering and 

absorption can cause unpredictable changes in the ratiometric measurements.11-13 Therefore, we 
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developed a fluorescence lifetime imaging microscopy (FLIM) method tuned to specifically and 

non-invasively measure the pH of the endosomal pathway. Fluorescence lifetime is less dependent 

on the concentration of the fluorophore and can be used in both spectroscopy and in vivo 

measurements.   

Here, we describe a novel PS, Ce6-cGRD (PS1) that internalizes through the endosomal 

pathway. Ce6 is a potent PS and has been developed into a clinical PS, talaporfin, to treat liver 

and pancreatic cancer.14-15 PS1 has pH dependent fluorescence lifetime shifts with a pKa of 5.2, 

within the physiological pH of the endosomal pathway. We used PS1’s fluorescence lifetime to 

measure pH of the endocytic pathway and monitor the integrity of lysosome structure before and 

after PDT.  ROS induced damage to the lysosome, resulted in a pH increase indicative of LMP 

formation. Activation of PS1 in the lysosome resulted in ~80% more cell killing than activation 

in endosomes.  

3.3 Experimental section 

3.3.1 Chemicals and materials 

All the fluorenylmethyloxycarbonyl (Fmoc) amino acids and Fmoc-Lys(Boc)-Wang 

Resin were purchased from AAPPTec (Louisville, KY, USA). All the other chemicals were 

purchased from Sigma-Aldrich (St. Louis, MO, USA) and used without further purification. 

Chlorin E6 (Ce6) was purchased from Frontier Scientific (Logan, UT, USA). Water was 

obtained from Millipore Direct Q3 system (Billerica, MA, USA). Mass-spectrometry was 

recorded on a Shimadzu LCMS2010 ESI mass Spectrometer (Columbia, MD, USA).  

3.3.2 Synthesis of pH-sensitive fluorescent dye, PS1 

 The linear GRD peptide, H-DCys(Acm)-Gly-Arg(Pbf)-Asp(tBu)-Ser(tBu)-Pro-

Cys(Acm)-Lys(Boc)-OH, was prepared via a CEM Liberty microwave peptide synthesizer 
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(Matthews, NC, USA) on the Fmoc-Lys(Boc)-wang resin (Figure 15a). The resin (0.1 mmol) 

was swelled in DCM for 1 h before use. Fmoc-amino acids (0.5 mmol, 5 eq), coupling reagent 

(HBTU, 0.5 mmol, 5 eq) and DIEA (1 mmol, 10 eq) were added to the resin and the mixture was 

reacted for 15 min under MW irradiation (50W, 75 ºC). The resin was washed with DMF for 3 

times. Deprotection of Fmoc group was carried out by treatment of 20% piperidine/DMF for 5 

min under MW irradiation (50W, 75 ºC). The peptidyl resin was washed and collected. 

Cyclization of the peptide to form the disulfide bridge was performed on resin with thallium 

trifluoroacetate (1.2 eq) in DMF for 90 min. Subsequently, Ce6 (3 eq) is conjugated to the cyclic 

peptide on solid support at the presence of HATU (5 eq) and DIEA (5 eq) in DMF to afford PS1 

peptidyl resin. The resulted resin was then treated with a cleavage cocktail of TFA: thioanisol: 

phenol: water (85:5:5:5, v/v/v/v) for 90 min at room temperature for 2 hours. The cleaved 

peptide product was concentrated in vacuo, then purified on reverse-phase HPLC (Gilson, 

Middleton, WI, USA). PS1 (Ce6-cyclic (DCys-Gly-Arg-Asp-Ser-Pro-Cys)-Lys-OH), M/W 1441, 

ESI-MS observed 1442 (M+1) and 722 (M+2/2) (Figure 15b). 

3.3.3 Spectral properties and pKa of PS1 

The absorption and emission spectra of PS1 were recorded on a UV-vis absorption 

spectrophotometer (Beckman DU640, CA, USA) and fluorimeter (Fluorolog-3, Horiba Jobin 

Yvon, NJ, USA), respectively. The molar extinction coefficient of PS1 in water is measured to be 

24,663 M-1 cm-1 at 400 nm. For pH titrations, PS1 was dissolved in 0.1M ionic strength NaCl in 

water or Dulbecco’s Modified Eagle Medium (DMEM) without phenol red. The initial solution 

was acidified with dilute aqueous HCl. Incremental increase of the pH value was achieved by 

adding small amount of dilute NaOH into the solution. The pH of the solutions were recorded with 

a pH meter (Accumet AB15, MA, US). At each pH point, the absorption, fluorescence spectra, 
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and fluorescence lifetime (ex 640 nm/em 690/70 nm BP) (MicroTime200, PicoQuant, Berlin 

Germany) were also recorded.  

3.3.4 Fluorescence lifetime spectroscopy and FLIM 

Fluorescence lifetime of PS1 was measured on a MicroTime200 fluorescence lifetime 

microscope. Both imaging and spectroscopy was performed with a 40x0.65 objective, Plan N, 

Achromat, air spaced, working distance = 0.60 mm (Olympus, Center Valley, PA, USA). The time 

correlated single photon counting (TCSPC) histograms were obtained with a laser repetition rate 

of 10 MHz. A maximum laser output power of 6±0.6 μW was used.  

A bi-exponential tail-fit was used to fit the TCSPCs in a FLIM image. A bi-exponential fit 

was chosen because (1) the pH titrations of Ce6 and PS1 showed two species, protonated and 

deprotonated, and (2) bi-exponentials achieved the chi-squared without over fitting (Figure 8 and 

Figure 16). A tailfit was used to reduce variations between spectroscopy and imaging.  

3.3.5 pH maps 

pH calculated maps were created by using the standard curve obtained by the PS1 titration 

in DMEM to back-calculate the pH at each pixel in a FLIM image. At lifetimes higher than the 

upper saturation point of the standard curve (Figure 9a), the pH was assigned to the 

correspondingly highest pH that the curve predicted (4.724 ns, pH = 6.79), and therefore appear 

as dark red in the image. This was also done to the lowest pHs (3.595 ns, pH = 0.68), and therefore 

appear as dark blue in the image.   

3.3.6 Bafilomycin A1 neutralization of the lysosomes and colocalization studies 

4T1/luc cells were grown on glass bottom (#1) cell culture dishes (In Vitro Scientific, 

Sunnyvale, California, USA). For colocalization studies the cells were treated with 10 μM PS1 for 

2 or 24 h and 75 nM lysotracker green (ThermoFisher Scientific, Waltham, MA, USA) for 2 h. 
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The cells were then washed with DMEM without phenol red and imaged with the FLIM system. 

For baflimoycin A1 cells studies, cells were incubated with PS1 for 24 hours, washed, and imaged 

on the FLIM to obtain baseline measurement. Cells were then treated with 200 nM bafilomycin 

A1 for 1 h and imaged. 

Colocalization scatter plots were generated and Pearson’s correlation coefficients were 

calculated using the ImageJ plugin, JACoP.  

All cell imaging was done in a CO2 stage top incubator (In Vivo Scientific, St. Louis, MO, 

USA). 

3.3.7 Photodynamic therapy with PS1 

For FLIM PDT studies, 4T1/luc cells were grown on glass bottom (#1) cell culture dishes 

(In Vitro Scientific, Sunnyvale, California, USA).  The cells were incubated with PS1 for 24 h, 

washed, and then irradiated with 650 nm light at 35 mW/cm2 of light for 30 min. Pre and post PDT 

FLIM images were obtained.  

For PDT viability studies, 4T1/luc cells were grown in 96-well black walled plates.  The 

cells were incubated with PS1 for 1-24 h, washed, and then irradiated with 650 nm light at 3.65 

mW/cm2 of light for 10 min. 24 h after irradiation, a viability assay was performed using 3.33 μM 

of Calcein-AM in PBS for 30 min. 

3.4 Results and discussion  

3.4.1 Spectral properties of pH-sensitive PS, PS1 
To use PS1 as a pH sensor, we first characterized the pH sensitivity of its absorption and 

fluorescence emission. pH titrations of PS1 and Ce6 showed that each absorption peak of PS1 and 

Ce6 are spectrally pH dependent (Figure 8b and Figure 16a). The 400 nm and 500 nm peak blue 

shift with increasing pH, while the 640 nm peak red shifts to 660 nm. Similar shifts were observed 
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in the fluorescence emission of PS1 and Ce6 (Figure 8c and Figure 16b). When excited at 400 

nm or 620 nm, the emission peak red shifts from 640 to 660 nm. These data indicate two species 

of Ce6 exist, protonated and deprotonated. The ratio of these two species is determined by the pH 

of solution with a pKa of 5.2 (Figure 16 and Figure 17)  

 
Figure 8. (a) Structure of PS1. (b) Absorption spectra of pH titrated PS1 in NaCl water. (c) 

Emission spectra of pH titrated PS1 excited at 400 nm or 620 nm. The legend for b and c are the 

same. 

3.4.2 pH sensitive fluorescence lifetime properties of PS1 

To explore a more robust method to measure pH, compared to the ratiometric pH method, 

the fluorescence lifetime of PS1 was measured as a function of pH. The titrations were conducted 
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in DMEM media without phenol red to mimic the intracellular environment and in saline (Figure 

9a and Figure 18), respectively. The lifetime histograms clearly show two lifetime components 

(Figure 9a). The relative amplitudes of the two lifetimes change as a function of pH while the 

actual lifetimes remain constant. Lifetime histograms were fit with bi-exponentials tail-fits and the 

average lifetime at each pH was calculated using the extracted values. We then constructed a 

standard curve of average lifetime versus measured pH to obtain a sigmoidal curve with a pKa of 

5.2 ± 0.1 (Figure 9b).  This standard curve was used to back calculate the pH based on the 

measured lifetime (Figure 9c). The linear fit of the calculated pH versus the measured pH had a 

slope of 0.98 ± 0.03 and could be used to predicted pHs from 2.33 to 5.5 with residuals less than 

the absolute value of 0.3. The pKa of PS1 makes it a suitable candidate for sensing the acidic pH 

of the lysosomes and the endosomal pathway.  

 

Figure 9. (a) Lifetime histograms of PS1 titrated phenol red free DMEM. (b) Average lifetime of 

PS1 as a function of pH calculated by fitting the lifetime histograms to a bi-exponential tail-fit, 

pKa 5.2. (c) Calculated pH corresponds to the measured pH with minimal residuals. n=3 

titrations. 
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3.4.3 PS1 internalizes into the lysosomes 

To determine the subcellular localization of PS1, it was incubated with cells for 2 h or 24 

h and lysotracker green was added 2 h before imaging. As seen by the yellow overlap of the two 

dyes PS1 localizes to the lysosomes (Figure 10a).16 In addition, scatter plots of the two channels 

of each image show a positive correlation between PS1 and lysotracker green (Figure 10b). A 

Pearson correlation coefficient of 0.6, between the two channels, quantitatively confirm 

colocalization (Figure 10b,c). 

 

 
Figure 10. (a) Colocalization between PS1 and lysotracker green at 2 and 24 h. (b) Scatter plots between 

the red channel and green channel for the two images shown in (a). (c) Pearson correlation coefficient 

calculated between the red channel and green channel across 5 images. 

3.4.4 Fluorescence lifetime of PS1 is an indicator of endosomal pH 

Next, we used the fluorescence lifetime of PS1 to measure the pH of the endosomal 

pathway. Cells were incubated with PS1 for 2 to 24 h followed by FLIM. The fluorescence lifetime 

images were fit with bi-exponential tail-fits and the average lifetime at each pixel was calculated. 

From 2 to 24 h the lifetime of PS1 dropped from 4.8 ± 0.2 ns to 4.5 ± 0.1 ns, indicating a decrease 
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in pH (Figure 11a and Figure 19). The fluorescence lifetime image was converted into a pH map, 

such that at each pixel of the image the average lifetime of PS1 was used to calculate the pH of the 

local environment using the standard curve previously obtained (Figure 11b and Figure 9b). 

Quantification of the pH maps indicate that PS1 experiences different pHs: At 2 h the pH is 5.8 ± 

0.5, corresponding to the pH of endosomes, while at 24 h the pH is 4.9 ± 0.4, corresponding to the 

pH of lysosomes (Figure 11b,d). This indicates that from 2 h to 24 h PS1 is trafficked through 

increasingly acidic vesicles of the endosomal pathway and at 24 h resides in the acidic lysosomes. 

Thus, the lifetime of PS1 is responsive to environmental pH changes and can be used to measure 

the local pH.   

 

Figure 11. (a) FLIM of PS1 incubated in cells for 2 or 24 h. (b) pH maps of the corresponding 

fluorescence lifetime images. (c) Normalized lifetime distribution histograms of PS1. (d) Average 

lifetime of PS1 plotted versus the calculated pH, showing the average pH at 2 h is 5.8 ± 0.5, and 

at 24 h is 4.9 ± 0.4. n≥3. 
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3.4.5 PS1 lifetime is responsive to acute changes in lysosomal pH 

Next, we characterized the responsiveness of PS1 to lysosome damage in the form of 

intra-lysosomal pH change. We chose bafilomycin A1 as a model for lysosome damage. 

Bafilomycin A1 inhibits VTP-ases, which are responsible for pumping protons into the 

lysosomes to maintain an acidic pH.17 At both 2 and 24 h of PS1 incubation, bafilomycin A1 was 

added to the cells and fluorescence lifetime images were obtained before and after treatment 

(Figure 12a). The final pH of the vesicles after additional of bafilomycin A1 was ~5.3, 

regardless of the starting pH of the endosome or lysosome (Figure 12b). Therefore, PS1’s 

fluorescence lifetime responds to acute changes in pH that indicate lysosomal integrity. 
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Figure 12. (a) FLIM and pH maps of PS1 at 2 or 24 hours, before and after addition of 

bafilomycin A1. (b) The average lifetime and pH change before and after the addition of 

bafilomycin A1 at both timepoints. (*p < 0.05.) n≥3. 

3.4.6 Bafilomycin A1 changes the subcellular localization of PS1 

PS1 can measure the physiological pH change due to bafilomycin A1. We next sought to 

determine if bafilomycin A1 induced structural changes to the lysosome that could be asses by the 

subcellular localization of PS1. We therefore performed colocalization imaging of PS1 and 

lysotracker green after the addition of bafilomycin A1 and found that, indeed, PS1 and lysotracker 

green no longer colocalize (Figure 13a). This was further quantified in scatter plots and by the 
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Pearson correlation coefficient (Figure 13b,c). Therefore, PS1 is a sensor that can be used to 

measure the physiological and structural changes to lysosomes after a damaging event.  

 

Figure 13. (a) Bafilomycin A1 was added to cells at 24 h post incubation with PS1 and 2 h post 

incubation of lysotracker green. (b) Scatter plots and (c) Pearson correlation coefficient of red and 

green channels before and after bafilomycin A1. n=3. 

3.4.7 PDT activation of PS1 causes loss in lysosomal integrity 

After characterization of PS1’s ability to quantify damage using the model system of 

bafilomycin A1, we tested whether PS1 could be used a dual sensor and lysosome damaging PDT 

agent. PS1 contains the PS Ce6, which produces ROS and free radicals when activated with red 

light. We use FLIM to characterize the nature of the cellular damage inflicted by light activation 

of PS1. The pre- and post- PDT images clearly show an increase in lifetime of PS1, corresponding 

to an increase in pH to ~6 (Figure 14a,b). Moreover, the distribution of PS1 changed from 

punctate to diffuse, indicating that the ROS inflicted damage to the lysosomes causing the release 

of PS1 into the cytosol. These physiological and structural changes are similar to the ones that 

occurred with bafilomycin.  
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The damage to the lysosome was so significant that it resulted in cell death. (Figure 14c). 

When PS1 localized to the early endosomes, a DLI of 1 and 2 h, the therapy was minimally 

effective. When PS1 localized to late endosomes, a DLI of 4 the therapy resulted in a 60% loss in 

viability with minimal dark toxicity. However, the therapy resulted in the greatest loss in viability, 

when PS1 localized to the lysosomes, a DLI of 24 h, resulting in 97% of cell killing compared to 

the untreated control. We did observe significant dark toxicity at 24 hours due to just PS1. 

Lysosome PDT was likely the most effect at inducing cell death due to the release of apoptosis 

activating cathepsins from the lysosome.   

 
Figure 14. PDT results in loss of lysosome integrity. (a) PS1 was incubated in cells for 24 h. 

FLIM images were taken of cells before and after PDT. (b) Lifetime and calculated pH change 

before and after PDT. (c) Cell viability after PDT with a DLI of 1-24 h. 

3.5 Conclusion  
In summary, we have constructed a pH-sensitive sensor and photosensitizer by conjugation 

of chlorin e6 to a peptide that undergoes internalization through the endosomal pathway. PS1 has 
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pH sensitive fluorescence lifetime shifts that enables quantitative and real-time pH measurements 

of the endosomal pathway. Irradiation of PS1 stimulates ROS production that selectively destroys 

lysosomes resulting in cell death. Subsequent lifetime measurements of PS1 confirm lysosomal 

destruction due to increase in pH and loss of ability to maintain a physiological pH gradient. In 

this study, we showed that PS1 is a dual sensor and PS that enables real-time readout of damage 

inflicted by PDT.  
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3.6 Supporting information 

 
Figure 15. (a) Synthesis scheme of PS1. (b) LCMS spectrum of PS1. 
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Figure 16. (a) Absorption and emission spectra of pH titrated Ce6 in saline from pH 2.24 to 

9.75. All three absorption peaks change according to pH. Emission spectra excited at 400 nm or 

620 nm. Both excitation wavelengths result in a red shift of emission as pH increased. (b) 

Ratiometric pH curve of peak fluorescence at 660 nm and the isosbestic point at 650 nm, pKa 

5.87. 
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Figure 17. Ratiometric approach for quantifying the pH changes of PS1. The peak emission 

fluorescence at 660 nm divided by 655 nm, the fluorescence at the isosbestic point. The curve 

was fit with a sigmoidal equation, pKa 5.2. The sigmoidal curve was used to back-calculate the 

pH and this was plotted versus the measured pH. 
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Figure 18. Lifetime titration of PS1 in saline. (a) The lifetime distribution was fit with a 

sigmoidal equation. (b) The sigmoidal curve was used to back-calculate the pH and this was 

plotted versus the measured pH. n≥3 

 

Figure 19. TCSPCs for PS1 incubated in cells for 2 or 24 h. n≥3 
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Chapter 4 :  ROS Localized to the ER Results 

in Greater Cell Death Compared to 

Lysosomes and Mitochondria 
 

This chapter is based on a pending article:  

Rebecca C. Gilson, Rui Tang, and Samuel Achilefu. ROS Localized to the ER Results in Greater 

Cell Death Compared to Lysosomes and Mitochondria. Bioconjugate Chemistry (To be 

submitted) 
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4.1 Chapter summary 
 Photodynamic therapy is a versatile strategy that can treat many forms of cancer 

including those with resistant phenotypes. However, it remains unclear which subcellular 

organelle is most susceptible to oxidative damage and therefore where the photosensitizer should 

be targeted.  To elucidate the optimal intracellular target, we conjugated the photosensitizer, Ce6, 

to ligands that directed it to different organelles: ER (Ce6), lysosome (PS1 and PS2) and dual 

mitochondria and lysosome (PS3). Conjugation of Ce6 led to alterations in the kinetics of 

hydroxyl radical and hydrogen peroxide production. At 10 min of irradiation, Ce6 produced 

significantly more hydroxyl radicals than the conjugates, and PS2 and PS3 produced more 

hydrogen peroxide that Ce6 or PS1. After normalization of the intracellular concentration of each 

PS, the therapeutic efficacy of organelle based PDT was assessed. Lysosomal PDT was greatly 

affected by the PS conjugate used: PS1 resulted in no cell death, while PS2 resulted in 75% cell 

death. Dual mitochondrial and lysosomal PDT killed 63% of cells. ER PDT resulted in the 

greatest cell death, killing up to 92% of cells with negligible dark toxicity. In conclusion, we 

found that ROS production in the ER resulted in the greatest cell killing, compared to the 

lysosome and the mitochondria. 

4.2 Introduction  
 PDT is a form of cancer treatment that combines light and light activatable drugs, 

photosensitizers (PSs), to produce cytotoxic reactive oxygen species (ROS). PDT can act through 

multiple pathways to cause tumor regression: direct damage to tumor cells resulting in necrosis 

and apoptosis, shut down of microvessels depleting the tumor of nutrients and oxygen, and 

activation of the acute and innate immune system resulting in inflammation.1 

The intracellular localization of the PS affects the type of damage that is done to the cell 
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and therefore the therapeutic outcome. The lysosome is an easily accessible target, as many PSs 

internalize through the endosomal pathway. Activation of the PS in the lysosome, produces ROS 

that oxidize lipids causing lysosomal membrane permeabilization (LMP), release of cathepsins 

into the cytosol, and activation of apoptosis.2-6 In a similar chain of events, activation of a PS in 

the mitochondria can permeabilize the mitochondrial membrane, releasing cytochrome c, and 

activating apoptosis.7-8 Activation of the PS in the endoplasmic reticulum (ER) can cause the 

release of large stores of calcium, which again can activate apoptosis.9  

Despite the development and testing of many PSs, it remains unknown how susceptible 

each organelle is to ROS. A direct comparison, using the same PS, of lysosomal PDT with 

mitochondrial PDT found that mitochondrial PDT killed ~20-fold greater HeLa cells than 

lysosomal PDT, suggesting that mitochondrial PDT was more effective.10 In a different study, 

sequential lysosomal and mitochondrial PDT, with NPe6 and benzoporphyrin derivative (BPD), 

respectively, proved to be more effective than PDT in either organelle separately.4-5, 11 We 

therefore hypothesized that a PS targeting both the lysosome and mitochondria would also be 

more effective than PDT in a single organelle. Few studies have been conducted to directly 

compare ER PDT with lysosomal or mitochondrial PDT. ER PDT has been linked to activation 

of anti-tumor immunity a potentially unique tumor regression pathway compared to PDT in other 

organelles.12-15  

Difficulty in direct organelle comparisons arise from inability to control for all variables, 

such as, the local environment of the organelle or the photophysical properties of the PSs. Many 

previous studies attempt to compare organelle specific PDT with different targeted PSs, failing to 

isolate the organelle as the single altered variable. To eliminate the PS as an additional variable, 

we used a single PS, chlorin e6 (Ce6), for all targeted organelles. Ce6 has a high molar extinction 
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coefficient at 660 nm and low photodecomposition.16 In addition, a derivative of Ce6, mono-L-

aspartyl chlorin e6 (NPe6), has been tested in clinical phase 3 trials to treat hepatocellular 

carcinoma and colorectal cancer metastatic to the liver.17  

We tested Ce6 activation in three subcellular localizations, including the: endoplasmic 

reticulum (ER) with Ce6, lysosomes with PS1 and PS2, and both lysosome and mitochondria 

with PS3. After correcting for the intracellular PS concentration, we found that for lysosomal 

PDT was highly dependent on the targeting ligand: PS2 killed ~75-fold more cells than PS1. In 

addition, we found that lysosomal PDT (PS2) was comparable to dual lysosomal and 

mitochondrial PDT (PS3). Finally, we found that ER PDT resulted in the greatest loss in viability 

while maintaining the lowest dark toxicity. 

4.3 Experimental section 

4.3.1 Chemicals and materials  

Dulbecco’s modified Eagle’s medium (DMEM) culture medium, fetal calf serum, and 

penicillin-streptomycin were purchased from Gibco, (Life Technologies, NY, USA). Lysotracker 

green, mitotracker green, ER tracker green, HPF, Amplex Red assay, Calcein AM were pur-

chased from Thermo Fisher Scientific.  

 4T1/luc murine breast cancer cells were obtained from David Piwnica-Worms, 

Washington University in St. Louis.16 Cells were cultured using DMEM supplemented with 10% 

FBS, and 1% penicillin streptomycin in a humidified incubator at 5% CO2 balanced with air at 

37°C. The cells were kept at 50–80% confluence. 

4.3.2 Synthesis of PS1 

The linear GRD peptide, H-DCys(Acm)-Gly-Arg(Pbf)-Asp(tBu)-Ser(tBu)-Pro-

Cys(Acm)-Lys(Boc)-OH, was prepared via a CEM Liberty microwave peptide synthesizer 
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(Matthews) on the Fmoc-Lys(Boc)-wang resin (Figure 15). The resin (0.1 mmol) was swelled in 

DCM for 1 h before use. Fmoc-amino acids (0.5 mmol, 5 eq), coupling reagent (HBTU, 0.5 

mmol, 5 eq) and DIEA (1 mmol, 10 eq) were added to the resin and the mixture was reacted for 

15 min under MW irradiation (50W, 75 ºC). The resin was washed with DMF for 3 times. 

Deprotection of Fmoc group was carried out by treatment of 20% piperidine/DMF for 5 min 

under MW irradiation (50W, 75 ºC). The peptidyl resin was washed and collected. Cyclization of 

the peptide to form the disulfide bridge was performed on resin with thallium trifluoroacetate 

(1.2 eq) in DMF for 90 min. Subsequently, Ce6 (3 eq) is conjugated to the cyclic peptide on solid 

support at the presence of HATU (5 eq) and DIEA (5 eq) in DMF to afford PS1 peptidyl resin. 

The resulted resin was then treated with a cleavage cocktail of TFA: thioanisol: phenol: water 

(85:5:5:5, v/v/v/v) for 90 min at room temperature for 2 hours. The cleaved peptide product was 

concentrated in vacuo, then purified on reverse-phase HPLC (Gilson). PS1 (Ce6-cyclic (DCys-

Gly-Arg-Asp-Ser-Pro-Cys)-Lys-OH), M/W 1441, ESI-MS observed 1442 (M+1) and 722 

(M+2/2) (Figure 15b). 

4.3.3 Synthesis of PS2 

Synthesis scheme is illustrated in Figure 25. Briefly, 86 mg of TPP ((3-

caboxypropl)triphenylphosphonium bromide) was dissolved in 1 mL of anhydrous DMF and 

then 65 mg of CDI (1,1-Carbonyldiimidazole) and 38 μL of N-Boc-ethylenediamine was added 

following vortexing for 6 h. The product was precipitated with diethyl ether, dried and treated 

with 95% TFA to remove the boc-protection. The resulted TPP-amine was dried and dissolved in 

1 mL of anhydrous DMF, then added 60 mg Ce6 (chlorin e6), 12 mg of DMAP (4-

Dimethylaminopyridine) and 76 mg of HATU (1-[Bis(dimethylamino)methylene]-1H-1,2,3-

triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate), subsequently. The reaction mixture was 



 

56 

 

vortexed for overnight at room temperature. The final product was precipitated with diethyl ether 

and purified on reverse-phase HPLC (Gilson). PS2, M/W 970. ESI-MS: observed 917(M+1) and 

486 (M+2/2).     

4.3.4 Synthesis of PS3 

Synthesis scheme was illustrated in below Figure 26. Briefly, 86 mg of TPP ((3-

caboxypropl)triphenylphosphonium bromide) was dissolved in 1 mL of anhydrous DMF and 

then 65 mg of CDI (1,1-Carbonyldiimidazole) and 87 μL of 2,2-(Ethylenedioxy)bis(ethylamine) 

was added following vortexing for 6 h. The product was precipitated with diethyl ether. The 

resulted product was then dried and dissolved in anhydrous 1 mL of DMF, then added 30 mg 

Ce6 (chlorin e6), 6 mg of DMAP (4-Dimethylaminopyridine) and 36 mg of HATU (1-

[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate), subsequently. The reaction mixture is vortexed for overnight at room 

temperature. The final product was precipitated with diethyl ether and purified on reverse-phase 

HPLC (Gilson). PS3, M/W 1519. ESI-MS: observed 760 (M+2/2) and 507 (M+3/3).   

4.3.5 Colocalization imaging 

Colocalization studies were completed on a MicroTime200 (MT200) fluorescence 

lifetime microscope (PicoQuant) or confocal FV1000 (Olympus). MT200 imaging was 

completed with a 100x objective. Filters for the PS red channels where ex/em 640/655-725 nm 

and organelle stain green channel were ex/em 488/510-530 nm. Confocal imaging was 

completed with a 60x objective. Filters for the PS red channels where ex/em 633/650/750 nm 

and organelle stain green channel were ex/em 488/510-530 nm. 

All PS were incubated with cells for 4 h at 5 μM. Organelle stains were added before PS 

staining was completed such that at 4 h the cultures were washed and ready for imaging. For 
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lysosome staining, lysotracker green was incubated in cells for 2 h at 75 nM. For mitochondria 

staining, mitotracker green was incubated in cells for 15 min at 50 nM. For ER staining, ER-

tracker green was incubated in cells for 15 min at 1 μM. Imaging was conducted in DMEM 

without phenol red.  

Line plots were generated by selecting a line of interest, shown on the image, and 

generating a profile plot via Image J. The intensities were normalized to the max value of each 

line.  

Pearson correlation coefficients were calculated using the Image J (NIH, USA) plug-in JACoP, 

with at least 3 representative images.17  

4.3.6 ROS measurements 

For both hydroxyl radical and hydrogen peroxide assays, 10 μM of 50 μl PS was 

irradiated with 650 nm, 0.84 mW/cm2. For hydroxyl radical assays, 10 μM of hydroxyphenyl 

fluorescein, HPF, was added to the PS. This solution was irradiated on a 96 well plate, in 

triplicate for 0-60 min. The fluorescence of each sample was read on a plate reader (BioTek, 

USA), ex/em 485/518-538 nm. 

For hydrogen peroxide measurements, after irradiation was complete, the Amplex Red 

assay was used to quantify hydrogen peroxide concentration. A plate reader was used to read the 

fluorescence at ex/em 545/580-600 nm. A reference standard of known hydrogen peroxide 

concentration were used to calculate the concentration of hydrogen peroxide produced. 

4.3.7 PDT and intracellular PS concentration 

4T1 cells were seeded in a 96-well plate at a density of 5,000 cells (100 μl) per well 24 h 

prior to PDT experiments. Cells were treated with 0-100 μM Ce6, PS1, PS2 or PS3 for 4 h. Cells 

were then washed, their media replaced with phenol free DMEM, and their fluorescence was read 
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on a plate read (BioTek, USA) ex/em 390/645 nm in order to quantify the amount of PS that had 

internalized into the cells. Cells were irradiated with 650 nm light for 10 min at either 0.84 

mW/cm2 or 3.25 mW/cm2. The cells were then cultured for 24 h, at the end of which a viability 

assay was conducted. Morphology of the cells were monitored with a bright field microscope.   

To normalize the intracellular concentration of each PS, cells were treated with different 

starting concentrations of PS: 6.35 μM (Ce6), 4.68 μM (PS1), 10 μM (PS2), 3.11 μM (PS3) 

(Figure 29, Figure 24a). PDT assays were conducted as indicated above.    

4.3.8 Cell viability 

Cells were washed with PBS 3x prior to viability assay. Cells were incubated with 3.33 

μM (100 μl, PBS) per well of Calcein Am for 30 min. Calcein AM fluorescence was read on a 

plate reader ex/em 485/518-538 nm. Fluorescence was normalized to the untreated control.  

 

Figure 20. Structures of each four Ce6 based PS. 

4.4 Results and discussion 

4.4.1 Organelle specific uptake of Ce6 targeted derivatives 
 All four PSs internalized into 4T1, murine breast cancer cells, by initial plasma 

membrane binding and subsequent internalization (Figure 28).20-21  After 4 h of incubation with 
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cells, all PSs have reached their respective organelle of interest as shown by line plots and high 

Pearson correlation coefficients between the red (PS) channel and green (organelle marker) 

channel (Figure 21).  

Ce6 traffics with its membrane bound component to the ER.22 PS1 internalized through the 

endosomal pathway and at 4 h resides in the lysosome. PS2, although targeted using TPP which 

typically delivers cargo to the mitochondria, again resulted in lysosome accumulation.10, 23 This 

may be due to the hydrophobicity of Ce6. To overcome this, we added a PEG spacer and an 

additional TPP to Ce6 to obtain, PS3. At 4 h, PS3 resides in both lysosomes and mitochondria as 

indicated by colocalization with both lysotracker and mitotracker with Pearson correlation 

coefficients of 0.5 ±0 .3 and 0.6 ±0 .1, respectively (Figure 21c). Mitochondrial uptake of PS3 

could likely be increased through addition of methyl groups to the TPP phenyl rings.23 

 

 

Figure 21. (a) Subcellular localization experiments where each PS (red) was co-incubated with 

an organelle stains (green). Composite images show colocalization (yellow) between the two 
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dyes. (b) Normalized intensity of each dye along a line of interest (shown in white). (c) Pearson 

correlation coefficient between the red and green channel for each PS and organelle staining. n ≥ 

3 images.   

4.4.2 Targeting ligand alters ROS production  

To ensure all PS retained ROS production after addition of targeting ligands, we 

measured hydrogen peroxide and hydroxyl radical production upon light activation of the PSs. 

We used the molar extinction coefficients of Ce6 to calculate concentration of all PSs in order 

correlate the ROS generation between the PSs. The distinction between hydrogen peroxide and 

hydroxyl radical production is important when determining the location and type of oxidative 

damage. Hydrogen peroxide can diffuse through membranes and therefore can inflicted damage 

at locations distant from where it was produced. At these distant locations, it can also form the 

more potent hydroxyl radical through the Fenton reaction.24 On the other hand, hydroxyl radicals 

are very short lived and highly reactive and therefore will result in the majority of damage near 

their production site.   

In the first 10 min of irradiation, Ce6 and PS1 produced ~0.2 μM of hydrogen peroxide, 

while PS2 and PS3 produced ~0.37 μM hydrogen peroxide (Figure 22a). PS2 and PS3 again 

have similar kinetics within the first 10 min. After 10 min, the rate of hydrogen peroxide 

production by Ce6 and PS1 decreased. The rate of hydrogen peroxide production from PS3 

increased after 10 minutes. After 10 min, PS2 diverged from the PS3 kinetics, first decreasing 

hydrogen peroxide production and then at 60 min resuming at a rate similar to that of PS3 from 

10-60 min. In a previous study, a fluorescein-TPP conjugate did not have altered ROS 

production compared to fluorescein alone, indicating that the interaction of TPP with Ce6 in PS2 

and PS3 is unique.23  
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All four PSs had similar hydroxyl radical production kinetics over 60 min (Figure 22b). 

Ce6 produced ~1.5-fold greater hydroxyl radicals than the other three PSs, indicating that the 

conjugation of Ce6 reduces its ability to produce hydroxyl radicals. 

 

Figure 22. (a) Hydrogen peroxide or (b) hydroxyl radical production by PS irradiation with 650 

nm, 0.84 mW/cm2 light. Bar plot shows comparison at 10 min, the time used for in vivo PDT. 

n≥3. 

4.4.3 Targeting ligand alters cellular concentration of PSs 

Addition of organelle targeting ligands to Ce6, altered the amount of PS that accumulated 

in cells (Figure 29). The two TPP ligands on PS3, resulted greater cell uptake. PS1 had higher 

cell uptake compared to Ce6 and PS2, although the differences was not statistically different. 

4.4.4 PDT efficacy in lysosomes is dependent on type of ROS 

We first wanted to determine whether targeting ligands effected therapeutic efficacy. 
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Both PS1 and PS2 localize in the lysosome at 4 h, but they have different targeting ligands. 

When activated with light for 10 min, at 3.25 mW/cm2, PS2 killed 82% of cells while PS1 only 

kill 50% (Figure 23a). Minimal dark toxicity was observed for either PS.  

A possible explanation for this is the difference in type of ROS produced by each PS. At 

10 min of irradiation, PS2 produces ~2-fold greater hydrogen peroxide than PS1. However, PS1 

produces ~1.4-fold greater hydroxyl radicals than PS2. This suggests that hydrogen peroxide 

produced in the lysosomes is more lethal to cells than hydroxyl radicals produced in the 

lysosomes. Hydrogen peroxide can diffuse out of the lysosome resulting oxidative stress in other 

parts of the cell, while hydroxyl radicals are so short lived that they can only cause damage to the 

lysosome. Lysosomal damage does not always result in cell death and in cancer upregulation of 

HSP70 can aid in stabilization of the lysosome membrane, reducing risk of LMP formation.25-28  

Therefore, when developing PS targeted to the lysosomes, it is ideal to use hydrogen peroxide 

producing PSs. 
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Figure 23. 4T1/luc cells were incubated with 1 or 10 μM of each PS for 4 h, wash and irradiated 

with 650 nm, (a) 3.25 mW/cm2 or (b) 0.84 mW/cm2 light for 10 min. n≥3. 

4.4.5 Enhanced cell uptake of PS3 resulted in greater cell death 

PS2 and PS3 produce same amount of hydrogen peroxide at 10 min, while PS1 and PS3 

produced the same amount of hydroxyl radicals at 10 min. However, PS3 resulted in 90% cell 

death at 0.84 mW/cm2 when PS2 and PS1 resulted in 0% cell death (Figure 23b). Therefore, the 

difference in death is either due to the fraction of PS3 localized to the mitochondria or the high 

intracellular concentration of PS3. After normalization of intracellular concentration, PS2 and 

PS3 resulted in the same amount of cell death (Figure 23b). 

4.4.6 PDT efficacy enhanced in ER 

At the highest light dose and PS dose, 3.25 mW/cm2 and 10 μM, respectively, both Ce6 
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and PS3 killed ~95% of cells. When the PS dose was reduced to 1 μM, only Ce6 resulted in cell 

death which was reduced to ~50% (Figure 23a). For both Ce6 and PS3, the light dose could be 

reduced to 0.84 mW/cm2 with 10 μM PS, maintaining 90% cell killing (Figure 23b). However, 

when the PS dose was reduced to 1 μM no cell death was observed.  

4.4.7 Normalization of intracellular PS concentration 

Next we altered the starting concentration of each PS in order to obtain the same 

intracellular concentration across all PSs, ensuring the difference in PDT efficacy is due to 

organelle specific damage and not amount of PS. An intracellular concentration of ~0.5 μM was 

obtained in by each PS after 4 h of incubation (Figure 24a). The cells were then washed and 

irradiated with a high light dose, 3.25 mW/cm2
.  As with the previous experiments, ER PDT was 

most effective at killing cells, although, there was no significant difference between ER PDT and 

lysosomal PDT with PS2 (Figure 24b). 

Interestingly, there was a greater discrepancy between lysosomal PDT with PS1 and PS2 

than previously observed. Both PSs have negligible dark toxicity indicating that the difference in 

PDT is due to differential ROS production (Figure 22). Therefore it is important to consider not 

only the quantity of ROS produced but the type of ROS.  

Moreover, PS2 was more potent than PS3, although not significantly. This was an 

unexpected result considering the body of literature that showed dual organelle treatment more 

effective than a single organelle treatment,4-5 and that mitochondrial PDT is more effective than 

lysosomal PDT.10   
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Figure 24. (a) Concentration of PSs in cells after 4 h of incubation with different starting 

concentrations PS. (b) Cell viability after PDT with 0.5 μM of intracellular PS. n=3. 

4.5 Conclusion 
 All of the Ce6 based PSs initially bind to the membrane of cells and subsequently 

internalize and traffic to specific organelles. Interestingly, we found the subcellular localization 

of Ce6 at 4 h is the ER.  This has only been reported in one other study22 and most previous work 

have reported that Ce6 is localized to the cytosol, lysosome, or mitochondria. Based on studies of 

the pH dependent interaction of Ce6 with lipid membranes, it is possible that the discrepancy in 

subcellular localization arises due to differences in cell specific plasma membrane lipid 

composition, the pH of the cell growth media, or the intracellular cytosolic pH.20-21  

In addition, targeting Ce6 with a one or even two TPP, was not sufficient to result in full 

localization to the mitochondria. Alterations in the TPP structure, such as methylation of the 

phenyl groups, could aid in increasing mitochondrial uptake.23  

Conjugation of a targeting ligand to Ce6, altered the kinetics of amount of hydroxyl 

radicals and hydrogen peroxide produced upon light activation. The difference in type of ROS 
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produced greatly affected the efficacy of lysosomal PDT, resulting in the hydrogen peroxide 

producing PS2 to be more potent than PS1.  

Through direct comparison of ER, lysosomal, and mitochondrial PDT we have found that 

ROS production in the ER results in the greatest cell death.  ER PDT maintained up to 90% loss 

in viability, with a light dose of 0.84mW/cm2 and intracellular concentration of 0.7±0.2 μM. 

ROS produced in the ER can activated apoptosis through release of high concentrations Ca2+.29-30 

Moreover, ROS induced ER stress can also induce build-up of unfolded or misfolded proteins 

prompting activation of the unfolded protein response (UPR).31 UPR can promote the formation 

of stable complexes of heat shock proteins (HSP) with tumor antigens. When released from the 

cell, due to necrosis, these antigens can stimulated inflammation and activation of cytotoxic T-

cells.1,9  Previous studies of ER PDT with the PS, hypericin, have found upregulation of 

cytokines potentially involved in anti-tumor immunity.13-15 The ability of ER PDT to activate 

tumor regression through multiple mechanisms (e.g. direct cell death, and activation of the 

immune system) makes it a promising modality for cancer therapy.  

In conclusion, when conducting organelle specific PDT it is vital maintain consistency in 

the PS used for each organelle and the amount of PS in each organelle, without which the 

therapy is not comparable. With these considerations in mind, we have found the ROS 

production in the ER results in the greatest therapeutic efficacy. In the future, we will investigate 

if Ce6 ER PDT can stimulate additional mechanisms of tumor regression, such as activation of 

the immune system. 

4.6 Supporting information 
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Figure 25. Synthesis of PS2. 

 

 

Figure 26. Synthesis of PS3. 
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Figure 27. Normalized absorption for all PSs.  

 

Figure 28. PS initially bind to plasma membranes before internalization.  

 

Figure 29. Intracellular concentration of all PSs.  
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Figure 30. Cell viability at varying concentrations of PSs.  
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Chapter 5 :  Theranostic Molecular System 

Comprising a Photosensitizer and a Near 

Infrared Fluorescent Probe Enables 

Spatiotemporal Imaging and Treatment of 

Squamous Cell Carcinoma 
 

This chapter is based on a pending article:  

Rebecca C. Gilson*, Jessica P. Miller*, Rui Tang, Jie Cao, Mingzhou Zhou, and Samuel 

Achilefu. Theranostic Molecular System Comprising a Photosensitizer and a Near Infrared 

Fluorescent Probe Enables Spatiotemporal Imaging and Treatment of Squamous Cell Carcinoma. 

Theranostics (Under Review)  
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5.1 Chapter summary  
Cutaneous squamous cell carcinoma (SCC) is a common malignancy caused by the 

malignant transformation of keratinocytes, impacting millions worldwide. Treatment can be 

challenging when the disease is invasive. Here we developed an SCC12 orthotopic model that 

recapitulates the morphological disease appearance, along with the histological markers that are 

consistent with the disease. Using this model, we demonstrate that a novel theranostic agent, 

LS797, can image and treat SCC when excited with 780 nm and 650 nm light, respectively. In 

vitro data show that LS797 exhibits selective tumor cell accumulation, and when irradiated with 

650 nm light, induces cell death via apoptosis. In mice, the therapy resulted in a reduction in 

tumor growth rate of 78% and an overall decrease in tumor volume post treatment of 81% 

compared to the untreated controls. The combination of distinct molecular probe and 

photosensitizer with a tumor-targeting peptide allows for spatiotemporal tumor detection and 

therapy. 

5.2 Introduction 
Non-melanoma skin cancer (NMSC) is comprised of both squamous cell carcinoma (SCC) 

and basal cell carcinoma, and is the most common cancer worldwide impacting an estimated 2 to 

3 million people each year.1 SCC accounts for approximately 20% of NMSC diagnosed, making 

it a considerable portion of all cancers.2,3 Cutaneous SCC is caused by a malignant transformation 

of epidermal keratinocytes that leads to tumor formation, and has been linked to a number of risk 

factors including exposure to ultraviolet light, aging, light skin type, and chronic inflammation.4-8 

Unlike basal cell carcinomas, SCCs have high metastatic potential, requiring the development of 

effective treatment strategies.3 
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Numerous treatment options are available for cutaneous SCC. However, large-scale 

clinical studies have yet to determine a superior treatment option.9,10 One option for treating SCC 

is photodynamic therapy (PDT), where light is used to activate a photosensitizer (PS) that in turn 

induces cell death. Methyl-δ-aminolevulinic acid-PDT (MAL-PDT) is the most common form of 

PDT for NMSC. Although MAL-PDT can successfully treat 70 to 90% of NMSC, it has not been 

successful in treating invasive SCC cases. This unfavorable result is likely because MAL-PDT 

relies on the focal nature of lesions, as the PS is topically applied in suspicious regions. When 

invasion occurs in more advanced cases of SCC, the topical application of methyl-δ-

aminolevulinic acid becomes less practical because of the difficulty in identifying the exact tumor 

location.  

To overcome the limitations in delivering the PS to metastases and invasive portions of the 

tumor, several targeting methods have been used, such as: nanoparticle formulations, antibodies, 

and peptide ligands.11-13 For visualization, most of these compounds rely on the fluorescence 

produced by the PS, which tends to have low quantum yields, and therefore low signal. In addition, 

the fluorescence is the visible range which interferes with autofluorescence.  

Therefore, we developed a theranostic bioconjugate (LS797) which combines a peptide 

targeting ligand (cGRD),14,15 an efficient PS, Ce6, and a near infrared (NIR) imaging molecule, to 

create a compound that can overcome the challenges of clinical PDT. The NIR fluorescence of 

cypate prevents overlap in the signal with autofluorescence, allowing for increased contrast 

between the tumor and uninvolved tissue. We have previously shown that the targeting ligand, 

cGRD, is able to deliver cypate to a variety of tumor types.14 Here we demonstrate its ability to 

deliver Ce6 in addition to cypate, to a SCC model. The targeting of LS797, increases its 

concentration in the tumor as well as decreases the side effect of skin photosensitivity, by clearing 
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quickly from uninvolved tissue. Excitation of LS797, with 650 nm light, resulted in activation of 

caspase 9 and apoptosis, in vitro. In the SCC murine model that we developed, activation of LS797, 

resulted in a decrease in tumor growth and tumor size. The typical scabbing associated with PDT 

can only be seen in tumors treated with LS797 and light. Finally, an increase in cleaved caspase-3 

in tumor histology of treated tumors, supports the in vitro data, that LS797 activates apoptosis. We 

demonstrate that LS797 allows for efficient tumor targeting, NIR visualization of the tumor and 

selective PDT. 

5.3 Materials and methods 

5.3.1 Materials 

Fluorenylmethyloxycarbonyl (Fmoc) amino acids and Fmoc-Lys(Boc)-Wang Resin were 

purchased from AAPPTec (Louisville, KY, USA). Dichloromethane (DCM), acetic acid, 

thioanisole, phenol, hydroxy benzotriazole (HOBt), N,N-diisopropyl ethylamine (DIEA), N-trityl-

1,2-ethanediamine, thioanisol, dimethylformamide(DMF), N,N'-diisopropyl carbodiimide (DIC), 

trifluoroacetic acid(TFA), thallium(III) trifluoroacetate and O-(7-azabenzotriazol-1-yl)-

N,N,N’,N’-tetramethyluronium hexafluorophosphate(HATU) were purchased from Sigma-

Aldrich (St. Louis, MO, USA). Chlorin E6 was purchased from Frontier-Scientific (Logan, UT, 

USA). Water was obtained from Millipore Q3 system. SCC12 wells were obtained from Dr. J. 

Rheinwald. Cells were cultured using DMEM supplemented with 10% FBS, and 1% penicillin 

streptomycin in a humidified incubator at 5% CO2 balanced with air at 37oC. The cells were kept 

at 50-80% confluence. Mass spectrometryt was performed on Shimadzu LCMS2010 system 

(Columbia, MD, USA) under the positive mode. The UV-vis spectra and fluorescence spectra were 

recorded on a Beckman-Coulter DU640 spectrophotometer (Indianapolis, IN, USA) and Horiba 

Jobin Yvon Fluorolog-3 spectrophotometer (Edison, NJ, USA).  
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5.3.2 Synthesis of LS301 (cypate-cyclic(DCys-Gly-Arg-Asp-Ser-Pro-Cys)-Lys-

OH) 

LS301 was synthesized according to a previous report.15 Briefly, the linear GRD peptide, 

H-DCys(Acm)-Gly-Arg(Pbf)-Asp(tBu)-Ser(tBu)-Pro-Cys(Acm)-Lys(Boc)-OH, was prepared via 

a CEM Liberty microwave peptide synthesizer (Matthews, NC, USA) on the Fmoc-Lys(Boc)-

wang resin. The resin (0.1 mmol) was swelled in DCM for 1 hour before use. Fmoc-amino acids 

(0.5 mmol, 5 eq), coupling reagent (HBTU, 0.5 mmol, 5 eq) and DIEA (1 mmol, 10 eq) were added 

to the resin and the mixture was reacted for 15 min under microwave irradiation (50W, 75 oC). 

The resin was washed with DMF for 3 times. Deprotection of Fmoc group was carried out by 

treatment of 20% piperidine/DMF for 5 min under microwave irradiation (50W, 75 oC). The 

peptidyl resin was washed and collected. Cyclization of the peptide to form the disulfide bridge 

was performed on resin with thallium trifluoroacetate (1.2 eq) in DMF for 90 min. Subsequently, 

NIR dye cypate (3 eq) is conjugated to the cyclic peptide on solid support at the presence of DIC 

(5 eq) in DMF to result in LS301 peptidyl resin. 
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Figure 31. Synthesis and photochemical properties of LS797. (a) Synthesis route of LS797. (b) 

LCMS spectra of LS797. (c) Absorption and emission of LS797 showing fluoresce emission from 

Ce6 excitation (630 nm) and cypate excitation (720 nm). 

5.3.3 Synthesis of LS797 (Ce6-LS301) 

LS301 on peptidyl resin was reacted with N-trityl-1,2-ethanediamine in the presence of 

DIC in DMF for 16 hours followed by treated with 1% TFA in DCM for 2 hours to de-protect 

the trityl group. Chlorin E6 (3 eq) was added along with HATU (6 eq) and DIEA (6 eq) in DMF, 

the peptidyl resin was allowed to react for another 12 hours.  The resulted resin was treated with 

a cleavage cocktail of TFA: thioanisol: phenol: water (85:5:5:5, v/v/v/v) for 90 min at room 

temperature. The cleaved peptide product was concentrated in vacuo, and then purified on 

reverse-phase HPLC (Gilson, Middleton, WI, USA). LS797 (Ce6-cypate-cyclic(DCys-Gly-Arg-
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Asp-Ser-Pro-Cys)-Lys-OH), M/W 2090, ESI-MS observed 1046 (M+2/2) and 698 (M+3/3) (Fig. 

S1). 

5.3.4 In vitro uptake assay 

Uptake assays were conducted using the human skin cancer cell line, SCC12, and the 

murine fibroblast cell line, 3T3. Cells were cultured on an 8-well slide, (BD Biosciences, NJ, 

USA), with a 4:1 ratio of SCC12 cells to fibroblasts. The fibroblasts were GFP-expressing. Cells 

were incubated with 1 μM of LS797 for 4 or 24 hours, washed with PBS and imaged. Confocal 

microscopy was performed using an FV1000 confocal microscope with a UPLanApo/IR 

60X/1.20W water immersion objective lens (Olympus, PA, USA) at 488 nm (GFP) or 785 nm 

(cypate) excitation laser, and fluorescence was detected at 550/50 nm (GFP), or 850 LP (cypate).  

5.3.5 In vitro photodynamic therapy 

SCC12 cells were cultured in MatTek dishes (MatTek, MA, USA). Individual dishes were 

either left untreated, exposed to light at 35 mW/cm2, for 5, 15, or 30 minutes, incubated with LS797 

for 4 hours, or incubated with LS797 for 4 hours and then irradiated. After each treatment was 

completed, cells were incubated with 1 μM of the caspase-9 sensor, CaspaLux® 9-M2D2, 

(OncoImmunin, MD, USA) for 30 minutes, and imaged using a confocal microscope (details in 

above) at 543 nm excitation, and 600/25 nm emission. The cultures were then grown for 3 days, 

after which they were stained with 0.5 μM of the cell death marker, EthD-1, for 45 minutes and 

imaged on the confocal at 543 nm excitation and 600/25 nm emission. 

5.3.6 Induction of tumors in murine model 

All animal studies were performed in compliance with the Washington University Animal 

Study Committee’s requirements for the care and use of laboratory animals in research. Squamous 

cell carcinoma xenografts were initiated using SCC12 by injecting approximately 2.5x 106 cells 
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into the bilateral shoulder and flank regions of 6-8 week old female athymic NCR-nu/nu mice (22 

– 25 g). The SCC12 cells were injected into the intradermal compartment. Tumors were allowed 

to grow until they were visible and measurable. In some cases, the tumors did not graft, and these 

regions were not included in the study. The tumor volume was calculated by measuring the length 

and width of each tumor, and recorded as calculated 𝑉 = 𝐿𝑊2, where V, L, and W are the tumor 

volume, length, and width, respectively. 

5.3.7 In vivo and ex vivo tumor imaging 

LS797 was dissolved in 20% DMSO and diluted in 80% PBS to a final concentration of 

0.5 mg/kg dose for imaging, or a 6.8 mg/kg dose for therapy. All doses were administered via a 

100 μl tail vein injection. The corresponding Ce6 doses were 0.1 mg/kg and 2.0 mg/kg for imaging 

and therapy studies, respectively.16,17 Fluorescent imaging was performed using the Pearl NIR 

fluorescence imaging system, ex/em 785/820 nm (LICOR Biosciences, NE, USA) before injection 

and up to 24 hours post injection. After 24 hours, the mice were euthanized and organs of interests 

were removed, placed on a petri dish, and imaged with the Pearl imager. The region of interest 

(ROI) analysis was performed with the Pearl imaging software. The mean fluorescence intensities 

were measured for each tissue type to assess the biodistribution of each compound. 

5.3.8 In vivo photodynamic therapy 

At 4, 8, and 24 hours after a 6.8 mg/kg injection of LS797, the treated tumors were 

irradiated for 30 minutes. Therapeutic light doses were administered using a 650 nm laser with a 

power output of 35 mW and a beam area of 1.0 cm2. For control mice, there was no injection of 

LS797 and a subset of the tumors was irradiated to obtain untreated controls and light only 

controls, respectively. For mice injected with LS797, a subset of the tumors was irradiated to obtain 

LS797 only controls and PDT (LS797 + light).  
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5.3.9 Histological analysis 

Excised tumor tissues were flash-frozen in OCT (Tissue Tek, CA, USA) and stored at –20 

oC. The tumors were sliced at a thickness of 10 μm (Cryocut 1800, IL, USA). 

Immunohistochemical staining of excised tumor and surrounding tissues was used for histologic 

validation of tissue types. Immunohistochemistry (IHC) was conducted using an immune-

peroxidase method. Primary antibody was diluted in DaVinci Green (BioCare, CA, USA) at the 

following dilutions: Ki-67 (Thermo Scientific, MA, USA) 1:400, CK-10 (Abcam, MA, USA) 

1:400, CK-8/18 (Abcam, MA, USA) 1:200, E-Cad (Abcam, MA, USA) 1:200. Anti-rabbit 

secondary antibody (Perkin-Elmer, MA, USA) was diluted in PBST at a dilution of 1:800, 

Streptavidin (Jackson Labs, PA, USA) in PBST at a dilution of 1:1600. A polymer method was 

used for p53 and CC3 staining with the following dilutions: p53 (Cell Signaling Technology, MA, 

USA) 1:100, and CC3 (Cell Signaling Technology, MA, USA) 1:10,000. Universal Polymer 

(Biocare, CA, USA) secondary antibody was diluted in PBST 1:4. All IHC was conducted by the 

Digestive Diseases Research Core Center – Advanced Imaging and Tissue Analysis Core 

(DDRCC-AITAC) at the Washington University School of Medicine, St. Louis, MO. Microscopy 

was performed with an Olympus BX51 upright microscope (Olympus America, PA, USA).  

5.4 Results 

5.4.1 Development of a skin cancer orthotopic model 

We first sought to develop a cutaneous SCC model that would be appropriate for the 

assessment of PS accumulation in tumors and subsequent PDT. Chemical carcinogenesis animal 

models have previously been developed using a two-step approach of initiation and promotion. 

This method generates tumors on the skin after a progression from normal, to papilloma, to 

differentiated SCC, and then to poorly differentiated SCC.18 Typically, this process occurs within 
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20 to 50 weeks, with varying percentages of carcinoma formation. We investigated an orthotopic 

model in order to decrease the time to tumor development and increase the yield of tumors. An 

SCC12 orthotopic model was first developed by culturing cells derived from cutaneous SCC 

biopsies and injected them into nude mice.19  

We subdermally injected SCC12 cells into the shoulders and flanks of nude mice, and were 

able to develop tumors within 14 days. These tumors grew in volume for over a month with a 

doubling rate of 9.45 ± 3.91 days, and progressed through different morphological states (Figure 

32). The tumors initially appeared as small bumps, next they became erythemic with cystic spaces, 

and finally they became ulcerative with a central clearing. This final state resembled the gross 

appearance of cutaneous SCC in humans (Figure 32).20 

 

Figure 32. Characterization of SCC12 model formed through subdermal injections of SCC12 

cells.  (a) Morphologic growth characteristics of SCC12 xenograft, (b) Human SCC, image 

adapted from Rothnagel et al.20 (c) SCC12 IHC of tumor, and (d) normal skin. Microscopy 

conducted at 10x magnification. 



 

82 

 

After establishing the growth characteristics, the cutaneous SCC12 model was examined 

using immunohistochemistry (IHC) staining (Figure 32). The tumor was sectioned so that the 

epidermal and dermal layers were visible. Cytokeratin-10 (CK-10) is a type-1 keratin that is 

produced by keratinocytes and is typically located in the epidermis of normal skin. Mutations in 

the gene encoding CK-10 are linked to hyperproliferative disorders.21 CK-10 was expressed in the 

epidermis of both the normal skin and the tumor. However, the tumor had epidermal thickening 

and more extensive CK-10 expression. There were small regions of CK-10 expression found 

throughout the dermis and within the tumor, but these dermal regions of CK-10 expression were 

not present in healthy skin. Cytokeratin-8 and 18 (CK-8/18) are expressed by secretory epithelia, 

absent from non-secretory epithelia, and expressed by a range of malignant cells. CK-8/18 was 

absent from the normal skin, however it was found throughout the tumor section in both the 

glandular regions and the cellular tumor region. The tumor suppressor gene protein p53 expression 

is common in cutaneous SCC tumors that originate from ultraviolet DNA damage,3 and has been 

shown to be expressed in SCC at higher levels than normal skin.22,23  p53 was largely absent from 

the normal skin section and present in the tumor section.24,25 E-Cadherin was the same between 

the skin and tumor, indicating that the intracellular epithelial junctions remained intact in our tumor 

model. Ki-67 is a marker of cell proliferation that is upregulated in cutaneous SCCs compared to 

normal skin.24,25 Our model demonstrated increased Ki-67 staining as compared to the healthy 

skin. Cleaved caspase 3 (CC3) is a marker for cell apoptosis, which was present in the tumor 

section and largely absent from the skin. The presence of both Ki-67 and CC3 in the tumor 

indicated that there was increased cellular turnover.   
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5.4.2 Spectral properties of theranostic agent, LS797 

LS797 was synthesized through the conjugation of LS30126 to Ce6 (Figure 31). LS301 

served as the tumor targeting and NIR imaging agent (cypate), while the Ce6 acted as the PS. The 

resulting LS797 bioconjugate contains the three characteristic absorption peaks of Ce6 at 400 nm, 

500 nm and 650 nm, and the absorption peak for cypate at 780 nm (Figure 31). The emission peak 

of Ce6 was seen at 660 nm when excited at 630 nm and the emission peak of cypate was seen at 

800 nm when excited at 720 nm. Due to the minimal spectral overlap of the two fluorophores, 

there were no spectral changes in the integrated molecule compared to the fluorophores on their 

own.  

5.4.3 Evaluation of LS797 as a targeting imaging and therapeutic agent in 

vitro 

To determine the tumor targeting ability of LS797, GFP-expressing 3T3 fibroblasts and 

SCC12 cells were co-cultured before adding LS797 to the cultures for 4 or 24 hours.  The mean 

LS797 fluorescence was greater in the SCC12 cells compared to the fibroblasts, and the contrast 

of signal from SCC12 cells compared to fibroblasts increased over time, from 1.6 ± 0.3 at 4 hours 

to 2.8 ± 0.3 at 24 hours (Figure 33).  
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Figure 33. Targeting of LS797 in vitro and in vivo. (a) Quantitative analysis of LS797 

internalization into co-cultures of SCC12 cells and 3T3/GFP fibroblasts. Each point represents 

fluorescence in a single cell.  Representative images show LS797 (red) in SCC12 cells and GFP 

(green) to distinguish the 3T3 fibroblasts. (b) Bright field image of mouse and NIR image at 24 

hours post injection. Tumors (white arrows) apparent at 24 hours post injection. (c) Bio-

distribution of a mouse injected with LS797. LS797 visible in tumors and excretion organs. (d) 

Quantification of a bio-distribution. (e) In vivo and ex vivo tumor to skin contrast (n = 4). 

 

After determining that LS797 targeted tumor cells in vitro, we then moved to in vivo studies 

using an SCC12 orthotopic model. An imaging dose of LS797 (0.5 mg/kg, 0.1 mg/kg Ce6) 

successfully identified tumors from the surrounding normal skin in each of the tumors imaged 

(Figure 33), with an in vivo tumor to skin contrast of 1.5 ± 0.09 at 24 hours (Figure 33). The 

kinetics of LS797 show that the compound was primarily localized to the tumors within 4 hours, 
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and was retained after 24 hours (Figure 34).  Twenty-four hours after LS797 injection, the mice 

were sacrificed to obtain a biological distribution of the compound (Figure 33). LS797 

accumulated in the tumor and the major excretion organs (Figure 33). Because the region of 

interest for the tumors was the skin, the signal from the excretion organs did not obscure 

visualization of the tumors. The ex vivo signal contrast between the tumor and skin was 4.6 ± 0.4. 

 

Figure 34. Therapeutic dose of LS797 shows similar kinetics as an imaging dose. (a) Therapeutic 

dose of LS797 immediately post injection, and at 4 and 24 hours post-injection. Tumors indicated 

by white arrows. (b) LS797 tumor kinetics to 24 hours post injection (n = 7). Tumor signal maximal 

at 4 hours and contrast maximal at 24 hours.   
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A therapeutic dose of LS797 (6.8 mg/kg,) was administered to elicit a dose response to 

PDT. The kinetics of the therapeutic dose mimicked those of the imaging dose, with initial entry 

into all tissues followed by localization in the tumor within 24 hours (Figure 34). The kinetics of 

LS797 at therapy dose were virtually the same as imaging dose, with the maximum tumor 

fluorescence value occurring at 4 hours, and a higher tumor to skin contrast value at 24 hours 

(Figure 34). 

5.4.4 Photodynamic therapy in cells causes apoptosis 

Once the imaging efficacy of LS797 was demonstrated, its therapeutic efficacy was tested. 

SCC12 cells were incubated with LS797 (30 μM) for 4 hours and then irradiated with light (35 

mW/cm2) for 5, 15, or 30 minutes to obtain total doses of, 10.5, 31.5, and 63 J/cm2, respectively. 

Caspase 9 activity indicates the activation of apoptotic pathways. Increased caspase 9 activation 

was seen in cells that were irradiated for 15 or 30 minutes. In contrast, only a baseline activation 

was seen in cells irradiated for 5 minutes (Figure 35). Three days after PDT, the cultures were 

stained with EthD-1 to visualize the dead cells remaining in the culture (Figure 35). EthD-1 stains 

the nuclei of dead cells. Control cell cultures showed sheets of cells with normal cell morphology 

and minimal EthD-1 staining, indicating cellular damage did not occur. The PDT cultures 

irradiated for 30 minutes showed high EthD-1 staining along with regions without intact cells. The 

PDT cultures irradiated for 15 minutes showed regions of morphologically healthy cells and 

regions of only debris. This variable regional morphology was supported by high levels of EthD-

1 staining in some regions and low staining in others. The 15-minute irradiation group also 

exhibited lower caspase 9 activation, which may explain the limited cell death. The cells irradiated 

for 5 minutes showed normal morphology. The caspase 9 activation in these cells was similar to 

the baseline activation seen in the control cells. Based on the three light power settings examined, 
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these findings suggest that cell death occurred in a light-dose dependent manner, and that 63 J/cm2 

was the minimum light power needed to achieve complete cell death in vitro. With lower light 

doses, caspase 9 activation was still observed, but it was not sufficient to cause apoptosis.  

 

Figure 35. Photodynamic therapy in cells shows caspase 9 activation and subsequent cell death. 

SCC12 were exposed to light, LS797 or both to determine the efficacy of PDT with LS797. (a) 

Quantification of caspase 9 activation, 30 minutes after light delivery or at the corresponding 

time for cells that were not treated with light.  (b) Representative images of caspase 9 activation 

for the PDT-treated cells at different light exposures. (c) Three days after PDT or control 

treatment, cells were stained with EthD-1, imaged to determine to morphology and the cellular 

viability. (d) Cell death only occurred in the condition where both light and LS797 were present 

as shown by the quantification of the fluorescence of EthD-1 per cell. 
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5.4.5 Photodynamic therapy in animals causes tumor scabbing and regression 

For in vivo PDT, LS797 was administered via tail vein injection and a 650 nm laser was 

applied at 4, 8 and 24 hours post-injection. The tumors that were not undergoing light therapy were 

masked. This approach allowed us to delineate the effects of PDT on tumor growth from LS797 

treatment alone. The PDT setup consisted of an LED controller that modulated a 650 nm LED 

(Figure 36). The LED was used with a power output of 35 mW and a spot size of 1 cm2, giving a 

total power density of 35 mW/cm2. Each tumor received a total dose of 189 J/cm2 over a 24-hour 

period. 

 

Figure 36. PDT setup with 650 nm LED. 

The tumor growth was tracked by measuring the length and width of each tumor, and 

recorded as a volume. The tumor growth analysis consisted of an average change in tumor growth 

as a function of the original size, allowing each tumor to serve as its own control. The 24 hours 

between injection and the final light treatment were considered day zero. Tumor volumes were 

measured for 6 days before and after day zero and were compared. An average change in tumor 

volume (ACTV) was calculated for each tumor using Equation 1. 

 

ACTV = (Average(VD(1) to VD(6))- Average(VD(-6) to VD(-1)))/ Average(VD(-6) to VD(-1))            Eq. 1
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Where day 0 is the day PDT occurred, VD(-1) is the tumor volume 1 day prior to PDT, VD(-6) is the 

tumor volume 6 days prior to PDT, VD(1) is 1 day post-PDT, and VD(6) is 6 days post PDT.  

 

Figure 37. Photodynamic therapy in animals shows scabbing and decrease in tumor volume.  (a) 

Average change in tumor volume, ACTV, demonstrating a decrease in tumor growth with PDT 

for untreated (n = 3), light only (n = 3), LS797 only (n = 3), and LS797 + light (n = 4).  (b) Bright 

field images of a mouse receiving PDT or light, 24 hours after the start of therapy. Irradiated 

tumors indicated by yellow arrows and non-irradiated tumors indicated by white arrows. 

The tumors treated with LS797 and light initially swelled with PDT, then scabbed and 

shrank in size over a few days, as is common in PDT. The data showed that the tumors treated 

with LS797 and light resulted in a lower growth rate (ACTV) as compared to other treatment 

groups (Figure 37). When tumors within a single mouse were compared for LS797 only vs. LS797 

with light, the PDT tumors were visibly altered by the therapy (Figure 37). Although the tumors 

exposed to solely light had a reduction in growth rate, the decrease was less than the PDT group, 

nor exhibit a scabbed appearance. This difference in appearance indicated that LS797 contributed 

to the enhanced cell death in the PDT group as compared to light alone.  The therapy resulted in a 
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reduction in ACTV of 78% compared to untreated tumors. PDT suppressed the tumor volume for 

6 days on average after initial treatment resulting in an overall decrease in tumor volume post 

therapy of 81% compared to the untreated controls (Figure 38).  At the conclusion of the study, 

only a small papule was present in the original location of the tumors treated with PDT (Figure 

38). IHC analysis of the tumor sections revealed that the PDT tumors had larger regions of 

apoptosis (CC3 staining) and smaller regions of cell proliferation (Ki-67 staining) compared to the 

untreated tumors (Figure 38), indicating that a mechanism of reduced tumor volume can be 

attributed to the induction of apoptosis.    

 

Figure 38. Long-term effects of photodynamic therapy. (a) Tumor volume at 6 days post 

therapy, untreated (n = 3), light only (n = 3), LS797 only (n = 2), and LS797 + light (n = 2). (b) 

Tumor morphological appearance pre and post therapy. (c) IHC of the untreated tumor, PDT 
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tumor, and skin stained for proliferation (Ki-67) and apoptosis (CC3). Microscopy conducted at 

10x magnification.   

5.5 Discussion 
We have characterized a cutaneous SCC model that morphologically resembles human 

SCC.  This orthotopic model develops measurable tumors within 2 weeks after cell injection. We 

demonstrated that this SCC12 model has differential IHC expression of CK-10, CK-8/18, p53, Ki-

67 and CC3, relative to normal skin. The increased Ki-67 and CC3 expression is indicative of the 

rapid growth and turnover of tumor cells in the dermis.27 An increase in CK-10 expression supports 

the increased activity of keratinocytes because of the underlying tumor. This finding is consistent 

with clinical findings such as hyperkeratosis and keratin horn development in cutaneous SCC.20 

The combination of the IHC profile, the presence of CK-8/18, the upregulation of p53, and the 

tumor morphological appearance from benign to ulcerating indicates that this orthotopic model 

recapitulates the pathophysiologic behavior of cutaneous SCC. In contrast to the 50 weeks needed 

for the two-step chemical carcinogenesis model, our model develops tumors within 2 weeks, which 

is advantageous for rapid screening and optimization of drugs and imaging agents in vivo. Another 

advantage of an orthotopic model is that injection of tumor cells allows the researcher to know 

exactly where the tumors will grow on the animal for more precise design of experiments, while 

avoiding inducing skin pigmentation that is a side-effect of the promotion phase of the chemically-

induced model.  

The multifunctional theranostic LS797 allows for tumor visualization by optical imaging, 

followed by PDT. The dual excitation of cypate for imaging, and Ce6 for PDT, provides image 

guidance for spatiotemporal generation of cytotoxic reactive oxygen species in the tumor region. 

LS797 may be used to guide surgical resection or tumor margin assessment before or after PDT. 
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Particularly, LS797 causes visible contrast between the tumor and surrounding skin both when the 

skin is overlying and after the skin has been reflected. This contrast could allow for visualization 

of the tumor by a clinician when resecting a tumor surgically, for real-time feedback during 

procedures such as Mohs surgery. When the residual tumor is detected in the tumor bed, additional 

light can be applied at the site for added therapeutic efficacy. LS797 may provide an alternative to 

MAL-PDT as it does not require the treated tumors to be focal in nature for the administration of 

the agent, allowing for wide-field light application to still induce tumor-specific therapy due to the 

targeted nature of the agent. Targeted PDT can further enhance the selectivity to treat cancer cells 

over the normal host cells even at the smaller doses, improving outcomes and reducing potential 

side effects. 

Recently, Ce6 has been used in other theranostic probes that have utilizes self-quenching 

properties to form activatable nanoparticles, or its pi-pi stacking and hydrophobic interactions to 

increase loading capacities of graphene nanocarriers.28-30  Although these techniques have not been 

tested in vivo, they reveal the possibility of creating PS with an increased level of selectivity and 

sensitivity. In addition, other formulations of Ce6 have been used to increase water solubility, for 

example, pluronic F127.17 Ce6 conjugated to pluornic F127 (PCe6-1) had increased tumor uptake 

and decreased uptake in uninvolved organs compared to Ce6 alone and had increased therapeutic 

efficacy. However, the lack of NIR imaging capability makes it difficult to distinguish 

autofluorescence from PCe6-1 signal, and therefore the compound could not be used to identify 

tumor metastasis or invasion.  

Our initial studies demonstrate that LS797 was able to identify all tumors via NIR 

fluorescence imaging. LS797-mediated PDT inhibits tumor growth, and activated apoptosis of cell 

in vitro. The tumor targeting, NIR imaging, and PDT capabilities of LS797 make it a unique 
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theranostic agent. Further optimization of LS797 dose, light dose, and drug-light interval is 

necessary in order to reveal the full potential of LS797.  
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Chapter 6 :  Protonation and Trapping of a 

Small pH-Sensitive Near-Infrared 

Fluorescent Molecule in the Acidic Tumor 

Environment Delineate Diverse Tumors In 

Vivo 
 

This chapter is based on a previously published article: 

 Rebecca C. Gilson, Rui Tang, Avik Som, Chloe Klajer, Pinaki Sarder, Gail P. Sudlow, Walter J. 

Akers, and Samuel Achilefu. Protonation and Trapping of a Small pH-Sensitive Near-Infrared 

Fluorescent Molecule in the Acidic Tumor Environment Delineate Diverse Tumors In Vivo. 

Molecular Pharmaceutics (2015) 12(12), 4237-4246 

  



 

97 

 

6.1 Chapter summary 

Enhanced glycolysis and poor perfusion in most solid malignant tumors create an acidic 

extracellular environment, which enhances tumor growth, invasion, and metastasis. Complex 

molecular systems have been explored for imaging and treating these tumors. Here, we report the 

development of a small molecule, LS662, that emits near-infrared (NIR) fluorescence upon 

protonation by the extracellular acidic pH environment of diverse solid tumors. Protonation of 

LS662 induces selective internalization into tumor cells and retention in the tumor 

microenvironment. Noninvasive NIR imaging demonstrates selective retention of the pH sensor 

in diverse tumors and two-photon microscopy of ex vivo tumors reveals significant retention of 

LS662 in tumor cells and the acid tumor microenvironment. Passive and active internalization 

processes combine to enhance NIR fluorescence in tumors over time. The low background 

fluorescence allows detection of tumors with high sensitivity, as well as delineation of dead or 

dying cells from healthy cells. In addition to demonstrating the feasibility of using small 

molecule pH sensors to image multiple aggressive solid tumor types via protonation-induced 

internalization and retention pathway, the study reveals the potential to use LS662 for monitoring 

treatment response and tumor-targeted drug delivery. 

6.2 Introduction 
Aggressive solid tumors utilize enhanced glycolysis for energy production and 

proliferation, leading to a net increase in intracellular protons relative to that in healthy cells. To 

remain viable at a normal physiological intracellular pH (pHi) of 7.4, cancer cells actively pump 

out the excess protons.1 However, the poor lymphatic function and chaotic vascularization of 

tumors result in an inefficient buffering or removal of the effluxed protons, leading to a 

significant reduction in extracellular pH (pHe) from 7.4 to 6.2–6.9.1,2 



 

98 

 

Previous studies have demonstrated that the acidic pHe of solid tumors correlates with an 

increase in tumor invasiveness and cell proliferation, as well as a decrease in chemotherapeutic 

efficacy.1, 3-6 The therapeutic effect of modulating the acidic pHe was demonstrated in preclinical 

models by oral administration of sodium bicarbonate, which systemically neutralized the pHe of 

the whole body, including tumors. The systemic neutralization reduced tumor burden and 

decreased the number of circulating tumor cells.3, 4, 7-9 These results suggest that the acidic pHe 

of solid tumors is not only a byproduct of mitochondrial dysfunction and enhanced 

glycolysis10 but also represents an important survival pathway that supports tumor growth and 

metastasis. Thus, the ability to noninvasively image the pHe of tumors affords new means to 

determine the aggressiveness and severity of cancer or to monitor treatment response. 

A variety of molecular imaging probes and nanoparticles have been developed for in 

vivo imaging of pH changes.2, 11-14 Although chemical exchange saturation transfer (CEST) 

enhanced magnetic resonance imaging provides depth-independent assessment of pH in vivo, the 

method requires long acquisition times15 and the use of a high concentration of the CEST 

contrast agent.16 For small animal imaging or the assessment of superficial and endoscopically 

accessible tumors, optical methods represent a high-throughput imaging platform for real-time 

image display17 and detection of pH changes in vivo via multiple contrast-generating molecular 

probe designs. 

An interesting approach is the wide use of activatable molecular probes to amplify the 

signal-to-background ratio. This approach has been used successfully to report enzyme 

activities,18-24 intracellular pH,11-13, 25 and intracellular levels of reactive oxygen species.26 To 

combine targeted delivery with fluorescence enhancement in vivo, recent studies have conjugated 

pH-sensitive dyes to tumor-targeting ligands such as RGD peptides,11 where the progressive pH 
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decrease along the endocytotic pathway culminates into high fluorescence in the lysosomes of 

tumor cells.11-13 The pKa of pH sensors can be tuned to minimize background fluorescence in 

nonacidic cell compartments or tissue environments. However, tumor heterogeneity dictates 

significant variability in the expression of the targeted proteins in tumor cells. When pH sensors 

are conjugated to tumor-targeting ligands, the primary mode of fluorescence enhancement for the 

pH sensors is through intracellular acidic organelles, with limited access to the acidic 

extracellular tumor environment. 

In this study, we have developed a pH-sensitive molecule, LS662, for noninvasive 

imaging of the acidic pHe of solid tumors. We demonstrate that protonation of the small NIR 

fluorescent molecule (∼700 Da) in the mildly acidic environment of diverse solid tumor types 

induces an absorption spectral shift from the visible to the NIR region. We used the ensuing NIR 

fluorescence to successfully identify three different tumor models, including syngeneic and 

spontaneous murine and human xenograft tumors. The selective retention of LS662 in tumor 

cells and the acidic environment for over 3 days suggests that protonation traps the small 

molecule and facilitates its internalization in cancer cells without conjugating the dye to a tumor-

targeting protein or peptide.11 This study demonstrates the potential use of LS662 for 

interrogating physiologic parameters in a broad range of cancers. 

6.3 Materials and methods 

6.3.1 Materials  

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) and were used 

without further purification. 1H NMR data were recorded on a Varian 400 MHz spectrometer 

(Palo Alto, CA, USA) at ambient temperature in DMSO-d6 and referenced to tetramethylsilane 
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(TMS) as an internal standard. Mass-spectrometry was recorded on a Shimadzu LCMS2010 ESI-

TOF mass Spectrometer (Columbia, MD, USA). 

Dulbecco’s modified Eagle’s medium (DMEM) culture medium, fetal calf serum, and 

penicillin–streptomycin were purchased from Gibco (Life Technologies, NY, USA). Vectashield 

was purchased from Vector Laboratories (CA, USA). 

Human epidermoid cancer (A431) cells were obtained from ATCC (VA, USA), and 

4T1/luc murine breast cancer cells were obtained from David Piwnica-Worms, Washington 

University in St. Louis.27 Cells were cultured using DMEM supplemented with 10% FBS and 

1% penicillin–streptomycin in a humidified incubator at 5% CO2 balanced with air at 37 °C. The 

cells were kept at 50–80% confluence. 

Female BALB/c and female athymic NCr-nu/nu mice were obtained from Charles River 

Laboratories (MA, USA). Female PyMT mice were bred in-house. All animal studies were 

performed with accordance with protocols approved by the Washington University School of 

Medicine Animal Studies Committee. 

6.3.2 Synthesis of pH-Sensitive NIR fluorescent dye LS662 

The synthesis of LS662 is summarized in (Figure 40). A mixture of Vilsmeier 

reagent 1 (1.1 g, 3 mmol) and 4-carboxylphenyboronic acid (1 g, 6 mmol) was heated overnight 

under reflux in DMF in the presence of potassium acetate (66 mg, 0.69 mmol) and 

tetrakis(triphenylphosphine)palladium(0) (0.22 g, 0.19 mmol). The reaction mixture was allowed 

to cool to room temperature, and DMF was evaporated. HPLC purification of product 2 afforded 

0.67 g of a blue-green solid (55% yield). A mixture of indolenium sulfonate 3 (100 mg, 0.38 

mmol) and Suzuki product 2 (73 mg, 0.18 mmol) was heated under reflux in the presence of 
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sodium acetate (55 mg, 0.67 mmol) in 10 mL of an ethanol/acetic anhydride solution (50/50, v/v) 

for 20 h. After cooling, 2 mL of a 3% aqueous HCl solution was added to the resultant mixture. 

The crude product was purified by reverse-phase C-18 column chromatography, and the desired 

compound was eluted with CH3CN/H2O (57 mg; 45% yield); 1H NMR (400 MHz, DMSO-d6) δ 

1.26 (s, 12 H), 1.90 (m, 2H), 2.60 (m, 4H), 6.96 (d, J = 14 Hz, 2H), 7.04 (d, J = 8 Hz, 2H), 7.34 

(d, J = 8 Hz, 2H), 7.52 (d, J = 8 Hz, 2H), 7.61 (s, 2H), 8.15 (d, J = 8 Hz, 2H). ESI-MS: m/z 701 

(M + H, 100%). 

6.3.3 Spectral properties and pKa of LS662 

The absorption and emission spectra of LS662 were recorded on a spectrophotometer 

(Beckman DU640, CA, USA) and fluorometer (Fluorolog-3, Horiba Jobin Yvon, NJ, USA), 

respectively. Determination of the absorption and emission maxima was reported in solutions 

with pH values below and above 5. The fluorescence quantum yield of LS662 in PBS was 

determined by using a literature method and referenced to indocyanine green dye.11 For pH 

titrations, LS662 was dissolved in 30 mL of water. 175 mg of NaCl (0.003 mmol) was added to 

provide a relative constant ionic strength of 0.1 M. The initial solution was acidified with dilute 

aqueous HCl (0.1 M) to achieve a pH of 2.34. Increment changes of the pH value were achieved 

by adding a small amount of dilute NaOH (vary from 0.1 to 0.0001 M) into the dye solution. The 

pH of the solutions was measured with a pH meter (Accumet AB15, MA, USA). At each pH 

point, the absorption and fluorescence spectra were recorded. The pKa of LS662 was determined 

using sigmoidal dose–response curve fitting software (GraphPad Prism 5.0, CA, USA). 

To obtain optical images of the dye at pH 6.0 and 6.5, 2-(N-morpholino)ethanesulfonic 

acid (MES; 1 M) was prepared in water and titrated with NaOH to the appropriate pH. For pH 
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7.0 and 7.5 medium, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES; 1 M) was 

prepared in water and titrated with HCl or NaOH to the appropriate pH. These solutions were 

diluted with phenol red- and bicarbonate-free DMEM to obtain a final concentration of 20 mM. 

LS662 (10 μM) was dissolved in each solution (100 μL) in a 96-well plate and imaged on the 

Pearl NIR fluorescence imaging system, ex/em 785/820 nm (LICOR Biosciences, NE, USA). 

6.3.4 Blocking and pH variable internalization 

A431 cells were grown in 96-well plates (BD Biosciences, NJ, USA). The cells were 

treated with 1 μM LS662 for 1–8 h in either acidic (pH 6.4) or neutral (pH 7.4) medium. Acidic 

medium was made by adding 25 μL of 1 M HCl per 1 mL of medium. For blocking studies, 10 

mM sodium azide, an active transport inhibitor, was coincubated with the cells. After treatment, 

the cells were rinsed with PBS and imaged using a BX-51 epifluorescent microscope (Olympus, 

PA, USA). A cy5 U-N41008 (Chroma Technology Corp., VT, USA) filter cube was used for 

excitation at 620/60 nm and emission collection at 700/75 nm. 

4T1/luc cells were grown in an 8-well slide (BD Biosciences, NJ, USA). The cells were 

treated with 10 μM LS662 or 1 μM cypate for 2 or 8 h in either acidic (pH 6.4) or neutral (pH 

7.4) medium. After treatment, the cells were rinsed with acidic or neutral medium and imaged 

using a FV1000 confocal microscope with an UPLanApo/IR 60×/1.20W water immersion 

objective lens (Olympus, PA, USA) at 633 nm (LS662) or 785 nm (cypate) excitation, and 

fluorescence was detected at 690/50 nm (LS662) or 850 LP (cypate). 

6.3.5 Cell death assay 

A431 cells were grown on 8-well microscope slides (BD Biosciences, NJ, USA). To 

determine if LS662 preferentially stains dead cells, three conditions of A431 cells were 

incubated with 1 μM LS662 or 1 μM cypate for 2 h: healthy cells (cell in medium with LS662), 
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dying cells (cell incubated with PBS with LS662), and dead cells (cell pretreated with 50% 

ethanol in PBS for 30 min, with LS662 added after the treatment with ethanol). After treatment, 

the cells were rinsed with PBS, mounted with Vectashield (Vector Laboratories, CA, USA), and 

coversliped. The slides were imaged using a FV1000 confocal microscope with an 

UPLanApo/IR 60×/1.20W water immersion objective lens (Olympus, PA, USA) at 633 nm 

(LS662) or 785 nm (cypate) excitation, and fluorescence was detected at 690/50 nm (LS662) or 

850 LP (cypate). 

6.3.6 Induction of tumors in murine models 

All animal studies were performed in accordance with protocols approved by the 

Washington University School of Medicine Animal Studies Committee. Syngeneic 4T1/luc 

murine breast tumors were initiated in mice by injecting 5 × 105 4T1/luc breast cancer cells 

subcutaneously in the right flank of 6–8 week old female BALB/c mice. Imaging studies were 

performed after the tumors had grown for approximately 10 days to a size of 5–7 mm in 

diameter. A431 human epithelial carcinoma xenografts were grown in 6–8 week old female 

athymic NCr-nu/nu mice by bilaterally injecting A431 cells into the mammary fat pad. Imaging 

studies were conducted after tumors had grown for approximately 15 days to a size of 5–7 mm in 

diameter. The spontaneous breast cancer mouse model, expressing the polyomavirus middle T 

antigen via the mouse mammary tumor virus long terminal repeat promoter (PyMT), was bred 

in-house. Heterozygous mice developed spontaneous, multifocal mammary adenocarcinomas at 

about 8–12 weeks of age. 

6.3.7 In vivo and ex vivo tumor imaging 

LS662 or cypate was dissolved in DMSO and then diluted with PBS for a final 

concentration of 60 μM in 100 μL of 20% DMSO and 80% PBS. The solution was injected 
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intravenously via the lateral tail vein. Fluorescent imaging was performed using the Pearl NIR 

fluorescence imaging system (ex/em 785/820 nm) before injection and at 1, 2, 4, 6, 24, 48, and 

72 h postinjection. After 72 h, the mice were euthanized, and organs of interest were removed, 

placed on a Petri dish, and imaged with the Pearl imager. Region of interest (ROI) analysis was 

performed with Pearl imaging software. The mean fluorescence intensities were measured for 

each tissue to assess the biodistribution of each compound. In addition, in vivo ROIs for tumor 

and normal tissues were used to determine the accumulation of the probe over time. The normal 

tissue regions were chosen that did not include any excretory organs or tumors in order to obtain 

a reliable background measurement. 

6.3.8 Ex vivo multiphoton imaging 

After excision, tumors were cut into 1 mm slices and imaged using a custom built two-

photon microscope at the Washington University School of Medicine. The visible emission from 

LS662 was excited with a Chameleon XR Ti-Sapphire laser (coherent) and visualized with an 

Olympus XLUMPlanFl 20× objective (water immersion, NA 0.95). Fluorescence emission from 

collagen, elastin, and LS662 was separated using 515 and 560 nm dichroic mirrors and detected 

using the red (560–650 nm), green (490–560 nm), and blue (second harmonic <458 nm) channels 

of three-head-type Bialkali photomultiplier tubes.28, 29 z-stack images were acquired by taking 20 

sequential images at a step size of 2.5 μm, and 15 video rate frames were averaged for each z-

slice. Imaris (Bitplane, MA, USA) and ImageJ (NIH, MD, USA) were used for multidimensional 

rendering.30 

6.3.9 Histological analysis 

Excised tumor tissues were flash-frozen in OCT (Tissue Tek, CA, USA) and stored at 

−20 °C. The tumors were sliced at a thickness of 10 μm (Cryocut 1800, IL, USA). Fluorescence 
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imaging was performed with an Olympus BX51 upright epifluorescent microscope (Olympus 

America, PA, USA). A cy5 U-N41008 (Chroma Technology Corp., VT, USA) filter cube was 

used for excitation at 620/60 nm and emission collection at 700/75 nm. Muscle samples, taken 

from the mouse’s left leg, were imaged with the above settings as non-tumor control samples. To 

confirm that lack of LS662 fluorescence was not due to inactivation, acidic PBS (pH 4.0) was 

added to the sample to activate any LS662. H&E staining of excised tumor and surrounding 

tissues was used for histologic validation of tissue types. 

6.3.10  Statistical analysis 

All cell studies were performed in triplicate. The mean fluorescence per image was 

calculated after background fluorescence subtraction and normalized to the number of cells per 

image. These values were then averaged, and error bars represent the standard deviation. For in 

vivo quantification of fluorescence of tumor and normal tissues, the following numbers of 

replicates were used: three for 4T1/luc tumor and normal, two for A431 tumor and three for 

A431 normal, and three for PyMT tumor and normal. For ex vivo quantification of tumor and 

muscle fluorescence, the following numbers of replicates were used: three for 4T1/luc tumor and 

muscle, two A431 tumor and one for A431 muscle, and three for PyMT tumor and one for PyMT 

muscle. When more than three replicates were present, the standard deviation was calculated and 

is displayed as error bars. Statistical significance was calculated using Student’s t-test, and p-

values less than 0.05 were considered to be statistically significant. 
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6.4 Results  

6.4.1 Synthesis and spectral properties of pH-Sensitive NIR fluorescent dye 

LS662 

We have developed LS662 as a pH-sensitive small molecule for identifying tumors. 

Upon protonation in acidic media, the molecule undergoes a significant spectral shift from 

visible to NIR wavelengths. The high NIR fluorescence is useful for identifying diverse tumors 

(Figure 39). 

 

Figure 39. (A) LS662 is a pH-activated probe that becomes highly fluorescent in acidic solution. 

(B) In vivo, LS662 is activated in tumors, and the inactive probe clears from uninvolved tissue, 

simultaneously increasing contrast and decreasing the dose of LS662 at non-tumor regions. (C) 

LS662 is selectively activated in an infiltrating tumor. (D) Once LS662 is activated by 

protonation of the indolium ring nitrogen, it acts as an amphiphilic small molecule that can 
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penetrate into tumor cells by destabilization of the cell membrane. Once inside the cell, its 

activated form can be visualized in the acidic lysosomes. 

LS662 was synthesized by modifying our previously reported method (Figure 40A). 

11 To overcome the low yields of this synthesis, we used modified Suzuki-coupling conditions in 

which Vilsmeier reagent 1 was reacted with 4-carboxyphenylboronic acid in the presence of 

tetrakis(triphenylphosphine)palladium(0) and anhydrous potassium acetate. Purified LS662 was 

obtained as blue-green solid. The dye is stable in powder form; although the aqueous solution 

can be stored at 4 °C for several weeks, it is best to use freshly prepared solutions for each study. 

pH titration showed that LS662 has low NIR fluorescence in basic and neutral solutions, 

displaying an absorption maximum (λabs) at 503 nm (Figure 40C). A significant hypsochromic 

shift from 503 to 750 nm λabs and an intense NIR emission maximum (λem) at 768 nm were 

observed in acidic solutions (pH < 6), with corresponding pKa, molar absorptivity (ε), and 

fluorescence quantum yield (ΦF) of 5.2, 120 000 M–1 cm–1, and 0.025, respectively, in PBS. 

Protonation of one indolenium ring nitrogen in LS662 converts the molecule into a donor–

acceptor fluorophore system, which exhibits a large spectral shift.11 Pseudocolor fluorescence 

images of LS662 solutions in buffers of different pH demonstrate the visual changes in 

fluorescence intensity that take place with increasing pH (Figure 40D). 
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Figure 40. (A) Synthesis route of LS662. (B) Chemical structure of cypate. (C) Absorption and 

emission spectra of pH-titrated LS662 in water from pH 2 to 10. Absorption in basic solution 

occurs primarily in the visible range, whereas absorption in acid solution occurs in the NIR 

region. In acidic solution, excitation at 720 nm results in fluorescence at 758 nm. LS662 has a 

pKa of 5.2. (D) Pseudocolor images of a solution of LS662 at pH 6.0, 6.5, 7.0, and 7.5 

(see Materials and methods section for solution preparation). 

6.4.2 LS662 differentially internalizes in tumor cells via dual ATP-dependent 

and -independent pathways in neutral and acidic culture media 

We postulated that protonation of LS662 under mild acidic conditions found in the pHe 

of many solid tumors will decrease the molecule’s net negative charge, enhance NIR 

fluorescence, and facilitate internalization in cells. To test this hypothesis, LS662 was incubated 
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with representative tumor cells (A431 or 4T1/luc) in buffer solutions at pH 7.4 and 6.4 to 

simulate normal physiological and acidic tumor pHe values, respectively (Figure 41A). At pH 

7.4, only a few cells exhibited high NIR fluorescence within a 2 h incubation. Longer incubation 

times showed weak and diffuse NIR fluorescence in nearly all cells. A similar trend was 

observed in acidic solutions, in which the internalization of LS662 occurred in only a few cells 

within a 2 h incubation, but it increased significantly at the 8 h measurement time point. The few 

cells exhibiting high NIR fluorescence within 2 h in both normal and acidic media are probably 

dying or dead cells. From a structural consideration alone, internalization of the highly 

negatively charged LS662 into cells at neutral pH would not be expected because of electrostatic 

repulsion from the cell membrane’s phosphate groups. Therefore, the delayed but significant 

accumulation of the molecular probe in cancer cells at long incubation times suggests a 

molecular rearrangement that facilitates passive or active transport in cells. Compared with cells 

treated at pH 7.4, fluorescence of LS662 was significantly higher under acidic conditions. This 

internalization process could be mediated by electrostatic interactions of protonated LS662 with 

the phosphate groups in cell membranes (Figure 39D). As a control, a less physiologically pH-

sensitive dye cypate (Figure 40B)31 was also incubated with 4T1/luc cells. As expected, the 

internalization of cypate was not pH-dependent (Figure 41B). 

To investigate the mechanism of LS662 internalization, we incubated A431 or 4T1/luc 

cells with the pH sensor in acidic (pHe 6.4) and neutral (pHe 7.4) media in the presence or 

absence of sodium azide, an active transport inhibitor (Figure 41A).32, 33 In both acidic and 

neutral solutions, cells treated with sodium azide exhibited lower NIR fluorescence than that of 

the untreated control. However, the decrease in LS662 fluorescence was higher under neutral 

(77% A431, 32% 4T1/luc) conditions at 8 h postincubation than it was under acidic conditions 
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(13% A431, 9.5% 4T1/luc) (Figure 41B). This finding suggests that the highly negatively 

charged, nonprotonated LS662 overcomes electrostatic repulsion at the plasma membrane via an 

active transport process. In the protonated form, ATP-independent endocytosis is the dominant 

mechanism of LS662 internalization. Cypate internalization was not blocked by the addition of 

sodium azide. 

Because the NIR fluorescence of LS662 is weak under neutral pH, the high intracellular 

fluorescence most likely occurred through the acidic endosomal pathway or by translocation into 

acidic intracellular organelles. Coincubating LS662 with a lysosomal reporter, lysotracker green, 

showed that the punctate LS662 fluorescence colocalized with the lysotracker dye, indicating 

that LS662 is in the acidic lysosomes (Figure 41D). 

 

Figure 41. (A) Images of cellular uptake of LS662 in A431 cells for 2 or 8 h in normal 

physiological (pH 7.4; neutral) or acidic (pH 6.4; acid) media. Sodium azide (NaN3+) was added 

to each condition to determine whether the internalization of LS662 is energy-dependent. (B) 
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Quantification of the cellular uptake, described in (A), in A431 and 4T1/luc cells with LS662 

and cypate; *, p-value < 0.05. (C) Cellular uptake of LS662 and cypate in A431 cells treated 

under three conditions, media, PBS, and 50% ethanol, to probe healthy, dying, and dead cells, 

respectively. The images show LS662 fluorescence; cypate images are not shown. (D) Healthy, 

dying, and dead cells were coincubated with LS662 (red) and lysotracker (green) to investigate 

the subcellular localization of LS662. Scale bar = 10 μm. 

6.4.3 LS662 is a highly sensitive reporter of dying and dead cells 

Regardless of the treatment conditions, some cells exhibited bright LS662 fluorescence 

within 2 h post incubation, suggesting that the molecular probe could serve as reporter of cell 

death. To explore this capability, A431 cells were incubated with LS662 for 2 h under three 

different conditions, normal culture media, PBS solution, or 50% ethanol in PBS, to obtain 

predominantly healthy, dying, and dead cells, respectively (Figure 41C). Cypate was incubated 

with cells under similar conditions (Figure 41C). As cells die, a 5000-fold increase in LS662 

fluorescence was observed, whereas the fluorescence from cypate only showed a moderate 2-

fold increase. The small increase in cypate fluorescence could be attributed to nonspecific uptake 

in dead cells. 

Previous studies have shown that cells undergoing necrosis or apoptosis are characterized 

by the disruption of their organelles’ membranes, leading to the release of their contents and 

acidification of the cytosol, with fewer residual intact lysosomes.14, 34, 35 Thus, the high increase 

in LS662 fluorescence in dead or dying cells suggests protonation of the molecule under the mild 

intracellular acidic conditions of these cells (Figure 41C). Loss of intracellular membrane 

integrity transforms the highly punctate LS662 fluorescence to a more diffuse intracellular 
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pattern. These results illustrate the multidimensional use of LS662 to localize tumors and 

possibly to identify dying cells in response to treatment. 

6.4.4 Protonation of LS662 enhances NIR fluorescence in mouse and human 

cancer models 

The primary goal of this study was to evaluate the feasibility of imaging diverse solid 

tumors using the simple pH-sensitive molecular probe in vivo. Starting with subcutaneous 

4T1/luc tumors in the flanks of mice, fluorescence of LS662 in the tumor region was evident as 

early as 1 h postinjection, attaining maximum contrast at 72 h (Figure 42Ai,ii). The high tumor 

tissue-selective contrast was confirmed by ex vivo imaging and region of interest analysis of the 

tumor, with a tumor-to-muscle contrast of 15.7 ± 0.3 (Figure 42Aiii). The high fluorescence in 

the kidneys and liver suggests a bimodal excretion route for LS662. As a small hydrophilic 

molecule, renal excretion was expected. The significant hepatobiliary excretion indicates that a 

fraction of the dye was bound to blood proteins, which then presents the molecules to the liver 

for subsequent excretion. The widely used NIR fluorescent dyes, ICG and cypate, are excreted 

from the body by a similar hepatobiliary pathway (Figure 42D).36, 37 Low uptake in the spleen 

and lungs suggests minimal aggregation of the molecular probe in vivo. 
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Figure 42. (A–C) LS662 in 4T1/luc murine breast cancer (A), A431 human epidermal cancer 

(B), and PyMT spontaneous breast cancer (C). (i) Fluorescence images of a tumor-bearing 

mouse at the indicated times postinjection. Red arrows indicate the location of the tumor. 

Preinjection image show a bright-field image of the mouse. (ii) Plot of the average fluorescence 

values of the tumor region compared to normal tissue control region obtained from the in 

vivo images. The values are normalized to the postinjection fluorescence intensity of each region. 

(iii) Fluorescence intensity in organs of interest after the mouse was sacrificed and the organs 

were excised. All values are normalized to the muscle signal. (D) Cypate in the 4T1/luc murine 

breast cancer model (n = 3). Error bars are shown for cases where n ≥ 3. 
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We compared the uptake of the pH-sensitive dye with that of cypate, a similar cyanine 

dye exhibiting less pH responsiveness.31, 38 Longitudinal imaging of cypate in 4T1/luc tumor-

bearing mice showed rapid clearance from the body within 1 h postinjection. The fluorescence of 

cypate was barely detectable after 24 h postinjection (Figure 42D). Quantitative image analysis 

shows that there is no selective accumulation or retention of cypate in tumors. A similar result 

using cypate was obtained with LS798 (Figure 45). This compound is structurally similar to 

LS662, but its fluorescence and absorption spectra do not respond to pH changes in the 

physiologically relevant range of pH 4–8 (Figure 44). These results lend credence to the use of 

simple and small pH-sensitive NIR fluorescent dyes to interrogate the acidic milieu of solid 

tumors. 

Having demonstrated that LS662 can localize in the acidic environment of a 

subcutaneously implanted murine mammary tumor model, we extended this imaging approach to 

the human-origin A431 tumor xenograft model (Figure 42B). The tumor cells were grown 

bilaterally in the mammary fat pads of athymic nude mice. Administration of LS662 in tumor-

bearing mice and subsequent fluorescence imaging showed a rapid clearance of the dye from 

blood and other tissues. At 1 h postinjection, high fluorescence in the bladder was observed, 

probably due to the low pH of urine. Although the initial fluorescence was low, the accumulation 

and activation of LS662 in the tumor were evident as early as 1 h postinjection, culminating in 

maximum tumor-to-normal tissue contrast at 72 h postinjection. This temporal increase suggests 

that nonfluorescent LS662 remained in circulation or was already trapped in the tumor and 

became fluorescent with continuous protonation of the molecules. A tumor-to-muscle contrast of 

14.30 ± 0.03 was determined ex vivo from the excised organs (Figure 42Biii). 
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Subcutaneously implanted tumor models do not fully recapitulate the biologic and 

histopathologic features of human cancers. Therefore, we explored the applicability of this 

approach in the PyMT spontaneous murine breast cancer model. PyMT mice are 

immunocompetent and present aspects of human breast cancer that are not represented by 

xenograft models. The similarities include spontaneous tumor development and the complex 

interaction of immune cells within the tumor. Intravenous administration of LS662 and 

fluorescence imaging showed rapid hepatobiliary clearance within 1 h postinjection of LS662 

(Figure 42C). This enhanced excretion pathway illustrates the variability in biodistribution that 

can be induced in different animal models. In this model, liver uptake was favored compared to 

the renal excretion observed in the subcutaneous tumor models (Figure 42A,B). Low 

fluorescence was observed in the tumors around the mammary fat pads, becoming more evident 

at 4 h before plateauing after 24 h postinjection (Figure 42Cii). This model also shows lower 

tumor-to-muscle contrast (3.46 ± 0.19) than that of the 4T1/luc and A431 tumor models. It is 

likely that the multifocal nature of the PyMT tumors prevented secreted protons from being 

locally concentrated, as seen in the other tumors, which could minimize the extent of pHe 

reduction from normal physiologic pHe. In spite of relatively low tumor-to-background contrast, 

histologic analysis of excised tissue showed that LS662 was able to detect multiple small tumors. 

6.4.5 Two-photon imaging and fluorescence histology reveal punctate and 

eiffuse intratumoral distributions of LS662 

The planar NIR fluorescence imaging system that we used to acquire the in vivo images 

is a surface-weighted low-resolution device. To determine the distribution of LS662 in the tumor 

microenvironment, we used high-resolution two-photon fluorescence and second harmonic 

generation microscopy for the study. 3D reconstruction of a freshly excised 4T1/luc tumor after 

LS662 injection revealed a chaotic structure of collagen (blue) and elastin (green) that surround 
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and form the 4T1/luc tumor matrix (Figure 43A). LS662 (red) is distributed in the diffuse 

extracellular region just interior to the tumor capsule and is localized with fibrous bundles 

surrounding and inside the tumor. A depth of up to 100 μm was imaged, which is a typical 

penetration depth for two-photon microscopy.39 After two-photon imaging, the tumor was frozen 

in OCT and sectioned for histology. Imaging of the same region shows LS662 fluorescence 

originating from cellular regions of the tissue (Figure 43A, right). The two-photon images 

demonstrated that LS662 is able to interrogate the extracellular matrix (ECM) of tumors, with a 

significant fraction specifically internalizing into tumor cells. 

Further analysis of the PyMT tumors via fluorescence histology shows that LS662 

localized in specific cells and throughout the tumor stroma, supporting the findings from the 

4T1/luc two-photon imaging (Figure 43D). We also found that a tumor-infiltrated lymph node 

displayed high LS662 fluorescence (Figure 43E). Muscle samples from the left leg of the mouse 

were obtained to evaluate the presence of LS662 in healthy tissue (Figure 43F). The absence of 

NIR fluorescence indicates that LS662 is not present in normal tissue, except the excretory 

organs. Acidification of the muscle tissue with PBS (pH 4.0) did not result in NIR fluorescence, 

indicating the absence of residual nonprotonated LS662 in healthy tissue. 
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Figure 43. (A) Two-photon tomographic reconstruction of a 4T1/luc tumor, excised immediately 

after the animal was sacrificed, 24 h post initial injection of LS662 (green, elastin; blue, 

collagen; red, LS662). (B–D) LS662 fluorescence (red, top) and H&E stained (bottom) images of 

the same regions from serial sections of 4T1/luc (B), A431 (C), and PyMT (D) tumors. (E) 

Lymph node infiltrated with tumor cells showing LS662 fluorescence. (F) Muscle samples from 

4T1/luc (top), A431 (middle), and PyMT (bottom) bearing mice show no LS662 fluorescence. 

6.5 Discussion 
Although it was previously considered to be a side product of enhanced glycolysis, 

acidification of the tumor environment appears to support tumor proliferation and metastasis of 

aggressive solid tumors. Earlier studies have demonstrated the potential of targeting this 



 

118 

 

physiologic condition for cancer detection and treatment.3, 4, 9, 40 For optical imaging, pH-

responsive molecular designs include the conjugation of pH sensors to tumor-targeting groups 

such as peptides or antibodies.11 Other pH sensor design strategies include the incorporation of 

pH-cleavable linkers into nanoparticle constructs, followed by the release of a high concentration 

of chemotherapeutics or imaging agents in solid tumors in vivo.41, 42 Similarly, conjugation of 

multiple dyes to macromolecules via acid-cleavable linkers or loading of dyes into pH-

degradable nanoparticles can quench dye fluorescence, which is activated upon degradation of 

the product under acidic conditions.11, 16, 41 Previously, we demonstrated that conjugation of a pH 

sensor to an RGD peptide allowed tumors to be detected with high tumor-to-background 

fluorescence contrast. Fluorescence enhancement was generated only in intracellular 

compartments, similar to that reported using other receptor-targeted approaches.11 In this study, 

we explored the feasibility of using a simple and small pH-sensitive molecule to image the acidic 

pHe in vivo. By avoiding the complexity of nanoparticle formulations and conjugation of the pH-

sensitive molecules with tumor-targeting agents, LS662 represents a viable alternative to current 

pH-sensing molecular probes. Because LS662 possesses intrinsic tumor-targeting and retention 

properties, we can conjugate drugs instead of tumor-avid ligands to the free carboxylic acid 

moiety for targeted therapy. 

The pH in the extracellular environment of tumors is generally about 6.5, whereas the pH 

of blood and most nontumor tissues is approximately 7.4. Because LS662 is a weak acid with a 

pKa of 5.2, the Henderson–Hasselbalch equation can be used to estimate the percentage of 

protonated LS662 at pH 6.5 versus that at pH 7.4 

𝑝𝐻 = 𝑝𝐾𝑎 + 𝑙𝑜𝑔10
[𝐴−]

[𝐻𝐴]
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where [A–] and [HA] are the nonprotonated and protonated forms of LS662, respectively. Using 

the above equation, we expect 0.6 and 5% of protonated LS662 to be in the nontumor and tumor 

environments, respectively, representing an 8-fold increase of the protonated form in the acidic 

tumor environment. 

We studied the relative fluorescence enhancement of LS662 in tumor versus nontumor 

tissues, including the in vivo kinetic analysis and ex vivo fluorescence biodistribution for all 

cancer models used (Figure 42). Because pH-sensitive LS662 and less pH-sensitive cypate (in a 

physiologically relevant pH range) are not specifically targeted to tumor cells, we expect 

similar in vivo biodistribution profiles for both compounds. Therefore, the higher fluorescence 

intensity in the tumor tissues observed with LS662 is attributed to pH-dependent protonation of 

the dye. LS662 has a pKa of 5.2 and exhibits low fluorescence above pH 7, which provides low 

background signal. Although these characteristics improved the tumor-to-surrounding tissue 

contrast, only a small fraction of LS662 is protonated between pH 6 and 7. Increasing the 

proportion of the protonated form of the dye in the acidic environment of tumors will improve 

both the tumor-to-nontumor contrast and net signal (fluorescence intensity). One approach to 

accomplish this goal is to develop or use a NIR fluorescent pH-sensitive dye possessing a pKa of 

about 6.5 and negligible fluorescence above pH 7.2. 

LS662 appears to accumulate and internalize in tumor cells by a bimodal pathway. In the 

nonprotonated form, the highly negatively charged molecules undergo ATP-dependent 

endocytosis. Although the exact mechanism of internalization is not known at this time, 

intracellular punctate fluorescence suggests an endosomal pathway that acidifies the molecules 

as they transit from early (higher pH) to late (lower pH) endosomes/lysosomes. In contrast, 

protonation of LS662 appears to facilitate internalization by a process that is less dependent on 
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active transport. We postulate that the positively charged LS662 interacts electrostatically with 

the phosphate groups on the cell membrane to induce internalization by energy-dependent and -

independent mechanisms, similar to that of HIV tat-peptides or amphiphilic polymers.43, 44 

Internalization of both protonated and nonprotonated forms of LS662 in cells by different 

mechanisms could lead to sporadic uptake of this molecular probe in many cells in vivo. 

However, our small animal imaging results indicate that it has high tumor selectivity, as 

demonstrated in three different cancer models. Accumulation in both the extracellular acidic 

space and in tumor cells provides a two-prong reporting strategy in which relatively weak 

fluorescence in tumors from molecules protonated in the extracellular space is visible within 1 h, 

followed by highly intense fluorescence induced by both intra- and extracellular protonation of 

LS662. Two-photon and SHG imaging also show that LS662 does not stain elastin and collagen 

fibers in the tumor matrix, a further indication of pH-associated selective uptake in tumor tissue. 

Accurate sensing of pHe in vivo could be advantageous in monitoring tumor growth and 

cell death during therapy. Our results show that LS662 accumulates in a variety of cancer 

models, regardless of the tumor’s origin. Comparison of LS662’s uptake in these tumor models 

suggests that LS662 fluorescence may correlate with the differences in pHe and the distribution 

of the excreted protons (Figure 42). Diffuse and invasive tumors such as PyMT45 release protons 

into a large tissue volume, which could result in a more neutral physiologic pHe than that of 

implanted tumors, such as 4T1/luc and A431, which could exhibit a lower pHe because protons 

are released in a small, encapsulated tissue volume. If it is validated with reference standards, the 

relative fluorescence of LS662 could be used to correlate tumor invasiveness and metastatic 

potential with the size, proton distribution, type, and origin.46, 47 Unlike SNARF-1,47, 48 which 

requires its use in high concentrations for pH sensing in the visible-light region, the NIR 
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emission of LS662 allows tumor tissues to be interrogated noninvasively in small animals with a 

higher detection sensitivity using a relatively lower dose of the molecular probe. 

In summary, LS662 is a promising small molecule for reporting the cellular and 

extracellular pH of tumors. Its capacity to illuminate the tumors within 1 h, prolonged retention 

in tumors, and NIR fluorescence make it useful for diverse biomedical applications, including 

the targeted delivery of drugs. Low background NIR fluorescence before protonation improves 

tumor contrast in vivo. This molecular probe is also capable of sensing different stages of cell 

death, with over a 5000-fold fluorescence increase in dying and dead tumor cells because of the 

elevated acidity of necrotic or apoptotic tumor bodies.34, 35 This work has unveiled a novel class 

of small molecules that can target diseased tissue simply through electrostatic changes produced 

by environmental factors. 

6.6 Supporting information 

6.6.1 Synthesis and characterization of LS798  

The synthetic scheme is shown in Figure 44 below. A mixture of sulpho-indole 3 (0.7 g 

2.2 mmol) and methyl iodide (1 g, 6 mmol) was heated under reflux in ethanol overnight. The 

product 4 was precipitated with diethyl ether and used directly for dye synthesis after drying. A 

mixture of indole intermediate 4 (114 mg, 0.45 mmol) and Suzuki-product 2 (82 mg, 0.2 mmol) 

was heated under reflux in the presence of sodium acetate (55 mg, 0.67 mmol) in 10 mL mixed 

solution of 2 ethanol/acetic anhydride (50%/50%, v/v) for 20 h. After cooling, 3% of HCl in 

water was added to the resultant mixture. The crude material was purified by reverse-phase C-18 

column chromatography, eluting with CH3CN/H2O gradient to afford 112 mg of desired dye 5 

(yield 77%). NIR/vis: λ abs = 751 nm, λ em = 766 nm, ε = 195,000 M-1cm-1, φF (PBS) = 0.12, 

ESI-MS: m/z 728 (M+H, 100%). Unlike LS662, the absorption and emission spectra of LS798 in 
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different pH buffers from pH 2.1-10 remained nearly constant, indicating a lack of pH response 

(Figure 44B). 

 

Figure 44. Synthetic scheme and spectral properties of LS798. A. Synthetic route of pH 

insensitive dye LS798.5 B. Absorption and emission spectra of LS798 in different pH buffers 

from pH 2.1-10.   

6.6.2 In vivo characterization of LS798 

The in vivo biodistribution profiles of LS798 in mice bearing tumors are shown Figure 

45. The relative intensity of LS798 normalized to post injection values has a maximum intensity 

at 24 h post injection. Fluorescence intensity of LS798 in tumors is an order of magnitude less 

than the intensity using LS662. After 24 h, fluorescence of LS798 in tumor decreased rapidly 
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compared to LS662 (Figure 45). In the A431 model, LS798 does not have any substantial uptake 

in the tumors compared to LS662 (Figure 45). Similarly, the fluorescence of LS798 in the PyMT 

tumor model was substantially lower than the same parameter using LS662. In all cases, the 

tumor-to-nontumor contrast was much lower with LS798 relative to LS662. 

 

Figure 45. In vivo distribution of LS798 in mouse models of cancer. LS798 in: A. 4T1/luc 

murine breast cancer; B. A431, human epidermal cancer; and C. PyMT spontaneous breast 

cancer. 4 Fluorescence images were obtained at the specified time points post-injection. Red 

arrows indicate the location of the tumor. Plot of the average fluorescence values of the tumor 



 

124 

 

region compared to non-tumor tissue control regions are shown below each set of fluorescence 

images. The values are normalized to the post injection fluorescence intensity of each region. 

Error bars are obtained from n ≥ 3 experiments. 
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Chapter 7 :  Conclusions 
In this dissertation, we applied optical imaging and therapy techniques to develop a new 

strategy for PDT. We have addressed several challenges of current cancer therapies: lack of 

adequate tumor targeting (Chapter 5 :  and Chapter 6 : ), failure to treat hypoxic tumor cells 

(Chapter 2 : ), and induction of chemotherapy and radiation therapy resistant phenotypes 

(Chapter 3 : , Chapter 4 : , and Chapter 5 : ).  

To address lack of adequate tumor targeting we developed a NIR theranostic PS (Chapter 

5 : ) and a pH sensitive NIR fluorophore (Chapter 6 : ) that both obtained high uptake in the 

tumor compared to normal tissue. In Chapter 5 : , we showed that LS797 accumulates in 

squamous cell carcinomas and that by monitoring the NIR fluorescence of cypate, we could 

localize the tumor before treatment, enabling us to choose the optimal DLI. The subsequent light 

activation of Ce6 produced ROS and resulted in significant tumor regression and slowing of 

tumor growth. In Chapter 6 : , the development of a pH sensitive NIR fluorophore LS662, 

provided insight into the acidity of the tumor microenvironment. Interestingly, the protonation of 

one indolenium ring nitrogen by the acidic tumor microenvironment resulted in retention of 

LS662 in tumor cells and the extracellular spaces, even without a direct method of targeting.  

This has implications for delivery drugs to all parts of the tumor, not just the tumor cells. In 

particular, for PDT, this could enable activation of all three mechanisms of therapeutic action: 

direct cell death, shut-down of microvessels, and activation of the immune system. 

To address the limitation of chemotherapy, radiation therapy and PDT to treat hypoxic 

tumors, we constructed and characterized a dual type I/II nano-photosensitizer, TiO2-N3 

(Chapter 2 : ). In normoxic conditions, TiO2-N3, produced 3- or 4-fold greater hydroxyl radicals 
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and hydrogen peroxide than bare TiO2, respectively. In addition, under hypoxic conditions TiO2-

N3 maintained high hydroxyl production, unlike TiO2 and N3.  TiO2-N3 is a dual type I/II PS 

under normoxic conditions and a type I PS under hypoxic conditions, making it an ideal 

candidate for treating heterogeneously hypoxic tumors.   

In order to determine the ideal intracellular localization for TiO2-N3, we first developed a 

method for monitoring PDT induced cell damage (Chapter 3 : ) and second determined in which 

organelle ROS production resulted in the greatest cell death (Chapter 4 : ).  

To monitor and characterize ROS induced cell damage, we developed a fluorescence 

lifetime method. Since many PSs are internalized into cells through the endosomal pathway, it is 

important to understand how ROS generated in endosomes and lysosomes induce damage. As a 

model for lysosomal damage, we used bafilomycin A1, a V-ATPase inhibitor which neutralizes 

the pH of lysosomes. PS1 FLIM was able to detect and quantify the increase in lysosome pH 

after addition of bafilomycin. This informed the use of PS1 FLIM to monitor damage due to 

PDT. Immediately after light activation of PS1, the pH of lysosomes increased, indicating that 

the PDT generated ROS induced lysosome damage. We also found that lysosomal PDT resulted 

in greater cell killing than endosomal PDT, even after normalization of intracellular PS 

concentration. Therefore, the subcellular localization of the PS is extremely important to 

therapeutic efficacy.  

After determining the importance of the PS’s localization along the endosomal pathway, 

we wanted to determine if other organelles had different susceptibilities to ROS damage. In 

Chapter 4 : , we compared four Ce6 based PSs with different organelle localizations: lysosome 

(PS1 or PS2), ER (Ce6), and dual mitochondria and lysosome (PS3). By using Ce6 for all 



 

131 

 

targeted PS, we were able to eliminate differences in the photophysical properties that often 

complicate such studies. Overall, ER PDT resulted in the greatest cell killing, followed by 

lysosome PDT with PS2, dual mitochondria and lysosome PDT with PS3, and finally lysosome 

PDT with PS1.  The ER is implicated in activation of the immune system. In fact, previous 

studies have shown that ROS produced in the ER can induce the UPR, aiding in release of tumor 

antigens and immune system activation. In this study we have established that ROS production 

in the ER results in the greatest cell death. Next we would like to determine in which organelle 

oxidative damages induces the greatest activation of the immune system. Optimizing cell death 

in conjunction with immune activation would increase overall tumor regression and reduce the 

induction of tumor resistance.  

 In conclusion, we have designed and developed the requisite elements for a new PDT 

strategy. To ensure all three mechanisms of PDT tumor regression are activated, the PS must be 

targeted to both tumor cells (for direct cell death) and the tumor microenvironment (to disrupt 

tumor vasculature and activate the immune system). We have shown the LS662 accumulates in 

both of these regions. Within the cell, we have shown that activation of the PS in the ER results 

in the greatest cell death. It is also likely that ER localization will aid in the activation of the 

immune system. Finally, we showed that TiO2-N3 synergistically produced potent hydroxyl 

radicals, even under hypoxic conditions. Therefore, combination of LS662, TiO2-N3 and an ER 

targeting ligand will enable activation of all three PDT pathways to enhance tumor regression 

and limit development of therapy resistance.  
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