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ABSTRACT OF THE DISSERTATION 

Designing Metabolite Biosensors and Engineering Genetic Circuits to  

Regulate Metabolic Pathways 

by 

Di Liu 

Doctor of Philosophy in Energy, Environmental and Chemical Engineering 

Washington University in St. Louis, 2017 

Professor Fuzhong Zhang, Chair 

 

Microbial production of chemicals has provided an attractive alternative to chemical synthesis. A 

key to make this technology economically viable is to improve titers, productivities, and strain 

robustness. However, pathway productivities and yields are often limited by metabolic imbalances 

that inhibit cell growth and chemical production. In contrast, natural metabolic pathways are 

dynamically regulated according to cellular metabolic status. Dynamic regulation allows cells to 

adjust metabolite concentrations to optimal levels and avoid wasting carbon and energy. Inspired 

by nature, synthetic regulatory circuits have shown great promise in improving titers and 

productivities, because they can balance the metabolism by dynamically adjusting enzyme 

expression levels according to cellular metabolic status. 

 



	 xi	

To engineer synthetic regulatory circuits to improve production, we must design and tune 

metabolite biosensors, and also understand the metabolic dynamics to identify the optimal 

regulatory architecture. The research presented here addresses both these key aspects and 

demonstrates an application of genetic circuits to improve pathway production. Specifically, we 

develop theories that predict and experimentally validate a coupling between dynamic range and 

response threshold in transcription factor-based biosensors, and provide design guidelines to 

orthogonally control the biosensor output and its sensitivity. Next, we develop a malonyl-CoA 

sensor-actuator and demonstrate its application to engineering a negative feedback circuit to 

improve fatty acid production. Finally, genetic circuits with various architectures are constructed 

to study metabolic dynamics, which reveal that negative feedback circuits can dramatically 

accelerate metabolic dynamics. 

 

The findings of this dissertation provide rational design principles for transcription factor-based 

metabolite biosensors and a systematic understanding of metabolic dynamics under various 

regulation architectures. They provide valuable tools and knowledge to engineer metabolic circuits 

to regulate various metabolic pathways, increasing titers, productivities, and yields.  
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Chapter 1 Introduction 
Note: This chapter contains text and figures from the published paper (Liu, Di, et al. "Applications 
and advances of metabolite biosensors for metabolic engineering." Metabolic engineering 31 
(2015): 35-43.) and the published book chapter (Liu, Di, et al. "Design of Dynamic Pathways. " 
Biotechnology for Biofuel Production and Optimization. Elsevier, 2016). 

1.1 Background 

1.1.1 Importance of metabolite biosensors 

Advances in metabolic engineering have enabled microbial production of a wide variety of 

valuable compounds, providing alternative synthesis routes for chemicals including biofuels, 

pharmaceuticals, nutraceuticals, bulk chemicals, and materials. To produce these valuable 

compounds, efficient biosynthetic pathways must be constructed in appropriate hosts, which often 

requires extensive optimization to reach economically viable titers, yields, and productivities. The 

cycle of repeatedly tuning pathway parameters and evaluating production is laborious and time-

consuming. Synthetic biology is a fast-growing field that develops new tools for biological 

engineering, fulfilling the need for efficient pathway optimization. It has proven effective in 

increasing process predictability and throughput as well as in creating new strategies to optimize 

biosynthetic pathways. Among these new tools, biosensors represent a significant contribution 

from synthetic biology and are widely used in metabolic engineering. 

 

  Biosensors are ubiquitous in nature and have evolved to detect both environmental signals (e.g. 
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temperature, pH, oxygen) and intra- and extracellular metabolites. These sensed signals are 

coupled with actuator outputs to modify the transcription, translation, and protein activities of cells. 

A crucial consideration in synthetic biology and metabolic engineering is that these natural 

biosensing machineries have evolved to maximize evolutionary fitness rather than biosynthetic 

production. However, detailed knowledge of the sensing mechanisms and endogenous functions 

of these biosensors serve as a valuable starting point to co-opt them for biosynthetic goals. 

 

  Here metabolite biosensors are referred to as genetically-encoded protein or RNA-based sensors 

that interact with a metabolite to generate an actuator output. The output domain of a metabolite 

biosensor generates detectable phenotypes through modulating transcription rates, translation rates, 

or post-translational parameters to control protein expression or activity. Over the past few decades, 

metabolite biosensors have drawn tremendous attention and have several applications in metabolic 

engineering (Figure 1). First, biosensors can be coupled to readable outputs such as fluorescence 

to semi-quantitatively report the concentration of a target compound. This approach is frequently 

used for high-throughput screening of high-producing strains and features distinct advantages over 

conventional methods such as gas chromatography (GC) and high-performance liquid 

chromatography (HPLC): 1) Biosensor-mediated quantification avoids time-consuming sample 

preparation and has much higher throughput than conventional chromatographic techniques; 2) 

metabolite biosensors are more suitable for detecting labile and low abundant metabolites such as 

acyl-phosphate, acyl-diphosphate, aldehyde, and acyl-CoAs, which are difficult to measure 
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accurately by conventional methods; 3) metabolite biosensors allow real-time monitoring of 

metabolite dynamics in living cells, which is impossible to study using chromatographic methods. 

These reporter outputs may also help coordinate complementary manipulations of the culture 

environment itself (mixing, nutrient addition, timing of harvest) to further improve production 

(Polizzi and Kontoravdi, 2015). Second, biosensors can be engineered to couple the sensing of a 

desirable product or intermediate metabolite with a fitness advantage for the cell by expressing a 

gene necessary for survival under selective conditions (Dietrich et al., 2013; Raman et al., 2014). 

The difference in cell growth allows direct enrichment of fast-growing cells from mutant libraries, 

which allows an easy selection for desirable production characteristics. Third, metabolite 

biosensors can also be used to control metabolic flux dynamically (Dahl et al., 2013; Liu et al., 

2013; Zhang et al., 2012). The actuator can be designed to tune pathway enzyme expression or 

post-translational parameters in response to the level of the relevant metabolite, allowing for 

dynamic control of pathway activity based on the cellular metabolic state. As a result, the pathway 

is dynamically balanced, which not only reduces toxic intermediate accumulation but also saves 

carbon and energy that is otherwise diverted to synthesize unnecessary proteins or intermediates. 

Overall, the emerging tools to engineer biosensors and their applications towards metabolic 

engineering have greatly advanced microbial production of a variety of chemicals. 
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Figure 1.1. Applications of metabolite biosensors in metabolic engineering. a) Biosensors can be 

linked to a colorimetric output to report the concentration of metabolites, providing an easy way 

to screen for high-producing strains. b) Biosensors can be used to control an output associated with 

a fitness advantage under selective conditions. This allows direct enrichment and selection of high-

producers. c) Biosensors can be used to control the activity of a metabolic pathway, which allows 

dynamic optimization of the pathway activity according to the level of the sensed metabolite. 

 

1.1.2 Development of transcription-factor based metabolite biosensors and 
their applications in metabolic engineering 

In nature, transcription factors regulate gene expression by specific binding to the chromosomal 
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DNA, blocking or promoting transcription by RNA polymerase. Among these, some transcription 

factors can be activated or deactivated by small molecules through ligand binding, phosphorylation, 

or interaction with other regulatory elements. Here we will focus on transcription factors that 

respond to metabolites. 

 

  Metabolite-responsive transcription factors (MRTFs) have been evolved to interact with various 

metabolites. Escherichia coli, for example, has more than 230 transcription factors (Binder et al., 

2012), which sense a wide variety of metabolites, including sugars, sugar phosphates, amino acids, 

and lipids. Natural MRTFs haven been extensively explored to engineer biosensors for metabolic 

engineering applications. Typically, metabolite-responsive promoters with tunable output dynamic 

ranges can be engineered by inserting the cognate operator of a MRTF into a synthetic promoter 

to regulate genes of interest (Figure 2a, 2b). Using this strategy, biosensors that respond to a variety 

of metabolites have been created, including sensors for butanol (Dietrich et al., 2013), alkanes 

(Reed et al., 2012), malonyl-CoA (Liu et al., 2013; Xu et al., 2014), acyl-CoA (Zhang et al., 2012) 

and aromatic aldehyde (Fiorentino et al., 2009). The primary use of MRTF sensors is to screen for 

high-producing strains from a library of natural or engineered strains, as demonstrated in the 

production of several chemicals, including mevalonate (Tang and Cirino, 2011), L-lysine (Binder 

et al., 2012), and triacetic acid lactone (Tang et al., 2013). This approach becomes particularly 

powerful when coupled with fluorescence-activated cell sorting (FACS). In one example, an eyfp 

was cloned 3’ of a Corynebacterium glutamicum promoter that is regulated by an endogenous 



	 6	

transcription factor Lrp, which can detect L-methionine and several branched-chain amino acids, 

including L-valine, L-leucine and L-isoleucine (Mustafi et al., 2012). Using chemical mutagens, 

random mutations were introduced to the Corynebacterium glutamicum strains, which carry the 

sensor plasmid. Cells were cultivated and screened by FACS, and the ones with enhanced 

fluorescence were isolated and re-cultivated to enrich the high-producing strains. Mutants that 

produce up to a total of 11 mM branched-chain amino acids were identified. In addition, MRTFs 

have also been used to control genes associated with cell growth/survival for selection (Dietrich et 

al., 2013; Raman et al., 2014). In a recent paper, Raman et al used MRTF-regulated promoters to 

control the expression of TolC, a protein that allows both positive and negative selections when 

supplemented with sodium dodecyl-sulfate (SDS) and colicin E1, respectively. While positive 

selections were needed to select for high-producing strains generated by multiplex automated 

genome engineering (MAGE), negative selections were used to eliminate the false positives caused 

by mutations that deactivate the sensor-selection system. By alternating between negative and 

positive cycles, the authors demonstrated enhanced production for both naringenin and glucaric 

acid (Raman et al., 2014). Overall, biosensor-mediated high-throughput screening and selection 

methods drastically shorten the time required to analyze mutant cells, enhancing the power of 

evolutionary approaches. In addition, MRTF-based biosensors have also been used to dynamically 

regulate metabolic flux. One of the earliest examples of using the MRTF sensor for dynamic 

regulation involves a fatty acyl-CoA biosensor FadR (Zhang et al., 2012). FadR naturally regulates 

several genes in E. coli fatty acid biosynthesis and degradation. In a fatty acid ethyl ester (FAEE)-
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producing strain, the cognate actuator of FadR was engineered to upregulate acyl-CoA 

biosynthesis, ethanol production, and the expression of a wax ester synthase, which condenses 

ethanol and acyl-CoAs to FAEEs (Figure 2c). This allows the downstream pathway to be activated 

only when there is sufficient acyl-CoA, preventing the production of unnecessary proteins and 

ethanol at the early stage of fermentation. As a result, the FAEE titer was increased 3-fold, reaching 

1.5 g/L. In addition, other studies constructed negative feedback circuits to dynamically regulate 

fatty acid biosynthesis using a malonyl-CoA–responsive MRTF (Liu et al., 2013; Xu et al., 2014). 

Malonyl-CoA is synthesized from acetyl-CoA by acetyl-CoA carboxylase (encoded by acc). 

Expression of acc improves fatty acid production, but acc overexpression also inhibits cell growth. 

To alleviate the toxicity from acc overexpression while maintaining high malonyl-CoA 

concentrations, malonyl-CoA biosensors were used to dynamically down-regulate acc expression 

when cells accumulate high malonyl-CoA levels. These sensor-enabled dynamic regulations 

enhanced fatty acid production dramatically, particularly when coupled with upregulation of fatty 

acid chain elongation genes.  

 

  So far, most MRTF-based biosensors have relied on naturally existing transcription factors, and 

these sensors are usually highly specific to their corresponding metabolites. To allow broader 

utilization, the specificity of an MRTF needs to be altered to detect a metabolite of interest to which 

no natural sensor exists. The specificity of a MRTF can be altered using various protein 

engineering approaches (rational design, evolution, etc.). For example, a biosensor for mevalonate 
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(a precursor of isoprenoid biosynthesis) was developed based on AraC, which naturally recognizes 

arabinose (Tang and Cirino, 2011). In this work, the specificity of AraC was modified by 

subjecting five residues of its metabolite-binding pocket to saturation mutagenesis. To select for 

mevalonate-responsive AraC variants, a gfp was placed under the control of a PBAD promoter. 

FACS was then used to isolate clones with higher GFP expression in the presence of mevalonate. 

This general approach is useful to develop sensors for a variety of compounds, as demonstrated 

for triacetic acid lactone (Tang et al., 2013) and D-arabinose (Tang et al., 2008). 

 

 

Figure 1.2. MRTF-based metabolite biosensors and examples of their applications in metabolic 

engineering. a) Metabolite binding to an MRTF represses transcription. b) Metabolite binding to 
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an MRTF enhances transcription. c) A dynamic pathway regulation system for FAEE production. 

Acyl-CoA biosensors were used to activate synthesis of FAEE and its precursors, ethanol and fatty 

acyl-CoA. This synthetic regulatory system dynamically turns on downstream enzyme expression 

only when the upstream pathway accumulates enough key intermediates, in this case acyl-CoA.  

 

1.1.3 Importance of metabolic circuits and their benefits to natural and 
engineered metabolic pathways 

In nature, organisms spanning from simple microbes to complex, multicellular animals rely on 

various levels of dynamic regulation to maintain metabolic homeostasis, basic cellular functions, 

and to adapt to ever-changing intracellular and extracellular environments. As a simple example, 

Escherichia coli utilizes a plethora of transcriptional regulatory networks: 34 coherent feedforward 

loops, 6 incoherent feedforward loops, 68 operons under single input module control, and 203 

pairs of operons regulated by the same two transcription factors (Shen-Orr et al., 2002). These 

numbers, limited by current investigational techniques, are likely a vast underestimate of the actual 

abundance of transcription-level natural dynamic regulation in E. coli. The number of documented 

dynamic regulation suggests that this is an effective regulatory mechanism for maintaining cell 

homeostasis in response to naturally fluctuating environments. Many microorganisms other than 

E. coli use similar regulatory networks to regulate a variety of pathways. For example, seven out 

of eight genes in the S. cerevisiae leucine biosynthesis pathway are positively regulated by the 

transcription factor Leu3, which is in turn activated by a pathway intermediate – α-isopropyl-
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malate (αIPM). As a result, leucine biosynthesis is positively controlled by the intermediate 

branching from the common precursor of branched-chain amino acid biosynthesis	(Kohlhaw et al., 

2003). Alternatively, over 100 diverse bacterial genomes contain a prototypical negative feedback 

loop in which the product, tryptophan, represses transcription of the trp operon (Xie et al., 2003).  

 

Figure 1.3. The intermediate-sensing regulation strategies for a simplified metabolic pathway. 

Substrate (S) is converted to product (P) via an intermediate (I), and the upstream or downstream 

gene of the intermediate can be either up-regulated or down-regulated. a & b show the up-

regulation strategies that create either a negative feedback (a) or a positive feedback (b) circuit. c 
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& d show the down-regulation strategies that create either a negative feedback (c) or a positive 

feedback (d) circuit. 

 

  Figure 1.3 demonstrates some common naturally occurring regulatory topologies based on a 

simplified metabolic pathway, in which substrate (S) is converted to product (P) via the 

intermediate (I). The biosynthesis of I and the conversion of I to P can be either up-regulated (Fig. 

1.3a & 1.3b) or down-regulated (Fig. 1.3c & 1.3d) by I. From the point of view of the intermediate 

metabolite, both up-regulation of a downstream pathway (Fig. 1.3a) and down-regulation of an 

upstream pathway (Fig. 1.3c) create negative feedback loop, since they both act to decrease the 

level of I. On the other hand, up-regulation of an upstream pathway (Fig. 1.3b) and down-

regulation of a downstream pathway (Fig. 1.3d) lead to a positive feedback loop, since they both 

act to increase the level of I. 

 

In practice, each type of regulatory topology has its specific benefits. Negative autoregulation, 

in which a transcription factor represses its own transcription, is a key regulatory mechanism used 

by almost half of all transcription factors in E. coli. In addition to limiting wasteful gene and 

transcription factor expression, negative autoregulation has been shown to increase the dynamic 

range of the input required to activate the target gene	(Madar et al., 2011). This feature is desirable 

when building synthetic dynamic regulation systems, because it minimizes the need to tune the 

input dynamic range. Another important characteristic of negative autoregulation is that it can 
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decrease the response time of a genetic circuit	(Rosenfeld et al., 2002). When a strong promoter is 

used, a fast initial rise in protein production is generated, and as the transcription factor level 

increases, it reaches the repression threshold for its own promoter, thus decreasing its own 

production rate. In this case, the negatively autoregulated transcription factor shuts off its 

transcription after the initial rise, quickly reaching a steady state	 (Rosenfeld et al., 2002). 

Furthermore, negative autoregulation can also reduce variations in protein levels across a cell 

population, another desired feature in an engineered dynamic regulatory system (Alon et al., 2007; 

Becskei et al., 2000).  

 

Negative feedback loops, as shown in Figure 1.3a & 1.3c may also be of use in designing a 

dynamic circuit. In general, negative feedback can prevent cells from synthesizing unneeded 

proteins, thus conserving carbon and energy. Moreover, under some conditions, negative feedback 

loops may reduce noise in metabolic systems. This reduction in noise helps to avoid stochastic 

deviation from the expected metabolic state (Levine et al., 2007). In a metabolically engineered 

system, reduction of noise and improved stability of metabolic states helps achieve maximal 

product production (Oyzarun et al., 2015). 

 

Another common regulation strategy in nature is a feedforward loop. Feedforward loops contain 

two transcription factors; the first transcription factor regulates the second transcription factor, and 

both the first and the second transcription factor regulate the same target gene. The activity of the 
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first transcription factor directly on the target gene is the direct loop of activation, while the activity 

of the second transcription on the target gene is the indirect loop of activation. Coherent loops, i.e., 

loops acting in concert, lead to product amplification due to the cooperative direction of the indirect 

and direct loops. Alternatively, incoherent feedforward loops, i.e., loops that are not acting in 

concert, contain indirect and direct loops oriented in opposite directions, leading to repression	

(Mangan et al., 2003). 

 

  Dynamic regulation is not only beneficial to natural systems; it can also be very powerful for 

engineered pathways and synthetic devices. One such example is a metabolic negative feedback 

loop based on a malonyl-CoA sensor-actuator in E. coli. When this dynamic regulatory circuit was 

used for the production of free fatty acids, there was a 34% improvement in free fatty acid titers 

obtained, compared to a strain lacking the dynamic control loop (Liu et al., 2013). Similarly, a 

dynamic regulatory circuit was utilized to improve fatty acid ethyl ester biodiesel formation three-

fold (Zhang et al., 2012). These will be discussed in details in the following sections. The concept 

of harnessing transcription factors to dynamically regulate a metabolic pathway can be extended 

to a plethora of other pathways. 

 

1.2 Dissertation Overview 

In this dissertation, we focus on engineering genetic circuits to regulate engineered metabolic 
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pathways and develop design and tuning principles for genetic biosensors and metabolic circuits.  

 

In Chapter 2, we examine the design constraints of transcription factor-based metabolite biosensors 

and identify a coupling between the response threshold and dynamic range when tuning the 

binding affinity between the transcription factor and the promoter. We further developed rational 

tuning principles that allow for orthogonal control over the biosensor output and its sensitivity. 

 

In Chapter 3, we develop a malonyl-CoA sensor-actuator and apply it to construct a negative 

feedback circuit to regulate an engineered free fatty acid producing pathway. We demonstrate that 

the circuit recovers cell growth by dynamically controlling the expression of a key enzyme, thus 

alleviating its toxicity and improving free fatty acid titers and productivities. 

 

In Chapter 4, metabolic dynamics are studied in various genetic circuits. Specifically, we construct 

negative feedback circuits with three different architectures, which represent three commonly 

found architectures in nature and engineered systems. Experimental measurements and 

mathematical simulations are combined to study the effects of regulation topologies and the 

associated biochemical parameters on the metabolic dynamics. The results reveal that negative 

feedback circuits can dramatically accelerate metabolic dynamics. The effects of control 

topologies and biochemical parameters on metabolic dynamics are also compared in these circuits. 
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Finally, in Chapter 5 the major conclusions and implications of the current work are summarized, 

with recommendations for future work. 
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Chapter 2 Fundamental Design Constraints of 
Transcription Factor-based Metabolite Biosensors 

Note: This chapter contains text and figures from the published paper (Mannan, Ahmad A., et al. 
"Fundamental design principles for transcription-factor-based metabolite biosensors." ACS 
Synthetic Biology, 2017). 

Abstract 

Metabolite biosensors are central to current efforts towards precision engineering of metabolism. 

Although most research has focused on building new biosensors, their tunability remains poorly 

understood and is a fundamental aspect for their broad applicability. Here we asked how genetic 

modifications shape the dose-response curve of biosensors based on metabolite-

responsive transcription factors. Using the lac system in Escherichia coli as a model system, we 

built promoter libraries with variable operator sites that reveal interdependencies 

between biosensor dynamic range and response threshold. We developed a phenomenological 

theory to quantify such design constraints in biosensors with various architectures and tunable 

parameters. Our theory reveals a maximal biosensor dynamic range and exposes tunable 

parameters for orthogonal control of dynamic range and response threshold. Our work sheds light 

on fundamental limits of synthetic biology designs and provides quantitative guidelines for 

biosensor design in applications such as dynamic pathway control, strain optimization, and real-

time monitoring of metabolism. 
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2.1 Introduction 

A core principle in synthetic biology is the assembly of biological components into larger systems 

with predetermined functions. Metabolite biosensors, in particular, have received substantial 

attention because of their role in many applications at the interface of synthetic biology and 

metabolic engineering. Biosensors control gene expression in response to small molecules and 

provide a powerful tool to probe and control the metabolic state of a host. This makes them 

versatile for diverse applications, such as dynamic pathway engineering (1–4), high-throughput 

screening (5, 6) and complex genetic-metabolic circuitry (7). 

A number of molecular mechanisms have been used for sensing intracellular metabolites, including 

e.g. RNA aptamers (8, 9) and metabolite-responsive transcription factors (TFs) (10, 11). The latter 

have become particularly popular because many organisms have evolved TFs that respond to 

native metabolites. In E. coli, for instance, about a third of TFs are known to respond to metabolites 

(12). Metabolite-responsive TFs can be re-purposed as biosensors in a different host (13) or re-

engineered to respond to new ligands (14). The list of compounds for which biosensors have been 

developed is growing quickly (11) and includes precursors to biosynthetic pathways as well as 

products from secondary metabolism (15–19). 

As illustrated in Figure 2.1A, for the purposes of biosensor design, metabolite-responsive TFs can 

be conceptualized as the composition of two modules: a sensing module for the interaction 

between the metabolite and the TF, and a regulation module where the TF controls the expression 
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of a target gene. Biosensors generally have one of four different architectures, depending on the 

type of interactions of the sensing and regulation module. Examples of these biosensor 

architectures can be found across diverse applications in metabolic engineering, see e.g. the 

reviews in (10, 11) or Table SF2 in the Supplementary File. 

Most applications require biosensors to be tunable, so that designers can adjust biosensor output 

to the expected physiological concentration of a metabolite. Common strategies for biosensor 

tuning target the sensing and regulation modules separately, for example, via protein engineering 

to modify the binding kinetics between the metabolite and TF (14, 19), or promoter engineering to 

modify the transcriptional activity of the TF (20). Yet a major challenge for biosensor tuning is 

that their overall response compounds the effect of sensing and regulation, and thus changes to one 

component typically affect all parameters of the dose-response curve simultaneously (Figure 2.1B). 

As a result, biosensor design requires lengthy trial-and-error iterations between genetic 

modifications and strain characterization.   

Previous studies have focused on the impact of transcriptional processes on the regulatory function 

of TFs (21, 22). Such studies have successfully used biophysical models to identify relations 

between parameters and the TF dose-response curve (23, 24). In the case of metabolite biosensors, 

however, their two-module architecture conflates the effect of metabolite sensing with the 

regulatory action of the TF. This makes it difficult to tease apart the impact of tunable parameters 

on the overall dose-response curve.  This is especially relevant in metabolic engineering 
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applications, where biosensors are typically built with sensing and regulation modules taken from 

different sources, both of which can be tuned independently and have diverse molecular 

mechanisms (10, 11). As a result, biosensor design can benefit from system-level descriptions that 

abstract from mechanistic details and highlight the input-output dependencies among components.  

Here we sought to characterize the interdependency between tunable parameters and the dose-

response curves of metabolite biosensors. Combining phenomenological modeling and strain 

characterization, we provide a simple theory for the design of metabolite biosensors with various 

architectures and tunable parameters. Our results highlight fundamental constraints in biosensor 

design and expose tunable parameters that facilitate precise control of biosensor function. 

 

2.2 Results 

2.2.1 Design constraints in dose-response curves of metabolite biosensors 

To study the relation between promoter tuning and biosensor function, we focused on metabolite-

responsive TFs, the most widespread mechanism employed for sensing small molecules (10, 11, 

25). In these biosensors, a convenient tunable parameter is the affinity of the TF to the promoter 

operator site, as it can be modified with rapid and cost-effective techniques such as random 

mutagenesis of promoter sequence or changes in operator copy number or location (25, 26).  

As a model system for our investigation, we focused on the lactose inducible system in Escherichia 
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coli. We built eight lacUV5-based promoters with different mutations at the LacI-binding operator 

site (sequences in Figure 2.1C). We incorporated a red fluorescent protein (rfp) gene downstream 

of each promoter and measured the dose-response curve to varying concentrations of Isopropyl β-

D-1-thiogalactopyranoside (IPTG), a non-metabolizable compound that mimics allolactose and 

induces the lac promoter by allosteric binding to the LacI repressor. We characterized the dose-

response curves of each strain though steady state RFP fluorescence in mid-exponential growth. 

The resulting dose-response curves display significant differences (Figure 2.1C), with basal 

fluorescence outputs spanning two orders of magnitude and up to two-fold changes in maximal 

biosensor output. 

 

Figure 2.1 Design constraints in dose-response curves of metabolite biosensors.  
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(A) General architecture of biosensors based on metabolite-responsive transcription factors (TF). 

The metabolite (M) interacts with a TF that controls expression of a target protein (P). The sensing 

and regulation modules can be tuned with protein and promoter engineering. (B) Parameters that 

characterize a biosensor dose-response curve: basal output (b); response threshold (𝜃), defined as 

the amount of metabolite required for 50% output expression relative to the baseline; dynamic 

range (𝜇), defined as the maximal increase in expression relative to the basal output; response 

sensitivity, defined as the slope of the dose-response curve at the threshold. (C) Dose-response 

curves of LacI-based biosensors with variable operator sites, in response to IPTG induction. Error 

bars represent standard error from biological replicates; some error bars are too small to be 

observed. (D) Dose-response parameters of the strains in panel C, and fit of the phenomenological 

model in Eq. (1), green line. Error bars are the standard error of measured dose-response 

parameters across biological replicates; some error bars are too small to be observed. The gray 

band contains model predictions for 500 runs of the parameter estimation algorithm; the solid 

green line is the fit for a specific parameter set. Further details on the model fitting can be found 

Supplementary File 1.  

 

To quantify the differences among the biosensors, we computed their dose-response parameters as 

defined in Figure 2.1B. We found a strong interdependency between the biosensor parameters for 

varying operator sites. In particular, when dynamic range (𝜇) and threshold (𝜃) are plotted against 
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each other (Figure 2.1D), we found a fundamental constraint for biosensor design. The constraint 

indicates that upon changes in operator affinity, biosensors with a broader dynamic range also 

display a larger response threshold. This suggests that tuning the promoter operator site can 

increase the dynamic range of the biosensor, but at the cost of simultaneously increasing the level 

of metabolite required to elicit a response. 

To explain the observed constraint between threshold and dynamic range, we formulated a general 

mathematical model of the biosensors. Motivated by the modular description in Figure 2.1A, we 

used phenomenological models that describe the steady state of the sensing and regulation modules 

as Hill functions of their inputs. In the case of the lac system, which corresponds to the repressed-

repressor architecture in Figure 2.1A, the model reads 

 𝑓$ 𝑀 = 	𝑏$ +	
𝑎$

1 + 𝐾$𝑀 -.
,

𝑓0 𝑇𝐹 = 𝑏0 +	
𝑎0

1 + 𝐾0𝑇𝐹 -3
, 

(1) 

where f1 is the concentration of functional TF that can bind to the operator site as a function of the 

metabolite concentration (M), and f2 is the expression level of the target gene (P) as a function of 

the concentration of repressor. The parameters ai, bi, Ki, and ni define the shape of the Hill curves 

for each module. In particular, the parameters b1 and b2 model the basal level of TF activity and 

promoter expression, respectively; parameters a1 and a2 are the maximum increase in TF activity 

and promoter expression, relative to their basal levels, respectively; parameter K1 is the metabolite-

TF affinity, and K2 is the TF-operator affinity; and parameters n1 and n2 are proportional to the 
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sensitivity of metabolite-TF and TF-operator binding, respectively. Although specific molecular 

mechanisms can be well approximated by Hill functions similar to Eq. (1) (27–29), in this work 

we do not instance the models to specific mechanisms but rather focus on a phenomenological 

theory applicable to biosensors with various architectures. Furthermore, the model in Eq. (1) 

describes the steady state levels of the regulator (TF) and the target protein (P), and implicitly 

assumes that mRNA transcripts are also at steady state because mRNA half-lives are typically 

much shorter than protein lifetimes (30).  

Under the phenomenological model in Eq. (1), the overall response of the biosensor is the 

composite function P = f2(f1(M)). The resulting dose-response curve has all the mathematical 

properties of a sigmoidal curve, namely, it is monotonically increasing, it has a single inflection 

point, and it approaches a finite limit value for large values of M. These properties hold in all the 

four biosensor architectures in Figure 2.1A (see Supplementary File 2S1).  

From biophysical considerations, it is typically assumed that mutations to the promoter operator 

site affect the TF-operator affinity (21, 26). In our phenomenological approach, we further assume 

that changes to operator affinity can be captured by perturbations to the K2 parameter only. This 

simplification allows us to model each strain in our library with a different value of K2. We 

numerically computed the (𝜇,𝜃) parameters from the dose-response curves P = f2(f1(M)) for 

varying values of K2, and fitted the model parameters to the (b,𝜇,𝜃) triplets from our fluorescence 

data (see Methods). Despite its simplified nature, the results in Figure 2.1D suggests that our 
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phenomenological model qualitatively reproduces the observed relation between dynamic range 

and threshold, thus providing a simple method to map the impact of mutations to the operator site 

onto the biosensor dose-response curve. 

2.2.2 Phenomenological theory for biosensor tuning 

To further elucidate the constraints that underpin biosensor design, we obtained formulae for the 

dose-response parameters in terms of the tunable parameters. For the repressed-repressor 

architecture, described by the model in Eq. (1), the dose-response parameters are 

 𝑏 = 𝑏0 +
𝑎0

1 + 𝐾0 𝑏$ + 𝑎$
-3	, (2) 

 𝑎 = 𝑎0 ⋅
𝑏$ + 𝑎$ -3 − 𝑏$

-3 ⋅ 𝐾0
-3

1 + 𝐾0 𝑏$ + 𝑎$
-3 ⋅ 1 + 𝑏$𝐾0 -3

	, (3) 

 𝜃 =
1
𝐾$
⋅

𝑎$𝐾0
𝐴 − 1

73 − 𝑏$𝐾0
− 1

7.
	, (4)  

where A is a function a1, b1, K2, and n2, shown in Supplementary File S1. For brevity, we report 

the computation of the biosensor sensitivity in Supplementary File S1. From Eqs. (2) and (3), we 

compute the biosensor dynamic range as 

 𝜇 =
𝑎
𝑏

= 𝜇0 ⋅
𝑏$ + 𝑎$ -3 − 𝑏$

-3 𝐾0
-3

1 + 𝐾0 𝑏$ + 𝑎$
-3 + 𝜇0 ⋅ 1 + 𝑏$𝐾0 -3

	, 

(5) 

with 𝜇2 = a2/b2 being the dynamic range of promoter expression. The formulae for the dose-
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response parameters of the other biosensor architectures (Figure 2.1A) can be found in the 

Supplementary File S1. The results in Eqs. (2)-(5) reveal that the dose-response parameters are 

coupled to one another through the TF-operator affinity (K2). Changes to the operator sequence 

cause simultaneous changes to the basal output (b), dynamic range (𝜇) and response threshold (𝜃), 

in accordance with the dependency observed in our data in Figure 2.1C.  

 



	 28	

Figure 2.2 Control of biosensor dose-response curves with tunable parameters. 

(A) Dose-response curves predicted from the model for biosensors with variable operator affinities. 

Our phenomenological theory predicts that tighter TF-operator binding leads to a lower basal 

output and a broader dynamic range, accompanied by an increased biosensor threshold. The 

bottom plot shows how this coupling between dynamic range (𝜇) and threshold (𝜃) constrains 

biosensor function, in agreement with the behavior observed from our data in Figure 2.1C-D. 

Parameter values are: a1 = 300, a2 = 1000, b1 = 0.01, b2 = 4.1, n1 = 6, n2 = 2, K1 = 0.1, and K2 
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values span the range K2 = 0.0005 to K2 = 0.9; all concentrations in 𝜇M. (B) Increased basal TF 

activity (b1) leads to highly nonlinear constraints between dynamic range and threshold. Plots show 

increasing values of the b1 parameter, from b1 = 0.01 up to b1 = 8. The inset shows the dose-

response curves for increasing operator affinities (K2), at a relatively high basal TF activity (b1 = 

8). (C) Two tunable parameters, the promoter dynamic range (𝜇2) and TF-metabolite affinity (K1), 

provide orthogonal control and scale the dynamic range and threshold. Parameter values are the 

same as in panel A, except a2 = 1700 (yellow curve) and K1 = 0.04 (blue curve). In all panels, plots 

shown are for the repressed-repressor architecture, but the conclusions apply to all biosensor 

architectures in Figure 2.1A, see Supplementary File 2S1. 

As shown in Figures 2.2A for a repressed-repressor architecture, for low TF-operator affinities (K2) 

the biosensor produces an almost constitutive, metabolite-independent output, and thus displays 

low dynamic ranges. For increases in the K2  parameter, the model predicts a decrease in basal 

biosensor output (b), with a relatively minor impact on the maximal output. This causes an increase 

in dynamic range and biosensor threshold, in agreement with what we observed in our lac promoter 

library (Figure 2.1D). 

For high TF-operator affinities, however, our model predicts that the constraint between dynamic 

range and threshold depends strongly on the basal TF activity, modeled by the b1 parameter in Eq. 

(1). In the case of the repressed-repressor architecture, the basal TF activity corresponds to the 

concentration of TF available for repression at maximum induction. When the b1 parameter is nil, 
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we found a monotonic relationship between biosensor dynamic range and threshold, but an 

increased b1 parameter produces a non-monotonic dependency between them (Figure 2.2B). This 

constraint appears in all biosensor architectures (see Supplementary File S1). In the case of the 

repressed-repressor architecture, this seemingly counterintuitive phenomenon arises because TFs 

with large basal activity (high b1) will have some repressors available to bind to the operator site, 

even at full induction. An increased TF-operator affinity thus causes a stronger binding by these 

available repressors, decreasing protein expression, and in turn, lowering biosensor dynamic range, 

as shown in Figure 2.2B. In contrast, for TFs with negligible basal activity (low b1) we do not 

observe a drop in dynamic range (Figure 2.2A), because at full induction there are so few 

repressors available that protein expression is insensitive to the TF-operator affinity.  

A consequence of the constraint in Figure 2.2B is that changes to the TF-operator affinity can tune 

the biosensor threshold within a limited range only. In the case of the repressed-repressor 

architecture, the theoretical limits for the biosensor threshold are 

 

𝜃89: =
1
𝐾$
⋅

𝜇$

2<
$
-3 ⋅ 1 + 1 + 𝜇$ -3

$
-3 − 1

$
-.

, 
 

(6) 

 

𝜃8=> =
1
𝐾$
⋅

𝜇$

2
$
-3 ⋅ 1 + 𝜇$ -3

1 + 1 + 𝜇$ -3

$
-3 − 1

$
-.

, 

 

(7) 

where 𝜇1 = a1/b1 is the dynamic range of TF activity. The limit thresholds for the other architectures 
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can be found in Supplementary File S1. From the formula in Eq. (5) we also computed the maximal 

dynamic range achievable with changes to the TF-operator affinity: 

 𝜇8=> = 𝜇0 ⋅
1 + 𝜇$ -3 − 1

1 + 𝜇$
-3
0 + 1 + 𝜇0

$
0

0	, (8) 

As shown in Supplementary File S1, the formula for 𝜇max applies to all four biosensor architectures 

in Figure 2.1A. Since Eq. (8) scales with both 𝜇1 and 𝜇2, it suggests that the maximal dynamic 

range can be controlled by tuning the TF expression level (through parameter a1) or by adjusting 

the promoter strength (through parameter a2). Detailed examination of the formula for 𝜇max, 

however, reveals that it has a more pronounced dependency on 𝜇2, which is advantageous because 

according to Eqs. (2)-(4), parameter 𝜇1 also affects all the other dose-response parameters 

simultaneously. 

2.2.3 Orthogonal control of dynamic range and threshold 

The results in Eqs. (4) and (5) reveal two tunable parameters, promoter dynamic range (𝜇2) and 

metabolite-TF affinity (K1), that affect the biosensor dynamic range and threshold separately, 

whilst all remaining tunable parameters cause simultaneous changes in both. This means that 𝜇2 

and K1 can be used for orthogonal control of dynamic range and threshold. In particular, the 

phenomenological model predicts that 𝜇2 causes a vertical scaling in the (𝜇,𝜃)-curve, while K1 

scales it horizontally, as illustrated in Figure 2.2C. As shown in Supplementary file S1, we found 

that this behavior appears in all other biosensor architectures in Figure 2.1A, thus suggesting a 
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general principle for biosensor design. 

To test the predicted orthogonal control in our lac system, we used two complementary strategies. 

First, we induced our strains in Figure 2.1C with methyl-1-thio-β-d-galactopyranoside (TMG), 

another gratuitous lac inducer with an affinity to LacI approximately 10 times lower than IPTG 

(31), which in our model corresponds to a reduced K1 parameter. Second, we built six new lac 

promoters in E. coli. In addition to mutating the operator sites, the promoter strength was modified 

by replacing the -35 and -10 regions of the lacUV5 promoter with those of the sequences from 

promoter PA1 of phage T7. The PA1 promoter has a higher binding affinity to RNA polymerase 

(32), and hence an increased promoter strength, which in our model corresponds to an increased 

value for a2 and 𝜇2. 
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Figure 2.3 Orthogonal control of biosensor dynamic range and threshold.  

(A) Dose-response curves of the lac strains from Figure 2.1C induced with TMG, which has a 10-

fold lower affinity to LacI than IPTG. (B) Dose-response curves of strains with variable operator 

sites and increased promoter strength. Error bars represent standard error from biological replicates; 

some error bars are too small to be observed. (C) Dose-response parameters and model fits of 

strains in panel A (blue curve), and panel B (yellow curve). For comparison, the parameters of the 

IPTG-induced strains (Figure 2.1D) are in light gray. Error bars are the standard error of measured 
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dose-response parameters across biological replicates; some error bars are too small to be observed. 

The gray bands contain model predictions for 500 runs of the parameter estimation algorithm; the 

solid lines (blue, yellow) are fits for specific parameter sets. Further details on the model fitting 

can be found Supplementary File 1. (D) Validation of the predicted orthogonal control of dynamic 

range and threshold. We focused on three sets of strains (Ai, Bi, Ci) that are comparable across the 

three experiments. Strains within each set share the same operator sequence, but differ in their -35, 

-10 promoter region sequence. Bar plots show the fold change in dose-response parameters for a 

decreased inducer affinity or increased promoter strength, with respect to strains in Figure 2.1D.  

 

We measured the dose-response curves of both sets of strains with RFP fluorescence, shown in 

Figure 2.3A-B, and quantified the dose-response parameters in Figure 2.3C. The results show a 

good qualitative agreement with our predictions. Strains with increased promoter strength display 

a larger dynamic range (Figure 2.3C, yellow), while a reduced metabolite-TF affinity caused an 

increase in response threshold (Figure 2.3C, blue), both with respect to our original strains in 

Figure 2.1C. We re-fitted the mathematical model for both sets of strains and observed that the 

model produces good fits in both cases. For the TMG-induced strains (blue curve, Figure 2.3C), 

we used the parameters from the IPTG experiments (Figure 2.1C) and re-fitted K1 and b1. Although 

we only expected a change in K1, we were unable to produce good fits without also re-fitting 

parameter b1. This is possibly because a lower affinity decreases the probability of TMG binding, 
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and so at full induction there are fewer repressors bound to TMG, as compared to those bound to 

IPTG, resulting in a higher b1. For the strains with a promoter sequence perturbed at the -35 and -

10 regions (yellow curve, Figure 2.3C), we used the parameters from the IPTG strains (Figure 

2.1C) and re-fitted a2, b2 and n2. We expected the PA1 promoter sequence to affect parameter a2 

only, but we needed to re-fit b2 and n2 as well. This suggests biophysical couplings between tunable 

parameters that are not included in our model. Nevertheless, the results suggest that biosensor 

dynamic range increases with the 𝜇2= a2/b2 parameter, with negligible impact on the biosensor 

threshold, in agreement with our theoretical prediction.  

To verify whether the changes in dynamic range and threshold were indeed orthogonal for changes 

in K1 and 𝜇2, we focused on three sets of strains, A1 and A2, B1 and B2, and C1 and C2, shown in 

Figure 2.3C. Strains within each set share the same operator sequence, but differ in the sequence 

of their -35 and -10 promoter regions. This enables us to survey the impact on the response 

parameters for changes in the two tunable parameters for each set of strains. Their response 

parameters, shown in Figure 2.3D, validate the predicted orthogonal control: a decrease in 

metabolite-TF affinity caused a large change in dose-response threshold and relatively small 

change in dynamic range, while a change in promoter strength caused a negligible change in 

threshold but a large shift in dynamic ranges. 
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2.3 Conclusions and Discussions 

In this work we identified quantitative principles for the design of metabolite biosensors. Previous 

research on biosensors has focused primarily on expanding the repertoire of detectable metabolites 

(14, 33, 34). Most applications, however, require some degree of tunability on the biosensor dose-

response curve, an aspect that remains poorly understood but is fundamental for their broad 

applicability. Given the substantial effort required to build new biosensors, a quantitative 

understanding of how tunable parameters shape biosensor function can help narrow down the 

design space, single out useful architectures, and determine the best experimental strategies to tune 

them. 

Using the lac promoter in E. coli as a model system, we showed that mutations in the operator 

sequence simultaneously affect the basal output, dynamic range, and threshold of the dose-

response curve. Such coupling between dose-response parameters makes it challenging to control 

biosensor function without a quantitative guideline. We quantified the parameter dependencies 

with a simple phenomenological model in which common tunable parameters such as TF-operator 

affinity, promoter strength and TF expression level can be readily incorporated, thus providing a 

widely applicable theory for biosensor design. Our theory revealed that upon changes in operator 

affinity, metabolite-responsive TFs are subject to design constraints between dynamic range and 

response threshold. These constraints become more severe for ‘leaky’ TFs that have a large basal 

activity, because they display a maximal achievable dynamic range that cannot be overcome by 
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changes to the operator site.  

We also found that biosensor dynamic range and threshold can be controlled orthogonally with the 

promoter dynamic range and the TF-metabolite binding affinity. Our models predict that this 

principle holds in all considered biosensor architectures. Numerous promoter engineering 

techniques can be used to rapidly change promoter properties (20, 35, 36). Although changes to 

the TF-metabolite binding are significantly more challenging, recent progress in protein 

engineering have showcased the construction of metabolite-responsive TFs with perturbed 

affinities to their cognate ligands (19, 37), and even modified to bind to new molecules (14, 15). 

Our results suggest that promoter libraries with combinatorial designs for operator site and 

promoter strength cover a large portion of the design space for the biosensor dynamic range, whilst 

TF engineering can help to control the sensing threshold of leaky TFs. 

Tunability of biosensors is essential for precision engineering of metabolism. In dynamic pathway 

engineering, biosensors control the expression of catalytic enzymes and are core components of 

feedback loops that re-route metabolic flux in response to pathway intermediates. For example, 

tuning the response curves of acyl-CoA and malonyl-CoA biosensors helped to increase production 

of fatty acid and fatty acid-derived fuels in E. coli (1, 2). With adequate tuning of the biosensor 

dose-response curve, feedback-regulated pathways can adapt their enzyme levels to the metabolic 

status of the host, prevent the accumulation of toxic intermediates, and control pathway variability 

(3, 4, 16, 38). The design constraints we have reported here thus highlight the need for 
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comprehensive characterization of biosensor libraries. The common approach of tuning biosensors 

based on dynamic range alone neglects potential knock-on effects on the sensing threshold, which 

may render a biosensor unresponsive to the physiological concentrations of a target metabolite.  

Our theory has exposed design constraints applicable to biosensors with any of the four 

architectures in Figure 2.1A. Biosensors with various architectures have been already developed 

for a number of applications (10, 11). Our results provide a quantitative framework for orthogonal 

control of dynamic range and threshold in these biosensors, beyond the repressed-repressor 

architecture we have studied here. For example, the activated-activator architecture can be found 

in biosensors based on the TyrR regulator (5), while the repressed-activator and activated-repressor 

architectures can be found in biosensors based on SoxR and BetI, respectively (19, 39); see Table 

SF2 in the Supplementary File for more examples. Further, here we focused on design constraints 

under a variable operator affinity, as this is one of the most common tunable parameters. Our theory 

can be extended to uncover constraints for other tunable parameters accessible in specific 

applications, such as variable promoter strengths (a2 parameter) or promoter sensitivity (n2 

parameter), which can be implemented with promoter libraries with variable RNA polymerase 

binding sites (36) or operator copy number (2). We also expect the use of other tunable parameters, 

such as the TF expression level, to produce more drastic changes in dose-response curves than 

those we observed here, for example by affecting the basal and maximal output simultaneously. 

In this work we have deliberately used phenomenological models because they provide a versatile 
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tool to explore the parameter space for various biosensor architectures. The drawback of this 

simplification is that it overlooks the specific mechanisms for metabolite-TF binding and TF 

regulation (25). Our models also inherently assume that the tunable parameters are independent 

from one another, yet in reality they are coupled through the biophysical interactions between the 

TF, promoter and other transcriptional components such as RNA polymerases and 𝜎-factors, which 

may produce further design constraints (21, 22). Although our data showed some effects that 

cannot be fully explained by our models, overall we found that our phenomenological theory 

provides a good first approximation to link design parameters with biosensor dose-response curves. 

Our approach revealed constraints in dose-response curves for common tunable parameters, 

providing a quantitative basis to identify useful biosensor architectures and to determine suitable 

experimental strategies for biosensor tuning.  

Unlike most other engineering disciplines, synthetic biology suffers from a limited availability of 

sensing devices. Our work has uncovered fundamental design principles for metabolite biosensors, 

which in light of the tremendous progress in DNA, RNA and protein engineering, are essential to 

bring precision metabolic engineering closer to reality. 

 

2.4 Methods 

2.4.1 Mathematical modeling and curve fitting 

The phenomenological models were built through the composite function P = f2(f1(M)), where f1 
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and f2 are increasing or decreasing Hill functions. The function P(M) is monotonic in M, has a 

single inflection point, and reaches its extremal values at M = 0 and M → ∞, thus resembling a 

sigmoid function. We obtained the biosensor parameters a and b from the definitions 

𝑎 = max 𝑓0 𝑓$ 𝑀 −min 𝑓0 𝑓$ 𝑀 	, 

𝑏 = min 𝑓0 𝑓$ 𝑀 	, 

for M ≥ 0, from where the dynamic range is 𝜇 = a/b. We computed the response threshold 𝜃 as the 

solution of the equation 

𝑓0 𝑓$ 𝜃 = 𝑏 +
𝑎
2, 

which represents the metabolite concentration for 50% output, relative to the basal. The 

computation of the dose-response sensitivity is explained in Supplementary File 1. The upper and 

lower bounds on 𝜇 and 𝜃 were computed by differentiation with respect to TF-operator affinity K2 

(details in  Supplementary File S1). Equations (2)-(7) are valid for the repressed-repressor 

architecture, while Eq. (8) for the maximal dynamic range is valid for all architectures. Detailed 

calculations of dose-response parameters in all architectures are given in Supplementary File S1.  

For the parameter fitting in Figures 2.1D and 2.3C, we obtained the dose-response parameters from 

the promoter characterization data, 𝜇E,F, 𝜃E,F and 𝑏E,F, of the ith strain for each of the three sets 

of experiments. The dynamic range (𝜇E,F) and basal expression level (𝑏E,F) were calculated from 

the data at zero and full induction, and the threshold (𝜃E,F) from fits of a Hill function to the data. 

The model predictions (𝜇F, 𝑏F, 𝜃F) were generated from equations (2)-(5) evaluated over a fixed 
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range of K2 from K2=3×10-5 to K2=103, with the other seven parameters 	𝑝 =

(𝑎$, 𝑏$, 𝐾$, 𝑛$, 𝑎0, 𝑏0, 𝑛0) fitted to the data triplets (𝜇E,F, 𝜃E,F, 𝑏E,F)	via nonlinear least-squares. We 

solved the optimization problem 

 
min
K

𝜇E,F − 𝜇E,L 𝐾0,E, 𝑝
𝜇F

0

+
𝜃E,F − 𝜃E,L 𝐾0,E, 𝑝

𝜃F

0#	Strains

EN$

+
log$R 𝑏E,F − log$R 𝑏E,L 𝐾0,E, 𝑝

log$R 𝑏F

0

, 

where 𝜇E,L, 𝜃E,L and 𝑏E,L are computed from equations (2)-(5) and 𝐾0,E corresponding to the 

value of 𝐾0	where the model prediction is closest to the ith data point. Each term of the objective 

is normalized by the maximum measured value, denoted 𝜇F, 𝜃F or 𝑏F. In Figure 2.1D we fitted 

all model parameters. The green line is a model fit with parameters reported in Table SF1 in 

Supplementary File 1. In Figure 2.3C (blue) we used the fitted parameters from Figure 2.1D (green) 

and re-fitted K1 and b1. In Figure 2.3C (yellow), we used the parameters from Figure 2.1D (green) 

and refitted a2, b2 and n2. Further details on the parameter fitting can be found in Supplementary 

File 1. The parameter fitting was done through 500 runs of the fmincon solver in MATLAB Global 

Optimization toolbox. 

2.4.2 Construction and characterization of promoters 

The lac promoter libraries were constructed by introducing mutations to the lac operator site in a 

Biobrick plasmid pBbB5k-RFP (40). The PA1 promoter library (increased 𝜇2) was cloned by 

switching the -35 and -10 regions of the LacUV5 promoter to those of PA1 promoter from phage 
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T7 (sequence shown in Figure 2.3B), yielding plasmid pBbB5pgk-RFP. To vary the K2 parameter, 

two lac promoter libraries were created with operator sequences 

AATTGTGANNNGATAACAATT and AANNNTGAGCGGATAACAAT (Figure 2.1C, 2.3A & 

2.3B), generating a strain library with the size of 128 sequences. The lac promoter libraries were 

constructed using a one-step Golden-Gate DNA assembly method and were then transformed into 

MG1655 cells. The promoter libraries were pre-screened from a random selection of colonies from 

the whole library, and the ones with relatively high and distinct dynamic ranges were selected for 

further characterization. 

Cell growth and fluorescence were recorded on an Infinite F200PRO (Tecan) plate reader. Strains 

were first cultivated overnight in Luria-Bertani (LB) medium supplemented with 50 mg/L 

kanamycin. The overnight LB cultures of the lac promoter strains were inoculated 2% v/v into M9 

medium supplemented with 1% glycerol, 50 mg/L kanamycine, and amino acids, composed as for 

the EZ-rich medium (41) for adaptation. The overnight culture was inoculated 2% v/v into the 

same medium and grew to an OD600 of 0.6. Cell cultures were then diluted by 30-fold in the same 

medium and induced with varying IPTG (0.1, 1, 4, 10, 40, 100, 400, and 1000 µM) and TMG (1, 

100, 400, 1000, 2000, 4000, 10000, and 40000 µM) concentrations.  

Cell density (OD600) and red fluorescence (excitation: 535 ± 9 nm; emission: 620 ± 20 nm) were 

recorded every 1000 s until the cell culture reached the stationary phase. Fluorescence from a wild-

type E. coli MG1655 cell culture was used as the background, and was subtracted from all 
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fluorescence measurements. The background-corrected fluorescence was later normalized by cell 

density as measured at OD600. Cells were maintained in the exponential growth phase for 5-6 cell 

cycles until the normalized fluorescence reached to the steady state, and the steady state 

fluorescence were used to generate the dose-response curves. We extracted the biosensor 

parameters (b, 𝜇, 𝜃) from Hill functions fitted to the measured dose-response curves. Standard 

errors of the dose-response parameters were calculated from the fitted parameters of the response 

curves for biological replicates, for each strain. 
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Chapter 3 Negative Feedback Regulation of Fatty 
Acid Production Based on a Malonyl-CoA  

Sensor-Actuator 
Note: This chapter contains text and figures from the published paper (Liu, Di, et al. "Negative 
feedback regulation of fatty acid production based on a malonyl-CoA sensor–actuator." ACS 
synthetic biology 4.2 (2014): 132-140). 

Abstract 

Engineering metabolic biosynthetic pathways has enabled the microbial production of many useful 

chemicals. However, pathway productivities and yields are often limited by metabolic imbalances. 

Synthetic regulatory circuits have been shown to be able to balance engineered pathways, 

improving titers and productivities. Here we developed a negative feedback regulatory circuit 

based on a malonyl-CoA-based sensor-actuator. Malonyl-CoA is biosynthesized from acetyl-CoA 

by the acetyl-CoA carboxylase, which is the rate-limiting step for fatty acid biosynthesis. 

Overexpression of acetyl-CoA carboxylase improves fatty acid production, but slows down cell 

growth. We have devised a malonyl-CoA sensor-actuator that controls gene expression levels 

based on intracellular malonyl-CoA concentrations. This sensor-actuator was used to construct a 

negative feedback circuit to regulate the expression of acetyl-CoA carboxylase. The negative 

feedback circuit was able to turn up acetyl-CoA carboxylase expression when the malonyl-CoA 

concentration is low and turn down acetyl-CoA carboxylase expression when excess amounts of 

malonyl-CoA is accumulated. We have shown that the regulatory circuit effectively alleviated the 
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toxicity associated with acetyl-CoA carboxylase overexpression. When used to regulate the fatty 

acid pathway, the feedback circuit increased fatty acid titer and productivity by 34% and 33%, 

respectively. 

 

3.1 Introduction 

Engineered microbes have shown great potential as cell-factories for the production of fuels1, 2, 

chemicals3, pharmaceuticals4, 5, nutraceuticals6, and materials7 etc. To make these technologies 

economically viable, it is important to obtain high yields and productivities. Common engineering 

strategies to improve yields and productivities include overexpressing bottleneck enzymes, 

bypassing native regulations, blocking competing pathways, genome-scale optimization8-11, etc. 

However, due to various reasons, such as imbalanced enzyme activities, engineered pathways 

often have imbalanced metabolism. Under these circumstances, enzymes or intermediates can 

accumulate to toxic levels, which inhibit cell growth and decrease production8, 12.  

 

  An engineered metabolic pathway can potentially be balanced by manipulating the intracellular 

concentration of pathway enzymes. Enzyme concentrations can  be controlled (1) at the DNA 

level by tuning gene copy numbers13, (2) at the transcription level by tuning the strength of 

promoters14, 15, and (3) at the translation level by choosing a suitable ribosome binding site (RBS)16. 
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These strategies allow static control of enzymes levels, which are mostly constant during chemical 

production. 

 

  In contrast to the static controls, natural metabolic pathways are dynamically regulated 

according to cell metabolic status17-19. Some pathways are regulated by positive feedback loops. 

As an example, seven out of eight genes in the Saccharomyces cerevisiae leucine biosynthesis 

pathway are positively regulated by the transcription factor Leu3, which is in turn activated by a 

pathway intermediate – alpha-isopropyl-malate (αIPM). As a result, leucine biosynthesis is 

positively controlled by the intermediate branching from the common precursor of branched-chain 

amino acid biosynthesis20. Similarly, negative feedback regulation that controls the concentration 

of certain metabolites is also found in nature21. For example, all the eight genes involved in S. 

cerevisiae arginine biosynthesis pathway are negatively regulated by cellular level of arginine 

through a transcription factor ArgR17. These regulation systems allow cells to adjust metabolite 

concentrations at desirable levels, balancing the pathway for optimal cell growth22. The balanced 

pathway also prevents the biosynthesis of unnecessary RNAs, proteins or metabolites, increasing 

the efficiency of energy and carbon usage23. Based on this concept, a synthetic regulatory system 

that detects key metabolic intermediates and regulates pathway gene expression according to 

intermediate concentrations could be used to balance its metabolism and improve product titers 

and yields22, 24.  
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  With the development of synthetic biology, several strategies now exist to create synthetic 

control circuits. One of the earliest metabolic regulatory circuits was constructed by harnessing an 

acetyl phosphate sensor to regulate lycopene biosynthesis25. In a recent study, a dynamic sensor-

regulator system was built for an engineered pathway, in which expression levels of several 

heterologous genes were dynamically controlled by the concentration of a key metabolite, acyl-

CoA23. In both systems the cells were able to dynamically modulate their metabolic flux in 

response to intracellular physiology, and therefore dramatically improved production. Besides 

these experimental efforts, in-silico simulations also predicted that dynamic pathway regulation 

could improve production26-28. 

 

  Here we report the development of a malonyl-CoA-based negative feedback system in 

Escherichia coli to improve fatty acid titer and productivity. Malonyl-CoA is a common building 

block for the biosynthesis of several types of compounds, including fatty acids, 3-

hydroxypropionic acid, polyketides, and flavonoids29, 30. These compounds can be used as or 

converted to biofuels, commodity chemicals, fine chemicals, and drugs. Bioproduction of fatty 

acids is particularly important because fatty acid derivatives provide renewable transportation 

fuels31, 32. In E. coli, malonyl-CoA is biosynthesized from acetyl-CoA by acetyl-CoA carboxylase 

encoded by accABCD (acc). The E. coli acetyl-CoA carboxylase consists of four subunits: a biotin 

carboxyl carrier protein, a biotin carboxylase, and two carboxyltransferase subunits. This is the 

first step of fatty acid biosynthesis and is believed to be the rate-limiting step33, 34. Several studies 
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have shown that overexpression of acc genes improved both fatty acid and flavonoid production35-

38. On the other hand, overexpression of acc is toxic to cells34, 36. The exact molecular mechanism 

of the toxicity is currently unclear. Possible reasons include the depletion of free CoA pool by 

malonyl-CoA overproduction, or the interference with biotin-utilizing enzymes by the imbalanced 

expression of the biotin carboxylase subunit34. To enhance malonyl-CoA supply while alleviating 

the toxicity caused by acc overexpression, we have devised a malonyl-CoA sensor-actuator and 

used it to negatively regulate acc expression. We have shown that the malonyl-CoA-based negative 

control system can alleviate the toxicity caused by acc overexpression. When the system was 

applied to fatty acid pathway, it improved both fatty acid titer and productivity by 34% and 33%, 

respectively. 

 

3.2 Results and Discussions 

3.2.1 Design of a malonyl-CoA sensor-actuator 

We designed the malonyl-CoA sensor-actuator based on a naturally-occurring malonyl-CoA-

responsive transcription factor, FapR, from the Gram-positive bacteria Bacillus subtilis39. FapR 

specifically binds to a 17-bp DNA sequence and negatively regulates fatty acid and phospholipid 

metabolism in B. subtilis40. The binding of malonyl-CoA to FapR triggers a conformation change 

to the FapR, causing FapR-DNA complex to dissociate39. To our knowledge, such a malonyl-CoA-

responsive transcription factor is absent in E. coli. To create malonyl-CoA biosensors in E. coli, 
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we cloned the B. subtilis fapR gene into E. coli using a low copy number plasmid under the control 

of a PBAD promoter (pA8c-fapR, Table 3.1). Meanwhile, we constructed a FapR-regulated 

synthetic promoter (PFR1, the actuator) by inserting the 17-bp FapR-binding sequence into two 

regions flanking the -10 region of a phage PA1 promoter41 (Table 3.3). The actuator was later cloned 

to control the expression of a red fluorescence protein gene (rfp), resulting in plasmid pBFR1k-

rfp. In the absence of malonyl-CoA, FapR is expected to bind to the 17-bp DNA sequence, which 

poses steric hindrance to RNA polymerase binding and inhibits RFP transcription. When malonyl-

CoA is present, the binding of malonyl-CoA to FapR is expected to release FapR from the promoter 

(PFR1), enhancing RFP transcription (Figure 3.1). 

 

Table 3.1 Plasmids used in this study  

Plasmids Replication Origin Overexpressed Operon Resistance References 

pBFR1k-RFP BBR1 PFR1-rfp KanR This study 

pA8c-FapR p15A PBAD-fapR (B. subtilis) CmR This study 

pE7a-acc ColE1 PT7-acc (E. coli) AmpR This study 

pE7a-yACC ColE1 PT7-acc (S. cerevisiae) AmpR This study 

pBFR#k-RFP (#: 2-6) BBR1 PFR#-rfp KanR This study 

pA8c-0 p15A PBAD-none AmpR This study 

pE7a-0 ColE1 PT7-none AmpR This study 
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pBFR1k-lacI-8FapR BBR1 PFR1-lacI, PBAD-fapR KanR This study 

pBFR1k-lacI-8MFapR BBR1 PFR1-lacI, PBAD-mfapR KanR This study 

pBFR1k-RFP-8FapR BBR1 PFR1-rfp,PBAD-fapR KanR This study 

pBFR1k-RFP-8MFapR BBR1 PFR1-rfp,PBAD-mfapR KanR This study 

pA2c-tesA p15A Ptet-‘tesA (E. coli) CmR This study 

 

 

 

Figure 3.1 Malonyl-CoA sensor-actuator design. The FapR-binding sites are inserted flanking the 

-10 region of the promoter (colored green). The presence of malonyl-CoA antagonizes the DNA 

binding activity of FapR and releases FapR from the engineered promoter, initiating RFP 

transcription. 

 

  To evaluate the malonyl-CoA sensor-actuator, we varied the intracellular malonyl-CoA 

concentrations using a malonyl-CoA-accumulating plasmid, pE7a-acc. Specifically, pE7a-acc 

contained an additional copy of the E. coli acc genes under the control of two T7 promoters so that 
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the intracellular malonyl-CoA concentration could be varied by titrating the media with IPTG 

(Figure 3.2a). We co-transformed pE7a-acc with the sensor-actuator plasmids, pA8c-FapR and 

pBFR1k-RFP, and cultivated the strain (SR1, Table 3.2) in LB medium. Cell culture fluorescence 

(normalized by cell density) at various IPTG concentrations was measured. As expected, cell 

culture fluorescence was increased by 4-fold with increasing IPTG concentrations (Figure 3.2b). 
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Table 3.2 Strains used in this study. 

Strains Relevant genotype References 

SAcc1 E. coli BL21 (DE3): pE7a-acc This study 

SAcc2 E. coli BL21 (DE3): pE7a-yACC This study 

SR1 E. coli BL21 (DE3): pBFR1k-RFP, pA8c-FapR, pE7a-acc This study 

SR2 E. coli BL21 (DE3): pBFR2k-RFP, pA8c-FapR, pE7a-acc This study 

SR3 E. coli BL21 (DE3): pBFR3k-RFP, pA8c-FapR, pE7a-acc This study 

SR4 E. coli BL21 (DE3): pBFR4k-RFP, pA8c-FapR, pE7a-acc This study 

SR5 E. coli BL21 (DE3): pBFR5k-RFP, pA8c-FapR, pE7a-acc This study 

SRCtl1 E. coli BL21 (DE3): pBFR1k-RFP, pA8c-FapR, pE7a-0 This study 

SRCtl2 E. coli BL21 (DE3): pBFR1k-RFP, pA8c-0, pE7a-acc This study 

SRCtl3 E. coli BL21 (DE3): pBFR6k-RFP, pA8c-FapR, pE7a-acc This study 

FA1 E. coli BL21 (DE3): pA2c-tesA This study 

FA2 E. coli BL21 (DE3): pBFR1k-RFP-8FapR, pE7a-acc, pA2c-tesA This study 

FA3 E. coli BL21 (DE3): pBFR1k-lacI-8FapR, pE7a-acc, pA2c-tesA This study 

MFA2 E. coli BL21 (DE3): pBFR1k-RFP-8MFapR, pE7a-acc, pA2c-tesA This study 

MFA3 E. coli BL21 (DE3): pBFR1k-lacI-8MFapR, pE7a-acc, pA2c-tesA This study 
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  We next verified that the sensor-actuator worked according to the mechanism we designed by 

individually removing Acc, FapR, and the FapR operator site (FapRO) from the system, yielding 

three control strains (SRCtl1, SRCtl2, SRCtl3, Table 3.2). The cell culture fluorescence of these 

strains was measured with or without induction for malonyl-CoA accumulation (Figure 3.2c). In 

the strain lacking the Acc plasmid (SRCtl1, see Methods) , cell culture fluorescence remained at 

basal levels, regardless of the inducer, indicating that malonyl-CoA synthesized from the genomic 

enzymes was not sufficient to turn on the sensor. In fact, fluorescence of strain SRCtl1 (normalized 

fluorescence 13.3 ± 0.8 a.u.) was lower than that of strain SR1 under the non-inducible condition 

(0 IPTG, normalized fluorescence 177.8 ± 0.3 a.u.), suggesting that in the latter case, there was 

leaky expression of acc from the T7 promoter, causing a slight increase in malonyl-CoA 

concentration. When either FapR or FapRO was removed, the promoter constantly remained at 

high expression levels, confirming our design that the promoter was repressed by FapR at the 

FapRO sites. As compared with these two non-repressive strains (normalized fluorescence ~4500 

a.u.), the SR1 strain exhibited a maximal fluorescence of 743 ± 0.5 a.u. (with 1 mM IPTG 

induction), indicating that the malonyl-CoA accumulated under this condition in LB medium was 

not sufficient to fully turn on the promoter. Overall, we have shown that the malonyl-CoA sensor-

actuator responded specifically to cellular malonyl-CoA concentrations through FapR and FapRO. 
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Figure 3.2 Characterization of malonyl-CoA sensor-actuator. a) The malonyl-CoA sensor-actuator 

consists of a constantly expressed FapR, an engineered promoter-reporter system, and the acc 

under PT7. b) Response of malonyl-CoA sensor-actuator to IPTG. IPTG concentration was 

increased from 0 µM (plotted as 0.1 µM) to 1 mM to induce acc expression to accumulate varying 

cellular malonyl-CoA levels. Cell culture fluorescence was measured after 24hr and normalized 

by OD600. c) Response of strains with individual acc, FapR, FapRO knockout. Strains with 

FapR/FapRO knockout exhibited high RFP expression levels, demonstrating the sensor-actuator 

was repressed by FapR at the FapRO site. 
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  Next we tested the behavior of the sensor-actuator in M9 medium containing 2% glucose, the 

medium usually used for chemical production. This would allow us to learn the behavior of the 

sensor-actuator for pathway regulation during production. Due to catabolic repression of the PBAD 

promoter in the glucose-rich M9 medium, less FapR was expressed compared to that in LB 

medium, leading to enhanced fluorescence (Figure 3.3a). To obtain optimal sensor-actuator 

behavior, we tuned the FapR expression level by titrating with various amounts of arabinose and 

examined the responses of the sensor-actuator strain. When a high arabinose concentration was 

used (0.1%), a large amount of FapR was expressed, leading to no malonyl-CoA activation even 

with 1 mM of IPTG induction (Figure 3.3a). By contrast, strains with low arabinose concentration 

produced an insufficient amount of FapR, resulting in an rfp expression that was not responsive to 

malonyl-CoA. The desired malonyl-CoA response was obtained with the addition of 0.01% 

arabinose, indicating that the amount of FapR produced under this condition was optimal for 

regulation. Although the current strain requires the addition of 0.01% arabinose to achieve an 

optimal FapR level in the M9/glucose medium, the need for inducer can be potentially eliminated 

by using a constitutive promoter with the proper strength to drive FapR expression. 

 

  To quantitatively evaluate the sensor-actuator, we used LC-MS to measure the accumulated 

malonyl-CoA concentrations under various induction levels in M9/glucose medium. With the 

plasmid pE7a-acc, cellular malonyl-CoA concentrations of strain SAcc1 (Table 3.2) increased 

from 0.14 ± 0.1 µM to 24.4 ± 0.9 µM when IPTG concentration was increased from 0 to 1 mM 
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(Figure 3.3b). This data allowed us to obtain a fluorescence/malonyl-CoA concentration curve, 

assuming strains SAcc1 and SR1 accumulated the same amount of malonyl-CoA under the same 

induction conditions (Figure 3.3c). Next, we fitted the data to a thermodynamic model modified 

from previous studies involved in inducible systems (Supplementary material)42. Although we had 

only a few experimental data points due to the difficulties in accumulating malonyl-CoA to 

desirable levels and the challenges associated with malonyl-CoA quantification, our fitted binding 

constant for FapR-malonyl-CoA interaction, 6.3 µM, was in the same order of magnitude to the 

value determined by in vitro isothermal titration calorimetry (2.4 µM)39.  

 

Figure 3.3. Characterization of malonyl-CoA sensor-actuator in minimal medium containing 2% 

glucose and its tuning to expand the output range. a) Tuning of sensor-actuator in minimal medium 
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by titrating arabinose (0% to 0.1%) to change the amount of FapR. IPTG was increased from 0 

(plotted as 1 µM) to 1mM to vary cellular malonyl-CoA concentrations. At a high arabinose level, 

excess FapR fully repressed the PFR1, leading to no malonyl-CoA activation. At low arabinose 

levels, an insufficient amount of FapR resulted in high sensor-actuator background levels, and 

subjected it non-responsive to malonyl-CoA. The optimal sensor-actuator behavior was obtained 

with 0.01% arabinose. b) HPLC-MS quantification of malonyl-CoA at various acc induction levels. 

c) Response of the sensor-actuator to malonyl-CoA in minimal medium. The results were fitted to 

a thermodynamic model. The fitted Kd for malonyl-CoA - FapR binding was 6.3 µM. d) Tuning 

of malonyl-CoA sensor-actuator in LB medium. Mutations were introduced to the FapR binding 

site and the -10 and -35 region of the promoter PFR1. The sensor-actuator variants exhibited a broad 

range of expression levels. 

 

  We also sought to expand the capability of the malonyl-CoA sensor-actuator by tuning its output 

range. Based on the thermodynamic model, the behavior of the sensor-actuator is determined by 

the interaction between the promoter with FapR and the RNA polymerase. Both of these 

interactions can be tuned by changing the promoter sequence. We modified the PFR1 by introducing 

mutations to the FapR binding site and to the -35 and -10 region of the promoter, leading to a series 

of PFR1 variants (PFR2 - PFR5, Table 3.3). We cloned the rfp 3’ of each promoter and characterized 

them (Strains SR2 – SR5, Table 3.2) using cell culture fluorescence. These promoters positively 

responded to increasing acc induction levels and generated different RFP intensities, exhibiting 



	 69	

varied strengths and dynamic ranges (Figure 3.3d). Overall, these promoters allow the expression 

levels of the malonyl-CoA-regulated genes to be tuned across a broad range. 

 

  In general, the fluorescence based malonyl-CoA sensor-actuator provides a comparative method 

for measuring intracellular malonyl-CoA concentrations. It avoids the labor-intense extraction 

procedures using analytical quantification and the experimental errors caused by hydrolysis during 

sample preparation. Furthermore, the fluorescence-based measurement is quick and easy, allowing 

high throughput analysis of a large number of samples. More importantly, the malonyl-CoA-based 

sensor-actuators can be used to regulate malonyl-CoA-involved metabolic pathways. 

 

3.2.2 Design of a negative feedback circuit to regulate an engineered free fatty 
acid biosynthetic pathway 

It has been previously shown in several studies that efforts to enhance cellular malonyl-CoA pool 

by overexpressing acetyl-CoA carboxylase led to reduced cell growth due to toxicity36, 43. To 

evaluate the toxicity, we overexpressed acetyl-CoA carboxylases from both E. coli and S. 

cerevisiae to different expression levels. Cell growth was measured, and the stationary phase cell 

density (OD600 at 20 hours after IPTG induction) of different cultures was plotted against the 

different induction levels (Supplementary Figure 3S1). Our data showed that overexpression of 

both acetyl-CoA carboxylase enzymes were toxic. We also evaluated the effects of acc 

overexpression on fatty acid production. Free fatty acids can be produced in E. coli by the 
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overexpression of a cytosolic thioesterase (encoded by a leader sequence deleted tesA), which 

hydrolyzes acyl-ACPs and releases free fatty acids. Previous expression of tesA in a fadE gene 

knockout strain led to the production of fatty acid at 1.2 g/L after three days cultivation in M9 

medium containing 2% glucose44. To control the expression of tesA and acc separately, we placed 

the tesA under the control of an aTc-inducible promoter PTet. As compared to the strain that only 

overexpressed the thioesterase (strain FA1), overexpression of tesA and acc (strain FA2) increased 

the fatty acid titer by 84% (Figure 3.4b), although it grew slower (Figure 4c). Both the increased 

free fatty acid titer and decreased cell growth are consistent with previous studies29, 34, 45. 

  

  Next we sought to develop a negative feedback circuit to tightly control the expression of acetyl-

CoA carboxylase by sensing the cellular malonyl-CoA concentration. Ideally, we need the system 

to express acc when the malonyl-CoA concentration is low and to turn the acc expression down 

when the malonyl-CoA concentration is too high. Since the sensor-actuator positively responds to 

malonyl-CoA (higher malonyl-CoA level leads to higher expression), an invertor was needed to 

complete a negative feedback circuit. To complete the circuit, we placed the acc under the control 

of a LacI-repressive T7 promoter, PT7, and placed the lacI under the control of PFR1 (Figure 3.4a; 

Strain FA3, Table 3.2). With this design, IPTG induction initiates acc expression, which produces 

malonyl-CoA. When excess malonyl-CoA is accumulated in this strain (FA3), the malonyl-CoA 

sensor-actuator will turn on lacI expression, which in turn down-regulates acc, decreasing the 
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malonyl-CoA synthesis rate. The control strain (FA2) has the lacI replaced by the rfp, so that its 

acc is controlled by PT7, not the malonyl-CoA-regulated promoter. 

 

 

Figure 3.4 Construction of a negative feedback regulatory circuit and its effects on improving fatty 

acid titer and cell growth. a) The negative feedback circuit regulated fatty acid-producing strain. 

A cytoplasmic thioesterase (encoded by tesA) was controlled by PTet to produce fatty acids. The 

acc genes were controlled by a LacI-repressed PT7 promoter. LacI expression is controlled by the 

PFR1 that is repressed by FapR, which is further controlled by malonyl-CoA. When excess malonyl-

CoA is accumulated, the biosensor will turn on the expression of lacI, which down-regulates acc 

expression, alleviating toxicity caused by acc overexpression. b) Time course analysis of fatty acid 
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titers from strain FA1 (white column), FA2 (grey column), and FA3 (black column). Strains were 

cultured in minimal medium with 2% glucose at 37°C in a shaking flask. Fatty acid production 

titers were analyzed as described in Methods. c) Cell growth of strains FA1 (dotted grey curve), 

FA2 (solid grey curve), and FA3 (black curve) were monitored in a plate reader until the stationary 

phase. 

 

  We examined whether the negative feedback regulation circuit could alleviate the toxicity 

caused by acc overexpression. We monitored cell growth under fatty acid production conditions. 

FA2 and FA3 strains were cultured in minimal medium and induced for both fatty acid production 

and acc expression (using various amounts of IPTG). Cell growth was monitored continuously on 

the plate reader until stationary phase was reached (Figure 3.5a and 3.5b). Compared to the FA2 

strain, the FA3 strain had less growth inhibition, consistent with our design that the negative 

regulation circuit was able to control the acc expression level and to alleviate the toxicity, resulting 

in improved cell growth (Supplementary Figure 3S2). Cell growth inhibition was observed at an 

IPTG concentration higher than 40 µM, which corresponded to 5.7 ± 0.3 µM of malonyl-CoA. It 

is important to note that this malonyl-CoA concentration matches the fitted Kd (6.3µM) of the 

sensor-regulator, which suggests that the designed sensor-actuator could respond to malonyl-CoA 

at a metabolically relevant concentration. 
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Figure 3.5. Effects of negative feedback regulatory circuit to alleviate toxicity caused by acc 

overexpression. a) Cell growth was monitored for fatty acid-producing strains with (b, FA3 strain) 

and without (a, FA2 strain) the regulatory circuit under different acc induction levels. Cells were 

cultivated in minimal medium containing 2% glucose. Growth curves were monitored on a plate 

reader (see Methods). 

 

 

  At last, we tested the effect of the negative feedback regulation circuit on fatty acid production. 

Fatty acid titers were measured at several time points during the exponential and early stationary 

phases (the first 25 hours). As shown above, overexpression of acc from an inducible promoter 

increased fatty acid titer (strain FA2 compared to strain FA1). When the negative regulation circuit 

was used, the FA3 strain further increased the fatty acid titer (Figure 3.4b). After 25 hours, the FA3 

strain produced 2.03 ± 0.1 g/L of fatty acids, being 34% higher than that of the FA2 strain. 
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Furthermore, the FA3 strain had a fatty acid productivity of 4.2 ± 0.2 g/(L•d), being 33% higher 

than that of the FA2 strain, which was 3.2 ± 0.1 g/(L•d). Due to the alleviated toxicity effect, the 

negative-regulated strain entered the exponential growth phase earlier. This is particularly 

important for industrial applications, as minimizing fermentation time and maximizing 

productivity are pursued. Overall, our data indicates that the negative regulatory system can not 

only alleviate the toxicity that inhibits cell growth, but also improve fatty acid titer and productivity.  

 

  To verify that the improved fatty acid titer was caused by the negative feedback circuit, we 

replaced the FapR of the FA2 and FA3 strains with a FapR double mutant (R106A and G107V), 

resulting in two additional control strains MFA2 and MFA3 (Table 3.2). Previous study has shown 

that the FapR double mutant could bind to the FapRO site with the same affinity as that of the 

wild-type FapR, but could not interact with malonyl-CoA effectively46. Thus, the resulting control 

strain, MFA3, only differs from FA3 by two amino acids in FapR, but does not have the feedback 

regulation due to the disrupted malonyl-CoA/FapR interaction. As a result, LacI expression is 

expected to be constantly repressed in MFA3 strain, leading to dramatic acc overexpression when 

induced with IPTG. Indeed, the reduced cell growth inhibition observed in FA3 strain was not 

observed in MFA3 strain (Supplementary Figure 3S3). Furthermore, fatty acid titers of both MFA2 

and MFA3 strains were similar to that of FA2 strain, but less than that of the negative feedback 

regulated FA3 strain (Supplementary Figure 3S4). Overall, our result demonstrated that strains 
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with disrupted feedback circuit could neither reduce cell growth inhibition nor enhance fatty acid 

titer. 

 

  To further verify that the improved fatty acid titer is caused by the negative feedback regulation, 

rather than use of different genetic constructs, we titrated the acc expression levels of the FA2 

strain that used the inducible system with a broad range of IPTG concentrations (from 0 to 1mM, 

Supplementary Figure S4). Under all conditions, the maximal fatty acid titer produced by the 

inducible system was 1.59 ± 0.21 g/L, being 22% lower than that of the negative regulation strain, 

FA3. In addition, further optimization of the negative feedback circuit, especially by tuning the 

concentration of the LacI repressor using the PFR1 variants (PFR2 – PFR5), might further increase 

titers and productivities. 

 

  Overall, we have demonstrated that the negative feedback circuit has alleviated growth 

inhibition caused by either acetyl-CoA carboxylase overexpression or malonyl-CoA accumulation, 

improving fatty acid titers and productivities. This method can be readily extended to the 

production of other chemicals that use malonyl-CoA as a precursor, such as flavonoids and 

polyketides, to improve cell growth and enhance productivities. Similar sensor-actuators can be 

designed to sense other critical cell metabolites. At last, the negative feedback circuit design 

strategy can be implemented to other systems, alleviating the toxicity caused by protein 
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overexpression or metabolite intermediate accumulation, to enhance the titer and productivity of 

various chemicals. 

 

3.3 Methods 

3.3.1 Materials  

Phusion DNA polymerase was purchased from New England Biolabs (Beverly, MA, USA). 

Restriction enzymes, T4 ligase, gel purification kit and plasmid miniprep kit were purchased from 

Thermo Scientific (Waltham, Massachusetts, USA). All primers were synthesized by Integrated 

DNA TechnologiesTM (Coralville, IA, USA). All reagents were purchased from Sigma Aldrich (St. 

Louis, MO, USA). E. coli DH10B was used for cloning purposes, and E. coli BL21 (DE3) was 

used for fluorescence characterization and fatty acid production. 

 

3.3.2 Plasmids and strains  

Plasmid pBFR1k-RFP was constructed from phage PA1 promoter by placing two FapRO sites 

flanking the -10 region of the promoter using a one-step Golden-Gate DNA assembly method47. 

Acc overexpression plasmid pE7a-acc was constructed by cloning accDA and accBC from E.coli 

genome 3’ of two separate T7 promoters. Gene fapR was amplified from B. subtilis genomic DNA 

and cloned 3’ of the PBAD promoter in a BioBrick plasmid pBbA8c-RFP48, yielding pA8c-FapR. 

Plasmids pE7a-0 and pA8c-0 were constructed from pE7a-acc and pA8c-FapR by restriction 
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digestion using BamHI/BglII to remove the corresponding genes. The empty vectors were later 

purified and ligated. To create fatty acid producing strain, a cytosolic thioesterase gene tesA (‘tesA; 

leader sequence deleted) was cloned under the control of PTet, giving pA2c-tesA. To create 

pBFR1k-RFP-8FapR, the PBAD-FapR operon in pA8c-FapR was amplified and inserted to 

pBFR1k-RFP at 5’ of the PFR1-RFP operon using the Golden-Gate assembly method. To create 

pBFR1k-lacI-8FapR, lacI was first amplified from the E. coli genome to construct plasmid 

pBFR1k-lacI. The PBAD-FapR operon from pA8c-FapR was then amplified and inserted to 

pBFR1k-lacI at 5’ of the PFR1-lacI operon. Plasmids pBFR1k-RFP-8MFapR and pBFR1k-lacI-

8MFapR were constructed by site-directed mutagenesis (R106A and G107V) of pBFR1k-RFP-

8FapR and pBFR1k-lacI-8FapR. Strains were created by transforming the corresponding plasmids 

into BL21 (DE3) competent cells (Table 2) by electroporation. 

 

3.3.3 Cell growth and fluorescence assay  

Cell growth curves and cell culture fluorescence were recorded on an Infinite F200PRO (TECAN) 

plate reader. Strains were first cultivated overnight in Luria−Bertani (LB) medium (220 rpm, 37 °C) 

supplemented with appropriate antibiotics (50 mg/L ampicillin, 50 mg/L kanamycin, and 30 mg/L 

chloramphenicol). The overnight LB cultures were inoculated 2% v/v into fresh LB medium. Cells 

were induced at OD600 of 0.6 with varied IPTG concentrations (0, 1, 4, 10, 40, 100, 400, 1000 µM). 

Cells were incubated in a 96-well plate inside the plate reader with shaking (218.3 rpm, 37 °C). 
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Relative cell density (in arbitrary units) was measured by monitoring absorption at 600 nm, and 

fluorescence was recorded using an excitation wavelength of 535 ± 9 nm and an emission 

wavelength of 620 ± 20 nm. Data were taken every 1000 s until cell culture reached stationary 

phase. Fluorescence from the wild-type E. coli BL21 (DE3) cell culture was used as background, 

and was subtracted from all fluorescence measurements. The background corrected fluorescence 

was later normalized by OD600 and reported. 

 

  For measurement in minimal medium, the LB overnight culture was used to inoculate minimal 

medium (M9 medium supplemented with 75 mM MOPS, 2 mM MgSO4, 1 mg/l thiamine, 10 nM 

FeSO4, 0.1 mM CaCl2 and micronutrients including 3 µM (NH4)6Mo7O24, 0.4 mM boric acid, 30 

µM CoCl2, 15 µM CuSO4, 80 µM MnCl2 and 10 µM ZnSO4) with 2% glucose and appropriate 

antibiotics and incubated at 37 °C for overnight. The overnight culture in minimal medium was 

then used to inoculate a fresh minimal medium with an initial OD of 0.08, and grown to an OD600 

of 0.6 for induction. Cells were induced with varied amounts of arabinose (0%, 0.0001%, 0.001%, 

0.01%, 0.1%) and IPTG (0, 4, 10, 40, 100, 400, 1000 µM) and incubated in a 96-well plate inside 

the plate reader. Data were recorded using the same method as described above. 
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3.3.4 Malonyl-CoA quantification  

To quantify cellular malonyl-CoA levels, overnight culture of strain SAcc1 was used to inoculate 

5 mL of fresh minimal medium with 2% glucose and appropriate antibiotics for adaptation. The 

overnight culture was then inoculated into minimal medium with an initial OD600 of 0.08. The 

cultures were induced with 0, 10, 40, 100, 400, 1000 µM of IPTG when OD600 reached 0.6. After 

10 hours, 2 mL cultures were rapidly collected and centrifuged at 14,000 rpm for 30 s at 4 °C. The 

supernatant was immediately removed. The pellets were flash frozen using liquid nitrogen and 

stored at -80 °C until LC-MS analysis. To quantify malonyl-CoA concentrations, each sample was 

extracted with 100 µL of a solution containing 90% acetonitrile (ACN), 10% formic acid with 1 

µM 13C3 malonyl-CoA and zirconia beads by vortexing for 3 minutes. The insoluble material was 

removed by centrifugation; then the supernatant was filtered before LC-MS. Eight microliters were 

injected on a 2.1 x 50 mm Onyx C18 column (Phenomenex). The metabolites were separated using 

a linear gradient from 100% A (10 mM NH4HCO3) to 75% B (90% ACN 10 mM NH4HCO3) over 

14 minutes followed by re-equilibration at initial conditions for 6 minutes using a 1200 LC system 

(Agilent). Mass spectra were recorded using a wide SIM scan (m/z 845-865) in a negative profile 

mode at a resolution of 60,000 on an LTQ-Velos Pro Orbitrap (Thermo-Fisher Scientific). Data 

were analyzed manually using the QualBrowser application of Xcalibur (Thermo-Fisher 

Scientific). Chromatograms were extracted for both the natural abundance malonyl-CoA and 

the 13C3 malonyl-CoA. The amount of natural abundance malonyl-CoA was determined by 

calculating the ratio of the peak area of the natural abundance peak to the peak area of the 13C3 peak. 
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3.3.5 Fatty acid production analysis  

The FA1, FA2 and FA3 strains were inoculated into LB medium with appropriate antibiotics. The 

overnight culture was inoculated 2% v/v into minimal medium containing appropriate antibiotics 

for adaptation. The overnight cultures in minimal medium were used to inoculate 25mL of fresh 

minimal medium with an initial OD600 of 0.08. Cells were induced when OD600 reached 0.6. The 

large culture volume ensured that a lot of culture remained at the end, thus avoiding inaccuracies 

caused by evaporation and different oxygen-transfer rates. All strains were induced with 200 nM 

of aTc for thioesterase expression. Strains FA2 and FA3 were induced with 0.01% arabinose and 

0.1mM IPTG. Samples at several time points were collected, and cell growth was monitored using 

the above-mentioned method. The collected samples were stored at -80 °C until fatty acid 

quantification. 

 

3.3.6 Fatty acid quantification  

Fatty acid titers were quantified using a previously published method23. Specifically, 0.5 ml of cell 

culture was acidified with 50 µl of concentrated HCl (6 N). The fatty acids were extracted twice 

with 0.5 ml ethyl acetate, which was spiked with 50 µg/ml of C19:0 fatty acid methyl ester as an 

internal standard. The extracted fatty acids were derivatized to fatty acid methyl esters (FAME) by 

adding 10 µl concentrated HCl, 90 µl methanol and 100 µl of TMS-diazomethane, and incubated 

at room temperature for 15 min. FAME was then analyzed by a GC-MS (Hewlett Packard model 

7890A, Agilent Technologies) equipped with a DB5-MS column (J&W Scientific) and a mass 
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spectrometer (5975C, Agilent Technologies). For each sample, the column was equilibrated at 

80 °C for 1 min, followed by a ramp to 280 °C at 30 °C/min, and was then held at this temperature 

for 3 min. Final FAME concentration was analyzed based on the FAME standard curve obtained 

from standard FAME mix (GLC-20 & GLC-30, Sigma Aldrich). 
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Appendix: Supplementary Information for Chapter 3 

 

Supplementary Figure 3S1. Growth inhibition from the acetyl-CoA carboxylase overexpression. 

SAcc1 and SAcc2 strains (Table 2) were cultured in minimal medium with 2% glucose and cell 

growth was monitored continuously in a plate reader until stationary phase was reached. Cell 

growth at 20 hours after induction was plotted against different IPTG induction levels. 
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Supplementary Figure 3S2. Comparison of FA2 and FA3 cell growth under various IPTG 

induction levels. FA2 and FA3 strains were cultured in minimal medium with 2% glucose and 

0.01% arabinose, and were induced with 200nM aTc and a) 0 µM (plotted as 1 µM), b) 40 µM, 

c) 100 µM, d) 400 µM, e) 1000 µM IPTG. Cell growth was monitored continuously on a plate 

reader (Method). f) OD600 of FA2 and FA3 strains at 8 hours post induction.  
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Supplementary Figure 3S3. Effect of negative feedback circuit on cell growth. All the strains 

were cultured in minimal medium with 2% glucose and 0.01% arabinose, and were induced with 

200 nM aTc and 0.1mM of IPTG. Cell growth was monitored continuously on a plate reader. 

	

	

  



	 89	

 

Supplementary Figure 3S4. Comparison of fatty acid production of the FA2, FA3, MFA2 and 

MFA3 strains. FA2 strain was induced with 200 nM aTc and various amounts of IPTG, and 

cultured in minimal medium with 2% glucose and 0.01% arabinose for 25 hours. FA3, MFA2 

and MFA3 strains were cultured under the same condition and induced with 200 nM aTc and 0.1 

mM IPTG induction. Fatty acid titers were analyzed as described in Methods. 
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Mathematical model of Malonyl-CoA inducible System  

 

At equilibrium, malonyl-CoA binding to FapR is described by the equation (1) 

 

𝐹𝑎𝑝𝑅T =
UV

LWXYUV
𝐹𝑎𝑝𝑅Z   (1) 

 

where FapRf is the concentration of free FapR, Mal is the concentration of free malonyl-CoA, Kd 

is the dissociation constant of malonyl-CoA binding to FapR, FapRt is the total intracellular 

concentration of FapR. 

 

The activity of a malonyl-CoA-responsive promoter Pmal, as represented by the normalized cell 

culture fluorescence, can be described by equation (2) (based on previously established models1, 

2): 

 

𝑃\WX = 𝑃\W]
U^_

$YU^_Y0U.`WKabYU.3`WKab3
  (2) 

 

where Pmax is the fully activated promoter activity (represented by the normalized cell culture 

fluorescence in the absence of the repressor). Kp is the binding constant of the RNA polymerase to 

the promoter, and P is the concentration of the RNA polymerase. K1 is the binding constant of 

FapR to the promoter.  
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Combining equations (1) and (2): 

 

𝑃\WX = 𝑃\W]
U^_

$YU^_Y0U.
𝐾𝑑

𝑀𝑎𝑙+𝐾𝑑
𝐹𝑎𝑝𝑅𝑡YU.

3( 𝐾𝑑
𝑀𝑎𝑙+𝐾𝑑

𝐹𝑎𝑝𝑅𝑡)
3  (3) 

 

Equation (3) was fitted to the fluorescence/malonyl-CoA data using malonyl-CoA concentrations 

quantified from LC-MS and the normalized cell culture fluorescence measured from plate-reader 

at various induction levels. Parameters were fitted using Matlab. 
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Chapter 4 Negative Feedback Circuits Provide Rapid 
Control Over Metabolite Dynamics 

 

Abstract 

Metabolism constitutes the basis of life, and the dynamics of metabolism dictate various cellular 

processes. However, exactly how metabolite dynamics are controlled remains poorly understood. 

By studying an engineered fatty acid-producing pathway as a model, we found that a metabolic 

product from an unregulated pathway requires seven cell cycles to reach to its steady state level, 

with the speed mostly limited by enzyme expression dynamics. To overcome this limit, we 

designed metabolic feedback circuits (MFCs) with three different architectures, and 

experimentally measured and modeled their metabolite dynamics. Our engineered MFCs could 

dramatically shorten the rise-time of metabolites, decreasing it by as much as 12-fold. The findings 

of this study provide a systematic understanding of metabolite dynamics in different architectures 

of MFCs and have potentially immense applications in designing synthetic circuits to improve the 

productivities of engineered metabolic pathways. 
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4.1 Introduction 

In nature, metabolism supports most cellular activities by providing building blocks, energy, 

cofactors and proper redox environments. Engineering microbial metabolic pathways, on the other 

hand, allows the production of chemicals, biofuels, and pharmaceuticals(Peralta-Yahya et al, 2012; 

Paddon & Keasling, 2014; Peralta-Yahya et al, 2011). As a primary goal of systems biology, 

understanding the complex regulatory networks of metabolism not only informs us how nature 

allocates limited cellular resources to perform various cellular activities in changing 

environments(Kotte et al, 2010; Berthoumieux et al, 2013; Shen-Orr et al, 2002; Mukherji & van 

Oudenaarden, 2009), but also provides design principles for synthetic biologists to better control 

metabolism for a variety of applications(Zhang et al, 2012; Liu et al, 2013; Dahl et al, 2013; Gupta 

et al, 2017; Xiao et al, 2016; Xu et al, 2014). 

 

Microbial metabolism is mostly regulated via two types of controls: transcriptional regulation 

by controlling enzyme expression levels, which in turn affect metabolite concentration, and post-

translational regulation by directly modifying enzyme activities via allosteric inhibition or 

activation. Post-translational metabolic regulation is common in central carbon metabolism, fatty 

acid biosynthetic pathway, and amino acid biosynthetic pathways, to rapidly adjust the cellular 

metabolite level within seconds(Pisithkul et al, 2015; Link et al, 2013). On the other hand, 

transcriptional metabolic regulation is widely used in nutrient uptake, the tricarboxylic acid (TCA) 
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cycle, amino acid biosynthesis, and energy production, with the primary goal to optimize protein 

expression levels and avoid overproduction of unnecessary proteins, which waste cellular 

resources(Chin et al, 2008; Chubukov et al, 2012; Zaslaver et al, 2004). Due to the involvement 

of transcription, translation, protein folding, and catalysis, transcriptional regulation changes the 

concentration of under-regulated metabolites much more slowly than post-translational regulation. 

Thus the dynamics of metabolite changes during the course of slow transcriptional regulation 

becomes important to cellular activities, particularly in those processes involved in cell survival 

and growth, such as nutrient uptake, building block biosynthesis, and quorum sensing.  

 

From a control systems standpoint, an ideal metabolic control would both optimize protein 

expression level and offer rapid and precise control over metabolite concentrations. These criteria 

position transcriptional regulation as an ideal control strategy. Indeed, transcriptional regulation is 

regarded as the most common way for microbes to control their metabolism(Kochanowski et al, 

2013). Previous studies have revealed that it takes five cell cycles for proteins to reach their steady 

state levels in an unregulated pathway, and the speed can be accelerated to as short as two cell 

cycles with negative auto-regulation. However, negative auto-regulation is mostly found to control 

transcription factors in nature and thus does not directly affect the dynamics of metabolism. Due 

to the delay in enzyme catalysis, the dynamics of metabolite will be even slower (more than five 

cell cycles) than proteins in unregulated pathways, and thus postpone cellular response to 

environmental changes and could lead to sub-optimal cell growth. In addition, from an engineering 
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perspective, the capability to accelerate metabolite dynamics is also preferred for rapid signal 

detection. Thus, design of synthetic regulations to speed up metabolite dynamics is crucial to both 

1) understand how the regulatory architectures and the associated biochemical parameters affect 

metabolism in natural regulatory networks and 2) provide guidelines to re-program metabolite 

dynamics for applications such as environmental bio-sensing, metabolite oscillators, and quorum 

sensing mediated population control(Xiao et al, 2017; Bennett, 2015).  

 

In this work, we employed an engineered fatty acid biosynthetic pathway that has defined 

interactions with other cellular processes to illustrate the interplay between individual 

transcriptional regulatory circuits and metabolite dynamics. Strikingly, we found that free fatty 

acid (FFA), a metabolic product synthetized from an unregulated, one-step enzymatic pathway, 

requires seven cell doublings to reach its steady state level once enzyme expression is turned on. 

Our modeling showed that slow metabolite dynamics are not affected by enzymatic catalytic 

parameters. We then constructed three metabolic feedback loops with different architectures to 

study metabolite dynamics under the control of each feedback regulation, using a combination of 

experimental and modelling methods. Our results show that negative feedback circuits can 

dramatically speed up metabolite rise-time (the time needed to reach half of the steady-state 

concentration). The findings of this study offer a quantitative and systematic guideline on choosing 

the genetic circuit architectures and biochemical parameters to control metabolite dynamics. 
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4.2 Results 

4.2.1 Long Rise-Times of Metabolite Levels in Unregulated Pathways 

To avoid natural regulation and minimize crosstalk between metabolic pathways (e.g., 

competition for metabolic precursors), we used an engineered FFA-producing pathway in 

Escherichia coli as a model to study metabolite dynamics. The engineered pathway branches from 

the high-flux fatty acid biosynthetic pathway by expressing a cytosolic thioesterase (encoded by 

tesA) under the control of an inducible promoter, PLac. The thioesterase uses acyl-ACPs as 

metabolic precursors to produce FFAs, which cannot be metabolized in our engineered cell due to 

the deletion of a β-oxidation gene (fadE). If needed, FFAs can be converted to other metabolic 

products by introducing heterologous enzymes with controlled conversion rates. Thus, the FFA-

producing pathway satisfies all the requirements of this study: 1) a sufficient supply of metabolic 

precursors (acyl-ACPs from high-flux fatty acid biosynthetic pathway)(Zhang et al, 2011), 2) 

defined transcriptional regulation, 3) minimal interaction with other metabolic pathways, and 4) 

controllable product consumption.  

 

To test the dynamics of a product in an unregulated pathway, the enzyme TesA was expressed 

from an IPTG-inducible promoter PLac to create an open loop pathway (OL, Figure 4.1A). A red 

fluorescent protein (RFP, encoded by rfp) was placed 3’ of TesA in the same operon to monitor the 

expression dynamics of TesA. Cells were cultivated in the exponential growth phase. After 
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induction by IPTG, the changes in RFP fluorescence and FFA concentration over time were 

measured. Cell-density-normalized RFP fluorescence was used to indicate enzyme dynamics, and 

the time course of cell-density-normalized FFA was measured as metabolite dynamics (Fig 

4.1B&4.1C). Surprisingly, FFA takes as many as seven cell cycles to reach its steady state 

concentration after tuning on the expression of TesA. 

 

Figure 4.1 Protein and metabolite production dynamics in unregulated metabolic pathways. 

A.  An engineered free fatty acid (FFA) pathway was chosen as the model pathway to study the 

dynamics of a pathway product. FFAs were produced by expressing a thioesterase (encoded by 

tesA) under the control of a PLac promoter. RFP was expressed in the same operon to monitor the 
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expression dynamics of the thioesterase. 

B, C. Expression dynamics of the (B) thioesterase and (C) FFA. TesA and FFA dynamics (dots) 

were fitted to equations (1) and (2), respectively (solid line). 

D. A fatty alcohol pathway was used as a model pathway to study the dynamics of a pathway 

intermediate. The fatty alcohol pathway was constructed by expressing a thioesterase under the 

control of a PBAD promoter and a carboxylic acid reductase (encoded by car) under the control of 

a PLac promoter.  

E. FFA production dynamics with high (labelled as OLIM_hc) and low (labelled as OLIM_lc). 

FFA consumption rates were measured and fitted to a model. Data are plotted together with the 

production dynamics of a pathway product for comparison. 

F. Simulation results of the intermediate dynamics with different intermediate consumption rates. 

As the consumption rate of the intermediate increases (from light gray to dark gray lines), the 

intermediate dynamics further speed up and hit an upper limit. 

 

To quantitatively understand the slow FFA accumulation, we constructed a general 

mathematical model to describe the enzyme expression and metabolite dynamics in unregulated 

metabolic pathways. In the case of the single-step FFA-producing pathway, the enzyme is 

thioesterase and the metabolite is FFA. In the exponential growth phase and with a constant supply 

of precursors, enzyme expression and metabolite concentration can be described by differential 

equations (1) and (2) in the Supplemental Information M1. Solving these equations, we obtain 
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where N represents the number of cell cycles. [Enzyme]ss and [Metabolite]ss represent the steady 

state concentrations of the enzyme and the metabolite, respectively. Our experimental results 

matched well with the model prediction (R2=0.98): After a biosynthetic pathway is turned on, the 

settling time (defined as the time required for a response curve to reach and stay within 5% of the 

steady state level, Figure 4S1) for the protein and metabolite are five and seven cell cycles, 

respectively. Moreover, since equation (2) is independent of the catalytic parameters, the settling 

times are functions of cell cycles only, and not pathway specific. Further analysis revealed that the 

long metabolite settling time was mostly caused by the slow rise of the enzyme concentration (a 

settling time of five cell cycles) and the slow metabolite consumption/dilution time. The slowly 

rising protein concentration has been observed previously and is caused by the long protein 

lifetime. Similarly, as an end product, a metabolite is not consumed and can only be diluted by cell 

division, thus explaining why the settling time of a metabolite product depends only on cell cycles. 

Thus, based on our analysis we hypothesized that the metabolite dynamics can be accelerated by 

1) a faster metabolite consumption/dilution rate and 2) faster protein production dynamics. 

 

Next, to speed up the metabolite dynamics by increasing its consumption rate, we studied the 

[𝐸𝑛𝑧𝑦𝑚𝑒] = [𝐸𝑛𝑧𝑦𝑚𝑒]mm ∙ (1 − exp(−𝑙𝑛2 ∗ 𝑁))													(1) 

[𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒] = [𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒]mm ∙ (1 − (𝑙𝑛2 ∗ 𝑁 + 1) ∙ exp(−𝑙𝑛2 ∗ 𝑁))			(2) 
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dynamics of an intermediate metabolite. A simple two-step metabolic pathway was simulated 

using ODE equations (See Supplemental Information M2). Mathematical analysis revealed that an 

intermediate metabolite could reach to its steady state faster than that of a product, depending on 

its enzymatic consumption rate. The theoretical prediction was verified experimentally using an 

engineered two-step metabolic pathway, where a carboxylic acid reductase (CAR, encoded by car) 

was constantly expressed in the FFA-producing pathway (See Methods)(Akhtar et al, 2013), 

converting FFA to fatty alcohols and making FFA a pathway intermediate (Fig 4.1D) (open loop 

intermediate, OLIM). As we increased the FFA consumption rate by tuning the expression level of 

CAR, FFA reached its steady state faster (Fig 4.1E). Further analysis also showed that as the 

intermediate’s consumption rate increased, its rise-time decreased until reaching a limit, where 

consumption of the intermediate was so rapid that metabolite dynamics overlapped with the 

dynamics of enzyme expression (Fig 4.1F). 

 

Overall, our results indicated that the dynamics of a metabolite from an open loop, regardless of 

whether the metabolite is a pathway intermediate or an end product, are slow and are ultimately 

limited by the dynamics of enzyme expression. Following transcriptional activation, a metabolite 

takes at least five (for an intermediate) or seven (for a product) cell cycles to reach steady state 

when a pathway is unregulated. Such slow responses greatly delay cell growth and adaptation if 

the metabolite is essential to cell growth, thus necessitating regulatory strategies to expedite 

metabolite dynamics. 



	 101	

4.2.2 Genetic Negative Feedback Circuits Accelerate Metabolic Dynamics 

One of the most common transcriptional regulations of metabolism is negative feedback, 

where the product of a metabolic pathway inhibits the transcription of pathway enzymes. We 

hypothesized that such metabolic negative feedback circuits can speed up metabolite rise-time, 

just as negative gene circuits speed up the rise-time of under-controlled proteins(Rosenfeld et al, 

2002). To test this hypothesis, three different metabolic feedback systems were designed and 

constructed, representing three commonly found distinct regulation architectures in nature and 

engineered systems. The first feedback system contains a negative auto-regulated gene circuit, 

called a negative gene loop (NGL), where tesA is co-transcribed with a repressor, tetR, which 

feedback inhibits the expression of tesA-tetR via a hybrid promoter, PTL (Fig 4.2A). PTL was 

engineered by placing a TetR-binding site (TetO) between the -35 and -10 region of a strong 

promoter and a LacI-binding site (LacO) 3’ of the -10 region, thus allowing PTL to be repressed by 

both TetR and LacI. While the FFA-producing pathway can be transcriptionally activated by 

addition of IPTG, expression of TesA is negatively auto-regulated, thus affecting FFA dynamics 

(Fig 4.3A). This architecture is prevalent in nature for the regulation of ligand-independent 

transcription factors. The second feedback system, named a negative metabolic loop (NML), 

contains a FFA-repressed transcription factor, FadR, which activates the expression of tesA 

through a hybrid promoter, PFL (Fig 4.3B). PFL was engineered based on a natural FA-activating 

promoter, PfabA. Specifically, PfabA contains a FadR-binding site (FadRO) 5’ of the -35 region, 

allowing the promoter to be activated by FadR by recruiting RNA polymerase. A LacO was placed 
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3’ of the -10 region of PfabA, allowing the resulting promoter PFL to be repressed by LacI, as 

experimentally verified (Fig 4.2B). Thus, upon transcriptional activation of FFA production via 

IPTG induction, FFA can be quickly synthesized. A proportion of the produced FFA is reversibly 

converted to acyl-CoA by an endogenous enzyme, acyl-CoA synthase. Acyl-CoA then binds to 

FadR and antagonizes FadR’s DNA-binding activity, decreasing the transcription rate from PFL, 

thus slowing FFA production. Overall, the NML forms a negative feedback loop that involves 

dynamic sensing of the metabolic product, FFA. NML mimics the prevalent natural regulation via 

ligand-dependent TFs, such as transcriptional inhibition of genes by the pathway end-product in a 

few E. coli amino acid biosynthetic pathways. The third feedback system, named a layered 

negative metabolic loop (LNML), contains three inhibition layers of regulation and requires two 

gene expression steps to feedback control the production of FFA. Specifically, an FA-activated 

promoter, PAR2, was engineered by inserting a FadRO between the -35 and -10 region of a phage 

T7 promoter, so that PAR2 can be repressed by FadR (Fig 4.2C). PAR2 was then used to control the 

expression of TetR, which represses the expression of the tesA-rfp from PTL. Thus, transcriptional 

activation of the pathway by IPTG induces tesA expression from PTL. The produced FFA 

antagonizes FadR’s DNA-binding activity via acyl-CoA, leading to activation of TetR expression 

from PAR2. TetR then decreases FFA production by down-regulating tesA expression (Fig 4.3C). 

To monitor enzyme expression, an rfp was cloned 3’ of TesA in all three feedback loops. 
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Figure 4.2 Design of synthetic promoters to create negative feedback circuits.  

A.  Design and characterization of the PTL promoter. A hybrid promoter, PTL, was created by 

incorporating TetO and LacO into the promoter. The promoter was activated by IPTG and 

repressed by TetR in a dose-dependent manner. 

B.  Design and characterization of the PFL promoter. A hybrid promoter, PFL, was created by 

introducing LacO into the promoter region of the FabA promoter. The promoter was activated by 

IPTG and repressed by fatty acids in a dose-dependent manner. 

C.  Design and characterization of the PAR2 promoter. A fatty acid responsive promoter, PAR2, was 

engineered by introducing FadRO into the promoter region of a phage lambda promoter. The 
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promoter was activated by oleic acids. 

 

Responses of the three engineered hybrid promoters to their corresponding effectors were first 

individually validated in expression tests. As expected, both PTL and PFL could be activated by 1 

mM IPTG (Fig 4.2). PTL was then subjected to down-regulation by TetR, as tested by increasing 

the TetR expression level from a PBAD promoter using arabinose. PFL was subjected to 

downregulation by the addition of oleic acids in a dose-dependent manner (Fig 4.2A & 4.2B). PAR2 

could be activated by increasing the oleic acid concentration, per our design (Fig 4.2C). Next, three 

E. coli strains carrying engineered metabolic feedback systems were cultivated. Enzyme 

expression and metabolite dynamics after pathway activation were monitored by measuring cell-

density-normalized fluorescence and FFA concentration. Both time course curves were then 

normalized by their steady state values. 

 

FFA displayed distinctly different dynamics in all three types of regulatory architectures. 

While NGL increased the speed of FFA dynamics only slightly compared to that of an unregulated 

pathway (Fig 4.3A), NML allowed FFA to reach steady state more rapidly, in three cell cycles 

(settling time), as compared to seven cell cycles for an unregulated pathway (Fig 4.3B). LNML, 

on the other hand, raised the FFA concentration quickly to a high level and gradually lowered it to 

its steady state, causing an overshoot of FFA concentration (Fig 4.3C). Compared to the rise-time 

for an unregulated pathway (2.48 cell cycles), the rise-times of FFA in three regulated pathways 



	 105	

were 1.75, 1.33 and 0.21 cell cycles, decreased by 1.4-, 1.9-, and 11.8-fold, respectively. The 

dynamics of TesA also changed, with patterns similar to that of FFA in each strain. The rise-times 

of TesA decreased from one cell cycle in the unregulated pathway to 0.41, 0.38, and 0.03 cell 

cycles in NGL, NML, and LNML, respectively, indicating that the rapid metabolite dynamics were 

results of transcriptional regulation of the enzyme expression level, consistent with our design (Fig 

4.3A, 4.3B, &4.3C). Overall, our results demonstrated that the metabolic negative feedback loops 

could accelerate metabolite dynamics, decreasing metabolite rise-time by up to 11.8-fold. 

 

 

Figure 4.3 Negative feedback circuits with three different architectures and their metabolite 
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and protein dynamics.  

A. Design and dynamics of metabolite and protein in a negative gene loop (NGL). In the NGL, 

PTL promoter is used to control the expression of the tesA-tetR-rfp operon. Induction of the operon 

initiates the synthesis of TetR, which feeds back to inhibit the operon.  

B. Design and dynamics of metabolite and protein in a negative metabolic loop (NML). In the 

NML, PFL is used to control the expression of the tesA-rfp operon. Upon induction of PFL, FFA 

synthesis is initiated, and its accumulation turns down the expression of the operon. 

C. Design and dynamics of metabolite and protein in a layered negative metabolic loop (LNML). 

In the LNML, PTL is used to control the expression of the tesA-rfp operon. The inverter TetR is 

placed under the control of PAR2. Production of free fatty acids is turned on by inducing TesA 

synthesis, and the accumulation of free fatty acids induces TetR expression. The accumulation of 

TetR turns down TesA synthesis by inhibiting PTL. 

Normalized free fatty acid and protein accumulation dynamics were all fitted with kinetic models 

(solid black lines) and are plotted with those of a non-regulated pathway (solid gray lines) for 

comparison. 

 

4.2.3 Model Analysis Elucidates Metabolite Dynamics Behavior for the Three 
Feedback Architectures 

To obtain a quantitative understanding of the regulated metabolite dynamics and to explore 

the limits of each regulatory architecture, general mathematical models were developed and fitted 
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to our experimental data in each system (see Supplemental Information, Fig 4.3). Circuit 

parameters that could be experimentally tuned using cost-effective methods were varied in each 

model to explore the boundaries of metabolic control. In the case of the NGL, we varied the 

dissociation constant (Kd) between TetR and PTL and simulated FFA dynamics. As seen in Fig 4.4A 

and 4.4B, as Kd decreases (tighter repression of PTL by TetR), FFA reaches its steady state faster 

and approaches a theoretical upper limit, the fastest metabolite dynamics under NGL control. Our 

experimental results lie close to this upper limit, consistent with the tight interaction between TetR 

and its operator site TetO in PTL (Kd = 30 nM). Under this theoretical upper limit condition, the 

protein’s rise-time was deceased by 5-fold (from one cell cycle to 0.21 cell cycle, Fig 4.4B), and 

the metabolite’s rise-time was decreased by only 1.57-fold (from 2.48 cell cycle in OL to 1.58 cell 

cycle in the fastest NGL). Thus, an NGL speeds up the response of protein expression upon 

transcriptional activation, but has mild effects on metabolite dynamics. Consistent with this 

conclusion, natural NGLs are mostly found to regulate transcription factors but rarely to regulate 

enzymes, possibly due to their inefficiency in controlling metabolite dynamics.  
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Figure 4.4 Tuning of circuit parameters to control protein and metabolite dynamics.  

A, B.  Dynamics of (A) metabolite and (B) protein in NGL with varying dissociation constants 

between TetR and PTL. Kd decreases from light gray to dark gray lines. Upper limits of achievable 

metabolite and protein dynamics were observed. 

C. Rise-time and percent overshoot of NML under varied tunable circuit parameters. 

D. Rise-time and percent overshoot of LNML under varied tunable circuit parameters. 

 

  Compared to NGL, NML exhibited a more dramatic acceleration in the metabolite dynamics, 

with a decrease in both the rise-time and the settling time. To further explore the effects of circuit 
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parameters on the metabolite dynamics, we varied the apparent enzyme expression rate (𝑟 v
w , see 

Supplemental Information M4) from 10-13 M/s to 10-8 M/s, and varied the apparent inhibition 

constant (𝑘E, see Supplemental Information M4) from 10µM to 1 M to cover large biologically 

relevant ranges (Fig 4.4C). As the apparent inhibition constant increases, the repression from the 

negative feedback loop decreases, which increases the rise-time. On the other hand, the metabolite 

rise-time correlates non-monotonically with the enzyme expression rate. Because the steady state 

enzyme expression level is correlated with the enzyme expression rate, a very low TesA expression 

rate leads to a low TesA steady state level (close to its initial concentration), therefore resulting in 

a short rise-time. As the TesA expression rate increases, FFA accumulates to higher levels, which 

gradually cross the inhibition threshold (𝑘E). When the FFA level is much lower than the threshold, 

TesA expression is barely inhibited, which causes an increase in rise-time. As the TesA expression 

rate further increases, FFA reaches a concentration much higher than the threshold, which leads to 

a strong repression that decreases the rise-time. In the parameter space we explored, the metabolite 

rise-time was decreased by more than two-fold in 80% of the parameter space with very little 

overshoot (percent overshoot < 50 in 86% of the parameter space). This suggests that NML is 

particularly effective in accelerating the metabolite dynamics without causing large overshoots. 

 

Comparing the three architectures, LNML had the shortest metabolite rise-time, but at the 

same time caused a large metabolic overshoot. Metabolite overshoot is an interesting phenomenon 

that can be potentially exploited for engineering purposes, including metabolite-triggered bistable 
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switches(Kotte et al, 2015), transient metabolic signals(Shin et al, 2006; Ray et al, 2011), and 

metabolic oscillators(Elowitz & Leibler, 2000; Novák & Tyson, 2008). On the other hand, too 

large an overshoot may also adversely affect cell growth if the metabolite concentration is above 

the cellular tolerance level. Thus, it is essential to fine tune circuit parameters to balance the 

metabolite rise-time and the size of metabolic overshoot. 

 

Because LNML consists of multiple layers of interactions, there is a large set of experimental 

tunable parameters. These include the protein production rate (such as TesA and TetR), and the 

dissociation constants between TFs and their cognate promoters (such as FadR-PAR2 and TetR-

PTL). We systematically varied the experimentally-tunable parameters in our model and studied 

how they affected the metabolite rise-time and the size of the overshoot. The maximum protein 

production rates of TesA and TetR were varied from 10-13 M/s to 10-8 M/s, and the dissociation 

constants of FadR-PAR2 and TetR-PTL were scanned from 0.1 nM to 10 µM, both covering broad 

ranges of biologically relevant values. As the maximum TetR production rate increases, FFA 

exhibits a shorter rise-time and a higher percent overshoot (defined as the ratio of the amount of 

overshoot to the steady-state) (Fig 4.4D). Interestingly, the rise-time and the percent overshoot 

correlates non-monotonically with the maximum TesA expression rate (Fig 4.4D). A slow TesA 

production rate leads to minimal TetR expression, causing a long delay in TetR accumulation to 

repress the circuit, which generates a large percent overshoot and results in a short rise-time. 

Contrariwise, a high enzyme expression rate leads to strong activation, and a delay of repression 
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follows because high levels of repressors are accumulated to bring down the enzyme expression 

rate, which generates overshoot and a short rise-time (Figure 4S2). In addition, as we increase the 

dissociation constant between TetR and PTL, the repression strength of the circuit becomes weaker 

and thus approaches the dynamic behavior of an OL (Fig 4.4D). However, as the binding affinity 

between FadR and PAR2 decreases, the FFA rise-time decreases and reaches a valley before it 

increases. At low Kd (FadR-PAR2), high FFA concentrations are required to turn on PAR2, which 

causes a delay in repression and a long rise-time. As Kd (FadR-PAR2) increases, less FFA is needed 

to turn on PAR2, and thus rise-time decreases. When Kd (FadR-PAR2) further increases beyond a 

certain level, TetR expression becomes insensitive to FFA concentration, leading to a longer rise-

time (Figure 4S2). Interestingly, the Kd (FadR-PAR2) of the rise-time valley shifts right as the Kd 

(TetR-PTL) decreases. This was because as Kd (TetR-PTL) decreases, TesA expression becomes 

more sensitive to TetR levels, thus increasing the threshold of Kd (FadR-PAR2) that can produce 

varying PTL-sensitive TetR concentrations at different FFA levels. Overall, our model results 

suggest that a decrease in rise-time is always coupled with an increase in the size of overshoot. To 

shorten the rise-time, a high inverter (TetR) maximum expression rate and low Kd (TetR-PTL) 

should be used. In addition, fine tuning of the maximum enzyme (TesA) expression rate and Kd 

(FadR-PAR2) are also crucial to obtain a short rise-time for the LNML circuit. 

 

Comparing different negative feedback topologies, metabolic overshoot is often seen in 

LNML, indicating that metabolic overshoot is more tightly associated with the regulatory 
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architecture rather than the circuit parameters. The addition of an inverter in LNML (the TetR layer) 

creates an additional step of gene expression, increasing the delay time from metabolite sensing to 

its repression. Indeed, when the TetR degradation rate is increased (we denote this architecture as 

LNML-Deg), the overshoot region shrinks and the overshoot size decreases dramatically, while 

rise-times remain short (See Supplemental Information, Figure 4S3). This finding suggests that 

using an inverter with a short life time, such as fusing a degradation tag to the repressor or using 

RNA-based repression mechanisms, can potentially shorten the settling time. 

 

Overall, these results suggest that NML is the most effective architecture to accelerate metabolite 

dynamics, with dramatically decreased rise-time and little overshoot. In NML, since low and high 

𝑘E  may lead to large metabolic overshoots and long rise-times, respectively, these parameter 

values should be avoided when constructing metabolic circuits. By comparison, LNML is also 

effective in shortening the rise-time but mostly at the cost of generating large overshoots. Since a 

high enzyme expression rate is often preferred in engineering applications to increase metabolite 

concentrations, a medium expression level of the inverter is preferred to speed up the response 

while maintaining a relatively small percent overshoot. In addition, because the rise-time and 

percent overshoot correlate non-monotonically with Kd (FadR-PAR2), fining tuning of Kd (FadR-

PAR2) allows further precise control of the metabolite dynamics. NGL is inefficient in accelerating 

metabolite dynamics but may be considered when a metabolite biosensor is not available. These 

design guidelines can be used to choose a proper regulatory architecture and parameters to achieve 
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desirable metabolite dynamics.  

 

4.3 Conclusions and Discussions 

While previous efforts mostly focused on the effects of regulatory networks on the steady state 

metabolite level, this work provided a systematic and quantitative view of how transcriptional 

feedback circuits affect metabolite dynamics. Three types of commonly observed architectures of 

metabolic feedback loops were constructed and analyzed both experimentally and mathematically. 

Under these feedback controls, metabolite rise-time can be dramatically increased, by up to 11.8-

fold over that of unregulated metabolic pathways. The effects of several regulatory parameters on 

metabolite dynamics were also systematically studied, allowing a deeper understanding of 

metabolic regulation in both natural and engineered systems.  

 

It is suggested that natural enzymes are usually expressed at abundant levels at steady state, 

and thus serve as a buffer to maintain a steady cell metabolism under small environmental 

perturbations(Kochanowski et al, 2013; Fendt et al, 2010). However, under drastic environmental 

changes, such as the depletion of amino acids, transcriptional regulation turns on the expression of 

an entire biosynthetic pathway, causing large metabolic changes. During such a transition, the 

ability to rapidly adjust enzyme expression and catalysis to produce a desirable level of the target 

metabolite increases the rate of adaptation. Thus, negative metabolic feedback loops provide rapid 
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response to large environmental changes by quickly optimizing both enzyme and metabolite levels. 

On the other hand, the vast majority of engineered pathways in the field of metabolic engineering 

and synthetic biology are unregulated and could be slow to respond to large metabolic changes. 

Such slow response may cause delays in signal detection by biosensors that sense a metabolic 

product of an environmental signal(Xiao et al, 2017). Therefore, this study also provides 

guidelines to design synthetic regulatory circuits to speed up metabolite dynamics in engineered 

systems.   

 

The benefit of a faster metabolite rise-time is, however, also accompanied with a possible 

metabolic overshoot. Metabolic overshoot may be undesired in most natural systems, due to the 

overproduction of unnecessary proteins and metabolites. Although overshoot can be mitigated to 

some degree by fine-tuning the regulatory parameters of the metabolic feedback circuits, our study 

found that it is more tightly associated with regulatory architectures. Compared to LNML, NML 

has a greater parameter space where a shorter rise-time is achieved without overshoot, strongly 

suggesting why NML is the most commonly found transcription metabolic regulation in 

prokaryotes. For synthetic biology applications where metabolite overshoot is needed, LNML 

provides a large parameter space to generate overshoot with tunable size.  

 

  Gene regulation lies at the center of systems biology, and its functional role has inspired 

researchers to build synthetic regulation for various engineering applications. In this work, we 
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exploited genetic circuits to speed up metabolite dynamics. Our study filled the gap that links gene 

regulation with metabolite dynamics and indicated that, beyond optimizing cellular resources for 

enzyme production, transcriptional regulation also plays a critical role in quickly adapting 

metabolite levels to large environmental shifts. Our work also provides a systematic design 

principle that illustrates how regulation architectures and parameter fine-tuning affect metabolite 

productivity, which can be used to engineer synthetic feedback circuits to better control metabolite 

dynamics. 

 

4.4 Methods 

4.4.1 Materials  

Phusion DNA polymerase, restriction enzymes, and T4 ligase were purchased from Thermo Fisher 

Scientific (Waltham, Massachusetts, U.S.A.). Gel purification and plasmid miniprep kits were 

purchased from iNtRON Biotechnology (Lynnwood, WA, U.S.A.). All primers were synthesized 

by Integrated DNA Technologies (Coralville, IA, U.S.A). All reagents were purchased from Sigma 

Aldrich (St. Louis, MO, U.S.A.). E. coli DH10B was used for cloning purposes, and E. coli DH1 

(∆fadE) was used to construct negative feedback circuits. 
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4.4.2 Plasmids and strains  

Plasmid pB5k-tesA-RFP was constructed by cloning a cytosolic thioesterase gene tesA (‘tesA: 

leader sequence deleted) to the 5’ of RFP in a Biobrick vector pBbB5k-RFP. To create pB8k-tesA, 

tesA was amplified and cloned 3’ of the PBAD promoter in a Biobrick plasmid pBbB8k-RFP. 

Plasmid pA5c-CAR was constructed by cloning a carboxylic reductase 3’ of a PLacUV5 promoter in 

a Biobrick plasmid pBbA5c-RFP. Plasmid pETLa-RFP was created by inserting one TetO site in 

between the -35 and -10 region of the PlacUV5 promoter in a Biobrick plasmid pBbE5a-RFP, using 

a one-step Golden-Gate DNA assembly method. To create pETLa-tesA-RFP, tesA was cloned 5’ 

of rfp in the pETLa-RFP plasmid. The gene tetR was amplified from a BioBrick plasmid, pBbA2c-

RFP, and cloned 3’ of the PBAD promoter in a Biobrick plasmid pB8k-RFP, yielding pB8k-tetR. 

Plasmid pBAR2k-RFP was constructed from phage PA1 promoter by placing one FadRO site 

between the -35 and -10 regions of the promoter. Plasmid pETLa-tesA-tetR-RFP was constructed 

by cloning tetR 3’ of tesA and 5’ of rfp in the pETLa-tesA-RFP plasmid. Plasmid pBAR2k-tetR 

and pA8c-fadR were constructed by replacing rfp in pBAR2k-RFP and pBbA8c-RFP with tetR 

and fadR, respectively. Strains were created by transforming the corresponding plasmids into DH1 

(∆fadE) competent cells. Plasmids (Table 4S1), strains (Table 4S2), and promoter sequences (Table 

4S3) are summarized in the Supplemental Information. 

 

4.4.3 Cell growth and fluorescence assay  

Cell growth curves and cell culture fluorescence were recorded on an Infinite F200PRO (TECAN) 
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plate reader. Strains were first cultivated overnight in Luria−Bertani (LB) medium (220 rpm, 37 °C) 

supplemented with appropriate antibiotics (50 mg/L ampicillin, 50 mg/L kanamycin, and 30 mg/L 

chloramphenicol). To test PTL promoter behavior, the overnight LB cultures were inoculated 2% 

v/v into fresh minimal medium(Liu et al, 2013) with 2% glucose, and the overnight minimal 

medium culture was then inoculated into fresh minimal medium. To test PFL promoter behavior, 

the overnight LB cultures were inoculated into fresh minimal medium with 1% glycerol as a carbon 

source (supplemented with 0.5% tergitol NP-40), and the overnight minimal medium culture was 

then inoculated into fresh minimal medium. The PAR2 promoter was tested using a method 

modified from previous publication(Zhang et al, 2012). Specifically, cells were induced with the 

corresponding inducer concentrations at OD=0.6, and then were incubated in a 96-well plate inside 

the plate reader with shaking (218.3 rpm, 37 °C). The cell density (OD600) and red fluorescence 

(excitation, 535 ± 9 nm; emission, 620 ± 20 nm) were recorded every 1000 s until the cell culture 

reached the stationary phase. Fluorescence from a wild-type E. coli DH1 (∆fadE) cell culture was 

used as the background, and was subtracted from all fluorescence measurements. The background-

corrected fluorescence was later normalized by cell density as measured at OD600. 

 

4.4.4 Protein and metabolite production dynamics  

The OL, OLIM, NGL, NML, and LNML strains were inoculated into LB medium with appropriate 

antibiotics. For adaptation, overnight LB cultures of OL, NGL, and LNML strains were inoculated 
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2% v/v into M9 medium supplemented with 1% glycerol and amino acids, the same composition 

as EZ-rich medium. The overnight culture of OLIM was inoculated 2% v/v into M9 medium 

supplemented with 2% glucose and 0.5% yeast extract. This medium was used to maintain a 

constant growth rate throughout the two subsequent induction processes. For adaptation, the 

overnight LB culture of NML was inoculated 2% v/v into minimal medium, supplemented with 

1% glycerol. The overnight cultures in minimal medium were used to inoculate 25 mL of the 

corresponding fresh minimal medium with an initial OD600 of 0.08 and then induced when the 

OD600 reached 0.6. Strains NGL and LNML were supplemented with 50 nM of aTc to remove 

leaky expressed TetR. Strain OLIM was first induced with 4 µM or 40 µM IPTG and maintained 

under steady state for five cell cycles before 0.4% arabinose was added to induce CAR. Cell 

cultures were diluted under the same induction conditions periodically to maintain the cells in the 

exponential growth phase. OD600 and fluorescence were measured every 1-2 cell cycles, and cell 

cultures were collected at each sampling point and stored at -20 °C for FFA quantification. FFA 

were quantified using a previously published method(Liu et al, 2013). Fluorescence and FFA 

concentration were normalized by cell density as measured by OD600, and the data were then 

normalized by the steady state to obtain the protein and metabolite dynamic curves. 
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4.4.5 Mathematical model and fitting to experimental data  

Fitting the model to the experimental data was performed by implementing least-squares non-

linear optimization, using the MATLAB Global Optimization Toolbox function MultiStart. All 

model parameters were left free to be fitted, and the optimization was initiated from thousands of 

random guesses of the set of parameter values to ensure convergence onto a global solution. 

Kinetic models, coefficient of determination (R2), and the fitted parameters of OL, OLIM, NGL, 

NML, and LNML are in the Supplemental Information. The fitted parameters and R2 are 

summarized in the Supplemental Information Table 4S4. In Fig 4.4C, the parameter value, 

ktesA=77.75 s-1, is used for tuning the apparent expression rate of TesA and apparent inhibition 

constant. Parameters used in Fig 4.4D for tuning the maximum expression rates of TesA and TetR 

are ktesA=230.90 s-1, kd,tetR=3.85e-8 M, kfadR, FFA=0.001 M, and k2=138.50. Parameters used in Fig 

4.4D for tuning Kd (TetR-PTL) and Kd (FadR-PAR2) are rTL=1e-10 M/s, rAR2=1e-10 M/s, ktesA=230.90 

s-1, kfadR, FFA=0.001 M, and kdeg=0.0004 s-1. All data points are logarithmically spaced in Fig 4.4C 

& 4.4D. Protein degradation was considered as first-order kinetics and the degradation rate 

constant was kdeg=0.0004 s-1. 
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Appendix: Supplementary Information for Chapter 4 
 

Supplementary Table 4S1 Plasmids used in this study. 

Plasmids Replication Origin Overexpressed Operon Resistance 

pB5k-tesA-RFP        BBR1 PlacUV5-tesA-rfp KanR 

pB5k-tesA        BBR1 PlacUV5-tesA KanR 

pB8k-tesA BBR1 PBAD-tesA KanR 

pA5c-CAR p15A PLacUV5-car CmR 

pETLa-RFP ColE1 PTL-rfp AmpR 

pETLa-tesA-RFP ColE1 PTL-tesA-rfp AmpR 

pB8k-tetR BBR1 PBAD-tetR KanR 

pE8a-fadR ColE1 PBAD-fadR AmpR 

pBAR2k-RFP BBR1 PAR2-rfp KanR 

pETLa-tesA-tetR-RFP ColE1 PTL-tesA-tetR-rfp AmpR 

pEFLa-tesA-RFP ColE1 PFL-tesA-rfp AmpR 

pBAR2k-tetR BBR1 PAR2-tetR KanR 

pA8c-fadR p15A PBAD-fadR CmR 
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Supplementary Table 4S2. Strains used in this study. 

Strains Relevant genotype 

DH1 F– λ– endA1 recA1 relA1 gyrA96 thi-1 glnV44 hsdR17(rK–mK–) 

DH1(∆fadE) E. coli DH1: ∆fadE 

PTLC E. coli DH1 (∆fadE): pETLa-RFP, pB8k-tetR 

PFLC E. coli DH1 (∆fadE): pEFLa-RFP, pA8c-fadR 

PAR2C E. coli DH1 (∆fadE): pBAR2k-RFP, pE8a-fadR 

OL E. coli DH1 (∆fadE): pB5k-tesA-RFP 

OLIM E. coli DH1 (∆fadE): pB8k-tesA, pA5c-CAR 

NGL E. coli DH1 (∆fadE): pETLa-tesA-tetR-RFP 

NML E. coli DH1 (∆fadE): pEFLa-tesA-RFP, pA8c-fadR 

LNML E. coli DH1 (∆fadE): pETLa-tesA-RFP, pBAR2k-tetR, pA8c-fadR 
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Supplementary Table 4S3 Sequences of the engineered promoters. The bold sequences represent 

the -35 and -10 regions. LacI, TetR, and FadR binding sites are colored in red, blue and green lines. 

Promoter Sequence 

PTL CGAAATTTGACTTCCCTATCAGTGATAGAGATACTGTGTGGAATTGTGAGCGGATAACAATT 

PFL ATTCCGAACTGATCGGACTTGTTCAGCGTACACGTGTTAGCTATCCTGCGTGCAATTGTGAGCGGATAACAATTTTC 

PAR2 TCAAAAAGAGTGTTGACTATCTGGTACGACCAGATGATACTTAGATTCATTTATGCTTCCGGC 
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Supplementary Figure 4S1. Parameters used in this study to characterize circuit dynamics. 

Rise-time is defined as the time needed to reach half of the steady state concentration. Settling 

time is the time required for a response curve to reach and stay within 5% of the steady state level. 

Percent overshoot is the ratio of the amount of overshoot to the steady state. 
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Supplementary Figure 4S2. Metabolic dynamics with A) varying enzyme (TesA) maximum 

expression rate, and B) varying Kd (FadR-PAR2) values. The value of the parameters increases 

following the rainbow color sequence, with black for the highest value. The inverter (TetR) max 

expression rate was fixed at 7.8e-9 M/s in A, and the Kd (TetR-PTL) was fixed at 25 nM in B. All 

the other parameters were the same as the fitted values in Table 4S4.  
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Supplementary Figure 4S3. Response time and percent overshoot of LNML-Deg under 

varying tunable circuit parameters. TetR degradation is considered as first-order kinetics 

(Supplemental Information M5) and the modeling parameters can be found in the Methods section. 

The fast degradation of TetR dramatically decreases the percent overshoot. 

	

  



	 130	

Mathematical models of negative feedback circuits 

 

M1. Mathematical model of the Open Loop (OL) 

The open loop topology is shown below: 

 

Transcription of genes from PLac promoter at a fixed IPTG concentation can be regarded at a 

constant rate of 𝑟vWy. Thus, the expression kinetics of TesA are described by 

𝑑 𝑇𝑒𝑠𝐴
𝑑𝑡 = 𝑟vWy − 	µ 𝑇𝑒𝑠𝐴 									(1)			 

where µ is the specific growth rate of cells in the exponential growth phase. 

 

The kinetics of the free fatty acid (FFA) are described by 

𝑑 𝐹𝐹𝐴
𝑑𝑡 =

𝑘yWZ ∙ 𝑇𝑒𝑠𝐴 ∙ [𝑆]
𝐾\ + [𝑆] − 	µ 𝐹𝐹𝐴 										(2) 

where [S] is the concentration of the precursor acyl-ACPs, and 𝑘yWZ and 𝐾\ are the turnover 

rate and Michaelis constant of TesA. The acyl-ACP concentration is assumed constant in the 

exponential growth phase. Thus, the FFA kinetics can be simplified to 

𝑑 𝐹𝐹𝐴
𝑑𝑡 = 𝑘Z}m~ 𝑇𝑒𝑠𝐴 − 	µ 𝐹𝐹𝐴 										(3) 
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where 

𝑘Z}m~ =
𝑘yWZ ∙ [𝑆]
𝐾\ + [𝑆]													(4) 

Solving equations (1) and (2), the kinetics of TesA and FFA can be described by 

 

 

Thus, the kinetics of TesA and FFA are independent of the circuit parameters. 

 

M2. Mathematical Model of the Open Loop Intermediate (OLIM) 

The topology of OLIM is shown below: 

 

The kinetics of the FFA concentration are described by 

 

 

where [S], [TesA], and [CAR] are the concentrations of acyl-ACPs, TesA, and CAR, respectively. 

𝑘yWZ and 𝐾\ are the turnover rate and Michaelis constant of TesA, respectively. 𝑘yWZ,�~a and 

𝐾\,�~a  are the turnover rate and Michaelis constant of CAR. The FFA consumption was 

𝑑[𝐹𝐹𝐴]
𝑑𝑡

=
𝑘yWZ ∙ [𝑇𝑒𝑠𝐴] ∙ [𝑆]

𝐾\ + [𝑆]
− µ[𝐹𝐹𝐴] −

𝑘yWZ,�~a ∙ [𝐶𝐴𝑅] ∙ [𝐹𝐹𝐴]
𝐾\,�~a + [𝐹𝐹𝐴] ⬚

												 (7) 

[𝑇𝑒𝑠𝐴] = [𝑇𝑒𝑠𝐴]mm ∙ (1 − exp(−𝑙𝑛2 ∗ 𝑁))													(5) 

[𝐹𝐹𝐴] = [𝐹𝐹𝐴]mm ∙ (1 − (𝑙𝑛2 ∗ 𝑁 + 1) ∙ exp(−𝑙𝑛2 ∗ 𝑁))															(6) 
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simplified into first-order kinetics by assuming 𝐾\,�~a ≫ 𝐹𝐹𝐴  to minimize the number of model 

parameters. Thus, the kinetics of FFA concentration can be described as 

 

 

where 

𝑘Z}m~ =
𝑘yWZ ∙ [𝑆]
𝐾\ + [𝑆]											(4) 

 

𝑘�~a =
𝑘yWZ,�~a ∙ 𝐶𝐴𝑅

𝐾\,�~a
																		(10) 

 

M3. Mathematical model of the Negative Gene Loop (NGL) 

The regulatory topology of the NGL is shown below: 

 

With maximum IPTG induction, the activity of the PTL promoter (ATL) is regulated by TetR 

concentration and can be described by 

𝐴�v =
𝑟�v

1 + [𝑇𝑒𝑡𝑅]𝐾�,Z}Za

																			(11) 

𝑑[𝐹𝐹𝐴]
𝑑𝑡 = 𝑘Z}m~[𝑇𝑒𝑠𝐴] − 	µ[𝐹𝐹𝐴] − 𝑘�~a[𝐹𝐹𝐴]												(8) 
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where 𝑟�v  represents the fully activated promoter activity of PTL. 𝐾�,Z}Za  is the dissociation 

constant between TetR and PTL.  

 

Thus, the expression kinetics of TesA can be described by 

𝑑[𝑇𝑒𝑠𝐴]
𝑑𝑡 =

𝑟�v

1 + [𝑇𝑒𝑡𝑅]𝑘�,Z}Za

− µ 𝑇𝑒𝑠𝐴 															(12) 

      

where 𝑘 is the specific growth rate of cells in the exponential growth phase. 

      

As in the OL, the kinetics of FFA are described by 

𝑑 𝐹𝐹𝐴
𝑑𝑡 = 𝑘Z}m~ 𝑇𝑒𝑠𝐴 − µ 𝐹𝐹𝐴 										(3) 

where 

𝑘Z}m~ =
𝑘yWZ ∙ [𝑆]
𝐾\ + [𝑆]													(4) 

 

The level of TetR concentration can be described by 

𝑑[𝑇𝑒𝑡𝑅]
𝑑𝑡 =

𝑟�v,Z}Za

1 + [𝑇𝑒𝑡𝑅]𝑘�,Z}Za

− µ 𝑇𝑒𝑡𝑅 											(13) 

where 𝑟�v,Z}Za represents the fully activated synthesis rate of TetR. 
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M4. Mathematical model of the Negative Metabolic Loop (NML) 

The regulatory topology of the NML is shown below: 

 

With maximum IPTG induction, the activity of the PFL promoter (AFL) in response to FadR 

concentration [FadR] is described by 

𝐴`v =
𝑟 v[𝐹𝑎𝑑𝑅]T

[𝐹𝑎𝑑𝑅]T + 𝑘�,TW�a
																			(14) 

where 𝑟 v represents the fully activated promoter activity of PFL and 𝑘�,TW�a is the dissociation 

constant between FadR and PFL. At equilibrium, the free FadR concentration [𝐹𝑎𝑑𝑅]T can be 

described by 

[𝐹𝑎𝑑𝑅]T =
𝑘TW�a,``~

𝑘TW�a,``~ + [𝐹𝐹𝐴]
[𝐹𝑎𝑑𝑅]Z										(15) 

where 𝑘TW�a,``~ represents the apparent dissociation constant between FFA and FadR. [𝐹𝑎𝑑𝑅]Z 

is the total concentration of FadR. 

 

Combining equations (14) and (15), we obtain 

𝐴`v =
𝑟 v
w

1 + [𝐹𝐹𝐴]𝑘𝑖

																(16) 

where 
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𝑟 v
w = 𝑟 v

[𝐹𝑎𝑑𝑅]Z
[𝐹𝑎𝑑𝑅]Z + 𝑘�,TW�a

																									(17) 

𝑘E =
𝑘�,TW�a + 𝐹𝑎𝑑𝑅 𝑡

𝑘�,TW�a
𝑘TW�a,``~																					(18) 

 

Thus, the expression kinetics of TesA are described by 

𝑑[𝑇𝑒𝑠𝐴]
𝑑𝑡 =

𝑟 v
w

1 + [𝐹𝐹𝐴]𝑘𝑖

− µ 𝑇𝑒𝑠𝐴 																	(19) 

As in the OL, the FFA kinetics are described by 

𝑑 𝐹𝐹𝐴
𝑑𝑡 = 𝑘Z}m~ 𝑇𝑒𝑠𝐴 − µ 𝐹𝐹𝐴 										(3) 

where 

𝑘Z}m~ =
𝑘yWZ ∙ [𝑆]
𝐾\ + [𝑆]													(4) 

 

M5. Mathematical Model of the Layered Negative Metabolic Loop (LNML). 

The regulatory topology of the LNML is shown below: 

 

As in the NGL, the activity of PTL promoter (ATL) in response to TetR concentration [TetR] can be 

described as 
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𝐴�v =
𝑟�v

1 + 𝑇𝑒𝑡𝑅
𝑘�,Z}Za

																			 11  

The expression kinetics of TesA can be described by 

𝑑[𝑇𝑒𝑠𝐴]
𝑑𝑡 =

𝑟�v

1 + 𝑇𝑒𝑡𝑅
𝑘�,Z}Za

− µ 𝑇𝑒𝑠𝐴 											(12) 

The activity of PAR2 (AAR2) can be described by 

𝐴~a0 =
𝑟~a0

1 +
[𝐹𝑎𝑑𝑅]T
𝑘�,TW�a

														(20) 

where 𝑟~a0 represents the fully induced promoter activity of the PAR2 promoter. At equilibrium, 

[𝐹𝑎𝑑𝑅]T can be described by 

[𝐹𝑎𝑑𝑅]T =
[𝐹𝑎𝑑𝑅]Z

1 + 𝐹𝐹𝐴 /𝑘TW�a,``~
										(21) 

Combining equations (11) and (12), the activity of PAR2 can be described by 

𝐴~a0 =
𝑟~a0

1 + [𝐹𝑎𝑑𝑅]Z
𝑘�,TW�a ∙ (1 +

𝐹𝐹𝐴
𝑘TW�a,``~

)

														(22) 

Thus, the expression kinetics of TetR are described by 

𝑑[𝑇𝑒𝑡𝑅]
𝑑𝑡 =

𝑟~a0

1 + [𝐹𝑎𝑑𝑅]Z
𝑘�,TW�a ∙ (1 +

𝐹𝐹𝐴
𝑘TW�a,``~

)

− µ 𝑇𝑒𝑡𝑅 																	(23) 

Denote 

𝑘0 =
[`W�a]�
�V,b�V�

            (24) 

Then, combining equations (23) and (24), the expression kinetics of TetR are described by 
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𝑑[𝑇𝑒𝑡𝑅]
𝑑𝑡 =

𝑟~a0

1 + 𝑘0
(1 + 𝐹𝐹𝐴

𝑘TW�a,``~
)

− µ 𝑇𝑒𝑡𝑅 																	(25) 

As in OL, FFA kinetics can be described by 

𝑑 𝐹𝐹𝐴
𝑑𝑡 = 𝑘Z}m~ 𝑇𝑒𝑠𝐴 − µ 𝐹𝐹𝐴 										(3) 

where 

𝑘Z}m~ =
𝑘yWZ ∙ [𝑆]
𝐾\ + [𝑆]													(4) 

 

To model the LNML-Deg, the degradation rate of the repressor was considered as first order 

kinetics with a rate constant of kdeg. Thus, the expression kinetics of TetR are described by 

𝑑[𝑇𝑒𝑡𝑅]
𝑑𝑡 =

𝑟~a0

1 + [𝐹𝑎𝑑𝑅]Z
𝑘�,TW�a ∙ (1 +

𝐹𝐹𝐴
𝑘TW�a,``~

)

− µ 𝑇𝑒𝑡𝑅 − 𝑘�}�[𝑇𝑒𝑡𝑅]																	(26) 

 

Model Parameterization 

All model parameters were obtained by either direct experimental measurements or by 

fitting to protein and metabolite kinetics data. Data fitting was performed using the MultiStart 

algorithm in MATLAB R2015b. The lower and the upper bounds of the protein synthesis rate were 

set between 10-11 M/s and 10-8 M/s to cover the typical range of overexpressed protein synthesis 

rates. ktesA was set between 1 s-1 and 1000 s-1 to cover a broad range of protein turnover rates(Zhang, 

2011). The dissociation constant between TetR and PTL, kd,tetR, was fitted within a range between 

3e-8 M and 4e-8 M, considering that the concentration of PTL varies between 6e-8 M and 8e-8 
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M(Lee et al, 2011). The apparent dissociation constant between FFA to PFL was fitted with upper 

and lower bounds set to be 0 M to 0.12 M, with 0.12 M being the calculated maximum intracellular 

FFA concentration produced in the OLIM. The leaky expressed FadR was estimated to be between 

20 nM to 70 nM(TANIGUCHI, 2011), and kd, fadR was reported to be 0.2 nM(Van Aalten, D.M., 

DiRusso, C.C. and Knudsen, 2001). Thus the bounds of k2 were set between 40 to 140. A table of 

parameters used in this work is listed below. 

 

Supplementary Table 4S4 Circuit parameters determined by fitting experimental data to the 

model and the R2 of the fitting. 

 Parameter Value Unit 
R2 

(Metabolite) 

R2 

(Protein) 

OL 
[Enzyme]ss 764 A.U. 

0.98 0.94 
[Metabolite]ss 43.13 mg/L 

OLIM 𝑘�~a 

4.78e-4 
(OLIM_hc) 

s-1 
0.99 N.A. 

2.83e-4 
(OLIM_lc) 

0.99 N.A. 

NGL 

𝑟�v 2.09e-11 M/s 

0.97 0.91 
𝑘Z}m~ 105.25 s-1 
𝑟�v,Z}Za 2.18e-11 M/s 
𝑘�,Z}Za 3.0e-8 M 

NML 
𝑟 v
w  1.00e-11 M/s 

0.93 0.92 𝑘Z}m~ 77.75 s-1 
𝑘E 0.079 M 

LNML 

𝑟�v 1.66e-11 M/s 

0.62 0.82 
𝑘Z}m~ 230.90 s-1 
𝑟~a0 2.21e-9 M/s 
𝑘�,Z}Za 3.85e-8 M 
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𝑘TW�a,``~ 0.001 M 
k2 138.50 1 
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Chapter 5 Conclusions and Future Directions 

 

5.1 Conclusions 

This dissertation introduced metabolite biosensors, with a focus on transcription factor-based 

metabolite biosensors, genetic circuits, and their applications in metabolic engineering. The 

following chapters centered on our efforts to develop design principles for metabolite biosensors 

(Chapter 2), to engineer genetic circuits to regulate metabolic pathways (Chapter 3), and to study 

the effects of regulation architectures and the associated biochemical parameters on metabolite 

dynamics (Chapter 4). All together, these contribute to rational design and tuning of biosensors 

and genetic circuits for metabolic engineering applications. 

 

  Based on our model analysis and experimental results, we revealed that the metabolite response 

threshold and dynamic range are inherently coupled and further identified a design constraint 

whereby a maximal achievable dynamic range is expected when tuning the binding affinities 

between the transcription factors and their promoters. We then developed rational design strategies 

for orthogonal control of the biosensor response threshold and dynamic range, by tuning the 

binding affinity between the transcription factor and the metabolite and the dynamic range of the 

promoter activity. This work directly provides quantitative guidelines for biosensor design, which 
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facilitate diverse applications in strain screening, dynamic pathway control, and real-time 

metabolism monitoring. 

 

  In Chapter 3, we developed a malonyl-CoA sensor-actuator and applied it to build a negative 

feedback circuit to regulate an engineered free fatty acid producing pathway. The circuit 

dynamically controls the expression of acetyl-CoA carboxylase (ACC) in response to intracellular 

malonyl-CoA levels, therefore alleviating toxicity from ACC overexpression and also recovering 

cell growth. As a result, fatty acid production was improved. This work directly contributes to the 

toolbox of synthetic biology by developing a biosensor for malonyl-CoA, which is an important 

precursor for many valuable products. In addition, this study documents the first example where 

metabolite-mediated dynamic down-regulation of enzyme expression is applied to enhance 

pathway productivities. 

 

  The understanding of metabolic dynamics is not only important to identify the optimal 

regulation architecture to engineer synthetic regulatory circuits, but also crucial to understand their 

benefits to cell fitness from a systems biology perspective. In Chapter 4, we found that upon 

induction of a metabolic pathway, the metabolite dynamics was ultimately limited by enzyme 

expression dynamics. We further constructed negative feedback circuits with three regulation 

architectures and studied the effects of the circuit architectures and parameters on metabolic 

dynamics. The study revealed that metabolic dynamics can be dramatically accelerated by gene 
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regulation, which potentially can be explored for applications in designing synthetic circuits to 

improve the productivities of engineered metabolic pathways.  
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5.2 Recommendations for Future Directions 

Based on this dissertation, three research directions are recommended for future work. These 

include 1) Developing engineering strategies to efficiently expand the variety of metabolites that 

can be sensed. 2) Exploring how negative feedback circuits respond to environmental perturbations 

and regulate cellular heterogeneities. 3) Developing general design principles to engineer synthetic 

circuits to regulate metabolic pathways. 

 

5.2.1 Developing engineering strategies to efficiently expand the variety of 
metabolites that can be sensed 

Biosensors have demonstrated valuable applications in metabolic engineering, including strain 

screening and dynamic pathway regulation. However, their applications are strongly limited by the 

small number of available biosensors. The design of metabolite biosensors has largely relied on 

naturally available genetic parts (e.g. transcription factors, RNAs). While some studies have 

expanded the specificities of transcription factors to detect metabolites of interest where no natural 

sensors exist, it remains a challenge to develop efficient and general engineering strategies to sense 

any metabolite of interest(Liu et al., 2015). Therefore, engineering strategies that can link the 

existing interactions between metabolites of interest and proteins to tunable outputs will be 

particularly useful in further expanding the biosensor toolbox(Feng et al., 2015). 
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5.2.2 Exploring how negative feedback circuits respond to environmental 
perturbations and regulate cellular heterogeneities 

This dissertation has explored the effects of negative feedback circuits on metabolic dynamics. 

Our initial modelling results suggest that under environmental perturbations, negative feedback 

circuits can accelerate cellular response by bringing the metabolite concentration quickly back to 

its steady state level. This aspect can be further explored to engineer more metabolically stable 

systems with steady outputs under even large environmental stimuli. 

 

  In addition, it has been found that protein expression noise is decreased by negative 

autoregulation(Beckskei and Serrano, 2000). However, the effects of negative feedback circuits 

with different architectures (as in Chapter 4) on protein noise remain largely unknown. In addition, 

the regulation of metabolite noise has been barely explored. It is possible that a decrease in protein 

noise (by negative feedback circuits) may lead to a more homogenous metabolite distribution. 

Thus, it will be interesting to explore whether and how the negative feedback circuits considered 

in Chapter 4 affect protein and metabolite noise. 

 

5.2.3 Developing general design principles to engineer synthetic circuits to 
regulate metabolic pathways 

Synthetic regulatory circuits have proved useful to improve production in a variety of metabolic 

pathways(Dahl et al., 2013; Gupta et al., 2017; Liu et al., 2013; Zhang et al., 2012). Given a 

metabolic pathway of interest, the number of possible control topologies is tremendous, making it 
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impractical to test production under all possible control topologies and circuit parameters. 

Unfortunately, there is little knowledge on the effect of each control topology on pathway activity. 

As a result, the current construction of synthetic circuits relies mostly on intuition and empirical 

guesses to choose control topologies, and researchers have to test a variety of parameters (e.g., 

promoter and RBS strengths) to identify the optimal condition, which is labor-intensive and time-

consuming. Thus, it will be essential to combine computational simulations with experimental 

approaches to predict the optimal control topologies and parameters to minimize the engineering 

efforts(Eckert and Trinh, 2016). To do this, mathematical models that consider the effects of 

overexpression of metabolic pathways on cell growth and protein expression need to be 

incorporated in the kinetic models. In addition, the benefits of dynamic regulation in saving carbon 

and energy may also need to be considered. Mathematical analysis can analyze productivities for 

pathways with different bottleneck steps and various regulation architectures, which will provide 

guidelines for rational design of genetic circuits to regulate a variety of metabolic pathways. 
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Appendix Chapter 1: Enhancing Fatty Acid 
Production in Escherichia coli by Vitreoscilla 

Hemoglobin Overexpression 
Note: This chapter contains text and figures from the published paper (Liu, Di, et al. "Enhancing 
fatty acid production in Escherichia coli by Vitreoscilla hemoglobin 
overexpression." Biotechnology and bioengineering114.2 (2017): 463-467). 

Abstract 

Our recent 13C-metabolic flux analysis (13C-MFA) study indicates that energy metabolism 

becomes a rate-limiting factor for fatty acid overproduction in E. coli strains (after “Push-Pull-

Block” based genetic modifications). To resolve this bottleneck, Vitreoscilla Hemoglobin (VHb, a 

membrane protein facilitating O2 transport) was introduced into a fatty-acid-producing strain to 

promote oxygen supply and energy metabolism. The resulting strain, FAV50, achieved 70% 

percent higher fatty acid titer than the parent strain in shake tube cultures. In high cell-density 

bioreactor fermentations, FAV50 achieved free fatty acids at a titer of 7.02 g/L (51% of the 

theoretical yield). In addition to “Push-Pull-Block-Power” strategies, our experiments and flux 

balance analysis also revealed the fatty acid over-producing strain is sensitive to metabolic burden 

and oxygen influx, and thus a careful evaluation of the cost-benefit tradeoff with the guidance of 

fluxome analysis will be fundamental for the rational design of synthetic biology strains.  
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1.1 Introduction 

Synthetic biology (SynBio) can produce a broad scope of products, from biofuels to 

pharmaceutical chemicals, through gene knockouts and heterologous enzyme overexpression. 

However, extensive pathway modifications may impose considerable burdens on cell metabolism 

(Glick 1995; Wu et al. 2016). With increased steps of genetic manipulation, the metabolic burden 

from new genetic parts may limit cell production performance and cause metabolic shifts. For 

example, biosynthesis of fatty acids or related compounds has been a hot field during recent years 

(Jones et al. 2015). SynBio follows Push-Pull-Block strategies to direct carbon flux towards free 

fatty acids, including introduction of heterogeneous enzymes and knocking out degradation 

pathways (Lu et al. 2008), reversal of a degradation pathway (Dellomonaco et al. 2011), 

engineering regulators to boost pathway activities (Zhang et al. 2012b), and creating sensor 

regulator systems to control biosynthesis fluxes (Xu et al. 2014; Zhang et al. 2012a).  

Nevertheless, the combination of SynBio approaches still cannot achieve production metrics to 

meet industrial manufacturing needs (Van Dien 2013). To address this problem, we performed 13C-

MFA of an engineered strain and revealed high ATP consumption for cell maintenance during fatty 

acid over-production (He et al. 2014). This intracellular energy crisis may become worse when the 

O2 supply is insufficient during large-scale fermentations. Hence, we propose to promote cell 

energy metabolism by introducing Vitreoscilla hemoglobin (VHb) into the hosts. VHb is a type of 

soluble protein that can bind O2 at low concentrations and improve the efficiency of bacterial 
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aerobic respiration (Dikshit and Webster 1988; Khosla and Bailey 1988a; Khosla and Bailey 

1988b). The ability of wild-type VHb (encoded by vhb) to facilitate O2 uptake and biomass growth 

can be further enhanced by introducing point mutations (amino acid substitutions) (Andersson et 

al. 2000). Hemoglobin has demonstrated its effectiveness in improving SynBio microbial 

fermentations. For example, DuPont has successfully employed different bacterial hemoglobin 

genes to increase carotenoid production by microbial host cells (Cheng et al. 2007). 

 

1.2 Results 

1.2.1 Engineering VHb to enhance oxygen uptake in the fatty acid biosynthetic 
pathway 

In this work, we chose an E. coli DH1 strain with fadE knockout (fadE encodes an enzyme in the 

fatty acid b-oxidation pathway) as the host (DH1△fadE strain) (Steen et al. 2010). The control 

strain (denoted as FA0, Table 1) for free fatty acid production carries a plasmid with tesA and fadR 

overexpression, and its central metabolism has been investigated by 13C-MFA in our previous work 

(He et al. 2014). Based on the control strain, we inserted a wild-type vhb gene and its two mutants 

(vhb20 and vhb50) into the same plasmid to generate three strains, FAV1, FAV20, and FAV50, 

respectively (Table 1). Under M9 minimal medium and shake tube conditions, only FAV50 

(expressing VHb50, created by His36àArg and Gln66àArg in wild type VHb) showed 

significantly enhanced cell growth (as shown in Fig. 1a). 
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Figure 1.1 Cell growth and fatty acid production from shake tube cultures (10 mL culture to 

create oxygen limited conditions). (a) Growth curve, (b) fatty acid production, (c) glucose 

consumption, and (d) acetate production of FAV50, FA0, and CTL strains. CTL, the strain carrying 

an empty plasmid; FA0, the strain carrying a plasmid with tesA and fadR overexpression; FAV50, 

the strain carrying a plasmid with tesA, fadR and vhb50 overexpression. All strains have a DH1(△

fadE) background. Square, FAV50; triangle, FAV0; circle, CTL. 

 

  Subsequently, we examined the influence of VHb50 on fatty acid production (Fig. 1b). The 

strains were cultured in minimal medium in shake tubes with 10 mL culture. The control strain 

CTL (without tesA gene in the plasmid, Table 1) demonstrated a growth rate similar to that of strain 
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FA0 (overexpressing only tesA and fadR, Table 1) in the exponential phase. However, CTL culture 

produced a significant amount of acetate and entered the stationary phase earlier. Strain FAV50 

(with vhb50, tesA and fadR gene, Table 1) grew slower at the beginning, but accumulated 30% 

more biomass and 70% more free fatty acids with a similar consumption of glucose, compared 

with FA0 (Fig. 1c). Moreover, vhb50 overexpression significantly reduced acetate secretions (Fig. 

1d). These observations indicate the promotion of energy metabolism can reduce waste product 

synthesis and improve product yields. 

Table 1. Strains and plasmids used in this study 

 

During industrial fermentation, oxygen supply always becomes insufficient when cell density 
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reaches a high level (Garcia-Ochoa and Gomez 2009). To test the performance of VHb under high 

cell density, we performed semi-batch fermentations on FAV50 in a 1-Liter bioreactor. The culture 

reached an OD600 of over 50, and the final titer of free fatty acids reached 7.04 g/L, with a yield of 

0.173 g FA/g glucose (~51% of the theoretical yield) after two days of semi-batch fermentation. 

In contrast, overexpression of tesA and FadR in DH1(ΔfadE) (without using VHb) produced only 

4.8 g/L fatty acids in similar semi-fed batch fermentations (Xiao et al., 2016). The titer and yield 

of our VHb strain is comparable with recent reports on total fatty acid production via systematic 

modular optimization (Xu et al. 2013) or via a dynamic sensor regulatory system (Xu et al. 2014). 

These experimental results agree with the 13C-MFA prediction that energy metabolism is one of 

the key factors limiting fatty acid production. 

 

1.2.2 Tradeoff between metabolic burden and benefits in protein 
overexpression 

We also performed other sets of experiments with FAV50 under better aeration conditions 

(in a shake tube with 5 mL culture or in a baffled shake flask), and observed less significant 

improvement in biomass growth or fatty acid production than control strain FA0. Moreover, in 

shake tube cultures the fatty acid titers for FAV1 and FAV20 were lower than in the control strain 

FA0. This observation indicates that the metabolic burden from VHb expression may offset the 

benefits from increased O2 transfer, while the function of VHb is significant only under micro-

aerobic conditions (Frey and Kallio 2003). To investigate the impact of metabolic burden caused 
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by protein overexpression on fatty acid production, we replaced the vhb50 gene in FAV50 with a 

gene encoding red fluorescent protein (RFP), thus generating the strain FAR1. Thus, the expression 

level of VHb is comparable with the RFP level in FAR1. RFP was chosen here for several reasons. 

First, RFP (25-30 kDa) is relatively small, comparable to VHb. Second, expression of RFP does 

not directly interfere with cell physiology. Moreover, the expression level of RFP can be readily 

monitored by fluorescence measurement. Specifically, two strains, FAC (overexpressing the tesA 

gene, Table 1) and FAR1 (overexpressing the tesA and rfp genes, Table 1), were cultured in M9 

medium. Figure 2 shows the final titers of biomass growth and fatty acid production at 72 h post 

induction. Decreased fatty acid titer for FAR1 indicated that overexpression of even a non-toxic, 

small-size protein can lead to a significant impact on fatty acid productivity. To further explore the 

metabolic burden of protein overexpression, we increased the RFP expression level by cloning rfp 

under a higher copy number plasmid, generating the strain FAR2 (Table 1), which has a five times 

higher RFP expression than FAR1 (Fig. 2c). A dramatic decrease in fatty acid production and cell 

growth was observed as expected, which further validated the impact of the metabolic burden from 

heterogeneous gene overexpression. To sum up, our experiments demonstrated various levels of 

trade-offs between the metabolic burden caused by genetic modifications and the benefits from 

engineered components (enhanced oxygen flux in this case). 
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Figure 2. (a) Biomass growth and (b) fatty acid production of FAC, FAR1, and FAR2 at 72 h 

post induction. c) Relative RFP expression level of FAR1 and FAR2. No significant biomass 

growth or fatty acid production was observed in FAV50 under sufficient aeration conditions. FAC, 

FAR1, and FAR2 are strains expressing tesA, with no, medium and high levels of RFP expression, 

respectively. 

 

1.2.3 Effect of oxygen uptake flux and maintenance energy on fatty acid yield 

SynBio allows the assembly of multiple genetic components in a recombinant host. However, the 

capability of cell hosts for handling metabolic burden is still hard to be quantified (Wu et al. 2016). 

In particular, cell energy metabolism has a limited ability to generate ATP. ATP is consumed not 

only for biomass growth and product synthesis, but also for maintenance of SynBio components 

(such as plasmid synthesis and enzyme overexpression). The shortage of ATP may lead to 
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undesirable metabolic shifts under sub-optimal cultivations (Wu et al. 2015). To illustrate the 

effects of oxygen uptake flux and metabolic burden from ATP maintenance loss on fatty acid yields, 

a genome-scale model (Monk et al. 2013) was employed to simulate cellular physiologies (Fig. 3). 

An apparent trend was that with a decrease in oxygen flux and an increase in ATP maintenance 

cost (representing metabolic burden) to certain levels, the yield of fatty acids dropped sharply off 

a “cliff”, approaching no production (note: the cliff gets steeper as oxygen fluxes decrease). In 

general, cell metabolism can afford certain metabolic burden without significant decrease of 

production yield. However, when cells have a higher metabolic burden, the impact of the oxygen 

supply becomes more significant on fatty acid yields. A small change in oxygen influx may 

considerably decrease the fatty acid yield (from the blue star to the red star in Fig. 3), which is 

similar to the case for an increase in maintenance energy (metabolic burden). Moreover, when cell 

physiological status is located on the “metabolic cliff”, its fatty acid production will be highly 

sensitive to metabolic burdens and the oxygen supply, reducing the reproducibility of strain 

performance. 
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Figure 3. Effect of oxygen uptake flux and maintenance energy (i.e., ATP consumption for 

cell maintenance) on fatty acid yield. Color is used here to visualize the maximal yield of fatty 

acids (deep blue: 0 à 0.348, deep red) under different conditions (oxygen flux and maintenance 

energy). To illustrate how a minor difference in oxygen uptake flux abruptly affects the yield of 

fatty acids at a certain point (cliff), stars represent the status (oxygen flux and maintenance energy) 

of strains on the cliff slope. Red and blue stars represent two strains with the same maintenance 

energy and different oxygen uptake rates. The blue star has a better oxygen uptake flux and higher 

fatty acid yield. The default FBA parameters and constraints are taken from the paper Monk et al. 

2013). The FBA model assumes a glucose influx, vglucose, of 4.5 mmol/gDW/h, a growth rate, µ, of 

0.04 h-1, and a P/O ratio of 1.5.  

 

1.3 Conclusions and Discussions 

In summary, this study demonstrates that the introduction of VHb can boost energy 

metabolism, resulting in enhanced biomass growth and fatty acid titer. The negative effects of 

metabolic burden on fatty acid production have also been studied by both experiments and FBA 
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simulation, suggesting that SynBio strategies can achieve expected enhancements only if the 

benefits outweigh metabolic burden. This work expands SynBio strategies for strain development 

from Push-Pull-Block to Push-Pull-Block-Power. Moreover, this study illustrates that fluxomics 

studies can provide valuable guidelines for the SynBio and ME communities. Especially, fluxomes 

can reveal metabolic burdens and the cell energy metabolism, allowing engineers to properly 

allocate cell resources during strain development (Wu et al. 2016). 

 

1.4 Methods 

1.4.1 Chemicals and strains.  

All chemicals were reagent grade and purchased from either Sigma-Aldrich (St. Louis, MO, USA) 

or Fisher Scientific (Pittsburgh, PA, USA) unless otherwise noted. Restriction enzymes, Phusion 

DNA polymerase, and T4 ligase were from New England Biolabs (Ipswich, MA, USA). The DNA 

Purification kit, Gel Recovery kit, and Miniprep kit were from Promega (Madison, WI, USA).  

The DNA sequences of vhb and its mutant vhb20 and vhb50 were based on a previous report 

(Andersson et al. 2000). All genes were synthesized by GenScript Inc. (Piscataway, NJ, USA) and 

cloned into pUC57 vector. E. coli DH10B strain was used for plasmid manipulation. The fadE 

knockout E. coli DH1 strain and the plasmid pA58c-TR were from Dr. Fuzhong Zhang’s lab.  
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1.4.2 Plasmid construction.  

Primers used in this study were synthesized by Integrated DNA Technologies (Coralville, IA, 

USA). Plasmids pA5c-tesA-VHB-8fadR, pA5c-tesA-VHB20-8fadR, and pA5c-tesA-VHB50-

8fadR were constructed by inserting vhb, vhb20, and vhb50 downstream of tesA in plasmid pA58c-

TR, respectively. To create the FAC strain, tesA was cloned under the control of a pLacUV5 

promoter, giving pA5c-tesA. To create the FAR1 strain, rfp was cloned downstream of tesA in 

plasmid pA58c-TR. To create the FAR2 strain, rfp was cloned into the pB5k vector to construct 

pB5k-RFP plasmid, which was co-transformed with pA5c-tesA (Lee et al. 2011). The DNA 

sequences of all constructed plasmids were validated by sequencing in the Genome Center at 

Washington University School of Medicine.  

 

1.4.3 Medium and culture conditions.  

A modified M9 minimal medium supplied with 2% glucose and appropriate antibiotics was used 

in this study (Liu et al. 2015). In fatty acid production experiments, all strains were first inoculated 

into LB medium with appropriate antibiotics. The overnight culture was inoculated 2% v/v into 

minimal medium containing appropriate antibiotics for adaptation. The overnight minimal 

medium culture was used to inoculate a 10 mL (shake tube)/20 mL (shake flask) fresh minimal 

medium with an initial OD of 0.08. Cells were induced with 1mM of IPTG when OD600 reached 

0.6. Cell growth and fatty acids production were monitored at different time points.   For semi-

batch fermentation,  9 mL of LB culture with the engineered strain was incubated overnight and 
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inoculated into 450 ml M9 minimal medium (2% glucose, 30 mg/L chloramphenicol with a supply 

of Vitamin B12) in the bioreactor (New Brunswick BioFlo 110 fermentor). The fermentation was 

initiated with the following settings: The incubation temperature was controlled between 35°C ~ 

37 °C; the pH of the culture medium was adjusted around 7.2 by automatic addition of ammonium 

hydroxide (6 mol/L); the airflow rate was kept at ~1.5 L/min, and the average stirring rate was 500 

rpm. When OD600 of culture reaches 7, 0.1 mM of IPTG (final concentration) was added. Four 

hours after induction, a glucose stock solution (400 g/L glucose and 12 g/L MgSO4) was 

intermittently pulsed into the bioreactor to re-supply glucose. After 48 h of induction, a total of 

40.72 g/L of glucose was consumed, and the final cultures were harvested for measurement of free 

fatty acids.   

   

1.4.4 Fatty acids, glucose, and acetate measurements.  

Free fatty acid titer was analyzed following a previous protocol (Liu et al. 2015). In brief, 500 µL 

of cell culture was acidified using 50 µL of concentrated HCl. Fatty acids were extracted twice 

with ethyl acetate (EtAc) spiked with C19:0 methyl ester (ME) as an internal standard. Fatty acids 

were then derivatized to fatty acids methyl esters (FAME) using 100 µL of MeOH:HCl (9:1) and 

100 µL of TMS-diazomethane (2 M in hexanes). The mixture was incubated for 10 ~ 15 min at 

room temperature for the reaction to complete. FAME was analyzed using a gas chromatograph-

mass spectrometer (GC-MS, Hewlett-Packard model 7890A, Agilent Technologies). Free fatty 
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acids were quantified based on the standard curve of standard FAME mix. Acetate and D-Glucose 

measurements followed the protocol of commercial kits (r-biopharm, MO, USA) 

 

1.4.5 FBA Simulation.  

The genome-scale model iJO1366 (which includes 1366 genes, 2583 reactions, and 1805 

metabolites) was employed to simulate fatty acids production in E.coli strain (Monk et al. 2013). 

A simplified flux of fatty acid (C16:0) was added as representative of fatty acids production, and 

the objective function was set to maximize this flux. Default values for the boundary of all fluxes 

were adopted, except for the following: The upper and lower boundaries of the fatty acid 

degradation flux were set to zero because △fadE was knocked out, and the lower boundary of the 

glucose uptake flux was set based on experimental value. The sensitivity of fatty acid yields to 

ATP maintenance loss and oxygen influx was tested by FBA. The COBRA toolbox and LibSBML 

library were employed for genome-scale model manipulation (Bornstein et al. 2008; 

Schellenberger et al. 2011), and the Gurobi 5.5 linear solver (Gurobi Optimization Inc.) was 

utilized for FBA calculation on MATLAB 2012b.   
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