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Localized surface plasmon resonance (LSPR) involves the collective and coherent oscillation of 

dielectrically confined conduction electrons.  The LSPR wavelength of noble metal nanoparticles 

(such as gold, silver and copper), which falls into the visible and near infrared range of the 

electromagnetic spectrum, is sensitive to the composition, size, shape, dielectric properties of the 

surrounding medium, and proximity to other nanostructures (plasmon coupling).  Based on the 

sensitivity of the surface plasmon resonance to the changes in the dielectric properties of the 

surrounding medium and the enhancement of the electromagnetic (EM) field in proximity of 

metal nanostructures, two important classes of plasmonic sensors have evolved: refractometric 

LSPR and surface enhanced Raman scattering (SERS) sensors.  SERS involves the large 

enhancement of the Raman scattering from analytes adsorbed on or in close proximity to a 

nanostructured metal surface.   

Most of the SERS substrates based on individual nanostructures offer modest SERS 

enhancement.  On the other hand, interstitial sites between assembled or lightly aggregated 

nanostructures, often termed as electromagnetic hotspots, offer large SERS signal enhancements, 

enabling the single molecule detection under ideal conditions.  Although the assemblies of 
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nanostructures are highly SERS-active, the SERS response is very sensitive to the assembly state, 

thus making it challenging to realize uniform and reproducible SERS substrates with high 

density of EM hotspots based on such traditional assemblies.  Furthermore, the fabrication of 

SERS substrates based on the controlled assemblies of nanostructures involves either complex 

chemical methods or expensive lithographic techniques.  Therefore, it is desirable to engineer 

nanostructures with inherent EM hotspots, which can significantly enhance the EM field and 

enable the sensitive detection of analytes using SERS.   

Hollow and porous metal nanostructures are a novel class of plasmonic nanostructures that 

exhibit extraordinary optical and catalytic properties compared to their solid counterparts, due to 

a higher surface to volume ratio and the facile tunability of the LSPR wavelength over a broad 

range from visible to parts of near infrared.  In this work, we design, synthesize, and 

comprehensively characterize the optical properties of hollow nanostructures including 

plasmonic nanocages and nanorattles comprised of gold nanostructures as cores and porous gold 

cube as shells.  We demonstrate that hollow and porous plasmonic nanostructures exhibit a 

significantly higher refractive index sensitivity compared to other solid nanostructures of similar 

size, leading to LSPR sensors with higher sensitivity and lower limit-of-detection compared to 

biosensors based on solid counterparts.  Furthermore, we demonstrate that plasmonic nanorattles 

host electromagnetic hotspots between the core and the shell, offering significantly higher SERS 

enhancement as compared to other solid nanostructures of similar size.  Through a systematic 

study, we unveil the influence of size, shape and orientation of the plasmonic nanorattles on the 

optical properties and SERS enhancement.  The work described here provides guidelines for the 

design of hollow plasmonic nanostructures for various sensing applications.  
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Chapter 1: Introduction 

1.1 Localized Surface Plasmon Resonance 

Surface plasmons involve the collective coherent oscillation of the conductive electrons at the 

interface of a metal and dielectric material.  A broad term, plasmonics involves the control of 

light at the nanoscale using surface plasmons.1,2,3,4,5,6,7,8,9  One particular area where plasmonics 

is expected to make an enoromous impact is the field of life sciences with applications in 

imaging, diagnosis, and therapeutics.10,11,12,13  Based on the sensitivity of the surface plasmon 

resonance to the dielectric ambient and the enhancement of electromagnetic (EM) field in 

proximity to metal nanostructures, two important classes of plasmonic sensors have evolved: 

surface plasmon resonance (SPR) and surface enhanced Raman scattering (SERS).14,15  

Conventional SPR sensors rely on propagating surface plasmons at the interface of the thin metal 

films and a dielectric medium.  The sensitivity of the SPR to the changes in the dielectric 

medium is exploited in sensing applications, which is currently a well-established technique for 

biosensing and probing thermodynamic and kinetic aspects of biomolecule binding.16,17  

Although extremely sensitive, conventional SPR suffers from complexity in exciting the surface 

plasmons (requiring complex optical alignment or wave coupling systems such as prisms) and 

more importantly it lacks the spatial resolution to address single or few molecule events.    

On the other hand, excitation of surface plasmons in metal nanostructures does not require a 

specialized setup, simplifying the operation and making them more appropriate for on-chip, cost-

effective and point-of-care diagnostics.  The time varying electric field of the EM radiation 

causes oscillation of conductive electrons in the nanoparticles and the resonance condition, 

termed localized surface plasmon resonance (LSPR), falling into the visible regime for noble 
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metals such as gold, silver and copper.  The LSPR of the metal nanostructures is sensitive to 

numerous factors such as composition, size, shape, dielectric medium, and proximity to other 

nanostructures (plasmon coupling).18,19  The sensitivity of LSPR to localized changes (10-20 nm 

from nanoparticle surface) in dielectric medium renders it an attractive transduction platform for 

chemical and biological sensing.20,21,22,23,24     

LSPR offers distinct advantages compared to traditional SPR approach:25,26,27 (i) low bulk 

sensitivity (ii) simplicity in detection (iii) high spatial resolution down to single nanoparticle and 

(iv) facile integration with device platforms for developing point-of-care assays.  LSPR is shown 

to be sensitive enough to differentiate various inert gases (refractive index difference on the 

order of 3×10-4 refractive index units (RIU)), to probe the conformational changes of individual 

biomacromolecules, to detect single biomolecule binding events, to monitor the kinetics of 

catalytic activity of single nanoparticles and even optically detect single electron.28,29,30,31,32  

1.2 Surface enhanced Raman scattering 

Despite the rich molecular information provided by Raman spectroscopy, the technique was not 

considered to be a handy analytical tool (let alone detection tool) due to the extremely weak 

signal intensity of normal Raman scattering, a result of the extremely small scattering cross-

section for most molecules.33, 34  Hence, for the longest period after its discovery, Raman 

scattering has remained limited to “bulk” investigations.  Surface enhanced Raman scattering 

(SERS), which brings the dramatic enhancement of the Raman scattering of an analyte that is 

adsorbed on or in close proximity to a metal surface, is emerging as a powerful technique for the 

trace level detection of various biological and chemical species and believed to make a huge 

impact on life sciences, environmental monitoring and homeland security.1, 2, 3, 4, 5, 16, 35   
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Despite the initial controversy, at present there is a consensus that the enhancement of the Raman 

signal originates from two distinct contributions, namely, electromagnetic enhancement and 

chemical enhancement with the former effect being several orders of magnitide higher than the 

latter.36,37  When the excitation light is in resonance with the plasmon frequency of the metal 

nanoparticle, it results in dipolar radiation causing a characteristic spatial distribution in which 

certain areas show higher intensity, which is manifested as an electromagnetic enhancement.  

Analyte molecules subjected to this enhanced electromagnetic field exhibit a dramatic 

enhancement in Raman scattering.  Electromagnetic enhancement critically depends on 

numerous factors such as the distance between the metal nanostructures, size and shape (i.e. 

antenna effect) of the nanostructures, composition of the metal, and the excitation wavelength 

with respect to the plasmon resonance of the metal nanostructures.38,39,40,41,42  

Numerous SERS substrates from roughened noble metal surfaces to e-beam patterned metal 

nanostructures with enhancement factors ranging from 104 to 1010 have been demonstrated over 

the last two decades.4,9,15,43,44   Very high enhancement factors (> 109) have been reported for 

SERS substrates fabricated from top-down and bottom-up approaches such as e-beam 

lithography, colloidal lithography, on-wire lithography and self- and directed-assembly, which 

enable precise control over the size, shape, and organization of the metal 

nanostructures.45,46,47,48,49  On the other hand, 3D SERS substrates such as photonic crystal fibers 

and porous alumina membranes decorated with nanoparticles and periodic nanohole arrays also 

offer large SERS enhancements (106 - 109) owing to the large surface area within the source laser 

footprint and efficient light-matter interaction compared to the 2D counterparts.26,50,51,52,53 
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1.3 Hollow and Porous Metal Nanostructures 

Hollow and porous metal nanostructures are a relatively novel class of plasmonic nanostructures. 

Owing to the higher surface to volume ratio and facile tunability of LSPR wavelength over a 

broad range from visible to parts of near infrared, hollow and porous metal nanostructures 

exhibit extraordinary optical and catalytic properties compared to their solid counterparts.  

Hollow and porous metal nanostructures provide large specific surfaces can serve as carriers for 

encapsulating multi-functional active materials.32,54,55  In addition, these nanostructures have 

been employed for photothermal therapy, contrast agents in bioimaging, catalysts and 

nanotransducers in biological and chemical sensing.56,57,58  Among the various reported synthesis 

methods, galvanic replacement reaction can be used for producing bi- and tri-metallic hollow 

nanostructures with well-controlled morphologies.59  Galvanic replacement reaction is an 

electrochemical reaction which involves the oxidation of one metal with lower reduction 

potential (which served as a sacrificial template) by the ions of another metal with higher 

reduction potential.  As an effective and simple method, galvanic replacement has been widely 

employed for the fabrication of hollow and porous nanostructures. 

 1.4 Motivation and Rationale 

 Most of the SERS substrates based solely on individual nanostructures offer modest SERS 

enhancement.  On the other hand, interstices between assembled or lightly aggregated 

nanostructures, often termed as electromagnetic hot spots, offer large SERS signal enhancements, 

enabling single molecule detection under ideal conditions.15, 60-62  Although the assemblies of 

nanostructures are highly SERS-active, the SERS response is very sensitive to the assembly state, 

thus making it challenging to realize uniform and reproducible SERS substrates with high 
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density of EM hot spots based on such traditional assemblies.19, 63  Furthermore, fabrication of 

SERS substrates based on controlled assemblies of nanostructures involves either complex 

chemical methods or expensive lithographic techniques.20, 64-67  Therefore, it is desirable to 

engineer nanostructures with inherent EM hot spots, which can significantly enhance the EM 

field and enable sensitive detection of analytes using SERS.68  In this context, we seek to design 

and demonstrate gold nanorattles comprised of Au nanostructures (particles or rods) as core and 

porous gold cube as shell.  We hypothesize that the unique structure of the nanorattle results in 

the formation of an electromagnetic hotspot between the core and the shell.  Such nanostructures 

with inherent electromagnetic hotspots are expected to offer significantly higher SERS 

enhancement as compared to other solid nanostructures of similar size (e.g., Au nanocubes).  

Inherent hotspots within the nanostructures will obviate the need for controlled aggregation or 

assembly of nanostructures to realize electromagnetic hot-spots that are critical for ultrasensitive 

SERS-based chemical detection. 

Hollow and porous plasmonic nanostructures also exhibit significantly higher refractive index 

sensitivity compared to other solid nanostructures of similar size due to the electromagnetic 

hotspots within the nanostructures.  We envision that these hollow and porous plasmonic 

nanostructures would enable highly sensitive, specific and stable sensing.  Apart from 

systematically investigating the refractive index sensitivity and electromagnetic decay length of 

hollow plasmonic nanostructures in comparison to their solid counterparts, we propose to realize 

a plasmonic biosensor by molecularly imprinting the nanostructures.  Specifically, we propose to 

develop a plasmonic biosensor for the detection of urine biomarkers for acute kidney injury 

(AKI).  AKI is a complex clinical condition whose underlying pathogenesis remains 

incompletely understood.69,70,71  Over the same time period, the number of deaths associated with 
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dialysis-requiring AKI has more than doubled.72  In a wide variety of common chronic kidney 

diseases (CKD), renal neutrophil gelatinase-associated lipocalin (NGAL) synthesis and excretion 

in the urine are increased by almost 10-fold.  During AKI, urinary NGAL levels are increased by 

several log-orders of magnitude while plasma levels increase 5 to10-fold.  In an extensive review 

encompassing many biomarkers of kidney injury, plasma and urine levels of NGAL alone 

provided early detection and prognosis of patients at risk of developing AKI and supported the 

differential diagnosis of established AKI.73,74  Thus, the measurement of plasma and/or urine 

NGAL levels is of clinical importance such that companies have marketed NGAL assays all of 

which are immune-based.  Therefore, it is a critical need for a low-cost, simple, stable and 

reliable NGAL assay.  The above considerations clearly suggest the need for a label-free 

approach for rapid and quantitative detection of the proteins in urine at physiologically relevant 

concentrations (ng/ml). 

Most of the existing LSPR-based plasmonic sensing rely on natural antibodies for the capture of 

target biomolecules.  However, natural antibodies suffer from numerous shortcomings such as 

poor chemical stability, limited shelf-life and excessive cost.  In addition, lack of chemical 

selectivity plague the progress of LSPR-based sensors to the real-world applications.  To 

overcome these issues, we will explore an alternate approach, which involves the use of artificial 

antibodies that exhibit excellent recognition capabilities (comparable to natural antibodies) and 

remarkable stability over a wide range of conditions.  The design and synthesis of such 

biomimetic materials capable of recognizing target biomolecules with high affinity and 

specificity will be performed using molecular imprinting of synthetic polymers.75 
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1.5 Research Goals and Objectives 

The ultimate goal of the research is to design and demonstrate a novel class of hollow and porous 

plasmonic nanostructures for highly efficient detection of trace amounts of chemical and 

biological analytes based on the LSPR and SERS.  Specific objectives are as follows: 

Objective 1: Synthesis of size- and shape-controlled hollow and porous plasmonic 

nanostructures.  We will synthesize hollow and porous metal nanostructures of different sizes 

and shapes (such as cubes and cuboids) using template-mediated method.  The ability to 

precisely control the size and shape of nanostructures is critical for their use as ultrasensitive 

nanotransducers. 

Objective 2: Establish criteria for the rational selection of plasmonic nanostructures for 

chemical- and biological-sensing applications.  Owing to the unique optical properties such as 

highly tunable LSPR, large refractive index sensitivity, tunable electromagnetic decay length, 

and large enhancement in the EM field, hollow plasmonic nanostructures are considered to be 

highly promising candidates for SERS and label-free LSPR-based biosensing.  However, 

detailed investigations correlating the size, shape, orientation (in the case of anisotropic 

nanostructures) to the SERS activity and LSPR sensitivity is missing.  Such an investigation will 

provide the design criteria for rational choice of hollow plasmonic nanostructures for the chosen 

transduction platform.  We will undertake such detailed investigations using the size- and shape-

controlled nanostructures synthesized using template-mediated methods. 

Objective 3: Design and demonstrate a plasmonic biosensor based on artificial antibodies 

and hollow plasmonic nanostructures.  In this task, we will design and demonstrate a 

plasmonic biosensor based on hollow and porous plasmonic nanostructures and artificial 

antibodies for the sensitive and specific detection of target biomarkers. Although it has been 
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predicted that hollow nanostructures exhibit significantly higher refractive index sensitivity 

compared to solid nanoparticles like nanospheres, nanocubes, and nanorods, there have been no 

reports on the use of hollow nanostructures as plasmonic nanotransducers for biosensing. 

Successful completion of this task will lay the groundwork for realizing a novel class of 

biosensors based on hollow plasmonic nanostructures.  

Objective 4: Optimizing the SERS activity of plasmonic nanorattles by controlling the 

extent of galvanic replacement during template-mediated synthesis.  In this objective, we 

will probe the SERS activity of plasmonic nanorattles with different degrees of galvanic 

replacement to determine the optimal structure for maximum SERS activity.  We will use 2-

naphthalenethiol (2-NT), a widely employed as a model analyte for SERS owing to its ability to 

readily adsorb on gold, coated on AuNP followed by silver layer growth.  SERS activity will be 

monitored by adding various amount of gold salt (HAuCl4).  Plasmonic nanorattles with optimal 

structure and inherent electromagnetic hotspots are highly attractive for SERS-based chemical 

sensing and bioimaging. 

1.6 Overview of the Dissertation 

This dissertation is organized into the following sections: (i) Development of size- and shape-

controlled hollow and porous plasmonic nanostructures for LSPR and SERS applications. (ii) 

Design and demonstrate LSPR- and SERS-based biological and chemical sensor. (iii) Establish 

criteria for rational selection of plasmonic nanostructures for chemical and biological sensing 

applications. 

Chapter 2 describes the synthesis of hollow plasmonic nanostructures with high refractive index 

sensitivity of LSPR for the biological sensing.  We demonstrate gold nanocages (AuNCs), a 

novel class of hollow and porous nanostructures, exhibit significantly higher refractive index 
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sensitivity and lower EM decay length, both of which make it an excellent candidate for 

plasmonic biosensing.  AuNCs with built-in artificial antibodies achieved by molecular 

imprinting approach enabled the detection of a kidney injury biomarker (NGAL) down to a 

concentration of 25 ng/ml.  The limit of detection (LOD) achieved with AuNCs as 

nanotransducers is more than an order of magnitude lower compared to that obtained with 

AuNRs.  Molecularly imprinted AuNCs exhibit excellent selectivity against numerous 

interfering urinary proteins and remarkable stability over a wide range of pH ranging from 4.5 to 

8.5 and specific gravities from 1.005 to 1.030.   

In Chapter 3, we systematically investigate the size- and shape-dependent SERS activity of 

plasmonic nanorattles comprised of Au nanospheres and nanorods as cores and porous Au 

nanocubes and cuboids as shells.  We demonstrate that the increase in the SERS activity of the 

cubic nanorattles is due to the increase in the extinction (and scattering) coefficient of 

nanostructures with size.  On the other hand, the SERS activity of the plasmonic nanorattles with 

nanorod cores decreased with the increase in the edge length of the porous cuboid shells.  In the 

case of the cuboid nanorattles, the electromagnetic hotspot within the nanostructure, formed 

between the edge of the AuNR and porous Au shell, governs the SERS activity. 

Chapter 4 describes the polarization-dependent SERS activity of an individual cuboidal 

plasmonic nanorattle and its solid counterpart i.e. Au@Ag nanocuboid.  Due to the presence of 

internal electromagnetic hotspots within the nanorattles, they exhibited SERS activity with a 

significantly different polarization-dependence compared to their solid counterparts i.e. 

AuNR@Ag nanocuboids.  Similar to most conventional anisotropic solid nanostructures, the 

nanocuboids exhibited a polarization-dependent SERS activity that is dominated by their sharp 

corners and edges.  Conversely, for the cuboidal nanorattles, the internal electromagnetic hotspot 
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formed between the AuNR core and the porous Ag-Au shell dominates the SERS activity of the 

nanorattles.  Computational simulations based on the finite-difference time-domain (FDTD) 

method were employed to understand the electromagnetic field distribution and the SERS 

enhancement from the plasmonic nanostructures, which also corroborate our experimental 

findings. 

In Chapter 5, plasmonic nanorattles with various extent of galvanic replacement have been 

fabricated during template-mediated synthesis.  Raman reporter (2-NT) was trapped between Au-

Ag core-shell nanostructure, which was employed to monitored the SERS activity of nanorattles. 

The presence of internal electromagnetic hotspots enabled the nanorattles to serve as highly 

efficient SERS probes.  Paper substrates adsorbed with Au nanorattles enabled the trace 

detection of analyte (4-aminothiophenol, pATP) down to a concentration of 1 pM. 

Chapter 6 describes the swelling-mediated massive reconstruction of an ultrathin responsive 

gelatinous polymer film uniformly adsorbed with plasmonic nanostructures into a randomized 

network of interacting folds, resulting in bright electromagnetic hotspots within the folds.  We 

reveal a strong correlation between the topology and near-field electromagnetic field 

enhancement due to the intimate contact between two plasmonic surfaces within the folds, each 

of them representing a unique combination of local topography and chemical distribution caused 

by the formation of electromagnetic hotspots.  Owing to the efficient trapping of the Raman 

reporters within the uniquely distributed electromagnetic hotspots, the SERS enhancement from 

the morphed plasmonic gel was found to be nearly 40 times higher compared to that from the 

pristine plasmonic gel.  Harnessing the nondeterministic nature of the folds, the folded plasmonic 

gel can be employed as a multidimensional (with dual topo-chemical encoding) optical taggant 

for prospective anti-counterfeiting applications.   
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Chapter 2: Gold Nanocages with Built-in Artificial 

Antibodies for Label-free Plasmonic Biosensing 

The results reported in this chapter were published in Journal of Materials Chemistry B, 2014, 2, 167-

170. Reproduced with permission from The Royal Society of Chemistry. 

  

2.1 Abstract 

We demonstrate that gold nanocages (AuNCs) with built-in artificial antibodies enable the 

detection of kidney injury biomarker from synthetic urine down to a concentration of 25 ng ml-1. 

Molecularly imprinted AuNCs exhibit excellent selectivity against numerous interfering urinary 

proteins and remarkable stability over a wide range of pH and specific gravity.  

2.2 Introduction 

The refractive index sensitivity of localized surface plasmon resonance (LSPR) of plasmonic 

nanostructures renders it an attractive transduction platform for chemical and biological 

sensing.13, 76-86  Metal nanostructures of different sizes, shapes and composition and assemblies 

of metal nanostructures are being extensively investigated as transducers for plasmonic chemical 

and biological sensing.13, 76, 83, 86  Gold nanocages (AuNCs), a novel class of hollow plasmonic 

nanostructures, are an attractive platform for theranostic applications; thanks to their highly 

tunable localized surface plasmon resonance (LSPR) into the near infrared (NIR) where the 

endogenous absorption coefficient of living tissue is nearly two orders magnitude smaller 

compared to that in the visible range.87  Owing to their large scattering and absorption cross 

sections, AuNCs have also been employed as contrast agents in optical coherence tomography, 
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photoacoustic imaging and photothermal therapy.88-90  So far, there have been only a few reports 

on biosensing application of AuNCs, none of which employ AuNCs as nanotransducers.91, 92  

Although it has been predicted that hollow nanostructures exhibit significantly higher refractive 

index sensitivity compared to solid nanoparticles like nanospheres, nanocubes, and nanorods, to 

the best of our knowledge, there have been no reports on the use of gold nanocages as plasmonic 

nanotransducers for biosensing.93, 94  

Most of the existing plasmonic sensors rely on natural antibodies for the capture of target 

biomolecules (e.g., disease biomarkers). However, natural antibodies suffer from numerous 

shortcomings such as poor chemical stability, excessive cost and limited shelf-life. Moreover, 

they pose a significant challenge in efficient integration with abiotic micro- and nanotransduction 

platforms. In this communication, we demonstrate AuNCs with built-in artificial antibodies by 

molecular imprinting for the sensitive and specific detection of target biomarkers in 

physiological fluids such as urine.   

2.3 Experimental Section 

Materials: Ethylene glycol (Lot. no K26B01) and sodium sulfide (Na2S) were purchased from J. 

T. baker.  Cetyltrimethylammonium bromide (CTAB), ascorbic acid, sodium borohydride, 

poly(styrene sulfonate) (PSS) (Mw=70,000 g/mol), and poly(allyl amine hydrochloride) (PAH) 

(Mw=56,000 g/mol), sodium borohydride (NaBH4), Silver nitrate (purity higher than 99%), 4-

aminothiophenol (pATP), glutaraldehyde (GA), poly(vinyl pyrrolidone) (PVP, Mw~29,000), 

chloroauric acid (HAuCl4), myoglobin from human heart (Mw=17.7 kDa), hemopexin from 

human plasma (Mw=57 kDa), α1-antitrypsin from human plasma (Mw=52 kDa), α1-acid 

glycoprotein from human plasma (Mw=40.8 kDa), albumin from human serum (Mw=66.5 kDa), 

and hemoglobins human (Mw=64.5 kDa)  were obtained from Sigma-Aldrich.  Sucrose was 
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purchased from G-Biosciences Inc.  Poly(2-vinyl pyridine) (Mw=200,000 g/mol) was obtained 

from Scientific Polymer Products Inc.  Artificial urine was purchased from Cerilliant Corp.  

Recombinant human fatty acid-binding protein 1 (FABP1) (MW=14.2 kDa), and recombinant 

human fatty acid binding protein-3 (FABP3) (MW=14.8 kDa) were obtained from RayBiotech, 

Inc.  Recombinant neutrophil gelatinase associated lipocalin was obtained from SunnyLab (Kent, 

United Kingdom).  All the chemicals have been used as received with no further purification. 

  

Synthesis of silver nanocubes and gold nanocages (AuNCs): Prior to synthesis, all the 

glassware was cleaned using aqua regia (3:1 volume ratio of 37% hydrochloric acid and 

concentrated nitric acid).  Silver nanocubes were synthesized using a sulfide-mediated method 

developed by Xia group.95  Briefly, 90 μl of Na2S solution (3 mM) in ethylene glycol was added 

to 6 ml of preheated ethylene glycol at 160 ⁰C in a disposable glass vial.  After 8 min, 1.5 ml of 

PVP (0.02 g/ml) in ethylene glycol was added to the above mixture, immediately followed by the 

addition of 0.5 ml of AgNO3 (0.048 g/ml) in ethylene glycol. The reaction was complete in 10 

min with a dark ruddy-red meniscus in reaction solution.  The product was washed with acetone 

and water by centrifugation.  10 ml of aqueous PVP solution (9 mM) was add to 1 ml of the 

above-mentioned silver nanocubes solution. After bringing the suspension to a mild boil for 

approximately 10 min, 1 mM HAuCl4 was injected at a rate of 0.5 ml/min under vigorous stirring 

until dark blue color appeared.  The product was centrifuged once and redispersed in nanopure 

water before using (18.2 MΩ-cm). 

 

Synthesis of gold nanorods: Gold nanorods were synthesized using a seed-mediated approach.  

Seed solution was prepared by adding 0.6 mL of an ice-cold solution of 10 mM sodium 
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borohydride into 10 mL of vigorously stirred 0.1 M CTAB and 2.5 × 10-4 M HAuCl4 aqueous 

solution at room temperature. The color of the seed solution changed from yellow to brown. 

Growth solution was prepared by mixing 95 mL of 0.1 M CTAB, 1.0 mL of 10 mM silver nitrate, 

5 mL of 10 mM HAuCl4, and 0.55 mL of 0.1 M ascorbic acid in the same order. The solution 

was homogenized by gentle stirring. To the resulting colorless solution, 0.12 mL of freshly 

prepared seed solution was added and set aside in dark for 14 h. Prior to use, the AuNRs solution 

was centrifuged at 13,000 rpm for 10 min to remove excess CTAB and redispersed in nanopure 

water. 

 

Adsorption of AuNR on glass surface: To adsorb gold nanocages onto glass substrates, the 

glass substrates were coated with poly(2-vinyl pyridine) (P2VP) by exposing the piranha cleaned 

substrates to 1 % (w/v) P2VP solution in ethanol.96, 97  After rinsing the substrate with ethanol 

and drying with a stream of nitrogen, it was exposed to AuNCs solution for overnight to enable 

adsorption of the gold nanocages. Finally, the substrate was rinsed with water to remove the 

loosely bound nanocages, leaving a highly dense layer of nanocages on the surface. 

 

Molecular Imprinting Procedure: Firstly, AuNC adsorbed glass substrate was placed in 2 ml 

of 100 mM NaBH4 aqueous solution for 5 minutes with gentle shaking to remove PVP coating 

from AuNCs surface, followed by thorough rinsing with nanopure water.98  Subsequently, 

AuNCs adsorbed on the substrate were modified with p-ATP and glutaraldehyde as crosslinkers 

by immersing the substrate in 2 ml of phosphate borate buffer (pH 8.3) containing 4 μl of 

glutaraldehyde (25 %) and 4 μl of pATP (4 mM in ethanol) for 1 minute, followed by rinsing 

with pH 8.3 buffer. In the next step, template protein (NGAL) was immobilized on nanocages by 
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exposing the substrate to 115 μg/ml of NGAL in pH 8.3 buffer solution at 4 °C for 2.5 hours, 

followed by rinsing with pH 8.3 buffer solution. Subsequently, the NGAL-coated substrate was 

immersed in 3 ml of phosphate buffered saline (PBS, pH 7.5) containing 15 μl of TMPS and 15 

μl of APTMS for 40 minutes. Then the substrate was rinsed with buffer solution and stored in 

PBS solution at 4 °C overnight. Finally, proteins were released by shaking the substrate in 2 ml 

of oxalic acid (10 mM) in 2 % aqueous sodium dodecyl sulfate (SDS) solution. 

 

NGAL detection and interfering proteins test: After removing template proteins, the 

molecularly imprinted AuNCs on glass substrates were immersed in 1 ml of different 

concentrations of NGAL in pH 8.3 buffer solution, followed by gently shaking for 30 minutes 

and then incubation at 4 °C for 3.5 hours.  The same procedure was used to test interfering 

proteins, including myoglobin from human heart (10 μg/ml), hemopexin from human plasma (10 

μg/ml), antitrypsin from human plasma (10 μg/ml), acid glycoprotein from human plasma (10 

μg/ml), albumin from human serum (10 μg/ml), hemoglobin (10 μg/ml), FABP1 (1 μg/ml) and 

FABP3 (1 μg/ml).  Extinction spectra were collected from at least three samples for different 

concentrations of NGAL and interfering proteins to obtain the average LSPR wavelength shift. 

 

NGAL in different pH value and specific gravity of artificial urine test: The molecularly 

imprinted AuNCs coated substrates were immersed in 1 ml of 230 ng/ml NGAL in artificial 

urine with different pH (4.5, 5.5, 6.5, 7.5 and 8.5) and specific gravity (1.005, 1.010, 1.020, 

1.030), followed by gently shaking for 30 minutes and incubation at 4 °C for 3.5 hours.  

Extinction spectra were collected from at least three samples to obtain average LSPR wavelength 

shift. 
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Characterization techniques: Transmission electron microscopy (TEM) micrographs were 

recorded on a JEM-2100F (JEOL) field emission instrument. Samples were prepared by drying a 

drop of the solution on a carbon-coated grid, which had been previously made hydrophilic by 

glow discharge.  Scanning electron microscope (SEM) images were obtained using a FEI Nova 

2300 Field Emission SEM at an accelerating voltage of 10 kV.  Shimadzu UV-1800 

spectrophotometer was employed for collecting UV-vis extinction spectra from solution and 

substrates 

2.4 Results and Discussion 

One of the primary hypotheses behind this work is that AuNCs exhibit significantly higher 

refractive index sensitivity (RIS) compared to gold nanorods (AuNRs) (~200 nm per RIU) and 

gold nanospheres (40-60 nm per RIU), which enables to lower the limit of detection (LOD) of 

the target biomarkers.99, 100  While there have been some previous reports that demonstrate 

significantly higher refractive index sensitivity of Au nanostars and nanobipyramids, the 

synthesis of these nanostructures with tight control over shape is challenging.100  The 

polydispersity in the shape of these nanostructures results in broad LSPR bands, which severely 

deteriorates the figure of merit (FOM = refractive index sensitivity/full width at half maximum 

(FWHM)) of these nanostructures, lowering the detection sensitivity.   

AuNCs were obtained by galvanic replacement of Ag nanocubes with gold using HAuCl4. Ag 

nanocubes were synthesized according to previously reported sulfide-mediated polyol synthesis 

method.95  The AuNCs, which exhibited a LSPR wavelength of 783 nm, had an outer edge 

length of 57±4 nm and a wall thickness of 7±0.9 nm (Fig. 2.1).  TEM images clearly reveal the 

hollow nanostructures with porous sidewalls and an average pore size of about 3 nm.  The 

refractive index sensitivity of AuNCs was found to be 327.3 nm per RIU, which is ~58 % higher 
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than that of the longitudinal plasmon band of AuNRs (~207 nm per RIU) (Figure S1.3).  The 

relatively narrow extinction band of AuNCs (FWHM of ~ 120 nm) results in a FOM of ~2.7. 

Electromagnetic (EM) decay length of AuNCs, another important parameter to maximize a 

LSPR transducer response, was calculated to be ~10.0 nm by fitting the experimental data of 

LSPR shift using a previously reported exponential equation, which is ~22 % smaller compared 

to that of AuNRs suggesting the higher local sensitivity in the vicinity of AuNCs surface (see 

ESI).  The high sensitivity of AuNCs is possibly due to the strong electromagnetic fields 

resulting from the coupling between the external and internal surface plasmon fields in the 

hollow structures.93  These results clearly indicate AuNCs to be an excellent choice for LSPR 

biosensors.   

Considering the high refractive index sensitivity of AuNCs, we perform molecular-imprinting on 

AuNCs to realize highly sensitive plasmonic biosensor for neutrophil gelatinase-associated 

lipocalin (NGAL), a potential biomarker for acute kidney injury (Figure 2.2A).101  p-

Aminothiophenol (p-ATP) and glutaraldehyde (GA) were employed as crosslinkers to 

immobilize biomolecule templates on AuNCs surface by forming reversible imine bonds.  

Following the immobilization of templates, organo-siloxane monomers trimethoxypropylsilane 

(TMPS) and (3-aminopropyl) trimethoxysilane (APTMS), which are hydrolytically unstable, 

were copolymerized on template-bound AuNCs.  While the Si-C bond and aminopropyl group 

cannot be cleaved, the methoxy groups of APTMS and TMPS undergo rapid hydrolysis to 

produce ethanol, methanol and trisilanols.  The subsequent condensation of the transient silanols 

yields a functional amorphous polymer with amine (-NH3
+), hydroxyl (-OH) and methyl (-CH3) 

functional groups, serving as artificial antibodies.  This is of great importance as the concerted 

weak interactions, namely electrostatic, hydrogen bonding and hydrophobic interactions, are 
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believed to be the most dominant form of interaction between artificial antibodies and 

template/target biomolecules.102  The composition ratio of the siloxane co-polymerization has 

been adjusted to obtain the best trade-off between template release and mechanical strength.103   

The templates are finally removed by breaking the imine bonds with the crosslinkers using a 

mixture of oxalic acid and sodium dodecyl sulfate.  Finally, the artificial antibodies engineered 

on the surface of AuNCs are ready for selective binding of the target biomolecules, even in the 

presence of interfering proteins in physiological fluids. 

AuNCs also serve as transducers to monitor each step in molecular imprinting process, including 

attachment of crosslinkers, immobilization of template proteins, polymerization of organo-

siloxane monomers, removal of templates, and rebinding of the target proteins. Extinction 

spectra of the AuNCs were collected following each step of the imprinting process: pristine 

AuNCs (step 1), forming a p-ATP/GA crosslinker layer (step 2), immobilization of template 

proteins (step 3), polymerization of organo-siloxane monomers (step 4), removal of templates 

(step 5), capture of target proteins (step 6), release of target proteins, (step 7) and its recapture 

(step 8) (Fig. 2.2B and C).  The spectra revealed a progressive red-shift in LSPR wavelength 

with the deposition of each layer (i.e., from steps 2 to 4) due to the increase in the refractive 

index (from buffer to the mixture of polymer layer and buffer).   Figure 2.2C also shows two 

cycles of release and capture of target proteins, resulting in blue and red LSPR wavelength shift, 

respectively, demonstrating the reusability of molecularly imprinted AuNCs. 

Figure 2.3A shows the shift in the LSPR wavelength of AuNCs upon exposure to different 

concentrations of NGAL in artificial urine, which covers the physiological and pathological 

concentration range.  A monotonic increase in the LSPR shift is observed with increasing 

concentrations of NGAL in artificial urine.  Nominally, patients with urine NGAL concentration 
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of 125 ng/ml or less do not progress to acute kidney injury (AKI), while patients with urine 

NGAL concentration of 350 ng/ml progress to AKI.104, 105  The LSPR shift is about 5 nm for 125 

ng/ml (5 nM) of NGAL, which is the critical concentration to differentiate if patients progress to 

AKI.  We could easily detect NGAL down to 25 ng/ml (LSPR shift ~2 nm), which is much lower 

than the concentration range of NGAL in urine of patients with AKI.  To test the selectivity of 

artificial antibodies, the NGAL-imprinted AuNCs were challenged with high concentrations of 

other urinary proteins as potentially interfering molecules, including 10 µg/ml of myoglobin 

(Mw=17.7 kDa), hemopexin (Mw=57 kDa), α1-antitrypsin (Mw=52 kDa), α1-acid glycoprotein 

(Mw=40.8 kDa), albumin (Mw=66.5 kDa), and hemoglobins (Mw=64.5 kDa) , and 1 µg/ml of 

recombinant human fatty acid-binding protein 1 (FABP1)(MW=14.2 kDa), and recombinant 

human fatty acid binding protein-3 (FABP3)(MW=14.8 kDa).  The LSPR shift from all 

interfering proteins at significantly higher concentration (1-2 orders magnitude) is less than 1 nm, 

which is much smaller compared to ~5 nm for NGAL (Fig. 2.3B). 

The pH value of human urine can range from 4.5 to 8.5 depending on diet or other pathological 

conditions of subjects.  LSPR shift of molecularly imprinted AuNC upon exposure to artificial 

urine at different pH (4.5 - 8.5) spiked with 230 ng/ml of NGAL exhibited only a small variation 

indicating the remarkable pH stability of artificial antibodies (Fig. 2.3C).  We also tested the 

plasmonic sensor response to 230 ng/ml of NGAL in urine of different specific gravities (1.005 

to 1.030 g/ml). The LSPR shift exhibited a remarkable stability over the range of specific 

gravities tested, suggesting the excellent stability of the artificial antibodies (Fig. 2.3D).  These 

results clearly suggest the robustness and efficiency of NGAL imprinted AuNCs as plasmonic 

nanotransducers with built-in recognition elements for the detection of target biomarkers under 

complex physiological conditions. 
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2.5 Conclusions 

In conclusion, AuNCs, a novel class of hollow and porous nanostructures, exhibit significantly 

higher refractive index sensitivity and lower EM decay length, both of which make it an 

excellent candidate for plasmonic biosensing.  AuNCs with built-in artificial antibodies achieved 

by molecular imprinting approach enabled the detection of a kidney injury biomarker (NGAL) 

down to a concentration of 25 ng/ml.  The limit of detection (LOD) achieved with AuNCs as 

nanotransducers is more than an order of magnitude lower compared to that obtained with 

AuNRs.  In addition to the excellent sensitivity, AuNCs with built-in artificial antibodies for 

NGAL exhibit excellent selectivity against numerous interfering urinary proteins and remarkable 

stability across pH ranging from 4.5 to 8.5 and specific gravities from 1.005 to 1.030.  AuNCs 

with built-in artificial antibodies can be potentially employed for rapid urinalysis in point-of-care 

settings for identifying patients that can progress to AKI, allowing early therapeutic intervention. 

2.6 Supporting Information 

Supporting Information for chapter 2 is provided in appendix 1. 
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Figure 2. 1  (A) Representative TEM image of AuNCs (inset shows high magnification image). 

(B) Vis-NIR extinction spectrum of aqueous suspension of AuNCs (inset shows the histogram of 

side length and wall thickness of AuNCs obtained from TEM images).  
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Figure 2. 2 (A) Schematic illustration representing the concept of molecular imprinting on AuNC. 

(B) Extinction spectra of AuNCs following each step in molecular imprinting process. (C) LSPR 

wavelength corresponding to each step in MIP, including two cycles of protein release and 

capture. The concentration of NGAL is 230 ng/ml. 
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Figure 2. 3 (A) Sensitivity of NGAL imprinted AuNCs as plasmon transducers expressed by 

LSPR shift in nm as a function of NGAL concentration. (B) LSPR shift of interfering proteins 

(>10 µg/ml) compared with NGAL (0.3 µg/ml). (C) LSPR shift from 230 ng/ml of NGAL in 

artificial urine of different pH. (D) LSPR shift from 230 ng/ml of NGAL in artificial urine of   

different specific gravities. 
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Chapter 3: Size-dependent Surface Enhanced Raman 

Scattering Activity of Plasmonic Nanorattles 

The results reported in this chapter were published in Chemistry of Materials, 2015, 27, 5261-5270. 

Reproduced with permission from American Chemical Society. 

  

3.1 Abstract 

Surface enhanced Raman scattering (SERS) is considered to be a highly attractive platform for 

chemical and biological sensing and molecular bioimaging.  Most of the SERS substrates and 

contrast agents rely on individual or lightly aggregated metal nanostructures that either offer 

limited enhancement or suffer from poor stability and reproducibility. We have recently 

demonstrated that plasmonic nanorattles, owing to the internal electromagnetic hotspots, offer 

significantly higher SERS enhancement compared to their solid counterparts.  In this work, we 

investigate the size- and shape-dependent SERS activity of plasmonic nanorattles comprised of 

Au nanospheres and nanorods as cores and porous Au nanocubes and cuboids as shells.  The 

SERS activity of Au nanorattles with spherical core was found to increase with increase in the 

edge length of the cubic shell.  On the other hand, the SERS activity of Au cuboid nanorattles 

with AuNR core was found to decrease with increase in the size of the cuboid shell.  Finite 

difference time domain electromagnetic simulations show excellent agreement with our 

experimental results.  Comprehensive understanding of the size- and shape-dependent SERS 

activity of this novel class of nanostructures can lead to the rational design and fabrication of 

highly efficient SERS substrates for chemical and biological sensing and ultrabright contrast 

agents for SERS-based molecular bioimaging. 
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3.2 Introduction 

Surface enhanced Raman scattering (SERS) involves the large enhancement of Raman scattering 

from molecules adsorbed on or in close proximity to nanostructured metal surface.106,107  SERS 

is considered to be a highly promising platform for trace chemical and biological detection, 

environmental monitoring, forensics and molecular bioimaging.108,109,16,110,26,111,112,113-115 Various 

chemical methods such as seed-mediated and polyol synthesis that have enabled manufacture of 

size- and shape-controlled plasmonic nanostructures with precise control over optical properties 

have greatly helped in gaining a deeper understanding of the mechanistic aspects of SERS and its 

progress towards real-world applications.108,109,16,116,35,117  Over the past two decades, numerous 

SERS substrates from roughened metal films to highly ordered nanostructure assemblies have 

been extensively investigated.15 

Nanoscale gaps between adjacent plasmonic nanostructures exhibit extraordinarily large 

enhancement of electromagnetic field, which are often termed as electromagnetic hotspots.  

These electromagnetic hotspots, typically produced by nanostructure assemblies or aggregates, 

result in large SERS enhancement.15,118,61,119 Extensive efforts have been dedicated to the design 

and fabrication of SERS substrates that exhibit both high enhancement and high reproducibility, 

which are critical for real-world application of SERS.15, 114, 115, 120 SERS activity of assemblies of 

nanostructures is highly heterogeneous as the subtle intrinsic asymmetries of the assemblies 

leads to a dramatic (orders of magnitude) change in the maximum electromagnetic field 

enhancement.121,122  It is a great challenge to realize uniform and reproducible SERS substrates 

with high density of electromagnetic hot spots based on such conventional plasmonic 

assemblies.123,118     Furthermore, stringent control of nanostructure assemblies  involves either 

complex chemical methods or expensive and time-consuming lithographic 
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techniques.20,64,65,124,125  Therefore, nanostructures with inherent electromagnetic hot spots can 

serve as ideal SERS substrates for sensitive detection of analytes, which eliminate the need for 

nanoparticle assemblies or aggregates.68   

Hollow and porous metal nanostructures are a relatively novel class of plasmonic nanostructures 

that exhibit extraordinary optical and catalytic properties compared to their solid counterparts, 

due to increased surface area and facile tunability of localized surface plasmon resonance (LSPR) 

wavelength over a broad range (visible to parts of near infrared).126  These nanostructures have 

been employed as exogenous contrast agents in bioimaging and photothermal therapy, drug 

carriers, nanotransducers in chemical and biological sensing, and catalysts.55-58, 127, 128  Among 

the various reported synthesis methods, galvanic replacement reaction serves as simple method 

for producing bi- and tri-metallic hollow nanostructures with well-controlled morphologies, 

composed of Ag and Au, Pd, or Pt.129, 130  We have recently demonstrated that Au nanorattles 

comprised of Au nanooctahedron as core and porous gold cube as shell offer significantly higher 

SERS enhancement compared to other solid nanostructures of similar size (e.g., Au 

nanocubes).128  Electromagnetic hotspots within the nanostructures, which are critical for large 

SERS enhancement, preclude the need for controlled aggregation or assembly of nanostructures. 

While the preliminary study demonstrates the high SERS activity of the nanostructures, a 

systematic study of size-dependent SERS activity of plasmonic nanorattles is still missing.  In 

this work, we report the size-dependent SERS activity of plasmonic nanorattles comprised of Au 

nanosphere or nanorod core and porous Au cubic or cuboid shell.  Seed-mediated synthesis in 

combination with galvanic replacement reaction was employed to realize nanorattles of different 

sizes.  The SERS activity of the nanostructures was probed using 2-napthalenthiol as a model 

analyte.  In the case of cubic nanorattles with a relatively small spherical core, the SERS activity 
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was found to increase with increase in the edge length of the nanorattles.  On the other hand, for 

nanorattles with Au nanorod core, the SERS activity was found to decrease with increase in the 

size of cuboid shell. 

3.3 Experimental Section 

Materials 

Gold chloride (HAuCl4), Hexadecyltrimethylammonium bromide (CTAB), sodium borohydride 

(NaBH4), silver nitrate (AgNO3), ascorbic acid, poly(vinyl pyrrolidone) (PVP, MW=29,000 

g/mol), and 2-naphthalenethiol (2-NT) were purchased from Sigma-Aldrich. 

Hexadecyltrimethylammonium chloride (CTAC) was purchased from Tokyo Chemical Industry 

(TCI). All the chemicals were used as received without further purification. 

 

Synthesis of Au Nanospheres 

CTAC-capped Au nanospheres were synthesized by using a seed-mediated method according to 

a previous report with slight modifications.64,131  Au seeds were synthesized by adding 0.6 ml of 

ice-cold sodium borohydride solution (10 mM) into a solution containing 0.25 ml HAuCl4 (10 

mM) and 9.75 ml CTAB (0.1 M) under vigorous stirring at room temperature. The color of seed 

solution changed from yellow to brown.  Seed solution was kept undisturbed at room 

temperature for 3 h.  Growth solution was prepared by mixing 6 ml of HAuCl4 (0.5 mM) and 6 

ml of CTAC (0.2 M) under stirring followed by the addition of 4.5 ml of ascorbic acid (0.1 M).  

Subsequently, 0.3 ml of Au seed solution was added to the growth solution.  Au nanospheres 

were centrifuged and redispersed in nanopure water for further use. 

  

Synthesis of AuNS@Ag nanocubes 



28 
 

For the synthesis of AuNS@Ag core-shell nanocubes with different sizes, different volumes of 

Au nanospheres (0.15, 0.2, 0.5, 1.0, 2.0, and 3.0 ml) and 20 mM CTAC (4.85, 4.8, 4.5, 4.0, 3.0 

and 2.0 ml) were mixed under stirring at 60 °C for 20 min.  Subsequently, 5 ml of AgNO3 (2 mM) 

and 5 ml aqueous solution of 50 mM ascorbic acid in 40 mM CTAC were added under stirring at 

60 °C for 4 h.  After 4 h, the as-synthesized AuNS@Ag nanocubes solution was cooled by 

immersing the reaction vial in ice-cold water. The AuNS@Ag nanocube solution was 

centrifuged and the nanostructures were redispersed in nanopure water for further use. 

 

Synthesis of Au Nanorattles with AuNS cores 

Au nanorattles were synthesized by transforming silver shell of AuNS@Ag nanocubes into a 

porous Au shell via galvanic replacement reaction.  The as synthesized AuNS@Ag nanocubes 

were centrifuged (13,000 rpm for 15 min) and redispersed into a 15 ml aqueous solution 

comprised of 7.5 ml PVP (1 wt%) and 7.5 ml CTAC (0.2 M) solutions. The solution was heated 

at 90 °C for 5 min under magnetic stirring.  Subsequently, HAuCl4 aqueous solution (0.5 mM) 

was injected into the AuNS@Ag nanocube solution at a rate of 0.5 ml/min under magnetic 

stirring until the solution turned to blue color. The Au nanorattles solution were centrifuged at 

13,000 rpm for 15 min and dispersed in nanopure water. 

 

Synthesis of Au nanorods 

Au nanorods were synthesized by using seed-mediated method.132,133 Seed solution was 

synthesized by adding 0.6 ml of an ice-cold NaBH4 (10 mM) solution into 10 ml of HAuCl4 

(0.25 mM) and CTAB (0.1 M) solution under vigorous stirring at room temperature. The color of 

the seed solution changed from yellow to brown. Growth solution was prepared by mixing 5 ml 
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HAuCl4 (10 mM), 95 ml CTAB (0.1 M), 1 ml AgNO3 (10 mM) and 0.55 ml ascorbic acid (0.1 

M), consecutively. The solution was homogenized by gentle stirring. To the colorless solution, 

0.12 ml of freshly prepared seed solution was added and kept undisturbed in the dark for 14h. 

Prior to use, the AuNR solution was centrifuged twice at 8000 rpm for 10 min to remove excess 

CTAB and redispersed in nanopure water. 

 

Synthesis of AuNR@Ag nanocuboids 

2 ml twice-centrifuged AuNR and 4 ml CTAC (20 mM) were mixed at 60 °C under stirring for 

20 min. 5 ml AgNO3 (2 mM), 2.5 ml CTAC (80 mM) and 2.5 ml ascorbic acid (0.1 M) were 

added under stirring at 60 °C for 4 h. Subsequently, the as synthesized AuNR@Ag nanocuboids 

solution was cooled by immersing the reaction vial in ice-cold water. 

 

Synthesis of Au nanorattles with AuNR cores 

Au nanorattles were synthesized by transforming Ag shell of AuNR@Ag nanocuboids into 

porous shell of Au via galvanic replacement reaction. The as synthesized AuNR@Ag 

nanocuboids were centrifuged and redispersed in CTAC solution (50 mM), followed by heating 

at 90 °C for 5 min under magnetic stirring. HAuCl4 aqueous solution (0.5 mM) was injected into 

the AuNR@Ag solution at a rate of 0.5 ml/min under magnetic stirring. 

 

Spectroscopy Measurements 

SERS spectra measurements were preformed by adding 10 µl of 2-NT (100 mM in ethanol) to 90 

µl of Au nanorattles.  The concentration of cubic nanorattles was estimated to be 1.41×1013/ml 

(see SI for details).  The concentration of cuboidal nanorattles was estimated to be 3.44×1012/ml 
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(see SI for details).  SERS Spectra were collected using a Renishaw inVia confocal Raman 

spectrometer. Spectra were collected using the 785 nm laser, which was focused on the sample 

using a 20X objective with 30 sec exposure time. The laser power was measured to be 

approximately 0.7 mW. Five spectra were collected from different spots across each sample. 

UV-Vis extinction spectra were collected using Shimadzu UV-1800 UV-Vis  spectrophotometer. 

 

Microscopy Characterization 

Transmission electron microscopy (TEM) images were collected using a JEOL JEM-2100F field 

emission microscopy. Scanning electron microscopy (SEM) images were obtained using a FEI 

Nova 2300 Field Emission SEM at an accelerating voltage of 5 kV. 

 

Finite-difference time-domain (FDTD) simulations 

Electromagnetic field distribution around the plasmonic nanorattles with different sizes was 

simulated by using three-dimensional finite-difference time-domain (FDTD) with a 

commercially available software (EM Explorer). FDTD simulations exploit the time and position 

dependence of Maxwell’s equations to model the electromagnetic waves in rectangular 3D cells 

(Yee cells) of a finite volume. A Yee cell size of 0.15 µm is used in the current study, which is 

about 1/4th of the wavelength. Perfectly Matched Layer (PML) absorbing boundary conditions 

were applied in all directions of the simulation domain.  For cubic nanorattles, the AuNS core 

was defined as a sphere with a diameter of 8 nm and the edge length of hollow Au shells was 

defined to be 20, 23, 32, 37, 40, 45 nm and the wall thickness to be 4 nm.  The simulation 

domain was defined to be 150 nm × 150 nm × 150 nm. Dimension of Au nanorattles with AuNR 

cores was 69.5x 37.9 nm, 74.1x 44.6 nm, 78.9x 50.0 nm and 83.1x 55.2 nm and with a wall 
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thickness of 5 nm and AuNR (core) with a diameter of 11.3 nm and a length of 51.9 nm were 

simulated in a 150 nm × 150 nm × 150 nm domain. A high resolution simulation was run at the 

excitation (λ=785 nm) and Stokes-shifted wavelength (λ= 880 nm) using p-polarized (along the 

longitudinal direction of the anisotropic Au nanostructure)  to obtain the electromagnetic field 

distribution. The complex refractive index of gold was set to n=0.18＋i4.96 at this frequency, the 

refractive index of surrounding medium was set to be 1.33 as water. 

3.4 Results and Discussion 

Figure 3.1A schematically illustrates a two-step process employed in the synthesis of Au 

nanorattles.  The synthesis of plasmonic nanorattles starts with synthesis of Au nanospheres 

(AuNS), which serve as seeds for Ag coated Au nanospheres.  AuNS are in turn synthesized 

using a seed-mediated method (see experimental section for details).134  Transmission electron 

microscopy (TEM) images reveal the narrow size distribution of AuNS with a diameter of 

8.5±0.6 nm (Figure 3.1B).  Vis-NIR extinction spectrum of AuNS depicts the LSPR wavelength 

at 521 nm (Figure 3.1C).   

 

AuNS@Ag nanocubes are synthesized by a seed-mediated method using AuNS as seeds, 

according to a recently reported procedure with slight modification.131 The growth solution is 

comprised of silver nitrate (AgNO3) as silver precursor, ascorbic acid as reducing agent and 

cetyltrimethylammonium chloride (CTAC) as capping agent.  Different volumes of AuNS were 

added to the growth solution to vary the thickness of Ag shell on the surface of AuNS.  TEM 

images reveal uniform size and shape of the Au@Ag nanocubes with varying edge lengths 

obtained by varying the amount of AuNS (seed) added to the Ag growth solution (Figure 3.2A-

F).  The AuNS cores were found to be at the center of each Au@Ag nanocube suggesting the 
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uniform overgrowth of Ag on the surface of the AuNS.  The AuNS@Ag nanocubes are 

dominated (100) facets due to the faster growth of Ag on the (111) facets of cuboctahedral Au 

nanoparticles.131  The Ag shell thickness on AuNS and the edge length of resultant Au@Ag 

nanocubes monotonically decreased with increasing volume of the AuNS added to the growth 

solution (Figure 3.2G).  The seed-mediated method employed here enables facile control over 

the dimensions of the core-shell nanostructures by simply varying the amount of seed solution 

added to the growth solution.  This is in contrast with the seedless polyol synthesis approach, 

which requires careful monitoring and quenching of the growth reaction to obtain Ag nanocubes 

of desired dimensions.135  Extinction spectra of the Au@Ag nanocubes with different edge 

lengths reveal a progressive red shift in the dipolar LSPR wavelength with increase in the edge 

length (Figure 3.2H).  The increase in the LSPR wavelength with edge length of the nanocubes 

was found to be linear over the size range investigated here, which is in agreement with previous 

reports (Figure 3.2I).131,135 

 

As noted above, the galvanic replacement reaction is a powerful and facile method to achieve 

hollow plasmonic nanostructures.129,130  Galvanic replacement reaction is an electrochemical 

reaction which involves the oxidation of one metal with lower reduction potential (which serves 

as a sacrificial template) by the ions of another metal with higher reduction potential.59   We 

employed the galvanic replacement reaction to synthesize Au nanorattles comprised of AuNS 

cores and porous Au shell.  Addition of HAuCl4 to the Ag nanocube solution results in a 

spontaneous galvanic replacement reaction.136,137  Galvanic replacement reactions performed on 

Au@Ag nanocubes with edge lengths of 38 ± 1.6, 33 ± 1.3, 30 ± 1.9, 26 ± 1.4, 20 ± 1.0 and 17 ± 

1.2 nm resulted in Au nanorattles with edge lengths of 45 ± 2.2, 40 ± 1.8, 37 ± 1.6, 32 ± 1.4, 23 ± 
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1.1 and 20 ± 0.6 nm, respectively (Figure 3.3A-F).  The increase in the edge length of Au 

nanorattles compared to the corresponding Au@Ag nanocubes is due to the Au deposition on the 

external wall of Ag nanocube template during the galvanic replacement reaction. The wall 

thickness of the Au nanorattles was measured to be around 4 nm from the TEM images (Figure 

3.3A-F).  AuNS embedded within porous Au shell can be seen in the magnified TEM images of 

individual Au nanorattles (shown as insets in Figure 3.3A-F).  The galvanic replacement reaction 

employed here involves the titration of HAuCl4 into Au@Ag nanocubes solution.  With the 

addition of HAuCl4 into Au@Ag nanocubes solution, the LSPR band corresponding to Ag 

nanocubes decreased in intensity with a concomitant rise of a new LSPR band at higher 

wavelength.  The higher wavelength band corresponding to the dipolar LSPR of porous Au 

shells progressively red shifts with increase in the amount of HAuCl4 titrated into the Au@Ag 

nanocubes solution.131,135,59   The titration of Au precursor into the Au@Ag nanocubes of 

different edge lengths was controlled to obtain Au nanorattles with similar dipolar plasmon 

resonance wavelength, around 680 nm (Figure 3.3H).  For Au nanorattles obtained using the 

smallest Au@Ag nanocubes (edge length of 17 nm), the maximum LSPR wavelength that could 

be achieved with galvanic replacement was around 620 nm.  Further addition of HAuCl4 into 

Au@Ag nanocubes solution resulted in a blue shift possibly due to the blocking of pores on the 

shell, which results in continuous Au deposition on the external wall without oxidizing more 

Ag.138,139 

 

For the synthesis of Au cuboid nanorattles, we used Au nanorods as cores.  Figure 3.4A 

schematically illustrates the two-step process involved in the synthesis of Au cuboid nanorattles.  

In the first step, seed-mediated method was employed to synthesize AuNR.  The length and 



34 
 

diameter of AuNRs were respectively measured to be 51.9 ± 4.2 and 11.3 ± 1.1 nm using TEM 

(Figure 3.4B).  The extinction spectrum of AuNR cores exhibited two characteristic bands at 508 

and 822 nm corresponding to the transverse and longitudinal plasmon resonances, respectively 

(Figure 3.4C).140    

 

The uniform growth of Ag shell on AuNRs resulted in rectangular prismatic structures with 

truncated rectangular/square cross sections (Figure 3.5A-D).  The thickness of the Ag shell can 

be finely tuned by controlling the seed concentration (i.e. AuNR concentration) with respect to 

the Ag precursor concentration in the shell growth solution.  Au@Ag nanocuboids with 

longitudinal and transverse edge lengths of 62.7×31.2 nm, 67.0×37.0 nm, 70.4×41.8 nm and 

72.5×44.7 nm were obtained by varying the Ag precursor concentration (Figure 3.5A-D).  The 

longitudinal and transverse edge lengths increased linearly with increase in the Ag precursor 

concentration in the solution (Figure 3.5E).  The thickness of Ag shell at AuNR ends and sides 

increased linearly with increase in the Ag precursor concentration in the solution (Figure S2.1).  

The Ag shell on the sides of the AuNR was found to be thicker than that at the ends. This 

anisotropic Ag shell formation results in a decrease in the aspect ratio of AuNR@Ag 

nanocuboids with the increase in the Ag precursor concentration, which is in agreement with 

previous reports.141,142  Following the deposition of a thin layer of Ag on AuNRs, the bimetallic 

nanostructures exhibited four bands in the extinction spectrum (Figure 3.5F).  We define these 

bands as peaks 1 to 4 from higher wavelength to lower wavelength.  The extinction bands 1 and 

2 correspond to the longitudinal and transverse dipolar resonances and the extinction bands 3 and 

4 correspond to the transverse octupolar resonances of the AuNR@Ag nanocuboids.141,142,143,144  

Progressive blue shift in the longitudinal dipolar resonance is observed with increasing 
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concentration of Ag precursor, which can be ascribed to the reduction of aspect ratio of the 

Au@Ag nanocuboids.  It has been demonstrated that the longitudinal dipolar resonance of the 

Au@Ag nanocuboids is highly sensitive to the aspect ratio of the AuNRs employed as cores and 

the optical properties can be finely tuned with by controlling the aspect ratio of AuNRs and the 

Ag shell thickness.141, 142  The octupolar resonances remain largely insensitive to the structural 

changes of Au@Ag nanocuboids. 

 

Similar to Au@Ag nanocubes, galvanic replacement reaction was employed to convert Au@Ag 

nanocuboids into anisotropic nanorattles comprised of AuNR core and porous cuboid shell.  Au 

cuboid nanorattles with four different dimensions (69.5×37.9 nm, 74.1×44.6 nm, 78.9×50.0 nm 

and 83.1×55.2 nm) were obtained using Au@Ag nanocuboid templates described above (Figure 

3.6A-D).  The length and width of Au cuboid nanorattles increased linearly with the increase in 

the dimensions of Au@Ag nanocuboid templates (Figure 3.6E).  Vis-NIR extinction spectra 

reveal that the formation of Au cuboid nanorattle from Au@Ag nanocuboids is associated with 

the gradual lowering in the intensity of plasmonic extinction bands corresponding to Ag and the 

appearance of a higher wavelength band that progressively red-shifts with addition of HAuCl4.  

During the galvanic replacement reaction, the titration of HAuCl4 into the Au@Ag nanocuboid 

solution was controlled to achieve a LSPR band at ~650 nm for Au cuboid nanorattles of 

different dimensions (Figure 3.6F).   

 

Now we turn our attention to the SERS activity of the size-controlled Au nanorattles.  To 

compare the SERS activity of the nanorattles, we employed 2-napthalnethiol (2-NT) as a model 

analyte, which readily chemisorbs on Au surface.145    To compare the SERS activity of the Au 



36 
 

nanorattles of different sizes, the concentration of the Au nanorattles was maintained constant.  

SERS spectra obtained from Au nanorattles of different sizes display most prominent Raman 

bands at 1066, 1381 and 1625 cm-1, which correspond to the C-H bend and ring stretch 

vibrations of 2-NT, respectively (Figure 3.7A).146   We have employed the most intense band at 

1381 cm-1 to compare the SERS intensity of Au nanorattles.  Within the size range tested here, 

the SERS activity was found to increase with increase in the size of the Au nanorattles (Figure 

3.7A, B).  We observed a similar trend for both 785 and 514.5 nm excitation sources (see SI, 

Figure S2.3 for SERS data corresponding to 514.5 nm excitation).  The increase in SERS activity 

with increasing size of the nanorattles was found to be highly non-linear.  A rapid increase in the 

SERS activity was noted as the size of the nanorattles increased from 37 nm to 40 and 45 nm 

(Figure 3.7B).  The increase in the SERS activity of the Au nanorattle can be ascribed to the 

increase in the extinction corssection and total surface area of these hollow nanostructures with 

increase in the size. Using discrete dipole approximation (DDA), it has been demonstrated that 

the extinction crosssection of Au nanocage with 50 nm edge length is more than four times 

higher than that of Au nanocage with 30 nm edge length.147  The higher extinction (and 

scattering) crossection of larger Au nanorattles efficiently lends itself for higher SERS activity 

observed here. The SERS enhancement factors of Au nanorattles with size of 45, 40, 37, 32, 23 

and 20 nm is estimated to be 2.91×108, 1.91×108, 2.66×107, 2.24×107, 2.30×107, 2.13×107, 

respectively (see SI for details).55, 148,149 

 

Three-dimensional finite-difference time-domain (FDTD) simulations were employed to 

understand the electromagnetic field intensity distibution and SERS enhancement from the 

plasmanic nanorattles. The spatial maps of electrical field intensity (at 785 nm) around the Au 
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nanorattles with water as surrounding medium are shown in Figure 3.7C. It is known that the 

average SERS intensity (ISERS) is proportional to square of the product of the gain in the incident 

and Raman scattered light.148  For low frequency Raman modes, the gains of the incident and 

Raman scattered light can be considered to be nearly equal. This results in the SERS intensity to 

scale with the fourth power of the gain in the electromagnetic field caused by the 

nanostructure.148  For 785 nm excitation, the Stokes-shifted wavelength corresponding to 1381 

cm-1 Raman band is calculated to be at ~880 nm. We have plotted square of the product of the 

gain in the incident and Raman scattered light of electric field enhancement (
2

880

2

785 EE ) 

obtained from FDTD simulations, which represents the average SERS intenstiy from the 

plasmonic nanorattles (Figure 3.7D).  The SERS intensity trend obtained from FDTD 

simulations shows remarkable agreement with our experimental observations (Figure 3.7B, D).  

Except for the smallest nanorattles tested here, the
2

880

2

785 EE  of plasmonic nanorattles 

increased with the increase in the edge length of the nanorattles.  Nanorattles with an edge length 

of 23 nm exhibited slightly lower 
2

880

2

785 EE compared to that with 20 nm, which is a 

deviation from the overall trend of increasing 
2

880

2

785 EE  with increase in edge length. This 

deviation can be understood by considering the two electromagnetic hot regions of the 

nanorattles. The electromagnetic field enhancement at the internal hotspot formed between the 

nanosphere (core) and the sidewall (porous shell) increases with the decrese in the edge length of 

the nanorattles. On the other hand, the field enhancement at the corners of this cubic nanorattles 

increases with the increase in the edge length of the nanorattles.  For nanorattles with edge length 

of 20 nm, the internal electromagnetic hotspot results in higher 
2

880

2

785 EE  compared to the 

nanorattles with an edge length of 23 nm.  With subsequent increase in the size of the Au 
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nanorattles, a progressive increase in the electromagnetic field intensity was noted.  The increase 

in
2

880

2

785 EE with the size of the nanorattles exhibited a highly non-linear trend.  In excellent 

agreement with the experimental data a significant increase in
2

880

2

785 EE was noted as the edge 

length of the nanorattle increased from 37 nm to 40 nm and to 45 nm (Figure 3.7D).  

 

The SERS activity of the size-controlled Au cuboid nanorattles was measured using the same 

method described above. The SERS intensity of Au cuboid nanorattles was found to be 

significantly higher compared to that of Au nanorattles with spherical core (Figure 3.7A and 

Figure 3.8A).  As opposed to Au nanorattles with spherical nanoparticle core, the SERS activity 

of Au cuboid nanorattles was found to decrease with increase in the size of the Au nanorattles 

(Figure 3.8A, B).  SERS enhancement factors of Au cuboid nanorattles with dimensions of 

69.5x37.9 nm 74.1x44.6 nm, 78.9x50.0 nm, 83.1x55.2 nm is 1.17×109, 3.21×108, 1.47×108, 

6.59×107, respectively (see SI for details).    The FDTD simulations were employed to 

understand the spatial distribution of electrical field intensity around the Au cuboid nanorattles 

(Figure 3.8C).  The electromagnetic field intensity map shows electromagnetic hotspots between 

the core AuNR and the porous cuboid shell.  As the dimensions of porous Au cuboid shell are 

increased while maintaining the dimensions of AuNR constant, we note a progressive decrease in 

the electromagnetic field intensity (Figure 3.8C).  Rapid decrease in 
2

880

2

785 EE  with increase 

in the size of nanorattles is in agreement with our experimental observations (Figure 3.8B and 

3.8D).    In the case of nanorattles with spherical core, the influence of the core is rather minimal 

and the SERS activity is governed by the dimensions of the cubic shell.    On other the hand, in 

the case of cuboid nanorattles, the SERS activity is determined by the electromagentic field 

intensity of the internal hotspot (gap between the porous shell and AuNR) rather than the size-
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dependent extinction coefficient of the nanostructures.  Increase in the size of the porous shell 

leads to a decrease in the electromagnetic field at the hotspot and resultant decrease in the SERS 

intensity.  

3.5 Conclusions 

In conclusion, we performed a systematic study of SERS activity of size-controlled Au 

nanorattles obtained by galvanic replacement of size-controlled AuNS@Ag nanocubes and 

AuNR@Ag nanocuboids.  Within the size range studied here, the SERS activity of the plasmonic 

nanorattles with spherical cores increased with the increase in the edge length.  The increase in 

the SERS activity of the cubic nanorattles is due the increase in the extinction (and scattering) 

coefficient of nanostructures with size.  On the other hand, the SERS activity of the plasmonic 

nanorattles with nanorod cores decreased with the increase in the edge length of the porous 

cuboid shells. In the case of the cuboid nanorattles, the electromagnetic hotspot within the 

nanostructure, formed between the edge of the AuNR and porous Au shell, governs the SERS 

activity.  FDTD simulations showed excellent agreement with the experimentally determined 

size-dependent SERS activity of the nanorattles.   Highly reproducible and facile synthesis 

combined with excellent SERS activity makes Au nanorattles an attractive candidate for the 

fabrication of uniform and highly efficient SERS substrates and molecular bioimaging. 

3.6 Supporting Information 

Supporting Information for chapter 3 is provided in appendix 2. 
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Figure 3. 1 (A) Schematic illustration of the synthesis of Au nanorattle using Au nanosphere as 

core. (B) TEM image of AuNS employed as cores for the synthesis of Au nanorattles. (C) Vis-

NIR extinction spectrum of AuNS.   
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Figure 3. 2 (A)-(F) TEM images of AuNS@Ag nanocubes obtained by adding (A) 0.15 ml, (B) 

0.2 ml, (C) 0.5 ml, (D) 1.0 ml, (E) 2.0 ml, (F) 3.0 ml of AuNS into Ag shell growth solution. 

Inset of (A)-(F) shows schematic illustration of AuNS@Ag nanocube (not to scale). (G) Plot 

depicting the variation in the edge length and Ag shell thickness of AuNS@Ag nanocube with 

the volume of AuNS added to the Ag growth solution. (H) Vis-NIR extinction spectra of 

AuNS@Ag nanocubes with different edge lengths indicated in the plot. (I) Plot depicting the 
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linear increase in the dipolar LSPR wavelength of AuNS@Ag nanocubes with increase in the 

edge length. 
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Figure 3. 3 (A)-(F) TEM images of Au nanorattles with edge length of (A) 45±2.2 nm (B) 

40±1.8 nm (C) 37±1.6 nm (D) 32±1.4 nm (E) 23±1.1 nm, and (F) 20±0.6 nm obtained by 

galvanic replacement of AuNS@Au nanocubes. Insets show magnified images of a single Au 

nanorattles (scale bar in the insets represent 20 nm) (G) Plot showing the linear increase in the 

edge length of Au nanorattles with increase in the edge length of AuNS@Ag templates. (H) Vis-

NIR extinction spectra of Au nanorattles of different sizes indicated in the plot.  
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Figure 3. 4 (A) Schematic illustration of the synthesis of Au nanorattle using Au nanorod as core. 

(B) TEM image of AuNRs. (C) Vis-NIR extinction spectrum of AuNRs. 
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Figure 3. 5 TEM images of AuNR@Ag nanocuboids (A) 62.7×31.2 nm, (B) 67.0×37.0 nm, (C) 

70.4×41.8 nm and (D) 72.5×44.7 nm. (E) Plot depicting the length and width of AuNR@Ag 

cuboids achieved by different amount of AgNO3 in the shell growth solution. (F) Vis-NIR 

extinction spectra of AuNR@Ag nanocuboids of different dimensions indicated in the plot.  
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Figure 3. 6 TEM images of Au cuboid nanorattles with dimensions of (A) 69.5×37.9 nm (B) 

74.1×44.6 nm, (C) 78.9×50.0 nm and (D) 83.1×55.2 nm obtained by galvanic replacement of 

AuNR@Au nanocuboids.  (E) Plot showing the linear increase in the dimensions of Au cuboid 

nanorattles with increase in the dimensions of AuNR@Ag nanocuboid templates. (F) Vis-NIR 

extinction spectra of Au nanorattles of different dimensions indicated in the plot.  
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Figure 3. 7 (A) SERS spectra obtained from Au nanorattles of different edge lengths following 

the adsorption of 2-NT. (B) Plot showing the non-linear increase in the SERS intensity of 1381 

cm-1 Raman band with increase in the edge length of Au nanorattles. (C) FDTD simulations 

showing the electric field distribution of Au nanorattles of different sizes using 785 nm 

excitation wavelength (c1-c6 correspond to electric field distribution of Au nanorattles with edge 

length of 20, 23, 32, 37, 40 and 45 nm, respectively). (D) Plot showing the non-linear increase in 

2

880

2

785 EE  with increase in the edge length of Au nanorattles. 

 

 

(B) (A) 

(C) (D) 

1000 1200 1400 1600 1800

500 counts

 

 
S

E
R

S
 i
n
te

n
s
it
y

Raman shift (cm-1)

 control

 45 nm

 40 nm
 37 nm

 32 nm

 23 nm

 20 nm

1381

20 25 30 35 40 45
0

500

1000

1500

2000

2500

3000

3500

S
E

R
S

 i
n
te

n
s
it
y
 (

c
o
u
n
ts

)

Size of Au nanorattles (nm)

20 25 30 35 40 45

0

1000

2000

3000

4000

5000

6000

 

 


E

7
8

5


2

E

8
8

0


2

Size of Au nanorattle (nm)



48 
 

v 

 

 

 

 

          

      

           

Figure 3. 8 (A) SERS spectra obtained from Au cuboid nanorattles of different dimensions 

following the adsorption of 2-NT. (B) Plot showing the progressive decrease in the SERS 

intensity of 1381 cm-1 Raman band with increase in the dimensions of Au cuboid nanorattles. (C) 

FDTD simulations showing the electric field distribution of Au cuboid nanorattles of different 

sizes (c1-c4 correspond to electric field distribution of Au nanorattles with dimensions 69.5×37.9 

nm, 74.1×44.6 nm, 78.9×50.0 nm and 83.1×55.2 nm, respectively using 785 nm excitation 

wavelength. (D) Plot showing the progressive decrease in 
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Chapter 4: Polarization-dependent Surface Enhanced 

Raman Scattering Activity of Anisotropic Plasmonic 

Nanorattles 

The results reported in this chapter were published in The Journal of Physical Chemistry C, 2016, 120, 

16899-16906. Reproduced with permission from American Chemical Society. 

  

4.1 Abstract 

Plasmonic nanorattles comprised of solid plasmonic core and porous and hollow plasmonic shell 

are a novel class of nanostructures that are highly attractive for surface enhanced Raman 

scattering (SERS)-based chemical and biological sensing and bioimaging. In this report, we 

demonstrate the polarization-dependent SERS activity of cuboidal plasmonic nanorattles 

comprised of a solid gold nanorod core and porous and hollow cuboidal shell.  Plasmonic 

coupling between the gold nanorod core and porous and hollow cuboidal shell of the nanorattles 

results in a large electromagnetic (EM) enhancement at the interior of the nanorattles.  Owing to 

the presence of internal electromagnetic hotspots, the polarization dependence of the plasmonic 

nanorattles was found to be markedly different compared to that of solid AuNR@Ag 

nanocuboids.  Similar to most conventional anisotropic solid nanostructures, the AuNR@Ag 

nanocuboids exhibited a polarization-dependent SERS activity that is dominated by the sharp 

corners and edges.  Conversely, the internal electromagnetic hotspot formed between the AuNR 

and porous shell of cuboidal nanorattle dominates the SERS activity of the anisotropic 

nanorattles.  The results further our understanding of the SERS activity of this promising class of 
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hollow nanostructures with internal electromagnetic hotspots and provide guidelines for the 

design of highly efficient SERS substrates based on these nanostructures. 

4.2 Introduction 

Surface enhanced Raman scattering (SERS), which involves the large enhancement of Raman 

scattering from molecules adsorbed on or in close proximity to the surface of metal 

nanostructures, is considered to be highly promising for chemical and biological sensing, 

environmental monitoring, forensics and bioimaging.106  Over the last decade, remarkable 

progress has been made in the synthesis of size- and shape-controlled plasmonic nanostructures 

with a significant fraction of them designed for SERS applications.15  Assemblies of plasmonic 

nanostructures with nanoscale gaps, locations of electromagnetic hotspots, exhibit large 

enhancement of the electromagnetic field and are identified to be responsible for intense SERS, 

including single molecule SERS.15, 26, 119, 150, 151  It has been demonstrated that the contribution of 

a relatively small number of electromagnetic hotspots (63 out of 106 active sites) can be quite 

significant (~25 %) in the overall SERS signal, underscoring the importance of electromagnetic 

hotspots in the design of SERS substrates and tags.152  Despite significant efforts focusing on 

achieving controlled assembly of plasmonic nanostructures, scalable methods that yield 

nanoparticle assemblies with highly uniform, isotropic and stable SERS enhancement remains 

challenging. Therefore, it is highly desirable to design and synthesize plasmonic nanostructures 

with inherent electromagnetic hotspots, which eliminate the need for the assembled or lightly 

aggregated nanostructures.68, 128, 153-155 

Porous or hollow metal nanostructures are attracting significant attention due to their unique 

optical properties such as tunable localized surface plasmon resonance (LSPR) throughout the 

visible and part of the near-infrared spectrum and the ability to hold and deliver cargo with an 
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external trigger such as light or ultrasound.55  These nanostructures have been extensively 

investigated for various applications including imaging, therapy, and sensing.156,157,158,58,159  

Among the various synthetic methods, galvanic replacement reaction serves as an effective and 

versatile method to produce bi- or tri-metallic hollow nanostructures with the ability to control 

the size, shape, morphology, composition, porosity and surface functionality of the resulting 

nanostructures.59, 160  Recently, we have demonstrated that plasmonic nanorattles comprised of 

Au core and porous Au-Ag shell provide significantly higher SERS enhancement owing to the 

electromagnetic hotspot formed between the core and shell.128,161  The porous outer shell lends 

itself for facile diffusion of analytes into the electromagnetic hotspots within the nanostructures.  

Cuboidal nanorattles comprised of gold nanorod (AuNR) cores and porous cuboidal Ag-Au 

shells are a particularly promising class of nanostructures for SERS.  We have recently 

demonstrated that the electromagnetic field between the core and shell exhibits a dramatic 

increase as the gap between the core and shell is reduced.161 

 SERS activity of any anisotropic nanostructure or assembly of nanostructures depends on 

the polarization of the excitation source with respect to the orientation of the nanostructure or 

assembly.  Polarization-dependent SERS activity of various nanostructures, including Au 

nanopartices,162,163 Ag nanocubes,164 Ag nanobars and nanorice,165 dimers,166,167 and single and 

coupled nanowires has been reported.168,169  To the best of our knowledge, polarization-

dependent SERS activity of anisotropic nanorattles with internal  electromagnetic hotspots has 

not been reported.  In this work, we present the polarization-dependent SERS activity of an 

individual cuboidal plasmonic nanorattle and its solid counterpart i.e. Au@Ag nanocuboid.  

Significantly, the polarization-dependent SERS activity of solid nanocuboid was found to be 

markedly different from that of the cuboid nanorattle with the nanoantenna effect (i.e. enhanced 
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electromagnetic field at the sharp corners and edges of the nanostructure) dominating the former 

nanostructure and internal hotspots (i.e. enhanced electromagnetic field due to the coupling of 

AuNR core and porous shell) dominating the latter.  Computational simulations based on the 

finite-difference time-domain (FDTD) method also corroborate our experimental findings. 

4.3 Experimental Section 

Materials 

Gold chloride (HAuCl4), sodium borohydride (NaBH4), silver nitrate (AgNO3), ascorbic acid, 

cetyltrimethylammonium bromide (CTAB) and 2-naphthalenethiol (2-NT) were purchased from 

Sigma Aldrich.  Hexadecyltrimethylammonium chloride(CTAC) was purchased from Tokyo 

Chemical Industry(TCI).  All the chemicals were used as received without further purification. 

 

Synthesis of Au nanorods 

Au nanorods were synthesized by using the seed-mediated method.  Seed solution was 

synthesized by adding 0.6 ml of an ice-cold NaBH4 (10 mM) solution into 0.25 ml of HAuCl4 

(10 mM) and 9.75 ml CTAB (0.1 M) solution under vigorous stirring at room temperature.  The 

color of the seed solution changed from yellow to brown.  The growth solution was prepared by 

mixing 5 ml HAuCl4 (10 mM), 95 ml CTAB (0.1 M), 1 ml AgNO3 (10 mM) and 0.55 ml 

ascorbic acid (0.1 M), consecutively.  The solution was homogenized by gentle stirring until the 

solution became colorless.  Then, 0.12 ml of freshly prepared seed solution was added to the 

colorless solution and kept undisturbed in the dark for 14 h.  Prior to use, the AuNR solution was 

centrifuged twice at 8000 rpm for 10 min to remove excess CTAB and re-dispersed in Nanopure 

water. 
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Synthesis of AuNR@Ag nanocuboids 

 A 2 ml twice-centrifuged AuNR solution and 4 ml CTAC (20 mM) were mixed at 60 °C under 

stirring for 20 min.  5 ml AgNO3 (2 mM), 2.5 ml CTAC (80 mM) and 2.5 ml ascorbic acid (0.1 

M) were added under stirring at 60 °C for 4 h.  Subsequently, the synthesized AuNR@Ag 

nanocuboid solution was cooled by immersing the reaction vial in ice-cold water. 

 

Synthesis of Au nanorattles  

Au nanorattles were synthesized by transforming the Ag shell of AuNR@Ag nanocuboids into a 

porous shell of Au using the galvanic replacement reaction.  The synthesized AuNR@Ag 

nanocuboids were centrifuged (8000 rpm, 10 min) and redispersed in CTAC solution (50 mM), 

followed by heating at 90 °C for 5 min under magnetic stirring.  An aqueous solution of HAuCl4 

(0.5 mM) was injected into the solution of AuNR@Ag nanocuboids at a rate of 0.5 ml/min under 

magnetic stirring until a blue colored solution appeared. 

 

Characterization 

Extinction spectra were collected using a Shimadzu UV-1800 UV-Vis spectrophotometer.  

Transmission electron microscopy (TEM) images were obtained on a JEOL JEM-2100F field 

emission instrument.  Scanning electron microscopy (SEM) images were obtained on a FEI Nova 

NanoSEM 2300 at an acceleration voltage of 5 kV. 

 

Dark-field scattering spectroscopy 

Dark-field scattering spectroscopy was performed using an inverted optical microscope equipped 

with a dark-field condenser and a grating spectrometer.  Samples were prepared as follows. 
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Cover slips and glass slides were cleaned by heating them in 2 M KOH for 30 min, followed by 

subsequent washing with deionized water, sodium bicarbonate solution, and Nanopure water.  

The cover slips and glass slides were sonicated twice in Nanopure water before use.  The 

nanostructure solution was diluted 10-fold in water and drop-casted on the clean dry cover slip.  

The drop-casted sample was allowed to dry before incorporating the cover slip into a flow cell 

prepared by a method reported previously.170  The flow cell was filled with water and mounted 

with the cover slip face down on the microscope stage.  The flow cell was held in place using 

clips.  A drop of oil was put on an Olympus UPlanApo 0.5-1.35 NA 100x oil immersion 

objective.  The objective was raised to touch the bottom surface of the flow cell.  Excessive oil 

was dropped on the top glass slide surface of the flow cell facing an Olympus U-DCW 1.2-1.4 

NA oil immersion dark field condenser.  The condenser was lowered and brought in contact with 

the oil.  White light from Olympus U-LH100-3 100 W halogen lamp source, focused through the 

condenser, was used to illuminate the nanostructures. The scattered light was collected by the 

objective. The objective was focused with the smallest NA setting.  Further, the condenser height 

as well as position were adjusted to get high signal-to-noise (S/N) ratio and wide field of view of 

the dark-field image.  The size of the illumination aperture (placed above condenser) was also 

adjusted to get high S/N ratio of the image. Select emitters in the wide-field image were aligned 

with a spectrometer slit mounted on the exit port of the microscope. Dark-field scattering spectra 

were acquired using a Princeton Instruments Acton SP 2300 spectrograph set at 300 blaze 

grating and a PyLoN CCD.  Typical spectral acquisition time was 10 s.  The dark-field scattering 

spectra reported here are corrected for background and lamp spectrum using an inbuilt routine in 

the WinSpec software (by Princeton Instruments) that uses the following formula:  

               Scattering spectrum = (Raw data – background) / lamp spectrum.   (1) 



55 
 

Spectra were collected with the spectrograph centered at two different wavelengths, 540 and 660 

nm. The spectra were merged to obtain spectra in the full range from 400 – 800 nm. 

 

Discrete dipole approximation (DDA) simulations 

The DDA method171-173 was used for simulation of the optical spectra of the AuNR@Ag 

nanocuboids. The DDA method numerically solves Maxwell’s equations for one or a series of 

arbitrarily shaped objects by discretizing each object into a cubic array of N polarizable point 

dipoles and self-consistently solving for the polarizability of each dipole interacting with the 

incident electromagnetic field and all other N-1 dipoles.  The DDSCAT code (version 7.3) was 

implemented by use of the open source nanoDDSCAT+ tool (version 2.0x)174 available on 

nanoHUB. The AuNR@Ag nanocuboid target with was generated using the Blender module 

within nanoDDSCAT+. The configuration of the target along with dimensions are shown in the 

inset of Figure S3.4. The corners of the target structure were appropriately beveled using options 

available in Blender. The generated target geometry, which had an effective radius of 37.4 nm, 

was then converted it into a cubic grid of virtual dipoles, the input for the DDA simulation. An 

inter-dipole spacing of 1 nm was employed.  

Simulated spectra of AuNR@Ag nanocuboid were obtained in two different media. In the first 

case, the nanostructure was placed in a surrounding medium with a refractive index (R.I.) of 1.33, 

corresponding to water. In the second case, a medium of R.I. 1.56, corresponding to the 

placement of the nanostructure on an Si substrate in air, was used.  The mixed medium RI in the 

latter case was calculated on the basis of the contact area between the NS and the surrounding 

medium. The area of the face of the nanostructure in contact with the Si substrate, was calculated 

to be ~ 4757 nm2, the total external surface area of the nanostructure being ~25458 nm2.  The 
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fraction of area ɸ in contact with Si substrate was thus 0.19. The R.I. of air was taken to be 1 and 

that of Si was assumed to have a constant value of 4, the reported value at 580 nm in the middle 

of the visible region.  The imaginary part of the R.I. for Si, which is small, was neglected. The 

mixed medium R.I. is estimated as: 

𝑒𝑓𝑓. 𝑛 =  𝜑. 𝑛𝑆𝑖
2 + (1 − 𝜑). 𝑛𝑎𝑖𝑟

2     (2) 

which yields a value of 1.96, which was used in the simulations.  The bulk experimental 

dielectric functions of Au and Ag (available as a library option in nanoDDSCAT+) from Johnson 

and Christy175 were utilized  without any corrections. Extinction spectra (extinction efficiency vs. 

wavelength) in the 300-1000 nm wavelength range were obtained from each simulation. The 

nanostructure was excited with a plane wave traveling along the vertical direction (relative to the 

inset in Figure S3.4) and polarized either along the long axis or the short axis of the nanorod.176, 

177  Spectra simulated for each of these polarizations, where respectively longitudinal and the 

transverse LSPR modes of the nanorod can be observed, were added to obtain a “polarization-

averaged” spectrum.   

 

SERS spectra measurements 

Polarization-dependent SERS spectra from an individual anisotropic nanostructure were 

collected using a Renishaw inVia confocal Raman spectrometer.  Nanostructures deposited on a 

silicon substrate was exposed to 10 mM 2-NT solution in ethanol and rinsed with ethanol.  The 

sample was mounted on a rotation stage and the specific nanostructures were identified using 

dark-field microscopy and spatially correlated to SEM images obtained before exposure to 2-NT 

solution.  Spectra were collected using 785 nm laser excitation, which was focused on the sample 

using a 50x objective. A 60 s exposure time was set.  The laser power was measured to be ~0.7 
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mW.  For SERS spectra collected in aqueous medium, measurements were preformed by adding 

10 µl of 2-NT (10 mM in ethanol) to 100 µl of the Au nanostructure solution.  Raman spectra 

were collected using 514.5 nm and 785 nm laser excitation, focused on the sample using a 20X 

objective. A 30 s exposure time was used in this case. 

 

Finite-difference time-domain (FDTD) simulations 

Modeling of the electromagnetic field distribution around the AuNR@Ag nanocuboid and the 

Au nanorattle was performed using three-dimensional finite-difference time-domain (FDTD) 

method implemeted by the commercially available software, EM Explorer. The Au nanorattle 

structure was simulated with dimensions of 89.3 nm x 60.6 nm x 60.6 nm and a wall thickness of 

6.5 nm.  The AuNR@Ag nanocuboid was simulated with dimensions of 83.9 nm x 56.7 nm x 

56.7 nm and corners truncated with spheres of 24 nm diameter. The AuNR core in both cases 

had a length of 49.9 nm and a diameter of 14.4 nm.   The simulation domain was 150 nm × 150 

nm × 150 nm.  A high-resolution simulation was run at the extinction wavelength (λ = 785 nm) 

and the Stokes-shifted wavelength (λ = 880 nm corresponding to a Raman shift of ~1380 cm-1) 

using an incident plane wave linearly polarized at various angles with respect to the long-axis 

direction of the anisotropic nanostructure.  The complex refractive index of Au was set to n = 

0.18＋i4.96 and 0.21+i5.88, corresponding to the values for bulk Au at 785 nm and 880 nm, 

respectively. The refractive index of surrounding medium was set to a value of 1.00 for air.  The 

field intensities for both 785 nm and 880 nm excitation (|𝐸785|2 and |𝐸880|2) were determined. 

4.4 Results and Discussion 

Anisotropic plasmonic nanorattles were synthesized using a two-step method involving the 

formation of a thin Ag shell on Au nanorods (AuNRs) followed by a galvanic replacement 
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reaction (Figure 4.1).  Galvanic replacement reaction performed by the addition of a Au 

precursor, i.e., HAuCl4, to a solution of AuNR@Ag nanocuboids results in the transformation of 

the Ag shell into a hollow and porous Ag-Au shell.161  Plasmon coupling between the core 

(AuNR) and the cuboidal Ag-Au shell results in internal electromagnetic hotspots, which are 

accessible to the analytes of interest due to the porous nature of the cuboidal shell.128 

 AuNRs employed as cores were synthesized using a seed-mediated method using 

cetyltrimethylammonium bromide (CTAB) as a stabilizing agent (see experimental section for 

details).133  AuNRs were found to be monodisperse with a length of 49.9 ± 4.3 nm and a 

diameter of 14.4 ± 1.5 nm, estimated from a particle count > 100 in transmission electron 

microscopy (TEM) images (Figure 4.2A).    A thin Ag shell is formed on the AuNR by 

introducing the AuNR into a growth solution comprised of silver nitrate (AgNO3) as an Ag 

precursor, ascorbic acid as a reducing agent, and hexadecyltrimethylammonium chloride (CTAC) 

as a stabilizing agent (see experimental section).  The Ag shell grew epitaxially on the surface of 

AuNR cores, which resulted in the formation of AuNR@Ag core-shell nanocuboids.  The 

selective adsorption of CTAC on the {100} facets of Ag resulted in the formation of core-shell 

nanostructures with six {100} facets.131  The synthesized AuNR@Ag core-shell nanocuboids 

were found to be monodisperse with a length of 83.9 ± 5.0 nm and width of 56.7 ± 3.1 nm 

estimated from a particle count > 100 in TEM images (Figure 4.2B).  TEM images reveal the 

occupation of the AuNR at the center of each nanocuboid when viewed along the long-axis and 

from the sides (insets of Figure 4.2B).  The thickness of the Ag shell grown on the sides of 

AuNR is found to be higher compared to that at the ends indicating the preferential growth of Ag 

on the sides compared to the ends.  The aspect ratio of AuNR@Ag nanocuboids is smaller than 
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that of the AuNR cores due to the anisotropic Ag shell growth, which is in agreement with a 

previous report.141 

 Plasmonic nanorattles were synthesized by adding a Au precursor, i.e., HAuCl4 to a 

solution of AuNR@Ag nanocuboids, which galvanically oxidizes the Ag layer to form a porous 

Ag-Au alloyed layer physically separated from the AuNR core.  A TEM image of the Au 

nanorattles shows the presence of a porous cuboid Au-Ag shell surrounding the intact AuNR 

core (Figure 4.2C).  From the TEM image, the length and width of the nanorattles was measured 

to be 89.3 ± 4.9 nm and 60.6 ± 3.0 nm, respectively, and the wall thickness of the shell was 

measured to be 6.5 ± 0.7 nm (Figure 4.2C).  A higher magnification TEM image reveals a sub-10 

nm gap between the edge of the AuNR and the porous plasmonic shell.  Such a small gap results 

in strong plasmon coupling between the solid core and porous shell and the formation of 

electromagnetic hotspots within the nanostructure.161 

 The extinction spectrum of AuNRs employed as cores exhibits characteristic bands at 511 

nm and 723 nm, corresponding to the transverse and longitudinal LSPR modes of the 

nanostructure, respectively (Figure 4.2D).  Following the growth of a thin Ag layer on the 

AuNRs, the AuNR core-Ag shell nanostructures exhibited four LSPR bands in the extinction 

spectrum.  The extinction bands at 495 and 570 nm correspond to transverse and longitudinal 

dipolar LSPR modes, which are clearly blue-shifted relative to those of the AuNRs.  The bands 

at 342 and 420 nm correspond to the transverse octupolar and quadrupolar LSPR modes of the 

AuNR core-Ag shell nanocuboids.141  In the galvanic replacement reaction, with the addition of 

the Au precursor, the LSPR bands associated with the presence of the Ag shell on the AuNR core 

disappeared.  There was a concomitant emergence of LSPR bands at longer wavelengths that 

red-shifted with an increase in the Au precursor amount.  The Au nanorattles dispersed in 
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aqueous solution display an LSPR wavelength maximum at 628 nm and a shoulder at 520 nm.  

Photographs (shown as insets of the TEM images in Figure 4.2) of AuNR, AuNR@Ag 

nanocuboid and Au nanorattle solutions under ambient light demonstrate the distinct extinction 

characteristics of the nanostructures.   

In addition to the ensemble extinction spectra of nanostructures dispersed in aqueous 

medium, dark-field scattering spectra of individual nanostructures were also collected.  The 

nanostructures were drop-casted from colloidal solution onto a glass slide, ensuring a low 

enough area density of coverage such that individual nanostructures could be resolved.  The 

substrate-supported nanostructures were immersed in water and excited by unpolarized white 

light focused using a dark field condenser.  For each sample, an individual emitter was identified 

from the wide-field of emitters and the scattered light from the emitter was collected using a 

100x oil objective, transmitted through a slit, and dispersed onto a grating spectrometer to obtain 

a scattering spectrum.  Figure 4.2E presents the dark-field scattering spectrum of a representative 

individual AuNR@Ag nanocuboid.  The spectrum shows a band peaked at 564 nm and a 

shoulder around 500 nm, respectively corresponding to the longitudinal and transverse dipolar 

LSPR modes of the nanostructure. The scattering spectrum of an individual Au nanorattle is 

shown in Figure 4.2F.  The stronger band in the spectrum peaked at 677 nm corresponds to the 

longitudinal dipolar resonance mode and the weaker one peaked at 612 nm is assigned to the 

transverse mode. The weak shoulder around 520 nm corresponds to a quadrupolar mode of the 

Au nanorattle.   

Following the synthesis of the nanostructures, we acquired SERS spectra from the 

nanostructures dispersed in aqueous medium using 514.5 nm and 785 nm laser excitation.  To 

measure the SERS activity, the nanostructures were exposed to a solution of a model analyte 2-
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naphthalenethiol which readily chemisorbs on Au and Ag surfaces.145  The Raman spectrum of 

bulk 2-NT (powder) is shown in Figure S3.1 in the Supporting Information. The Au nanorattles 

exhibited significantly higher SERS enhancement compared to the AuNR@Ag nanocuboids for 

both 514.5 and 785 nm laser excitation (Figures S3.2 and S3.3).  The SERS spectra obtained 

under 514.5 nm laser excitation exhibited significantly higher intensity compared to that 

obtained using 785 nm excitation, which can be ascribed to the greater proximity of the LSPR 

bands of the nanostructures in aqueous medium to the 514.5 nm excitation as compared to 785 

nm excitation.  On the other hand, for isolated nanostructures deposited on silicon substrate, 

higher SERS intensity was observed for 785 nm laser excitation compared to that under 514.5 

nm excitation.  In fact, no discernable SERS signal was observed under 514.5 nm laser excitation.  

This observation can be attributed to a major shift of the LSPR modes of the nanostructures away 

from the 514.5 nm excitation. It has been demonstrated that the LSPR wavelength maximum of 

Ag nanoparticles exhibits a red shift of around 100 nm when deposited on a glass substrate due 

to the effective increase in the refractive index of the surrounding medium.178  DDA simulations 

of the extinction spectra of the AuNR@Ag nanocuboid support such an explanation (Figure 

S3.4).  The simulated extinction spectrum of AuNR@Ag nanostructure in water medium shows 

four LSPR bands around 345 nm, 406 nm, 477 nm, and 582 nm, in close agreement with the 

experimental extinction spectrum.  In addition, the simulations show that a higher R.I. medium 

(corresponding to the nanocuboid supported on a Si substrate in air) results in a considerable red-

shift of the LSPR bands of the nanostructure.178  Under these conditions, the extinction 

contribution at 514.5 nm becomes significantly smaller, whereas the strongest (longitudinal 

dipolar) LSPR band overlaps considerably with the 785 nm laser, making the latter a 

significantly better excitation source for obtaining SERS enhancement as compared to the 514.5 
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nm excitation.  These considerations rationalize the choice of the 785 nm laser as the excitation 

source for subsequent polarization-dependent SERS studies. 

 Next, we turn our attention to the polarization-dependent SERS activity of anisotropic 

AuNR@Ag nanocuboids and cuboidal Au nanorattles at the individual nanostructure level. To 

measure the SERS activity, the nanostructures deposited on a silicon substrate were exposed to 

2-NT (10 mM in ethanol).   Polarization-dependent SERS spectra were collected from individual 

nanostructures under 785 nm laser excitation at various orientation angles (Figure 4.3A, D).  The 

orientation angle was defined as the angle between the long axis of the nanostructure and the 

direction of the excitation laser polarization.  The orientation of the nanostructure relative to the 

polarization direction of the excitation laser was identified from SEM images spatially correlated 

to dark-field images (Figure S3.4 and S3.5).  The SERS spectra obtained from an individual 

AuNR@Ag nanocuboid at various orientation angles are shown in Figure 4.3B.  The most 

prominent peaks were observed at 1066 and 1381 cm-1, which correspond to the C-H bending 

and ring stretching vibrations of 2-NT.146  Each spectrum shown is an average of five spectra 

collected from the nanostructure under the same orientation.  It is worth noting that well-resolved 

SERS spectra were obtained from individual AuNR@Ag nanocuboids, demonstrating the 

excellent SERS activity of these nanostructures.  The SERS spectra collected from a AuNR@Ag 

nanocuboid (Figure 3C) at different orientations (-90° to 90°) in 15° intervals show a large 

variation in the intensity of the Raman bands with a change in the orientation.  Maximum SERS 

activity was observed when the polarization of the laser was at an angle of 30° with respect to 

long-axis of the nanostructure.   

The polarization-dependent SERS activity of a cuboid Au nanorattle (Figure 4.3E) was 

investigated using a similar method described above.  It worth noting that the maximum SERS 
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intensity from the cuboid nanorattle was nearly three-fold higher that from the representative 

AuNR@Ag nanocuboid (Figure 4.3C and F).  The SERS spectra obtained from the cuboid 

nanorattle at various polarization angles show that the SERS intensity of the most intense Raman 

band at 1381 cm-1 drops monotonically from a maximum value at 0° to a minimum at 90° and -

90° (Figure 4.3E and F).  This polarization dependence is in stark contrast to that observed in the 

case of AuNR@Ag nanocuboids.  This contrasting behavior can be rationalized by the location 

of the most intense field hotspots of each of these nanostructures, as discussed below. 

 

 We employed FDTD simulations to understand the electromagnetic field distribution and 

the SERS enhancement from the plasmonic nanostructures.  It is known that the SERS intensity 

scales as the product of electromagnetic field intensity enhancements at the incident and Stokes-

shifted wavelength.  Considering that we have employed the most intense Raman band of 2-NT 

at 1381 cm-1 for probing the polarization-dependent SERS activity, the corresponding Stokes-

shifted wavelength is ~ 880 nm for the 785 nm excitation wavelength.  The spatial maps of 

electrical field intensity around the AuNR@Ag nanocuboid and Au nanorattle under 785 nm 

excitation and at various polarization angles from 0° to 90° are shown in Figure 4.4A and C.  

The electric field intensity distribution of AuNR@Ag nanocuboids shows that the highest 

electric field intensity occurs at the corners of the solid nanostructures (termed the nanoantenna 

effect) and maximum enhancement is achieved when the polarization of the laser is along the 

diagonal of the cuboid (i.e. 30°).  On the other hand, in the case of cuboidal Au nanorattles, the 

highest electric field intensity was found to be at the gap between the AuNR core and the 

cuboidal shell.  The maximum electric field enhancement was observed when the polarization of 

the incident laser matched the long-axis of the nanostructures.  Figure 4.4B and D depict the 
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product of the intensity enhancements at incident and Stokes-shifted wavelengths 

(|𝐸785|2|𝐸880|2), which provides a measure of the average SERS enhancement obtained from the 

AuNR@Ag nanocuboid and the Au nanorattle.  The magnitude of |𝐸785|2|𝐸880|2  for the 

cuboidal nanorattle decreased with an increase in the polarization angle with respect to the long 

axis of the anisotropic nanostructure.  On the other hand, the magnitude of |𝐸785|2|𝐸880|2 for the 

AuNR@Ag nanocuboid exhibited a maximum at a polarization angle of -30° and 30°.  

Polarization-dependence of the enhancement factor of both nanostructures simulated by FDTD 

shows excellent agreement with the experimental results. 

4.5 Conclusions 

In conclusion, we have performed a systematic investigation of the polarization-dependent SERS 

activity of AuNR@Ag nanocuboids and cuboidal Au nanorattles.  Due to the presence of internal 

electromagnetic hotspots within the nanorattles, they exhibited SERS activity with a significantly 

different polarization-dependence compared to their solid counterparts i.e. AuNR@Ag 

nanocuboids.  Similar to most conventional anisotropic solid nanostructures, the nanocuboids 

exhibited a polarization-dependent SERS activity that is dominated by their sharp corners and 

edges.  Conversely, for the cuboidal nanorattles, the internal electromagnetic hotspot formed 

between the AuNR core and the porous Ag-Au shell dominates the SERS activity of the 

nanorattles.  FDTD simulations confirm that the nature of the electric field distribution and the 

location of field hotspots are the source of the observed polarization dependence.  The results 

further our understanding of the SERS activity of this promising class of hollow nanostructures 

with internal electromagnetic hotspots and provide guidelines for the design of highly efficient 

SERS substrates based on these nanostructures.  More importantly, the results provide detailed 
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insight into the optimal configuration for both solid and hollow anisotropic nanostructures for 

performing single nanoparticle-based SERS studies. 

4.6 Supporting Information 

Supporting Information for chapter 4 is provided in appendix 3. 
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Figure 4. 1 Schematic illustration of the two-step synthesis of cuboidal Au nanorattles. 
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Figure 4. 2 TEM images of (A) AuNR nanostructures (inset shows a photograph of a colloidal 

solution of AuNR) (B) AuNR@Ag nanocuboids (bottom inset shows photograph of a colloidal 

solution of AuNR@Ag nanocuboids; top insets show higher magnification images when viewed 

along the long-axis and from the sides; scale bars represent 20 nm) (C) cuboidal Au nanorattles 

(bottom inset shows a photograph of a colloidal solution of Au nanorattles; top inset shows a 

higher magnification image; scale bar represents 20 nm and). (D) Vis-NIR extinction spectra of 
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AuNR, AuNR@Ag cuboids and cuboidal Au nanorattles in solution. Representative dark-field 

scattering spectrum of an individual (E) AuNR@Ag nanocuboid and (F) Au nanorattle. The inset 

in each panel shows a diffraction-limited dark-field optical image of the 

corresponding nanostructure. 
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Figure 4. 3 (A) Schematic illustration depicting the measurement of the polarization-dependent 

SERS from a AuNR@Ag nanocuboid. (B) SERS spectra of 2-NT adsorbed on an individual 

AuNR@Ag nanocuboid obtained at various incident polarization angles. (C) Plot depicting the 

variation in the SERS intensity of the characteristic vibrational band at 1381 cm-1 as a function of 

the incident polarization angle from an individual AuNR@Ag nanocuboid. (D) Schematic 

illustration depicting the measurement of the polarization-dependent SERS from a cuboidal Au 

nanorattle. (E) SERS spectra of 2-NT adsorbed on an individual cuboidal Au nanorattle obtained 

at various incident polarization angles. (F) Plot depicting the variation in the SERS intensity of 

the characteristic vibrational band at 1381 cm-1 as a function of the incident polarization angle 

from an individual cuboidal Au nanorattle. The error bars correspond to the standard deviation of 

three identical measurements performed at each polarization angle. 
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Figure 4. 4 (A) FDTD simulations showing the electric field distribution around a AuNR@Ag 

nanocuboid excited by 785 nm light with the incident polarization angle varied as 0°, 15°, 30°, 

45°, 60°, 75° and 90° from (i)-(vii) respectively. An angle of 0° corresponds to polarization 

parallel to the long-axis of the nanostructure. The electric field intensity 
2

785E  is shown on a 

log scale. (B) Normalized
2

880

2

785 EE  for a AuNR@Ag nanocuboid as a function of the 

incident polarization angle. (C) FDTD simulations showing the electric field distribution around 

a Au nanorattle excited by 785 nm light with the incident polarization angle varied as 0°, 15°, 

30°, 45°, 60°, 75° and 90° from (i)-(vii) respectively. An angle of 0° corresponds to polarization 

parallel to the long-axis of the nanostructure. The electric field intensity 
2

785E  is shown on a 

log scale.  (D) Normalized 
2

880

2

785 EE  for a Au nanorattle as a function of the incident 

polarization angle. 
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Chapter 5: Structure-dependent SERS Activity of 

Plasmonic Nanorattles with Built-in Electromagnetic 

Hotspots 

The results reported in this chapter were submitted.  

  

5.1 Abstract 

Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotpsots such as 

plasmonic nanorattles obtained through galvanic replacement reaction are highly attractive in 

surface enhanced Raman scattering (SERS)-based chemical and biological sensors and as 

contrast agents for SERS-based bioimaging.  While their size, shape and orientation-dependent 

SERS enhancement has been reported, the effect of nanoscale structure, which is determined by 

the extent of galvanic replacement of the templates, has not been reported.  In this study, we 

investigate the SERS activity of plasmonic nanorattles obtained through different degrees of 

galvanic replacement of Au@Ag nanocubes.  We found that the observed SERS enhancement is 

governed by the plasmon extinction intensity, LSPR wavelength of the nanostructures with 

respect to the excitation source and intensity of electromagnetic field at the hotspot, with the 

latter playing a determining role.  Finite-difference time-domain (FDTD) simulations showed 

excellent agreement with the experimental findings that an optimal degree of galvanic 

replacement is critical for maximum SERS enhancement.   Paper-based SERS substrates 

fabricated using plasmonic nanorattles with optimal galvanic replacement exhibited an excellent 

SERS sensitivity and a low limit of detection of a model analyte. 
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5.2 Introduction 

Surface enhanced Raman scattering (SERS) involves the large enhancement of Raman scattering 

from analytes adsorbed on or in close proximity to nanostructured metal surface.  SERS is 

considered to be highly promising for the detection of trace levels of chemical and biological 

analytes, environmental monitoring and bioimaging.16, 26, 108-110, 112, 114, 115, 117, 179, 180  Extensive 

efforts have been dedicated to the design and fabrication of SERS substrates that provide a large 

and uniform enhancement.  The last decade has witnessed a remarkable progress in the synthesis 

of size- and shape-controlled plasmonic nanostructures of various noble metals such as gold and 

silver.15, 16, 108, 109   These chemical methods (such as seed-mediated, polyol synthesis) led to the 

synthesis of plasmonic nanostructures with precisely controlled optical properties, which 

significantly improved our understanding of SERS and take it closer to real-world applications.   

Electromagnetic hotspots at the nanoscale gaps between assembled or mildly aggregated 

plasmonic nanostructures are known to be responsible for large SERS enhancement.26, 181-183  A 

relatively small number of electromagnetic hotspots (63 out of 106 active sites) have been found 

to result in a significant fraction (~25%) of the overall SERS signal, highlighting the importance 

of electromagnetic hotspots in the design of SERS probes.184  Although extensive efforts have 

been dedicated to achieve controlled assembly of plasmonic nanostructures, scalable 

nanoparticle assemblies that offer highly uniform, isotropic and stable SERS enhancement 

remains challenging.  An alternate approach involves the design and synthesis of plasmonic 

nanostructures with built-in electromagnetic hotspots.185-187   Such nanostructures with built-in 

hotspots obviate the need for assembly of plasmonic nanostructures greatly simplifying the 

fabrication of SERS substrates with high and uniform enhancement.  
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Recently, we have demonstrated that plasmonic nanorattles comprised of Au core and porous 

Au-Ag shell provide a large SERS enhancement owing to the internal electromagnetic hotspot 

formed between the core and shell.128,161  The porous outer shell facilitates facile diffusion of 

analytes into the electromagnetic hotspots within the nanostructures.  The electromagnetic field 

and the SERS enhancement of the nanorattles were found to be highly dependent on size and 

shape of the nanorattles and the orientation of the anisotropic nanorattles with respect to the 

polarization of the incident laser.161, 188   Apart from size and orientation the nanoscale structure 

(i.e. gap between the core and porous shell) of the Au nanorattles, which is governed by the 

extent of galvanic replacement, is expected to play a determining role in the observed SERS 

enhancement.  However, there is no systematic study that unveils a correlation between the 

extent of galvanic replacement and the SERS enhancement of the plasmonic nanorattles.   

In this work, we investigate the correlation between structure, optical properties and SERS 

enhancement of plasmonic nanorattles obtained through controlled galvanic replacement of 

Au@Ag nanocubes (Figure 5.1).  In order to probe the correlation between the extent of galvanic 

replacement reaction and SERS enhancement, the plasmonic nanorattles were designed with a 

Raman reporter-coated Au nanosphere as core and porous Ag-Au shell.  Galvanic replacement of 

Au@Ag nanostructures results in the formation of nanorattles in which the core and shell are 

separated resulting in the formation of an internal electromagnetic hotspot.  The SERS 

enhancement of the plasmonic nanorattles is found to strongly depend on the extent of galvanic 

replacement reaction.  Finite-difference time-domain simulations, employed to estimate the 

electromagnetic field enhancement within these nanostructures, showed an excellent agreement 

with the experimental findings. 
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5.3 Experimental Section 

Materials 

Cetyltrimethylammonium bromide (CTAB), gold chloride (HAuCl4), sodium borohydride, silver 

nitrate, ascorbic acid, 2-naphthalenethiol and 4-aminothiophenol were purchased from Sigma-

Aldrich.  Cetyltrimethylammonium chloride (CTAC) was purchased from Tokyo Chemical 

Industry (TCI).  Filter paper (Whatman #1) was purchased from VWR international.  All the 

chemicals were used as received without further purification.  Nanopure water (18.2 MΩ-cm) 

was used for all the experiments. 

 

Synthesis of Au Nanospheres 

Au nanospheres were synthesized using a previously reported procedure.189-191  Au seeds were 

synthesized by adding 0.6 ml of ice-cold sodium borohydride solution (10 mM) into a solution 

containing 0.25 ml of HAuCl4 (10 mM) and 9.75 ml of CTAB (0.1 M) under vigorous stirring at 

room temperature.  The color of seed solution changed from yellow to brown.  Seed solution was 

kept undisturbed at room temperature for 3 h.  0.25 ml of the seed solution is added to a growth 

solution containing 10 ml of CTAC (0.2 M) and 7.5 ml of ascorbic acid (0.1 M) under stirring.  

10 ml solution of HAuCl4 (0.5 mM) is added to the growth solution as a one-shot injection.  The 

resulting solution containing 10 nm Au nanospheres was centrifuged at 13,000 rpm for 30 

minutes.  For further growth of nanoparticles, 30 ml of CTAC (0.1 M) and 1.95 ml of ascorbic 

acid (10 mM) are mixed. To the resulting solution 1.2 ml of 10 nm Au nanospheres (extinction 

1.0) was added under stirring.  A 30 ml solution of HAuCl4 (0.5 mM) is injected into the above 

mixtre at the rate of 0.5 ml/min under stirring.  The reaction is allowed to complete and the 

resulting solution containing 30 nm Au nanospheres was centrifuged at 8000 rpm for 10 min. 
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Synthesis of 2-NT-Au@Ag nanocubes 

For the synthesis of 2-NT-Au@Ag core-shell nanocubes, 25 µl of 2-NT (10 mM)  was added to 

5 ml of 30 nm Au nanospheres under vigorous sonication for 10 min.  These modified Au 

nanospheres were centrifuged at 9000 rpm for 10 min to remove the unadsorbed 2-NT, then 

dispersed in 5 ml of CTAC (10 mM) and centrifuged again.  1 ml of 2-NT-coated Au 

nanospheres (extinction ~1.2) and 9 ml of CTAC (20 mM) were mixed at 60 °C under stirring 

for 20 min.  1 ml of AgNO3 (2 mM), 2.5 ml of CTAC (20 mM) and 0.5 ml of ascorbic acid (0.1 

M) were added under stirring at 60 °C for 4 h.  The 2-NT-Au@Ag nanocube solution was 

centrifuged and the nanostructures were redispersed in 2 ml of nanopure water.  The procedure to 

synthesize Au@Ag is similar except that the Au nanospheres are not coated with 2-NT.  

 

Synthesis of Au Nanorattles  

Au nanorattles were synthesized by transforming the silver shell of 2-NT-Au@Ag nanocubes 

into a porous Au-Ag alloyed shell via galvanic replacement reaction.  Varying amounts of 

aqueous HAuCl4 solution (0.5 mM) was injected into the 100 µl of 2-NT-Au@Ag nanocube 

solution.  The obtained Au nanorattles solution was centrifuged at 10,000 rpm for 10 min and 

dispersed in nanopure water. 

 

Spectroscopy Measurements 

SERS spectra from nanostructures dispersed in aqueous solution was obtained using a Renishaw 

inVia confocal Raman spectrometer.  Spectra were collected using the 514.5 nm laser excitation 

wavelength, which was focused on the solution surface using a 20X objective with 30 sec 
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exposure time. The laser power was measured to be approximately 0.7 mW at the samples 

surface.  UV-Vis extinction spectra were collected using Shimadzu UV-1800 UV-Vis 

spectrophotometer. 

 

Microscopy Characterization 

Transmission electron microscopy (TEM) images were collected using a JEOL JEM-2100F field 

emission microscopy. Scanning electron microscopy (SEM) images were obtained using a FEI 

Nova 2300 Field Emission SEM at an accelerating voltage of 10 kV. 

 

Finite-difference time-domain (FDTD) simulations 

Electromagnetic field distribution around the plasmonic nanorattles with different sizes was 

simulated by using three-dimensional finite-difference time-domain (FDTD) with a 

commercially available software (EM Explorer). FDTD simulations exploit the time and position 

dependence of Maxwell’s equations to model the electromagnetic waves in rectangular 3D cells 

(Yee cells) of a finite volume. A Yee cell size of 0.15 µm is used in the current study, which is 

about 1/4th of the wavelength of the excitation wavelength. Perfectly Matched Layer (PML) 

absorbing boundary conditions were applied in all directions of the simulation domain.  The 

AuNP core was defined as a sphere with a diameter of 31 nm and the edge length of hollow Au 

shells was defined to be 59 nm and the gap distance between the core and the shell was to be 0, 2, 

4, 6, 8, and 10 nm.  The simulation domain was defined to be 150 nm × 150 nm × 150 nm. A 

high-resolution simulation was run at the excitation (λex=514 nm) and Stokes-shifted wavelength 

(λex=553 nm) to obtain the electromagnetic field distribution. The complex refractive index was 

set to be n=0.71＋i1.96 for gold and n=0.14＋i2.91 for silver at the wavelength of 514 nm. At 
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the wavelength of 553 nm, the complex refractive index was set to be n=0.40＋i2.38 for gold 

and n=0.15＋i3.21 for silver. The refractive index of surrounding medium was set to be 1.33 

(that of water). 

 

5.4 Results and Discussion 

The synthesis of plasmonic nanorattles starts with the synthesis of spherical gold nanoparticles 

using a seed-mediated method.189-191  The spherical Au nanoparticles serve as a seed for the 

synthesis Au@Ag nanostructure.191  Au nanoparticles with a diamater of 30 nm were synthesized 

using a two-step seed-mediated method.  In the first step, Au nanoparticles with a diameter of 

10.9±0.6 nm were synthesized using seed-mediated method (Figure S4.1A, see Experimental 

section).  Extinction spectrum revealed the LSPR wavelength of Au nanospheres to be at ~523 

nm (Figure S4.1B).  In the second step, the ~10 nm Au nanoparticles were employed as the seeds 

for the synthesis of Au nanospheres with larger diameter (30.8±0.8 nm) (Figure S4.1C).  

Through ligand-exchange reaction, the Au nanospheres were modified with 2-naphthalenethiol 

(2-NT), which serves as a Raman reporter.  Extinction spectrum revealed a red-shift of ~1 nm in 

the LSPR wavelength of the Au nanospheres following the ligand exchange (Figure S4.1D). 

The synthesis of Au@Ag nanostructures involves the formation of a thin Ag shell by the addition 

of 2-NT-coated Au nanospheres into a growth solution comprised of silver nitrate as silver 

precursor, cetyltrimethylammonium chloride (CTAC) as stabilizing agent and ascorbic acid as 

the reducing agent (see Experimental section for details).131, 161  Thin silver shell was epitaxially 

grown on the surface of 2-NT-coated Au nanospheres resulting in the formation of Au@Ag core-

shell nanocubes.  The edge length of Au@Ag core-shell nanocubes was found to be  58.9± 1.9 
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nm from TEM images (Figure 5.2D).  To synthesize gold nanorattles with different degrees of 

galvanic replacement, varying amounts (0-100 µl) of HAuCl4 (0.5 mM) was added into 100 µl of 

Au@Ag nanocubes solution.  As expected, extinction spectra revealed a progressive red shift in 

the LSPR wavelength with an increase in the amounts of HAuCl4 during the galvanic 

replacement (Figure 5.2A-C).131, 192, 193  TEM and SEM images show the Au@Ag nanocubes and 

Au nanorattles at different stages of the galvanic replacement reaction (Figure 5.2D-I and Figure 

S4.2A-F in supporting information).  When an aqueous solution of HAuCl4 is introduced into the 

Au@Ag nanocube solution, the structural and morphological changes of Au@Ag nanocubes 

were observed under the following main stages as reported previously.59, 194, 195  (i) Ag 

dissolution from defective site on the side face;  (ii) dissolution of bulk Ag from the interior of 

the nanostructure with simultaneous deposition of Au on reminder of the cube;  (iii) formation of 

a hollow and porous Au and Ag alloy shell with uniform wall thickness; and (iv) finally, 

disintegration of the porous shell resulting in small irregular  fragments. 

To compare the SERS activity of the nanostructures at different stages of the galvanic 

replacement process, we acquired Raman spectra from nanostructures dispersed in water using 

514.5 nm laser as excitation source.  SERS spectra obtained from Au nanostructures at different 

stages of the galvanic replacement display most prominent Raman bands at 1066 and 1381 cm-1, 

which correspond to the C-H bend and ring stretch vibrations of 2-NT, respectively (Figure 5.3A 

and Figure S4.3).146  These two most intense bands were employed to compare the SERS activity.  

Maximum SERS intensity was observed for nanorattles obtained by adding 20 µl of 0.5 mM 

HAuCl4 into 100 µl of 2-NT-Au@Ag nanocubes (called 20-AuNRT henceforth).  The SERS 

intensity of 20-AuNRT was nearly five times higher compared to that obtained from pristine 

Au@Ag nanocubes (i.e. 0-AuNRT) (Figure 5.3A-C).  With further addition of HAuCl4, the 
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SERS intensity of the Au nanorattles rapidly decayed.  The variation in the SERS activity of 

nanostructures with the extent of galvanic replacement can be ascribed to the plasmon extinction 

intensity, LSPR wavelength with respect to the excitation laser wavelength and the intensity of 

the electromagnetic hotspots within the nanostructures.  At 514.5 nm, the LSPR extinction 

intensity of 0-AuNRT was found to be higher compared to 20-AuNRT (Figure 5.2A).  However, 

owing to the electromagnetic hotspots within the 20-AuNRT, the SERS intensity obtained from 

20-AuNRT was higher compared to 0-AuNRT.  Subsequent increase in the amount of titrated 

HAuCl4 resulted in a decrease in the observed SERS intensity.  The observed drop in the SERS 

intensity emanates from the increase in the gap between core and porous shell, which decreases 

the intensity of the internal hotspot (discussed in detail below), and a drop in the extinction 

intensity due to the replacement of Au with Ag with the latter known to have a stronger plasmon 

compared to the former.     

In order to understand the electromagnetic field intensity distribution and SERS enhancement 

from the Au nanorattles with different extent of galvanic replacement, finite-difference time-

domain (FDTD) simulations were employed.  To estimate the enhanced electromagnetic field 

intensity of pristine Au@Ag nanocubes and Au nanorattles, we have calculated the average 

electromagnetic field intensity for the polarization along the [100] and [110] directions.  It is 

known that the average SERS intensity is proportional to the square of the product of the gain in 

the incident and Raman scattering light.148  For 514 nm excitation wavelength, the Stokes-shifted 

wavelength corresponding to 1381 cm-1 Raman band is calculated to be at ~553 nm.  The spatial 

maps of electrical field intensity (λex= 514 and 553 nm) around the Au@Ag nanocubes and Au 

nanorattles (with 0, 2, 6 nm gap and Au core) for polarization parallel to the sidewall ([100] 

direction) are shown in Figure 5.3D as representative examples.  For both excitation wavelengths 
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(514 and 553 nm) electromagentic field intensity at the internal hotspot (between core and shell) 

was found decrease with increase in the gap size.  Furthermore, the intensity at the corners (the 

most intense regions) of the prisitne Au@Ag nanocubes was found to be higher for under 514 

nm excitation compared to 553 nm excitation due to the proximity of the LSPR wavelength of 

the Au@Ag nanostructures (495 nm) to 514 nm excitation compared to 553 nm excitation.    The 

spatial maps of electrical field intensity (λex=514 nm) around the Au@Ag nanocubes and Au 

nanorattles along [100] direction and along the diagonal ([110] direction) are shown in Figure 

S4.4 and Figure S4.5, respectively.    The spatial maps of electrical field intensity (λex=553 nm) 

around the Au@Ag nanocubes and Au nanorattles with polarization along [100] and [110] 

direction are shown in Figure S4.6 and S4.7, respectively.  We have plotted the square of the 

product of the gain in the electric field at incident and Raman scattered wavelengths 

(
2

553

2

514 EE ), which represents the average SERS intensity from the Au@Ag nanocubes and 

Au nanorattles with different degrees of galvanic replacement (Figure 5.3E).  The SERS 

intensity from the FDTD simulations was found to be highest for a gap size of 2 nm followed by 

a dramatic decrease with increase in the gap size.  Overall, SERS intensity trend obtained from 

FDTD simulations show an  excellent agreement with our experimental observations. 

Paper has been demonstrated to be an attractive substrate for implementing various plasmonic 

sensors owing to its high specific surface area, flexibility, compatibility with conventional 

printing approaches and low-cost.114, 115, 128, 196-198  We have employed paper as a platform for the 

fabrication of SERS substrates based on plasmonic nanorattles with optimal extent of galvanic 

replacement.  The SERS substrates were fabricated by immersing the paper substrates in 20-

AuNRT, which exhibited the highest SERS activity.  These 20-AuNRT were synthesized using 

the same procedure except that the 30 nm Au cores were not coated with a Raman reporter.  
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SEM images demonstrated the uniform adsorption of the nanostructures on a filter paper (Figure 

5.4A).  The inset of Figure 5.4A shows the filter paper before and after the adsorption of the 

nanostructures, depicting the intense gray color of the filter paper substrate adsorbed with 

nanostructures.  Vis-NIR spectrum obtained from the plasmonic paper depicts the extinction 

band corresponding to the 20-AuNRT (Figure S4.8).  The Raman spectrum of the pATP 

molecule is shown in Figure S4.9 (See Supporting Information).  SERS spectra obtained from 

the 20-AuNRT-adsorbed paper substrate after exposure to different concentrations of pATP in 

ethanol are shown in Figure 5.4B and Figure 5.4C.  The most prominent Raman bands appear at 

1074, 1141, 1389, 1437 and 1576 cm-1, corresponding to Raman bands from pATP.199-201  

Raman band at 1576 cm-1, corresponding to the aromatic ring vibration mode of pATP199, 202, 

was used to determine the trace detection ability of the plasmonic paper substrate.  The SERS 

intensity exhibited a monotonic increase with the increase in the concentration of the analyte 

(Figure 5.4D).  In contrast, plasmonic paper based on pristine Au@Ag nanocubes exhibited 

significantly lower SERS intensity for identical concentration of the analyte.   The limit of 

detection of the plasmonic paper based on 20-AuNRT was found to be 1 pM, which signifies the 

excellent sensitivity for the SERS-active plasmonic paper sensor. 

 

5.5 Conclusions 

In conclusion, we have demonstrated the synthesis of plasmonic nanorattles comprised of 2-NT 

coated Au nanosphere as core and porous gold cube as a shell with different degrees of galvanic 

replacement using Au@Ag nanocubes as templates.  The nanoscale structure, optical properties 

and SERS enhancement of Au nanorattles was found to be highly dependent on the extent of the 

galvanic replacement. FDTD simulations employed to understand the electromagnetic field 
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intensity of the Au@Ag nanocubes and nanorattles exhibited excellent agreement with 

experimental findings.  The optimal nanorattles were employed to fabricate a paper-based SERS 

substrate that exhibited excellent sensitivity and a trace detection limit of 1 pM.  Overall, our 

findings highlight that an optimal degree of galvanic replacement is critical to maximize the 

SERS enhancement of these nanostructures, which can find numerous applications in chemical 

and biological sensors, bioimaging and targeted drug delivery.  

 

5.6 Supporting Information 

Supporting Information for chapter 5 is provided in appendix 4. 
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Figure 5. 1 Schematic illustration of the synthesis of 2-naphthalenethiol coated Au nanosphere 

followed by Ag layer growth and progressive galvanic replacement reaction with Au. 
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Figure 5. 2 (A) Vis-NIR extinction spectra of 2-NT-Au@Ag following the addition of different 

amounts of HAuCl4 indicated in the plot. (B) Normalized vis-NIR extinction spectra of 2-NT-

Au@Ag from (A) depicting the shift in the LSPR wavelength with the addition of HAuCl4. (C) 

Plot depicting the LSPR wavelength and the volume of HAuCl4 added. (D)-(I) TEM images of 

template and nanostructures obtained after adding 0, 20, 40, 60, 80 and 100 µl of HAuCl4 (0.5 

mM) into 100 µl of 2-NT-Au@Ag nanocubes. 
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Figure 5. 3 (A) SERS spectra obtained from 2-NT-Au@Ag nanocubes after different degrees of 

galvanic replacement. SERS intensity at (B) 1066 cm-1 (C) 1381 cm-1 obtained from 2-NT-

Au@Ag nanocubes after different degrees of galvanic replacement. (D) FDTD simulations 

showing the electric field distribution of Au@Ag nanocubes and Au nanorattles with different 

gaps between core and shell with electric field polarized along [100] under (i-iv) 514 nm and (v-

viii) 553 nm excitation. (i and v), (ii and vi), (iii and vii) and (iv and viii) correspond to Au@Ag 

nanocubes and Au nanorattles with a gap of 0, 2, 6 nm and core only, respectively. (E) Plot 

showing the average  
2

553

2

514 EE  with electric field polarized along [100] and [110] for 

Au@Ag nanocubes and Au nanorattles with different gaps between core and shell. 
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Figure 5. 4 (A) SEM image showing the uniform adsorption of 20-AuNRT on a paper substrate.  

Inset shows the photograph of the paper substrate before and after the adsorption of 20-AuNRT.  

(B) SERS spectra obtained from the 20-AuNRT-adsorbed paper substrate after exposing it to 

varying concentrations of pATP in ethanol.  (C) Zoom-in spectra at a low concentration from Fig. 

4(B).  (D) Semi-log plot showing the concentration vs intensity of the 1576 cm-1 Raman band 

obtained from paper substrates with 20-AuNRT and Au@Ag nanocubes. 
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Chapter 6: Plasmonic Nanogels for Unclonable 

Optical Tagging 

The results reported in this chapter were published in ACS Applied Materials & Interfaces, 2016, 8, 

4031-4041. Reproduced with permission from American Chemical Society. 

  

6.1 Abstract 

We demonstrate the fabrication of novel functional gel coatings with randomized physical and 

chemical patterns that enable dual encoding ability to realize unclonable optical tags.  This 

design is based on swelling-mediated massive reconstruction of an ultrathin responsive 

gelatinous polymer film uniformly adsorbed with plasmonic nanostructures into a randomized 

network of interacting folds, resulting in bright electromagnetic hotspots within the folds.  We 

reveal a strong correlation between the topology and near-field electromagnetic field 

enhancement due to the intimate contact between two plasmonic surfaces within the folds, each 

of them representing a unique combination of local topography and chemical distribution caused 

by the formation of electromagnetic hotspots.  Owing to the efficient trapping of the Raman 

reporters within the uniquely distributed electromagnetic hotspots, the surface enhanced Raman 

scattering enhancement from the morphed plasmonic gel was found to be nearly 40 times higher 

compared to that from the pristine plasmonic gel.  Harnessing the nondeterministic nature of the 

folds, the folded plasmonic gel can be employed as a multidimensional (with dual topo-chemical 

encoding) optical taggant for prospective anti-counterfeiting applications.  Such novel optical 

tags based on the spontaneous folding process are virtually impossible to replicate because of the 

combination of nondeterministic physical patterns and chemical encoding.  
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6.2 Introduction 

There has been significant interest in migrating plasmonics from static substrates to dynamic 

surfaces, which provide tunability in the structure and properties of plasmonic nanostructures 

and their assemblies.203-210  Dynamic surfaces include substrates or intermediate layers (between 

plasmonic nanostructures and rigid substrates) that bend, stretch, swell, and shrink with external 

physical or chemical stimuli. Responsive polymers that exhibit large changes in structure over a 

narrow range of external stimuli (e.g., pH, temperature, solvent quality) are highly attractive for 

realizing dynamic systems that are ubiquitous in biology.211, 212  Extensive efforts have been 

made to harness the large conformational changes in responsive polymer systems such as 

ultrathin films, adsorbed layers, polymer brushes, micro/nanoparticles, and one-dimensional 

nanostructures to realize dynamic plasmonics.206, 213-220  In most of these cases, the change in the 

polymer chain conformation results in a small change in the distance (a few nanometers) 

between the nanostructures that dramatically modulates the plasmon coupling between the 

nanostructures and the optical activity of the plasmonic assemblies.  In parallel, there has been a 

growing interest in harnessing mechanical instabilities such as buckling, wrinkling and folding in 

soft and responsive materials to realize morphable materials with reversibly tunable structure and 

properties.221  While a handful of studies demonstrate the use of mechanical instabilities such as 

buckling and wrinkling in ultrathin polymer films for assembling and patterning plasmonic 

nanostructures,222, 223 their use in realizing dynamic and complex plasmonic systems remains 

largely unexplored.   

Fast-growing counterfeit markets, including medicines, banknotes, and jewelry, pose serious 

threats to the health and safety of consumers, the economy, and national security.224-226  These 

considerations highlight the importance and urgent need of unclonable and universally applicable 
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anti-counterfeiting strategies, which utilize unpredictable and nondeterministic encoding 

mechanisms with high coding capacity.  Current anti-counterfeiting strategies are mainly focused 

on developing encoded taggants carrying either graphical or spectral information for strong 

authentication.224, 225, 227, 228  Graphically encoded taggants are typically vulnerable to cloning 

attacks, including ones designed with nondeterministic encoding mechanisms, such as the 

recently demonstrated wrinkle patterns similar to human fingerprints.226  Furthermore, most 

spectrally encoded taggants often suffer from deterministic encoding architectures and practical 

constraints, such as the lifespan of materials and the narrow product applicability.229, 230 

Here we demonstrate that spontaneous folding of ultrathin responsive gels integrated with 

plasmonic nanostructures results in the formation of electromagnetic hotspots within the folded 

structures.  Electromagnetic hotspots formed within the nanoscale gaps between assembled or 

mildly aggregated plasmonic nanostructures are highly attractive for surface-enhanced optical 

spectroscopies.26, 128, 231, 232   Apart from using surface enhanced Raman scattering (SERS) 

intensity mapping as a facile imaging tool to reveal the spatial distribution of the near-field 

enhancement within the folded plasmonic gel, we demonstrate that the reconfigurable plasmonic 

gel film encoded with two different Raman reporters can serve as an excellent optical tag for 

anti-counterfeiting applications.  Unlike the existing anti-counterfeit tags that rely on either 

physical features or spectroscopic fingerprints, the novel optical tags based on the spontaneous 

folding process provides a multidimensional anti-counterfeiting strategy that is virtually 

impossible to be replicated because of the combination of nondeterministic physical and 

chemical patterns. 

6.3 Experimental Section 

Materials 
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Chloroauric acid (HAuCl4), silver nitrate (AgNO3), sodium borohydride (NaBH4), ascorbic acid, 

tetrahydrofuran (THF), nitromethane, 1,4-diodobutane (DIB), 2-naphthalenethiol (2-NT) and 4-

Aminothiophenol (pATP) were purchased from Sigma-Aldrich, St. Louis, MO.  Poly(2-vinyl 

pyridine) (Mw=200,000 g/mol) was obtained from Scientific Polymer Products. Methoxy PEG 

thiol (SH-PEG, Mw = 5,000 g/mol) was purchased from JenKem Technology.   

Hexadecyltrimethylammonium chloride (CTAC) was purchased from TCI.  All purchased 

chemicals were used as received without further purification.  Nanopure water (18.2 MΩ-cm) 

was used for all experiments. 

Synthesis of Au nanorods (AuNRs) as core  

Gold nanorods were synthesized using a seed-mediated approach.190, 233  Seed solution was 

prepared by rapidly adding 0.6 ml of an ice-cold solution of NaBH4 (10 mM) into 10 ml of 0.1 M 

CTAB and 2.5 × 10-4 M HAuCl4 aqueous solution under vigorous stirring at room temperature.  

The color of the seed solution immediately changed from yellow to brown after NaBH4 addition.  

Growth solution was prepared by mixing 95 ml of 0.1 M CTAB, 0.6 ml of 10 mM silver nitrate, 

5 ml of 10 mM HAuCl4, and 0.55 ml of 0.1 M ascorbic acid in the same order.  The solution was 

homogenized by gentle stirring. To the resulting colorless solution, 0.12 ml of freshly prepared 

seed solution was added and set aside in dark for 14 h.   

Synthesis and PEGylation of Ag coated AuNRs (Ag@AuNRs) 

2 ml of twice centrifuged as-synthesized AuNR and 4 ml of 20 mM CTAC aqueous solution 

were mixed at 60 °C under stirring for 20 min.  Subsequently, 5 ml of 2 mM AgNO3, 2.5 ml of 

80 mM CTAC and 2.5 ml of 0.1 M ascorbic acid aqueous solution were added to the above 

mixture.  After 4 h of reaction, the Ag@AuNRs solution was cooled in an ice-cold water bath.  

The resultant AuNR solution was centrifuged at 6,000 rpm for 10 min to remove excess reactants 
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and redispersed into aqueous CTAC (80 mM) solution.  To PEGylate the nanostructures, 100 µl 

of SH-PEG (2 mM) and 100 µl of NaCl (60 mM) were added to 0.8 ml of the above twice-

centrifuged solution, followed by sonication for 1 h.  The PEGylated Ag@AuNRs solution was 

centrifuged and dispersed in water for further use.   

Fabrication of plasmonic gel films 

P2VP solution was prepared as reported previously, by dissolving 0.1 g of P2VP in a mixture of 

4.5 ml of nitromethane, 0.5 ml of THF and 0.1 ml of DIB.234  The resultant solution was 

incubated in an oil bath at 60 °C for 2 h under stirring to facilitate the quaternization reaction 

between P2VP and DIB.  The quarternized P2VP solution was deposited on silicon substrates by 

spin-coating, followed by annealing at 120 °C for 2 h.  To achieve highly uniform adsorption of 

Ag@AuNRs, the P2VP films on silicon substrate was immersed in a high concentration of 

PEGylated Ag@AuNRs or PEGlated AuNRs solution (extinction intensity ~ 6 per cm light path) 

for 14 hours, followed by rinsing with nanopure water and drying with a stream of nitrogen.  The 

P2VP film coated with high density of Ag@AuNRs was exposed to saturated pATP vapor for 12 

hours, followed by degassing in vacuum.  The P2VP film coated with high density of AuNRs 

was exposed to saturated pATP and 2-NT vapor mixture for 3 hours, followed by degassing in 

vacuum.  Subsequently, the sample was exposed to aqueous pH 2 solution to form the folded 

pattern.  

Spectroscopy 

UV−vis extinction spectra of nanoparticle solutions were obtained using a Shimadzu 1800 

spectrophotometer.  SERS maps were obtained using a confocal InVia Renishaw Raman 

microscope by collecting a 2D array of Raman spectra with a step size of 0.3 μm.  Raman spectra 

of pATP adsorbed on Ag@AuNRs were collected using 785 nm laser as excitation source (0.07 
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mW power at the sample surface) and 50× objective with one accumulation and 0.1 s exposure 

time.  Raman spectra of pATP and 2-NT adsorbed on AuNRs were collected using 785 nm laser 

as excitation source (0.7 mW power at the sample surface) and 50× objective with one 

accumulation and 0.4 s exposure time.  Dark field scattering spectra were collected using a 

CytoViva Hyperspectral Imaging system with a spectral wavelength range of 420-900 nm and a 

spectral resolution of 2.8 nm.  A 100x objective (NA: 0.90) was used to scan the surface with a 

10 nm pixel size scan resolution and a 10 s integration time. Scattering spectra were normalized 

to a scan of a labsphere diffuse reflectance standard (SRS-99-010) to account for the differences 

in lamp intensity over the wavelength range.  Over 10,000 individual point spectra were 

averaged for each of the pristine, stretched, and folded regions to obtain final composite spectra 

(Figure S5.3). 

Microscopy 

Transmission electron microscope (TEM) images were obtained using a field emission TEM 

(JEM-2100F, JEOL) at an accelerating voltage of 200 kV.  Scanning electron microscope (SEM) 

images were obtained using a FEI Nova 2300 Field Emission SEM at an accelerating voltage of 

10 kV.  Atomic force microscopy (AFM) was performed using Dimension 3000 (Bruker) AFM 

in light tapping mode.235, 236  Triangular Si cantilevers with tip radius less than 10 nm 

(MikroMasch) were employed for AFM imaging.   

Electromagnetic Modelling 

The modeling of the electromagnetic field distribution around a single Ag@AuNR, its dimer, 

and its trimer were performed using three-dimensional finite-difference time-domain (FDTD) 

simulations with commercially available software (EM Explorer).237  FDTD simulations exploit 

the time and position dependence of Maxwell’s equations to model electromagnetic waves in 
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rectangular 3D cells of finite volume called Yee cells.  In a simulation domain of 500 nm × 300 

nm × 300 nm, a single Ag@AuNR was modeled with an AuNR core with a length of 54 nm and 

diameter of 15 nm and an Ag cubical shell with an external length of 74 nm and width of 57 nm 

according to the dimensions measured from TEM images.  Dimers and trimers are composed of 

two and three Ag@AuNR arranged along the polarization direction with a gap of 2 nm.  

Perfectly matched layer (PML) absorbing boundary conditions were applied in all directions.  A 

high-resolution simulation (Yee cell size of 1 nm) was run at the excitation wavelength (λ = 785 

nm) using p-polarized incident plane wave for illumination to obtain the electromagnetic field 

distribution.  The complex refractive index of gold at this frequency was set to be n = 0.18+i 4.96 

and silver was set to be n = 0.03+i 5.46,238 and the refractive index of the surrounding medium 

was set to be 1.0 for air. 

6.4 Results and Discussion 

Spontaneous Folding of Plasmonic Gel   

An ultrathin film of chemically-crosslinked poly(2-vinyl pyridine) (P2VP) was chosen as a 

responsive matrix.  P2VP is a weak cationic polymer that exhibits a globule-coil transformation 

below a pH of 4 due to the protonation of the pyridine group.239  It has been demonstrated that 

P2VP films exhibit spontaneous self-folding, involving large scale reorganization of the smooth 

film into lenticular structures, when exposed to acidic aqueous solutions.234, 240  Here, we harness 

this mechanical instability to realize externally-triggered complex pattern of electromagnetic 

hotspots.  The experimental approach involves the adsorption of a high density of plasmonic 

nanostructures onto an ultrathin P2VP film followed by chemisorption of Raman reporters (p-

aminothiophenol) that enable the facile mapping of the electromagnetic hotspots.  Subsequent 

exposure of the plasmonic gel to acidic aqueous solution is expected to result in a massive 
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reorganization of the film surface with a sparser distribution of the plasmonic nanostructures in 

some locations and folding-mediated electromagnetic hotspots in other locations.  We have 

employed silver-coated gold nanorods (Ag@AuNRs) synthesized using a two-step seed-

mediated method as plasmonic nanostructures.  Gold nanorods (AuNRs), synthesized using a 

seed-mediated method, are employed as seeds for Ag@AuNRs.190, 233  The length and diameter 

of AuNRs were respectively measured to be 53.5±3.9 and 14.8±2.5 nm using transmission 

electron microscopy (supporting information, Figure S5A).  The thickness of the Ag shell can be 

finely tuned by controlling the concentration of seeds (i.e., AuNRs) with respect to the Ag 

precursor concentration in the shell growth solution.  The uniform growth of Ag shells on 

AuNRs resulted in rectangular prismatic structures with truncated rectangular/square cross 

sections, with a length of 74.3±4.6 nm and a width of 57.0±3.3 nm (Figure 6.1A).  The extinction 

spectrum of AuNR cores exhibited two characteristic bands at 510 and 720 nm, corresponding to 

the transverse and longitudinal plasmon resonances respectively (Figure 6.1B).  Following the 

deposition of a thin layer of Ag on the AuNRs, the bimetallic nanostructures exhibited four 

bands in the extinction spectrum.  The extinction bands at 540 and 480 nm correspond to the 

longitudinal and transverse dipolar resonances and the extinction bands at 397 and 344 nm 

correspond to the transverse octupolar resonances of the Ag@AuNR.  It has been demonstrated 

that the longitudinal dipolar resonance of the Ag@AuNR is highly sensitive to the aspect ratio of 

the AuNRs employed as cores and the optical properties can be finely tuned by controlling the 

aspect ratio of the AuNRs and the Ag shell thickness.141, 142        

Ultrathin films of cross-linked P2VP were formed by spin-coating a silicon substrate with 

quaternized-P2VP from a mixed solvent comprised of nitromethane and tetrahydrofuran, 

followed by annealing at an elevated temperature to complete the cross-linking reaction (see 
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Experimental Section for details).  Atomic force microscopy (AFM) scratch testing revealed the 

thickness of the cross-linked polymer film to be ~130 nm (Figure 6.1C).  Following the surface 

modification of Ag@AuNRs with thiol-terminated poly(ethylene glycol) (SH-PEG), the 

nanostructures were adsorbed on the P2VP film. The pyridyl groups of P2VP are known to have 

high affinity to gold, resulting in strong adsorption of Au nanostructures to P2VP gel films.96  

Furthermore, the strong interaction between metal (Au and Ag) and iodide (I−) of the quaternized 

P2VP also facilitates the chemisorption of Au nanostructures on the gel film.241  AFM imaging 

revealed a highly uniform monolayer of Ag@AuNRs on the P2VP film. The AFM cross-section 

indicates that the dimensions of the Ag@AuNRs adsorbed on P2VP film closely matched with 

the dimensions obtained from TEM images (Figure 6.1D).  Most of the nanostructures adsorbed 

on the film were found to be individual nanoparticles or linear clusters with no large scale 

aggregation or patchiness (Figure 6.1E, S5.1B).  

As briefly mentioned above, upon exposure to acidic aqueous solution, cross-linked P2VP films 

transform from the initial smooth morphology into a network of folds, the dimensions of which 

are governed by the thickness of the film.240  The bright-field optical image of the pristine P2VP 

film exposed to a solution with a pH of 2 reveals the lenticular structures as reported previously 

(Figure 6.2A).  Fast Fourier transform (FFT) of the bright field image exhibits a diffuse ring, 

indicating the broad size distribution and random orientation of the folds, which can be 

harnessed to realize unclonable optical tags as described below (Inset of Figure 6.2A).  The sharp 

edges of these folds stand out in the dark-field image owing to the strong light scattering from 

these polymer edges (Figure 6.2B).  AFM characterization reveals regions with three distinct 

thicknesses that correspond to the stretched base layer tethered to the substrate (thickness of ~35 

nm), a single folded region (~165 nm thick), and a region corresponding to double folds (~360 
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nm thick) (Figure 6.2C).  Exposure of P2VP films uniformly adsorbed with Ag@AuNRs 

resulted in similar lenticular folding patterns (Figure 6.2D).  It is worth noting that the adsorption 

of Ag@AuNRs on the polymer surface does not interfere with the swelling or folding of the 

ultrathin gel.  The large-scale reorganization of the plasmonic gel with an external trigger 

suggests the strong interactions of the Ag@AuNRs with P2VP even in the highly swollen state 

of the polymer matrix. The dark-field image reveals strong light scattering from the interior of 

the folds as opposed to the pristine film in which light scattering was confined to edges (Figure 

6.2E).  The larger scattering from the interior of the folded regions is due to the high density of 

plasmonic nanostructures in the folded regions as will be discussed in detail below.  Compared to 

the thickness of the folds in the pristine films, the thickness of the folds in Ag@AuNRs-coated 

films was found to be higher due to the presence of the additional layers of nanostructures 

trapped within the folds (Figure 6.2F).  For example, in the single folded regions, both of the 

interior surfaces of folds are coated with plasmonic nanostructures, making the thickness of the 

single-fold in the plasmonic gel films one particle layer thicker (~60 nm) compared to that in the 

pristine films.     

Spontaneous Folding-induced Electromagnetic Hotspots 

Now we turn our attention to the formation of electromagnetic hotspots due to the swelling-

induced folding of the P2VP films.  Surface enhanced Raman scattering (SERS), which involves 

the dramatic enhancement of Raman signals from molecules adsorbed on or in proximity to 

plasmonic nanostructures, is being widely investigated for chemical and biological sensing and 

molecular bioimaging.15, 26, 43, 86, 107, 119, 181, 183, 231, 242, 243  We employ SERS to monitor the 

formation of electromagnetic hotspots upon the folding of the P2VP films.  As mentioned above, 

interstices between touching or closely spaced plasmonic nanostructures result in extremely large 
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electromagnetic field and SERS enhancements.  Hence, SERS intensity mapping can provide a 

direct insight into the intensity, density, and distribution of electromagnetic hotspots in the 

folded structure.  To obtain a SERS map, prior to exposing the films to acidic solution, Raman 

reporters were chemisorbed on the surface of nanostructures by exposing the Ag@AuNRs-

coated films to p-aminothiophenol (pATP) vapor.  A SERS intensity map was obtained from a 

representative location shown in the optical and AFM images (Figure 6.3A and 6.3B).  The 

mapped region of the film is comprised of stretched layer, single fold, and double fold regions.  

The intensity map of the 1080 cm-1 band, corresponding to C-S stretching of pATP adsorbed on 

Ag@AuNRs, represents the spatial distribution of SERS activity of the folded plasmonic gel film 

(Figure 6.3C, intensity scale: 50×103 counts/sec (CPS)).231  The SERS intensity distribution 

closely matched the topology of the folding pattern of the gel film with the double folds 

exhibiting higher intensities compared to single folds, which in turn exhibit higher intensities 

compared to the stretched regions (representative spectra shown in Figure 6.3D).  The height 

profile and SERS intensity along a representative line indicated in the AFM image and SERS 

intensity map show remarkable similarity (Figure 6.3E).  The SERS intensity distribution of the 

folded film exhibits a trimodal distribution corresponding to the stretched base layer (0-300 CPS), 

single fold (mean intensity of 18×103 CPS), and double fold (mean intensity of 32×103 CPS) 

regions (Figure 6.3F).  Whereas the number density of nanostructures in the folded regions is 

only 3 times higher compared to that in the stretched regions, the SERS intensity from the folded 

regions is nearly 60 times higher compared to that from the stretched regions. This indicates the 

formation of electromagnetic hotspots within the folded regions rather than the higher SERS 

intensity sprouting from the slightly higher density of nanostructures.  On the other hand, a 

pristine P2VP film adsorbed with Ag@AuNRs exhibited uniform SERS activity with randomly 
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distributed high intensity regions corresponding to the accessible electromagnetic hotspots as 

discussed in detail below (Figure 6.3G, intensity scale: 50×103 CPS).  The representative SERS 

spectra from two different regions of the pristine film exhibit significantly lower intensities 

compared to those obtained from the folded film (Figure 6.3H).  The SERS intensity distribution 

of the unfolded sample exhibited a unimodal distribution with a mean intensity of around 500 

CPS (Figure 6.3I).    

Exposure of the plasmonic gel film to an acidic solution results in isotropic swelling of the film 

in the plane parallel to its surface, which induces an increase in the surface area of the film.  

Subsequent drying of the film results in lenticular fold patterns that induce an intimate contact of 

two surfaces adsorbed with plasmonic nanostructures, which results in the formation of 

electromagnetic hotspots (Figure 6.4A).  The isotropic stretching of the film leads to a sparser 

distribution of the plasmonic nanostructures in the stretched regions of the folded film compared 

to the pristine film (Figure 6.4B, S5.1C).  On the other hand, in the single fold regions, SEM 

images reveal two distinct layers of nanostructures; a sparse layer of nanostructures at the top 

and a denser layer of coupled nanostructures resulting from the contact between two surfaces in 

the folds (Figure 6.4C).   

Dark-field scattering spectra obtained from the pristine film depict two strong bands at 510 nm 

and 720 nm (Figure 6.4D).  The strong band at 720 nm corresponding to the plasmon coupling 

between the Ag@AuNRs stems from the densely packed nanostructures on the P2VP film.   

Stretched regions of the folded film exhibited a weak scattering band at 510 nm corresponding to 

the sparsely distributed individual nanostructures in these locations.  On the other hand, spectra 

obtained from single fold exhibit plasmon bands corresponding to the individual and coupled 

plasmon modes at 510 nm and 720 nm, respectively.  The intensity of the coupled mode at 720 
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nm in the folded regions is significantly stronger compared to that in the stretched regions and 

weaker compared to that in the pristine film.  It is known that assembly or controlled aggregation 

of plasmonic nanostructures results in the formation of electromagnetic hotspots that provide 

large SERS enhancements.  The larger SERS activity of the folded regions (both single and 

double folds) can be ascribed to the formation of electromagnetic hotspots during the folding 

process.  The stronger coupled plasmon mode in the scattering spectra of folded regions 

compared to the stretched regions confirms the electromagnetic hotspot-mediated SERS activity 

in these regions.  It is interesting to note that the SERS activity of the pristine film is 

significantly lower compared to folded regions despite the presence of a high density and lightly 

clustered nanostructures on the film, as evidenced by the statistical analysis of nanoparticle 

distribution on different regions and the strong plasmon coupling band in the scattering spectra 

(Supp.  The poor SERS activity of the pristine film can be explained by the limited access of the 

reporter molecules (pATP) into the electromagnetic hotspots formed between the closely spaced 

nanostructures.  On the other hand, folding of the film results in clustering of nanostructures pre-

adsorbed with pATP, which causes the Raman reporters to be trapped in the electromagnetic 

hotspots.  The formation of electromagnetic hotspots after analyte adsorption is known to be 

more effective for SERS enhancement compared to adsorption of analytes in pre-formed 

electromagnetic hotspots, which is in complete agreement with our observations here.244   

We have employed finite-difference time-domain (FDTD) simulations to estimate the 

electromagnetic field enhancement of individual and assembled Ag@AuNRs nanostructures 

(Figure 6.4E).237  While a variety of cluster configurations can be observed in the folded regions, 

we have chosen to compare the electromagentic field enhancement of individual nanostructures 

and face-to-face assembled dimer and trimer structures as representative examples (see 
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Experimental section for details).  The maximum electric field intensity (|E|2) enhancement at the 

surface of an individual Ag@AuNR was found to be at ~24 times the incident intensity.  Owing 

to the presence of electromagnetic hotspots at the interstices, the maximum electric field 

intensity in the case of dimers and trimers of Ag@AuNRs (at interstitial sites along the 

polarization direction) was found to be nearly 200 and 680 times the incident intensity, 

respectively.  Such large enhancement of electromagnetic field intensity in the clusters combined 

with the formation of clusters after analyte adsorption facilitates the large SERS activity from the 

folds.  

Nondeterministic Physical Patterns as Anti-counterfeit Optical Tag 

Now we consider the possibility of harnessing the spontaneous and nondeterministic fold 

patterns and the associated SERS-active patterns in a responsive polymer film to realize an 

unclonable optical tag for anti-counterfeiting applications.  The spontaneous plasmonic gel 

folding process can be implemented on any surface that facilitates strong adherence of the 

pristine gel film.  For example, the P2VP film can be deposited and subsequently triggered to 

fold on an oxygen-plasma treated poly(dimethyl siloxane) (PDMS) microdisk (Figure 6.5A).  

Such microtaggants can be easily incorporated into a variety of objects for protecting against 

duplication or counterfeiting.  For demonstrating plasmonic gel-based anti-counterfeit taggants, 

we employed AuNRs rather than Ag@AuNRs as plasmonic nanostructures considering that the 

former exhibit higher chemical and environmental stability.  For deploying the nondeterministic 

fold patterns as anti-counterfeit taggants, the local feature orientation of the folds in the master 

image are identified by calculating the intensity gradients in a gray scale image and are recorded 

as a series of vectors in the image (Figure 6.5B).245   The vector map revealed high fidelity of the 

vector distribution and orientation along the boundary of the folds, including along sharp curves 
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(Figure 6.5C).  Before investigating whether these nondeterministic fold patterns can function as 

unique identifiers, we tested the recovery robustness of the sample image after rotation and 

rescaling of the sample image with respect to the master image, which is likely to occur during 

the authentication process.  By implementing the speed up robust features (SURF) algorithm, the 

sample image (outlined in Figure 6.5D) can be robustly recovered and matched to the master 

image even when the sample is significantly rescaled (0.3-3 times) and rotated (0-360°) with 

respect to the master image (Figure 6.5E).  Such high recovery robustness provides large 

tolerance in the sampling process, relaxing the hardware requirements (resolution and 

magnification of the image acquisition device and the orientation) during the authentication 

process and making it suitable for resource-limited settings.  

The uniqueness of the fold patterns was investigated by comparing 100 folds pattern images 

obtained from different locations, with approximately 1000 folds within each micrograph.  After 

obtaining vector distribution maps of the micrographs in the pool, we calculated cross-

correlation between the fold patterns of the micrographs by quantifying the percentage of the 

matched vector pairs.  As shown in the cross-correlation map, the data points along the diagonal 

line represent the intracorrelation values with a mean value of 98.9% (Inset of Figure 6.5F).  On 

the other hand, the data points representing intercorrelation values (all data points other than the 

ones along the diagonal) exhibit a very small cross-correlation value with a mean value of 11.9% 

(Inset in Figure 6.5F, perfect match is defined as 100%).  The histogram of the cross-correlation 

values shows a clear separation between the intracorrelation and intercorrelation, making the fold 

patterns unique identifiers for anti-counterfeiting applications (Figure 6.5F).   

Nondeterministic Chemical Patterns as Optical Tags 
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As discussed above, spontaneous folding of plasmonic gel results in the formation of 

electromagnetic hotspots within the folds that result in a unique SERS intensity distribution.  

Such unique patterns of SERS intensity can be employed as a second layer of authentication, 

making the plasmonic gel a multi-dimensional taggant (described below).  SERS-based chemical 

patterns encoded into the folded plasmonic gel are orthogonal to the physical encoding, 

providing an additional layer of security.  We have employed two Raman reporters to 

demonstrate SERS-based chemical encoding in the folded plasmonic gel.  We expect the SERS 

intensity distribution of the two reporters to be different considering their stochastic distribution 

within the most intense electromagnetic hotspots formed during the folding process. It is known 

that the SERS signal in the electromagnetic hotspots is dominated by a single or a few molecules 

that reside in the “hottest” regions, which results in the possibility of a significant fraction of 

electromagnetic hotspots exhibiting a dominant SERS signal corresponding to one of the two 

Raman reporters employed.152, 183  

Thus, we have employed pATP and 2-naphthalenethiol (2-NT) as Raman reporters, which were 

chemisorbed on AuNRs by exposing the plasmonic gel film to the saturated vapor mixture of 

pATP and 2-NT.  Owing to the excellent spectral multiplexing ability of SERS, Raman bands of 

pATP and 2-NT can be easily distinguished (Figure S5.6).  The most prominent peaks of 2-NT 

were observed at 1068 and 1381 cm-1, which correspond to the C-H bend and ring stretch 

vibrations, respectively.128  SERS intensity maps of pATP at Raman band 1179 cm-1 and 2-NT at 

Raman band 1381 cm-1 were obtained from the fold patterns as shown in the optical micrograph 

(Figure 6.6A-6.6C).  While both SERS intensity maps share similarities in that the high intensity 

regions generally correspond to the folds, the SERS maps are not degenerate i.e., not duplicates 

in terms of intensity distribution.  The differences in the SERS maps corresponding to the two 
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reporters can be easily visualized by the well-developed features in the intensity ratio map 

scaling from 0.1 to 2 (Figure 6.6D).  To further illustrate the differences in the SERS intensity 

distribution of the two Raman reporters, three representative spectra corresponding to pATP-

dominated (a”), 2-NT-dominated (c”), and pATP and 2-NT comparable (b”) are shown in Figure 

6E (locations identified in the intensity ratio map).   

The unique patterns of the SERS intensity distributions corresponding to the two Raman 

reporters in the folded plasmonic gel film can be employed as chemical taggants as described 

below.  Similar to bright field optical images, the features in the SERS intensity maps can be 

represented as vector map according to the procedure described above (Figure 6.6F and 6.6G).  

To demonstrate that the SERS maps of folded plasmonic gel are indeed unique chemical patterns, 

we calculated the cross-correlation between vector distributions of 32 SERS intensity maps 

collected from 16 different regions of fold patterns, comprised of 16 SERS intensity maps 

corresponding to the 1179 cm-1 band and 16 SERS intensity maps corresponding to the 1381 cm-

1 band (Figure 6.6H).  The high cross-correlation values with a mean value of 98.6% along the 

diagonal line of the cross-correlation map correspond to intracorrelation cases i.e., correlation 

between maps corresponding to the same Raman reporter at the same location of the fold 

patterns.  In contrast, the intercorrelation (all the other data points) of vector distribution of 

SERS intensity maps showed extremely low correlation (mean value of 17.2%).  A histogram 

plotted from the cross-correlation map demonstrates a clear separation between the 

intracorrelation and intercorrelation cases, making this structure ideally suited for unique 

chemical encoding (Figure 6.6I).   

To highlight the importance of chemical encoding on top of topographical encoding in the 

anticounterfeiting taggants, we demonstrate that the nondeterministically formed physical 
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patterns can be replicated with advanced techniques.  For example, soft lithographic techniques 

such as nanoimprinting can be employed to replicate the nondeterministic lenticular patterns of 

the folded plasmonic gel or any other encoding solely based on topographical features 

(Supplementary Information, Figure S5.8).  The bright-field optical micrograph of the master 

graphical pattern exhibits a strong color contrast between the folded and stretched regions due to 

differential thin film interference (Figure S5.8A).  In contrast, although the replicated pattern 

preserved the physical features of the master, the color contrast in the optical micrograph is 

lower due to a smaller difference in the thickness of the imprinted polymer film in different 

locations (Figure S8B).  Vector distribution of the master and replicated patterns showed a strong 

correlation with ~70% matching vectors (Inset of Figure S5.8A and inset of Figure S5.8B).  Such 

high correlation values suggest that graphical tags, such as buckling and wrinkling patterns and 

randomly distributed nanowires, although nondeterministic, are still vulnerable to counterfeit 

attacks using advanced duplication methods.226, 246   

On the other hand, the chemical patterns encoded into the folded film are virtually impossible to 

replicate. We obtained SERS maps following the adsorption of AuNRs on the replicated pattern 

and their exposure to saturated vapor mixture of pATP and 2-NT.  AFM images revealed the 

uniform distribution of AuNRs on the lenticular patterns (Figure S5.8C and S5.8D).  As expected, 

SERS intensity maps of the Raman band at 1179 cm-1 corresponding to pATP and the Raman 

band at 1381 cm-1 corresponding to 2-NT exhibited a uniform distribution of SERS intensity 

without any physical features (Figure S5.8E and Figure S5.9).  Furthermore, the SERS intensity 

ratio maps of the 1179 cm-1 and 1381 cm-1 bands also showed uniform and featureless 

distributions due to the uniformly adsorbed nanostructures as opposed to the stochastic 

distribution of Raman reporters in the electromagnetic hotpots of the folded films (Figure S5.8F). 
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6.5 Conclusions 

We have demonstrated spontaneous self-folding of a plasmonic gel, comprised of an ultrathin 

polymer film uniformly adsorbed with plasmonic nanostructures, in response to a pH change.  

The large scale reconfiguration of the responsive plasmonic gel into lenticular folding patterns 

under external chemical stimulus resulted in the formation of complex patterns of 

electromagnetic hotspots in the film.  While most of the earlier studies involving the integration 

of responsive polymers with plasmonic nanostructures are limited to rather small changes in the 

distance between the plasmonic nanostructures with external stimuli, we demonstrated a massive 

reconstruction of the responsive gelatinous plamonic surface, resulting in pronounced changes in 

the density and distribution of nanostructures and their optical activity.   We showed the folded 

plasmonic gel film composed of nondeterministic physical and chemical patterns can serve as an 

unclonable multidimensional anti-counterfeiting taggant.  While any anti-counterfeit optical tag 

solely relying on graphical features can, in theory, be replicated, the integration of 

nondeterministic topography patterns with stochastic chemical patterns determined by the fine 

details of the nanoscale structure and distribution of molecules within such nanostructures makes 

the anti-counterfeiting approach suggested here unbreachable.  

6.6 Supporting Information 

Supporting Information for chapter 6 is provided in appendix 5. 
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Figure 6. 1 (A) Representative TEM image of Ag coated Au nanorods (Ag@AuNRs). Inset 

shows higher magnification image of the nanostructures as viewed from the longitudinal and 

transverse directions. (B) Extinction spectra of AuNR and Ag@AuNR aqueous solutions.  AFM 

image along the edge of an intentional scratch in (C) P2VP film and (D) P2VP film uniformly 

adsorbed with Ag@AuNRs.   The representative height profile perpendicular to the scratch edge 

is shown in the image. (E) SEM image of P2VP film uniformly adsorbed with Ag@AuNRs 

showing the lightly clustered nanostructures on the film (inset shows a higher magnification 

image).  
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Figure 6. 2 (A) Bright-field and (B) dark-field (showing scattering from edges of folds) optical 

microscopy images of a P2VP film exposed to a pH 2 solution showing the lenticular pattern of 

folds. Inset of (A) shows the fast Fourier transform (FFT) of the bright-field image.  (C) AFM 

image along the edge of an intentional scratch showing the three distinct regions corresponding 

to the stretched base layer, single folds and double folds.  The height profile along the line shown 

in the image depicts the thickness of the three distinct regions.  (D) Bright-field and (E) dark-

field (showing plasmonic scattering from nanoparticles in the folded regions) optical microscopy 

images of P2VP film adsorbed with Ag@AuNRs upon exposure to pH 2 solution showing the 

lenticular folding pattern. (F) AFM image along the edge of an intentional scratch in P2VP film 

adsorbed with Ag@AuNRs showing the three distinct regions corresponding to the stretched 

base layer, single folds and double folds.  The height profile along the line shown in the image 

depicts the thickness of the three distinct regions.  

B 

D 

C A 

0 5 10 15 20 25 30 35 40

0

100

200

300

400

  

 

m) 

E 

m) 
0 5 10 15 20 25 30 35 40

0

100

200

300

400

500
 

 

F 



108 
 

 

Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 3 (A) Optical and (B) AFM images showing the region from which SERS intensity 

map (C) was obtained. SERS intensity map (intensity scale: 50×103 CPS) in (C) shows a 

lenticular pattern that is remarkably similar to the lenticular pattern in the AFM height image in 

(B).  The squares in the optical (A) and AFM (B) images correspond to the mapped region 

shown in (C).  (D) Representative SERS spectra from three regions marked in the SERS map 

shown in (C).  (E) Height and corresponding SERS intensity profile along a line shown in the 

AFM image and a SERS map depicting the remarkable similarity of the cross-sectional profiles.  
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(F) Histogram of the SERS intensity of the folded film showing a trimodal distribution 

corresponding to a stretched layer, single folds, and double folds.  (G) SERS intensity map 

(intensity scale: 50×103 CPS) from a pristine film, showing significantly lower intensity 

compared to that from a folded film (SERS intensity with smaller intensity scale shown in Figure 

S5.2).  (H) Representative SERS spectra from two regions marked in the SERS map shown in 

(G). (I) Histogram of the SERS intensity of the pristine film showing a unimodal distribution, 

which is in stark contrast to that of the folded film.  
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Figure 6. 4 (A) Schematic illustration showing the reorganization of the nanostructures adsorbed 

on the plasmonic gel during the swelling-mediated folding process. (B) SEM image of the folded 

film showing a sparser distribution of the nanostructures in the stretched regions compared to 

pristine film and multilayers of nanostructures in the folded regions. (C) Higher magnification 

SEM image of the folded region showing the lightly clustered nanostructures in the interior of 

the folds, which serve as SERS-active EM hotspots. (D) Scattering spectra obtained from pristine 
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film and folded film (stretched and single fold regions). (E) FDTD simulations showing the EM 

field intensity around individual, dimer, and trimer Ag@AuNR structures.  
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Figure 6. 5 (A) Optical image of a multidimensional microtaggant comprised of folded 

plasmonic gel on a PDMS microdisk. (B) Vector distribution map obtained from a grey scale 

image of the fold patterns. (C) Magnified vector distribution image showing highly fidelity of the 

vector distribution and orientation with the boundary of the folds. (D) A representative bright-

field optical micrograph of folded plasmonic gel as an original image. The part of the image 

within the white outline is rotated and rescaled to demonstrate the authentication process. (E) 

Recovery of the sample image (rotated and rescaled image shown in white outline of (D)) by 

mapping the speeded up robust features (SURF) of the sample image to the original image. (F) 

Histogram showing the distribution of cross-correlation values obtained by comparing the vector 

distribution maps of 100 micrographs of fold patterns obtained from different locations. 

Corresponding heat map of the cross-correlation is shown as inset.  The data points along the 

diagonal line of cross-correlation map represent intracorrelation calculations with a mean value 
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of 98.9%, while the others represent intercorrelation calculations with a mean value of 11.9% 

(perfect match is defined as 100%).  
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Figure 6. 6 (A) Optical image showing the region from which SERS intensity maps of (B) pATP 

at Raman band 1179 cm-1 and (C) 2-NT at Raman band 1381 cm-1 were collected. SERS map 

intensity scale: 5×103 CPS.  (D) SERS intensity ratio map of 1179 cm-1/1381 cm-1 showing a 

well-developed 2D map indicating a high level of spectral encoding owing to the two Raman 

reporters. (E) Representative SERS spectra from three regions marked in the SERS intensity 

ratio map shown in (D) showing the location-dependent intensity ratio of the two Raman bands 

corresponding to pATP and 2-NT.  (F), (G) Vector distribution maps obtained from normalized 
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grayscale SERS intensity maps shown in (B) and (C) respectively. (H) Heat map showing the 

cross-correlation values obtained by comparing the vector distribution maps of 32 SERS 

intensity maps (16 SERS intensity maps at Raman band 1179 cm-1 and 16 SERS intensity maps 

at Raman band 1381 cm-1) collected from different regions of fold patterns.  The data points 

along the diagonal line of cross-correlation map represent intracorrelation calculations with a 

mean value of 98.6%, while the others represent intercorrelation calculations with a mean value 

of 17.2% with a narrow distribution (perfect match is defined as 100%). (I) Histogram showing 

the distribution of cross-correlation values obtained from the heat map shown in (H). 
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Chapter 7: Conclusions 

7.1 Conclusions 

Owing to the higher surface to volume ratio and facile tunability of LSPR wavelength over a 

broad range from visible to parts of near infrared, hollow and porous metal nanostructures 

exhibit extraordinary optical and catalytic properties compared to their solid counterparts.  In the 

work presented in this dissertation, we designed and demonstrated a novel class of hollow and 

porous plasmonic nanostructures for highly efficient detection of trace amounts of chemical and 

biological analytes based on the localized surface plasmon resonance (LSPR) and surface 

enhanced Raman scattering (SERS).  We have successfully demonstrated the synthesis of hollow 

and porous metal nanostructures of different sizes and shapes through a combination of template-

mediated synthesis and galvanic replacement reaction.     

We have demonstrated Au nanocages (AuNCs) exhibit significantly higher refractive index 

sensitivity and lower electromagnetic decay length, both of which make it an excellent candidate 

for plasmonic biosensing.  AuNCs with built-in artificial antibodies achieved by molecular 

imprinting approach enabled the detection of a kidney injury biomarker (NGAL) down to a 

concentration of 25 ng/ml.  The limit of detection achieved with AuNCs as nanotransducers is 

more than an order of magnitude lower compared to that obtained with Au nanorods (AuNRs).  

In addition to the excellent sensitivity, AuNCs with built-in artificial antibodies for neutrophil 

gelatinase-associated lipocalin (NGAL) exhibit excellent selectivity against numerous interfering 

urinary proteins and remarkable stability across pH ranging from 4.5 to 8.5 and specific gravities 

from 1.005 to 1.030.  AuNCs with built-in artificial antibodies can be potentially employed for 
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rapid urinalysis in point-of-care settings for identifying patients that can progress to acute kidney 

injury (AKI), allowing early therapeutic intervention. 

We have also investigated the influence of size, shape, polarization, and structure of plasmonic 

nanostructures on the SERS activity.  Within the size range studied, the SERS activity of the 

plasmonic nanorattles with spherical cores increased with the increase in the edge length.  The 

increase in the SERS activity of the cubic nanorattles is due to the increase in the extinction (and 

scattering) coefficient of nanostructures with size.  On the other hand, the SERS activity of the 

plasmonic nanorattles with nanorod cores decreased with the increase in the edge length of the 

porous cuboid shells.  In the case of the cuboid nanorattles, the electromagnetic hotspot within 

the nanostructure, formed between the edge of the AuNR and porous Au shell, governs the SERS 

activity.   

We have also investigated the polarization-dependent SERS properties of anisotropic plasmonic 

nanorttles. The SERS activity of Au nanorattles exhibited significantly different polarization-

dependence compared to their solid counterparts i.e. AuNR@Ag nanocuboids.  For the cuboidal 

nanorattles, the internal electromagnetic hotspot dominates the SERS activity of the nanorattles.  

Conversely, the nanocuboids exhibited a polarization-dependent SERS activity that is dominated 

by their sharp corners and edges, which is similar to most conventional anisotropic solid 

nanostructures.  Furthermore, we have investigated the correlation between the extent of galvanic 

replacement and the SERS enhancement of plasmonic nanorattles.  We synthesized plasmonic 

nanorattles comprised of 2-NT coated Au nanosphere as core and porous gold cube as a shell 

with different degrees of galvanic replacement using Au@Ag nanocubes as templates.  The 

nanoscale structure, optical properties and SERS enhancement of Au nanorattles were found to 

be highly dependent on the extent of the galvanic replacement.  The finite difference time 
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domain electromagnetic simulations were employed to understand the electromagnetic field 

intensity distribution and size-, shape-, polarization-, and structure-dependent SERS 

enhancement from the plasmonic nanostructures.  Overall, the SERS intensity trend obtained 

from the FDTD simulations showed excellent agreement with our experimental results.  

Comprehensive understanding of the size-, shape-, polarization-, and structure-dependent SERS 

activity of this novel class of nanostructures can lead to the rational design and fabrication of 

highly efficient SERS substrates for chemical and biological sensing. 

Finally, we demonstrated the spontaneous self-folding of a plasmonic gel, comprised of an 

ultrathin polymer film uniformly adsorbed with plasmonic nanostructures, in response to a pH 

change.  The large-scale reconfiguration of the responsive plasmonic gel into lenticular folding 

patterns under external chemical stimulus resulted in the formation of complex patterns of 

electromagnetic hotspots within the folds.  We demonstrated a massive reconstruction of the 

responsive gelatinous plasmonic surface, resulting in pronounced changes in the density and 

distribution of nanostructures and their optical activity.  We showed the folded plasmonic gel 

film composed of nondeterministic physical and chemical patterns can serve as an unclonable 

multidimensional anti-counterfeiting taggant.  The integration of nondeterministic topography 

patterns with stochastic chemical patterns determined by the fine details of the nanoscale 

structure and distribution of molecules within such nanostructures makes the anti-counterfeiting 

approach suggested here unbreachable.    

The principles established in this study for the design of hollow and solid plasmonic 

nanostructures can have far reaching implications in the real-world applications of plasmonic 

nanostructures.  Especially, hollow plasmonic nanostructures, if optimally designed, can 
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outperform some of the conventional solid nanostructures such as Au nanorods in chemical and 

biological sensing applications.  
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Appendix 

Appendix 1 

EM decay length calculation 

In addition to bulk refractive index sensitivity, EM decay length is yet another important 

parameter to maximize a LSPR transducer response, which describes the distance-dependent 

refractive index sensitivity and sensing depth for LSPR sensors.247-249   We employed layer-by-

layer (LbL) assembly of polyelectrolytes for probing the distance-dependent LSPR sensitivity 

and EM decay length of AuNCs and AuNRs.  LbL assembly of polyelectrolyte multilayers 

(PEM), which involves the alternate adsorption of oppositely charged polyelectrolytes, offers an 

excellent control over the thickness of the dielectric layer down to ~ 1nm.250-255    The spectra 

revealed a progressive red-shift in LSPR wavelength and increase in LSPR intensity with the 

deposition of each bilayer due to the increase in the refractive index of the medium surrounding 

the plasmonic nanostructures (from air to polymer layer) (Fig. S2C and Fig. S3B).  The 

cumulative LSPR wavelength shift following the deposition of each polyelectrolyte layer for 

AuNCs is much higher than AuNRs, especially within the first few nanometers where 

biomolecule binding events occur (Fig. 2D).   

Owing to the evanescent nature of the EM field at the surface of the plasmonic nanostructures, 

the LSPR wavelength shift exhibits a characteristic decay with increasing distance from the 

surface of the nanostructures (i.e. increasing number of layers), given by 85, 256 

  
l

dmR 2exp1    
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Where R is LSPR shift, m is the refractive index sensitivity of nanostructures, Δη is the change in 

the refractive index in RIU, d is the adsorbate layer thickness (thickness of the polyelectrolyte 

layer in this case) and l is the EM decay length. 
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Figure S1. 1 TEM image of silver nanocubes as template for gold nanocages. 

 

 

Figure S1. 2 (A) TEM image of Au nanorods. (B) Vis-NIR extinction spectrum of the aqueous 

suspensions of Au nanorods (inset shows the histogram of the size distribution as measured from 

TEM images).  
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Figure S1. 3 (A) SEM of Au nanocages adsorbed on a glass substrate. Vis-NIR extinction spectra 

of (B) Au nanocages and (C) Au nanorods in air and different concentrations of sucrose aqueous 

solution. (D) Comparison of bulk refractive index sensitivity of Au nanocages and nanorods. 
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Figure S1. 4 Vis-NIR extinction spectra of (A) AuNCs and (B) AuNRs following the deposition 

each polyelectrolyte bilayer showing a progressive red-shift and increase in the intensity of the 

longitudinal plasmon band. (C) Representative LSPR spectrum of AuNCs deconvoluted using 

two Gaussian peaks. (D) Comparision of distance depndenct refractive index sensitivity of Au 

nanocages and nanorods. 
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Appendix 2 
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Figure S2. 1 Plot showing the linear increase in the Ag shell thickness at the ends and on the 

sides of AuNR with increasing amount of AgNO3 in the shell growth solution. 
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Figure S2. 2 (A)-(D) SEM images of AuNR@Ag nanocuboids with dimensions of (A) 62.7×31.2 

nm, (B) 67.0×37.0 nm, (C) 70.4×41.8 nm and (D) 72.5×44.7 nm. (E)-(H) SEM images of Au 

cuboidal nanorattles with dimensions of (E) 69.5×37.9 nm, (F) 74.1×44.6 nm, (G)78.9×50.0 nm 

and (H) 83.1×55.2 nm. 
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Figure S2. 3 (A) SERS spectra from Au nanorattles with AuNS cores obtained using 514 nm 

laser. (B) Plot showing the SERS intensity of the 1381 cm-1 Raman band of 2-NT vs. size of Au 

nanorattles. 
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Figure S2. 4 (A) FDTD simulations showing the electric field distribution of Au cubic 

nanorattles of different sizes using 880 nm excitation wavelength (c1-c6 correspond to electric 

field distribution of Au nanorattles with edge length of 20, 23, 32, 37, 40 and 45nm, 

respectively). (B) Plot showing the enhancement with increase in the edge length of Au 

nanorattles with AuNS cores. (C) FDTD simulations showing the electric field distribution of Au 

cuboid nanorattles of different sizes using 880 nm excitation wavelength (c1-c4 correspond to 

electric field distribution of Au nanorattles with dimensions 69.5×37.9 nm, 74.1×44.6 nm, 

78.9×50.0 nm and 83.1×55.2 nm, respectively (D) Plot showing the enhancement with increase 

in the edge length of Au nanorattles with AuNR cores. 
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Enhancement factor (EF): 

The enhancement factor (EF) of each Au nanorattle was calculated by using the following 

equation55, 148, 149, 257.  

EF =

𝐼𝑆𝐸𝑅𝑆
𝑁𝑆𝐸𝑅𝑆

⁄

𝐼𝑏𝑢𝑙𝑘
𝑁𝑏𝑢𝑙𝑘

⁄
 

Where  𝐼𝑆𝐸𝑅𝑆 and 𝐼𝑏𝑢𝑙𝑘 are intensities of the same band for the SERS and bulk spectra, 𝑁𝑆𝐸𝑅𝑆 is 

the number of the 2-napthalnethiol (2-NT) bound to the surface of Au nanorattles and 𝑁𝑏𝑢𝑙𝑘 is 

the number of the 2-NT in the excitation volume. 

For Au nanorattle with size of 45 nm, 𝐼𝑆𝐸𝑅𝑆 =~3000 counts and 𝐼𝑏𝑢𝑙𝑘=~125 counts.  

Raman spectrum of 2-NT in bulk was collected using 20x microscopy objective (with a 

numerical aperture (NA) =0.4). The approximate laser spot size of 20X objective can be obtained 

using the following expression: 

 𝜔0 = 4𝜆
𝜋NA⁄          

Where 𝜔0 is the minimum waist diameter for a laser beam of a wavelength 𝜆 focused by an 

objective with a numerical aperture NA. So for 20x objective, 

𝜔0 =
(4)(0.785)

𝜋(0.4)
= 2.5 µ𝑚.                                                                                                           

𝑧0 =
2𝜋𝜔0

2

𝜆
=

2𝜋(2.5)2

0.785
= 50 µ𝑚 

So, the focal volume (τ) = (
𝜋

2
)1.5𝜔0

2𝑧0 = (
𝜋

2
)1.5×2.52×50 = 614.75 µ𝑚2 

Density of the 2-NT is 1.55
 𝑔

𝑐𝑚3⁄  , molecular mass of 2-NT is 160.24 (g/mol) 

𝑁𝑏𝑢𝑙𝑘 =
(1.55𝑔/𝑐𝑚3)(614.75µ𝑚3)

160.24
= 5.95×10−12 mol  
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The volume of individual Au nanorattle with AuNS core with edge length of 45 nm is estimated 

to be (45 − 8)3 𝑛𝑚3       

𝑁𝑆𝐸𝑅𝑆 =
(1.55𝑔/𝑐𝑚3)(45−8)3𝑛𝑚3

160.24
= 4.90×10−19 mol                                                                   

EF =
𝐼𝑆𝐸𝑅𝑆

𝑁𝑆𝐸𝑅𝑆
⁄

𝐼𝑏𝑢𝑙𝑘
𝑁𝑏𝑢𝑙𝑘

⁄
=

3000
4.9×10−19⁄

125
5.95×10−12⁄

= 2.91×108 

The volume ratio of AuNS for the synthesis of Au nanorattle with size of 45:40:37:32:23:20 nm 

is 0.15:0.2:0.5:1.0:2.0:3.0, so the ratio of 𝑁𝑆𝐸𝑅𝑆 is  
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Figure S2. 5 SERS enhancement factor vs. size of Au nanorattles with AuNS core. 

 

The volume of individual Au nanorattle with AuNR core with dimension of 69.5x37.9x37.9 nm 

is estimated to be (69.5 − 10)×(37.9 − 10)×(37.9 − 10) 𝑛𝑚3   

 𝑁𝑆𝐸𝑅𝑆 =
(1.55𝑔/𝑐𝑚3)(69.5−10)(37.9−10)(37.9−10)𝑛𝑚3

160.24
= 4.48×10−19 mol 

 EF =
𝐼𝑆𝐸𝑅𝑆

𝑁𝑆𝐸𝑅𝑆
⁄

𝐼𝑏𝑢𝑙𝑘
𝑁𝑏𝑢𝑙𝑘

⁄
=

11000
4.48×10−19⁄

125
5.95×10−12⁄

= 1.17×109 
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SERS enhancement factors for cuboidal Au nanorattles with dimensions of 74.1x44.6 nm, 

78.9x50.0 nm, 83.1x55.2 nm is 3.21×108, 1.47×108, 6.59×107 , respectively.  The SERS 

enhancement factor vs. size of Au nanorattles is shown as below: 
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Figure S2. 6 SERS enhancement factor vs. size of Au nanorattles with AuNR core. 

 

Estimation of the concentration of Au nanorattles: 

The concentration of Au nanoparticles was calculated using the following expression:   

A=εbC where A is absorption, ε is extinction coefficient, for Au nanoparticle with diameter of 

8.55 nm ε = 5.14x107 (M-1cm-1).258 Light path in the UV-cuvette (b) is 1 cm. C is molar 

concentration of nanoparticle solution. Our experimental result shows that extinction of Au 

nanoparticles is 1.2, so molar concentration of nanoparticle solution is 23.35x10-9 M. For 1 ml 

solution of Au nanoparticles, the concentration is 23.35×10-12×6.023x1023=1.41×1013 

nanoparticles/ml. The approximate concentration of Au nanorattles with spherical cores is about 

1.41×1013 nanoparticles/ml. 

 

The ε of AuNR with aspect ratio of 4.6 (length 51.9 nm and diameter 11.3 nm) is about 35×108 

M-1cm-1.259 The extinction of AuNR solution in our study is 2.0, so the molar concentration of 

AuNR solution is 5.71×10-9 M. So for 1 ml solution of Au nanorods, the concentration is 
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5.71.x10-12×6.023×1023= 3.44×1012 nanorods/ml solution. The approximate concentration of Au 

nanorattles with nanorod cores is about 3.44×1012 nanoparticles/ml. 
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Appendix 3 
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Figure S3. 1 Raman spectrum of bulk 2-NT. 
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Figure S3. 2 Surface enhanced Raman scattering (SERS) spectra collected from 2-NT adsorbed 

on Au nanorattles and AuNR@Ag nanocuboids in aqueous media using 785 nm laser excitation.  
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Figure S3. 3 SERS spectra collected from 2-NT adsorbed on Au nanorattles and AuNR@Ag 

nanocuboids in aqueous media using 514.5 nm laser excitation. 
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Figure S3. 4 DDA simulated extinction spectra of AuNR@Ag nanocuboids in water (black) and 

on a Si substrate in air (red). Inset shows schematic of the nanostructure with dimensions. Data 

points obtained from calculation are connected by a spline curve. 

 

Figure S3. 5 (A) Dark-field optical image of Au nanorattles adsorbed on a silicon substrate. 

Labels 1, 2 and 3 each identify a representative Au nanorattle for polarization-dependent SERS 

measurement. (B) SEM image of Au nanorattles adsorbed on a silicon substrate from the region 
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marked by the white dashed box in (A). (C) Enlarged SEM image clearly identifying the three 

representative Au nanorattles from (B). 
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Figure S3. 6 (A) Dark-field optical image of AuNR@Ag nanocuboids adsorbed on a silicon 

substrate. Labels 1-6 each identify a representative AuNR@Ag nanocuboid for polarization-

dependent SERS measurement. (B) SEM image of AuNR@Ag nanocuboids adsorbed on a 

silicon substrate from the entire region shown in (A). (C) Enlarged SEM image clearly 

identifying the six representative AuNR@Ag nanocuboids from (B). 
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Figure S3. 7 Stability of SERS signal at 1066 cm-1 and 1381 cm-1 peaks obtained from an 

individual Au nanorattle at a polarization angle of 0°. 
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Figure S3. 8 Normalized SERS intensity (at the 1381 cm-1 peak) of an individual Au nanorattle 

as a function of polarization angle. The blue line is a fit to the cos2 function.  The error bars 

represent the standard deviation of five identical measurements performed at each polarization 

angle.  
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Figure S3. 9 Finite-difference time-domain (FDTD) simulations showing the electric field 

distribution around a AuNR@Ag nanocuboid under various incident polarization angles using 

880 nm excitation wavelength. The incident polarization angle is 0°, 15°, 30°, 45°, 60°, 75° and 

90° in (i)-(vii) respectively. 

 

 

 

Figure S3. 10 FDTD simulations showing the electric field distribution around an Au nanorattle 

under various incident polarization angles using 880 nm excitation wavelength. The incident 

polarization angle is 0°, 15°, 30°, 45°, 60°,75° and 90° in (i)-(vii) respectively. 
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The SERS enhancement factor (EF) for each Au nanostructure was calculated by using the 

equation149,55:  

EF =
𝐼𝑆𝐸𝑅𝑆

𝑁𝑆𝐸𝑅𝑆
⁄

𝐼𝑏𝑢𝑙𝑘
𝑁𝑏𝑢𝑙𝑘

⁄
  (1) 

where  𝐼𝑆𝐸𝑅𝑆 and 𝐼𝑏𝑢𝑙𝑘 are intensities of the same Raman band in the SERS and bulk spectra, 

𝑁𝑆𝐸𝑅𝑆  is the number of the 2-napthalnethiol molecules bound to the surface of the Au 

nanostructure and 𝑁𝑏𝑢𝑙𝑘 is the number of the 2-napthalnethiol molecules in the excitation volume. 

For the Au nanorattle, 𝐼𝑆𝐸𝑅𝑆 is ~1545 counts and 𝐼𝑏𝑢𝑙𝑘is ~125 counts. A Raman spectrum of 2-

napthalnethiol in the bulk was collected using a 20x microscopy objective with a numerical 

aperture (NA) of 0.4. The approximate laser spot size with the 20x objective was obtained using 

the following expression: 

𝜔0 = 4𝜆
𝜋NA⁄   (2) 

where 𝜔0  is the minimum waist diameter for a laser beam of a wavelength 𝜆 focused by an 

objective with a numerical aperture NA. So for the 20x objective, 

𝜔0 =
(4)(0.785)

𝜋(0.4)
= 2.5 µ𝑚.                                                                                                             

𝑧0 =
2𝜋𝜔0

2

𝜆
=

2𝜋(2.5)2

0.785
= 50 µ𝑚 

So, the focal volume (τ) = (
𝜋

2
)1.5𝜔0

2𝑧0 = (
𝜋

2
)1.5×2.52×50 = 614.75 µ𝑚2. Density of the 2-

napthalnethiol is 1.55
 𝑔

𝑐𝑚3⁄   and the molecular mass of 2-napthalnethiol is 160.24 (g/mol). 

Therefore,  

𝑁𝑏𝑢𝑙𝑘 =
(1.55𝑔/𝑐𝑚3)(614.75µ𝑚3)

160.24 (𝑔/𝑚𝑜𝑙)
= 5.95×10−12 mol 

The volume of an individual Au nanorattle with edge dimension of 89.3 x 60.6 x 60.6 nm and a 

AuNR core with length of 49.9 nm and width of 14.4 nm is estimated to be (89.3 −

13)(60.6 − 13)2 − [𝜋(7.2)2×35.5 +
4

3
×𝜋×(7.2)3] = 165533.3 𝑛𝑚3 

𝑁𝑆𝐸𝑅𝑆 =
(1.55𝑔/𝑐𝑚3)×165533.3𝑛𝑚3

160.24
= 1.60×10−18 mol                                                                     

EF =
𝐼𝑆𝐸𝑅𝑆

𝑁𝑆𝐸𝑅𝑆
⁄

𝐼𝑏𝑢𝑙𝑘
𝑁𝑏𝑢𝑙𝑘

⁄
=

1545
1.60×10−18⁄

125
5.95×10−12⁄

= 4.60×107 
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Appendix 4 

 

Figure S4. 1 (A) TEM image of 10 nm Au nanospheres. (B) Vis-NIR extinction spectrum of 10 

nm Au nanospheres.  (C) TEM image of 30 nm Au nanospheres employed as cores for the 

synthesis of Au@Ag nanocubes. (D) Vis-NIR extinction spectrum of 30 nm Au nanospheres 

before (black) and after (red) 2-NT coating. 
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Figure S4. 2 (A)-(F) SEM images of Au@Ag nanocubes and Au nanorattles obtained by adding 

0, 20, 40, 60, 80 and 100 µl of 0.5 mM HAuCl4 into 100 µl of 2-NT-Au@Ag nanocubes, 

respectively. 

 

Figure S4. 3 Raman spectrum collected from bulk 2-NT. 
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Figure S4. 4 FDTD simulations showing the electric field distribution of Au@Ag nanocube and 

Au nanorattles of different gaps for electric field polarized along [100] using 514 nm excitation 

wavelength. (A-G) correspond to electric field distribution of Au@Ag nanocubes and Au 

nanorattles with a gap of 2, 4, 6, 8, 10 nm and Au core only, respectively.  
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Figure S4. 5 FDTD simulations showing the electric field distribution of Au@Ag nanocube and 

Au nanorattles of different gaps for electric field polarized along [110] using 514 nm excitation 

wavelength. (A-G) correspond to electric field distribution of Au@Ag nanocubes and Au 

nanorattles with a gap of 2, 4, 6, 8, 10 nm and Au core only, respectively.  
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Figure S4. 6 FDTD simulations showing the electric field distribution of Au@Ag nanocube and 

Au nanorattles of different gaps for electric field polarized along [100] using 553 nm excitation 

wavelength. (A-G) correspond to electric field distribution of Au@Ag nanocubes and Au 

nanorattles with a gap of 2, 4, 6, 8, 10 nm and Au core only, respectively.  
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Figure S4. 7 FDTD simulations showing the electric field distribution of Au@Ag nanocube and 

Au nanorattles of different gaps for electric field polarized along [110] using 553 nm excitation 

wavelength. (A-G) correspond to electric field distribution of Au@Ag nanocubes and Au 

nanorattles with a gap of 2, 4, 6, 8, 10 nm and Au core only, respectively. 
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Figure S4. 8 (A) Normalized vis-NIR extinction spectrum obtained from filter paper substrate 

adsorbed with 20-AuNRT. 

 

Figure S4. 9 Raman spectra collected from bulk-pATP, ethanol and pATP in ethanol. 
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Appendix 5 

 

Figure S5. 1 (A) Representative TEM image of AuNRs. SEM images of (B) the pristine film and 

(C) folded film showing dramatic change in the distribution of nanostructures. 

B C 

A 
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Figure S5. 2 (A) SERS intensity map from folded film showing lenticular pattern. (B) SERS 

intensity map from pristine film showing significantly lower intensity compared to that from 

folded film.   
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Figure S5. 3 Scattering spectra selection for the stretched (red) and folded (green) regions of the 

polymer film. Approximately 17,000 and 80,000 point spectra were averaged to obtain the final 

composite spectra for the stretched and folded regions respectively. 

 

Figure S5. 4 Statistical analysis on the nanoparticle distribution on pristine film and folded film 

including both stretched and folded regions.    
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Figure S5. 5 Vector distribution reliability map, in which white color represents higher reliability. 

 

 

Figure S5. 6 SERS spectra collected from two Raman reporters, pATP and 2-NT, adsorbed on 

gold nanostructures respectively.   
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Figure S5. 7 Schematic illustration showing the procedure of replicating P2VP fold patterns 

using nanoimprinting technique. 
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Figure S5. 8 (A) A bright-field optical micrograph of folded plasmonic gel use as a model master 

pattern. The inset shows the vector distribution of the outlined region. (B) Bright-field optical 
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micrograph of the duplicated lenticular pattern using a nanoimprinting method.  The inset shows 

the similar vector distribution compared to the one from original image with a high correlation 

value of ~70%. (C) AFM images showing the replicated lenticular pattern adsorbed with a high 

density of gold nanorods (Height scale: 50 nm). (D) Magnified AFM image showing the uniform 

adsorption of gold nanorods across the entire surface. (E) SERS intensity map of pATP 

corresponding to Raman band at 1179 cm-1 showing uniform (featureless) distribution. SERS 

map intensity scale: 5×103 CPS.  (F) SERS intensity ratio map of 1179 cm-1/1381 cm-1 showing 

uniform (featureless) distribution, resulting from the uniformly adsorbed nanostructures as 

opposed to nondeterministic electromagnetic hotpots in the folded films. 

 

 

 

Figure S5. 9 SERS intensity map of 2-NT corresponding to Raman band at 1381 cm-1 showing 

uniform (featureless) distribution from the replicated pattern. SERS map intensity scale: 5×103 

CPS.   
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