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Hearing loss is a critical public health concern, affecting hundreds millions of people worldwide 

and dramatically impacting quality of life for affected individuals. While treatment techniques 

have evolved in recent years, methods for assessing hearing ability have remained relatively 

unchanged for decades. The standard clinical procedure is the modified Hughson-Westlake 

procedure, an adaptive pure-tone detection task that is typically performed manually by 

audiologists, costing millions of collective hours annually among healthcare professionals. In 

addition to the high burden of labor, the technique provides limited detail about an individual’s 

hearing ability, estimating only detection thresholds at a handful of pre-defined pure-tone 

frequencies (a threshold audiogram). An efficient technique that produces a detailed estimate of 

the audiometric function, including threshold and spread, could allow for better characterization 

of particular hearing pathologies and provide more diagnostic value. Parametric techniques exist 

to efficiently estimate multidimensional psychometric functions, but are ill-suited for estimation 

of audiometric functions because these functions cannot be easily parameterized. 

The Gaussian process is a compelling machine learning technique for inference of nonparametric 

multidimensional functions using binary data. The work described in this thesis utilizes Gaussian 

process classification to build an automated framework for efficient, high-resolution estimation 
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of the full audiometric function, which we call the machine learning audiogram (MLAG). This 

Bayesian technique iteratively computes a posterior distribution describing its current belief 

about detection probability given the current set of observed pure tones and detection responses. 

The posterior distribution can be used to provide a current point estimate of the psychometric 

function as well as to select an informative query point for the next stimulus to be provided to the 

listener. The Gaussian process covariance function encodes correlations between variables, 

reflecting prior beliefs on the system; MLAG uses a composite linear/squared exponential 

covariance function that enforces monotonicity with respect to intensity but only smoothness 

with respect to frequency for the audiometric function. 

This framework was initially evaluated in human subjects for threshold audiogram estimation. 2 

repetitions of MLAG and 1 repetition of manual clinical audiometry were conducted in each of 

21 participants. Results indicated that MLAG both agreed with clinical estimates and exhibited 

test-retest reliability to within accepted clinical standards, but with significantly fewer tone 

deliveries required compared to clinical methods while also providing an effectively continuous 

threshold estimate along frequency. This framework’s ability to evaluate full psychometric 

functions was then evaluated using simulated experiments. As a feasibility check, performance 

for estimating unidimensional psychometric functions was assessed and directly compared to 

inference using standard maximum-likelihood probit regression; results indicated that the two 

methods exhibited near identical performance for estimating threshold and spread. MLAG was 

then used to estimate 2-dimensional audiometric functions constructed using existing audiogram 

phenotypes. Results showed that this framework could estimate both threshold and spread of the 

full audiometric function with high accuracy and reliability given a sufficient sample count; non-

active sampling using the Halton set required between 50-100 queries to reach clinical reliability, 
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while active sampling strategies reduced the required number to around 20-30, with Bayesian 

active leaning by disagreement exhibiting the best performance of the tested methods. Overall, 

MLAG’s accuracy, reliability, and high degree of detail make it a promising method for 

estimation of threshold audiograms and audiometric functions, and the framework’s flexibility 

enables it to be easily extended to other psychophysical domains. 
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Chapter 1: Introduction 

“In general and irrespective of the age at which it develops, disabling hearing impairment has 

devastating consequences for interpersonal communication, psychosocial well-being, quality of 

life and economic independence.”  

−Quotation from (Olusanya et al., 2014)  

“The deployment of accurate, automated [audiometric] methods to allow reallocation of time 

toward doctoral level activities is not only desirable, it is imperative.” 

−Quotation from (Margolis and Morgan, 2008) 

1.1. Hearing Loss 

Hearing loss is a critical public health concern. Over 360 million individuals worldwide are 

estimated to have disabling hearing loss (Pascolini and Smith, 2009; World Health Organization, 

2012), accounting for approximately 5% of the world’s population. For individuals 65 years and 

above, the proportion of affected individuals rises to 1 in 3. In the United States, approximately 

37.5 million adults 18 and older, 15%, report some degree of hearing loss (Blackwell et al., 

2014; NIDCD, 2014), making it the most prevalent neurological disorder in the country. 

Typical cases of hearing disability can be classified into two main categories: conductive and 

sensorineural hearing loss (Sataloff and Sataloff, 2005). Conductive hearing loss describes 

hearing loss that results from an interference of sound transmission through the external/middle 

to the inner ear, while sensorineural hearing loss describes hearing loss that results from damage 

in the inner ear (particularly hair cells) and/or the auditory nerve. There are numerous factors that 
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lead to hearing loss, including diseases such as otosclerosis (De Souza and Glasscock, 2003) and 

Ménière's disease (Ménière and Atkinson, 1961), ototoxic drugs or chemicals (Schacht and 

Hawkins, 2006), noise exposure (Rabinowitz, 2000), trauma (Fitzgerald, 1996), and age-related 

degeneration (presbycusis) (Robinson and Sutton, 1979). 

Hearing loss represents a large worldwide burden of disease (Mathers et al., 2000; Cruickshanks 

et al., 2003; Olusanya et al., 2014) and can have a dramatic impact on quality of life (Mulrow et 

al., 1990; Dalton et al., 2003). For adults, hearing impairment can have detrimental impacts on 

relationships, social function, cognitive ability, emotional well-being, physical ability, and career 

trajectory (Weinstein and Ventry, 1982; Thomas et al., 1983; Chen, 1994; Wallhagen et al., 

1996; Mohr et al., 2000; Strawbridge et al., 2000; Helvik et al., 2006; Helvik et al., 2009). 

Hearing disability can be even more detrimental for children, including the estimated 7.5 million 

affected children 5 years or younger (World Health Organization, 2012). Hearing loss in children 

can interfere with speech and language development (Yoshinaga-Itano et al., 1998; Blamey et 

al., 2001; Briscoe et al., 2001; Yoshinaga-Itano, 2003), making detection even more critical. 

Conductive hearing loss is often correctable via surgical or pharmaceutical intervention, while 

sensorineural hearing loss is currently not reversible (Sataloff and Sataloff, 2005). However, 

treatments can often dramatically improve hearing ability and significantly enhance quality of 

life for impacted individuals (Appollonio et al., 1996; Cohen et al., 2004; Vermeire et al., 2005; 

Chisolm et al., 2007). Perhaps the most common treatment for hearing loss is the use of a 

hearing aid, a device that amplifies and processes environmental sound that can be specifically 

tuned for individual hearing losses (Sataloff and Sataloff, 2005; Katz et al., 2009). More severe 

sensorineural hearing losses are sometimes treated using cochlear implants, devices that replace 
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cochlear hair cells with direct electrical stimulation of the auditory nerve (Clark et al., 1979; 

Bond et al., 2009). Cochlear implantation has been particularly effective for improving language 

development in deaf children (Svirsky et al., 2000; Sharma et al., 2002). Research has also 

demonstrated promising results for using auditory or speech training to improve listening ability 

in hearing-impaired individuals (Sweetow and Palmer, 2005; Burk and Humes, 2008; Fu and 

Galvin, 2008; Henshaw and Ferguson, 2013; Tye-Murray, 2014). 

Despite these treatment options, however, hearing loss remains an underdiagnosed condition, 

partially owing to the lack of hearing screening procedures in standard clinics (Bogardus Jr et al., 

2003; Yueh et al., 2003), which leads to lack of awareness in affected individuals. Other factors 

include the social stigma associated with and the financial burden of hearing treatment (Kochkin, 

1993; 2007); this is reflected in the very low prevalence of hearing aid use among individuals 

who could benefit from them (Popelka et al., 1998; Chien and Lin, 2012). 

1.2. Methods for Hearing Evaluation 

1.2.1. Pure-Tone Audiometry 

Perhaps the most common method for clinical hearing evaluation is pure-tone audiometry, which 

serially presents pure-tones of varying frequency and intensity to locate subjects’ auditory 

thresholds, or the lowest intensities at which an individual can detect a pure tone for a given 

frequency (Stach, 2010). A set of pure-tone thresholds given for a select number of frequencies 

collectively form an audiogram, which acts as a summary of an individual’s overall hearing 

ability. In this thesis, we will refer to an audiogram (in the traditional clinical sense) as a 

threshold audiogram because they are inherently comprised of only threshold information. 

Figure 1.1 shows a photograph of a typical audiometer used to estimate a threshold audiogram. 
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Figure 1.1: A standard clinical audiometer. This device allows for manual delivery of highly-calibrated pure tones at 

standard audiological frequencies and a variety of sound levels. 

A threshold audiogram typically consists of auditory thresholds provided at a select number of 

pure-tone frequencies: 250 to 8000 Hz in octave intervals, with intermediate or edge frequencies 

sometimes included (American National Standards Institute, 2004a; American Speech-

Language-Hearing Association, 2005); this frequency range is similar to the frequency range 

important for speech (French and Steinberg, 1947) Thresholds are most commonly reported in 

decibels hearing level (dB HL), which are sound level measures relative to what is considered to 

be normal hearing (Katz et al., 2009; Stach, 2010). Relative to physical sound pressure level (dB 

SPL), each frequency has a different correction term in order to convert between SPL and HL 

(American National Standards Institute, 2004b). This conversion allows for threshold 

audiograms of normal-hearing individuals to be represented by a horizontal line at 0 dB HL. 

An example of a threshold audiogram can be seen in Figure 1.2, in this example providing 

thresholds for 6 audiogram frequencies. Thresholds for left and right ears, given by blue X and 

red O marks, respectively, are conducted separately for each individual. The pure-tone average, 
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or the mean of the measured thresholds at 500, 1000, and 2000 Hz, is often used as a quantitative 

summary of overall hearing ability. Categories for describing degree of hearing loss, including 

normal, mild, moderate, severe, and profound loss, are typically defined relative to the pure-tone 

average, although they may differ slightly depending on the reference (Goodman, 1965; Jerger 

and Jerger, 1980; Katz et al., 2009).  

 
Figure 1.2: Example of a clinical air conduction threshold audiogram. Hearing thresholds in the right and left ears 

are denoted by red O and blue X marks, respectively. The red mark at 8 kHz was a no-response, wherein the subject 
did not detect the stimulus provided even at the loudest intensity (110 dB HL in this case). 

In accordance with established guidelines (American National Standards Institute, 2004a; 

American Speech-Language-Hearing Association, 2005), pure-tone audiometry is typically 

performed in clinic following the modified Hughson-Westlake procedure (Hughson and 

Westlake, 1944; Carhart and Jerger, 1959). The modified Hughson-Westlake (HW) procedure is 

an variant of the method of limits (Levitt, 1971; Kingdom and Prins, 2010; Gescheider, 2015) 

that adaptively selects pure tones to deliver in order to rapidly achieve an estimate for threshold. 
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Note that all references to the Hughson-Westlake procedure or HW throughout this thesis refer to 

this modified Hughson-Westlake procedure (Carhart and Jerger, 1959). 

In the HW procedure, listeners are asked to indicate when they detect (even if minimally) the 

presence of a tone, typically by raising their hands or by pressing a button. Testing proceeds on a 

per-frequency basis beginning at 1 kHz. The intensity of the initial tone is chosen to be a sound 

level well above putative threshold (with additional steps taken if the initial tone is not detected). 

Thereafter, each time the listener detects a presented tone, its intensity is decreased by 10 dB for 

the subsequent presentation; each time the listener does not detect a tone, its intensity is raised by 

5 dB for the subsequent presentation. This adaptive rule is followed for a certain number of 

reversals; threshold for the current frequency is considered to be the lowest intensity at which the 

subject perceives the tone approximately 50% of the time. This procedure is then repeated from 

the beginning additional frequencies and for the contralateral ear. Figure 1.3 shows an example 

HW run for detecting audiometric threshold at a single frequency. 

 
Figure 1.3: Example of the clinical modified Hughson-Westlake procedure. This figure shows an example procedure 

at one frequency; this process is typically repeated at all 6-9 standard audiogram frequencies. 

As a “2-up, 1-down” task, the threshold returned by this procedure corresponds to the 70.7% 

detection probability point on a listener’s psychometric function (Levitt, 1971). The HW method 
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is employed for both air conduction and bone conduction audiograms (Franks, 2001; Katz et al., 

2009), which test distinct mechanisms of sound transmission and differ primarily in the type of 

transducer used. Masking of the contralateral ear is sometimes used for individuals who exhibit 

large inter-ear threshold audiogram differences, which helps to account for high-intensity tones 

being detected by the non-test ear (Katz et al., 2009; Stach, 2010). 

Pure-tone threshold audiograms provide data that enables healthcare professionals to diagnose 

specific disorders (which often show loss localized to certain frequency ranges), screen for 

hearing disability, and monitor hearing changes over time, among many other applications (Katz 

et al., 2009; Stach, 2010). The adaptive Hughson-Westlake procedure has been a staple for 

hearing assessment for decades; its steps are easy to follow and it can be quite efficient in the 

hands of experienced audiologists. It has an accepted test-retest reliability of approximately 5 dB 

HL (Jerlvall and Arlinger, 1986; Fausti et al., 1990; Stuart et al., 1991; Schmuziger et al., 2004; 

Katz et al., 2009), which is reasonably high for most screening purposes. 

However, HW pure-tone audiometry has several disadvantages. Perhaps the most striking is that 

these manually conducted pure-tone audiograms are highly time- and labor-intensive for medical 

professionals as a whole. It is estimated that annually, audiologists collectively spend around 2 

million hours performing pure-tone audiometry alone (Margolis and Morgan, 2008), a rote task 

that does not leverage audiologists’ considerable expertise. Furthermore, the pure-tone 

audiogram provides only threshold data at any queried frequencies, with no information provided 

for intermediate frequencies. Although threshold audiograms such as Figure 1.2 linearly 

interpolate between measured thresholds for display purposes, no systematic estimate is provided 

for intermediate frequencies. The HW algorithm, while designed to quickly converge on 
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threshold, exhibits inefficiencies such as multiple high-probability stimuli being presented for 

each frequency (although this can be mitigated somewhat by a skilled audiologist) and identical 

stimuli presented repeatedly near threshold. Finally, the HW procedure is highly predictable, 

which facilitates the intentional subversion of test results by noncooperative listeners. 

1.2.2. Alternatives to Manual Pure-Tone Audiometry 

Automated Audiometry 

In parallel to the development of adaptive conventional approaches like the one described above, 

automated audiometry methods have been developed for clinical audiometry, with the earliest 

form designed by Georg von Békésy in the late 1940s (von Békésy, 1947). Many computerized 

audiometric methods designed to ensure consistency and save labor have been developed, with 

some employing a method of adjustment similar to Békésy’s technique but most recent methods 

using a method of limits resembling the HW algorithm (Ho et al., 2009; Margolis et al., 2010; 

Swanepoel et al., 2010; Mahomed et al., 2013). Even with ready access to powerful digital 

computing technology today, however, automated audiometry sees relatively little use in clinical 

diagnostic settings, with most audiograms still obtained manually (Vogel et al., 2007). 

A recent exhaustive review and meta-analysis was conducted of techniques developed for 

automated threshold audiometry (Mahomed et al., 2013). A wide range of automated techniques 

produced audiograms generally comparable to manual audiograms, with an absolute average 

difference of 4.2 dB HL and a standard deviation of 5.0 dB HL (n = 360). Test-retest reliability 

among these automated methods demonstrated an absolute average difference of 2.9 dB HL and 

a standard deviation of 3.8 dB HL (n = 80). As a comparison, manual threshold audiometry in 

the reported studies produced an absolute average difference of 3.2 dB HL and a standard 
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deviation of 3.9 dB HL (n = 80). These studies indicate that computerized automation of pure-

tone audiometry procedures yields threshold audiograms comparable in value and test-retest 

reliability to conventional manual procedures. However, the majority of automated techniques 

reviewed utilized adaptive techniques (including automated versions of the HW algorithm itself), 

which share many limitations with traditional pure-tone audiometry, particularly in performing 

inference one frequency at a time and reporting thresholds only at those points. 

Sweep-Based Audiometry 

Sweep-based audiometry is one alternative technique to adaptive methods that addresses the 

disadvantage of having data only at discrete frequencies. The first application of sweep-based 

audiometry was known as Békésy audiometry (von Békésy, 1947) and was application of the 

method of adjustment (Levitt, 1971; Gescheider, 2015). Listeners control the intensity of a pure-

tone stimulus and are instructed to repeatedly increase its intensity until audible, then decrease its 

intensity until inaudible. The tone gradually sweeps across frequency in the meantime, allowing 

the final estimate to trace continuously across the threshold of hearing (von Békésy, 1947; Stach, 

2010). A more recent implementation of sweep-based audiometry is Audioscan®, which uses a 

series of iso-intensity sweeps across frequency at varying intensities to trace out a high-

resolution threshold curve (Meyer-Bisch, 1996; Ishak et al., 2011). 

Because these sweep-based techniques trace out relatively continuous threshold curves along the 

frequency dimension, they have been shown to successfully identify various hearing pathologies 

that have been difficult to detect using discrete pure-tone audiometric approaches (Jerger, 1960; 

Zhao et al., 2002; Zhao et al., 2014). Despite this advantage, however, these techniques do not 

currently see substantial use in the clinic. One major reason is the lengthened testing time 
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required compared to conventional PTA, particularly with sweep rates that are sufficiently slow 

to be comfortable for listeners (Ishak et al., 2011). Furthermore, substantial engagement by the 

listener is required, which could lead to inefficient acquisition, inaccuracies, and/or intentional 

misrepresentation. 

Bayesian Audiometric Techniques 

Several more recent methods have taken a Bayesian approach to estimating pure-tone threshold 

audiograms, incorporating prior information from existing threshold audiogram shapes to inform 

optimal sequential selection of tones for efficient audiogram estimation (Özdamar et al., 1990; 

Stadler, 2009). The first approach uses a small database of weighted candidate audiometric 

patterns and iteratively selects the next tone at the frequency exhibiting maximum variance 

among patterns (Özdamar et al., 1990). Initial pattern probabilities are chosen according to 

prevalence of that pattern in the population, and probabilities are updated each iteration. A more 

recent method uses a Gaussian mixture model and a chosen utility function to select the optimal 

query point by maximizing the expected utility (Stadler, 2009). Similarly to the previous method, 

the model is initially trained using prior data (in this case, a database of 100000 threshold 

audiograms), and model parameters are updated after each observation. 

Both Bayesian techniques have demonstrated efficiency and accuracy in estimating audiograms 

for simulated and human listeners (Özdamar et al., 1990; Eilers et al., 1993; Stadler, 2009; Guan, 

2011). However, like traditional adaptive methods, these methods limit the frequencies queried 

to the standard 6-9 audiogram frequencies, with no systematic estimates provided for 

intermediate frequencies. An extension of these Bayesian techniques to form a more continuous 
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threshold estimate across frequency could provide the high resolution associated with sweep-

based techniques while maintaining the stimulus selection efficiency of adaptive techniques. 

Self-Diagnostic Tools 

In more recent years, particularly with the rise of mobile smartphone technology, a number of 

non-clinical diagnostic tools for the end user have emerged. These tools have been deployed for 

many platforms, including landline phone (Watson et al., 2012; Williams-Sanchez et al., 2014), 

Internet browser (Bexelius et al., 2008; Molander et al., 2013), and the increasingly common 

mobile electronic device (Szudek et al., 2012; Handzel et al., 2013; Swanepoel et al., 2014; 

Saliba et al., 2016). These self-diagnostic tools are much more accessible than traditional forms 

of hearing diagnosis; individuals are able to utilize these tests on their own personal computers 

or smartphones without the need to visit a specialty clinic. However, studies on these techniques 

have primarily demonstrated their utility as a screening rather than detailed diagnostic tool, 

making their current implementations unlikely to replace standard clinical methods.  

Physiological Measures 

In addition to psychophysical tests, certain physiological measures are sometimes recorded in-

clinic to gauge hearing ability. One widely used physiological measure is the auditory brainstem 

response (ABR), a subclass of auditory evoked potentials and a neurophysiological response that 

can be detected with scalp electrodes (Jewett et al., 1970; Hecox and Galambos, 1974). The 

ABR has been shown to reflect the pure-tone threshold audiogram in certain frequency ranges 

and is particularly useful in diagnosis of certain functional disorders, such as acoustic tumors 

(Hecox and Galambos, 1974; Selters and Brackmann, 1977; Stapells and Oates, 1997). A second 

common measure is otoacoustic emissions (OAEs), which are low-intensity, frequency-specific 
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sounds generated from the cochlea that occur both spontaneously and in response to delivered 

stimuli (Kemp, 1978; Probst et al., 1987; Probst et al., 1991). Because they reflect the integrity 

of hair cells, OAEs reflect overall hearing ability to some extent, and are useful in monitoring of 

potentially ototoxic treatment (Gorga et al., 1997; Dorn et al., 1999). 

Both the ABR and otoacoustic emissions have proven particularly successful in assessing the 

hearing ability and sensitivity of young children who do not have the capability of performing 

pure-tone audiometry (Katz et al., 2009; Stach, 2010). However, these physiological measures 

have seen comparatively lower employ relative to pure-tone audiometry due to lower sensitivity, 

higher test complexity, and increased testing time. 

1.3. Psychometric Functions 

Psychophysics describes the relationship between physical and perceptual processes, quantifying 

a subject’s perception while a sensory stimulus feature is systematically altered (Fechner, 1860). 

This relationship is traditionally described using a psychometric function (PF), which describes a 

subject’s task performance as a function of a physical variable or variables. For instance, in pure-

tone audiometry, the sensory domain consists of pure-tone auditory stimuli, and stimulus features 

being manipulated are the frequency and intensity of these pure tones. The full PF across the 

variable space captures not only a subject’s thresholds, but also the degree of uncertainty of a 

subject’s performance around those thresholds. For instance, research has hypothesized higher 

levels of internal noise in children versus adults for pure-tone detection and discrimination tasks 

(Allen and Wightman, 1994; Bargones et al., 1995; Buss et al., 2006; 2008); this effect across 

frequency/intensity space could be captured using the full audiometric PF. 
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Psychophysical tasks can be assigned a threshold below which successful task performance is 

considered unreliable and above which performance is considered reliable, such as the 70.7% 

audiometric threshold returned by the HW procedure. However, psychophysical responses are 

not absolute; for instance, a listener may still detect a tone played slightly below the reported 

threshold. To describe this inherent uncertainty, we typically assign a detection probability to 

each stimulus describing an individual’s performance at that stimulus. 

For certain stimulus parameters, the subject’s detection probability increases with increasing 

value. For example, as the intensity (sound level) of a pure-tone stimulus increases, a listener 

will detect it with higher probability. The relationship between a psychometric variable (for 

which performance increases with increasing value) and a subject’s response probability can be 

described using a unidimensional (1D) PF. For a PF on a psychometric variable, we typically 

model the response probability as a sigmoidally increasing function with stimulus value (Klein, 

2001; Kingdom and Prins, 2010; Gescheider, 2015). 

A 1D psychometric function is typically characterized using two main parameters: threshold α 

and spread β. The threshold α corresponds to the point of inflection and describes the stimulus 

level for which performance is halfway between the highest and lowest values. The spread β 

characterizes the degree of uncertainty around threshold; a higher value of β lengthens the 

transition region where response probabilities are not at the minimum or maximum values. (Note 

that the definition of β varies between sources; β is sometimes used to describe slope, the inverse 

of spread. In this thesis, we consistently use β to describe spread.) 

An example of a psychometric function can be seen in Figure 1.4. For a detection task, in which 

subjects respond when they detect a stimulus but are not forced to make a choice at each 
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presentation (Fechner, 1860; Kingdom and Prins, 2010), the idealized minimum and maximum 

response probabilities take values of 0 and 1, respectively. Threshold α describes the point of 

maximum uncertainty, where detection probability is 0.5. Spread β quantifies the change in 

stimulus level required to produce a particular change in probability. For non-detection tasks 

such as n-alternative forced choice (Fechner, 1860; Kingdom and Prins, 2010) or to account for 

or lapse or guess rates in detection tasks (Klein, 2001; Wichmann and Hill, 2001a), additional 

parameters λ and γ are sometimes added. However, because pure-tone audiometry is inherently a 

detection task, we will focus our development of PFs on the idealized detection case. 

 
Figure 1.4: Example of a psychometric function. Threshold α corresponds to the point of inflection (at which 

detection probability is 0.5) and spread β quantifies the amount of response uncertainty around the threshold. For 
this example, the cumulative Gaussian function (Equation 1.2) was used to generate the curve. 

Many sigmoidal functions have been used to model PFs, two of the most common being the 

logistic and cumulative Gaussian functions, shown in Equations 1.1 and 1.2, respectively (Klein, 

2001; Falmagne, 2002; Kingdom and Prins, 2010; Gescheider, 2015): 
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where x  is stimulus level, ( ) ( )1x p y xψ = =  is detection probability, and z  is a variable of 

integration. Both equations constrain the detection probability ( )xψ  to the probabilistic range 

0,1   , with ( )xψ  monotonically increasing with increasing x . The α parameter determines the 

location of the 50% point and the β parameter adjusts the relative shallowness of the sigmoid. 

Standard parametric choices of 1D PF models are a subset of generalized linear models 

(McCullagh and Nelder, 1989), which are comprised of a linear predictor transformed with a 

monotonic link function. 

Many if not most real-world psychophysical phenomena of interest, however, are inherently 

multidimensional, with more than one variable that effects change in subjects’ performance. In 

pure-tone audiometry, for instance, listener performance is affected by both the frequency and 

intensity of the delivered tones. In addition to psychometric input variables, multidimensional 

PFs often include one or more non-psychometric variables, against which detection probability 

does not systematically increase. For pure-tone audiometry, the non-psychometric dimension is 

frequency; unlike with intensity, increasing values for frequency do not systematically result in 

higher detection probabilities and in fact, describing the effect of frequency on a listener’s 

performance is a goal of audiometric testing. A limited number of multidimensional PFs have 

been characterized, including auditory filters (Patterson, 1976; Shen et al., 2014), external 

contrast noise functions (Lesmes et al., 2006) and visual fields (Heijl and Krakau, 1975; 

Bengtsson et al., 1997). The PFs in these cases are parameterized, though the mechanistic 
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justification for doing so could be limited. However, the pure-tone audiogram PF includes a non-

psychometric frequency input variable for which any particular parametric justification is weak. 

One elegant conceptualization of psychometric functions was proposed in (Kuss et al., 2005), in 

which any parametric 1D PF formulation can be decomposed into core and sigmoid functions. 

The core function contains the psychometric parameters α and β and is related to the detection 

probability; large positive core values produce detection probabilities close to 1; large negative 

core values produce detection probabilities close to 0, and core values close to 0 produce 

detection probabilities near 0.5. The core function is often a linear function ( )x α e−  for 

psychometric variables to capture monotonicity, although it can take other parametric forms (e.g. 

logarithmic or polynomial) to account for non-psychometric variables. The sigmoid function is a 

nonlinear transformation of the core function that “squashes” core values, which span ( ),−∞ ∞ , 

into the probabilistic range 0,1   . In this framework, the logistic function (1.1) can be 

decomposed into core function ( )x α e−  and sigmoid ( )1 1 xe−+ . However, a limitation of 

this framework is that core functions must be specified parametrically, limiting its utility in cases 

for which parametric justification on a particular domain is weak or nonexistent. 

1.4. Inference for Psychometric Functions 

Psychometric functions have been a subject of study for decades. Research regarding PFs can be 

categorized into two broad topics: 1) methods to effectively estimate a PF from a set of data, and 

2) methods to efficiently sample psychometric space to quickly arrive at an estimate. While there 

are now relatively standardized methods for fitting PFs, the question of how to most efficiently 

sample, particularly for multidimensional PFs, is still an active area of research. 
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1.4.1. Fitting Psychometric Functions 

The problem of fitting psychometric functions to some set of observed data has overwhelmingly 

focused on the unidimensional case for psychometric variables (for which detection probability 

increases monotonically). Techniques for estimating 1D PFs typically assume a parametric form 

for the PF, typically a sigmoidal function such as (1.1) or (1.2). 

Perhaps the most common method for fitting psychometric functions is maximum-likelihood 

regression (Morgan, 1992; Collet, 2003; Kingdom and Prins, 2010). In this method, binary 

repetitions at identical stimulus values are typically collapsed into a single proportion. Given the 

observed binomial data   and a set of parameters θ , typically { },θ α e=  for this application, 

we choose the set of parameters θ̂  that maximizes the likelihood of observing these data given 

the parameters ( )p θ . Often this maximum cannot be solved for analytically, so optimization 

methods such as the Nelder-Mead simplex method (Nelder and Mead, 1965; Kingdom and Prins, 

2010) are employed to numerically locate the maximum. 

Estimation of psychometric functions has also utilized Bayesian approaches (Bayes and Price, 

1763; Jaynes, 2003), which accounts for prior beliefs on parameter distributions via a prior 

distribution (see Section 2.1.2). A Bayesian variant on the maximum-likelihood procedure, 

referred to as the constrained maximum-likelihood method (Treutwein and Strasburger, 1999), 

places prior distributions (in this particular work, beta distributions) on parameter values to 

obtain a point estimate of maximum-likelihood parameter values. Later work (Kuss et al., 2005) 

proposed a fully Bayesian treatment of 1D PF estimation, in which a full probability distribution 
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can be constructed over the parameters and point estimates can be obtained by minimizing some 

loss function, following standard Bayesian decision theory (Berger, 1985). 

A limited number of parameter-free methods for PF estimation have been developed, which do 

not assume a particular parametric model as the form of the PF. One nonparametric technique 

uses the Spearman-Kärber method (Spearman, 1908; Kärber, 1931; Morgan, 1992), which can 

numerically estimate the moments of the PF (Klein, 2001; Miller and Ulrich, 2001). A second, 

more recent technique uses local linear fitting (Fan et al., 1995), which locally approximates a 

function using a Taylor expansion (Zychaluk and Foster, 2009). Although somewhat sensitive to 

method specifications, both techniques have demonstrated high accuracy and reliability for 

estimation of 1D PFs, even when compared to the appropriate parametric models (Klein, 2001; 

Miller and Ulrich, 2001; Zychaluk and Foster, 2009). However, nonparametric models for 1D PF 

estimation have seen very limited use in practice compared to parametric methods. 

Frameworks for estimation of multidimensional PFs, which typically include at least one non-

psychometric dimension, have been considerably scarcer. Certain parametric models have been 

developed for specific psychometric spaces, including the auditory filter (Patterson, 1974; 1976; 

Shen and Richards, 2013), the visual field (Heijl and Krakau, 1975; Bengtsson et al., 1997), the 

external noise contrast function (Lesmes et al., 2006), and elliptical-threshold PFs such as color 

difference detection (Kujala and Lukka, 2006). More flexible frameworks for multidimensional 

PF estimation have more recently been proposed, which specify particular parameterizations of 

threshold functions across non-psychometric dimensions (Vul et al., 2010; DiMattina, 2015; 

Watson, 2017). However, an incorrect choice of model parameterization can result in errors, and 

cases for which parametric justification is weak or nonexistent are not covered (Vul et al., 2010). 
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1.4.2. Sampling for Psychometric Functions 

A related question to psychometric function inference is how best to select samples to efficiently 

produce accurate estimates of the PF. Traditionally, sampling for 1D PFs is accomplished using 

the method of constant stimuli, first proposed by Gustav Fechner (Fechner, 1860). In this 

method, a set of stimuli of varying stimulus levels are chosen such that they straddle a putative 

threshold value. Stimuli from this set are then delivered to the subject in a random order, with m 

repetitions delivered at n different stimulus values overall. When executed properly, the method 

of constant stimuli provides a well-spaced set of stimulus presentations that can capture 

psychometric behavior within a range of interest. However, downsides to this technique include 

sensitivity of PF estimation results to both the number of distinct stimulus levels delivered and to 

the number of repetitions at each level (often necessitating large numbers of samples to produce 

an accurate estimate), and the need for an additional procedure (e.g. a method of limits run) to 

determine the proper range for delivered stimulus values, and (Levitt, 1971). 

To counteract the efficiency limitations of the method of constant stimuli, a number of adaptive 

procedural techniques have been developed for estimation of threshold only. A particularly well-

established set of procedural methods is up-down methods, also called staircase methods (Dixon 

and Mood, 1948; Levitt, 1971; Kingdom and Prins, 2010). Up-down techniques follow the 

simple rule that if a stimulus is detected, the stimulus level for the next presentation should be 

decreased, and vice versa, until the test terminates. The standard up/down method uses the same 

step size for both stimulus increases and decreases, returning the 50% detection probability point 

(Dixon and Mood, 1948; Kingdom and Prins, 2010). Test termination typically occurs after a 

certain number of reversals, with the threshold estimate computed as the mean stimulus intensity 

across the last few trials containing a reversal (García-Pérez, 1998; Kingdom and Prins, 2010). 
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Modifications to the up-down method include transformed methods, in which some number of 

consecutive identical responses must be observed before adjusting stimulus level (for instance, 2 

detections in a row before stimulus level is decreased) (Wetherill and Levitt, 1965; Levitt, 1971), 

and weighted methods, in which unequal step sizes are used for up vs. down (Kaernbach, 1991); 

these modifications correspond to different detection probabilities on the curve. A further 

refinement of up-down techniques was parameter estimation by sequential testing (PEST), which 

adaptively narrowed the step size of stimulus level changes to efficiently determine threshold 

(Taylor and Creelman, 1967; Findlay, 1978). Although these procedural techniques are designed 

to estimate thresholds only, a parametric fit can be performed to the set of stimuli and responses 

collected during the procedure using a fitting technique (Section 1.4.1); this strategy has been 

called a “hybrid adaptive procedure” (Hall, 1981; Leek et al., 1992). 

A second class of adaptive techniques seeking 1D thresholds utilizes methods that have control 

over the exact stimulus placement for each delivery, rather than relying only on step size changes 

(Treutwein, 1995; Leek, 2001; Kingdom and Prins, 2010). The general framework involves at 

every iteration computing an estimate based on the data observed so far, then choosing the next 

sample point based on some value derived from the current estimate, typically to maximize some 

information measure. For example, the “best PEST” technique places each subsequent stimulus 

delivery at the current estimate’s 50% threshold value (Pentland, 1980). A Bayesian variant of 

this technique was proposed with QUEST, which uses the set of all trials collected so far as well 

as prior information to construct a posterior distribution and uses its mode, median or mean as 

the point estimate for threshold, which is sampled in the subsequent iteration (Watson and Pelli, 

1983; King-Smith et al., 1994). Various updates on and variants of these “maximum-likelihood” 



21 

 

adaptive procedures have been developed for different stimulus spaces and test designs (Green, 

1993; Dai, 1995; He et al., 1998; Leek et al., 2000; Leek, 2001; Linschoten et al., 2001). 

The previously described adaptive techniques focus mainly on threshold, but a number of 

adaptive techniques for estimation of the entire PF (in particular, spread) have been developed. 

An early technique is adaptive probit estimation, which alternates between computing a probit fit 

given the current set of data (Finney, 1971) and selecting a new block of stimuli to deliver given 

the current estimate (Watt and Andrews, 1981). The modified ZEST technique, a Bayesian 

method, iteratively updates a 2-dimensional posterior probability distribution on threshold and 

spread parameters and selects the next stimulus level that minimizes the expected variance upon 

observing that trial (King-Smith and Rose, 1997). 

Perhaps the most well-known technique for full 1D PF estimation is the Ψ-method (Kontsevich 

and Tyler, 1999). Like the modified ZEST technique, the Ψ-method iteratively updates posterior 

probabilities for threshold and spread. It then selects the stimulus intensity that maximizes the 

expected information gain after that sample is observed (i.e. minimizes the expected entropy). 

More recent techniques have refined this adaptive framework to better characterize optimal 

selection of points and to account for lapse and guess rates (Brand and Kollmeier, 2002; Shen 

and Richards, 2012; Shen et al., 2015). Extensions of these adaptive 1D PF estimation methods, 

particularly the Ψ-method, have also been applied to estimate multidimensional PFs (Kujala and 

Lukka, 2006; Lesmes et al., 2006; Lesmes et al., 2010; Vul et al., 2010; DiMattina, 2015). 

1.5. Concluding Remarks 

Clinical assessment of hearing ability is overwhelmingly conducted using manual HW pure-tone 

audiometry, costing millions of hours in labor each year for audiologists collectively. Automated 
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techniques have existed for decades but have primarily been variants on the HW procedure itself; 

other methods that have been developed, such as Bayesian techniques, are highly efficient but 

nonetheless produce estimates only at standard audiogram frequencies. Audiometric threshold 

estimates that are relatively continuous across frequency have been estimated using sweep-based 

methods, but such methods tend to be time-consuming and tedious for the listener. 

Additionally, the full audiometric function (pure-tone multidimensional psychometric function) 

is almost never estimated in any capacity, which limits researchers’ ability to fully characterize 

certain forms of hearing disability for better diagnostic insight. Accurate and efficient techniques 

for estimating multidimensional PFs exist but all assume that the non-psychometric dimensions 

or threshold shapes can be parameterized in some form. However, the threshold curves for 

audiometric functions cannot be justifiably parameterized, as the particular shape of a threshold 

audiogram is itself indicative of the type of hearing disability. 

In the work described by this thesis, we propose a method for estimating arbitrarily shaped 

audiometric functions using Bayesian machine learning classification, which we call the machine 

learning audiogram (MLAG). This technique does not require explicit parameterization of the 

audiometric function, instead encoding relationships between input points along any stimulus 

dimension, and can perform inference using binary response data typical of pure-tone detection 

tasks. This inherent flexibility allows for a variety of shapes to be encoded, including full 

audiometric functions and by implication, the associated threshold audiograms. While this thesis 

focuses on the particular application for pure-tone audiometry, the technique is general-purpose 

and can be extended to other psychophysical domains in a straightforward manner. 
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Chapter 2 introduces the concepts from probability theory and machine learning relevant to the 

work in this thesis. Chapter 3 describes MLAG applied to estimation of threshold audiograms in 

human listeners, comparing the results of our technique to traditional clinical methods. Chapter 4 

characterizes the ability of MLAG to estimate multidimensional audiometric functions, including 

both threshold and spread, in simulated experiments. Finally, Chapter 5 extends the work of 

Chapter 4 to incorporate active sampling techniques, with the goal of improving efficiency. 

  



24 

 

Chapter 2: Machine Learning Background 

2.1. Gaussian Processes 

Parametric models, which have a deterministic form given a set of parameter values, are often 

employed to describe natural phenomena. However, many natural phenomena, such as weather 

patterns, heart rate over time, or neuronal firing activity, have a degree of randomness that are 

not well-described by deterministic models. Such phenomena are often better characterized using 

a stochastic process (Gubner, 2006), a collection of random variables that can describe the 

evolution of an inherently random process as a function of some independent variable. 

The work in this thesis heavily employs the Gaussian process (GP), a mathematically convenient 

subclass of stochastic processes that encodes particular relationships between function values. 

While the GP has been conceptualized for decades, particularly in the geostatistics field where it 

has been referred to as “kriging” (Krige, 1951; Cressie, 1990), it has recently been adapted and 

further developed for machine learning applications (Rasmussen, 1996; Williams and 

Rasmussen, 1996; Gibbs, 1998; Williams and Barber, 1998; Rasmussen and Williams, 2006). 

This section provides a formal definition of the GP and describes how to use GPs for inference, 

as well as some details relating to GP construction. 

2.1.1. Supervised Learning 

Supervised learning describes a subset of machine learning techniques that aims to perform 

inference on some system after observing a set of training data ( ){ }1,
n

i i i
y

=
= x , where 

i
x  is a 

feature vector (input location) at observation i  and 
i

y  is a measurement or known value 
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corresponding to location 
i

x  (Bishop, 2006; Hastie et al., 2009; Murphy, 2012). In supervised 

learning, we use the observed values   to train some model, encoding the system properties 

provided within the observations. We then use the trained model to make predictions on a vector 

of unobserved features *X . For instance, the system we wish to perform inference on may be 

some unknown latent function ( )f x , with 
i

y  corresponding to a noisy function observation, i.e. 

( )i i
y f ε= +x . Supervised learning techniques stand in contrast to unsupervised learning 

techniques, which infer structure from “unlabeled” data that do not have corresponding 

categorical or numerical values. 

A variety of techniques fall under the umbrella of supervised learning, including fully parametric 

estimators such as linear or logistic regression, statistical classifiers such as linear discriminant 

analysis, and nonparametric models such as k-nearest neighbor, support vector machines or 

neural networks. Gaussian process inference is a probabilistic method, which provides not only a 

point estimate of a function values at each test point in *X , but a probability distribution 

describing its belief and uncertainty about the corresponding function value. 

2.1.2. Bayesian Inference 

A statistical framework that is particularly synergistic with the concept of supervised learning is 

the Bayesian technique. Broadly, the Bayesian framework encodes a set of beliefs about a system 

that can be updated in light of observed data. In function space, Bayesian inference begins by 

assigning a prior probability over functions that describes a belief about which functions are 

expected a priori, as well as some likelihood (observation model) that describes how 

observations are generated from the underlying function (Gibbs, 1998; Jaynes, 2003; Xiang and 
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Fackler, 2015). Given some observed data, Bayes’s Theorem can be applied to derive a posterior 

probability, which describes the updated beliefs about the function considering both the observed 

responses and the prior belief (Bayes and Price, 1763; Jaynes, 2003). Relative to supervised 

learning, the prior can be conceptualized as the initial state of the model, the observations upon 

which the posterior is conditioned as the training data, and the posterior distribution on some test 

set *X  as the post-training model prediction. 

 
Figure 2.1: Example of Bayesian inference. (A) 5 sample functions drawn from a prior distribution on functions. (B) 
The posterior distribution after 4 observations are made, as well as 5 sample draws from this distribution. Solid lines 

denote the mean, shaded gray areas denote 2 standard deviations about the mean, and dotted lines denote single 
draws from the corresponding distributions. 

Figure 2.1 shows an example of inference using the Bayesian method. The prior distribution 

over functions, along with several draws from the distribution, is shown in Figure 2.1A. Figure 

2.1B shows the posterior distribution after making several observations, coupled with a Gaussian 

error likelihood. Notably, the uncertainty of the posterior distribution is considerably decreased 

around the observations, limiting the space of possible functions to the subset that passes near the 

observed points. The 5 draws from the posterior distribution show functions from this subset.  
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2.1.3. Gaussian Process Regression (GPR) 

Let ( )f x  be a latent function on an arbitrary input space x Î   that we wish to model. A GP is 

a mathematically convenient mechanism to encode prior knowledge about f , which we can 

update in light of observed data via Bayesian inference. Formally, a GP is defined as a collection 

of random variables (stochastic process), any finite subset of which jointly form a Gaussian 

distribution. A GP is a natural extension of the multivariate Gaussian distribution ( ),µ Σ  to 

infinite domains; like the multivariate Gaussian distribution, it is fully specified by its first two 

moments: a mean function ( )xm  and a positive semidefinite covariance function ( ),K x x ′ . The 

mean function accounts for the central tendency of the latent function while the covariance 

function accounts for the correlation structure of the latent function. Given m  and K , the latent 

function f  can be endowed with a GP prior distribution: 

 ( ) ( ) ( )( ), ,p f x K x xµ ′=  . (2.1) 

Consider a set of observations { },= X y . Our GP prior on f  implies a multivariate Gaussian 

distribution for the corresponding latent function values ( )f=f X , but does not specify how 

these latent function values are related to our observations y . We must therefore use a likelihood 

function (observation model) to describe the relationship between the latent function and our 

observations, or ( )p y f . The likelihood function can be any arbitrary model, but in the standard 

regression case, the latent function f  can be viewed as the underlying “true” behavior from 

which each observation is derived with some residual error. Under this model, each observed 
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value 
i

y  is realized by independently corrupting the true value of the latent function ( )if x  by 

zero-mean additive Gaussian noise with variance 2
εσ , allowing us to write the following 

expression for the likelihood: 

 ( ) ( )2 2, ; ,p εσ σ=y f y f I . (2.2) 

Given a GP prior on f  (Equation 2.1) and some observations over the input space, prediction 

can be performed about the behavior of f  for unobserved inputs using Bayesian inference. 

Consider a set of n training observations ( ){ } ( )
1

, ,
n

i i i
y

=
=x X y  and a set of unobserved test inputs 

*X  on which we wish to perform inference. We can use Bayes’s Theorem to produce an 

expression for the joint posterior of the latent function at training and test inputs given the 

training observations: 

 ( ) ( ) ( )
( )

* *

* *
, , ,

, , ,
p p

p
p

=
f f X X y f X

f f X y X
y X

. (2.3) 

The predictive posterior distribution can be determined by marginalizing out the nuisance 

training set latent variables and substituting Equation 2.2:  

 ( ) ( ) ( ) ( ) ( )* * * * * *1
, , , , , , , ,p p d p p d

p
= =∫ ∫f X y X f f X y X f y f X f f X X f

y X
. (2.4) 

By definition of the GP, the joint probability ( )* *, ,p f f X X  is multivariate Gaussian: 

 ( ) ( )
( )

( ) ( )
( ) ( )

*

* *
* * * *

, ,
, , ,

, ,

K K
p

K K

µ

µ

   
   =
       

X X X X X
f f X X

X X X X X
 . (2.5) 
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The joint probability ( )* *, ,p f f X X  is Gaussian for a GP (2.5), and the likelihood function 

( ),p y f X  is Gaussian by design (2.2). In the regression case, we can solve the integral in (2.4) in 

closed form, producing the posterior belief ( )* *, ,p f X y X  about *f  analytically. Gaussian 

residual error is a maximum entropy likelihood and a commonly employed objective likelihood 

function (Xiang and Fackler, 2015). Furthermore, this GP regression framework can be viewed 

as an extension of the well-established Bayesian linear regression (Box and Tiao, 1992) to 

regression with an infinite number of basis functions (Williams, 1998). 

The posterior belief about f  is in this case a new GP with parameters that have been updated to 

reflect the information contained in the new inputs *X  and the previous observations  . The 

posterior mean reflects our updated beliefs about f , weighing both our prior knowledge and the 

information contained in the observations. The posterior covariance encodes the remaining 

uncertainty about the latent function, with the diagonal entries (the posterior variance) encoding 

the marginal uncertainty remaining about a latent function value at a point. 

2.1.4. Gaussian Process Classification (GPC) 

The GP regression framework described in Section 2.1.3 assumes that the output values y  are 

continuous and real-valued. However, classification problems, in which each input in a set X  

can be assigned to one of a finite set of N  classes 
1 2
, ,

N
C C C , represent another important 

type of function approximation particularly relevant for psychometrics. A special case of 

classification problems are binary classification problems with output values assigned to one of 

only two classes. Many psychometric tasks are designed with two possible responses, including 
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the detection task used for the standard threshold audiogram in which subjects indicate when 

they hear a tone (Carhart and Jerger, 1959; Kingdom and Prins, 2010). We therefore focus our 

current treatment on binary classification, although GP classification can readily be extended to 

multiple classes (Williams and Barber, 1998; Rasmussen and Williams, 2006). 

For GP classification, we also place a GP prior on the latent function: ( ) ( ),p f Km=   (2.1). 

GP classification differs from GP regression primarily in the choice of the likelihood function 

( )p y f . In the regression case, we assumed that the observed values 
i

y  were simply the latent 

function values 
i
f  corrupted by additive zero-mean Gaussian noise with variance 2

εσ  (2.2). In 

the case of binary classification, however, observed outputs 
i

y  can take on one of only two class 

identities: either 1 (success) or 0 (failure). The latent function f  is not directly observed but is 

instead a hidden function whose value is related to the degree of class membership, where larger 

values of f  generate higher probabilities of success. To obtain the probabilistic distribution 

( )1p y f= , we transform f  using a monotonically increasing sigmoid function Φ  to constrain 

the resulting values to the range 0,1   . For a binary observation 
i

y ∈ y  associated with a 

multidimensional input 
i
⊂x X , we assign the following likelihood: 

 ( ) ( )1
i i i

p y f f= = Φ . (2.6)  

Some convenient choices of Φ  include the logistic (logit) function ( ) ( )1 1 if

i
f e−Φ = +  or the 

cumulative Gaussian (probit) function ( )
2 2

2

if z

i

e
f dz

π

−

−∞

Φ = ∫ . These functions constrain the range 
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of outputs to the probabilistic range 0,1   , with large positive f  values producing output values 

near 1 and large negative f  values producing output values near 0; the effect of Φ  can be seen 

in the example in Figure 2.2. Furthermore, both functions are consistent with longstanding 

psychometric function approximation, with the logistic and probit functions being popular 

models for psychometric behavior (Wichmann and Hill, 2001a; Kuss et al., 2005; Kingdom and 

Prins, 2010). Following Bayesian decision theory, class membership can be predicted by 

thresholding (Berger, 1985). Like GP and Bayesian regression, GP classification can be viewed 

as a generalization of Bayesian logistic/probit regression (Rasmussen and Williams, 2006). 

 
Figure 2.2: Illustration of a latent function passed through a sigmoidal likelihood. (A) A sample latent function 

( )f x  drawn from a Gaussian process. (B) The class probability ( )( )f xF  obtained by “squashing” this sample 

function through the logistic likelihood ( ) ( )1 1 zz e-F = + . 

As with the regression case, the predictive posterior distribution ( )* *, ,p f X y x  can be expressed 

using (2.4), but now with an explicit sigmoidal likelihood function: 
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( ) ( ) ( ) ( )

( ) ( ) ( )

* * * *

* *

1

1
, , , ,

1
, ,

n

i
i

p f p p f d
p

f p f d
p =

=

= Φ

∫

∏∫

X y x y f f X x f
y X

f X x f
y X

. (2.7) 

Rather than the posterior distribution on the underlying latent function ( )* *, ,p f X y x , however, 

the classification scheme is often interested in the posterior distribution of positive response 

probability ( )* *1 , ,p y = X y x . Combining Equations 2.6 and 2.7 yields the probability of class 

identity for a test observation *y : 

 
( ) ( ) ( )

( ) ( )
* * * * * * *

* * * *

1 , , 1 , ,

, ,

p y p y f p f df

f p f df

= = =

= Φ
∫
∫

X y x X y x

X y x
. (2.8) 

Unlike in the regression case defined by the Gaussian likelihood (2.2), the sigmoidal likelihood 

for classification in (2.6) makes the integrals in (2.7) and (2.8) analytically intractable. Instead, 

this posterior distribution must be estimated, either by sampling methods such as Markov Chain 

Monte Carlo (Neal, 1993; Andrieu et al., 2003) or by using a Gaussian approximation to the 

posterior distribution. Some common Gaussian approximations are the Laplace approximation, 

which uses a second-order Taylor expansion to match the curvature of the distribution at the 

mode (Williams and Barber, 1998), and expectation propagation, which attempts to match the 

first two moments of the distribution (Minka, 2001). 

2.1.5. Covariance Functions 

The GP covariance function describes correlations between latent function values at different 

inputs and can be used to represent structure in information about f . While we can always 
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numerically specify a covariance matrix K  for a finite set of observations, a covariance function 

(or kernel) ( ),K x x ′  provides a general framework for encoding relationships between function 

values on an unrestricted input domain. The covariance function does not typically specify an 

exact form for the latent function f , but it can encode systematic relationships between function 

values for specific sets of inputs. Importantly, several off-the-shelf covariance functions can be 

effectively used to model behavior for a wide range of latent function shapes. One such example 

is the squared exponential (SE) covariance function: 

 ( ) ( )22

2
,

2
K s

 ′− − ′ =  
  

x x
x x



, (2.9) 

where 2s  represents the maximum covariance and   represents a length constant. The 

covariance function value ( ),K ′x x  in this case is large when the values of x  and ′x  are close 

and falls off with the square of the distance between them. The length constant   acts as a 

normalization term to determine the distance needed for a particular change in covariance, 

effectively representing a measure of smoothness. The SE covariance function is very flexible 

because it simply specifies that, relative to  , function values at points near one another are 

highly correlated, while those at points far away are not. Therefore, it is able to represent a wide 

range of latent function shapes so long as they are generally smooth. Other covariance functions 

exist that can capture other aspects of latent function behavior, such as linearity, periodicity, or 

chaotic behavior (Rasmussen and Williams, 2006; Duvenaud, 2014). 
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2.1.6. Hyperparameters 

Mean and covariance functions often have associated parameters, such as the s  and   terms in 

Equation 9. These parameters of the moment functions (and not of the latent function itself) are 

called hyperparameters. Different choices of hyperparameters can have significant effects on 

latent function behavior. For instance, a large   in Equation 9 will result in a posterior that 

favors much smoother latent functions compared to a small  . Figure 2.3 shows three different 

unidimensional GP regression predictions for the same observed data set. Each GP utilizes a SE 

covariance function (2.9) but differs in length scale  . Note that short length scales allow for 

more local fluctuations while long length scales enforce more global smoothness. 

 
Figure 2.3: Illustration of the effects of a length scale hyperparameter. For the same set of observations (black dots), 
the subplots show posterior distributions for SE covariance functions with (A)   = 0.3, (B)   = 1, and (C)   = 5. 

Solid lines denote the posterior mean and shaded gray areas denote 2 standard deviations about the mean. 

It is sometimes sufficient to directly specify the hyperparameters θ  of the GP, assuming we 

have prior knowledge that compels us to do so. Often, however, we do not know the values of 

these hyperparameter a priori and must estimate them from the data. Assume we have chosen a 

GP prior ( ) ( ) ( )( ); , , ;p f f Kµ ′=x) x) x xθ θ θ . We can quantify the quality of fit to the 

observed data by computing the marginal likelihood, or the probability of observing the given 

data under the selected prior: 
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 ( ) ( ) ( ),p p p d= ∫y X) y f X) f X) fθ θ θ , (2.10) 

where we marginalize out the unknown function values f . For a Gaussian likelihood in a typical 

regression framework, this probability can be analytically computed. In the case of classification, 

the integral in the expression is analytically intractable due to the nonlinear sigmoidal likelihood, 

so we must use a Gaussian approximation for the marginal likelihood (Williams and Barber, 

1998; Minka, 2001; Rasmussen and Williams, 2006). 

One method of obtaining a “best fit” to the observed data is to choose a set of hyperparameters 

θ  that maximizes their log marginal likelihood ( )log p y X)θ . This is done by taking the partial 

derivative of the log marginal likelihood with respect to each hyperparameter: 

( )log
j

p
θ
∂
∂

y X)θ . For the case of classification, an approximation technique is used to estimate 

the log marginal likelihood, whose partial derivative is then computed. This best-fit 

hyperparameter selection process is an application of the second level in Bayesian hierarchical 

inference, in which the most appropriate model is chosen given the data (Jefferys and Berger, 

1992; Gibbs, 1998; Xiang and Fackler, 2015). We can also choose specific hyperpriors (priors on 

hyperparameter distributions) given compelling prior information, but a standard choice is a 

uniform hyperprior, representing maximum entropy. 

2.2. Active Sampling 

One common requirement in any inference framework is to have a set of observed data points 

from which the model can be built. In the context of parametric modeling, these observations are 

used to select best-fitting parameters; in the context of Bayesian techniques, these observations 
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are often used to generate a posterior distribution; and in the context machine learning, these 

observations are used to “train” the model for prediction of unobserved “test” cases. 

Often, the exact data that are observed are not under the control of the experimenter. For 

instance, the data may be a set of medical records from patients in routine hospital visits or 

financial data from investors in the stock market, neither of which can be scheduled or decided 

on by the experimenter. However, in other cases, particularly in the design of a new scientific 

experiment or routine, the experimenter does have control over which data are to be collected. 

Many standard procedures for selecting observations exist. Examples include random sampling, 

grid sampling (in which we select a regularly-spaced set of points in the query space), or space-

filling samples such as the Halton sequence (Halton, 1964). In reality, however, time and 

computing power are typically limited resources, and it is advantageous to carefully choose 

observations that are most useful for our model. Not all potential observations are equally 

informative, and the concept of active sampling broadly explores the question of how, at any 

given time, to select the “best” sample to query. 

2.2.1. Definition of Active Sampling 

Broadly, active sampling (typically called “active learning” in the machine learning or “optimal 

experimental design” in statistics) is a system in which an algorithm is able to choose the labeled 

data on which it performs inference, with the goal of improving performance for small amounts 

of data (Olsson, 2009; Settles, 2009). Active sampling procedures are particularly useful in 

situations when data can be collected iteratively (rather than, say, a situation in which all data is 

already available), or when the resource cost of obtaining each new labeled data point is high 

(for instance, each observation could represent the result of a scientific experiment). Although 
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active sampling can be utilized for both regression and classification machine learning problems, 

we will focus our attention on the classification case, which is relevant to this thesis. 

Three common active sampling scenarios are described in the literature: 

• Stream-based sampling: In this scenario, unlabeled points are sequentially drawn from 

some distribution, and the learner can select whether to query each example’s label or 

discard it (Atlas et al., 1989; Cohn et al., 1994).  

• Pool-based sampling: In this scenario, a finite set of unlabeled points are available for 

query, and the learner selects the most informative point or set of points whose labels 

should be obtained (Lewis and Gale, 1994). 

• Query synthesis: In this scenario, the learner has precise control over the qualities or 

parameters of points that are queried within the input space, effectively generating each 

query instance de novo (Angluin, 1988; 2004) 

Note that with a large pool of unlabeled instances that spans the input space with sufficiently 

high resolution, pool-based sampling can effectively imitate query synthesis. For instance, if the 

input space is the frequency and intensity of a pure-tone sound stimulus, we can construct a pool 

whose members contain each unique frequency/intensity pair from a high-resolution range for 

each of frequency and intensity, effectively approximating full control over stimulus parameters 

up to our predefined resolution. We will therefore focus the active sampling development in this 

section on pool-based sampling, with the assumption of a sufficiently large pool. 

Figure 2.4 shows a diagram of a standard pool-based active sampling cycle (Settles, 2009). Let 

us first define a pool *X  from which new queries can be drawn. At each iteration, we use the set 
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of currently observed data { },= X y  to learn a model using our algorithm of choice. From the 

pool *X , we then select a new sample point x  which we have deemed optimal, and obtain its 

corresponding label y . (We can also choose more than one sample point at a time, but we focus 

here on single iterative queries.) This new observation { },yx  is then added to the set of observed 

data  , and this cycle repeats until termination. Note that we have used *X  here to describe the 

pool, which is also used to define our test set for GP inference (see Section 2.1); this is deliberate 

because in the work presented in this thesis, our pool is defined as the test set itself, which limits 

the space of possible queries to the values within the test set. 

 
Figure 2.4: A diagram of a standard active learning cycle. In each cycle, a machine learning model is trained on 

some observed data, and then a new query is selected from the unlabeled pool, its label is given by the oracle, and 
the new observation is added to the set of labeled data. Reproduced with minor changes from (Settles, 2009). 

There are many methods for selecting the optimal point on each cycle, including more local 

schemes such as uncertainty sampling (Lewis and Catlett, 1994; Lewis and Gale, 1994) and 

query-by-committee (Seung et al., 1992) as well information-theoretic metrics such as expected 

model change (Settles et al., 2008), expected error reduction (Roy and McCallum, 2001), and 

variance reduction (Cohn, 1994). To broadly unify these distinct strategies, we use the concept of 
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an acquisition function, borrowing terminology from Bayesian optimization literature (Guestrin 

et al., 2005; Osborne et al., 2009; Brochu et al., 2010). On any given iteration, the acquisition 

function ( )A x  quantifies the desirability of an input point x . To select the next query point, we 

select *x̂  from among the points in the unlabeled pool *X  corresponding to the highest value of 

( )A x , i.e. ( )
*

*ˆ argmaxA
∈

=
x X

x x . 

The acquisition function ( )A x  can be defined using any metric we desire, but is generally a 

value that can be computed based on the model learned from the current set of observed data  . 

Information-theoretic metrics typically use the concept of expected utility from decision theory 

(Berger, 1985), quantifying a utility function U  and selecting the point at each iteration with the 

highest expected utility ( )U x   (Chaloner and Verdinelli, 1995; Park, 2013). Such approaches 

can be conceptualized as performing a 1-step look-ahead, unlike greedier methods which often 

choose quantities computed directly from the current model (Settles, 2009). Two particular 

active sampling methods used in this thesis are described in Sections 2.2.2 and 2.2.3. 

It is noteworthy that many of the “adaptive sampling” techniques for PFs described in Section 

1.4.2 can be conceptualized within the active sampling framework. While procedural techniques 

such as staircase methods (Dixon and Mood, 1948; Levitt, 1971; Kingdom and Prins, 2010) do 

not fall into this category, other psychometric sampling techniques do iteratively choose the next 

sample point to minimize or maximize some objective function. To offer a few examples: the 

best PEST method (Pentland, 1980) can be assigned an acquisition function of the Bernoulli 
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variance: ( ) ( ) ( )( )1A x p x p x= − ; the Ψ-method (Kontsevich and Tyler, 1999) can be assigned 

an acquisition function of the negative expected entropy: ( ) ( )t
A x H x = −   . 

2.2.2. Uncertainty Sampling 

As perhaps the most commonly employed active sampling strategy, uncertainty sampling queries 

the instance for which the uncertainty is the highest (Lewis and Catlett, 1994; Lewis and Gale, 

1994). A logical quantity to represent uncertainty is the posterior variance. In the case of binary 

classification, points of highest variance correspond to points whose probability of belonging to 

class 1 is closest to 0.5; which can be shown using the variance of a Bernoulli distribution: 

( ) ( )( )1p x p x− . This uncertainty measure can also be interpreted as the expected 0/1-loss, or 

the model’s belief that it will mislabel any point (Settles, 2009). 

In the context of GP classification, y  is the value that quantifies the probability of belonging to 

class 1. The posterior variance of y , 2
y

σ , is provided by the computation of the posterior 

distribution ( )* *1 , ,p y = X y x  and is a logical choice for the uncertainty sampling framework. 

Note that the highest values of 2
y

σ  also correspond to the points at which the posterior mean of 

y , 
y

µ , are closest to 0.5. Therefore, we use the following acquisition function for this method: 

 ( ) ( )2
y

A σ=x x , (2.11) 

where ( )2
y

σ x  refers to the posterior variance of y  at the input point x .  
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2.2.3. Bayesian Active Learning by Disagreement 

Bayesian active learning by disagreement, or BALD (Houlsby et al., 2011) is an information-

theoretic approach in which we seek to reduce the number of possible hypotheses maximally fast 

(Cover and Thomas, 2012). We therefore seek the point that results in the maximal decrease in 

posterior entropy: , ,
y

H H y    −    xθ θ  � , where θ  is the set of model parameters and 

H  is Shannon’s entropy (Shannon, 2001), an uncertainty measure. The first term is the current 

entropy and the second term is the expected entropy after having observed data point { },yx . As 

shown in (Houlsby et al., 2011), this expression in possibly infinite-dimensional parameter space 

can be rewritten in low-dimensional y  space: , ,H y H y    −    x x θ θ . This expression is 

maximized when the first term is high (model is marginally very uncertain about y ), but the 

second term is low (individual settings of θ  are very confident). We can therefore interpret this 

expression as the degree to which parameters under the posterior disagree (Houlsby et al., 2011). 

In the context of GP classification, the parameter set θ  becomes the infinite-dimensional latent 

parameter f , e.g. , ,
f

H y H y f    −    x x  . By using several approximations, we can write 

the following expression for the acquisition function (Houlsby et al., 2011): 

 ( ) ( )
2

2 ln2
2

( )ln2
2 2 ( )

2 2 ln2
2

exp( )
h

( ) 1 ( )

f

ff

f f

A
π

µπ
σ

π

µ

σ σ

+

     
   = Φ −    + +  

x

xx
x

x x
, (2.12) 
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where ( ) ( ) ( )2 2
log 1 log 1h p p p p p= − − − −  is the binary entropy function, ( )

f
µ x  and 2( )

f
σ x  

are respectively the posterior mean and posterior variance of f  corresponding to the input point 

x , and Φ  is the sigmoidal likelihood function for classification (2.6). 

2.3. Concluding Remarks 

The Gaussian process is a Bayesian inference framework that encodes relationships between 

variables rather than requiring a parametric form for the function to be estimated. Given an 

appropriate choice of mean and covariance functions, it can capture a diverse set of function 

behaviors, and can also incorporate prior constraints on function shapes given prior information. 

When trained on some (possibly binary) observed data, the GP posterior provides an entire 

probability distribution on test points, rather than point estimates. 

Taken together, these qualities make the GP an attractive framework for performing inference on 

audiometric functions. Its nonparametric nature supports various audiogram shapes, which 

cannot be easily parameterized, and its estimation of entire probability distributions allows for 

painless integration with active sampling frameworks. Overall, the GP represents a flexible and 

efficient framework for performing audiometric inference. 
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Chapter 3: Automated Estimation of Human 
Threshold Audiograms Using Active Machine 
Learning 

Note: The research presented in Chapter 3 has been published in Ear and Hearing (Song et al., 

2015). 

3.1. Introduction 

As described in Chapter 1, current methods of determining a threshold audiogram exhibit many 

shortcomings. The clinical Hughson-Westlake staircase method (Carhart and Jerger, 1959; Katz 

et al., 2009), along with the numerous automated techniques that replicate the procedure 

(Mahomed et al., 2013), provide thresholds only at a small number of (6-9) standard audiogram 

frequencies. Moreover, the procedure for determining threshold at any particular frequency is 

both inefficient and predictable; it presents multiple identical stimuli and selects tones at sound 

levels where the listener’s response is already quite certain. 

To address primarily the first shortcoming above, techniques that sweep tone stimuli through 

multiple frequencies have been developed, including Békésy audiometry and Audioscan® (von 

Békésy, 1947; Meyer-Bisch, 1996; Ishak et al., 2011). While these techniques can in fact provide 

relatively continuous threshold curves as a function of frequencies, they show some limitations. 

Békésy audiometry is comparatively quick for a sweep-based method, but results in a somewhat 

“jagged” estimate of the threshold curve that lacks specificity along the intensity dimension. On 

the other hand, Audioscan® offers a smoother estimate; however, the estimate is still quantized 

to discrete intensity levels, and the procedure is much more time-intensive to perform. 
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A particularly promising set of audiometric procedures have been Bayesian methods (Özdamar 

et al., 1990; Stadler, 2009). Unlike standard procedural methods such as HW, these methods 

select at every iteration the optimal stimulus frequency and intensity to present, informed by both 

prior data and the set of all other responses collected so far. The use of all observed responses 

across multiple frequencies to inform the current estimate stands in stark contrast to the HW 

procedure, in which all samples for a particular frequency are discarded after the corresponding 

threshold has been determined. Studies have shown large efficiency gains using these Bayesian 

techniques, but like standard clinical techniques, these methods still constrain the choice of 

possible frequencies to the 6-9 standard locations. 

This chapter describes the development of the first version of the machine learning audiogram 

(MLAG), which is designed for estimating the threshold audiogram. The algorithm utilizes 

Gaussian process classification (GPC) and can be conceptualized as an extension of the Bayesian 

techniques: at every iteration, prior constraints and the set of all observations are used to form an 

estimate, and an optimal query point is selected. The final threshold estimate is approximately 

continuous along both frequency and intensity dimensions, and active selection of samples 

allows for efficient threshold audiogram estimation. 

3.2. Methodology 

3.2.1. Machine Learning Algorithm 

For the machine learning (ML) audiogram algorithm, we employed Gaussian process (GP) 

classification (Rasmussen and Williams, 2006) to construct tone detection audiogram estimates 

from human listeners in real time. We also utilized active sampling procedures in order to select 

the most useful queries for each iteration. Sections 2.1 and 2.2 describe GPs and active sampling 
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in more mathematical detail. The details of GP setup and algorithm functionality specific to the 

current technique are described below. 

Variable space: For audiogram estimation, the input variable x  is the frequency and intensity of 

presented pure tones, i.e. ( ),ω ι=x . Any observation iy  is a binary variable encoding whether or 

not a tone ix  was detected: 0 for undetected and 1 for detected. The GP was trained to predict 

the probability of a listener’s tone detection as a function of these variables ( )1p y = x , which 

takes on continuous values between 0 and 1 over all combinations of frequency and intensity. 

For inference, we choose a finely spaced test grid *X  of samples: 0.125 to 16 kHz in semitone 

increments for frequency and −20 to 120 dB in 1-dB increments for intensity. This allows us to 

compute a posterior distribution on effectively the entire input space of interest. 

Mean function: As typical for GP inference, we selected a constant mean function: ( ) cµ =x . 

Although this assumes that the prior central tendency of the latent function is flat, all of the 

variation around the mean can be captured using the covariance function ( ),K ′x x . 

Covariance function: To pick an appropriate GP covariance function for this application, we 

incorporated constraints that reflected prior knowledge about psychometric functions. Most 

crucially, the probability of listener detecting a tone is monotonically increasing as a function of 

tone intensity, but need not have an explicit dependence upon frequency except that the overall 

function is continuous. To reflect this scenario, we used a monotonic linear kernel 

( ) ( )2,K si i i i¢ ¢= ×  in the intensity dimension and a more flexible squared exponential (SE) 
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kernel ( ) ( )22 2, exp 2K sx x x xé ù¢ ¢= - -ê úê úë û
  in the frequency dimension. The overall covariance 

function in x  was therefore a sum of these individual components, plus a noise term: 
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. (3.1) 

Likelihood function: Following standard GP classification procedure and to ensure that the GP 

returned a probability estimate in the range 0,1   , we transformed the latent function using a 

cumulative Gaussian likelihood function: ( ) ( )
2 2

1
2

if z

i i i

e
p y f f dz

π

−

−∞

= = Φ = ∫ . This choice is 

consistent with standard PF inference frameworks that model PFs as monotonically increasing 

sigmoidal functions (Wichmann and Hill, 2001a; Kingdom and Prins, 2010). 

Computation of hyperparameters: We used 5 covariance function hyperparameters for this 

model: a mean constant c , a scaling factor 
1

s  for the SE component, a characteristic length scale 

  for the SE component, a scaling factor 
2

s  for the linear component, and a noise parameter 

noise
s , i.e. ( )1 2 noise

, , , ,c s s s= q . A best-fitting set of hyperparameters was chosen automatically 

after each response by maximizing the log marginal likelihood of these hyperparameters with 

respect to the sampled data, following the procedure outlined in Section 2.1.6. 

Calculation of posterior distribution: Following each new tone presentation, all data sampled up 

to that point were used to compute the predictive posterior distribution ( )* *1 , ,p y = X y x . At 

each iteration, we computed the posterior mean, representing the current point estimate about the 



47 

 

detection probability, and the posterior variance, representing uncertainty on the estimates at 

each input location in *X . An example for one run can be seen in Figure 3.1: Figure 3.1A shows 

an example of the posterior mean during data acquisition for one audiogram estimate and Figure 

3.1B shows the corresponding posterior variance. 

Active sampling: After initializing with a few pseudorandom samples, the ML algorithm selects 

only points deemed to be informative to the estimate for subsequent samples. We used an 

uncertainty sampling acquisition framework (see Section 2.2.2) in which at each iteration, the 

next chosen sample point was one whose class identity (i.e. 1 or 0) was the most uncertain 

(Lewis and Catlett, 1994; Lewis and Gale, 1994; Settles, 2009). Based upon the calculated 

posterior variance of y , 2
y

σ , for the current iteration (2.11), we selected the frequency/intensity 

pair from the test set *X  corresponding to the highest value in the variance function as the next 

point to sample (Figure 3.1B). If multiple points were tied for maximum variance, a point was 

selected at random from this set. After determining the listener’s response, the posterior 

distribution was updated for the next iteration (updated posterior mean shown in Figure 1C). 

This cycle of hyperparameter estimation, posterior calculation, and uncertainty sampling was 

repeated until convergence criteria were met, which are detailed in Section 3.2.3. 
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Figure 3.1: Illustration of the machine learning (ML) audiogram technique. (A) Posterior mean is computed by the 

GP using the sampled points. Red diamonds indicate the tone was inaudible; blue pluses, audible. (B) Posterior 
variance is computed by the GP using the sampled points, and the point of maximum variance is identified (purple 
star). (C) The point of maximal variance is queried for listener audibility (black arrow). In this example once it is 

determined that the listener did not hear the tone, the updated set of points is used by the GP to re-compute the 
posterior mean with a more elevated threshold near the corresponding frequency. 

3.2.2. Participants 

A total of 21 participants (8 male, 13 female) were recruited from the Department of Adult 

Audiology at Washington University School of Medicine Central Institute for the Deaf and the 

Research Participant Registry at Washington University in St. Louis. All participants were 

between 18 and 90 years of age (mean 47), fluent English speakers and with no history of 

neurological disorder. Approval for completion of the study was received from Washington 

University in St. Louis’ Human Research Protection Office (HRPO), and all participants 

provided informed consent before any testing protocol began. One listener (listener number 17) 

fell asleep during one part of the study. This listener’s data were therefore omitted from the 

group averages but were presented separately to demonstrate how the algorithm operates with a 

noncompliant listener (see Discussion). 

3.2.3. Experimental Procedure 

For each listener, we performed 2 repetitions of the automated ML-based audiogram and 1 

repetition of a standard manual HW audiogram. An air-conduction pure-tone audiogram was 
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obtained in each case, and each auditory stimulus consisted of a three-pulse sequence of 200-ms 

pure tones with inter-pulse intervals of 200 ms. Listeners were seated within a sound isolation 

booth, and all auditory stimuli were delivered using a Toshiba Portege R700 laptop computer 

running custom MatLab code and Sennheiser HD280 circumaural headphones. Computer audio 

output was calibrated to match the output of a GSI-61 two-channel clinical audiometer. The 

relative order for the ML and HW audiograms was randomized for each listener, and 

experimenters conducting the HW audiogram were blinded to the listeners’ ML audiogram 

scores. Listeners were asked to remove any hearing-assist devices prior to data collection. Short 

periods of rest (~2 mins) were administered between each set of audiogram runs. Figure 3.2 

shows a photo of the sound isolation booth used to conduct these experiments. 

 
Figure 3.2: Photo of the sound isolation booth used to conduct experiments. 

Manual HW audiometry: A conventional audiogram was conducted by an audiologist according 

to accepted standards (American National Standards Institute, 2004a; American Speech-

Language-Hearing Association, 2005). Each listener was instructed to raise his or her hand upon 



50 

 

detection of a presented pure-tone stimulus. Hearing ability was assessed at standard audiogram 

frequencies (0.25, 0.5, 1, 2, 4, and 8 kHz), with the possible intensity ranging from -20 to 100 dB 

HL in a minimum of 5-dB increments. For an individual frequency, a pure tone was first 

presented at an audible intensity based upon the audiologist’s clinical judgment, then reduced in 

10-dB increments until the listener failed to respond. Henceforth, the intensity was increased in 

5-dB increments following detected tones and decreased in 10-dB increments following 

undetected tones. The threshold for that frequency was determined by the lowest-intensity tone 

to elicit a response in at least 2 of 3 ascending trials. The manual audiogram was conducted 

separately for left and right ears. This manual method is the modified Hughson-Westlake 

ascending-descending procedure and is referred to here as HW audiometry (Hughson and 

Westlake, 1944; Carhart and Jerger, 1959; Katz et al., 2009). 

Automated ML-based audiometry: The ML framework was incorporated into a user interface 

for real-time integration of listener responses. Listeners were instructed to click a mouse button 

upon detection of any stimulus. Each stimulus was separated by a randomized inter-trial interval 

of between 500 and 2000 ms to minimize listener prediction of stimulus presentation times. A 

response within 1500 ms following the onset of the tone sequence was marked as a detected 

sample (value of 1); no response was counted as an undetected sample (value of 0). The range of 

possible sample points fell within 250-8000 Hz in semitone increments centered at 1000 Hz 

along the frequency dimension, and −25-100 dB HL in 1-dB increments centered at 0 dB HL 

along the intensity dimension. Sampling was initially conducted pseudo-randomly throughout 

both frequency and intensity space until at least 1 sample was collected at each standard 

audiogram frequency (0.25, 0.5, 1, 2, 4, and 8 kHz) and at least one detected and one undetected 

sample had occurred. After this point, the algorithm followed the iteration cycle of 
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hyperparameter training, posterior estimation and informative sampling of next stimulus as 

described in Section 3.2.1. This cycle was iterated for a minimum of 36 presentations and until 

two specific convergence criteria were met: 1) the average posterior variance and 2) the posterior 

mean change since the previous iteration were both sufficiently low. This automated ML 

audiometry procedure is summarized by the diagram provided in Figure 3.3. 

 
Figure 3.3: Diagram of the automated ML audiogram procedure. Red arrow indicates algorithm starting point. 

“Heard” responses for which no tone presentations occurred within 1500 ms (i.e., false positives) 

were not used in evaluating the GP or in training the hyperparameters. The automated audiogram 

was conducted separately for left and right ears. To maximize user comfort, delivered tone 

intensities never exceeded 10 dB HL louder than the maximum intensity delivered up to that 

point in the test. Whether or not convergence criteria were met, the algorithm terminated after a 

maximum of 64 iterations. 



52 

 

3.2.4. Data Analysis 

Following completion of the automated audiogram, we binarized each GP posterior mean at a 

detection probability of 0.707, the standard probability of a positive response at convergence for 

a transformed 2-up, 1-down method like the modified HW procedure (Levitt, 1971). Points for 

which the probability of detection was greater than or equal to 0.707 were labeled as “detected,” 

and points for which the probability of detection was less than 0.707 were labeled as 

“undetected.” This binary surface was then used to construct an estimate of the audiogram: for 

each frequency, the smallest intensity in 1-dB increments greater than the transition from 

“detected” to “undetected” was selected as the threshold value for that frequency. Because of the 

monotonic constraint enforced upon the estimator in the intensity dimension, there could be a 

maximum of only 1 transition point at each frequency. The threshold values at each frequency 

therefore become a continuous (in frequency) estimate of the listener’s threshold audiogram. 

The ML and HW threshold audiograms were compared at the standard audiogram frequencies. 

We assessed accuracy of the automated algorithm via comparison to the results of the HW 

audiogram by calculating 1) the mean difference and standard deviation of threshold between the 

ML and HW audiograms, 2) the mean absolute difference and standard deviation of threshold 

between the ML and HW audiograms, 3) the median absolute difference and interquartile range 

of threshold between the ML and HW audiograms, and 4) the percent 5-dB difference, or 

percentage of all ML audiogram values within 5 dB of the corresponding HW audiogram values 

(Swanepoel et al., 2010; Mahomed et al., 2013). We assessed test-retest reliability (precision) of 

the automated audiogram by 1) the mean difference and standard deviation of thresholds and 2) 

the absolute difference and standard deviation of thresholds between the audiogram estimates 

produced by the 2 runs of the ML algorithm (Mahomed et al., 2013). Calibration correction was 
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applied equally to both manual and automated estimates and therefore had no effect upon the 

comparisons between them; both methods used the same stimuli and the same hardware. 

3.3. Results 

The total number of stimulus presentations delivered to each listener for the manual HW and the 

two runs of the automated ML audiogram are shown in Table 3.1. This includes the samples 

presented to both the left and right ears. The HW procedure required an average of 97.0 ± 15.8 

(mean ± standard deviation) samples to estimate the threshold audiogram, while the first and 

second runs of the ML procedure averaged 78.4 ± 11.0 and 78.9 ± 14.6 samples, respectively. 

This difference in number of samples between the HW audiogram and each run of the ML 

audiogram was statistically significant (p = 0.0012 and 1.5×10−4, respectively; paired-sample t-

test). Note that numerous runs of the ML audiogram terminated after 72 stimuli, the minimum 

number of samples after which the algorithm was allowed to terminate for each listener. 

Therefore, the actual mean number of stimuli required to achieve convergence criteria in the ML 

algorithm without this constraint is likely to be lower. All but 1 of the 40 included ML 

audiogram runs terminated prior to the maximum allowable number of iterations. 
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Listener Designation # Samples (HW) # Samples (ML 1) # Samples (ML 2) 
13 126 73 104 
10 117 98 128 
11 117 72 78 
7 116 77 76 
5 112 72 72 
8 106 84 72 
12 105 72 72 
6 103 72 74 
20 98 72 78 
19 97 72 72 
21 94 72 72 
23 93 72 72 
18 91 72 72 
24 90 72 72 
4 89 74 72 
16 84 82 73 
14 78 103 99 
9 77 78 72 
22 76 72 73 
15 69 106 76 

Mean 97.0 78.4 78.9 
Standard deviation 15.8 11.0 14.6 

Table 3.1: Summary of delivered samples for both HW and ML procedures. Total number of samples delivered by 
the HW and ML audiogram estimation procedures (across both ears) for each listener, presented in decreasing order 
of the number of HW samples required. The minimum and maximum numbers of ML audiogram samples allowed 

for the automated technique are 72 and 128, respectively. Listener 17’s data are omitted because the listener fell 
asleep during part of the study. 

Samples obtained during both the manual HW and automated ML methods are shown in Figure 

3.4 for one representative listener, with the final audiogram estimates shown as superimposed 

lines. It can be noted that the HW method searched each standard audiogram frequency across a 

number of intensities, with several repeat presentations of specific stimuli. The ML procedure, 

however, sampled across a more diverse set of frequencies with no repeats. 
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Figure 3.4: Sample plots of HW, ML1, and ML2 audiogram results. Plots of left- and right-ear audiograms obtained 
and samples conducted for a representative listener (Listener 4) using the manual HW technique (A, D), the first run 

of the ML algorithm (B, E), and the second run of the ML algorithm (C, F). Marks represent the frequencies and 
intensities of the stimuli that were presented, with pluses denoting listener detections and diamonds denoting misses. 

The superimposed curves are the final audiogram estimates produced by each technique. Note that the small 
displacements along the frequency axis in (A) and (B) only are to make repeat stimuli more visible and do not 

reflect actual deviations in the frequency of presented tones. 

The degree of similarity among the different audiogram estimates for each ear is readily 

apparent, despite the differences in sampling procedure for each. The skilled audiologist was 

able to rapidly discover reversals and spent the most time probing right around threshold. A less 

skilled individual may have spent more time sampling points farther from threshold. These 

examples concisely demonstrate the utility of the HW procedure in trained hands and help 

explain why it is still in use many decades after its development. 
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Agreement between the 2 ML and 1 HW results for all ears can been seen visually in Figure 3.5. 

Figure 3.6 compares HW and ML audiogram estimates for 3 specific ears: an ear with 

approximately normal hearing (Figure 3.6A), an ear with sloping high-frequency hearing loss 

(Figure 3.6B), and an ear with no-response at a subset of standard audiogram frequencies (Figure 

3.6C). Again, the ML audiogram is able to produce a continuous audiogram estimate that 

compares favorably with the standard HW procedure at the standard audiogram frequencies. 

Moreover, while the HW procedure cannot provide a principled estimate at frequencies where no 

response was elicited, the ML procedure can and does, although the threshold estimate at 8 kHz 

in Figure 3C is not visible because of the limited range of values plotted. Hence, the similarity in 

estimates cannot be assessed at 8 kHz for this ear, but the ML estimate is likely closer to the 

actual threshold than any estimate that could be extrapolated from the HW data in this case. 

 
Figure 3.5: Agreement between ML and HW results for all valid ears. Magenta and blue curves show the results 

from the first and second runs of the ML audiogram, respectively, while black dots show the HW threshold results at 
the corresponding audiogram frequencies. 
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Figure 3.6: Sample HW and ML results for 3 distinct ears. Ears include (A) an ear with relatively normal hearing; 
(B) an ear with sloping high-frequency hearing loss; and (C) an ear with a no-response at 8000 Hz. “X” and “O” 
marks denote values estimated from the manual HW audiogram (connected by straight lines). The superimposed 

curves show the results from the automated ML audiogram. 

Table 3.2 shows the results of evaluating the accuracy of the ML audiogram at standard 

audiogram frequencies relative to the HW audiogram, averaged across all listeners and runs. For 

the 6 standard audiogram frequencies, the mean estimated threshold difference was −0.011 ± 

5.61 dB HL, the mean absolute estimated threshold difference was 4.16 ± 3.76 dB HL, the 

median absolute estimated threshold difference was 3.00 dB HL with an interquartile range of 

5.00 dB HL, and the percent 5-dB difference in threshold estimates was 66.25. These values 

compare favorably with historical differences in audiogram estimation methodologies 

(Gosztonyi Jr. et al., 1971; Schmuziger et al., 2004; Ishak et al., 2011; Mahomed et al., 2013). 

Judging from the relatively low percent 5-dB difference yet comparable mean absolute 

difference, the ML procedure appears to produce somewhat more outlier estimates at individual 

frequencies than methods that estimate directly at those frequencies. 
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Frequency (kHz) 0.25 0.5 1 2 4 8 All 

Mean differences and standard deviations vs. HW 
Mean difference 

(dB HL) 1.80 −1.43 0.138 0.244 1.14 −1.69 −0.011 

Standard deviation 
(dB HL) 6.25 4.88 4.48 4.38 5.57 7.23 5.61 

Average absolute differences and deviations vs. HW 
Mean absolute 

difference (dB HL) 4.80 3.75 3.44 3.53 4.48 5.17 4.16 

Standard deviation 
(dB HL) 4.36 3.41 2.85 2.57 3.46 5.30 3.76 

Median absolute 
difference (dB HL) 4.00 3.00 3.00 3.00 3.00 4.00 3.00 

Interquartile range 
(dB HL) 6.00 4.00 4.00 3.00 4.25 4.25 5.00 

Percent 5-dB maximum difference from HW 
Percent 5-dB max 

difference 61.25 82.5 80.0 78.75 61.25 48.75 68.75 

Table 3.2: Differences between the ML audiogram estimate and the HW estimate. 

We evaluated the ML audiogram’s clinically relevant performance by classifying HW and ML 

audiogram results into conventional categories of hearing loss (normal, mild, moderate, severe, 

and profound) using the pure-tone average (Katz et al., 2009; Stach, 2010). The categorical 

classifications produced by ML and HW audiogram estimates in our listeners were in agreement 

95.0% of the time, and the disagreements in pure-tone average classification resulted in adjacent 

clinical categories. This result further suggests that the ML audiogram generates information that 

is clinically equivalent to the conventional HW audiogram using current standards. 

Table 3.3 shows the results of evaluating the test-retest reliability of the automated ML 

audiogram at standard frequencies averaged across all listeners and estimation runs. Across all 

frequencies, the mean signed difference between automated audiogram runs was 0.75 ± 6.29 dB 

HL, the mean absolute difference between runs was 4.51 ± 4.45 dB HL, and the median absolute 
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difference between runs was 3.00 dB HL with interquartile range 4.00 dB HL. These values are 

comparable to previously reported absolute test-retest differences for manual audiometry: 3.2 ± 

3.9 dB HL (Fausti et al., 1990; Swanepoel et al., 2010; Mahomed et al., 2013). This degree of 

similarity in final estimate between runs where the different initial randomization led to non-

overlapping probe stimuli in the two cases indicates the robustness of the ML procedure. 

Frequency (kHz) 0.25 0.5 1 2 4 8 All 

Mean differences and standard deviations 
Mean difference 

(dB HL) −0.15 1.55 1.63 0.26 1.03 0.032 0.75 

Standard deviation 
(dB HL) 6.27 7.03 4.14 5.34 6.78 8.11 6.29 

Average absolute differences and deviations 
Mean absolute 

difference (dB HL) 4.80 5.05 3.58 3.95 5.03 4.74 4.51 

Standard deviation 
(dB HL) 3.97 5.07 2.60 3.55 4.59 6.52 4.45 

Median absolute 
difference (dB HL) 5.00 3.00 3.00 3.00 4.00 3.00 3.00 

Interquartile range 
(dB HL) 4.00 6.00 3.50 4.00 4.00 5.00 4.00 

Table 3.3: Test-retest reliability of ML audiogram. 

To further quantify the agreement between ML and HW estimates as well as ML reliability, we 

directly compared the threshold estimates from the first and second runs of ML and HW. This 

comparison is plotted in Figure 3.7; Figure 3.7A compares HW and the first ML run, Figure 

3.7B compares HW and the second ML run, and Figure 3.7C compares the first and second runs 

of ML. Coefficients of determination for all three comparisons were very high and linear slope 

lines were close to 1, indicating good agreement between the two variables. Correlation 

coefficients were 0.9565, 0.9413, and 0.9351 for HW vs. ML1, HW vs ML2, and ML1 vs. ML2, 

respectively, indicating strong dependence between estimates for the compared variables. 
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Figure 3.7: Direct comparisons of ML1, ML2, and HW threshold estimates. Black points represent individual data 

pairs, and the red line is a linear fit to the data. Equations describing the line and r2 values are inset. 

Figure 3.8 shows the accuracy of the ML procedure as a function of algorithm iteration (number 

of samples collected). This post-hoc analysis was performed by constructing an ML threshold 

audiogram estimate from the posterior distribution after each iteration of the GP algorithm and 

then evaluating the absolute difference from the final HW threshold audiogram at the six 

standard audiogram frequencies. Figures 3.8A, B show this trend for two representative ears, and 

Figure 3.8C shows the accuracy as a function of algorithm iteration averaged across all listeners 

and GP algorithm runs that terminated following 36 iterations. In both the individual data and the 

population data, the accuracy of the ML algorithm tended to improve systematically as a 

function of iteration. The ML estimate tends to achieve close to its final absolute difference value 

in only 20 samples or so. In some cases the difference function becomes shallow quickly but 

remains at some positive value (e.g., Figure 3.8A). Finally, note that the first 10 iterations show 

little systematic improvement in estimate quality, which is caused by the random sampling at this 

early stage before the informative sampling procedure begins. 



61 

 

 
Figure 3.8: Agreement between ML and HW as a function of algorithm iteration. At each iteration, mean absolute 
difference was calculated by obtaining the current ML estimate of the threshold audiogram during one run, then 
calculating the absolute difference between that estimate and the HW threshold audiogram, averaged across all 6 
audiogram frequencies. (A) and (B) show examples for two ears (Listener 4, as in Figure 3.4), and (C) shows this 
trend averaged across all runs where the ML audiograms terminated at 36 iterations (53 of 80 runs). Blank areas 

denote points at which the ML procedure did not produce a posterior mean with a clear boundary, so error could not 
be assessed (but in practice is very high). Gray shading on (C) indicates ±1 standard deviation from the mean. 

The normalized GP posterior variance is shown as a function of ML algorithm iteration in 

Figure 3.9. At each iteration, we computed the normalized variance by summing each value in 

the posterior variance, which spans values 0,1   , and dividing by the total number of values (i.e. 

the number of input points on the test grid *X ). Figures 3.9A, B show this trend for the same 

runs as in Figure 3.8, and Figure 3.9C shows this trend averaged across all listeners and runs. In 

general, the normalized posterior variance tends to decrease as a function of iteration, implying 

that the ML audiogram produces a less uncertain (more confident) estimate with an increasing 

number of samples. This function alone or in combination with other factors could therefore be 

used to evaluate the overall quality of an estimate. 
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Figure 3.9: Normalized posterior variance as a function of algorithm iteration. Normalized posterior variance was 
calculated by dividing the sum all values in the variance function at each iteration by the total size of the variance 
function matrix. (A) and (B) show examples for two ears (Listener 4, as in Figure 3.4), and (C) shows this trend 
averaged across all listeners whose ML audiograms terminated at 36 iterations. Gray shading on (C) indicates ±1 

standard deviation from the mean. 

3.4. Discussion 

We have described the development and verification of a novel automated technique for pure-

tone audiometry, MLAG, which uses machine learning classification. This technique is able to 

provide a continuous estimate of a listener’s pure-tone threshold audiogram across all 

frequencies, much like sweep-based audiometric techniques (von Békésy, 1947; Meyer-Bisch, 

1996; Ishak et al., 2011). However, this technique maintains efficiency by selecting only 

informative points, overcoming a main disadvantage of other continuous-estimate methods.  

While obtaining threshold estimates at all frequencies with accuracy comparable to other 

algorithms, the ML audiogram required significantly fewer samples compared to conventional 

HW. Conventional HW approaches query frequencies individually and obey a rigorous rule for 

selecting tone intensities. In practice, this means that many samples collected by the 

conventional HW approach are not particularly informative, e.g., several relatively loud 

intensities in a row that the listener is very likely to hear. In contrast, the GP algorithm 

successively selects sample points evaluated by uncertainty sampling to be maximally 

informative at that point in time about the perceptual space. The rapid accumulation of 
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information in the ML audiogram case is demonstrated in Figure 3.8, where the accuracy of the 

GP algorithm approaches reasonable values many iterations before the algorithm eventually 

terminates. Such rapid convergence cannot be accomplished with the HW approach because of 

its rigid sampling criteria. 

Another unique property of our ML audiogram procedure is that an estimate of accuracy is 

automatically included with each newly computed posterior. In general, both the estimate error 

(in this case, correspondence with the HW estimate) and normalized posterior variance decrease 

as a function of algorithm iteration (Figures 3.8 and 3.9). The trend in accuracy appears more 

reliable than the trend in variance: additional samples will typically generate a more accurate 

estimate of the audiogram because there is more information about the function space. The ML 

procedure could possibly generate a low-variance yet inaccurate audiogram estimate with very 

few samples by either underfitting or overfitting, which is responsible for the dramatic drop in 

GP variance shown in the first 5 samples of Figure 3.9A. Multiple methods exist to deter 

underfitting or overfitting (Murphy, 2012); the simplest is perhaps to enforce a minimum number 

of iterations while ensuring that the algorithm is still sampling widely, which was deployed in 

the current experiment. After the first few iterations, the steady decrease in error implies that 

more samples lead to more accurate audiogram estimates. As Figure 3.8 suggests, however, this 

is likely only necessary for individuals whose GP estimates do not converge quickly. 

The ML audiogram was generally robust to false positives. The covariance function allows the 

GP to classify unexpected responses as anomalies rather than true responses, assuming there are 

sufficiently many true responses to offset the false positives. If, however, the listener provides 

multiple false positives for very soft tones (or alternatively, misses multiple clearly audible 
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tones), the ML audiogram may be unable to correctly reject those responses, as the evidence is 

no longer overwhelming in favor of rejecting them. While we did not experience this scenario 

with our listeners, the variance function inherent to our ML audiogram is in any case a natural 

quantification of estimate quality. Estimates that do not converge fully by the end of the ML 

audiogram can be used to signal the test operator that a poor reading resulted, thereby directing 

him or her to start the test over or pursue an alternate estimation strategy. 

A related situation is a listener who responds inconsistently, to which the ML procedure is 

sensitive. Figure 3.10 shows an example of one listener who provided inconsistent results by 

falling asleep during the ML audiogram procedure. The ML threshold audiogram deviated from 

the HW threshold audiogram obtained for the same ear (Figure 3.10A), and the inconsistency in 

responses that produced this result can be seen in Figure 3.10B. Note that sample points very 

close in intensity/frequency space elicited different responses, which is physically unrealistic. 

The ML procedure produced a threshold audiogram estimate that attempted to best match this 

inconsistent data. It can also be seen from Figure 3.10C that the ML algorithm hit the ceiling on 

the number of allowable iterations for that ear, 64, due to high posterior variance. Figure 3.10C 

further reveals that the normalized posterior variance did not generally decrease as a function of 

iteration; in fact, following iteration 15, the normalized variance gradually increased. The 

normalized variance may sometimes dramatically increase when the GP hyperparameters change 

substantially due to a particularly informative sample, but a gradual increase in normalized 

variance indicates that obtained samples may be of poor quality because additional samples are 

making the posterior less, rather than more, well-defined. Sufficient native quantification 

therefore appears to exist within the ML procedure to signal when a poor estimate is being 

obtained, in which case an alternate audiogram estimation strategy may be pursued. 
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Figure 3.10: Data from Listener 17, who fell asleep during ML estimation. (A) The final ML audiogram from one 

ear, superimposed upon the HW audiogram obtained for the same ear (“X”). (B) Samples collected while 
conducting the ML audiogram. Note the inconsistency in responses, with detections and misses in very close 

proximity. (C) Plot of normalized posterior variance as a function of iteration for this listener. This listener reached 
the ceiling on the number of allowable iterations for this ear, 64. Unlike the variance trends in Figure 5, the variance 

in this ear actually begins to increase after approximately iteration 15 and remains high even after 64 iterations. 

A key advantage of our ML audiogram technique is its ability to operate without direct human 

supervision. The algorithm used in this experiment necessitated experimenter intervention only 

upon switching ears, which was primarily as a courtesy for the listeners so that the ear switch 

could be announced. If this feature is removed or automated, the ML audiogram becomes a 

“plug-and-play” procedure that need only be initialized and will otherwise proceed on its own 

until termination, with no need for direct supervision by clinicians or experimenters other than to 

verify that the equipment is operating as desired and subjects are appropriately engaged. In other 

words, a technician could effectively oversee the test procedure and relay the results to a clinical 

audiologist for interpretation and possibly a decision to retest using a different methodology. 

Alternately, if it is possible to deliver only a very few stimuli, such as with very young children, 

the ML procedure could run decoupled from the stimulation apparatus and simply inform a 

clinician where to manually deliver the next sound to provide the most information about that 

patient’s hearing. Based upon our findings, 20 samples using this method should be enough to 

obtain a reasonable estimate of the threshold audiogram. 
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As indicated in Table 3.2, mean threshold estimates corresponded closely between the 

predictable, sequential HW procedure and the unconstrained, roving ML procedure. In general, 

both one-interval and two-interval detection and discrimination tasks have shown elevated 

thresholds when one or more stimulus parameters are roved (Berliner and Durlach, 1973; Mori 

and Ward, 1992; Amitay et al., 2005; Mathias et al., 2010; Bonino et al., 2013). This is widely 

interpreted to be an attentional rather than a purely perceptual phenomenon because roving under 

masked conditions leads to observations best described by informational rather than energetic 

masking. The lack of threshold elevation with the roving ML stimulus presentations in the 

current study is therefore somewhat surprising. Our unmasked detection condition may have 

contributed to the similarity in thresholds. Other potential mitigating factors include our delivery 

of relatively long tones (Ward, 1991), relatively long inter-stimulus intervals (Berliner and 

Durlach, 1973) and, perhaps most significantly, repeated tone presentations (Kidd et al., 2003; 

Burk and Wiley, 2004; Leibold and Bonino, 2009; Guest et al., 2010). 

One logical improvement to the accuracy of the algorithm is to further expand the frequency 

range from which the ML algorithm may sample. From Table 3.2 it is apparent that the greatest 

discrepancy between the HW and ML procedures occurred at 250 Hz and 8000 Hz, and the least 

discrepancy occurred at 1 kHz and 2 kHz. This most likely means that ML estimation at the 

extremes of the sampled frequencies is adversely affected by edge effects. This limitation 

apparently exists despite the observation that many samples are taken near the edge frequencies 

(e.g., Figure 3.4). Correcting this limitation would undoubtedly increase overall accuracy of the 

procedure as well as efficiency and could be accomplished in several ways, with one obvious 

solution being to sample frequencies lower than 250 Hz and higher than 8000 Hz. 
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A second improvement to the efficiency and precision of ML estimates would be to use explicit 

tone detection priors to drive initial sampling rather than learning the shape of the tone detection 

function completely empirically by a random priming sequence (Özdamar et al., 1990). These 

priors can be represented in the mean and/or covariance function hyperparameters, and may be 

either specifically selected based upon the literature or empirically learned from real audiometric 

data. A further improvement may be to investigate different choices of acquisition function to 

inform the selection of each sample point. Our technique currently employs uncertainty 

sampling, but other techniques from psychophysics or Bayesian active learning may prove 

better-suited for this application (King-Smith et al., 1994; Kontsevich and Tyler, 1999; Roy and 

McCallum, 2001; Settles, 2009; Houlsby et al., 2011). The flexibility of the GP technique allows 

other active sampling methods to be swapped in relatively painlessly. Improving sampling 

consistency will also likely improve the accuracy of alternate classification strategies that might 

be developed in the future and thereby add to the overall value of the proposed procedure. 

A final advantage of the ML-based algorithm is that it is more difficult for users to deliberately 

manipulate results than with traditional methods. The conventional HW algorithm is quite 

predictable, and any amount of familiarity with the procedure allows inclined individuals to 

manipulate their responses in order to obtain a deliberately inaccurate audiogram. On the other 

hand, manipulating responses to obtain a deliberately inaccurate audiogram is a much harder task 

using the ML estimation procedure because it does not follow the predictable structure inherent 

to HW. The ML audiogram samples widely across frequency and intensity from trial-to-trial, 

making it challenging for a listener to discern which responses would intentionally skew the test 

results in a particular direction. Attempts to thwart the test would also be readily discernible by 
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the algorithm as response outliers, resulting in an inconclusive test and instruction to the operator 

to start over or pursue a different estimation strategy. 

3.5. Concluding Remarks 

This chapter describes an automated algorithm for conducting pure-tone air-conduction 

audiometry that selects appropriate test stimuli in real time based upon current estimate 

uncertainty. Our results indicate that the accuracy of this algorithm is comparable to other 

manual and automated methods while requiring fewer samples. At the same time, a continuous 

threshold audiogram is determined for all frequencies within a specified range. This algorithm 

also produces its own estimate of accuracy, which can be driven to high values by continuing to 

deliver more sample stimuli with the same criteria. The algorithm was not optimized specifically 

for audiogram estimation; therefore, much room for improvement remains possible for 

audiometry. Taken together, these advantages make this technique a compelling advance in pure-

tone audiometry that can add immediate value to hearing diagnostic procedures.  
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Chapter 4: Uni- and Multidimensional 
Audiometric Function Estimation Using 
Gaussian Process Classification 

Note: The research presented in Chapter 4 has been published in The Journal of the Acoustical 

Society of America (Song et al., 2017). 

4.1. Introduction 

In Chapter 3, we presented the MLAG algorithm, which was able to provide an estimate of the 

threshold audiogram continuous across frequency (Song et al., 2015). However, the GP 

framework provides not only estimates of threshold, but a probability of detection for each 

frequency and intensity. Therefore, the GP appears to provide sufficient information to form a 

continuous estimate of the entire audiometric function, or the 2-dimensional psychometric 

function across frequency and intensity. A full audiometric function would provide not only 

estimates of threshold, but also of spread, a measure of psychometric uncertainty that is at 

present rarely, if ever, estimated for audiograms. 

Previous work has shown that PFs for both pure-tone detection (Allen and Wightman, 1994; 

Bargones et al., 1995) and pure-tone intensity discrimination (Buss et al., 2008) exhibit higher 

spread in young children compared to adults, consistent with a hypothesis of increased internal 

noise in children (Buss et al., 2006). Furthermore, research in individuals with hearing loss has 

demonstrated shallower frequency discrimination PFs localized to hearing-loss frequencies 

(Nelson and Freyman, 1986; Freyman and Nelson, 1991). A detailed estimate of the audiometric 
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PF across frequency/intensity space could allow for better characterization of particular 

pathologies or cognitive states that affect psychometric spread as well as threshold. 

Estimation of PFs has been a well-studied problem, but attention has been overwhelmingly 

focused on the unidimensional case. Except for adaptive methods seeking only thresholds 

(Levitt, 1971; Kollmeier et al., 1988; Treutwein, 1995; Leek, 2001) and the rare nonparametric 

approach (Miller and Ulrich, 2001; Zychaluk and Foster, 2009), estimating a 1D PF has 

historically involved modeling it using an analytical equation that approximates the subject’s 

probability of successful task performance as a function of stimulus intensity or discriminability. 

Multiple methods for accurately and efficiently estimating the 1D PF have been developed over 

the years, employing techniques such as maximum likelihood estimation, maximum a posteriori 

estimation, bootstrap resampling, and Markov chain Monte Carlo methods (e.g., Treutwein, 

1995; King-Smith and Rose, 1997; Kontsevich and Tyler, 1999; Leek, 2001; Wichmann and 

Hill, 2001b; Shen and Richards, 2012). 

The full audiometric function, however, is 2-dimensional, including one psychometric and one 

non-psychometric dimension. Estimation of multidimensional PFs has been considerably more 

limited, with most cases focusing on particular psychophysical spaces that can be easily 

parameterized (Bengtsson et al., 1997; Lesmes et al., 2006; Shen and Richards, 2013). More 

flexible frameworks, in which the PF of interest can belong to a particular parametric family, 

have also been developed (Kujala and Lukka, 2006; Vul et al., 2010; DiMattina, 2015). 

However, the audiometric function cannot be justifiably parameterized, as it is the particular 

shape of the threshold curve that determines auditory dysfunction and has diagnostic value. 
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The Gaussian process is a nonparametric framework that does not require parameterization of the 

underlying function of interest; rather, it encodes relationships between nearby variable values in 

the form of covariances (Rasmussen and Williams, 2006; Duvenaud, 2014). Therefore, GPs have 

the flexibility to encode a large number of function shapes, so long as they fit the criteria of the 

covariance functions specified. Because of this, we chose a GP classification (GPC) framework 

to perform inference on these multidimensional audiometric functions, extending the capability 

of the MLAG algorithm to estimate entire psychometric functions. 

In Chapter 4, we describe two distinct simulation experiments using the MLAG algorithm. In the 

first experiment, we investigate the ability of our GPC framework to estimate 1D PFs using 

samples obtained from the method of constant stimuli (Fechner, 1860). For comparison, we also 

perform inference using maximum-likelihood probit regression (PR) with the Nelder-Mead 

simplex method (Kingdom and Prins, 2010), as detailed in Section 1.4.1, using the same set of 

observed points. In the second experiment, we use the MLAG algorithm to estimate entire 2D 

audiometric functions using fixed sets of deterministic samples. 

4.2. Methodology: 1D Psychometric Function 

In Experiment 1, we evaluated performance of the GPC algorithm for estimation of a traditional 

1D PF. We conducted computer simulations for a standard auditory detection task in which 

listeners are presented with pure tones of fixed frequency and are instructed to indicate when 

they detect a tone (Kingdom and Prins, 2010). While we conceptualized this as a tone detection 

task, the development that follows is generic and therefore relevant to a wide variety of 

univariate psychometric tasks. 
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4.2.1 Simulation Details 

For each simulated auditory detection task, a stimulus of a particular intensity 
i

x  was presented, 

and a binary response (indicating whether or not the stimulus was detected) was collected from a 

simulated participant. The probability of simulated user responses was governed by a cumulative 

Gaussian PF of the following form (Kingdom and Prins, 2010): 

 ( )
2

1
2

1
exp

2

x z
x dz

α
ee π −∞

  − ψ = −     
∫ . (4.1) 

For each stimulus 
i

x , we computed the corresponding detection probability ( )i
xψ  from the PF. 

To generate the binary response 
i

y  for that trial, we simulated a single draw from a Bernoulli 

distribution with success probability ( )i
xψ , with success labeled as 1 and failure labeled as 0 

(Treutwein, 1995). Following standard procedures for the method of constant stimuli (Fechner, 

1860), we sampled j different stimulus intensities k times each. We then used this set of observed 

samples ( ){ } ( )
1

, ,
n

i i i
x y

=
= x y  to construct our estimate of the PF using the GPC technique 

described below. 

4.2.2 Gaussian Process Construction 

Because we observe only whether or not a subject detects the stimulus, not the detection 

probability itself, the output variable y  is the binary value 1 if the subject detects the stimulus 

and 0 otherwise. We are therefore interested in obtaining ( )1p y f= , which can be obtained 

using the GPC framework, allowing for inference using binary observations. We place a GP 
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prior on the latent function, ( ) ( ) ( )( ), ,p f x K x xµ ′=  , which we then transformed using an 

likelihood function ( )1p y f= . 

In the case of the 1D PF, we have substantial prior information that can be incorporated into the 

model. Standard techniques for 1D PF estimation parameterize the PF using a sigmoidal function 

that monotonically increases with stimulus intensity (Wichmann and Hill, 2001a; Kingdom and 

Prins, 2010). A similar procedure can be incorporated into our GPC model by combining the 

forms of the covariance function and the likelihood function. For the latent function f , we select 

a linear covariance function: 

 ( ) ( ) 2, ,K x x K sι ι ιι′ ′ ′= = , (4.2) 

where ι  is the intensity and 2s  is a scaling factor. This covariance function constrains the latent 

function f  to only linear functions. When combined with a cumulative Gaussian likelihood 

 ( ) ( )
2 2

1
2

if z

i i i

e
p y f f dz

π

−

−∞

= = Φ = ∫ , (4.3) 

the resulting probability function takes the form of a cumulative Gaussian function that 

monotonically increases with intensity. For the mean function, we choose ( )x cµ = , where c  is 

a constant hyperparameter, because any deviation from the mean response can be effectively 

captured in the covariance function. 
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After observing a set of training stimuli and responses ( ),x y , we first compute the best-fitting 

set of hyperparameters ( ),s c=θ  by maximizing the log marginal likelihood ( )log p y X)θ . 

Upon obtaining appropriate hyperparameters, we then calculate an estimate of the latent function 

as the posterior distribution ( )* *, ,p f x y x . Here, *x  is a finely spaced test set of intensities (e.g., 

−20 to 120 dB in 1-dB increments), and *f  represents the predicted latent function values at that 

set of intensities. We use the Laplace technique is used for approximation whenever necessary 

(Williams and Barber, 1998). 

Estimates for the threshold α and spread β of the PF are derived directly from the x-intercept and 

inverse slope of the predictive latent mean. We obtain our point estimate for the PF by passing 

the predictive latent mean through the likelihood function ( )1
i i

p y f= . 

4.2.3. Evaluation 

We evaluated estimation accuracy and reliability of the GPC framework for several 

psychometric and sampling parameters: 

• Spread value: We used β values of 0.2, 0.5, 1, 2, 5, 10, and 20 dB/percent to construct 

true PFs. 

• Number of sampled intensities/number of repetitions at each intensity: In a standard 

method of constant stimuli, a fixed number of intensities is selected, and each intensity is 

sampled some number of times (Fechner, 1860). With the maximum number of samples 

fixed at 200, we evaluated the following divisions individually: 200 intensities with 1 

repetition per intensity, 100 intensities with 2 repetitions per intensity, 40 intensities with 
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5 repetitions per intensity, 20 intensities with 10 repetitions per intensity, and 10 

intensities with 20 repetitions per intensity. 

• Number of observed samples: To investigate the independent effect of total sample 

number on performance, sampling was conducted randomly without replacement for each 

set of intensities, and this process was repeated for the specified number of repetitions. 

For each parameter combination, then, each simulation was advanced 1 sample at a time 

and incrementally evaluated up to the maximum sample number of 200. 

• Simulation repetition/threshold value: For each unique parameter combination, we 

conducted 4 independent simulations, resulting in 28000 simulations overall. For each 

simulation, an integer value for threshold α was randomly drawn from the uniform 

distribution 30,70   . 

We compared one-dimensional GPC experimental outcomes with traditional parametric 1D PF 

inference using maximum-likelihood probit regression (PR) (Nelder-Mead simplex method) 

(Nelder and Mead, 1965; Prins and Kingdom, 2009; Kingdom and Prins, 2010), a standard 

technique for PF inference given a set of observations. Identical stimulus and response samples 

were used to train both GPC and PR methods for each simulation. We evaluated estimation 

performance of both methods by comparing estimated values for α and β with the known values 

of α and β used in the simulated PFs. Accuracy was quantified by computing the mean deviation 

of parameter estimates from the true values, while reliability was quantified by computing the 

variance of GP parameter estimates across all repetitions with identical parameter values. We 

also derived nonparametric numerical values from the psychometric curve model to determine if 

such measures might differentiate the two methods in accuracy or reliability. The measures we 
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chose were the 50% probability point and the 25-75% interquartile range (Strasburger, 2001). All 

statistical tests between GPC and PR were performed using the Kolmogorov-Smirnov (K-S) test, 

Bonferroni corrected for multiple comparisons. 

We evaluated goodness of fit to the observations was evaluated for both GPC and PR using the 

Pearson 2χ  statistic: 
( )
( )

2

2

1

i i i

i i i

N p x P

P P
χ

 − =
−

∑ . For intensity 
i
ι , ( )i

p x  is the percent correct of 

the data, 
i

P  is the percent correct of the model prediction, and 
i

N  is the number of trials at that 

intensity (Klein, 2001; Wichmann and Hill, 2001a). The 2χ  statistic can be interpreted as a 

weighted sum of squared residuals, with larger statistic values representing poorer fits. The 

significance of the 2χ  statistic was evaluated by comparison to the chi-square distribution with J 

degrees of freedom, where J is the number of distinct intensities sampled. 

4.3. Methodology: 2D Psychometric Function 

In Experiment 2, we used the GPC framework to solve a relevant multidimensional psychometric 

problem. In this problem, a sequence of pure tones varying in both frequency and intensity is 

presented to a simulated listener, who is instructed to respond whenever a tone is detected. This 

task is similar to the task used for traditional pure-tone audiometry (Hughson and Westlake, 

1944; Carhart and Jerger, 1959), but with two key differences: for this task, sampling does not 

necessarily proceed one frequency at a time, and sampling and prediction resolutions in both 

input feature dimensions is considerably higher. The goal of this work is to construct a general 

multidimensional PF estimator from recorded binary responses that can be used immediately for 
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pure-tone audiometry and can be readily adapted to other multidimensional psychometric 

estimation problems. 

4.3.1 Simulation Details 

To simulate the 2D psychometric field, we first defined an audiogram shape for each simulated 

participant. For each audiogram shape, we approximated of 1 of 4 human audiometric 

phenotypes (Dubno et al., 2013) using spline interpolation and linear extrapolation, forming a 

continuous threshold curve across frequency space. Figure 4.1 shows the 4 phenotypes, which 

were classified using both machine learning and physiology. 

 
Figure 4.1: Plot of 4 human audiometric phenotypes.Reproduced from (Dubno et al., 2013). 

At each frequency, we used (4.1) to generate a sigmoidal psychometric curve as a function of 

intensity. We selected a value for spread β between 0.2 and 10 dB/percent, and we computed the 

value for center point α given β and the value of audiometric threshold at that frequency, which 

corresponded to a detection probability of 70.7% (Levitt, 1971). The overall 2D PF is therefore a 
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combination of the audiogram shape across frequency and the sigmoidal 1D PF in intensity and 

provides the probability of detection ( )i
ψ x  for any input frequency/intensity pair ( ),

i i i
ω ι=x . 

As in the 1D case, the binary response 
i

y  (success = 1; failure = 0) can be generated by 

simulating one draw from a Bernoulli distribution with success probability ( )i
ψ x . To select the 

set of observed frequency/intensity pairs, we use a Halton sequence (Halton, 1964), which 

provides a deterministic set of n  well-spaced draws from the frequency/intensity domain of 

interest. We use these observed samples ( ) ( ) ( ){ } ( )1 1 1 1
, , , , , ,

n n
y y y =x x x X y  as training 

observations for the GPC algorithm. 

4.3.2. Gaussian Process Construction 

For the 2D PF inference problem, we wish to estimate a subject’s detection probability as a 

function of both the intensity and frequency of the presented stimulus. Our input variable x  is 

therefore a frequency-intensity pair, or ( ),ω ι=x , and our output variable y  is a binary response 

variable. We wish to infer the detection probability ( ) ( )1p yψ = =x x , and we place a GP prior 

on the latent function: ( ) ( ) ( )( ), ,p f x K x xµ ′=  . 

As in the 1D case, the dependence of detection probability on stimulus intensity is assumed to be 

a monotonically increasing sigmoidal function, which is captured using the linear covariance 

function (Equation 12) in the intensity dimension. The dependence of the detection probability 

on frequency is not explicit, however, and will vary across subjects based on the shape of the 

audiogram. A reasonable assumption is that the overall PF is continuous along the frequency 
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dimension with some smoothness (Von Békésy, 1960; Kiang et al., 1965; Green and Swets, 

1966; Brant and Fozard, 1990; Leek, 2001). To reflect this behavior, we select a SE covariance 

function (2.9) for the frequency dimension. The full covariance function combines the linear 

covariance function in intensity and the SE covariance function in frequency: 

 ( ) ( ) ( )( ) ( ) ( )
2

2 2
1 22

, , , , exp
2

K K s s
ω ω

ω ι ω ι ιι
 ′− − ′ ′ ′ ′= = + 
  

x x x


 (4.4) 

Here, 
1

s  and 
2

s  are scaling factors and   is a characteristic length scale, which regulates the 

smoothness of the function with respect to frequency. Again, we select a constant mean function 

( ) cµ =x  for this GP. 

Given a set of observed samples ( ),X y , we again first calculate a set of best-fitting 

hyperparameters ( )1 2
, , ,c s s= q  by maximizing the log marginal likelihood ( )log p y X)θ . We 

then compute the posterior distribution ( )* *, ,p f X y X  for a finely spaced grid of test samples 

*X  across frequency-intensity space: 0.125 to 16 kHz in semitone increments for frequency and 

−20 to 120 dB in 1-dB increments for intensity. 

Unlike in the 1D case, we cannot readily specify a meaningful parametric form for the 2D PF 

across all frequencies and intensities. At any fixed frequency 
i

x , however, we can derive an 

analytical expression for the PF by finding the inverse slope and x-intercept of the mean of the 

posterior latent function f  at that frequency. Furthermore, the GPC method’s point estimate for 
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the full PF can be computed by passing f  through the likelihood function ( )1
i i

p y f=  and can 

be numerically compared to the true PF. 

4.3.3. Evaluation 

We evaluated overall performance of the GPC framework for a variety of psychometric and 

sampling parameters. Specifically, these parameters were manipulated: 

• Audiogram shape: Older-normal, sensory, metabolic, and sensory + metabolic audiogram 

profiles (Dubno et al., 2013) were used to fix simulation values of α at each frequency. 

• Spread value: β values of 0.2, 0.5, 1, 2, 5, and 10 dB/percent, assumed isotropic across all 

frequencies, were used to construct the PF. 

• Number of observed samples: 20, 50, 100, 200, 500, and 1000 pairs ( ),X y  were used as 

observed data to condition the GP. 

• Simulation repetition: For each unique parameter combination, we performed 40 

independent repetitions of GPC inference, resulting in 5760 simulations overall. 

We evaluated performance of the GPC framework by comparing the GP parameter estimates of 

α and β with the known values of α and β from the simulated PF. Performance was evaluated by 

comparing parameter values at a fine grid of frequency values (0.25 to 8 kHz in semitone 

increments). Edge frequencies (0.125 to 0.25 and 8 to 16 kHz) were used to train the GP but not 

to evaluate prediction because previous work has shown that edge effects can reduce GPC 

accuracy (Song et al., 2015). Accuracy was evaluated by computing the mean deviation of 

parameter estimates from the true value, while reliability was evaluated by computing the 
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variance of GP parameter estimates across all repetitions with the same parameter values. Once 

again, accuracy and reliability were verified with two nonparametric numerical values: the 50% 

probability point and 25-75% interquartile range. 

We evaluated goodness of fit of the 2D GP posterior mean to the observations using the Pearson 

2χ  statistic, consistent with the 1D case. For each frequency/intensity pair ( ),
i i i

ω ι=x , the 

statistic 
( )
( )
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 − =
−

∑
x

 was computed and compared to the chi-squared distribution 

with J degrees of freedom, where J is the number of frequency/intensity pairs sampled. Because 

the GP framework with a Halton sampling scheme does not typically repeat observations at 

identical input values, J usually equaled the total number of observations. 

4.4. Results: 1D Psychometric Function 

For 1D PFs, both GPC and PR produced outlier trials for small sample numbers that 

disproportionately affected computation for the means and standard deviations. Following data 

collection from the simulations, we detected these outliers by thresholding at the 98th percentile 

(i.e., removing the 2% of scores farthest from the mean) across all trials and conditions for GPC 

and PR independently. A total of 981 and 716 outliers were detected out of 28000 total 

simulations each for the PR and GPC runs, respectively, primarily from trials with fewer than 20 

observed samples. We excluded these outliers from the computations of means and standard 

deviations. We also omitted any trials using fewer than 10 observed samples from these 

computations because of generally poor performance at low sample numbers for both methods. 
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Figure 4.2 shows four representative examples of unidimensional PFs estimated by the GPC and 

PR techniques with four different numbers of observed samples (i.e., simulated subject 

responses) at fixed absolute intensity values. Identical observations were used for both methods 

in each panel. Qualitatively and quantitatively, GPC and PR perform very similarly, with 

systematically increasing estimation accuracy as the number of observed samples increases. 

 
Figure 4.2: Examples of 1D PF estimation using PR and GPC. Each subplot shows model performance after (A) 20, 
(B) 100, (C) 150, and (D) 200 samples. True values of α and β were 66 dB and 10 dB/%, respectively, and sampling 

was performed at 20 distinct intensities within the interval. Units for α and β error are dB and dB/%, respectively. 

Figure 4.3 shows the mean and standard deviation of absolute errors for α and β as a function of 

number of observed samples, averaged across all 140 conditions and trials, for both PR and GPC. 

As expected, the accuracy and reliability for both techniques increased with the number of 

samples. Estimates for α are consistent between PR and GPC. For β estimates at lower sample 

numbers, GPC appears to be slightly less accurate or equivalently accurate yet more reliable than 
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PR, although this difference disappears at higher sample numbers. Nevertheless, only 2 of 382 

total comparisons showed statistically significant differences between PR and GPC (p<0.05, 

Kolmogorov-Smirnov test, Bonferroni corrected for multiple comparisons), consistent with the 

assessment that these two methods generally exhibit statistically indistinguishable performance. 

 
Figure 4.3: Error in 1D α and β estimates for PR and GPC across all conditions. Absolute error in estimates of (A) α 
and (B) β as a function of number of observed samples in the unidimensional case. Blue solid and red dashed lines 
denote mean absolute errors of the PR and GPC estimates, respectively, and the matching shaded regions designate 

1 standard deviation above and below the mean. 

Because of increased uncertainty in the transition zone for higher values of β, we evaluated 

estimator performance for larger versus smaller spreads as a function of β value. Figure 4.4 

shows the mean and standard deviation absolute errors in α and β for each β value tested. In all 

cases, both accuracy and reliability generally increase as a function of sample number. However, 

large values of β decrease the accuracy of both GPC and PR, particularly for lower numbers of 

observed samples. Overall, the trends for GPC and PR are generally quite similar, revealing no 

consistent difference in estimator quality between the two methods. 
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Figure 4.4: Error in 1D PR and GPC α and β estimates for different β values. Absolute error in estimates of (A-G) α 
and (H-N) β as a function of number of observed samples for unidimensional PFs. Blue solid and red dashed lines 

denote mean absolute errors of the PR and GPC estimates, respectively, and the matching shaded region designates 
1 standard deviation above and below the mean. Each subplot corresponds to a distinct β value. 

Because a fixed number of samples can be distributed across intensity in different ways, we 

investigated the effect that the number of distinct intensities and the number of repetitions per 

intensity had on the performance of both estimators. Figure 4.5 shows the mean and standard 

deviation of absolute errors in α and β for each unique trial count per intensity. Both accuracy 
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and reliability generally increase as a function of sample number. Again, overall estimator 

performance is quite similar between the two methods, with 0 of 1910 comparisons resulting in 

statistically significant differences for either α or β (p<0.05, K-S test, Bonferroni corrected for 

multiple comparisons). 

 
Figure 4.5: Error in 1D PR and GPC α and β estimates for different sampling distributions. Absolute error in 

estimates of (A-E) α and (F-J) β as a function of number of observed samples for unidimensional PFs. Blue solid 
and red dashed lines denote mean absolute errors of the PR and GPC estimates, respectively, and the matching 

shaded region designates 1 standard deviation above and below the mean. Each subplot corresponds to a distinct 
condition for number of intensities and number of repetitions per intensity. 

We repeated all of the analysis described above for the numerical accuracy and reliability values 

of 50% point and 25-75% interquartile range. We observed identical trends for these measures, 

again indicating that GPC results in functionally indistinguishable estimator performance 
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compared to parametric maximum-likelihood PR for 1D PF estimation. These results are shown 

in Appendix 1, Figures A1.1–A1.3. 

To further investigate the agreement between GPC and PR estimates on 1D PFs, we directly 

compared the GPC and PR performance for estimates derived from the same set of data. Figure 

4.6 shows plots of GPC estimates versus PR estimates, with α and β behavior shown in Figure 

4.6A and Figure4.6B, respectively. Note that 1 outlier was removed from the comparison for α. 

Coefficient of determination values for both α and β linear fits were very high, indicating that the 

linear functions were good fits for the data. For both α and β, linear slope terms were very close 

to 1 and linear intercept terms were near 0, indicating high PR and GPC estimate agreement. 

Correlation coefficients between PR and GPC estimates were 0.9992 and 0.9941 for α and β, 

respectively, again indicating a high degree of agreement between estimates. GPC does appear to 

overestimate small β values compared to PR, consistent with the data in Figure 4.4H-J. 

 
Figure 4.6: Direct comparison of 1D PR and GPC α and β estimates. Black points represent individual PR/GPC pairs 

for estimates derived from the same set of data, and the red line is a linear fit to the data. Equations describing the 
line and r2 values are inset. 1 outlier was removed from the α comparison plot. 
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Across all 28000 2D trials, the median 2χ  statistic was 3.45 for GPC trials and 5.28 for PR 

trials. Using a significance level of p < 0.05, Bonferroni corrected for multiple comparisons, 165 

of 28000 GPC simulations (0.59%) demonstrated statistically poor fits, while 201 of 28000 PR 

simulations (0.72%) demonstrated statistically poor fits. 

4.5. Results: 2D Psychometric Function 

Following data collection from simulations, we detected 4 trials out of 5760 as outliers by 

thresholding parameter values at the 99.93 percentile. These trials were omitted from the 

calculations for mean and standard deviation. Qualitative assessment of these outliers revealed 

the posterior mean surfaces were basically flat, resulting in β estimates of close to infinity. 

Figure 4.7 shows a representative plot obtained by a single run of the 2D GP method. Figure 

4.7A shows the samples and posterior mean obtained by the 2D GP method after observing 200 

Halton samples. Figure 4.7B shows the GP prediction of α compared to the true values of α as a 

function of frequency, which demonstrates close agreement. Figure 4.7C shows a sample “slice” 

of the posterior mean at ω  = 1 kHz, superimposed with the true PF at that frequency, which 

illustrates the agreement in β. GPC performance closely matched the simulation ground truth. In 

this kind of 2D PF estimation, however, no standard psychometric estimation method exists with 

which to compare GPC performance. 
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Figure 4.7: Sample posterior surface with samples and threshold/spread estimates. (A) A 200-point Halton sample 

set and resulting predictive posterior mean. The true psychometric function consisted of a metabolic + sensory 
audiogram type with a spread of 1 dB/percent. Superimposed magenta curve shows the true value of α as a function 

of frequency. Blue plus and red diamond symbols denote detected and missed tones, respectively. (B) The GP 
estimate of α (black dashed line) compared with the true values of α (magenta solid line) as a function of frequency. 

(C) A slice of the predictive posterior at 1 kHz (dashed line) compared with the slice of the true psychometric 
function (solid line). Colorbar represents detection probabilities. 

Figure 4.8 shows representative GPC behavior for each of the four archetypical audiogram 

phenotypes (Dubno et al., 2013). In each case, 200 Halton samples achieved reasonable accuracy 

for parameter and numerical estimates. 
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Figure 4.8: Representative posterior distributions for four audiogram phenotypes. Phenotypes are (A) older-normal, 
(B) metabolic, (C) sensory and (D) metabolic + sensory shapes. All plots have β = 1 dB/% as ground truth and are 

sampled using 200 Halton samples. Blue plus and red diamond symbols denote detected and missed tones, 
respectively. The magenta curve shows the true values of α across frequency for each audiogram phenotype. 

Colorbar represents detection probabilities. 

Tables 4.1-4.3 summarize the accuracy and reliability of the 2D GP across all trials and 

conditions. Table 4.1 shows the mean and standard deviation of the absolute errors in α and β 

values, separated by total number of samples. As expected, accuracy and test-retest reliability for 

both parameters increase as a function of total number of samples. Tables 4.2 and 4.3 show the 

mean and standard deviation of the absolute errors in α and β values separated by β value and 

audiogram shape, respectively. These two tables used only data collected with 200 Halton 

samples, which achieved a reasonable estimate for both parameters. As the β value increased, 
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accuracy and test-retest reliability tended to decrease for α. Results across different audiogram 

shapes were similar for α and β. 

Number of samples 20 50 100 200 500 1000 

Mean α absolute error (dB) 6.63 4.35 3.03 2.08 1.30 0.933 

Std. α absolute error (dB) 5.42 7.28 2.57 1.74 1.23 0.913 

Mean β absolute error (dB/%) 3.22 2.68 1.50 1.32 0.676 0.429 

Std. β absolute error (dB/%) 2.63 2.62 1.64 1.18 0.576 0.345 

Table 4.1: Absolute errors of 2D GP α and β estimates by number of samples. Accuracy and reliability are 
quantified using mean and standard deviation, respectively. 

β (dB/%) 0.2 0.5 1 2 5 10 

Mean α absolute error (dB) 1.53 1.60 1.70 1.86 2.47 3.32 

Std. α absolute error (dB) 1.03 1.09 1.17 1.32 1.90 2.60 

Mean β absolute error (dB/%) 1.04 0.843 1.11 1.49 1.77 1.70 

Std. β absolute error (dB/%) 1.11 1.14 1.01 0.874 1.35 1.25 

Table 4.2: Absolute errors of 2D GP α and β estimates by value of β. Accuracy and reliability are quantified using 
mean and standard deviation, respectively. Sample number is fixed at 200 samples. 

Audiogram Phenotype Older Metabolic Sensory Metabolic + 
Sensory 

Mean α absolute error (dB) 2.19 1.69 2.22 2.22 

Std. α absolute error (dB) 1.68 1.47 1.96 1.75 

Mean β absolute error (dB/%) 1.07 1.03 2.29 0.916 

Std. β absolute error (dB/%) 1.14 0.888 1.14 0.993 

Table 4.3: Absolute errors of 2D GP α and β estimates by audiogram phenotype. Accuracy and reliability are 
quantified using mean and standard deviation, respectively. Values are averaged across all β values, and sample 

number is fixed at 200 samples. 
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Numerical accuracy and reliability for the 50% point and interquartile range were similar to the 

trends in α and β, respectively. These results are shown in Tables A1.1-A1.3 in Appendix 1. 

Across all 5760 2D GP simulations, the median 2χ  statistic value was 1.96. After computing 

probability values on the chi-square distribution with the appropriate degrees of freedom for each 

simulation, 86 of 5760 trials, or 1.5%, demonstrated statistically poor fits at a significance level 

of p < 0.05, Bonferroni corrected for multiple comparisons. 

4.6. Discussion 

Throughout the history of psychophysics, traditional methods of full PF estimation have almost 

always employed parametric regression. We have described a novel technique for estimating PFs 

using nonparametric probabilistic classification with Gaussian processes and Bayesian inference. 

Simulations indicate that this technique is able to estimate standard 1D PFs with accuracy 

comparable to that of maximum-likelihood probit regression. Despite representing a new form of 

psychometric inference, GPC is able to achieve as accurate results in traditional applications as 

perhaps the most commonly used PF estimator today. 

The true value of this method, however, comes with applications to scenarios more complex than 

1D PF estimation. We have also shown that GPC can accurately estimate a variety of 2D PF 

shapes within the same framework. To our knowledge, this is the first technique for estimation of 

arbitrary audiometric full PFs. Unlike other existing methods for multidimensional PF estimation 

(Patterson, 1976; Lesmes et al., 2006), we need not specify an explicit parametric form for the 

function, thereby imbuing this method with great flexibility to estimate arbitrarily shaped 
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multidimensional PFs. We have evaluated this technique for 1D and 2D functions, but it is 

straightforward to extend GPC to PFs spanning even more dimensions. 

For 1D PFs, GPC demonstrated the ability to accurately infer values for α and β across a number 

of distinct β values and sampling densities. Within approximately 30 samples, absolute 

estimation error for both α and β dropped to around 2 dB and 2 dB/%, respectively, with 

asymptotic performance approaching 1 dB and 1 dB/%, respectively. Crucially, GPC 

demonstrated equivalent performance to the Nelder-Mead simplex method for maximum-

likelihood parametric probit regression, showing parity with a common current method. 

The main advantages of the GP technique only become evident in estimation of the 2D 

audiometric function. Despite a limited number of samples across the entire frequency/intensity 

range, GPC is able to produce accurate estimates of α and β. Within approximately 50 samples, 

the error in α drops below 5 dB (see Table 4.1), matching the reported accuracy for both manual 

and automated audiometric techniques having much lower resolution (Fausti et al., 1990; 

Swanepoel et al., 2010; Mahomed et al., 2013). That sufficient accuracy and reliability on this 

2D estimation task can be achieved with a limited number of samples can be largely attributed to 

the covariance function, which allows for information to be shared across nearby frequencies. An 

advantage of the Halton sampling technique over traditional sampling techniques is that it does 

not repeat measurements at identical frequencies, up to the resolution limit along the frequency 

dimension. Instead, each observation influences the local PF estimate across frequency via the 

squared exponential portion of the covariance function. This structure allows an observation to 

influence predictions at nearby frequencies within a domain specified by the SE length scale. 



93 

 

Both the 1D sampling procedure and the 2D Halton sampling procedure used here are variants of 

the method of constant stimuli (Fechner, 1860). This sampling approach was deliberately chosen 

in order to make comparisons between the methods more straightforward and to separate out the 

effects of estimator quality and sampling methodology. Most PF estimation procedures, 

however, use adaptive sampling techniques that sequentially select samples maximally 

informative for some acquisition function, such as maximizing the decrease in expected variance 

or entropy (King-Smith et al., 1994; Kontsevich and Tyler, 1999; Lesmes et al., 2006; Shen et 

al., 2014). These existing adaptive techniques can readily be incorporated into the GPC 

framework, whereby the adaptive method is used to select the samples and the GP is used to 

perform inference on the PF. The Bayesian nature of GPC means that informative samples can 

be inferred directly from the posterior itself. Previous work has demonstrated adaptive sampling 

schemes using uncertainty sampling, information sampling, and active model selection (Gardner 

et al., 2015a; Gardner et al., 2015b; Song et al., 2015), all of which can be implemented using 

the GP posterior distribution. 

The GPC technique as implemented here obtains point estimates for PF parameters α and β upon 

approximating the latent function ( )f x . A common need in Bayesian estimation, however, is to 

obtain a probability distribution on those parameters. PF estimation techniques typically use 

bootstrap and Monte Carlo resampling procedures to obtain these distribution estimates 

(Wichmann and Hill, 2001b; Kuss et al., 2005). In the GPC framework, PF parameter 

distributions can be obtained numerically by sampling from the posterior distribution (e.g., by 

Markov chain Monte Carlo methods) or by explicitly specifying parameters in the GP latent 
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function itself (which is typically treated as purely nonparametric) and approximating the 

posterior distribution over these parameters (Rasmussen and Williams, 2006). 

The GPC formulation has distinct parallels with previous work in which the 1D psychometric 

function model was decomposed into “core” and “sigmoid” functions (Kuss et al., 2005; Fründ 

et al., 2011). In the case of GPC, the “core” function is the latent function f , and the “sigmoid” 

function is the likelihood function ( )1p y f= . As in the previous work, each of these functions 

can be manipulated independently in GPC to reflect different psychometric properties. 

4.7. Concluding Remarks 

This chapter describes a nonparametric Bayesian technique for estimating unidimensional and 

multidimensional psychometric functions. The specific Bayesian procedure implemented made 

use of Gaussian process classification, a flexible yet powerful inference engine well-suited for 

approximating complex psychometric functions. We assessed the accuracy and reliability of this 

technique using both 1D and 2D simulated audiometric functions, revealing accuracy 

comparable to standard parametric estimation techniques wherever such comparisons could be 

performed. Because of its inherent flexibility, this technique can be readily extended to 

approximate psychometric functions outside of the auditory domain and can easily incorporate 

more input dimensions and more complex covariance and likelihood functions. Adopting 

probabilistic classification techniques will yield a host of advantages for general psychometric 

function approximation relative to conventional parametric regression techniques without any 

apparent drawbacks relative to the simpler applications in common use. 

  



95 

 

Chapter 5: Estimation of Multidimensional 
Audiometric Functions Using Active Gaussian 
Process Classification 

The research presented in Chapter 5 was performed in conjunction with Kiron A. Sukesan and is 

currently in preparation for Attention, Perception and Psychophysics. 

5.1. Introduction 

In Chapter 4, we presented the results of using the MLAG algorithm to perform inference on 1D 

psychometric functions and 2D audiometric functions (Song et al., 2017). Results showed that 

for 2D audiometric functions, Halton sampling resulted in reasonable estimates for α and β in 

approximately 100 samples (3.03 ± 2.57 dB for α, 1.50 ± 1.64 dB/% for β), compared to clinical 

test-retest reliability of 5 dB for thresholds (Katz et al., 2009). 

Halton sampling, despite being a space-filling set, is nonetheless a deterministic method that 

selects samples that likely contribute little information to the estimate. As can be seen in both 

Figure 4.7 and Figure 4.8, the majority of samples, both detected and undetected, were in regions 

where the probability was ultimately very certain. Because an iterative approach was not taken 

for 2D audiometric function estimation, the set had to be chosen a priori, and as a result had to 

be relatively naive. However, an active sampling scheme could dramatically improve the 

efficiency of audiometric function estimation if implemented. 

As outlined in Section 1.4.2, numerous active sampling methods have been implemented over 

the years to efficiently estimate unidimensional psychometric functions, each of which iteratively 

selects optimal query points to best form the current estimate (Treutwein, 1995; Leek, 2001). 
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The earliest active sampling techniques were optimized for estimating threshold only; these 

included methods such as best PEST, which places each trial at the point closest to threshold 

(Pentland, 1980), and QUEST, which places each trial at the current posterior mean of threshold 

(Watson and Pelli, 1983). The degree to which these particular methods can estimate spread is 

unclear. Active sampling strategies that are known to estimate threshold as well as spread 

include modified ZEST, which selects the stimulus that produces the highest expected decrease 

in variance (King-Smith and Rose, 1997), and the Ψ-method, which selects the stimulus that 

minimizes the expected entropy (Kontsevich and Tyler, 1999). Variants of these 1D techniques 

have also been used to estimation of parametric multidimensional PFs (Kujala and Lukka, 2006; 

Lesmes et al., 2006; Lesmes et al., 2010; Vul et al., 2010; DiMattina, 2015). 

As mentioned in the previous chapter, however, existing models for multidimensional PFs must 

be parameterized in some way and cannot reliably estimate PFs that cannot be parameterized, 

such as the audiometric function. MLAG results from Chapter 3 showed large efficiency gains 

using active sampling relative to clinical methods (Song et al., 2015), and results from Chapter 4 

demonstrated MLAG’s ability to estimate full audiometric functions using deterministic 

sampling. So far, active sampling has not been used with MLAG to estimate full audiometric 

functions. In this chapter, we combine GP classification with several active sampling strategies 

to investigate the accuracy and reliability of active sampling in the MLAG framework, directly 

comparing their results to the performance of non-active sampling methods. 

5.2. Methodology 

We evaluated the performance of the probabilistic classification algorithm for estimation of a 

tone-detection audiometric function given simulations of actual subject responses. Although 
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these experiments are centered upon a pure-tone detection task, the technique is general and 

applicable to numerous uni- and multidimensional psychometric estimation tasks. 

5.2.1. Simulation Details 

We simulated ground truth audiometric PFs as described in Section 4.3.1 and in (Song et al., 

2017). Threshold curves as a function of frequency were generated by estimation of 1 of 4 

human audiometric phenotypes (Dubno et al., 2013) using spline interpolation and linear 

extrapolation. 6 different spread parameters β between 0.2 and 10 dB/percent were considered 

for each PF. At each frequency, we constructed a 1D sigmoidal PF using a cumulative Gaussian 

equation of the following form (Kingdom and Prins, 2010): 

 ( )
2

1
2

1
exp

2

z
dz

ι αι
ee π −∞

  − ψ = −     
∫ , (5.1) 

where ι  is intensity. The audiogram threshold value at that frequency corresponded to the 70.7% 

detection probability point along the PF (Levitt, 1971), which we used along with β in order to 

compute the value of α. To construct the overall 2D PF, we combined the audiogram shape 

across frequency with the sigmoidal 1D PF in intensity. 

For a particular frequency/intensity input ( ),
i i i

ω ι=x , the PF returns a detection probability 

( )i
ψ x  corresponding to that point. We can generate a binary response 

i
y  at that input by taking 

a single draw from a Bernoulli distribution with parameter ( )i
ψ x . Detected and non-detected 

responses are represented as values of 1 and 0, respectively (Treutwein, 1995). 
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5.2.2. Gaussian Process Construction 

For this experiment, we used an identical 2-dimensional GP framework to the one described in 

Section 4.3.2 and (Song et al., 2017). The main points are briefly summarized here. 

Variable space: For this problem, the input variable x  is a pure-tone frequency-intensity pair 

( ),ω ι=x , and our output variable y  is a binary response variable. We place a GP prior on the 

latent function f , describing degree of class membership: ( ) ( ) ( )( ), ,p f x K x xµ ′=  . 

Mean function: As before, we choose a constant mean function: ( ) cµ =x , allowing for the 

covariance function to capture the variation in the latent function around the mean. 

Covariance function: Tone detection probability increases with increasing intensity ι , while it 

does not take a fixed form as a function of frequency ω  but is known to be continuous and 

relatively smooth (Von Békésy, 1960; Kiang et al., 1965; Green and Swets, 1966; Brant and 

Fozard, 1990; Leek, 2001). Therefore, the full covariance function across both frequency and 

intensity has a linear form in ι  and a squared exponential form in ω : 

 ( ) ( ) ( )( ) ( ) ( )
2

2 2
1 22

, , , , exp
2

K K s s
ω ω

ω ι ω ι ιι
 ′− − ′ ′ ′ ′= = + 
  

x x x


, (5.2) 

where 
1

s  and 
2

s  are scaling factors and   is a SE characteristic length scale. 

Likelihood function: Following the GP classification procedure (Rasmussen and Williams, 

2006) and for consistency with standard PF formulations (Kingdom and Prins, 2010; Fründ et 

al., 2011), we transform the latent function using a cumulative Gaussian likelihood: 
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Computation of hyperparameters: The set of mean and covariance function hyperparameters for 

this GP prior is ( )1 2
, , ,c s s= q . Upon observing a set of samples ( ),X y , we calculate a set of 

best-fitting hyperparameters by maximizing the log marginal likelihood ( )log p y X)θ . 

Calculation of posterior distribution: After each set of observations ( ),X y , we compute the 

posterior distribution ( )* *, ,p f X y X  for a finely spaced grid of test samples *X  across 

frequency-intensity space: 0.125 to 16 kHz in semitone increments for frequency and −20 to 120 

dB in 1-dB increments for intensity. 

5.2.3. Sampling Methods 

We evaluated the efficacy of several sampling techniques within the GP classification 

framework. In total, we evaluated 4 techniques: 1 random sampling scheme, 1 deterministic 

sampling scheme and 2 active sampling schemes. Each is described in more detail below. 

• Random sampling: On each iteration, the sample point selected is determined at random 

from the set of all possible grid points. This technique reflects a useful efficiency baseline 

to which each other sampling technique can be compared. 

• Halton sampling: On each iteration, the sample point chosen is drawn from the 

corresponding ordered value in a Halton sequence, which provides a well-spaced 

deterministic set of draws on some predefined interval (Halton, 1964). The work done in 
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Chapter 4 utilized this approach to effectively estimate multidimensional psychometric 

functions (Song et al., 2017) and can be used as a point of comparison. 

• Uncertainty sampling: As described in Section 2.2.2, an uncertainty sampling framework 

selects samples in which the model is least certain about their corresponding identities 

(Lewis and Catlett, 1994; Lewis and Gale, 1994; Settles, 2009). The acquisition function 

for uncertainty sampling is the posterior GP variance in y , 2
y

σ  (2.11). Work described in 

Chapter 3 has demonstrated that uncertainty sampling can produce estimates of 

audiogram thresholds consistent with those produced by the HW approach (Song et al., 

2015), and we extend this technique to inference of the entire psychometric function. 

• Bayesian active learning by disagreement (BALD): As described in Section 2.2.3, BALD 

seeks sample points for which model settings most disagree about the outcome (Houlsby 

et al., 2011). The acquisition function in this case is the expected decrease in posterior 

entropy, which is approximated in (2.12). BALD has previously been used to infer 

multidimensional neural receptive field and functional magnetic resonance imaging 

structure (Park et al., 2011; Park, 2013) as well as simulated audiogram thresholds 

(Gardner et al., 2015b), and is used here to infer multidimensional psychometric 

functions using binary responses. 

Heuristics: For both active sampling methods (uncertainty sampling and BALD), we added 

zero-mean Gaussian noise with a small variance to each point in the normalized acquisition 

function, i.e. ( )20,
n

σ , where 2 0.2
n

σ = . This heuristic generally improved sampling results by 
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reducing repeated sampling within a small area of the input space yet still allowing acquisition 

function magnitude to dominate for sample selection. 

5.2.4. Evaluation 

We evaluated performance of the technique for each of several model and sampling parameters: 

• Audiogram shapes: We used older-normal, sensory, metabolic, and sensory + metabolic 

audiogram phenotypes (Dubno et al., 2013) to generate α values across frequency. 

• Spread value: β values of 0.2, 0.5, 1, 2, 5, and 10 dB/percent, assumed isotropic across all 

frequencies, were used to determine spread. 

• Sampling method: Random sampling, Halton sampling, uncertainty sampling, and BALD 

were chosen as distinct sampling strategies within the GP framework. 

• Sample number: To identify the effect of number of observed responses on model 

performance, we conducted sampling iteratively up to 100 observations, and the 

performance of each sample count (1-100) was evaluated. 

• Simulation repetition: For each distinct parameter set, we conducted 10 independent 

repetitions of GP inference, resulting in 96000 simulations overall. 

We assessed model prediction in several ways. At each frequency on the fine grid (0.25 to 8 kHz 

in semitone increments), the α and β value of a 1D psychometric function can be derived by 

finding the x-intercept and inverse slope of the latent function f  and can be compared to the α 

and β values of the known true PF at that frequency. Notably, we used edge frequencies (0.125 to 

0.25 and 8 to 16 kHz) to train the GP but not to evaluate prediction due to known edge effects of 
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psychometric function estimation (Song et al., 2015; Song et al., 2017). We evaluated accuracy 

using mean deviation of parameter estimates from the true value, and we evaluated reliability 

using the variance of model estimates across all repetitions with the same parameter values and 

sampling schemes. Furthermore, the model’s point estimate for the overall 2D psychometric 

function can be computed by passing f  through the likelihood function ( )1p y f=  and can be 

numerically compared to the true psychometric function. 

We evaluated goodness of fit of the GP predictions to the observations using the Pearson 2χ  

statistic: 
( )
( )

2

2

1

i i i

i i i

N p P

P P
χ

 − =
−

∑
x

, where ( )i
p x  is the percent correct of the data, 

i
P  is the 

percent correct of the model prediction, and 
i

N  is the number of trials at a frequency/intensity 

pair ( ),
i i i

ω ι=x  (Klein, 2001; Wichmann and Hill, 2001a). For each input 
i

x  in the test set *X , 

we computed the statistic and compared its value to the chi-squared distribution with J degrees 

of freedom, where J is the number of distinct frequency/intensity pairs sampled. 

5.3. Results 

In 174 trials out of 96000 (0.18%), a numerical issue with the algorithm prevented it from 

executing properly. These failed trials were therefore removed, with the remaining 95826 

successful trials used in all following analysis. Any observation that would have been provided 

by a failed trial was replaced with a query at a random input point. Furthermore, a small number 

of trials (1625 of 95826) generated outliers due to poor hyperparameter convergence. Because of 

their disproportionate influence on the mean trends, these trials were omitted from the averaged 

data in Figures 5.4-5.6 by thresholding at the 98th percentile. Similarly, trials with fewer than 15 
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observations were not displayed in these figures due to generally poor performance, particularly 

for random and Halton sampling. 

A representative run of GP inference after 100 BALD samples can be seen in Figure 5.1. In this 

example ground truth was a sensory phenotype with β = 2 dB/%. Figure 5.1A shows the 

distribution of samples collected in frequency-intensity space for this particular run. Note that the 

samples are largely concentrated within a band around putative threshold where they would be 

particularly useful at refining the PF estimate. The posterior mean after 100 iterations is shown in 

the background. Figure 5.1B shows the estimated α curve across frequency compared to the true 

α curve. After 100 samples, the BALD procedure produces a continuous estimate of threshold as 

a function of frequency that closely matches ground truth. Figure X2C shows a slice of the 

model PF (the 1D PF) at ω = 1 kHz compared to the ground truth slice at that frequency. The 

close match of these two curves indicates that the BALD estimate of β matches ground truth as 

well as α. The agreement in spread extends across frequency, as well. 
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Figure 5.1: Representative example of GPC inference using active sampling. (A) Posterior mean with overlaid 
samples and α threshold curve for ground truth. (B) The GP estimate of α (dashed line) as compared to the true 

values of α (solid line). (C) A slice of the estimated psychometric function at ω = 1 kHz (dashed line), compared 
with a slice of the true psychometric function at that frequency (solid line). Ground truth was a metabolic phenotype 

with β = 1 dB/%. BALD was used as the sampling method. 

The BALD sampling method produces desired estimator behavior by selecting tones near 

detection threshold. Its relative performance can be seen in Figure 5.2, which shows 

representative single GP estimation runs (posterior mean and selected samples) for each 

sampling method after 100 samples. The ground truth surface is a metabolic + sensory phenotype 

with β = 2 dB/%, shown in the inset figure. BALD (Figure X3A) and uncertainty (Figure X3B) 

sampling schemes show similar sample selection around putative threshold, with the spread 

measures for BALD more closely resembling ground truth. Halton sampling (Figure X3C) 

selects relatively well-spaced draws spanning the entire input space, but samples are not densely 

populated along the threshold line compared to BALD and uncertainty sampling. Random 

sampling (Figure X3D) shows a predicted threshold curve that is noticeably divergent from the 

ground truth surface for these 100 samples. These distinct sampling methods show differences in 
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estimated PFs, with the BALD and uncertainty sampling estimates comparing most favorably to 

ground truth as sampling progresses. 

 
Figure 5.2: Representative posterior distributions for each sampling method. Data are shown after 100 samples, with 

ground truth being a metabolic + sensory phenotype with β = 2 dB/%. Each subplot corresponds to a distinct 
sampling method: (A) BALD sampling; (B) uncertainty sampling; (C) Halton sampling; and (D) random sampling. 

Inset in (A) shows the true psychometric surface used to generate all responses. Blue plus signs denote detected 
stimuli; red diamond signs denote undetected stimuli. 

The relative tendency of any point in frequency/intensity space to be queried for a particular 

sampling scheme can be visualized using mean acquisition maps, which are shown in Figure 5.3 

for the same psychometric surface as in Figure 5.2. The acquisition map is constructed by 

averaging the acquisition function values across all trials and repetitions for each sampling 

method, with higher values corresponding to input locations more likely to be queried. BALD 
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and uncertainty (Figure 5.3A and 5.3B) sampled densely around threshold, with uncertainty 

appearing slightly more tightly distributed near the threshold curve. Because Halton sampling 

(Figure 5.3C) is deterministic, only points within a small subset have high acquisition function 

values. Random sampling (Figure 5.3D) results in a predictably random acquisition map. 

 
Figure 5.3: Mean acquisition maps for each sampling technique. Ground truth is a metabolic + sensory phenotype 
with β = 2 dB/% (Figure 5.2 inset). Each plot shows the normalized acquisition function map averaged across all 

iterations and repetitions for a single sampling method: (A) BALD sampling; (B) uncertainty sampling; (C) Halton 
sampling; and (D) random sampling. 

Figure 5.4 shows the overall performance of each sampling method as a function of sample 

number averaged across all phenotypes, true β values and repetitions. Metrics evaluated were 

error in threshold α, error in spread β, and mean pointwise difference between predicted and 
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ground truth probability surfaces, a nonparametric comparison. Active methods strongly 

outperformed non-active methods for α estimation and mean pointwise difference, with trends in 

β being more consistent between all 4 sampling types. For α prediction, active sampling methods 

were within clinical reliability criterion (±5 dB) across all frequencies in approximately 20 tones, 

with non-active methods requiring approximately 50-60 tones to achieve the same criterion. 

Between the non-active methods, random sampling exhibited generally poorer performance 

compared to Halton sampling. 

 
Figure 5.4: Summary of active GP performance across all conditions. Colors correspond to sampling modes; lines 
denote the mean and shaded areas denote 1 standard deviation above and below. As a function of iteration, (A) and 
(B) show differences between model predictions and ground truth for α and β, respectively, and (C) shows the mean 

absolute difference in probability value between the GP posterior mean and ground truth. 

The influence of a particular audiogram phenotype on estimator performance is evaluated in 

Figure 5.5, which shows the prediction error of each sampling method for different audiogram 

profiles, averaged across true β values and repetitions. Older-normal phenotypes demonstrated 

the best performance due to its relatively flat shape. Performance was generally similar for the 

remaining 3 phenotypes, although Halton sampling appears comparatively worse for metabolic 

and metabolic + sensory phenotypes, particularly with small sample numbers. 
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Figure 5.5: Summary of active GP performance by audiogram phenotype. Colors correspond to sampling modes; 

lines denote the mean and shaded areas denote 1 standard deviation above and below. Differences in α and β 
between model predictions and ground truth for each phenotype are shown in (A1-A4) and (B1-B4), respectively; 

(C1-C4) shows the mean absolute difference in probability value between the posterior mean and ground truth. 

Higher values of spread β introduced increased uncertainty in the PF transition zones. The effect 

of β value on estimator performance was evaluated in Figure 5.6, which shows the prediction 

error for each sampling method for different β values, averaged across different phenotypes and 

repetitions. The results demonstrate broadly decreasing accuracy for all metrics with increasing 

β. Active sampling methods generally outperform non-active methods, with the exception of β 

inference using uncertainty sampling for the highest spread value (Figure 5.6B6). 
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Figure 5.6: Summary of active GP performance by β (spread) value. Colors correspond to sampling modes; lines 
denote the mean and shaded areas denote 1 standard deviation above and below. Differences in α and β between 

model predictions and ground truth for each phenotype are shown in (A1-A6) and (B1-B6), respectively; (C1-C6) 
shows the mean absolute difference in probability value between the posterior mean and ground truth. 

Across all 95826 valid simulations, the median 2χ  statistic was 5.03 × 10–5. After using the chi-

square distribution with the appropriate degrees of freedom to compute probability values for 

each trial, 9 of 95826 trials, or 0.0094%, were detected to be statistically poor fits at an 

uncorrected significance level of p < 0.05. 

5.4. Discussion 

In this chapter, we describe a method of accurately and efficiently estimating multidimensional 

psychometric functions by combining Gaussian process classification and active sampling. The 

current work extends previous efforts employing this estimation framework with deterministic 

sampling techniques (Song et al., 2017). Active sampling produces a marked efficiency increase 
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for the estimation of complex psychometric surfaces. Notably, active sampling methods required 

approximately 20-30 samples to reach the clinical reliability criterion of ±5 dB in audiometric 

threshold estimation (Fausti et al., 1990; Swanepoel et al., 2010), which is consistent with data 

from human subjects (Song et al., 2015). This sample number improves considerably upon the 

approximately 50-60 samples needed to reach the ±5 dB criterion for random and Halton 

sampling (Song et al., 2017), as well as upon the number of samples typically required for a 

complete Hughson-Westlake run, which often utilizes 100 or more samples per ear (Carhart and 

Jerger, 1959; Katz et al., 2009; Mahomed et al., 2013; Song et al., 2015). 

Overall, non-active techniques (random and Halton) performed comparatively more poorly than 

active techniques, with random sampling generally performing the worse of the two. The two 

active sampling techniques (uncertainty and BALD) exhibited similar performance, with both 

methods selecting samples near the putative threshold as expected. Uncertainty sampling 

demonstrated some difficulty with accurate β estimation for higher spread values (Figure 5.6B6) 

compared to the other sampling techniques, however. This result can be attributed to the fact that 

uncertainty sampling iteratively selects samples closest to a probability of detection of 0.5 and 

may not span a sufficient intensity range around threshold to adequately estimate larger β values. 

BALD incorporates an inherent tradeoff between exploration and exploitation (Houlsby et al., 

2011) which helps mitigate this issue. 

Notably, the heuristic of adding zero-mean Gaussian noise ( )20,
n

σ  to the acquisition function 

at each input point for BALD improved the accuracy of BALD and uncertainty sampling (data 

not shown). Although modest improvements were observed for uncertainty sampling, 

performance of BALD was dramatically improved with the implementation of this heuristic. 
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Unmodified, BALD samples exhibited a high degree of clustering, particularly along the edges 

in the frequency dimension. The additive Gaussian noise allowed for selection of points that 

were not the absolute maximum of the acquisition function, mitigating the previously observed 

clustering problem. Despite this added heuristic, the modified sampling technique still produced 

the desired sampling behavior on average (see Figure 5.3A). 

5.5. Concluding Remarks 

This chapter describes a method for estimating multidimensional psychometric functions with 

actively selected queries, extending the work in Chapter 4 using this technique with non-active 

samples. The method makes use of Gaussian process classification, a nonparametric Bayesian 

inference framework that allows for estimating complex PFs with limited categorical 

observations. Results show that active sampling techniques generally outperform Halton and 

random sampling, reaching clinical reliability in 20-30 samples. The flexibility of this technique 

allows for straightforward extension to other psychophysical domains, integration with other 

active sampling strategies, and incorporation of more informative prior beliefs into the model. 

This technique therefore represents an efficient, flexible method for estimating arbitrary PFs. 
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Chapter 6: Summary & Future Direction 

6.1. Summary of Findings 

We have described the development and validation of a novel machine learning framework for 

estimating multidimensional audiometric functions, the machine learning audiogram (MLAG). 

In contrast to existing methods for multidimensional psychometric function inference, this 

method does not require the function of interest to be parameterized, giving it the flexibility to 

estimate a wide variety of PF shapes. It also integrates well with active sampling procedures, 

enabling an extra degree of efficiency. 

In Chapter 3, we described the application of MLAG with uncertainty sampling to estimate 

threshold audiograms in human listeners. We found that our technique produced threshold 

estimates that were consistent with standard clinical Hughson-Westlake estimates and also 

exhibited test-retest reliability consistent with accepted techniques. However, MLAG required 

significantly fewer samples than HW to produce its estimates, as well as offered a principled 

estimate of all frequencies within the range of interest, which has not been demonstrated 

efficiently by other techniques for estimating threshold audiograms. 

We then investigated MLAG’s ability to estimate the audiometric function (the entire PF for 

pure-tone detection). Because no accepted technique for estimating these multidimensional non-

parameterized PFs in human subjects exists as a point of comparison, we instead evaluated the 

technique using simulated PFs for which ground truth was known. In Chapter 4, we described 

the use of our estimation framework to infer both 1- and 2-dimensional psychometric functions 

(thresholds and spreads). In the 1-dimensional case, our technique demonstrated consistency 
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with maximum-likelihood probit regression using samples obtained by the method of constant 

stimuli. In the 2-dimensional case, MLAG with Halton sampling was able to generate estimates 

of a wide variety of audiometric functions with high accuracy and reliability. In Chapter 5, we 

extended the work from Chapter 4 on 2D audiometric functions by adding the active sampling 

component; we showed that active sampling produced a dramatic decrease in the number of 

samples required to reach an accurate estimate of the PF, with Bayesian active learning by 

disagreement being the most promising among our tested strategies. 

In summary, we have designed and evaluated a novel technique for estimation of the audiometric 

function that demonstrates consistency with accepted clinical and psychophysical techniques as 

well as exhibits a number of other advantages. Although this thesis focuses on the particular 

application of the audiogram and audiometric function, this technique is general-purpose and can 

be easily applied to other psychophysical spaces. While the current implementation has some 

limitations (which are described in the next section), we believe the MLAG framework is a 

promising technique for audiometric and general psychometric evaluation. 

6.2. Recommendations for Future Direction 

In moving forward from the work presented in this thesis, there are many possible directions for 

future research. The simulation studies presented here should be verified with human studies 

wherever possible, and the robustness of the technique can be tested via application to novel 

scientific questions or additional psychophysical domains. The mathematical framework for the 

GP can be modified to account for more specific psychometric phenomena. Additional 

adjustments can be made to improve the efficiency of the technique, both for audiometric testing 
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and other applications. Finally, this technique and other established methods can be widely 

distributed to collect additional audiometric data, helping future refinement of the technique. 

6.2.1. Human Studies 

In Chapter 3, we described work using the GPC method to infer audiometric thresholds in human 

subjects, with our method demonstrating good agreement with clinical metrics (Song et al., 

2015). GPC for full psychometric function estimation (Chapters 4 and 5) should similarly be 

verified using human subjects in future studies. Additional research using GPC to estimate 

audiometric PFs in humans would further establish the advantages and validity of this technique, 

particularly in clinical contexts, and ultimately facilitate adoption by clinicians. 

Unfortunately, no techniques to efficiently estimate an entire audiometric function currently exist 

with which to compare the GPC technique. A logical, if time-consuming, approach is to use the 

method of constant stimuli (Fechner, 1860) to estimate a 1D PF at a few select frequencies *ω  in 

the audiometric space. The GPC technique can then be used to generate an estimate of the 2D PF 

across the full frequency/intensity space, and individual 1D frequency slices corresponding to *ω  

can be compared to the PFs estimated by the method of constant stimuli. Although the number of 

frequencies chosen will be limited by the relative inefficiency of the method of constant stimuli, 

this should still act as a valid comparison against a well-established technique. Additionally, a 

number of adaptive schemes exist for efficient estimation of 1D PFs (Hall, 1981; Watson and 

Pelli, 1983; Kontsevich and Tyler, 1999; Leek, 2001), which can be used in place of the method 

of constant stimuli as a point of comparison if efficiency is a concern. 

More exciting is the ability to use the GPC framework to answer scientific questions that have 

previously been difficult or prohibitive to investigate. For instance, a research area of interest is 
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audiogram microstructure, which describes the set of often periodic fluctuations in threshold as a 

function of miniscule steps in frequency (Long, 1984; Baiduc et al., 2014; Dewey et al., 2014). 

This microstructure is reflective of the underlying physiology of the ear, and it is an open 

question how it is impacted by various disease states. A few simple changes in the Gaussian 

process construction, for instance a smaller and finer range for test grid *X  and a periodic 

component in the covariance function ( ),K x x ′ , can enable us to effectively model audiogram 

microstructure. The ability to investigate this particular example and many other questions may 

be enabled by this flexible psychometric framework. 

6.2.2. Psychometric Extensions 

While the specific framework as presented in this thesis can encode a variety of psychometric 

function shapes, it does nevertheless make some assumptions about the form of the PF within the 

psychophysical space. Fortunately, GPC as a whole has large degree of inherent flexibility that 

allows us to encode additional properties of PFs in a straightforward manner within the same 

framework, with a few tweaks to how the GP is defined. 

The current likelihood function ( )1p y f=  is a sigmoidal function that spans the entire range 

0,1    (Kuss et al., 2005; Song et al., 2017). This choice implicitly assumes that false positive 

and lapse rates take values of 0. For detection tasks, these rates are generally close to 0, but 

failing to account for actual lapse rates can introduce bias into the estimate when lapses truly 

exist (Wichmann and Hill, 2001a). The GPC framework can account for arbitrary lapse rates by 

modification of the likelihood function, though requiring additional hyperparameters and 
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complexity. This generalization would also allow for ready extension of the GP framework to 

other psychometric tasks, such as n-alternative forced choice (Kingdom and Prins, 2010). 

Because of the linear term in the current covariance function 2s ιι′ , the current model assumes 

that the value of β does not vary as a function of frequency. However, frequency-dependent 

changes in psychometric attributes have been observed in hearing-loss individuals (Nelson and 

Freyman, 1986; Freyman and Nelson, 1991), suggesting possible non-uniform psychometric 

uncertainty along frequency. To model a psychometric function whose β values vary with 

frequency, we can modify the covariance function by including a frequency-dependent 

multiplicative term in addition to the linear term. Note that because a SE covariance function 

places constraints on covariances rather than function shapes, no similar limitation exists for α: 

the overall function smoothness need only be constrained to be uniform across the entire domain. 

Other covariance functions with periodic behavior or whose length scales change with some 

dimension can also be chosen to encode certain function behaviors, given prior knowledge. 

Finally, perhaps the most logical extension of the current work is for inference on another 

psychophysical domain. While this thesis has focused on using GPC for estimation of 

audiometric functions, the method is general-purpose and can be extended to any uni- or 

multidimensional psychometric domain with binary responses. One straightforward application 

is the visual field (Heijl and Krakau, 1975; Bengtsson et al., 1997), a 3-dimensional space that 

can describe the integrity of a patient’s central or peripheral vision. The input dimensions for this 

modality are ( ), ,
h v

x x ι=x : non-psychometric horizontal and vertical positions ,
h v

x x  and a 

psychometric dimension intensity ι . Responses y  remain binary variables, allowing the GPC 

framework to proceed intact except for the added dimension and new choices of mean and/or 
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covariance functions to reflect prior information about visual fields. A few tweaks to the GP 

setup would also allow our method to be used for regression problems or for classification 

problems with more than 2 possible categories. 

6.2.3. Efficiency Improvements 

The GPC algorithm as implemented in this thesis uses fairly uninformative priors, with very little 

information encoded specific to hearing. Its only assumptions about the shape of the full 

audiometric function are that it is uniformly smooth along frequency and sigmoidal along 

intensity. Further development of the algorithm could incorporate reasonable constraints on 

hyperparameters or on the final estimated function shape based upon the physics of sound 

transmission and known factors of cochlear function. The choice of constant mean function in 

the current work, although effective, is particularly naive; more informative prior mean functions 

could be generated by examining trends in typical human PFs. The current implementation of 

this algorithm also uses uniform priors on its covariance function hyperparameters, but certain 

hyperparameter ranges are more realistic than others. If and when sufficient data is available, 

reasonable hyperprior probabilities should be chosen to reflect PF shape distributions in reality. 

The work in this thesis employed two active sampling methods: uncertainty sampling (Lewis and 

Catlett, 1994; Lewis and Gale, 1994; Settles, 2009) and to a somewhat lesser extent, Bayesian 

active learning by disagreement (Houlsby et al., 2011). These methods are simple (uncertainty 

sampling, specifically, is a particularly greedy approach) and have shown to be fairly effective, 

but it is worth investigating other active sampling methods to assess their efficiency and 

estimation accuracy. Numerous other active sampling frameworks have demonstrated favorable 

results for PF estimation or in other domains (King-Smith et al., 1994; Kontsevich and Tyler, 
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1999; Leek, 2001; Lesmes et al., 2006; Park, 2013; Shen and Richards, 2013) and are compatible 

with the GP framework. Furthermore, clinical methods such as HW can be used to select 

samples, with the GPC framework still performing more detailed inference of the psychometric 

space. Using established clinical procedures for sampling and machine learning for inference 

may serve as a useful transition for clinical adoption. 

Currently, our framework deliberately assumes that the measurements between left and right ears 

are independent, consistent with accepted clinical standards (American National Standards 

Institute, 2004a; Katz et al., 2009). However, within the same individual there is often 

substantial correlation between measurements in one ear and the other; for instance, both ears are 

typically exposed to the same acoustic environments that can lead to progressive hearing loss. 

Qualitatively, this can be seen in Figure 6.1, which shows substantial overlap between left and 

right ear threshold audiograms within the same subject. We can modify the covariance function 

to account for this by using a discrete covariance term between left- and right-ear sample points, 

allowing for measurements in one ear to provide information about measurements in the other. 

Like other hyperparameters, a best-fitting value for this covariance can also be learned given the 

data. By broadly expanding this concept, we can also encode relationships between separate but 

related psychophysical domains. Some examples from audiometry include air conduction and 

bone conduction, noise-masked and unmasked pure-tone delivery, and tone-based and word-

based detection tasks (Katz et al., 2009; Stach, 2010; Martin and Clark, 2015). 
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Figure 6.1: Left- and right-ear GP human audiogram estimates. Data is from the experiment performed in Chapter 3. 

Note the generally high correlation between left and right ears across all subjects. 

The active sampling employed in this thesis queries points one at a time. However, previous 

work has demonstrated additional information gain when 2 tones are presented on each iteration 

and the subject responds when either stimulus is detected, leading to a corresponding efficiency 

gain (Gardner et al., 2015b). While this technique is currently computationally expensive and 

difficult to use in real time, further advances that mitigate this disadvantage could lead to even 

more rapid estimates of audiometric threshold or PF. Additionally, this “or-channel” framework 

could be extended to 3 or more simultaneous stimulus deliveries, which could produce further 

efficiency gains but will likely face diminishing returns. 

The current form of the GP mean and covariance functions is very flexible, allowing for a wide 

variety of audiometric shapes to be represented. However, the downside to this flexibility is a 

relative lack of specificity; an algorithm specific to a particular shape may generate a more 
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detailed estimate of the space as well as reach the estimate more efficiently. In practice, there are 

a limited number of typical audiogram categories; while initially unknown for any particular 

subject, the ability to quickly deduce to which category this individual’s audiogram belongs 

could allow the remaining samples to be tailored to estimating this particular shape, improving 

both accuracy and efficiency. Previous work (Gardner et al., 2015a) has utilized Bayesian active 

model selection (Ali et al., 2014) to rapidly distinguish between smooth audiogram shapes and 

noise-induced hearing loss (Rabinowitz, 2000; Shargorodsky et al., 2010), which exhibits narrow 

notches that are difficult for the current algorithm to detect efficiently. This work can be 

extended to additional models corresponding to various hearing pathologies, and can also be 

weighted by their relative prevalence in reality. 

A common need in both clinical audiology as well as certain hearing conservation programs is to 

obtain repeated threshold audiogram measures in the same individual (Sataloff and Sataloff, 

2005). However, current retests require performing the entire inference procedure; this high time 

cost is an obstacle to more regular retests, which could be particularly useful in occupations that 

have high noise exposure. However, there is substantial prior information on any individual 

taking a retest: that individual’s previous test results. If these previous data could be incorporated 

into the retest, we could greatly increase the efficiency of the new test. One strategy is to include 

all observed data from previous tests with the retest, but this will increase runtime due to the 

computational complexity of the GP. One promising solution is the sparse GP, which chooses a 

new, much smaller set of samples that induces a similar posterior distribution to that observed 

with a full set of points (Lawrence et al., 2003; Seeger, 2003; Quiñonero-Candela and 

Rasmussen, 2005; Snelson and Ghahramani, 2006). By using a sparse representation on the 
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retest, we can incorporate information about the previous tests’ posterior distributions while 

minimally increasing computational cost. 

6.2.4. Large-Scale Distribution 

As mentioned in Section 6.2.3, we can use existing audiometric data to inform our choices for 

Gaussian process mean or covariance function or to assign reasonable hyperparameter prior 

distributions. However, most audiometric data exists in the form of pure-tone audiograms, which 

report thresholds at 6-9 discrete frequencies but offer relatively little information for GP 

construction. Although the HW approach queries numerous samples to determine the threshold 

audiogram, these observations are almost never retained in practice because sample points are 

tuned manually by audiological professionals. This is unfortunate, because these observations 

offer substantially more information than the thresholds themselves. 

An accessible, user-friendly platform for conducting audiometric testing could enable collection 

of audiometric data in both larger quantities and in higher detail compared to current practice. 

Such a platform could be implemented through a website that directly delivers audiometric tests 

for use by clinicians, researchers and other interested individuals. Figure 6.2 shows a screenshot 

of a current website implementation, which offers GPC inference as well as an automated 

version of the clinical HW procedure. For any user account, all associated data including 

individual tests, threshold and probability surfaces, queried sample points and user responses, are 

saved server-side and can be reviewed at any time. 
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Figure 6.2: Screenshot of the current website implementation for remote audiometric testing. The current screenshot 

is of the remote version of Hughson-Westlake, although the GPC audiogram is available as well. 

A challenge facing computer-based remote diagnosis is accounting for calibration differences 

between machines. Distinct computers typically use different soundcards and may deliver audio 

through a variety of headsets or speakers, making comparison of tests conducted on different 

machines difficult. A calibration scheme should be developed to facilitate cross-device 

comparison. One possibility is to use Gaussian process regression (Rasmussen and Williams, 

2006) and some active sampling technique (Settles, 2009) to rapidly infer a transformation 

function between a server-side putative tone intensity and a reading from a sound level meter on 

the user end. Even if uncalibrated, however, it is possible to compare different tests conducted on 

the same machine as long as the hardware and software settings are held constant. 

6.3. Concluding Remarks 

This thesis has presented a method for estimating audiometric functions using machine learning 

classification. The technique has demonstrated the ability to estimate threshold audiograms in 
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human subjects and full audiometric functions in simulated data, comparing favorably to existing 

techniques and clinical standards whenever possible. An important next step will be to verify the 

simulation results for audiometric function estimation in human subjects. Future work can also 

address the limitations of the current implementation by incorporating additional psychometric 

theory or by further improving the algorithm’s efficiency for human testing. In summary, this 

work presents a promising audiometric estimation method for potential use in clinic or for 

research, with clear possibilities for expanding upon the current work in moving forward. 
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Appendix 1: Supplemental Figures 

A1.1. Numerical Estimates for 1D Psychometric Functions 

Figures A1.1-A1.3 show plots of error in 50% point and 25-75% interquartile range (IQR) for 

unidimensional PFs estimated using probit regression and probabilistic classification. 50% point 

is the numerical equivalent to α, while the IQR is a numerical analog for β. Figure A1.1 shows 

50% point and IQR error averaged across all conditions; Figure A1.2 shows 50% point and IQR 

error for various true values of β, and Figure A1.3 shows 50% point and IQR error for various 

distributions of number of intensities sampled/number of samples per intensity. These figures 

correspond to the plots for parametric estimates in Figures 4.3, 4.4, and 4.5, respectively. 

Trends in each plot for numerical estimates are identical to those in the corresponding plot for 

parametric estimates from Section 4.3.1. As with the parametric estimates for α and β, there is no 

appreciable difference in performance between PR and GPC. 

 
Figure A1.1: Error in 1D 50% point and IQR estimates for PR and GPC across all conditions. Absolute error in 

estimates of (A) 50% point and (B) IQR as a function of number of observed samples in the unidimensional case. 
Blue solid and red dashed lines denote mean absolute errors of the PR and GPC estimates, respectively, and the 

matching shaded regions designate 1 standard deviation above and below the mean. 
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Figure A1.2: Error in 1D PR and GPC 50% point and IQR estimates for different β values. Absolute error in 

estimates of (A-G) 50% point and (H-N) IQR as a function of number of observed samples for unidimensional PFs. 
Blue solid and red dashed lines denote mean absolute errors of the PR and GPC estimates, respectively, and the 

matching shaded region designates 1 standard deviation above and below the mean. Each subplot corresponds to a 
distinct β value. 

 
Figure A1.3: Error in 1D PR and GPC 50% point and IQR estimates by sample split. Absolute error in estimates of 

(A-E) 50% point and (F-J) IQR as a function of number of observed samples for unidimensional PFs. Blue solid and 
red dashed lines denote mean absolute errors of the PR and GPC estimates, respectively, and the matching shaded 
region designates 1 standard deviation above and below the mean. Each subplot corresponds to a distinct condition 

for number of intensities and number of repetitions per intensity. 
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A2.1. Numerical Estimates for 2D Psychometric Functions 

Tables A1.1-A1.3 show tables of error in 50% point (equivalent to α) and 25-75% IQR (analog 

for β) for multidimensional PFs estimated using Gaussian process classification. Figure A1.1 

shows 50% point and IQR error for various total sample numbers; Table A1.2 shows 50% point 

and IQR error for various true values of β, and Table A1.3 shows 50% point and IQR error for 

various audiogram phenotypes (Dubno et al., 2013). These figures correspond to the tables for 

parametric estimates in Tables 4.1, 4.2, and 4.3, respectively. 

Trends in each table for numerical estimates are identical to those in the corresponding table for 

parametric estimates from Section 4.3.2. 

Number of samples 20 50 100 200 500 1000 

Mean 50% point abs. error (dB) 6.71 4.29 3.04 2.08 1.30 0.937 

Std. 50% point abs. error (dB) 6.31 5.32 2.82 1.74 1.23 0.915 

Mean IQR absolute error (dB) 4.29 3.52 1.97 1.74 0.867 0.548 

Std. IQR absolute error (dB) 3.55 3.20 2.22 1.59 0.763 0.461 

Table A1.1: Absolute errors of 2D GP 50% point and IQR estimates by number of samples. Accuracy and reliability 
are quantified using mean and standard deviation, respectively. 

β (dB/%) 0.2 0.5 1 2 5 10 

Mean 50% point abs. error (dB) 1.54 1.60 1.70 1.86 2.47 3.32 

Std. 50% point abs. error (dB) 2.03 1.09 1.17 1.32 1.90 2.60 

Mean IQR absolute error (dB) 1.26 1.10 1.44 1.97 2.38 2.29 

Std. IQR absolute error (dB) 1.43 1.52 1.39 1.18 1.80 1.69 

Table A1.2: Absolute errors of 2D GP 50% point and IQR estimates by value of β. Accuracy and reliability are 
quantified using mean and standard deviation, respectively. Sample number is fixed at 200 samples. 
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Audiogram Phenotype Older Metabolic Sensory Metabolic + 
Sensory 

Mean 50% point abs. error (dB) 2.19 1.69 2.23 2.22 

Std. 50% point abs. error (dB) 1.68 1.47 1.96 1.74 

Mean IQR absolute error (dB) 1.40 1.33 3.03 1.20 

Std. IQR absolute error (dB) 1.53 1.19 1.52 1.35 

Table A1.3: Absolute errors of 2D GP 50% point and IQR estimates by phenotype. Accuracy and reliability are 
quantified using mean and standard deviation, respectively. Values are averaged across all β values, and sample 

number is fixed at 200 samples. 
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