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ABSTRACT OF THE DISSERTATION 
Understanding the paradox of genetic diversity in uropathogenic E. coli: 

 the uncommon evolution of a common pathogen by 

Henry L. Schreiber IV  

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Genetics and Genomics 

Washington University in St. Louis, 2017 

Professor Scott J. Hultgren, Chair 

Urinary tract infections (UTIs) are the second most common bacterial infection of people 

in the U.S.A and are frequently recurrent, as an initial UTI is quickly followed by a second 

episode in 30-35% of cases despite appropriate antibiotic treatment and clearance of the bacteria 

from the urine. The vast majority, >80%, of UTIs are caused by uropathogenic Escherichia coli 

(UPEC). UPEC that colonize the bladder are thought to originate in the gut, where they live as 

commensal organisms. UPEC can be shed in feces to colonize the vagina and/or periurethral area, 

and then can ascend into the bladder to start a UTI. E. coli strains, including UPEC, have been 

sub-divided into clades (e.g., clades A, B1, B2 and D) based on their genetic relatedness. In the 

U.S.A, most (50-75%) UPEC fall into clade B2 while the rest (25-50%) are spread through 

clades A, B1, and D. Many UPEC encode a variety of putative urovirulence factor genes that are 

thought to enable bladder colonization and whose carriage in has been correlated with both UTI 

and recurrence in humans. However, in contrast to many other E. coli pathotypes and despite 

decades of research, a clear, genetic definition of UPEC remains elusive. Towards this goal, I 

pursued a research strategy integrating multiple fields of study, including large-scale 

bioinformatic analysis, in vitro and in vivo modeling of pathogenesis, and structural biology, 

within a holistic view of the UPEC evolutionary history that incorporates their residence in both 



	

 
 

xv 

the gut and the bladder. Thus, I have shown that clinical UPEC are genetically heterogeneous 

and that gene carriage alone is not a robust predictor of UPEC’s ability to colonize the bladder in 

mouse models of cystitis. Instead, I have found the transcriptional regulation of core genes 

shared by all E. coli strains can be used to predict the outcome of bladder infections in mice. 

Further, I have found that evolution has stringently conserved bacterial behaviors that are critical 

to both bladder and gut colonization by E. coli, namely the tension and unwinding of the type 1 

pilus rod in response to shear stress. The type 1 pilus is found in the vast majority of E. coli 

strains and nearly every UPEC isolate and has been shown to be critical in bladder colonization 

in animal models of cystitis, thus underscoring the fact that bacterial features enabling 

uropathogenicity are common and conserved across many E. coli strains. Finally, I have shown 

that clade B2 UPEC have adopted genetic tools from other gut bacteria that provide them with a 

selective advantage in gut colonization and persistence, potentially enhancing their ability to 

cause recurrent UTIs. This may explain why B2 strains are enriched in UPEC overall, especially 

in those strains causing recurrent UTI, despite the fact that both B2 and non-B2 strains can be 

robust colonizers of the bladder. Taken together, these findings indicate the bladder pathogenesis 

may be a “core feature” of most E. coli and that the definition of UPEC may be related more to 

the core bacterial behaviors enabling persistence and survival in multiple body sites than any one 

specific virulence mechanism or carriage of certain genes. These findings extend beyond UPEC 

to other bacterial diseases, such as respiratory infections caused by Klebsiella or 

Pneumocococcus, where bacteria transition from commensal lifestyles in one habitat to 

pathogenic lifestyles in another body site and further work is needed to understand how 

conserved bacterial features may be coopted for pathogenicity in the new environment
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1.1 Overview 
Uropathogenic Escherichia coli cause the majority of urinary tract infections (UTIs) and 

are highly recurrent, owing, in part, to their ability to colonize host reservoirs outside of the 

bladder, such as the gut. In this chapter, I will provide a brief description of the prevailing model 

of UPEC virulence and the gaps in knowledge within that model. Next I will describe how the 

UPEC pathotype is unique amongst pathogenic groups of E. coli due to the lack of a clear, 

genetic definition of UPEC strains. Finally, I will conclude with calls for further study of host 

reservoirs of UPEC outside of the bladder to better understand the totality of the UPEC 

persistence within hosts. In future chapters, I will describe my work in better understanding the 

evolution and conservation of features in UPEC that enable their uropathogenesis. 

1.2 Understanding uropathogenic Escherichia coli 

1.2.1 Epidemiology of urinary tract infections 
Urinary tract infections (UTIs) are the second most common bacterial infections 

encountered in the U.S.A with a significant predilection towards women. More than 50% of 

women experience at least one UTI during their lifetime, and each year approximately 11% of 

women report having had a UTI (Foxman, 2010). Despite appropriate treatment for the initial 

infection, UTIs are frequently recurrent, as 25-35% of initial infections are followed by a 

recurrent UTI (rUTI) (Foxman et al., 2000; Scholes et al., 2000). This high frequency and 

recurrence leads to significant healthcare costs; in the United States alone, UTIs cost greater than 

$5 billion dollars per annum including direct and indirect costs (Foxman, 2014). Uncomplicated 

UTIs (hereafter referred to simply as UTIs) are infections of the lower urinary tract that are not 

associated with functional or anatomical abnormalities, diabetes, pregnancy, or urinary 

catheterization, while all other infections are labeled as complicated. The clinical manifestations 
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and symptomatologies of UTIs are strikingly complex and result from the interactions between 

diverse uropathogens and host urothelial tissues and include dysuria, foul-smelling or cloudy 

urine, and fever (Hooton, 2012). UTIs are generally short-lived due to antimicrobial therapy; 

however, UTIs can last for months in women without antibiotic treatment (Ferry et al., 2004; 

Mabeck, 1972). Alarmingly, many uropathogens are becoming increasingly resistant to many of 

the antimicrobials used to treat UTI (Zowawi et al., 2015), thus highlighting the urgent need to 

develop and deploy new therapeutic options. 

1.2.2 Current models of uropathogenic Escherichia coli (UPEC) virulence 
The most common organism causing UTI is uropathogenic Escherichia coli (UPEC), 

which causes >80% of UTIs (Foxman, 2010). UPEC that colonize the urinary tract are thought to 

originate from the gut, where they are a minor member of the healthy, adult gut microbiota 

(Consortium, 2012). UPEC strains, along with all E. coli, have been categorized into different 

clades (e.g., clades A, B1, B2, D, and E) based on their genetic relatedness (Tenaillon et al., 

2010). While UPEC strains tend to be genetically heterogeneous, the majority of UPEC strains 

isolated from women with UTI in the U.S.A. reside in the B2 clade. Notably, clade B2 also 

contains all of the commonly studied model UPEC strains, including strains UTI89 (Chen et al., 

2006), CFT073 (Welch et al., 2002), and 536 (Brzuszkiewicz et al., 2006). Epidemiological 

studies have shown that host susceptibility is variable and mediated by numerous genetic, 

environmental, and behavioral risk factors (Scholes et al., 2000). Many of these risk factors have 

been investigated in experimental mouse infection models. Mice have similar bladder 

morphology and express many of the same surface proteins as humans and respond to infection 

with phenotypes that recapitulate clinical findings in humans (e.g., epithelial exfoliation, 

regulation of cytokine production, pyuria, and expression of antimicrobial peptides, as reviewed 
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in (Carey et al., 2016) and (Barber et al., 2016)). Using many of these mouse models of cystitis, 

model, clade B2 UPEC strains have been used to characterize the pathogenic cascade during 

bladder infection (Hannan et al., 2010; Hung et al., 2009). After ascension into the bladder, 

UPEC use a specialized adhesive organelle, called type 1 pili, to attach to and subsequently 

invade superficial umbrella cells lining the bladder lumen (Martinez et al., 2000; Mulvey et al., 

1998). Bladder invasion enables UPEC to evade the host immune responses, such as 

phagocytosis by neutrophils, and UPEC that are unable to invade the epithelial bladder cells are 

much more likely to be cleared from the bladder (Wright et al., 2005). After invasion, UPEC 

escape their enclosing vesicle through unknown mechanisms and expand into biofilm-like 

intracellular bacterial communities (IBCs) (Anderson et al., 2003; Justice et al., 2004) comprised 

of 104-105 cells (Wright et al., 2007). IBC development is also dependent on type 1 pili (Wright 

et al., 2007). In response to attachment, host cells undergo apoptosis and exfoliation (Thumbikat 

et al., 2009a; 2009b) and, after invasion, UPEC can be exocytosed by the host cells in a TLR-4 

dependent process (Song et al., 2007). If not lost to expulsion and host cell exfoliation, bacteria 

can then flux out of the mature IBCs back into the lumen of the bladder, where they can invade 

naïve epithelial cells again (Justice et al., 2006). After an infection is cleared, latent bacterial 

cells, termed quiescent intracellular reservoirs (QIRs), can remain in underlying or superficial 

bladder epithelial tissue and are capable of causing recurrent UTIs (Mysorekar and Hultgren, 

2006). Another potential outcome of these acute events is the establishment of long-lasting, 

chronic cystitis (Hannan et al., 2010). Chronic cystitis in mice is characterized by persistent, high 

titer bacteriuria (>104 colony forming units (CFU)/mL) accompanied by chronic inflammation, 

and urothelial necrosis and high titer bacterial bladder burdens at sacrifice (Hannan et al., 2010). 

Importantly, the elucidation of all of these pathogenic mechanisms in mouse models has relied 
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almost exclusively on model UPEC strains, such as UTI89 and CFT073, which represent only a 

small section of the overall E. coli phylogenetic tree, despite the remarkable diversity of UPEC 

strains in the clinic. Thus, it is unknown whether the genetically diverse UPEC strains found in 

the clinic follow the same pathogenic pathways or how diverse UPEC interact with different host 

susceptibility factors. 

1.2.3 The problem of recurrence 
The virulence of UPEC is further enhanced by their ability to persist in reservoirs 

between multiple UTI episodes to cause recurrent bouts of the disease. UTIs recur in 25-35% of 

young women with cystitis within 6 months after their first episode (Foxman et al., 2000), and 

the recurrence rate increases with more than 1 prior UTI (Foxman et al., 2000; Scholes et al., 

2000). Recurrent UTIs are common in women at all ages, and some women are troubled with 

frequent recurrences throughout their lives. Although several mechanisms have been postulated 

to explain recurrent UTI, this syndrome is not well understood. Recurrent UTIs caused by the 

same UPEC strain can arise from re-colonization of the bladder from UPEC persisting in 

reservoirs in the gut, vagina (Chen et al., 2013; Hooton, 2012) or possibly in the bladder itself 

(Mysorekar and Hultgren, 2006). Recurrences with strains different than the first infection only 

occur through the invasion of the bladder by another strain. When different-strain recurrent UTIs 

occur, the new strain causing the UTI may originate from the patient’s gut (Chen et al., 2013), or 

be introduced from another environmental source. The rates of same-strain versus different-strain 

recurrences have been investigated for nearly five decades, but estimates of the percentage of 

same-strain recurrences vary greatly between studies from 16-82% (Ejrnaes, 2011; Foxman et al., 

2000; 1995; Ikaheimo et al., 1996; Kärkkäinen et al., 2000; Kõljalg et al., 2009; Kunin, 1970; 

Luo et al., 2012). This dramatic range of results may be due to differences in the (1) 
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demographics of the cohort studied, (2) urine collection and bacterial culture methods, (3) 

definition of symptoms, (4) treatment regimens, (5) duration of follow-up, and (6)strain typing 

methods. 

1.3 Questioning uropathogenic Escherichia coli 

1.3.1 UPEC: a common pathogen without a clear definition 
Currently, UPEC are defined as any strain that is recovered from the urine of 

symptomatic UTI patients (Marrs et al., 2005), a classification that fails to account for 

differences in host susceptibility or the possibility for multiple evolutionary and mechanistic 

paths to urovirulence. This clinical definition of UPEC stands in contrast to other E. coli 

pathotypes, which are clearly defined by sets of virulence genes, such as the stx gene in Shiga-

toxin producing E. coli (Croxen et al., 2013; Marrs et al., 2005). The clinical definition of UTI is 

also plastic as many clinicians define symptomatic criteria differently. For example, while many 

clinicians require a bacterial burden of >103 CFU/mL of UPEC in urine to diagnose a UPEC UTI, 

other clinicians diagnose UTIs with a cutoff of 102 to 106 CFU/mL (Foxman, 2010). These 

differing cutoffs are related to the difficulty in collecting urine from female patients without 

contamination from the vaginal or periurethral flora, which are body sites that E. coli can also 

colonize. Thus, a single E. coli strain infecting a single patient’s bladder may be considered a 

UPEC strain in some clinics while being considered as not significant in other clinics. Further, 

patient susceptibility to UTIs is known to vary due to genetic, environmental, and behavioral 

differences between women (Foxman, 2010; Hooton, 2012). One of the most significant risk 

factors for developing a UTI is a previous history of UTIs (Hooton et al., 1996). Recent research 

has provided insight into this phenomenon by showing in mice that a severe initial UTI results in 

a remodeling of the bladder epithelium (Hannan et al., 2010; O'Brien et al., 2016). This 
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remodeling changes the course of subsequent infections and can increase the susceptibility of the 

bladder to infection by different UPEC strains. Interestingly, previous history results in a 

colonization resistance upon new exposure.  For example, a remodeled bladder epithelium is 

recalcitrant to IBC formation.  However, increased expression of COX-2 breaks this resistance 

and allows unchecked bacterial replication and recurrent infection in the bladder.  This is in stark 

contrast to the pathogenic cascade in a naïve bladder that requires IBC formation (O'Brien et al., 

2016). Thus, a remodeled bladder epithelium of women who have experienced frequent rUTIs 

may be predisposing to recurrent infections. In addition, a separate set of factors in UPEC may 

increase bacterial fitness in such a remodeled habitat.  These data underscore the fact that the 

categorization of UPEC into one group, without regard to differences in requirements to colonize 

distinct host environments or differing clinical definitions, has increased the difficulty in 

identifying a clear genetic definition of UPEC.  

1.3.2 The gut as a reservoir of UPEC 
The fecal-perineal-urethral model of ascending UTI posits that UPEC maintain an 

established reservoir in the gut before transmission to the bladder (Yamamoto et al., 1997). In 

healthy adults, E. coli account for ~0.8% of the total microbiota and are the primary facultative 

anaerobe in the gut microbial community (Consortium, 2012). While the majority of adults carry 

E. coli asymptomatically in their gut, blooms of E. coli are associated with a number of intestinal 

diseases including diarrheal diseases, inflammatory bowel diseases (IBD) such as Crohn’s 

disease, and colorectal cancer (Arthur et al., 2012; Kotlowski et al., 2007). One prominent host 

factor that likely influences the E. coli population in the gut is inflammation, which can be 

triggered in numerous ways including infection by a pathogen, an imbalance of the existing 

microbiota, or exposure to antibiotics during clinical intervention (Stecher et al., 2010; Winter et 
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al., 2013). Interestingly, biopsy specimens from patients with Crohn’s disease and ulcerative 

colitis, two IBD syndromes, revealed that these patients have a 3-4 log increase in the levels of 

Enterobacteriaceae in their intestines over healthy controls, with a significant increase in the 

abundance of E. coli from the B2 and D phylogenetic groups (Kotlowski et al., 2007). This has 

also been observed in conventionally raised mice treated with the antibiotic streptomycin or 

dextran sulfate sodium (DSS), a chemical used to superficially stimulate Crohn’s disease in 

murine animals (Lupp et al., 2007). Of interest, several clinical studies have found that patients 

with intestinal inflammatory diseases, like IBD and AIDS, have an increased incidence of rUTI 

(Evans et al., 1995; Kyle, 1980). Importantly, studies have shown that at the time of UTI, the 

dominant E. coli strain in the urine and feces of an infected woman is the same (Chen et al., 

2013; Moreno et al., 2008). Strikingly, in instances of different-strain rUTI (described above), 

the new strain infecting the bladder is also found to be the dominant strain in the gut as well 

(Chen et al., 2013). Together, these data suggest that intestinal inflammation may alter 

conditions in the gut in a way that enhances UPEC colonization, ultimately increasing the 

likelihood of a downstream UTI, particularly in individuals that are susceptible to 

chronic/recurrent cystitis.  

1.3.3. Putative urovirulence factors (PUFs) in UPEC 
While there is no strict genetic definition of UPEC, previous research on clinical UPEC 

isolates has identified a list of putative urovirulence factors (PUFs) that are enriched in UPEC 

strains relative to commensal E. coli strains through the use of a polymerase chain reaction 

(PCR) typing technique, which measures the carriage of specific genes of interest (Johnson et al., 

2001; 2005). These PUFs include genes for capsule production, iron acquisition systems, toxins, 

and CUP pili along with other miscellaneous functions (Johnson et al., 2001; 2005). Clinical 
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UPEC strains with increased numbers of these PUFs were more likely to be associated with 

same-strain recurrent UTI episodes than strains with fewer virulence factors (Luo et al., 2012) 

and clade B2 UPEC were more likely than other UPEC to carry many PUF genes (Luo et al., 

2012; Picard et al., 1999). Previous research using model B2 UPEC strains has also shown that 

genetic deletion of some of the PUF genes attenuates colonization of the mouse bladder (Flores-

Mireles et al., 2015). Thus, these data show that, within an individual strain model UPEC strain, 

PUFs can enhance fitness; however, carriage of PUF genes is variable and UPEC strains 

encoding very few PUFs are capable of causing robust UTIs. Therefore, putative urovirulence 

factors are not essential for an E. coli strain to cause UTI in women. Interestingly, several PUFs 

have also been implicated in UPEC persistence in the gut (Nowrouzian et al., 2005; 2006). Yet, 

despite these correlations and widespread acceptance that the gut is a reservoir for UPEC (Chen 

et al., 2013; Yamamoto et al., 1997), we know very little about the molecular mechanisms that 

promote the establishment and maintenance of UPEC in this habitat. Taken together, these data 

suggest that putative urovirulence factors may enhance the bladder colonization of some E. coli; 

however, overall, they are not necessary for bladder colonization in the diverse host bladder 

habitats by all UPEC strains. Further, PUFs may enhance fitness of UPEC in colonizing other 

body sites, such as the gut, which may enhance their ability to cause subsequent UTIs in the 

future. 

 

1.4 Summary 
In this chapter, I have described our current understanding of UPEC pathogenesis, which 

has been elucidated almost exclusively by model B2 UPEC strains in mouse models of cystitis. I 

have also detailed evidence that implicates the gut as an important, yet understudied, reservoir 
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that influences UTI recurrence. Finally, I have described the genetic and phylogenetic diversity 

seen in clinical UPEC strains as well as the failing of current molecular epidemiology studies to 

fully articulate a clear, genetic definition of UPEC. Thus, towards the goal of filling these gaps in 

knowledge regarding the genetic basis for uropathogenesis in E. coli, I employed a research 

strategy that integrated large-scale multi-omics and evolutionary analyses of diverse clinical 

UPEC strains with in vitro phenotypic analysis and in vivo animal models of both bladder and 

gut colonization. This strategy has several advantages, including: (1) the results from multi-

omics analyses, such as comparative genomics and comparative transcriptomics, allow for a 

global analysis of bacterial features at a higher resolution (i.e., down to the level of single 

nucleotide polymorphisms in protein coding genes) than single gene analyses (e.g., PCR typing 

used to measure PUF carriage that result in binary presence/absence data), (2) the ability to 

examine the totality of the UPEC lifestyle, including the gut reservoir, which avoids the 

assumption that all features that enable uropathogenicity in clinical UPEC strains must result 

from increased ability to colonize the bladder, (3)  the integration mouse models of cystitis and 

in vitro measures of virulence with bioinformatic analyses, which enables the direct interrogation 

of hypotheses generated from large datasets in a setting that better represents the biological 

reality of patients in the clinic instead of a simplified “one-bug, one-mouse” analysis.  

Towards the goal of understanding conserved features that enable UPEC pathogenesis, I 

will describe three projects that I have completed in my graduate career. In Chapter 2, I will 

show genetically diverse E. coli strains are capable of robust bladder colonization in many 

different mouse backgrounds and that transcriptional control of core bacterial behaviors is a 

better predictor of bladder colonization than gene carriage alone. In Chapter 3, I will describe the 

evolutionary conservation of the structure and function of the type 1 pilus rod as a molecular 
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spring and describe the fitness effects of mutations in the pilus on the ability of UPEC to 

colonize the bladder and gut. In Chapter 4, I will characterize my work describing the evolution 

of CUP pili and their importance in gut colonization by UPEC. Together, my studies have 

worked towards expanding our understanding of UPEC virulence and evolution. Through this 

understanding, we are now able to identify and deploy new therapeutic options that have a much 

greater chance of success in combating a genetically diverse pathogen by targeting the common, 

evolutionary conserved features that enable UPEC virulence and persistence. 
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2.1 Abstract 
Urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC) 

strains. In contrast to many enteric E. coli pathogroups, no genetic signature has been identified 

for UPEC strains. We conducted a high-resolution comparative genomic study using E. coli 

isolates collected from the urine of women suffering from frequent recurrent UTIs. These 

isolates were genetically diverse and varied in urovirulence, or the ability to infect the bladder of 

a mouse model of cystitis. Importantly, we found no set of genes, including previously defined 

putative urovirulence factors (PUFs), that were predictive of urovirulence. In addition, in some 

patients, the E. coli strain causing a recurrent UTI had fewer PUFs than the supplanted strain. In 

competitive experimental infections in mice, the supplanting strain was more efficient at 

colonizing the mouse bladder than the supplanted strain. Despite the lack of a clear genomic 

signature for urovirulence, comparative transcriptomic and phenotypic analyses revealed that the 

expression of key conserved functions during culture, such as motility and sugar metabolism, 

could be used to predict subsequent mouse bladder colonization. Taken together, our findings 

suggest that UTI risk and outcome may be determined by complex interactions between host 

susceptibility and the urovirulence potential of diverse bacterial strains. 

2.2 Introduction 
Urinary tract infections (UTIs) are a health and financial burden, particularly affecting 

sexually active, premenopausal women (Foxman, 2002). Approximately 50% of women will 

suffer a UTI in their lifetime with 10.5 million cases of UTIs occurring in 2007 in the United 

States alone (Foxman, 2014). In placebo-controlled studies of UTI outcome, most women 

maintain bladder infections for weeks after an acute cystitis episode if not treated with antibiotics, 

whereas other women clear the infection without antibiotic treatment (Ferry et al., 2004; Mabeck, 
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1972). These two outcomes of infection, either self-limiting or chronic cystitis, have been 

modeled in mice (Hannan et al., 2010; 2014; O'Brien et al., 2016). Effective treatment of UTIs is 

becoming more challenging as antibiotic resistance rates are increasing (Gupta et al., 2011). In 

addition, even though antibiotic therapy effectively resolves the majority of UTIs, approximately 

20-30% of women will experience a recurrent UTI (rUTI) within six months of initial infection 

(Foxman et al., 2000; Gupta et al., 2011). This highlights the need to better understand the 

pathogenic mechanisms that facilitate acute bacterial colonization of the urinary tract and 

determine UTI outcome. 

The most common cause of community-acquired UTIs is uropathogenic E. coli (UPEC) 

(Foxman, 2014). E. coli strains are diverse and have been characterized into pathotypes based on 

their ability to cause particular diseases (Kaper et al., 2004; Russo and Johnson, 2000). 

Pathotypes include intestinal pathogens such as Shiga toxin-producing E. coli as well as extra-

intestinal pathogenic E. coli, strains such as UPEC. E. coli are also sub-divided into phylogenetic 

clades (e.g., A, B1, B2, D, E) based on their genetic similarity (Rasko et al., 2008; Touchon et al., 

2009). In the U.S. and Europe, the majority of UPEC are from the B2 clade though members of 

clades A, B1 and D cause 25-50% of cystitis (Ejrnaes et al., 2011; Piatti et al., 2008; Rijavec et 

al., 2006; Skjøt-Rasmussen et al., 2011; Starcic Erjavec et al., 2007). In East Asia, clade D 

strains predominate in community-acquired UTI followed by B2 strains (Luo et al., 2012; Wang 

et al., 2014). All commonly studied UPEC isolates, including UTI89, CFT073, NU14, and 536 

(Brzuszkiewicz et al., 2006; Chen et al., 2006; Hultgren et al., 1986; Welch et al., 2002), are B2 

members whereas non-B2 strains have not been extensively characterized. Thus, it is unknown 

whether non-B2 UPEC strains use the same virulence mechanisms as B2 UPEC strains.  
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Study of prototypical B2 UPEC isolates, such as the model UPEC strain UTI89, 

originally isolated from a woman with cystitis (Mulvey et al., 2001), has shown that the 

chaperone usher pathway (CUP) type 1 pilus is critical for bladder colonization in diverse mouse 

models (Schwartz et al., 2013). The fim operon, which encodes the proteins for assembly of type 

1 pili, is part of the core E. coli genome, found in nearly every E. coli strain (Wurpel et al., 2013). 

Further, in research of the model strain UTI89, it has been shown that type 1 pili expression is 

tightly co-regulated with numerous factors including flagella, and S and P CUP pili (Greene et 

al., 2014). Type 1 pili are tipped by the adhesin FimH, which binds specifically to mannosylated 

uroplakins lining the superficial bladder epithelium (Wu et al., 1996) and mannosylated proteins 

expressed on underlying layers of epithelial cells (Eto et al., 2007), thus mediating critical steps 

in bladder colonization and UTI progression. Subsequent to FimH attachment, E. coli can invade 

the superficial umbrella bladder cells (Martinez et al., 2000) and escape into the cytoplasm where 

they rapidly replicate to form clonal, biofilm-like intracellular bacterial communities (IBCs) of 

~104 colony forming units (CFU) while protected from the host immune response (Anderson et 

al., 2003; Justice et al., 2004). Upon IBC maturation, UTI89 transform into long filaments and 

burst out of the superficial umbrella cells of the bladder into the bladder lumen where they 

invade other epithelial cells and form new IBCs (Justice et al., 2004). The majority of clinical 

UPEC isolates that have been tested are able to form IBCs in mice, and each of six different 

inbred mouse strains tested support IBC formation (Garofalo et al., 2007). Importantly, after the 

discovery of IBCs in mouse UTI models, IBCs and filamentous bacteria were documented in 

human urine collected from clinical UTI cases Robi(Robino et al., 2013; Rosen et al., 2007).  

Despite decades of research using model UPEC strains, universal bacterial features that 

enable E. coli uropathogenesis remain largely undefined. Carriage of putative urovirulence 
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factors (PUFs) is thought to enhance E. coli uropathogenicity and is used to measure and 

categorize clinical UPEC strains isolated from different patient populations (Johnson et al., 

2001b; 2015; Luo et al., 2012; Starcic Erjavec et al., 2007). PUFs were identified through their 

enrichment in UTI isolates when compared to non-UTI associated E. coli (Johnson and Stell, 

2000; Johnson et al., 2001a; 2001b; 2015). While numerous sets of PUFs have been used to 

assess urovirulence (Johnson and Stell, 2000; Johnson et al., 2001a; 2001b; 2015; Luo et al., 

2012; Starcic Erjavec et al., 2007) and strains with more PUFs are considered more 

uropathogenic than strains with fewer PUFs, a direct role in pathogenicity remains to be defined 

for the majority of PUFs. 

Here, we examined a set of 43 human urine-associated E. coli (UAEC) strains isolated at 

symptomatic and asymptomatic time points from the urine of 14 women with frequent rUTIs. 

We tested whether UAEC isolates shared common genes that classified strains with increased 

virulence from those with lesser virulence in defined experimental mouse models. Surprisingly, 

we observed no correlation between gene content, including PUFs, and the ability to cause 

cystitis in C3H/HeN mouse models. However, we found that environmentally-responsive 

phenotypes and specific transcriptional responses to in vitro conditions could discriminate 

whether strains would be more or less efficient at bladder colonization when tested in the 

C3H/HeN acute cystitis mouse model. We also determined that some UAEC were robust 

colonizers in multiple mouse models whereas others were only efficient at colonizing the bladder 

in some models. 

2.3 Results 

2.3.1 Phylogenetic origin and relatedness of human urine-associated E. coli 
strains 
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A total of 43 E. coli isolates was collected from 14 women with frequent rUTI (Figure 

S1, Table S1, Table S2). Since all of these strains were isolated from the urine of women, but 

not necessarily collected during diagnosed UTIs, we refer to these strains as urine-associated E. 

coli (UAEC) rather than UPEC. Whole genome sequences of all 43 UAEC were determined, 

assembled, annotated and combined with genomic data from 46 previously sequenced 

representative E. coli from various clades and pathotypes to evaluate aspects of their relatedness 

and gene content (Table S3). We found that 60-75% of each strain’s genome consisted of core 

genes, defined as genes present in all strains being analyzed, while the variable genome 

comprised the remaining 25-40% (Figure S2A). We constructed a maximum-likelihood 

phylogenetic tree using the 2,746 single-copy genes present in the core genome of all the E. coli 

isolates (Figure 1). Consistent with previous studies of UPEC (Ejrnaes et al., 2011; Piatti et al., 

2008; Rijavec et al., 2006; Skjøt-Rasmussen et al., 2011; Starcic Erjavec et al., 2007), more than 

two-thirds (67.4%, 29 of 43) of our UAEC strains fell within the B2 clade. The remaining UAEC 

fell within three other E. coli clades (4 in clade A, 8 in clade B1 and 2 in clade D).  

In some patients, UAEC isolated at consecutive time points were tightly grouped within 

the phylogenetic tree indicating same-strain rUTI. In contrast, UAEC collected at consecutive 

time points in other patients were not closely related, which is consistent with different-strain 

rUTI. As has been done in previous studies (Sahl et al., 2015), cluster analysis of pairwise SNP 

distances between all UAEC isolates revealed 13 different clonal groups comprised of two to 

four isolates each (Figure S2B and Table S2). Eight UAEC did not group with any other isolate, 

and were each assigned to their own core clonal group. Based on clonal group membership, we 

identified 12 same-strain recurrences and 6 different-strain recurrences from a total of 18 rUTI 

events (Table S2). Eleven of 12 same-strain rUTIs were caused by B2 strains, which was a 
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statistically significant enrichment relative to the phylogenetic distribution of the UAEC tested in 

our cohort (Hypergeometric test, p<0.05). For further analyses, we then selected a representative 

UAEC strain from each of the clonal groups, including core clonal groups with a single member, 

resulting in a representative collection of 21 UAEC isolates that encompassed the genetic, 

phylogenetic, and phenotypic diversity of our strain set, including 11 clade B2, 2 clade A, 6 

clade B1 and 2 clade D strains (Table S2). 

2.3.2 Carriage of PUFs correlates with B2 clade membership in human urine 
and non-urine isolates of E. coli. 

As done previously (Johnson and Stell, 2000; Johnson et al., 2001b; 2015), we calculated 

a PUF score for each representative UAEC and non-UAEC control strain using an alignment-

based analysis of 31 previously defined PUFs (Johnson and Stell, 2000; Johnson et al., 2001b; 

2015; Luo et al., 2012)(Table S4). Carriage of PUFs varied considerably among strains, ranging 

from 2 to 24 PUFs per UAEC genome (median 13; the model B2 UPEC strain, UTI89, encodes 

17 PUFs) to 2 to 19 PUFs per non-UAEC genome (median 5) (Figure 2). Out of the 31 PUFs, 28 

were found in at least one UAEC genome. We found that B2 E. coli strains carried more PUFs 

than did non-B2 E. coli strains whether or not they were associated with urinary disease in 

humans (Mann-Whitney U test, p<0.001) (Figure 2A). Further, using unsupervised hierarchical 

clustering of PUF carriage, we found that strains generally clustered based on B2 clade 

membership, rather than on their association with urinary disease (Figure 2B), indicating that 

PUF carriage was biased by phylogeny and was not specific to uropathogens.  

2.3.3 Bladder colonization in C3H/HeN mice by UAEC is variable and not 
restricted to B2 strains 

Although each of our UAEC strains was recovered from the urine of a patient and thus 

able to colonize a human bladder, differences in patient genetics, behavior, and infection history 
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can influence susceptibility to UTI (Foxman et al., 2000; Hawn et al., 2009; Scholes et al., 2000; 

Stapleton et al., 1995). To control for host genetics and environmental factors that could 

confound comparisons of colonization efficiency among the UAEC strains, we characterized the 

ability of each of 21 representative strains to colonize the genetically homogenous C3H/HeN 

mouse model of cystitis. Each UAEC strain and a model UPEC strain, UTI89, was inoculated 

into the bladder of at least 5 C3H/HeN mice. Bacterial burdens, measured in colony forming 

units (CFU), were determined in both the bladder and kidneys at 24 hours post-infection (hpi) 

(Figure 3A, Figure S3). We observed a range of bladder bacterial burdens (200 to 108 

CFU/bladder) at 24 hpi with three colonizer groups emerging among the tested UAEC strains. 

Twelve of 21 strains were “robust colonizers” where UAEC titers were greater than 104 CFU in 

every infected mouse bladder; 4 of 21 strains were “deficient colonizers” where UAEC titers 

were less than 104 in every infected bladder, and; 5 of 21 were “variable colonizers” where 

UAEC titers ranged both above and below 104 CFU/bladder of infected mice (Figure 3A). 

Kidney colonization generally correlated with bladder colonization (Figure S3). Notably, both 

B2 and non-B2 strains were among the robust colonizers, capable of colonizing the mouse 

bladder at rates similar to UTI89, indicating that efficient bladder colonization of C3H/HeN mice 

was achievable by strains outside of the B2 clade. Importantly, whereas C3H/HeN bladder 

colonization varied among UAEC at 24 hpi, the titers of these isolates were markedly higher than 

those of gut-associated E. coli strains collected from adult humans that were not associated with 

urinary tract disease. These strains included model E. coli strains and strains from the feces of 

healthy adults (Gordon et al., 2005; Snyder et al., 2012) and were comparable to our UAEC 

collection in the distribution of B2 versus non-B2 strains (Table S5). We found that only 1 of 9 

gut-associated E. coli, a clade A strain, was capable of robustly colonizing the bladders at 24 hpi, 
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while 5 of 9 strains were deficient and the remaining 4 of 9 were variable (Figure S4a). Thus, a 

significantly higher proportion of UAEC strains robustly colonized the C3H/HeN mouse model 

than gut-associated E. coli at 24 hpi (Fisher’s Exact test, p<0.05) (Table S5 and Figure S4). 

Given that early bladder colonization is enhanced by the formation of IBCs characterized 

using model B2 UPEC strains (Anderson et al., 2003; Justice et al., 2004; Mulvey et al., 1998; 

Schwartz et al., 2011), we sought to determine if diverse B2 and non-B2 UAEC strains from our 

collection followed the same pathogenic cascade as model B2 strains. As for the UPEC strain 

UTI89 (Schwartz et al., 2011), we found that 5 of 6 phylogenetically diverse UAEC were 

competent for IBC formation (Figure S5 and Table S6) in C3H/HeN mice at 6 hpi, suggesting 

that both B2 and non-B2 UAEC strains exhibited pathogenic mechanisms similar to that of the 

model B2 UPEC strain. Notably, the only deficient colonizer strain tested amongst the 

group clade A strain 11.1a was also the strain that did not form IBCs at this single time point 

supporting previous reports that IBC formation is linked to bladder colonization (Schwartz et al., 

2011).  

2.3.4 Carriage of PUFs is not required for bladder colonization in C3H/HeN 
mice, but may provide a competitive advantage in chronic cystitis. 

Although UAEC strains with both high and low PUF scores caused rUTI among the 

women in our cohort, we sought to determine whether PUF content could explain the observed 

differences in bladder colonization in the C3H/HeN mouse model (Figure 3A). We observed no 

significant differences in the carriage of PUFs when comparing UAEC strains that were robust 

(range 2 to 20, median 16), variable (range 2 to 24, median 7) or deficient (range 4 to 12, median 

3.5) colonizers of the C3H/HeN mice (p>0.05, Kruskal-Wallis test and Mann-Whitney U tests) 

(Figure 3B). Further, we found no significant correlation between PUF carriage and bladder 

bacterial burden in C3H/HeN mice (Spearman’s rank correlation, p>0.05) (Figure 3C). 
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In mice, chronic cystitis is defined as the development of persistent high titer (>104 

CFU/ml) bacteriuria, high titer bladder bacterial burdens and chronic inflammation with 

persistent lymphoid aggregates at sacrifice >4 weeks post-infection (wpi). Chronic cystitis and 

bladder inflammation result in large-scale remodeling of the bladder mucosa, which can last for 

weeks/months after antibiotic treatment to clear the infection (Ferry et al., 2004; Mabeck, 1972). 

This remodeling is evident in changes to the bladder itself and in host susceptibility to recurrent 

infection, exemplified by: (i) an altered transcriptional profile; (ii) an altered urothelial 

membrane proteome; (iii) defects in superficial cell maturation; (iv) changes to bacterial 

occupation of different habitats and; (v) differential host responses upon subsequent bacterial 

exposure (O'Brien et al., 2016). To determine the effects of PUF carriage on the ability of UAEC 

to cause chronic cystitis, we examined three non-B2 strains: 41.4p (clade B1, PUF score=7), 9.1a 

(clade D, PUF score=13), and 9.2p (clade B1, PUF score=3) and three B2 UAEC strains: 20.1a 

(PUF score=16), 35.1a (PUF score=16), and 41.1a (PUF score=20) for their ability to cause 

persistent, high-titer bacteriuria (>104 CFU/mL urine), high-titer bladder colonization (>104 

CFU/bladder) and chronic inflammation at 28 days post-infection in juvenile C3H/HeN mice. 

We found that all of the tested UAEC strains were capable of causing chronic cystitis at varying 

frequencies, including the non-B2 UAEC strains (range 20-90%) (Figure 4). These rates were 

comparable to the rates of chronic cystitis caused by B2 UAEC strains and UTI89 (range 10-

60%)(Hannan et al., 2010). Taken together, our results indicate that several non-B2 strains 

carrying few PUFs were capable of causing both acute and chronic UTI in C3H/HeN mice in 

addition to causing clinical infection in women. While the carriage of many PUFs was not 

essential for non-B2 UAEC strains to cause chronic cystitis in mice, B2 UAEC strains that 

carried many PUF genes were enriched in isolates causing same-strain rUTI (11 of 12 same-
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strain UTIs were caused by B2 UAEC). Indeed, we found that specific deletion from UTI89 of a 

large pathogenicity-associated island, PAI IIUTI89, carrying 124 genes including 4 PUFs (papgIII, 

hek, cnf1 and hlyA) did not result in a competitive defect against the WT strain during acute time 

points (1-3 dpi) in urine; however, the mutant strain was severely outcompeted in the urine 

during chronic time points (≥7 dpi)(Figure S6a), and in the bladder and kidney tissue at sacrifice 

28 dpi (Figure S6b).  

2.3.5 Later time point rUTI isolates outcompete those collected at enrollment 
regardless of PUF carriage 

Previous research has shown that different-strain rUTIs can occur when the recurrent 

strain outcompetes the initial UTI strain in the gastrointestinal tract and bladder (Chen et al., 

2013). In two patients in our cohort, patient 9 and patient 41, a UAEC strain with a higher PUF 

score (strain 9.1a, PUF score=13; strain 41.1a, PUF score=20) was supplanted by a UAEC strain 

with a lower PUF score (strain 9.2p, PUF score=3; strain 41.4p, PUF score=7). We hypothesized 

that the supplanting strains would be fitter than the initial UTI strains collected from the same 

patient in colonizing the murine bladder. Thus, in two separate experiments, we inoculated equal 

numbers of the initial and supplanting strains from patients 9 and 14 into the bladders of 

C3H/HeN mice, respectively, and the relative bacterial titers were determined from urine at 

24hpi using strain-specific antibiotic resistance markers (Figure 5). In both experiments, we 

found that the supplanting strains outcompeted the initial UTI strains at 24 hpi despite the fact 

that strains 41.4p and 9.2p carried considerably fewer PUF genes. Taken together, these data 

suggest that bladder colonization was not limited to B2 UAEC strains or strains with high 

carriage of PUFs.  

2.3.6 Variations in UAEC gene expression under defined conditions predicts 
the outcome of acute cystitis in mice 
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It is possible that UAEC strains share some genomic feature that is not currently 

identified as a PUF. Thus, we also performed an in-depth, unbiased comparative genomic 

analysis between robust and deficient colonizer strains of UAEC to find any possible cryptic 

PUF genes or genomic signature that would clearly delineate these two groups. Our analysis 

revealed that no orthologous genes were exclusive to either robust or deficient colonizers and 

that there was no significant enrichment of specific functional domains or enzymatic pathways in 

either colonizer group after correcting for variance between strains. Using a relaxed definition of 

enrichment (i.e., present in >80% of one group and <20% of the other group), we found that two 

orthogroups were enriched in the deficient colonizer UAEC relative to robust colonizer strains, 

namely the brnTA genes encoding a type II toxin-antitoxin (Heaton et al., 2012)(Table S7). The 

brnTA genes, whose function in pathogenesis and regulation in E. coli are unknown, were 

identified in all four deficient colonizer strains; however, they were not specific to deficient 

colonizers, as they were also found in 2 of the 12 robust colonizers (12.1a and 26.1a). Further, 

the number of hits identified here fell below our threshold for Type I errors, which was 

determined by extensive permutations of the enrichment analysis. Thus, we find that the 

enrichment of these two genes in deficient colonizers is likely due to random chance.  

Whereas differences in gene carriage could not clearly discriminate between these two 

groups of UAEC strains, we hypothesized that differences in how core bacterial functions are 

regulated, such as pili production, might be able to explain the variation that we observed in 

mouse bladder colonization and UTI outcome. We found significant variability in pili function 

amongst our UAEC strains with mannose-sensitive hemagglutination titers, denoting the 

expression of type 1 pili, ranged from zero to 210 (Figure S7a) despite the presence of an intact 

fim operon in 20 of the 21 UAEC strains, as determined using custom BLAST and alignment-
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based searches (see Supplemental Methods). Notably, the closely related B2 strains 20.1a, 21.1a 

and 35.1a had high mannose-resistant hemagluttination titers (>24), denoting expression of a 

non-type 1 pilus, under culture conditions that typically induce mannose-sensitive 

hemagglutination phenotypes in model B2 strains such as UTI89, including S pili (Figure 

S7b)(Chen et al., 2009; Parkkinen et al., 1986). Importantly, we found that robust colonizer 

strains had significantly higher hemagglutination titers (median 27.25) than deficient colonizers 

(median 22.25) (Mann-Whitney U test, p< 0.01) or variable colonizers (median 26) (Mann-

Whitney U test, p<0.01) (Figure S7c), and that hemagglutination titer was significantly 

correlated to bladder bacterial burden in C3H/HeN mice at 24 hpi (Spearman’s rank correlation, 

p<0.001)(Figure S7d). Taken together, these data suggest that the regulatory networks that drive 

the expression of CUP pili genes differ significantly between UAEC strains and that 

hemagglutination titer is correlated with the ability to cause acute cystitis in C3H/HeN mice.  

To systematically compare core gene expression between phylogenetically and 

phenotypically diverse UAEC strains, we generated RNA-Seq data from triplicate cultures of a 

subset of 11 strains after growth in static LB broth (bladder infection inoculum). These strains 

included: (i) representative UAEC from four phylogenetic clades; (ii) robust, variable, and 

deficient colonizers; (iii) strains with disparate hemagglutination titers and; (iv) the model B2 

strain, UTI89 (Table S8). Pairwise comparisons of transcript abundance for the 10 UAEC strains 

relative to the UTI89 strain revealed 753 genes (of 3,516 core genes or ~21.4%) that were 

differentially expressed in at least 1 of the 10 UAEC strains under these culture conditions (Padj < 

0.05, fold change > 3) (Table S9) with B2 strains having fewer differentially expressed genes 

relative to UTI89 than non-B2 strains (Figure S8A). However, the expression of a large number 

of core genes differed among the clinical UAEC strains, including both the B2 and non-B2 
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strains, even though they were grown under identical culture conditions. Differentially expressed 

genes were scattered throughout the genome, and many were clustered in operons encoding 

flagella, pilus, and chemotaxis machinery (Figure S8B). Notably, under this culture condition, 

the average expression of genes in the fim operon encoding type 1 pili was lower in deficient 

colonizers than robust colonizers and corresponded with the results of our hemagglutination 

assay. We also found that most PUFs present in each strain were expressed under these 

conditions, although at different levels when comparing across strains (Table S10). 

To explore whether transcriptional profiles under inoculum growth conditions were able 

to predict bladder colonization efficiency, we performed principal component analysis (PCA) on 

the complete set of core genome transcriptional profiles relative to UTI89 (Figure 6A). We 

found a distinct pattern that separated the profiles of deficient and robust colonizers along the 

principal component 2 (PC2) axis, which explained 19.2% of the variance between the UAEC 

strains. Variable colonizers grouped with robust colonizers and away from deficient colonizers in 

this analysis. Further, PCA showed a separation between UAEC strains along PC1 (25.6% of 

variance) that correlated with clade membership (i.e. B2 vs. non-B2) suggesting that differences 

in gene expression associated with phylogeny are distinct from those that separate deficient and 

robust colonizers. Using a linear regression analysis, we systematically evaluated how 

expression of each gene (using normalized read counts per gene) correlated with bacterial burden 

at 24 hpi in the mouse bladder. After correcting for false discovery, we identified a total of 42 

core genes whose expression in static LB broth correlated with subsequent bladder colonization 

efficiency in C3H/HeN mice at 24 hpi (Figure S9 and Table S11). These included genes 

encoding sugar-transport proteins, such as the LamB maltoporin (Figure 6B), and other genes 

associated with maltose transport (Beg et al., 2007; Szmelcman and Hofnung, 1975), as well as 
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the Tar protein (Figure 6C), a chemotactic sensor of aspartate and maltose (Mowbray and 

Koshland, 1987; Springer et al., 1977). The majority of the linear regression curves had negative 

beta coefficients indicating that deficient colonizers had higher expression of these genes than 

robust colonizers. We grouped these 42 core genes into functional pathways (Huang et al., 

2009a; 2009b), which showed a total of six functions that were enriched including motility, 

chemotaxis and carbohydrate transport (Table S12). These results indicate that under culture 

conditions used for growth of bacteria prior to infecting mice, core bacterial behaviors, such as 

swimming motility and nutrient transport, were regulated differently between robust and 

deficient colonizers in UAEC strains. Interestingly, despite differences in how genes mediating 

motility and chemotaxis were expressed, the motility of the clinical UAEC strains did not 

correlate with bladder colonization in C3H/HeN mice at 24 hpi (Figure S10), suggesting that 

transcriptional control of motility, rather than the in vitro phenotype itself, was a predictor of 

subsequent colonization efficiency.  

2.3.7 UAEC strains vary in their ability to colonize the bladders of mice of 
different genetic backgrounds 

Our data suggest that dynamic features (e.g., transcriptional control of core E. coli genes) 

rather than static characteristics (e.g., carriage of PUFs) could predict the relative efficiency of 

UAEC strain colonization of mouse bladder. Thus, differential regulation of transcriptional 

networks during in vitro growth in the colonization inoculum may have served to prime UAEC 

bladder colonization. To determine if this "priming" transcriptional response was universal in 

predicting colonization among different mouse strains, we inoculated a subset of our UAEC 

strains into C57BL/6 mice, which was a different host environment with a different immune 

response to infection. As with the C3H/HeN mouse model, the UAEC strains showed a variable 

ability to colonize the bladders of C57BL/6 mice, with bladder bacterial burdens ranging from 



	

 
 

32 

undetectable to >107 CFU/bladder at 24 hpi (Figure 7). Overall, we observed less variation in 

bladder colonization for each UAEC strain in C57BL/6 mice than seen in C3H/HeN mice e.g., 

the highly variable strains in C3H/HeN colonization experiments, 2.2r and 17.1a, showed a more 

narrow distribution of bladder burden at 24hpi in the C57BL/6 mice. Interestingly, whereas most 

UAEC strains colonized the C57BL/6 mouse bladder as well as the C3H/HeN bladder at 24 hpi, 

two strains, 31.1a (clade B1, PUF score=4) and 41.1a (clade B2, PUF score=20), showed 

significantly lower bladder bacterial burdens in C57BL/6 mice (Mann-Whitney U test, p<0.01) 

(Figure 7). Notably, the reduction in colonization ability did not appear to be based on genetic 

background or phylogeny of the bacterial strains, as other UAEC strains carrying similar 

numbers of PUFs and strains from the same clades as 31.1a and 41.1a colonized C3H/HeN and 

C57BL/6 mouse bladders at similar levels.  

Quiescent intracellular reservoirs are small collections of dormant UPEC cells that 

remain in LAMP-1-positive vesicles in the underlying uroepithelium and represent another mode 

of bladder colonization within a different host environment. Quiescent intracellular reservoirs 

persist in the bladder even after apparent clearance of bacteria from the kidneys and urine and 

may be able to seed same-strain rUTI (Mysorekar and Hultgren, 2006). In addition to acute 

cystitis, C57BL/6 mice have been used to model the formation of quiescent intracellular 

reservoirs. In general, quiescent intracellular reservoirs can be detected through plating bladder 

homogenates 14dpi after the clearance of bacteriuria and kidney infection, as has been done 

previously (Mysorekar and Hultgren, 2006). We tested 4 robust colonizer UAEC strains, 

including 9.1a (clade D, PUF score=13), 9.2p (clade B1, PUF score =3), 35.1a (clade B2, PUF 

score=16) and 41.1a (clade B2, PUF score=20), and the model B2 UTI89 (PUF score=17) and 

found that all 5 strains, resulted in detectable bladder CFUs at 14dpi (Figure S11), despite 
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having sterile urines and kidneys, indicating the existence of quiescent intracellular reservoirs. 

However, the non-B2 strain, 9.1a, produced significantly lower bladder burdens at this time point 

than other tested strains, including the non-B2 strain, 9.2p, which was isolated from the same 

patient. Strain 9.1a also produced fewer IBCs than other strains tested (Table S6). Thus, diverse 

UAEC strains could colonize multiple host backgrounds. However, the relative efficiency of 

mouse bladder colonization varied between different UAEC strains in the same host background, 

and individual UAEC strains had different relative abilities to infect the bladders of mice with 

different genetic backgrounds. 

2.3.8 UAEC strains that robustly colonized mice were correlated with 
markers of increased UTI severity in patients. 

An overly exuberant inflammatory response to an initial UTI is associated with severity 

of subsequent infections in mice (Hannan et al., 2010) and susceptibility to recurrent infection in 

women (Hannan et al., 2014). This inflammatory response is cyclooxygenase-2 (cox-2) 

dependent and is associated with increased neutrophil infiltration across the urothelium during 

infection, which results in increased levels of white blood cells in the urine (Hannan et al., 2010; 

2014). In addition to neutrophils, the host protects itself from UTI through secretion of lipocalin-

2, which is induced upon infection of the bladder and helps to sequester iron away from the 

infecting organism (Steigedal et al., 2014). Importantly, levels of lipocalin 2 in the urine 

correlate to increasing levels of bacteria in the urine, or bacteriuria, in women (Steigedal et al., 

2014). To determine if UAEC strains having increased virulence in the mouse model caused 

more severe UTI in women, we examined levels of white blood cells and lipocalin 2 in our 

cohort of patients infected with robust, variable, and deficient colonizer UAEC. We found that 

strains defined as robust and variable colonizer in the C3H/HeN mouse model were associated 

with markedly higher levels of white blood cells in the urine than deficient colonizers during 
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UTI episodes (Table S13). Further, we found that robust colonizers were associated with higher 

levels of lipocalin 2 in the urine than either variable or deficient colonizers (Table S13). 

2.4 Discussion  

2.4.1 Summary of findings 
Although virulence in other E. coli pathotypes has been tightly linked to carriage of 

specific genes, UPEC are distinct in their lack of a signature set of genes that universally 

distinguishes them from non-UPEC strains. This likely reflects the broad definition of UPEC – 

any E. coli strain that is recovered from the urine of a symptomatic UTI patient – a classification 

that fails to account for differences in host susceptibility, or the possibility that multiple 

evolutionary and mechanistic paths can lead to urovirulence. To better define the determinants of 

urovirulence, we focused our study on a collection of 43 diverse UAEC strains isolated from a 

cohort of 14 women with frequent rUTI. Here, we have integrated genomic and transcriptomic 

approaches with in vitro and in vivo characterization of isolate phenotypes, including their 

colonization and pathogenic potential in defined experimental mouse models of cystitis. Our 

findings expand our understanding of the genomic diversity of UPEC, show that differential 

transcriptional regulation of core genes contributes to pathogenic potential and that the relative 

virulence of different E. coli strains varies depending on host background. We conclude that the 

range of clinical UTI outcomes reflects a range of complex host-pathogen interactions driven, in 

part, by variation in how uropathogens regulate core functions, impacting their pathogenic 

potential in hosts with different genetics and health status.  

2.4.2 Implications of UAEC genetic heterogeneity 
Phylogenomic analysis of this collection of UAEC strains revealed patterns of 

phylogenetic diversity previously reported in other clinical studies (Ejrnaes et al., 2011; Luo et 
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al., 2012; Piatti et al., 2008; Rijavec et al., 2006; Skjøt-Rasmussen et al., 2011; Starcic Erjavec et 

al., 2007), including an enrichment of clade B2 strains (67% of total) and a mixture of same-

strain and different-strain rUTIs, with B2 strains dominating same-strain rUTIs (11 of 12 same-

strain rUTI isolates fell within the B2 clade) (Luo et al., 2012). We observed variation in the 

genomic content of these isolates, up to 40% in pairwise comparisons between strains, similar to 

the level of genomic diversity observed in E. coli overall (Rasko et al., 2008; Touchon et al., 

2009). Genomic diversity among E. coli strains is thought to be key to the species’ ability to 

thrive in a multitude of environments (Touchon et al., 2009). Thus, it is possible that the genetic 

diversity observed in our cohort of UAEC strains, where two strains may share only 60% of the 

genes in their genome, reflects the sum of selection pressures across multiple habitats including 

but not limited to reservoirs in the gut, intracellular and extracellular locales in the bladder and 

diverse host backgrounds. In addition to other genes, we found that UAEC were variable in their 

carriage of PUF genes, which have previously been identified as being enriched in UTI isolates 

relative to other E. coli strains (Johnson and Stell, 2000; Johnson et al., 2001b; 2015; Luo et al., 

2012). In contrast to this paradigm, we found that, if phylogeny was taken into account, there 

was no enrichment of PUFs in UAEC strains relative to non-UAEC strains. Thus, the enrichment 

of PUFs in urinary isolates of E. coli reported previously may be due to a combination of the 

enrichment of clade B2 in urinary isolates and the phylogenetic bias in PUF carriage in clade B2 

strains. 

2.4.3 Limitations of current study  
The molecular mechanisms of pathogenicity for many PUFs remain poorly defined and 

may have functions outside of bladder pathogenicity that still enhance the overall virulence of 

UPEC strains, such as increasing successful migration from the gut reservoir to the bladder or 
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enabling persistence in host niches outside of the bladder, such as the vagina. One limitation of 

our study is that it is solely focused on bladder virulence and thus, functions outside of the 

bladder were not tested. Further, given the fact that many of these factors are co-localized on 

pathogenicity-associated islands common to the B2 clade and absent from other E. coli (Dobrindt 

et al., 2010), it is possible that the enrichment of PUFs results from a type of “genetic hitchhiking” 

due to some selection for B2 strains, such as their transcriptional profiles or persistence in gut 

reservoirs, rather than selection for the PUF genes themselves. Strikingly, we found that PUF 

carriage did not correlate with urovirulence in C3H/HeN mice. Indeed, non-B2 UAEC that 

carried few PUFs were as proficient as B2 UAEC carrying many PUFs in causing cystitis in 

mice. We also observed that in two patients, a UAEC strain with a higher number of PUFs was 

supplanted by a UAEC strain with a lower PUF score. In addition, we found in a mouse model, 

that the supplanting strains outcompeted the initial UTI strains in co-infection experiments. 

However, we found that same-strain rUTI isolates were much more likely to be from clade B2 

than from other clades, which suggests that B2-specific genomic features, such as carriage 

of PUFs, other genes and/or transcriptional regulatory machinery, may provide an advantage for 

persisting within hosts between symptomatic episodes of UTI. Further, while PUF carriage was 

neither necessary nor sufficient for bladder colonization at acute time points, we did find that 

deletion of a large pathogenicity island from UTI89, which carried 124 genes including 4 PUFs, 

resulted in a loss of fitness during competition in chronic cystitis. While this result does not 

directly implicate these four PUFs in bladder colonization, it does show that carriage of at least 

some of the genes in this island may provide competitive advantages during different aspects of 

disease. All of our studied isolates came from the urine of women either during or between 

episodes of rUTI and thus, all of them, by definition, were uropathogens able to colonize at least 
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one human bladder. However, since host genetics, environment and behavior are important for 

UTI susceptibility, it is likely that many UAEC strains isolated from a single patient may be 

unable to cause infection in all or even most human bladders. To control for these inter-host 

variations, we assessed the colonization potential of UAEC and non-UAEC strains in genetically 

defined animal models under identical environmental conditions. While mouse bladder 

colonization by UAEC strains was markedly higher than by gut-associated E. coli, we observed 

that bladder colonization varied among UAEC isolates under these conditions. However, even 

after comparing the gene content of robust and deficient colonizer UAEC isolates, we found no 

significant differences in specific gene content or overall functional potential that could account 

for the variability of these strains in colonizing mouse bladders. Another important limitation of 

our study is our focus on gene carriage among strains. Since our comparative analysis focused 

solely on gene content, as determined by orthology, we would not have been able to identify 

more subtle genomic differences that could influence uropathogenicity including variation in 

promoter sequences or in coding sequences that might impact gene expression or protein 

structure and function.  

2.4.4 The role of gene regulation in preparing UAEC for bladder colonization 
While we found no clear genomic signatures that could be identified to discriminate 

between robust and deficient colonizers, we found that differences in the expression of core 

genes shared among all UAEC strains were predictive of urovirulence in C3H/HeN mouse 

bladders. These included genes involved in maltose transport, chemotaxis and flagellar assembly 

that mediate core bacterial behaviors such as nutrient utilization and motility. The variance in 

expression of core functions contrasts with studies showing that shared genes are expressed 

similarly in different E. coli strains (Bielecki et al., 2014), possibly reflecting different 
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definitions of the “core genome/transcriptome” between the studies. Our definition was based on 

comparisons of genomic sequences while previous reports have identified genes that were 

“commonly transcribed” to identify a core transcriptome. Importantly, this variance in 

transcriptional regulation of core bacterial behaviors has a direct impact on the ability of UAEC 

strains to colonize host bladders. This is exemplified by the differential regulation of the 

conserved fim operon, which encodes type 1 pili. While all but one of our UAEC strains carried 

an intact fim operon, the strains varied considerably in their hemagglutination titers, a measure of 

piliation. Further, hemagglutination titers correlated well with colonization of the C3H/HeN 

mouse bladder. We posit that that the regulatory networks that control type 1 pili expression 

within the different UAEC strains respond differently to environmental cues. For example, a set 

of highly related strains (from patients 20, 21, and 35), all carrying the fim gene cluster, 

expressed S pili instead of type 1 pili, when grown under standard type 1 pilus-inducing 

conditions (Hultgren et al., 1986). These strains were robust colonizers of C3H/HeN mice, 

indicating that their increased expression of S pili under inoculum conditions did not prevent 

their urovirulence. In the UTI89 strain, expression of S and type 1 pili is inversely controlled so 

that blocking expression of one pilus type induces the expression of the other (Wurpel et al., 

2013). Further, differences in type 1 pili regulation are seen in the ways that UAEC regulate their 

motility and pili expression relative to model B2 UPEC strains. For example, increased 

expression of type 1 pili is inversely correlated with expression of flagellar genes in UTI89 

(Lane et al., 2007). Here, we found that the non-B2 strains exhibiting high expression of type 1 

pili also had increased motility, indicating that the networks mediating coordinated regulation of 

flagella and type 1 pilus expression may differ between B2 and non-B2 UAEC strains. Taken 

together, our findings implicate the divergence of transcriptional and regulatory networks as a 
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key driver of UPEC pathogenesis and underscore the importance of examining transcriptional 

regulation of genes in addition to their patterns of carriage to more fully understand the factors 

underlying bacterial virulence and host-pathogen interactions. Moreover, our findings suggest 

that transcriptional responses to the host environment likely also diverge among UAEC strains, 

and that to gain richer insights into the determinants of UTI risk and outcome, we need a better 

understanding of how gene expression differences during infection influence bacterial 

physiology and interactions with the host. 

2.4.5 Translation of findings to human disease 
The progression and outcome of a UTI is determined not only by the virulence potential 

of the infecting bacteria, but by myriad factors in the host environment. Mouse models of UTI 

recapitulate the histological markers of human UTIs and multiple mouse models have been 

developed that each reflect a portion of the diversity of UTI pathology seen in the clinic 

[reviewed in (Barber et al., 2016; Carey et al., 2016)]. Consistent with their ability to cause UTIs 

in humans, many of our UAEC strains were able to elicit key hallmarks of human pathogenesis 

in mouse models of UTI, including acute cystitis, the formation of IBCs, the development of 

chronic cystitis, and persistence in quiescent intracellular reservoirs. Importantly, we found that 

the ability of certain UAEC strains to cause acute cystitis in the C3H/HeN mice correlated with 

markers of increased UTI severity in patients. Specifically, UAEC strains that exhibited an 

increased ability to cause acute cystitis in the C3H/HeN mouse model were associated with an 

increase in leukocytes and lipocalin 2 in the urine of the patients from which the strains were 

derived. Lipocalin 2 is known to be associated with increased activation of the immune response 

in human UTIs (Steigedal et al., 2014). Additionally, transmigration of neutrophils across the 
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bladder epithelium, which results in an increase in leukocytes in the urine, has been associated 

with UTI severity and recurrence (Hannan et al., 2014).  

2.4.6 Diversity in host-pathogen interactions during UTI 
Our study suggests that each infection by a single UAEC strain in a single mouse 

background captures only a small part of the complex landscape of factors that govern UTI 

progression and outcome. Specifically, we found that, while most UAEC strains had similar 

success colonizing the bladder of C57BL/6 and C3H/HeN mice, two phylogenetically and 

genetically diverse strains were able to colonize the C3H/HeN bladder much better than the 

C57BL/6 bladder, indicating that some feature of the C57BL/6 bladder environment presents a 

specific barrier to colonization that could be overcome by some strains but not others. These 

findings suggest that the barriers to infection vary among mouse backgrounds as do the 

capacities of different UAEC strains to overcome these barriers. Thus, the outcome of each UTI 

is determined by the compatibility of bacterial virulence and host susceptibility factors involved 

in that infection. Gaining a more comprehensive understanding of the factors that determine UTI 

risk and outcome will require studies of urovirulence using more combinations of UAEC isolates 

and mouse backgrounds that better represent the diversity of bacterial urovirulence potentials and 

host susceptibilities. 

2.5 Materials and Methods 
2.5.1 Study design 

This study was conducted to identify conserved bacterial features that enabled E. coli 

bladder colonization and virulence and determine if these features enabled virulence in all host 

backgrounds. In a previous study that was approved by the Human Subjects Review Committee 

at the University of Washington, 104 women aged 18-49 years with a self-reported history of 
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UTI and a current diagnosis of acute cystitis were enrolled in the analysis cohort and self-

collected mid-stream urine samples daily for 90 days (d), as described previously (Czaja et al., 

2009). Women were recruited from University of Washington Health Centers in Seattle, 

Washington. Exclusion criteria for this cohort included known anatomic of functional 

abnormalities of the urinary tract, chronic illness, pregnancy, and development of acute 

pyelonephritis (Czaja et al., 2009). From this cohort, a total of 29 women experienced a rUTI 

within the 90d study window and provided urine samples containing urine-associated E. coli 

(UAEC). We examined strains isolated from the first 14 of these 29 women, resulting in a total 

of 43 UAEC isolates collected throughout the study (Figure S1 and Table S2). These isolates 14 

isolates collected at enrollment, 18 isolates collected during rUTI, and 11 isolates from daily 

urine samples collected at home by the patients in the days preceding the diagnosis of UTI 

(Table 1). A single E. coli isolate was collected from each urine sample using selective plating 

techniques (Czaja et al., 2009), and all isolates were stored at -80ºC. When possible, levels of 

white blood cells and lipocalin 2 were measured in the urine samples, as described previously 

(Czaja et al., 2009). E. coli rUTI was defined based on: i) the presence of E. coli in the urine at 

levels ≥102 CFU/mL and ii) medical diagnosis of a UTI based on symptoms of acute cystitis, 

such as foul-smelling urine, increased frequency of urination, and/or urgency to urinate.  

2.5.2 Additional strains used in this project 
The model strains MG1655, Sakai and Nissle 1917 were derived from pure cultures and 

stored in glycerol at -80ºC. As described in a previous study, gut-associated E. coli were isolated 

from human feces collected from healthy adults (Gordon et al., 2005; Snyder et al., 2012). 

Briefly, single colonies were identified as E. coli with isolation plating on differential media and 

glycerol stocks were stored at -80ºC.  
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2.5.3 DNA extraction 
UAEC isolates were grown shaking overnight at 37ºC in LB and then subcultured 1:100 

into fresh LB for exponential growth (OD600 of ~0.4). Bacterial cells were then pelleted, and their 

DNA was extracted using the Wizard DNA Purification Kit (Promega Corp) following 

manufacturer’s instructions. DNA quality and quantity was measured using the NanoDrop1000 

(Thermo Scientific) spectrophotometer and gel electrophoresis. 

2.5.4 Genome dataset construction 
A multiplex library of paired-end 101bp sequencing reads was produced using the 

Illumina HiSeq 2000 platform with a 300bp insert size. This library was demultiplexed and 

unordered contigs were assembled de novo using Velvet v1.2 (Zerbino and Birney, 2008)(Table 

S14). A preliminary phylogeny was constructed using in silico multi-locus sequence typing 

(Enright and Spratt, 1999) to identify closely-related reference E. coli genomes, which were then 

used to order each strain’s contigs using Mauve v2.3.1 (Rissman et al., 2009). In order to 

contextualize the UAEC genomes, we constructed a database containing the 43 draft UAEC 

genomes as well as 46 closed E. coli genomes from the National Center for Biotechnological 

Information (NCBI) (Table S3). All genomes were re-annotated using the Broad Institute’s 

prokaryote annotation pipeline (Lebreton et al., 2013). 

2.5.5 Orthogroup clustering 
Orthogroup clustering was done using the reciprocal best BLAST hits method (Salichos 

and Rokas, 2011). All-vs-all BLAST searches were performed between the genes in all 89 

genomes. In cross-genome BLAST searches, only the top 5 best hits were captured. In self-

searches, up to 1000 top matches were captured. The resulting BLAST hits were clustered using 

single-linkage clustering (transitive closure). Paralogs were identified by searching the self-

genome BLAST results, identifying gene pairs (A, B) where gene A is in an ortholog cluster, and 
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gene B matches A with a BLAST score that exceeds that of gene A with any of its cross-species 

orthologs. 

2.5.6 Phylogenetic analysis  
A single-copy core genome was concatenated from 2746 orthogroups shared between all 

89 E. coli genomes and aligned using MUSCLE (Edgar, 2004). A phylogenetic tree was then 

constructed with RAxML and the GTRCAT model (Stamatakis et al., 2005). Bootstrapping was 

performed using RAxML’s rapid bootstrapping algorithm (Stamatakis, 2006). To identify 

clusters of highly related strains, we calculated the number of SNPs differing between each pair 

of strains between the core genes in our concatenated single-copy core orthogroup alignment 

using custom scripts. These SNP counts were then used in unsupervised hierarchical clustering to 

identify groups of highly related strains. Clustering was performed with the Euclidean distance 

metric and the Complete clustering algorithm and visualized with the package pheatmap in R. 

Using this clustergram, we defined “core clonal groups” as collections of UAEC isolates with 

<1.5x10-5 SNPs/bp in pairwise alignments that were isolated from the same patients. Within our 

dataset, we identified same-strain rUTI as events caused by strains that: i) were from the same 

core clonal group (as described above); ii) were isolated at time of UTI (either enrollment or 

recurrence), and; iii) were isolated from the same patient. 

2.5.7 Global gene content analysis 
Gene content analysis was performed using orthogroup clusters from representative 

UAEC strains that were robust or deficient colonizers of C3H/HeN mouse bladders. Using 

stringent criteria, we searched for orthogroups present in all members of one category (i.e. either 

robust or deficient colonizers), and absent in all members of the second category. For a more 

relaxed comparison, we searched for orthogroups present in >80% of one group and <20% of the 
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other group. Further, we also identified the gene categories (Pfam (Finn et al., 2008) and KEGG 

(Ogata et al., 1999)) most expanded or reduced when comparing groups of strains by using 

Fisher’s Exact test with multiple hypothesis test correction. In order to select for gene categories 

uniformly enriched in one set of strains, we additionally required that the standard deviation of 

copy number in each set of strains be less than the difference between the mean of the copy 

number in the two sets of strains. Further, a large percentage of these variable annotations are 

associated with transposon or phage genes, which are difficult to assemble using de novo 

methods and prone to errors in their copy number within draft genomes. Therefore, we removed 

Pfam domain predictions associated bacteriophages or transposons. 

2.5.8 Modeling of Type I error rate in gene content analysis 
To estimate the number of genes that would be enriched in robust and deficient UAEC 

due to random chance, we performed a repeated permutation experiment (Sefik et al., 2015) 

where we randomly assigned 6 robust and deficient UAEC strains and UTI89 (for a total of 17 

strains) into sets of 13 and 4 strains (to match the distribution of strains in the robust and 

deficient groups) and compared the gene carriage of these random groupings using the relaxed 

definition of enrichment. From 1000 permutations, the mean number of hits between the 

randomly assigned groups was 6.6 genes. Notably, a limited sample size in comparative 

genomics is likely to result in an overestimation of genetic enrichment (i.e. low N is usually 

associated with a higher rate of Type I errors). 

2.5.9 Selection of representative UAEC used in phenotypic and colonization 
assays 

Representative UAEC strains were selected to represent the genomic and patient diversity 

in our collection. Thus, we selected only one isolate from each clonal strain group in each patient, 

which resulted in a total of 21 unique UAEC strains represented in these analyses. There were no 
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significant differences in guinea pig red blood cell hemagglutination, swimming motility, or curli 

and biofilm production phenotypes between strains in the same clonal group from the same 

patient (data not shown). 

2.5.10 Targeted interrogation of virulence factor carriage, type 1 pilus and 
flagella genes 

A total of 31 putative urovirulence factor (PUF) gene sequences were selected for this 

analysis based on: i) their enrichment in UPEC isolates collected from women with UTIs relative 

to other E. coli, ii) their impact on urovirulence in mouse models of cystitis, and iii) their use as 

genetic markers in studies of UPEC virulence in previous research (Table S4). The distribution 

of putative PUFs in our clinical E. coli isolates was determined using custom BLAST searches 

using the 31 PUF gene sequences as queries against a database containing the draft genome 

sequences of our clinical E. coli isolates and the reference genome of UTI89. A “hit” was 

considered as any genome sequence that matched the entire length of the query sequence with 

>75% identity. As a control to prevent false negatives in the BLAST search, DNA sequencing 

reads from each representative UAEC isolate were mapped against a reference sequence 

constructed by concatenating all the PUF gene sequences with 100 N’s added to the gene 

sequences to separate the concatenated genes using Geneious v6.1.7 (Kearse et al., 2012). Any 

PUF gene that was completely covered by the DNA sequencing reads to a depth of 4X was 

considered a “hit”. This same protocol was used to investigate the type 1 pili genes in the fim 

operon and the genes mediating flagella assembly and function. A binary hit matrix was 

constructed using the results from this analysis, where each hit for each PUF within each strain 

was counted as a 1 and all other data points were set to 0. Two-dimensional cluster analysis on 

this matrix was performed and visualized in the R software package using complete linkage 

clustering on the Jaccard Distance metric and ggplot2 for visualization.  
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2.5.11 Construction of antibiotic resistance marked strains 
A chloramphenicol resistance marker was integrated into the HK-site of strains 41.4p and 

9.1a, while a kanamycin resistance marker was integrated into the HK-site of 9.2p using the λ 

red recombinase system (Datsenko and Wanner, 2000). For strain 41.1a, a spectinomycin 

resistance marker was integrated into the attB site by first transforming in the integrase 

expressing vector pINT-TS followed by integration of pPSSH10 containing a spectinomycin 

resistance cassette, as described previously (Wright et al., 2005).  

2.5.12 Mouse infections 

Single acute infections 
~1x108 bacteria suspended in PBS were inoculated into lightly anesthetized 7-8 week old 

female C3H/HeN or C57BL/6 mice transurethrally in a 50µl injection (Conover et al., 2015; 

Hung et al., 2009). At 24 hpi bladders and kidneys were harvested from these mice and 

homogenized in sterile PBS. Homogenates were serially diluted and plated for bacterial 

enumeration. 

Competitive acute infections 
For competitive infections, strains were inoculated with equal CFU of the two strains 

transurethrally into 7-8 week old female C3H/HeN mice. Urines were collected at the indicated 

days post-infection and plated on duplicate LB plates containing spectinomycin, kanamycin or 

chloramphenicol to enumerate CFU of each strain. For competitive infections, strains were 

differentially marked with antibiotic resistance cassettes. Competitive indexes were calculated 

based on the ratio of the supplanting strain (either 9.2p or 41.4p) over the initial strain (either 

9.1a or 41.1a) for each respective competition. 

Single chronic infections 
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7-8 week old female C3H/HeN mice were transurethrally inoculated with 1x108 UAEC 

and urines were collected at the denoted time points for 28 days for determination of bacteriuria. 

After 28 days the bladders and kidneys were harvested, homogenized and plated for bacterial 

enumeration. 

Competitive chronic infections 
Strain TJH2 (UTI89∆PAI IIUTI89) was constructed as previously described (Hannan et al., 

2008). 7-8 week old female C3H mice were transurethrally inoculated with an equal numbers of 

TJH2 and UTI89 WT together totaling ~1x108 CFU. Urines were collected at indicated time 

points for 28 days for determination of bacteriuria and to track chronic competition. After 28 

days, bladders and kidneys were harvested, homogenized and replica plated on LB plates 

containing the appropriate antibiotics for strain enumeration. Competitive indexes were 

calculated based on the ration of TJH2 over UTI89 WT. 

Enumeration of intracellular bacterial community formation 
7-8 week old female C3H/HeN mice were inoculated with ~1x107 CFUs of the indicated 

strain. Mice were sacrificed 6 hpi and bladders were bisected and splayed for fixation in 4% 

paraformeldahyde for 1.5 hours and staining with rabbit α-E. coli antibody detected with Alexa 

Fluor 488 labeled goat α-rabbit secondary antibody. Bladder cells were counter-stained with 

Alexa Fluor 594 labeled wheat germ agglutinin. 

Enumeration of persistent bladder reservoirs 
To assess reservoir populations, 6 week old C57BL/6 mice purchased from were 

transurethrally inoculated with 50 µl of PBS containing ~1x107 CFU of the indicated UAEC 

strains. Urine titers were monitored for 2 weeks by dilution plating of collected urines on 

MacConkey agar plates, at which point the mice were sacrificed and bladder and kidney tissues 

were homogenized and bacterial burdens determined by dilution plating. Mice that developed 
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chronic infection, as indicated by persistent bacteriuria (>104 CFU/ml urine), or that had kidney 

abscesses at sacrifice (determined visually) were omitted from the analysis as the bladder 

bacterial burdens of these mice are not conclusively due to reservoir populations (Mysorekar and 

Hultgren, 2006). 

2.5.13 Phenotypic analyses 

Guinea pig hemagglutination assays 
Clinical UAEC were grown under type 1 pili-inducing conditions as described. Bacteria 

were harvested and resuspended in PBS and normalized to an optical density at 600nm (OD600) 

of 10 in 100 uL (~108 CFU) and then serially 2-fold diluted in either PBS or PBS with 4% 

methyl-α-D-mannopyranoside and incubated overnight at 4ºC with equal amounts of guinea pig 

erythrocytes (resuspended to an OD640 of 2 in PBS)(Hultgren et al., 1986). In HA assays, the 

titers indicate the maximum dilution still capable of agglutinating guinea pig erythrocytes 

(Greene et al., 2014). Methyl-α-D-mannopyranoside acts as a competitive inhibitor of type 1 

pilus-mediated adhesion, abolishing agglutination by type 1 pili. Comparison of the HA titers of 

the same bacterial strain incubated with and without mannose analogs is used to measure the 

MSHA of bacteria, corresponding to type 1 pili binding. The results represent a mean average of 

2 technical replicates in each of 2-4 biological replicates. 

Swimming motility assays 
Swimming motility was assessed after culture in in our inoculum conditions and 

normalization to an OD600 of 1 in 1mL. A sterile inoculating loop was dipped into the sample and 

then stabbed into the center of 12mL of 0.25% agar LB plugs in six-well plates, as described 

previously (Greene et al., 2014). Inoculated plates were incubated for 6h at 37ºC and visually 

examined the plates for evidence of non-swimming motility, such as swarming. Swimming 
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motility was determined as the mean of the diameter of the spread of swimming bacteria in 3 

technical replicates. 

2.5.14 RNA-Seq experiments 

RNA-Seq data generation 
In three separate experiments, RNA was extracted from select UAEC strains after growth 

in conditions known to induce type 1 pili expression and prepare E. coli strains for inoculation 

into mice (see Mouse Infections). Bacteria were then pelleted and resuspended in TRIzol 

(Invitrogen), preheated to 65ºC, and flash frozen in an ethanol-dry ice bath. Cells were lysed 

using 0.1mm Silica-Zirconium beads (BioSpec Products), and the supernatant was transferred to 

new tubes containing 100% ethanol. RNA was then extracted from this mixture using the Direct-

ZOL RNA MiniPrep Kit (Zymogen) following manufacturer’s instructions. DNA was removed 

using the TURBO DNase Kit (Ambion), and the RNA was concentrated using the RNA Clean 

and Concentrator Kit (Zymo Research), both following manufacturer's instructions. RNA 

quantity and quality was measured using the BioAnalyzer chip (Ambion). Illumina cDNA 

libraries were generated using the RNAtag-Seq protocol as described (Shishkin et al., 2015). 

Briefly, 1ug of total RNA was fragmented, depleted of genomic DNA, and dephosphorylated 

prior to its ligation to DNA adapter carrying 5’-AN8-3’ barcodes with a 5’ phosphate and a 3’ 

blocking group. Barcoded RNAs were pooled and depleted of rRNA using the RiboZero rRNA 

depletion kit (Epicentre). These pools of barcoded RNAs were converted to Illumina cDNA 

libraries in 3 main steps: (i) reverse transcription of the RNA using a primer designed to the 

constant region of the barcoded adaptor; (ii) degradation of the RNA and ligation of a second 

adaptor to the single-stranded cDNA; (iii) PCR amplification using primers that target the 

constant regions of the 3’ and 5’ ligated adaptors and contain the full sequence of the Illumina 

sequencing adaptors. cDNA libraries were sequenced on Illumina HiSeq 2000. 
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RNA-Seq data analysis 
For the analysis of RNAtag-Seq data, reads from each sample in the pool were identified 

based on their associated barcode using custom scripts, and up to 1 mismatch in the barcode was 

allowed with the caveat that it did not enable assignment to more than one barcode. Barcode 

sequences were removed from reads, and the reads from each sample were aligned to genes in 

their cognate strain using BWA (Li and Durbin, 2010). To enable comparison of gene expression 

across different strains, we examined 3,516 “core transcriptome genes” defined as genes that 

were present in UTI89 and 9/10 of the clinical UAEC as determined by clustering of orthologous 

gene sequences. These genes were assigned the gene ID of their UTI89 homologues and all other 

groups of homologous genes were assigned a unique arbitrary ID. The number of reads aligning 

to genes corresponding to each ID was then calculated for each strain, with gene IDs not 

represented in a particular strain assigned the minimum value of the rest of the strains. 

Differential expression analysis was conducted with raw reads counts per gene using DESeq 

(Anders and Huber, 2010). We normalized the mapped read count by reads per million (RPM) to 

get normalized transcript abundance and normalized transcript abundance by transcripts 

per million (TPM). The expression level for each gene was estimated by averaging normalized 

read counts across triplicate samples. We excluded genes that had average expression levels that 

fell below the first quartile across 11 strains, and the remaining 2,637 genes were used in 

principle component analysis. Linear regression was performed on log2 transformed colonization 

measurements (i.e. CFU/bladder) and normalized individual gene expression levels. P-values of 

the linear regression were adjusted by Benjamini-Hochberg method to correct for multiple 

testing.  

2.5.15 Statistical analysis 
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Colonization groups were defined based on the median value of mouse bladder 

colonization by UAEC strains at 24 hpi. Repeated non-parametric Mann-Whitney U tests were 

used to identify statistically significant differences in PUF gene carriage, hemagglutination assay 

titers, and swimming motility between colonization groups. Further, repeated Mann-Whitney U 

tests were used to identify differences in PUF gene carriage between clades, colonization 

efficiency of different inbred mouse strains by UAEC isolates, and persistence of quiescent 

intracellular reservoirs by UAEC in C57BL/6 mice. Correlations between median bladder burden 

in C3H/HeN mice and PUF gene carriage, hemagglutination assay titer, or motility in UAEC 

strains was determined using the Spearman rank correlation test in separate analyses. UAEC 

were clustered into related groups using unsupervised hierarchical clustering of SNP distances 

defined through pairwise alignments of the core genome. Further, unsupervised clustering was 

used to identify UAEC that shared similar carriage of PUF genes. A Hypergeometric 

Distribution test was used to compare enrichment of clade B2 strains causing same-strain rUTI 

relative to the distribution of B2 strains with our collection of clinical isolates. Differences in 

expression of core genes were measured using the DESeq algorithm. Principle component 

analysis (PCA) was used to visualize similarities in core gene expression and linear regression 

analysis was used to correlate these differences in gene expression to median bladder burden at 

24 hpi in C3H/HeN mice. Type I error modeling was established with repeated permutation 

analysis with 1000 replicates and counts of gene presence/absence and is described in detail in 

the Supplementary Materials. Where p-values could be assigned, a threshold of significance was 

established at P<0.05 after multiple hypothesis testing correction (Padj<0.05), except for the 

linear regression analysis of gene expression to bladder burden, which used a significance 

threshold of Padj<0.1. 
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2.6 Figures 

2.6.1 Figure 1. Phylogenetic distribution of UAEC strains from rUTI patients. 

 

12.4r
12.3r
12.1a*
12.2p
SE15
D-i14
ED1a
D-i2
CFT073
ABU83972
56.3r*
56.2r
17.3r
17.1a*
17.2p
LF82
NRG857C
41.1a*
41.3r
41.2p
APECO1
31.3r*
S88
IHE3034
5.2p
UM146
UTI89
5.3r*
34.1a*
34.2r
536
35.2p
35.1a*
35.3r
20.2r
20.1a*
20.3r
21.1a*
21.3r
21.2p
26.1a*
26.3r
26.2p
E2348-69
IAI39
CE10
SMS-3-5
9.1a*
2.2r*
CB9615
RM12579
EC4115
TW14359
Xuzhou21
EDL933
BL21-DE3
REL606
DH1
K12-MG1655
W3110
DH10B
BW2952
11.2p
11.3r
11.1a*
H10407
UMNK88
ATCC8739
2.1a*
HS
41.4p*
41.5r
APECO78
W
12009
E24377A
9.3r*
11128
11368
56.1r*
5.1a*
31.1a*
31.2p
9.2p*
SE11
2011C-3493
2009EL-2071
2009EL-2050
55989

B1
A

E
D

B2

7
7

3
2

9
2

7
9

6
6

7
9

5
7

8
8

9
5

3
8

8
9

6
5

7
2

7
0

7
1

9
3

8
3

0.01

UAEC sequenced in this study

Reference E.  coli  (UPEC and non-UPEC)
* Representative Strains

Model UPECC
la

de



	

 
 

53 

The phylogenetic relatedness of the urine-associated E. coli (UAEC) strains (n=43, taxon labels in red) was 
contextualized within the broader phylogeny of reference E. coli strains (n=46, taxon labels in black) by comparing 
the single-copy core genes of the strains using the RAxML algorithm. Reference E. coli strains that were associated 
with urinary disease (e.g. cystitis, pyelonephritis, or asymptomatic bacteriuria) are in bold. Asterisks indicate UAEC 
strains chosen as representative isolates for their clonal clusters (Fig. S2B). Bootstrap supports are indicated at 
internal nodes, and bootstrap values >95 have been removed. UAEC strains were found in four out of five E. coli 
clades (indicated by red and purple bars on the left). Black arrows indicate model UPEC strains commonly used in 
UTI research. 
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2.6.2 Figure 2. Carriage of putative urovirulence factors (PUFs) is enriched in 
both UAEC and non-UAEC strains from the B2 clade. 

 
(A) Comparisons between indicated groups were performed using the Mann-Whitney U test. Significant differences 
were calculated for each group and significant results are indicated as: ***, P<0.001; ****, P<0.0001. (B) Clinical 
UAEC strains and reference E. coli strains that were not associated with urinary disease (non-UAEC) (x-axis) were 
examined for the presence of 31 PUF sequences (y-axis) using BLAST and alignment-based searches. The binary 
presence of PUFs (indicated by black squares) was tallied for each strain and for each PUF (indicated in parentheses 
on both axes). Two-dimensional hierarchical clustering identified clusters of PUFs that tended to co-occur in UAEC 
strains (dendrogram along the y-axis) and showed that PUF carriage was associated with phylogeny (dendrogram 
along the x-axis, phylogeny indicated in column labeled ‘Clade’). 
  

****
****

***
****

UAEC non-UAEC UAEC non-UAEC
0

10

20

30

Strain Group

Pu
ta

tiv
e U

ro
vir

ul
en

ce
 

Fa
ct

or
 Sc

or
e

Clade B2 non-B2

Clade

Strain

non-B2
Clade B2UAEC

non-UAEC

A. B.

26.1a (16)
41.1a (20)
5.3r (18)
U

M
146 (18)

34.1a (18)
35.1a (16)
20.1a (16)
21.1a (16)
APEC_O

1 (19)
S88 (17)
N

RG
_857C (16)

12.1a (14)
SE15 (10)
31.3r (12)
IH

E3034 (14)
LF82 (10)
41.4p (7)
H

10407 (4)
5.1a (3)
11.1a (4)
31.1a (4)
9.2p (3)
9.3r (2)
56.1r (2)
2.1a (2)
W

 (2)
H

S (2)
E24377A (2)
ATCC_8739 (2)
BL21_D

E3 (2)
12009 (4)
W

3110 (3)
SE11 (3)
REL606 (3)
K12_M

G
1655 (3)

D
H

1 (3)
APEC_O

78 (3)
BW

2952 (3)
D

H
10B (2)

CB9615 (4)
RM

12579 (4)
Xuzhou21 (5)
TW

14359 (5)
EC4115 (5)
ED

L933 (5)
E2348_69 (6)
2.2r (6)
U

M
N

K88 (3)
SM

S−3−5 (12)
11128 (8)
11368 (10)
55989 (8)
2011C_3493 (7)
2009EL_2050 (7)
2009EL_2071 (7)
17.1a (22)
56.3r (24)
ED

1a (12)
CE10 (12)
9.1a (13)

tsh (1)
cvaC (4)
ibeA (11)
iroN (18)
vat (17)
sfaH (9)
hek (14)
hlyA (12)
cnf1 (11)
papGIII (11)
ompT (41)
feoB (60)
fimH (54)
traT (18)
fyuA (30)
irp2 (30)
malX (26)
chuA (31)
sit (21)
usp (21)
bmaE (0)
draB (0)
picU (7)
iha (17)
iucC (16)
iutA (16)
focH (3)
cdtB (4)
sat (4)
ireA (6)
papGII (7)



	

 
 

55 

2.6.3 Figure 3. Increased PUF carriage does not correlate with increased 
colonization efficiency. 

 
(A) The colonization efficiencies of 21 representative UAEC strains and the model strain UTI89 from indicated 
clades were tested in C3H/HeN mice. Bacteria were enumerated from individual harvested bladders at 24 hours 
post-infection (hpi) (black boxes). Each UAEC strain was categorized as: “deficient” (n=4, blue stippled outline) at 
<104 CFU/bladder, “variable” (n=5, orange outline) above and below 104 CFU/bladder, or “robust” (n=12, green 
outline) at >104 CFU/bladder. The black broken horizontal line represents the limit of detection of bacteria. Data 
presented represent the median (gray bar) of mouse inoculations for each strain. (B) No enrichment of PUF carriage, 
as measured by PUF scores, was found in comparisons of robust, variable or deficient colonizer strains. 
Comparisons were performed with Mann-Whitney U test; horizontal solid bars indicate median values. (C) Using 
Spearman’s rank correlation (ρ statistic indicated at the top), there was no significant correlation between carriage of 
PUFs and bladder burden with UAEC strains at 24 hpi. Squares indicate the median bladder colonization of B2 (red) 
or non-B2 (purple) UAEC strains. 
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2.6.4 Figure 4. Both B2 and non-B2 UAEC strains cause chronic cystitis in 
mice. 

 
Incidence of chronic cystitis, defined as persistent high-titer bacteriuria (>104 CFU/mL urine), high-titer bladder 
colonization (>104 CFU/bladder) and chronic inflammation at 28 days post-infection (dpi), was measured for a 
subset of B2 and non-B2 UAEC strains infecting C3H/HeN mice. Both B2 and non-B2 UAEC strains could cause 
chronic cystitis in mice. PUF scores and incidence of chronic cystitis are indicated for each strain. Horizontal bars 
indicate median values. 
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2.6.5 Figure 5. PUF carriage does not increase competitive advantage during 
co-infection. 

 
UAEC strains isolated from two patients (9 and 41) with different strain-induced rUTIs were differentially marked 
with antibiotic resistance markers. C3H/HeN mice were then coinfected with the supplanting strain (9.2p or 41.4p) 
at an equal dose with their enrollment strain from the same patient (9.1a or 41.1a, respectively). A competitive index 
(CI) was calculated from the ratio of the supplanting strains over their enrollment strains in the urine from each 
mouse at 24 hpi. Clades and PUF scores are indicated for each strain. Horizontal bars indicate median values. 
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2.6.6 Figure 6. Differential expression of core genes by UAEC strains 
distinguishes robust from deficient colonizers. 

 
(A) Principle component analysis (PCA) was used to cluster UAEC strains based on their expression of 3,340 core 
genes under type 1 pili-inducing culture conditions used to culture bacteria before inoculation into mouse bladders. 
B2 strains separated from non-B2 strains along PC1, whereas robust colonizers separated from deficient colonizers 
along PC2. Linear regression identified the expression of 42 core genes in type 1-inducing conditions as correlated 
to bladder bacterial burden at 24hpi in C3H/HeN mice after correction for false discovery (P-adjusted<0.1). These 
42 genes included pathways genes mediating nutrient uptake, such as lamB (B) and chemotaxis, such as and tar (C), 
whose correlations to bladder burden are visualized here as representative examples. Data presented represent 
averages derived from three independent experiments that were corrected for variance in read depth between 
samples and gene length. 
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2.6.7 Figure 7. Colonization efficiency by UAEC strains varies between mouse 
models. 

 
Select UAEC strains were inoculated into C3H/HeN mice (black squares and light gray bars) and C57BL/6 mice 
(black circles and dark gray bars). Bacteria were enumerated from individual harvested bladders at 24 hpi (black 
squares and circles). Median values for each infection are given (gray bars). Each UAEC infection of the two mouse 
strains was categorized separately as “deficient” (blue stippled outline), “variable” (orange outline), or “robust” 
(green outline). Bladder colonization between C3H/HeN and C57BL/6 mice was significantly different for strains 
31.1a and 41.1a by Mann-Whitney U test with **, P<0.01. 
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2.7 Tables 
2.7.1 Table 1. Summary of 43 UAEC isolates from women with recurrent 
UTIs. 
Isolation Time Point Number of Isolates 

Enrollment* 14 
rUTI* 18 
Prior to recurrence** 11 
Total 43 

* Diagnosed UTI 

** No UTI diagnosis 
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2.8 Supplemental Figures 
2.8.1 Figure S1. Sample collection and patient time line. 

 
(A) In a previous study, urine samples were collected from a cohort of 104 women with frequent rUTI (defined as 
≥3 UTIs in the previous year) and E. coli was isolated . A subset of 29 patients had rUTI events during the study. 
We examined the first 14 of these patients, resulting in 43 isolates collected during enrollment (a), rUTI episodes (r) 
and prior to recurrence (p). These isolates were subjected to whole genome sequencing and added to a collection of 
46 reference genomes that were representative of the rest of the E. coli phylogeny for subsequent analysis. Red 
boxes and orange circles represent samples collected at the clinic or at home, respectively, and the numbers inside 
the shapes indicate the number of samples collected during those different time points. Brackets under the time line 
indicate the average days between sample collections. (B) Sample collection dates with positive E. coli cultures are 
plotted from days since the enrollment UTI (circles) to recurrences with diagnosed UTIs (squares). Positive E. coli 
samples collected prior to recurrence were collected at home in the days prior to a UTI diagnosis (triangles). The 
timing of rUTI relative to the date of enrollment varied for each patient. After treatment for an initial infection, all 
patients had seven days with no bacteriuria. 
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2.8.2 Figure S2. Measurement of UAEC gene carriage and nucleotide diversity 
in core genome. 

 
(A) Orthogroup clustering (see Methods) was used to identify the distribution of orthologous genes in reference E. 
coli strains (gray text) and UAEC sequenced as part of this study (red text). Core genes (salmon-pink bars) were 
defined as orthologous groups that were present in every strain in the data set and comprised 50-75% of each strain’s 
genome. Variable genes (turquoise bars) were defined as orthologous groups that were present in one or more strains, 
but not in all strains. (B) Pairwise alignment of all 43 UAEC isolates was performed using MUSCLE and the 
number of SNPs from each alignment was used to hierarchically cluster (see the dendrogram on the y-axis) the 
strains into 21 “core clonal groups” (black numbers below the x-axis) of 1-4 isolates each. Representatives (in red 
text) were selected from each core clonal group by the quality of their draft genome. 
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2.8.3 Figure S3. Kidney colonization by B2 and non-B2 UAEC. 

 
The colonization efficiencies of representative UAEC and UTI89 were tested in C3H/HeN mice. Bacteria were 
enumerated from harvested kidneys at 24 hpi (black boxes). Kidney colonization largely mirrored bladder burden at 
24 hpi in UAEC strains. Strains were separated by clade membership (colored text at the top), ordered by ascending 
mean bladder bacterial burden at 24 hpi (Fig 3A) and defined as Deficient (dotted, blue outline), Variable (solid, 
orange outline) and Robust (solid, green outline) colonizers based on their bladder colonization phenotypes. The 
broken line represents the limit of detection of bacteria. Data from individual mouse inoculations are shown in 
squares and the gray bar indicates the median values. 
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2.8.4 Figure S4. Gut-associated E. coli are poor colonizers in the C3H/HeN 
mouse models of UTI. 

 
A total of 10 gut-associated E. coli that are not associated with urinary disease were tested for their colonization 
efficiency in C3H/HeN mice. UTI89 was included to represent robust colonizer E. coli strains. Bacteria were 
enumerated from individual harvested (A) bladders and (B) kidneys at 24 hpi (black boxes). Strains were separated 
by clade membership (colored text at the top), and ordered by their median colonization of the bladder. Each strain 
was categorized as “deficient”, “variable”, or “robust” based on the strain median colonization of the bladder using 
the same parameters as for the UAEC strains (Fig. 3a). The broken line represents the limit of detection of bacteria. 
Data from individual mouse inoculations are shown in squares and the gray bar indicates the median values. 
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2.8.5 Figure S5. IBC formation by B2 and non-B2 UAEC. 

 
A total of 7 UAEC strains were inoculated into 3-5 C3H/HeN mice each. At 6 hpi bladders were harvested, fixed, 
stained with an α-E. coli antibody and counter-stained with wheat-germ agglutinin. Of the 7 strains tested, only 
strain 11.1a failed to produce IBCs in any mouse at this time point while the other non-B2 and B2 UAEC were 
competent for IBC formations. 
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2.8.6 Figure S6. Carriage of PAI IIUTI89 enhances competitive fitness in 
chronic UTI in C3H/HeN mice. 

 
(A) TJH2 (UTI89∆PAI IIUTI89), which lacks the PUF genes papGIII, hek, cnf1, and hlyA, was co-infected with 
UTI89 and bacterial titers were enumerated from the urine at indicated days post-infection (dpi). Competitive 
indexes (CI) were calculated as the ratio of UTI89 (red) or TJH2 (blue) over UTI89, normalized to the ratio of the 
actual inoculum titers. UTI89 WT was able to outcompete TJH2 at chronic time points (≥7 dpi) but did not display 
competitive advantages during acute time points (≤3 dpi) (B) After 28 dpi, bladders and kidneys were harvested and 
bacteria were enumerated to calculate CIs as above. UTI89 WT was able to dramatically outcompete TJH2 as 
measured by Mann-Whitney U test with **, P<0.01. 
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2.8.7 Figure S7. Hemagglutination is correlated to colonization efficiency in 
both B2 and non-B2 UAEC. 

 
Hemagglutination (HA) titers, which are a measure of UPEC piliation, including type 1 and S pili, were calculated 
for each representative UAEC strain in the indicated clade using guinea pig erythrocytes in PBS (A) or 2% methyl 
α-D-mannopyranoside (B). Data presented represent median values (gray bars) derived from three independent 
experiments (black squares). Strains were categorized by clade (colored text) and ordered by mean bladder burden at 
24 hpi (Fig 3a) into deficient (blue, dotted outline), variable (orange, solid outline), and robust (green, solid outline) 
colonizers. (C) Robust colonizers have significantly higher median HA titers than either variable or deficient 
colonizers, as measured by Mann-Whitney U test with **, P<0.01. Horizontal bars indicate median values for each 
group and colors indicate either B2 (red) or non-B2 strains (purple) (D) Median HA titer is significantly correlated 
to bladder burden at 24 hpi in C3H/HeN mice, as measured by Spearman’s rank correlation (ρ statistic indicated at 
the top). Squares indicate individual B2 (red) or non-B2 (purple) UAEC. 
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2.8.8 Figure S8. Differentially expressed genes in UAEC relative to UTI89. 

 
RNA-Seq was performed on a subset of UAEC grown under type 1 pilus-inducing culture conditions used for mouse 
inoculation. RNA-Seq data were then compared to UTI89 to identify changes in the expression of the 3,516 core 
genes shared between UAEC and UTI89. (A) Total number of differentially expressed core genes relative to UTI89. 
Strains are separated by clade (colored text) and ordered by increasing number of differentially expressed genes 
relative to UTI89. (B) Each tick mark represents a core gene in the order of the UTI89 genome. Each concentric 
circle represents an UAEC strain and is ordered the same as panel A (strain 5.3r is the centermost and 11.1a is the 
outermost). Genes are colored based on their expression level relative to their ortholog in UTI89, with gray 
indicating no significant difference, red indicating significant upregulation and blue indicating significant 
downregulation. Genes in the fim, fli, che and flg operons, among others, were differentially expressed and are 
indicated. Data presented represent averages derived from three independent experiments that were corrected for 
variance in read depth between samples and false discovery (P-adjusted <0.05, fold-change >3). 
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2.8.9 Figure S9. Expression of core genes in type 1-inducing culture conditions 
correlates to bladder colonization in UAEC. 

 
The linear regression curve for each gene (dot) is plotted according to its beta coefficient (x-axis) and adjusted p-
value (y-axis). A total of 42 genes were identified whose expression was significantly correlated (blue dots, p-
adjusted<0.1; red dots, p-adjusted<0.05) with bladder colonization at 24 hpi including genes associated with 
swimming motility and maltose utilization. The majority of significantly correlated genes had negative beta 
coefficients, indicating a negative correlation between bladder colonization and gene expression. 
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2.8.10 Figure S10. Motility is not correlated to colonization efficiency in either 
B2 or non-B2 UAEC. 

 
(A) Swimming motility in soft agar was measured for each representative UAEC strain after growth in type 1-
inducing conditions. Strains were categorized by clade (colored text) and ordered within clades by mean bladder 
burden at 24 hpi (Fig. 3a) showing deficient (blue, dotted outline), variable (orange, solid outline), and robust (green, 
solid outline) colonizers. Data represents median values (gray bars) derived from three independent experiments 
(black squares) (B) Clade B2 UAEC exhibited significantly less motility after growth in type 1-inducing conditions 
relative to non-B2 strains, as measured by Mann-Whitney U test with ***, P<0.001 (C) Swimming motility is not 
significantly correlated to bladder burden at 24 hpi, as measured by Spearman’s rank correlation (ρ statistic 
indicated at the top). Squares indicate individual B2 (red) or non-B2 (purple) UAEC. Data presented represent 
means derived from three independent experiments. 
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2.8.11 Figure S11. Both B2 and non-B2 UAEC are capable of forming 
persistent bladder reservoirs in C57BL/6 mice. 

 
UTI89 and a subset of 4 UAEC strains with indicated PUF scores and clade membership were tested for their ability 
to form persistent bladder reservoirs in the absence of bacteriuria and kidney colonization. Bacteria were 
enumerated at 14 days post-infection (dpi). Individual mouse burdens (black squares) were used to calculate a 
median value of bladder burden (gray bar). Strain 9.1a was less able to persist in the bladder than other UAEC 
strains as determined by Mann-Whitney U test with *, P<0.05; ***, P<0.001. 
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2.9 Supplementary Tables 
2.9.1 Table S1. Clinical information of enrolled patients. 
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2 25 or 
Older 

17 No Yes White No 2 OCP 

5 18-24 20 Yes N/A Asian No 2 OCP, 
Condoms 

9 18-24 22 Unknown Unknown Other No 1 OCP 
11 25 or 

Older 
23 No Unknown White No 3 OCP 

12 18-24 13 Unkown Unknown White No 2 OCP, 
Condoms 

17 18-24 19 No No Asian No 1 Spermicide-
coated 

Condoms 
20 18-24 6 Yes No White No 3 Condoms 
21 18-24 18 Yes N/A Asian No 4 OCP 
26 18-24 13 Unknown No White No 1 Spermicide-

coated 
Condoms 

31 18-24 14 No No White No 5 OCP 
34 18-24 17 Unknown No Other No 1 OCP 
35 18-24 19 No Yes White No 1 Spermicide-

coated 
Condoms 

41 18-24 16 No No White No 3 OCP, 
Condoms 

56 25 or 
Older 

18 Unknown Yes White No 3 OCP 

† Family history of UTI was reported by the patient, if known. N/A indicates patients did not 
have any sisters. 

†† Birth control methods including oral contraceptive pills 
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2.9.2 Table S2. Characteristics of UAEC Isolates. 
Strain ID† Patient ID Date 

Collected Sample Time Point†† Clade Core Clonal 
Group 

Representative 
Strain 

2.1a 2 2/5/2007 Enrollment UTI A 1 * 

2.2r 2 4/28/2007 Different-strain rUTI D 2 * 

5.1a 5 3/4/2007 Enrollment UTI B1 3 * 

5.2p 5 5/9/2007 Prior to Recurrence B2 4  

5.3r 5 5/13/2007 Different-strain rUTI B2 4 * 

9.1a 9 3/19/2007 Enrollment UTI D 5 * 

9.2p 9 6/1/2007 Prior to Recurrence B1 6 * 

9.3r 9 6/5/2007 Different-strain rUTI B1 7 * 

11.1a 11 4/1/2007 Enrollment UTI A 8 * 

11.2p 11 5/28/2007 Prior to Recurrence A 8  

11.3r 11 5/31/2007 Same-strain rUTI A 8  

12.1a 12 4/16/2007 Enrollment UTI B2 9 * 

12.2p 12 6/17/2007 Prior to Recurrence B2 9  

12.3r 12 6/19/2007 Same-strain rUTI B2 9  

12.4r 12 7/1/2007 Same-strain rUTI B2 9  

17.1a 17 4/29/2007 Enrollment UTI B2 10 * 

17.2p 17 6/11/2007 Prior to Recurrence B2 10  

17.3r 17 6/13/2007 Same-strain rUTI B2 10  

20.1a 20 5/1/2007 Enrollment UTI B2 11 * 

20.2r 20 5/21/2007 Same-strain rUTI B2 11  

20.3r 20 5/30/2007 Same-strain rUTI B2 11  

21.1a 21 5/2/2007 Enrollment UTI B2 12 * 

21.2p 21 6/2/2007 Prior to Recurrence B2 12  

21.3r 21 6/11/2007 Same-strain rUTI B2 12  

26.1a 26 6/5/2007 Enrollment UTI B2 13 * 

26.2p 26 8/12/2007 Prior to Recurrence B2 13  

26.3r 26 8/14/2007 Same-strain rUTI B2 13  



	

 
 

74 

31.1a 31 7/23/2007 Enrollment UTI B1 14 * 

31.2p 31 8/6/2007 Prior to Recurrence B1 14  

31.3r 31 8/8/2007 Different-strain rUTI B2 15 * 

34.1a 34 10/21/2007 Enrollment UTI B2 16 * 

34.2r 34 11/11/2007 Same-strain rUTI B2 16  

35.1a 35 10/22/2007 Enrollment UTI B2 17 * 

35.2p 35 11/3/2007 Prior to Recurrence B2 17  

35.3r 35 11/4/2007 Same-strain rUTI B2 17  

41.1a 41 1/21/2008 Enrollment UTI B2 18 * 

41.2p 41 3/13/2008 Prior to Recurrence B2 18  

41.3r 41 3/14/2008 Same-strain rUTI B2 18  

41.4p 41 4/10/2008 Prior to Recurrence B1 19 * 

41.5r 41 4/13/2008 Different-strain rUTI B1 19  

56.1a 56 7/28/2008 Enrollment UTI B1 20 * 

56.2r 56 9/16/2008 Different-strain rUTI B2 21  

56.3r 56 10/13/2008 Same-strain rUTI B2 21 * 

† The suffix "a" indicates isolate collection at the enrollment UTI, "p" indicates collection prior to recurrence and "r" 
indicates collection during recurrent UTIs 

†† UTI and rUTI timepoints represent symptomatic events while "prior to recurrence" isolates were collected before a 
UTI diagnosis. 
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2.9.3 Table S3. Reference Escherichia coli Strains. 
Strain Pathotype Clade BioProject (NCBI ID) 

536 UPEC B2 PRJNA16235 

11128 EHEC B1 PRJDA32513 

11368 EHEC B1 PRJDA32509 

12009 EHEC B1 PRJDA32511 

55989 EAEC B1 PRJNA33413 

2009EL-2050 EHEC B1 PRJNA81097 

2009EL-2071 EHEC B1 PRJNA81099 

2011C-3493 EHEC B1 PRJNA81095 

ABU 83972 ABU B2 PRJNA38725 

APEC O1 APEC B2 PRJNA16718 

APEC O78 APEC B1 PRJNA184588 

ATCC 8739 Commensal A PRJNA18083 

BL21(DE3) Lab Strain A PRJNA20713 

BW2952 Lab Strain A PRJNA33775 

CB9615 EPEC E PRJNA42729 

CE10 NMEC F PRJNA63597 

CFT073 UPEC B2 PRJNA313 

clone D i14 UPEC B2 PRJNA52023 

clone D i2 UPEC B2 PRJNA52021 

DH1 Lab Strain A PRJDA52077 

DH10B Lab Strain A PRJNA20079 

E2348/69 EPEC B2 PRJEA32571 

E24377A ETEC B1 PRJNA13960 
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EC4115 EHEC E PRJNA27739 

ED1a Commensal B2 PRJNA33409 

EDL933 EHEC E PRJNA259 

H10407 ETEC A PRJEA42749 

HS Commensal A PRJNA13959 

IAI39 UPEC F PRJNA33411 

IHE3034 NMEC B2 PRJNA43693 

K12 MG1655 Commensal A PRJNA40075 

LF82 AIEC B2 PRJNA33825 

NRG 857C AIEC B2 PRJNA41221 

REL606 Lab Strain A PRJNA18281 

RM12579 EPEC E PRJNA68245 

S88 Commensal B2 PRJNA33375 

SE11 Commensal B1 PRJNA18057 

SE15 Commensal B2 PRJDA19053 

SMS-3-5 Environmental F PRJNA19469 

TW14359 EHEC E PRJNA30045 

UM146 AIEC B2 PRJNA50883 

UMNK88 ETEC A PRJNA42137 

UTI89 UPEC B2 PRJNA16259 

W Lab Strain B1 PRJNA48011 

W3110 Lab Strain A PRJNA16351 

Xuzhou21 EHEC E PRJNA45823 
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2.9.4 Table S4. List of putative urovirulence factors 

PUF Category Source 
Genome NCBI ID Putative Function Reference 

bmaE Adhesin 2009C-3133 GI:94439974
2 

Blood group M–specific 
adhesin Johnson et al. 2001 

cdtB Toxin APECO1 GI:11551276
8 Cytolethal distending toxin Johnson et al. 2001 

chuA Iron-Uptake UTI89 GI:91213002 Heme binding outer 
membrane Johnson et al. 2015 

cnf1 Toxin UTI89 GI:91213869 Cytotoxic necrotizing factor 
1 Johnson et al. 2001 

cvaC Misc pECOS88 GI:21834978
6 Colicin V Johnson et al. 2001 

draB Adhesin EC958 GI:64168662
5 Dr antigen-specific adhesin Johnson et al. 2015 

feoB Iron-Uptake UTI89 GI:91212884 Ferrous iron transport Luo et al. 2012 

fimH Adhesin UTI89 GI:91213965 D-mannose–specific adhesin Johnson et al. 2001 

focH Adhesin CFT073 GI:26107519 F1C pili adhesin (marker for 
foc operon) This study 

fyuA Iron-Uptake UTI89 GI:91211204 Yersinia siderophore receptor Johnson et al. 2001 

hek Adhesin UTI89 GI:91213830 Auto-aggregating adhesin 
and invasin Bateman et al. 2013 

hlyA Toxin UTI89 GI:91213874 a-Hemolysin Johnson et al. 2001 

ibeA Adhesin UTI89 GI:91213983 Invasion of brain 
endothelium Johnson et al. 2001 

iha Adhesin CFT073 GI:26109853 Nonhemagglutinin adhesin Johnson et al. 2001 

ireA Iron-Uptake CFT073 GI:26111414 Iron-regulated element 
(siderophore receptor) Johnson et al. 2015 

iroN Iron-Uptake UTI89 GI:91210147 Salmochelin siderophore 
receptor Johnson et al. 2001 

irp2 Iron-Uptake UTI89 GI:91211199 Yersinia biosynthetic protein Luo et al. 2012 

iucC Iron-Uptake CFT073 GI:26109868 Aerobactin biosynthetic 
protein Luo et al. 2012 



	

 
 

78 

iutA Iron-Uptake CFT073 GI:26109866 Ferric aerobactin receptor Johnson et al. 2001 

malX Misc UTI89 GI:91212209 Marker of pathogenicity-
associated island Johnson et al. 2001 

ompT Protectin UTI89 GI:91209611 Outer membrane protein T 
(protease) Johnson et al. 2001 

papGII Adhesin CFT073 GI:26109826 
P pili adhesin - 

Pyelonephritis-associated 
papG variant 

Johnson et al. 2001 

papGII
I Adhesin UTI89 GI:91213835 P pili adhesin - Cystitis-

associated papG variant Johnson et al. 2001 

picU Toxin Nissle-1917 GI:66051046
8 

Protein involved in Intestinal 
Colonization - serine protease Johnson et al. 2015 

sat Toxin CFT073 GI:26109862 Secreted Autotransporter 
Toxin Johnson et al. 2015 

sfaH Adhesin UTI89 GI:91210144 S pili adhesin (marker for sfa 
operon) This study 

sitA Toxin UTI89 GI:91210366 Periplasmic iron transport 
protein Luo et al. 2012 

traT Protectin pUTI89 GI:91075831 
Temperature-sensitive 
hemagglutinin - serine 

protease 
Johnson et al. 2015 

tsh Toxin pVM01 GI:16883101
2 Surface exclusion Johnson et al. 2001 

usp Misc Nissle-1917 GI:66051028
0 

Uropathogenic-Specific 
Protein (bacteriocin) Johnson et al. 2015 

vat Toxin Nissle-1917 GI:66051049
7 

Vacolating autotransporter - 
serine protease Johnson et al. 2015 
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2.9.5 Table S5. Gut associated E. coli Strain Characteristics.  
Strain Pathotype Clade Source 

MG1655 
Commensal/Lab 

Strain A Blattner et al. 1997 
Nissle 1917 Commensal B2 Grozdanov et al. 2004 

Sakai EHEC E Hayashi et al. 2001 
H185 Commensal A Gordon et al. 2005 
H299 Commensal B2 Gordon et al. 2005 
H378 Commensal B2 Gordon et al. 2005 
H461 Commensal B2 Gordon et al. 2005 
H489 Commensal A Gordon et al. 2005 
H494 Commensal B1 Gordon et al. 2005 
H617 Commensal A Gordon et al. 2005 
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2.9.6 Table S6. IBC Formation in Select UAEC at 6 hpi in C3H/HeN mice. 
Strain Clade PUF Score IBC Formation 
11.1a A 4 - 
41.4p B1 7 ++ 
9.1a D 13 + 
20.1a B2 16 ++ 
35.1a B2 16 ++ 
41.1a B2 20 + 
UTI89 B2 17 +++ 

        
- = No IBC formed     
+ = Low rate of IBC formation   
++ = Moderate rate of IBC formation   
+++ = High rate of IBC formation   
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2.9.7 Table S7. Presence of brnAT genes in Robust and Deficient colonizer 
UAEC strains. 

  
pfam1438

4 
pfam0436

5 
Colonizer Type Strain brnA brnT 

Deficient 11.1a Present Present 
Robust 12.1a Present Present 
Robust 20.1a Absent Absent 
Robust 21.1a Absent Absent 
Robust 26.1a Present Present 

Deficient 2.1a Present Present 
Robust 31.1a Absent Absent 

Deficient 31.3r Present Present 
Robust 34.1a Absent Absent 
Robust 35.1a Absent Absent 
Robust 41.1a Absent Absent 
Robust 56.1r Absent Absent 

Deficient 5.1a Present Present 
Robust 5.3r Absent Absent 
Robust 9.1a Absent Absent 
Robust 9.2p Absent Absent 
Robust UTI89 Absent Absent 

Total Robust 2/13 
strains 

2/13 
strains 

Total Deficient 4/4 strains 4/4 strains 
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2.9.8 Table S8. Reads mapped to core genome of UAEC. 

Sample 
Clade 

Colonization 
group 

Total Reads Reads Aligned to 
Core Genome 

Proportion of Reads 
Aligned to Core 

Genome 
5.1a_A A 1.37E+07 7.04E+06 51.34% 
5.1a_B Deficient 7.26E+06 3.72E+06 51.25% 
5.1a_C  1.05E+07 5.53E+06 52.85% 
5.3r_A B2 2.13E+07 1.00E+07 47.05% 
5.3r_B Robust 1.98E+07 8.75E+06 44.22% 
5.3r_C  1.54E+07 8.54E+06 55.55% 
9.1a_A D 1.56E+07 6.55E+06 41.95% 
9.1a_B Robust 2.14E+07 9.36E+06 43.72% 
9.1a_C  3.89E+07 1.74E+07 44.86% 

11.1a_A A 3.02E+07 1.73E+07 57.53% 
11.1a_B Deficient 1.73E+07 1.02E+07 58.59% 
11.1a_C  2.80E+07 1.53E+07 54.73% 
12.1a_A B2 2.73E+07 1.65E+07 60.54% 
12.1a_B Robust 3.30E+07 2.00E+07 60.74% 
12.1a_C  1.75E+07 1.04E+07 59.12% 
41.1a_A B2 2.19E+07 1.08E+07 49.26% 
41.1a_B Robust 1.09E+07 5.34E+06 49.00% 
41.1a_C  3.25E+07 1.69E+07 52.08% 
17.1a_A B2 5.35E+07 3.11E+07 58.19% 
17.1a_B Variable 2.06E+07 1.20E+07 58.15% 
17.1a_C  1.89E+07 1.09E+07 57.67% 
41.4p_A B1 2.49E+07 1.47E+07 58.97% 
41.4p_B Variable 1.79E+07 1.10E+07 61.19% 
41.4p_C  6.53E+07 3.49E+07 53.39% 
20.1a_A B2 2.23E+07 1.38E+07 61.73% 
20.1a_B Robust 3.65E+07 1.99E+07 54.63% 
20.1a_C  4.19E+07 2.40E+07 57.22% 
31.1a_A B1 2.08E+07 1.25E+07 60.02% 
31.1a_B Robust 1.91E+07 1.00E+07 52.56% 
31.1a_C  1.93E+07 9.31E+06 48.15% 
UTI89A B2 1.30E+07 6.99E+06 53.73% 
UTI89B Robust 5.24E+06 2.79E+06 53.16% 
UTI89C  6.80E+06 3.66E+06 53.80% 
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2.9.9 Table S9. DEseq Analysis of UAEC transcription of core genome. 
Available in Appendix A 

2.9.10 Table S10. Expression of PUF genes in select UAEC. 
PUF Gene 5.1a 5.3r 9.1a 11.1a 12.1a 41.1a 17.1a 41.4p 21.1a 31.1a UTI89 

sfaH 0 68.7182 0 0 0 281.967 0 0 415.875 0 52.437 

iha 0 0 233.727 0 0 0 69.9788 0 0 0 0 

traT 0 712.752 0 0 1922.51 1296.68 1049.21 0 0 0 792.094 

hek 0 0.0731843 0 50.5309 0 2883.04 832.19 0 1195.47 0 765.862 

papGII 0 0 15.9602 0 0 0 380.251 0 0 0 0 

iucC 0 0 145.253 0 233.068 0 63.2812 0 0 0 0 

cvaC 0 0 0 0 157.803 0 0 150.128 0 0 0 

cnf1 0 0.393869 0 0 0 442.011 545.493 0 220.622 0 216.935 

iutA 0 0 186.706 0 371.568 0 77.1131 0 0 0 0 

feoB 242.288 293.207 111.426 225.914 344.52 219.492 197.9 212.194 384.731 242.847 278.868 

papGIII 0 0.142911 0 0 0 104.9 226.243 0 111.103 0 40.5398 

focH 0 0 0 0 0 0 0 0 0 0 0 

tsh 0 521.981 0 31.4803 0 368.807 132.812 0 199.607 0 85.0636 

hlyA 0 0.31254 0 0 0 2102.95 832.367 0 731.642 0 805.574 

ibeA 0 13.4008 0 0 0 21.2063 0 0 0 0 5.83029 

iroN 0 4248.55 0 10.4705 371.397 4225.54 0 1011.09 2481.4 0 2640.86 

chuA 0 48.2425 19.6964 0 67.6079 0 24.784 0 73.3455 0 30.8678 

ireA 0 0 0 0 0 0 621.306 0 0 0 0 

sitA 0 228.317 98.0461 0 107.68 29.756 0 0 46.4247 0 37.7494 

fyuA 30.8512 92.3986 21.4078 0 19.8853 39.6031 16.2512 33.0504 34.3733 0 57.7845 

ompT 0 963.823 123.215 0 110.548 248.457 93.3238 272.355 137.231 350.373 267.572 

fimH 0 343.639 164.765 69.3973 140.877 249.284 71.2325 197.281 182.799 184.001 351.813 

pic 0 0 0 0 0 225.387 152.25 0 0 0 0 

sat 0 0 434.958 0 0 0 253.857 0 0 0 0 

usp 0 87.432 0 0 19.6396 83.5182 21.5099 0 58.2775 0 49.1393 

irp2 19.9497 126.473 44.0038 0 27.5027 33.8929 15.0818 29.5727 24.6589 0 48.5425 

Values are represented as Reads Per Kilobase of transcript per Million mapped reads (RPKM) 
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2.9.11 Table S11. Linear correlation of core gene expression to bladder 
colonization. 
Available in Appendix A 

2.9.12 Table S12. Functions enriched in genes associated with bladder 
colonization. 
Available in Appendix A 

2.9.13 Table S13. UAEC clinical data 

	
White	Blood	
Cells	(per	mL	

Urine)	

Lipocalin	2	
(ng/mL	urine)	

Colonization	
Group	 N*	 Median	 N*	 Median	

Deficient	 5	 38	 3	 13	
Variable	 6	 225	 1	 23	
Robust	 18	 194.5	 9	 260	

N	=	number	of	observations	 (i.e.	 tests	done	on	urine	
samples	collected	at	UTI	visits	in	the	cohort)	

*	=	not	all	urine	samples	were	tested	for	the	presence	
of	white	blood	cells	or	lipocalin	2	levels	
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2.9.14 Table S14. UAEC sequencing and genome assembly results 
Strain 

ID Reads 

Reads 

Mapped n50 

Largest 

Scaffold 

Post-Trim 

Length 

Read 

Coverage 

Gene 

Count 

Scaffold 

Count 

2.1a 5.72E+06 5.40E+06 9.51E+04 2.51E+05 4.85E+06 111 4603 215 

2.2r 5.92E+06 5.39E+06 2.14E+04 6.34E+04 4.78E+06 113 4901 557 

5.1a 7.50E+06 7.06E+06 8.31E+04 2.43E+05 5.05E+06 140 4957 281 

5.2p 9.43E+06 8.48E+06 3.20E+04 1.27E+05 4.68E+06 181 4380 116 

5.3r 6.27E+06 5.21E+06 9.27E+03 3.85E+04 5.09E+06 102 4939 150 

9.1a 5.70E+06 4.92E+06 1.08E+04 5.85E+04 5.15E+06 96 5594 1163 

9.2p 8.53E+06 7.90E+06 2.15E+05 4.05E+05 4.86E+06 163 4694 304 

9.3r 8.18E+06 7.70E+06 9.41E+04 3.67E+05 5.42E+06 142 4600 187 

11.1a 6.52E+06 6.14E+06 1.25E+05 3.52E+05 4.80E+06 128 4648 207 

11.2p 9.56E+06 8.25E+06 5.89E+04 2.06E+05 4.99E+06 165 4906 673 

11.3r 7.38E+06 6.76E+06 3.96E+04 1.15E+05 4.85E+06 139 4691 361 

12.1a 7.04E+06 6.65E+06 1.64E+05 3.66E+05 4.99E+06 133 4816 220 

12.2p 8.51E+06 7.76E+06 1.77E+04 6.18E+04 5.14E+06 151 5093 504 

12.3r 4.77E+06 4.50E+06 1.86E+05 3.66E+05 4.99E+06 90 4825 232 

12.4r 5.12E+06 4.83E+06 1.25E+05 2.33E+05 5.00E+06 97 4842 267 

17.1a 2.30E+07 2.11E+07 1.50E+05 5.95E+05 5.17E+06 408 4958 227 

17.2p 8.36E+06 7.80E+06 1.55E+05 6.23E+05 5.16E+06 151 4957 224 

17.3r 4.29E+06 4.08E+06 1.55E+05 4.85E+05 5.16E+06 79 4927 197 

20.1a 1.27E+07 1.16E+07 2.12E+05 7.61E+05 4.99E+06 233 4677 174 

20.2r 9.04E+06 8.43E+06 2.62E+05 7.61E+05 4.98E+06 169 4674 168 

20.3r 8.84E+06 8.35E+06 9.64E+04 2.52E+05 4.98E+06 168 4704 246 

21.1a 4.39E+06 4.14E+06 1.44E+05 4.12E+05 4.99E+06 83 4738 196 

21.2p 6.03E+06 5.67E+06 1.44E+05 3.26E+05 4.99E+06 114 4729 187 

21.3r 2.44E+07 2.24E+07 2.17E+05 7.78E+05 5.00E+06 448 4711 162 

26.1a 6.24E+06 5.89E+06 1.53E+05 4.79E+05 5.21E+06 113 5037 193 
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26.2p 1.22E+07 1.15E+07 1.45E+05 3.66E+05 5.21E+06 222 5044 210 

26.3r 4.84E+06 4.53E+06 1.41E+04 6.86E+04 5.21E+06 87 5259 892 

31.1a 2.46E+06 2.22E+06 3.90E+03 2.13E+04 4.57E+06 49 5263 2127 

31.2p 8.50E+06 7.98E+06 1.89E+05 5.01E+05 4.68E+06 170 4445 124 

31.3r 4.07E+06 3.71E+06 6.90E+03 3.22E+04 5.00E+06 74 5302 1486 

34.1a 7.07E+06 6.65E+06 1.98E+05 6.58E+05 5.15E+06 129 4956 146 

34.2r 6.28E+06 5.89E+06 2.39E+05 6.58E+05 5.15E+06 114 4949 152 

35.1a 2.93E+06 2.79E+06 8.92E+04 3.05E+05 5.14E+06 54 4917 215 

35.2p 5.50E+06 5.23E+06 1.89E+05 4.34E+05 5.14E+06 102 4886 156 

35.3r 3.95E+06 3.63E+06 1.19E+04 4.80E+04 5.13E+06 71 5145 950 

41.1a 4.37E+06 4.17E+06 1.44E+05 3.96E+05 5.05E+06 83 4807 177 

41.2p 1.09E+07 9.97E+06 2.89E+05 5.14E+05 5.06E+06 197 4827 166 

41.3r 5.74E+06 5.28E+06 1.53E+04 5.20E+04 5.05E+06 104 5004 767 

41.4p 6.88E+06 6.34E+06 1.37E+05 2.90E+05 4.78E+06 133 4572 164 

41.5r 1.90E+06 1.83E+06 3.92E+04 1.38E+05 4.79E+06 38 4630 333 

56.1a 3.86E+06 3.66E+06 1.73E+05 2.89E+05 4.84E+06 75 4621 159 

56.2r 3.62E+06 3.39E+06 1.69E+05 4.63E+05 5.25E+06 65 5048 257 

56.3r 6.74E+06 6.30E+06 1.45E+05 4.62E+05 5.26E+06 120 5055 248 
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3.1 Abstract 
Uropathogenic E. coli (UPEC), which cause urinary tract infections (UTI), utilize type 1 

pili, a chaperone usher pathway (CUP) pilus, to cause UTI and colonize the gut. The pilus rod, 

comprised of repeating FimA subunits, provides a structural scaffold for displaying the tip 

adhesin, FimH. We solved the 4.2 Å resolution structure of the type 1 pilus rod using cryo-

electron microscopy. Residues forming the interactive surfaces that determine the mechanical 

properties of the rod were maintained by selection based on a global alignment of fimA 

sequences. We identified mutations that did not alter pilus production in vitro but reduced the 

force required to unwind the rod. UPEC expressing these mutant pili were significantly 

attenuated in bladder infection and intestinal colonization in mice. This study elucidates an 

unappreciated functional role for the molecular spring-like property of type 1 pilus rods in host-

pathogen interactions and carries important implications for other pilus-mediated diseases. 

3.2 Introduction 
To mediate colonization of host and/or environmental habitats, Gram-negative bacteria 

encode a highly conserved family of adhesive pili called chaperone-usher pathway (CUP) pili. 

Notably, CUP pili are critical virulence factors in a wide range of pathogenic bacteria, including 

Escherichia, Klebsiella, Pseudomonas, Haemophilus, Salmonella and Yersiniae genera (Nuccio 

and Baumler, 2007). To date, 38 distinct CUP pilus types have been identified in Escherichia 

and Shigella genomes and plasmids, each of which is hypothesized to promote bacterial 

colonization of a distinct habitat (Nuccio and Baumler, 2007; Wurpel et al., 2013). Interestingly, 

single Escherichia coli genomes carry up to 16 distinct CUP operons, suggesting that the 

retention of an assortment of CUP pilus types by a single strain may be necessary to 

accommodate the complex lifecycle of E. coli (Wurpel et al., 2013).  
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Arguably, the best-studied CUP pili are those encoded by uropathogenic E. coli (UPEC), 

which is the causative agent of the majority of urinary tract infections (UTIs). UTIs affect 150 

million people annually worldwide and are associated with significant morbidity and economic 

impact, with over $5 billion spent annually on treatment in the USA alone (Foxman, 2014). The 

current method for treating UTI is antibiotic therapy; however, ~25% of women who experience 

UTI will suffer from recurrent UTI (rUTI), despite receiving appropriate antibiotic treatment 

(Scholes et al., 2000). Further, an alarming number of UTIs are being caused by single and multi 

drug-resistant uropathogens, highlighting the urgent need to develop alternative treatments 

(Zowawi et al., 2015). UPEC that infect the urinary tract often originate from the host 

gastrointestinal tract. After being shed from the gut in the feces, UPEC can colonize peri-urethral 

or vaginal areas and subsequently ascend through the urethra to the bladder and/or kidneys, 

instigating UTI. In mice, type 1 pili, which promote binding to mannosylated proteins, play 

critical roles in both the gut and urinary tract. Recent work has revealed that type 1 pili help 

mediate UPEC intestinal colonization, thus promoting the establishment and/or maintenance of 

the UPEC reservoir in the gut that can eventually seed UTI (Spaulding et al., 2017). Upon 

entering the bladder, type 1 pili facilitate bacterial colonization and subsequent invasion into 

epithelial cells lining the bladder lumen (Martinez et al., 2000; Mulvey et al., 1998). Bladder 

invasion is a critical step in UPEC pathogenesis, allowing the bacteria to replicate in a niche 

protected from innate immune defense mechanisms, antibiotics, and expulsion during urination. 

UPEC that cannot invade the urothelium, like those lacking type 1 pili or its associated adhesin, 

FimH, are quickly cleared from the bladder, emphasizing the importance of type 1 pili mediated 

host-pathogen interactions on the fitness of UPEC during cystitis (Wright et al., 2005). After 

invading into a bladder cell, UPEC escape into the host cell cytoplasm and replicate to form 
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biofilm-like intracellular bacterial communities (IBCs) (Anderson et al., 2003; Justice et al., 

2004) comprised of ~104 cells (Wright et al., 2007). Mouse models of UTI have revealed that 

while some mice are capable of self-resolving acute UPEC infection, others progress to chronic 

cystitis, which is characterized by persistent high titer bacteriuria (>104 CFU/ml) and high 

bacterial bladder burdens (>104 CFU) two or more weeks after inoculation (Hannan et al., 2010). 

In the absence of antibiotic treatment, chronic cystitis can also be observed in women (Ferry et 

al., 2004; Mabeck, 1972).  

E. coli strains, including UPEC, are grouped into distinct clades (e.g., clades A, B1, B2, 

D, and E) based on their genetic relatedness (Tenaillon et al., 2010). While UPEC strains tend to 

be genetically heterogeneous the majority of UPEC strains isolated from women with UTI in the 

USA reside in the B2 clade (Schreiber et al., 2017). While the types of CUP pilus operons 

encoded in E. coli genomes varies between different clades and individual strains, the vast 

majority of sequenced E. coli strains, including nearly all sequenced UPEC clinical isolates, 

carry an intact copy of the type 1 pilus (Schreiber et al., 2017; Wurpel et al., 2013). Type 1 pili 

are encoded by the fim operon which, like the gene clusters encoding other CUP pili, encodes all 

the dedicated proteins necessary to assemble a mature pilus onto the bacterial surface, including: 

an outer-membrane pore-forming usher protein, a periplasmic chaperone protein, pilus subunits, 

and the tip adhesin protein. Most pilus tip adhesins, including the FimH adhesin, are made up of 

two domains, an N-terminal lectin domain, which is responsible for recognition and attachment 

to a ligand(s), and a C-terminal pilin domain, which connects the adhesin to the bulk of the pilus 

(Jones et al., 1992). Pilus subunits, including the pilin domain of the adhesin, are comprised of 

an incomplete immunoglobulin (Ig)-like fold, which lacks the C-terminal β-strand and require 

the action of the dedicated periplasmic chaperone for proper folding (Sauer et al., 2002). In a 
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process known as donor strand complementation (DSC), a periplasmic chaperone templates 

subunit folding by transiently providing one of its β-strands (Sauer et al., 1999). Chaperone-

subunit complexes are then delivered to the outer membrane usher, which catalyzes pilus 

assembly via a reaction known as donor strand exchange (DSE). In DSE, the strand donated to a 

nascent subunit by the chaperone is replaced by the N-terminal extension (Nte) of an incoming 

subunit (Sauer et al., 2002).  

Following this pattern, the type 1 pilus usher (FimD) and chaperone (FimC) help type 1 

pili assemble into a composite pilus structure consisting of a short tip fibrillum made up of the 

adhesin protein (FimH) and two minor subunits (FimG and FimF) that is joined to the pilus rod, 

a homopolymer of ~1000 FimA subunits. Once extruded to the extracellular surface, the type 1 

pilus coils into a rigid right-handed helical structure that is capable of unwinding into a flexible 

linear fiber (Abraham et al., 1992; Aprikian et al., 2011; Jones et al., 1995; Saulino et al., 2000). 

This ability to transition between a coiled, helical rod and a linear fiber has been proposed to 

allow the type 1 pilus to act as a “molecular spring” to maintain adherence in the face of fluid 

shear forces (Zakrisson et al., 2012). Specifically, we hypothesize that in the absence of urine 

voiding, the type 1 pilus rod is maintained in the coiled helical state that permits subsequent 

contact and invasion into bound epithelial cells. However, upon encountering the shear forces 

associated with micturition, the pilus extends to the linear form, absorbing the shear force and 

thus preventing the expulsion of the bacteria from the bladder. 

Here, using high-resolution cryo-electron microscopy (cryo-EM), we solved the structure 

of the type 1 pilus rod. Residues involved in critical FimA-FimA interactions were identified and 

when mutated reduced the force required to unwind the helix, despite not altering the ability of 

the FimA protein to be incorporated into the pilus rod. When these mutations were introduced 



	

 
 

100 

into the chromosome of UTI89, a human UPEC clinical cystitis isolate, no changes in the overall 

expression of type 1 pili were observed and the ability of the bacteria to bind and agglutinate 

mannose-expressing guinea pig red blood cells in vitro was not altered. However, these 

mutations dramatically reduced the ability of UTI89 to establish an intestinal reservoir and cause 

acute and/or chronic cystitis, suggesting that the helical pilus rod has an important functional role, 

beyond serving as a platform to present FimH, in promoting colonization in the gut and infection 

of the bladder. 

3.3 Results 

3.3.1 Determination of the type 1 pilus rod structure 
To characterize FimA polymers that form the type 1 pilus rod, we solved the cryo-EM 

structure of native type 1 pili appearing in a preparation of recombinantly expressed Type IV pili 

(T4P) from the E. coli K12 strain BW25113. As shown in Figure 1A, three types of filaments 

could be separated by eye: T4P, flagellar filaments, and a third class that were thicker and more 

rigid than T4P but thinner than the flagellar filaments. Sequencing the fimA PCR product showed 

that the encoded amino acid sequence was identical to the FimA protein from BW25113 

(GenBank AIN34588.1) and MG1655 (GenBank NP_418734.1). There was no possibility of 

cross-contamination of the FimA and T4P filament images, as each has a very different helical 

symmetry. Averaged power spectra from FimA filaments (Figure S1A) showed no trace of the 

Type IV pilus spectrum (Figure S1B).  

The FimA reconstruction had an overall resolution of 4.2 Å (Figure S1C,D), which is 

sufficient to build an atomic model of the structure (DiMaio et al., 2015). There were no 

ambiguities in threading the known FimA sequence through the density map (Table S1), even 

though the electron density observed on the outside of the rod is less well defined (Figure 1B). 
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As a result, the first two residues and the last residue of FimA, which are located close to each 

other on the outside of the rod, are not resolved in the density map. The 4.2 Å estimate of the 

resolution is consistent with the well-separated β-strands and the density present for certain 

bulky side chains in the central lumen (Figure 1C-E). Further, in the structure we observe the N-

terminal donor strand of one subunit completing the β-sheet of the adjacent subunit. Overall, the 

type 1 pilus is a 70 Å diameter rod where each adjacent subunit rotates around the helical axis by 

115° and translates along the axis by 7.7 Å (Figure 2A). If we label each subunit along the 1-

start helix by N, a subunit N0 interacts with six adjacent subunits (N-1,N-2,N-3,N+1,N+2,N+3) 

(Figure 2A,B). The donor strand complementation involves mostly hydrophobic interactions. 

Most prominently, the hydrophobic amino acids Val5, Val10 and Phe12 in the N-terminal β-

strand (Nte) of one subunit are inserted into the next subunit’s hydrophobic groove created by a 

missing β-strand (Figure S2). 

Further, residues corresponding to FimABW25113 22-33, which are part of the interior 

surface of the rod helix, show structural differences between our cryo-EM rod structure and the 

previously solved crystal structures of FimA (Crespo et al., 2012) (Figure S2A). In the DSC 

interaction of the FimA-FimC complex FimA residues 22-25 form a β-strand interaction with 

residues 59-56; and residues 31-33 form β-strand interactions with the FimC chaperone residues 

102-104 (Crespo et al., 2012). Further, within a self-complemented DSE structure FimA residues 

29-33 form a β-strand interaction with the appended Nte residues (9-13) (Walczak et al., 2014). 

Within the cryo-EM rod FimA structure, residues 25-29 adopt a helical conformation and 

residues 30-33 form a β-strand interaction with residues 10-13 from the Nte of the next FimA 

subunit. These residues form the center strand within the hollow helical core, and thus the ability 
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of this region to adopt multiple conformations may be necessary in order for FimA to function as 

the major rod subunit. 

3.3.2 Comparison between P and type 1 pili 
The interface between subunits N0 and N+3 is extremely important in maintaining the 

FimA helical rod. Previously, two atomic models (PDB ID: 2N2H and 2MX3) for the type 1 

pilus have been generated using the same solid-state NMR data (Habenstein et al., 2015), with 

the helical symmetries for these models shown in Table S2. When subunit N0 is superimposed 

between our cryo-EM model with a subunit in 2N2H and 2MX3, significant differences can be 

seen in the interface with subunit N+3 in the different models (Figure S3). The overall RMSD 

between Cα atoms of subunit N+3 in our cryo-EM model and 2N7H is 5.7 Å (Figure S3A), while 

it is 11.0 Å with 2MX3 (Figure S3B). Between 2MX3 and 2N2H, the overall RMSD is 5.6 Å for 

subunit N+3 when subunits N0 are aligned (Figure S3C). 

Comparison of our type 1 pilus model with the P pilus structure (Hospenthal et al., 2016) 

shows an interesting difference: in the P pilus, residues 1-5 are fully ordered and make a 90° 

bend to form a “staple” which involves contacts with two other subunits (Figure S4). In contrast, 

the first two residues are disordered in our type 1 pilus rod, and the remaining three residues in 

this region project straight out of the structure and make no contacts with other subunits (Figure 

S4). 

3.3.3 Conservation and Variability of FimA sequences 
To explore the variation and evolution of FimA, we examined a set of 1,872 FimA 

protein sequences in the Ensembl Bacteria database (Kersey et al., 2016) (Table S3). After 

filtering to remove protein sequences that are expected to be non-functional and trimming of the 

signal sequence, the remaining 1,828 protein sequences were aligned, revealing that half of 
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FimA residues in the mature protein are invariant (79/161 residues) and that 83.9% are highly 

conserved (139/161 residues with >95% sequence identity) (Figure 3A). We found the FimA 

sequences to be significantly more variable than other parts of the type 1 pilus machinery. For 

example, the mature forms of the FimC chaperone and FimH adhesin (n= 1,760 and n=1,943, 

respectively; Table S4) obtained from the same database contain 97.6% and 97.5% highly 

conserved residues, respectively, as compared to 83.9% in FimA. In general, most E. coli genes 

evolve slowly (Lee et al., 2012), so the degree of divergence between alleles of FimA is 

abnormally high. This suggests that the selection forces acting on the FimA protein are different 

from the forces acting on the rest of the fim operon. Interestingly, the non-conserved residues 

within the FimA sequences are all located on the exterior surface of the solved cryo-EM model 

(Figure 3B), which is likely indicative of immune pressures selecting for antigenic 

diversification (Wildschutte et al., 2004). In particular, the first few amino acids of the N-

terminus of the mature protein, disordered in our reconstruction, have some of the highest 

variability throughout the entire protein, suggesting that these amino acids do not play a 

functional role in the dynamics of unwinding in the type 1 pilus rod. In contrast, almost every 

residue involved in subunit-subunit interactions in the rod is either highly conserved or invariant 

(Figure 3B,C). This includes every residue lining the lumen (Figure 3C). The conservation of 

residues lining the lumen might be due to the transport of some product through this opening that 

is ~ 15 Å across (the height of the triangular lumen that rotates as one travels along the pilus). 

More likely, however, every residue in the lumen is either involved in making a subunit-subunit 

contact (including the DSE contacts with the Nte from an adjacent subunit) or packed tightly 

between residues that are making such contacts. 
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To examine the importance of FimA-FimA interactions on bacterial pathogenesis, we 

chose to investigate how mutations in the fimA sequence of BW25113 altered functional and 

mechanical characteristics of type 1 pili. In addition, to assess whether FimA mutants altered the 

type-1 mediated ability of UPEC to infect the bladder and colonize the gut, we made mutations 

in the chromosomal fimA gene of UTI89, a prototypical UPEC isolate. Thus, we do note that 

FimAUTI89 differs from our cryo-EM rod FimABW25113 sequence in 16 residues, with all of the 

differences lying within highly variable residues located on the exterior of the pilus rod, 

including two additional amino acids at the N-terminus. It is the two additional N-terminal 

residues in UTI89 that generate a shift in the numbering of all other UTI89 residues by two when 

compared to FimABW25113.  

3.3.4 Evidence of evolutionary pressures on FimA 
To evaluate the evolutionary pressures shaping FimA and thus the type 1 pilus rod, we 

obtained gene sequences encoding FimA proteins analyzed above to measure the selection 

pressures acting on the gene. After removing incomplete and duplicate sequences from the 

analysis, we were able to compare a total of 191 unique fimA sequences (Table S3), which were 

then trimmed to remove the signal sequence. These sequences encoding the mature protein were 

examined for evidence of recombination, which can result from horizontal transfer of genetic 

sequences between distinct strains and confound evolutionary analyses that assume all sequences 

were vertically inherited (Anisimova et al., 2003). Phylogenetic trees were thus corrected for use 

in subsequent analyses (Kosakovsky Pond et al., 2006). We then assessed the ratio of the rates of 

nonsynonymous (dN) to synonymous nucleotide mutations (dS) in each codon in the alignment 

(dN/dS) to estimate the selection pressures acting on each residue in the FimA protein using a 

fixed-effects likelihood measurement algorithm (Kosakovsky Pond and Frost, 2005). In general, 
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a dN/dS ratio >1 is indicative of selection pressure favoring change in amino acid identity at the 

position (i.e., adaptive or positive selection) while a dN/dS ratio <1 indicates conservation at the 

codon (i.e., purifying selection or negative selection). Here, we found that 66 codons were under 

purifying selection, five codons were under adaptive selection, and an additional 27 codons were 

too conserved to be included in analysis (Table S5). The remaining 63 codons showed no 

evidence of statistically significant selection in either direction. All of the positively selected 

sites, N64, A109, T117, S120 and F138, encode residues located on the exterior surface of the 

FimA rod and away from any subunit-subunit interface (Figure S5A). The 66 codons under 

purifying selection combined with the 27 codons too conserved for analysis encode many of the 

highly conserved residues found throughout subunit-subunit interfaces with the subunits above, 

below, and alongside (Figure 3B,C). This strongly suggests that evolutionary pressures are 

working to conserve the identity of residues that interact within the helical rod, while 

diversifying amino acid residues that are exposed to the host and susceptible to immune 

recognition. 

To more specifically determine if variation in FimA correlated with E. coli clades or 

pathogenic lifestyles, such as uropathogenicity, we examined the diversity and distribution of the 

fimA gene in a curated set of 67 E. coli genomes. This dataset included 21 distinct UPEC strains 

isolated from a cohort of women with frequent rUTI and 46 reference E. coli strains that 

included lab and commensal strains, as well as a variety of intestinal and extra-intestinal 

pathogens (Schreiber et al., 2017)(Table S6). The fimA gene was carried by the majority of E. 

coli strains analyzed (57/67); including nearly every UPEC strain (96.3% or 26/27 strains). 

Importantly, the fimA sequences from UPEC strains were spread through the phylogenetic tree, 

indicating that there was not a single variant of FimA found in all UPEC strains (Figure S5B). 
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To determine if these different variants were under different selection pressure, we measured the 

dN/dS ratio of each branch in this fimA phylogeny to see if there were branches that were under 

different selection pressures than the rest of the branches in the phylogeny (i.e., the “background” 

rate of selection)(Kosakovsky Pond et al., 2011). Here, we identified three branches with 

statistically significant evidence of episodic diversifying selection, including two branches 

carrying most of the clinical UPEC strains (branches labeled A and B) as well as 

enterohemorrhagic and enterotoxigenic E. coli strains in the branch labeled C (Figure S5B). This 

pattern of evolution is indicative of strong adaptive selection acting on some, but not all, 

branches in a phylogeny. Taken together, we find that fimA is much more diverse than other parts 

of the type 1 machinery, owing to high rates of nucleotide polymorphisms and genetic 

recombination, and that fimA has undergone repeated rounds of strong selective pressures that 

have conserved residues responsible for subunit-subunit interfaces while varying the external 

surface of the protein that is exposed to the host milieu. 

3.3.5 Analysis of the effect of FimA mutations on pilus expression and 
function in vitro  

To determine which FimA residues are required to form the helical rod, we constructed 

single amino acid codon mutations in the BW25113 fimA gene, which were subsequently cloned 

into the expression vector, pTRC99a (Amann et al., 1988). Residues were chosen for 

mutagenesis based on their positions in the atomic model and were changed to either Arginine or 

Glutamine to insert large charged residues that would promote disruption of FimA interactions 

without making the surface more hydrophobic. We expressed these variant fimA genes in trans in 

UTI89-LON∆fimA, a strain with a chromosomal deletion of the fimA gene in a UTI89 strain 

where the phase-variable fimS promoter is locked in the ON orientation (LON) by altering the 

left inverted repeat necessary for promoter inversion (Kostakioti et al., 2012). This strain 
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transcribes the fim operon constitutively, which removes the possibility that differences in type 1 

pili assembly/function are due to effects on phase variation by the mutants. 

We assessed the function of the type 1 pilus in each fimA mutant by measuring the 

agglutination of guinea pig red blood cells (GP-RBCs). Most of our fimA mutants showed 

hemagglutination (HA) titers similar to the wild-type (WT) fimA (Table S7). However, several 

mutations (A25R, V32R, V65R, V85R, and P145R) abolished the production of adhesive pili 

(Table S7). This suggests that these mutations, which are located in areas of high conservation 

throughout the FimA monomer, may disrupt critical interactions with FimC or FimD or may not 

be able to correctly fold, thus preventing the assembly of the pilus. Notably, each of these 

residues was either under strong purifying selection pressure (A25, V85 and P145) or was too 

conserved for evolutionary analysis (codons for V32 and V65 displayed no synonymous 

mutations and extremely limited non-synonymous mutation rates), which emphasizes their 

importance in assembly of the type 1 pilus rod (Figure 3A). Expression of some mutant fimA 

genes, particularly V5R, E45R, E121R and A142R, resulted in a bacterial clumping phenotype 

when grown in static culture. D62R and D114R also instigated bacterial clumping, but to a lesser 

extent. Three of these substitutions, E45R, E121R and A142R, are found in residues with 

relatively high variability in our analysis of FimA sequences, with just 33.9%, 62.3%, and 52.1% 

sequence identity, respectively. Further, we found that two of these residues (V5 and D114) 

showed statistically significant evidence of strong purifying selection (Figure 3A, Table S6).  

To measure the impact of FimABW25113 variants produced by the UTI89-LON∆fimA strain 

on pili force-extension responses, we applied optical tweezers. Since type 1 pili are assembled 

from FimA subunits into a helical coil, they normally extend in three force phases: linearly 

increasing, constant force, linearly increasing – where the characteristic constant force originates 
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from sequential unwinding of subunits (region between the dashed lines in Figure 4A). The 

unwinding force directly relates to the strength of layer-to-layer interactions (e.g., between 

subunits N0 and N+3), thus any changes in these interactions caused by mutations would shift the 

magnitude of the force plateau. To investigate this, we first averaged the unwinding force of pili 

in the strain expressing WT FimA and subsequently measured the force response for each fimA 

mutant. The unwinding force of WT pili was 30.3 ± 0.1 pN (mean ± standard error (SE)) 

whereas all mutants showed a reduction in the force required for pilus unwinding (Figure 4B). In 

particular, the A22R variant showed the largest reduction in the unwinding force, 11.3 ± 0.2 pN. 

We can explain this by the fact that Ala22 in our rod model is tightly packed against Ala93 from 

another subunit and Val37 from a third subunit (Figure 4C). Thus, replacing a small alanine 

with a long arginine side chain is expected to disrupt this interface. 

3.3.6 FimA mutants alter UPEC pathogenesis in the bladder and colonization 
of the gut 

In the bladder, type 1 pili are required for binding and invasion of UPEC into superficial 

facet cells that line the bladder lumen and for the formation of intracellular bacterial 

communities (IBCs) during the first 6-18 hours of acute infection. This has been shown to be 

critical for ongoing infection in both humans and mouse models of cystitis (Spaulding and 

Hultgren, 2016). To determine if mutations in the FimA sequence altered UPEC pathogenesis in 

relevant mouse models, we constructed UTI89 strains with clean single codon mutations in the 

chromosomal fimA gene (with the phase-variable fimS promoter intact). Each mutation was made 

in the codon of a highly conserved amino acid positions of FimAUTI89 (A24, D64, D116, and 

P134) with the exception of E123, which is a position that is highly variable amongst E. coli 

FimA sequences.  
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When compared to a strain with the reintegrated WT UTI89 fimA sequence, we found 

that each FimA mutant strain produced minimal changes to the levels of type 1 piliation (as 

assessed by electron microscopy analysis) and to the function of the type 1 pilus, as determined 

by the ability of bacteria to agglutinate GP-RBCs, indicating that these mutations do not prevent 

the function or expression of adhesive type 1 pili in vitro (Figure S6).  

We next investigated how each mutant altered the kinetics of bladder infection during 

competitive infections with WT UTI89 over 28 days. In mice that developed chronic cystitis 

(defined as the development of persistent high titer (>104 cfu/ml) bacteriuria and high titer (>104 

cfu/ml) bladder bacterial burdens at sacrifice >4 weeks post-infection), strains producing 

FimAUTI89 variants with the D64R, E123R, D116R, and A24R substitutions were outcompeted, 

by up to 6 logs, by the reintegrated WT strain (Figure 5A-F). The FimA P134R variant had no 

effect on the ability of the strain to compete with the WT strain in chronically infected mice 

(Figure 5B). Mice that resolved their infections (defined as any animal whose urine or bladder 

titers dropped below 104 cfu/ml at least once during the 4 week infection) in this experiment are 

shown in Figure S7. 

In mice infected with a single UTI89 strain, the WT and P134R variant caused chronic 

cystitis at similar rates (45% and 30%, respectively) (Figure 5G, Figure S8). However, the 

E123R and D116R mutant strains had reduced rates of chronic cystitis of 20% and 10%, 

respectively. Interestingly, 100% of mice infected with the A24R variant resolved their 

infections over the 4 week experiment, with half of the mice (10/20) exhibiting sterile urines by 

10 dpi compared to just 15% (3/20) of mice infected with the WT strain at the same time point 

(Figure S8). The defect in chronic infection caused by fimA variants is likely due to pathogenic 

deficiencies during acute UTI. Accordingly, we found that three fimA variants (A24R, E123R, 
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and D116R) significantly altered the ability of UTI89 to form IBCs at 6 hours post infection 

(hpi) (Figure 5H). Six of ten mice infected with the E123R variant and eight of ten of the mice 

infected with the D116R variant formed less than 15 IBCs. Even more strikingly, 70% of mice 

infected with the A24R variant formed no IBCs at 6 hpi and the other 30% formed 3 or less. This 

is in stark contrast to WT and P134R strains, which formed between 50-100 IBCs on average by 

6hpi. We also observed that, on average, the IBCs formed at 12 hpi in E123R and D116R 

infected mice were smaller than those formed by the WT strain (Figure 5I). Interestingly, while 

mice infected with the P134R variant formed a similar number of IBCs as WT at 12 hpi the IBCs 

formed were smaller than those formed by the WT strain. No IBCs were detected at 12 hours 

with the A24R variant. The D64R variant was defective in chronic cystitis in both the 

competitive and single bladder infections, but no acute fitness defects were observed. Mice 

infected with D64R formed a similar number of IBCs as the WT strain at both 6 and 12 hpi and 

at 12 hpi the size and morphology of the IBCs was similar to that of WT infected mice, 

suggesting that the defect occurs at a later time-point. Accordingly, in mice singly infected with 

fimA D62R bacterial clearance is delayed, starting between 10-14 days.  

In addition to playing a pivotal role in the urinary tract, a recent study found that type 1 

pili also promote the establishment and/or maintenance of the UPEC intestinal reservoir 

(Spaulding et al., 2017). Deletion of the operon encoding the type 1 pilus or the FimH adhesin 

impedes intestinal colonization by UTI89 (Spaulding et al., 2017). Correspondingly, strains 

producing FimAUTI89 variants D64R, D116R, and A24R also showed lower levels of intestinal 

colonization (by up to 2 logs) in the feces, cecum, and colon of mice compared to those 

colonized by WT fimA. This 2-log decrease mirrors the defect observed in UTI89Δfim or 

UTI89ΔfimH strains, suggesting that these mutations prevent type 1 pilus-dependent gut 
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colonization in UTI89 (Spaulding et al., 2017). While not statistically significant, fimAUTI89 

P134R variant showed lower colonization (by up to one log) in the feces and cecum than the WT 

strain (Figure 6). Together, our data indicates that the sequence of the FimA major subunit is 

critical for pilus function in the bladder and gut and thus has a major impact on the outcome of 

UTI. 

3.4 Discussion 

3.4.1 Implications of advances in cryo-electron microscopy 
Tremendous advances in cryo-EM within the past four years (Egelman, 2016; 

Subramaniam et al., 2016) largely driven by the introduction of direct electron detectors (Li et al., 

2013) has meant that many complexes that were recalcitrant to crystallization can now be readily 

solved at near-atomic resolution by cryo-EM. In particular, it is exceedingly difficult to 

crystallize most helical polymers, as unless such a polymer has exactly two, three, four or six 

subunits per turn, it cannot be packed in any crystal space group so that all subunits are in 

equivalent environments. The type 1 pilin, FimA, has been extensively studied by x-ray 

crystallography and solution NMR, while the type 1 pilus has only been studied at high 

resolution by solid-state NMR (Habenstein et al., 2015). We show here that type 1 filaments, 

present as a background in a preparation of T4P, allow us to reach a near-atomic level of 

resolution and build an atomic model for the FimA rod. The ability of cryo-EM to separate out 

multiple conformations among particles (Gui et al., 2017; Vonck and Mills, 2017) or even of 

subunits within the same particle (Roh et al., 2017) has been one of the greatest strengths of 

cryo-EM, allowing for multiple states to be solved from the same micrographs. Biochemically 

heterogeneous preparations, such as when virions are a mixture of empty particles and those 

containing DNA (Dong et al., 2017) are now routinely sorted out into homogeneous structural 
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classes. We have taken advantage of that strength here to show that filament images which might 

otherwise have been discarded as a background contaminant can actually be used to build an 

atomic model. Our type 1 pilus rod model provides new insights into structure-function 

relationships in type 1 pili. 

3.4.2 Type 1 pilus rod as a “molecular spring” 
FimA is critical for proper assembly of the type 1 pilus and, as the major subunit that 

makes up the pilus rod, is also critical for the proper display of the FimH adhesin. However, here 

we have uncovered a more complex and previously unappreciated role for FimA and the type 1 

pilus rod in host-pathogen interactions. We identified four mutations in FimAUTI89 (A24R, 

E123R, D116R, and D64R) that expressed adhesive pili in vitro but reduced the ability of UTI89 

to colonize the bladder, acutely and chronically. One of these mutants, FimAUTI89 A24R, was 

severely attenuated during acute infection, forming almost no IBCs and thus was unable to 

chronically infect the mouse bladder. 

 The pilus rod is hypothesized to act as a “molecular spring” transitioning between a 

flexible, linear fiber and a coiled helix. This spring-like property is thought to prevent the pilus 

from breaking or detaching from the host surface by temporarily expanding to a linear form after 

encountering shear forces, which can occur in the bladder during urine voiding or in the gut 

during fecal or mucus shedding. Such a transition between the helical and unwound form of the 

FimA homopolymer has been predicted to significantly dampen the force experienced by the 

adhesion-receptor complex at the tip (Zakrisson et al., 2012). Since FimA-FimA interactions 

create the bulk of the pilus rod, mutations that reduce the stability of these protein-protein 

interactions can alter the ability of the pilus rod to withstand shear forces, which we discovered 

has detrimental effects on pilus function and pathogenesis. This is consistent with ~ 50% of the 
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residues in the mature FimA protein (79/161) being invariant (Figure 3), which includes almost 

every residue involved in a subunit-subunit interface in the rod. Pili formed with the WT 

FimABW25113 protein require more than twice the force to unwind than the pili formed by the 

FimA BW25113 variant with an A22R mutation (~30pN vs. 11pN), likely due to steric clashes 

caused by this substitution affecting the tightly packed interface between subunits. Thus, when 

elongated during periods of urine flow, the pilus formed by the FimA A22R mutant variant may 

not have the strength to absorb and withstand the shear forces experienced during urination and 

thus allow the bacteria to be swept out of the bladder, preventing infection. In the gut, the pilus 

rod may play a similar role during mucus shedding. A recent study suggests that type 1 pili may 

promote UPEC colonization of the upper crypts (Spaulding et al., 2017). These bacteria would 

likely experience constant, low levels of shear force during mucus turnover and thus need the 

pilus to withstand some force to enable the bacteria to maintain their intestinal niche. 

Accordingly, three of the fimAUTI89 mutants (A24R, D116R, and D64R) that were attenuated in 

bladder colonization also displayed significantly reduced intestinal colonization. However, in 

general, the phenotypes of the fimAUTI89 mutants in gut colonization were not as severe as in the 

bladder.  

Three mutations in FimAUTI89 (D64R, D116R and E123R) resulted in a clumping 

phenotype when bacteria were grown in vitro. This clumping phenotype was also seen in the 

equivalent mutants in FimABW25113 (D62R; D114R, E121R). These residues are all located on the 

exterior surface of the rod structure and those tested by force extension (FimABW25113 D62R; 

D114R) do not have as strong an effect on the force needed for unwinding as FimABW2511 A22R. 

However, the clumping phenotype suggests that these mutations may alter side-to-side 

interactions between different pilus rods promoting pilus-pilus interactions within and between 
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bacteria, thus inhibiting the pilus mediated interactions needed in vivo for attachment, invasion 

and/or IBC formation. Interestingly, we do not observe a defect in bladder colonization in mice 

infected with FimAUTI89 D64R until 10dpi, suggesting that normal rod function is needed during 

both chronic and acute infection.  

3.4.3 Evolutionary pressures on the type 1 pilus rod 
Together, our data suggest that the type 1 pilus rod may mediate colonization phenotypes 

through damping of shear forces or through other mechanism(s) outside of scaffold support for 

FimH-binding. Our analyses indicate that FimA is undergoing selection pressures due to as-yet 

undefined host-pathogen interactions, which may explain some colonization defects seen here. 

FimA displays patterns of episodic, divergent selection on surface exposed amino acids in a 

pattern that is similar, though much less robust, to what is seen in the flagellin protein in 

Salmonella (Li et al., 1994). In Salmonella, the flagellin subunits are split into several domains 

where the domains responsible for subunit-subunit assembly are highly conserved while the 

more external domains of the protein show high rates of variability (Galkin et al., 

2008;Andersen-Nissen et al., 2005). The Salmonella flagellin protein is immunogenic, but the 

regions that induce inflammatory response are found in the conserved domains of the protein 

(Wildschutte et al., 2004). While it is known that flagellin are bound by Toll-like receptor 5 

(TLR5) resulting in the induction of the innate immune response (Smith and Ozinsky, 2002) and 

that this recognition is targeted towards conserved features of flagellin (Andersen-Nissen et al., 

2005), it is currently unknown which, if any, host immune receptor are capable of recognizing 

the FimA rod or subunits or which structural features are targeted by the host immune system. 

Further research is needed to fully elucidate the host pressures and responses that are influencing 

the evolution of the FimA rod structure.  



	

 
 

115 

Evolutionary and structural analysis of FimA, in combination with our in vitro and in 

vivo phenotyping, yielded several important insights into the selection pressures faced by UPEC 

as well as the evolutionary trajectories that pathogens follow to enhance their colonization of 

different host niches. Notably, we saw that different phenotypes caused by mutations in the 

FimA protein were associated with different classes of selection pressure. For example, the 

bacterial clumping phenotype is associated with mutation of three codons under purifying 

selection, but an equal number of the mutations that resulted in clumping are in codons with little 

to no evidence of selective pressure. In contrast, all mutations that failed to complement a fimA 

gene deletion were made in codons that are under very strong purifying selection or are too 

conserved for analysis. Together, the difference in selection pressure suggests that the mis-

assembly of the pilus is much more harmful and/or toxic to E. coli than bacterial clumping. 

Further, the integration of evolutionary analysis with in vivo and in vitro functional analysis 

allowed us to decouple the selection pressures acting to preserve amino acid sites necessary for 

pilus assembly (such as P147 in FimAUTI89) from the selection pressure maintaining the codons 

that were necessary for pilus function (such as A24 in FimAUTI89). Given the intricacy of pilus 

assembly, one could expect that most of the codons under purifying selection would be related to 

pilus construction. Instead, we found that many codons under purifying selection are involved in 

keeping the force needed to unwind the type 1 rod within a narrow range. This leads to reasoning 

that a "weak" or “loose” FimA rod may be just as detrimental for E. coli as having no rod at all, 

at least in the eyes of evolution. 

3.4.4 Summary 
In summary, by combining structural studies, force spectroscopy, genetic analysis, and 

relevant mouse models of UTI and gut colonization, we conclude that the mechanical properties 



	

 
 

116 

of the type 1 pilus rod are essential for its functional role in mediating E. coli pathogenesis and 

persistence and appear to have been carefully “tuned” by evolution. Further studies of the 

hundreds of CUP pili encoded in Gram-negative bacteria are needed to further understand 

the unique and general aspects of the evolution of CUP pilus fibers. In addition, other bacterial 

pili, such as T4P, which have arisen independently of CUP pili but can play similar roles in 

pathogenesis, can also elongate under force (Biais et al., 2010) and thus it remains an interesting 

question as to how the physical properties of other pili have been selected for particular 

environments and how these properties impact bacterial pathogenesis. 

3.5 Materials and Methods 

3.5.1 Ethics statement 
The Washington University Animal Studies Committee approved all procedures used for 

the mouse experiments described in the present study. Overall care of the animals was consistent 

with The Guide for the Care and Use of Laboratory Animals from the National Research Council 

and the USDA Animal Care Resource Guide.  

3.5.2 Bacteria, cloning, mutagenesis 
The BW25113 fimA gene sequence was cloned between the EcoRI and BamHI restriction 

sites in pTRC99A using standard PCR cloning techniques to create plasmid pTRC-fimA. 

Mutations were made within this plasmid using appropriate complementary primers to engineer 

codon changes in the template, pTRC-fimA, using Pfx polymerase and manufacturers 

instructions for PCR, followed by DpnI treatment of the resulting products to remove the 

methylated template before transformation into C600. Mutations were verified by sequencing. 

Mutant plasmids were transformed into UTI89-LON, ∆fimA for expression and functional 

studies as indicated. 
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In order to construct point mutations in the fimA allele in the UTI89 chromosome, the 

UTI89 fimA gene was deleted using a previously published technique that allows for flawless 

integration (Khetrapal et al., 2016). Briefly, fimA was deleted by homologous recombination 

using pSLC- 217 as a template and primers containing 50bp of homology to flanking regions of 

fimA. A deletion was then constructed using the previously described Red Recombinase method 

that would allow for reinsertion of constructs into the fimA site. Concurrently, a copy of UTI89 

fimA was cloned into pTRC99a. Point mutations were then introduced into this construct using 

site directed mutagenesis. PCR fragments from confirmed mutants, and the WT allele, were 

reintegrated into the UTI89-LON, ∆fimA mutants constructed above at the original deletion site. 

Successful reintegration events were sequenced to confirm flawless integration and mutation 

presence. 

3.5.3 Mouse studies 
Animals were maintained in a single room in our vivarium. Prior to and after infection all 

animals received PicoLab Rodent Diet 20 (Purina) ad libitum. All animals were maintained 

under a strict light cycle (lights on at 0600h, off at 1800h). Mice were acquired from indicated 

vendors and randomly placed into cages (n=5 mice/cage) by employees of Washington 

University’s Division of Comparative Medicine (DCM); no additional methods for 

randomization were used to determine how animals were allocated to experimental groups. 

Investigators were not blinded to group allocation during experiments. 

For bladder infections, 6-week old female C3H/HeN mice were obtained from Envigo 

and were maintained in our vivarium for one week prior to infection. Bladder infections were 

performed via transurethral inoculation (Hung et al., 2009). UPEC strains were prepared for 

inoculation as described previously (Hung et al., 2009). Briefly, a single UTI89 colony was 
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inoculated in 20 mL of Luria Broth (LB) and incubated at 37°C under static conditions for 24 h. 

Bacteria were then diluted (1:1000) into fresh LB and incubated at 37°C under static conditions 

for 18-24 h. Bacteria were subsequently washed three times with PBS and then concentrated to 

~1x108 CFU per 100 µL for intestinal infections and ~1x108 CFU per 50 µL for bladder 

infections. Bacteria were subsequently washed three times with PBS and then concentrated to 

~1x108 CFU per 50 µL for bladder infections. 

For intestinal colonization experiments, 6-week old female C3H/HeN mice were obtained 

from Envigo and were maintained in our vivarium for no more than 2 days prior to intestinal 

colonization. Mice received a single dose of streptomycin (1000mg/kg in 100 µL water by oral 

gavage (PO)) followed 24 h later by an oral gavage of ∼108 CFU UPEC in 100 µL phosphate-

buffered saline (PBS) (Spaulding et al., 2017). Bacteria were subsequently washed three times 

with PBS and then concentrated to ~1x108 CFU per 100 µL for intestinal infections.  

In all cases, fecal and urine samples were collected directly from each animal at the 

indicated time points. Fecal samples were immediately weighed and homogenized in 1 mL PBS. 

Urine samples were immediately diluted 1:10 prior to plating. Mice were sacrificed via cervical 

dislocation under isofluorane anesthesia and their organs were removed and processed under 

aseptic conditions. Intestinal segments (cecum and colon) were weighed prior to homogenization 

and plating on LB supplemented with the appropriate antibiotic. 

3.5.4 Enumeration of bladder intracellular bacterial communities (IBCs) 
6-week old female C3H/HeN mice were given a transurethral inoculation with WT 

UTI89 or a fimA mutant strain. To accurately count the number of IBCs, mice were sacrificed 6 

or 12 hours after infection. Bladders were removed aseptically, bi-sected, splayed on silicone 

plates and fixed in 4% (v/v) paraformaldehyde. IBCs, readily discernable as punctate violet spots, 
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were quantified by LacZ staining of bladder wholemounts or by immunofluorescence 

(Cusumano et al., 2011; Justice et al., 2006). 

3.5.5 Hemagglutination assays (HA) 
Bacteria were grown under type 1 pilus-inducing conditions (Greene et al., 2015), with 

appropriate antibiotics and .01-.02mM IPTG induction, if indicated. Pilus expression was 

assessed by hemagglutination assays (HA) as previously described (Greene et al., 2015) using 

bacterial cultures normalized to an optical density at 600 nm (OD600) of 1 and guinea pig 

erythrocytes normalized to an OD640 of 2. The experiment was conducted in parallel in PBS with 

2% w/v methyl-α-D-mannopyranoside. 

3.5.6 Electron microscopy 
Electron micrographs (EM) were taken of UTI89 or UTI89 isogenic mutants after growth 

under type 1 pilus-inducing conditions. A total of 300 bacterial cells were counted for each 

condition, and piliation on those cells was classified as bald (no pili), low (1 to 20 pili/cell), 

moderate (20 to 200 pili/cell), or abundant (>200 pili/cell). 

3.5.7 Force extension experiments 
For expression of type 1 pili the strains were grown in Luria Broth (LB) supplemented 

with carbenicillin (100 µg/mL) and IPTG (50µM), at 37°C overnight. The optical tweezers (OT) 

setup is built around an inverted microscope (Olympus IX71, Olympus, Japan) equipped with a 

high numerical aperture oil immersion objective (model: UplanFl 100X N.A. = 1.35; Olympus, 

Japan) and a 1292 x 964 pixel camera with a cell size of 3.75 x 3.75 µm (model: StingRay F-125, 

Allied Vision)(Mortezaei et al., 2013) (Figure S9A). The OT stands in a temperature controlled 

room with computers and controllers isolated from the room to reduce noise and vibrations. We 

use a continuous wave Nd:YVO4 laser (Millennia IR, Spectra Physics, Santa Clara, CA) 
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operating at 1064 nm for trapping a single bacterium or microspheres. A probe laser (low power 

HeNe-laser operating at 632.8 nm) is merged with the trapping laser using a polarizing beam 

splitter cube (PBSC). The light from the probe laser is refracted by the trapped object and 

collected by the condenser and thereafter imaged onto a 2D position sensitive detector (PSD, 

L20 SU9, Sitek Electro Optics, Sweden). The PSD convert the incoming light to a photocurrent 

and thereafter to a voltage that is sent to a programmable low pass filter (SR640, Stanford 

research systems), later collected by a computer and processed with an in-house LabVIEW 

program. We minimized the amount of noise in the setup and optimized the measured time series 

using the Allan variance method described in (Andersson et al., 2011). 

To prepare a sample we suspended bacteria in 1xPBS to a concentration (1:1000 of OD600 

= 1) suitable for single cell analysis using optical tweezers (OT). Surfactant-free 2.5 µm amidine 

polystyrene microspheres (product no. 3-2600, Invitrogen, Carlsbad, CA) were similarly 

suspended in Milli-Q water, these microspheres were trapped and used as force probes. To 

mount bacteria and reduce the influence of surface interactions we prepared a 1:500 suspension 

of 9.5 mm carboxylate-modified latex microspheres (product no.2-10000, Interfacial Dynamics, 

Portland, OR) in Milli-Q. We dropped ten microliters of the microsphere-water suspension onto 

24 x 60 mm coverslips (no.1, Knittel Glass, Braunschweig, Germany) and placed these in an 

oven for 60 min at 60°C to immobilize the microspheres to the surface. To firmly adhere bacteria 

to the microspheres, we added a solution of 20 mL of 0.01% poly-L-lysine (catalog no. P4832, 

Sigma-Aldrich, St. Louis, MO) to the coverslips, which, after 45 min incubation at 60°C, were 

stored until use.  

To make a flow chamber, we added a ring of vacuum grease (Dow Corning, Midland, 

MI) around the area containing the poly-L-lysine-coated microspheres on one of the coverslips. 
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Carefully, we dropped a 3-mL suspension of bacteria and a 3-mL suspension of probe 

microspheres (surfactant-free 2.5 mm white amidine polystyrene latex microsphere, product no. 

3-2600, Invitrogen, Carlsbad, CA) onto the area and sealed the flow chamber by placing a 20 x 

20 mm coverslip (no.1, Knittel Glass) on top. Thereafter, we mounted the sample in a sample 

holder that is fixed to a piezo-stage (Physik Instrument, P-561.3CD stage) in the OT 

instrumentation. To get a reliable OT calibration parameter values we measured the temperature 

using a thermocouple in the sample chamber, 23.0°C ± 0.1°C and the suspension viscosity was 

assumed to only vary with temperature, thus, the viscosity was set to 0.932 mPas ± 0.002 mPas. 

A free-floating bacterium was trapped by the optical tweezers run at low power to avoid 

cell damage. The bacterium was thereafter mounted on a large 9.5 µm microsphere coated with 

poly-L-lysine. We trapped a small free-floating 2.5 µm microsphere by the optical tweezers with 

normal power (a few hundreds of mW) and brought it close to (within tens of µm) but not in 

direct contact with, the bacterium. To calibrate the trap stiffness we used the Power spectrum 

method by sampling the microspheres position at 131,072 Hz and average 32 consecutive data 

sets acquired for 0.25 s each (Tolic-Norrelykke et al., 2006). Typically, the trap constant was 

found to be ~140 pN/µm for an output laser power of 800 mW. After calibration, the small 

microsphere was brought close to the bacterium in order to attachment a few pili with the 

microsphere (Figure S9B). To extend pili the piezo stage was typically moved at a constant 

speed of 10 nm/s and the sampling frequency was set to 10,000 Hz that was downsampled by 

800. We controlled the piezo-stage and sampled the data using an in-house LabView program 

that is available upon request. 

3.5.8 Pilus preparation for structural determination 
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To prepare the pilus extracts, bacteria of the E. coli strain BW25113 (Datsenko and 

Wanner, 2000) were inoculated by dense streaking on eight M9 minimal agar plates containing 

0.5 % glycerol (vol/vol). After a 72-hour incubation at 30°C, bacteria were harvested in 30 mL 

of LB medium, vortexed vigorously for 5 min and passed 8 times through a 26-Gauge needle, to 

detach pili from the cells. Bacteria were removed at 4°C by three successive 10-min 

centrifugation steps at 16,000 x g. To collect the pili, cleared supernatants were centrifuged for 1 

hr at 100,000 g in a cold Beckman Ti60 ultracentrifuge rotor. Pellet containing the crude pilus 

fraction was taken up in 200 mL of 50 mM HEPES, 50 mM NaCl pH 7.4, and maintained at 4°C 

for further analysis. 

3.5.9 Cryo-electron microscopy data collection and image processing 
3µL of sample was applied to glow discharged lacey carbon grids (TED PELLA, Inc., 

300 mesh). Then the grids were plunge-frozen using a Vitrobot Mark IV (FEI, Inc.), and 

subsequently imaged in a Titan Krios at 300keV with a Falcon II direct electron detector (pixel 

size 1.05 Å /pixel). A total of 6,803 images, each of which was from a total exposure of 2 

seconds dose-fractionated into seven chunks, were collected at a range of underfocus between 

0.5~3µm. Images were motion corrected using MotionCorr (Li et al., 2013), and the program 

CTFFIND3 (Mindell and Grigorieff, 2003) was used for determining the defocus and 

astigmatism. Images with poor CTF estimation as well as defocus > 3µm were discarded. The 

SPIDER software package (Frank et al., 1996) was used for most other operations with the first 

two-chunk sums (containing a dose of ~ 20 electrons/ Å2) of the motion-corrected image stacks. 

The CTF was corrected by multiplying the images from the first two-chunk sums with the 

theoretical CTF, which is a Wiener filter in the limit of a very poor signal-to-noise ratio (SNR). 

This both corrects the phases which need to be flipped and improves the SNR. The e2helixboxer 



	

 
 

123 

routine within EMAN2 (Tang et al., 2007) was used for boxing the filaments from the images. A 

total of 72,627 overlapping segments (384 px long), with a shift of 11 px between adjacent 

segments (~97% overlap), were used for the IHRSR (Egelman, 2000) reconstruction. With a 

featureless cylinder as a starting reference, 72,627 segments were used in IHRSR cycles until the 

helical parameters (axial rise and rotation per subunit) converged. Analysis of the population 

suggested that the axial rise was fairly fixed, but that the twist was variable. Using a reference-

based sorting with models having a fixed rise but a variable twist, approximately 55% of the 

segments were excluded, having a twist outside of the range 114.4° to 115.6°. A sub-set of 

32,726 segments were used for a few more cycles of IHRSR. The resolution of the final 

reconstruction was determined by the FSC between two independent half maps, generated from 

two non-overlapping data sets, which was 4.2 Å at FSC=0.143. 

3.5.10 Model Building and Refinement 
We used a previous FimA NMR model (PDB id: 2JTY, a single chain) as an initial 

template to dock into the cryo-EM map by rigid body fitting, and then manually edited the model 

in Chimera (Pettersen et al., 2004) and Coot (Emsley et al., 2010). We then used the combined 

model (1-19 and 21-159) as the starting template to re-build a single chain of the FimA protein 

using the RosettaCM protocol (Wang et al., 2015). Next, the full length model of FimA missing 

the first two residues and the last residue was iteratively refined by Phenix real-space refine 

(Adams et al., 2010) and manually adjusted in Coot. The refined single chain of the FimA model 

was then re-built by RosettaCM (Wang et al., 2015) with helical symmetry and refined by 

Phenix to improve the stereochemistry as well as the model map coefficient correlation. The 

FimA model was validated with MolProbity (Chen et al., 2010) and the coordinates deposited to 

the Protein Data Bank with the accession code XXXX. The corresponding cryo-EM map was 
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deposited in the EMDB with accession code YYYY. The refinement statistics are given in Table 

S1. 

3.5.11 Bioinformatic analyses 
The protein sequences of closely-related homologs of E. coli FimA, FimC, and FimH 

were obtained by individual searches the Ensembl Bacteria Genome database (Kersey et al., 

2016) using the phmmer web-server (Finn et al., 2015) with a BLOSUM62 (FimA) or a 

BLOSUM90 (FimC and FimH) scoring matrix using the full-length E. coli UTI89 protein 

sequences as queries. The sequence matches were then filtered to remove low scoring hits and 

non-functional sequences (i.e., those predicted to lack critical sequence features such as complete 

signal sequences and/or C-terminal tyrosine residues in FimA and FimH). The signal sequences 

were trimmed from the remaining homologs using Geneious v 6.1.7 (Kearse et al., 2012) and the 

protein sequences were aligned with the MAFFT program using two iterations of the FFT-NS-i 

algorithm based on the PAM200 scoring matrix (Katoh and Standley, 2013). Conservation at 

each amino acid position was calculated using custom Python scripts and a sequence logo was 

created using the ggseqlogo package in R (R Core Team, 2017) using RStudio (RStudio Team, 

2015). 

To estimate selection pressures on each codon in fimA, we obtained all available gene 

sequences encoding the protein sequences described above from the Ensembl Bacteria Genomes 

database (n=1,825, three were removed by submitter’s request) using custom bash scripts (Table 

S3). A total of 191 unique sequences were identified using Geneious v 6.1.7 and trimmed to 

remove the signal sequence. Evolutionary model selection was performed using maximum 

likelihood ratio testing on the Datamonkey webserver (Delport et al., 2010; Pond and Frost, 

2005), which identified the TIM2 model (model 010232) as the most likely model of nucleotide 
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substitution for the fimA homologs. These sequences were then were scanned for evidence of 

recombination using single breakpoint analysis (Kosakovsky Pond et al., 2006) and phylogenetic 

trees with a correction for a breakpoint found in codon 107 (position 320) were generated. These 

phylogenetic trees and evolutionary model were then used to measure the ratio of the rates non-

synonymous (dN) to synonymous (dS) mutation in each codon (i.e., a dN/dS ratio) using a fixed-

effects likelihood test to identify statistical significance (Kosakovsky Pond and Frost, 2005). 

Using a collection of 67 curated, reference genomes from a previous study (Schreiber et 

al., 2017), we examined the carriage and phylogenetic context of fimA carriage using a BLAST-

based search (Camacho et al., 2009,) with the UTI89 fimA gene as a query. Full-length sequences 

were extracted from the genomes using Geneious v 6.1.7, trimmed to remove signal sequences, 

and aligned using the MUSCLE program (Edgar, 2004). A phylogenetic tree was estimated using 

the RAxML program (Stamatakis, 2006) with the GTRCAT model and supported with 1000 

bootstraps (Stamatakis et al., 2008). Evidence for episodic, diversifying selection was then 

identified using a random effects likelihood ratio test for each branch of the fimA phylogenetic 

tree (Kosakovsky Pond et al., 2011) using unique sequences from the genomes (32 duplicates 

removed, n=25). Branches showing statistically significant evidence for episodic, diversifying 

selection were then indicated on the corresponding branches of the phylogenetic tree constructed 

using RAxML. 
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3.6 Figures 
3.6.1 Figure. Cryo-EM Structure of Type 1 pili. 1 

 
(A) An electron micrograph of type 1 pili in vitreous ice, surrounded by type 4 pili and flagellar filaments. (B) Side 
view, (C) interior view (the front half of the reconstruction has been removed) and (D) top view of overall 
reconstruction of FimA rod with subunits along the same left-handed 3-start helix colored in either blue, salmon or 
green. (E) Close-up view of donor strand complementation (DSC) in the central lumen showing that the β-strands in 
the reconstruction are very well resolved. 
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3.6.2 Figure 2. Subunit interface of the FimA rod.  

 
(A) Surface view of FimA rod model with subunits numbered along the right-handed 1-start helix. Each subunit is in 
a different color. (B) Ribbon representation to illustrate the interface of subunit N0 (in salmon) with neighboring 
subunits. 
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3.6.3 Figure 3. FimA conservation and variability. 

 
(A) Conservation, consensus amino acid identity, and selection pressures on residues within the mature form of the 
FimA protein measured by alignment of 1,828 sequences. Numbering here is based on FimAUTI89, which has two 
additional residues at the N-terminus of the mature protein relative to FimABW25113. Consensus amino acid residues 
are shown at each position. Height of the residues corresponds to their information content (bits) where the larger 
size indicates greater certainty that residue shown is the consensus residue at that position. The vertical bars 
represent the proportion of strains with the consensus amino acid (0-100%). Vertical bars are colored by selection 
pressure acting upon the amino acid position, with red and blue bars indicating residues with codons under adaptive 
and purifying selection, respectively. Green bars indicate codons with too little variability for evolutionary analysis 
and grey indicates amino acid positions that do not show statistically significant evidence for selection. (B,C) The 
degree of conservation for every FimA residue shown in (A) has been mapped onto a single subunit in our rod 
model. The absolutely conserved residues are in blue, the residues that are 40% conserved (the greatest degree of 
variability found) are in white, and light blue represents 90% conservation. Every residue facing the lumen is 100% 
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conserved. Overall, FimA displays strong signals of purifying selection resulting in conservation with hotspots of 
adaptive selection resulting in variability of surface residues 
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3.6.4 Figure 4. Mutations to FimA alter the force required to unwind the pilus. 

 
(A) Force response of a single type 1 pilus. The force response is composed of three phases, elastic stretching of the 
shaft, unwinding of the shaft, and elastic stretching of individual subunits in an open coil. (B) Bar chart showing the 
average unwinding force of measured pili. The error bars represent the standard error of the mean. (C) Ala22 (cyan) 
plays an important role in the inter-subunit contacts through interacting with Val37 (magenta) from a second subunit 
and Ala93 (green) from a third subunit. 
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3.6.5 Figure 5. Point mutations in FimA alter UPEC pathogenesis in the 
bladder. 

 
C3H/HeN mice were concurrently transurethrally inoculated with 1x108 CFU of wildtype (WT) UTI89 and one of 5 
isogenic UTI89 strains containing point mutations in the fimA gene. (A, B) Longitudinal urinalysis and examination 
of UTI89 titers in bladders and kidneys at time of sacrifice (28 dpi) revealed that, in chronically infected mice, the 
reintegrated FimA WT strain and P134R had no impact on the fitness of UTI89. (C-F) FimA proteins containing 
D64R, E123R, D116R, and A24R mutations had decreased fitness in chronically infected mice compared to the WT 
strain in competitive infections. (G) Mice infected singly, via transurethral inoculation, with D64R, E123R, D116R, 
and A24R mutations were also less likely to develop chronic UTI, as determined by longitudinal urinalysis and 
examination of UTI89 CFUs in bladders and kidneys at time of sacrifice (28 dpi). Bladders taken at 28 dpi after 
single infections are shown in panel G along with the percentage of mice that developed chronic UTI. (H) Number 
of IBCs formed at 6 hours post infection (hpi). (I) Immunofluencence images of IBCs at 12hpi for the indicated 
FimA mutant strains. No IBCs were detected in the A24R mutant at 12 hours. Abbreviations. B= bladder, K= kidney, 
CI= competitive index, IBC= intracellular bacterial community. Bars represent mean (A-F), geometric mean (G), 
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and median (H). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by Wilcoxon Signed Ranked test (A-F) or Mann 
Whitney U test (H). N=10, 2 replicates (A, G); N=11, 2 replicates (B, E); N=16, 3 replictates (C); N=18, 3 replicates 
(D); N=20 mice, 4 replicates (F, G); N=15, 3 replicates (H); N=4, 2 biological replicates (I). All replicates are 
biological. 
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3.6.6 Figure 6. Mutations in FimA alter the ability of UTI89 to colonize the 
intestine. 

 
C3H/HeN mice were orally gavaged with streptomycin, to disrupt colonization resistance, and one day later orally 
gavaged with 1x108 CFU of WT UTI89 or one of 5 isogenic UTI89 strains with point mutations in fimA. 
Examination of CFU of each strain in the (A) feces, (B) cecum, or (C) colon of mice at 7 days post colonization 
revealed that strains expressing mutant FimA proteins (D116R, D64R, and A24R) had fitness defects compared to 
the WT strain. Bars represent geometric mean. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by Mann Whitney U 
test. N=10, 2 biological replicates. 
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3.7 Supplemental Figures 
3.7.1 Figure S1. Details of cryo-EM reconstruction of type 1 pili. 

 
(A) Averaged power spectrum from the segments of type 1 pili, which shows the meridional at ~1/(7.5 Å) indicated 
by the red arrow. The blue arrow indicates layer lines containing Bessel orders +1, +2 ,+4, -1, and -3. (B) The power 
spectrum for the Type IV pili in the same preparation. (C) FSC plot generated from two independent half maps, each 
reconstructed from two independent dataset, shows a resolution of ~ 4.2 Å at FSC = 0.143. (D) FSC plot generated 
from the comparison of the cryo-EM map with the atomic model shows a resolution of ~4.2 Å at FSC = 0.38 
(=0.1431/2). 
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3.7.2 Figure S2. Nte inserts into the hydrophobic groove of the neighboring 
subunit. 

 
(A) Comparison of the DSC within the helical rod, within the FimA:FimC complex (PDB ID:3SQB), and in the self-
complemented FimA monomer (PDB ID:2M5G). FimA in the helical rod is shown in salmon and Nte from the 
adjacent subunit is shown in green; FimA in FimA:FimC complex is shown in blue and FimC donor strand is shown 
in grey; FimA self-complemented monomer is shown in plum. (B,C) FimA rod subunit surface is colored according 
to hydrophobicity, with the adjacent subunit’s Nte shown in a stick representation. Phe12 sits in a large hydrophobic 
pocket of the adjacent subunit. 
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3.7.3 Figure S3. Comparison of subunit N0 and N+3 interfaces with previously 
deposited FimA pilus rod models. 

 
(A) Our FimA pilus rod model and the deposited solid-state NMR FimA model 2N7H, when aligned with their N0 
subunit have an overall RMSD of 5.7 Å for subunits N+3. (B) Our FimA pilus rod model and solid-state NMR FimA 
model 2MX3 when aligned with subunit N0 have an overall RMSD of 11.0 Å for subunits N+3. (C) FimA models 
2N7H and 2MX3 when aligned with their N0 subunit, the overall RMSD is 5.6 Å for subunit N+3. The N0 and N+3 
subunits of our FimA model are colored in hot pink and pink, respectively. The N0 and N+3 subunits of 2N7H are 
colored in dodger blue and light blue, respectively. The N0 and N+3 subunits of 2MX3 are colored in yellow and 
green, respectively. 
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3.7.4 Figure S4. Comparison of type 1 pili and P pili. 

 
(A) The exterior and (B) central lumen of type 1 pili colored according to the electrostatic potential. (C) The exterior 
and (D) central lumen of P pili (PDB ID: 5FLU) colored according to the electrostatic potential. Red corresponds to 
a potential of -10 kT/e, and blue corresponds to a potential of 10 kT/e. (E,F) structures of type 1 and P pilus rods 
with each FimA subunit shown in a different color. (E) The N-terminus of FimA in the type 1 pilus projects out of 
the structure and makes no contacts with other subunits. (F) In contrast, the N-terminus in P pili (PDB 5FLU) forms 
a “staple” which involves contacts with two other subunits. 
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3.7.5 Figure S5. Location of FimA residues under positive selection for change 
in the helical rod. 
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(A) Five residues in FimABW25113, Asn64, Ala109, Thr117, Ser120 and Phe138, under adaptive selection are all 
located on the outside of the pilus rod and are shown in blue spheres. (B) Phylogenetic analysis of the carriage and 
evolution of the fimA gene in a curated dataset of E. coli genomes. A total of 57 fimA sequences were aligned and 
used to construct a phylogenetic tree with bootstrap support (between 80 and 100%) indicated along internal 
branches. Taxon labels are colored according to their clade of origin and UPEC strains are indicated with a star. 
Measurement of the rates of non-synonymous (dN) to synonymous (dS) mutation for each branch identified three 
branches carrying many sequences from UPEC strains are under episodic, diversifying selection (labeled A, B, and 
C). Statistical significance for these measures are indicated by asterisks, with *p≤0.05, **p≤0.01, and ***p <0.001 
by likelihood ratio χ2 (chi-squared) test. 
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3.7.6 Figure S6. Chromosomally integrated point mutations in fimA gene do 
not prevent the expression or function of type 1 pili in vitro. 

 
(A) Representative negative stain EM images of UTI89 strains producing WT FimA or one of the indicated mutant 
variants. (B) Percentage of bald, lowly-, moderately-, and highly-piliated cells in the different UTI89 populations. 
(C) The relative ability of the WT strain and each mutant to bind and agglutinate guinea pig red blood cells as 
assessed by hemagglutination titer analysis. Some mutants show increased binding to red blood cells in the presence 
of exogenous mannose compared to the WT strain, suggesting that some portion of the population of those strains 
may express other pilus types. Abbreviations: HA= hemagglutination assay. Bars represent mean ± SD (C). N= 600 
cell counted per mutant, 2 biological replicates (B); N= 4 biological replicates (C). 
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3.7.7 Figure S7 CFU titers for mice that resolved competitive bladder 
infections shown in Figure 5. 

 
C3H/HeN mice were concurrently colonized, via transurethral inoculation, with 1x108 CFU of wildtype (WT) 
UTI89 and one of 5 isogenic UTI89 strains containing point mutations in fimA. The resolution of infection in mice 
was determine by longitudinal urinalysis and examination of UTI89 titers in bladders and kidneys at time of 
sacrifice (28 dpi). The mice that resolved infection by both strains (percentage shown above each graph) are shown 
here. Chronically infected mice are shown in Figure 5. Abbreviations. B= bladder, K= kidney, CI= competitive 
index. Bars represent mean values. 
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3.7.8 Figure S8 CFU titers for mice that developed chronic UTI or resolved 
infection in single bladder infections shown in Figure UTI. 
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C3H/HeN mice were singly colonized, via transurethal inoculation, with 1x108 CFU of wildtype (WT) UTI89 or one 
of 5 isogenic UTI89 strains containing point mutations in fimA. The status of infection (mice that were chronically 
infected or those that resolved infection) was determine by longitudinal urinalysis and examination of UTI89 titers 
in bladders and kidneys at time of sacrifice (28 dpi). Mice that developed chronic infection are shown on the left 
while those that resolved infection are shown on the right. Percentages of each outcome are given above each graph. 
Abbreviations. B= bladder, K= kidney. Bars represent geometric mean. 
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3.7.9 Figure S9. Schematic illustration of the optical tweezer setup 

 
(A) The trap and probe laser beams are merged using a polarizing beam splitter cube (PBSC) positioned inside the 
microscope. The two laser beams are thereafter focused by the objective inside the sample chamber. The weak probe 
laser beam (µW), refracted by the object and collected by the condenser, is illuminating a PSD-detector that 
converts the incoming light to a photocurrent, which in turn is converted to a voltage signal. (B) Schematic 
illustration of a force spectroscopy experiment. A single cell or probe microsphere can be trapped by the laser. i) A 
single bacterium is mounted onto a large immobilized microsphere. ii) A probe microsphere is trapped and brought 
into contact with bacterial pili. iii) The bacterium and trapped microsphere are separated and an attached pilus is 
unwound. 
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3.8 Supplemental Tables 
3.8.1 Table S1. Validation statistics for FimA model 

Phenix Real-Space Refinement 

Map CC (around atoms) 0.68 

MolProbity Score 1.90 

Ramachandran outliers 0.00% 

Ramachandran favored 92.21% 

Ramachandran allowed 7.8% 

Poor rotamers 0 

RMSD bonds (Å) 0.00 

RMSD bond angles (°) 0.85 

All atom clashscore 7.75 
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3.8.2 Table S2. Helical parameters comparison within FimA models 

Rotation(°)/ 
Translation(Å) 

FimA cryo-EM model 
Solid NMR FimA 

model 
PDB code ID:2N7H 

Solid NMR FimA 
model 

PDB code ID:2MX3 

N-N+1 115.0/7.7 111.5/7.2 111.5/8.7 
N-N+2 130.0/15.4 137.0/14.4 137.0/17.5 
N-N+3 15.1/23.0 25.5/21.6 25.5/26.2 
N-N+4 99.9/30.7 86.0/28.8 86.0/34.9 
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3.8.3 Table S3. FimA sequences used in analysis of conservation and selection 
Available in Appendix A 

3.8.4 Table S4. List of FimC and FimH sequences 
Available in Appendix A 

3.8.5 Table S5. Codon-by-codon selection analysis in fimA 
UTI89 
Codon 

Position 

AA 
Identitya dS dN dN/dSb Normalized 

dN-dS 

dS 
(when 

dN=dS) 
Log(L) LRT p-

valuec 

1 49.18 0.063 1.639 25.906 1.092 1.193 -48.304 2.683 0.101 
2 51.04 2.355 1.548 0.657 -0.559 1.818 -67.600 0.619 0.431 
3 85.83 1.038 0.000 0.000 -0.719 0.264 -8.200 2.600 0.107 
4 85.83 0.000 0.000 Undefined 0.000 0.000 -4.393 0.000 1.000 
5 100.00 1.026 0.000 0.000 -0.711 0.224 -17.754 6.074 0.014 
6 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
7 99.89 1.659 0.307 0.185 -0.936 0.738 -47.275 4.549 0.033 
8 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
9 99.95 1.120 0.211 0.188 -0.630 0.538 -28.763 2.456 0.117 

10 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
11 99.89 0.748 0.169 0.226 -0.401 0.373 -27.923 1.598 0.206 
12 98.47 0.750 0.305 0.407 -0.308 0.434 -28.926 0.770 0.380 
13 99.84 0.000 0.153 Infinite 0.106 0.099 -13.033 0.859 0.354 
14 100.00 0.524 0.000 0.000 -0.363 0.098 -10.881 3.314 0.069 
15 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
16 100.00 1.023 0.000 0.000 -0.709 0.298 -18.065 4.918 0.027 
17 100.00 1.435 0.000 0.000 -0.994 0.232 -13.093 7.244 0.007 
18 99.67 0.349 0.149 0.426 -0.139 0.208 -14.583 0.351 0.554 
19 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
20 100.00 1.758 0.000 0.000 -1.218 0.467 -26.330 13.041 0.000 
21 100.00 0.962 0.000 0.000 -0.666 0.418 -25.648 6.597 0.010 
22 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
23 100.00 1.902 0.000 0.000 -1.317 0.589 -22.233 11.502 0.001 
24 99.84 2.663 0.186 0.070 -1.716 1.090 -44.447 10.719 0.001 
25 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
26 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
27 99.73 2.328 0.375 0.161 -1.353 1.094 -49.520 6.361 0.012 
28 100.00 0.231 0.000 0.000 -0.160 0.110 -8.401 1.486 0.223 
29 98.91 0.000 0.163 Infinite 0.113 0.111 -12.740 0.765 0.382 
30 99.51 0.356 0.153 0.429 -0.141 0.213 -19.701 0.345 0.557 
31 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
32 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
33 99.45 0.703 0.287 0.409 -0.288 0.446 -34.211 0.971 0.324 
34 99.95 0.000 0.152 Infinite 0.106 0.106 -11.034 0.722 0.396 
35 99.95 0.000 0.182 Infinite 0.126 0.151 -13.483 0.381 0.537 
36 99.95 5.523 0.154 0.028 -3.719 1.592 -64.866 26.659 0.000 
37 100.00 5.968 0.000 0.000 -4.135 2.022 -62.762 29.334 0.000 
38 100.00 0.902 0.000 0.000 -0.625 0.151 -9.561 3.555 0.059 
39 99.95 0.364 0.152 0.418 -0.147 0.215 -18.645 0.365 0.546 
40 99.95 0.000 0.196 Infinite 0.136 0.126 -12.829 0.889 0.346 
41 100.00 0.468 0.000 0.000 -0.325 0.177 -14.348 3.873 0.049 
42 100.00 2.194 0.000 0.000 -1.520 0.738 -28.474 12.786 0.000 
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43 96.66 3.962 1.117 0.282 -1.970 1.930 -75.585 4.501 0.034 
44 100.00 1.057 0.000 0.000 -0.733 0.343 -21.097 6.714 0.010 
45 45.35 1.856 1.558 0.840 -0.206 1.639 -62.743 0.063 0.801 
46 99.84 3.736 0.532 0.143 -2.219 1.042 -37.672 5.923 0.015 
47 33.92 1.737 1.948 1.121 0.146 1.897 -69.047 0.028 0.867 
48 100.00 0.587 0.000 0.000 -0.407 0.249 -14.333 3.420 0.064 
49 100.00 1.565 0.000 0.000 -1.084 0.586 -28.212 9.789 0.002 
50 100.00 0.228 0.000 0.000 -0.158 0.088 -11.113 1.908 0.167 
51 100.00 0.716 0.000 0.000 -0.496 0.198 -12.678 5.088 0.024 
52 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
53 100.00 2.502 0.000 0.000 -1.733 0.758 -26.816 13.594 0.000 
54 99.29 0.490 0.152 0.311 -0.234 0.282 -21.021 0.972 0.324 
55 99.95 0.000 0.210 Infinite 0.146 0.131 -11.593 0.940 0.332 
56 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
57 100.00 0.287 0.000 0.000 -0.199 0.088 -11.240 2.349 0.125 
58 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
59 100.00 4.015 0.000 0.000 -2.782 0.572 -21.855 15.131 0.000 
60 100.00 0.336 0.000 0.000 -0.233 0.113 -13.037 2.186 0.139 
61 100.00 0.497 0.000 0.000 -0.344 0.101 -8.123 3.156 0.076 
62 100.00 0.548 0.000 0.000 -0.380 0.124 -8.273 2.947 0.086 
63 100.00 0.961 0.000 0.000 -0.665 0.334 -17.194 6.239 0.012 
64 99.89 0.494 0.498 1.009 0.003 0.497 -25.053 0.000 0.994 
65 100.00 0.997 0.000 0.000 -0.691 0.363 -22.701 8.013 0.005 
66 40.54 0.000 1.742 Infinite 1.207 1.275 -50.432 6.736 0.009 
67 99.95 0.000 0.152 Infinite 0.105 0.106 -10.863 0.721 0.396 
68 100.00 0.873 0.000 0.000 -0.605 0.340 -19.302 5.632 0.018 
69 48.30 2.378 0.805 0.339 -1.089 1.300 -62.067 3.135 0.077 
70 99.78 0.000 0.117 Infinite 0.081 0.100 -10.329 0.324 0.569 
71 100.00 2.329 0.000 0.000 -1.613 0.901 -39.485 14.642 0.000 
72 99.89 0.732 0.375 0.511 -0.248 0.495 -29.302 0.431 0.512 
73 93.11 0.000 0.296 Infinite 0.205 0.209 -13.110 1.388 0.239 
74 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
75 100.00 0.997 0.000 0.000 -0.690 0.266 -18.025 7.809 0.005 
76 99.84 1.451 0.475 0.327 -0.676 0.750 -42.442 1.302 0.254 
77 100.00 1.610 0.000 0.000 -1.115 0.548 -21.591 8.426 0.004 
78 100.00 2.981 0.000 0.000 -2.065 0.750 -31.191 18.929 0.000 
79 89.55 0.995 0.760 0.764 -0.163 0.846 -38.418 0.120 0.729 
80 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
81 99.78 0.807 0.161 0.199 -0.447 0.344 -16.019 1.836 0.175 
82 67.94 2.253 1.833 0.814 -0.291 1.964 -68.527 0.118 0.731 
83 39.55 1.328 2.858 2.152 1.060 2.438 -91.627 1.439 0.230 
84 86.27 0.000 0.630 Infinite 0.436 0.479 -26.950 2.189 0.139 
85 79.27 1.395 0.632 0.453 -0.529 0.877 -38.898 1.213 0.271 
86 54.70 2.053 1.088 0.530 -0.668 1.318 -59.849 0.806 0.369 
87 99.95 1.561 0.152 0.098 -0.976 0.617 -38.208 6.431 0.011 
88 100.00 1.761 0.000 0.000 -1.220 0.568 -27.461 11.210 0.001 
89 99.95 0.362 0.186 0.514 -0.122 0.246 -15.404 0.215 0.643 
90 100.00 1.745 0.000 0.000 -1.209 0.571 -29.423 11.064 0.001 
91 99.73 1.866 0.180 0.096 -1.168 0.451 -22.969 3.755 0.053 
92 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
93 100.00 2.664 0.000 0.000 -1.845 0.837 -38.287 15.569 0.000 
94 99.95 0.356 0.186 0.522 -0.118 0.244 -20.268 0.206 0.650 
95 99.73 2.793 0.378 0.135 -1.674 1.084 -43.630 7.000 0.008 
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96 99.95 1.156 0.211 0.182 -0.655 0.543 -27.518 2.564 0.109 
97 99.89 1.257 0.138 0.110 -0.776 0.477 -33.071 5.127 0.024 
98 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
99 99.95 0.301 0.144 0.478 -0.109 0.195 -16.761 0.265 0.607 

100 93.44 3.100 0.647 0.209 -1.699 1.243 -63.405 7.075 0.008 
101 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
102 100.00 1.515 0.000 0.000 -1.049 0.538 -21.654 8.137 0.004 
103 100.00 0.507 0.000 0.000 -0.352 0.117 -10.753 2.931 0.087 
104 99.95 4.058 0.180 0.044 -2.686 0.760 -32.143 10.069 0.002 
105 100.00 2.024 0.000 0.000 -1.402 0.581 -34.746 16.994 0.000 
106 100.00 1.062 0.000 0.000 -0.736 0.343 -23.299 6.755 0.009 
107 99.95 0.292 0.154 0.527 -0.096 0.202 -16.447 0.200 0.655 
108 89.22 0.000 0.506 Infinite 0.351 0.404 -29.254 1.786 0.181 
109 99.95 1.875 0.137 0.073 -1.204 0.605 -35.536 8.274 0.004 
110 100.00 6.311 0.000 0.000 -4.372 2.000 -61.316 31.635 0.000 
111 63.02 0.000 1.959 Infinite 1.357 1.313 -46.972 8.616 0.003 
112 86.27 1.071 1.117 1.042 0.031 1.105 -47.609 0.003 0.960 
113 99.95 1.004 0.163 0.162 -0.582 0.439 -25.758 2.954 0.086 
114 63.35 0.971 1.512 1.556 0.374 1.370 -55.605 0.341 0.559 
115 100.00 0.660 0.000 0.000 -0.457 0.218 -15.465 4.421 0.036 
116 100.00 2.610 0.000 0.000 -1.808 0.767 -28.083 16.959 0.000 
117 100.00 2.377 0.000 0.000 -1.646 0.792 -39.861 12.731 0.000 
118 99.95 0.000 0.181 Infinite 0.125 0.131 -8.948 0.635 0.426 
119 89.33 0.000 0.591 Infinite 0.410 0.381 -29.730 3.465 0.063 
120 100.00 0.839 0.000 0.000 -0.581 0.182 -12.807 6.039 0.014 
121 100.00 1.000 0.000 0.000 -0.693 0.208 -12.444 6.190 0.013 
122 42.40 0.638 2.456 3.849 1.259 1.743 -72.544 3.788 0.052 
123 62.69 0.000 0.878 Infinite 0.609 0.714 -40.843 2.468 0.116 
124 99.95 1.193 0.000 0.000 -0.827 0.376 -24.671 9.209 0.002 
125 99.89 0.697 0.137 0.197 -0.388 0.345 -24.931 2.348 0.125 
126 100.00 1.323 0.000 0.000 -0.917 0.436 -26.864 8.823 0.003 
127 99.95 0.521 0.123 0.235 -0.276 0.198 -17.269 0.955 0.328 
128 99.95 0.884 0.123 0.139 -0.528 0.346 -23.107 3.503 0.061 
129 100.00 2.102 0.000 0.000 -1.456 0.769 -28.146 11.775 0.001 
130 99.84 1.233 0.137 0.111 -0.760 0.528 -31.159 5.666 0.017 
131 100.00 0.280 0.000 0.000 -0.194 0.085 -9.904 2.376 0.123 
132 99.56 0.446 0.414 0.928 -0.022 0.426 -33.992 0.007 0.935 
133 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
134 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
135 99.95 0.274 0.117 0.426 -0.109 0.164 -19.965 0.351 0.554 
136 99.84 0.000 0.175 Infinite 0.121 0.144 -12.891 0.381 0.537 
137 100.00 0.492 0.000 0.000 -0.341 0.130 -9.276 2.655 0.103 
138 99.95 0.000 0.188 Infinite 0.130 0.121 -12.074 0.888 0.346 
139 100.00 0.499 0.000 0.000 -0.346 0.119 -10.979 2.833 0.092 
140 58.97 0.000 0.884 Infinite 0.613 0.683 -38.165 3.121 0.077 
141 99.95 0.271 0.178 0.657 -0.064 0.215 -18.032 0.087 0.768 
142 56.40 0.808 0.512 0.633 -0.206 0.607 -40.078 0.342 0.559 
143 99.51 1.676 0.617 0.368 -0.734 1.015 -50.010 1.884 0.170 
144 52.08 1.148 1.891 1.646 0.514 1.609 -60.516 0.583 0.445 
145 100.00 0.276 0.000 0.000 -0.191 0.108 -10.155 1.875 0.171 
146 99.89 0.000 0.137 Infinite 0.095 0.084 -11.525 0.977 0.323 
147 99.62 11.326 0.337 0.030 -7.613 2.667 -81.398 40.731 0.000 
148 100.00 5.532 0.000 0.000 -3.832 1.860 -46.874 29.087 0.000 
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149 99.95 5.407 0.178 0.033 -3.622 1.837 -68.581 23.781 0.000 
150 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
151 100.00 0.527 0.000 0.000 -0.365 0.099 -8.505 3.327 0.068 
152 99.95 0.486 0.178 0.366 -0.213 0.261 -17.902 0.482 0.488 
153 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
154 100.00 1.333 0.000 0.000 -0.924 0.381 -18.178 7.466 0.006 
155 99.95 0.000 0.137 Infinite 0.095 0.084 -11.524 0.977 0.323 
156 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
157 100.00 0.849 0.000 0.000 -0.588 0.112 -10.636 4.027 0.045 
158 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
159 99.95 0.000 0.175 Infinite 0.121 0.144 -12.900 0.381 0.537 
160 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 
161 100.00 0.000 0.000 Undefined 0.000 0.000 0.000 0.000 1.000 

aAmino acid position in alignment of 1,828 mature FimA sequences in Table S3 
bValues of “Undefined” indicate codons where dS and dN = 0, preventing estimation of selection pressure (p-value = 
1). Values of “Infinite” indicate codons where dS = 0 and dN >0 
cp-values <0.1 are considered significant and are indicated in red text 
  



	

 
 

151 

3.8.6 Reference and UPEC strains used in analysis of fimA carriage 
Strain Patvhotype Clade BioProject (NCBI ID) FimA Carriage 

536 UPEC B2 PRJNA16235 Yes 
11128 EHEC B1 PRJDA32513 Yes 
11368 EHEC B1 PRJDA32509 Yes 
12009 EHEC B1 PRJDA32511 Yes 
55989 EAEC B1 PRJNA33413  

2009EL-2050 EHEC B1 PRJNA81097  
2009EL-2071 EHEC B1 PRJNA81099  
2011C-3493 EHEC B1 PRJNA81095  
ABU 83972 ABU B2 PRJNA38725  
APEC O1 APEC B2 PRJNA16718 Yes 
APEC O78 APEC B1 PRJNA184588 Yes 
ATCC 8739 Commensal A PRJNA18083  
BL21(DE3) Lab Strain A PRJNA20713 Yes 

BW2952 Lab Strain A PRJNA33775 Yes 
CB9615 EPEC E PRJNA42729 Yes 

CE10 NMEC D PRJNA63597 Yes 
CFT073 UPEC B2 PRJNA313 Yes 

clone D i14 UPEC B2 PRJNA52023 Yes 
clone D i2 UPEC B2 PRJNA52021 Yes 

DH1 Lab Strain A PRJDA52077 Yes 
DH10B Lab Strain A PRJNA20079  

E2348/69 EPEC B2 PRJEA32571 Yes 
E24377A ETEC B1 PRJNA13960  
EC4115 EHEC E PRJNA27739 Yes 

ED1a Commensal B2 PRJNA33409 Yes 
EDL933 EHEC E PRJNA259 Yes 
H10407 ETEC A PRJEA42749 Yes 

HS Commensal A PRJNA13959 Yes 
IAI39 UPEC D PRJNA33411 Yes 

IHE3034 NMEC B2 PRJNA43693 Yes 
K12 MG1655 Commensal A PRJNA40075 Yes 

LF82 AIEC B2 PRJNA33825 Yes 
NRG 857C AIEC B2 PRJNA41221 Yes 

REL606 Lab Strain A PRJNA18281 Yes 
RM12579 EPEC E PRJNA68245 Yes 

S88 Commensal B2 PRJNA33375 Yes 
SE11 Commensal B1 PRJNA18057 Yes 
SE15 Commensal B2 PRJDA19053 Yes 

SMS-3-5 Environmental D PRJNA19469 Yes 
TW14359 EHEC E PRJNA30045 Yes 
UM146 AIEC B2 PRJNA50883 Yes 

UMNK88 ETEC A PRJNA42137  
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UTI89 UPEC B2 PRJNA16259 Yes 
W Lab Strain B1 PRJNA48011 Yes 

W3110 Lab Strain A PRJNA16351 Yes 
Xuzhou21 EHEC E PRJNA45823 Yes 

2.1a UPEC A PRJNA269984 Yes 
2.2r UPEC D PRJNA269984 Yes 
5.1a UPEC B1 PRJNA269984  
5.3r UPEC B2 PRJNA269984 Yes 
9.1a UPEC D PRJNA269984 Yes 
9.2p UPEC B1 PRJNA269984 Yes 
9.3r UPEC B1 PRJNA269984 Yes 

11.1a UPEC A PRJNA269984 Yes 
12.1a UPEC B2 PRJNA269984 Yes 
17.1a UPEC B2 PRJNA269984 Yes 
20.1a UPEC B2 PRJNA269984 Yes 
21.1a UPEC B2 PRJNA269984 Yes 
26.1a UPEC B2 PRJNA269984 Yes 
31.1a UPEC B1 PRJNA269984 Yes 
31.3r UPEC B2 PRJNA269984 Yes 
34.1a UPEC B2 PRJNA269984 Yes 
35.1a UPEC B2 PRJNA269984 Yes 
41.1a UPEC B2 PRJNA269984 Yes 
41.4p UPEC B1 PRJNA269984 Yes 
56.1a UPEC B1 PRJNA269984 Yes 
56.3r UPEC B2 PRJNA269984 Yes 
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3.8.7 Table S7. In vivo and in vitro phenotypes of fimA mutants 
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- - - - WT 6 1   WT 8 0    
7 (5) 99.89 0 0.014 V5R 6 1 Yes        
24 

(22) 99.84 0.07 0.001 A22R 6 1  Yes A24R 8 0 Yes Yes Yes 

27 
(25) 99.73 0.161 0.012 A25R 3 1         
34 

(32) 99.95 Infinite 0.396 V32R 1 1         
47 

(45) 33.92 1.121 0.867 E45R 6 4 Yes        
64 

(62) 99.89 1.009 0.994 D62R 5 3 Slight  D64R 7 1  Yes Yes 

67 
(65) 99.95 Infinite 0.396 V65R 1 1         
87 

(85) 99.95 0.098 0.011 V85R 1 1         
94 

(92) 99.95 0.522 0.650 A92R 7 1  Yes       
116 

(114) 100 0 0.000 D114R 6 3 Slight Yes D116R 8 3 Yes Yes Yes 

123 
(121) 62.69 Infinite 0.116 E121R 7 4 Yes  E123R 8 3 Yes Yes Slight 

134 
(132) 100 Undefined 1.000 P132R 6 1  Yes P134R 8 0 Slight   
144 

(142) 52.08 1.646 0.445 A142R 5 4 Yes        
147 

(145) 99.62 0.03 0.000 P145R 0 0         
157 

(155) 100 0 0.045 K155E 6 1  Yes       
aCodon positions are based on the global alignment shown in Figure 3a, which is the same as FimAUTI89. The 
corresponding residue position in FimABW25113 is shown in parentheses. 
bdN/dS ratios of "Infinite" indicate that dS = 0, while ratios of "Undefined" indicate that both dN and dS values = 0, 
thus preventing analysis. dN/dS >1 indicate adaptive selection and dN/dS <1 indicate purifying selection 
cp-values <0.1 are considered significant and are indicated in red text. 
dThe indicated mutations were made in the plasmid pTRC99a- FimABW25113 and electroporated into UTI89∆LIR, 
fimA- for in vitro analysis. Vector control (pTRC99a with no FimA) displayed an HA titer of 2 in PBS and 1 in 
Mannose 
e“PBS” indicates phosphate buffered saline and “Mannose” indicates PBS with 2% w/v methyl-α-D-
mannopyranoside, an inhibitor of type 1 pilus binding. Values represent the last well in a 1:2 serial dilution with a 
visible hemagglutination (HA) phenotype. Each value shown the median average of 3 biological replicates each with 
2 technical replicates. Values with a defect in HA are indicated in red. 
fThe indicated mutations in the mature protein were made in the chromosomal copy of the fimA gene in UTI89 for 
analysis in vivo. Not all mutations tested in plasmids were tested in the corresponding in vivo analyses. 
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4.1 Background 
Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) affect 

150 million people annually (Flores-Mireles et al., 2015; Foxman, 2014). Despite effective 

antibiotic therapy, 30–50% of patients experience recurrent UTIs (Foxman, 2014). In addition, 

the growing prevalence of UPEC that are resistant to last-line antibiotic treatments, and more 

recently to carbapenems and colistin, make UTI a prime example of the antibiotic-resistance crisis 

and emphasize the need for new approaches to treat and prevent bacterial infections 

(Mediavilla et al., 2016; Spaulding and Hultgren, 2016; Zowawi et al., 2015). UPEC strains 

establish reservoirs in the gut from which they are shed in the faeces, and can colonize the 

periurethral area or vagina and subsequently ascend through the urethra to the urinary tract, 

where they cause UTIs(Yamamoto et al., 1997). UPEC isolates encode up to 16 distinct 

chaperone-usher pathway pili, and each pilus type may enable colonization of a habitat in the host 

or environment (Wurpel et al., 2013). For example, the type 1 pilus adhesin FimH binds 

mannose on the bladder surface, and mediates colonization of the bladder. However, little is 

known about the mechanisms underlying UPEC persistence in the gut(Spaulding and Hultgren, 

2016). Here, using a mouse model, we show that F17-like and type 1 pili promote intestinal 

colonization and show distinct binding to epithelial cells distributed along colonic crypts. 

Phylogenomic and structural analyses reveal that F17-like pili are closely related to pilus types 

carried by intestinal pathogens, but are restricted to extra-intestinal pathogenic E. coli. Moreover, 

we show that targeting FimH with M4284, a high-affinity inhibitory mannoside, reduces intestinal 

colonization of genetically diverse UPEC isolates, while simultaneously treating UTI, without 

notably disrupting the structural configuration of the gut microbiota. By selectively depleting 

intestinal UPEC reservoirs, mannosides could markedly reduce the rate of UTIs and recurrent 

UTIs. 
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4.2 Contribution to findings 
In this Chapter, I present a large, collaborative project describing the functional role for 

chapterone-usher pathway (CUP) pili in mediating gut colonization by uropathogenic E. coli 

(UPEC). Specifically, we showed that both type 1 and F17-like pili are critical factors in 

mediating UPEC colonization of the mouse gut. Further, we show the ability of a small molecule 

inhibitor of type 1 pili, so-called mannosides, are capable of disrupting this colonization without 

disrupting the rest of the gut microbial community. Within this project, my contribution was an 

investigation of the carriage and evolution of F17-like pili in clinical UPEC and the association 

of this pilus system with recurrent urinary tract infections (rUTI). Briefly, I found that the ucl 

operon, which encodes F17-like pili, is found almost exclusively within clade B2 strains of E. 

coli, which cause the majority of UTIs in the U.S.A (Schreiber, 2017). Importantly, I found that 

F17-like pili are further enriched in UPEC strains causing recurrent UTI. In addition, I found that 

the ucl operon is most closely related to CUP pili operons found in other bacteria that colonize 

the gut, specifically Proteus mirabilis, and that E. coli most likely obtained the ucl operon 

through horizontal gene transfer from these gut colonizers. Taken together, these data suggest 

that UPEC have coopted F17-like pili to enable their persistence within the gut reservoir of their 

hosts, thus enhancing their ability to cause recurrent UTI. 

4.3 Results 

4.3.1 Influence of chaperone-usher pathway (CUP) pili on gut colonization 
The genome of UTI89, a human cystitis isolate, contains nine distinct functional 

chaperone-usher pathway (CUP) pili. To determine whether any of these CUP pili promote 

intestinal colonization, we used a strep- tomycin mouse model of UPEC intestinal 

colonization(Kaiser et al., 2012) to co-colonize C3H/HeN mice with wild-type UTI89 and one of 
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nine mutant strains, each lacking a single CUP operon (Figure S1). Deletion of each of the seven 

operons yfc, yeh, yad, pap, sfa, yqi and mat had no effect on UTI89 intestinal fitness compared to 

the isogenic wild-type strain (Figure 1a–g). However, deletion of the fim or ucl pilus operons, 

which encode type 1 or F17-like pili, respectively, produced significant defects in colonization 

(up to 100- and 1,000-fold, respectively; Figure 1h, i). Loss of FimH, the type 1 pilus adhesin, 

mirrored the defect caused by deletion of the full type 1 pilus operon (Figure S2a). Deletion 

of both pilus types in a single strain produced a fitness defect greater than either individual 

deletion alone, suggesting that these two pilus types do not have redundant roles (Figure 1j, k). 

In a mouse model, type 1 pilus-mediated binding to mannosylated receptors is 

indispensable for bladder colonization and invasion of urothelial cells lining the bladder 

lumen2,5. Once inside urothelial cells, a single bacterium rapidly divides, forming an 

intracellular bacterial community (IBC) (Flores-Mireles et al., 2015; Spaulding and Hultgren, 

2016). Furthermore, UPEC can access under- lying transitional cells, forming quiescent 

intracellular reservoirs (Flores-Mireles et al., 2015; Spaulding and Hultgren, 2016). Mutations in 

fimH abolish the ability of UPEC to colonize the bladder, form IBCs and quiescent intracellular 

reservoirs (Flores-Mireles et al., 2015; Spaulding and Hultgren, 2016; Wright et al., 2007). By 

contrast, no role was observed for F17-like pili in the rate or severity of bladder infection after 

individual or concurrent transurethral inoculations of UTI89 and UTI89Δucl strains into the 

bladders of female C3H/HeN mice (Figure S3). Differences between mouse and human 

bladders or the overexpression of F17-like pili in vitro may account for the inconsistency with 

another study that showed a role for F17-like pili in binding to desquamated epithelial cells 

obtained from human urine (Wurpel et al., 2016). 

4.3.2 Gut binding by FimH and UclD 
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The fim and ucl operons encode two-domain tip adhesin proteins, FimH and UclD, 

respectively. The adhesin lectin domain contains the ligand-binding site, and the pilin domain 

joins the adhesin to the pilus rod(Spaulding and Hultgren, 2016). Purified FimH lectin domain 

(FimHLD) bound to more differentiated epithelial cells located in the upper portion of crypts and 

in ‘surface epithelial cuffs’ (the colonic homologues of small intestinal villi) (Figure 1l). FimH 

binding was prevented by pretreating tissue sections with peptide-N-glycosidase F (PNGase F), 

which cleaves N-linked oligosaccharides. FimHLD also bound to Caco-2 cells (an immortalized 

human enterocyte-like cell line derived from colorectal carcinoma); binding was inhibited by D-

mannose and a high-affinity mannose analogue (mannoside), M4284 (Figure S2b)(Jarvis et al., 

2016). The UclD lectin domain (UclDLD) also bound colonic epithelial cells in tissue sections; 

binding was inhibited by pretreating tissue sections with O-glycosidase, an enzyme that cleaves 

O-linked oligosaccharides, suggesting that the UclD ligand is contained within an O-glycan 

(Figure 1m). 

4.3.3 Evolution of the ucl operon 
CUP pili are highly conserved throughout Proteobacteria and are assembled by 

dedicated chaperone-usher assembly machines encoded by each respective CUP operon along 

with the various subunit types comprising the pilus fibre (Spaulding and Hultgren, 2016; Wurpel 

et al., 2013). The sequence identity between usher genes of distinct CUP pilus types is greater 

than the identity of genes that encode other CUP pilus proteins and thus can be compared to 

deter- mine evolutionary relationships of CUP pili among Proteobacteria (Nuccio and Bäumler, 

2007; Wurpel et al., 2013). A homology search of a database of γ-Proteobacteria genomes 

revealed that the UTI89 F17-like usher gene sequence (uclC) shared highest identity with other 

E. coli uclC sequences and with orthologous usher sequences of Proteus mirabilis, a bacterium 
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that can colonize the gut, and Salmonella enterica, an intestinal pathogen (Table S1). The uclC 

usher gene was also closely related to usher genes in F17 (thus the derivation of the name, 

F17-like), pVir99 and ECs1278 pili. A phylogenetic analysis showed clustering of these E. 

coli and Proteus species ushers into a distinct sub-branch within the broader F17 group usher 

phylogeny, suggesting that they share a common ancestor (Figure S4). F17-like pili are present 

in only 10% of E. coli strains; these strains are almost exclusively in the B2 clade, which 

contains most extraintestinal pathogenic E. coli (ExPEC) and UPEC strains (Wurpel et al., 2016; 

Zhang et al., 2002). By contrast, F17 and ECs1278 pili are found in the intestinal pathogens, 

enterotoxigenic E. coli (ETEC) and enterohemorrhagic E. coli (EHEC), respectively, which are 

specific to clades A, E and B1 (Low et al., 2006; Richards et al., 2014). These findings suggest 

that UPEC strains in clade B2 may have acquired the ucl operon from a different species and 

retained this factor to facilitate its residency in the gut. No binding of UclDLD was observed to N-

acetylglucosamine (GlcNAc), the ligand bound by F17 pili, indicating that F17-like pili bind a 

distinct ligand from that of F17 pili (Merckel et al., 2003)(Figure 1n). Notably, although the 

amino acid sequence of the full-length UclD adhesin has diverged from that of the F17 adhesin 

F17G, it is almost invariant across all strains encoding it (more than 99%), suggesting that there 

is a single, distinct ligand for UclD adhesins (Wurpel et al., 2016). 

4.3.4 Carriage of F17-like pili in uropathogenic E. coli 
A comparative genomic analysis of 43 strains isolated from a cohort of 14 women at the 

time of initial presentation with acute UTI, or during subsequent recurrent UTIs, revealed that 14 

of the recurrent UTI events were caused by B2 strains (Czaja et al., 2009; Schreiber et al., 

2017b)(Table S2). Of these 14 strains, 13 encoded F17-like pili (approximately 93%) (Figure 

S5). By contrast, F17-like pili have been found in less than 50% of all B2 strains (Wurpel et al., 
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2016)(E. coli reference collection; ECOR), suggesting that F17-like pili might be associated with 

UPEC persistence in women with recurrent UTI owing to their ability to promote maintenance of 

a UPEC intestinal reservoir. 

4.3.5 Crystal structure of UclDLD 
To further characterize F17-like pili, we solved two X-ray crystal structures of UclDLD. 

The structures in the P21 (green) and P212121 (grey) space groups were resolved to 1.05 Å and 

1.60 Å resolution, respectively, and are nearly identical (Figure 2a (left) and Table S3). Despite 

low primary sequence identity (~25%), the structural characteristics of UclDLD and the F17 

adhesin F17GLD are conserved (Merckel et al., 2003)(Figure 2a–c). This includes the presence of 

a transverse putative binding site in UclDLD located at a similar position to the GlcNAc-binding 

site on F17G (Merckel et al., 2003)(Figure 2a (right)). Structural and sequence alignments 

reveal two large conserved insertions in UclD relative to F17G (Figure 2c), whose direct 

proximity to the putative binding pocket suggests that they are involved in UclD receptor 

binding. The six conserved residues that make up the candidate binding pocket in UclD are 

chemically distinct from their F17G counterparts (Figure 2b, c), providing further evidence that 

UclD binds a distinct ligand. 

4.3.6 FimH antagonists block UPEC colonization of the gut 
In light of the role of FimH and UclD in gut colonization, we conducted a study designed 

to reduce the UPEC intestinal reservoir with an adhesin-directed therapeutic. M4284 is a high-

affinity biphenyl mannoside whose binding affinity for FimH is approximately 100,000-fold 

higher than the natural sugar D-mannose (Han et al., 2012; Jarvis et al., 2016). Pharmacokinetic 

analysis revealed that M4284 concentrations remain high in the faeces of mice for up to 8 h after 

an oral dose (Figure 3a). Treating mice that were colonized by UTI89 with three doses 
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(administered by oral gavage) of M4284, a regimen that successfully treats UPEC UTI in mice 

(Cusumano et al., 2011), significantly reduced levels of UTI89 in the faeces, caecum and colon 

compared to those treated with a vehicle control (Figure 3b, c). Treating mice with additional 

M4284 doses further reduced the UTI89 population, and the overall number of UPEC continued 

to be lower in M4284-treated mice after termination of treatment (Figure S6). While D-mannose 

blocks FimH binding in vitro, treating mice with D-mannose did not alter UTI89 levels in vivo 

(Figure S2b and Figure 3d). 

The infectious dose required to cause cystitis in 50% of mice (ID50) in the UTI mouse 

model is 105 colony-forming units (CFU) (Rosen et al., 2008). Furthermore, decreasing the dose 

of UPEC introduced into the bladder from 108 to 106 CFU significantly reduced the rate of UTI, 

suggesting that the 1–1.5 log (or 90 – 95%) mannoside-driven reduction in faecal UPEC levels 

would reduce the numbers of bacteria available to access the urinary tract and probably reduce 

the rate of UTI and/or recurrent UTI (Figure S7). Indeed, we found that M4284 simultaneously 

reduces UTI89 levels in the gut and urinary tracts of mice that were concurrently colonized with 

UTI89 in the gut and bladder (Figure 3e–g). 

4.3.7 FimH antagonists do not disrupt the gut microbiota and are broadly 
effective 

We sequenced bacterial 16S rRNA gene amplicons generated from faecal samples of 

C3H/HeN mice that had not been given streptomycin or infected with UPEC but were treated 

with three doses of M4284 or vehicle alone. We found that M4284 produced no significant 

changes in the overall phylogenetic configuration of the microbiota as judged by the unweighted 

UniFrac dissimilarity metric, in contrast to the significant perturbations produced by treatment 

with ciprofloxacin, a fluoroquinolone antibiotic (Figure 4a and Figure S8a). Using this UniFrac 

metric, we found that M4284 treatment did not produce significant perturbations in bacterial 
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community structure in mice pretreated with streptomycin and then colonized with UTI89 

(Figure S9). We concluded that M4284 can function to selectively extirpate UPEC from the gut 

in our preclinical model. Notably, although most Enterobacteriaceae carry the fim operon (Jones 

et al., 1995; Schreiber et al., 2017a; Wurpel et al., 2013), M4284 treatment does not significantly 

affect the abundance of intestinal Enterobacteriaceae (Figure S8a, b), suggesting that these 

bacteria may not be expressing type 1 pili during M4284 exposure or that they reside within 

inaccessible intestinal habitats. 

M4284 treatment of mice colonized with three additional genetically diverse UPEC 

clinical isolates (EC958 (Totsika et al., 2011), 41.4p (Schreiber et al., 2017b) and 

CFT073(Welch et al., 2002)), reduced the levels of each UPEC strain by a similar percentage in 

the faeces, caecum and colon (Figure 4b–f and Figure S10a). Furthermore, we found that 

M4284 treatment reduced UTI89 levels in C3H/HeN and C57BL/6 mice from different vendors, 

containing distinct gut microbial communities. In each case tested, the percentage reduction in 

UPEC levels in caecum, colon and faeces did not vary significantly between the different 

treatment groups (Figure 4f–h and Supplementary Figs 8c, 10b). We concluded that M4284 

treatment has activity against different UPEC strains in different host genetic backgrounds and 

gut microbial community contexts. 

4.4 Discussion 
As the prevalence of antibiotic-resistant pathogens continues to rise, the need to develop 

highly targeted/specific therapeutic approaches has gained increased urgency (Galtier et al., 

2016; Yao et al., 2016). Furthermore, an increasing number of studies are finding that disruption 

of the gut microbiota by orally administered antibiotics, especially during childhood, may affect 

its functional properties in ways that are deleterious to the host, not only in the short term but 
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also for more protracted periods of time(Cox et al., 2014; Dethlefsen and Relman, 2011). 

Therefore, developing therapeutic agents, such as mannosides, that specifically target a pathogen 

without disrupting the remainder of a microbial community has important ramifications not only 

for UPEC but also potentially for other infections, including those caused by enteropathogens. In 

addition, the identification of genes involved in UPEC intestinal colonization may provide a 

method by which patients with UTIs could be stratified for epidemiological studies of risk for 

recurrent disease as well as for proof-of-concept clinical studies of the efficacy of CUP-directed 

treatment regimens. 

4.5 Materials and Methods 

4.5.1 Ethics statement 
The Washington University Animal Studies Committee approved all procedures used for 

the mouse experiments described in the present study. Overall care of the animals was consistent 

with The Guide for the Care and Use of Laboratory Animals from the National Research Council 

and the USDA Animal Care Resource Guide. For collection of colonic tissues for adhesion 

binding studies, mice were euthanized according to institutional, national and European animal 

regulations, using protocols that were also approved by the animal ethics committee of Ghent 

University. 

4.5.2 Bacterial strains 
CUP operon and adhesin deletions in UTI89 were engineered by replacing the gene(s) of 

interest with antibiotic-resistance markers using the λ Red Recombinase system (Datsenko and 

Wanner, 2000). Earlier reports described wild-type UTI89 and its isogenic fim and fimH mutants 

(Rosen et al., 2008; Wright et al., 2007) as well as EC958 (Totsika et al., 2011), 41.4p (Schreiber 

et al., 2017b) and CFT073 (Welch et al., 2002). 
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4.5.3 Colonization of mice with UPEC strains 
Six-week-old female C3H/HeN mice were obtained from Envigo or Charles River 

Laboratories (CRL). Six-week-old female C57BL/6 mice were also obtained from Envigo. 

Animals were maintained in a single room in our vivarium for no more than 2 days before 

treatment. Before and after treatment all animals received PicoLab Rodent Diet 20 (Purina) ad 

libitum. All animals were maintained under a strict light cycle (lights on at 06:00, off at 18:00). 

For competitive infections, if a phenotype was observed after testing five mice (1 biological 

replicate), the experiment was repeated 1–2 times (total of n = 10–16 mice, 2–3 biological 

replicates). For 16S rRNA analyses, 4 – 5 mice were examined (1 biological replicate). For all 

other experiments, 9 – 16 mice were tested and the experiment was repeated 2–3 times (2–3 

biological replicates). Exclusion criteria for mice were pre-established; (i) both introduced strains 

in competitive infections became undetectable during the course of a 14-day experiment, and (ii) 

mice died or lost more than 20% of their body weight. No mice in this study met these criteria. 

Mice were acquired from indicated vendors and randomly placed into cages (n = 5 mice per 

cage) by employees of Washington University’s Division of Comparative Medicine; no 

additional methods for randomization were used to determine how animals were allocated to 

experimental groups. Investigators were not blinded to group allocation during experiments. 

Animals received a single dose of streptomycin (1,000 mg kg−1 in 100 µl water by oral 

gavage) followed 24 h later by an oral gavage of approximately 108 CFU UPEC in 100 µl PBS. 

Bladder infections were performed via transurethral inoculation30. UPEC strains were prepared 

for inoculation as described previously (Hung et al., 2009). In brief, a single UTI89 colony was 

inoculated in 20 ml of Luria Broth (LB) and incubated at 37 °C under static conditions for 24 h. 

Bacteria were then diluted (1:1,000) into fresh LB and incubated at 37 °C under static conditions 

for 18–24 h. Bacteria were subsequently washed three times with PBS and then concentrated to 
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approximately 1 × 108CFU per 100 µl for intestinal infections and 1 × 108 CFU per 50 µl for 

bladder infections. 

In all cases, faecal and urine samples were collected directly from each animal at the 

indicated time points. Faecal samples were immediately weighed and homogenized in 1 ml PBS. 

Urine samples were immediately diluted 1:10 before plating. Mice were euthanized via cervical 

dislocation under isofluorane anaesthesia and their organs were removed and processed under 

aseptic conditions. Intestinal segments (caecum and colon) were weighed before homogenization 

and plating on LB supplemented with the appropriate antibiotic. 

4.5.4 Enumeration of bladder intracellular bacterial communities 
Six-week-old C3H/HeN mice were given a single oral dose of either M4284 (100 mg 

kg−1) or vehicle control (10% cyclodextrin) 30 min before transurethral inoculation with UTI89. 

To count accurately the number of IBCs, mice were euthanized 6 h after infection. Bladders were 

removed aseptically, bisected, splayed on silicone plates and fixed in 4% (v/v) paraformaldehyde. 

IBCs, readily discernable as punctate violet spots, were quantified by LacZ staining of bladder 

wholemounts (Cusumano et al., 2011; Justice et al., 2006). 

4.5.5 Immunofluorescence studies 
The protocols used for immunohistochemical analysis are based on a previous study 

(Johansson and Hansson, 2012). After euthanization of 6-week-old, female C57BL/6 mice 

(supplied by VIB-Ghent University breeding program, Belgium), segments of colon were fixed 

in methanol-Carnoy for a minimum of 3 h at room temperature. The fixed tissues were then 

embedded in paraffin and 4-µm-thick sections were cut and placed on glass slides. Slides were 

de-paraffinized and re-hydrated by incubating them in xylene, isopropanol, 100% ethanol and 

finally 70% ethanol (each step involving a 3 min incubation in the reagent followed by another 
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3 min incubation in fresh reagent). Slides were subsequently rinsed in tap water and PBS, placed 

in blocking buffer (5% fetal calf serum prepared in PBS) at room temperature for 30 min, and 

then incubated with rabbit polyclonal antibodies to Muc2 (1:2,000; mucin 2 (H-300), Santa Cruz 

Biotechnology) for 2 h. After three washes with PBS, slides were incubated with a goat anti-

rabbit Dylight-488 labelled secondary antibody (1:1,000 dilution, ThermoFisher 35553) in 

blocking buffer for 1 h at room temperature. Slides were washed three times with PBS before 

counterstaining with bis-benzimide (Hoechst dye) (1:1,000 in PBS) for 10 min at room 

temperature. Finally, slides were incubated with FimHLD or UclDLD (P21) protein, labelled with 

NHS 650 nm Dylight, in blocking buffer at 4 °C overnight. Before staining, sections were treated 

with O-glycosidase (NEB) or PNGase F (Sigma) at 37 °C using buffers and protocols supplied 

by the manufacturer. Slides were washed subsequently with PBS before treatment with fluoro-

mounting medium (n-propyl gallate in glycerol) and viewing under a confocal microscope (Leica 

Microsystems LAS-AF-TCS SP5) using a 20 × 125 objective. 

4.5.6 Mannoside treatment 
D-mannose or the mannoside M4284 (which has been characterized in a previous study 

(Jarvis et al., 2016)), were diluted in vehicle (water and 10% cyclodextrin, respectively) and 

administered to 6-week-old C3H/HeN mice at a dose of 100 mg kg−1. Control animals were 

treated with water or 10% cyclodextrin alone. Unless stated otherwise, three doses of M4284, 

cyclodextrin, or D-mannose were given via oral gavage over 24 h, with doses administered 8 h 

apart. Mice were euthanized and intestinal tissues were processed for analysis of viable bacteria 

(CFU) 8 h after the last dose, unless otherwise noted. To test the effect of M4284 on intestinal 

UPEC titres after treatment was terminated, mice were euthanized 5 days after the last dose of 

mannoside. To test the effect of additional doses on M4284 treatment on UPEC titres, mice were 
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given five doses of mannoside; the first three doses were administered 8 h apart, followed 12 h 

later by the fourth dose, and 24 h later by the fifth dose. Mice were euthanized 24 h after the fifth 

dose. 

4.5.7 Carriage of F17-like pili 
We examined 43 available UPEC isolates (Table S2). These isolates originated from a 

clinical study of 14 women who experienced at least two episodes of a UTI (an initial UTI and 

one or more recurrent UTIs) during the 90-day study window(Czaja et al., 2009). The isolates 

used in this work were sequenced in a previous study (Schreiber et al., 2017b)(Bioproject 

ID PRJNA269984) and include (i) 14 isolates collected at enrollment, (ii) 18 isolates collected 

during recurrent UTI (10 women experienced a single recurrent UTI while four women 

experienced two recurrent UTI events), and (iii) 11 isolates collected in the days leading up to a 

recurrent UTI. 

The distribution of the F17-like operon in these clinical E. coli isolates was determined 

using BLAST and the F17-like operon from UTI89 as the query sequence. A ‘hit’ was 

considered as any genome sequence that matched the entire length of the query sequence with 

more than 75% identity. As a control to prevent false negatives in the BLAST search of draft 

genomes, DNA sequencing reads from each clinical UPEC isolate were mapped against a 

reference sequence constructed by concatenating all the ucl genes with 100 N-separators using 

Geneious v6.1.7 (Kearse et al., 2012). 

4.5.8 Phylogenetic analyses and sequence alignments 
Amino acid alignments of full-length UTI89 UclD, P. mirabilis UcaD, S. enterica UclH, 

and ETEC F17G were conducted using the MAFFT L-INS-i iterative refinement method and the 

default BLOSUM62 scoring matrix (Katoh et al., 2005)(Table S1). MAFFT collected up to 100 
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homologues with E values of less than 1 × 10−10 to each sequence from the SwissProt database to 

improve alignment accuracy. Homologues are automatically removed from the final alignment. 

The alignment was visualized using Geneious33. A homology search of the coding sequence 

database of the European Nucleotide Archive (ENA) was conducted using the Basic Local 

Alignment Search Tool (BLAST)(Altschul et al., 1990) using the UTI89 uclC (ENA accession 

ABE10308) and EDL933 ECs1278 (ENA accession AIG67653) as queries. Sequences that 

matched either gene sequence with more than 50% identity were downloaded and then filtered to 

remove partial hits (less than 80% length of query sequence) and sequences with nonsense 

mutations, which resulted in a total of 659 sequences (Table S1). Duplicate sequences were then 

removed, resulting in a list of 122 unique, representative sequences. These sequences were then 

aligned with the UTI89 fimD usher sequence (ENA accession ABE10417) as an outgroup using 

the MAFFT MAFFT L-INS-i alignment method and the 200PAM scoring matrix(Katoh et al., 

2005): The phylogenetic relationship between gene sequences was then estimated using RAxML 

v8.1.3 with the GTRCAT model (Stamatakis et al., 2005; Stamatakis, 2006)and supported with 

1000 bootstrap replicates; the tree was visualized using the tool interactive Tree of Life (iTOL) 

v3 (Letunic and Bork, 2016). 

4.5.9 ELISA targeting FimH 
Caco-2 cells (ATCC number HTB-37) were cultured in minimum essential medium 

(MEM) supplemented with 20% FBS. Cell cultures tested negative for mycoplasma. Cells were 

split into 48-well plates, grown to 100% confluence and then fixed with paraformeldahyde for 

15 min followed by treatment with blocking buffer (PBS containing 2% BSA) for 2 h. A 

truncated FimH, corresponding to residues 1–178 of the mature FimH adhesin (FimHLD), 

expressed in E. coli and purified as described previously (Kalas et al., 2017), was serially diluted 
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in blocking buffer and incubated with the fixed Caco-2 cells for 1h at room temperature. To test 

the effect of D-mannose or M4284 on FimH binding, 0.2 mg ml−1 FimHLD was pre-incubated for 

5 min in the presence or absence of 1 mM D-mannose (Sigma-Aldrich) or 1 mM M4828 (in 

20 mM Tris, pH 8.0, or 20 mM Tris plus water or 10% cyclodextrin, respectively) before serial 

dilution and incubation. Wells were washed four times with PBS and 0.05% Tween 20 (PBST) 

before incubation with a polyclonal rabbit anti-T3 antibody against FimHLD (generated against 

FimH residues 1–165; ref. 37) for 1 h at room temperature. After another series of four washes, 

secondary antibody (goat anti-rabbit Ig conjugated to horseradish peroxidase; ThermoFisher, 

32460) was incubated with the cells for 1 h at room temperature (24 °C) before washing in PBST. 

Plates were developed with the BD OptEIA TMB substrate reagent kit for 5 min at room 

temperature (24 °C) before quenching with 1 M H2SO4. Binding was assessed by measuring the 

absorbance at 450 nM on a TECAN infinite 2 PRO plate reader. Wells lacking protein were used 

as control. All conditions were examined in quadruplicate. 

4.5.10 Effect of antibiotic exposure on the microbiota 
Six-week-old female C3H/HeN mice from Envigo and CRL were subjected to the 

following treatments: (i) none (naive control mice, untreated), (ii) three doses of M4284 (100 mg 

kg−1; in 10% cyclodextrin) or 10% cyclodextrin given 8 h apart, or (iii) ciprofloxacin (two doses 

of 15 mg kg−1 given 12 h apart). All doses were given via oral gavage. Five mice were included 

for each treatment type (1 biological replicate) and faecal samples were collected before 

treatment and 24 h after the last dose of each treatment. Another group of four C3H/HeN mice 

from Envigo (1 biological replicate) were pretreated with streptomycin and colonized with 

UTI89 before receiving treatment with either three doses of M4284 (100 mg kg−1; in 10% 
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cyclodextrin) or with 10% cyclodextrin alone; faecal samples were collected before treatment but 

after exposure to streptomycin and UTI89 and 24 h after the last dose of each treatment. 

4.5.11 Bacterial 16S rRNA sequencing 
DNA was extracted by bead beating in extraction buffer (200 mM Tris, pH 8.0, 200 mM 

NaCl, 20 mM EDTA), 210 µl of 20% SDS and 500 µl phenol:chloroform:isoamyl alcohol (pH 

7.9, 25:24:1). This crude DNA extract was purified (Qiaquick PCR purification kit) and PCR 

used to generate amplicons from the V4 region of bacterial 16S rRNA genes using primers and 

cycling conditions described previously (Caporaso et al., 2011). Amplicons were pooled in 

equimolar ratios and sequenced on an Illumina MiSeq instrument (paired-end 250-nucleotide 

reads). Paired V4-16S rRNA sequences were merged using FLASH software (Magoč and 

Salzberg, 2011), demultiplexed, and reads clustered into 97%ID OTUs (2013 Greengenes OTU 

reference database; QIIME version 1.9.0 (Rideout et al., 2014)). A custom database using 

modified NCBI bacterial taxonomy was used to train the Ribosomal Database Project (RDP) 

version 2.4 classifier and assign taxonomy to picked OTUs (Kau et al., 2015). The resulting OTU 

table was filtered to include only OTUs found in at least two samples at greater than or equal to 

0.1% relative abundance. 

4.5.12 F17-like constructs and purification 
For the P21 UclDLD construct, the first 197 amino acids of the mature UclD adhesin 

protein were cloned into pDEST14 using Gateway technology (Invitrogen), resulting in plasmid 

pUclDAD. Expression was induced with 1 mM IPTG. Periplasmic extracts were prepared by 

resuspending bacterial pellets in 20 mM Tris, 20% sucrose, pH 8 (4 ml per gram of pellet). 

Subsequently, 40 µl of 0.5M EDTA and 10 mg ml−1 lysozyme were added per gram of pellet and 

the suspension was incubated on ice for 30 min. This step was followed by addition of 40 µl of 
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2.5 M MgCl2 per gram of cell pellet and incubation on ice for 5 min. Cells were spun at 

15,000g and the supernatant was saved as the periplasmic extract. The extract containing the 

UclD lectin domain was dialysed against 20 mM HEPES, pH 7, passed over a SP FF cation 

exchange column (GE Healthcare) and bound material eluted with 20 mM HEPES, pH 7, 1 M 

NaCl. Pooled fractions containing UclD lectin domain were then applied to a Phenyl Hi Trap 

column (GE Healthcare) after addition of 1 M ammonium sulfate. Elution was performed using 

20 mM HEPES, pH 7. 

To generate purified UclDLD for the P212121 space group, DNA from the 

UTI89 uclD gene encoding the N-terminal 217 amino acids of the protein were cloned into 

pTRC99a with a C-terminal 6-His tag. This construct was expressed in the periplasm of E. 

coli DL41(DE3), a methionine auxotroph strain suitable for expression of native or 

selenomethionine-labelled protein. Periplasmic extracts were first dialysed against PBS 

supplemented with 250 mM NaCl, then bound to a cobalt (Goldbio) column; bound proteins 

were eluted with PBS containing 250 mM NaCl, and 250 mM imidazole. Pooled fractions were 

dialysed into 20 mM MES, pH 5.8, bound to an HR16/10 Mono S cation exchange column (GE 

Healthcare), and eluted with 300 mM NaCl. After cleavage of the periplasmic localization 

sequence, the mature form of UclDLD–6×His contained 203 amino acids. 

Selenomethionine-labelled protein was purified using the same protocol, but all buffers 

were supplemented with 2 mM β-mercaptoethanol and 1 mM EDTA to prevent oxidation. EDTA 

was omitted from the periplasmic dialysis buffer to prevent chelation of immobilized cobalt. 

4.5.13 Crystallization and structure determination 
For the P21 UclDLD structure solved in the P21 space group, UclDLD (15 mg ml−1) was 

crystallized using sitting drop vapour diffusion against a solution containing 16% PEG 4000, 
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0.1 M Tris-HCl, pH 8.5, 0.2 M magnesium chloride. UclD crystals were flash cooled to 100 K in 

a solution containing 16% PEG 4000, 0.1 M Tris-HCl, pH 8.5, 0.2 M magnesium chloride and 

30% glycerol. Data were collected at beamline ID29 (ESRF, Grenoble, France) to 1.05 Å 

resolution. Data were indexed and processed with XDS (Kabsch, 2010), scaled and merged using 

SCALA in the CCP4 suite (Evans and Murshudov, 2013). Data and refinement statistics can be 

found in Table S3. 

For the UclDLD structure solved in the P212121 space group, UclDLD (10 mg ml−1 10 mM 

MES pH 5.8) was crystallized by the hanging drop vapour diffusion method against a well 

solution containing 0.1 M potassium phosphate (monobasic), 0.2 M potassium iodide and 20% 

PEG 3350. One microlitre of the protein solution was mixed with 1 µl well solution and 

incubated at 18 °C. Crystals were harvested and transferred to a solution containing 0.1 M 

potassium phosphate (monobasic), 0.2 M potassium iodide and 20% PEG 3350 supplemented 

with 20% glycerol before being flash-frozen in a bath of liquid nitrogen. Data were collected at 

beamline 4.2.2 (ALS Berkeley) to 1.6 Å resolution. Data were indexed and processed with 

XDS(Kabsch, 2010), scaled and merged AIMLESS in the CCP4 suite(Evans and Murshudov, 

2013) and phased with the Single anomalous dispersion (SAD) method using phenix.autosol, and 

refined with phenix.refine (Adams et al., 2012). Data and refinement statistics can be found 

in Table S3. r.m.s.d. values were calculating using the DALI server (Holm and ½m, 2010). 

Structural alignments were performed in PROMALS3D using the default settings. Secondary 

structure assignments for UclDLD were completed using DSSP. 

4.5.14 Differential scanning fluorimetry 
Purified UclDLD (1.4 µg per well) was incubated with 5× Sypro orange fluorescent dye in 

20 mM Tris, pH 8.0, with or without 10 mM monosaccharide in a total volume of 70 µl. Samples 
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were heated from 20 °C to 100 °C in 30-s/0.5 °C increments using a Bio-Rad C1000 

thermocycler with CFX96 RT–PCR attachment. The reported melting temperatures were 

determined by the inflection point of the sigmoidal graph. 

4.5.15 Data availability 
Bacterial V4-16S rRNA data sets have been deposited in the European Nucleotide 

Archive (ENA) under accession number PRJEB19121. Sequences used to examine the carriage 

of F17-like pili in clinical recurrent UTI isolates were previously published18 and are deposited 

in the NCBI under the BioProject accession PRJNA269984. Crystallography data have been 

deposited in the Protein Data Bank (PDB) under accession codes 5NWP (P21) 

and 5VQ5 (P212121). All other data are available from the corresponding author upon reasonable 

request. 

4.5.16 Code availability 
No new code was generated for this study. All software was obtained from publicly 

available sources; papers describing the software are cited in the text. 

4.5.17 Statistical analysis 
No statistical methods were used to predetermine sample size. The statistical significance 

of differences between groups in experiments (excluding competitive infections) was determined 

by a Mann–Whitney U test. The competitive index was defined as: (CFU output strain A/CFU 

output strain B)/(CFU input strain A/CFU input strain B). For competitive infections, statistical 

significance was determined by a Wilcoxon signed-rank test. Statistical analyses were performed 

using Graphpad Prism 7. 
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4.6 Figures 
4.6.1 Figure 1. Type 1 and F17-like pili promote UPEC intestinal colonization. 

 
a–k, C3H/HeN mice pretreated with streptomycin were concurrently (a–j) or singly (k) colonized with wild-type 
UTI89 and/or UTI89 lacking one or more CUP operons 
(yfc (a), yeh (b), yad (c), pap (d), sfa (e), yqi (f), mat (g), fim (h), ucl (i) and both fim and ucl (j)). l, m, Purified 
adhesin lectin domains FimHLD (type 1 pili) and UclDLD (F17-like pili) were tested for binding to mouse colonic 
sections. Sections were stained with Hoechst (blue) and antibodies to the mucus-associated glycoprotein Muc2 
(green). Binding of FimHLD and UclDLD was lost by pretreating tissue sections with PNGase F and O-glycosidase, 
respectively. Arrowheads highlight binding by FimHLD or UclDLD. n, UclDLD does not bind five common 
monosaccharides. Cae, caecum; CI, competitive index; Col, colon; GalNAc, N-acetylgalactosamine; GlcNAc, N-
acetylglucosamine; Tm, melting temperature. Data are mean ± se.m. (a–j, n), and geometric mean ± s.d. (k). 
*P < 0.05, **P < 0.01, ***P < 0.001 by Wilcoxon signed-ranked (a–j) or Mann–Whitney U test (k, n). n = 5 mice, 1 
replicate (a, d–g); n = 10 mice, 2 replicates (b, h); n = 6 mice, 1 replicate (c); n = 14 mice, 3 replicates (i); n = 8 mice, 
2 replicates (j); n = 12 mice, 3 replicates (UTI89); n = 9 mice, 2 replicates (UTI89Δfim); n = 15 mice, 3 replicates 
(UTI89Δucl); n = 10 mice, 2 replicates (UTI89ΔfimΔucl) (k). Replicates are biological (a–k). n = 3 tissue sections, 4 
representative images per section (l, m). n = 3 wells, 3 technical replicates (n). 
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4.6.2 Figure 2. Structural analysis of UclDLD. 

 
a, Left, superposition of the P21 UclDLD (green) and P212121 UclDLD (grey) crystal structures. Middle, F17G adhesin 
crystal structure (PDB accession 1OIO). Right, superposition of P21 UclDLD (green) and F17GLD (cyan) structures. b, 
Comparison of residue positioning and electrostatic surface potential of the putative binding site between the 
UclDLD structures and the known binding site of F17GLD. c, Structural alignment of UclDLD and F17GLD amino acid 
sequences. Residues in the putative UclDLD binding site are highlighted in purple. Insertions in the UclDLD are 
highlighted in orange and yellow. Starred residues are proposed to mediate UclD ligand binding. β-strands (red 
arrows), 310 helices (coils) and an α-helix (cylinder) are shown. 
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4.6.3 Figure 3. Mannoside simultaneously reduces the UPEC intestinal 
reservoir and treats UTI. 

 
a, M4284 concentration in mouse faeces after one dose (100 mg kg−1 administered by oral gavage; PO, per os). EC90, 
90% effective concentration to inhibit haemagglutination in vitro. b, C3H/HeN mice were intestinally colonized 
with UTI89 and given three oral doses of M4284 (100 mg kg−1), vehicle alone (10% cyclodextrin, control), or D-
mannose (100 mg kg−1). c, d, UTI89 levels in the faeces and intestinal segments. e, UTI89 was introduced into the 
gut of C3H/HeN mice by oral gavage and into the bladder by transurethral inoculation before receiving three doses 
of M4284. Cm, chloramphenicol; Kn, kanamycin. f, g, UTI89 levels in the gut and urinary tract were assessed. Error 
bars represent median (a), geometric mean ± s.d. (c, d, f); and geometric mean (g). *P < 0.05, **P < 0.01 by Mann–
Whitney U test. n = 3 mice, 1 replicate (a); n = 14 mice (control); n = 15 mice (M4284); 3 replicates (c); n = 10 mice, 
2 replicates (d); n = 9 mice, 2 replicates (f, g). All replicates are biological (a–g). 
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4.6.4 Figure 4. Mannoside treatment minimally effects the faecal microbiota 
configuration and targets human UPEC isolates in mice with different genetic 
backgrounds. 

 
Mice were given one of the following oral treatments: (i) M4284 (100 mg kg−1), (ii) cyclodextrin (cyclo; 10%), (iii) 
ciprofloxacin (cipro; 15 mg kg−1), or (iv) none (untreated). Faecal community structure was defined by sequencing 
bacterial 16S rRNA gene amplicons. a, For each treatment performed on C3H/HeN mice from Envigo or Charles 
River Laboratories (CRL), the change in microbiota configuration was determined by measuring the unweighted 
UniFrac distance between samples obtained from each animal before treatment and 24 h after the last dose (larger 
UniFrac distance equates to a larger shift in community structure). b–f, Mice were colonized by oral gavage (PO) of 
one of four different UPEC strains and given three doses of M4284. g, h, The ability of M4284 to target UTI89 in 
C3H/HeN mice from CRL (g) and C57BL/6 mice from Envigo (h) was also assessed. Error bars represent median 
(a) or geometric mean ± s.d. (c–h). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by Mann–
Whitney U test. n = 5 mice per vendor, 1 replicate (a); n = 10 mice, 2 replicates (c–e, g); n = 14 (control, 10% 
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cyclodextrin); n = 15 (M4284); 3 replicates (f). n = 10 mice (control, 10% cyclodextrin); n = 9 mice (M4284); 2 
replicates (h). All replicates are biological (a–h). 
	  



	

 
 

187 

4.7 Supplementary Figures 
4.7.1 Figure S1. Streptomycin treatment allows for persistent UTI89 
colonization of the caecum and colon in female C3H/HeN and C57BL/6 mice. 

 
a, Mice were pretreated with streptomycin and subsequently colonized via oral gavage (PO) with UTI89, a 
prototypical human UPEC cystitis isolate. b–e, Colonization of UTI89 in C3H/HeN (b, c) or C57BL/6 (d, e) mice 
from Envigo was assessed by quantifying CFU in faecal samples collected over the course of 21 days from mice 
who did not receive streptomycin (white circles) or mice pretreated with the antibiotic (black circles). CFU analysis 
of levels of colonization in the caecum and colon were defined by analysing tissue homogenates prepared 21 days 
after colonization. Symbols represent geometric mean ± s.d. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by 
Mann–Whitney U test. n = 15 mice, 3 biological replicates (b–e). 
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4.7.2 Figure S2. The FimH adhesin is required for type 1 pilus-dependent 
colonization of the mouse gut and for binding to human intestinal epithelial 
cells. 

 
a, C3H/HeN mice from Envigo were pretreated with streptomycin and concurrently colonized with 1 × 108 CFU of 
wild-type UTI89 and UTI89ΔfimH. The wild-type strain outcompetes the strain lacking the FimH adhesin. b, The 
ability of FimHLD to bind to Caco-2 cells was assessed by a FimH ELISA. Pre-incubation of FimHLD with D-
mannose (1 mM) or M4284 (1 mM) results in significant reductions in FimH binding to Caco-2 cells while 10% 
cyclodextrin (M4284 vehicle) had no significant effect. All data shown are normalized to wells that were not 
exposed to the purified adhesin. Data in a are mean ± s.e.m, and bars in brepresent the median. *P < 0.05, **P < 0.01, 
***P < 0.001 by Wilcoxon signed-rank test (a). n = 14 mice, 3 biological replicates (a); n = 4 wells examining FimH 
binding to Caco-2 cells per protein concentration, 4 technical replicates (b). 
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4.7.3 Figure S3. F17-like pili are not required for UTI in mice. 

 
C3H/HeN mice received a transurethral inoculation of wild-type UTI89 and UTI89Δucl, concurrently (a, b), or 
individually (c–e). a, UTI89Δucl and wild-type strains persist at similar levels in the urine over 28 days in 
competitive infections. b, The two strains are also present at equal levels in the bladder and kidney at the time of 
euthanization (28 days after infection). c, Single infection with the wild-type strain (black circles) or the F17-like 
mutant strain (white circles) produces similar levels of bacteruria over 28 days. d, Single strain infection also 
produces similar levels of viable cells in homogenates of whole bladder or kidneys collected at the time of 
euthanization (28 days after infection). There was no statistically significant difference in the number of mice that 
resolved bacteriuria while maintaining bladder-associated CFUs after transurethral infection with either wild-type 
UTI89 or UTI89Δucl (highlighted in red in d), suggesting that both strains are capable of forming similar numbers 
of quiescent intracellular reservoirs. e, Mice infected transurethrally with wild-type or Δuclstrains of UTI89 exhibit 
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a similar number of IBCs at 6 h in the bladder, indicating that loss of the ucl operon does not alter the ability of 
UTI89 to form IBCs. Error bars represent mean ± s.e.m. (a, b), geometric mean (c, d) or median (e). No significant 
difference was detected between any samples by Wilcoxon signed-rank test (a, b) or Mann–Whitney U test (c–
e). n = 10 mice, 2 biological replicates (a, b, e); n = 16 mice, 3 biological replicates (c, d). 
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4.7.4 Figure S4. Distribution of F17 usher homologues in members of 
Enterobacteriaceae. 

 
The phylogenetic relationships between F17 homologues were estimated using the sequence of the usher genes. 
Branch colours indicate host strain and pilus identity, and coloured symbols indicate the annotated pathotype of 
the E. coli strain for each sequence as determined by publically available annotations. Stars indicate extraintestinal 
pathogenic E. coli (ExPEC) strains, and circles indicate intestinal pathogenic E. coli strains. Carriage of F17-like pili 
is enriched in UPEC strains, whereas F17 and ECs1278 pili are more common in intestinal pathogens such as ETEC 
and EHEC, respectively. The strain names for each sequence and ENA accessions are given. Numbers beneath the 
branches indicate the percentage of support from 1,000 bootstrap replicates (numbers greater than 80% are shown). 
 
 

4.7.5 Figure S5. Phylogenetic distribution of F17-like carriage in UPEC from 
patients with recurrent UTI. 
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The phylogeny of a set of clinical UPEC strains (n = 43 with taxon labels highlighted in green, orange or grey) was 
contextualized with reference E. coli strains (n = 46, unhighlighted taxon labels) by comparing the concatenated 
single-copy, core genes of the strains using the RAxML algorithm and the GTRCAT model46. Highlighted taxon 
labels indicate UPEC isolates collected at enrolment (green) and during recurrent UTI (orange). In all cases, patients 
cleared each infection before recurrence, no patient exhibited signs of asymptomatic bacteriuria. The study design 
also allowed for the collection, from cohort participants, of E. coli isolates present in the urine in the days leading up 
to their clinical visit and recurrent UTI diagnosis (highlighted in grey)17. Branch lines indicate phylogenetic 
background for strains from clade B2 (red branch lines) and non-B2 clades (blue branch lines). Carriage of F17-like 
pili (black stars) was limited to the B2 clade and enriched within recurrent UTI UPEC isolates. Bootstrap supports 
are indicated at internal nodes. Bootstrap values greater than 95 have been removed. The clade to which each strain 
belongs is indicated in brackets to the right. 
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4.7.6 Figure S6. Testing the effects of more prolonged dosing of M4284 and 
analysis of the duration of its effects. 
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a, Experimental design. b, Animals treated as in a show a continued decrease in UTI89 levels in their faeces 
(samples were processed after 3, 4 and 5 doses of M4284), and at the time of euthanization in the caecum and colon, 
compared to control mice treated with vehicle alone (control, 10% cyclodextrin). c, d, The effects of mannoside 
treatment persist 5 days after M4284 exposure. Data are geometric mean ± s.d. *P < 0.05, **P < 0.01 by Mann–
Whitney U test. n = 9 mice (control); n = 10 mice (M4284), 2 biological replicates (b); n = 16 mice, 3 biological 
replicates (d). 
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4.7.7 Figure S7. The severity of UTI outcome is directly linked to the dose of 
UTI89 inoculated into the urinary tract. 

 
C3H/HeN mice (Envigo) were given an experimental UTI via transurethral inoculation of either 106 or 108 CFU of 
UTI89. The doses were chosen to represent the reduction observed in intestinal UTI89 titres before and after 
treatment with the M4284 mannoside. Mice were euthanized 24 h after inoculation, and UTI89 titres in urine, 
bladder and kidneys were defined by quantifying CFU. Mice receiving the 106 dose of UTI89 had significantly 
fewer bacteria in all three biospecimen types, indicating an important relationship between the number of bacteria 
introduced into the urinary tract and the severity of UTI outcome. Bars represent geometric means. **P < 0.01, 
***P < 0.001, ****P < 0.0001 by Mann–Whitney U test. n = 10 mice, 2 biological replicates. 
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4.7.8 Figure S8. 16S rRNA-based comparison of faecal bacterial communities 
in mice obtained from Envigo and CRL and mice of different genetic 
backgrounds from a common vendor. 

 
a, C3H/HeN mice were treated with M4284 (100 mg kg−1, three doses over 24 h), vehicle alone (10% cyclodextrin, 
three doses over 24 h), or ciprofloxacin (15 mg kg−1, two doses over 24 h). Untreated mice served as reference 
controls. Heat maps show the effect of each of the treatments on animals from CRL and Envigo. Each row 
represents a species-level bacterial taxon, while each column represents a mouse sampled 24 h after the termination 
of the indicated treatment. Coloured boxes next to the taxon names indicate species whose relative abundance was 
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significantly changed by ciprofloxacin treatment (P < 0.05; Wilcoxon signed-rank test with false discovery rate 
(FDR) correction). Individual comparisons between untreated and other treatment types did not disclose changes 
that were statistically significant by Wilcoxon signed-rank test with FDR correction. b, Corresponding faecal 
samples collected 24 h after treatments (as shown in Extended Data Fig. 8a) were homogenized, diluted serially, and 
plated on MacConkey medium. The abundance of bacteria capable of growing on the selective medium was similar 
between faecal samples taken from untreated mice and those collected 24 h after treatment with cyclodextrin and 
M4284. No colonies were detected from faecal samples collected 24 h after ciprofloxacin treatment. c, Comparison 
of the representation of bacterial taxa in the faecal microbiota of untreated mice obtained from different vendors or 
representing different genetic backgrounds. Each row in the heat map represents a species-level taxon, while each 
column represents a mouse of the indicated genetic background from the indicated vendor. Coloured boxes indicate 
species whose relative abundances were significantly different (P < 0.05) between all three groups of animals 
(Kruskal–Wallis test with FDR correction). Rows of each heat map were hierarchically clustered according to pair-
wise distances using Pearson correlation. n = 5 mice per treatment type, 1 biological replicate (a); n = 5 mice, 1 
biological replicate (b); n = 5 mice per vendor/mouse strain, 1 biological replicate (c). Bars denote median. 
**P < 0.001, Mann–Whitney U test (b). 
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4.7.9 Figure S9. The configuration of the faecal microbiota of C3H/HeN mice 
pretreated with streptomycin and colonized with UTI89 is minimally altered 
by M4284 treatment. 
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a, C3H/HeN mice from Envigo were pretreated with streptomycin and 24 h later colonized with UTI89 by oral 
gavage. Three days after inoculation, animals were treated with three doses of M4284 (100 mg kg−1, three doses 
over 24 h) or vehicle alone (10% cyclodextrin, 3 doses over 24 h). Faecal samples were collected 24 h after the last 
dose of M4284 or vehicle. b, Heat map showing the effect of each treatment type. Each row represents a bacterial 
species-level taxon, while each column represents a mouse 24 h after the indicated treatment. Rows of the heat map 
were hierarchically clustered according to pair-wise distances using Pearson correlation. No treatments produced 
changes that were statistically significant, as judged by Wilcoxon signed-rank test with FDR correction. n = 4 mice 
per treatment type, 1 biological replicate. 
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4.7.10 Figure S10. The configuration of the faecal microbiota of C3H/HeN 
mice pretreated with streptomycin and colonized with UTI89 is minimally 
altered by M4284 treatment. 

 
a, The percentage reduction in CFU for the indicated UPEC strains from M4284-treated versus untreated control 
C3H/HeN mice obtained from Envigo (based on data in Fig. 4c–f). b, CFU data obtained from C3H/HeN mice from 
Envigo and CRL and C57BL/6 mice from Envigo (based on data in Fig. 4f–h). P values calculated using Kruskal–
Wallis test. n = 14 mice, 3 biological replicates (UTI89); n = 10 mice, 2 biological replicates (CFT073, EC958 and 
41.4p) (a); n = 14 mice, 3 biological replicates (C3H/HeN from Envigo); n = 10 mice, 2 biological replicates 
(C3H/HeN from CRL); and n = 9 mice, 2 biological replicates (C57BL/6 from Envigo) (b). 
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4.8 Supplementary Tables 
4.8.1 Table S1. The phylogenetic relationships between F17 homologs as 
determined by comparing relatedness of bacterial usher gene sequences.  
Available in Appendix A 

4.8.2 Table S2. The carriage of F17-like pili in rUTI UPEC strains. 

Strain Pathotype Clade BioProject 
F17-like 
Carriage 

Sample Time 
Point** 

536 UPEC B2 PRJNA16235 Yes 
 11128 EHEC B1 PRJDA32513 

  11368 EHEC B1 PRJDA32509   
 12009 EHEC B1 PRJDA32511 

  55989 EAEC B1 PRJNA33413   
 2009EL-2050 EHEC B1 PRJNA81097 

  2009EL-2071 EHEC B1 PRJNA81099   
 2011C-3493 EHEC B1 PRJNA81095 

  ABU 83972 ABU B2 PRJNA38725 Yes 
 APEC O1 APEC B2 PRJNA16718 

  APEC O78 APEC B1 PRJNA184588   
 ATCC 8739 Commensal A PRJNA18083 

  BL21(DE3) Lab Strain A PRJNA20713   
 BW2952 Lab Strain A PRJNA33775 

  CB9615 EPEC E PRJNA42729   
 CE10 NMEC F PRJNA63597 

  CFT073 UPEC B2 PRJNA313   
 clone D i14 UPEC B2 PRJNA52023 

  clone D i2 UPEC B2 PRJNA52021   
 DH1 Lab Strain A PRJDA52077 

  DH10B Lab Strain A PRJNA20079   
 E2348/69 EPEC B2 PRJEA32571 

  E24377A ETEC B1 PRJNA13960   
 EC4115 EHEC E PRJNA27739 

  ED1a Commensal B2 PRJNA33409   
 EDL933 EHEC E PRJNA259 

  H10407 ETEC A PRJEA42749   
 HS Commensal A PRJNA13959 

  IAI39 UPEC F PRJNA33411   
 IHE3034 NMEC B2 PRJNA43693 

  K12 MG1655 Commensal A PRJNA40075   
 LF82 AIEC B2 PRJNA33825 

  NRG 857C AIEC B2 PRJNA41221   
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REL606 Lab Strain A PRJNA18281 
  RM12579 EPEC E PRJNA68245   

 S88 Commensal B2 PRJNA33375 
  SE11 Commensal B1 PRJNA18057   

 SE15 Commensal B2 PRJDA19053 
  SMS-3-5 Environmental F PRJNA19469   

 TW14359 EHEC E PRJNA30045 
  UM146 AIEC B2 PRJNA50883 Yes 

 UMNK88 ETEC A PRJNA42137 
  UTI89 UPEC B2 PRJNA16259 Yes 

 W Lab Strain B1 PRJNA48011 
  W3110 Lab Strain A PRJNA16351   

 Xuzhou21 EHEC E PRJNA45823 
  2.1a* UPEC A PRJNA269984  Enrollment UTI  

2.2r* UPEC D PRJNA269984  
Different-strain 

rUTI  
5.1a* UPEC B1 PRJNA269984  Enrollment UTI  
5.2p* UPEC B2 PRJNA269984 Yes Prior to Recurrence  

5.3r* UPEC B2 PRJNA269984 Yes Different-strain 
rUTI  

9.1a* UPEC D PRJNA269984  Enrollment UTI  
9.2p* UPEC B1 PRJNA269984  Prior to Recurrence  

9.3r* UPEC B1 PRJNA269984  
Different-strain 

rUTI  
11.1a* UPEC A PRJNA269984  Enrollment UTI  
11.2p* UPEC A PRJNA269984  Prior to Recurrence  
11.3r* UPEC A PRJNA269984  Same-strain rUTI  
12.1a* UPEC B2 PRJNA269984 Yes Enrollment UTI  
12.2p* UPEC B2 PRJNA269984 Yes Prior to Recurrence  
12.3r* UPEC B2 PRJNA269984 Yes Same-strain rUTI  
12.4r* UPEC B2 PRJNA269984 Yes Same-strain rUTI  
17.1a* UPEC B2 PRJNA269984 Yes Enrollment UTI  
17.2p* UPEC B2 PRJNA269984 Yes Prior to Recurrence  
17.3r* UPEC B2 PRJNA269984 Yes Same-strain rUTI  
20.1a* UPEC B2 PRJNA269984 Yes Enrollment UTI  
20.2r* UPEC B2 PRJNA269984 Yes Same-strain rUTI  
20.3r* UPEC B2 PRJNA269984 Yes Same-strain rUTI  
21.1a* UPEC B2 PRJNA269984 Yes Enrollment UTI  
21.2p* UPEC B2 PRJNA269984 Yes Prior to Recurrence  
21.3r* UPEC B2 PRJNA269984 Yes Same-strain rUTI  
26.1a* UPEC B2 PRJNA269984 Yes Enrollment UTI  
26.2p* UPEC B2 PRJNA269984 Yes Prior to Recurrence  
26.3r* UPEC B2 PRJNA269984 Yes Same-strain rUTI  
31.1a* UPEC B1 PRJNA269984  Enrollment UTI  
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31.2p* UPEC B1 PRJNA269984  Prior to Recurrence  

31.3r* UPEC B2 PRJNA269984  
Different-strain 

rUTI  
34.1a* UPEC B2 PRJNA269984 Yes Enrollment UTI  
34.2r* UPEC B2 PRJNA269984 Yes Same-strain rUTI  
35.1a* UPEC B2 PRJNA269984 Yes Enrollment UTI  
35.2p* UPEC B2 PRJNA269984 Yes Prior to Recurrence  
35.3r* UPEC B2 PRJNA269984 Yes Same-strain rUTI  
41.1a* UPEC B2 PRJNA269984 Yes Enrollment UTI  
41.2p* UPEC B2 PRJNA269984 Yes Prior to Recurrence  
41.3r* UPEC B2 PRJNA269984 Yes Same-strain rUTI  
41.4p* UPEC B1 PRJNA269984  Prior to Recurrence  

41.5r* UPEC B1 PRJNA269984  
Different-strain 

rUTI  
56.1a* UPEC B1 PRJNA269984  Enrollment UTI 

56.2r* UPEC B2 PRJNA269984 Yes Different-strain 
rUTI  

56.3r* UPEC B2 PRJNA269984 Yes Same-strain rUTI  
* Collected during a previous longitudinal study on recurrent UTI 
** Sample time point as defined in [REF] 
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5.1 Summary 
The clinical manifestations and symptomatology of urinary tract infections (UTIs) caused 

by uropathogenic Escherichia coli (UPEC) are strikingly complex and result from the 

interactions between the bacterium and host urothelial tissues. The definition of UPEC itself is 

variable, as it is currently defined as any strain that is recovered from the urine of symptomatic 

UTI patients (Picard et al., 1999), a classification that fails to account for differences in host 

susceptibility or the possibility for multiple evolutionary and mechanistic paths to urovirulence. 

Further, despite widespread acceptance that the gut is a reservoir of UPEC that lead to UTI 

(Chen et al., 2013; Moreno et al., 2008), we know little about the host and bacterial factors that 

promote the establishment and maintenance of UPEC in this habitat. Towards the goal of 

identifying conserved bacterial features enabling urovirulence, my thesis work has integrated 

different animal models of bladder and gut colonization with comparative multi-omics and 

evolutionary analyses. This work has led us to a new way of thinking about UTI risk - a “Key 

and Lock” model. This model posits that the outcome of an encounter (i.e., the risk of UTI) 

between a specific host and potential UPEC isolate is dependent upon the combination of the 

particular fitness state of the UPEC isolate (the “key”) matched with the particular host 

environment and susceptibility (the “lock”). Below, I will describe the reasoning, and the work 

supporting it, that has formed the basis for this model of UTI susceptibility with a focus on the 

UPEC “key”. 

First, in Chapter 2, I found that the ability to colonize the mouse bladder was a common 

feature amongst diverse E. coli and that transcriptional expression, rather than gene carriage, was 

a better predictor of bladder colonization in a mouse model. Here, I highlighted the genetic and 

phylogenetic diversity of clinical urine-associated E. coli (UAEC) strains isolated from women 

with a history of frequent rUTIs. I found that two UAEC can share as little as 60% of their genes 
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and that UACE can be found throughout the E. coli phylogenetic tree, although most clinical 

strains reside in clade B2, including the model UPEC strain UTI89. Using a standard mouse 

model of cystitis, a transurethral inoculation of juvenile C3H/HeN mice, I found that many, but 

not all, UAEC were robust colonizers of the mouse bladders at levels that were similar to a 

model, B2 UPEC strain. I further found that these robust colonizer UAEC displayed all the 

histopathological hallmarks of infection by model, B2 UPEC strains, such as development of 

intracellular bacterial communities (IBCs), quiescent intracellular reservoirs (QIRs), and the 

progression to chronic cystitis. Strikingly, we found that no single set of genes, including a set of 

commonly studied PUF genes, was capable of clearly delineating those UAEC strains that were 

capable of colonizing the mouse bladder robustly from those that were deficient in colonization. 

Instead, I found that the transcriptional expression of core genes in defined media conditions 

were better predictors of mouse bladder colonization than gene carriage or phylogeny. 

Importantly, these core genes control common bacterial behaviors, such as chemotaxis, nutrient 

uptake, and flagellar motility. In addition, through in vitro phenotype measurements, we found 

that function of the ubiquitous type 1 pili, part of the core genome in UAEC and critical in host 

colonization, also correlated with mouse bladder colonization. Taken together, these results 

indicate that the UPEC “key” to uropathogenesis is common to many E. coli strains and that its 

shape is influenced by the transcriptional state of the core genome in the bacterium. 

Second, I found that evolution has encoded dynamic mechanical properties of the 

critically important type 1 pilus rod into the E. coli genome and that these mechanical properties 

are critical for UPEC colonization of the bladder and the gut. In Chapter 3, I presented an 

integrative study incorporating the fields structural biology, biophysics, and cellular pathology, 

and microbial pathogenesis that has revealed that the major subunit of the type 1 pilus rod, FimA, 
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is under extreme selective pressure to maintain the correct folding of the subunit to enable the 

pilus rod to act as a “molecular spring”. The conservation of the FimA subunit was localized to 

the subunit-subunit interfaces within the quarternary structure of the rod, as determined through 

cryo-electron microscopy, and mutation in some these conserved residues resulted in a 

significant reduction in the force needed to unwind the pilus. Importantly, a reduction in the 

tension of the pilus rod through point mutations in the fimA gene resulted in defects in gut 

colonization and bladder pathogenesis in mouse models by the model UPEC strain UTI89. In 

addition to tension within the pilus rod, I found that residues that mediated proper assembly of 

the type 1 pilus, as measured by hemagglutination assays, were under similarly strong purifying 

selection to conserve their identity. Despite the overall conservation of the FimA protein, I did 

identify specific codons in fimA that are under strong adaptive selection, which has resulted in a 

diversification of amino acid residues at those positions within the subunit. These residues are 

located on the external surface of the type 1 pilus rod, which is exposed to the host immune 

system, which is indicative of antigenic diversification and an attempt to evade immune 

recognition. Overall, while the FimA subunit was strongly conserved, this diversity in surface-

exposed subunits was enough to make the FimA protein the most divergent component of the 

type 1 pilus rod. Thus, overall, I found that the FimA protein is under strong purifying selection 

to conserve mechanical properties that are important in bladder and gut colonization while also 

experience episodic bouts of diversifying selection that increase the diversity of surface exposed 

residues in a pattern reminiscent of antigenic diversification. This shows that an parts of the 

UPEC “key” to uropathogenesis are under strong evolutionary conservation across all of the E. 

coli phylogeny. 
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Third, I found clade B2 UPEC have obtained genetic machinery from other bacteria 

through horizontal gene transfer that enhances gut colonization, which can seed recurrent UTIs. 

In Chapter 5, I describe my work in identifying the evolutionary history of the so-called F17-like 

pilus, which is a member of the chaperone-usher pathway (CUP) pilus family along with type 1 

pilus. Here, I showed that the ucl operon, which encodes the F17-like pilus, is most closely 

related to the uca operon in Proteus mirabilis and that the ucl operon is significantly enriched in 

B2 strains of E. coli. I also presented evidence that F17-like pili, in addition to type 1 pili, enable 

gut colonization by a model B2 UPEC strain, UTI89. Importantly, the localization of the F17-

like ligand, whose identity remains unknown, is located deep within the intestinal crypts and is 

separate from the type 1 pili ligand, which is located closer to the lumen of the gut. These data 

strongly suggest that the F17-like machinery were obtained by B2 E. coli from other bacteria to 

enable colonization of the gut in niches that are different than those that are occupied by other E. 

coli strains which express type 1 pili. I further investigated the role that this gut colonization may 

have on recurrent UTIs and found that the ucl was significantly enriched in UPEC isolates 

causing recurrent infections relative to other clade B2 strains of E coli. Importantly, this 

coincides with my findings described in Chapter 2 that clade B2 strains are significantly enriched 

in UPEC causing same-strain rUTI. Further, it is known that some PUF genes, especially those 

involved in iron uptake, are also important in colonization of the gut by E. coli strains (Deriu et 

al., 2013; Winter et al., 2013) and are also enriched in B2 strains (Picard et al., 1999; Schreiber et 

al., 2017). Taken together, these results indicate that evolution has selected for features that 

enable bladder colonization, such as structurally dynamic type 1 pili and specific transcriptional 

states, in genetically and phylogenetically diverse strains of E. coli. However, we also see that 

certain clades of E. coli are enriched in genetic factors that enable gut colonization, which, in 
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turn, are also enriched in UPEC strains that recurrent UTI. Thus, while gene carriage does not 

appear to differentiate strains that robustly colonize the bladder from those that are poor 

colonizers, it appears likely the gene carriage can influence UPEC pathogenicity overall by 

enabling persistence in a different body site. Thus, we find that the “keys” to uropathogenesis in 

UPEC do not have to be directly mediating bladder colonization, but, instead, could have 

acitivity in other body sites. 

Finally, I have shown that the ability of an E. coli strain to colonize one host bladder does 

not guarantee that E. coli will be able to colonize all host environments, or host “locks”. In 

Chapter 2, I have shown that some UAEC strains that are robust colonizers of C3H/HeN mice, 

which are generally considered to be more susceptible to UTI, are not be able to colonize 

C57BL/6 mice, which are generally considered more resistant to UTI. Importantly, we found that 

this was not a general phenomenon; most UAEC strains were able to colonize the C57BL/6 mice 

at similar levels. Instead, it appears that specific host-pathogen interactions resulted in different 

ability to colonize the mouse bladders as the UAEC strains that failed to colonize the C57BL/6 

mice were genetically distinct from each other. This is an important consideration because much 

of what we know about UPEC pathogenicity has been based on understanding of a single 

bacterium’s interaction with a single host environment. Given the complexity of UTI 

susceptibility factors resulting from environmental, behavioral, and genetic differences (Foxman 

et al., 2000; Foxman, 2010; Hooton et al., 1996) and the diversity in clinical UPEC (Schreiber et 

al., 2017), the use of a single host and a single bacterium are likely to fail to capture the 

variability in host-pathogen interactions seen in the clinic. 

5.2 Perspective 
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Thus, my research has lead us to a new perspective on UPEC pathogenesis in which UTI 

risk is determined by diverse bacterial virulence phenotypes, variable and changing host 

susceptibilities, and the interactions of these phenotypes and susceptibilities in specific host-

pathogen combinations. Thus, we propose a multi-dimensional and dynamic “Lock and Key” 

model of UTI risk in which the “Lock” of host susceptibility is matched against the “Key” of an 

individual E. coli isolate’s virulence potential, which has been specially tuned by evolution 

(Schreiber et al., 2017). Given the multi-dimensionality of this concept, it is best visualized as 

landscape of interactions between hosts and UPEC (Figure 1). In this model, some UPEC “keys” 

may act as “master keys” being able to open a variety of different “locks” and some keys may be 

host specific, only functioning on a narrow spectrum of host “locks.” Similarly, some “locks” 

may differentially accommodate the fit of a broad spectrum of different “keys,” while some may 

be specific to only a few. Importantly, we must understand that the “keys” to bladder 

colonization are broadly distributed amongst genetically diverse E. coli strains and that evolution 

has worked to conserve the function of at least critical component in bladder colonization, the 

type 1 pilus rod. Further, we posit that not all UPEC “keys” are limited in their activity of 

colonization and persistence within the urinary tract during an acute infection. Instead, additional 

attention must be paid to factors that contribute to the ability of UPEC strains to persist within 

host reservoirs outside of the bladder, such as in the gut microbiota. By incorporating previously 

unaccounted for phenotypic and transcriptional variation among E. coli strains and their 

differential responses to dynamic host environments, this conceptual model helps to explain 

UPEC diversity in the clinic, including the lack of a clear genetic signature of uropathogenesis. 

However, picturing the “locks and keys” in this analogy as immutable objects that are in 

incapable of change oversimplifies the state of UTI risk. Instead we suggest that this is better 
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envisioned with both the host susceptibility “lock” and the bacterial pathogen “key” being 

malleable in nature and changing over time in response to differing conditions due to the 

dynamic nature of both host and bacterial phenotypes. This is exemplified by recent work 

showing that UPEC alter their transcriptional expression of attachment organelles from type 1 

pili to FML pili during the transition from acute cystitis to chronic cystitis in mouse bladders 

(Conover et al., 2016). Notably, this change in expression coincides with inflammation in the 

mouse bladder epithelium that results in the expression of new ligands that are recognized by 

newly expressed FML pili, thus enabling the persistence of UPEC that would otherwise be 

removed during bladder remodeling.  

Numerous clinical infections are caused by genetically diverse pathogens that infect hosts 

with varying levels of susceptibility. Thus, the dynamic “Lock and Key” model of UTI risk is 

likely translatable to other infectious diseases that lack clear bacterial genetic signatures for 

pathogenicity. Thus, integrated research methods that combine clinical research with 

experimental model systems are needed to probe the effects of: (1) host and pathogen genetic 

diversity, (2) host and bacterial responses to changing infection conditions, (3) infection 

dynamics that lead to differential susceptibilities and outcomes of bacterial infections in humans, 

and (4) pathogen transmission between varied reservoir and infection habitats. This research 

paradigm promises to yield new insight into the conserved and targetable mechanisms of 

virulence, critical for development of novel therapeutic strategies that are increasingly needed to 

face the rising tide of antibiotic resistance. 

5.3 Future directions 

5.3.1 Identify transcriptional profiles UPEC that enable UPEC success in 
distinct bladder niches 
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As shown in Chapter 2, genetically distinct E. coli capable of colonizing multiple 

environments of the urinary tract (e.g., the bladder, and kidney) and are capable of existing 

extracellularly and intracellularly during both acute and chronic phases of UTI. Importantly, I 

found that transcriptional regulation was a key feature in predicting E. coli success in bladder 

colonization. Thus, a better understanding of UPEC pathogenesis requires a detailed 

understanding of the regulation of particular genes and pathways during the dynamic cross-talk 

that occurs at the host pathogen interface throughout the varied niches during progression of UTI 

in a wide variety of UPEC that better reflect the diversity seen in the clinic. Several new 

technologies enable the measurement of transcriptional regulation of bacteria at unprecedented 

levels of sensitivity and resolution while decreasing the economic costs of multiplex library 

construction for high-throughput RNA sequencing (RNA-seq)(Shishkin et al., 2015). In addition, 

protocols developed in the Hultgren lab, enable the isolation of UPEC from their disparate niches 

during UTI progression. For example, it is possible to separate the extracellular UPEC bacteria 

away from the host bladder for easy isolation of UPEC that are in the process of developing the 

intracellular bacterial communities (IBCs) that are critical steps in UTI pathogenesis (Schwartz 

et al., 2011). Thus, while previous studies have investigated the transcriptional expression of 

UPEC during UTI (Conover et al., 2015; Reigstad et al., 2007), the integration of these new 

technologies and protocols would enable an unparalleled examination of the pathogenic 

processes that were inaccessible with previous technology. Importantly, given the reduced cost 

of these new RNA-seq and the knowledge of the pathogenic cascade, future experiments would 

allow for the thorough interrogation of each step of the UTI progression. Understanding the 

temporal dynamics of UPEC interactions with host cells would enable us to answer open 

questions that have existed in the field. For example, it is currently known that UPEC require 
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type 1 pili to invade host cells and form IBCs (Wright et al., 2007); however, it is unknown how 

UPEC sense that they have successfully invaded a host cell or how UPEC begin the process of 

escaping into the host cytoplasm to begin IBC formation. Further, while UPEC filamentation out 

of host urothelial cells is an important step in continuing UTI pathogenesis (Justice et al., 2006), 

it is unknown what signal UPEC receive or what transcriptional programs are activated to switch 

from growth in a biofilm-like community in the IBC to a drastic morphological change into long 

filaments. To answer these questions, I would collect a panel of genetically diverse UPEC strains 

that are all capable of colonizing the mouse bladder at high levels and then interrogating their 

transcriptional expression at early, middle, and late time points in the IBC development process. 

With this information in hand, it would be possible to identify a few genetic pathways of interest 

that could be further investigated using novel technologies, such as RNAscope (Wang et al., 

2012), which is a tool that enables the quantitative measurement and visualization of low copy 

mRNA molecules at the single-cell level across diverse bacterial strains. This technology would 

provide a spatial understanding of UPEC transcriptional regulation within the IBC that has never 

before been accomplished. Taken together, these experiments would enable the dissection of 

spatial-temporal processes governing IBC development and UTI progression in a set of UPEC 

that accurately recapitulates clinical realities. 

5.3.2 Define the influence of the gut microbiome on UTI susceptibility and 
recurrence 

Over the last decade, new technological innovations have enabled detailed analysis of the 

gut microbiota as a critical mediator of immune status (Hooper et al., 2012) and education 

(Mazmanian et al., 2005), gastrointestinal tract development (Reinhardt et al., 2012), brain 

function (Sampson et al., 2016), and nutrition (Ley, 2005). Critically, the gut microbiota also 

mediates a phenotype of “colonization resistance” whereby bacterial pathogens are excluded 
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from the gut microbiota through occupation of host niches that are required by the pathogens for 

persistence (as reviewed in (Buffie and Pamer, 2013)). Here, I have described the importance of 

the UPEC reservoir, particularly in recurrent UTI (rUTI) and detailed features that enable UPEC 

to colonize the gut of mouse models. However, many questions remain about the role the gut 

microbiota plays in UTI, particularly in women who experience frequent rUTI. For example, we 

still do not know if there are any changes to the population structure of a woman’s gut 

microbiota before, during or after UTI and antimicrobial therapy or if there are significant 

differences between women who suffer from frequent rUTIs and those who do not. Several lines 

of evidence suggest a link between the gut microbiota and UTIs as we know: (1) that population 

dynamics of E. coli the gut and bladder are linked, such that the dominant E. coli strain in one 

niche is the dominant strain in the other, (2) that inflammatory diseases, such as Crohn’s disease, 

is associated with dysbiosis (i.e., pathogenic changes in the gut microbiota) (Gevers et al., 

2014)and that UTIs are associated with increased systemic inflammation (Hannan et al., 2010; 

2014; O'Brien et al., 2016), and (3) the most common treatment for UTIs are antimicrobial 

therapies (Hooton, 2012), which are known to disrupt the gut microbiota and enable blooms of 

Enterobacteriaceae, including E. coli (Spees et al., 2013). Thus, to better understand how the gut 

microbiota influences UTI susceptibility and recurrence, I have established a longitudinal study 

of a cohort of women with and without a history of frequent rUTIs that will use a combination of 

multi-omics technology and analysis of host immune status with mouse models of both gut and 

bladder colonization. Specifically, we aim to understand if population dynamics in the gut 

microbiota, such as blooms in Enterobacteriaceae or differences in colonization resistance, 

and/or changes in the host immune system influence the onset and severity of UTI. This project, 

a collaboration between the lab of Dr. Scott Hultgren, at the center for Women’s Infectious 
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Disease Research at Washington University School of Medicine, Dr. Henry Lai’s office, in the 

Department of Urological Surgery at Barnes Jewish Hospital, and Dr. Ashlee Earl’s lab at the 

Broad Institute of MIT and Harvard, has recently finished the sample collection phase and has 

begun data generation and analysis using cutting edge technologies. 

Briefly, we collected fecal/rectal swab, urine, and blood samples from women with and 

without frequent rUTIs over the course of one calendar year at both healthy time points, through 

monthly sample collection kits, as well as during and directly after any UTI episodes. At each 

collection, participants complete questionnaires detailing symptoms of UTI and gastrointestinal 

illness, as well as a diet and general health questionnaire. More than 400 fecal/rectal swab 

samples were collected from 14 women with frequent rUTI and an equal number of age-matched 

controls and we captured a total of 19 UTI events within the study window. Currently, we are in 

the process of measuring the gut microbiota structure (i.e., the prevalence and abundance 

between the groups) as well as their functional differences at both healthy and UTI time points 

through a combination of metagenomic and metatranscriptomic sequencing. While the majority 

of samples have yet to be analyzed, we performed whole genome sequencing and assembly on a 

set of 96 fecal samples collected from eight “cases” (i.e., women with frequent rUTI) and eight 

“controls” (i.e., age-matched participants without frequent rUTI). Eight fecal samples from each 

participant in the case group (n=64 total) were chosen to include samples before, during, and 

after UTI episodes, while four samples were collected from each of the participants in the case 

group (n=32 total). Care was taken to standardize the time between sample collection for all the 

samples included in this analysis, as much as possible. These metagenomic datasets were then 

analyzed to measure: (1) the distribution of alpha diversity (i.e., the number of species present in 

a single sample) as measured by the Chao1 richness indicator, in the gut microbiota between 



	

 
 

223 

groups of participants, (2) the rates of turnover in taxa (i.e., the immigration and emigration of 

bacterial species) between time points in the analysis using the Jaccard diversity index, and (3) 

the enrichment of particular bacterial taxa in either the case or control group using the linear 

discriminant analysis effect size (LEfSe) tool. Comparisons between the diversity and turnover 

of the case and control groups was performed using ANOVA after correction for fixed effects 

arising from longitudinal sampling of the same participant. 

Preliminary results from this whole metagenomic sequencing has revealed that, in general, 

the gut microbiota of women with frequent rUTI are less diverse and contain less bacteria 

normally associated with healthy guts than the gut microbiota of healthy women (Figure 2). 

Here, we found that control gut microbiotas were significantly more diverse, as measured by 

species richness, than the gut microbiota of women with frequent rUTI (Figure 2A). This means 

that, at any one time point, it is more likely that women with frequent rUTI have fewer bacterial 

species, and thus less genetic diversity in their gut microbiome, than healthy women. 

Surprisingly, we do not see a statistically significant difference in the rate of turnover between 

time points between the groups of participants (Figure 2B). In general, we saw more variability 

in the turnover of gut microbiota in the control group than in the case group; however, this could 

be due to the smaller number of samples sequenced in the control group, which resulted in longer 

gaps of time between sample collection and greater opportunity for natural fluctuation in the 

composition of the gut microbiota. Finally, we saw significant differences in the carriage of 

different taxa between case and control participants (Figure 2C,D). Importantly, we saw 

differences in the carriage of taxa that have been identified as biomarkers of healthy gut 

microbiota, namely Akkermansia muciniphila (Png et al., 2010) and Faecalibacterium 

prausnitzii (Sokol et al., 2008), both of which have been shown to be significantly reduced in 
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people suffering from inflammatory diseases, such as Crohn’s disease. The fact that the case 

group show significantly reduced carriage of these bacteria indicate that their gut microbiota may 

be responding to levels of intestinal inflammation that are affecting the composition of the 

bacterial communities. Future analyses will continue confirm these preliminary findings and new 

analysis will compare the immune states and systemic inflammation of case and control groups 

to correlate these findings with the host response. Finally, we will use these data as a foundation 

for investigation into the population dynamics and colonization capability in gnotobiotic mice 

that have been humanized with fecal transplantations from these women. Together, these 

analyses will define the link between the gut microbiota, the host immune system, and 

subsequent UTI outcome. 
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5.4 Figures 
5.4.1 Figure 1. The “Key and Lock” model of UTI susceptibility. 

 
For a given host-pathogen interaction (shown at the top), the risk of a UTI (shown in color scale from blue being 
low risk and red being high risk) depends on the susceptibility profile of the host (on one axis) and the pathogenicity 
of the UPEC (on the other axis) resulting in peaks of high risk and valleys of low risk. Previous research has shown 
that host susceptibility (shown on the bottom left) is mediated by the interaction of genetic and environmental 
influences (listed below) resulting in variable susceptibility profiles. More recent research has shown that the 
genotype of an E. coli strain alone is insufficient to predict its virulence across diverse hosts. Instead the 
transcriptional profile, in addition to the genotype, is better able to predict high urovirulence phenotypes (shown in 
the bottom right). 
  

High Risk

Host-Pathogen 
Interaction

Low Risk

Host-Pathogen 
Interaction

S
u
s
c
e
p
tib

ility
 

P
h
e
n
o
ty

p
e
s P

a
th

o
g
e
n
ic

 

P
h
e
n
o
ty

p
e
s

D
y
n
a
m

ic
 t
ra

n
s
c
ri
p
ti
o
n
a
l

p
ro

fi
le

s

H
o
s
t g

e
n
o
ty

p
e

E
. c

o
li g

e
n
o
ty

p
eE

n
v
ir
o
n
m

e
n
ta

l 

In
fl
u
e
n
c
e
s

e.g.
TLR Mutations,

ABO Blood Type,
Infection history,

Frequency of intercourse

e.g.
Expression of adhesins,

Immune evasion,
Stress response,

Nutrient (iron) acquisition

Host Determinants of Susceptiblity Bacterial Pathogenesis Factors

High virulence

phenotype

High susceptibility

phenotype



	

 
 

226 

5.4.2 Figure 2. Patients with frequent recurrent urinary tract infections have 
less diverse microbiomes than control patients. 

 
(A) Participants with recurrent urinary tract infections have significantly fewer species in their gut microbiotas than 
control patients using the Chao1 richness indicator. Linear mixed models were built with a patient intercept term 
with treatment as a variable and compared using ANOVA (p = 0.012). (B) Patients with rUTIs did not have 
significantly more turnover of microbiome species (replacement of species between sequential time points) as 
measured by the Jaccard diversity index. Linear mixed models were built with a patient intercept term with 
treatment as a variable and compared using ANOVA (p = 0.27). C) Control patients were enriched for many higher 
taxonomic groups, including a wide range of Firmicutes, Proteobacteria, and Verrucomicrobia, while patients with 
rUTI were enriched for Bacteroides, based on linear discriminant analysis effect size (LEfSe). D) Ten species passed 
the significance in both LEfSe and a linear mixed model (build as described above, p-values shown to the right of 
species). All ten species were enriched in control patient microbiotas, including Akkermansia muciniphila and 
Faecalibacterium prausnitzii, the absence of which has been associated with gastrointestinal inflammatory disorders. 
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