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People constantly make predictions about what will happen in the near future. People anticipate 

how other people around them will act, what other people will say, and what actions will help 

them achieve the greatest rewards. Because all of these behaviors are typically called prediction, 

it is easy to make the assumption that performance across all of these types of tasks is driven by 

the same underlying mechanism. However, there has been little investigation into whether the 

mechanisms underlying prediction are the same across multiple task modalities. Therefore, in the 

current study, 226 participants completed four types of tasks that putatively involve prediction to 

determine whether there is a common factor that can account for performance on these tasks. 

Fluid and crystallized intelligence were also assessed to ensure that general intelligence did not 

drive correlations among the tasks. Preliminary evidence from a recent study suggested that 

people with Posttraumatic Stress Disorder (PTSD) have difficulty with predicting future activity; 

therefore, participants also completed a questionnaire screening for symptoms of PTSD. 

Performance across the four prediction tasks was not correlated, and PTSD severity was not 

significantly correlated with any of the tasks in the study. These results suggest that there is not 

an integrative prediction mechanism in the brain, but rather that there are multiple prediction 
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systems operating in parallel within the brain. In addition, these results suggest that PTSD may 

only be associated with a subset, if any, of prediction tasks. Future researchers studying 

prediction must be careful to investigate performance on various prediction tasks separately, 

rather than assuming that prediction performance is stable across tasks.
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Chapter 1: Introduction 

The ability to anticipate what is going to happen in the near future is necessary for the 

survival of all animals. Prey animals must make predictions about the locations of their predators 

in order to avoid being eaten. Predators must anticipate the location of their prey so as not to 

starve. Humans, too, must constantly make predictions on timescales ranging from a fraction of a 

second to minutes, hours, and even days.  

But, are all forms of prediction the same? In other words, do the same mechanisms that 

allow people to anticipate the next word in a sentence also allow people to predict the next action 

of the person in front of them, or whether it is likely to rain later in the day? For the past few 

decades, researchers have studied the neural basis of prediction to investigate how people and 

animals anticipate future input (e.g., Hikosaka, Sakamoto, & Usui, 1989; Rao & Ballard, 1999; 

Tanaka et al., 2004; Dikker & Pylkkänen, 2013). However, there has been little work examining 

whether the mechanisms underlying prediction are the same across multiple task modalities (see 

Adams, Friston, and Bastos (2015) for some evidence of a ubiquitous prediction system). The 

current study therefore examined four types of tasks that putatively involve prediction to 

determine whether there is a common factor of prediction ability that accounts for performance 

on these tasks. If a common mechanism for prediction exists, clinical populations with deficits in 

one domain of prediction would be expected to display similar deficits across other prediction 

tasks. Previous research on Posttraumatic Stress Disorder (PTSD) has found that people with 

higher levels of PTSD symptoms display difficulty with prediction of future human activity 

(Eisenberg, Zacks, Rodebaugh, & Flores, in prep). Therefore, this study also included a 

screening measure for symptoms of PTSD to determine whether this prediction deficit would 

generalize across all of the prediction tasks. 
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 There is evidence that many areas of the brain are involved in making predictions, and the 

predictive coding theory, an influential model of prediction mechanisms in the brain, suggests 

that prediction occurs in a hierarchical process that is similar across the brain (Friston, 2005). In 

this model, higher-order cortical areas use past experience to make predictions about future 

inputs and send these predictions to lower-order areas, which compare actual input from the 

environment to these predictions. When there is a mismatch between the actual input and the 

predictions, the lower-order areas send prediction error signals back to the higher-order areas 

(Friston, 2005). Much research provides evidence of hierarchical signaling from higher-order 

brain areas to lower-order brain areas and vice versa, including findings on prediction 

mechanisms in sensory areas (see Bendixen, SanMiguel, & Schröger, 2012, for a review), reward 

processing areas (e.g., Schultz, Tremblay, & Hollerman, 1998; Tanaka, et al., 2004), and 

language processing areas (Dikker & Pylkkänen, 2013; Fruchter, Linzen, Westerlund, & 

Marantz, 2015). Although Friston’s (2005) model does not require a single system for making 

predictions, Adams, Friston, and Bastos (2015) provide evidence that the neural circuitry for 

driving predictions is very similar across systems. They suggest that the individual systems 

should not be considered separate, but “instead as a single active inference machine that tries to 

predict its sensory input in all domains” (p. 100). 

 Other theories of information processing also posit the existence of a single integrative 

system that combines sensory information across modalities to generate predictions. For 

example, Event Segmentation Theory (EST; Zacks, Speer, Swallow, Braver, & Reynolds, 2007) 

suggests that people create representations of the current environment, called event models, 

based on incoming sensory information from various sensory modalities and semantic 

knowledge. Predictions about the near future are then formed on the basis of these event models, 
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and when errors in these predictions arise, the event model is reset to better represent the actual 

state of the world. Research using narrative texts (e.g., Zacks, Speer, & Reynolds, 2009), simple 

moving stimuli (e.g., Zacks, 2004), and complex activities (e.g., Zacks, Kurby, Eisenberg, & 

Haroutunian, 2011) has provided support for this model, suggesting that an event model may be 

one way of describing a higher-order integrative system that allows for predictions across 

modalities.  

 On the other hand, it is possible that rather than relying on an integrative prediction 

mechanism, each brain system uses a separate prediction mechanism that operates using only the 

information present in each brain system. For example, the visual system might have a prediction 

mechanism that operates using only visual information from the world and previous visual 

experience. As mentioned above, the predictive coding theory does not require an integrative 

prediction system, as Friston (2005) primarily argues that predictions operate in a hierarchical 

fashion within each brain system. Therefore, it is possible that multimodal stimuli (e.g., visual 

scenes that also involves music and speaking) activate multiple brain systems in concert, 

resulting in the illusion of integration without involving an integratory prediction mechanism. 

Because there is little research attempting to differentiate between an integratory prediction 

mechanism versus separate prediction mechanisms within each brain system, the current study 

represents an initial step toward determining whether such an integratory prediction mechanism 

actually exists. 

Previous research and theorizing on prediction, including research on the predictive coding 

theory and EST, are based, in part, in a large literature on the neural mechanisms involved in 

creating and maintaining predictions in the brain. As might be expected, an examination of this 

literature provides evidence both for and against a higher-order prediction mechanism that 
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integrates information across modalities. In particular, research on the neural mechanisms 

involved in creating and maintaining predictions in the sensory systems, reward processing 

systems, and language processing systems provides evidence both for and against such an 

integrative mechanism. In addition, error signaling from lower-order areas to higher-order areas 

is essential in models of a predictive brain, and research findings on error signaling also suggest 

evidence supporting and opposing a common prediction mechanism. Therefore, each of these 

topics is discussed in detail in this introduction, followed by a description of the tasks used in the 

current study. 

1.1 Prediction Formation 

According to the predictive coding model (e.g., Friston, 2005), prediction formation 

should occur within both lower-order and higher-order systems, with the higher-order systems 

capable of integrating information across modalities to form adaptive predictions about future 

input and then communicating these predictions to lower-order areas. Therefore, in this section, 

specific attention is given to evidence that higher-order areas are involved in the prediction 

process across modalities.  

1.1.1 Sensory Systems  

Within the sensory systems, the main focus of research has been on auditory and visual 

prediction mechanisms. One method of studying prediction formation in the auditory systems is 

to investigate the effects of repeating an auditory tone or a pattern of auditory tones a varying 

number of times, as predictions would be expected to increase in strength as the number of 

repetitions increases. Haenschel, Vernon, Dwivedi, Gruzelier, & Baldewag (2005), for example, 

investigated event related potentials (ERPs) while participants listened to series of tones that 

were presented 2, 6, or 36 times. They found a positivity that began 50 to 250 ms after a tone 
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was presented and that increased in strength as the number of repetitions increased, and they 

suggested that this repetition positivity is associated with the formation of a sensory memory 

representation of the repeated tone. Bendixen, SanMiguel, and Schröger (2012) took this finding 

a step farther and suggested that the sensory memory representation is used to predict future 

tones. They interpreted the repetition positivity as the signal that occurs when a predicted 

stimulus matches the actual stimulus.  

To further determine how the brain represents expectations of future stimuli, Raij, 

McEvoy, Mäkelä, and Hari (1997) investigated the brain response to omitted tones. They used 

magnetoencephalography (MEG) while participants listened to repeated tones. Seven percent of 

these tones were randomly omitted, and the authors found bilateral activation in the auditory 

cortex, particularly the supratemporal cortex, when the tones were omitted. They argued that this 

activation represents the buildup of an expectation of the tone and a signal indicating that this 

expectation was not fulfilled. Mustovic et al. (2003) conducted a similar study using functional 

magnetic resonance imaging (fMRI). They had subjects listen to repeated patterns of sounds and 

interspersed a short period of deviant louder sound or a short period of silence into the pattern. 

Increased activity in the bilateral posterior secondary and association auditory cortices, right 

Heschl’s gyrus, and right planum temporale occurred during both types of deviant periods. In 

addition, greater activity during the silent period than the louder period was seen in the right 

planum temporale and part of the right temporoparietal junction, suggesting that these regions 

are involved in retrieving auditory memory traces for predicted (but absent) stimuli.  

Research on the visual system has found similar prediction mechanisms in the visual 

cortex. For example, Luft, Meeson, Welchman, & Kourtzi (2015) used fMRI and multi-voxel 

pattern analysis to examine predictions in primary visual cortex. They had participants view a 
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sequence of gratings with different orientations. After participants learned the sequence, they 

were able to detect patterns of activation in the primary visual cortex representing the 

participants’ predictions of the orientation of the next grating, providing evidence that the 

primary visual cortex maintains predictions about future visual stimuli. In another study using 

multi-voxel pattern analysis, participants viewed gratings with different orientations and heard 

auditory cues that provided information about the orientation of the next grating stimulus (Kok, 

Jehee, & Lange, 2012). The authors found that top down expectations driven by the auditory cue 

sharpened the representation of the predicted orientation in early visual cortex. Specifically, they 

found that expectation of a particular orientation dampened the overall response of the early 

visual cortex to the stimulus while simultaneously making it easier for the classifier to predict the 

behavioral response of the participant. These results suggest that higher-order cortical regions 

send top-down predictive signals to early visual cortex that bias the response in that area and 

facilitate performance on the task. 

Trapp and Bar (2015) posited a model of top-down and bottom-up predictive processing 

in the visual system, suggesting that the orbitofrontal cortex (OFC) is involved in creating 

predictions that bias processing of visual stimuli based on context. Specifically, their model 

suggests that early visual areas send information at a low spatial frequency to the OFC, which 

uses that information and prior knowledge of the context to make predictions about the identity 

of the most likely input. These predictions bias the analyses performed by the visual areas toward 

the relevant options, which is consistent with predictive coding theory.  

1.1.2 Reward Processing Systems  

Predictions related to reward processing appear to be generated in the striatum, which 

includes the caudate and putamen (see Schultz, Tremblay, & Hollerman, 1998, for a review). For 
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example, populations of neurons in the caudate and putamen of behaving monkeys increase and 

maintain their firing rate during a delay before an expected target appears and during a delay 

before a reward is dispensed, suggesting that these neurons signal the expectation of a reward 

(Hikosaka, Sakamoto, & Usui, 1989; Apicella, Scarnati, Ljungberg, & Schultz, 1992).  

fMRI studies on reward prediction in humans have supported these animal findings. 

Tanaka, et al. (2004), for example, found that when participants learned a task involving 

immediate rewards, activity increased in the striatum, insula, and the lateral OFC, among other 

areas. In addition, when participants needed to maintain a representation of the reward structure 

in order to obtain future rewards, activity increased in the striatum, insula, ventrolateral PFC, the 

dorsolateral PFC, and other areas. In another fMRI study, activity in the striatum increased when 

participants saw cues that predicted rewards compared to when they saw cues that did not predict 

rewards (Ramnani, Elliott, Athwal, & Passingham, 2004). Providing further support for the 

involvement of the striatum in prediction, Ernst et al. (2004) found activation in the ventral 

striatum during the period right before participants received a reward. They also found activity in 

the left lateral and medial OFC and left insula (among other areas) during this period of reward 

anticipation. On the other hand, a meta-analysis of 142 studies of reward processing found that 

the bilateral insula, anterior cingulate cortex, inferior parietal lobule, and brain stem displayed 

activation related to anticipation of rewards, whereas the ventral striatum, medial OFC, and 

amygdala displayed increased activation during reward outcome stages (Liu, Hairston, Schrier, 

& Fan, 2011).  

Although the lower-order brain areas found to be involved in reward prediction tasks are 

different than those involved in visual and auditory prediction tasks, the tasks are similar in that 

higher-order brain areas are recruited during the performance of all of the tasks. These findings 
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again provide support for Friston’s predictive coding theory and suggest that higher-order areas 

may be necessary for integration of predictive information across modalities. 

1.1.3 Language Processing System  

The neural basis for prediction formation in the language processing systems has also 

received much attention. For example, Dikker & Pylkkänen (2013) used MEG while participants 

viewed pictures that were either strongly predictive or weakly predictive. After viewing each 

picture, participants saw a word that either matched or did not match the prediction generated by 

the picture and indicated whether the word was a match or a mismatch for the preceding picture. 

For example, in a predictive trial, participants might see a picture of an apple followed by the 

word “apple,” whereas in a weakly predictive trial, participants might see a picture of a grocery 

bag (which could represent any type of edible object) followed by the word “apple.” During the 

predictive trials compared to the weakly predictive trials, they found increased activity in the 

mid-temporal cortex and the ventromedial PFC around 350 ms before the onset of the noun and 

increased activity in the occipital lobe right before the noun was presented. The authors 

suggested that these results represent a predictive feedback process from higher- to lower-order 

cortical regions. Specifically, they posited that the activity in the visual cortex right before the 

noun was presented represented the preactivation of features associated with the predicted noun, 

that the activity in the mid-temporal cortex represented the preactivation of the predicted lexical 

representation of the noun, and that the activity in the ventromedial PFC represented the 

combination of lexical and semantic representations into a prediction of the future input. They 

further argued that the activation in the visual cortex corresponded to top-down activation of 

relevant features and the suppression of irrelevant features in response to the previously 

presented image.  
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Fruchter, Linzen, Westerlund, and Marantz (2015) found similar results when participants 

read adjective-noun phrases. They found increased activity in the left middle temproral gyrus 

during the time after the presentation of predictive compared to unpredictive adjectives but 

before the noun was presented. In addition, they found decreased activity in the left middle 

temporal gyrus when predictable nouns were presented, suggesting that activity in this area 

decreased once predictions were fulfilled. The results of these studies again suggest a 

hierarchical prediction system in which higher-order areas form predictions and then 

communicate these predictions to other areas of the brain. 

1.2 Human Electroencephalographic Studies of Prediction Error 

 At the same time as the higher-order brain areas form predictions and communicate these 

predictions to lower-order areas, the lower-order areas must send signals to the higher-order 

areas when these predictions are incorrect. Most studies on prediction error in humans have used 

electroencephalography (EEG) to study event related potentials in the brain, as prediction error 

signals in the brain emerge very quickly and EEG is capable of measuring these signals as they 

occur. The most commonly reported error signals are the error related negativity (ERN), 

mismatch negativity (MMN), P300, N400, and P600. Although most of these error signals are 

elicited by stimuli in multiple sensory modalities, suggesting a common eliciting mechanism, the 

existence of multiple error signals suggests that different mechanisms may drive the detection of 

error. Findings related to these error signals are therefore informative for determining whether 

there is a higher order prediction mechanism that integrates information across modalities.  

1.2.1 Error Related Negativity (ERN) 

The ERN was first reported in two studies that presented a series of stimuli either visually or 

auditorily. When participants made an error in their response, a negativity with a fronto-central 
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maximum was observed 0 to 100 ms after the error (Falkenstein, Hohnsbein, Hoormann, & 

Blanke, 1991; Gehring, Goss, Coles, Meyer, & Donchin, 1993). Since then, the ERN has been 

the subject of numerous studies and has been found in tasks of various difficulty levels and 

response modalities (for a review, see Weinberg, Dieterich, & Riesel, 2015). In particular, the 

ERN has been implicated in studies of reward processing (e.g., Holroyd, Nieuwenhuis, Yeung, & 

Cohen, 2003), and there is strong evidence that the ERN is generated by the anterior cingulate 

cortex (ACC; e.g., Gehring, Goss, Coles, Meyer, & Donchin, 1993; Dehaene, Posner, & Tucker, 

1994; Ullsperger & von Cramon, 2001), which is thought to integrate pain/punishment and 

gain/reward to drive behavior (Weinberg, Dieterich, & Riesel, 2015). The ACC is thought to 

integrate signals from multiple sensory systems, and it has dense connections to the prefrontal 

cortex and the midbrain dopamine system, suggesting that error signals from the dopamine 

system in response to a reward or loss may be sent to the ACC and then to the prefrontal cortex 

for further processing (for a review, see Weinberg, Dieterich, & Riesel, 2015).   

1.2.2 Mismatch Negativity (MMN) 

The mismatch negativity (MMN) signal has repeatedly been found in auditory tasks in 

which rare sounds are inserted into a sequence of repeated sounds. In these tasks, the MMN 

signal begins around 100-250 ms after the rare deviant sound and is localized in the bilateral 

auditory cortices and in the right frontal cortex (see Kujala, Tervaniemi, and Schröger, 2007, for 

a review). The MMN has also been found in tasks involving much more complex patterns of 

which participants are not consciously aware, such as a rule that short tones must be followed by 

low tones and long tones by high tones (Paavilainen, Arajärvi, & Takegata, 2007). There is some 

evidence that the MMN begins in the bilateral auditory cortices and later is generated by the right 
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frontal cortex (Rinne, Alho, Ilmoniemi, Virtanen, & Näätänen, 2000), suggesting that the error 

signal may be sent from lower- to higher-order brain areas.  

The MMN also has been elicited in tasks involving other modalities, including visual 

processing. For example, Tales, Newton, Troscianko, and Butler (1999) presented a series of 

visual stimuli in the peripheral visual field and interspersed rare deviant stimuli. They found that 

the deviant stimuli elicited a negativity that began 250-400 ms after the stimulus and that 

appeared to be generated by supplemental visual areas in the occipital lobe and posterior 

temporal cortex. They suggested that this negativity is similar to the MMN found in response to 

deviant tones in studies of auditory processing. Czigler, Balázs, and Pató (2004) found a similar 

negativity that began 140-200 ms after the presentation of a deviant visual stimulus. Providing 

further support that this signal is analogous to the auditory MMN, Wei, Chan, and Luo (2002) 

used tasks that required both visual and auditory processing. Participants viewed a series of 

repeated and rare deviant stimuli while at the same time listening to a series of repeated and 

deviant auditory stimuli. In the first block of the task, the participants were instructed to attend to 

the visual stimuli, and in the second block, they were instructed to attend to the auditory stimuli. 

They found a negativity beginning 100-200 ms after the deviant stimuli regardless of modality. 

When participants attended to the auditory stimuli, the negativity was greatest in the temporal 

lobe, whereas when participants attended to the visual stimuli, the negativity was greatest in the 

occipital lobe. Furthermore, 200-250 ms after deviant visual and auditory stimuli, a negativity 

was observed in frontal regions, suggesting the presence of a feed-forward error signal that 

integrated the error signals from both modalities.   
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1.2.3 P300 

The P300 is another signal that is often elicited in tasks involving unpredictable or 

surprising auditory or visual stimuli (for a review, see Polich, 2007). For example, Pollich and 

Margala (1997) presented participants with a series of repeated and deviant auditory stimuli and 

found a positivity approximately 300 ms after the presentation of the deviant stimuli. They found 

the same positivity when rare target tones were presented within periods of silence. A very 

similar response has been observed in tasks involving repeated and rare deviant visual stimuli 

(e.g., Bledowski et al., 2004; Bledowski, Prvulovic, Goebel, Zanella, & Linden, 2004). Although 

there is not a strong consensus about the neural origins of the P300, lesion studies suggest that 

frontal lobe and temporal-parietal junction integrity are necessary for the generation of the P300, 

suggesting that these areas are likely candidates (Pollich, 2007).  

The P300 is actually thought to consist of two distinct signals: the P3a and the P3b. The 

P3a is typically observed when participants passively listen to infrequent tones or view visual 

stimuli that are embedded within a series of repeated stimuli, whereas the P3b is elicited when 

participants must overtly respond to infrequent stimuli that are presented within a series of 

repeated stimuli (for a review, see Pollich, 2007). Pollich (2012) suggests that the P3a is driven 

by attentional processing of novel or unexpected stimuli in the frontal lobe and that the P3b is 

generated when memory storage in temporal-parietal areas is accessed in the service of 

performing a discrimination task. This suggests that the P3a may signal the presence of an error 

in prediction and that, in response to that error, memory stores are accessed to allow for better 

predictions on future trials, generating the P3b.  
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1.2.4 N400 

The N400 has been observed mainly in tasks involving language processing, particularly 

tasks in which stimuli do not match the preceding context. It was first reported in a study in 

which participants read sentences with either semantically congruent or incongruent final words 

(Kutas & Hillyard, 1980). The authors found a negative deflection between 300-600 ms after 

participants read the incongruent words, suggesting that the N400 represents a response to 

semantic errors. Since then, the N400 has been observed in response to many types of 

semantically incongruent stimuli, including to sentences that do not match the context of the 

preceding paragraph (e.g., van Berkum, Brown, & Hagoort, 1999). In addition, van Berkum, 

Brown, Zwisterlood, Kooijman, and Hagoort (2005) found an N400 in response to words that 

were unlikely given the grammatical structure of the sentence. They had participants listen to 

sentences in Dutch, which uses gendered suffixes on adjectives based on the gender of upcoming 

nouns in noun phrases. The authors recorded event related potentials (ERPs) after a gendered 

adjective was presented but before the associated noun was presented. Participants heard 

sentences such as “The burglar had no trouble locating the secret family safe. Of course it was 

situated behind a big, but unobtrusive painting.” In this sentence, the adjective “big” had a neuter 

gender suffix, which was consistent with the gender of the word “painting.” On the other hand, 

the sentence, “Of course, it was situated behind a big, but unobtrusive bookcase,” was 

inconsistent because in this sentence the adjective “big” had an inconsistent gender when in the 

same sentence as the word “bookcase.” The authors found a very large N400 response at the time 

that the prediction-inconsistent nouns were presented. The authors suggested that this ERP 

response meant that people predicted upcoming words based on the structure of current and 

preceding sentences.  
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 The N400 has been localized to a source in the anterior medial temporal lobe, in middle and 

superior temporal areas, inferior temporal areas, and prefrontal areas, including the dorsolateral 

frontal cortex (for a review, see Kutas & Federmeier, 2011). Consistent with the predictive 

coding theory, Kutas and Federmeier (2011) suggested that the N400 actually consists of a wave 

of feed-back activity in response to an unexpected word: The activity begins in the left posterior 

temporal gyrus at 250 ms after word presentation, then spreads to more forward and ventral areas 

in the temporal lobe by 350 ms, and finally spreads to the right anterior temporal lobe and to the 

bilateral frontal lobes by 370-500 ms.  

1.2.5 P600 

The P600 is similar to the N400, in that both have been studied mainly during language 

processing; however, the P600 is observed when syntactic structure is violated, whereas the 

N400 is observed when semantic context is unexpected (for a review, see Swaab, Ledoux, 

Camblin, & Boudewyn, 2012). The P600 was first reported in a study in which participants read 

sentences that either conformed to expected syntactic structure (e.g., “The broker planned to 

conceal the transaction.”) or violated expected syntactic structure (e.g., “The broker persuaded to 

buy the stock.”; Osterhout & Holcomb, 1993). The authors found a slow positive signal around 

600 ms following the word “to” in the sentences that violated syntactic structure. The P600 has 

also been observed for other types of syntactic violations, including gender and case marking 

violations (e.g., Coulson, King, & Cutas, 1998) and verb tense violations (e.g., Osterhout & 

Nicol, 1999). However, some recent research has led to questions about whether the P600 is 

elicited only in response to syntactic violations, as it has also been observed in response to 

certain types of semantic violations (for a review, see Swaab, Ledoux, Camblin, & Boudewyn, 
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2012). Overall, the evidence suggests that the P600 represents a prediction error response to 

stimuli that violate predictions about syntactic, and possibly semantic, structure. 

 There has not been much research attempting to localize the P600 to specific brain areas. In 

one of the few studies discussing the neural generator of the P600, Service, Helenius, Maury, & 

Salmelin, (2007) used MEG while participants read a series of sentences, some of which violated 

syntactic rules and some of which violated semantic rules. They found evidence for both the 

P600 and the N400, and they localized the P600 to the superior temporal cortex, posterior to the 

generator of the N400 response. Brouwer and Hoeks (2013) disagreed with this finding, and used 

existing evidence from neuroimaging studies of language processing to suggest that the P600 

originates from the left inferior frontal gyrus. However, although they provided 

recommendations for future studies meant to support their hypothesis, they did not collect any 

data localizing the P600 to the inferior frontal gyrus. It is therefore difficult to determine whether 

the neural mechanisms underlying the P600 conform to the predictions of predictive coding 

theory. 

1.3 Interim Summary 

 Evidence on prediction formation and prediction error signaling strongly suggests that 

predictive processes occur throughout the brain, from lower-order sensory areas to higher-order 

cortical areas that include the prefrontal cortex. However, the literature provides evidence both 

for and against the hypothesis that there is a higher-order prediction mechanism that drives 

performance across tasks. On one hand, there seem to be similar higher-order brain areas, 

primarily in the frontal cortex, that are activated across tasks requiring prediction formation. In 

addition, many of the error signals are elicited by stimuli in multiple modalities. For example, the 

P300 is sensitive to both simple tone sequences and to complex semantics and the N400 
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responds to sentence-level incongruity as well as situation-level incongruity. On the other hand, 

the fact that different lower-order brain regions are activated during prediction formation 

depending on the task and that there are so many different prediction error responses suggests 

that there may not be a single integrative prediction mechanism. These two possibilities have 

very different implications for individual differences in performance across prediction tasks. If 

there is a higher-order integrative prediction mechanism that drives performance across tasks, 

prediction performance across tasks should be highly correlated. Conversely, if predictions are 

generated separately within each neural system, prediction performance across tasks might not 

be highly correlated due to individual strengths and weaknesses within specific modalities. 

 Discriminating between these alternate possibilities requires the use of tasks that are likely 

to require multiple modalities, as tasks that fall only within a specific modality might not require 

a higher-order integrator. Fortunately, although prediction formation and error signaling are 

often studied separately in different modalities, most real-world tasks do not involve single 

modalities, and even the laboratory tasks discussed above rarely require only a single sensory 

system. For example, the reward prediction literature often uses visual cues to signal upcoming 

rewards (e.g., Ramnani, Elliott, Athwal, & Passingham, 2004; Ernst et al., 2004), which means 

that prediction mechanisms in the visual system and the reward processing system must be active 

at the same time. In fact, in the real world, it is common for people to employ the visual, 

auditory, language, and reward processing systems simultaneously. This strongly suggests the 

presence of a higher-order system that integrates information across modalities in order to make 

adaptive predictions, and given the evidence discussed in the previous sections, this higher-order 

system likely resides in the frontal cortex. However, there is not enough evidence to support the 

delineation of specific areas within the frontal cortex as multimodal integrators and predictors.  
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The tasks used in the current study were chosen because they require prediction across 

multiple modalities and were therefore likely to involve a higher-order cortical prediction 

system. Specifically, the current study used two types of predictive looking tasks, which use eye 

tracking to determine whether participants are making predictions about future input, a 

probabilistic classification task, in which participants use cues to predict which of two outcomes 

will occur, and a gambling task, in which participants predict which choices will lead to the 

highest rewards. I hypothesized that if a higher-order integrative prediction mechanism existed, 

there would be high correlations across these tasks. On the other hand, I hypothesized that if 

predictions were generated separately by modality specific brain systems, correlations across 

these tasks would be low due to individual strengths and weaknesses in different modalities.  

While there have not been any previous studies that have investigated whether 

performance is correlated across the four tasks included in this study, it is informative to examine 

previous research on the similarities and differences in the brain regions and systems activated 

during performance of these tasks. The research literature on these tasks provides evidence both 

for and against the hypothesized integrative prediction mechanism, and the following sections 

therefore discuss prior research on each of these tasks, with an emphasis on the neural 

mechanisms involved in their performance (where this literature exists).   

1.4 Predictive Looking Tasks 

There are two main types of predictive looking tasks: non-verbal predictive looking tasks 

and language predictive looking tasks. In non-verbal predictive looking tasks, participants 

complete short sequences of actions or watch short movies while their eyes are tracked using an 

eye tracker. Researchers are typically interested in whether participants look at objects before 

they are acted upon (e.g., how early participants look at a bowl before the actor picks it up), and 
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these tasks require integration of visual and motor information to make predictions. In language 

predictive looking tasks, participants typically view static images of objects while listening to 

sentences, and researchers are interested in whether participants look at objects before they are 

mentioned in the sentences. These tasks require auditory, visual, and language processing to 

achieve accurate predictions.  

1.4.1 Non-Verbal Predictive Looking Tasks 

Non-verbal predictive looking has been studied in ages ranging from infants to adults. In one 

study, six-, eight-, twelve-, fourteen-, and sixteen-month-old infants were shown short movies of 

a person interacting with a common object (Hunnius & Bekkering, 2010). In these movies, the 

objects were either brought to a correct or incorrect location. For example, in one movie a cup 

was brought to a person’s mouth, while in another movie, a cup was brought to a person’s ear. 

The authors found that infants were more likely to display anticipatory looking to the target 

location when the object and target locations were congruent than when they were incongruent. 

This study suggests that infants as young as six-months-old are capable of making predictions 

about objects and object-related goals. Cannon and Woodward (2012) also studied predictive 

looking in 11-month-old infants. They showed infants movies of a hand making repeated 

reaching movements toward one of two objects. Then, the locations of the objects were switched. 

Infants were more likely to predictively look at the original object rather than at the original 

location, suggesting that they were predicting that the actor would continue interacting with the 

same object rather than simply reacting to the actor’s motion. Falck-Ytter, Gredebäck, and von 

Hofsten (2006) found similar results when they had 12-month-old infants watch a movie of an 

actor placing three toys in a bucket. Infants displayed reliable predictive eye movements to the 
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bucket before the toys contacted the bucket. These studies suggest that infants are capable of 

making goal-directed predictions about future action.   

Studies in adults have also examined goal-directed predictive looking while participants 

carried out an action themselves. For example, Land, Mennie, and Rusted (1999) used eye 

tracking while participants made tea. A head mounted video camera and a second video camera 

located across the room were used to obtain fixation location. The authors found that participants 

first fixated on an object an average of .56 seconds before touching the object and that 

participants fixated the next object an average of .61 seconds before finishing their use of the 

previous object. In a very similar study, participants made a sandwich while their gaze location 

was tracked using an eye tracker. The authors found that 30% of the reaches to objects were 

preceded by a fixation to that object within the previous eight seconds (Hayhoe, Shrivastava, 

Mruczek, & Pelz, 2003). In another study, participants grasped a bar and moved it around an 

obstacle toward a target. Participants looked at the grasp site on the bar and at the target before 

making contact with the bar and the target. In addition, participants stopped fixating these objects 

after contact was made (Johansson, Westling, Bäckström, & Flanagan, 2001).  

Not only do adults engage in predictive looking when performing a task themselves, but 

they also perform goal-directed predictive looking when watching someone else complete a task. 

Flanagan and Johansson (2003) had participants both stack blocks themselves and watch an actor 

stack the blocks in the same manner. The authors found that in both the passive and the active 

trials, almost all fixations were directed to the sites of contact on the blocks and the locations 

where the blocks were to be set down. In addition, in both types of trials, participants’ fixations 

occurred an average of 150 ms before contact actually occurred. In another study, Elsner, Falck-

Ytter, & Gredebäck (2012) created 12 s movies of point-light displays by attaching markers to a 
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hand moving laterally in space. They created two motion conditions: a biological motion 

condition in which the hand moved naturally and a non-biological motion condition in which the 

hand moved at a constant velocity. In both movies the hand moved toward and contacted a target 

object that was partially occluded by a barrier. In a between-subjects design, participants 

watched either the biological or the non-biological motion movies ten times while their eyes 

were tracked using an eye tracker. The authors found that participants in the biological motion 

condition looked at the target object an average of 124 ms before contact occurred. On the other 

hand, participants in the non-biological motion condition looked at the target object an average 

of 21.5 ms after contact occurred, which the authors stated constitutes reactive, rather than 

predictive, looking. This study suggests that people are equipped to be able to predict future 

biological motion, whereas people are less able to predict non-biological motion. From an 

evolutionary perspective, this would make sense, as living organisms are much more likely to 

move around on a regular basis that non-living objects.   

Building on this literature, Eisenberg, Zacks, and Flores (in prep) developed a novel 

paradigm, called the Predictive Looking at Action Task (PLAT) to assay predictive looking 

while participants watch videos of actors performing everyday activities. Unlike the studies 

discussed above that used short videos of an actor interacting with only one object, the PLAT 

uses movies during which an actor interacts with many objects sequentially. In preliminary work, 

twenty-five participants passively watched three five-to-six minute long videos of an actor 

completing an everyday activity (e.g., making breakfast, preparing for a party). For each movie, 

the points at which the actor came into contact with a new object were identified and 500 ms bins 

were created for the three seconds before each point of contact. Both the proportion of 

participants who looked at the target object and participants’ fixation time on the target object 
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increased as time to contact approached (See Figure 1). These results suggest that the PLAT can 

provide an online measure of prediction ability. This same pattern of results was replicated in 

another study of twenty-eight participants. Additional analyses using these two data sets also 

found that predictive looking decreased around event boundaries, suggesting that participants 

formed event models while viewing these movies, and that they updated their event models when 

predictions became more difficult (Eisenberg & Zacks, in preparation).  

 

Figure 1. Results from Eisenberg, Zacks, and Flores (in prep) for the PLAT. The figure on the 
left displays the proportion of participants who looked at the target object during each of the six 
500 ms bins. The figure on the right displays the amount of time participants looked at the target 
object during each of the six bins. For both figures, the time bins progress in time from left to 
right from 3000-2500 ms before the actor contacted the target object to 500-0 ms before the actor 
contacted the target object  

 

1.4.2 Language Predictive Looking Tasks 

Language-related predictive looking tasks typically use the visual world paradigm to 

investigate anticipatory language processing in adults. In the visual world paradigm, participants 

view an array of objects on a computer screen while listening to a sentence. An eye tracker is 

used to determine the point at which participants begin looking at the next object to be 

mentioned in the sentence. In one of the earliest studies investigating anticipatory eye 
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movements while participants looked at an array of images, Altmann and Kamide (1999) had 

participants listen to sentences such as “The boy will move the cake” or “The boy will eat the 

cake” while viewing a collection of images that, in this example, included depictions of a boy, a 

cake, and various toys. In one version of each sentence, the verb could only apply to one of the 

images (in this example, only the cake could be eaten), and in the other version, the verb could 

apply to all of the objects (in this example, all of the objects could be moved). The authors found 

that participants began looking at the cake much earlier when the sentence included the word 

“eat” than when the sentence included the word “move.” In a similar study, Kamide, Altmann, 

and Haywood (2003) had participants listen to sentences such as “The woman will spread the 

butter on the bread.” The authors found that participants looked at the goal object (the bread, in 

this case), immediately after they heard the referring expression (spread the butter). In another 

study, Altmann and Kamide (2007) used a similar paradigm but varied the tense of the verbs in 

the sentences. For example, participants heard sentences such as, “the man will drink” or “the 

man has drunk” while viewing a screen with both a full glass of beer and an empty wine glass. 

Participants looked more often at the object that matched the tense of the verb in the sentence, 

even before the target object was mentioned. These studies suggest that people engage in 

predictive looking during language processing as well as when they view short movie clips of 

human actions. 

1.5 Probabilistic Classification Tasks 

In probabilistic classification tasks, participants are asked to classify stimuli into two or 

more categories. Participants usually receive feedback after each trial, allowing them to learn to 

predict the category of subsequent items. Although these tasks are typically used to measure 

executive control, rather than prediction ability, these tasks require participants to learn 
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information over a series of trials and use this information to make subsequent predictions. There 

are a variety of probabilistic classification tasks that require participants to use previously 

learned information to respond on subsequent trials, including the weather prediction task and 

the Mr. Potato Head task.    

In the weather prediction task (Knowlton, Squire, & Gluck, 1994), participants see 

various combinations of four cards with simple geometric designs and are asked to predict, on 

the basis of these cards, whether there will be rain or sun. The four cards are associated with 

75%, 57%, 43%, or 25% probability with one of the outcomes. Participants receive feedback 

after each trial. Using this task, Knowlton, Squire, and Gluck (1994) found that after 50 trials, 

healthy participants performed above chance, choosing the optimal answer on an average of 

68.2% of the trials. After 350 trials, healthy participants chose the optimal answer on an average 

of 74% of the trials. Gluck, Shohamy, and Myers (2002) found similar results, finding that after 

200 trials, participants chose the optimal answer on an average of over 70% of the trials.  

In a very similar paradigm, Shohamy et al. (2004) created probabilistically predictive 

stimuli using a Mr. Potato Head doll. In this study, four features of the Mr. Potato Head doll 

could vary, and participants had to use this information to predict whether each Mr. Potato Head 

customer at an ice cream shop wanted vanilla or chocolate ice cream. They found that healthy 

adult participants made optimal predictions on approximately 80% of the trials, which is 

consistent with findings from the weather prediction task. Aron et al. (2004) found almost 

identical results in another sample of participants using the same Mr. Potato Head task, with 

participants making optimal predictions on an average of approximately 70-80% of trials. 

In addition to this behavioral replication, Aron et al. (2004) used fMRI to determine the 

brain areas involved in making these predictions. Specifically, they broke the trials down into 
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three phases: stimulus, delay, and feedback. Of these phases, activation during the delay was 

most relevant to prediction, as it was during this time that participants most likely made their 

predictions about ice cream flavor. The authors found significant activation in the right inferior 

frontal cortex, caudate nucleus, parietal cortex, and cerebellum during this delay. In addition, 

they found significant deactivation in the medial prefrontal cortex, medial temporal cortex, and 

parietal cortex. The authors then correlated neural activity with the degree of uncertainty on each 

trial. They found a significant positive correlation between activity in a region of interest in the 

midbrain (centered on the substantia nigra) and increasing uncertainty during the delay period. 

The authors therefore suggested that this midbrain region codes for uncertainty when people 

make predictions. Finally, the authors examined the functional connectivity of this midbrain 

region with the rest of the brain, and found significant correlations between activity in this region 

and ventral striatum, orbitofrontal cortex, and dorsomedial frontal cortex, suggesting that feed-

forward and feed-back connections drive performance on this task.  

In another type of probabilistic classification task, participants viewed a series of eight 

rapidly presented circles and triangles. Participants then predicted whether the next stimulus was 

likely to be a circle or a triangle. The amount of uncertainty on each trial varied depending on 

how many circles and triangles were presented during the stimulus presentation phase. For 

example, if all of the stimuli were circles, there was an 80% probability that the next stimulus 

would be a circle as well. On the other hand, when there was an equal number of each type of 

stimulus presented during the stimulus presentation phase, there was a 50% probability that the 

next stimulus would be a circle. The authors found that even though participants were never told 

about these different probabilities, participants quickly began to use the probabilities to help 
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them make their predictions; as uncertainty decreased, participants made more confident and 

correct decisions (Huettel, Song, & McCarthy, 2005).   

In the same study, Huettel, Song, and McCarthy (2005) used fMRI to examine the brain 

regions activated while participants performed this task. They found that bilateral insula, inferior 

frontal gyrus, and intraparietal sulcus, along with right thalamus, and right inferior parietal lobule 

displayed a significant increase in activation as uncertainty increased. In addition, the authors 

analyzed the data to determine whether the order in which stimuli were presented affected the 

neural response. They found that when a stimulus that was incongruent with the preceding 

stimuli was presented late in a trial, the posterior parietal cortex, specifically, the intraparietal 

sulcus, displayed significantly greater activation compared to trials in which an incongruent 

stimulus was presented early in the trial. The authors suggested that the activation in this region 

represents the neural correlates of the attempted resolution of uncertainty and, therefore, the 

formation of a prediction about the target stimulus. In addition, based on previous research, the 

authors suggested that while activity in the posterior parietal cortex reflects uncertainty about 

which behavior to choose and the ultimate resolution of this uncertainty, the activity they 

observed in the anterior insula is likely related to uncertainty about future reward outcomes. 

1.6 Gambling Tasks 

In the Iowa gambling task, participants are shown four decks of cards, are given a starting 

amount of money, and are told to choose cards such that they make the most money and lose the 

least money. When participants choose to turn over a card from the A or B decks, they usually 

earn $100. When they choose to turn over a card from the C or D decks, participants usually earn 

$50. However, every once in a while, turning over a card results in a penalty, with a larger 

penalty associated with the A and B decks. This penalty occurs randomly, meaning that 
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participants have no way of knowing when they will incur this penalty. Because of the high 

penalties associated with the A and B decks, choosing cards from decks C and D results in the 

higher scores on this task. In the first study using this task, Bechara, Damasio, Tranel, and 

Damasio (1997) measured participants’ skin conductance (SCR) while they completed this task. 

The authors found that healthy participants began choosing more cards from decks C and D and 

began showing a higher SCR when choosing a card from decks A and B between the 10th-50th 

cards, despite being unable to verbalize whether one deck was better than the other. This pattern 

became very strong during trials 50-80, when participants began to express the possibility that 

decks C and D were better and continued to show a high SCR when choosing cards from decks C 

and D. During the last 20 trials, the pattern of choices remained relatively unchanged, but most 

participants were confident that decks C and D resulted in the most advantageous outcome. 

During this final phase, SCR remained high for decks A and B but became lower for decks C and 

D, suggesting that participants no longer experienced as much concern when choosing cards 

from decks C and D. The results of this study suggest that participants begin making predictions 

about which deck will result in less monetary loss, even before they become consciously aware 

of these predictions.  

There have been multiple fMRI studies examining neural activity while participants 

perform the Iowa gambling task. In the first fMRI study of this task, Fukui, Murai, Fukuyama, 

Hayashi, and Hanakawa (2005) examined the selection period during which participants made 

their choice about which deck to choose. The behavioral results replicated those of Bechara et al. 

(1997), demonstrating that participants began preferentially choosing cards from the 

advantageous decks beginning around trial 40 of 100. In addition, they found significant 

activation in the medial prefrontal cortex when participants chose cards from the risky decks 
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compared to the safe decks. Furthermore, the more successful participants were on the task, the 

greater the activity in this same region. The authors suggest that when deciding which deck to 

choose, participants create an estimate of the probability of gain versus loss, and that it is this 

prediction that is represented in the activity in the medial prefrontal cortex.  

Lawrence, Jollant, O’Daly, Zelaya, and Phillips (2009) found similar results in their 

fMRI study of seventeen men who completed a similar version of the Iowa gambling task. They 

again replicated the original Bechara et al. (1997) behavioral results. In addition, they compared 

brain activity during the selection period compared to activity in a control task in which 

participants were told which choices to make, and they found significant increased activation in 

the medial orbito-frontal cortex and the ventral anterior cingulate cortex. Furthermore, when they 

compared activation during the selection period on trials in which participants chose the risky 

decks compared to trials when participants chose the safe decks, they found increased activation 

during risky decisions in the medial frontal gyrus, lateral orbitofrontal cortex, insula, and the 

occipital cortex. Providing further support for these results, another fMRI study found a 

correlation between expected gain and activation in the hippocampus, superior frontal gyrus, 

right medial frontal gyrus, inferior frontal gyrus, inferior orbito-frontal cortex, right amygdala, 

insula, and orbito-frontal/ventromedial prefrontal cortex (Li, Lu, D’Argembeau, Ng, and 

Bechara, 2010). The authors suggest that the amygdala sends a signal to the orbito-

frontal/ventromedial prefrontal cortex when the potential for risk is present, and that the orbito-

frontal/ventromedial prefrontal cortex then allows for conscious processing of the risk and 

resulting decision. Although the authors do not explicitly mention prediction when discussing 

these results, it seems likely that the activity in the orbito-frontal/ventromedial prefrontal cortex 

reflects predictions about gains and losses occurring during the decision making process. 
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In sum, non-verbal predictive looking tasks, language predictive looking tasks, 

probabilistic classification tasks, and gambling tasks all require the use of prior information to 

make predictions about future input. In addition, although they depend primarily on different 

sensory modalities, they all overlap in their use of visual processing. On the other hand, there are 

some clear differences between the tasks. Both predictive looking tasks use information stored 

primarily in semantic memory, whereas the probabilistic classification and gambling tasks rely 

on working and short-term memory to make predictions. In addition, the measurement tools 

differ across the tasks, with performance on the predictive looking tasks measured using 

oculomotor data and performance on the probabilistic classification and gambling tasks 

measured using accuracy data. The tasks also have similarities and differences at the neural level. 

Although there are little EEG or imaging data available for the predictive looking tasks, the 

literature discussed earlier on predictions in the visual and language processing systems suggest 

that these tasks likely involve feed-back and feed-forward signals between lower-order areas and 

the frontal lobe. Similarly, imaging data for the probabilistic classification and gambling tasks 

suggest that information related to prediction is activated in the lower-order and higher-order 

brain areas, again suggesting the presence of feed-back and feed-forward connections. The 

behavioral and neural similarities between these tasks suggest that similar mechanisms may 

support performance on all of these tasks and that these tasks may load onto a single factor that 

represents overall prediction ability.  

To test whether performance on these types of tasks involves a higher-order integrative 

prediction system, the current study included the PLAT, the visual world paradigm, the weather 

prediction task, and the Iowa gambling task. The visual world, weather prediction, and Iowa 

gambling tasks were chosen because all three have been the focus on extensive research. While 
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the PLAT is a relatively new task, it was chosen because preliminary research found that it 

reliably measured predictive looking during viewing of naturalistic movies and because eye 

tracking may allow for a more sensitive measure of prediction than an overt behavioral response.  

Surprisingly, there are extremely few studies that have previously investigated whether 

performance is correlated across any combination of these types of tasks, and there have not been 

any previous studies that have combined three or more of these tasks into a single study. The few 

studies that have investigated performance on two of the tasks were both focused on performance 

in clinical populations (HIV/AIDS and schizophrenia) and used only the Iowa gambling task and 

the weather prediction task (Gonzalez, Wardle, Jacobus, Vassileva, & Martin-Thormeyer, 2010; 

Wasserman, Barry, Bradford, Delva, & Beninger, 2012). Both studies found that performance 

across these tasks was not as similar as expected, though neither study included a control group 

of healthy participants. It is therefore not possible to determine from these previous studies 

whether this lack of relationship between the two tasks would generalize to healthy populations.  

In addition to completing these prediction tasks, participants also completed tasks 

involving crystallized and fluid intelligence to ensure that similarities among these tasks were 

not completely explained by other areas of cognitive functioning. The current study therefore 

tested whether there was a unique factor that explained shared variance across the prediction 

tasks, even when the fluid and crystallized intelligence tasks were included in the model.  

In addition to furthering understanding of predictive processing, this study can inform 

applied research with clinical populations. For example, people with Posttraumatic Stress 

Disorder (PTSD) often experience hypervigilance and engage in constant surveillance of the 

environment to prevent themselves from experiencing a reoccurrence of their traumatic event 

(Ehlers & Clark, 2000); in other words, they make often erroneous predictions about potential 
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dangers in their environment. To illustrate, a military veteran might anticipate the presence of 

enemy soldiers around every corner, even though these predictions are incorrect. In addition, 

research has found that people with PTSD display increased arousal not only in response to 

threat-related information, but also in response to novel, demanding, or unpredictable cues 

(Stam, 2007) and that people with PTSD have deficits on neutral attention tasks, primarily with 

inhibiting responses to distracters (Vasterling, Brailey, Constans, & Sutker, 1998). In fact, in a 

recent study in our laboratory, we found that people with PTSD made slower and less accurate 

predictions about everyday activity compared to controls (Eisenberg, Zacks, Rodebaugh, & 

Flores, in prep). Furthermore, imaging studies have found reduced activity in the dopamine 

system in combat veterans (van Wingen et al., 2012), increased activity in the striatum in people 

with PTSD (e.g., Linnman, Zeffiro, Pitman & Milad, 2011; Falconer et al., 2008), and increased 

activity in the dorsal anterior cingulate cortex in people with PTSD (e.g., Shin & Liberzon, 

2010). These studies suggest that feed-back and feed-forward signaling necessary for successful 

predictions may be different in people with PTSD compared to people without PTSD. Because 

these studies suggest that people with PTSD make incorrect predictions about future stimuli and 

have difficulty inhibiting responses to distracters, I hypothesized that people with PTSD also 

have difficulty on other tasks that require correct predictions. Therefore, the present study 

screened participants for the presence of PTSD symptomology to determine whether people with 

higher PTSD severity experience difficulty with a variety of tasks involving prediction.  
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Chapter 2: Methods 

2. 1 Participants 

 Two hundred seventy-six participants were recruited from the student participant pool at 

Washington University. Fifty participants were dropped from analyses because they did not 

complete both sessions of the study (26), the eye tracker could not track their eyes and no eye 

tracking data was collected (14), they were not fluent in English (3), they did not follow task 

instructions (4), or computer problems prevented them from completing the first session (3). An 

additional 15 participants were dropped from only the visual world task analyses because these 

participants were missing eye tracking data for more than 20% of the trials on this task but had 

adequate data for the other tasks. This left data from 226 participants for all but the visual world 

task and data from 211 participants for the visual world task. All analyses on single tasks and all 

simple pairwise correlations that did not involve the visual world task included data from all 226 

participants. All modeling was conducted with data only from the 211 participants with full data 

sets. Participants ranged in age from 18 to 59 (mean = 19.73), and were 64% female. The study 

took place over two sessions: a group testing session that lasted 1.5 hours and an individual eye 

tracking session that lasted 1 hour. 

2. 2 Eye-Tracking 

 An EyeLink 1000 eye tracker was used to collect oculometric measures. This eye tracker 

records data at 1000 Hz. Gaze location was the measure of particular interest; however, we also 

collected other oculometric measures including pupil size, fixation duration and saccade 

distance. Participants were required to keep their head in the headrest throughout all of the tasks 

requiring eye tracking. Nine-point calibration followed by validation of the resulting calibration 

was used; however when nine-point calibration did not allow for adequate calibration, thirteen-
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point calibration was used. If both nine-point and 13-point calibration failed, five-point 

calibration was used. The infrared illuminator was initially set to 75% illumination; if calibration 

failed at this illumination it was adjusted to either 50% illumination or 100% illumination 

depending on which level of illumination provided the best calibration. After successful 

calibration and validation, the experimenter used a simulated pupil of known size printed on an 

index card to calibrate the pupil size measure, because the eye-tracker measures pupil size in 

pixels rather than in millimeters. All eye-tracking tasks were presented on a 19-inch (74 cm) 

monitor (1440x900 resolution, viewing distance of 58 cm from the forehead rest, viewing angle 

of 38.6o) using the Experiment Builder software designed by S-R Research (http://www.sr-

research.com) to be used with this eye tracker. 

2.3 Procedure 

 Participants first completed the group session. During the group session, participants 

reviewed the consent form and completed the demographics questionnaire. Participants were 

then told to begin the tasks on the computer. All computer tasks were presented on 23-inch (58.4 

cm) monitors, with a viewing distance of 68.5 cm. Each task began once the previous task was 

complete, with no intervention from the experimenter. Participants began by completing the 

weather prediction task and then the Iowa gambling task. They then completed the letter sets 

task, followed by the synonym and antonym vocabulary tasks. Participants continued with the 

paper folding task and then the Information task. They finished the group session by completing 

the Raven’s Progressive Matrices task. During the individual eye tracking session, participants 

completed the PLAT and then the visual world task. They then filled out the PTSD 

questionnaires. They were given a debriefing form explaining the purpose of the study before 



  33 

they left this session. (See Table 1 for a list of the tasks participants completed in each session of 

the study.) 

Table 1. List of tasks within each session of the study. 

Group Session  
 Demographics Questionnaire 
 Weather Prediction 
 Iowa Gambling  
 Letter Sets   
 Synonym   
 Antonym   
 Paper Folding  
 Information   
 Raven's Progressive Matrices 
   
Individual Eye Tracking Session 
 Predictive Looking at Action 
 Visual World  
 PTSD Questionnaires 

 

2.4 Measures 

2.4.1 Demographics 

Participants completed a short demographic questionnaire that included age, gender, 

handedness, ethnicity, current employment, highest level of education, history of major medical 

problems, and hours of exercise.  

2.4.2 PTSD Questionnaires 

Participants first completed the Life Events Checklist for DSM-5 (LEC-5; Weathers, Blake, 

Schnurr, Kaloupek, Marx, & Keane, 2013), which included 17 questions about a variety of 

potentially traumatic events and eight additional questions about the severity of the most severe 

event. Participants then completed the PTSD Checklist for DSM-5 (PCL-5; Weathers, Litz, 

Keane, Palmieri, P.A., Marx, & Schnurr, 2013), which consisted of 20 questions assessing the 
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severity of all DSM-5 PTSD symptoms participants experienced over the past month. The 

National Center for PTSD has proposed a cut-point of 33, at or above which someone would be 

classified as having probable clinical PTSD, though they note that this could change after further 

research (National Center for Posttraumatic Stress Disorder). The PCL-5 has strong internal 

consistency (α = .94), test-retest reliability (r = .82), and convergent and divergent validity 

(Blevins, Weathers, Davis, Witte, & Domino, 2015). 

2.4.3 Crystallized and Fluid Intelligence Tasks 

Participants completed three tasks testing crystallized intelligence and three tasks testing 

fluid intelligence. The crystallized intelligence tasks included the Information Test (Wechsler, 

2008) and the Synonym and Antonym Vocabulary tasks (Salthouse, 1993). The Information Test 

required participants to answer general knowledge questions in a variety of areas, and a meta-

analysis suggests that this measure has a test-retest reliability of 0.92 (Calamia, Markon, & 

Tranel, 2013). The Synonym vocabulary (Chronbach’s alpha = .67) and Antonym vocabulary 

(Chronbach’s alpha = .79) tasks required participants to choose synonyms or antonyms, 

respectively, from among five possible choices (Salthouse, 2001).  

The fluid intelligence tasks included a paper folding task (Ekstrom, French, Harman, & 

Dermen, 1976), a letter sets task (Ekstrom, French, Harman, & Dermen, 1976), and the odd 

numbered questions in the Raven’s Advanced Progressive Matrices Set II (Raven, 1990). For the 

paper folding task, participants were shown a sequence in which a square piece of paper was 

folded. The final image in the sequence showed where a pencil was poked through one location 

on the folded paper. Participants had to choose which of five options correctly displayed the 

locations of the holes on the unfolded piece of paper. Participants completed two sets of ten 

questions each. They were given three minutes for each set of questions. Each question was 
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presented by itself on the computer screen and participants were allowed to click a button to skip 

questions if they chose. For the letter sets task, participants were shown five strings of four 

letters each. Participants were instructed to choose the string that did not match the pattern that 

the remainder of the letter strings followed. Participants were given seven minutes to complete 

fifteen questions. Reliability data is not available in the literature for the Letter Sets and Paper 

Folding tasks. Therefore split-half reliability for these tasks was calculated using data from the 

current study (see results section for the results of these analyses). The Raven’s Advanced 

Progressive Matrices task required participants to choose which of eight items completed the 

pattern shown at the top of the screen. The correct item matched the pattern vertically and 

horizontally. Participants were given ten minutes to complete eighteen questions (Kane et al., 

1990). The Raven’s Advanced Progressive Matrices has high internal consistency (Chronbach’s 

alpha = .83; Paul, 1985) and test-retest reliability (r = .83; Bors & Forrin, 1995) 

2.4.4 Prediction Battery 

The prediction battery consisted of four different tasks: the predictive looking at action task 

(PLAT), a visual world task (Altmann & Kamide, 1999), a weather prediction task (Knowlton, 

Squire, & Gluck, 1994), and the Iowa gambling task (Bechara, Damasio, Tranel, and Damasio, 

1997).  

As described earlier, the PLAT is a novel task that we have recently developed in the 

laboratory. For this task, participants passively watched 5-6 minute movies of an actor 

performing everyday activities while their eyes were tracked using an eye tracker. These movies 

included many goal-directed sequences of activity in which the actor orients toward an object, 

picks up the object, and then completes an action with that object. Predictive performance on this 
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task was measured by examining how early participants looked at objects before the actor came 

into contact with them. This task allowed for a relatively continuous measure of prediction.  

To calculate performance on this task, an experimenter first identified all of the time points 

at which the actor came into contact with an object. Dynamic interest areas were then drawn 

around each contacted object. The dynamic interest areas were placed to capture fixations on the 

object of interest ranging from 3000 ms before contact to 1000 ms after contact. Interest areas 

were placed using the following rules: (1) All interest areas were rectangular in shape, (2) No 

interest areas were allowed to overlap in time and space, (3) If potential interest areas 

overlapped, only the first interest area was kept, (4) If the actor contacted an object by touching 

it with another object, the object in direct contact with the actor was considered the object of 

interest (e.g., if the actor put a bowl on the counter, the bowl was considered the object of 

interest), (5) Only objects that were fully onscreen when contacted were considered objects of 

interest, (6) If the longest dimension of an object was smaller than 105 pixels (visual angle of 

2.9°), the interest area was created around the entire object, and if the longest dimension of an 

object was larger than 105 pixels, the interest area was created around the part of the object that 

the actor contacted, and (7) For objects smaller than 48 pixels (visual angle of 1.3°) on any side, 

interest areas were created with a minimum size of 48 pixels per side. (See Figure 2 for an 

example movie frame with an interest area highlighted). 
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Figure 2. An example frame taken from one of the three movies used in this study. The yellow 
box represents the interest area, which was drawn around the chandelier—the object the actor is 
about to contact in order to put up the streamer. The purple dot represents the gaze location of an 
example participant who watched this movie. Here, the participant looked at the chandelier 
before the actor contacted it. During the study, participants saw neither the yellow box nor their 
own gaze location.  
 

 Once these dynamic interest areas were created in Data Viewer, the amount of time 

participants spent fixating within each interest area during the 3000 ms before contact was 

calculated. The 3000 ms before contact was divided into thirty 100 ms bins, and bins with more 

than 20% of the eye tracking data missing were dropped from later analyses. Growth curve 

modeling was conducted using the lmer package in R (Bates, Maechler, Bolker, & Walker, 2015) 

to obtain growth estimates over the 30 time bins for the random effect of subjects. Growth curve 

modeling provides an estimate of how performance on a task changes over time and tests 

whether allowing each subject’s growth over time to have different intercepts, linear slopes, 



  38 

and/or quadratic slopes improves the fit of the model. All variables entered into the growth curve 

models were z-scored to ensure that the variances were at a similar scale. Three models were 

tested: 1) a model that only allowed the intercept to vary by subject, 2) a model that allowed the 

intercept and linear slope to vary by subject, and 3) a model that allowed the intercept and both 

the linear and quadratic slopes to vary by subject. For all of these models, movie was also 

included as a random effect, but only the intercept was allowed to vary by movie.  

 For the visual world task (Altmann & Kamide, 1999), the eye-tracker was used to obtain 

participants’ gaze location while they viewed arrays of objects and listened to sentences that 

included some of the objects. The sentences all had the following structure: an article, a noun, a 

verb, a person’s name, and a noun that was the subject of the verb (e.g., The boy kicked Tracy’s 

ball). On some trials, the verb was predictive of only one object in the array (predictive trials; 12 

trials of this type per subject), while on other trials, the verb was not predictive of any individual 

object in the array (unpredictive trials; 12 trials of this type per subject). For example, one array 

of objects included a picture of football, a tennis ball, a toy truck, and a piece of broccoli. The 

predictive sentence was, “The woman steamed Paul’s broccoli,” and the unpredictive sentence 

was, “The woman put away Paul’s broccoli” (See Figure 3). Predictive looking was measured by 

determining how much earlier participants looked at the target picture while listening to 

predictive sentences than while listening to unpredictive sentences. Three types of control 

sentences were also included: 1) the verb predicted two of the objects (8 trials per subject), 2) the 

verb predicted three of the objects (8 trials per subject), and 3) the verb did not apply to any of 

the objects (20 trials per subject). Participants heard a beep immediately after the end of each 

sentence, and they were instructed to press one button if they thought the sentence applied to any 
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of the pictures on the screen and press a different button if they thought the sentence did not 

apply to any of the pictures. They were told to wait until they heard the beep to respond.  

 

 

Figure 3. Example stimulus from the visual world task. The predictive sentence for this trial was 
“The woman steamed Paul’s broccoli,” and the unpredictive sentence was “The woman put away 
Paul’s broccoli.”  

To calculate performance on this task, an experimenter first determined the amount of time 

between the verb and the subject in each predictive and unpredictive sentence, hereafter referred 

to as verb-subject distance. The verb-subject distance ranged from 1406 ms to 2400 ms (mean = 

1892.68 ms). Then, the proportion of time spent looking at the target object during the verb-

subject distance during the predictive sentences was calculated. To ensure that the amount of 
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time spent looking at the target object was not due to the salience of that particular object, a 

control measure of looking time was calculated using the same object in the matched 

unpredictive sentence that only differed in the verb. Because each participant only heard one 

version of each sentence, the mean looking time across participants who heard the unpredictive 

sentence was used as the control for each predictive sentence.  

For the weather prediction task (Knowlton, Squire, & Gluck, 1994), participants were told to 

use cues to predict whether there would be rain or sun. On each trial, they saw one, two, or three 

cards, each with geometric symbols. Each combination of cards had a different probability of 

predicting each outcome. For example, if cards three and four were presented, there was a .1 

probability of rain, whereas if cards one and two were presented, there was a .9 probability of 

rain (See Figure 4 for an example trial from this task). Each combination of cards was presented 

in a random order with the frequency displayed in the P(cue) column of Table 2. (See Table 2 for 

the cue card combinations, the frequency with which each combination was presented, and the 

probability of rain given each combination.) Participants completed 200 trials of this task. For 

each trial, prediction ability was measured by determining whether participants chose the optimal 

response based on the cues given. Trials for which the probability of rain was 0.50 were scored 

as correct regardless of the response given. The resulting accuracy scores for each trial were 

entered into a logistic growth curve model using the lmer package in R (Bates, Maechler, Bolker, 

& Walker, 2015), with trial number as the time variable and trial by trial accuracy as the 

dependent variable. The logistic slope was allowed to vary randomly by subject. Trial number 

was z-scored to improve numerical precision.  
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Figure 4. Example trial from the weather prediction task. 

 
Table 2: Design of Weather Prediction Task (Modified from 
Knowlton, Squire, & Gluck, 1994) 

 Cue    
Pattern 1 2 3 4   P (cue) P (rain) 

1 0 0 0 1  0.14 0.15 
2 0 0 1 0  0.084 0.38 
3 0 0 1 1  0.087 0.1 
4 0 1 0 0  0.084 0.62 
5 0 1 0 1  0.064 0.18 
6 0 1 1 0  0.047 0.5 
7 0 1 1 1  0.041 0.21 
8 1 0 0 0  0.14 0.85 
9 1 0 0 1  0.058 0.5 
10 1 0 1 0  0.064 0.82 
11 1 0 1 1  0.032 0.43 
12 1 1 0 0  0.087 0.9 
13 1 1 0 1  0.032 0.57 
14 1 1 1 0  0.041 0.79 

 

 Finally, participants completed the Iowa gabling task on the computer. For each of 100 

trials, participants were told to choose a card from one of four decks. Participants were told to 



  42 

choose cards to earn as much money as possible over the course of the task. Choosing cards from 

the A and B decks resulted in large gains but larger losses and choosing cards from the C and D 

decks resulted in small gains and smaller losses. The optimal strategy on this task was to choose 

cards from the C and D decks. Participants could choose their own strategy for picking cards 

from the decks, but after choosing forty cards from a single deck, that deck disappeared, and 

participants had to start picking from one of the other decks. (See Figure 5 for an example trial 

from the Iowa Gambling task.) Responses were scored as correct if the participant chose from 

one of the decks that resulted in a higher long-term payout (decks C or D). A final score for this 

task was calculated by summing the total number of correct responses over the one hundred trials 

of this task. See the Results section for split-half reliability measures for this and each of the 

other prediction tasks. 

 

Figure 5. Example trial of the Iowa Gambling task. Participants began with $2,000 in their cash 
pile and earned or lost money by choosing from decks A through D. 
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2.4.5 Processing Speed 

None of the tasks included in the battery described above directly tested processing speed; 

however, response times for all of the tasks were collected, allowing for an approximation of 

processing speed to be calculated. Originally, we planned to include response times for the visual 

world task, the weather prediction task, the synonym vocabulary task, and the antonym 

vocabulary task. However, as discussed in the results section below, preliminary analyses found 

that the response times for these tasks did not correlate, and we therefore decided to use only the 

response time for the visual world task, as this seemed the purest measure of processing speed 

available from the battery of tasks. 

2.5 Modeling 

Confirmatory factor analysis was used to determine whether the cognitive ability measures 

loaded onto the predicted latent variables, and whether the predictive processing tasks loaded 

onto the hypothesized latent variable. Model fit was calculated using the Tucker-Lewis Index 

(TLI), the Standardized Root Mean Square Residual (SRMR), the comparative fit index (CFI), 

and the root-mean squared error of approximation (RMSEA). The TLI compares the chi-square 

value of the model to the chi-square of the null-model (which specifies that there are no 

correlations among the measured variables) and takes into account model complexity; the SRMR 

is the square root of the difference between the residuals of the sample covariance matrix and the 

hypothesized covariance model; the CFI compares the fitted model with the null model, which 

specifies that the covariance of the variables is 0; and the RMSEA provides an estimate of how 

well the model fits the population covariance matrix. Hu and Bentler (1999) suggest that for 

sample sizes under 500, model fit is considered good when the TLI is greater than .95 and the 

SRMR is less than .09. They also suggest that model fit is good when the CFI is .95 or higher 
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and the RMSEA is .06 or lower. In addition, because of the relatively small sample size, the 

Swain correction (Herzog, Boomsma, & Reinecke, 2007), which reduces the bias of model fit 

estimators when the ratio of sample size to the number of estimated parameters is at least two to 

one, was used to correct bias in the TLI, CFI, and RMSEA. It was planned a priori to use 

structural equation modeling to test the model shown in Figure 6 if the confirmatory factor 

analyses found that the hypothesized prediction and general cognitive functioning latent 

variables provided a good fit for the data. 

 

 An additional model that included PTSD symptom severity was also tested to determine 

whether higher PTSD symptom severity affects prediction ability and general cognitive 

Figure 6. Proposed model structure with all four of the prediction tasks loading onto a predictive 
processing latent variable. This predictive processing latent variable was hypothesized to load 
onto the general cognitive functioning variable, and the crystallized and fluid intelligence 
constructs were hypothesized to load onto the general cognitive functioning latent variable. 
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functioning. The hypothesized model that includes PTSD symptom severity is shown in Figure 

7. 

 

 Finally, an additional model, in which the fluid and crystallized intelligence constructs 

predict performance on each of the prediction tasks, was also tested to determine whether 

performance on the prediction tasks was simply a combination of other forms of cognitive 

functioning rather than a separate construct. This model is shown Figure 8. 

 

Figure 7. Model structure with PTSD as an additional predictor of general cognitive functioning 
and predictive processing. 
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Figure 8. Model structure with crystallized and fluid intelligence constructs predicting 
performance on each of the prediction tasks. 
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Chapter 3: Results 

3.1 Individual Task Performance 

3.1.1 PTSD Questionnaires 

 Total PTSD severity scores and symptom cluster scores were calculated for each 

participant (mean = 10.65, SD = 13.10, range: 0 to 60). The suggested cut-off score for probable 

PTSD is 33 (National Center for Posttraumatic Stress Disorder, and only 19 participants had a 

score of 33 or above. See Figure 9 for the distribution of PTSD severity scores. To determine 

whether the scores on this measure followed the expected factor structure, scores for each 

question were entered into a confirmatory factor analysis with each symptom loading on the 

appropriate symptom cluster latent factor and all of the symptom cluster latent factors loading 

onto a total PTSD score latent factor.   

The model for the confirmatory factor analysis had a TLI of .834, a SRMR of .068, a CFI of 

.855, and a RMSEA of .106. Although the SRMR suggests that the model is an adequate fit for 

the data, the other measures suggest that this model should not be considered a good fit for the 

data. This means that the factor structure of PTSD symptoms in this sample only loosely fits the 

factor structure of PTSD in the DSM-5. Therefore, while scores on the PTSD questionnaires 

were used in subsequent analyses, results from these analyses should be considered in the 

context of a less than adequate model fit. See Table 3 for the standardized factor loadings for 

each question on the PCL-5. As is evident from this table, the factor loadings for reexperiencing, 

avoidance, and alterations in mood and cognition were very high. However, some of the factor 
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loadings for increased arousal were lower, which may have contributed to the failure of the 

model to adequately fit the data in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Distribution of PTSD Severity Scores. The suggested cut-off score for probable PTSD 
is 33, represented by the dotted line (National Center for Posttraumatic Stress Disorder).  
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Table 3. Factor loadings for the PCL-5 
    

  p 
Standardized 

Loading 

Reexperiencing   
 Q1   
 Q2 <.001 0.65 
 Q3 <.001 0.66 
 Q4 <.001 0.82 
 Q5 <.001 0.82 
    
Avoidance   
 Q6   
 Q7 <.001 0.84 
    
Alterations in Cognition and Mood   
 Q8   
 Q9 <.001 0.86 
 Q10 <.001 0.80 
 Q11 <.001 0.86 
 Q12 <.001 0.75 
 Q13 <.001 0.79 
 Q14 <.001 0.73 
    
Increased Arousal   
 Q15   
 Q16 <.001 0.53 
 Q17 <.001 0.57 
 Q18 <.001 0.61 
 Q19 <.001 0.87 
 Q20 <.001 0.73 
    
PTSD   
 Reexperiencing   
 Avoidance <.001 0.91 
 Alterations in Cognition and Mood <.001 0.88 
  Increased Arousal <.001 0.82 

 

3.1.2 Crystallized and Fluid Intelligence Measures 

Scores on the Synonym Vocabulary, Antonym Vocabulary, and Information tasks were 

summed to generate a total score for each task. See Table 4 for descriptive statistics for these 

tasks. 
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Table 4: Descriptive Statistics             
 Mean  SD  Min  Max 
Crystallized        
   Synonym 6.51  2.21  1.00  10.00 
   Antonym 6.34  2.11  1.00  10.00 
   Information 17.35  3.46  5.00  23.00 
Fluid        
   Letter Sets 11.40  2.29  3.50  15.00 
   Paper Folding 12.95  3.57  1.00   
   Raven's 11.58  2.62  3.00  18.00 
Prediction Battery        
   PLAT 1.15  0.40  0.15  2.15 
   VW 0.00  0.04  -0.11  0.11 
   Weather 0.00  0.00  -0.01  0.01 
   Iowa Gambling 63.82  10.91  32.00  80.00 
Processing Speed 509.00*  243.28  230.00  2703.00 
PTSD 10.65  13.1  0.00  60.00 
Note: PLAT = Predictive Looking at Action Task; VW = Visual World 
*The median for the processing speed measure. 

 

Scores on the Raven’s Progressive Matrices task were also summed to generate a total score 

for each participant. For the Letter Sets and Paper Folding tasks, participants received one point 

for every correct response and lost .25 points for every incorrect response. An error in the 

Experiment Builder code for the Letter Sets and Paper Folding tasks caused the program to skip 

through items and report an extremely short reaction time of less than 100 ms. This affected 

twenty participants for the Letter Sets task (one participant was missing three items, eight 

participants were missing two items, and eleven participants were missing one item), and twenty 

participants for the Paper Folding task (one participant was missing five items, three participants 

were missing four items, one participant was missing three items, eight participants were missing 

two items, and seven participants were missing one item). Missing responses for each task were 
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imputed using the mean score for the non-missing responses1. The split-half reliability for the 

Letter Sets task was 0.44 and the split-half reliability for the Paper Folding task was 0.65.  The 

low split half reliability for these tasks are quite low, which may be due, in part, to the small 

number of items for each task (15 for the Letter Sets task and 20 for the Paper Folding task). See 

Table 4 for descriptive statistics for these tasks. 

3.1.3 Prediction Battery 

For the PLAT, three growth curve models were tested: 1) a model that only allowed the 

intercept to vary by subject, 2) a model that allowed the intercept and linear slope to vary by 

subject, and 3) a model that allowed the intercept and both the linear and quadratic slopes to vary 

by subject. A comparison of these models suggested that the model with random intercepts and 

linear and quadratic slopes provided the best fit for the data (χ2 (3) = 970.26, p < .001). For this 

model, the fixed linear (t = -26.49, p < .001) and quadratic (t = 38.23, p < .001) effects of time 

bin were significant.  In addition, the random intercept for movie had a variance of 0.09 (SD = 

.29), and the residual variance was 0.22 (SD = .46). The random intercept for subject had a 

variance of 0.11 (SD = .34), the random linear slope for subject had a variance of .02 (SD = .16), 

and the random quadratic slope for subject had a variance of .17 (SD = .41). The intercept and 

random linear slope were correlated with r = -0.74, the intercept and quadratic random slope 

were correlated with r = 0.89, and the linear and quadratic random slopes were correlated with r 
                                                
1 Multiple imputation was not performed because participants were allowed to skip items, which 

likely resulted in non-random missing data. To ensure that imputing using the mean did not 

significantly affect the results, a follow-up analysis was performed in which the missing data 

were not imputed, and instead were treated as missing. All of the models were then tested using 

the resulting data. The pattern of results was identical to that reported below.   
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= -0.97. Because the linear and quadratic random slopes were so highly correlated, only the 

quadratic random slope was used as an individual difference measure in later analyses. A split 

half reliability test found that this individual difference measure had adequate reliability (r = 

0.79, p < .001). (See Figure 10 for subject level data for this task and Table 4 for descriptive 

statistics for this task.)  

 

Figure 10. Participant level data for the PLAT. Each colored line represents one participant’s 
performance on this task. The x-axis represents the 3000 ms before contact for the interest areas, 
divided into 100 ms bins. The y-axis represents the number of milliseconds participants spent 
looking in the interest areas during each 100 ms bin.  
 

For the visual world task, two sentences were dropped from further analysis because they 

engendered very low predictive looking across participants, with participants only looking at the 
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target item 3% or 4% of the time during the predictive sentences. Then, the data from the 

remaining 22 items were entered into a mixed-effects model with the time spent looking at the 

target in the predictive sentences as the dependent variable and the time spent looking at the 

target in the unpredictive sentences as the independent variable. Only the intercept was allowed 

to vary by subject. The residuals from this model represented the time spent looking at the target 

item, controlling for the saliency of the item. The residuals for each item were averaged for each 

participant to get a predictive looking measure. Split-half reliability for the predictive looking 

measure was .53, and although this split-half reliability was lower than what is typically 

preferred, other scoring methods produced even lower reliability. (See Table 4 for descriptive 

statistics for the predictive looking measure for this task.) This predictive looking measure was 

entered into the structural equation models as the individual differences measure for the visual 

world task. 

In addition, to ensure that the results in this study replicated results from other studies 

that have used the visual world paradigm, predictive looking results for the predictive and 

unpredictive sentences were plotted in Figure 11. It is evident from this figure that participants 

generally spent more time looking at the target object when the verb was predictive of only the 

target object compared to sentences in which the verb could reference all of the objects in the 

display. These results replicate those found in other studies of the visual world paradigm (e.g., 

Altmann and Kamide, 1999). 
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Figure 11. Predictive looking results for the visual world task. The time from verb onset to noun 
onset was warped into 28 bins with varying numbers of milliseconds in each bin, and these 28 
bins are on the x-axis. The y-axis represents the cumulative proportion of time participants spent 
looking at the target object. The shaded regions around each line represent the 95% confidence 
intervals. 

 For the weather prediction task, the results from the logistic growth curve model 

suggested that the fixed effect of the logistic slope was significant (z = 8.001, p < .001). In 

addition, the random intercept had a variance of 0.25 (SD = .50), and the random logistic slope 

had a variance of .05 (SD = .22). The random logistic slope was used as the individual 

differences measure in subsequent analyses. (See Figure 12 for the logistic curves fit for each 

participant and Table 4 for descriptive statistics for this task.) 
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Figure 12. Participant level logistic general linear model results for the weather prediction task. 
Each colored line in this figure represents the best-fit logistic slope for an individual participant. 
The black line represents the overall model estimate for the logistic slope.  
 

For the Iowa gambling task, responses were scored as correct if the participant chose 

from one of the decks that resulted in a higher long-term payout (decks C or D). A final score for 

this task was calculated by summing the total number of correct responses over the one hundred 

trials of this task. (See Table 4 for descriptive statistics for this task.) 

3.1.4 Processing Speed 

First, response times for visual world, weather prediction, synonym vocabulary, and 

antonym vocabulary tasks were calculated for each participant using the mean response time 

across items. For the weather prediction tasks, only response times for the last 50 trials of the 
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task that also only had one card presented were used for the processing speed measure. However, 

most of the correlations were very low (see Table 5). To ensure that the low correlations were 

not due to very long response times for some trials, the median response time and the 30th 

percentile response time was calculated for each item and then averaged within participants to 

obtain a potential processing speed measure. However, a similar pattern of correlations emerged 

from these analyses as well (see Table 6). Therefore, the median response time for the visual 

world task was used as a measure of processing speed for future analyses, as this seemed, a 

priori, to be the best measure of processing speed available from the tasks included in this study. 

(See Table 4 for descriptive statistics for this measure of processing speed.) 

Table 5: Correlations of Means for Processing Speed Tasks 
  

  VW Weather Synonym Antonym 
VW 1.00 0.04 -0.10 -0.08 
Weather 0.04 1.00 0.15 0.17 
Syonym -0.10 0.15 1.00 0.76 
Antonym -0.08 0.17 0.76 1.00 
Note: VW = Visual World Task  

 

Table 6: Correlations of Medians and 30th Percentiles* 
  

 VW Weather Synonym Antonym 
VW 1.00/1.00 0.11/0.12 0.13/0.12 0.08/0.11 
Weather 0.11/0.12 1.00/1.00 0.15/0.18 0.16/0.25 
Synonym 0.13/0.12 0.15/0.18 1.00/1.00 0.79/0.75 
Antonym 0.08/0.11 0.16/0.25 0.79/0.75 1.00/1.00 
*Number before the slash is the correlation of the medians; Number after 
the slash is the correlation of the 30th percentiles 
Note: VW = Visual World Task  

 

3.1.5 Summary of Individual Differences Measures 

 For the crystallized and fluid intelligence tasks, final score on these measures were entered 

into the structural equation models as the individual differences measure. For the PLAT, the 
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quadratic random slopes representing the time each participant spent looking at the target object 

over the three seconds before contact were used as the individual differences measure in the 

structural equation models. For the visual world task, the individual differences measure was the 

average time each participant spent looking at the target objects, controlling for the saliency of 

the objects. The individual differences measure for the weather prediction task was the random 

logistic slope representing subject level growth in performance over the trials of the task. For the 

Iowa gambling task, the individual differences measure was the total number of correct 

responses over all trials of the task. Finally, for the models that included PTSD severity score, 

total PTSD severity was used as the individual differences measure. 

3.2 Modeling 

 First, a confirmatory factor analysis was conducted to determine whether responses on 

the synonym, antonym, and Information tasks loaded onto a crystallized intelligence latent factor 

and whether responses on the Raven’s Progressive Matrices, letter sets, and paper folding tasks 

loaded onto a fluid intelligence latent factor. This model also included a term for the correlation 

of the crystallized and fluid latent factors. A second model in which the crystallized and fluid 

latent factors loaded onto a general intelligence latent factor (g) was also tested. 

The same model fit indices as discussed above were used to determine whether these 

models provided a good fit for the data. For the model without the general intelligence latent 

factor, the TLI was .984, the SRMR was .035, the CFI was .991, and the RMSEA was .037. The 

Swain correction was then applied to correct for potential bias of model fit estimators. Using this 

correction, the TLI was .98, the CFI was .99, and the RMSEA was .036. All of these measures 

suggest that the model provided a good fit for the data. Figure 13 displays the factor weights for 

this model. However, the correlation between the crystallized and fluid latent factors was 0.09, 
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suggesting that these factors would not load onto a single general intelligence latent factor.  

Therefore, the second model that included a single general intelligence latent factor was not 

tested, and a latent factor for overall cognitive functioning was not included in any of the 

following models. 

 

Figure 13. Results of the confirmatory factor analysis for the general intelligence measures. Ant 
= Antonym Vocabulary task; Syn = Synonym Vocabulary task; Inf = Information task; PpF = 
Paper Folding task; LtS = Letter Sets task; Rvn = Raven’s Progressive Matrices; Crys = 
crystallized intelligence latent factor; Fld = fluid intelligence latent factor. 
 

 The correlations among the four prediction tasks were very low, with none of the 

correlations above .11. (See Table 7 for the correlations among these tasks.) Although it was 

therefore unlikely that the four tasks would load onto a single latent factor, a confirmatory factor 
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analysis was performed. Although the model converged, the fit indices suggested that this model 

was misspecified. For this model, the CFI was 1.00, the TLI was -14.58, the RMSEA was 0.00, 

and the SRMR was .01. Inspecting the loadings onto the latent factor revealed that none of the 

prediction tasks significantly loaded onto the latent variable, which was unsurprising given the 

low correlations among the tasks.    

Table 7: Correlations among the prediction tasks 
  

 PLAT VW Weather IGT 
PLAT 1.00 0.07 0.07 0.10 
VW 0.07 1.00 0.02 0.11 
Weather 0.07 0.02 1.00 0.01 
IGT 0.10 0.11 0.01 1.00 
Note: PLAT = Predictive Looking at Action Task; VW = Visual World 
Task 

 

 Because the prediction tasks did not load onto a single latent factor, the planned structural 

equation models could not be tested. Therefore, the model in Figure 14 was tested to determine 

whether fluid intelligence, crystallized intelligence, and processing speed predicted performance 

on each of the individual prediction tasks. The simple correlations among these measures are 

given in Table 8. For this model, the TLI was .95, the SRMR was .04, the CFI was .97, and the 

RMSEA was .04. After applying the Swain correction, the TLI was .95, the CFI was .97, and the 

RMSEA was .04. These fit indices suggest that this model provided a good fit for the data. For 

this model, the standardized regression coefficient for the relationship between crystallized 

intelligence and the PLAT was negative and significant (-0.17, p = .02), which was quite 

surprising given that knowledge of what tends to happen in a given situation would be expected 

to improve performance on the PLAT. The standardized regression coefficient for the 

relationship between fluid intelligence and the weather prediction task was significant (0.18, p = 

.02). Furthermore, the standardized regression coefficients for the relationships between the Iowa 
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gambling Task and crystallized intelligence (0.17, p = .03) and fluid intelligence (.16, p = .04) 

were significant. Finally, the relationship between processing speed and the PLAT (-.13, p = 

.047) was significant. All of the other regression coefficients were not significant. (See Figure 14 

for the path diagram with all of the standardized estimates.)  

Table 8. Simple correlations between the prediction tasks and the crystallized and fluid 
intelligence tasks. 

  Antonym Synonym Information Paper Fold.  Letter Sets  Ravens 
PLAT -0.12 -0.12 -0.02 0.04 0.00 0.06 
Visual World -0.08 -0.02 0.05 0.08 0.11 -0.05 
Weather Pred. -0.03 0.06 -0.03 0.16 0.08 0.11 
Iowa Gambling 0.13 0.18 0.20 0.08 0.08 0.20 

 

 

Figure 14. Path diagram. PLA = Predictive Looking at Action Task, VW = Visual World task, 
Wth = Weather Prediction, IGT = Iowa Gambling Task, Cry = Crystallized Intelligence, Fld = 
Fluid Intelligence, Ant = Antonym Vocabulary, Syn = Synonym Vocabulary, Inf = Information, 
PpF = Paper Folding, LtS = Letter Sets, Rvn = Raven’s Progressive Matrices, PrS = Processing 
Speed. The weights of the arrows represent the magnitude of the path coefficients. A star next to 
a regression coefficient indicates a significant beta weight. 
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The final model included PTSD symptom severity as a predictor of performance on the 

crystallized and fluid intelligence latent factors as well as each of the four prediction tasks. For 

this model, the TLI was .95, the SRMR was .04, the CFI was .97, and the RMSEA was .03. After 

applying the Swain correction, the TLI was .96, the CFI was .98, and the RMSEA was .03. These 

fit indices suggest that this model also provides a good fit for the data. However, none of the 

regression coefficients for the relationships between PTSD symptom severity and the other tasks 

and latent variables were significant (PLAT: 0.02, p = .73; VW: -0.02, p = .76; Weather: -0.08, p 

= .24; IGT: -0.04, p = .50; Fluid: -0.01, p =. 91; Crystallized: -0.04, p = .61), suggesting that 

PTSD symptom severity was not related to performance on the other tasks included in this study. 

(See Figure 15 for the path diagram with all of the standardized estimates.) 

 

 

Figure 15. Path diagram for the model that included PTSD as a predictor of performance on the 
tasks. PLA = Predictive Looking at Action Task, VW = Visual World task, Wth = Weather 
Prediction, IGT = Iowa Gambling Task, Cry = Crystallized Intelligence, Fld = Fluid Intelligence, 
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Ant = Antonym Vocabulary, Syn = Synonym Vocabªulary, Inf = Information, PTS = PTSD, PpF 
= Paper Folding, LtS = Letter Sets, Rvn = Raven’s Progressive Matrices; PrS = Processing 
Speed. The weights of the arrows represent the magnitude of the path coefficients. 
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Chapter 4: Discussion 

4.1 No Evidence for a Prediction Construct 

The current study was the first to directly investigate the question of whether there is a 

single higher-order integratory prediction mechanism in the brain, and the data provide evidence 

against the existence of such a mechanism. Specifically, if there were a higher order integratory 

prediction mechanism, performance on tasks that require prediction formation should have been 

correlated, regardless of the task modality. However, in the current study, the PLAT, visual 

world, weather prediction, and Iowa gambling tasks did not load onto a single latent factor, and 

the correlations among these tasks were uniformly extremely low. This is in contrast with current 

theories including the predictive coding theory (Friston, 2005) and Event Segmentation Theory 

(Zacks, Speer, Swallow, Braver, & Reynolds, 2007), which both imply the existence of a higher-

order integratory prediction mechanism. The results of the current study also differ from the 

implications of previous neurophysiological and neuroimaging studies that found that similar 

signals are sent from lower-order to higher-order brain areas and vice versa in many systems in 

the brain (e.g, Tap & Bar, 2005; Tanaka et al, 2004; Dikker & Pylkkänen, 2003).  

On the other hand, in concert with the results of the current study, neurophysiological data 

provide evidence against an integratory prediction mechanism, as there are many different 

prediction error signals in the brain (e.g., ERN, MMN, P300, N400, P600) rather than a single 

error signal used by all brain systems that is sent to an integrative prediction mechanism. In 

addition, in two of the very few studies that investigated performance on the weather prediction 

and Iowa gambling tasks in the same participants, performance across these tasks was not as 

similar as expected. For example, in a study of HIV positive participants with a history of 
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substance dependence, there was no significant relationship between the weather prediction task 

and the Iowa gambling task (Gonzales, Wardle, Jacobus, Vassileva, & Martin-Thormeyer, 2010). 

Similarly, in a study investigating the effects of antipsychotic medications in patients with 

schizophrenia, performance on the weather prediction task did not track performance on the Iowa 

gambling task (Wasserman, Barry, Bradford, Delva, & Beninger, 2012). Although neither of 

these previous studies included a control group of healthy adults, they do provide some 

converging evidence in for the lack of correlations among the four prediction tasks in the current 

study. The results of the current study therefore provide initial evidence against an integrative 

prediction mechanism and suggest that current theories involving prediction may need further 

examination. 

If, as the results of the current study suggest, there is no higher-order integrative prediction 

mechanism that allows for performance on prediction tasks that require multiple modalities, how 

might people successfully perform these tasks? It is possible that when people engage in 

prediction within a particular modality, a network of regions, including regions that are specific 

to the primary task modality, is activated. If the task requires the integration of multiple sensory 

modalities, the network of regions that is activated may simply include the additional regions 

necessary for the second modality. While some of these areas would likely overlap, it could be 

the activity in the separate areas that drives behavioral performance on the tasks. For example, 

the Iowa gambling task, which requires visual processing, has been found to activate the 

occipital cortex, medial frontal gyrus, and orbitofrontal cortex, among other areas, when 

participants chose a risky deck compared to a safe deck (Lawrence, Jollant, O’Daly, Zelaya, and 

Phillips, 2009). In addition to requiring predictions within the visual modality, the Iowa 

Gambling task also involves reward processing, as participants obtain rewards and losses 



  65 

throughout the task. Tasks involving reward prediction often activate the striatum and 

orbitofrontal cortex (e.g., Tanaka et al, 2004; Ernst et al., 2004). In fact, (Lawrence, Jollant, 

O’Daly, Zelaya, and Phillips, 2009) found activation in the orbitofrontal cortex when participants 

completed the Iowa gambling task compared to a control task in which participants were told 

which choices to make. It is therefore possible that the activation patterns seen when participants 

complete the Iowa gambling task are due to the activation of two separate brain networks—a 

visual prediction network and a reward prediction network—that operate in parallel and therefore 

appear to be a single activated network. Thus, overall performance on the Iowa gambling task 

would depend on prediction ability in the two separate modalities, and performance might very 

well not be correlated with a different task that requires predictions in a different modality (e.g., 

auditory predictions) which might activate yet another overlapping but different brain network. 

This hypothesis of overlapping but separate brain networks that are activated by the distinct 

predictive processing modalities involved in each task could explain the lack of correlations 

among the prediction tasks included in the current study. For example, if a particular participant 

tends to be better at making visual predictions than reward predictions, this participant might 

obtain a higher score on the PLAT, which is primarily a visual task, than on the Iowa gambling 

task, which also involves a reward prediction component. If participants have strengths and 

weaknesses that drive performance differently on each task, the low correlations among the tasks 

in the current study would be expected. 

In addition to differences in the prediction modalities required by each task in the current 

study, method variance across the tasks may provide a less interesting source for the lack of 

correlations among the tasks, as individual differences in abilities other than prediction could 

have overshadowed prediction ability as a driver of performance. For example, the weather 
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prediction task may have required the ability to use spatial information while performing the 

task, as the spatial configuration of the stimuli predicted the correct response. Evidence from 

fMRI studies of probabilistic classification tasks provide support for this possibility. For 

example, an fMRI study of a probabilistic classification task found activation in the parietal 

cortex, an area that is often implicated in tasks involving spatial processing, during the time that 

participants were likely making predictions about the category of the stimulus (Aron et al., 

2004). In fact, a second fMRI study of a different probabilistic classification task also found 

activation in the parietal lobe when participants experienced uncertainty about their response 

(Huettel, Song, & McCarthy, 2005). If some participants were better at learning spatial 

information, these participants may have performed better on this task regardless of their ability 

to make predictions, which would lower overall correlations among the tasks.  

Similarly, each of the other tasks also includes components, distinct from prediction, which 

could drive performance. For example, Li, Lu, D’Argembeau, Ng, and Bechara (2010) suggest 

that the Iowa gambling task requires the processing of risk, finding that when people perform the 

task, the amygdala signals the presence of risk to the orbito-frontal/venteromedial prefrontal 

cortex. Though risk evaluation likely plays a role in making predictions in the Iowa gambling 

task, the other tasks in the current study did not heavily involve the evaluation of risk, which 

could explain the low correlations between this task and the other prediction tasks.  

 The visual world task very clearly involves a language processing component that is not 

relevant for any of the other tasks in the current study. Therefore, if participants varied in their 

ability to process language information, this may have masked the effect of individual 

differences in prediction ability on performance of the visual world task. An imaging study on a 

task that is conceptually similar to the visual world paradigm, in which participants listened to 
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sentences and chose which of three or four line drawings in a array best represented the content 

of the sentences, provides evidence that language comprehension is necessary for successful 

performance on the task (Dronkers, Wilkins, Van Valin, Redfern, & Jaeger, 2004). The authors 

found that lesions in the posterior middle temporal gyrus and anterior superior temporal gyrus, 

which are areas involved in language comprehension, strongly affected performance on the task. 

Therefore, it is possible that performance on the visual world task did not correlate with 

performance on the other tasks because difference in language processing dominated prediction 

ability in driving individual differences on this task.  

Finally, successful performance on the PLAT requires participants to quickly process human 

action, an ability that was not required by any of the other tasks. Imaging studies have found 

evidence that when participants watch another person perform a task, the participants create a 

motor program for completing a task that is very similar to the motor program participants use 

when performing the task themselves (e.g., Flanagan & Johansson, 2003, but see Caramazza, 

Anzellotti, Strnad, & Lingnau, 2014 for an evaluation of this and another potential mechanism). 

If individual differences in people’s ability to create a motor program dominated individual 

differences in prediction ability, low correlations between performance on the PLAT and the 

other prediction tasks might be expected. Overall, given that each of the four prediction tasks 

included in this study likely involve different mechanism (e.g., spatial processing, risk 

processing, language processing, and motor planning), in addition to prediction, individual 

differences in each of these other abilities may have resulted in the lack of correlations among 

the tasks observed in the current study. 

There is, however, another possible explanation for the finding in the current study: Perhaps 

the tasks used in the current study did not require the intervention of an integrator or arbiter 
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because information from various sensory modalities did not conflict in these tasks. Maybe an 

integratory process only becomes active, and therefore only drives performance, when conflict 

resolution is necessary. For example, on the visual world task, both the visual information 

participants saw and the auditory information participants heard drove eye movements to the 

same object. There were no trials in which the auditory information directed eye movements to 

one object but visual information directed eye movements to a different object. If the tasks did 

not, in fact, require conflict resolution, the conclusion that there is no higher order prediction 

mechanism that drives performance on various types of prediction tasks is likely generally true, 

but there may also be a separate mechanism that arbitrates conflict across many types of tasks. In 

fact, there is suggestion in the literature that the anterior cingulate cortex may play a conflict 

resolution role across a wide variety of tasks (e.g., Botvinick, Cohen, & Carter), although there is 

also evidence that conflict resolution does not adequately describe the full function of the 

anterior cingulate cortex (e.g., Brown and Braver, 2005).  

In addition, it is possible that there is a higher-order prediction mechanism that integrates 

information from various modalities, but that people, or at least the participants in the current 

study, do not differ in their ability to integrate information in order to make predictions. This 

potential lack of individual differences could result in low correlations among the tasks, because 

individual differences are necessary in order to find correlations. The fact that participants had a 

wide range of scores on each of the individual tasks used in this study at least suggests that there 

were individual differences on the tasks, but this does not necessarily mean that people differed 

in their ability to combine the information they gained from different modalities and use this 

integrated information to make predictions. However, it would likely be difficult to determine 

whether there are individual differences in the ability to integrate information from various 
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modalities and make predictions based on this combined information. For example, it is difficult 

to find a study design that would be able to differentiate between true integration of information 

from multiple sensory modalities versus separate representations of information from each 

modality that are nevertheless all used to guide behavior. Imaging studies could potentially 

identify networks that are activated by tasks that require integration of information, and these 

networks could be compared to the networks activated by tasks that only require the use of a 

single modality. If a multi-modality task requires brain regions that are not activated by separate 

tasks that require each of the modalities included in the multi-modality task, this would provide 

some evidence that performance on multi-modality tasks requires more than just the concurrent 

activation of networks specialized for the various modalities. On the other hand, it seems 

unlikely that participants would display such high variability on all of the individual tasks and no 

variability on prediction integration. Furthermore, it seems likely that individual differences in 

prediction integration (if such integration occurs) would exist, given that so many other higher 

cognitive functions, including working memory, attention, and executive function, do show 

individual differences. Therefore, the results of this study are more consistent with the absence of 

a higher-order integratory mechanism than with an integratory process that does not vary across 

individuals. 

4.2 Measures of General Intelligence Predict Performance on Some Prediction Tasks 

Although the prediction tasks did not load onto a single latent factor, the measures of general 

intelligence did correlate with performance on some of the prediction tasks. In particular, higher 

crystallized intelligence predicted worse performance on the PLAT and better performance on 

the Iowa gambling task. In addition, higher fluid intelligence predicted better performance on the 

weather prediction task and the Iowa gambling task. Finally, there was a negative relationship 
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between performance on the PLAT and processing speed. Although hypotheses about these 

relationships are post-hoc, the positive relationships between fluid intelligence and performance 

on the weather prediction and Iowa gambling tasks seem reasonable, as the ability to process 

new information and use that new information to complete tasks does seem related to fluid 

intelligence. In fact, previous research on the Iowa gambling task has found some support for the 

relationship between this task and general intelligence (e.g., Monterosso, Ehrman, Napier, 

O’Brien, & Childress, 2001), though other studies have found no relationship between 

performance on this task and IQ (e.g., Bechara et al., 2001; Brand, Recknor, Grabenhorst, & 

Bechara, 2007). In addition, the negative relationship between performance on the PLAT and 

processing speed (where a smaller processing speed score means faster responses) suggests that 

people who have faster processing speeds perform better on the PLAT, potentially because they 

are faster at predicting which object the actor is about to touch.  

On the other hand, the positive relationship between the Iowa gambling task and crystallized 

intelligence was surprising because the ability to learn from new information, more than prior 

knowledge, would be expected to drive performance on this task. However, results from a 

previous study provide support for the current finding of the relationship between crystallized 

intelligence and performance on the Iowa gambling task: in a study of undergraduate students, 

participants who scored higher on the vocabulary measure also performed better on the Iowa 

gambling task (Damaree, Burns, & DeDonno, 2010. One potential explanation for the positive 

relationship is that participants with higher crystallized intelligence may have had more prior 

experience with the Iowa gambling task than participants with lower crystallized intelligence. 

For example, most of the participants in the current study were undergraduate students, and 

students who were further along in their education may both have had higher crystallized 
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intelligence and have taken more psychology classes in which they were exposed to the Iowa 

gambling task. Participants were not debriefed about their prior experience with the tasks, so it is 

not possible to determine whether prior experience drove the relationship.  Similarly, the 

negative relationship between crystallized intelligence and performance on the PLAT was 

unexpected. Performance on the PLAT would be expected to be driven, at least in part, by 

schemas that include information about what typically happens in similar situations. Therefore, 

more prior knowledge about situations and people’s typical behavior in given environments 

would be expected to improve, rather than impair, performance. However, the negative 

relationship between crystallized intelligence and the PLAT suggests that either prior schemas 

are not related to crystallized intelligence or that schemas are less important for successful 

performance on the PLAT than would be expected. Overall, replications are necessary to 

determine whether the relationships among the general intelligence constructs and the prediction 

tasks represent the true states of the relationships. 

4.3 Posttraumatic Stress Disorder Did Not Predict Performance on Other Tasks 

Although the model in Figure 15 that included PTSD as a predictor of the prediction tasks 

did provide a good fit for the data, PTSD severity did not predict performance on the general 

intelligence constructs or the prediction tasks. One possibility for the lack of significant 

relationships is that most of the participants in this study reported low levels of PTSD severity, 

with only a small number of participants in the middle to high range of severity, as can be seen in 

Figure 9. In fact, only 19 participants were above the current recommended cut-point of 33 on 

this measure. Therefore, there may not have been enough variability to see individual differences 

in performance on the other tasks based on PTSD severity scores. It is also possible that 

prediction ability is not impaired in PTSD. There have not been any studies investigating 
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performance on the visual world task, the Iowa gambling task, or the weather prediction task in 

people with PTSD, however, a recent study in our laboratory found that people with clinical 

levels of PTSD performed worse than controls on the PLAT (Eisenberg, Zacks, Rodebaugh, & 

Flores, in prep). Additional studies on the relationship between PTSD and various prediction 

tasks are necessary to determine whether the restricted range of PTSD severity scores in this 

study drove the lack of relationship between PTSD symptom severity and the prediction tasks.  

4.4 Impact of Findings on Current Theories  

4.4.1 Predictive Coding Model 

As discussed in the introduction, the predictive coding model (Friston, 2005) suggests that 

predictions occur in a hierarchical fashion, with higher-order areas using past experience to make 

predictions and then sending those predictions to lower order areas. These lower order areas 

compare the predictions to sensory information from the environment. When there is a mismatch 

between the sensory information and the predictions, the lower-order areas send prediction error 

signals to the higher-order areas, which then either update their predictions or change sampling 

behavior so that incoming sensory information matches their predictions. Most of the research on 

this theory has studied individual systems, but Adams, Friston, and Bastos (2015) argue that 

because prediction errors can lead to both sensory and motor changes, the sensory and motor 

systems should be considered “a single active inference machine” (p. 100). This is a strong 

statement in support of a unified prediction mechanism in the brain, and Adams, Friston, and 

Bastos support this statement with findings that the laminar, topographic, and physiological 

characteristics of the sensory and motor cortices are quite similar.  

 However, given the results of the current study, it does not seem likely that Adams, Friston, 

and Bastos (2015) are correct about the existence of a single active inference machine, despite 
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the structural similarities of the systems. If all of the sensory and motor areas truly did act as a 

single unified system, performance on the tasks included in the current study, which all required 

activation of various sensory and motor areas, should have been correlated. Perhaps, instead of a 

unified inference machine, each system separately engages in feed-forward and feedback signals 

that allow for prediction within individual modalities. The structural similarities of the various 

cortical areas that Adams, Friston, and Bastos (2015) use to support their proposition of a unified 

inference machine may have developed as a parsimonious solution to developing complex 

cortical structures, but their structural similarities do not necessitate that all of the individual 

areas cohere into a unified prediction mechanism. Thus, while the current study does not provide 

evidence against the entirety of the predictive coding model of the human brain, the results 

reported here do suggest that a single unified prediction mechanism does not operate in the 

human brain.  

4.4.2 Event Segmentation Theory 

 Event Segmentation Theory (EST; Zacks, Speer, Swallow, Braver, & Reynolds, 2007) 

provides a model of how people comprehend ongoing, dynamic activity. It proposes that people 

use their existing knowledge about typical situations (event schema) to create a representation of 

the current situation, and use this event model along with incoming sensory information to make 

predictions about what is going to happen next. When mismatches between predictions and 

incoming sensory information develop, the event model is updated to better represent the current 

situation. People perceive boundaries between events when this event model updating occurs 

(Zacks, Speer, Swallow, Braver, & Reynolds, 2007), and better perception of these event 

boundaries has been linked to increased memory for the events (Zacks, Speer, Vettel, & Jacoby, 

2006). 
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 EST postulates that a single event model that encompasses modalities is used to generate 

predictions about what will happen next. Although in any given situation, an event model could 

include information from only a single sensory modality, it should also be able to incorporate 

information from multiple modalities, as it is rare in everyday life for only a single modality to 

be relevant. For example, while watching an actor complete an everyday activity, an observer’s 

event model would likely include visual information about the current activity, auditory 

information based on experience with the typical sounds generated by the activity, and motor 

information that would include the motor sequences necessary to generate a similar action. 

Therefore, EST proposes that multi-modality event models should be represented in some way in 

the brain, and that these event models should then be used to generate predictions about the 

future.  

 Most research on EST has studied event comprehension and prediction by having 

participants watch movies of everyday activities or read narratives about people engaging in 

activities, and it is possible that EST is limited to only these modalities. However, Zacks, Speer, 

Swallow, Braver, & Reynolds (2007) suggest that people use event models as a basis for 

prediction in every modality. For example, in the context of the current study, it might be 

possible to explain performance on the weather prediction task using EST: When people start the 

weather prediction task, they begin to learn the relationships between the geometric patterns on 

the cards and the outcome of the trial. Over time, they begin to create an event model that 

represents their current knowledge of these relationships. They make predictions about whether 

there will be rain or sun on the basis of this developing event model, and when their predictions 

are inaccurate, they update their event model to include the new information. Similar processes 

likely occur as people perform the Iowa gambling task and the visual world task. The PLAT, 
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though a novel task, is most similar to previous studies that have found evidence for EST. One 

study using this task found that healthy adult participants took longer to look at the target object 

when contact occurred around event boundaries than when contact occurred within an event 

(Eisenberg & Zacks, in prep), suggesting that predictions failed more often at event boundaries 

than within events. Performance on the PLAT, therefore, likely relies on the formation of event 

models that are updated at times of high prediction error.  

 If an integrated event model that is used to drive predictions does exist, one would expect 

that performance on the prediction tasks included in the current study would be correlated, as 

performance on all of these tasks would be based, at least in part, on the ability to form accurate 

event models; people who are better at forming event models should perform better on all of the 

tasks, and people who are worse at forming event models should perform more poorly. However, 

the low correlations among the four prediction tasks included in this study provide evidence 

against the existence of such an event model. This leaves open four possibilities: (1) multi-modal 

event models exist, but people do not vary in their ability to use event models to make 

predictions, (2) event models are only used when people are processing naturalistic activity, (3) 

event models consist of multiple separate representations from each of the separate sensory and 

motor systems, and (4) multi-modal event models exist, but individual differences are driven by 

modality specific prediction mechanisms that operate upstream of the event models. 

First, it is possible that a unified event model does exist but people do not vary in their 

ability to use such an event model to make predictions. This possibility is very similar to the 

supposition, mentioned earlier, that people do not vary in their ability to integrate information in 

order to make predictions. Yet, as previously discussed, there was adequate variability across 

subjects on all of the tasks used in the current study. In particular, participants varied in their 



  76 

ability to perform the PLAT, and performance on this task has previously been found to track the 

locations of event boundaries (Eisenberg and Zacks, in prep). Of the tasks included in the current 

study, the PLAT should most strongly involve the creation of event models, suggesting that 

participants were not identical in their ability to use event models to make predictions. Therefore, 

low variability cannot explain the results of the current study or preserve the concept of a unified 

event model.  

Another possibility is that event models are limited to the domain of comprehending 

naturalistic activity. In this case, performance on tasks that all involve the comprehension of 

naturalistic activity should be correlated, even if performance relies on different sensory 

modalities. For example, performance on the PLAT should be correlated with performance on 

tasks in which participants listen to narratives of everyday activities (where prediction could be 

measured through predictive looking at arrays of images representing characters or objects that 

will soon be mentioned in the narrative) and on tasks in which participants read narratives of 

everyday activities (where prediction could be measured by pausing reading and asking 

participants to make explicit predictions about what will happen next). Although there have not 

been studies that test prediction performance on these different types of event comprehension 

tasks, the results of the current study and the principles of parsimony suggest that performance 

would not be correlated across different types of event comprehension tasks. Specifically, if 

unitary event models did exist, performance on all of the tasks used in this study should have 

relied on such an integrative event model, as it is unlikely that an integrative event model would 

be created solely during event comprehension tasks (e.g., the PLAT). There seems no reason for 

integrative event models to be used solely for tasks that involve the comprehension of 

naturalistic activities, when a similar mechanism could be used for many other types of tasks. In 
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fact, it is arguably the case that all of the tasks included in the current study were everyday 

events for the participants in the study, and therefore should have relied on integrative event 

models.  Participants completed the tasks in and among all of the other daily activities in which 

they participated. Therefore, participants should have treated the tasks in the study as events, 

created unified event models of their perceptions of each activity, and then used these unified 

event models to make predictions that integrated information across modalities. In fact, it is very 

likely that if other people were asked to watch a movie that included a period of time in which an 

actor performed exactly the same tasks that were included in the present study, viewers would 

identify event boundaries at the beginning and completion of each task. Consequently, it seems 

unlikely that multi-modal event models that are used to make integrated predictions actually 

exist. 

 Therefore, a third possibility is that event models consist of separate representations from 

each sensory modality. Specifically, each of the sensory and motor systems may represent the 

state of the environment separately. Then, when a task requires the use of multiple sensory 

modalities, the necessary brain regions for each separate system may be activated in concert, 

which would result in the likely incorrect perception that active integration has occurred. For 

example, for the PLAT, visual areas and motor areas are likely both activated, and separate 

prediction processes within the respective areas operating in parallel could create an illusion of 

integration. A spike in prediction errors in one modality would lead to an updating of the 

representation of that modality, and people would experience this updating as an event boundary. 

If prediction errors spiked in multiple modalities at the same time (due to rapid changes in both 

visual and auditory information, for example) people might experience an even stronger 

perception of an event boundary.  
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The existence of separate representations rather than a unified event model is consistent with 

previous research evidence that prediction is more difficult around event boundaries (Zacks, 

Kurby, Eisenberg, & Haroutunian, 2011): prediction in the modality or modalities relevant to the 

rapid changes in the environment would be more difficult around event boundaries, though 

prediction in other modalities would not be affected. The existence of separate event models is 

also compatible with evidence that memory is updated at event boundaries (Swallow et al., 

2011), as memory for visual information, for example, might be updated around event 

boundaries that are driven by visual changes in the environment, whereas memory for auditory 

information might not be updated in response to visual changes. This account is also in accord 

with previous research demonstrating that, at least during reading, components of event models 

can be updated independently. For example, Curiel & Radvansky (2014) found that spatial shifts 

and character shifts both slowed down reading time but the effects did not interact, suggesting 

that they did not influence one another. Though the results of this study were interpreted to be 

consistent with a unified event model that is updated incrementally rather than globally, the 

results of this study can also be interpreted as evidence against a unified event model, where 

representations of each type of shift are independent of one another and are used separately to 

make predictions. However, this account is less consistent with recent research on working 

memory updating. For example, Bailey & Zacks (2015) had participants read narratives that 

included shifts in characters and locations and answer recognition memory probes interspersed 

throughout the text. When these probes came after a shift in either character or location, people 

were slower to answer questions about either dimension, suggesting that participants primarily 

engaged in global event model updating. In addition, Radvansky, Tamplin, & Krawietz (2010) 

found that word pairs that were unrelated to the visual environment were less well remembered 
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after a visual and motor event boundary of walking through a doorway, which provides 

additional evidence for an integrated event model and against separate representations of 

information in each modality.  

 This leaves open the fourth possibility that unified event models exist and that people vary 

in their ability to use event models to make predictions, but individual differences in prediction 

are driven by modality-specific prediction mechanisms that operate upstream of a multi-modal 

event model. In this case, each brain system would make predictions independently of one 

another, and spikes in prediction error in any one modality could cause the unified event model 

to update its representation of the current situation. This would mean that predictions might not 

be correlated across task modality if prediction ability within each brain system differs within 

individuals. For example, if a person makes very accurate predictions when tasks require 

predictions based on visual information but experiences difficulty making predictions using 

auditory information, that person would display quite different performance on prediction tasks 

requiring each of the modalities. The lack of correlations among the four tasks used in the 

current study is consistent with this possibility.  

 If it is indeed the case that individual differences are driven by modality-specific prediction 

mechanisms and that a multi-modal event model is updated incrementally whenever there is a 

spike in prediction error within any modality, some changes must be made to the EST model. 

Specifically, instead of sensory information entering a single perceptual processing node, 

sensory information from each modality would enter a perceptual processing node specific to the 

modality. Each perceptual processing node would receive information from a unified event 

model and would use this information to make predictions. Separate error processing 

mechanisms would monitor these predictions and when errors are signaled from any of these 
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error processing mechanisms, people would experience a subjective event boundary and the 

unified event model would update to capture the changes in the environment. The process would 

then repeat until the next error signal causes the event model to update again. For example, if 

visual information were changing rapidly, predictions about future visual information would 

likely be incorrect. This would cause the event model to update to better represent the new state 

of the visual information. Once the new information is integrated into the event model, relevant 

information from the event model would be used by all of the brain systems to continue making 

predictions. If there were changes in multiple modalities at the same time, people would still 

experience a single event boundary, but the event model would be updated to capture the 

changed information from all of the relevant modalities. Figure 16 provides a potential 

representation of such a model of event comprehension and prediction. 
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 4.5. Limitations of the Current Study 

 There are some limitations of the current study that are important in interpreting the results. 

First, the reliability of most of the tasks included in the current study was relatively high, except 

for the split-half reliability of the visual world task (r = 0.53), the Letter Sets task (r = 0.44) and 

the Paper Folding task (r = 0.67). There is therefore some chance that the low reliability of these 

tasks prevented them from correlating with the other tasks included in the current study. 

Figure 16. Suggested model of Event Segmentation Theory if individual differences are driven 
by modality-specific prediction mechanisms. In this case, error signals from any of the 
modalities would lead to the perception of a subjective event boundary and would reset a unified 
event model. Information from the unified event model would then be used by separate 
perceptual processing systems specific to each modality to make new predictions. Only the 
visual and auditory systems are represented here for the sake of simplicity, but there are likely 
many more separate systems that are involved in making predictions. 
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However, other methods of scoring the visual world task resulted in even lower split-half 

reliability scores. Specifically, when growth curves for looking time were calculated separately 

for predictive and unpredictive trials, and the slopes from the unpredictive trials were subtracted 

from the slopes for the predictive trials to obtain a difference score, the split half reliability was 

0.16. Similarly, when the cumulative looking time on unpredictive trials was subtracted from the 

cumulative looking time on predictive trials to obtain a difference score, the split-half reliability 

was 0.18. One potential explanation for the low split-half reliability is the relatively small 

number of trials participants completed during this task; participants only completed 24 

experimental trials in this task, half of which were unpredictive sentences and half of which were 

predictive sentences. This means that for the split-half reliability testing, each half of the data 

only included six trials of each type. Therefore, the split-half reliability found in this study may 

not replicate in other studies, and a study with a larger number of trials would be necessary to 

determine the actual reliability of this task. Nevertheless, it is unlikely that higher reliability of 

the visual world task would have dramatically changed the results of the current study. None of 

the other prediction tasks were correlated with one another, and the correlations between 

performance on the visual world task and the other prediction tasks were so low that even if a 

portion of the signal from the visual world task were correlated with performance on the other 

tasks, it still is unlikely that the noise masked more than a small correlation among the tasks.  

Similarly, the low split-half reliability for the Letter Sets and Paper Folding tasks was likely due, 

in part, to the small number of trials in each task. A study using larger numbers of items for each 

of these tasks would be necessary to determine whether the low split-half reliability is an 

intrinsic feature of these tasks. However, it is unlikely that the low split-half reliabilities of the 

Letter Sets task and the Paper Folding task dramatically affected the results of the current study. 
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All three of the fluid intelligence tasks loaded strongly on a fluid intelligence latent factor, 

meaning that the fluid intelligence latent factor likely captured the signal present in all of the 

tasks without being significantly affected by the noise in the tasks.  

 In addition, although I examined the relationships between PTSD severity and performance 

on the prediction tasks in the study, there were few participants with high scores on the PTSD 

scale. This lack of variability may have obscured the true relationships between PTSD severity 

and prediction performance. As mentioned above, Eisenberg, Zacks, and Flores (in prep) 

examined performance on the PLAT in a clinical sample of people diagnosed with PTSD and 

found that people with PTSD performed more poorly on the task than control participants 

without PTSD. However, no relationship between PTSD severity and performance on the PLAT 

was found in the current study. Similarly, previous studies have found relationships between 

PTSD and performance on tasks of general cognitive functioning (e.g., Vasterling et al., 2002; 

Bremner, Vermetten, Afzal, & Vythilingam, 2004), whereas there were no significant 

relationships between PTSD severity and crystallized or fluid intelligence in the current study; 

however, the previous studies included more participants with clinical levels of PTSD. 

Therefore, additional research examining the relationship between PTSD severity and 

performance on various types of prediction tasks is necessary to determine whether PTSD 

impacts performance on prediction tasks other than the PLAT.   

 Furthermore, as discussed earlier, it is possible that the low correlations among the 

prediction tasks could have been due to differences in methods across the tasks, as the tasks all 

required different abilities in addition to prediction. One potential method for controlling for 

potential individual difference in abilities other than prediction would be to test participants’ 

performance on tasks that require each of the non-prediction abilities and then control for these 
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individual differences in the final analyses. For example, participants could complete tasks that 

are relatively pure measures of spatial ability, risk processing, language processing, and motor 

planning, and scores on these measures could then be entered as covariates in analyses of the 

correlations among the prediction tasks.  

In addition to potentially requiring different abilities, the tasks also differed in the directions 

given to participants for each task. For example, for both the weather prediction and the Iowa 

gambling tasks, the directions to participants were very explicit and explained the true nature of 

the task: Participants were told to make predictions about whether there would be rain or sun in 

the weather prediction task, and participants were told to choose decks in a way that made them 

the most money in the Iowa gambling task. On the other hand, for both the PLAT and the visual 

world task, the directions did not explain the ultimate goal for the task: For the PLAT, 

participants were simply told to pay attention to the movie, and for the visual world task, 

participants were told to respond based on whether the sentence that they heard applied to any of 

the images on the screen, without any reference to the predictive nature of the task. It is possible 

that if participants had been told to actively make predictions during all of the tasks, that 

performance across the tasks would have been more similar. On the other hand, it is highly likely 

that people make predictions during everyday life without realizing that they are doing so, and it 

is therefore likely that people made predictions while they performed the visual world task and 

the PLAT as well.  In addition, the pairs of tasks that used similar directions were not correlated 

with one another, again suggesting that differences in directions across the tasks cannot explain 

the low correlations among the tasks.  

Another source of difference across the tasks is how performance was measured for the four 

tasks. Performance on the weather prediction and Iowa gambling tasks was measured using the 
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accuracy of responses, whereas performance on the PLAT and the weather prediction task was 

measured using oculometric data. Accuracy data only provides a measure of the final decision a 

participant makes about a particular item, whereas eye tracking data can be much more sensitive, 

providing information throughout the decision making process. It is possible that if eye tracking 

data had been collected while participants performed the weather prediction and Iowa gambling 

tasks, the increased sensitivity would have allowed correlations among the tasks to emerge.  

In addition, especially for the Iowa gambling task, an accuracy measure may not have been 

the best choice for examining individual differences on this task. While individual variation 

certainly existed within the data set, many previous studies using this task used measures of skin 

conductance to determine how well participants had learned the task and when they began 

making predictions based on their knowledge. For example, Bechara, Damasio, Tranel, & 

Damasio (1997) identified a hunch period, in which participants were unable to report that they 

knew some decks were bad, but experienced an increased skin conductance response when 

choosing from the bad decks. Predictions during this hunch period might more closely resemble 

the predictions made in the PLAT and visual world task. Although skin conductance responses 

have not typically been used in the weather prediction task, a similar effect might exist in which 

participants experience an increased skin conductance response when making an incorrect 

choice, while still experiencing the feeling of guessing on the trial. If eye tracking were 

combined with skin conductance measures, it might be possible to use the time spent looking at 

the correct choice during the hunch phase as a measure of prediction performance on the task, 

and that measure might correlate more strongly with performance on the PLAT and the visual 

world task. However, if the measurement modality were the driver of the lack of correlations 

among the four tasks, one would expect that the tasks with more similar measurement modalities 
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would be most highly correlated with one another, which was not the case; all of the tasks had 

very low correlations with one another, and most of the correlations among the pairs of tasks 

with the same measurement modalities were actually slightly lower than the correlations among 

pairs of tasks with different measurement modalities. Therefore, measurement modality is 

unlikely to have been the only reason performance on these tasks was uncorrelated. 
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Chapter 5: Conclusion 

In this study, performance on four different types of prediction tasks was uncorrelated, 

providing evidence against a single higher-order prediction mechanism. While the results of this 

study suggest that existing theories about prediction require some alteration, particularly the 

predictive coding theory (Friston, 2005) and Event Segmentation Theory (Zacks et al., 2007), the 

results are not directly in opposition with these theories. The predictive coding theory does not 

necessitate a unified prediction mechanism, though such a mechanism was proposed due to the 

similar anatomical structure of many systems in the brain (Adams, Friston, & Bastosm 2015). In 

fact, the results of this study are in accord with the hierarchical predictive brain proposed by 

Friston (2005), with systems that process information from each modality sending predictive 

signals from higher order areas to lower order areas and vice versa. In addition, the results of this 

study certainly do not provide evidence against the whole of Event Segmentation Theory, but 

rather suggest that certain elements of the theory need revision.  Overall, instead of an 

integratory prediction mechanism, it appears most likely that predictions are formed and acted 

upon separately within each sensory modality and that the resulting behavior creates an illusion 

of integration. This may be represented in the brain by the activation of separate but overlapping 

brain regions that, when activated at the same time by different components of a task, creates the 

appearance of an integratory prediction mechanism. Finally, these results can also inform future 

studies on prediction, including those investigating prediction ability in psychopathology: 

Attempting to generalize from performance on one type of prediction task to another will likely 

result in only erroneous predictions.    
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