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ABSTRACT OF THE DISSERTATION 

 

The Role of VIP SCN Neurons in Circadian Physiology and Behavior 

by 

Cristina Mazuski 

Doctor of Philosophy in Biology and Biomedical Sciences 

Neurosciences 
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Professor Erik Herzog, Chair 

 

Located in the ventral hypothalamus, the suprachiasmatic nucleus (SCN) is necessary for 

entraining daily rhythms in physiology and behavior to environmental cues. Though the 20,000 

neurons of the SCN uniformly express GABA, they differ greatly in neuropeptide content. One 

anatomically and functionally distinct class of neuropeptidergic SCN neurons is vasoactive 

intestinal polypeptide (VIP). Expressed by approximately 10% of SCN neurons, VIP is necessary 

for synchronizing single-cell SCN rhythms to produce coherent output and sufficient for 

entrainment. However, little is known about the firing activity of these neurons releases VIP and 

results in circadian entrainment. We utilized multielectrode array technology and optogenetics to 

optically tag VIP neurons expressing Channelrhodopsin-2 (ChR2) following three days of 

spontaneous activity recordings. We find that VIP neurons have circadian firing rates with two 

distinct patterns, irregular and tonic, that constitute two separate electrophysiological classes. 

Using optogenetic stimulation in vitro and in vivo, we show that high frequency firing intervals 
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are sufficient to phase shift and entrain circadian rhythms in gene expression and locomotor 

activity through VIP release. Interestingly, low frequency firing intervals do not phase shift the 

SCN in vitro and entrain behavioral rhythms more gradually. We also find that stimulation of 

VIP neurons can only phase delay and entrain rhythms during late subjective day and early 

subjective night. We conclude that VIP neurons entrain behavior in a time-of-day- and 

frequency- dependent manner. 

 

Complementary to testing the sufficiency of VIP neuronal firing for entrainment, we tested the 

necessity of VIP neurons for circadian rhythms in the adult SCN circuit. Using Cre-lox 

technology in vivo, we triggered adult-onset apoptosis in VIP SCN neurons. We found that over 

80% of these mice retained circadian rhythms. We contrast this to Vip null mice, where over 

60% lose rhythms. A majority of our mice lacking VIP neurons had decreased locomotor activity 

periods and increased daily onset variability, which strongly correlated with the intensity of VIP 

staining. In vitro, deletion of VIP neurons leads to a dramatically reduced amplitude of circadian 

gene expression and decreases in synchrony on the single-cell level. We conclude that the 

difference between adult deletion of VIP neurons and Vip null mice suggests a role for VIP in 

SCN development and in the developed adult circuit VIP neurons are not necessary for 

rhythmicity. 

Finally, we dissected the role of VIP SCN neurons in the daily rhythms in glucocorticoids, by 

characterizing the anatomy of VIP projections and testing the necessity of VIP neurons. We 

labeled VIP SCN neurons that project dorsally to the paraventricular nucleus of the 

hypothalamus (PVN) using a two-color tract tracing experiment. We concluded that a small 

bilateral subset of VIP SCN neurons projects to each side of the PVN. To test VIP neurons  



 ix  

function, we deleted VIP SCN neurons in the adult and measured corticosterone rhythms under 

constant conditions for 2 days. We find that rhythms in corticosterone are severely dampened 

with the loss of VIP neurons with peak corticosterone only reaching approximately 50% of wild-

type levels. We conclude that VIP SCN neurons contribute stimulatory input to the circadian 

rhythm in corticosterone.  

 

Taken together, these data suggest that VIP SCN neurons are a heterogeneous class of SCN 

neurons with multiple roles in adult SCN entrainment, development and the regulation of 

glucocorticoid rhythms. 
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Chapter 1. 

Introduction  
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Properties of Circadian Rhythms 

Circadian rhythms are endogenous near-24h oscillations that exist in both unicellular (Golden et 

al., 1997) and multicellular organisms (Panda et al., 2002). Evolving as a consequence of the 

predictable 24h rotation of the Earth, circadian rhythms allow organisms to anticipate and time 

daily physiological processes and behavior. These oscillations occur at molecular, cellular and 

system-wide levels in organisms as disparate as cyanobacteria, fungi, drosophila, mice and 

humans. 

 

Generated by endogenous mechanisms, circadian rhythms are capable of self-sustained 

oscillations in the absence of environmental input. In constant conditions within a laboratory 

environment, this is termed ‘free-running’ and observed due to the difference between an 

organism’s intrinsic period (e.g. mice = 23.7h) and the environmental period (24h). In real-world 

conditions, environmental input entrains an organism to the ambient environment. Light is the 

primary entraining cue (Czeisler, 1995), and temperature (Herzog and Huckfeldt, 2003), feeding 

(Mistlberger, 1994) and social activity (Fuchikawa et al., 2016) can function as secondary 

entraining cues. Entrainment occurs when daily perturbation phase delays or advances an 

organism’s intrinsic circadian rhythm to sync with the environment. 

 

Paradoxically, circadian rhythms must be stable – to properly ‘keep track of time’ - and flexible 

– to adjust to environmental changes. Stability is accomplished through robust endogenous 

oscillations. However, flexibility is necessary to adapt to long-term environmental changes such 

as seasonal changes in day-length and temperature. In recent history, modern lighting (de la 
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Iglesia et al., 2015) and air travel (Waterhouse et al., 2007) often push the circadian system past 

its limits, resulting in chronodisruption. 

 

In humans, deficits in circadian rhythm entrainment increase the risk of a variety of maladies 

including diabetes (Hu and Jia, 2016), cancer (Wegrzyn et al., 2016), and neuropsychiatric 

disorders (McClung, 2007). For instance, humans that exhibit a late chronotype, colloquially 

known as ‘late owls’, are more prone to poor academic performance, weight gain, and depression 

(Fabbian et al., 2016). Therefore understanding how circadian rhythms phase shift and entrain to 

the environment is crucial for ameliorating these adverse effects. 

 

The Mammalian Circadian Circuit 

The Suprachiasmatic Nucleus 

In mammals, the suprachiasmatic nucleus (SCN) is the master circadian pacemaker. Located in 

the ventral hypothalamus above the optic chiasm and alongside the third ventricle, the SCN is a 

small bilateral nucleus of approximately 20,000 neurons (Herzog, 2007). The SCN is both 

necessary and sufficient for generating circadian rhythms. Electrolytic ablation of the SCN 

results in complete behavioral arrhythmicity (Eastman et al., 1984), where rhythmic behaviors 

such as feeding, sleep and locomotor still occur but are no longer phase locked to a time of day. 

However, implantation of an embryonic graft SCN can restore circadian rhythms in behavior 

(Lehman et al., 1987). Importantly, the restored period of the animal matches the intrinsic period 

of the graft SCN and not the host. 
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SCN Input 

The SCN receives light input primarily through the retino-hypothalamic tract (RHT) 

(Abrahamson and Moore, 2001). Specifically, in the retina intrinsically photosensitive retinal 

ganglion cells (ipRGCs) signal to the SCN. In addition to receiving input from rods and cones 

(Güler et al., 2008), ipRGCs express the photopigment melanopsin that responds to strong 

changes in light amplitude (Hankins et al., 2008). The terminals of the M1 subtype of ipRGCs 

synapse onto the SCN (Baver et al., 2008) and release PACAP and glutamate, which activate 

PAC1 (PACAP receptor) and NMDA receptors in the SCN (Hannibal et al., 2000, Hannibal et 

al., 2002, Ding et al., 1994). Functionally, ablation of the M1 ipRGCs result in the complete loss 

of light entrainment (Chen et al., 2011). Additionally, the SCN receives indirect light input from 

the intergeniculate leaflet (IGL) through the geniculohypothalamic tract (GHT), which releases 

NPY and serotonin (Pickard et al., 1999). Alterations in NPY signaling lead to minor deficits in 

light entrainment (Weber and Rea, 1997, Marchant et al., 1997). In addition to these two tracts 

there are numerous other projections to the SCN, including olfactory, cortical, amygdaloid, 

hippocampal, thalamic, and hypothalamic inputs (Krout et al., 2002, Moga and Moore, 1997). 

The role of these inputs is an ongoing area of research. 

 

SCN Output 

Rhythms in circadian physiology depend on direct neuronal connections from the SCN. Among 

others, neuroendocrine rhythms fail to be restored following SCN graft implantation, 

highlighting the importance of direct neuronal connections from the SCN (Meyer-Bernstein et 

al., 1998). Indeed, the SCN sends projections to many hypothalamic areas associated with 
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neuroendocrine and autonomic function including the subparaventricular zone (SPZ), the lateral 

hypothalamus (LH) and the paraventricular nucleus of the hypothalamus (PVN) (Abrahamson et 

al., 2001). Ultimately, very little is known about how SCN cell types mediate circadian output. 

Research into how SCN outputs control circadian rhythms in sleep, water intake (Gizowski et al., 

2016) and glucocorticoid rhythms are active areas of interest. 

 

Cellular SCN Rhythms 

Individual SCN neurons have cell-autonomous rhythms in gene expression and spontaneous 

firing activity. These rhythms are self-sustained within cultured SCN explants and present within 

isolated SCN neurons. Ultimately, these single-cell rhythms couple together to drive system-

wide circadian rhythms in physiology and behavior. At the cellular level, these rhythms are often 

imprecise, however the strong coupling within the SCN strengthens these rhythms to produce 

precise rhythmic output (Herzog et al., 2004). 

 

The Molecular Clock 

The molecular clock is a transcription-translation feedback loop (TTFL) composed of core clock 

genes such as Clock, Bmal1, Period (1 and 2) and Cryptochrome (1 and 2) that form the basis for 

circadian rhythms in gene expression (Takahashi, 2017). Specifically, the transcription factors 

BMAL1 and CLOCK form a heterodimer that activates the transcription of Period and 

Cryptochrome (Reppert and Weaver, 2002). Following translation, PERIOD and 

CRYPTOCHROME dimerize and suppress the activity of the CLOCK:BMAL1 heterodimer, 
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effectively inhibiting their own transcription (Shearman et al., 2000). This loop takes 

approximately 24 hours and results in roughly antiphase expression of BMAL1 and PERIOD. 

 

Loss of function mutations that completely knock out any of the four main TTFL components 

result in system-wide arrhythmicity. Bmal1 is the only single core clock gene whose null 

mutation is sufficient to knock out the clock. Double null mutations involving other core clock 

genes (Clock and NPAS2 (DeBruyne et al., 2007), Per1 and Per2 (Bae et al., 2001), and Cry1 

and Cry2 (Vitaterna et al., 1999)) are required to cause arrhythmicity due to their overlapping 

and compensatory roles. 

 

Expression of the core clock genes is not limited to the SCN, but rather ubiquitous throughout 

the organism (Yoo et al., 2004). In many tissues including liver, lungs and adrenal glands, the 

TTFL drives cyclic expression of transcripts, resulting in rhythmic expression of over 40% of the 

genome (Zhang et al., 2014). However, the SCN is one of the few tissues that expresses self-

sustained rhythms that can persist for weeks to months. 

 

Firing Activity 

The SCN exhibits circadian rhythms in firing activity at circuit and single-cell levels. These 

rhythms are primarily driven through the rhythmic expression of ion channels that cyclically 

alter the electrophysiological properties of SCN neurons (Herzog et al., 2017). Perturbations to 

the core molecular clock alter the circadian rhythm in firing activity indicating that these rhythms 

are dependent on a functional molecular clock (Herzog et al., 1998, Albus et al., 2002). 
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However, circadian firing activity can also feed back and alter the properties of the core 

molecular clock at a single-cell, circuit and behavioral levels. Pharmacological blockade of 

voltage-gated sodium channels using TTX reduces the amplitude and desynchronizes circadian 

rhythms in gene expression (Yamaguchi et al., 2003). Genetic manipulation of potassium 

channels including Kv1.4 and Kv4.2 alters the fundamental period of the molecular clock 

(Granados-Fuentes et al., 2012). Induction of SCN firing can phase shift and entrain circadian 

rhythms in gene expression and behavior (Jones et al., 2015). 

 

Unlike the comparatively slow changes in gene expression oscillations that rely on transcription 

and translation, SCN neurons can quickly modulate firing activity in response to perturbation. In 

vivo multi-unit activity recordings reveal a subset of light-sensitive SCN neurons that rapidly 

alter their firing rates in response to retinal input (Tsuji et al., 2016, Meijer et al., 1996). In vitro 

studies reveal changes in SCN firing rate in response to a variety of non-photic signaling 

molecules including melatonin and NPY (Hablitz et al., 2015, Hablitz et al., 2014). These studies 

indicate that short-term SCN firing rate plays a crucial role in integrating inputs into the SCN. 

 

Most electrophysiological SCN studies have focused on changes in SCN neuronal firing rate also 

known as the mean firing frequency: 

Mean firing frequency = number of spikes / time 

where time bins can range from 10 seconds to 10 minutes. Firing rate is a quick way to simplify 

complex SCN activity recordings, but can risk oversimplifying data that occurs on the 

millisecond timescale. This patterning is also known as the instantaneous firing frequency. 
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Instantaneous firing frequency = 1 / [(n+1)spike time – nspike time] 

Early SCN studies identified 3 main patterns of firing activity present within SCN neurons – 

tonic, irregular and bursting (Pennartz et al., 1998). Pharmacological studies suggest that 

separate ionic conductances are responsible for the oscillations in mean firing rate versus 

millisecond firing pattern (Pennartz et al., 2002, Ikeda et al., 2003). Recent studies have linked 

SCN firing patterns with light-responsivity and sleep regulation (Sakai, 2014, Tsuji et al., 2016). 

However these correlations do not fully explain the observed variability of SCN firing patterns. 

 

Additionally, no in-depth studies have considered the role of spontaneous SCN firing rate or 

pattern on activity-dependent neurotransmission within the SCN. Membrane depolarization 

triggers calcium dependent signaling cascades that facilitate the binding of synaptic and dense 

core vesicles and release of contents from the neuron. Application of TTX on the SCN that 

greatly reduces firing activity can block phase shifts in gene expression (Jones et al., 2015) and 

reduce synchrony (Yamaguchi et al., 2003) similar to antagonists that directly block SCN 

neurotransmission (VPAC2 antagonist (Aton et al., 2005), V1a/V1b antagonists(Yamaguchi et 

al., 2013)). This strongly suggests that SCN neurotransmission is mediated through firing 

activity. Ultimately, how firing activity contributes to neurotransmission in the SCN is not well 

understood. 

 

SCN Neurotransmission 

SCN neurons signal through fast GABAergic neurotransmission and slow neuropeptidergic 

signaling. Most if not all SCN neurons synthesize and release GABA that signals through the 
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GABAA receptor (Belenky et al., 2003). However, SCN neurons vary greatly in their 

neuropeptidergic content (Abrahamson and Moore, 2001). Though up to 40 different SCN 

neuropeptides have been identified (Hatcher et al., 2008), research has focused on three 

neuropeptides with region-specific SCN expression: Vasoactive polypeptide (VIP) expressed in 

the core of the SCN, Arginine vasopressin (AVP) expressed in the shell and Gastrin-releasing 

peptide (GRP) in the mid- SCN. Of these, VIP is the most potent neuropeptide in SCN function 

and the focus of this dissertation. 

 

Vasoactive Intestinal Polypeptide (VIP) 

Physiology and Release of VIP 

VIP is a 28-amino acid polypeptide that was originally isolated in the gastrointestinal tract (Said 

and Mutt, 1970). In the mammalian brain, VIP is found in the cortex, hippocampus, brainstem 

and hypothalamus. Within the hypothalamus, VIP is particularly enriched in the SCN, where it is 

synthesized and expressed by approximately 10% of SCN neurons. VIP cell bodies are restricted 

to the ventral SCN, but VIPergic processes densely project throughout the whole SCN 

(Abrahamson and Moore, 2001). Rhythms in VIP mRNA have been reported with peak levels 

occurring during nighttime (Okamoto et al., 1991, Yang et al., 1993). Rhythms in VIP release are 

less well understood due to the inherent difficulties of quantifying VIP release. However, VIP is 

rhythmically released under entrained conditions (Francl et al., 2010), released following 

nighttime light pulses (Shinohara et al., 1998) and may show rhythmicity under constant 

conditions (Shinohara et al., 1994, Francl et al., 2010). 
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How VIP release occurs from neurons is not well understood. Within individual neurons, VIP is 

stored within dense core vesicles as opposed to clear synaptic vesicles that store small-molecular 

fast neurotransmitters like GABA (Castel et al., 1996). This has implications for the release of 

VIP. The long-standing view in neuroscience is that dense core vesicle contents are only released 

through high calcium levels achieved through high frequency firing (typical stimulation 

paradigms exceed 40Hz). This is in contrast to synaptic vesicles, which are more readily released 

through single action potentials. Despite the importance of neuropeptidergic neurotransmission, 

dense core vesicle fusion has largely been studied in invertebrates, large neuromuscular synapses 

and hippocampal neurons (Xia et al., 2009, Pecot-Dechavassine and Brouard, 1997). Given the 

relatively low firing rates found in SCN neurons (sustained firing rates rarely exceed 10-15Hz 

during daytime) and the importance of neuropeptidergic neurotransmission within the SCN, 

surprisingly little is known about how VIP or any other neuropeptide is released from SCN 

neurons. 

 

VIP Signaling 

VIP primarily signals through two receptors, VPAC1 and VPAC2. Only VPAC2 is present in 

high levels within the SCN. VPAC2 belongs to the secretin family of Gs-protein coupled 

receptor and is expressed by 70-95% of SCN neurons (An et al., 2012, Kalló et al., 2004). Upon 

binding of VIP, VPAC2 signals through parallel changes in adenylate cyclase and phospholipase 

C (An et al., 2011), which result in downstream modulations of voltage gated channels, pre-

synaptic regulation of GABA release and alterations in transcription via CREB (Meyer-Spasche 

and Piggins, 2004, Pakhotin et al., 2006). 
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VIP Functionality 

Functionally, VIP is necessary for circadian synchrony. Loss of VIP or its receptor VPAC2 

results in behavioral arrhythmicity in 60-70% of animals with the remaining mice running with 

shorter periods and low-amplitude rhythms. The loss of VIP signaling causes single cell rhythms 

in gene expression and firing activity to become arrhythmic or desynchronized from each other. 

This effect can be rescued by daily applications of VPAC2R agonists verifying that VIP 

signaling is both necessary and sufficient for SCN synchrony (Aton et al., 2005, Harmar, 2003, 

Colwell et al., 2003, Hughes et al., 2004). 

 

VIP signaling also plays a role in photic entrainment. Some VIP neurons receive direct retinal 

input (Fernandez et al., 2016). Following a retinal light pulse, some VIP neurons express cFOS 

and release VIP (Castel et al., 1997, Shinohara et al., 1998). In vivo injections of VIP have phase 

shifting effects on locomotor activity resulting in a phase delay in early nighttime that mimic the 

effects seen with bright retinal light pulses (Piggins et al., 1995, Albers et al., 1991). In vitro 

daily application of VIP is sufficient to phase shift and entrain the SCN in vitro (An et al., 2011). 

Mechanistically, addition of VIP increases IPSC frequency (Itri et al., 2004) and promotes the 

expression of PERIOD1 and PERIOD2 during nighttime (Nielsen et al., 2002). Paradoxically, 

higher dosages of VIP can lower SCN synchrony, which may allow the SCN to more rapidly 

phase shift and entrain to the local light schedule, a phenomenon known as phase tumbling (An 

et al., 2013). 
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Finally, VIP plays a role in SCN output. VIP SCN neurons project to the subparaventricular zone 

(SPZ), the paraventricular nucleus of the hypothalamus (PVN) and the paraventricular nucleus of 

the thalamus (PVT) (Abrahamson and Moore, 2001, Abrahamson et al., 2001). Mice deficient in 

VIP lose rhythms in corticosterone (Loh et al., 2007) and estrous signaling (Miller et al., 2004). 

Ultimately, little is known about how these neurons contribute to specific circadian behavioral 

rhythms. 

 

Cell Specific Manipulations 

In summary, the SCN is a complex nucleus with heterogeneous rhythms in gene expression and 

firing activity that signals through many neuropeptides. To understand how the circadian circuit 

integrates environmental input into coherent behavioral output, we must understand the 

contribution of specific cell types or regions. By targeting specific SCN cell types, we can 

characterize rhythms, disrupt cell-specific rhythms and understand the function of cell-specific 

neural circuitry necessary for circadian behavior. This dissertation uses this tripartite approach to 

understanding the role of VIP SCN neurons in circadian physiology and behavior. 

 

Cre-Lox Recombination 

With Cre-Lox recombination, we can now target specific cell types within the SCN. Briefly, Cre 

is a DNA recombinase that interacts with sites known as loxP sequences to initiate site-specific 

recombination. This can be used to express or delete DNA sequences. For example, to express 

channelrhodopsin-2 (ChR2) within VIP neurons, we cross the VIP-ires-Cre mouse line with a 

transgenic line that contains a loxP-flanked STOP cassette preventing the transcription of ChR2. 
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Cre is expressed only in VIP-expressing neurons, therefore site-specific recominbation necessary 

for deleting the STOP cassette that prevents ChR2 expression occurs only in VIP neurons. This 

results in VIP specific expression of ChR2. Depending on the experimental question, this 

technology can be adapted to target other cell types and delete or express different constructs. 

 

Observing/Characterizing Rhythms in Specific SCN Cell Types 

Previous studies have measured region-specific SCN rhythms (core versus shell) using single-

cell slice electrophysiology, PERIOD2::LUC bioluminescent imaging or PERIOD1:VENUS 

fluorescent imaging. However, interrogating the role of specific SCN cell types within these 

regions has been limited. Using Cre driver lines that target cell types within the SCN, researchers 

can drive the expression of fluorophores, bioluminescent reporters and other constructs to 

observe and characterize cell-specific rhythms. Recent reports characterize circadian rhythms in 

calcium and membrane voltage within VIP and AVP neurons (Enoki et al., 2017) and gene 

expression within SCN glia (Tso et al., 2017). Short term VIP firing activity was characterized 

through targeted VIP expression of fluorescent reporters (Hermanstyne et al., 2016) suggesting 

that VIP neurons have slightly higher firing rates than non-VIP neurons. Additionally 

electrophysiological studies characterized monosynaptic SCN connections by activating SCN 

VIP neurons using cell-specific expression of ChR2, concluding that approximately 50% of SCN 

neurons respond to GABA signaling from VIP neurons(Fan et al., 2015). In Chapter 2, we 

expand upon this literature by identifying and characterizing the multi-day firing activity of 

single VIP neurons. We conclude that VIP neurons have circadian patterns of firing activity and 

predominantly fire in irregular or tonic patterns. 
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Disrupting Rhythms in Specific SCN Cell Types 

Global loss-of-function mutations have been critical in identifying the core molecular clock 

genes (Bmal1, Clock, Period, Cryptochorme) and other genes that regulate circadian period 

(Casein-kinase epsilon) and synchrony (Vip, Vipr2). Restricting these genetic manipulations to 

specific cell types permits more in-depth interrogation of how the SCN circuit functions and 

which cell types are ultimately more important for generating circadian rhythms. Reversible 

genetic manipulation of Neuromedin-S (NMS) SCN neurons (~40% of SCN neurons including a 

majority of VIP and AVP neurons) suggested that rhythms within NMS SCN neurons are 

necessary for circadian rhythms in behavior (Lee et al., 2015). Loss of the molecular clock in 

AVP neurons lengthens the behavioral period and weakens intercellular coupling (Mieda et al., 

2015). Interestingly, overexpression of Clock Δ19 in VIP neurons does not yield a circadian 

phenotype (Lee et al., 2015), suggesting that on their own VIP neurons are not sufficient to set 

the behavioral period. In Chapter 3 we examine the effects of ablating VIP neurons in the adult 

SCN. Interestingly, we find that adult loss of VIP neurons produces a milder phenotype than 

global knockout of VIP signaling. 

 

Testing the Function of SCN Cell-specific Circuitry 

Cell-specific targeting allows unprecedented interrogation of neural circuits that control behavior 

at multiple levels. Fully dissecting a circuit involves multiple components: from understanding 

anatomical connectivity to testing necessity of signaling and the sufficiency of firing activity for 

behavior. These techniques are particularly useful for understanding SCN output circuits. Recent 
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reports in the drosophila model dissect how the Leucokinin neuropeptidergic circuit regulates 

locomotor activity downstream of clock neurons (Cavey et al., 2016) and how SCN AVP 

neurons time the circadian rhythm in water intake in the mouse (Gizowski et al., 2016). In this 

dissertation we test the role of VIP SCN circuitry in locomotor activity and glucocorticoid 

rhythms. In Chapter 2, we test how the different firing patterns of SCN VIP neurons phase shift 

and entrain circadian rhythms in gene expression and locomotor activity. Interestingly, SCN VIP 

activity also causes acute inhibition of locomotor activity. We conclude that SCN VIP neurons 

phase shift and entrain circadian rhythms in a time-of-day- and frequency- dependent manner. In 

Chapter 4, we present preliminary data on VIP SCN neurons that project to the paraventricular 

nucleus of the hypothalamus and dampen the daily rhythms in corticosterone. 
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Abstract 

The mammalian suprachiasmatic nucleus (SCN) functions as a master circadian pacemaker, 

integrating environmental input to align physiological and behavioral rhythms to local time cues. 

Approximately 10% of SCN neurons express vasoactive intestinal polypeptide (VIP); however, it 

is unknown if VIP neurons affect entrainment of rhythms through the modulation of firing 

activity and subsequent modulation of VIP release. To identify physiologically relevant firing 

patterns, we optically tagged VIP neurons and characterized spontaneous firing over three days. 

VIP neurons had circadian rhythms in firing rate and exhibited two classes of instantaneous 

firing activity. We next tested whether physiologically relevant firing affected circadian rhythms 

through VIP release. We found that VIP neuron stimulation with high, but not low, frequencies 

shifted gene expression rhythms in vitro through VIP signaling. In vivo, high frequency VIP 

neuron activation rapidly entrained circadian locomotor rhythms. Thus, VIP neurons 

communicate daily cues through firing activity and VIP release to entrain molecular and 

behavioral circadian rhythms.   
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Introduction 

Circadian rhythms are a ubiquitous adaptation to the 24-h daily cycle on Earth. Found in 

organisms as disparate as Arabidopsis, Drosophila, Synechococcus, and humans, these daily 

oscillations occur at molecular, cellular and systems levels, ultimately entraining an organism to 

environmental cycles (Dunlap, 1999). Dysregulation in the circadian system, also known as 

chronodisruption, is associated with a variety of physiological maladies in humans including 

diabetes, cancer, insomnia, and affective disorders (Van Someren, 2000, Musiek et al., 2013, 

McClung, 2011). Understanding how cellular circadian oscillators integrate environmental 

signals, communicate with each other, and entrain to their environment is key to preventing and 

treating chronodisruption. 

 

The suprachiasmatic nucleus (SCN) is a master circadian pacemaker, which detects local light 

input through retinal release of glutamate and PACAP (Eastman et al., 1984, Ding et al., 1997, 

Harrington et al., 1999, Hannibal et al., 2000). Located in the ventral hypothalamus, the 

approximately 20,000 GABAergic neurons comprising the SCN are unique in that many express 

self-sustained and spontaneously synchronizing circadian rhythms in firing activity and gene 

expression (Cassone et al., 1993, Reppert and Weaver, 2002, Welsh et al., 1995). These rhythms 

are maintained through a near-24 h transcription-translation feedback loop of core clock genes 

including Bmal1, Clock, Period1 and 2 (Per1 and 2), and Cryptochrome1 and 2 (Ko and 

Takahashi, 2006, Okamura et al., 2002). Recently, researchers have shown that electrical 

stimulation of all SCN neurons was sufficient to phase shift and entrain circadian rhythms in 

gene expression and behavior (Jones et al., 2015). However, it is poorly understood how firing 

activity and neurotransmission from specific cell types within the SCN contribute to entrainment.  
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Although uniformly GABAergic (Moore and Speh, 1993), SCN neurons vary significantly in 

their neuropeptide content (Abrahamson and Moore, 2001).  One anatomically and functionally 

distinct class of neurons expresses vasoactive intestinal polypeptide (VIP). Though neurons 

expressing VIP only make up approximately 10% of SCN neurons (Abrahamson and Moore, 

2001), VIP neuron projections densely innervate the SCN and the majority of SCN neurons 

express its receptor VPAC2 (An et al., 2012). Functionally, genetic loss of VIP or VPAC2R 

weakens synchrony among SCN neurons and dramatically reduces circadian rhythms in the SCN 

and in behavior (Aton et al., 2005, Maywood et al., 2006, Brown et al., 2007).  Additionally, 

exogenous application of VIP increases GABAergic neurotransmission(Reed et al., 2002), 

induces clock gene expression(Nielsen et al., 2002), and phase shifts daily rhythms in the SCN 

and locomotor activity (An et al., 2011, Piggins et al., 1995). With the development of Cre-lox 

technology allowing cell-type specific manipulation of SCN neurons, researchers found that VIP 

neurons have sparse monosynaptic connections to approximately 50% of SCN neurons (Fan et 

al., 2015). However, to-date there have been no studies testing the functional role of VIP neurons 

in behavior.  

 

Herein, we take a cell-to-systems approach to understand how firing of VIP neurons contributes 

to circadian entrainment. We used optical tagging to identify VIP SCN neurons and characterize 

their firing patterns across multiple days. Using physiologically relevant firing frequencies, we 

then tested the role of VIP neuron firing in phase shifting and entrainment in vitro and in vivo via 

optogenetic stimulation. We conclude that VIP neurons can use firing frequency to phase shift 

circadian gene expression and behavior, ultimately resulting in entrainment to the local schedule.  
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Results 

Optical tagging of VIP SCN neurons on multielectrode arrays reveals daily rhythms in 

firing activity 

To understand how VIP neurons integrate and communicate within the SCN, we first needed to 

identify and characterize the firing activity of VIP neurons. To do so, we optically tagged VIP 

SCN neurons within a high-density SCN culture plated on multielectrode arrays (MEAs).  

 

Specifically, following multiday spontaneous activity recordings from SCN MEA neurons, we 

activated channelrhodpsin-2 (ChR2) expressed solely within VIP neurons (VIPCre crossed with 

floxed-ChR2) using blue light pulses (Figure 1a). To identify VIP neurons, we calculated the 

interspike interval histogram (ISIH) of each neuron that fired during the 1 h stimulation and 

found neurons whose firing matched the stimulation pattern (10.6 ± 1.7%, mean ± SEM, Figure 

1b). To verify that VIP neurons selectively fired synchronously during the stimulation, we cross-

correlated firing between each pair of active neurons. As predicted, we found that only VIP 

neurons increased firing synchronously in response to stimulation, while some non-VIP neurons 

decreased firing approximately 10-20 ms following stimulation, consistent with inhibitory 

neurotransmission from VIP SCN neurons (Figure 1c).  

 

Based on our identification during stimulation, we classified the prior spontaneous activity firing 

as VIP or non-VIP (Figure 2). Overall, we discriminated multiday electrical activity from 40 

VIP neurons and 543 non-VIP neurons across 8 MEA preparations. Although previous reports 

differ on whether VIP SCN neurons exhibit circadian firing rhythms(Hermanstyne et al., 2016,  
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Figure 1. Characterizing multiday spontaneous firing activity of identified VIP SCN 

neurons within a multielectrode array culture. 

a) SCN neurons were categorized as VIP-positive (VIP) or –negative (non-VIP) by optically 

tagging VIP neurons using optogenetic stimulation after 3 days of spontaneous activity 

recording.  Multiday firing was sorted from 563 SCN neurons identified on 8 multielectrode 

arrays plated and cultured for 3 weeks from VIPChR2 mice. Raster plots of five representative 

SCN neurons show how their spike times over one minute differed in mean rate and pattern. b) 

The inter-spike interval histograms during optogenetic stimulation illustrate how a representative 

VIP (top) neuron fired at the stimulation frequency (4 Hz) with a precision of <10ms (top right 

inset) and a non-VIP neuron (bottom) fired in a ChR2-independent pattern. c) To further 

characterize the evoked firing of VIP neurons, we cross-correlated spike times between 

concurrently recorded SCN neurons during optogenetic stimulation. A VIP reference neuron (top 

left panel) fired synchronously with 3 other representative VIP (top panels), but not 4 

representative non-VIP neurons (bottom panels). Note that some non-VIP neurons (#2 and #3) 

decreased their firing following stimulation of VIP neurons, indicative of postsynaptic inhibition. 

d) Four representative VIP (top) and non-VIP (bottom panels) SCN neurons showing circadian 

firing patterns over the three days of recording. e) A greater fraction of VIP neurons were 

circadian (81.6 ±4.7%) compared to non-VIP neurons (51.7 ± 8.5%, Chi-squared test **p < 

0.00001). f) eYFP fluorescence (green) reveals the subset of SCN neurons expressing ChR2 near 

four of the 60 electrodes. 
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Figure 2. Spontaneous electrical firing from individual neurons can be reliably tracked 

across multiple days (supplemental information) 

We used a recursively applied PCA with Gaussian mixture model (GMM) clustering to 

discriminate firing from single SCN neurons across multiple days on multielectrode arrays 

before and during optogenetic stimulation. The automated analysis was performed blinded to the 

identity of the neuron (VIP or non-VIP). a) On this representative electrode, we identified 3 

clusters (circled in top panel) and their corresponding average extracellular waveforms (bottom 

panel). b) Neuron1 from the above analysis was identified as VIP-positive. The spike waveform 

during optogenetic stimulation (dashed line) correlated with the mean spontaneous activity 

waveforms recorded over the prior three days from the same electrode.  
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Fan et al., 2015), we found that VIP neurons were more likely to exhibit circadian rhythms in 

firing than non-VIP neurons (81.5 ± 4.0% compared to 51.7 ± 8.5%, Figure 1d-e).   

 

Since our experimental design relied on direct ChR2-induced increases in firing within VIP 

neurons, we tested these assumptions. As utilized and quantified by previous researchers 

(Hermanstyne et al., 2016, Fan et al., 2015, Brancaccio et al., 2013), Cre-lox recombination 

selectively drives transgene expression within VIP neurons. Additionally, we verified that only 

ChR2-positive SCN neurons fired precisely in response to light pulses using whole-cell patch 

clamp recordings (Figure 3). Finally, within our MEA preparation we validated that VIP 

neurons responded to light pulses within 5 ms (Figure 4). In conclusion, optical tagging reliably 

identified the multiday firing activity of VIP SCN neurons.  

 

VIP neurons fire with either tonic or irregular patterns 

Previous studies have described three classes of firing patterns in the SCN (tonic, irregular, and 

bursting) (Pennartz et al., 1998), however it is poorly understood whether these firing patterns 

vary with neuropeptide cell type, time of day, or across multiple days. To address this, we 

analyzed spike timing and frequency to characterize instantaneous firing patterns of circadian 

SCN neurons that could be tracked for multiple days (33 VIP and 268 non-VIP).  

 

Based on the ISIH of spontaneous activity, we also observed three distinct classes of firing 

patterns within SCN neurons: tonic, irregular, and bursting (Figure 5a-b). Strikingly, individual 

SCN neurons did not change their firing pattern (tonic, irregular, or bursting) with time of day, or 

across multiple days, including during periods of rapidly increasing or decreasing firing activity  
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Figure 3. Only ChR2 positive SCN neurons increase firing in response to optogenetic 

stimulation (supplemental information) 

a) Using whole-cell patch clamp, we recorded from neurons within VIPChR2 SCN slices while 

stimulating at 2, 5, 10, or 15 Hz. ChR2-eYFP positive neurons (n = 5) matched their firing to the 

stimulation frequency, while ChR2-eYFP negative neurons (n = 5) in the same SCN slice did 

not. b) ChR2-eYFP positive neurons followed the stimulation frequency within 10ms as revealed 

by the interspike interval histogram (15 Hz stimulation, n = 4 neurons). c) Representative traces 

show a ChR2-eYFP positive neuron that increased its firing rate in response to 5 Hz stimulation, 

while ChR2-eYFP negative firing did not change. These results indicate that the presence of 

ChR2 is necessary for light-evoked increases in firing.  
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Figure 4. VIPChR2 neurons fire within 10ms of stimulation (Supplemental information) 

a) The post-stimulus histogram (PSTH) of SCN neuronal firing following a 10ms laser flash 

(blue box) showed that 100% of neurons identified as VIPergic (blue) fired reliably within 10ms 

of the stimulation, while non-VIP neurons (black) did not respond to the flashes. b) 

Corresponding ISIH for two VIP (blue) and one non-VIP (black) neurons during 10Hz 

stimulation. The VIP neuron fired at 0.1s intervals whereas the non-VIP neuron (black) did not. 

Thus, the ISIH or the PSTH accurately identified VIP neurons on multielectrode arrays.  
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(Figure 5c). We used unbiased, hierarchical clustering based on the ISIH and the dominant 

instantaneous firing rate (DIFR, the peak of the ISIH) to cluster VIP and non-VIP neurons into 

classes of firing pattern (Figure 5d). This method revealed two clusters of VIP neurons (tonic 

and irregular) and three clusters of non-VIP neurons (tonic, irregular, and bursting). On average, 

the DIFR trended higher in tonic neurons than irregular neurons and did not differ between VIP 

and non-VIP neurons (Figure 5e). In contrast, non-VIP bursting neurons fired in doublets or 

triplets of spikes with a DIFR above 100Hz.  

 

Separately, we used the same hierarchical clustering method to characterize VIP SCN neurons 

from intracellular daytime adult SCN slice recordings. The firing recorded from these VIP 

neurons also reliably clustered into tonic or irregular firing classes (Figure 6). Taken together, 

these data indicate that SCN neurons have distinct electrophysiological profiles that are stable 

across the circadian day, and consistent from day to day. We conclude that, despite representing 

only 10% of SCN neurons, VIP neurons are an electrophysiologically heterogeneous group, 

exhibiting either tonic or irregular firing, that predominantly fire around 5-10Hz (Figure 5e-f).  

 

High frequency firing of VIP neurons phase shifts circadian gene expression rhythms in 

vitro 

To test if VIP firing influences circadian entrainment, we stimulated VIP neurons with two firing 

frequencies. Based on our characterization of VIP neurons, we picked two stimulation paradigms 

that represent the high and low frequency ranges of VIP neurons: high instantaneous frequency 

(HIF, doublets of 20 Hz at 2 Hz) and low instantaneous frequency (LIF, 4 Hz pulses evenly 

spaced). These stimulation patterns had the same number of spikes per second (4 Hz), but   



	44	



	45	

Figure 5. Hierarchical clustering reveals two classes of VIP SCN neurons based on their 

daily firing patterns.  

SCN neurons exhibited one of three different daytime firing patterns: Tonic (TON), irregular 

(IRR) or bursting (BUR). a) Raster plots show the spike times over a minute from a 

representative neuron in each class. Black arrows indicate when the bursting neuron fired 

multiple tightly spaced doublets or triplets. b) The interspike interval histograms (ISIH) 

corresponding to the neurons in a. Note that the TON neuron had precise spike timing with a 

sharp peak in the ISIH, while the IRR neuron exhibited imprecise timing between spikes and the 

BUR neuron had a precise short-interval component occurring at imprecise long intervals. c) 

Short-term firing patterns were stable across multiple days shown by three representative SCN 

neurons. Note that the daily appearance of multiple bands during tonic firing corresponds to 

harmonics resulting from skipped spikes. c) Unbiased hierarchical clustering of each neuron’s 

ISIH and dominant instantaneous firing rate (DIFR) identified three classes of non-VIP, and two 

classes of VIP neurons (blue = tonic, green = irregular, orange = bursting). Insets show a 

representative normalized ISIH for each firing class. The DIFR (black arrows) measures the 

dominant frequency of firing, not the maximum or average firing frequency. d) Quantification of 

the DIFR from each class (n = the number of neurons recorded within each class; median 

interquartile range in Hz, TON VIP 5.3 ± 2.8, IRR VIP 3.9 ± 3.7, TON Non-VIP 6.2 ± 3.6, IRR 

Non-VIP 4.1 ± 4.1, BUR Non-VIP 101.0 ± 73.6). e) The cumulative frequency distribution 

shows that both TON and IRR VIP neurons had similar DIFR with nearly all firing between 5-10 

Hz.   
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Figure 6. VIP neurons within an intact SCN slice fire in either tonic or irregular patterns 

(Supplemental Information) 

a) Unbiased hierarchical clustering revealed tonic and irregular VIP in 60s whole-cell patch 

clamp recordings during daytime (right panel). b) Dominant instantaneous firing rate was 

calculated for each neuron from the ISIH peak, and a boxplot of dominant frequency is shown 

for each neuron class (tonic/irregular). Observed DIFR fell predominantly between 2 Hz and 10 

Hz (tonic VIP 4.5 (1.4) Hz; irregular VIP 2.8 (1.4) Hz; all values median (interquartile range)). 

c) Cumulative frequency distribution plot shows the percentage of VIP neurons that fire at 

specific frequencies. d) 60s raster plots of 2 representative neurons show the differences in spike 

timing. 
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differed in spike timing. Both HIF and LIF evoked firing in VIP neurons on MEAs, which 

reliably followed the stimulation frequency (Figure 7). During the 1 h of stimulation we 

observed no evidence of depolarization block or habituation in stimulated VIP neurons.   

 

We stimulated VIP neurons within intact SCN slices with HIF and LIF frequencies and found 

that only HIF frequencies shifted circadian gene expression. Briefly, we cultured SCN explants 

expressing ChR2 in VIP neurons and Period2::Luciferase (PER2::LUC, a knock-in fusion that 

reports PER2 protein abundance) or littermate controls lacking ChR2 expression. Following 

baseline bioluminescence recording of PER2 levels from the entire SCN, we stimulated all SCN 

for 1 h near the peak of PER2 expression (Circadian time, CT 9-12) with HIF or LIF patterns. 

We chose to stimulate at this time because it has been reported as the time when exogenous VIP 

application evoked large delays in PER2 rhythms (An et al., 2011). HIF stimulation significantly 

delayed the daily rhythms of SCN PER2 expression by over 1.5 h, whereas LIF stimulation did 

not (Figure 8). Additionally, three consecutive days of stimulation yielded similar results 

(Figure 9). Thus, firing of VIP neurons can phase delay circadian gene expression but only if 

stimulated at sufficiently high frequencies.  

 

To test whether the resulting phase delay was mediated by increases in VIP signaling, we 

stimulated SCN PER2 explants expressing ChR2 in VIP neurons with HIF frequencies in the 

presence of 10 um VPAC2R antagonist or vehicle control. We found that the presence of the 

antagonist reduced the resulting phase shift (Figure 8c). Thus, our data suggests that HIF firing 

of VIP neurons releases VIP, which phase delays circadian gene expression.  
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Figure 7. VIPChR2 neurons fire reliably in response to 40 min of HIF or LIF stimulation 

To test whether VIP neurons reliably fire at HIF and LIF frequencies, we stimulated VIPChR2 

MEA cultures for 40 min with either frequency. a) 60s raster plots of two representative VIP 

neurons firing at HIF and LIF frequencies. The MEA recordings occasionally miss spikes (due 

largely to the proximity of a neuron to the electrode) but the pattern of spike timing is consistent 

with the stimulation b) as illustrated by the ISIH. c) VIP firing binned at 30s showed no change 

over a 40-min period with either HIF or LIF indicating that individual neurons show no evidence 

of habituation or depolarization block in response to HIF or LIF stimuli.  
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Figure 8. Optogenetic Stimulation of VIP SCN neurons phase delays circadian rhythms in 

PER2 expression.  

a) Representative PER2::LUC actograms from three SCN slices. In the top two traces, ChR2 

expressed in VIP neurons was activated for 1 h (blue bar) on the fourth day of recording with 

high (HIF) or low (LIF) frequencies. Control SCN received either HIF or LIF stimulation, but 

lacked ChR2. Note the large delay in the time of the daily PER2 (red dots) on the days after HIF 

stimulation relative to the extrapolated unperturbed phase (red line). b) HIF stably delayed PER2 

rhythms compared to either LIF or control conditions (-1.6 ± 0.3 h, HIF, 0.4 ± 0.5, LIF, 0.5 ± 

0.3, control; *p < 0.05 and **p < 0.01, one-way ANOVA with Tukey’s posthoc test, n= 9, 10 

and 32 SCN slices, respectively). c) VPAC2 antagonist treatment during HIF stimulation reliably 

reduces the resulting phase shift, shown by a representative actogram (left) and the group 

summary. (-3.902 0.6178, HIF + Vehicle, -1.124 0.5381, HIF + VPAC2R Antagonist; **p < 

0.01, unpaired t-test, n =  7, 7 SCN slices, respectively).  
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Figure 9. HIF but not LIF stimulation of VIP neurons shifts clock gene rhythms in SCN 

slices. (Supplemental Information) 

a) Representative bioluminescence traces show that daily HIF stimulation (blue bars) phase 

delayed PER2 circadian rhythms compared to control SCN explants, while LIF stimulation did 

not. B) Using the rising phase as a reliable phase marker, we found that HIF stimulation sufficed 

to change the phase of PER2 expression compared to controls (n = 8, VIPChR2 and 7, control, 

Watson-Williams test for days 6 – 9, *p< 0.05). LIF stimulation failed to phase shift PER2 gene 

expression (n = 5 VIPChR2 SCN and n = 10 control SCN, Watson-Williams test for days 6-9, p 

= 0.5) 
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Activation of VIP neurons induces cFOS expression throughout the SCN in vivo 

Although VIP neuronal cell bodies localize to the ventral SCN, VPAC2 receptor is expressed in 

nearly all SCN neurons (An et al., 2012). Consistent with these anatomical data, we found that 

activation of VIP neurons in vivo increases cFOS protein throughout the SCN. Briefly, freely 

moving mice expressing ChR2 in VIP neurons (VIPChR2) and littermate controls received blue 

laser light via an implanted fiber optic cannula aimed at the SCN. After 1 h of 15Hz stimulation 

at CT 13, 88.9 ± 4.0% (mean ± SEM, n = 4 mice; Figure 10a) of VIP neurons expressed cFOS, a 

marker of neuronal activation. Furthermore, cFOS expression increased roughly 5-fold in the 

ventral SCN and almost 4-fold in the dorsal SCN (Figure 10b) compared to controls. We 

conclude that high frequency in vivo stimulation of VIP neurons increases activity both within 

VIP neurons and throughout the SCN.  

 

Activation of VIP neurons entrains locomotor activity in vivo 

Next, we found that firing of VIP neurons underlies their role in circadian entrainment. Briefly, 

we monitored wheel-running activity before, during and after stimulation of SCN VIP neurons in 

vivo from mice enucleated to remove ambient light input and implanted with a fiber optic 

cannula. Before stimulation, all mice showed free-running circadian rhythms in locomotion (in 

hours, 23.4 ± 0.1, VIPChR2, 23.4 ± 0.2, Control, mean ± SEM, n = 7, 4). Mice then received 

daily HIF stimulation for 1 h for up to 30 days and only VIPChR2 mice entrained to the 

stimulation (Figure 11a). We calculated a phase response curve (Figure 11b) and found that 

surprisingly, only stimulation of VIP neurons between CT 10 – 18 lead to phase shifts and 

entrainment. Additionally, we observed that stimulation of VIP neurons acutely suppressed 

wheel running (Figure 11c) similar to light-induced masking.  
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Figure 10. Activation of SCN VIP neurons in vivo induces cFOS expression throughout the 

SCN.  

a) Representative image of the bilateral SCN showing cFOS induction (magenta) within 

VIPChR2 neurons (yellow) after 1 h of 15 Hz stimulation in vivo at CT13 (scale bar = 100um). 

b) The number of SCN cells expressing cFOS protein was higher in VIPChR2 (bottom) than 

control (top panel) mice after 1 h of 15 Hz stimulation at CT13. In vivo optogenetic stimulation 

of VIP neurons increased cFOS expression throughout the SCN (577.8 ± 33.0, Ventral SCN 

VIPChR2, 103.0 ± 56.9, Ventral SCN Control, 244.5 ± 15.6 Dorsal SCN VIPChR2, 63.0 ± 17.9 

Dorsal SCN Control; unpaired Student’s t-test ***p<0.001, n= 4 mice). 
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Figure 11. Stimulation of VIP neurons in vivo entrains locomotor activity.  

a) Daily locomotor activity of two representative mice entrained to HIF stimulation of SCN VIP 

neurons (blue bar) compared to a control mouse lacking ChR2. Actograms show wheel 

revolutions per 6 min (black bars) recorded from enucleated mice for almost 50 days. Note that 

the two VIPChR2 mice, with slightly different periods, reached stable entrainment (*) only when 

the stimulation occurred around early subjective night. b) Average phase response curves 

following stimulation of VIPChR2 (orange, n = 7) and control mice (green, n = 4) show the 

change in phase (dots) on the day after stimulation at different circadian times. Note that 

activation of VIP neurons entrained daily locomotor rhythms through phase delays when 

delivered during the late subjective day and early subjective night. c) Representative activity 

profiles of 2 mice show that HIF stimulation of VIP neurons acutely reduced running wheel 

activity in VIPChR2 (left), but not control (right), mice. d) Wheel revolutions during optogenetic 

stimulation (CT 12-18, 1 h of HIF) decreased nearly four-fold compared to baseline in VIPChR2 

mice (2355.0 ± 981.1 during stimulation vs. 6958.0 ± 418.9 with no stimulation, n = 6 mice, 

paired Student’s t-test **p< 0.01).  
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Finally, we found that firing frequency plays a role in VIP-mediated entrainment in vivo. Mice 

were randomly assigned to receive either 1h of daily HIF or LIF stimulation for 4-10 days 

between CT 10-15. Then, following at least 4 days of free-running activity, the mice received the 

other (LIF or HIF, respectively) stimulation for 4-10 days at the same time of day (Figure 12a). 

Overall, we found that either stimulation frequency entrained locomotor activity (Figure 12c), 

however HIF stimulation entrained more rapidly (Figure 12b). We conclude that firing of VIP 

neurons results in circadian entrainment and the frequency of firing determines the speed of 

entrainment.   

 

Discussion 

We consistently identified VIP SCN neurons that fired with either tonic or irregular patterns in 

extracellular and intracellular, slice and long-term multielectrode recordings, suggesting that 

spike timing characterizes functional classes of SCN neurons. These may correlate with the two 

populations of SCN VIP neurons that appear during development (Ban et al., 1997). We 

hypothesize that these firing patterns relate to different functional roles of SCN VIP neurons as 

previously suggested (Kawamoto et al., 2003). For example, these spontaneous firing patterns 

may identify VIP neurons that transduce direct vs. indirect retinal input (Fernandez et al., 2016) 

or that project primarily within the SCN to maintain synchrony among SCN neurons 

(Abrahamson and Moore, 2001) vs. outside the SCN to targets including the paraventricular 

nucleus of the hypothalamus and paraventricular nucleus of the thalamus (Abrahamson et al., 

2001) to regulate daily rhythms in hormone release. Similar anatomical subgroups of brainstem 

serotonergic neurons have been associated, for example, with regulating distinct behaviors 

including respiration and aggression through distinct brain target  
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Figure 12: Instantaneous firing pattern affects locomotor rhythm entrainment.  

a) Representative actograms show how daily optogenetic stimulation with HIF or LIF (blue bar) 

differentially entrained VIPChR2, but not control, mice. The daily acrophase (red circles and 

lines) of control mice in constant darkness free-ran through the days of stimulation. In contrast, 

daily HIF stimulation produced a large delay and rapidly entrained locomotor rhythms. Daily 

LIF stimulation, while having smaller effects on phase, also entrained. b) Daily stimulation 

entrained daily activity onsets to within 2 h of the stimulation in both HIF and LIF but not in 

control mice. Each color represents an individual mouse. HIF stimulation immediately resulted 

in tight clustering, as shown by the higher synchrony index (SI), while LIF stimulation gradually 

entrained to the stimulation, as seen by the gradually increasing SI. c) Daily HIF or LIF 

stimulation synchronized locomotor rhythms to 24 h in VIPChR2, but not control, mice  (one-

way ANOVA with posthoc Tukey HSD *p < 0.05). Note that VIPChR2 mice displayed a period 

identical to controls while stimulation was off. 
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areas (Niederkofler et al., 2016). Future studies should elucidate whether the physiological 

classes of VIP neurons map to specific anatomical groups within the SCN and targets outside the 

SCN.  

 

VIP SCN neurons change firing frequency with time of day, and high and low frequency firing 

of VIP SCN neurons differentially affects circadian entrainment, suggesting that VIP neurons 

can modulate entrainment by increasing their firing frequency. In the unperturbed circadian 

system, this would occur during mid to peak firing activity of VIP neurons. We hypothesize that 

the firing frequency of VIP neurons may contribute to phase shifting and entrainment to new 

light schedules (e.g. in seasonal entrainment (Lucassen et al., 2012), and jet lag (An et al., 

2013)).  

 

Our data suggest that high frequency stimulation increases signaling from VIP neurons more 

than low frequency stimulation. Given the well-established links between high frequency firing, 

dense core vesicle fusion and neuropeptide release (Verhage et al., 1991, Iverfeldt et al., 1989), 

we hypothesize that high frequency firing results in more VIP release than low frequency firing. 

In the SCN, specifically, high frequency stimulation produces phase shifts consistent with the 

magnitude and timing of VIP-induced shifts in vitro (An et al., 2011) and in vivo (Pantazopoulos 

et al., 2010, Piggins et al., 1995). In addition, our stimulation may alter the release of GABA. 

However, since fast neurotransmission is more tightly coupled to spike count, which was similar 

between HIF and LIF stimulation, we believe this to be less likely.  
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Entrainment through stimulation of VIP neurons only partially mimics entrainment seen 

previously through stimulating all SCN neurons (Jones et al., 2015). Specifically, increases in 

VIP activity fail to advance phase or alter period of locomotor activity during late subjective 

night. This suggests that VIP activity likely plays a role in light-induced phase delays, but not in 

light-induced phase advances. Since our VIP stimulation bypasses any retinal input, we 

hypothesize that there is gating within the SCN mediating light responses. In addition to VIP 

firing frequency, daily rhythms in VIP abundance or release probability (Francl et al., 2010, 

Shinohara et al., 1999, Okamoto et al., 1991), VPAC2 receptor abundance (An et al., 2012), and 

responses in downstream SCN neurons (Enoki et al., 2017, Fan et al., 2015) likely contribute to 

shaping the phase response curve to firing of VIP neurons and, ultimately, circadian entrainment.  

 

Intriguingly, locomotor activity decreases during stimulation of SCN VIP neurons. This is 

consistent with a report correlating SCN firing with locomotor inactivity (van Oosterhout et al., 

2012) and provides the first causal demonstration that firing increases within VIP SCN neurons 

inhibit locomotor activity. This, combined with the broad projections of patterns of SCN VIP 

neurons within the hypothalamus, suggests a role for VIP neurons in regulating circadian 

behaviors including sleep timing (Aston-Jones et al., 2001) and daily hormonal levels 

(Fahrenkrug et al., 2012, Loh et al., 2007). How VIP SCN neurons couple anatomically and 

functionally to behavioral circuits is an open question.   

 

In conclusion, we addressed outstanding questions about how firing activity of VIP neurons 

alters circadian activity and behavior. By altering the instantaneous firing frequency of SCN VIP 

neurons, we found that firing of VIP neurons had a larger effect on circadian entrainment when 
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stimulated with short interspike intervals, regardless of the total number of action potentials. 

Strikingly, firing of VIP neurons shifted circadian phase only during the late subjective day and 

early subjective night. We conclude that VIP neurons can phase shift and ultimately entrain 

circadian behavior by firing during the day-to-night transition.  

 

Materials and Methods 

Animals. VIPCre knock-in mice (VIPtm1(cre)Zjh, Jackson Laboratories), floxed ChR2 (Ai32, 

Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze, Jackson Laboratories) and Per2::Luc(Yoo et al., 

2004) knock-in mice (founders generously provided by Dr. Joseph Takahashi, UTSW) were 

housed in a 12h:12h light:dark cycle in the temperature and humidity controlled Danforth 

Animal Facility at Washington University in St. Louis. All animals were congenic on a 

C57BL/6JN background. Combinations of these genotypes were used for all experiments, with 

VIPChR2 animals being heterozygous for both VIPCre and floxed-ChR2 and controls being 

littermate animals heterozygous for only VIPCre or floxed-ChR2. Mice were genotyped by PCR 

before and by presence (ChR2-positive) or absence of eYFP fluorescence microscopy following 

each experiment. All procedures were approved by the Animal Care and Use Committee of 

Washington University and followed National Institutes of Health guidelines. 

 

Multielectrode array cell electrophysiology. Homozygous VIPCre-J mice were crossed with 

homozygous floxed-ChR2 mice to generate heterozygous litters expressing ChR2 solely in VIP+ 

neurons (VIPChR2). Extracellular recordings were made from multielectrode arrays 

(Multichannel Systems, Reutlingen, Germany) plated with SCN cells as previously described 

(Aton et al., 2005, Webb et al., 2012, Freeman et al., 2013). Briefly, following decapitation, the 
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brains were rapidly removed from postnatal day 4-5 (P4-P5) VIPChR2 pups. We dissected the 

bilateral SCN from 250-um thick coronal brain slices, papain-dissociated and dispersed the cells 

at high density onto sixty, 30µm-diameter electrodes (200µm spacing) pre-treated with poly-D-

lysine/laminin. Cultures were maintained in Air-DMEM (Dulbecco’s Modified Eagles Medium, 

DMEM, supplemented with 10% fetal bovine serum for the first week of recording) for 3 weeks 

prior to recording. 

 

Multielectrode arrays were covered with a fluorinated ethylene-polypropylene membrane before 

transfer to a recording incubator maintained at 36oC. We waited 24h before the start of 

digitization to ensure culture health and stability. For extracellular recordings, spikes that 

exceeded a manually set threshold (~3-4 standard deviations from noise level) were digitized (1 

ms before and after crossing the threshold; MC-Rack software, Multichannel Systems) at 20,000 

Hz sampling. Subsequently, the culture was stimulated with 15ms pulses of light from a high-

power 470nm LED (Cree XLamp XP-E2 Blue High Power LED, LEDsupply) at frequencies 

between 2-20Hz for 1h. Culture light intesntiy was verified to fall between 5 – 10 mW.  

 

Whole-cell patch clamp electrophysiology. Whole cell patch clamp recordings from SCN 

neurons were obtained using the procedures described in Hermanstyne et al. (Hermanstyne et al., 

2016). Specifically, SCN slices were prepared from 3 month old adult VIPChR2 heterozygous 

mice. After anesthesia with 1.25% Avertin, brains were removed into a cold cutting solution (in 

mM 240 sucrose, 2.5 KCL, 1.25 NaH2Po4, 25 NaHCo3, 0.5 CaCl2 and 7 MgCl2, saturated with 

95% O2/5%Co2). 300um coronal slices were cut on a Leica VT1000 S vibrating blade microtome 

and incubated in oxygenated artificial cerebrospinal fluid (in mM 125 NaCl, 2.5 KCL, 1.25 
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NaH2PO4, 25 NaHCO3, 2 CaCl2, 1 MgCl2, 25 dextrose, saturated with 95% O2/5% CO2) for at 

least 1 h. Using glass pipettes (4-7 MΩ) containing an intracellular solution (in mM 120 

KMeSO4, 20 KCl, 10 HEPES, 0.2 EGTA, 8 NaCl 4 Mg-ATP 0.3 Tris-GTP, and 14 

phosphocreatine), a “loose patch” cell-attached recording was obtained. A gigaOhm seal (>2 

GΩ) was formed and spontaneous firing was recorded for approximately 1 min. We then evoked 

firing in ChR2-positive neurons with 15ms pulses from a 465 nm laser (DPPS MDL-III-447 

100mW, 5% stability, Information Unlimited) positioned over the slice controlled by a TTL 

input from a Grass stimulator (S88, Grass Instrument Company, Quincy, MA) at the desired 

frequency (2 to 15Hz). Electrophysiological data were compiled and analyzed using ClampFit, 

Mini Analysis, and Prism 7.0 (Graphpad Software, La Jolla California). 

 

Isolation of individual neuronal firing patterns. Software was created for semi-automated spike 

sorting to allow discrimination of neuronal activity from MEA recordings across multiple days. 

Briefly, time-stamped spikes from a given electrode were separated into 24-h epochs, 

subsampled by taking a random 10% of the total spikes from each epoch, and then sorted based 

on principal component analysis (PCA) and fitting a Gaussian mixture model (GMM) to the 

principal components that contained >10% of the explained variance using a Bayesian 

information criterion (BIC) cutoff. The noise was identified as the cluster with the average spike 

shape with the lowest magnitude. The data was split into each remaining cluster. PCA and GMM 

clustering and splitting was then applied recursively until each cluster could not be split based on 

the BIC cutoff. We used the Mahalanobis distance to keep only spikes sufficiently close to the 

center of the distribution. The PCA components and GMM parameters used to sort the 

subsampled day of spikes were saved and used to sort all spikes on that electrode from that day. 
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The spike trains identified on each electrode were then combined across days by correlating 

spike shapes (Pearson r >0.95) to recover the activity of a single neuron throughout the multiday 

recording. If neuronal firing could not be connected across multiple days, it was excluded from 

subsequent analysis. Firing activity during optogenetic stimulation was similarly sorted and 

matched to the third day of spontaneous firing to identify VIP+ neurons. This algorithm was 

constructed in the Python language using packages scipy (Walt et al., 2011), and scikit-learn 

(Pedregosa et al., 2011) for sorting, and neuroshare for reading raw MEA data files. All scripts 

used in spike sorting are publicly available at: http://github.com/JohnAbel/spikesort. This 

method produced similar numbers of circadian neurons and spike times to manual sorting 

(Freeman et al., 2013) in approximately 90% less time. To calculate circadian rhythmicity, we 

binned the average firing rate of each neuron over 10min. Using the MetaCycle package (Wu et 

al., 2016) (https://cran.r-project.org/web/packages/MetaCycle/index.html in R), we calculated 

circadian rhythmicity using JTK cycle and Lomb-Scargle (range 20 to 28h). If a neuron was 

deemed rhythmic with p < 0.05 after controlling for multiple comparisons on both methods, we 

considered that neuron circadian.  

 

Classification of individual neuronal firing patterns. Neuronal firing patterns from the three days 

of spontaneous activity were identified in Python using scipy hierarchical clustering (Johnson, 

1967) of interspike interval histogram (ISIH) with a bin size of 0.01 s and the dominant 

instantaneous firing rate (DIFR, the peak of the ISIH), using dynamic time warping (Salvador 

and Chan, 2007) as the correlation metric, and complete linkage. Varying ISIH bin size (0.005 s 

to 0.05 s) did not alter results significantly. The threshold for dendrogram cluster identification 

was set to 70% of the maximum distance between data points (default scikit-learn setting). 
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Following clustering, DFIR was identified with a bin size of 0.0001 s to construct summary 

statistics with high temporal resolution. In-slice recording and whole-cell patch clamp recording 

data were analyzed in an identical fashion, except ISIH bin size was changed to 0.05 s for patch 

clamp recording due to the short 60 s recording interval.  

 

Recording and analysis of real-time clock gene expression. To record circadian PER2 protein 

expression, we crossed heterozygous VIPChR2 and PER2::Luc mice. Control mice were 

littermate animals lacking either VIPCre or floxed-ChR2. Adult (> P15) mice of both sexes were 

sacrificed with CO2 and 300µm coronal brain slices were sectioned. The bilateral SCN was 

dissected out and cultured on Millicell-CM inserts (Millipore, Billerica, MA) in pre-warmed 

culture medium (AirDMEM supplemented with 10mM HEPES and 100uM beetle luciferin, 

Promega, Madison, WI). The sealed 35-mm Petri dishes (BD Biosciences, San Jose, CA) were 

transferred to a light-tight incubator kept at 36oC. As described previously (Freeman et al., 2013, 

Aton et al., 2005), bioluminescence from the Per2-luciferase reporter was counted with a 

photomultiplier tube (PMT; HC135-11 MOD, Hamamatsu Corp., Shizuoka, Japan) in 6 min bins 

for at least three days prior to optogenetic stimulation. PMT recordings were paused during 1 h 

of optogenetic stimulation between CT9-12 for either one day or three consecutive days. Using a 

custom-made LED array (Cree XLamp XP-E2 Blue Color High powered LEDs, LEDsupply, 

Randolph, VT) that delivered light flashes (15 ms, 5 mW, 470 nm) per dish, SCN were 

stimulated for 1 h at either high (20 Hz pulses at 2 Hz) or low instantaneous frequencies (4 Hz). 

The LED array was powered by a supply (LEDD1B high-powered LED driver, Thorlabs, 

Newton, NJ) under TTL control from a stimulator (S88, Grass Instrument Company, Quincy, 

MA). Care was taken to minimize any mechanical disturbance to the SCN, and during 
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stimulation, the temperature underneath the LED array remained at 36oC. After stimulation, the 

dishes were repositioned underneath their PMT and recording continued for at least four days. 

 For pharmacology experiments we stimulated VIPChR2 PER2 slices in the presence or 

absence of 10um VPAC2R antagonist in AirDMEM([D-p-Cl-Phe6,Leu17]-VIP, Tocris 

Bioscience, Bristol, UK). Following 1h of stimulation with HIF frequency, all slices were 

transferred briefly into a fresh, prewarmed dish of AirDMEM and then transferred back into their 

original dishes and placed back underneath their PMT channels.   

All data were analyzed blinded to genotype. SCN traces that did not retain rhythmicity 

due to media evaporation or fungal infection were excluded (N=4), and all other data were 

analyzed in a stereotyped, reproducible manner. In addition, due to inherent variability in period 

and amplitude within our PMT systems, all comparable experiments were performed in the same 

incubator. Each experiment (HIF stimulation, LIF stimulation and antagonist treatment) 

represents at least 3 separate runs with control and experimental conditions run in parallel.  Raw 

counts from the PMT were detrended using a running 24-hour smooth, discarding the first and 

last 12 h of the recording as previously described (Herzog et al., 2015).  For single-pulse 

experiments, the data from the day of stimulation also was excluded from analyses. Circadian 

period was calculated from a linear fit to times of the daily acrophase of PER2 expression 

(baseline= second through fourth days of recording; after-stimulation= fifth through seventh 

days; Clocklab, Actimetrics). The difference between the baseline-extrapolated and observed 

acrophases in the three days following stimulation was reported as the phase shift. For PMT 

traces stimulated for three consecutive days, we used the rising phase as a stable phase marker. 

Given the natural spread of PER2, we normalized the data based on the rising phase on the day 

before stimulation.  
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In vivo stimulation of VIP+ neurons. To stimulate VIP+ neurons in vivo, mice underwent 

stereotactic surgery to implant a fiberoptic cannula capable of delivery light to the bilateral SCN. 

Specifically, anesthetized mice (2% Isofluorane) were placed into a stereotaxic device and 

implanted with a sterilized fiber-optic cannula (5.8 mm in length, 200uM diameter core, 0.39 

NA; Thorlabs, Newton, NJ). The cannula was implanted at +0.4mm anterior, +0.0 mm lateral 

and -5.5 mm ventral to Bregma. Mice received analgesic treatment during recovery. Following 

recovery, mice were enucleated as previously described (Aton et al., 2004, Hermanstyne et al., 

2016) so that mice did not respond to ambient light. Additionally, mice were tethered to a 

flexible fiberoptic cable (Thorlabs, Newton, NJ) attached to a laser (465 nm, 100 mW, 5% 

stability, DPPS MDL-III-447, Information Unlimited) and allowed to freely roam with ad lib 

access to food, water and an open-faced wheel in a custom-built cage. Wheel revolutions were 

counted with a reed switch (Clocklab, Actimetrics). After free-running locomotor behavior 

returned to pre-enucleation levels, mice were stimulated for up to 40 days with different 

frequency patterns (HIF or LIF). Mice that received both stimulation patterns had the order 

randomized and separated by at least four days without stimulation.   

 

Immunohistochemistry. To test for neuronal activation, we measured cFOS protein induction in 

mice implanted with a fiberoptic aimed at the SCN after 1 h of stimulation (15Hz, 15ms pulses) 

during early subjective night (CT 13). Immediately following stimulation, mice were 

anesthetized with 1.25% Avertin (2,2,2-tribromoethanol and tert-amyl alcohol in 0.9% NaCl; 

0.025 ml/g body weight) and transcardially perfused with phosphate-buffered saline (PBS) and 

4% paraformaldehyde (PFA). The brain was rapidly dissected and transferred to 30% sucrose 
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following 24 h in 4% PFA. Frozen coronal sections cut at 40 um were collected in 3 separate 

wells. cFOS immunofluorescence or avidin-biotin immunohistochemistry was performed using 

two using a rabbit anti-cFOS antibody (Santa Cruz Biotechnology, Santa Cruz, CA). For 

immunofluorescence, free-floating sections were washed for 1 h in PBS, incubated overnight at 

4oC in anti-rabbit cFOS antibody (1:1000 in PBSGT). Slices were washed again and incubated 

for 2 h at room temperature in donkey anti-rabbit Cy3 secondary antibody (1:500 in PBSGT). 

Sections were washed again in PBS for 30min, mounted, and cover-slipped with DABCO (1,4-

Diazobicyclo[2,2,2]-octane) mounting medium. Sections were imaged in 4-um z-stacks on a 

Nikon A1 Confocal microscope. Two independent investigators quantified the fraction of ChR2-

eYFP positive neurons that also expressed nuclear cFOS and results differed by less than 10% 

per brain. For DAB immunohistochemistry, free-floating sections were incubated for 72 h in 

rabbit c-Fos antibody (1:2500). Subsequently, sections were processed with the avidin-biotin 

method for immunohistochemistry. Tissues were reacted in diaminobenzidine with 0.01% H2O2, 

mounted, dehydrated and cover-slipped. Sections were imaged using the Alafi Nanozoomer at 

Washington University in St. Louis Medical School. Tissues were always processed together and 

mid-SCN sections were selected from all animals for quantification. An investigator blinded to 

the genotype of the mouse quantified the number of cFOS positive cells within the SCN using 

ImageJ software. The SCN was located and boundaries were drawn to demarcate the ventral and 

dorsal SCN in each animal (250 um x150 um, ventral SCN per side, 150 um x 150 um, dorsal 

SCN per side).   

 

Locomotor analysis. We identified the daily onset of locomotor activity from wheel running data 

in 15-min bins as the zero-crossing of the continuous wavelet transform using the Mexican Hat 
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wavelet as described for temperature rhythms (Leise et al., 2013). We calculated the phase 

response curve by identifying the change in activity onsets evoked by optogenetic stimulation 

compared to the same mouse under free running conditions. Calculating phase change in 

comparison to the same mouse under free-running conditions (rather than comparison with a 

separate control group) allowed inclusion of mice with visibly different periods.  To measure the 

time to entrainment, we constructed Rayleigh plots of activity onset for days 2-10 of optogenetic 

stimulation and calculated the Kuramoto parameter (i.e. synchronization index)(Kuramoto, 

2012). Finally, we measured optogenetically induced activity suppression by comparing wheel 

revolutions during the stimulated hours between CT 12 – 16 and equivalent time bins from free-

running days with no stimulation. 
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Chapter 3. 

Adult Deletion of VIP SCN Neurons results in a milder phenotype than Vip null mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter will be adapted for the manuscript: 

Mazuski, C., Chen, S., & Herzog, E.D. Adult Deletion of VIP SCN Neurons results in a milder 

phenotype than Vip null mice. (in preparation)  
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Abstract 

The suprachiasmatic nucleus (SCN) drives circadian rhythms in locomotion through coupled, 

single-cell oscillations. Genetic loss of Vip or its receptor Vipr2 result in profound deficits in 

single-cell synchronization and coupling that lead to arrhythmic locomotor behavior in over 60% 

of the mice. To test whether this phenotype depends on loss of VIP signaling early in 

development or could be attributed to the role of VIP neurons in the developed SCN, we deleted 

SCN VIP neurons in vivo in adult mice through induction of the apoptotic pathway in cre-

expressing VIP neurons. We found that over 80% of mice with loss of VIP SCN neurons 

retained daily rhythms, but with a short circadian period, more variable onsets and decreased 

duration of daily activity. In contrast, in vitro deletion of VIP neurons dramatically reduced the 

amplitude of circadian gene expression with minimal changes in period. In summary, loss of VIP 

neurons in vivo within the developed circadian circuit changes circadian period whereas early 

loss of VIP SCN neurons in vitro reduces circadian amplitude and synchrony. We conclude that 

in the adult VIP SCN neurons play an important role in regulating circadian period and suggest 

that neonatal VIP has an important role in development.  

  



	 84	

Introduction 

Located in the ventral hypothalamus, the suprachiasmatic nucleus (SCN) is the dominant 

pacemaker that aligns physiological and behavioral rhythms to the local schedule (Herzog, 

2007). Individual SCN neurons express cell autonomous oscillations driven through a negative 

transcription-translation feedback loop involving the ‘core clock genes’, which include Bmal1, 

Clock, Period 1 and 2, and Cryptochrome 1 and 2 (Takahashi, 2017). Coupling of these single-

cell oscillators through intercellular synchrony generates high amplitude, precise, circuit-wide 

rhythms capable of driving behavioral circadian rhythms (Herzog et al., 2004).  

 

Network synchrony and rhythm generation primarily relies on intercellular neurotransmission. 

Disruption of intercellular communication reveals region and single-cell heterogeneity within the 

SCN (Yamaguchi et al., 2003, Webb et al., 2009), suggesting that perhaps a group of SCN 

neurons function as ‘dominant’ pacemakers. If these dominant pacemaking neurons exist, they 

would ultimately be necessary and sufficient for driving SCN rhythms. Studies have suggested 

that these dominant pacemaking neurons might be localized to the ventral SCN or ‘core’ rather 

than the dorsal SCN or ‘shell’ (Yan et al., 2007). In vitro, intercellular communication from the 

ventral SCN is necessary for dorsal SCN rhythms in gene expression (Yamaguchi et al., 2003), 

and the ventral SCN drives resynchronization of the dorsal SCN following perturbation (Taylor 

et al., 2017). In vivo, only microlesions localized to the medial-ventral SCN in hamsters are 

sufficient to cause behavioral arrhythmicity (Kriegsfeld et al., 2004).  

 

One important class of ventral SCN neurons is the vasoactive intestinal polypeptide (VIP) 

neurons. VIP-expressing neurons comprise approximately 10% of SCN neurons (Abrahamson 
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and Moore, 2001).  Global deletion of Vip or its receptor Vipr2 yields results in 60% of the 

animals losing rhythms or exhibiting multiple periodicities (Colwell et al., 2003, Aton et al., 

2005, Harmar et al., 2002). Mechanistically, the loss of rhythms is caused by decreases in the 

number of rhythmic SCN neurons and the loss of intercellular synchrony (Aton et al., 2005, 

Brown et al., 2007, Maywood et al., 2006). The strong phenotype seen in Vip null mice suggests 

that VIP neurons are prime candidates for driving population-wide circadian rhythms. Therefore, 

in order to test whether VIP neurons are necessary for circadian rhythms in behavior, we deleted 

VIP SCN neurons in the intact adult brain.  

 

Critically, ablation of VIP neurons in the adult has never been tested. Using cre-mediated 

activation of the apoptotic pathway in VIP neurons, we tested the effects of localized VIP 

deletion in the adult intact network and the effects on locomotor behavior. Surprisingly, we 

found that the over 80% of the mice retained rhythmic locomotor behavior, a much milder 

phenotype than Vip null mice. Our results suggest that VIP neurons have an overlooked role in 

SCN development and conclude that in the developed SCN, VIP neurons regulate period but are 

ultimately not necessary for synchronized circadian rhythms.  

 

Results 

Adult-onset deletion of VIP neurons disrupts locomotor activity 

To test the role of VIP SCN neurons in the developed adult circadian circuit, we ablated VIP 

SCN neurons in vivo and monitored circadian locomotor activity. To delete VIP, we 

stereotactically injected VIP-ires-Cre heterozygous mice with an AAV virus expressing Cre-

dependent Caspase3 (see methods adapted from (Yang et al., 2013)). Expression of the Caspase3 
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construct within VIP neurons cell-autonomously triggered the apoptotic pathway resulting in 

specific cell death of VIP SCN neurons (experimental group is hereafter referred to as VIP-

deleted). We sham injected VIP-ires-Cre mice (N = 2) with ACSF or injected the Caspase3 

construct into mice that lacked Cre expression (N = 6) as controls (total N=8).  

 

Following surgery and recovery, we monitored and recorded circadian wheel running behavior in 

entrained conditions (12:12 light-dark cycle) for at least 1-2 weeks. Mice were then placed in 

constant darkness for 2-3 weeks. At the conclusion of the experiment, mice were sacrificed to 

confirm the deletion of VIP SCN neurons. In total, 4 experimental mice injected with the 

Caspase3 construct retained wild-type levels of VIP expression in the SCN, most likely due to 

off target injections. We included these mice in our analysis as a separate group (termed 

unsuccessful VIP deletion).  

 

Greater than 80% of VIP-deleted mice retained circadian rhythms in constant darkness. 

However, they ran with a significantly shorter period of locomotor activity and greater onset 

variability (22.66 ± 0.12 h, 0.90 ± 0.09 h, N = 16), compared to control mice (23.32 ± 0.08h and 

0.44 ± 0.07h, N = 8) and unsuccessful VIP deletion groups (23.35 ± 0.09h, 0.33 ± 0.09h, N = 4, 

all values mean ± SEM, Figure 1). We contrast this to Vip null mice previously reported (Aton 

et al., 2005, Colwell et al., 2003) where more than 60% lost rhythms. VIP-deleted mice also ran 

with a significantly shortened duration of activity (7.09 ± 0.57 h) compared to control mice 

(9.77± 0.67 h); however  
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Figure 1. Deletion of VIP neurons shortens locomotor behavior but rarely causes 

arrhythmicity. Representative actograms of circadian locomotor activity shown in A illustrate 

the dominant phenotype in VIP-deleted mice. B) Over 80% of mice with successful VIP deletion 

(16/19), all mice with unsuccessful VIP deletion (4/4) and all control mice (8/8) had circadian 

rhythms in locomotor activity. C) Successful deletion of VIP neurons in the adult mice shortened 

period (**p<0.01 *p<0.05 one-way ANOVA), D) increased onset variability (*p<0.05 Kruskal-

Wallis test) and E) decreased the duration of activity (*p<0.05 one-way ANOVA).  
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this was not significantly different to mice with unsuccessful VIP deletion (7.45 ± 0.74h). In 

total, we quantified period, onset variability, total activity and duration of activity during 

entrained conditions and constant darkness (Figure 2). 

 

Locomotor Phenotype in VIP-deleted mice correlates with VIP Staining Intensity 

To test whether rhythmic locomotor activity resulted from any residual VIP staining, we 

quantified the deletion of VIP neurons. All mice were sacrificed during late subjective day (CT 

7-10) when AVP staining intensity is high. Coronal brain sections were simultaneously 

processed for VIP and AVP staining and all images were taken with the same exposure to allow 

for accurate comparisons of fluorescent intensity.  

 

As anticipated, in VIPCre Caspase3 injected animals we found significant reductions in VIP 

staining intensity but no changes in AVP intensity (Figure 3A-3B). Mice with unsuccessful VIP 

deletion had VIP staining intensity at levels comparable to control mice (Figure 3B). The 

majority of successful VIP deleted mice had VIP staining levels at or below background staining. 

Increasing expression levels of VIP in the SCN strongly correlated with increasing circadian 

locomotor period and decreasing day-to-day locomotor precision (Figure 3C-D). Daily 

locomotor duration did not correlate with VIP levels in the SCN (Figure 3E). Figure 4 shows 

how VIP staining intensity in the SCN correlated with circadian behavioral deficits. 

Interestingly, three mice were arrhythmic although they had no detectable VIP staining similar to 

other VIP-deleted mice with short period locomotor patterns (Figure 3C-E orange stars). AVP 

staining intensity was not correlated with period, onset error or duration of activity.  
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Figure 2. Locomotor Activity Analyses of VIP-Deleted and Control Mice. (supplemental 

information) 

Light-Dark Analyses (LD) 

Group 
Genotyp

e N Injection Period Onset Error 
Duration of 

Activity 
Activity Per 

Day 

Control# 
C57J and 

P2L/+ 6 
AAV8-DIO-

Caspase3 24.03 ± 0.03 0.26 ± 0.1 8.56 ± 0.88 19047 ± 3491 

Control# VIP-Cre 2 ACSF 24.01 ± 0.01 0.08 ± 0.04 7.97 ± 0.35 23970 ± 1534 
Successful 

VIP Deletion VIP-Cre 19 
AAV8-DIO-

Caspase3 24.01 ± 0.02 0.29 ± 0.06A 6.92 ± 0.35 16608 ± 1633 
Unsuccessful 
VIP Deletion VIP-Cre 4 

AAV8-DIO-
Caspase3 24.01 ± 0.02 0.06 ± 0.02A 7.78 ± 1.07 17723 ± 4913 

 
 
Constant Darkness Analyses (DD) 

Group 
Genoty

pe N Injection Period Onset Error 
Duration of 

Activity 
Activity Per 

Day 

Control# 

C57J 
and 

P2L/+ 6 
AAV8-DIO-

Caspase3 23.36 ± 0.11B 0.36 ± 0.06D 9.74 ± 0.9F 18824 ± 3276 

Control# 
VIP-
Cre 2 ACSF 23.19 ± 0.07B 0.68 ± 0.06D 9.84 ± 0.43F 24784 ± 2653 

Successful 
VIP Deletion 

VIP-
Cre *19 

AAV8-DIO-
Caspase3 22.66 ± 0.12BC 0.90 ± 0.09DE 7.08 ± 0.57F 13730 ± 1871 

Unsuccessful 
VIP Deletion 

VIP-
Cre 4 

AAV8-DIO-
Caspase3 23.35 ± 0.09C 0.33 ± 0.09E 7.45 ± 0.74 18394 ± 3867 

# Control groups were combined for statistical tests 
* N = 16 for period, onset error and duration of activity analyses due to arrhythmicity in 3 mice  
ABCDEF all significant p < 0.05 
A LD onset error – one-way ANOVA comparing successful and unsuccessful VIP deletion 
B DD period – one-way ANOVA comparing control and successful VIP deletion 
C DD period – one-way ANOVA comparing successful and unsuccessful VIP deletion 
D DD onset error – Kruskal-Willis comparing control and successful VIP deletion 
E DD onset error – Kruskal-Willis comparing successful and unsuccessful VIP deletion 
F DD duration of activity – one-way ANOVA comparing control and successful VIP deletion 
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Figure 3. Phenotype correlates with VIP but not AVP staining intensity. A Representative 

VIP and AVP immunofluorescent staining of SCN coronal sections from Control and VIP 

deleted mice. B VIP but not AVP staining was significantly reduced in VIP-deleted mice 

compared to controls (483.4 ± 98.93 versus 110.9 ± 43.59 relative VIP fluorescence units, 

***p<0.0008 unpaired t-test). Note that mice with unsuccessful VIP deletion (green) had VIP 

intensity levels comparable to control mice. C) Period and D) onset error correlated with VIP 

staining intensity (Pearson r = 0.64, r = -0.59 respectively ***p<0.001 **p<0.01). E) 

Interestingly while duration of activity was lower in VIP deleted animals compared to control it 

did not correlate with SCN VIP staining intensity. Note that the orange stars on the x-axis 

represent the relative VIP fluorescent staining of the 3 arrhythmic mice. 

  



	 93	

 

  

Control
Unsuccessful  
VIP-deletion

Successful 
VIP-deletion

<—
-L

ow
er

 V
IP

 S
ta

in
in

g 
In

te
ns

ity



	 94	

Figure 4. Visualizing the effects of VIP SCN loss on circadian locomotor behavior. 

(supplemental information) 

2 week actograms of wheel running behavior in constant darkness are ordered based on VIP 

staining intensity.  
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VIP Deletion Correlates with Period2 Amplitude Decreases in vitro 

To visualize VIP neuronal cell death in real-time in the isolated SCN, we transgenically 

expressed tdTOMATO in VIP neurons (VIP-ires-Cre crossed with floxed-Rosa-tdTOMATO) 

and then crossed onto a PERIOD2::Luciferase (PER2::LUC)(Yoo et al., 2004) background to 

visualize circadian gene expression. The resulting mice expressed tdTOMATO only in VIP 

neurons and PER2::LUC in all SCN neurons. Around postnatal day6, we sectioned the SCN and 

infected equivalent slices with either AAV-DIO-Casp3 to ablate VIP neurons or a control AAV 

virus expressing Cre-dependent eYFP. PER2 levels were recorded for a month and the slices 

were fluorescently imaged once a week to confirm deletion of VIP neurons and expression of the 

control virus.  

 

Our results show that deletion of VIP neurons has minimal effects on the circadian period of the 

SCN, but reduces gene expression amplitude (Figure 5A-B). Interestingly, we find a strong 

correlation between the number of VIP neurons that remain and the amplitude of PER2 levels 

(Figure 5C). Ultimately, loss of VIP neurons appears to affect gene expression amplitude only 

when more than 80% have been deleted.  

 

Discussion 

Adult-onset of VIP neurons in vivo produced a milder phenotype than that seen in Vip null mice. 

Our results indicate that the phenotype resulted specifically from VIP SCN deletion. VIP staining 

intensity was strongly correlated to shortened activity period and onset variability and mice with 

unsuccessful VIP deletion showed period length and onset variability similar to wild-type mice.  
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Figure 5. Deletion of VIP neurons in vitro reduces the amplitude of PER2 gene expression.  

A) Representative traces of PERIOD2::Luciferase gene expression rhythms in VIP deleted and 

control SCN slices two weeks after viral infection. C) Amplitude but not B) period changes with 

deletion of VIP neurons (36,641 ± 14425 versus 132,085 ± 14425, peak to trough amplitude, 

VIP-deleted compared to control ****p<0.0001, unpaired t test) D) PER2 amplitude correlates to 

the number of remaining VIP neurons in VIP deleted (r = 0.59 **p<.001) but not in control 

across three weeks of recording. Control slices decrease in amplitude due to the age of slice but 

not number of VIP neurons. E) Representative time-lapse images of TDTOMATO expression 

driven by the Vip promoter illustrate the profound loss of VIP neurons after infection.  
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Interestingly, in vitro deletion of VIP neurons primarily led to a decrease in Period2 gene 

expression.    

 

This is the first reported deletion of VIP signaling in the intact adult SCN. Previous studies 

concluded that VIP signaling was necessary for circadian behavior because a majority of Vip and 

Vipr null mice showed arrhythmic circadian activity. Critically, Vip and Vipr null mice develop 

in the absence of all VIP signaling, which is expressed not only in the SCN but also in the cortex, 

brainstem, retina, adrenals and gastro-intestinal tract (Gozes et al., 1987). Our current results 

suggest i) that the predominant arrhythmic locomotor phenotype in Vip null mice may be largely 

due to the overlooked role of VIP in development and ii) in the intact adult SCN other SCN 

neurons or mature SCN inputs maintain rhythmicity in the absence of VIP neurons. 

 

SCN development begins in the embryo and continues up to two weeks after birth (Brooks and 

Canal, 2013). In the weeks following birth, the fetal SCN is susceptible to environmental 

perturbations that can have long-lasting effects into adulthood including enucleation and lighting 

schedules (Landgraf et al., 2014, Chew et al., 2017). VIP mRNA is first expressed in the SCN 

around birth (Hill et al., 1994), suggesting that VIP signaling may play an important role as the 

SCN is wired to respond and integrate environmental inputs. Additionally, clock gene expression 

differs between young SCN and adult SCN. One prominent example involves Cryptochrome 1 

and 2 knockout mice, where adult mice are behaviorally arrhythmic, but young SCN retain 

rhythms (Ono et al., 2016). Due to these differences, studies that perturb signaling in the adult, 

developed SCN network are crucial to truly understanding the role of specific signaling 

pathways and neurons.  
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Our results support the idea that VIP neurons in the adult ultimately play a lesser role in 

generating rhythms as ‘dominant’ pacemakers, but rather work in concert with other neurons to 

set the period of the clock. Specifically, the presence and activity of VIP neurons lengthens 

locomotor activity. As previously demonstrated, activation of VIP neurons phase delays and 

lengthens locomotor activity (Chapter 2), which is consistent with the period shortening seen 

here in VIP-deleted mice. Ultimately, VIP neurons belong to a larger group of SCN neurons that 

drive circadian rhythms. Recent reports conclude that NMS+ SCN neurons, which comprise 

~40% of SCN neurons including 95% of VIP neurons are ultimately necessary for generating 

rhythms (Lee et al., 2015).  

 

Finally, while locomotor period and onset variability were strongly correlated with VIP SCN 

deletion, duration of activity was not. Rather, as a whole, mice that expressed Cre in VIP neurons 

and were injected with the AAV-DIO-Caspase3 construct had shorter activity durations than 

control mice. We suggest that this locomotor phenotype may be primarily driven by loss of VIP 

SCN projection neurons rather than loss of VIP SCN neurons that synapse within the SCN. 

Previous reports indicate that VIP SCN neurons are a heterogeneous group and that activation of 

VIP SCN neurons leads to decreases in locomotor activity during the early nighttime (Chapter 

2). This intriguing result opens up the possibility of using adult-onset deletion of specific SCN 

neurons to dissect the networks that mediate SCN output including locomotor activity and 

hormonal fluctuations (see chapter 4).   
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Future Directions  

Single-cell rhythms in gene expression 

Ultimately the differences between our in vitro and in vivo results (period changes vs. amplitude 

changes) can be explained in several ways including: i) differences due to the age of ablation, 

where VIP signaling has different roles depending on the stage of SCN development, or ii) 

differences in SCN input, where SCN slices lack the circuit inputs still present in vivo in VIP-

deleted mice that ultimately sustain synchrony. By measuring SCN synchrony at the single-cell 

level, we can answer this question. 

 

Preliminary results using single-cell imaging of gene expression suggest that deletion of VIP 

neurons decreased the number of neurons that express circadian rhythms in gene expression and 

increased the proportion of arrhythmic cells (Figure 6). Interestingly, though in vivo deletion of 

VIP neurons resulted in more arrhythmic cells, it also resulted in a higher synchrony index 

among rhythmic cells, supporting the hypothesis that age of VIP ablation affects single-cell 

synchrony.  

 

To further address how deletion of VIP neurons in vivo in the intact adult circuit alters single-

cell rhythms in gene expression, we propose testing the correlation between locomotor 

phenotype, deletion of VIP neurons and disruption in single-cell gene expression within 

individual mice. 

  

We stereotactically injected triple transgenic adult mice expressing tdTOMATO only in VIP 

neurons and Period2::Luciferase in all neurons (VIPCre/+; floxed-tdTOM/+; Per2::LUC/+) with  
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Figure 6. Impairment of Single-cell gene expression rhythms in VIP-deleted mice. 

(Preliminary Data)  

A The loss of VIP neurons leads to decreases in the number of detectable cells with circadian 

gene expression at the single-cell level and increases in the number of arrhythmic cells. B 

However, VIP-deletion that occurred in vitro leads to mild deficits in period and more severe 

deficits in synchrony than VIP-deletion in vivo. Additional experiments are necessary to confirm 

this finding and understand how VIP-deletion in vivo affects single-cell rhythms and we caution 

interpretation at this stage due to the different ages at which VIP deletion occurred, the different 

times in culture, and the different route of infection.  
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the AAV-DIO-Caspase3 construct or a control fluorescent virus. After collection of locomotor 

activity, we will section these brains and image single-cell gene expression using a CCD camera. 

This will allow us to correlate behavioral rhythms to single-cell gene expression rhythms and 

ultimately the number of remaining VIP neurons.  

 

Impairment of Light-Responsiveness in VIP-deleted mice 

Following deletion of VIP neurons in vivo and collection of locomotor activity under constant 

conditions, we tested the light-responsiveness of the circadian circuit. After re-entrainment, we 

delivered a light pulse at CT 15 and immediately switched the mice into constant conditions. We 

are currently analyzing this data to see if VIP-deleted mice show any indication of deficits in 

light mediated phase shifting. Follow-up experiments might include quantifying cFOS 

expression following an early night light pulse.  

 

Methods 

Animals All mice were housed in a 12h:12h light dark cycle in the temperature and humidity 

controlled Danforth Animal Facility at Washington University in St. Louis with ad lib access to 

food and water. Combinations of the following genotypes were used in all experiments: VIP-

IRESCre knock-in mice (VIPtm1(creZjh, Jackson Laboratories), Per2:Luc knock-in mice (founders 

generously provided by Dr. Joseph Takahashi, UTSW), tdTomato reporter mice (B6.Cg-

Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J, Jackson Laboratories) and C57J mice. All procedures were 

approved by the Animal Care and Use Committee of Washington University and adhered to 

National Institutes of Health guidelines. 
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In Vivo Deletion of VIP Neurons To delete VIP neurons in vivo, VIP-ires-Cre mice were 

stereotactically injected with AAV8-Caspase3-TEVP virus at the level of the SCN. Briefly, 

anesthetized mice (2% Isofluorane) were placed into a stereotactic device and the virus (0.5 

uL/side) was bilaterally injected into the SCN at +0.4mm anterior, +/- 0.15 mm lateral and -

5.6mm ventral to Bregma. Control mice were either VIP-ires-Cre mice receiving sham surgery 

with ACSF injections or mice lacking Cre expression (C57J or Per2:Luc/+) receiving AAV8-

Caspase3-TEVP injections. Mice received analgesic treatment during recovery. 

 

Locomotor Activity Following recovery, mice were placed in custom-built wheel cages 

connected to Clocklab Actimetrics System, which allowed circadian monitoring of locomotor 

activity. Mice were maintained in 12h:12h light dark cycle for at least 7 days prior to being 

released into constant darkness. Following at least 3 weeks in constant darkness, mice were re-

entrained to a 12h:12h light dark cycle prior to 1 h light pulse during CT 15. Following the light 

pulse mice were once again released into constant darkness. Locomotor data was collected from 

3 separate rounds of mice and injections.  

 

Locomotor activity was analyzed using Clocklab Actimetrics and custom built Python scripts. 

Period was calculated from at least one week of activity using Chi-squared periodogram. Onset 

variability was calculated through Clocklab by using a box filter to fit activity onsets and 

quantifying the error of the fit. Duration of activity was calculated as the time between onsets 

and offsets calculated using clocklab’s box filter. Python scripts were used to quantify daily 

activity counts. All data were analyzed blinded to the genotype of the animal.  
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Immunohistochemistry Upon re-entrainment, all mice were perfused during a 3-h window 

during late subjective day (CT 7-10). Briefly, mice were anesthetized with 1.25% Avertin (2,2,2-

tribromoethanol and tert-amyl alcohol in 0.9% NaCl; 0.025 ml/g body weight) and transcardially 

perfused with phosphate-buffered saline (PBS) and 4% paraformaldehyde (PFA). The brain was 

rapidly dissected and transferred to 30% sucrose the following day. Frozen coronal sections were 

cut at 40um in 3 separate wells. For VIP and AVP immunofluorescence, free-floating sections 

were washed for 1 h in PBS, then blocked in PBSGT (5% normal goat serum, 0.3% Triton and 

PBS) for 1h. Sections were transferred overnight to primary antibodies in PBSGT (rabbit anti-

VIP 1:2000, Immunostar and mouse anti-AVP PS41 1:100). Slices were washed again and 

incubated for 2 h at room temperature with secondary antibodies (anti-rabbit 488 and anti-mouse 

564). Sections were briefly stained with DAPI, washed again in PBS, mounted and cover-slipped 

with DABCO (1,4-Diazobicycol[2,2,2]-octane) mounting medium. All sections from a specific 

round were processed at the same time.  

 

Sections were imaged on an epifluorescent microscope. The SCN was identified using the DAPI 

staining for each animal resulting in 2-5 SCN sections per animal. VIP and AVP staining images 

from the SCN were acquired using the same exposure and gain for every mouse in the round, 

allowing us to effectively compare intensities. An investigator blinded to the genotype of the 

mouse, drew boundaries around the SCN using ImageJ software and measured the mean 

intensity of VIP and AVP staining within those boundaries for each SCN section. Additionally, 

the background staining was calculated for each image from an area slightly lateral to the SCN 

that wasn’t positively labeled for AVP or VIP. To calculate staining intensity across the SCN, 

individual images were ordered from anterior to posterior, and background was subtracted from 
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the corresponding images. Values reported are the maximum staining intensities for individual 

SCN. 

 

Based on the staining, VIP-deleted mice were divided into two groups – successful VIP deletion 

and unsuccessful VIP deletion. Unsuccessful VIP deleted mice had VIP staining intensities that 

were on par with control mice. In addition the presence of VIP cell bodies and dense VIP-

positive arborizations within the SCNs of these mice was confirmed visually.  

 

In Vitro Deletion of VIP Neurons The SCN from triple transgenic mice heterozygous for VIP-

ires-Cre, Rosa-tdtomato, and Per2:Luc was used during these experiments. Briefly, between 

postnatal day 6-7 (P6-P7), these mice were decapitated and brains were rapidly removed. The 

bilateral SCN was dissected from 300-um thick coronal brain slices, imaged to verify tdtomato 

fluorescence, and cultured on Millicell-CM inserts (Millipore, Billerica, MA) in pre-warmed 

culture medium (DMEM supplemented with 10mM HEPES and 10uM beetle luciferin, Promega, 

Madison, WI). The following day SCN were infected with 1-2ul of either AAV8-Caspase-TEVP 

or AAV9-DIO-eYFP viruses. The virus was applied directly on top of the slice. The sealed 35-m 

Petri dishes (BD Biosciences, San Jose, CA) were transferred to a light-tight incubator kept at 

36C. Each slice was imaged on an epifluorescent microscope once per week to visualize the 

changes in number of VIP neurons and media was replaced every two weeks.  

 

All data were analyzed blinded to genotype. Period data were analyzed with Chronostar using 

cosine fit on detrended data. Amplitude was calculated using a custom-written python script, 
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which measured the peak to trough difference from the raw data. Epifluorescent images for 

tdtomato neurons were quantified using ImageJ’s built in cell counter.  
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Chapter 4.  

VIP SCN Neurons contribute to the daily rhythm in glucocorticoids 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter includes data for an ongoing project on the role of VIP neurons in glucocorticoid 

rhythms 
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Abstract 
 
In mammals, the daily surge in glucocorticoids primes the body for increased arousal. This 

hormonal rhythm depends on signals from the master circadian pacemaker, the suprachiasmatic 

nucleus (SCN), through the paraventricular nucleus of the hypothalamus (PVN) to ultimately 

stimulate production of glucocorticoids in the adrenal glands. However, very little is known 

about which circuits and cell types drive this daily rhythm. In this study, we sought to understand 

the role of VIP SCN neurons by i) characterizing which VIP SCN neurons project dorsally to the 

PVN and ii) testing whether deletion of VIP SCN neurons alters the circadian rhythm in 

corticosterone. Ultimately, we find that a small bilateral subset of VIP SCN neurons projects to 

each PVN. Interestingly, we find that deletion of VIP SCN neurons dampens the circadian 

rhythm in corticosterone suggesting that VIP SCN neurons help stimulate the daily surge in 

corticosterone.  
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Introduction 

Located in the ventral hypothalamus, the suprachiasmatic nucleus (SCN) is required for 

circadian timing of behavior, including but not limited to rest/activity cycles, alertness, hunger 

and thirst (Eastman et al., 1984). Underlying these behaviors are daily rhythms in autonomic and 

neuroendocrine function. Of particular interest is the pronounced circadian rhythm in 

glucocorticoids. Daily increases in glucocorticoids including cortisol and corticosterone play a 

critical role in priming an organism for increased arousal (Kolber et al., 2008) and deficiencies in 

this rhythm correlate with increased risk of mood disorders (Bao et al., 2007). However, it is 

unclear how SCN neurons mediate these rhythms. 

 

Neuronal projections from the SCN to the paraventricular nucleus of the hypothalamus (PVN) 

and adjacent areas are necessary for the daily rhythm in glucocorticoids. Importantly, electrolytic 

lesions of the SCN result in loss of glucocorticoid rhythms (Buijs et al., 1993). Though rhythms 

in locomotor behavior can be rescued through fetal SCN transplants, hormonal rhythms cannot 

suggesting that these rhythms require specific mature SCN circuitry (Meyer-Bernstein et al., 

1998). A model for SCN regulation of glucocorticoids suggests that inhibitory and stimulatory 

signals from the SCN occur at different phases to time the daily peak (Kalsbeek et al., 2008).  

 

Several different classes of SCN neuropeptidergic neurons project dorsally to the PVN including 

vasoactive intestinal polypeptide (VIP), arginine vasopressin (AVP) and gastrin releasing peptide 

(GRP) (Abrahamson and Moore, 2001). Researchers have suggested that AVP neurons function 

as the inhibitory component in the model of circadian glucocorticoid regulation. In mice, AVP 

microinjections into the PVN acutely decrease corticosterone (Kalsbeek et al., 1992, Kalsbeek et 
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al., 1996) and deficiencies in AVP expression alter the timing of circadian glucocorticoids 

(Zelena et al., 2009). Both GRP and VIP signaling have been proposed as stimulatory 

components (Kalsbeek et al., 2012). In the case of VIP, microinjections into the PVN increase 

corticosterone (Alexander and Sander, 1994) and Vip null mice lose rhythmicity in circadian 

corticosterone rhythms (Loh et al., 2007). However, these manipulations were not SCN specific 

and involved mice developing in the absence of neuropeptidergic signaling, limiting the 

conclusions that can be drawn.  

 

In this study, we address the role of SCN VIP neurons in the daily regulation of circadian 

glucocorticoids. We approach the question by dissecting the SCN to PVN circuitry specific to 

VIP neurons in three parts. I) We seek to understand which VIP SCN neurons project to the PVN 

and the nature of these connections II) We test whether VIP SCN neurons are necessary for the 

circadian rhythm in glucocorticoids and III) We will ultimately test whether activation of VIP 

SCN neurons can alter glucocorticoid levels at specific times of day.  

 

Results 

A small bilateral subset of VIP SCN neurons project to each PVN 

SCN VIP neurons project to the PVN and the surrounding sub-PVN (Abrahamson and Moore, 

2001), however little is known about quantity or localization of these neurons within the SCN. 

To address this question, we injected an eYFP or Alexa-Fluor488 retrograde tracer carrying into 

one unilateral PVN of transgenic mice expressing tdTOMATO fluorescence in VIP neurons 

(VIPCre/+; floxed-tdTOM/+). In effect, only VIP SCN neurons that project to the PVN 

expressed both fluorophores (Figure 1A).  
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Figure 1. A small bilateral subset of VIP neurons projects dorsally to the PVN. 

(Preliminary Results) 

A) Depiction of the experimental design. A cre-dependent AAV eYFP virus (n=3) or CTB-488 

(n=1) retrograde tracer was injected into the PVN of mice that expressed tdTOMATO only in 

VIP neurons. This resulted in a subset of tdTOMATO-positive VIP neurons expressing eYFP as 

shown in representative image B Preliminary quantification results indicate that on average 5-

10% of VIP SCN neurons per side expressed eYFP, indicating that the unilateral PVN receives 

projections from the bilateral SCN. (20 ± 3 ipsilateral to injection compared to 12 ± 3 

contralateral to injection double-labeled VIP neurons) 
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To test reproducibility, we used two independent tract tracing methods, an AAV cre-dependent 

eYFP (N=3) and the retrograde tracer cholera-toxin-B 488 (CTB-488, N=1). In all four cases, we 

visually confirmed that infection was limited to the unilateral PVN. 

 

We observed a small subset of SCN VIP neurons that were double-labeled with tdTOMATO and 

eYFP/488 (Figure 1B). Interestingly, these neurons were present in both the ipsi- and 

contralateral- SCN relative to the injection site. Preliminary analyses showed roughly 10% of the 

ipsilateral and 5% of the contralateral SCN neurons project to each PVN (20 ± 3 ipsilateral 

compared to 12 ± 3 contralateral double-labeled VIP neurons; mean ± SEM, each 40um section 

of SCN contained roughly 200-250 VIP neurons).  

 

Deletion of SCN VIP neurons drastically dampens the circadian rhythm in corticosterone 

To test whether SCN VIP neurons are necessary for the circadian rhythm in corticosterone, we 

deleted VIP neurons in the adult mouse using Cre-mediated activation of apoptosis. Specifically, 

mice expressing Cre-recombinase selectively in VIP neurons (heterozygous VIP-ires-Cre) were 

stereotactically injected with an AAV Cre-dependent Caspase3 construct (Yang et al., 2013). As 

previously demonstrated (Chapter 3) this resulted in substantial loss of SCN VIP neurons in vivo, 

however more than 80% of VIP-deleted mice retained circadian rhythms in locomotor activity. 

This experimental system allows us to test the role of VIP neurons in SCN outputs without 

confounds that result from global loss of circadian rhythmicity seen in Vip null mice.  
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Following locomotor activity recordings, we placed VIP-deleted mice and controls lacking Cre 

expression in cages custom-built to allow frequent, noninvasive collection of fecal matter (see 

methods). Under constant darkness, mice were habituated to the cages for 2 days before around-

the-clock collection of fecal matter at 4 h intervals. Following steroid hormone extraction, 

corticosterone levels were measured using a competitive enzyme-linked immunosorbent 

(ELISA) assay.  

 

VIP-deleted mice had drastically dampened corticosterone levels as compared to controls 

(Figure 2). Specifically, the peak corticosterone was significantly lower indicating a severely 

blunted corticosterone rhythm. Ultimately, this suggests that activity from VIP SCN neurons 

functions as a stimulatory element in the daily rhythms of glucocorticoids.   

 
Discussion 

This study represents the first direct evidence that SCN VIP neurons play a role in the daily 

rhythms in glucocorticoids. Prior studies have suggested a role for VIP neurons through PVN-

directed microinjections or corticosterone changes in Vip and Vipr2 null mice (Loh et al., 2007, 

Fahrenkrug et al., 2012). Critically, since VIP signaling is present in the adrenal glands where 

corticosterone is synthesized and over 60% of mice developing in the absence of VIP signaling 

lose systemic behavioral circadian rhythms (HÖKfelt et al., 1981, Aton et al., 2005, Harmar et 

al., 2002, Colwell et al., 2003, Brown et al., 2007); this makes it difficult to conclusively 

determine the role of VIP SCN neurons in glucocorticoid rhythms. Our study strengthens the 

existing literature in three ways i) we specifically delete only VIP neurons of the SCN ii) 

deletion occurs in adult mice avoiding developmental defects and iii) over 80% of our mice have 
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Figure 2. Deletion of VIP SCN neurons dampens corticosterone rhythms. A Group data 

normalized to the first peak of corticosterone (control n=7, VIP-deleted n=11). B Average 

corticosterone was significantly lower in VIP-deleted animals than in controls (*29.8 ± 2.4 VIP-

deleted, 41.9 ± 4.2, Control). C Lower average values resulted from decreases in peak 

corticosterone (*48.3 ± 3.8, VIP-deleted; 94.4 ± 9.9, Control) D and not from decreases in trough 

corticosterone (17.04 ± 2.2, VIP-deleted; 20.2 ± 3.1, Control). E Overall, corticosterone rhythms 

were dampened (**peak-to-trough amplitude, 30.4 ± 3.3, VIP-deleted; 74.1 ± 9.5, Control; all 

units in ng/mg of feces, *p < 0.05 unpaired t-test and **p< 0.01 unpaired t-test with Welch’s 

correction).  
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circadian behavioral rhythms suggesting that our phenotype is not driven by single-cell SCN 

desynchronization. 

 

SCN neuronal projections to nuclei involved in neuroendocrine and autonomic function are well 

established, however little is known about projections from specific SCN cell types. Our 

retrograde experiment circumvents many of the prior technical difficulties by using a unique 

two-fluorophore design. As previously validated (Hermanstyne et al., 2016), tdTOMATO is 

transgenically expressed solely in VIP SCN neurons through Cre-lox recombination, which 

bypasses the technical difficulties of staining for VIP neuropeptide. Importantly, we have 

preliminary but comparable results from two separate retrograde tracers. Interestingly, these 

results suggest that VIP neurons from the bilateral SCN innervate each PVN. Additionally our 

preliminary observations suggest that the VIP neurons that project to the PVN are not the same 

VIP neurons with dense arborizations within the SCN. This supports the idea that there are 

multiple classes of VIP neurons with separate anatomical and functional roles, specifically those 

interneurons that densely innervate and synchronize the SCN and the projection neurons that 

carry signals out of the SCN to regulate SCN output. 

 

Ultimately, our results suggest that VIP SCN neurons stimulate the release of corticosterone in 

the mouse. Mechanistically we do not yet know what specific circuit mediates the changes in 

corticosterone. VIP SCN neurons are part of a multi-synaptic autonomic pathway that directly 

innervates the adrenal glands through the splanchnic nerve (Buijs et al., 1999). Conversely, VIP 

neurons may directly affect the hypothalamic-pituitary-axis and release of adrenocorticotropnin-



	 122	

releasing hormone (ACTH). Finally, we cannot discount the possibility that loss of VIP neurons 

may alter the output activity of other SCN cell types including AVP neurons (Watanabe et al., 

2000). Since AVP plays an inhibitory role in circadian glucocorticoid regulation, increased 

activity of AVP neurons may lower corticosterone levels. However, in our VIP-deleted animals, 

we detect no significant changes in AVP neuropeptidergic expression within the SCN following 

VIP-deletion (Chapter3).  

 

Ultimately, these results form a crucial basis for the further investigation of VIP circuitry in 

regulating daily rhythms in glucocorticoids. 

 

Future Directions 

Does activation of VIP neurons increase levels in corticosterone? 

Our previous results suggest that VIP neurons play a stimulatory role in corticosterone release. 

We propose to directly test this by activating VIP neurons using designer receptors exclusively 

activated by designer drugs (DREADDs) (Urban and Roth, 2015). VIP-ires-Cre mice will be 

injected with cre-dependent Gq DREADD receptors to allow robust activation of VIP SCN 

neurons at specific times of day. Control mice receive cre-dependent fluorophores. This 

technique has previously been utilized in VIP SCN neurons (Brancaccio et al., 2013) and reduces 

the stimulation variables inherent to optogenetic experiments (duration and frequency of 

stimulation, light delivery, i.e.).  

 

After recovery, mice will be housed in the fecal matter collection cages in entrained conditions 

(LD 12:12). Separate experimental runs will test the activation of VIP neurons at the peak of 
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corticosterone rhythms (CT 12 or lights-off) and the trough of corticosterone rhythms (CT 0 or 

lights-on) in the same mice. Specifically, we will deliver Clozapine N-Oxide (CNO) through 

intraperitoneal injections into all animals and collect fecal matter at 3h intervals for 12 h before 

and after injections. This experiment will then be reproduced under constant conditions (constant 

darkness DD). 

 

Ultimately, if this experiment provides evidence for mediation of corticosterone rhythms through 

VIP firing, we can probe this question with more finesse. Experimental possibilities including 

using optogenetics to understand the role of VIP firing patterns, using microdialysis to measure 

free-floating corticosterone levels from the interstitial fluid (ISF) with finer temporal precision 

(30min as opposed to 3-4h) (Qian et al., 2012), and severing the splanchnic nerve to identify 

whether the effects occur through neuroendocrine (HPA axis) or autonomic circuits.  

 

Methods 

Animals Mice were housed in the temperature and humidity controlled Danforth Animal Facility 

at Washington University in St. Louis with ad lib access to food and water. For the experiments, 

heterozygote combinations of the following genotypes were used: VIP-ires-Cre knockin 

(VIPtm1(creZjh, Jackson Laboratories), tdTOMATO reporter (B6.Cg-Gt(ROSA)26Sortm9(CAG-

tdTomato)Hze/J, Jackson Laboratories) and C57J. All procedures were approved by the Animal Care 

and Use Committee of Washington University in St. Louis and adhered to National Institutes of 

Health guidelines 
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Retrograde Tracing Experiments We injected retrograde tracers into the PVN of VIPCre/+; 

tdTOM/+ mice during stereotactic surgery. Briefly, mice were kept anesthetized using 

isofluorane (2%) and placed into a stereotactic device. Either a cre-dependent eYFP virus 

(AAV9-DIO-eYFP, UPenn viral core) or CTB488 (Cholera Toxin Subunit B – Recombinant, 

Alexa Fluor 488 Conjugate, ThermoFisher Scientific) was injected into the unilateral PVN at 

0.0mm anterior, +/- 0.2 mm lateral and -4.3mm ventral to Bregma. Mice received analgesic 

treatment during recovery. 

 

After 4-12 weeks, mice were perfused for tissue processing. Briefly, mice were anesthetized with 

1.25% Avertin (2,2,2-tribromoethanol and tert-amyl alcohol in 0.9% NaCl; 0.025 ml/g body 

weight) and transcardially perfused with phosphate-buffered saline (PBS) and 4% 

paraformaldehyde (PFA). The brain was dissected and transferred to 30% sucrose in PBS the 

following day. Coronal sections were cut using a Leica Cryostat at 40um thickness in 3 separate 

wells, washed in PBS, mounted onto glass slides and cover-slipped with DABCO (1,4-

Daizobicycol[2,2,2]-octane) mounting medium. 

 

Sections were imaged first on a epifluorescent microscope to verify green spectrum fluorescence 

in the SCN. Then sections were imaged on a Nikon A1 confocal microscope. The number of 

tdTOMATO positive cells, and co-localized cells was counted manually. Future quantification 

and analysis of the images will take place at a later time. 

 

Circadian Corticosterone Analysis Mice were injected with AAV8-DIO-Caspase3-TevP as 

described in Chapter 3. Following locomotor activity recordings, mice were transferred to 
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custom-built cages for fecal matter collection. These cages consisted of a wire stage where mice 

could comfortably sit with easy access to ad lib food and water. The majority of feces and urine 

would fall through the wire stage onto a piece of filter paper at the bottom of the cage. A slot was 

cut out of the bottom front of the cage that allowed an investigator to easily collect and replace 

the filter paper. We estimate 85-100% of feces per time point were collected. 

 

After two days in constant darkness habituating to the cages, investigators collected fecal 

samples in 3-4h time bins for up to 48h. Samples were immediately transferred to -20 to -80C 

until processing. For steroid extraction, samples were baked at 50C for 3-4 hours until 

completely dry before being ground into a powder using a mortar and pestle. Total weight per 

time point was calculated and steroids were extracted from 25mg of powdered fecal matter using 

80% methanol. After agitation, the supernatant was transferred to new tubes and methanol was 

evaporated off inside a hood. The remaining extracts were suspended in 500 ul of ELISA buffer 

and diluted to a concentration of 1:2500. Samples were processed for corticosterone 

concentration using the ELISA kit instructions (Cayman Chemicals, Corticosterone EIA). 

Comparable results were achieved with 4 separate rounds of collection. 
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