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Tumors cannot survive, progress and metastasize without recruiting new blood vessels. Vascular 

properties, including perfusion and permeability, provide valuable information for characterizing 

cancers and assessing therapeutic outcomes. Dynamic contrast-enhanced (DCE) MRI is a non-

invasive imaging technique that affords quantitative parameters describing the underlying vascular 

structure of tissue. To date, the clinical application of DCE-MRI has been hampered by the lack 

of standardized and validated quantitative modeling approaches for data analysis. 

From a therapeutic perspective, radiation therapy is a central component of the standard treatment 

for patients with cancer. Besides killing cancer cells, radiation also induces parenchymal and 

stromal changes in normal tissue, limiting radiation dose and complicating treatment response 

evaluation. Further, emerging evidence suggest that the radiation-modulated tumor 

microenvironment may also contribute to the enhanced tumor regrowth and resistance to therapy. 

Given these clinical problems, the objectives of this dissertation were to: i) improve the DCE MRI-

based measurements of vascular properties; and ii) assess the radiation treatment effects on normal 
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tissue (parenchyma) and the interaction between radiation-modulated parenchyma and tumor 

growth. For the first goal, Bayesian probability theory-based model selection was employed to 

evaluate four commonly employed DCE-MRI tracer kinetic models against both in silico DCE-

MRI data and high-quality clinical data collected from patients with advanced-staged cervical 

cancer. Further, a constrained local arterial input function (cL-AIF) modeling approach was 

developed to improve the pharmacokinetic analysis of DCE-MRI data. For the second goal, a novel 

mouse model of radiation-mediated effects on normal brain was developed. The efficacy of anti-

vascular endothelial growth factor (VEGF) antibody treatment of delayed, radiation-induced 

necrosis (RN) was evaluated. Also, the effects of radiation-modulated brain parenchyma on 

glioblastoma cell growth were studied. 

It was found that 1) complex DCE-MRI signal models are more sensitive to noise than simpler 

models with respect to parameter estimation accuracy and precision. Caution is thus advised when 

considering application of complex DCE-MRI kinetic models. It follows that data-driven model 

selection is an important prerequisite to DCE-MRI data analysis; 2) the proposed cL-AIF method, 

which estimates an unique local-AIF amplitude and arrival time for each voxel within the tissue 

of interest, provides better measurements vascular properties than the conventional approach 

employing a single, remotely measured AIF; 3) anti-VEGF antibody decreased MR-derived RN 

lesion volumes, while large areas of focal calcification formed and the expression of VEGF 

remained high post-treatment. More effective therapeutic strategies for RN are still needed; 4) the 

radiation-modulated brain parenchyma promotes aggressive, infiltrative glioma growth. The 

histologic features of such tumors are consistent with those commonly observed in recurrent high-

grade tumors in patients. These findings afford new insights into the highly aggressive tumor 

regrowth patterns observed following radiotherapy.
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Chapter 1 Introduction 

1.1 Motivation 

Approximately 50% of all cancer patients receive radiotherapy during the course of their illness 

(1). It has been widely recognized that tumor response to radiation is determined not only by a 

tumor cell’s phenotype, but also by its vascular properties (2). Thus, the temporal and spatial 

variations in vascular structure and pathology can provide valuable information on tumor 

characteristics and potential responses to therapeutics, leading to an increasing use of medical 

imaging in evaluating tumor vascularity. Among potential imaging methods, dynamic-contrast 

enhanced (DCE) magnetic resonance imaging (MRI), which monitors the pharmacokinetics of 

administrated paramagnetic contrast agents, has the unique advantages of wide availability without 

using ionizing radiation (3). Nevertheless, the extracted vascular parameters from DCE-MRI data 

depend heavily on the pharmacokinetic modeling approach, which is often complicated by the high 

heterogeneity of cancer tissues.  

As a cancer treatment, radiotherapy has been classically viewed as exerting its therapeutic effect 

by killing tumor cells, though emerging evidence indicates that these effects extend beyond cancer 

cell death. Radiation induces vascular, stromal and immunological changes in the tumor 

microenvironment (4), leading to various treatment effects ranging from minimal change with no 

observable clinical symptoms to delayed devastating radiation necrosis. The radiotherapy-

mediated effects on normal tissue limit the dose of radiation that can be used in cancer treatment, 

promotes, and complicates the diagnosis of, subsequent loco-regional tumor recurrence (5). 

The objectives of this dissertation are thus twofold: 1) to improve DCE-MRI-based measurements 

of tumor vascular properties; 2) to assess the radiation-induced modulations on normal tissue, and 
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determine how those changes affect tumor recurrence, and evaluate possible therapeutic agents for 

the treatment of radiation effects. 

1.2 State of Research 

1.2.1 Magnetic Resonance Imaging Basics 

Nuclear Spin 

In classic physics, a rotating object possesses a property known as angular momentum. In quantum 

mechanics, particles (e.g., electrons, protons and whole nuclei) possess the inherent property of 

spin or spin angular momentum. The spin angular momentum is an intrinsic quantized property of 

particles, and can be described by a magnitude L and a direction m: 

𝐿 =  
ℎ

2𝜋
√𝐼(𝐼 + 1) 

𝑚 = −𝐼,−𝐼 + 1,−𝐼 + 2,… + 𝐼 

where ℎ is the Planck constant and 𝐼 is the nuclear spin quantum number. The projection of the 

spin angular momentum on the z-axis (arbitrarily chosen) is then given by 𝑚
ℎ

2𝜋
. The spin quantum 

number takes values of the form N/2, where N can be any non-negative integer. The spin quantum 

number of 1H, the most common signal source in MRI experiment, is 1/2. This means the proton 

has two possible spin directions/states, m = -1/2 or +1/2. In the absence of an applied magnetic 

field, the two proton spin states are degenerate (i.e., they have the same energy). The application 

of an external magnetic field, 𝐵⃗ 0 (assuming to be along the z-axis), splits the degenerate energy 

levels, and the resulting energy gap is given by: 

∆𝐸 =  𝛾ℎ|𝐵⃗ 0|  
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where 𝛾 is the gyromagnetic ratio (𝛾 = 42.58 MHz T-1 for 1H). According to the Boltzmann 

statistical distribution, the population ratio of the two states (parallel vs. anti-parallel to the field) 

is determined by: 

𝑁𝑎𝑛𝑡𝑖−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
= 𝑒−

∆𝐸
𝑘𝑇  

in which 𝑁𝑎𝑛𝑡𝑖−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 and 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 represent the population of nuclei in the corresponding state, 

k is the Boltzmann constant, and T is the absolute temperature. More spins are in the lower energy 

state, which is parallel to the field. As a result, the population difference between 𝑁𝑎𝑛𝑡𝑖−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 

and 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 generates a net magnetization parallel to the applied field, which is the source of MR 

signal. Note that this population difference is extremely small (on the order of ppm) given the 

biologically relevant temperature and currently available superconducting magnetic field strength 

(i.e.,|𝐵⃗ 0|).  

Free Precession 

Similar to the manner in which a spinning top precesses around the gravitational field, nuclear spin 

precesses about the external magnetic field at a frequency of |𝐵⃗ 0|, also known as Larmor 

frequency. As discussed in the previous section, the energy splitting results in a net equilibrium 

magnetization M0 along the z direction (assuming 𝐵⃗ 0 is along the z-axis). When excited with a 90⁰, 

resonant, radiofrequency (RF) pulse that is perpendicular to 𝐵⃗ 0, this net magnetization will be 

flipped into the transverse plane. In terms of energy, nuclear spins in lower energy state absorb the 

RF energy (when on resonance, the RF energy, ℎ𝑣 equals the energy gap between the two states) 

and transits to the higher energy state, thus changing the overall net magnetization (equivalent to 

rotate/flip the net magnetization in the vector description). Immediately after this pulse, all the 
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spins are in phase and the net magnetization, M0 (Figure 1.1), continues to precess around the 𝐵⃗ 0 

field in the transverse plane. When a detection/receiver coil is placed perpendicular to the z-axis, 

the precessing magnetization will induce an oscillating voltage in the coil. This time-domain 

electric signal (oscillating voltage) is then digitized and Fourier transformed to obtain the MR 

signal. This process is also known as free induction decay (FID). Figure 1.1 illustrates FID and the 

generation of MR signal. 

 

Figure 1.1: Illustration of free induction decay and the generation of MR signal.  

Transverse Relaxation 

Initially in phase (statistical phase coherence), the transverse components of magnetization, 𝑀𝑥𝑦, 

begin to dephase as they precess about 𝐵⃗ 0 following the 90⁰ excitation pulse (Figure 1.1). This 

process is known as transverse relaxation. One of the most common contributions to this dephasing 

process is the local static field inhomogeneity, in addition to the main magnetic field 𝐵⃗ 0 , 

experienced by a spin. Another major contribution to transverse relaxation occurs in a special form 
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of spin-spin coupling (flip-flop), in which a pair of spins simultaneously exchange their angular 

momentum (also known as spin diffusion). This results in no net longitudinal magnetization 

change but loss of phase coherence. The signal decay due to dephasing is conventionally described 

by an exponential curve, whose decay rate is characterized by the time constant T2, which is unique 

to every tissue (Table 1.1) and is determined primarily by its chemical/molecular environment, 

and is only weakly dependent on field strength. In practice, many experimental imperfections, such 

as imperfect shimming and field distortion resulting from air/tissue interfaces, create 

inhomogeneous magnetic fields that enhance the dephasing process. The sum total of all of these 

random and fixed effects is called T2
* relaxation. 

Table 1.1: Relaxation time constants for various tissues at 1.5 T 

 T1 (ms) T2 (ms) 

Water 3000 3000 

Gray matter 810 100 

White matter 680 90 

Liver 420 45 

Fat 240 85 

 

Longitudinal Relaxation 

Longitudinal relaxation describes the process that a disturbed magnetization state returns/recovers 

back to the thermal equilibrium state via energy exchange (thermal mixing) between the spins and 
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the lattice. Taking the previous example, once the RF pulse is turned off, in addition to the free 

precession around B0 and dephasing due to spin-spin relaxation, the energy absorbed by the excited 

spins is released back into the surrounding lattice (spin-lattice relaxation). This results in a 

recovery along the longitudinal direction to the initial thermal equilibrium condition (Figure 1.2). 

In many situations, this process can be described by a single exponential. The recovery rate is 

characterized by the time constant T1, which is unique to every tissue (Table 1.1) and varies with 

field strength. This time constant may also be affected by exogenous contrast agent tracers (vide 

infra). 

 

Figure 1.2: Illustration of longitudinal relaxation post-RF disturbance of the thermal equilibrium 

condition. Mz(t = 0) indicates the initial z-magnetization after the RF pulse, which equals zero for 

the case of 90⁰ pulse. 

Image Contrast 

Endogenous Contrast: In conventional anatomic MRI, image contrast across tissues often arises 

directly from the tissue-specific relaxation time constants. For example, when a standard spin echo 

pulse sequence (Figure 1.3) is employed, the detected MR signal intensity is given by: 

𝑆 =  𝑆0 ∙ exp ( −
TE

𝑇2
) ∙ [1 − exp ( −

TR

𝑇1
)] 

where 𝑆0 is the proton density, TE is the echo time, and TR is the repetition time.  
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Figure 1.3: Spin echo sequence showing the timing of each RF and gradient pulse. RFt and RFs 

represent the transmitting RF pulses and received RF signal, respectively. Gss, Gand GR 

represent the three gradients employed to encode spatial information. 

This equation demonstrates that the detected MR signal for a specific type of tissue depends on its 

proton density and relaxation time constants (e.g., 𝑇1 and 𝑇2 for the case of spin echo sequence). 

Herein, 𝑇1-weighted, 𝑇2-weighted, and proton density (PD)-weighted (PD-weighted) images can 

be generated with an appropriate choice of TR and TE values. Short TR and short TE yield 𝑇1-

weighted images; long TR and long TE yield 𝑇2-weighted images; long TR and short TE yield 

PD-weighted images. 

Exogenous Contrast Agent: To further increase the imaging contrast between a tissue of interest 

and its surrounding tissue, exogenous MR contrast agents can be used. These contrast agents are 

often directly MR-invisible, but manifest their presence indirectly by enhancing the longitudinal 

relaxation (i.e., shorten the T1) of nearby protons, thus increasing MR signal intensity in T1-

weighted images. Most MR contrast agents are gadolinium (Gd)-based complexes (Figure 1.4). 

Gd is strongly paramagnetic, since it possesses seven unpaired electrons in its 4f shell. It typically 
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exhibits nine coordination sites for bonding. As shown in Figure 1.4, a group of ligands occupies 

eight of these sites, and the ninth is occupied by water molecule. The water-molecule relaxation 

enhancement caused by Gd arises from the fluctuating dipolar interactions near the Larmor 

frequency, due to the thermal-induced tumbling of contrast molecules and their surrounding water 

molecules, between water protons and Gd electrons. This enhancement (i.e., the longitudinal 

relaxation time constant change, ∆𝑇1) depends on the contrast agent concentration, [CA], and 

relaxivity 𝑟1: 

1

∆𝑇1
= ∆𝑅1 = 𝑟1 ∙ [𝐶𝐴] 

It is worthwhile to note that Gd also shortens water proton T2. However, for a typical dose used in 

the routine MR imaging experiments (~ 0.1 mmol/kg) and for a T1-weighted pulse sequence, the 

MR signal is often overwhelmed by the dominant T1-shortening. 
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Figure 1.4: Structures, chemical and commercial names of four commonly used Gd-based MR 

contrast agents. 

1.2.2 Tumor Vasculature 

It is widely known that new blood vessels are normally formed by vasculogenesis, also referred as 

neovascularization, and angiogenesis, regulated by a balance between pro- and anti-angiogenic 

molecules. Vasculogenesis is the process of differentiation of precursor cells into endothelial cells 

and the de novo formation of a primitive vascular network, whereas angiogenesis is defined as the 

growth of new capillaries from pre-existing blood vessels (6). Tumor vessels mostly develop by 

sprouting from pre-existing vessels (i.e., angiogenesis). The circulating endothelial cells and 

precursors can also contribute to tumor angiogenesis (7). Various pro- and anti-angiogenesis 

molecules are involved in these mechanisms of vascular growth, including members of the 

vascular endothelial growth factor (VEGF) family and the VEGF-receptor family. The expression 

of these regulators are not as well coordinated, temporally and/or spatially, in tumors as in 

physiological angiogenesis, which results in structurally and functionally abnormal tumor 

vasculature (see below).  

Chaotic Architecture and Blood Flow  

When compared to normal vasculatures, tumor blood vessels are highly disorganized, tortuous, 

and have a haphazard interconnection. This is likely due to the spatial and temporal imbalance 

between pro- and anti-angiogenesis regulators as discussed in the previous section. As a result of 

the chaotic network structure, tumor blood flow is often highly inhomogeneous, and thus leads to 

local hypoxic and acidic (caused by acidic metabolites generated from anaerobic glycolysis in 

hypoxia) tumor regions. This explains the low therapeutic effectiveness due to the poor delivery 

of anti-cancer drugs, and motivates the large body of research focusing on “normalizing” the 
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abnormal structure and function of tumor blood vessels to make them more efficient for drug 

delivery (8).   

High Vascular Permeability 

Tumor blood vessels lack functional perivascular cells, which are necessary to protect vessels 

against environmental changes and provide mechanistic support (e.g., the pericytes within the 

blood brain barrier). Further, the tumor blood vessel wall is formed by an inhomogeneous layer of 

endothelial cells and has fenestrations and lacks a basement membrane. Consequently, these 

microstructural defects often lead to leaky tumor vasculature. However, it is worthwhile to note 

the high heterogeneity of tumor vessel leakiness over space and time, and some tumors may even 

have very low vascular permeability due to the overexpression anti-angiogenesis or 

underexpression of pro-angiogenesis regulators. Caution must be taken when designing and 

administrating anti-cancer therapeutic drugs.  

1.2.3 MRI in Characterizing Tumor Vasculature 

The development of novel antivascular or antiangiogenic drugs has led to an increasing use of 

medical imaging in evaluating tumor vasculature. Several molecular and functional imaging 

techniques based on MRI (9), computed tomography (CT) (10) or positron emission tomography 

(PET) (11) have been developed to characterize the pathophysiologic changes of tumor vascular 

structure and functionality (12). Among these techniques, MRI-based methods have unique 

advantages including MRI’s wide availability and lack of ionizing radiation. This section briefly 

reviews the commonly employed MRI methods for probing tumor vasculature. 

Contrast-Enhanced T1-weighted MRI 
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As discussed in the previous section, Gd-based contrast agents shorten the T1 of water protons that 

are accessible to the contrast agent. After intravenous injection, water-soluble Gd complexes 

initially distribute into the intravascular space and then rapidly diffuse across the capillary 

membranes into the extracellular extravascular space (i.e., interstitial space). Herein, highly 

perfused tissues appear bright on post-contrast T1-weighted images (i.e., short TR and short TE). 

Nevertheless, in the case of neuroimaging, there is no interstitial distribution of contrast agents 

due to the existence of blood brain barrier (BBB), which, when intact, is impermeable to the 

hydrophilic Gd chelates. As a result, only major blood vessels appear hyperintense on post-contrast 

T1-weighted images for brains. This is demonstrated in the left and middle panels of Figure 1.5.  

Interestingly, for many brain pathologies (e.g., tumors and radiation-induced necrosis), the BBB 

is impaired and the vasculatures are leaky. Consequently, the injected contrast agent will leak out 

of the vasculature when it gets to the pathological tissue, resulting in a hyperintense lesion region 

(yellow arrow-head on Figure 1.5) on contrast-enhanced T1-weighted images. Herein, contrast-

enhanced T1-weighted MRI is a commonly used technique to detect impaired vasculature, which 

is typical for most cancers and adjuvant treatment effects. In fact, a large number of studies have 

demonstrated the high sensitivity of contrast-enhanced T1-weighted images to the impaired 

vasculatures in various lesions (13,14). 
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Figure 1.5: Example transaxial, pre- and post-contrast, T1-weighted images collected for a healthy 

subject (left and middle panels), and for a patient diagnosed with glioblastoma (yellow arraow in 

the right panel). 

Dynamic Contrast-Enhanced (T1-weighted) MRI 

Even though contrast-enhanced T1-weighted imaging is routinely used in the clinic, it only detects 

a steady-state MR signal enhancement for the tissue of interest. In other words, it only qualitatively 

describes the tissue vascularity (i.e., perfusion) and vascular permeability (BBB break down in the 

case of brain). Further, in contrast to the high sensitivity, the specificity is extremely poor. To 

address these problems, a highly quantitative method for characterizing tissue perfusion and 

vascular permeability is warranted. 

Dynamic contrast-enhanced (DCE) MRI is a noninvasive quantitative method of investigating 

microvascular structure and function by tracking the tracer kinetics, also referred as 

pharmacokinetics, of a bolus of injected paramagnetic contrast agent as it passes through the lesion 

capillary bed. This technique is sensitive to alterations in vascular permeability, fractional 

interstitial and vascular volumes, and blood flow.  

In DCE measurement, a series of T1-weighted images are acquired in rapid succession (on the 

order of seconds per image) following the intravenous administration of a Gd contrast agent bolus. 

Figure 1.6 illustrates examples of dynamic contrast-enhanced T1-weighted images and 

corresponding time courses acquired for a patient with malignant glioblastoma. Note the high 

enhancement of the tumor tissue due to the hyperpermeable BBB, compared to that of the 

contralateral healthy tissue.  

Both semi-quantitative and quantitative analyses of the time-course DCE datasets have been used 

to derive information about tumor microcirculation and microvasculature. Semi-quantitative 
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analyses, which derive measures directly from MR signal intensities, depend on MR hardware and 

the pulse sequences used to acquire the data, making it challenging to compare results between 

studies. In addition, the derived parameters, including signal-intensity plateau, contrast- 

enhancement ratio, and area under the curve, have no clear physiological meaning. By contrast, 

quantitative analysis employing tracer kinetic models yields physiological parameters related to 

tissue perfusion and capillary permeability.  

To quantitatively model time-resolved DCE dataset, a T1 map must be constructed before contrast-

agent administration, allowing conversion of DCE-MRI signal intensity into contrast-agent 

concentration. Tracer kinetic modeling of vascular leakage and conservation of mass allow the 

calculated tissue contrast-agent concentration, 𝐶𝑡 , obtained following the administration of a 

contrast agent bolus, to be written as: 

 𝐶𝑡(𝑡) = 𝐶𝑝(𝑡) ⊗ 𝐼(𝑡), (1) 

where 𝐶𝑝(𝑡) is the concentration of the contrast agent in the plasma of the capillary inlet of any 

region-of-interest (ROI), commonly approximated by a measured upstream arterial input function 

(AIF), and 𝐼(𝑡) is the tissue impulse-response function to the contrast agent input, which depends 

on the specific DCE-MRI tracer kinetic model. In this expression, “⊗ " denotes the convolution 

operation. 
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Figure 1.6: Dynamic contrast-enhanced MR images for brain tumor.  The top row shows an 

example transaxial slice acquired at 10 sec, 50 sec, and 100 sec following the contrast agent 

administration. The bottom row demonstrates the signal intensity vs. time curves for tumor tissue 

(yellow) and healthy tissue (blue).  

Since the proposal of the concept of dynamic MRI, many tracer kinetic models have been applied 

to describe the behavior of administered contrast agent in DCE-MRI experiments. The first 

generation of DCE-MRI models, including the widely used Tofts model (TM), was designed for 

tissues with negligible blood volume, and the models were used to characterize the permeability 

of the tissue vasculature. To account for intravascular signal contributions, the Extended Tofts 

Model (ETM) was introduced for highly-perfused tissues, including tumors. Improvements in 

scanner hardware and software, which have led to higher-quality DCE-MRI data, have motivated 

the development of models with greater complexity that more fully describe tissue perfusion and 

capillary permeability. Such models are physiologically more accurate (fewer 

assumptions/constraints regarding tissue structure) compared to reduced, simpler models that 
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make physiological assumptions or introduce constraints that may not be appropriate for the tissue 

of interest and will, thus, generate bias in kinetic parameter estimates. However, in practice, it 

remains unknown whether these more complex models are supported by a given clinical DCE-

MRI dataset with specific data quality (e.g., time resolution, acquisition time window, and 

contrast-to-noise ratio (CNR)). 

In addition to the determination of an optimal tracer kinetic model, quantitative analysis of DCE-

MRI is challenging because of difficulties in obtaining an accurate and appropriate AIF for tracer 

kinetic modeling. Furthermore, given CA bolus delay and dispersion, and the structurally and 

functionally abnormal vasculature characteristic of cancer, a single remotely measured AIF is 

unlikely to approximate well the contrast agent input for every voxel within the tumor tissue. 

Further work on appropriate AIFs for voxel-wise tracer kinetic modeling of DCE-MRI data is still 

necessary. 

Dynamic Susceptibility Contrast MRI 

Dynamic Susceptibility Contrast (DSC) MRI relies on imaging the passage of a contrast agent 

bolus to measure perfusion. Similar to DCE-MRI, a bolus of gadolinium-based or 

superparamagnetic iron oxide particle contrast agent is injected intravenously in dynamic 

susceptibility contrast (DSC) MRI experiment, and rapid repeated imaging of the tissue of interest 

(TOI) is performed during the first pass of the contrast agent bolus. In contrast to the signal 

enhancement caused by the 𝑇1 -shortening effect in DCE-MRI, DSC-MRI relies on the 

susceptibility induced signal loss on heavily 𝑇2- or 𝑇2
∗-weighted images (i.e., long TE) caused 

when the contrast agent bolus passes through the capillary bed of the tissue of interest.  
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One major caveat of DSC-MRI is that it is often difficult to distinguish changes in blood volume 

from changes in vascular permeability. In other words, for tissues with leaky vasculature, the 

extravasated contrast agent molecules will enhance the acquired MR signal by reducing 𝑇1 of the 

extravascular water, which counteracts the susceptibility induced signal loss upon which the DSC 

experiment mainly relies. As a result, DSC-MRI is often used for perfusion measurements in brain 

tissue having an intact blood brain barrier (i.e., the blood vessels are not leaky when the BBB is 

intact). By performing pharmacokinetic analysis of the generated signal intensity vs. time curve, 

𝑆(𝑡), several vascular parameters, including cerebral blood volume (CBV), cerebral blood flow 

(CBF), and mean transit time (MTT), can be calculated (15): 

𝐶𝑇(𝑡) = 𝐶𝐵𝐹 ∙ ∫ 𝑒−
𝑡−𝜏
𝑀𝑇𝑇𝐶𝑎(𝑡)

𝑡

0

  

in which 𝐶𝑎(𝑡) is the arterial input function and 𝐶𝑇(𝑡) can be calculated via equation: 

𝑆(𝑡) = 𝑆0 ∙ exp [−𝑘 ∙ 𝐶𝑇(𝑡)] 

Arterial Spin Labeling MRI 

While DCE-MRI and DSC-MRI track the intravenously injected exogenous contrast agent, arterial 

spin labeling (ASL) MRI utilizes magnetically labelled endogenous blood water as a tracer (16), 

and is, thus, completely non-invasive. In ASL MRI, two images are collected: a blood-flow 

sensitized, or “labelled”, image and a “control” image, in which the static tissue signals are 

identical, but the magnetization of the inflowing blood differs. The signal difference between these 

two images, ∆𝑀, directly reflects the local perfusion, because MR signal from the static tissue is 

completely eliminated. Saturation with a 90⁰ RF pulse or inversion with a 180⁰ RF pulse are 

both commonly employed as labeling methods. As ∆𝑀 is very small (< 5% of the total 
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signal), multiple repetitions are often necessary to ensure enough signal to noise ratio (SNR). 

In addition to the blood flow, the computed signal difference also depends on 𝑇1 of the blood 

and the time interval between labelling and acquisition of the actual image.   

1.2.4 Radiation Treatment Effects 

Despite the new advances in oncology, including recent encouraging responses in a number of 

neoplasms to targeted and/or immune-modulated therapies, surgical resection combined with 

chemo-radiation remains the cornerstone of standard treatment for brain tumors. While 

radiotherapy has been classically viewed as exerting its therapeutic effect by killing tumor cells, 

emerging evidence indicates that these effects extend beyond cancer cell death. Despite the use of 

sophisticated, fractionated, high-dose radiation or radiosurgery methods designed to spare normal 

tissue (e.g., 3D conformal radiotherapy, intensity modulated radiation therapy and stereotactic 

body radiation therapy), various treatment side effects/complications, ranging from minimal 

change with no observable clinical symptoms, to delayed devastating effects,  including radiation-

induced necrosis and second malignancies (17), may occur depending on the type of the cancer 

and the tissue/organ affected. The following are brief discussions on 1) the radiation-modulated 

brain tumor microenvironment; and 2) radiation-induced necrosis in the brain. 

Radiation-modulated Tumor Microenvironment 

It is increasingly recognized that radiation affects not only tumor cells, but also the tumor 

microenvironment (TME), especially the tumor-associated microglia and macrophages (18), that 

may contribute significantly to the resistance and recurrence of gliomas (5). Irradiation induces 

vascular, stromal, and immunological changes in the TME that may enhance the migration and 

invasiveness of tumor cells (19). This section brief summaries the effects of radiation on 

vasculature, stroma, and the immune system. 
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Vasculature: Radiation induces direct endothelial cell dysfunction, which is characterized by 

increased permeability, detachment of pericytes from the underlying basement membrane, and 

decease of vascular density. The impaired vasculature and deceased vascular density indicate that 

some parenchymal tissue is not well perfused, which leads to long-term post-irradiation hypoxia, 

inflammation and fibrosis. These radiation-induced vascular changes are dependent on total dose, 

fraction size, and the location of the tumor. In extreme cases, the late time-to-onset radiation 

necrosis, as described in the following section, eventually develops as a result of the radiation-

induced vascular damage.  

Immune System: Following radiotherapy, both direct (i.e., the damage is a result of the ionizing 

radiation itself) and indirect (i.e., damage is a result of the radiation-induced cellular changes, 

including reactive oxygen species) radiation effects activate inflammatory cytokine signaling and 

the recruitment of immune cells. An increase in the number of locally suppressive cells after 

radiotherapy (e.g., tumor-associated macrophages, myeloid-derived suppressor cells, and 

regulatory T cells) is counterbalanced by the recruitment of circulating immune cells and increased 

antigen exposure. These changes affect the immune compartment of the TME in a complex 

manner, and may potentially prime the TME for an adaptive immune response, and contribute to 

radio-resistance and recurrence of tumor. 

Stroma: Cancer-associated fibroblasts (CAFs) constitute the major cell type within the stroma in 

many cancers. In contrast to myofibroblasts that result from normal inflammation or wound 

healing processes, CAFs can be resistant to apoptosis and irreversibly activated (20). Hellevik, et 

al. (21) proposed that radiation induces increased integrin expression, and the formation of 

integrin-mediated attachments facilitates CAF survival following radiation therapy. Further, 

multiple preclinical studies have implicated 1 integrin in tumor survival after radiation (22,23). 
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Therefore, malignancies with inherent radio-resistance may be due, in part, to the integrin-

mediated interactions between tumor cells and the stromal cells. 

Radiation-Induced Necrosis 

A series of clinical syndromes/complications may occur following radiotherapy to the central 

nervous system (CNS). Based on the chronologic occurrence order, these complications are 

classified into three groups: 1) acute encephalopathy, due to disruption of the blood brain barrier; 

2) early delayed complication, characterized by white matter injury; 3) radiation-induced necrosis 

(RN) that occur from months to decades from radiation treatment (24). Early effects are transient, 

and most of them resolve after a few weeks, while RN leads to irreversible, progressive damage 

to blood vessels with subsequent necrosis and white matter demyelination. It is worthwhile to note 

that the term “necrosis” is used loosely to refer to any vascular and parenchymal abnormalities 

that represents treatment effects rather than recurrent tumor. In the other words, pathology of RN 

is not limited to necrosis, but includes a spectrum of injury patterns. In the following, the 

pathophysiology and management of RN are reviewed.  

Pathophysiology: The pathophysiology of RN remains incompletely understood. The current 

consensus views RN as a continuous, complex process from endothelial-cell dysfunction to tissue 

hypoxia and necrosis. Two major hypotheses have been proposed to explain the mechanism of RN 

following radiotherapy to the CNS. The first one postulates that RN arises from direct injury the 

glial cells of the brain parenchyma. This injury leads to secondary damage to the blood vessels, 

resulting in typical RN histopathological characteristics, including telangiectasia (small dilated 

blood vessels) and fibrinoid necrosis, a form of necrosis in which there is accumulation of 

amorphous, basic, proteinaceous material in tissue matrix. Nevertheless, this hypothesis is not 

supported by the observation that low-dose radiation, which can decrease the number of glial cells, 
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never induces RN in the brain (25). Consequently, the other hypothesis re direct injury to the blood 

vessels (i.e., the vascular hypothesis) has recently become increasingly widely supported. 

In the vascular hypothesis (26), as shown in Figure 1.7, the first step in the development of RN 

following radiotherapy is direct blood vessel damage, which leads to hypoxia and ischemia in 

tissue within the irradiated field. As a result of the local hypoxia, hypoxia inducible factor-1 alpha 

(HIF-1) is upregulated. Since HIF-1is a widely known transactivator of vascular endothelial 

growth factor (VEGF) and the C-X-C motif chemokine 12 (CXCL12)/C-X-C chemokine receptor 

type 4 (CXCR4) signaling pathway, the expression of both VEGF and CXCR12 are augmented. 

Upregulated VEGF generates immature (leaky and fragile) neovascularization and results in 

subsequent perilesional edema and hemorrhage. On the other hand, CXCR12 expression attracts 

the CXCR4-expressing microglia and lymphocytes to the irradiated region, and produces a series 

of pro-inflammatory cytokines, including interleukin (IL)-1, IL-6, and tumor necrosis factor 

(TNF)-The resulting chronic inflammation within the irradiation field further contributes to the 

perilesional edema and, thus, aggregates radiation necrosis.  
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Figure 1.7: The vascular damage hypothesis of radiation necrosis development. 

Management of RN: Surgical resection, MRI-guided laser interstitial thermal therapy, and medical 

treatments have been used to manage/mitigate RN following radiotherapy to the CNS. Currently, 

there is no well accepted standard of care for RN. 

Surgical resection of necrotic tissue has been a gold-standard treatment of symptomatic RN. It 

reduces mass effect and edema, and lowers intracranial pressure, resulting in lasting clinical 

improvement in the majority of patients (27). Nevertheless, it is often not possible due to the 

location of the necrosis, as radiotherapy is often applied to surgically inaccessible lesions. Surgical 
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interventions in these regions may affect patients’ neurological condition, and is reserved for use 

only if the lesion is refractory. 

Laser interstitial thermal therapy (LITT) is a minimally invasive technique for treating 

“inoperable” primary and secondary brain tumors. It delivers focal laser energy selectively to the 

target tissue and exhibits a sharp ablation boundary zone. Recently, Rahmathulla et al. (28) and 

Smith et al. (29) reported the successfully use of LITT for the treatment of focal RN, and suggest 

that LITT may be an effective treatment modality for patients with medically refractory RN. 

However, these are both retrospective reports and a well-designed, randomized, double-blind study 

is necessary for the evaluation of the treatment efficacy. 

Traditionally, RN has been treated with corticosteroids (30) to control edema and lessen 

inflammatory responses. However, the long-term use of corticosteroids is associated with chronic 

side effects, including hyperglycemia and immunosuppression. Anticoagulants agents (e.g., 

heparin and warfarin) (31) and hyperbaric oxygen therapy (32) have also been used in an attempt 

to heal microvasculature impairments and improve regional cerebral blood supply, but results have 

been inconsistent and disappointing (33). Recently, bevacizumab (Avastin®, Genentech, San 

Francisco, CA), an anti-vascular endothelial growth factor (VEGF) antibody hypothesized to 

restore blood brain barrier (BBB) function and, thereby, to repair vascular leakage, has been 

reported to substantially decrease MR-derived RN lesion volume in the brain (33–35). 

Nevertheless, in the clinic it is generally not possible to correlate MR imaging result with gold-

standard histology, and the possible complications of recurrent tumor. Therefore, further studies 

are still necessary to evaluate the treatment efficacy with gold-standard histology in animal 

models. 
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1.2.5 MRI in Characterizing Radiation Treatment Effects 

Imaging radiation treatment effects poses a diagnostic challenge because of the possibility of 

disease/tumor progression post-therapy. Because of the equivocal conventional MR findings 

between recurrent tumor and radiation treatment effects, a spectrum of advanced techniques, 

including the MR methods for probing microvasculature introduced in the previous section, have 

been investigated. The following is an introduction to two other advanced MR techniques that are 

used in the diagnosis and characterization of radiation treatment effects. As MRI is not sensitive 

enough to detect the RT-induced cellular and molecular changes discussed previously in section 

1.2.4, especially for those at the early stages, the following discussion will be limited to late time-

to-onset radiation-induced necrosis. 

Diffusion MRI 

In biological tissue, structural barriers such as cell membranes and myelin can restrict the mobility 

of water molecules or favor the movement of water molecules in a specific direction. The 

magnitude and direction of water movement in tissue are quantified in diffusion MRI by 

calculating the apparent diffusion coefficient (ADC) for magnitude and the diffusion tensor for 

direction. Tumors and recurrent tumors are often associated with high cell-density, which slows 

the movement of interstitial water molecules and leads to reduced diffusivities, while radiation 

necrosis often presents enhanced water molecule diffusivity, due to cell necrosis and tissue loss. 

Several small cohort studies showed the potential of ADC measurement for differentiating 

between tumor and necrosis (36). However, the presence in both lesions of edema, which has a 

high ADC, complicates the use of diffusion measurement (37). Further work is still necessary to 

elucidate the sensitivity and specificity of diffusion MRI in charactering radiation necrosis. 

MR Spectroscopy 
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MR-based spectroscopic methods provide measurements on a biochemical level. Specific 

molecular changes that occur in radiation necrosis, including a decrease in N-acetylaspartate 

(NAA) and creatine (Cr) in tissue (38), and an increase in lipid content (at ~1.3 ppm), have been 

reported. In contrast, tumor tissues present high concentrations of choline (Cho). Herein, the ratios 

of Cho/Cr and Cho/NAA have been employed as biomarkers for the characterization of radiation 

necrosis and for the differentiation between from recurrent tumor (39). Nevertheless, these ratios 

depend on radiation dose, disease stage, and may also be complicated in the cases of mixed lesions. 

Currently, there is no consensus in the clinic regarding ratio calculations and the accuracy of MR 

spectroscopy in diagnosing and characterizing radiation necrosis following therapy.  

1.3 Dissertation Overview 

In this dissertation, Chapter 2 - 3 focus on improving tumor vascular property measurements by 

dynamic contrast-enhanced MRI. Clinical DCE-MRI data collected from patients with locally 

advanced-staged cervical cancer, pre- and post-radiotherapy, are analyzed. 

Chapter 2 deals with the important question of which tracer kinetic model (i.e., the tissue response 

function) is optimal for the quantitative analysis of any given DCE-MRI data. A Bayesian 

probability theory-based model selection approach is applied to determine the most probable 

model from a pool of competing models. 

Chapter 3 demonstrates the feasibility of using a voxel-specific, inferred constrained local-AIF 

(cL-AIF), based on fixed parameterization of the AIF measured from a large, feeding (“remote") 

artery with inclusion of two additional free parameters, bolus time-delay, ∆𝑡 , and amplitude-

scaling, 𝑠, to better model the DCE-MRI data on a voxel-by-voxel basis.  
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Following the discussion on quantifying vascular properties in Chapters 2 - 3, Chapters 4 - 5 focus 

on radiation treatment effects on normal brain tissue. 

Chapter 4 evaluates the use of an anti-VEGF antibody in the treatment of developed, frank, 

radiation-induced necrosis in a mouse model. Both MRI and gold standard histology were used to 

assess the treatment response. 

Chapter 5 assesses the effects of radiation-modulated normal brain parenchyma on the growth of 

naïve, non-irradiated, tumor cells in a novel mouse model simulating recurrent glioblastoma. 

Finally, Chapter 6 closes out the dissertation by summarizing the specific accomplishments of 

these studies, and also proposes several interesting follow-up studies that are beyond the scope of 

the present work. 

In Appendix A, an application of DCE-MRI in quantifying the temporary disruption of peritumoral 

blood brain barrier post-laser interstitial thermal therapy for patients with glioblastoma is 

presented. This work was performed in collaboration with Drs. Eric C Leuthardt, David D Tran, 

and Joshua S Shimony at Washington University School of Medicine. 

Appendix B describes a project, on a different topic, designed to analyze the off-resonance effects 

on the longitudinal relaxation time measurements in grossly inhomogeneous fields (e.g., oil-well 

logging). This was an internship project supervised by Dr. Martin D. Hürlimann at Schlumberger-

Doll Research, Cambridge, MA. 
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Chapter 2 Tracer Kinetic Model Selection in 

Dynamic-Contrast Enhanced MRI1 

2.1 Introduction 

Dynamic Contrast Enhanced (DCE) MRI is being used increasingly in the assessment of cancer, 

both pre- and post-therapy (1–9). Both semi-quantitative (1–4) and quantitative analyses (4–9) of 

time-resolved DCE-MRI data are used to derive information about tumor microcirculation and 

microvasculature. Semi-quantitative analyses, which derive measures directly from MR signal 

intensities, depend on MR hardware and the pulse sequences used to acquire the data, making it 

challenging to compare results between studies. In addition, the derived parameters, including 

signal-intensity plateau, contrast- enhancement ratio, and area under the curve, have no clear 

physiological meaning (4,10). By contrast, quantitative analysis employing tracer kinetic models 

yields physiological parameters related to tissue perfusion and capillary permeability.  

Many tracer kinetic models have been applied to describe the behavior of administered contrast 

agent in DCE-MRI experiments. The first generation of DCE-MRI models, including the widely 

used Tofts model (TM) (11), were designed for tissues with negligible blood volume, and were 

used to characterize the permeability of the tissue vasculature. To account for intravascular signal 

contributions, the Extended Tofts Model (ETM) (12,13) was introduced for highly-perfused 

tissues, including tumors. Improvements in scanner hardware and software, which have led to 

higher-quality DCE-MRI data, have motivated the development of models with greater complexity 

(14,15) that more fully describe tissue perfusion and capillary permeability. Such models are 

                                                 
1 All contents in this chapter have been published in Duan C, Kallehauge JF, Bretthorst GL, Tanderup K, Ackerman 

JJH, Garbow JR. Are Complex DCE-MRI Models Supported by Clinical Data? Magn. Reson. Med. 77:1329–1339 

(2017) 
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physiologically more accurate (fewer assumptions/constraints regarding tissue structure) 

compared to reduced, simpler models that make physiological assumptions or introduce 

constraints that may not be appropriate for the tissue of interest and will, thus, generate bias in 

kinetic parameter estimates. However, in practice, it remains unknown whether these more 

complex models are supported by a given clinical DCE-MRI dataset with specific data quality 

(e.g., time resolution, acquisition time window, and contrast-to-noise ratio (CNR)). Thus, it is 

important to apply model selection, a data-driven process that balances the goodness of the fit and 

the stability of parameter estimation, to choose which kinetic model within a family of competing 

models best characterizes (is best supported by) the data. 

The importance of selecting an appropriate DCE tracer kinetic model for measurement of tissue 

perfusion and capillary permeability has been examined in previous reports from other laboratories 

(16,17). Model selection algorithms, including Chi-square (18), Akaike information criterion 

(AIC) (18–20), F-test (21–23), and the Durbin-Watson statistic (18), have been applied to evaluate 

tracer kinetic models commonly used in DCE-MRI data analyses. However, very few of these 

studies have tested the stability of complex models as a function of data quality in the context of a 

pool of competing models. Luypaert et al. (25), and Murase et al. (26), investigated the effect of 

noise on the parameter estimation of individual DCE-MRI tracer kinetic models, but did not 

compare the accuracy and uncertainty of parameter estimation between models. 

Bayesian probability theory (27) provides a rigorous statistical formalism for performing model-

selection calculations. Advances in computational power and the development of Markov-chain 

Monte Carlo (MCMC) methods have greatly increased the applicability of Bayesian inference to 

a range of problems. Using a Bayesian approach, the model-selection problem is addressed by 
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treating the model itself as a parameter, for which the posterior probability, given the data and 

prior information, is computed. 

The goal of this study was to test four compartmental tracer kinetic models against generically 

representative DCE-MRI data. Both in silico DCE-MRI data -- simulated based on each of the four 

models -- and clinical DCE-MRI cervical cancer data acquired pre-treatment and two-to-three 

weeks following the start of radiotherapy (RT) were utilized. Bayesian-based model selection and 

parameter estimation algorithms were applied to evaluate the noise tolerance to data analysis for 

each kinetic model and the dependence of the accuracy and uncertainty of parameter estimation 

on both model complexity and signal contrast-to-noise. Finally, applying model selection to 

clinical DCE-MRI cervical cancer data on a voxel-by-voxel basis, optimal models for the data 

were determined and then employed to estimate physiological parameters, including perfusion 

metrics and vascular permeability. 

2.2 Methods 

2.2.1  The DCE-MRI tracer kinetic models 

Tracer kinetic modeling of vascular leakage and conservation of mass allow the tissue contrast-

agent concentration (𝐶𝑡) obtained following the administration of a contrast agent bolus to be 

written as: 

 𝐶𝑡(𝑡) = 𝐶𝑝(𝑡) ⊗ 𝐼(𝑡), (1) 

where 𝐶𝑝(𝑡) is the concentration of the contrast agent in the plasma of the capillary inlet of any 

region-of-interest (ROI), commonly approximated by a measured upstream arterial input function 

(AIF), and 𝐼(𝑡) is the tissue impulse-response function to the contrast agent input, which depends 
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on the specific DCE-MRI tracer kinetic model. In this expression, “⊗ " denotes the convolution 

operation. 

Springer and colleagues (28) have pointed out that, in principle, “tracer kinetic” models are 

inappropriate for DCE-MRI data because 𝐶𝑡 is not directly measured. Rather, it is the tissue water 

1H relaxation enhancement caused by the agent that is monitored. Under some circumstances, the 

relaxation enhancement will be a non-linear function of 𝐶𝑡, requiring consideration of additional 

parameters not generally included in tracer kinetic models, e.g., the rate constant(s) governing 

water exchange across the relevant compartment boundaries. Such models are more complex than 

those considered herein. In practice, under conditions that approximate the MR-relaxation fast-

exchange limit (29), the relaxation enhancement reasonably approximates a linear function of 𝐶𝑡, 

and tracer kinetic models are appropriate simplifications of a more complex system. Data 

described herein are consistent with this simplification. 

 

Figure 2.1: Hierarchy of the four compartmental tracer kinetic models and their corresponding 

model parameters. Under various physiological conditions, the general 2CXM, in which contrast 

agent is distributed into two separate compartments (vascular and extracellular-extravascular 

spaces), reduces to the simpler ETM, CTUM and TM. 𝑃𝑆𝑐𝑝  is the permeability-surface area 
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product of the vascular wall multiplied by the concentration of contrast agent in the blood plasma; 

and 𝑃𝑆𝑐𝑒  is the permeability-surface area product of the vascular wall multiplied by the 

concentration of contrast agent in the extracellular-extravascular space. 

Four compartmental DCE tracer kinetic models were included in this model selection study: (i) 

the four-parameter (𝐹𝑝 , 𝑣𝑒 , 𝑣𝑝 , and 𝑃𝑆) Two-Compartment Exchange Model (2CXM), (ii) the 

three-parameter (𝐹𝑝, 𝑣𝑝, and 𝑃𝑆) Compartmental Tissue Uptake Model (CTUM); (iii) the three-

parameter (𝐾𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒, and 𝑣𝑝) Extended Tofts Model (ETM); and (iv) the two-parameter (𝐾𝑡𝑟𝑎𝑛𝑠 

and 𝑣𝑒) Tofts Model (TM). In these models, 𝐹𝑝 is blood flow, 𝑣𝑒 is the extracellular-extravascular 

volume fraction, 𝑣𝑝 is the plasma volume fraction, 𝑃𝑆 is the permeability-surface area product, 

and 𝐾𝑡𝑟𝑎𝑛𝑠 is the forward volume transfer-rate constant. Table 2.1 and Figure 2.1 summarize the 

hierarchy and impulse response functions of these models. Further details about the relationships 

among these models are given in Sourbron et al. (16). In addition to the DCE tracer kinetic models, 

a “no signal” model, in which the data are assumed to consist only of noise, was also included, by 

default, in the model-selection calculation. 

Table 2.1: Impulse response functions for the four tracer kinetic models. 
 

Impulse response function 

2CXM2 𝐼(𝑡) = 𝐹𝑝 ∗ (𝐴 ∗ 𝑒𝑥𝑝(−𝛼𝑡) + (1 − 𝐴) ∗ 𝑒𝑥𝑝(−𝛽𝑡)) 

CTUM3 𝐼(𝑡) = 𝐹𝑝 ∗ ((1 − 𝐸) ∗ 𝑒𝑥𝑝(−𝛾𝑡) + 𝐸) 

ETM 𝐼(𝑡) = 𝐾𝑡𝑟𝑎𝑛𝑠 ∗ 𝑒𝑥𝑝 (−𝐾𝑡𝑟𝑎𝑛𝑠  ∗ 𝑡) + 𝑣𝑝 ∗ 𝛿(𝑡) 

TM 𝐼(𝑡) = 𝐾𝑡𝑟𝑎𝑛𝑠 ∗ 𝑒𝑥𝑝 (−𝐾𝑡𝑟𝑎𝑛𝑠/𝑣𝑒 ∗ 𝑡) 

                                                 
2 For the 2CXM, the impulse response function parameters 𝐴, 𝛼, and 𝛽 are fully characterized by 𝐹𝑝, 𝑣𝑒, 𝑣𝑝, and 𝑃𝑆. 
3 For the CTUM, the impulse response function parameters 𝐸 and 𝛾 are fully characterized by 𝐹𝑝, 𝑣𝑝 and 𝑃𝑆. 
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2.2.2  Clinical DCE-MRI data 

De-identified clinical DCE-MRI cervical cancer data were acquired from patients enrolled in the 

EMBRACE study (https://www.embracestudy.dk), an international study of MRI-guided 

brachytherapy in locally advanced cervical cancer. All protocols were approved by the local 

medical ethics research board. Ten patients with advanced-stage cervical tumors (International 

Federation of Gynecology and Obstetrics: IIA/IIB/IIIB/IVA – 1/5/3/1) were scanned prior to, and 

two-to-three weeks after, the start of RT. This patient population was previously described in 

Kallehauge et al. (19). 

Data were acquired on a 3-T Philips Achieva scanner via a 3D, saturation-recovery spoiled 

gradient-echo sequence (TR = 2.9 ms, TE = 1.4 ms, saturation time = 25 ms, flip angle = 10°, 

centric k-space sampling, matrix size = 176 X 176). A total of 120 dynamic scans (18 baseline 

scans, SNR ≈ 5) for 20-to-24 5-mm-thick slices were obtained with 2.1 sec temporal resolution 

and 2.3 mm x 2.3 mm in-plane resolution. 

Each DCE-MRI dataset consisted of two dynamic MRI sub-datasets: (i) the AIF dataset obtained 

from monitoring the external iliac artery and (ii) the tissue response dataset obtained from 

monitoring the cervix. An AIF for each patient (pre- and post-RT) was obtained by averaging 

multiple contrast agent concentration vs. time curves measured in the external iliac artery. All 

concentration vs. time curves were inspected manually to exclude curves that were affected by 

partial-volume effects. 

Following the work of Fram et al. (30), a T1 relaxation time-constant map was constructed using 

the variable flip angle method (flip angles = 5°, 10°, 15°, 20°, and 25°) via a 3D, spoiled gradient-

echo sequence before contrast-agent administration, allowing conversion of DCE-MRI signal 
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intensity into contrast-agent concentration as described in Kallehauge et al. (31). Because a short 

echo time (TE = 1.4 ms) was used to collect the data, T2* dephasing was ignored for this 

conversion. To avoid the inflow artefacts in the iliac artery, a literature value of 1660 ms (32) for 

pre-contrast blood T1 was used. Tumor tissue was identified and segmented on T2-weighted images 

by an experienced radiologist. Figure 2 shows four representative single tumor-voxel DCE 

datasets.  

 

Figure 2.2: Example DCE-MRI contrast agent concentration vs. time curves. The data is shown 

with circle, while the optimal model fitting is shown with solid line. For these example voxel-

specific data sets, the optimal models were 2CXM (Panel a), CTUM (Panel b), ETM (Panel c), 

and TM (Panel d). Residuals are shown as dotted lines. All four kinetic models were selected as 

preferred models for some individual voxels within one cervical tumor. The measured AIF for this 

patient is shown in Panel e (note the change of the y-axis scale). 

2.2.3  In silico DCE-MRI data 

In silico DCE-MRI data were generated based upon clinical pre-treatment DCE-MRI data from 

four cervical cancer patients. Both whole-tumor average (mean 𝐶𝑡 across all voxels) and single-
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voxel DCE time courses (one tumor voxel from each patient) were examined for these four patients 

(eight DCE time course datasets in total). The four whole-tumor average DCE datasets provided 

high contrast-to-noise at the expense of averaging DCE responses from a heterogeneous tissue 

(cancer). The four single-voxel DCE datasets provided a local DCE response at the expense of 

reduced contrast-to-noise. These two data-analysis strategies (region-of-interest and voxel-wise) 

are common to literature reports. Together with the measured upstream AIFs for each patient, these 

eight different DCE datasets -- a whole-tumor ROI and a single tumor-voxel from each of four 

patients -- were then each modeled by Bayesian-based algorithms (vide infra) using each of the 

four tracer kinetic models (eight DCE datasets x four DCE kinetic models). 

For each of the eight DCE datasets, the estimated parameter values obtained for each of the four 

DCE kinetic models (2CXM, CTUM, ETM, TM; see Figure 2.3 for parameter ranges) were then 

used to generate four noiseless in silico DCE datasets, corresponding to each of the four kinetic 

models. Summarizing, based on analysis of the clinical data, eight, noiseless, differently 

parameter-valued, in silico, DCE datasets were generated for each of the four DCE kinetic models. 
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Figure 2.3: Range of kinetic parameter values (Panel a: 2CXM, Panel b: CTUM, Panel c: ETM 

and Panel d: TM) employed in the simulation studies. For the purpose of visual display, each 

kinetic parameter value is normalized by the mean of parameter values extracted from the eight 

sets of sample data. These mean values are: 1) 2CXM: 𝐹𝑝 = 0.74 min-1; 𝑃𝑆 = 0.16 min-1, 𝑣𝑝 = 

0.29; 𝑣𝑒 = 0.20; 2) CTUM: 𝐹𝑝 = 0.66 min-1; 𝑃𝑆 = 0.04 min-1; 𝑣𝑝 = 0.31; 3) ETM: 𝐾𝑡𝑟𝑎𝑛𝑠 = 0.53 

min-1, 𝑣𝑒 = 0.41; 𝑣𝑝 = 0.02; 4) TM: 𝐾𝑡𝑟𝑎𝑛𝑠 = 0.59 min-1, 𝑣𝑒 = 0.42. 

For each of the simulated datasets, the temporal resolution, Ts (2.1 sec), and total acquisition time, 

Tacq (250 sec), were identical to those of the clinical DCE-MRI data-acquisition protocol. Normally 

distributed (Gaussian) noise (standard deviation from 0 to 0.2 mM in 0.005 mM steps) was then 

added to each of the simulated noise-free dataset. As such, the contrast-to-noise ratio (CNR), 

defined as the ratio of the maximum contrast-agent concentration to the noise standard deviation, 

ranges from infinity (no noise added) to approximately three. For each noise power, 100 different 

noise representations were simulated. Gaussian noise was used for two reasons. First, Gudbjartsson 

and Patz (33) have shown that MRI data noise distributions are nearly Gaussian for SNR larger 

than 2, which is very likely to be true for most DCE-MRI scans. Second, the distribution of baseline 
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signal, i.e., “baseline contrast agent concentration” (essentially pure noise), calculated for all of 

the cervical tumor voxels was well fit by a Gaussian model (see Figure 2.4). 

 

Figure 2.4: Distribution of baseline signals. 

2.2.4  Bayesian-based model selection (and parameter estimation) 

Bayesian probability theory was used to compute the posterior probabilities for all models on a 

voxel-by-voxel basis, using Bayes’ Theorem (27), 

 
𝑃(𝑀|𝐷𝐼) =

𝑃(𝑀|𝐼)𝑃(𝐷|𝑀𝐼)

𝑃(𝐷|𝐼)
 

(2) 

where 𝑃(𝑀|𝐷𝐼) is the posterior probability for the 𝑀′𝑡ℎ model, given the data, 𝐷, and all of the 

prior information, I. On the right-hand side of this equation, 𝑃(𝑀|𝐼) is the prior probability for the 

𝑀′𝑡ℎ model and 𝑃(𝐷|𝑀𝐼) is the marginal direct probability for the data, given the model and the 
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prior information. Finally, 𝑃(𝐷|𝐼) is the direct probability for the data, given the prior information, 

and serves as a normalization constant. 

In Eq. (2), 𝑃(𝐷|𝑀𝐼) is a marginal direct probability because no kinetic model parameter appears 

in this probability. To compute this direct probability, the parameters appearing in the 𝑀′𝑡ℎ model 

must be reintroduced into this equation. Taking the Tofts Model, with parameters 𝐾𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑒 

as an example, equation (2) can be rewritten as,  

 
𝑃(𝑀|𝐷𝐼) ∝ 𝑃(𝑀|𝐼)∫𝑑𝐾𝑡𝑟𝑎𝑛𝑠 𝑑𝑣𝑒 𝑃(𝐾𝑡𝑟𝑎𝑛𝑠𝑣𝑒|𝑀𝐼)𝑃(𝐷|𝐾𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑀𝐼)  

(3) 

where the normalization constant has been dropped. 𝑃(𝐾𝑡𝑟𝑎𝑛𝑠𝑣𝑒|𝑀𝐼) is the joint prior probability 

for 𝐾𝑡𝑟𝑎𝑛𝑠  and 𝑣𝑒 , given the model 𝑀  (in this case, the TM) and the prior information; and 

𝑃(𝐷|𝐾𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑀𝐼) is the direct probability for the data (the likelihood function), given 𝐾𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒, 

the model 𝑀, and the prior information. A key feature of Bayesian-based model selection is that it 

integrates over the joint posterior probability for all of the parameters, thereby taking into account 

all of the possible parameter-value combinations. The importance/weight (“penalty”) assigned to 

each parameter derives naturally from that parameter’s contribution to the likelihood function of 

the modeled data (i.e., its posterior probability), which distinguishes the Bayesian approach from 

other constrained optimization methods.  

The posterior probability for the model indicator, given the data and the prior 

information,𝑃(𝑀|𝐷𝐼), was approximated using a MCMC calculation with simulated annealing 

(i.e., the MCMC calculation and simulated annealing were used to approximate the complex, 

analytically intractable, multidimensional integral in Eq. [3]). Initial values for all of the 

parameters, including the model indicator, were sampled from the prior probabilities for each 

parameter and the model indicator. Uniformly distributed prior probabilities, bounded by 
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appropriate physiologic ranges, were assigned to all of the parameters (see Table 2.2) and to the 

model indicators (i.e., all four models were assumed to be equally likely). In simulated annealing, 

an annealing parameter, 𝛽, which varies from 0 to 1, is introduced by raising the direct probability 

of the data to the 𝛽 power. When 𝛽 = 0, the direct probability of the data is zero and the priors are 

sampled independent of the data. The data are then slowly brought into the simulation as 𝛽 

increases and, when 𝛽  = 1, the full joint posterior probability for the parameters and model 

indicators is sampled. In this MCMC calculation, the model is varied by proposing a new model 

indicator and then simulating (i.e., drawing samples for) the new model parameters. After this new 

proposed model has reached equilibrium, i.e., the distributions of the drawn model parameter 

values in MCMC are stationary, the proposed model is either accepted or rejected using the 

Metropolis-Hastings acceptance criteria (34). If the proposed model is accepted, the annealing step 

is complete. However, if the proposed model is rejected, the calculation returns to the original 

model and new values for the model parameters are proposed. At the completion of the calculation, 

the posterior probabilities for all the models and their parameters are approximated by the 

distributions of the Markov chain samples. 

All model-selection calculations for in silico and clinical DCE-MRI data were performed using a 

Bayes Data-Analysis Toolbox (http://bayesiananalysis.wustl.edu) developed by G. Larry 

Bretthorst. All DCE-MRI contrast agent concentration signal models were written in Fortran and 

then loaded into the Image Model Selection package within this Toolbox. Computations were 

carried out on Dell PowerEdge R900 servers (Dell, Inc., Round Rock, TX), vintage 2008. All 

MCMC calculations were performed with 48 simulations and 50 repetitions; a total of 2400 

simulations were run for each dataset (one voxel). For each simulation, a minimum of 50 annealing 
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steps was employed. Using a server with 24 CPUs, the average computation time for one patient 

was about 12 hours. 

Table 2.2: Prior ranges4 for all the parameters within the response functions 

TM ETM CTUM 2CXM 

𝑲𝒕𝒓𝒂𝒏𝒔 

(min-1) 
0 - 60 

𝐾𝑡𝑟𝑎𝑛𝑠 

(min-1) 
0 - 60 

𝐹𝑝 

(min-1) 
0 - 60 

𝐹𝑝 

(min-1) 
0 - 60 

𝒗𝒆
 0 - 1 𝑣𝑒

 0 - 1 𝐸 0 - 1 𝐴5 0.5 - 1 

  

𝑣𝑝
 0 - 1 

𝛾 

(min-1) 
0 - 6 

𝛼 

(min-1) 
0 - 6 

      𝛽 

(min-1) 
0 - 6 

 

2.2.5  Statistical analysis 

All traditional (frequentist) statistical analyses were performed in Matlab (The Mathworks, Inc., 

Natick, MA). For changes in gross tumor volume, model selection, and parameter estimation on 

the clinical DCE-MRI data, a paired, two-sided Wilcoxon signed rank test was used to compare 

the pre- and post-RT time points in a matched fashion. Statistical significance was set at P = 0.05. 

2.3 Results  

In silico data were generated based on the clinical cervical cancer DCE-MRI data from four 

different patients. Figure 2.5 summarizes the model selection and parameter estimation results for 

in silico data simulated based on the whole-tumor average DCE-MRI data of patient #1. In Figure 

2.5a, model selection was employed to analyze in silico data simulated based on each of the four 

                                                 
4 All the priors are uniformly distributed within the given range. 
5 A is forced to be larger than 0.5 to separate the two exponential components in the response function of the 2CXM. 



42 

 

DCE models. At each noise power, 100 independent simulations (i.e., different noise sets) were 

performed and the number of “correct” selections, in which model selection chose the model used 

to simulate the data, were recorded. The number of correct model selections varied as a function 

of both model complexity and noise power (i.e, CNR). When the added noise standard deviation 

(SD) < 0.015 mM (i.e., CNR > 36), which is small compared to our clinical data (baseline noise 

SD = 0.04 mM, as shown in Figure 2.4), Bayesian model selection always chose the correct model, 

independent of the complexity of the model. However, as the CNR decreased, simpler data 

representations were preferred relative to more complex models. For data created based on the 

2CXM, the number of correct selections dropped when the noise SD > 0.015 mM. For data created 

based on the ETM, the number of correct selections dropped when the noise SD > 0.055 mM (i.e., 

CNR < 10); for data based on the CTUM, the threshold was a noise SD > 0.10 mM (i.e., CNR < 

5). By contrast, for the TM, the simplest model, model selection chose the correct model even 

when the noise SD increased to 0.2 mM (i.e., CNR = 3). For CNR much lower than 3, model 

selection chose the “no signal” model (data not shown). Figure 3b shows the model selection 

results for in silico data created based on the 2CXM. The number of correct model selections 

dropped rapidly as noise SD > 0.015 mM, with a concomitant increase in the selection of the 

CTUM, a simplified version of the 2CXM. However, with decreasing CNR (CNR < 7, Noise SD 

> 0.08 mM), Bayesian model selection most often chose the TM, the simplest model. Figure 2.5c-

d show how the accuracy and uncertainty of estimations of 𝑣𝑒 , the only common parameter 

between the simplest model, the TM (Figure 2.5c), and the most complex model, the 2CXM 

(Figure 2.5d), varied as Gaussian noise was added to each noiseless in silico dataset. While the 

accuracy of the 𝑣𝑒 estimation for each model remained stable as CNR decreased, the uncertainties 
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(i.e., error bars) of the estimated 𝑣𝑒 were much smaller for the TM relative to the more complex 

2CXM. 

 
Figure 2.5: Bayesian DCE-MRI model-selection and parameter-estimation.  Panel a: for each of 

the four in silico DCE-MRI data models, the number of “correct” model-selections (out of 100 

different noise representations), as a function of the noise standard deviation (SD). Panel b: for 

the two-compartment exchange in silico DCE-MRI data model (the most complex model of the 

four models examined), the number of times a given model was selected (out of 100 different noise 

representations) as a function of the noise SD. Panels c & d: relative percent error of 𝑣𝑒 estimated 

from initially noiseless simulated TM (Panel c) and 2CXM (Panel d) as a function of added noise. 

Similar to Figure 2.5a&b, Figure 2.6 and Figure 2.7 illustrate graphically the model selection 

results for the 32 in silico datasets (eight differently parameter-valued datasets x four DCE kinetic 

models). The general qualitative trends are the same as shown in Figure 2.5a&b (Qualitatively 

similar results are also obtained for kinetic parameter values extracted from the perfusion 

literature, and for a different set of DCE models). As CNR decreased, the number of correct model 

selections varied as a function of both CNR and model complexity. Consistently, correct selection 
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of complex models required higher CNR (lower noise power) than simpler models. CTUM and 

ETM, despite having the same number of model parameters, behaved consistently differently. As 

CNR decreased, the complex 2CXM was replaced by the simpler CTUM, and, eventually, by the 

simplest TM. However, for each model, the specific noise power at which the number of correct 

selections started to decrease depended on the kinetic model’s parameter values, which were 

derived from the original clinical DCE data used to simulate the in silico data. Note that the kinetic 

model’s parameter values affect the MRI contrast agent entering the tissue, which also influence 

the CNR of the acquired DCE-MRI data. 

 
Figure 2.6: Pooled model selection results for in silico datasets created for each of the four DCE 

models. Panel a: 2CXM; Panel b: CTUM; Panel c: ETM; and Panel d: TM. For each model, the 

5th, 50th, and 95th percentiles of numbers of correct selections are plotted. 
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Bayesian model selection was then applied to the full set of clinical DCE-MRI cervical cancer data 

acquired from ten patients. Figure 2.2 illustrates example contrast-agent concentration vs. time 

curves from four individual voxels within a single cervical tumor (Patient #1), in which the 2CXM 

(Figure 2.2a), CTUM (Figure 2.2b), ETM (Figure 2.2c), or TM (Figure 2.2d), respectively, are the 

Bayesian-preferred tracer kinetic models. While each of the four models was preferred in some 

individual voxels, Figure 2.8a shows that the TM and CTUM were overwhelmingly selected as 

best representing cervical cancer DCE-MRI data acquired both pre-treatment and two-to-three 

weeks following the start of RT. After two-to-three weeks of therapy, the percentage of voxels 

best fit by the TM dropped by 19% (P = 0.16), while the percentage of voxels best fit by the CTUM 

increased by 14% (P = 0.19). Based upon a paired, two-sided Wilcoxon signed rank test, neither 

of these changes is statistically significant. Defining CNR as the ratio of the maximum contrast-

agent concentration to the baseline noise standard deviation (calculated prior to the arrival of the 

main contrast-agent bolus), Figure 2.8b-c illustrate the CNR distributions of voxels across ten 

subjects (pre-treatment in Figure 2.8b, and two-to-three weeks following the start of RT in Figure 

2.8c), in which either the TM or CTUM were the optimal models. For cervical cancer data 

collected both pre-treatment and two-to-three weeks following the start of RT, the median CNRs 

for data best modeled by the CTUM were larger than for data best modeled by the TM (18.9 vs. 

14.3, and 21.4 vs.15.0, respectively). 



46 

 

 
Figure 2.7: Pooled model selection results for in silico datasets created for the 2CXM only. The 

numbers of selections for each model are shown in Panel a: 2CXM; Panel b: CTUM; Panel c: 

ETM; and Panel d: TM, respectively. Similar to Figure 4, the 5th, 50th, and 95th percentiles of the 

numbers of selection for each model are plotted. 

 

Figure 2.8: Bayesian DCE-MRI model selection results for a cohort of cervical cancer patients. 

Panel a: The average percent distribution of the optimal DCE-MRI model from the cohort of ten 

patients (39,365 total tumor voxels). The uncertainty bars indicate the standard deviation of the 

model distribution across all ten subjects. Panel b & c: Pooled CNR distribution of pre-treatment 
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(Panel b) and two-to-three weeks following the start of RT (Panel c) tumor voxels that are best 

represented by TM (solid black) or CTUM (crosshatch) DCE-MRI models. 

Next, the two dominant models, TM and CTUM, were used to estimate pharmacokinetic 

parameters for cervical tumor voxels in which each was preferred. Three pharmacokinetic 

parameters (𝐾𝑡𝑟𝑎𝑛𝑠 from the TM, and 𝐹𝑝 and 𝑃𝑆 from the CTUM) relating to tissue perfusion and 

capillary permeability increased two-to-three weeks into RT. Figure 2.9 shows that 𝐾𝑡𝑟𝑎𝑛𝑠 

increased (mean ± SD) from 0.60 ± 0.48 min-1 to 1.56 ± 1.08 min-1 (P = 0.004), 𝐹𝑝 increased from 

0.69 ± 0.37 min-1 to 1.46 ± 0.95 min-1 (P = 0.002), and 𝑃𝑆 increased from 0.058 ± 0.024 min-1 to 

0.078 ± 0.024 min-1 (P = 0.014). Representative parametric maps and corresponding uncertainty 

maps were shown in Figure 2.10. 

 

Figure 2.9: Pharmacokinetic parameters estimated using the optimal DCE-MRI kinetic models for 

all subjects. Panels a-c: Paired scatter plots of median pharmacokinetic parameter estimates, both 

pre-treatment and two-to-three weeks following  the start of RT, for tumor voxels in which the TM 

is the optimal model (𝐾𝑡𝑟𝑎𝑛𝑠  in Panel a) and those in which the CTUM is the optimal model (𝐹𝑝 in 

Panel b and 𝑃𝑆 in Panel c). Here, * indicates P < 0.05, and ** indicates P < 0.01, as calculated 

by a paired, two-sided Wilcoxon signed rank test. 

2.4 Discussion 

The central goal of this study was to test the performance of complex DCE-MRI models in the 

context of a pool of competing models against: (i) in silico DCE-MRI data simulated based on 
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each of the four models and (ii) clinical DCE-MRI data acquired prior to and two-to-three weeks 

following the initiation of RT in a cohort (n = 10) of advanced-stage, cervical cancer patients. For 

the clinical data, parameters were estimated, on a voxel-by-voxel basis, employing the selected, 

optimal kinetic model for each voxel. 

 

Figure 2.10: Parametric estimates (left map of each pair) and corresponding uncertainties (right 

map of each pair). 

The determination of an appropriate kinetic model is essential for extracting quantitative tissue 

perfusion and vascular permeability parameters from DCE-MRI data. Complex models (i.e., those 

with more parameters) will always provide better fits in terms of residuals alone (e.g., Chi-square). 

However, the inclusion of additional parameters may not be well supported by the acquired DCE-

MRI data, and may, consequently, increase the uncertainty (variance) in the estimation of the 

parameters within the model.  

Our simulation study shows that complex DCE-MRI models are more sensitive to CNR than 

simpler models with respect to both model selection (Figure 2.5a-b, Figure 2.6&Figure 2.7) and 

parameter estimation (Figure 2.5c-d). As noise standard deviation increases (i.e., CNR decreases), 
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Bayesian model selection chooses simpler data representations (Figure 2.5b and Figure 2.7), a 

statistically rigorous manifestation of Occam’s razor. Similarly, as CNR decreases, uncertainties 

in parameter estimates for highly parameterized models increase much more rapidly than for 

simpler models and Bayesian model selection chooses simpler models. For two models having the 

same complexity (i.e., the same number of model parameter), the CTUM is more robust than the 

ETM for the data examined herein.  

Although each of the four models is preferred in some individual tumor voxels, the TM and CTUM 

are the two dominant models for the acquired cervical cancer DCE-MRI data. The 2CXM and 

ETM were seldom selected, a finding that agrees well with our in silico results. As shown in Figure 

2.5b and Figure 2.7, as CNR decreases, the general 2CXM reduces to the CTUM and eventually 

to the TM. Amongst the two preferred kinetic models, selection of the three-parameter CTUM 

generally requires higher CNR than the two-parameter TM. However, choice of the optimal (most 

probable) model also depends on other factors beyond CNR, including kinetic/compartmental 

constraints imposed by physiological conditions, which explains the overlap of CNR distributions 

between the TM and CTUM in Figure 2.8b-c. For example, when the total acquisition time course 

is short or the extracellular extravascular space (EES) is large, the forward contrast-agent flux from 

plasma to EES is much larger than the contrast-agent backflux from EES to plasma. Under such 

conditions, the CTUM, which ignores the backflux, is the physiologically more appropriate model 

(16) and, thus, better represents the acquired dynamic curves.  

In heterogeneous tissue such as cancer, DCE model selection poses the “mixed tissue conundrum”. 

This is illustrated in the current case where different tumors, the same tumors at different times 

(e.g., before and after treatment), different tumor regions, and different tumor voxels support 

different DCE models, making it difficult to compare modeling results (e.g., intermodal 
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comparison of estimated model-specific parameter values). However, in highly heterogeneous 

tissues such as cancer, this is not an unexpected result. Different tumors, different tumor regions, 

and different tumor voxels possess different physiologic and microstructural characteristics. 

Indeed, to a large extent, it is the competing models themselves that provide the desired tissue 

discrimination/characterization. In this light, transformation from one model to another in the face 

of therapy or other physiologic challenge may provide an important metric for patient care. 

Choosing one commonly used “simpler” pharmacokinetic tracer model (without model selection 

justification) for data analysis would not avoid but hide the underlying mixed tissue conundrum 

by losing information and biasing parameter estimates. Whether DCE voxel-wise data of sufficient 

quality could be obtained such that a “more complex” model would be the most probable for all 

(or the substantial majority of) voxels in a truly heterogeneous tissue such as cancer is an 

interesting but open question. However, data from voxels that are well-fit by a simple model are 

likely to be inadequate to support a more complex model vis-à-vis Occam’s razor. 

In addition to CNR investigated in this study, both temporal resolution and acquisition time 

window will also affect the ability of the kinetic models to fit the data, which will consequently 

affect model selection results. An extensive examination of how each of these factors affects model 

selection results is beyond the scope of this study. Therefore, it is impossible to draw universal 

conclusions regarding whether a given DCE model can be supported or not at a specific noise 

power (or temporal resolution or acquisition time). For each individual DCE-MRI dataset, data-

driven model selection must be performed for the identification of voxel-specific optimal (most 

probable) models. 
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Biophysical properties not investigated in this study, but which may also affect the signal response 

in clinical DCE-MRI studies, include T2* dephasing, water exchange, inter-voxel convection 

(contrast agent flux from highly leaky voxel to less leaky voxels), and AIF accuracy (bolus 

dispersion and partial volume effects). All of these effects may influence the acquired DCE signal 

and, thus, affect the tracer kinetic modeling and model selection. Models that fully account for 

these effects, which were not included in this study, must incorporate more free parameters and 

thus have higher model complexity. Even though such models are physiologically more correct 

and more general in terms of applicability, it is likely that data quality would have to be 

exceptionally high to justify their use vs. less complex models. In this context, for any given DCE-

MRI dataset, data-driven model selection is a necessary prerequisite.  

It is worth stressing here that there is no substitute for a well-considered data acquisition protocol, 

i.e., high quality data. Without such a protocol, even the most sophisticated post-acquisition 

analysis is left with effects that cannot be estimated in a reasonably small set of model parameters, 

but which will influence parameter estimates. Importantly, DCE signal effects related to T2* 

dephasing, water exchange, and AIF bolus dispersion and partial voluming can be minimized by 

optimizing the data acquisition protocol. For instance, T2* dephasing can be computed via a dual-

echo sequence (35), and the water exchange effect can be suppressed by a careful selection of flip 

angle (36). In addition, the AIF accuracy can be improved by the selection of a reference region 

(37). 

We note here that the estimated values for parameter shared amongst these DCE models are 

different from model to model, and that some of the computed values in some models are 

apparently non-physical (e.g., large 2CXM and CTUM 𝑣𝑝). The model selection and parameter 
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estimation algorithms described herein are not the source of such biases. Our in silico simulation 

study, in which parameter values were estimated accurately, but with decreasing precision, as 

contrast-to-noise decreased, provides prima facie evidence that parametric biases in our study are 

not due to the modeling algorithms. Rather, the models are unavoidably wrong (i.e., are 

simplifications of a very complex tissue physiology), the data collection is unavoidably 

constrained/compromised by scanner capabilities, and the clinically achievable contrast-to-noise 

is unavoidably modest. Thus, while the estimation procedure is unbiased, the models and the data 

are biased. Therefore, that some parameter estimates seem physiologically implausible is not 

surprising and is not limited to this study but occurs throughout the literature. For example, while 

the ETM (also known as the Extended Patlak Model) usually produce 𝑣𝑝 less than 0.1, studies 

(19,21,38–41) employing the newer 2CXM produce substantially higher 𝑣𝑝 (up to 0.44). Whether 

the parameters so obtained are of clinical value in cancer detection and management is beyond the 

scope of this investigation. Nevertheless, the continued presence of such studies in the peer-

reviewed literature suggests that the DCE-MR community feels such studies do have value, a 

manifestation of Box’s dictum (42).  

The use of quantitative pharmacokinetic parameters to evaluate the therapeutic response of tumors 

has been demonstrated in several studies (43–46). Our data showed that 𝐹𝑝, 𝑃𝑆, and 𝐾𝑡𝑟𝑎𝑛𝑠, which 

is a mixture of 𝐹𝑝  and 𝑃𝑆  (16), increased during the early stages (two-to-three weeks) of RT 

(Figure 7). These changes are consistent with DCE-MRI results from previous studies (44,45) on 

pre- and post-radiotherapy cervical cancer. We caution that changes observed herein are only for 

voxels defined as tumor based on T2-weighted images. Further, it has been shown that possible 

underlying biological processes that are secondary to the radiotherapy (47), such as inflammation, 

may confound quantitative DCE-MRI measures of tumor perfusion and permeability, especially 
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at early stages of treatment. Monitoring long-term patient outcomes, including both MR and 

clinical tumor indices, is necessary before making inferences regarding therapeutic response. 

In conclusion, we have applied Bayesian-based algorithms to DCE-MRI tracer kinetic model 

selection and parameter estimation. Both DCE-MRI model selection and parameter estimation are 

sensitive to model complexity and data quality. Highly parameterized, complex models require 

higher data quality for accurate and stable model parameter estimation. In the absence of 

performing a model-selection calculation, these complex models should be employed cautiously. 

The two-parameter TM and the three-parameter CTUM were found to be the two dominant models 

for the clinical DCE-MRI cervical cancer data examined herein. Beyond other physiological 

factors, the three-parameter CTUM required higher CNR than the two-parameter TM. Significant 

changes in tumor perfusion and permeability (𝐾𝑡𝑟𝑎𝑛𝑠, 𝐹𝑝, and 𝑃𝑆) were found during the early 

stages of RT. Correlating pre-treatment pharmacokinetic parameters with long-term treatment 

outcomes, such as local control and disease-specific survival, will be the subject of future work. 
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Chapter 3 Modeling Dynamic-Contrast 

Enhanced MRI data with a Constrained Local 

Arterial Input Function1 

3.1 Introduction 

Dynamic contrast-enhanced (DCE)-MRI, which involves monitoring the MRI signal dynamically 

after intravenous injection of a paramagnetic contrast agent (CA) bolus, is widely employed in the 

evaluation of tissue perfusion and vascular permeability [1–3]. Tracer kinetic modeling of the 

acquired MRI signal time-course provides parameters describing the underlying physiology of the 

tissue of interest [4]. The estimated physiological parameters, including forward volume transfer 

constant (Ktrans), permeability-surface area product (PS), tissue-volume-normalized volumetric 

blood plasma flow rate (Fp), hereafter “blood plasma flow”, plasma volume fraction (vp), and 

extracellular-extravascular volume fraction (ve) have been successfully employed in the 

characterization of cancerous tissues and the assessment of therapeutic response [5, 6].  

Quantitative tracer kinetic modeling of DCE-MRI data requires modeling of the tissue response 

function and knowledge of the CA concentration in the blood plasma at the capillary inlet of any 

region of interest (ROI), referred to as the arterial input function (AIF) [4]. AIFs can be difficult 

to measure experimentally and population-averaged AIFs are sometimes used to circumvent these 

difficulties [7]. However, due to inter-individual variability of the vascular bed, the use of a directly 

measured AIF for each subject is often the preferred approach for clinical studies [8].  

                                                 
1 All contents in this chapter have been published in Duan C, Kallehauge JF, Pérez-Torres CJ, Bretthorst GL, Beeman 

SC, Tanderup K, Ackerman JJH, and Garbow JR. Modeling Dynamic Contrast-Enhanced MRI data with a 

Constrained Local AIF. Mol Imaging Biol (2017). doi:10.1007/s11307-017-1090-x. 
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The actual AIF at the capillary inlet of any given tissue of interest is both delayed and dispersed 

relative to the remote-AIF measured directly from a major feeding (upstream) vessel [9]. In what 

follows, the directly measured remote-AIF is hereafter referred to as the R-AIF. Significant error 

in quantitative kinetic parameter estimation can be introduced if AIF bolus delay and dispersion 

are not taken into account [10–13]. Methods to account for delay include aligning the tissue 

response curve and the R-AIF to a common bolus arrival time [14] or incorporating an arrival time 

delay (offset time) parameter within the tracer kinetic model’s tissue response function [15]. 

Nevertheless, accounting for dispersion remains a challenge for quantitative DCE-MRI data 

analysis. In the case of tumor tissue, in which the vasculature is widely known to be structurally 

and functionally abnormal (i.e., leaky, tortuous, dilated, and saccular, with a haphazard pattern of 

interconnections and large holes in vessel walls), a single global R-AIF is likely to be a poor 

approximation to the desired voxel-specific AIF. Further, due to MRI experimental limitations 

(e.g., practically achievable spatial and temporal resolution), partial volume and other effects can 

also lead to a significant error in correctly assessing the time-dependent amplitude of the R-AIF 

[16]. Nonetheless, while imperfect, the R-AIF represents a “best possible” first approximation to 

the “true” AIF. Employing an inferred local-AIF for each individual voxel, one that can correct 

the R-AIF for voxel-specific bolus amplitude error and arrival-time delay, should improve 

quantitative modeling of DCE-MRI data.  

The goal of this study was to compare DCE-MRI data modeling employing (i) a R-AIF and (ii) an 

inferred, constrained local-AIF (cL-AIF, vide infra) against both in silico DCE-MRI data and 

clinical cervical cancer DCE-MRI data. Herein, we describe a flexible analytical function that 

models well the measured R-AIFs obtained from the external iliac artery of patients with advanced 

stage cervical cancer. A Bayesian-based, Markov chain Monte Carlo (MCMC) parameter 
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estimation approach is employed to infer each tumor’s voxel-specific cL-AIFs based on the 

patient’s R-AIF. Our work builds on AIF modeling reported previously by Fluckiger et al. [17, 18] 

and Lee et al. [19]. A key difference herein is that the cL-AIF model (functional form) is 

constrained based on an empirical fixed-parameterization of the R-AIF measured for each patient 

– to reduce the model complexity, only cL-AIF bolus amplitude and arrival time are free 

parameters – allowing for precise (i.e., stable) tracer kinetic model parameter estimation.  

3.2 Materials and Methods 

3.2.1  Clinical DCE-MRI Data 

All Clinical cervical cancer DCE-MRI data were acquired from patients enrolled in EMBRACE 

(https://www.embracestudy.dk/), an international study on MRI-guided brachytherapy in locally 

advanced cervical cancer. All studies were approved by the local medical ethics research board. 

Sixteen patients with locally advanced-stage cervical tumor were scanned prior to radiotherapy. 

All DCE-MRI data were acquired on a 3T Philips Achieva scanner using a 3D, saturation-

recovery, spoiled gradient-echo sequence (TR/TE = 2.9/1.4 ms, saturation time = 25 ms, flip angle 

= 10°). A bolus of 0.1 mmol/kg Dotarem® (gadoterate meglumine; Guerbet, France) was injected 

at 4 ml/s, followed by a 50 ml saline flush. For each patient, 120 dynamic axial scans (18 baseline 

scans, baseline signal-to-noise ≈ 5:1) were obtained with 2.1 seconds temporal resolution and 2.3 

x 2.3 mm2 in-plane resolution (matrix size = 176 x 176, FOV = 405 x 405 mm2, 20-24 slices with 

a slice thickness of 5 mm) following the administration of CA. The acquired MR images were 

smoothed as described in Korporaal et al. [15]. A pre-contrast T1 map was produced via the 

variable flip angle method (5°, 10°, 15°, 20°, and 25°), using a spoiled gradient echo sequence 

(TR/TE = 20/1.7 ms), with the same resolution and orientation as the DCE scans. MR signal 

intensities were then converted to CA concentration using the T1 map, as described in Kallehauge 
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et al. [20]. Because of the short TE, effects of T2* dephasing are minimal and were ignored in the 

conversion. Cervical tumor tissues were segmented based upon TSE T2-weighted images (TR/TE 

= 4236/100 ms, Flip angle = 90°, Slice thickness = 3 mm, In-plane resolution = 0.94 x 0.94 mm2, 

matrix size = 320 x 320) by an experienced radiologist. An R-AIF was obtained experimentally 

for each patient by averaging multiple CA-concentration vs. time curves measured in the external 

iliac artery. The chosen measurement locations were unaffected by flow disturbances near the 

bifurcation of the external/internal artery. A literature value of 1660 ms [21] was used for the pre-

contrast blood T1. 

3.2.2  In silico DCE-MRI Data 

In silico DCE-MRI data were simulated based on clinical DCE-MRI data from a representative 

cervical cancer patient. For this patient, a whole-tumor, average DCE-MRI CA concentration vs. 

time curve was calculated and then modeled using the corresponding R-AIF for that patient. The 

estimated parameter values, together with the measured R-AIF, were used to simulate a noiseless 

DCE-MRI curve. Thus, for the noiseless simulated data, the correct (true) AIF is known. 

In this representative simulation, the temporal resolution (2.1 s) and the total acquisition time (250 

s) were identical to those of the clinical DCE-MRI data. Normally distributed Gaussian noise, with 

standard deviation (SD) ranging from 0 mM to 0.05 mM with a step size of 0.002 mM, was added 

to the initially noiseless simulated data. For each noise SD, 100 different noise representations 

were simulated. As reference, the baseline noise SD of the DCE-MRI data for the sixteen cervical 

cancer patients is ~0.04 mM. 

While only one set of representative CTUM parameter values was employed in the simulation 

study, the global findings regarding accuracy and precision of parameter estimation are instructive, 
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and not subtle. Further, considering the voxel-wise analysis of clinical cervical cancer data, 

Bayesian-based model selection and parameter estimation naturally compares the cL-AIF and 

traditional R-AIF approaches over the entire parametric range representative of heterogeneous 

tumor tissue. Clinical cervical cancer DCE-MRI data were acquired from patients enrolled in 

EMBRACE (https://www.embracestudy.dk/), an international study on MRI-guided 

brachytherapy in locally advanced cervical cancer. All studies were approved by the local medical 

ethics research board. Sixteen patients with locally advanced-stage cervical tumor were scanned 

prior to radiotherapy. All DCE-MRI data were acquired 

3.2.3  DCE-MRI tracer kinetic modeling 

Tracer kinetic modeling of the administrated CA assumes that the tissue CA concentration 𝐶𝑡(𝑡) 

can be expressed as: 

 
𝐶𝑡(𝑡) = 𝐹𝑝 ∙ ∫ 𝑅(𝑡 − 𝜏)

𝑡

0

∙ 𝐶𝑎(𝜏) 𝑑𝜏, 
 [1] 

where 𝐹𝑝  is blood plasma flow (s-1), 𝑅(𝑡) is the tissue impulse response residue function, and 

𝐶𝑎(𝑡) is the AIF. 

Many tracer kinetic models (i.e., the tissue response residue function, 𝑅(𝑡)) have been applied to 

describe the behavior of administrated CA in DCE-MRI experiment. In a previous study [22], the 

three-parameter compartmental tissue uptake model (CTUM) was found to be the most probable 

model for the same advanced stage cervical cancer patient population, and was, thus, employed in 

this study. The impulse response residue function for the CTUM is: 

 𝑅(𝑡) = (1 − 𝐸) ∙ 𝑒−𝛾∙𝑡 + 𝐸, [2] 
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where 𝐸 is the CA extravasation fraction, and 𝛾 is the inverse of the plasma mean transit time, i.e., 

𝛾 is the governing rate constant. Plasma volume (𝑣𝑝) and permeability-surface-area-product (𝑃𝑆) 

can be calculated from 𝐹𝑝, 𝐸 and 𝛾. Further details are provided in Sourbron et al. [4].  

3.2.4  A gamma-variate local-AIF model 

Recently, Lee et al. [19] introduced a strategy for inferring the voxel-specific local-AIF in dynamic 

susceptibility contrast (DSC)-MRI employing a three-component local-AIF model. The CA 

concentrations of the primary and first recirculation bolus were each modeled (empirically 

parameterized) with a normalized gamma distribution function, Eq. [3]. An additional (third) term, 

which accounts for a steady-state circulation phase, completed the local-AIF model, Eq. [4]: 

Gamma 

distribution: 

𝐺(𝛼, 𝛽, 𝑡1, 𝑡) =
1

𝛽𝛼+1 × Γ(𝛼 + 1)
× (𝑡 − 𝑡1)

𝛼 × 𝑒
−
𝑡−𝑡1

𝛽  
 [3] 

Local-AIF 

model: 
𝐶𝑎(𝑡) = ∑𝐶𝑖𝐺(𝛼, 𝛽, 𝑡𝑖 , 𝑡)

2

𝑖=1

+ 𝐶3(1 − 𝑒−𝑟(𝑡−𝑡1)) 
[4] 

Note: the shape of the primary and recirculation CA boluses in this local-AIF are the same, i.e., 

they are defined by the same-valued gamma-distribution parameters (𝛼 and 𝛽), but have different 

amplitudes, 𝐶𝑖,  and arrival times, 𝑡𝑖 . We have extended this strategy to DCE-MRI data and 

modified the local-AIF model of Lee et al. [19] by adding an exponential decay term, with decay-

rate constant 𝛿, to account for renal clearance of CA over time, which is not negligible for DCE-

MRI due to the much longer acquisition time compared to DSC-MRI:  

  𝐶𝑎(𝑡) = (∑ 𝐶𝑖𝐺(𝛼, 𝛽, 𝑡𝑖 , 𝑡)
2
𝑖=1 + 𝐶3(1 − 𝑒−𝑟(𝑡−𝑡1))) × 𝑒−𝛿(𝑡−𝑡1)   [5] 

Table 3.1 summarizes all the parameters introduced in Eqs. [3-5]. 
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Table 3.1: Summary of Parameters Used in the cL-AIF Model. 

Parameter Description Unit 

𝜶 Gamma distribution shape parameter None 

𝜷 Gamma distribution rate parameter None 

𝒕𝟏 Main CA bolus arrival time sec 

𝒕𝟐 Recirculated CA bolus arrival time sec 

𝑪𝟏 Main CA bolus amplitude mM 

𝑪𝟐 Recirculated CA bolus amplitude mM 

𝑪𝟑 Steady-state circulation amplitude mM 

𝒓 Steady-state circulation rate constant sec-1 

𝛅 CA renal-clearance rate constant sec-1 

 

3.2.5  A constrained local-AIF model 

A widely-acknowledged weakness of much reported DCE modeling is that the obtained AIF is 

generally remote from the tissue of interest. Given that the voxel-specific local AIF must a priori 

differ substantially from an AIF measured from a major, remote, upstream artery and that, to first 

order, this will be reflected in bolus arrival time and amplitude of an analytical representation of 

the measured AIF, a constrained local-AIF model was derived based on empirical 

parameterization, via Eq. [5], of the patient-specific R-AIF: 
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i. First, the modified gamma-variate formulation, Eq. [5], was employed to model the R-AIF 

for each patient, yielding estimates of all model parameters. 

ii. Second, the patient-specific R-AIF model was constrained by accepting and fixing the 

values of all model parameters to the estimates obtained in (i). 

iii. Third, the formulation of the local-AIF model was completed by introducing two free 

parameters: a bolus delay, ∆𝑡, and a scaling factor, 𝑠. These two free parameters provide, 

respectively, for a patient-voxel-specific shift in the two bolus arrival times (same time 

shift for the primary and recirculation boluses) and for a scaling of the two bolus amplitudes 

(same amplitude scaling for the primary and recirculation boluses): 

 𝑡1
′ = 𝑡1 + ∆𝑡; 𝑡2

′ = 𝑡2 + ∆𝑡; 𝐶1
′ = 𝑠 × 𝐶1;  𝐶2

′ = 𝑠 × 𝐶2  [6] 

Note that the scaling factor, 𝑠, modifies only the two bolus amplitudes (𝐶1 and 𝐶2), rather than the 

whole local-DCE-AIF. 𝐶3  is a global term representing the long-term, steady-state CA 

concentration throughout the entire vascular system and is, thus, left unchanged (i.e., when t is 

large, 𝐶𝑎(𝑡), Eq [5], reduces to 𝐶3, ignoring renal clearance). Thus, 𝐶3 is a patient-specific global 

parameter; it is not voxel-specific. 

Possible variation in the bolus shape (e.g., broadening) is neglected in the local-AIF formulation 

to reduce model complexity (i.e., inclusion of possible voxel-specific bolus shape changes by 

estimating voxel-specific values for 𝛼 and 𝛽 in the local-AIF model would introduce more free 

parameters than are supported by data quality, see the modeling results employing the 

unconstrained local-DCE-AIF approach, vide infra). 
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iv. Finally, the constrained local-AIF model, including bolus delay, ∆𝑡, and scaling factor, 𝑠, 

as voxel-specific free parameters, hereafter referred to as cL-AIF, and Eq. [2] were 

substituted into Eq. [1], and the convolution was evaluated numerically. Posterior 

probabilities for all free parameters were computed voxel-by-voxel using Bayesian 

probability theory [23].  

Figure 1a shows the modeling of a representative R-AIF from a cervical cancer patient employing 

the modified gamma-variate formulation, Eq. [5]. Figure 1b, an expansion of the plot in panel a, 

shows a sample cL-AIF, illustrating the effects of the two free additional parameters, bolus delay, 

∆𝑡, and amplitude scaling factor, 𝑠, introduced to complete the cL-AIF model. 

 
Figure 3.1: Representative R-AIF and cL-AIF. Panel a: Modeling of an example R-AIF measured 

from the external iliac artery of a cervical cancer patient. The arrows indicate the three 

components in the local-DCE-AIF model, Eq. [5]. Panel b:  Expansion of the measured R-AIF 

shown in Panel a (dashed line) and an example cL-AIF (solid black line) based on this measured 

R-AIF. The arrows indicate the bolus delay time, ∆𝑡, and scaling factor, 𝑠, in the cL-AIF model 

(Eq. [6]). 
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3.2.6  Data analysis 

Both clinical cervical cancer DCE-MRI data and in silico DCE-MRI data  were modeled with three 

representations of the AIF:  

i. The R-AIF: As is often done in conventional DCE modeling, an offset time constant was 

incorporated into the tracer kinetic tissue response function (i.e., the CTUM, Eq. [2]), to 

account for bolus delay (i.e., a total of four parameters). However, in the simulation study, 

the same R-AIF employed in the generation of the in silico data was also used for CTUM 

parameter estimation (i.e., by definition, the correct AIF was “known”). Thus, in the 

simulation studies, the bolus delay was zero.  

ii. The uL-AIF: An unconstrained local-DCE-AIF model, described by the Eq. [5] 

formulation with all parameters considered as “free” (requiring estimation), was directly 

substituted into Eq. [1]. All of the parameters in the uL-AIF model (𝛼, 𝛽, 𝑡1, 𝑡2, 𝐶1, 𝐶2, 𝐶3, 

𝛾, and 𝛿) and in the CTUM ( 𝐹𝑝, 𝑃𝑆 and 𝑣𝑝) were estimated simultaneously from the CA 

concentration vs. time curves (i.e., a total of 12 parameters). Note: the free parameters 𝑡1 

and 𝑡2 in the uL-AIF eliminate the need for an additional bolus delay parameter, as is 

employed with the R-AIF. 

iii. The cL-AIF: Free parameters ∆𝑡 and 𝑠 represent bolus arrival time delay and amplitude of 

the cL-AIF, designed to be voxel-specific, which was otherwise constrained by fixed 

parameterization via Eq. [5] modeling of the R-AIF. The cL-AIF was substituted into Eq. 

[1], and ∆𝑡 and 𝑠, and the parameters in the CTUM ( 𝐹𝑝, 𝑃𝑆 and 𝑣𝑝) were estimated (i.e., a 

total of five parameters).  
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For the cervical cancer DCE-MRI data, a data-driven Bayesian probability theory-based model 

selection algorithm (vide infra) was employed to compare use of the R-AIF and cL-AIF on a voxel-

by-voxel basis. Traditional (frequentist) statistical analyses were performed using Matlab (The 

Mathworks, Inc., Natick, MA). A two-sided Wilcoxon signed rank test was used to compare 

kinetic parameters estimated employing the R-AIF and the cL-AIF. Statistical significance was 

established by P < 0.05.  

3.2.7  Bayesian model selection 

For the cervical cancer DCE-MRI data, a data-driven Bayesian model selection algorithm was 

employed to compare use of the R-AIF and cL-AIF, on a voxel-by-voxel basis. The posterior 

probability of a model, 𝑀, given the data, 𝐷, and all of the prior information, 𝐼, is given by Bayes’ 

theorem:  

 
𝑃(𝑀|𝐷𝐼) =

𝑃(𝑀|𝐼)𝑃(𝐷|𝑀𝐼)

𝑃(𝐷|𝐼)
 

[1] 

where 𝑃(𝑀|𝐷𝐼) is the posterior probability for the model, 𝑀, given the data, 𝐷, and all of the prior 

information, I. On the right-hand side of this equation, 𝑃(𝑀|𝐼) is the prior probability for the 𝑀′𝑡ℎ 

model and 𝑃(𝐷|𝑀𝐼) is the marginal direct probability for the data, given the model and the prior 

information. Finally, 𝑃(𝐷|𝐼) is the direct probability for the data, given the prior information, and 

serves as a normalization constant.  

The prior probability for the model, 𝑃(𝑀|𝐼), is assigned as a uniform prior in this calculation: 

 
𝑃(𝑀|𝐼) =

1

𝑚
 

[2] 

in which m is the number of models. In Eq. [1], 𝑃(𝐷|𝑀𝐼) is a marginal direct probability because 

none of the parameters from model 𝑀 appear. This marginal direct probability can be computed if 

we reintroduce the model parameters, Ω (a vector):  
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𝑃(𝐷|𝑀𝐼) = ∫𝑑Ω𝑃(DΩ|𝑀𝐼) = ∫𝑑Ω𝑃(Ω|𝑀𝐼)𝑃(𝐷|Ω𝑀𝐼) 

[3] 

where 𝑃(Ω|𝐼) is the joint prior probability for the model parameters Ω, and 𝑃(D|Ω𝑀𝐼) is the direct 

probability for the data (i.e., the likelihood function), given the model parameters, Ω, the model, 

𝑀, and the prior information, 𝐼.  

The joint prior probability for the model parameters can be factored into an independent prior 

probability for each parameter (𝑣 is the number of parameters in the current model): 

 
𝑃(Ω|𝐼) =  ∏𝑃(Ω𝑘|𝐼)

𝑣

𝑘=1

 
[4] 

The direct probability for the data, 𝑃(𝐷|Ω𝑀𝐼), is the likelihood function for the data 𝐷. Each data 

set consists of 𝑁 data values, so 𝐷 ≡  {𝑑(𝑡1),… , 𝑑(𝑡𝑁)}, where 𝑑(𝑡𝑖) is a data item sampled at 

abscissa value 𝑡𝑖. This direct probability is assigned using a Gaussian prior probability for the 

noise; the likelihood for a single dataset then becomes: 

 
𝑃(𝐷|σΩ𝑀𝐼) =  (2𝜋𝜎2)−

𝑁
2 × exp (−

𝑄2

2𝜎2
) 

[5] 

where the standard deviation, 𝜎, has been added. The total squared residual, 𝑄2, is defined as: 

 

𝑄2 = ∑[𝑑(𝑡𝑖) − 𝑀(𝑡𝑖, Ω)]2
𝑁

𝑖=1

 

[6] 

Finally, substituting Eqs. [2-6] into Eq. [1], one obtains: 

𝑃(𝑀|𝐷𝐼) ∝ ∫
1

𝑚
× ∏𝑃(Ω𝑘|𝐼)

𝑣

𝑘=1

× (2𝜋𝜎2)−
𝑁
2 × exp (−

∑ [𝑑(𝑡𝑖) − 𝑀(𝑡𝑖, Ω)]2𝑁
𝑖=1

2𝜎2
)𝑑Ω 

[7] 

in which the normalization constant, 𝑃(𝐷|𝐼), has been dropped. All model selection calculations 

were performed using a custom-written Bayesian Data-Analysis Toolbox (documentation 

available at http://bayesiananalysis.wustl.edu). Markov chain Monte Carlo (MCMC) simulation 

was employed to numerically approximate this multi-dimensional integral, Eq. [7]. Initial values 
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for all of the parameters, including the model indicator, were sampled from the prior probabilities 

for each parameter and the model indicator. Uniformly distributed prior probabilities (see 

Supplementary Figure S1 for a model selection sensitivity analysis investigating the effect of prior 

distribution parameters on the model selection result) were assigned to each of the parameters, 

bounded by appropriate physiological ranges.  

In this MCMC calculation, the model is varied by proposing a new model indicator and then 

simulating (i.e., drawing samples for) the new model parameters. After this new proposed model 

has reached equilibrium, i.e., the distributions of the drawn model parameter values in MCMC are 

stationary, the proposed model is either accepted or rejected using the Metropolis-Hastings 

acceptance criteria. If the proposed model is accepted, that simulation step is complete. However, 

if the proposed model is rejected, the calculation returns to the original model and new values for 

the model parameters are proposed. At the completion of the calculation, the posterior probabilities 

for all of the models and their parameters are approximated by the distributions of the Markov 

chain samples.  

3.3 Results 

The simulation study (Figure 3.2) evaluates the accuracy (mean relative error, i.e., mean of the 

absolute error divided by the exact value), and precision (variance of the relative error) of CTUM 

parameter estimation for the simulated data employing: (i) the correct AIF, i.e., the R-AIF used to 

generate the in silico data, (ii) the uL-AIF, and (iii) the cL-AIF. 
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Figure 3.2: Simulation study comparing the accuracy and precision of CTUM parameter 

estimation. Three AIF modeling approaches ((i) the correct AIF (Panels a - c), (ii) the uL-AIF 

(Panels d - f), and (iii) the cL-AIF (Panels g - i).) were compared. Relative error is defined as the 

difference between the estimated value and the true value divided by the true value. Error bars 

indicate the standard deviation of the relative errors from 100 different noise representations at a 

given noise standard deviation. 

When the correct AIF was used, the accuracy of estimation of all three CTUM parameters (𝑃𝑆, 𝑣𝑝  

and 𝐹𝑝) was relatively insensitive to added noise power, while precision decreased slowly (and 

linearly) as signal-to-noise decreased. However, when the uL-AIF model was employed in the data 
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analysis, despite minimal residuals, the correct CTUM parameter values could not be estimated 

accurately and the variance of the parameter estimation was large (precision was low), even for 

very small added noise power. By contrast, the accuracy of CTUM parameter estimation remains 

stable as noise level increases when the data are modeled using the cL-AIF and the precision of 

the parameter estimates approaches that derived using the correct AIF. In this scenario, the 

estimated scaling factor and delay time have the correct mean values of one and zero, respectively, 

with increasing uncertainty as contrast-to-noise ratio decreases. 

 

Figure 3.3: Comparison of the use of R-AIF vs. ul-AIF vs. cL-AIF in modeling of a representative 

dataset. Panels a - c: Tracer kinetic modeling (CTUM) of a representative single-voxel cervical 

cancer DCE-MRI dataset employing: (i) the R-AIF (Panel a), (ii) the uL-AIF (Panel b), and (iii) 

the cL-AIF (Panel c). The tissue CA concentration curves (data) are shown in black, the models 

in green, red, and blue (Panels a, b, and c, respectively), and the residuals (the difference between 

model and data) as black dashed-dotted lines. Panels d - f: corresponding posterior probability 

functions for 𝑃𝑆 (Panel d), 𝑣𝑝 (Panel e), and 𝐹𝑝 (Panel f), estimated from the modeling shown in 

Panels a - c. Probability density functions (PDFs) for parameters estimated using the R-AIF are 
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shown in green, PDFs for parameters estimated using the uL-AIF are shown in red, and PDFs for 

parameters estimated using the cL-AIF are shown in blue. These PDFs are normalized so that the 

integrations of the PDF (area under the curve) are the same for each parameter. 

Figure 3.3 compares the use of R-AIF vs. uL-AIF vs. cL-AIF in the modeling of a representative, 

single-voxel, cervical cancer DCE-MRI dataset. The use of the R-AIF does not model the DCE 

data well, especially for the initial rise of the CA concentration. The voxel-specific uL-AIF 

approach provides the smallest systematic deviations in the residuals. However, the in silico 

simulation study clearly identifies the so obtained CTUM parameter estimates as unreliable (vide 

supra). Use of the voxel-specific cL-AIF models the data well, with small residuals approaching 

those of the uL-AIF. Figure 3.3d - f show the posterior probability density functions (PDFs) for 

each of the three estimated CTUM parameters employing the three different AIFs. MCMC 

calculations employing both the R-AIF and the cL-AIF converged well (i.e., narrow PDFs, thus 

small uncertainties). Despite the smallest residuals, but entirely consistent with the in silico 

simulations, CTUM parameters were poorly determined (i.e., characterized by wide PDFs, thus 

large uncertainties) when the uL-AIF was employed.  

Next, both the R-AIF and the cL-AIF were employed to analyze all the DCE-MRI data from 

sixteen patients with advanced stage cervical cancer, on a voxel-by-voxel basis. Figure 3.4 shows 

the pharmacokinetic parametric (𝐹𝑝 , 𝑃𝑆 , and 𝑣𝑝 ) maps and corresponding uncertainty maps 

estimated for a representative transverse tumor slice, employing either the R-AIF or the cL-AIF. 

The voxel-wise uncertainty for each parameter was computed using the standard deviation of the 

MCMC samples (i.e., the width of the PDF) divided by the mean parameter value. The 𝐹𝑝 

estimated using the cL-AIF is substantially larger than that estimated using the R-AIF. 
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Figure 3.4: Parametric maps (left map of each pair) and corresponding uncertainty maps.  

Regarding the delay and amplitude scaling parameters, Figure 4 shows maps of the delay time, ∆𝑡 

(Panel a), and scaling factor, 𝑠 (Panel b), estimated for the same tumor slice shown in Figure 3. As 

expected for highly heterogeneous tumor tissues, the bolus amplitudes and arrival times vary from 

voxel-to-voxel. The median delay time and the median scaling factor across all tumor voxels for 

each of the sixteen subjects are shown in the boxplots (Panels d & e) of Figure 4. The scaling 

factors for 14 out of 16 patients are less than 1 (i.e., lower amplitude than the R-AIF), while the 

scaling factors for the other two patients are larger than 1 (i.e., higher amplitude than the R-AIF). 

This latter finding is likely due to partial volume effects in the direct measurement of the R-AIF, 

which can lead to underestimation of the true CA concentration. Voxel-wise, Bayesian model 

selection compared the R-AIF and cL-AIF in the modeling of the cervical cancer DCE-MRI data. 

Figure 4 shows the preferred-model map for the same tumor slice (Panel c), and the mean 

preferred-model percentage across the sixteen cervical cancers patients (Panel f). The cL-AIF 

approach is more probable than the R-AIF approach, with respective model voxel-count 

percentages of 78% ± 14% vs. 22% ± 14% (mean ± SD, n = 16).  
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Figure 3.5: Estimations of the delay time and scaling factor, and model selection. Panels a & b: 

delay time (Panel a) and scaling factor (Panel b) maps estimated for an example tumor slice 

employing the cL-AIF. Panel c: model-selection (R-AIF vs. cL-AIF) preferred model map for the 

same tumor slice. Panels d & e: median delay time (Panel d) and scaling factor (Panel e) 

estimated using the cL-AIF for each of the sixteen patients. Panel f: mean preferred-model 

percentage across all DCE-MRI data for the sixteen patients. Error bars indicate the standard 

deviation of the preferred model percentages across the sixteen cervical tumors. 

3.4 Discussion  

Quantitative analysis of DCE-MRI is challenging because of difficulties in obtaining an accurate 

and appropriate AIF for tracer kinetic modeling. Furthermore, given CA bolus delay and 

dispersion, and the structurally and functionally abnormal vasculature characteristic of cancer, a 

single R-AIF is unlikely to approximate well the CA input for every voxel within the tumor ROI. 

In this study, we demonstrated the feasibility of using a voxel-specific, inferred cL-AIF, based on 

fixed parameterization of the R-AIF measured from a large, feeding (“remote") artery with 

inclusion of two additional free parameters, bolus time-delay, ∆𝑡, and amplitude-scaling, 𝑠, to 

better model the DCE-MRI data in a voxel-by-voxel fashion.  
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In conventional DCE-MRI modeling, an offset time is often incorporated into the tissue response 

function to account for the delay in the arrival of the CA bolus at the tissue of interest. However, 

the inclusion of an offset time alone in the modeling may not be enough to fit the acquired DCE 

data (Figure 3.3a). To account for the CA dispersion, two approaches can be used. As pointed out 

by Calamante et al. [9], in principle, it should be possible to correct the R-AIF by employing a 

vascular transition function (VTF), in which the bolus transition process is described by modeling 

the vascular bed. Such a model, if it exists, would be quite complex, and it is unknown whether 

such a model would be well supported by the acquired DCE-MRI data. A simplified, mono-

exponential, VTF model [24] only improves the fitting marginally compared to the direct use of 

the R-AIF, whereas the improvement is substantial when the cL-AIF is employed (see Figure 3.6).  

 

Figure 3.6: Modeling of a representative cervical cancer DCE-MRI dataset employing three AIFs. 

Panel a, the measured R-AIF; Panel b, the measured R-AIF as corrected by a single exponential 

VTF (i.e., 𝑉𝑇𝐹(𝑡) =  𝛽𝑒−𝛽𝑡); Panel c, the cL-AIF. The squared residuals for the three methods 

are 0.0319, 0.0271, and 0.0086 mM2, respectively. 

Estimating a local-AIF for the tissue of interest is an alternative approach to the use of a VTF. 

Blind deconvolution, which simultaneously estimates the local-AIF and the tracer kinetic 

parameters from the tissue CA concentration vs. time curves, has been proposed. Fluckiger et al. 

[17, 18] showed that constraining the input function to a particular functional form (i.e., a local-
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AIF model) yields more accurate parameter estimation compared to deconvolution without a 

specific AIF model. In Fluckiger et al. [18], k-means clustering tissue curves were calculated and 

employed in a deconvolution to estimate a single, tumor-wide AIF or regional AIF (region size < 

10 × 10 × 10 voxels). The estimated AIF was then used to estimate voxel-specific tracer kinetic 

parameters. However, such an estimated AIF is still not a voxel-specific local-DCE-AIF, 

especially in the presence of the structurally and functionally abnormal vasculature of tumor 

tissues. 

In the first part of our study, an uL-AIF based on a gamma-variate model, Eq. [5], was employed 

to estimate voxel-specific local-AIFs and tracer kinetic CTUM parameters. Simulation studies 

show that the accuracy and precision of the estimated kinetic parameters were severely 

compromised using this uL-AIF. Even for the simulated, noiseless data, the unconstrained L-AIF 

approach still produces large relative errors (see Supplementary Figure S2). This is because: (i) 

even though no noise was added, the simulated data are inevitably truncated (i.e., only 120 abscissa 

values are sampled, up to 250 seconds); (ii) the simulated signal is sampled every 2.1 seconds, 

rather than as an ideal continuous curve. Given a total of twelve free parameters in the uL-AIF 

approach, it is not surprising that the tissue CA concentration vs. time curve is insufficiently 

informative to support the simultaneous estimation of all the parameters defining both the fully 

parameterized, voxel-specific uL-AIFs and the tracer kinetic model. This effect is visually 

demonstrated by the PDFs for the CTUM’s three free parameters in Figures 2d - f (red). When the 

uL-AIF is employed, the PDFs for the CTUM’s three free parameters are low and wide, indicating 

poor parameter estimation, despite the small systematic deviations in the residual, i.e., good 

modeling in terms of Chi-square (Figure 2b). Here, we highlight that the Bayesian-based data 

analysis approach described herein affords a posterior PDF, rather than a single parameter value, 
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for each of the estimated parameters and thus, importantly, provides uncertainties (i.e., the width 

and shape of the PDFs) for all results. 

Upon constraining the voxel-specific local-DCE-AIF model with parameters extracted from the 

R-AIF, the accuracy and precision of 𝑃𝑆, 𝑣𝑝, and 𝐹𝑝 are all significantly improved compared to 

the use of the uL-AIF model (see Supplementary Figure S2). Applying this cL-AIF approach to 

the cervical cancer DCE-MRI data, Figures 2a - c show improved modeling (smaller residuals) 

compared to the direct use of the R-AIF. Also, the kinetic parameters (𝑃𝑆, 𝑣𝑝, and 𝐹𝑝) were all 

well resolved (Figures 2d - f). Consistent with previous DCE-MRI [10] and DSC-MRI [12, 13] 

reports, blood plasma flow was underestimated when the R-AIF was employed (see 

Supplementary Table S3). Note that the values of 𝑣𝑝 estimated by both approaches are high, which 

is likely due to the physiological assumptions/constraints inherent in the CTUM (e.g., negligible 

CA backflux from the extravascular extracellular space to the vascular space, see Soubron et al. 

[4] for details). Indeed, all of the commonly used DCE models, including the extended Tofts 

model, make different underlying assumptions/simplifications that allow, in principle, an 

exceedingly complex tissue response to be approximated by just a few summary parameters. 

Whenever a simplified model is employed for the purpose of stable parametric estimates, biases 

in the estimated parameter values will inevitably be generated by the simplifications/constraints.  

One key feature of essentially all modeling methods is that more complex models are almost 

always able to provide better representations of the data, as determined by Chi-square. However, 

the tradeoff is that more complex models require higher data quality to support stable parameter 

estimation. To further test whether the two added free parameters (∆𝑡 and 𝑠) in the cL-AIF model 

were well supported by the DCE-MRI data, Bayesian model selection, which takes into account 

both the goodness of fit and the complexity of the model, was applied to compare the cL-AIF and 
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R-AIF approaches. As noted earlier, the weight (or penalty) assigned to each parameter derives 

naturally from that parameter’s contribution to the likelihood function of the modeled data (i.e., its 

posterior probability), which distinguishes the Bayesian approach from other constrained 

optimization methods. The cL-AIF approach was preferred relative to the R-AIF approach (bar 

graph in Figure 4) for the clinical cervical cancer DCE-MRI data reported herein.  

From an experimental perspective, we note that the measured R-AIF may contain errors/artifacts 

that affect the amplitude, including inflow and partial volume. Further, limited water exchange 

may also affect the amplitude estimated by the cL-AIF method. Estimates of the amplitude scaling 

factor will be influenced by such model imperfections. Thus, care should be taken in interpretation 

(physiological meaning) of the amplitude of the scaling factor. Like other tracer kinetic model 

parameter estimation methods, the main limitation of our study is the validation of the derived 

physiological parameters in terms of their biophysical “trueness”. For this study, in which inferred 

cL-AIFs were employed, validation against non-MR and non-AIF based methods would be ideal. 

However, this validation is challenging, due to the lack of such gold-standard methods with human 

subjects. Evaluating the clinical utility of the estimated tracer kinetic parameters for diagnosis and 

monitoring/predicting therapeutic response, which are ongoing, may provide a reasonable 

alternative. 

In conclusion, we have shown through in silico simulations that the cL-AIF method provides 

accurate and precise CTUM parameter estimates under contrast-to-noise conditions representative 

of clinical DCE-MRI. Further, when compared against a single, global R-AIF, Bayesian model 

selection chose the voxel-specific cL-AIF, in concert with the CTUM, as the preferred clinical 

cervical cancer DCE-MRI data model. Additionally, as expected with heterogeneous cervical 
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cancer tissue, the estimated, voxel-specific cL-AIFs show local variations in CA bolus amplitude 

and arrival time. 

We note that the cL-AIF approach is not limited to cervical cancer data, nor to the CTUM. Indeed, 

the cL-AIF approach should be widely applicable to other R-AIFs and tracer kinetic models. We 

also highlight that Bayesian-based data analysis affords uncertainties for each estimated parameter, 

via PDFs, and voxel-wise comparison across methods/models, via model selection. (An enabling 

software suite is available at http://bayesiananalysis.wustl.edu/index.html.) Further work is 

required to validate the biophysical trueness of the tracer kinetic parameters estimated with the cL-

AIF approach, likely through the use of preclinical rodent models, and to evaluate whether the 

parameters so obtained provide better diagnosis of pathology and treatment response. 
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Chapter 4 Anti-VEGF Treatment of Frank 

Radiation-Induced Necrosis in Brain1 

4.1 Introduction 

Radiation-induced necrosis (RN), with clinical symptoms mimicking those of tumor recurrence, 

is a late time-to-onset, devastating complication following radiotherapy to the central nervous 

system (1–3). Traditionally, RN has been treated with corticosteroid (4) to control edema and 

lessen inflammatory responses. However, the long-term use of corticosteroid is associated with 

chronic side effects, including hyperglycemia and immunosuppression. Anticoagulants agents 

(e.g., heparin and warfarin) (5) and hyperbaric oxygen therapy (6) have also been used in an 

attempt to heal microvasculature impairments and improve regional cerebral blood supply, but 

results have been inconsistent and disappointing (7). Recently, RN in the brain has been treated 

clinically using bevacizumab (Avastin©, Genentech, San Francisco, CA), an anti-vascular 

endothelial growth factor (VEGF) antibody hypothesized to restore blood brain barrier (BBB) 

function and, thereby, to repair vascular leakage (7–9).  

While bevacizumab improves neurological symptoms and reduces the volume of RN-associated 

vascular leakage and resultant edema detected radiographically, the treatment brings with it 

potentially serious complications (10–12). For instance, bevacizumab treatment increases the risk 

of hemorrhage and retards wound healing by impairing neovascularization, which are critical 

concerns for neurosurgeons (12, 13). Also, Levin et al (14) reported clinically significant toxicity, 

including deep-vein thrombosis, and superior-sagittal-sinus thrombosis, in 6 of 11 bevacizumab-

                                                 
1 All contents in this chapter have been published in Duan, C., Perez-Torres, C.J., Yuan, L., Engelbach J.A., Beeman 

S.C., Tsien, C.I., Rich K.M., Schmidt R.E., Ackerman J.J.H., Garbow, J.R. et al. J Neurooncol (2017). doi: 

10.1007/s11060-017-2410-3. 
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treated patients. Deterioration/rebound phenomena after an initial positive response with/without 

continued therapy have also been documented (15–17). A comprehensive study of the treatment 

effect, validated with gold-standard histology, is warranted. Preclinical models present a unique 

opportunity to study the effects of anti-VEGF antibody treatment on pure RN, independent of the 

potentially obfuscating complications of other pathologies, including recurrent tumors.  

We have previously investigated the mitigative effect of anti-VEGF antibody on RN (18) and the 

specificity of this effect (19), in which the irradiated mice were treated starting from the initial 

appearance of RN on anatomic MR (approximately 4 weeks post irradiation). Motivated by 

ongoing clinical trials using bevacizumab to treat frank RN, in the present study we evaluate the 

anti-VEGF antibody treatment with a preclinical protocol mimicking the more clinically relevant 

situation. Specifically, anti-VEGF antibody treatment is not administered until a moderate-size 

region of focal RN developed at the irradiation site. Both anatomic and diffusion-weighted MRI 

were employed to monitor changes in the lesions as functions of both treatment and time post 

irradiation. We also evaluated the treatment responses using standard haematoxylin and eosin 

(H&E) and immunohistochemical (IHC) stains, an evaluation that is, generally, impractical in 

humans due to the lack of appropriate tissue samples. 

4.2 Material and methods 

4.2.1 Animal Model 

All experiments were approved by the Washington University Animal Studies Committee and 

were performed on six-to-eight week old female BALB/c mice (Harlan/Envigo, Indianapolis, IN, 

USA). A single-fraction, 50-Gy dose of radiation (50% isodose) from the Leksell Gamma Knife 

PerfexionTM (Elekta, Stockholm, Sweden) was focused on the cortex of the left hemisphere (n = 
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24). Figure 4.1 illustrates the irradiation scheme. As has been shown previously (18–20), this large, 

single-fraction dose of radiation reproducibly and robustly generates, in all irradiated mice, 

radiation necrosis whose histology recapitulates all of the features of clinical RN. At this dose, 

moderate focal RN can be observed at approximately 8 weeks post irradiation (PIR) on both 

anatomic MRI and histology (20). B20-4.1.1, a murine antibody that recognizes VEGF, and 

GP120:9239, a murine antibody of the same isotype that targets the HIV capsid protein, were 

obtained from Genentech (South San Francisco, CA, USA). At week 8 PIR, mice were randomly 

divided into two groups: (i) an anti-VEGF group, treated with B20-4.1.1 and (ii) an isotype-control 

group, treated with GP120:9239. Each antibody was administrated intraperitoneally at 10 mg/kg 

twice weekly until week 12 PIR. To minimize the acute effect of blocking VEGF activity on 

permeability and therefore contrast-agent extravasation, all MRI scans were performed two days 

following a treatment. 

 

Figure 4.1: Illustration of the Gamma Knife irradiation scheme Yellow indicates isodose, while 

green indicates 25% isodose. 

4.2.2 Magnetic Resonance Imaging 

Images were acquired with a 4.7-T small-animal Agilent/Varian (Santa, Clara, CA) DirectDriveTM 

scanner using an actively decoupled transmit (volume, 9-cm inner diameter) and receive (surface, 

1.5-cm outer diameter) coil pair. Mice were placed on a warm water pad and anesthetized with 
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isoflurane/O2 (1% isoflurane) throughout the experiment. Before loading into the magnet, mice 

were given an intraperitoneal injection of 0.25 mL MultiHance (gadobenate dimeglumine; Bracco 

Diagnostics, Princeton, NJ) contrast agent, diluted 1:5 in sterile saline. Post-contrast T1-weighted 

(T1W, TR/TE = 650/16 ms) and T2-weighted (T2W, TR/TE = 1500/50 ms), spin-echo transaxial 

images were acquired every other week from week 4 PIR to week 12 PIR. A total of 21 contiguous 

slices with 0.5 mm thickness and 15 × 15 mm2 field of view (128 × 128 matrix) were collected. 

Diffusion-weighted images (DWI) were acquired at week 8 PIR (pre-treatment) and week 12 PIR 

(post-treatment) employing a diffusion weighted spin-echo sequence. Three separate diffusion 

datasets with the diffusion-encoding gradient applied along three orthogonal directions (b = 1000 

s/mm2), and a reference dataset, without diffusion gradient (b = 0), were acquired for each animal 

with the same field of view as the post-contrast T1W and T2W images.  

4.2.3 Data Analysis 

RN volumes were derived from both post-contrast T1W and T2W images, as previously described 

(21), using custom-written Matlab software (The Mathworks, Natick, MA). Briefly, each mouse 

brain was divided along the midline into left (irradiated) and right (non-irradiated) hemispheres. 

The intensity of each pixel in the left hemisphere was normalized by the average intensity of 25 

pixels (5 × 5 square) surrounding its mirror-image pixel in the right hemisphere. The lesion 

volumes were then determined via a threshold segmentation algorithm, in which areas of the left 

hemisphere brighter than the 95th percentile of the right hemisphere (i.e., an intensity threshold of 

roughly 1.4x that of the mean normalized pixel intensity) were defined as lesions. In addition, 

areas darker than the 95th percentile of the right hemisphere (i.e., a threshold of roughly 0.6) were 

also classified as lesions to account for hypo-intense regions caused by hemorrhage. For DWI 

experiments, apparent diffusion coefficient (ADC) maps were calculated as the average of the 
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diffusion coefficients calculated from the three separate diffusion datasets and the reference 

dataset. For both groups, RN lesion ROIs were defined on the post-contrast T1W images at week 

8 PIR and overlaid onto the ADC maps. Each week-12 PIR image was co-registered (affine 

transformation to allow for possible scaling changes caused by brain swelling) to its corresponding 

week-8 PIR image. The same ROI drawn in week 8 was then overlaid onto the corresponding 

week-12 image. The median value for the ADC across the ROI was calculated for comparison 

between pre- and post-treatment datasets. Statistical analyses for both RN volumes and median 

ADCs were performed using a paired-sample, two-sided t-test.  

4.2.4 Histology and IHC 

All mice were sacrificed immediately after the last imaging time point (week 12 PIR) and 

intracardially perfused with 1% phosphate-buffered saline (PBS, PH = 7.4) and 10% formalin. 

Mice heads were dissected and immersed in formalin for 24 hours. Brains were removed from the 

skulls and a 3-mm thick transaxial block, centered at the irradiation site (~3 mm behind the 

bregma), was obtained for each brain. The blocks were then processed through graded alcohols 

and embedded in paraffin. All paraffin- fixed blocks were sectioned from their centers at a 

thickness of five microns. Tissue sections were stained with haematoxylin and eosin (H&E) 

according to standard protocols. Immunohistochemical staining (IHC) for both VEGF and HIF-

urers’ protocols. Antigen retrieval was performed with 

citrate buffer (pH = 6.8) at 70°C overnight following one-hour non-specific blocking. Rabbit anti-

VEGF (orb11553, Biorbyt, Cambridge, UK) at 1:500 and Rabbit anti-HIF- -479, Novus 

Biotechnology, Littleton, CO, USA) at 1:300 were used as primary antibodies at 4°C overnight, 

and diaminobenzidine (DAB) staining was performed using the Histostain Plus Broad System kit 

(Invitrogen, Frederick, MD, USA). All sections were incubated with a broad-spectrum secondary 
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antibody for one hour and with horseradish peroxidase streptavidin (HRP-streptavidin) for 30 

minutes. Staining was visualized with a DAB precipitation reaction. Histological slides were 

examined with the Hamamatsu NanoZoomer whole-slide imaging system (Hamamatsu, 

Hamamatsu City, Japan).  

4.3 Results 

RN volume is decreased after anti-VEGF antibody treatment 

Both the anti-VEGF antibody-treated and isotype-control antibody-treated mice were imaged 

biweekly from weeks 4 to 12 PIR. Figure 4.2 shows representative post-contrast T1W and T2W 

images for both groups at week 8 (pre-treatment) and week 12 (post-treatment) PIR. RN lesions 

appear bright in these images. Note that anti-VEGF treatment reduced swelling (smaller brain 

sizes), while the brains continued to swell for the isotype-control group. Post-contrast, T1W-

derived lesion volumes decreased after anti-VEGF treatment from 51.3 ± 19.0 to 24.6 ± 14.8 mm3 

(P<0.001), while the lesion volumes of the isotype-control antibody treated group increased from 

55.4 ± 27.0 to 101.9 ± 42.9 mm3 (P<0.001). Similarly, T2W-derived lesion volumes decreased 

after anti-VEGF treatment from 45.9 ± 15.5 to 21.7 ± 13.5 mm3 (P<0.001), while the lesion 

volumes of the isotype-control group increased from 40.5 ± 15.8 to 84.9 ± 28.4 mm3 (P<0.001). 

Note that T2W-derived lesion volumes are slightly smaller than post-contrast T1W-derived 

volumes, consistent with results reported previously (19).  
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Figure 4.2: Anti-VEGF treatment response detected by anatomic MRI. The top panels show images 

at week 8 PIR (pre-treatment) and week 12 PIR (post-treatment) for one representative mouse in 

both isotype-control and anti-VEGF groups. The bottom panels are plots of MR-derived lesion 

volumes (mean ± SD, n = 12) vs. time after irradiation for both groups (black, isotype-control 

group; gray, anti-VEGF group). “***” indicate P<0.001 as calculated by a paired-sample t-test. 

ADC is reversed after the treatment 

Diffusion-weighted images were collected at weeks 8 and 12 PIR. Figure 4.3 (left) shows ADC 

maps for representative members of both groups. Compared to the contralateral side, the RN lesion 

demonstrates abnormally high ADC, as described previously (21). Boxplots in the right panel of 
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Figure 4.3 show that median ADCs across the lesion decreased from 0.95 ± 0.07 to 0.73 ± 0.04 

m2/ms (P<0.001) for the anti-VEGF treated mice, while the median ADCs for the isotype-control 

group remain unchanged. For reference, the ADC for normal brain (0.68 ± 0.02 m2/ms) is 

computed from ROIs drawn in the contralateral hemisphere. For this healthy brain-tissue reference 

ADC measurement, only contralateral regions of anti-VEGF-treated animals are included, to avoid 

possible contamination from contralateral lesions observed previously in a small number of non-

treated mice at late time points (22).  

 

Figure 4.3: Anti-VEGF treatment response detected by diffusion-weighted MRI.  The left panels 

display representative ADC maps. Boxplots (n = 9), on the right, show median ADCs across the 

lesions. The contralateral group represents normal brain ADCs. “***” and “ns” indicate 

P<0.001 and no significance, respectively. 

RN is not completely resolved histologically after treatment 

To validate the treatment responses observed by MRI, standard H&E staining of brain tissue was 

performed for each mouse. Consistent with the clinical scenario, H&E staining of lesions in the 

isotype-control group display all of the classic RN-related pathologies, including telangiectasia, 

hyalinization, fibrinoid vascular necrosis, hemorrhage, and tissue loss (Figure 4.4, left panel). 
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These histologic features, though reduced in extent, are also observed in the brains of the anti-

VEGF antibody treated mice (Figure 4.4, middle panel). In addition, large areas of focal 

mineralization (dystrophic calcification) were observed in roughly half of the anti-VEGF treated 

mice (Figure 4.4, right panel), while none of the isotype-control antibody treated brains showed 

any mineral deposits.  

 

Figure 4.4: Anti-VEGF treatment as shown by H&E.  Representative 2x (top) and 20x (bottom) 

H&E-stained slides for one isotype-control antibody treated mouse (left) and one anti-VEGF 

antibody treated mouse, with two different magnified areas (middle and right, respectively) at 

week 12 PIR. Both groups show histologic features that are characteristic of radiation necrosis, 

including hemorrhage, telangiectasia, loss of tissue, and neuronal necrosis. Note the large area 

of focal calcification (black arrowhead) in the bottom right panel.  

VEGF and HIF-1𝛼 remain upregulated after treatment 

Immunohistochemistry was performed to evaluate the expression levels of VEGF and HIF-1, a 

well-known transactivator of VEGF, following anti-VEGF antibody treatment, for all mice in both 

groups. As a negative control, the same IHC staining protocols were also performed on non-

irradiated, age-matched female mice (Figure 4.5, left panel). As expected, for the necrotic tissue, 

Figure 4.5(middle panel) shows that both VEGF and HIF- -
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control group, especially along the walls of the dilated blood vessels. However, despite the anti-

VEGF antibody treatment and less RN-associated pathologies shown in Figure 4.4, both VEGF 

and HIF-1 remained upregulated for the anti-VEGF group (Figure 4.5, right panel). 

 

Figure 4.5: Anti-VEGF treatment response as shown by immunohistochemistry.  Representative 

60x VEGF (top) and HIF-1 (bottom) staining for non-irradiated (left), isotype-control treated 

(middle) and anti-VEGF treated (right) mice. Brown indicates positive staining for both VEGF 

and HIF-1. Note, in particular, the dark brown staining along the dilated vessel walls.  

4.4 Discussion 

Cerebral radiation necrosis can be a serious consequence following radiotherapy. Traditional 

treatments of RN, including corticosteroids and hyperbaric oxygen, are associated with significant 

toxicity and limited efficacy (23). Recently, multiple groups have investigated the treatment effect 

of anti-VEGF antibody (i.e., bevacizumab), which blocks VEGF from reaching its capillary target 

and is, thus, hypothesized to reduce vascular leakage and associated brain edema, on radiographic 

volumes of RN clinically (7–10). The work presented herein is distinct from prior clinical studies 

in that the Gamma Knife mouse RN model is a single hemisphere radiation injury model, which 
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allows (i) direct comparisons with the non-irradiated hemisphere and (ii) histological validations 

that are impractical for clinical cases. The model is also independent of potential complications 

arising from other pathologies, including recurrent tumor.  

Consistent with prior clinical investigations (7–10), anti-VEGF treated mice show remarkable 

decreases of RN lesion volume, detected radiographically on both post-contrast T1W and T2W 

images (Fig. 1). This finding is correlated with the smaller lesion volume, and less vasogenic 

edema, on H&E-stained brain tissue in treated group vs. untreated group. The swelling of the 

irradiated brains is also reduced by the treatment. In addition to anatomic images, diffusion MRI, 

whose metrics reflect the barriers and restrictions to the incoherent displacement of water 

molecules, was also investigated. We showed that the abnormally high ADC associated with RN 

was reduced to more normal levels (Fig. 2), an effect that is likely due to decreased vasogenic 

edema and brain swelling.  

Building upon the results of our previous work, in which anti-VEGF treatment was initiated at the 

initial radiologic appearance of RN, the current study addresses the more clinically relevant 

problem in which treatment is not started until after the development of regions of frank RN. While 

in our earlier study the treated mice displayed almost no visible tissue damage by histology (H&E), 

typical RN histologic pathologies and large areas of focal mineral deposits are present after the 

anti-VEGF treatment in the current study. Jeyaretna et al (15) reported a worsening clinical 

scenario after bevacizumab treatment of histologic diagnosis-confirmed RN. In a follow-up, 

image-guided surgical biopsy, large areas of focal dystrophic calcification were observed in the 

lesion. It was hypothesized the prolonged anti-VEGF treatment resulted in overpruning of at-risk 

blood vessels, leading to vascular deficiency, which eventually exacerbated the lesion. The 
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connection between vascular deficiency and the observed dystrophic calcification is unclear and 

requires further study.  

The pathophysiology of RN remains incompletely understood. The current consensus views RN 

as a continuous, complex process from endothelial-cell dysfunction to tissue hypoxia and necrosis, 

with concomitant upregulation of both HIF-1 and VEGF (24, 25). As expected, we found that 

both VEGF and the HIF- -control group, consistent with limited 

clinical biopsy results. Both VEGF and HIF-1 remain upregulated in the treatment group, which 

may contribute to the risk of recurrence of RN lesions. This finding is consistent with the 

mechanism of action of the anti-VEGF antibody, which binds and, thus, blocks the function of 

VEGF and its bioactive fragments, but does not reduce/eliminate VEGF expression. In this regard, 

directly targeting of its upstream transactivator, HIF-1, may represent a feasible approach for 

reducing the expression of VEGF. On the other hand, VEGF is a homodimeric glycoprotein that 

acts via endothelial-specific receptor tyrosine kinases (e.g., VEGFR2). Thus, blocking these 

receptors may also help to reduce RN recurrence despite the continued upregulation of VEGF 

itself. 

The observed reduction in radiographically detected lesion volume in mice is consistent with the 

improvement in clinical symptoms seen in RN patients following treatment with bevacizumab 

(14). However, neither post-contrast T1W nor T2W imaging contrasts provide direct readouts of 

RN pathologies. Post-contrast T1W is sensitive to vascular permeability, while T2W is sensitive 

to the brain edema resulted from the vascular leakage. It is not surprising that the anti-VEGF 

antibody, which mediates the BBB dysfunction, reduces the lesion volumes derived from these 

images. However, further tissue changes/damage within the necrotic area, including neuronal 
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necrosis and vascular necrosis, may be permanent and irreversible. Such pathology could be 

“invisible” on these images after anti-VEGF treatment.  

One major limitation/side effect of anti-VEGF antibody treatment is that it impairs 

neovascularization and retards wound healing. Consequently, the timing of surgery in 

neurosurgical patients treated with anti-VEGF therapy must be carefully considered (12). 

Additionally, although this study demonstrated that anti-VEGF antibody treatment can reduce 

radiographically observed RN lesion volume, it did not address important questions about optimal 

dosing schemes and treatment periods. The use of a lower antibody dose and shorter treatment 

periods could potentially minimize side effects and improve patient care. 

In summary, we found anti-VEGF antibody decreased RN lesion volumes on post-contrast T1W 

and T2W in a Gamma Knife mouse RN model. In addition, the abnormally high RN ADCs were 

reduced to values typical of normal brain. However, the lesions were not completely resolved 

histologically. The subsequent calcification and the continued upregulation of VEGF and HIF-1α 

merit further clinical and pre-clinical investigation. More effective treatments, possibly aimed at 

targets either upstream (e.g., HIF-1α) or downstream (e.g., VEGFR2) of VEGF, and monitoring 

of the neurological behavior of irradiated animals, pre- and post-treatment, will be the subject of 

future studies.  
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Chapter 5 Irradiated Brain Parenchyma 

Promotes Enhanced Tumor Growth and Invasion 

in a Mouse Model of Recurrent Glioblastoma1 

5.1 Introduction 

Glioblastoma (GBM) is a highly aggressive and incurable malignant neoplasm of the brain. 

Together with surgical resection and chemotherapy, radiation therapy (RT) is a central component 

of the standard treatment for patients with newly diagnosed GBM (1–3). Advances in RT over the 

past decade have allowed more accurate delivery of radiation, and, thus, improved patient 

outcomes (4–6). Nonetheless, GBM tumors invariably recur, the vast majority within the first year 

(7) and within two centimeters of the RT treatment field (8,9). 

Much of the attention regarding GBM recurrence has focused on glioma stem cells (GSCs), which 

are resistant to radiation (10,11), have increased DNA damage checkpoint and repair capacity (10), 

and exhibit lower rates of apoptosis (12–14). Nevertheless, radiation affects not only tumor cells, 

but also the tumor microenvironment (TME), and especially tumor-associated microglia and 

macrophages (15) that may contribute significantly to the resistance and recurrence of gliomas 

(16). Indeed, emerging evidence indicates that radiotherapy effects extend beyond cancer cell 

death (17). Irradiation induces vascular, stromal, and immunological changes in the TME that may 

enhance the migration and invasiveness of irradiated tumor cells (18). In this regard, several factors 

have been identified that modulate interactions between tumor and TME following RT (19–22). 

These studies, involving irradiation of both tumor cells and the associated tumor 

                                                 
1 This chapter represents a manuscript that’s in preparation.  

(Chong Duan, Ruimeng Yang, Liya Yuan, John A. Engelbach, Christina I. Tsien, Keith M. Rich, Sonika Dahiya, 

Joseph J.H. Ackerman, and Joel R. Garbow) 
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microenvironment, demonstrated that the radiation modified both the phenotype of the tumor cells 

and their microenvironment. The increased infiltration of F98 tumor cells implanted four hours 

following whole-brain irradiation in Fischer rats, with concomitant upregulation of inflammatory 

factors IL-1, IL-6, and TNF- has been recently described (23,24).  

In the present study, we investigated the effects of delayed radiation-induced changes in healthy 

brain parenchyma on the growth of naïve (i.e., non-irradiated) tumor cells, cells having no 

radiation-induced genetic or molecular changes. Tumor growth was measured by magnetic 

resonance imaging (MRI) and animal survival assessed by monitoring weight loss, with findings 

supported by histology (H&E staining). In mice in which naïve tumor cells were implanted six 

weeks post irradiation, we observed a remarkable increase in lesion mass, with a corresponding 

decrease in survival. Tumors growing in previously irradiated brain parenchyma demonstrated 

large regions of hemorrhage and necrosis, consistent with histologic features observed in patients 

with recurrent high-grade tumor. This novel model of recurrent tumor can serve as a versatile 

platform for a variety of fundamental and translational studies to evaluate quantitatively the factors 

promoting tumor growth in previously irradiated tissue and to identify and test potential new 

therapeutics. 

5.2 Methods and Materials 

Animals 

All experiments were performed in accordance with the guidelines of Washington University’s 

Institutional Animal Care and Use Committee and were approved by that committee. 7- to 8-week-

old female BALB/c mice (Harlan Laboratories, Indianapolis, IN), housed five per cage in a light- 
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and temperature-controlled facility, were used in this study. These mice were observed daily to 

ensure that interventions were well tolerated.  

GammaKnife irradiation Procedure 

Mice were anesthetized and restrained on a custom-built platform mounted to the stereotactic 

frame that attaches to the treatment couch of the Leksell GammaKnife (GK) PerfexionTM (Elekta, 

Stockholm, Sweden), a device used for stereotactic radiosurgery of patients with malignant brain 

tumors. Mice were anesthetized with a mixture of ketamine (25 mg/kg), acepromazine (5 mg/kg), 

and xylazine (5 mg/kg), injected intraperitoneally five minutes before the start of irradiation. 

Single fractions of 30 Gy or 40 Gy of radiation (50% isodose), generated using the GK’s four mm 

collimator, were focused on the left cortex at a site ~ 3 mm posterior to bregma.  

Tumor implantation 

Tumor cells were implanted in mice, as described previously (25). Briefly, mice were anesthetized 

with isoflurane and secured in a stereotactic head holder. Murine DBT glioblastoma cells (26) 

were implanted (~10,000 cells suspended in 10 μL per mouse) over three minutes at a site 2-mm 

posterior and 3-mm to the left of bregma, 2-mm below the cortical surface.  

Experimental scheme 

These experiments were designed to assess tumor growth and mice survival in the setting of 

previously irradiated brain tissue. Three cohorts of mice (n=5 each) received a single fraction dose 

of 0, 30, or 40 Gy (50% isodose), respectively, of GK irradiation. At these radiation doses, no 

frank radiation necrosis is observed, visualized by either anatomic MR imaging or standard H&E 

staining, up to 20 weeks post irradiation (27). DBT tumor cells were implanted into the ipsilateral 

hemisphere six weeks post-irradiation. 
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Magnetic resonance imaging 

Images were collected with a 4.7-T small animal MR scanner (Agilent/Varian, Santa Clara, CA) 

equipped with a DirectDriveTM console. The scanner is built around a 33-cm, clear-bore magnet 

(Oxford Instruments, Oxford, UK), with 21-cm inner diameter, actively shielded Agilent/Magnex 

gradient coils (maximum gradient, 28 G/cm; rise time, approximately 200 ms), and model A-240 

gradient amplifiers (300 V, 300 A; Oy International Electric Company, Helsinki, Finland). 

MRI data were collected using an actively decoupled coil pair: a 9-cm inner diameter volume coil 

(transmit) and a 1.5-cm outer diameter surface coil (receive). Before all imaging experiments, mice 

were anesthetized with isoflurane [/O2 (2% (vol/vol)) and maintained on isoflurane/O2 (1% 

(vol/vol)] throughout the experiment. Mice were restrained in a laboratory-built, three-point, 

Teflon head holder and were placed on a water pad with circulating warm water to maintain body 

temperature at approximately 37 ± 1°C. Before being placed into the magnet, each mouse was 

injected intraperitoneally with 0.25 mL of MultiHance (gadobenate dimeglumine; Bracco 

Diagnostics Inc, Princeton, NJ) contrast agent, diluted 2:10 in sterile saline.  

Mice were imaged every three days, starting ten days post-implantation, until they were sacrificed, 

or died due to disease progression. Mice were sacrificed if they lost more than 20% body weight 

or suffered obvious behavioral deficits (e.g., ataxia). Post-contrast T1-weighted images were 

acquired with the following parameters: time-to-repetition (TR) = 650 ms, time-to-echo (TE) = 20 

ms, number of transient (NT) = 4, field of view = 15 x 15 mm2, matrix size = 128 x 128, slice 

thickness = 0.5 mm, 21 slices to cover the whole brain.  

Histology (H&E staining) 
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Immediately after the last MRI session, all the mice were sacrificed and intracardially perfused 

with 1% phosphate-buffered saline (PBS, pH = 7.4) and 10% formalin. Mice heads were dissected 

and immersed in formalin for 24 hours. Brains were removed from the skulls and a 2-mm thick 

transaxial block, centered at the irradiation site (~3 mm behind the bregma), was obtained for each 

brain. The blocks were then processed through graded alcohols and embedded in paraffin. All 

paraffin-fixed blocks were sectioned from the center, at a thickness of five microns. Tissue sections 

were stained with hematoxylin and eosin (H&E) according to standard protocols.  

Data analysis and statistics 

Tumor volumes were derived using MATLAB (The Mathworks, Natick MA), in which regions of 

interest (ROI) for the tumor lesion were drawn manually on the post-contrast T1-weighted images 

by an experienced radiologist (R.Y.). In calculating volumes, hypointense regions within the tumor 

were also treated as tumor lesions. MR-derived lesion volumes were calculated as the sum of the 

lesion voxels multiplied by the voxel volume. A repeated measures One-Way ANOVA was used 

to compare tumor volumes across groups. Mortality was compared among 0-, 30-, and 40- Gy GK-

irradiation dose groups using Kaplan-Meier analysis of survival followed by a two-tail log-rank 

(Mantel-Cox) test. Graphs and statistical analyses were performed in Prism (GraphPad Software, 

San Diego, CA) and MATLAB. 

5.3 Results 

Irradiated microenvironment leads to aggressive tumor growth patterns on anatomic MRI  

DBT-cell tumors were implanted into the brains of irradiated mice (30 or 40 Gy) six weeks post-

irradiation. Anatomic MRI and histology (H&E staining) showed no structural changes following 

irradiation. DBT tumors grew markedly more rapidly, with significant contrast enhancement and 
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necrosis, compared to the control group (i.e., DBT-cell tumors implanted into non-irradiated 

“normal” brains), Figure 5.1. Tumors implanted in radio-modulated brains showed markedly 

enhanced tumor growth patterns. Furthermore, tumor contrast enhancement patterns were far more 

necrotic and infiltrative in the irradiated tumor microenvironment, whereas the control group had 

a different, more homogenous pattern of enhancement, with well-circumscribed tumors. The hypo-

intense regions in the tumor centers for the irradiated groups are likely due to tumor necrosis and 

hemorrhage (see the histological results below). 

 

Figure 5.1: Representative, post-contrast, transaxial T1-weighted images of mice with DBT 

tumors post-implantation day 17. Six weeks prior to tumor-cell implantation, all mice in each 
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group received a single-fraction dose of 0 (no irradiation), 30 or 40 Gy of GK irradiation. Each 

row displays three contiguous image slices, chosen to display approximately the same anatomic 

region of the brain for each animal. Note the hypo-intense regions in the centers of the tumors for 

the irradiated groups (middle and bottom rows). 

Irradiated microenvironment leads to aggressive tumor growth patterns with shortened overall 

survival 

Figure 5.2A shows anatomic MRI tumor/lesion volumes, derived from post-contrast T1-weighted 

images, post-implantation D17, for mice receiving 0-, 30-, or 40-Gy GK irradiation six weeks prior 

to tumor-cell implantation. Both 30- and 40-Gy irradiated groups demonstrated much larger tumor 

volumes compared to the Non-IR group (P<0.05 for 0-Gy vs. both 30- and 40-Gy groups).  

 

Figure 5.2: Prior Radiation Impacts Tumor Growth and Mouse Survival. Panel A shows lesion 

volumes, derived from post-contrast, T1-weighted MR images, at post-implantation day 17, for 

mice irradiated with 0 (no irradiation), 30, or 40 Gy (50% isodose) six weeks prior to tumor 

implantation (n = 5 for each group). Tumor growth is significantly enhanced in previously 

irradiated brains, compared with non-irradiated controls. Data are shown as mean ± standard 

deviation. Panel B shows the Kaplan-Meier survival curves for the same three groups of mice. 

Survival in mice irradiated with 40-Gy irradiation prior to tumor implantation is significantly 

shorter than that of the Non-IR group (P<0.05). There is no statistically significant difference 

between the Non-IR and the 30-Gy groups (P=0.10). 
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Mice with glioblastomas implanted in non-irradiated vs. radio-modulated brains were compared 

for survival. Survival data are shown in Figure 5.2B for these same three cohorts of mice. Our 

previous results showed that no frank RN is observed by either anatomic MR or standard H&E 

staining following either 30- and 40-Gy GK irradiation (27). However, DBT-cell tumor growth in 

the 40-Gy irradiated group was associated with a significant decrease in median survival compared 

with the Non-IR controls (17 vs. 24 days, P<0.05). There was no statistically significant difference 

observed between the 30-Gy compared to the Non-IR or 40-Gy tumor groups (P=0.10), likely due 

to the modest number of animals, n = 5, in each cohort. Together, these observations suggest that 

irradiation of the microenvironment may facilitate aggressive tumor growth with associated 

decreased survival in mice.  

Irradiated microenvironment leads to aggressive tumor growth as noted on standard H&E 

staining 

Mice with glioblastomas implanted in non-irradiated or radio-modulated brains were compared 

for changes in histology. Figure 5.3 shows standard H&E staining for three representative mice, 

which received 0- (Non-IR, left), 30-  (middle) or 40-Gy (right) GK irradiation six weeks prior to 

tumor cell implantation, respectively. The Non-IR group was a control group, while the 30- and 

40-Gy irradiated groups had tumors implanted in previously irradiated brain tissue absent the 

appearance of frank radiation necrosis. Employing low optical resolving power (2x, top row), 

tumors implanted in previously irradiated brain tissue demonstrated an aggressive tumor growth 

pattern, with large, mixed areas of hemorrhage and tumor necrosis. Under higher optical resolving 

power (40x, bottom row), tumors growing in a previously irradiated tumor microenvironment 

showed prominent histologic changes, including tumor-cell loss, tumor-cell necrosis, and 

hemorrhage, that were not seen in the control group.  
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5.4 Discussion 

Despite significant treatment advances in the past decade, the overall cure rate for GBM remains 

extremely poor (2). While adjuvant radiotherapy significantly improves local tumor control, 

recurrences within a previously irradiated treatment field are highly resistant to retreatment 

therapies and are associated with higher risk of local invasion and poor prognosis (28). The 

majority of relapses following irradiation occur within 2-3 cm of the enhancing tumor volume (i.e., 

the target volume of RT and radio-modulated brain parenchyma) (29,30). 

 

Figure 5.3: Prior irradiation of the brain with 30 Gy (middle column) or 40 Gy (right column) of 

GK radiation has a substantial effect on tumor growth patterns and progression histologically, 

compared to the control, non-irradiated brain (left column). Lesions arising tumors implanted into 

previously irradiated brain (middle, right columns) are significantly more vascular and necrotic 

than those in non-irradiated brain (right column). Scale bar: 2.3 mm (top row) and 100 

(bottom row).  

Numerous studies focused on the response of tumor to radiation have identified radiation-induced 

tumoral changes as a possible driving force for the enhanced invasiveness and proliferation of 

recurrent tumor, contributing to resistance and, ultimately, death. It has been generally assumed 
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that tumor repopulation and progression after radiotherapy are due to the presence/selection of 

radiation-resistant tumor cells. Wide-Bode, et al. (20), demonstrated that partial brain radiotherapy 

may promote migration of large numbers of tumor satellites in the brain and increased invasiveness 

of glioma cells via enhanced v3 integrin expression, and an altered profile of matrix 

metalloproteinase-2 and -9 expression. Wang, et al. (21), investigated the invading tumor front 

following radiotherapy, and concluded that tumor-secreted stromal cell-derived factor-1, which 

regulates macrophage recruitment and vessel vascularization, is a potential key factor responsible 

for increased tumor invasiveness and proliferation, leading to treatment resistance. Brown, et al. 

(31), used a partial RT field to simulate residual tumor at the edge of the treatment field, but limited 

animal survival rates precluded characterization of the delayed, late radiation effects to the 

microenvironment.  

In contrast to these previous preclinical animal models, which involved delivery of radiation to 

established tumors, our model simulates the delayed effects of radiation therapy on the 

microenvironment that lead to aggressive, infiltrative tumor growth patterns and likely contribute 

to treatment resistance in patients. The development and characterization of a novel, animal model 

that simulates recurrent glioma tumor growth patterns in radiation-modulated brain will allow us 

to evaluate the potential cellular and molecular basis for glioma tumor resistance. 

In the present study, we demonstrated that irradiation to the microenvironment leads to a 

remarkable pattern of aggressive, infiltrative tumor regrowth. Our data showed that DBT-cell 

tumors grew much more rapidly in the irradiated tissue, resulting in increased lesion mass 

associated with significantly decreased survival (Figures 1 & 2). Anatomic MRI and histologic 

studies confirmed aggressive growth patterns for tumor cells implanted into previously irradiated 
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brain parenchyma. These tumors developed large areas of hemorrhagic necrosis and leaky 

vasculature, with substantial contrast enhancement, consistent with the features of recurrent high-

grade tumor in patients. In contrast to the well-circumscribed tumor edges observed in the non-

irradiated, control group, tumors in the irradiated microenvironment also developed increased 

tumor satellites (Figure 3), an indicator of increased invasiveness. Collectively, these data suggest 

that we have developed a model of recurrent GBM that simulates delayed, radiation-modulated 

alterations in the tumor microenvironment following brain radiotherapy, leading to aggressive, 

invasive tumor regrowth and treatment resistance. 

To date, therapeutic regimens have largely targeted initial (primary) tumor phenotypes, not those 

recurrent phenotypes induced by radiation modulation of the TME. This may explain the failure 

of many potential therapeutic agents to translate successfully from in vitro studies to the clinic. 

Adopting multi-faceted approaches that not only target initial disease, but also anticipate 

subsequent changes in recurrent-tumor phenotype, driven by radiation modulation of the TME, 

may lead to improved patient outcomes.  

In conclusion, our innovative preclinical model simulates the delayed effects of radiation upon the 

microenvironment, leading to aggressive, infiltrative tumor growth and invasiveness, and 

providing new insights into recurrent gliomas. This model can, therefore, serve as a novel platform 

for (i) improving our understanding of the mechanisms of tumor resistance and regrowth in the 

irradiated brain, (ii) developing novel, imaging biomarkers for distinguishing recurrent tumor from 

post-IR treatment effects, and (iii) improving the therapeutic ratio, by developing therapeutic 

strategies in a clinically relevant model that are directly translatable to the clinic.  
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Chapter 6 Summary and Future Research 

6.1 Summary 

The vasculature of tumors is fundamentally different from that of normal tissues. Thus, the 

temporal and spatial variation in the structure of vasculature offers valuable information on 

assessing tumor characteristics and potential treatment responses. In this dissertation, we have 

investigated the use of dynamic contrast-enhanced MRI in measuring vascular perfusion and 

permeability for cancers. In Chapter 2, a Bayesian-probability theory based, data-driven, model 

selection approach was developed for the determination of an optimal model for the 

pharmacokinetic modeling of any given dynamic contrast-enhanced MRI data. It was found that 

highly parameterized, complex models require higher data quality for accurate and stable model 

parameter estimation. In the absence of performing a model-selection calculation, these complex 

models should be employed cautiously. In Chapter 3, a constrained, local arterial input function 

(cL-AIF) model was developed to improve the pharmacokinetic modeling of dynamic contrast-

enhanced MRI data, by accounting the voxel-specific contrast agent bolus arrival-time delay and 

amplitude errors. The cL-AIF method provides accurate and precise vascular parameter estimates 

under signal-to-noise conditions representative of clinical DCE-MRI. Further, as expected with 

heterogeneous cancer tissue, the estimated, voxel-specific cL-AIF show local variations in contrast 

agent bolus amplitude and arrival time. 

In this dissertation, we have also investigated the radiation treatment effects in brain. Radiotherapy 

is a central component of the standard treatment for patients with cancer. While radiation exerts 

its therapeutic effect by killing tumor cells, increasing evidences demonstrate that radiation 

induces vascular, stromal and immune changes in normal tissue. In Chapter 4, we studied the late 
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time-to-onset radiation-induced necrosis employing a Gamma Knife-enabled animal model. The 

efficacy of anti-vascular endothelial growth factor treatment of frank, developed radiation necrosis 

was evaluated using both MRI and gold standard histology. It was shown that anti-VEGF antibody 

treatment decreased RN lesion volumes on post-contrast T1W and T2W images. In addition, the 

abnormally high RN ADCs were reduced to values typical of normal brain. However, large amount 

of focal calcification were presented in the treated brains, and the expression of VEGF and HIF-

1α were continually upregulated, which merit further clinical and pre-clinical investigation. In 

Chapter 5, we investigated the effects of radiation-modulated brain parenchyma on the growth of 

naïve, non-irradiated tumor cells, in an innovative preclinical model simulating the delayed effects 

of radiation upon the microenvironment. We demonstrated that irradiation to the 

microenvironment leads to a remarkable pattern of aggressive, infiltrative tumor regrowth. This 

model can serve as a novel platform for improving our understanding of the mechanisms of tumor 

resistance and regrowth in the irradiated brain. 

6.2 Future Research 

DCE-MRI with Golden-Angle Radial Sampling 

Dynamic contrast-enhanced MRI continuously acquires T1-weighted images to monitor the 

passage of an intravenously injected, Gd-based, contrast agent bolus. It normally requires the 

determination of an appropriate temporal resolution before the experiments. Recently, Feng Li et 

al. (1) introduced a radial golden-angle k-space data acquisition scheme, together with iterative 

reconstruction procedure on the undersampled time series, for rapid dynamic volumetric MRI. The 

continuous sampling of radial data, with a 111.25⁰ increment, provides relatively uniform coverage 

of k-space with high temporal incoherence. Further, the radial trajectories in k-space is less 

sensitive to periodic (e.g., respirational and cardiac motion) and non-periodic (e.g., patient 
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movement) motion. Most importantly, this approach enables retrospective reconstruction of image 

time series by re-grouping the radial trajectories with arbitrary temporal resolution. Glioblastoma 

DCE-MRI studies employing this sampling technique are currently ongoing in our lab. Besides 

increased motion robustness, this approach also potentially allows to analyze the effects of 

temporal resolution and SNR on the pharmacokinetic parameter estimation in DCE-MRI data 

analysis.  

Characterizing Vascular Properties of Radiation Treatment Effects with DCE-MRI 

In this dissertation, Chapters 2-3 focused on the measurement of vascular properties using DCE-

MRI, while Chapters 4-5 focused on the radiation treatment effects in brain. It seems natural to 

apply DCE-MRI on the current mouse model of radiation treatment effects, as those effects are 

always associated with vascular pathologies. Nevertheless, the application of quantitative DCE-

MRI on preclinical model, especially mouse, is largely hampered by the difficulties in obtaining 

an arterial input function due to the lack of appropriate, well-resolved, arteries within the imaging 

field of view. Future effects will be focused on AIF-free modeling approaches for quantitative 

DCE-MRI, such as the reference region methods introduced by Yankeelov TE, et al.(2). 

Irradiation Dose, Fractionation and Tumor-Cell Implantation Time Point  

In Chapter 4, a single-fraction 50 Gy dose Gamma Knife irradiation was employed to generate the 

late time-to-onset radiation necrosis on a mouse model. In Chapter 5, to investigate the effects of 

radiation-modulated microenvironment, in the absence of radiation necrosis, on the growth of 

naïve glioblastoma cells, a single-fraction 30 or 40 Gy GK irradiation were used. Outstanding 

questions remain regarding whether (and how) the Gamma Knife irradiation dose and fractionation 

scheme affect the radiation treatment effects, including the development of radiation necrosis. 

Specifically, many studies have demonstrated that irradiation of the vasculature leads to dose-
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dependent structural destruction of blood vessels (3,4). For our preclinical investigation, a high-

end dosing scheme (i.e., single-fraction of high dose) was chosen because rodents are widely 

known to be more radioresistant than humans. Thus, it will be an interesting follow-up to study 

the radiation treatment effects under different irradiation scheme (total dose and fractionation). 

Further, in Chapter 5, non-irradiated glioma cells were implanted into the irradiated brain at six 

weeks post-irradiation. The radiation-modulated brain parenchyma dramatically enhanced the 

development of naïve glioma cells. Critical question also remain regarding the tumor-cell 

implantation time point (e.g., when the tumor-growth promoting effect of irradiated brain arises 

and how long it lasts post-irradiation).  

Therapeutic Agents Targeting Specifically at Tumors Developed in Irradiated Brain 

In Chapter 5, we introduced a novel animal model simulating tumors developed in radiation-

modulated tumor microenvironment. To date, therapeutic regimens have largely targeted initial 

(primary) tumor phenotypes, not those recurrent phenotypes induced by radiation modulation of 

the tumor microenvironment. This may explain the failure of many potential therapeutic agents to 

translate successfully from in vitro studies to the clinic. Adopting multi-faceted approaches that 

not only target initial disease, but also anticipate subsequent changes in recurrent-tumor 

phenotype, driven by radiation modulation of the TME, may lead to improved patient outcomes. 

The innovative preclinical model, developed in Chapter 5, simulates the delayed effects of 

radiation upon the microenvironment. This model can, therefore, serve as a novel platform for 

developing and evaluating therapeutic strategies in a clinically relevant model for recurrent tumors 

developed in irradiated tumor microenvironment.  
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Appendix A: Hyperthermic Laser Ablation of 

Recurrent Glioblastoma Leads to Temporary 

Disruption of the Peritumoral Blood Brain 

Barrier1 

A.1 Introduction 

Glioblastoma (GBM) is the most common and lethal malignant brain tumor in adults (1). Despite 

advanced treatment, median survival is less than 15 months, and fewer than 5% of patients survive 

past 5 years (2-3). Effective treatment options for recurrent GBM remain very limited and much 

of research and development efforts in recent years have focused on this area of greatly unmet 

needs. Most recurrent tumors develop within the 2-3 cm margin of the primary site and are thought 

to arise from microscopic tumor cells that infiltrate the peritumoral region prior to resection of the 

primary tumor (4). Therefore elimination of micrometastatic GBM cells in this region likely will 

improve long-term disease control.  

Inadequate CNS delivery of therapeutic drugs due to the blood brain barrier (BBB) has been a 

major limiting factor in the treatment of brain tumors. The presence of contrast enhancement on 

standard brain MRI qualitatively reflects a disrupted state of the BBB. For this reason, drug access 

to the viable contrast enhanced tumor rim is likely significantly higher than to the peritumoral 

region, which usually does not have contrast enhancement (5-6). Evidence supporting this 

hypothesis came from studies in which drug levels of cytotoxic agents were sampled in tumors 

                                                 
1 All contents in this chapter have been published in Leuthardt EC*, Duan C*, Kim MJ, Campian JL, Kim AH, Miller-

Thomas MM, Shimony JS, and Tran DD (2016) Hyperthermic Laser Ablation of Recurrent Glioblastoma Leads to 

Temporary Disruption of the Peritumoral Blood Brain Barrier. PLoS ONE 11(2):e0148613. 

doi:10.1371/journal.pone.0148613. (*These authors contributed equally to this work) 
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and the surrounding brain tissue at the time of surgery or autopsy. Drug concentrations were at the 

highest in the enhancing portion of tumors, and then rapidly decreased up to 40 fold lower by 2-3 

cm distance from the viable tumor edge (7-9). Overall, these observations suggest that the BBB 

and its integrity negatively correlate with delivery and potentially therapeutic effects of BBB 

impermeant drugs. 

To circumvent the BBB problem in local drug delivery, recent approaches have focused on 

bypassing it. A previously described method is the use of Gliadel, a polymer wafer impregnated 

with the chemotherapeutic agent carmustine (BCNU) and placed intra-operatively in the resection 

cavity to bypass the BBB. This approach resulted in a statistically significant but modest survival 

advantage in both newly diagnosed and recurrent GBM (10-12). The modest benefit of Gliadel 

could be due to the short duration of drug delivery as nearly 80% of BCNU is released from the 

wafer over a period of only 5 days (13). This observation further supports the notion that the BBB 

is critical to chemotherapy effect. However, Gliadel is not widely utilized as it requires an open 

craniotomy and can impair wound healing. Another approach of bypassing the BBB is the 

convection-enhanced delivery system in which a catheter is surgically inserted into the tumor to 

deliver chemotherapy (14). This procedure requires prolonged hospitalization to maintain the 

external catheter to prevent serious complications and as a result has not been used extensively. 

The role of hyperthermia in inducing BBB disruption has been previously described in animal 

models of CNS hyperthermia. In a rodent model of glioma, the global heating of the mouse’s head 

to 42oC for 30 minutes in a warm water bath significantly increased the brain concentration of a 

thermosensitive liposome encapsulated with Adriamycin chemotherapy (15). To effect more 

locoregional hyperthermia, retrograde infusion of a saline solution at 43oC into the left external 

carotid artery in the Wistar rat reversibly increased BBB permeability to Evans-blue albumin in 



121 

 

the left cerebral hemisphere (16). In another approach, neodymium-doped yttrium aluminium 

garnet (Nd:YAG) laser-induced thermotherapy to the left forebrain of Fischer rats resulted in 

locoregional BBB disruption as evidenced by passage of Evans blue dye, serum proteins (e.g. 

fibrinogen & IgM), and the chemotherapeutic drug paclitaxel for up to several days after 

thermotherapy (17). The effect of hyperthermia on the BBB of human brain has not been 

examined. 

Here we describe an approach to induce sustained, local disruption of the peritumoral BBB using 

MRI-guided laser interstitial thermal therapy, or LITT. The biologic effects and correlation with 

MRI findings of LITT have been studied in both animal and human models since the development 

of LITT over twenty years ago.  A well-described zonal distribution of histopathological changes 

with corresponding characteristic MR imaging findings centered on the light-guide track replace 

the lesion targeted for thermal therapy.  The central treatment zone shows development of 

coagulative necrosis with complete loss of normal neurons or supporting structures immediately 

following therapy, corresponding to hyperintense T1-weighted signal intensity relative to normal 

brain (18-21).  The peripheral zone of the post-treatment lesion is characterized by avid 

enhancement with intravenous gadolinium contrast agents, which peaks several days following 

thermal therapy and persists for many weeks after the procedure.  Gadolinium contrast 

enhancement in the brain following LITT is due to leakage of gadolinium contrast into the 

extravascular space across a disrupted BBB (19-22).  The perilesional zone of hyperintense signal 

intensity of FLAIR-weighted images develops within 1-3 days of thermal treatment and persists 

for 15- 45 days (21).   

We demonstrate that in addition to cytoreductive ablation of the main recurrent tumor, 

hyperthermic exposure of the peritumoral region resulted in localized, lasting disruption of the 
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BBB as quantified by dynamic contrast-enhanced MRI (DCE-MRI) and serum levels of brain-

specific enolase (BSE), thus providing a therapeutic window of opportunity for enhanced delivery 

of therapeutic agents. 

A.2 Material and methods 

Patient Selection 

Adult patients (age ≥ 18 years) with unequivocal evidence of recurrent bevacizumab-naïve, 

histologically confirmed GBM were screened for eligibility to participate in an IRB approved 

protocol. Patients with prior diagnosis of a WHO grade II or III gliomas were eligible if the 

recurrent tumor had radiographic characteristics of a GBM, WHO grade IV.  For these subjects to 

be included a biopsy was obtained immediately prior to LITT and subsequent pathologic analysis 

must have confirmed secondary GBM, WHO grade IV. General characteristics that make the 

lesion(s) favorable to treatment include the following: (a) the lesion(s) is (are) supratentorial and 

accessible from a cephalad approach (i.e., top one third of the head), (b) the lesion(s) is (are) 

unilateral, (c) the lesion(s) is (are) relatively well circumscribed, (d) the volume of lesion(s) can 

be encompassed by two 3-cm cylinders (i.e., 2 treatment trajectories), (e) a safe trajectory can be 

established relative to functional structures (i.e., eloquent cortex and corticospinal tract), and (f) 

the patient’s body habitus can fit into the bore of the MRI. The primary objectives of the protocol 

are to determine MR imaging correlates and serum biomarkers of peritumoral BBB disruption 

after LITT. 

Study design 

The pilot study has 2 main objectives: 1) To determine the safety of LITT in patients with recurrent 

GBM and spatiotemporal MR imaging correlates and serum biomarkers of peritumoral BBB 
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disruption after LITT; and 2) To determine whether treatment with the BBB impermeant 

chemotherapy agent doxorubicin dosed at 20mg/m2 IV weekly for 6 doses during the window of 

post-LITT BBB disruption is safe and will improve local disease control compared to when the 

same agent given during the window of intact BBB. The first 10 patients were assigned to the late 

(starting 6 weeks after LITT) doxorubicin treatment arm so that MRI and serum biomarker 

measurements can be performed without potential confounding effects of chemotherapy. The next 

30 patients are randomized at the ratio of 2 to 1 to either early (starting within 1 week after LITT) 

or late doxorubicin treatment to achieve the final distribution of 20 patients in each arm. Non-

evaluable patients due to any reason will be replaced. Data collected in the first 10 weeks after 

LITT from the first 20 enrolled patients were focused on the biophysical parameters of 

measurements of BBB disruption, which is independent from the second objective and provides 

the foundation for this report (Figure A.1). Patients underwent a pre-LITT baseline DCE-MRI and 

biomarker measurement within 48 hours prior to LITT. Patients underwent post-LITT baseline 

DCE-MRI and biomarker measurement within 48 hours after LITT. Subsequent DCE-MRIs were 

performed at weeks 2, 4, 6, and 10 after LITT. Biomarker measurements were performed weekly 

for 6 weeks and at week 10 after LITT patients underwent a pre-LITT baseline DCE-MRI and 

biomarker measurement within 48 hours prior to LITT. Patients underwent post-LITT baseline 

DCE-MRI and biomarker measurement within 48 hours after LITT. Subsequent DCE-MRIs were 

performed at weeks 2, 4, 6, and 10 after LITT. Subsequent biomarker measurements were 

performed weekly for 6 weeks and at week 10 after LITT. 
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Figure A.1: Consort flow diagram of the BBB disruption measurement portion of the pilot phase 

2 study involving the first 20 enrolled patients. Early or Early doxorubicin: Treatment started 

within 1 week after LITT. Late or Late doxorubicin: Treatment started at 6 weeks after LITT 

MRI-guided Laser Thermal Ablation Therapy (LITT) 

The Neuroblate system, Monteris, Inc, was used to deliver LITT of GBM. LITT is a minimally 

invasive laser surgery currently cleared by the FDA for interstitial thermal treatment of brain 

lesions with 1064 nm lasers (23-26). LITT employs a small incision in the scalp and skull, through 

which a thin laser probe is inserted and guided by MR imaging to the core of a tumor mass where 

it delivers hyperthermic ablation with the maximal temperature in tumor core reaching 60-70oC 

resulting in coagulative necrosis, while the temperature decreases to 40-45oC in the peritumoral 
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region (26). Trajectories are chosen to maximize lesion ablation and minimize the number of 

passes. Live intra-procedural repetitive measurements of a T1-weighted 2-dimensional-FLASH 

sequence provide temporally sensitive thermometry measurements necessary to create controlled 

and conformal lesions. 

DCE-MRI  

Dynamic contrast-enhancement (DCE) is a method that relies on dynamically measuring the 

changes in T1-weighted images following the administration of contrast agent (27). Using 

pharmacokinetic modeling this method can estimate the vascular transfer constant (Ktrans) (28).  

Ktrans describes the ability of contrast to move from the intravascular compartment to the 

extracellular extravascular compartment and thus provide a quantitative measure of the degree of 

BBB leakage (28).  

MRI Protocol 

Standard of care imaging with added DCE-MRI was obtained within 48 hours prior to, within 48 

hours after and then at weeks 2, 4, 6, and 10 after LITT. All patients were scanned on the same 

Siemen’s Avanto 1.5T MRI (Erlanger, Germany) identically using a tumor follow up standard of 

care imaging protocol that including anatomical imaging sequences (T1-weighted pre and post-

contrast, T2-weighted images, FLAIR images) augmented with rapid T1-weighted DCE protocol 

(3D gradient echo, TR/TE = 4.8/2.4ms, matrix 256x256x44, voxel size 1.5x1.5x4mm, temporal 

resolution 10s, for a total of 6min after the administration of Multihance (Gadobenate 

Dimeglumine, Bracco) 0.1 mmol/kg injected at a rate of 5 mL/s.   

Data analysis 
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Regions of interest (ROIs) were defined on the enhancing ring surrounding the ablated tumor on 

the DCE-MRI images using post-contrast T1-weighted image and FLAIR images for guidance. 

The ROI was selected on the portion of the ring that demonstrated maximal contrast enhancement 

and were within 1cm of the margin of ablation. The outlined ROIs were transferred to all the other 

DCE time point measurements within each dataset. Signal intensity vs. time curves was generated 

as the average within the ROIs. To avoid partial volume effect, an arterial input function (AIF) 

was obtained from one voxel in the center of the middle cerebral artery (MCA) for each dataset. 

The MR signal intensities were then converted to contrast agent concentrations as described in 

Kallehauge et al. (29), using reported pre-contrast T1 and contrast agent relaxivity.   

Quantitative pharmacokinetic parameters (𝐾𝑡𝑟𝑎𝑛𝑠  and 𝑣𝑒 ) were estimated for each dataset by 

applying a standard Tofts Model (27):  

𝐶𝑡(𝑡) = 𝐾𝑡𝑟𝑎𝑛𝑠 × ∫ 𝐶𝑎(𝜏) × 𝑒
−
𝐾𝑡𝑟𝑎𝑛𝑠

𝑣𝑒
×(𝑡−𝜏)

𝑑𝜏
𝑡

0

 
(1) 

where 𝐶𝑡(𝑡) is the tissue contrast agent concentration vs. time curve obtained at the enhanced 

region following the administration of contrast agent bolus, 𝐶𝑎(𝑡) is the concentration of the 

contrast agent in the plasma of the capillary inlet of the tissue and is approximated by the measured 

upstream AIF following the standard DCE-MRI analysis approach (30), 𝐾𝑡𝑟𝑎𝑛𝑠  is the forward 

volume transfer constant (from vascular space to extravascular extracellular space), which is a 

direct reflection of capillary permeability, and 𝑣𝑒  is the extracellular extravascular volume 

fraction.  

All pharmacokinetic modeling was performed using a custom written Bayes Data-Analysis Toolkit 

(http://bayesiananalysis.wustl.edu). The posterior probabilities for all the model parameters were 
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computed by an application of Bayes’ Theorem with Markov-chain Monte Carlo simulation. Initial 

values for all the parameters were sampled from the prior probability for each parameter. 

Uniformly distributed prior probabilities bounded by appropriate physiological ranges were 

assigned to all of the parameters. The prior ranges selected are 0-6.0min-1 for Ktrans, and 0-1 for 

𝑣𝑒. In the current study we focused on the values of the Ktrans. Computations were carried out on 

Dell PowerEdge R900 servers (Dell, Inc., Round Rock, TX), vintage 2008. All MCMC 

calculations were performed with 48 simulations and 50 repetitions. Further details about Bayesian 

parameter estimation are given in Lee et al. (31).  

Data analysis 

Serum levels of BSE were measured using an ELISA kit (Alpco) per the manufacturer’s 

instructions. 

Statistical analysis 

For serum BSE optimization analysis, 2-sided Student T test was used. Pearson correlation 

coefficients were calculated between the time courses of Ktrans, serum BSE levels, and the area of 

FLAIR abnormality for each of the subjects. Since the MRI measurements were only performed 

at a few time points the curves were interpolated into a smooth curve using piecewise cubic 

Hermite interpolation. 

A.3 Results 

A.3.1 Patient characteristics and treatment course 

Twenty bevacizumab-naïve patients with suspected recurrent GBM were enrolled in the study. 

Fifteen patients (1, 4, 5, 7, 9, 10, 12-20) were diagnosed histologically with primary GBM, WHO 

grade IV. All received standard concurrent radiation and temozolomide chemotherapy per the 

Stupp protocol (2-3), except for Patient 9, who received radiation alone without concurrent 
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temozolomide, followed by standard adjuvant temozolomide.  Patient 4 withdrew consent. Patients 

2, 6, and 11 and Patients 3 and 8 were initially diagnosed with a WHO grade III and grade II 

glioma, respectively, and subsequently developed recurrent tumor with radiographic appearances 

of probable transformed or secondary GBM.  However needle biopsy immediately prior to LITT 

failed to demonstrate secondary GBM, which rendered these patient non-eligible. Several patients 

had participated in prior clinical trials for newly diagnosed GBM. All recurrent tumors were 

approximately 3 cm or less at the longest dimension (Table A.1). 

Table A.1: Patient Baseline Demographics and Characteristics. TMZ/RT: Stupp protocol of 60 Gy 

radiotherapy plus concurrent 75mg/m2 daily temozolomide. Doxorubicin treatment: Timing of 

20mg/m2 IV weekly doxobubicin treatment after LITT. Early = Starting within 1 week after LITT; 

Late = Starting at 6 weeks after LITT. 

PtN° Age 

Range 

Initial Diagnosis Molecular 

Biomarkers 

Tumor 

Location 

TMZ/R

T 

Eligible? Doxorubicin 

Treatment 

1 50-60 GBM Unmethylated 

MGMT 

Left 

temporal 

Yes Yes Late 

2 40-50 Astrocytoma WHO 

grade III 

1p, 19q intact; 

IDH1 wild-

type 

Left 

parietal 

Yes No (GBM 

unconfirmed

) 

N/A 

3 60-70 Astrocytoma WHO 

grade II 

1p, 19q intact; 

IDH1 wild-

type 

Left 

parietal 

Yes No (GBM 

unconfirmed

) 

N/A 

4 50-60 GBM Methylated 

MGMT 

Right 

parietal 

Yes No  N/A 

5 60-70 GBM Unmethylated 

MGMT;EGFR

vIII 

Left 

temporal 

Yes Yes Late 

6 40-50 Astrocytoma WHO 

grade III 

1p, 19q intact; 

IDH1 wild-

type 

Left 

temporal 

Yes No (GBM 

unconfirmed

) 

N/A 

7 40-50 GBM Methylated 

MGMT; 

EGFRvIII 

Right 

frontal 

Yes Yes Late 

8 30-40 Oligoastrocytoma 

WHO grade II 

1p, 19q intact; 

IDH1 R132H 

Left insular Yes No (GBM 

unconfirmed

) 

N/A 

9 50-60 GBM Methylated 

MGMT; 

EGFRvIII 

Left 

thalamic 

No (RT 

only) 

Yes Late 

10 60-70 GBM Unmethylated 

MGMT 

Left 

parietal 

Yes Yes Late 

11 40-50 Astrocytoma WHO 

grade III 

1p, 19q intact; 

IDH1 R132H 

Right 

frontal 

Yes No (biopsy, 

LITT not 

N/A 
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performed) 

12 60-70 GBM Unmethylated 

MGMT 

Left frontal Yes Yes Late 

13 60-70 GBM MGMT 

methylation 

unknown 

Right 

frontal 

Yes Yes Late 

14 60-70 GBM Methylated 

MGMT; 

EGFRvIII 

Right 

temporal 

Yes Yes Late 

15 60-70 GBM Unmethylated 

MGMT 

Right 

frontal 

Yes Yes N/A  

 

16 50-60 GBM Unmethylated 

MGMT; 

EGFRvIII 

Left frontal Yes Yes Early 

17 50-60 GBM Unmethylated 

MGMT 

Right 

parietoocci

pital 

Yes Yes Early 

18 50-60 GBM Unmethylated 

MGMT; 

EGFRvIII 

Left 

parietal 

 

Yes Yes Late 

19 70-80 GBM Methylated 

MGMT; 

EGFRvIII 

Left frontal Yes Yes Early 

20 60-70 GBM Methylated 

MGMT; 

EGFRvIII 

Right 

parietal 

Yes Yes Early 

 

A.3.2 Quantitative measurement of LITT-induced peritumoral BBB 

disruption by DCE-MRI 

Brain Brain MRI obtained within 48 hours following LITT showed the targeted tumor replaced by 

apost-treatment lesion corresponding to the volume of treated tissue on intraoperative thermometry 

maps. The post-treatment lesion lost the original rim of tumor-associated contrast enhancement 

and instead demonstrated central hyperintense T1-weighted signal compared to the pre-treated 

tumor and normal brain and a faint, newly developed discontinuous rim of peripheral contrast 

enhancement extending beyond the original tumor-associated enhancing rim (Figure 2.1A). These 

findings are consistent with a loss of viable tumor tissue caused by LITT, thus achieving an 

effective cytoreduction similar to open surgical resection. Of note, the rim of new peripheral 

contrast enhancement persisted for at least the next 28 days (Figure A.2B–Figure A.2E). 
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Perilesional edema qualitatively evaluated on FLAIR-weighted images increased from 

pretreatmentMRI obtained within 48 hours following LITT showed the targeted tumor replaced 

by a post-treatment lesion corresponding to the volume of treated tissue on intraoperative 

thermometry maps.  The post-treatment lesion demonstrated central hyperintense T1-weighted 

signal compared to normal brain and a faint discontinuous rim of peripheral contrast LITT. This 

rim of peripheral contrast enhancement persisted for at least the next 28 days. Perilesional edema 

qualitatively evaluated on FLAIR-weighted images increased from pretreatment imaging at week 

2 and persisted at week 4 following LITT.  Perilesional edema decreased on subsequent MRI 

examinations.  These findings qualitatively indicate that peritumoral BBB is disrupted by LITT 

and that the disruption peaks within approximately 2 weeks after the procedure. 
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Figure A.2: Radiographic appearances of post-LITT changes.  (A) A woman with a left thalamic 

GBM treated with LITT underwent axial and coronal T1-weighted post-contrast enhanced MR 

images of the brain pre- LITT, during LITT and 48 hours post LITT. (B-I) A woman with a left 

insula GBM underwent axial T1-weighted post-contrast enhanced (B-E) and axial FLAIR-

weighted (F-I) MR images of the brain pre-LITT and within 48 hours post LITT, 2 weeks post 

LITT, and 4 weeks post LITT. In both cases, the enhancing tumor (solid red arrowheads in A and 

B) is replaced by a central zone of T1-weighted signal hyperintensity (open red arrowheads in A 

and D) and a faint, new discontinuous rim of enhancement extending beyond the original tumor 

associated enhancing rim (solid blue arrowheads in A and D). The rim of contrast enhancement 

intensifies at 2 weeks post LITT (D) and remains stable at 4 weeks post LITT (E). Perilesional 

edema evaluated on FLAIR-weighted images is slightly increased between the pre-treatment (F) 

and immediate post-treatment (G) images, increases to a maximum point on the 2-week post-
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treatment images (H) and improves slightly by the 4-week images (I). The orange circles denote a 

representative ROI used to calculate temporal progression of Ktrans after LITT. 

Figure A.3 demonstrates the Ktrans time curves for our cohort of patients. In all subjects the Ktrans 

is highly elevated in the first few days after the procedure and then progressively decreases at 

approximately the 4-week time point. The bottom right subplot in Figure A.3 is an average of the 

Ktrans time courses from all the subjects. This figure demonstrates the peak Ktrans value immediately 

after the LITT procedure with persistent elevation out to about 4 weeks. Radiographically, 

persistent contrast enhancement and FLAIR hyperintensity were observed well past 6 weeks and 

in many cases more than 10 weeks later. Several patients had recurrent tumor by radiographic 

criteria (increasing size of the edema and enhancing area around the tumor site) and these patients 

also demonstrated a corresponding increase in the Ktrans value. These recurrences occurred after 

the 10 week mark and thus were not included in Figure A.3.  In summary, these results indicate 

that the peritumoral BBB disruption as measured by Ktrans peaked immediately after LITT and 

persisted above baseline for an additional 4 weeks.  
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Figure A.3: Ktrans for each of the 14 included subjects in the study as a function of time in days 

from the LITT procedure. In all subjects the Ktrans is highly elevated in the first few days after the 

procedure and then progressively decreases out to approximately the 4-week time point. This is 

best illustrated in the bottom right which is an average of the 14 subject curves. 

A.3.3 Quantitative measurement of LITT-induced peritumoral BBB disruption 

by serum BSE biomarker 

We next sought another, independent method to quantify the degree of BBB disruption by 

measuring serum levels of the brain specific factor BSE that might be released into the circulation 

due to the increased BBB permeability using highly sensitive assays such as ELISA. This method 

has been validated for quantitative measurement of BBB disruption induced by several forms of 

brain injuries including surgery, traumatic brain injury, cerebrovascular accident and multiple 

sclerosis (32-34). To optimize the ELISA assay for BSE, we collected sera from 3 patients with a 

newly diagnosed low-grade (WHO grade 2) glioma before and after their planned craniotomy and 

surgical resection, and determined serum concentrations of BSE. WHO grade 2 gliomas were 

chosen for the optimization because as they are generally non-contrast enhanced tumors on brain 

MRI, tumor-associated BBB is relatively intact and consequently, serum concentrations of brain-
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specific factors are predicted to be low pre-operatively and to then rise post-operatively due to the 

BBB compromise from the surgery.  Serum BSE concentrations were low prior to surgery and 

then, as predicted, consistently increased after open craniotomy and tumor resection, thus 

indicating that this method had adequate sensitivity in detecting changes in serum levels of BSE 

due to disruption of the BBB (Figure A.4).  

 

Figure A.4: Optimization of the BSE ELISA assay for measuring BBB disruption.  Serum 

concentrations of BSE before and after open craniotomy for surgical debulking in 3 subjects (A, 

B, and C) with a low-grade glioma, WHO grade II. *p<0.05. 

We next determined concentrations of BSE in sera obtained from the 14 evaluable LITT patients 

within 48 hours prior to LITT, within 48 hours after LITT and weekly thereafter for 6 weeks, and 

then at week 10 after LITT, and compared them to Ktrans values in the same patient. Serum BSE 

concentrations demonstrated a steady rise shortly after LITT, peaking by 2-3 weeks in most 

patients then gradually declining over the subsequent 2-3 weeks (Figure A.5).  Compared to Ktrans, 

peak concentrations of BSE were delayed by up to 1-2 weeks.  Serum sample for Patient 1 was not 

obtained at week 10 since an amendment to the protocol to allow serum collection at this time 

point was not yet approved by the local IRB.  Similar to the Ktrans results, the serum BSE 
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concentration in Patient 12 rose rapidly after week 6, which coincided with the emergence of 

contrast-enhanced recurrent disease demonstrated on the brain MRI at week 10.  Patient 15 had an 

early rise in serum BSE concentrations and a small increase in Ktrans at week 4 (Figure A.5), and 

was also found to have contrast-enhanced multifocal recurrences at week 6 and therefore serum 

sample was not obtained at week 10. When combined with the DCE-MRI measurements, these 

results provide further confirmation that besides allowing for effective tumor cytoreduction LITT 

induces disruption of the peritumoral BBB that persists up to 4-6 weeks after the procedure. 
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Figure A.5: BBB disruption induced by LITT as measured by serum biomarkers. Serum 

concentrations of BSE for each of the 14 evaluable subjects in the study (A-N) and as the mean + 

SEM (O) as a function of time in days from the LITT procedure. In 7/14 subjects, serum BSE levels 

slightly decreased immediately after LITT, then in 13/14 subjects, serum BSE levels rose shortly 

after LITT, peaked between 1–3 weeks after LITT, and then decreased by the 6-week time point. 

In Patient #12, serum BSE concentration increased at week 10 coincident with an 

increased Ktrans at the same time point, consistent with a recurrent tumor as demonstrated on 

diagnostic MR imaging. Patient #15’s serum BSE concentration began to rise by week 4, 

consistent with early multifocal recurrent disease as demonstrated on diagnostic MR imaging. 
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A.4 Discussion 

LITT is a minimally invasive neurosurgical technique that achieves effective tumor cytoreduction 

of brain tumors using a laser to deliver hyperthermic ablation. Here we have demonstrated that an 

unexpected, potentially useful effect of LITT is its ability to also disrupt the BBB in the 

peritumoral region that extends outwards 1-2 cm from the viable tumor rim. Importantly, the 

disruption persists in all 14 evaluable, treated patients for up to 4 weeks after LITT as measured 

quantitatively by DCE-MRI and up to 6 weeks as measured by serum levels of the brain-specific 

factor BSE. These observations indicate that after LITT there is a window during which enhanced 

local delivery of therapeutic agents into the desired location (i.e. peritumoral region) can 

potentially be achieved.  

In all of the patients in this series, the peaks of serum concentrations of BSE were delayed from 

several days to 1-2 weeks following the peak of BBB disruption as measured by Ktrans. This delay 

could be explained by: 1) the higher data point resolution for the serum values versus DCE-MRI 

values (weekly versus biweekly, respectively); and 2) interval physiologic breakdown of thermally 

ablated tissue coupled with subsequent diffusion and equilibration between the intracranial and 

peripheral compartments.  More importantly, both methods showed that the peritumoral BBB 

disruption induced by LITT was temporary, decreasing soon after peaking and being resolved by 

4-6 weeks in most patients. Our present data demonstrating a dual application of LITT to achieve 

cytoreduction and to induce reversible disruption of the peritumoral BBB should allow for the 

reexamination of drugs that have not demonstrated a survival advantage in prior studies or are 

predicted to be ineffective in primary or metastatic brain tumors because of their poor BBB 

penetration despite possessing considerable anti-cancer activity in vitro and/or in extracranial 

tumors.  
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Whether the 4-6 week duration of BBB disruption after LITT is long enough to be therapeutically 

meaningful will need to be determined prospectively in future studies. In the case of Gliadel, direct 

delivery of BCNU into the resection cavity over a short period of 5 days was sufficient to result in 

a modest survival benefit for both recurrent and newly diagnosed GBM (13) when compared to 

BCNU administered systemically. Therefore the significantly longer duration of BBB disruption 

induced by LITT would be predicted to be adequate for enhanced drug delivery and clinical 

benefits when the right therapeutic agents are utilized.  

In addition to the role LITT could play for enhanced local delivery of therapeutic agents, there is 

also the possibility that this approach could have important immunological consequences.  The 

persistent elevation of BSE after LITT in the peripheral circulation indicates that proteins are being 

continually released outside the immune-privileged compartment of the CNS.  With the laser 

ablation of the tumor, it is reasonable to assume the tumor specific proteins are also being released 

into systemic circulation.  Whether this enhanced presentation of tumor antigens and neoantigens 

to the immune system could facilitate the body’s tumor-specific immune response remains to be 

determined, but is quite an intriguing line of inquiry for future investigation. 
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Appendix B: Effects of Off-Resonance on T1 

Saturation Recovery Measurement in 

inhomogeneous field1 

B.1 Introduction 

Nuclear magnetic resonance (NMR) relaxometry is being increasingly applied for measurements 

in grossly inhomogeneous field. In these applications (1, 2), it is either impossible or undesirable 

to insert the samples into a highly homogeneous superconducting magnetic field. One such 

application is oil-well logging where the sample is the earth formation. Unlike other conventional 

NMR spectroscopy and imaging techniques, relaxometry requires minimal static and radio 

frequency (RF) field homogeneity, which enables its broad applications in single-sided or other 

"inside-out" NMR measurements where the static magnetic field is necessarily inhomogeneous. 

Carr-Purcell-Meiboom-Gill (CPMG) sequences (3-4) have found broad applications in oil-well 

logging (5-7). In particular T2 based distribution measurements are widely used for estimating the 

distribution of pore sizes in porous media (8). To resolve multiple components, it is useful to 

perform two-dimensional measurements to measure correlations between different NMR 

properties, including T1 - T2 (9) and D - T2 (10) distribution functions. There has been recently 

much interest in detecting contrast between T1 and T2 relaxation that arises in shale samples with 

low frequency molecular motion (11-14). 

                                                 
1 All contents in this chapter have been published in Duan C, Ryan C, Utsuzawa S, Song Y-Q, and Hurlimann MD. 

Effect of Off-Resonance on T1 Saturation Recovery Measurement in inhomogeneous field. J Magn Reson (2017); 

281: 31-43.  
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A common method to measure T1 and T1 - T2 distribution functions in inhomogeneous fields is to 

employ a saturation - recovery pulse sequence based on CPMG sequences. A typical 

implementation consists of a series of CPMG sequences that are run consecutively with a variable 

wait time, Tw, as shown in Fig. 1. In this case, both saturation and detection is achieved with CPMG 

sequences. The longitudinal magnetization, Mz, is eliminated by the initial 𝜋/2 pulse of the first 

CPMG sequence, and the subsequent 𝜋 pulses prevent any recovery until the end of this sequence. 

Mz then recovers from Mz = 0 towards the thermal equilibrium M0 during the wait time with the 

time constant T1. The measured amplitude of the second (detecting) CPMG sequence after the wait 

time Tw is then proportional to 1 − 𝑒−𝑇𝑤/𝑇1. 

This approach implicitly assumes that the static magnetic field B0 and the RF field B1 are 

homogeneous across the sample, so that Mz = 0 at the end of the CPMG sequence. However, in 

single-sided NMR measurements, the static magnetic field B0 is grossly inhomogeneous, and the 

assumption regarding full saturation by the initial nominal 𝜋/2  pulse and the subsequent 

refocusing pulses is not valid any more.  

In the present study, we analyze the relevant spin dynamics in grossly in-homogeneous field and 

show that it is still possible to perform quantitative T1 measurements. We derive a generalized T1 

kernel for saturation-recovery measurements with CPMG detection and saturation that is valid in 

homogeneous field and takes full account of the off-resonance effects. The analytical results are 

validated by numerical simulations and experiments. This analysis complements the previous 

analysis of T1 inversion-recovery measurements in inhomogeneous fields (15).  
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B.2 Theory 

B.2.1 Spin Dynamics in homogeneous field 

For a collection of uncoupled spins 1/2, the dynamics for the magnetization in the rotating frame 

is governed by the Bloch Equations: 

𝑑𝑀𝑥(𝑟 , 𝑡)

𝑑𝑡
= −𝜔0(𝑟 )𝑀𝑦(𝑟 , 𝑡) + 𝜔1(𝑟 , 𝑡) sin 𝜙 (𝑟 , 𝑡)𝑀𝑧(𝑟 , 𝑡) −

1

𝑇2
𝑀𝑥(𝑟 , 𝑡) 

[1] 

𝑑𝑀𝑦(𝑟 , 𝑡)

𝑑𝑡
= +𝜔0(𝑟 )𝑀𝑥(𝑟 , 𝑡) − 𝜔1(𝑟 , 𝑡) cos𝜙 (𝑟 , 𝑡)𝑀𝑧(𝑟 , 𝑡) −

1

𝑇2
𝑀𝑦(𝑟 , 𝑡) 

[2] 

𝑑𝑀𝑥(𝑟 , 𝑡)

𝑑𝑡
= −𝜔1(𝑟 , 𝑡) sin 𝜙 (𝑟 , 𝑡)𝑀𝑥(𝑟 , 𝑡) + 𝜔1(𝑟 , 𝑡) cos𝜙 (𝑟 , 𝑡)𝑀𝑦(𝑟 , 𝑡)

−
1

𝑇1
(𝑀𝑧(𝑟 , 𝑡) − 𝑀0) 

[3] 

Here 𝜔0 ≡ 𝛾|𝐵0| − 𝜔𝑅𝐹 is the offset between the local Larmor frequency and the RF frequency, 

𝜔1 ≡
1

2
𝛾|𝐵1| is the local nutation frequency, and 𝜙 is the phase of the RF pulses in the rotating 

frame, and 𝑀0 is the thermal equilibrium magnetization. 

 

Figure B.1: Saturation – recovery pulse sequence considered in this study. CPMG sequences are 

employed for both saturation and detection. Here Tw is the saturation recovery wait time, tE is 

echo spacing, t90 and t180 are the duration of nominal 90⁰ and 180⁰ pulses, respectively, and N1 

and N2 are the number of refocusing pulses in the two CPMG sequences. The phase of all 
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refocusing pulses are set to +y and the phase of the excitation pulse of the second (detecting) 

CPMG sequence is set to +x. The phase of the excitation pulse of the first (saturating) CPMG 

sequence is set either to +x to -x. We assume that tE is short enough to eliminate diffusion effects. 

We are interested in the solution for the pulse sequence shown in Figure B.1 for arbitrary values 

of 𝜔0. The first CPMG sequence can be considered as the saturation sequence. For 90⁰ and 180⁰ 

CPMG pulses that are perfect and on-resonance, the evolution of the magnetization can be easily 

obtained. During the main CPMG sequence, the transverse magnetization decays according to 

𝑀⊥(𝑡) = 𝑀0 × 𝑒−𝑡/𝑇2, and the longitudinal magnetization 𝑀𝑧 oscillates between ±𝑀⊥(𝑡) = 𝑀0 ×

(1 − 𝑒
−

𝑡𝐸
2𝑇1). At the nominal echo center at the end of the CPMG, 𝑀𝑧  = 0. After the CPMG 

sequence and during the wait time, the Mz recovers towards the thermal magnetization M0 with 

time constant 𝑇1: 

𝑀𝑧(𝑇𝑤)/𝑀0 = 1 − 𝑒−𝑇𝑤/𝑇1 [4] 

The initial amplitude of the second (detecting) CPMG sequence is then directly proportional to 

𝑀𝑧(𝑇𝑤) and therefore Eq. 4 can be used as the kernel to extract 𝑇1 from the NMR measurements. 

To assure that this conventional 𝑇1 kernel (Eq. 4) to be valid, the longitudinal magnetization at the 

beginning of the wait time has to be zero for all spin packets. This assumption is only valid for 

perfect pulses that are on resonance. In single-sided NMR, the fields are necessarily 

inhomogeneous and off-resonance effects become significant. This results in deviations from the 

standard kernel, Eq. 4, and will lead to faulty 𝑇1 values. The pulse sequence under consideration 

is shown in Figure B.1. The first CPMG represents the saturation sequence. 

B.2.2 Spin Dynamics in inhomogeneous field 

Single CPMG sequence 
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In grossly inhomogeneous fields, all RF pulses are slice selective and the response is non-uniform 

across the sample. The resulting spin dynamics of multi-pulse sequences becomes complicated (6-

7), but in the fast pulsing regime, i.e., 𝑡𝐸  ≪  𝑇2, analytical results are available that describe the 

response of a single CPMG sequence as a function of 𝜔0  and 𝜔1  (7). The key quantities 

controlling the spin dynamics are 𝑚⃗⃗ 𝑒𝑥𝑐(𝜔0) and {𝑛̂(𝜔0), 𝜃(𝜔0)} that characterize the initial 90⁰ 

excitation pulse and the refocusing cycle, respectively. Here  𝑚⃗⃗ 𝑒𝑥𝑐(𝜔0)  is the magnetization 

resulting from the excitation pulse applied to an initial magnetization of unit amplitude along 𝑧̂, 

while 𝑛̂ and 𝜃 are the axis and rotation angle of the effective rotation describing the repeated 

refocusing cycle.  

Saturation – Recovery Sequence with CPMG saturation and CPMG detection  

We next extend the results for a single CPMG sequence to that of the sequence shown in Figure 

B.1. The echoes generated by the second (detecting) CPMG in a gradient field have an asymptotic 

spectrum (7) that is proportional to the longitudinal magnetization 𝑀𝑧(𝑇𝑤; 𝜔0) at the end of the 

wait time: 

𝑀𝑎𝑠𝑦(𝑇𝑤; 𝜔0) = 𝑀𝑧(𝑇𝑤; 𝜔0)[𝑚⃗⃗ 𝑒𝑥𝑐,2(𝜔0) ∙ 𝑛̂(𝜔0)]𝑛⃗ ⊥(𝜔0) [5] 

Here the subscript 2 indicates that 𝑚⃗⃗ 𝑒𝑥𝑐 refers to the excitation pulse of the second CPMG. We 

have made the implicit assumption that any transverse magnetization prior to the start of the second 

CPMG has completely dephased. Furthermore, we assumed that there is a uniform density of offset 

frequencies 𝜔0 across the sample, i.e. 𝑓𝑚𝑎𝑔𝑛𝑒𝑡(𝜔0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. This is the case for an extended 

sample in a gradient 𝐵0 field. When the magnetic field is not a simple gradient field and / or when 
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the sample does not extend across the entire field variation, Eq. 5 can be generalized by multiplying 

it by the actual density of offset frequency, 𝑓𝑚𝑎𝑔𝑛𝑒𝑡(𝜔0). 

As 𝑀𝑧 recovers during 𝑇𝑤, its spectrum of 𝑀𝑧(𝑇𝑤, 𝜔0) changes with time. At short values of 𝑇𝑤, 

the spectrum reflects the non-uniform 𝑀𝑧 saturation generated by the first CPMG sequence, while 

at very long times, it becomes uniform and equal to 𝑀0. This implies that the echo shape of the 

detecting CPMG (i.e. Fourier transform of Eq. 5) varies with 𝑇𝑤. As a consequence, it is necessary 

to specify the windowing function or detection filter used to extract the echo amplitudes from the 

measured echoes. Common approaches include peak detection, integration of the echoes over a 

specified acquisition window, or matched filtering with the expected echo shape. In all cases, this 

procedure can be described by an effective acquisition filter 𝑓𝑎𝑐𝑞(𝜔0), such that the echo amplitude 

is given by: 

𝐴(𝑇𝑤) = ∫𝑑𝜔0 𝑀𝑎𝑠𝑦(𝑇𝑤; 𝜔0)𝑓𝑎𝑐𝑞(𝜔0) 
[6] 

In the case of echo peak detection, 𝑓𝑎𝑐𝑞
𝑝𝑒𝑎𝑘(𝜔0) =

sin (𝜔0𝑇𝐷𝑊/2)

𝜔0𝑇𝐷𝑊/2
, where 𝑇𝐷𝑊 is the dwell time. In the 

case of matched filtering where the measured echoes are weighted by the expected asymptotic 

echo shape for a single CPMG on a sample at thermal equilibrium, 

𝑓𝑎𝑐𝑞
(𝑚𝑎𝑡𝑐ℎ)(𝜔0) = [𝑚⃗⃗ 𝑒𝑥𝑐,2(𝜔0) ∙ 𝑛̂(𝜔0)]𝑛⃗ ⊥(𝜔0) ∗

sin (𝜔0𝑇𝑎𝑐𝑞/2)

𝜔0𝑇𝑎𝑐𝑞/2
 

[7] 

Here 𝑇𝑎𝑐𝑞 is the total acquisition time and ∗ denotes the convolution operation. Matched filtering 

optimizes the signal-to-noise-ratio of the extracted amplitudes in the presence of random white 

noise. 
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It is useful to introduce the effective weighting function 𝑔(𝜔0) given by: 

𝑔(𝜔0) = [𝑚⃗⃗ 𝑒𝑥𝑐,2(𝜔0) ∙ 𝑛̂(𝜔0)]𝑛⃗ ⊥(𝜔0)𝑓𝑎𝑐𝑞(𝜔0) [8] 

With this notation, 𝐴(𝑇𝑤) can be written as the weighted integral of the longitudinal magnetization 

𝑀𝑧(𝑇𝑤; 𝜔0) and the effective weighting function 𝑔(𝜔0): 

𝐴(𝑇𝑤) = ∫𝑑𝜔0 𝑀𝑧(𝑇𝑤; 𝜔0)𝑔(𝜔0) 
[9] 

The weighting functions 𝑔(𝜔0) can be evaluated with the equations given in Hurlimann et al. (7), 

and are shown for matched filtering and peak detection in Figure B.2. Unless otherwise noted, 

matched filtering is used in the rest of this paper. 
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Figure B.2: Effective weighting function 𝑔(𝜔0)  given in Eq.[8] for two different choices of 

amplitude extraction: (A) matched filter and (B) peak detection.In the matched filter approach 

shown in (A), it was assumed that the total acquisition time 𝑇𝑎𝑐𝑞 = 4𝑡180, while for the peak 

detection, it was assumed that the dwell time 𝑇𝐷𝑊 = 𝑡180/20. 

General T1 Kernel 

In order to derive a generalized T1 kernel, we relate the longitudinal magnetization at the end of 

𝑇𝑤 , 𝑀𝑧(𝑇𝑤; 𝜔0)  (or equivalently at the beginning of the second CPMG sequence) to the 

longitudinal magnetization at the beginning of 𝑇𝑤, 𝑀𝑧(𝑇𝑤 = 0;𝜔0) (or equivalently at the end of 

the first CPMG sequence). According to Bloch's Equation, they are related by: 

𝑀𝑧(𝑇𝑤; 𝜔0)

𝑀0
= (1 − 𝑒

−
𝑇𝑤
𝑇1 ) +

𝑀𝑧(𝑇𝑤 = 0;𝜔0)

𝑀0
𝑒

−
𝑇𝑤
𝑇1  

[10] 

Combining Eqs. [9] and [10] results in the modified form of the generalized T1 kernel in 

inhomogeneous fields: 

𝐴(𝑇𝑤)

𝐴0
= 1 − (1 − 𝜖)𝑒

−
𝑇𝑤
𝑇1  

[11] 

Where the offset parameter 𝜖 is given by: 

𝜀 ≡ ∫𝑑𝜔0

𝑀𝑧(𝑇𝑤 = 0;𝜔0)

𝑀0
𝑔(𝜔0) 

[12] 

The generalized T1 kernel differs from the standard T1 kernel by the offset term 𝜀 . This 

dimensionless parameter is the weighted integral of 𝑀𝑧(𝑇𝑤 = 0;𝜔0) , the longitudinal 

magnetization at the end of the initial CPMG sequence, with the weighting function 𝑔(𝜔0). It is 

not a fixed constant, but depends on the experimental parameters and relaxation properties, in 
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particular on the normalized length of the first CPMG sequence, N1tE = T2, and on the T1/T2 ratio. 

Here N1 is the number of echoes during the first CPMG sequence and tE is the echo spacing. 

Offset parameter 𝜺 for T1 = T2 

The dependence of 𝜀 on the normalized duration of the CPMG sequence and the T1/T2 ratio can be 

inferred from the analysis of 𝑀𝑧(𝑇𝑤 = 0;𝜔0), the longitudinal magnetization at the end of the first 

CPMG sequence. For T1 = T2, we obtain: 

𝜀 = 𝛼1𝑒
−
𝑁1𝑡𝐸
𝑇2 + 𝛼2(1 − 𝑒

−
𝑁1𝑡𝐸
𝑇2 ) 

[13] 

Where 

𝛼1 = ∫𝑑𝜔0[𝑚⃗⃗ 𝑒𝑥𝑐,1(𝜔0) ∙ 𝑛̂(𝜔0)]𝑛𝑧(𝜔0)𝑔(𝜔0) 
[14] 

𝛼2 = ∫𝑑𝜔0𝑛𝑧
2𝑔(𝜔0) 

[15] 

The dimensionless parameters 𝛼1 and 𝛼2 are constants for a given experimental configuration and 

do not depend on the relaxation properties of the sample. The term 𝛼1 originates from the CPMG 

coherence pathway, whereas 𝛼2  is due to the dynamic equilibrium term that builds up as the 

CPMG term decays. In principle, there is also a term due to the CP contribution. However, this 

term can be ignored. The longitudinal magnetization from this term fluctuates rapidly on a 

frequency scale much faster than the typical variations of 𝑔(𝜔0) so that it does not contribute to 

the integral in Eq. 12 and averages out to zero. 

Offset parameter 𝜺 for General T1 / T2 ratio 



151 

 

For T1 ≠ T2, the expression for 𝜀 has a similar form as Eq. 13, but the coefficient 𝛼2 has to be 

replaced by: 

∫𝑑𝜔0

𝑛𝑧
2

𝑛𝑧
2 + (1 − 𝑛𝑧

2)
𝑇1

𝑇2

𝑔(𝜔0) ≈
𝛼2

𝜂 + (1 − 𝜂)
𝑇1

𝑇2

 
[16] 

This expression can be viewed as the definition of the dimensionless parameter 𝜂. In addition, for 

T1 ≠ T2 the relaxation time T2 in Eq. 13 should be replaced by Teff, as given in Hurlimann et al. (7). 

Since this generalization typically results only in a small correction, we will ignore this effect in 

the rest of the paper. With these approximations, the general expression for the T1 kernel has the 

form of Eq. 11, where 𝜀 is given by: 

𝜖 = 𝛼1𝑒
−
𝑁1𝑡𝐸
𝑇2 +

𝛼2

𝜂 + (1 − 𝜂)
𝑇1

𝑇2

(1 − 𝑒
−
𝑁1𝑡𝐸
𝑇2 ) 

[16] 

The three parameters 𝛼1,𝛼2 , and 𝜂 are given by Eqs. (14), (15), and (16), respectively and are 

independent of the relaxation properties of the sample. They depend on the characteristics of the 

experimental set-up, including the field configuration, data filtering, and choice of pulse phases. 

At the outset of the measurements, they have to be determined for the specific experimental setup 

used. It is desirable to make these parameters as small as possible. Possible strategies are discussed 

below. 

B.3 Numerical Procedures 

To check the theoretical analysis, we also performed a direct numerical simulation of the spin 

dynamics. We developed a scalable fast C++ code based on the integration of the Bloch Equations 

[1-3] for 𝐵⃗ 0, 𝐵⃗ 1 fields that are inhomogeneous and possibly time-dependent. Here we simulate the 
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Bloch vector dynamics over an array of voxels with a static 𝐵⃗ 0 field and a pulsed 𝐵⃗ 1 field. The 

calculations account for the effects of the RF pulses, precession in the inhomogeneous fields, T1 

and T2 relaxation during the delay periods and optionally during pulses. The basic simulation steps 

are for each voxel: 

1. Define a tilted and rotating frame, where the z-axis is pointing along the local direction of 𝐵⃗⃗  ⃗0, 

and the x-axis along 𝐵⃗ 1,⊥ (where 𝐵⃗ 1,⊥ is the component of 𝐵⃗ 1 perpendicular to 𝐵⃗⃗  ⃗0). 

2. Determine the local values of the offset frequency 𝜔0 ≡ 𝛾|𝐵0| − 𝜔𝑅𝐹 and 𝜔1 ≡
1

2
𝛾|𝐵1,⊥|. 

3. Project the initial state into the tilted and rotating frame defined by 𝐵⃗ 0 and 𝐵⃗ 1,⊥. 

4. For each time-step, propagate the Bloch vector within the tilted and rotating frame as either 

a delay (𝑧̂ rotation followed by T1 and T2 relaxation) or a pulse (rotation about an axis 

determined by 𝜔0, 𝜔1 and the pulse phase). 

The detected magnetization Mz corresponds to the sum of the transverse components Mx + iMy 

over all voxels. To calculate the echo shapes, we also store the array of 𝜔0 values and perform a 

Fourier transformation. 

Simulations were performed on a Dell Precision T7600 workstation equipped with two Intel Xeon 

E5-2667 processors (6 cores each, 2.9GHz), 256 GB physical memory (RAM), and running 

Microsoft Windows 8 Enterprise edition. In the presented results, we assumed a sample in a 

constant gradient 𝐵⃗ 0 field extending over  ∆𝐵⃗ 0 = ±10𝐵⃗ 1,⊥, corresponding to 𝜔0 ∈ [−5𝜔1, +5𝜔1] 

and a uniform RF field 𝐵⃗ 1. Relaxation during the RF pulses was neglected. The asymptotic echo 

amplitudes were generally calculated assuming detection using the optimal matched filter defined 

by the asymptotic echo shape, unless otherwise noted. No additional receiver filter was applied to 
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the simulated echoes (i.e., the signal bandwidth is only limited by excitation). All calculated echo 

amplitudes are normalized with respect to the asymptotic echo signal amplitude of the initial 

CPMG signal when the wait time is long (i.e., fully recovered). The initial echo amplitude for a 

CPMG detection was calculated by extrapolating the echo train amplitudes (ignoring the first few 

echoes due to the transient effect (9)), and was then treated as the signal for the T1 saturation 

Experimental Procedures 

B.4 Experimental procedure 

To verify the theoretical and numerical analyses for saturation recovery in grossly inhomogeneous 

field, we performed saturation - recovery T1 measurements with the sequence of Figure B.1 on 1H 

with three samples: Deionized (DI) H2O, NiCl2-doped H2O, and skim milk. The cylindrical 

samples of 1-cm diameter and 24-cm length were placed in the center of a superconducting 1T 

horizontal-bore magnet. The T1 and T2 for all of three samples were measured first employing 

standard inversion recovery and CPMG pulse sequences. To generate the off-resonant effect, a 

static gradient of 8.6 kHz/cm was applied along the B0 direction (i.e., horizontally). Effects of RF 

inhomogeneities were minimized by using a comparatively large RF solenoid coil (Q ≈104) of 4-

cm diameter and 8-cm length. For this setup, similar to the simulation, the signal bandwidth is 

limited by the excitation. 

In our experimental setup, the variation in the off-resonance frequencies 𝜔0/2𝜋 across the sample 

span ± 34.4 kHz, which is significantly larger than the RF field strength 𝜔1/2𝜋  = 2.5 kHz. 

Therefore, the echoes are well separated in time and have a width of the order of 2 × t180. Following 

Hurlimann (16), the pulse spacing between the 90⁰ pulse and the first 180⁰ refocusing pulse was 

reduced from half the echo spacing by t180 / 𝜋 to maximize the signal. Durations of the 90⁰ and 
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180⁰ pulses were typically 100 and 200 s, respectively, and the echo spacing was tE = 1.2 ms. 

Similar to the numerical analysis, we used a matched filter defined by the asymptotic echo shape 

to extract echo amplitudes from the measured NMR signals. 

B.5 Results 

B.5.1 Numerical and Analytical Results 

Mz at the end of first CPMG 

We first present results for the case when T1 = T2. Figure B.3 shows the simulated longitudinal 

magnetization spectra, 𝑀𝑧(𝑇𝑤 = 0;𝜔0), at the end of the first CPMG sequence for different values 

of N1tE = T2. It is clear that saturation is incomplete across the sample. The standard assumption 

𝑀𝑧(𝑇𝑤 = 0) = 0 at the end of the first CPMG sequence (and the beginning of the wait time) is 

only valid near 𝜔0 = 0  (i.e. on resonance). Away from resonance, Mz shows a complicated 

dependence on 𝜔0  and the CPMG duration. The spectra exhibit structure in frequency with 

characteristic scales of 𝜔1  and 2𝜋  / tE (= 𝜔1/3 in the current simulations). For short CPMG 

durations N1tE / T2 < 1, the spectra show in addition fine oscillations. They are caused by the 

contributions of the CP term that exhibits structure at 2 𝜋 =N1tE. As the length of the CPMG 

sequence increases and the dynamic equilibrium regime is approached, the negative components 

and the fast oscillations of Mz vanish and the spectrum becomes symmetric with respect to 𝜔0. 

This is confirmed by the results shown in Figure B.4 that displays the individual contributions 

from the three terms given by the analytical solutions. The bottom row of Figure B.4 shows the 

sum of the three contributions, which is in excellent agreement with the results shown in Figure 

B.3 obtained by the numerical simulation. This agreement strongly supports the validity of the 

numerical procedure and the analytical solution. 
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Figure B.3: Simulated spectra of longitudinal magnetization, Mz, at the end of the first CPMG 

sequence, normalized by the thermal magnetization M0 for different normalized durations of the 

first CPMG sequence, N1tE /T2 as indicated.  In all cases, T1 = T2. The x-axis is 𝜔0/𝜔1, where 𝜔0 

is the difference between the local Larmor frequency B0 and the operating frequency 𝜔𝑅𝐹 , and 

𝜔1 is the nominal nutation frequency B1 that is proportional to the RF amplitude. For the case of 

a gradient B0 field, we can interpret the spectra as the z-magnetization across the sample. 
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Figure B.4: Spectra of longitudinal magnetization, Mz, at the end of the first CPMG sequence, 

calculated from the analytical expression. From top to bottom, the different rows shows the 

contributions from the CPMG term, CP term, and dynamic equilibrium term, followed by the sum 

of all three terms. The different columns correspond to normalized durations of the first CPMG 

sequence, N1tE=T2 of 0.02, 0.6, and 5, respectively. In all cases, T1 = T2. 

Asymptotic echoes of the second CPMG 

Given the Mz spectra at the end of the first CPMG sequence, the longitudinal magnetization then 

relaxes toward the thermal equilibrium M0 during the subsequent wait time of duration Tw. This is 

followed by the second (detecting) CPMG that generates transverse magnetization and 

corresponding echoes. The simulated results of the asymptotic echoes are shown in the left column 

of Figure B.5. As Tw is varied, the overall height and also the shape of the echoes change. As 

expected, the results also depend on the normalized length of the saturating CPMG sequence, N1tE 
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= T2. In the right column, the extracted amplitudes are plotted versus 1 − 𝑒
−

𝑇𝑤
𝑇1 , the nominal kernel 

for on-resonance behavior. We compare results for amplitudes extracted by two different methods: 

by matched filtering and by peak detection.  

 
Figure B.5: Echo shapes and amplitudes as a function of Tw = T1, N1tE=T2, and method of 

amplitude extraction. Left column: Simulated asymptotic echo shapes in the time domain of the 

second CPMG sequence for different values of the Tw = T1 ratio between 0.01 to 5.00. The different 

rows correspond to different durations of the first CPMG sequence, N1tE=T2, as listed on the left. 

Right column: the symbols show the amplitudes extracted from the echoes displayed on the left, 

using two different methods of amplitude extraction. Green circles: peak detection; red cross: 

matched filtering using the echo shape for initial thermal equilibrium (corresponding to Tw/T1 ≫
1). The solid lines show the predictions of Eq.11 with values of 𝜀 determined by Eq. 13 with the 
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values of 1 and 2 listed in Table B.1. The green line corresponds to peak detection, while the 

red line corresponds to matched filtering. 

Table B.1: Calculated values of and based on Eqs.14 and 15 for two methods of amplitude 

extraction

 Method of Amplitude Extraction 𝛼1 𝛼2 

Matched Filter 0.06 0.14 

Peak Detection 0.14 0.21 

 

In all cases, the results show noticeable deviations from the standard T1 kernel, 1 − 𝑒
−

𝑇𝑤
𝑇1 , Taking 

the case where Tw = T1 = 0.01 as an example, the simulated echoes are clearly much larger than 

1% of the largest echo, which is the expected on-resonance behavior. Instead, the results follow 

the general form of Eq. 11 with offset terms 𝜀 that are in good quantitative agreement with the 

analytical results derived in section 2.1. Table A.1 lists the calculated values for  

𝛼1 and 𝛼2 based on Eqs. 14 and 15 using the appropriate weighting functions g(0) for the two 

types of methods used for amplitude extraction (see Figure B.2). The corresponding predictions 

for the T1 kernel from Eq. 11 and Eq. 13 are shown as solid lines on the right hand column of Fig. 

5. As expected, the deviations between the general and standard T1 kernels are significantly larger 

for echo peak detection compared to matched filtering. This is caused by the increased off-

resonance contributions in g(0) for peak detection, as is clearly evident in Figure B.2. For the rest 

of the paper, we will limit ourselves to amplitudes extracted by matched filtering.  

Phase Alternation of Excitation Pulse and Impact on  

It is desirable to minimize the offset parameter 𝜀. This can be partially accomplished by alternating 

the relative phase difference between the excitation and refocusing pulses of the first and second 
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CPMG sequence from +90⁰ to -90⁰ (see Figure B.1). This is demonstrated by the results of the 

numerical simulations shown in Figure B.6. When phase alternation (PA) is enabled (middle 

column of Figure B.6), the echo amplitudes at short wait time are greatly reduced for short 

durations of the first CPMG sequence. However, this PA effect vanishes as N1tE = T2 increases. 

 

Figure B.6: Effect of phase alternation (PA) on echo shapes and amplitudes. The two left columns 

show simulated echo shapes without PA (left) and with PA (middle) for a range of Tw = T1 ratio 

between 0.01 to 5.00. The rows correspond to different durations of the first CPMG sequence, N1tE 

= T2, as listed on the left. The right column compares the extracted amplitudes with PA (black) 

and without PA (red). Matched filtering was assumed. The symbols show the results of the 

numerical simulations, while the solid lines show Eq. 11 with values of 𝜀 determined by Eq. 13 

with the values of 𝛼1 and 𝛼2 listed in Table A.2. 
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In terms of the theoretical description of section 2.1, PA reduces the value of 𝛼1, but leaves 𝛼2 

unaffected. This can be understood as follows: The profile of Mz for small values of N1tE/T2 (Figure 

B.3) and the profile of g (ω0) (Figure B.2) are not fully symmetric with respect to ω0. The Mz 

profile is inverted with respect to ω0 when the phase of the excitation pulse of the first CPMG 

sequence is inverted, while the profile of g (ω0) is inverted when the phase in the second CPMG 

sequence is inverted. If the phases in both sequences are identical, the resulting offset parameters 

are given in Table A.1. If instead the phases are alternated, the evaluation of Eq. 14 with an inverted 

profile of Mz results in a greatly reduced value of 𝛼1, as shown in Table A.2. In the dynamic 

equilibrium regime, Mz is symmetric with respect to ω0 and is not affected by the initial excitation 

pulse of the CPMG. Therefore, PA does not have any effect on 𝛼2. This observed near-cancellation 

of 𝛼1 with PA occurs in gradient B0 fields, but it is not guaranteed to be as effective with other 

field profiles when the different offset frequencies are not equally weighted. 

Table B.2: Effect of phase alternation of excitation pulse on the calculated values of a1 and a2. In 

both cases, amplitude extraction based on matched filtering is assumed. 

Phases of Excitation Pulses 𝛼1 𝛼2 

Identical Phase 0.06 0.14 

Phase Alternation < 0.01 0.14 

Dependence of on the ratio T1/T2 

The longitudinal magnetization at the end of the CPMG sequence is also affected by the ratio T1/T2, 

especially when the initial CPMG sequence is long. This is illustrated in Figure B.7 that displays 

the spectrum of the longitudinal magnetization for different values of T1 / T2. In this case, the 

longitudinal magnetization is saturated over a larger range of offset frequencies for large T1 / T2 
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ratios compared to T1 / T2 = 1. This is most pronounced when N1tE / T2 > 1 and the magnetization 

is controlled by the dynamic equilibrium regime. For shorter initial CPMG sequences when the 

CPMG and CP terms dominate, the dependence on T1/T2 disappears. 

 
Figure B.7: Spectra of normalized longitudinal magnetization at the end of first CPMG sequence 

for different T1/T2 ratio as indicated. For all cases, N1tE/T2 = 5 (i.e., long initial CPMG sequence) 

was employed. 

Given that for large T1/T2 ratios there is a wider range of frequencies ω0 with significantly 

suppressed Mz, we expect 𝜖 to decrease with increasing values of T1/T2. This is confirmed by the 
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results in Figure B.8 showing the dependence of the signal offset ϵ on T1 = T2 for the case of a long 

first CPMG sequence, N1tE / T2 = 5. 

 

Figure B.8: Dependence of 𝜖 and 1/ 𝜖 on T1/T2.Panel a: Dependence of signal offset ϵ on the ratio 

of T1/T2 for the ratio of N1tE / T2 =5 and assuming matched filtering. The symbols show the results 

of the numerical simulations, while the line shows the evaluation of Eq. 12. Panel b: Dependence 

of 1 / ϵ versus T1 / T2. This panel displays the same data as shown in panel a. The near linear 

dependence of 1/ ϵ on T1 / T2 confirms the general form of Eq. 17 and allows the extraction of 𝜂 =
0.56. 

The expression Eq. 17 of 𝜖 for a long initial CPMG sequence (i.e. N1tE / T2 ≫1) reduces to "𝜖 =

𝑎2

𝜂+(1−𝜂)𝑇1/𝑇2
. This predicts a linear dependence of 1/ ϵ on T1/T2. This is tested in Figure B.8b. By 

fitting the results to a straight line, the parameter 𝜂 = 0.56 can be extracted. As for the previous 

parameters 𝑎1  and 𝑎2  listed in Table B.2, this parameter was obtained using the method of 

matched filtering for amplitude extraction.  

Figure B.9 compares the analytical results with simulations for a range of different conditions. The 

simulations assume a B0 field with a constant gradient, phase alternation in the phase of the 
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excitation pulses, and amplitude extraction by matched filtering. The analytical results follow Eq. 

11 with  𝜖 ≈
0.14

0.56+0.44
𝑇1
𝑇2

(1 − 𝑒−𝑁1𝑡𝐸/𝑇2). There is excellent agreement between simulation and 

analytical results without any adjustable parameters. This demonstrates that in inhomogeneous 

field, the conventional T1 kernel only approximates the response for short CPMG durations 

(assuming PA is used) or in systems with large T1/T2 ratios.  

 

Figure B.9: Evaluation of the proposed new T1 kernel (Equations 11 and 17) for various values of 

N1tE / T2 (Panel a) and T1 / T2 (Panel b) in the presence of significant off-resonant effect. The 

markers show the results of the numerical simulation. The solid lines show the analytical results 

of the modified kernel with 1 = 0, 2 = 0:14, and  = 0:56. 

B.5.2 Experimental Results 

To validate the proposed T1 saturation recovery kernel in the presence of off- resonance effect, we 

also performed a series of experiments for three samples with contrasting relaxation properties: 

deionized (DI) water, NiCl2-doped water, and skim milk. The measured relaxation times as 

measured by standard inversion recovery and CPMG sequences in uniform field are given in Table 

A.3. For fully relaxed samples (Tw ≫ T1), the measured asymptotic echo shapes for all samples 
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were identical, as expected. Taking the doped water as an example, Figure B.10 compares the echo 

shapes between simulation and experiments. Despite the unavoidable imperfections in the 

experiments (e.g. B1 inhomogeneity and diffusion) excellent agreements were found between 

simulation and experiment. 

Table B.3: Experimentally determined relaxation times for the three samples 

Sample DI water Doped eater Skim milk 

T1 [s] 2.44 0.30 1.56 

T2 [2] 2.18 0.28 0.17 

 

Figure B.10: Comparison between experimentally measured and numerically simulated echoes 

for both frequency domain (left panel) and time domain (right panel). The frequency is normalized 

with respect to 𝜔1, and the time is normalized with respect to t180. For both panels, the measured 

echoes are shown in blue, and the simulated echoes are shown in red. The agreement between 

experiment and simulation is excellent. 
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Figure B.11 shows both the measured echo shapes and the extracted echo amplitudes (using 

matched filtering) for doped water as a function of wait time. In these measurements, the first 

CPMG was long, consisting of 104 echoes that corresponds to N1tE/T2 = 5:5. Even though the 

echoes of the first CPMG have fully decayed, the application of a second CPMG almost 

immediately after the first CPMG generates sizeable echoes with a peak that is around 20% of the 

echo peak for the fully recovered case. As the wait time Tw increases, the amplitude of the echoes 

also increases until they saturate when the wait time is long compared with T1. The amplitudes 

show a linear dependence on 1 − 𝑒−𝑇𝑤/𝑇1 with an offset 𝜖 that is in quantitative agreement with 

the theoretical expectations. 

 

Figure B.11: Experimental results for standard saturation-recovery measurement for doped 

water: measured in-phase components of echoes (left) and extracted echo amplitude using 

matched filtering (right) for different recovery wait time Tw (Tw/T1 in the range of 0.01 to 5). The 

blue line shows the expected behavior based on Eq. 11, whereas the dashed line shows the standard 

T1 kernel (i.e. 𝜖 = 0). 
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The measured effect of phase alternation is shown in Figure B.12. Phase alternation does not 

change the overall amplitude of the remaining Mz at the end of the first CPMG sequence, but rather 

it changes the impact on the echoes generated by the second CPMG sequence. When the saturating 

CPMG sequence is short (N1tE / T2 < 1), the resulting remnant Mz at the end of this sequence has 

both positive and negative amplitudes. With PA the second CPMG sequence effectively averages 

out the contributions from the remnant Mz magnetization, leading to vanishingly small amplitudes, 

whereas without PA, the contributions add more coherently. For long initial CPMG sequences, the 

remnant Mz magnetization is all positive and symmetric with respect to offset frequency. In this 

case, the measured response for PA and without PA are identical. The experimental results shown 

in Figure B.12 confirm not only this overall behavior, but the echo shapes show good quantitative 

agreement with the theoretical expectations. 

 
Figure B.12: The effect of phase alternation (PA) on the shape of the echoes at short wait times.  

Results are shown for Tw/T1 = 0.01 and for three different CPMG lengths as indicated. The top 

panels show experimental results, the bottom panels show simulations. In each panel, the results 

with PA are shown in blue and without PA in red. As a reference, we also include the echo shape 

acquired at long wait time (i.e., Tw/T1 = 5). 
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Figure B.13 shows a summary of the extracted amplitudes from the measurements on all three 

samples. In these cases, the duration of the initial CPMG sequence was always long compared to 

T2 of the respective sample: N1tE / T2 = 5.50 for DI water, 4.3 for doped water, and 7.1 for the skim 

milk, respectively. The experimental results confirm the predictions that the T1 kernel in 

inhomogeneous fields deviates from the standard form 1 − 𝑒−𝑇𝑤/𝑇1  and has instead the general 

form of Eq. 11. As predicted, the offset parameter 𝜖 depends on the ratio of T1 / T2, but not on the 

absolute value of these relaxation times. There is excellent quantitative agreement with the 

generalized kernel and the offset parameter given by Eq. 17. 

 

Figure B.13: Saturation recovery measurements for DI H2O, NiCl2-doped H2O, and skim milk. 

For all panels, blue squares represent the measured amplitudes, while the dashed black line and 

the blue line indicate the standard and modified saturation recovery kernel, respectively. "Ground 

truth" T1 and T2 for all samples were measured in advance without any gradient using standard 

inversion-recovery and CPMG sequences. These values were then used in the plotting of both 

standard and modified kernels.  

B.6 Discussion and Conclusions 

We have shown that the effect of inhomogeneous fields on saturation – recovery measurements 

can be quantitatively described by the modified T1 kernel of Eq. 11 that includes the offset 

parameter. This offset parameter is a function of the field configuration, the relative duration of 
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the saturating CPMG sequence, and the T1 / T2 ratio. These dependencies can be characterized by 

the three parameters T1, T2, and 𝜂 as given in Eq. 17. These parameters are specific for a given 

experimental configuration and we give explicit expressions for them. For the case of a gradient 

field and PA, the parameters are calculated to be 1 = 0, 2 = 0:14, and 𝜂 = 0:56. We have used 

numerical simulations and experiments to confirm these analytical results. 

Using a relatively short CPMG as the saturating sequence (e.g., N1tE / T2 < 0.02), the spectrum of 

Mz has both positive and negative components and the effect of incomplete saturation can then be 

effectively cancelled by alternating the phase of 90⁰ pulse between the saturating and detecting 

CPMG sequence (Figure B.6 and Figure B.12). When the effective length of the saturating CPMG 

sequence is long compared with the relaxation time, a dynamic equilibrium state develops. The 

resulting steady state longitudinal magnetization Mz is then always positive and does not depend 

on the initial 90⁰ saturation pulse. In this case, PA does not change the offset signal for a relative 

longer CPMG sequence as shown in Figure A.6 and A.12. Instead, it depends on the ratio of T1 / 

T2, and drops as the ratio increases. 

It is worthwhile to point out that, in theory, the off-resonance effect could be eliminated by using 

a large acquisition time window (e.g. Tacq > 5 × t180) for each CPMG echo, and integrating the 

time domain echo as the saturation recovery signal. This is essentially equivalent to taking the 

nominal center amplitude of the frequency spectrum (i.e., ω0 = 0), and exclude all of the off- 

resonance contributions. However, this approach is impractical and undesirable for at least two 

reasons, both related to the generally low signal to noise ratio (SNR) of stray field NMR 

measurements. First, the echo amplitude extracted by integration of the noisy signal over a long 

acquisition time results in a much lower SNR compared to an extraction based on matched 
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filtering. Second, it is typically necessary to further average or equivalently filter a large number 

of adjacent CPMG echo amplitudes in order to achieve adequate SNR. However, an increase in 

the acquisition time leads to an increase in the minimum echo spacing. This reduces the number 

of available echoes per unit time and thus further reduces the achievable SNR. 

It is straightforward to extend the current analysis to more complicated field configurations and 

take B1 distributions into account. The basic form of the modified kernel is unaffected, but the 

values of the three parameters 1, 2, and 𝜂  will change. For example, for the logging tools 

described by Kleinberg et al. [17], the value of 2 was found to be 2 = 0:18. This is a relative 

modest increase from 2 = 0:14 found for the case of a constant gradient B0 and constant B1. 

As an alternative to incorporating the contribution of off-resonance in the T1 saturation recovery 

kernel, one could also attempt to minimize its contribution by applying a number of 'crusher' pulses 

at the end each CPMG saturation sequence. These crusher pulses are used to scramble the remnant 

Mz at the end of the saturation CPMG such that the incomplete saturation does not contribute to 

the signal generated by the following CPMG sequence. Further discussion and the optimization of 

such crusher pulses will be presented elsewhere. 

In conclusion, we have analyzed T1 saturation recovery measurements in grossly inhomogeneous 

fields. We have shown that, in these conditions, the off-resonance effect produces extra signal in 

the measurement. Using the standard T1 kernel, this extra signal will be misinterpreted as a pseudo-

fast longitudinal relaxation. We have derived a modified kernel that takes into account the off-

resonance contributions. This modified kernel successfully describes the saturation-recovery 

experiments for a wide variety of parameters. Excellent agreement was found between analytical 

results, numerical simulations, and experiments. 
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