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Urinary tract infections (UTIs) are among the most common bacterial infections 

worldwide, costing greater than $2 billion in healthcare costs and lost wages yearly in America 

alone. The lifetime risk for a woman exceeds 50% with 25-40% of these suffering recurrent 

infections. Two of the most important risk factors for recurrent UTI are prior UTIs and sexual 

intercourse. Over 80% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which 

binds and invades superficial facet cells lining the bladder surface. UPEC expresses extracellular 

fibers called type 1 pili with a terminal mannose-binding adhesin, FimH, which interacts with 

mannosylated uroplakin residues on the urothelium. UPEC replicates in the cytoplasm of bladder 

cells into biofilm-like intracellular bacterial communities (IBCs) in a protected niche. In 

C3H/HeN mice, a robust, systemic, immune response at 24 hours precedes the development of 

persistent bacteriuria and chronic cystitis, which lasts indefinitely. A less robust immune 

response results in resolution of the infection.  

I determined the population dynamics during UPEC infection with a set of 40 variants of 

a clinical isolate, UTI89, each with a unique genetic sequence detectable by multiplex PCR. I 



 xii 

identified a significant population bottleneck during the first 24 hours coinciding with the 

inflammatory response. Furthermore, I tested a panel of FimH alleles under positive selection 

and found several that impacted the ability of UPEC strains to form IBCs and promote chronic 

cystitis. These pathoadaptive alleles govern the ability of FimH to bind mannose by dynamically 

interconverting between a compact, low-affinity conformation and an elongated, high-affinity 

state. This dynamic equilibrium is crucial for virulence as alleles locked in either conformation 

are attenuated. I also developed a model of frequent inoculation of UPEC into the urinary tract to 

investigate the clinical link between frequent sexual intercourse and UTI risk. By inoculating 

mice twice during acute infection, I found a dramatic increase in the proportion of mice that 

experienced chronic cystitis. Taken together, this thesis defines bacterial and behavioral factors 

that increase the risk for chronic and recurrent UTI, providing rationale for the development of 

novel therapeutics targeting bacterial invasion to limit infection by excluding UPEC from 

intracellular niches.  
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Abstract 

 Host-pathogen interactions are often mediated by extracellular fibers known as pili. The 

best characterized Gram negative pili are assembled by the Chaperone Usher Pathway (CUP). 

CUP pili are often tipped with an adhesin that binds to receptors with stereochemical specificity 

allowing microbes to colonize and adapt to dynamically changing environments. Type 1 and P 

pili are prototype CUP pili that mediate colonization of tissues in the urinary tract during 

infection by uropathogenic Escherichia coli (UPEC). During a urinary tract infection (UTI), 

UPEC occupy and flux between multiple niches within the bladder and kidneys. In the acute 

stages of cystitis, UPEC invade superficial bladder epithelial cells, replicate within the 

cytoplasm, and form large biofilm aggregates termed intracellular bacterial communities (IBCs). 

Appropriate expression of pili and other virulence factors in the urinary tract is essential for 

pathogenesis. Type 1 pili, critical for bladder infection, are regulated by cis-encoded 

recombinases within the fim operon that reversibly invert the fim promoter, regulating 

expression. Recombinases and many other regulatory proteins serve to cross-regulate CUPs and 

fine-tune pilus expression. Understanding the structure, regulation, assembly, and function of 

these pili has lead to the development of novel anti-virulence compounds that prevent bacterial 

attachment to host tissues. 
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Introduction 

Bacterial virulence entails an ability to persist within a host and cause disease in the face 

of myriad host defense mechanisms in more than one niche or under more than one immune 

condition. The array of virulence factors that a pathogen possesses and its ability to regulate their 

expression in response to environmental signals greatly contributes to the variety and specificity 

of niches a pathogen can colonize and impacts the spectrum of diseases that occur. Colonization 

factors may confer a fitness advantage in a specific niche, being required in some environments 

and unnecessary or deleterious in others, or they may contribute globally to persistence and 

disease. Thus, coordinated gene expression is critical to ensure that appropriate genes are 

expressed in specific environments and turned off in others. For example, when a pathogen 

encounters a susceptible host, the ability to attach to a specific tissue or niche in a timely manner 

is vitally important to establishing infection in a dynamically changing local environment. A 

host-pathogen interaction is frequently the consequence of an adhesin expressed by the pathogen 

recognizing a receptor on host cells with exquisite stereochemical specificity [1, 2]. Several 

families of bacterial adhesins exist to mediate specific interactions to various hosts, tissues, 

organisms, or surfaces: outer membrane proteins, secreted soluble, extracellular proteins that 

create an adhesive matrix, type 4 pili, auto-transporters and two-partner secreted adhesins, and 

chaperone-usher pathway (CUP) assembled pili (see [1, 3] for review). Myriad gram-negative 

and gram-positive organisms utilize adhesins to attach to epithelial surfaces to persist within a 

host. Gram-negative organisms such as Porphyromonas gingivalis, Salmonella enterica, Yersinia 

enterocolitica, and Neisseria gonorrhoeae utilize surface exposed adhesins to colonize host 

mucosal surfaces (reviewed in [4]). The gram-positive organisms Enterococcus faecalis and 

Clostridium perfringens also encode pili or pilus-like adhesins that mediate attachment to surface 
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structures. In this chapter I will describe the virulence and regulation of CUP pili focusing on 

type 1 in uropathogenic Escherichia coli (UPEC), the most common cause of urinary tract 

infections (UTIs).  

 

Urinary Tract Infections 

E. coli are normally commensal colonizers of the gastrointestinal (GI) tract. Several 

pathotypes of E. coli exist, however, that can cause disease in a variety of organ systems in both 

immuno-competent and immuno-compromised individuals dependent on the arsenal of virulence 

factors and adhesins they express. E. coli are generally classified into 3 major groups: 

commensals, intestinal pathogens, and extra-intestinal pathogens (ExPEC) [5]. Commensal 

strains peaceably coexist with numerous other bacterial species in the GI tracts of healthy 

humans and many other animals. The majority of these strains cause no disease in healthy 

individuals, but may colonize foreign bodies if present. Additionally, these commensals lack 

many of the virulence genes that other E. coli possess. Intestinal pathotypes of E. coli are rarely 

found in the asymptomatic host, but instead are obligate pathogens of the gastrointestinal tract. 

Among the intestinal E. coli pathogens, there are several classifications based on virulence genes 

expressed: enterotoxigenic (ETEC), enteropathogenic (EPEC), Shiga toxin 

producing/enterohemmorhagic (STEC/EHEC), enteroinvasive (EIEC), and diffusely adherent 

(DAEC) (reviewed in [6]). ETEC adhere via fimbriae to the small intestine and produce one or 

both of labile toxin and stable toxin, which lead to secretory diarrhea. EPEC cause attaching-and-

effacing lesions via adherence with bundle-forming pili and export of type III secretion effectors 

resulting in loss of absorptive microvilli and diarrhea. EHEC produce shiga toxin leading to 

bloody diarrhea, hemolytic uremic syndrome, and possibly death. Attachment of EHEC to the 



5 

tissue has been speculated to occur via multiple different adhesins, and many of these may 

contribute to colonization of more than one pathotype, but no clear adherence profile exists [7]. 

EIEC invade colonocytes and secrete enterotoxins, very similar to the pathogenesis of shigellae. 

DAEC diffusely adhere to the epithelial surface and auto-aggregate, yet do not produce either of 

the toxins common to ETEC. Infection with DAEC results in edematous villi and mucoid 

diarrhea. Extraintestinal infections caused by E. coli (ExPEC) include meningitis, pneumonia, 

soft-tissue infections, and UTI. ExPEC are characterized by their lack of gastrointestinal 

pathogenesis, however they can stably colonize the GI tract [5]. In order to cause disease, these 

organisms must access the site of infection: brain, lungs, medical device, or urinary tract. ExPEC 

generally acquire stretches of chromosomal DNA called pathogenicity islands (PAI) conferring 

the virulence factors often including operons encoding adhesins necessary to colonize a 

particular niche. Uropathogenic E. coli (UPEC) are one such member of ExPEC, primarily 

responsible for UTI by virtue of the adhesins and other virulence genes they express. The array 

of virulence factors and adhesins expressed by the various E. coli pathotypes defines their 

pathogenic niche and virulence profile.   

UPEC causes >80% of community-acquired UTI and ~50% of nosocomial UTI [8, 9] and 

has evolved elaborate mechanisms that allow it to survive within and exploit multiple niches in 

the urinary tract [10, 11]. Although UTIs afflict both men and women, females are 

disproportionately affected, a trend that begins as early as 8 years old [12]. Approximately 50% 

of women will have at least one symptomatic UTI in their lifetime, with 20-40% of these 

experiencing a recurrence within six months of the first infection [13, 14]. Clinically UTIs are 

divided into categories based on symptoms. One category is infections of the bladder (cystitis), 

which are generally low mortality infections involving bacteriuria, pain or burning during 
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urination, urgency, and frequency. The other category includes infections of the kidneys 

(pyelonephritis), which in addition to the symptoms of cystitis include chills, fever, flank pain 

and tenderness. Antibiotics are generally successful at clearing bacteriuria and many other 

symptoms; however, many women suffer frequent recurrent infections with increased morbidity, 

necessitating long-term, daily, prophylactic antibiotics. Furthermore, studies have shown that 

frequently, the recurrent infection is caused by the same strain that caused the original, 

symptomatic UTI [15], emphasizing the presence of a bacterial reservoir within the host that 

cannot be effectively eradicated by current treatments. Additionally, certain patients experience 

asymptomatic bacteriuria or chronic cystitis marked by persistent bacteriuria with accompanying 

cystitis symptoms [16, 17].  

 

Risk factors for urinary tract infection development 

The balance between bacterial virulence factors, host genetics, and behavior dictates 

symptoms and disease state. Certain polymorphisms and reduced expression of the Toll-like 

receptor 4 (TLR4) gene are associated with less severe UTI and asymptomatic bacteriuria 

(ASB/ABU) [18, 19]. Conversely, reduced expression of the Interleukin (IL) -8 receptor, CXCR-

1, is correlated with severe pyelonephritis [19]. Other human genetic factors that impact acute, 

chronic, and recurrent UTI (rUTI) have not yet been elucidated, but studies to determine 

polymorphisms to address these common syndromes are currently being conducted. Several of 

the most important risk factors for the development of a rUTI are behavioral. For the majority of 

women, the onset of urinary tract infection coincides with becoming sexually active [20]. One of 

the most dominant risk factors is the frequency with which a woman engages in sexual 

intercourse. Having sexual intercourse greater than nine times in a month was associated with a 
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ten-fold increase in the likelihood of developing a rUTI compared to having intercourse zero to 

three times [20]. In combination with sexual intercourse, bacterial colonization of the 

periurethral area increases in the days preceding a UTI [21]. Thus, depending on the host factors 

and behaviors, susceptibility to a UPEC UTI differs. 

The increasingly accelerated rate of global trafficking of antibiotic resistant uropathogens 

is necessitating the development of better therapeutic strategies. In addition to the rising 

resistance to first line therapies like trimethoprim-sulfamethoxazole (TMP-SMX), UPEC are 

becoming increasingly resistant to floroquinolones, which are being used more as a result of 

TMP-SMX resistance [22-24]. Furthermore, strains of the clonal group ST131 that are resistant 

to the majority of antibiotics have globally spread, causing UTI and bloodstream infections in 

North America, Europe, Asia, and Australia [25]. The spread of these multi-drug resistant strains 

combined with the increased resistance among UPEC strains is poised to create a public health 

crisis. Thus, it is essential to thoroughly reexamine the molecular basis of UPEC infection, 

determining the role and regulation of essential virulence factors to create novel therapeutics that 

target these virulence factors while reducing the negative side-effects accompanying antibiotic 

treatment. 

 

Chaperone usher pathway overview 

UPEC and E. coli in general, heavily rely on CUP pili to mediate attachment to biotic and 

abiotic surfaces [26-29]. The chaperone-usher pathway (CUP) is a nearly ubiquitous system 

among enterobacteriaceae [30] used for the assembly of surface exposed pili (see [1] or [31] for 

thorough reviews). CUPs are genetically organized as operons encoding a pilus fiber, a 

periplasmic chaperone, and an outer membrane usher. Whole genome sequencing has revealed 



8 

the presence of many canonical or hypothetical CUP operons in UPEC genomes [32-34] (Table 

1). These operons are fim (type 1), pap (P), F17-like, sfa (S), yad, auf, yfc, ygi, yeh, fml, and foc 

(F1C), yde (F9), dra/afa (Dr family), fso (F7), fst, pix (reviewed in [35]) (Table 1). In fact, it was 

recently shown that UPEC possess on average twice as many fimbrial types as commensal E. 

coli [36], presumably because of the increased array of environments these organisms colonize. I 

will focus on type 1 and P pili, given that they have been the most thoroughly characterized CUP 

pilus systems via mechanistic studies that have revealed their biochemical, structural, and 

regulatory properties as well as their contribution to UPEC pathogenesis.  

Type 1 pili are encoded by the fim operon. They are composite fibers with a ~2nm wide 

fibrillar tip joined to a 0.3-1.5 µm length rod consisting of repeating subunits arranged in a 7nm 

wide right-handed helical rod [37-39]. Upon translation, pilus subunits are translocated across 

the inner membrane via the Sec translocation machinery (Fig. 1) [40]. Once in the periplasm, 

they are bound by the chaperone FimC, which is critical for subunit stability and serves to 

facilitate folding and cap interactive surfaces to prevent nonproductive aggregation [41]. Pilus 

subunits have an incomplete immunoglobulin (Ig)-like fold, missing the C-terminal 7th β-strand 

[42, 43]. The periplasmic chaperones attain a ‘boomerang’ shape with two Ig-like domains 

connected by a linker ([44, 45]. Upon binding to the chaperone, the incomplete subunit folds are 

templated to fold by a process termed donor-strand complementation (DSC), in which four 

residues from the chaperone’s G1 strand provide the steric information to complete the fold of 

the bound subunit [42, 43]. Chaperone subunit complexes are targeted to the outer membrane 

usher, the protein through which the growing pilus is extruded across the outer membrane (Fig. 

1). The outer membrane usher is a large β-barrel protein consisting of a translocation domain, a 

~120 residue N-terminal domain (NTD) and a ~170 residue C-terminal domain (CTD) that binds 
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chaperone-subunit complexes [46]. The current model suggests that incoming chaperone-subunit 

complexes are targeted to the usher NTD and transferred to the CTD where donor strand 

exchange (DSE) occurs (Fig. 1B) [46-48]. In DSE, the chaperone is displaced by a 10-20 residue 

N-terminal extension (Nte) present on the next subunit to be incorporated into the growing pilus. 

This process completes the subunit Ig fold in a canonical fashion resulting in the addition of a 

single subunit to the growing pilus rod. The order of pilus assembly corresponds to the affinity of 

the chaperone-subunit complex for the usher and the efficacy and specificity each Nte has for 

DSE [49]. Subunits are added to the base of the growing pilus, with the FimH adhesin first 

incorporated. Accordingly, the usher, FimD, has the highest affinity for FimC-FimH complexes 

[50]. After incorporation of FimH, a single subunit each of FimG and FimF are added to 

complete the tip fibrillum. FimC-FimA complexes are then added sequentially to yield a fully 

formed pilus rod containing ~1000 FimA subunits arranged in a right-handed helical cylinder 

with approximately 3.2 subunits per turn (Fig. 1) [51, 52]. The pilus is constructed from tip to 

base through targeting of chaperone-subunit complexes to the usher and DSE to complete the 

incomplete Ig-like fold of each subunit. 

DSE occurs via a concerted ‘zip-in zip-out’ mechanism at a groove of the previously 

added subunit containing five crucial residues called P1-P5 [53]. The Nte of an incoming subunit 

binds to the open P5 pocket of the previous subunit. The incoming subunit then zips in, replacing 

the hydrophobic interactions between the previous subunit and the chaperone from P5 to P1, 

displacing the chaperone. The P pilus rod is terminated by the addition of a single PapH subunit. 

PapH contains a loop partially occluding this P5 pocket, therefore the chaperone bound to PapH 

cannot be displaced and pilus rod formation is terminated [54]. How type 1 pili are terminated is 
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unclear, as no PapH equivalent has been discovered, though some studies suggest that FimI is the 

anchoring subunit [55].  

Based on sequence identity and genomic organization, it is very likely that other CUP 

systems are assembled in a manner that is similar to type 1 and P pilus biogenesis [1]. The 

presence of multiple CUP pili within E. coli genomes is thought to be required for tuning 

adhesive properties specific for different environmental niches [10, 56-59]. For example, the 

type 1 pilus adhesin, FimH, and the P pilus adhesin, PapG, bind mannosylated and digalactoside 

receptors respectively, thereby mediating UPEC colonization of bladders and kidneys [10, 58, 

60, 61]. Transcriptional profiling and genetic studies have revealed that other UPEC CUP 

systems are expressed and may contribute to virulence [26, 36, 62]. However, how expression of 

multiple CUP operons is coordinated in response to environmental signals in different niches 

during infection is essentially unknown.  

 

UPEC virulence 

The pathogenesis of community-acquired UPEC UTI is thought to begin with UPEC 

colonization of the peri-urethral area from the fecal flora. Transmission of UPEC into the bladder 

can then occur via urethral manipulation [63, 64], sexual intercourse [65], or possibly direct 

ascension, although peri-urethral presence of UPEC does not necessarily lead to infection [66]. 

Infection is likely multifactorial with colonization in nearby “staging” areas combined with 

mechanical disruption such as sexual intercourse [21]. During infection UPEC is capable of 

colonizing the urine, the bladder epithelium (both extracellularly and intracellularly), and the 

kidneys [67]. Depending on the specific niche UPEC inhabits, it encounters different elements of 
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the immune response as well as different environmental pressures, necessitating precise gene 

regulation and immune avoidance or manipulation strategies.  

Although multiple studies have correlated particular genes with virulence [68-71], to date 

there is no common virulence profile among cystitis isolates. However, the vast majority (>95%) 

encode type 1 pili, and expression of type 1 pili is highly correlated with cystitis [33, 72, 73]. 

Indeed the most consistent virulence factor expressed among cystitis isolates is type 1 pili [73]. 

UPEC isolated from women suffering rUTI expressed type 1 pili when grown in broth cultures 

[74]. Additional studies demonstrated that 75% of UPEC isolated from the urine of 41 adult 

patients had type 1 pili on their surface and were often found in association with or attached to 

exfoliated epithelial cells and leukocytes [75]. Several studies have indicated that planktonic 

cells within the urine are usually not expressing type 1 pili, implying genetic regulation that is 

niche specific [76, 77]. However, other studies have shown that expression patterns of planktonic 

UPEC in the urine are not necessarily indicative of tissue-associated bacteria [76-78]. Planktonic 

UPEC inhabiting the bladder lumen have limited ability to maintain residence in the urinary tract 

without the ability to adhere to the epithelial surface due to the flushing action of micturition 

except in conditions that lead to incomplete voiding or reflux. 

Because of the myriad outcomes that result in human UTI, it is imperative to utilize an 

interdisciplinary approach in multiple model systems to completely capture the complexities of 

UTI pathogenesis that may be differentially exhibited spatially and temporally. Several murine 

models of UPEC infection have been developed [79, 80]. Each model takes advantage of 

different available, genetically defined, inbred mouse strains that exhibit varied immunological 

responses to UPEC infection to dissect several aspects of UTI progression. Studies performed in 

C3H/HeN, C3H/HeJ and C57Bl/6J backgrounds revealed stages of acute, sub-acute and chronic 
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infection that bear striking parallels to human UTI [80-83], indicating that outcomes from these 

mouse models strongly parallel human disease. These and other models, utilizing CBA/J, 

C3H/HeOUJ, and BalB/c mouse strains provided insights into immune checkpoints that may be 

predisposing humans to chronic UTI [80, 82, 83]. Using these mouse models, significant strides 

have been made in understanding the onset and progression of UPEC through the urinary tract. 

  

Type 1 pilus-dependent bladder invasion  

The FimH adhesin located at the tip of the type 1 pilus is instrumental in mediating 

UPEC interactions with the bladder epithelium (Fig. 2). FimH has been shown to bind mannose 

and its derivatives, thereby interacting with mannosylated moieties on abiotic and biotic surfaces. 

UPEC expressing type 1 pili were shown in vitro to bind to human and mouse uroplakins (UP) Ia 

and Ib, integral membrane glycoproteins that create a hexagonal array on the surface of the 

superficial facet cells of the bladder that create an impermeable barrier to toxic compounds in 

urine [84]. UPs are highly conserved across mammals both structurally and via sequence 

homology [85]. UPIa and UPIb are members of the tetraspanin family of molecules that 

modulate immune signaling via leukocyte differentiation. Using high-resolution, freeze-fracture, 

deep-etch electron microscopy, Mulvey et al. showed that the type 1 pilus tip fibrillum interacts 

with the hexagonal array of uroplakins on the terminally differentiated superficial facet cell layer 

of C57BL6 mice (Fig. 2A) [10], validating previous in vitro data [84]. This interaction, 

combined with the high tensile strength of the pilus rod, enables UPEC to withstand the strong 

shear forces applied by urine flow and persist in the bladder [86, 87]. The crystal structure of 

FimH with α-D-mannose bound in its recognition pocket, combined with mutational analysis, 

revealed the structural details of the precise specificity of FimH for mannose [60]. Subsequently, 
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analysis of over 300 sequenced UPEC strains revealed that the FimH binding pocket is invariant, 

further demonstrating the importance of this domain for pathogenesis [88]. FimH binding to 

UPIa results in global conformational changes of the uroplakin plaques, which lead to 

cytoskeletal rearrangement and the alignment of the cytoplasmic tails of UPIa, UPIb, UPII, and 

UPIIIa, initiating second messenger signaling [89, 90]. The resultant increase in intracellular 

Ca2+ elevation mediates host cell apoptosis and Interleukin-6 (IL-6) secretion, in an effort to 

control the infection and alert the innate immune system to the bacterial presence in the urinary 

tract [90, 91]. Through the precise interaction between FimH on type 1 pili and uroplakins on the 

bladder epithelial surface, UPEC bind to the tissue, initiating downstream signaling events within 

the host cell. 

 

UPEC binding triggers host and bacterial responses 

The binding of type 1 pili to a surface enacts bacterial transcriptional changes in addition 

to host responses. Binding of UPEC to mannosylated yeast enacts transcriptional change in an E. 

coli strain (CSH50) [92]. In addition to upregulation of genes involved in general metabolism, 

several genes classified as being involved in removal of reactive oxygen species and 

hydrophobic compounds were also upregulated. These latter genes are likely involved in defense 

against antimicrobial peptides in the urine and potentially antibiotics as well as attack from 

neutrophils and other inflammatory cells.  Once bound, UPEC are capable of invading the 

superficial layer of the transitional epithelial surface in a FimH-dependent fashion (Fig. 2B) [10]. 

Interaction of UPEC with α3 and β1 integrins in cell culture leads to actin rearrangement and 

bacterial engulfment in an active process requiring Rho-family GTPases [93-95]. The invasion 

process occurs via a cholesterol- and dynamin-dependent process modulated by calcium levels 
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and clathrin [96]. By an unknown mechanism, UPEC escape the endocytic vesicle, where they 

replicate in the cytoplasm to form biofilm-like intracellular bacterial communities (IBCs) of 104-

105 bacteria that protrude into the luminal surface of the bladder (Fig. 2D) [29]. While type 1 

piliated UPEC binding and invasion into the superficial facet cells provides a niche for rapid 

replication, studies in C57BL/6J mice demonstrated that it also leads to a robust apoptotic 

response and exfoliation of the facet cells within a few hpi [10], jettisoning infected cells (Fig. 

2C). In addition to facet cell exfoliation, host signaling mechanisms lead to a massive influx of 

immune cells, mainly PMNs, and upregulation of other immune effectors. In spite of this robust 

response designed to thwart infection, UPEC evolved mechanisms to subvert and exploit 

elements of the innate immune response and persist within the urinary tract. UPEC utilize the 

pore-forming toxin hemolysin (HlyA) to induce the degradation of cytoskeletal scaffold protein 

paxillin, leading to host cell exfoliation [97]. Exfoliation must be properly tuned to ensure the 

appropriate balance between IBC maturation and exposure of the underlying transitional 

epithelium. The two-component signal transduction system, CpxRA, regulates the expression of 

hemolysin (Nagamatsu et al. In Preparation). Strains lacking CpxR increase hemolysin 

expression and are attenuated during infection [98]. Similarly, overexpression strains of HlyA 

are also attenuated, suggesting that hemolysin deficiency explains the deficit of the CpxR 

mutant. A hemolysin knockout does not activate the inflammasome, stimulates a lesser degree of 

host cell exfoliation, but is not attenuated, implying other pathways that induce exfoliation 

(Nagamatsu et al. In Preparation). The precise degree of exfoliation governs the eventual 

outcome of exfoliation by modulating bacterial niche-specific replication. 

Upon IBC maturation, UPEC at the outer edges of an IBC become motile and disperse 

into the extracellular compartment of the lumen. Concomitant with this fluxing event, some 
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UPEC adopt a filamentous morphology [99] (Fig. 2E), a finding that along with IBCs has been 

observed in urine from women suffering rUTI [100]. Once extracellular, the immune cell 

infiltrate attacks luminal UPEC. Filamentous UPEC are resistant to phagocyte killing, providing 

a mechanism whereby UPEC emerging from an IBC into an inflamed environment can survive 

and reinitiate the intracellular cascade [101]. Deletion of the cell division inhibitor-encoding 

gene sulA, prevented filamentation and attenuated virulence at 24 hpi and onward in C3H/HeN 

mice [102]. Thus, the ΔsulA strain formed first generation IBCs, but was incapable of 

filamentation and second generation IBCs in C3H/HeN mice. Bacterial filamentation was not 

observed during acute infection in C3H/HeJ mice that lack the ability to signal through TLR4 

[99]. Infection of C3H/HeJ mice with UTI89ΔsulA restored virulence of this bacterial strain 

[102]. Thus, filamentation and possibly second round IBC formation are dependent, in part, on 

TLR4 responses in the bladder, leading to regulatory responses by UPEC. TLR4, in addition to 

recognizing bacterial LPS to stimulate innate immune cells, may play a direct role in controlling 

UPEC access to an intracellular niche. TLR4 mediated expulsion of UPEC may play a role in 

limiting the numbers of UPEC that successfully form IBCs [103]. Thus, multiple bacterial and 

host factors regulate the ability of UPEC to mature within an IBC.  

 

Genetic regulation within IBCs 

As a result of the rapid and dramatic shift in local environment, robust transcriptional 

changes occur in UPEC inhabiting an IBC. At 6 hpi each C3H/HeN mouse bladder contains 

between 1 and 700 IBCs (Fig. 2D) [104, 105]. In the 2 hours subsequent to invasion, WT 

bacteria coalesce into loose collections 2-4 µM beneath the surface of superficial facet cells [99]. 

UPEC replicate every 30 to 35 minutes in this environment and retain bacillary morphology. 
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Invasion alone; however is not sufficient to lead to IBC formation. The commensal strain 

MG1655 invades the urothelium, but does not form IBCs, and is thus rapidly cleared [106]. 

Using a tet inducible copy of FimH, it was shown that the development of IBCs requires the 

expression of FimH and type 1 pili [105]. Additionally, deletion of the gene encoding the outer 

membrane protein OmpA or the capsule synthesis genes disrupted IBC formation despite an 

equivalent invasion efficiency relative to WT UPEC [107, 108]. Host and bacterial 

transcriptional changes that accompany intracellular replication within IBCs in C3H/HeJ mice 

have been deduced [78]. UPEC within IBCs upregulate the siderophores enterobactin and 

salmochelin to scavenge available iron. Concomitantly, host upregulation of the transferrin 

receptor and lipocalin-2 within the IBC may restrict iron availability [78]. The battle for iron 

within the host is an important battleground during the host-pathogen interaction for many 

pathogens. Indeed, in women suffering from rUTI, urinary isolates were more likely to express 

the siderophores salmochelin and yersiniabactin compared to rectal isolates from the same 

patients [109]. Thus, regulatory changes including the upregulation of siderophores and 

continued expression of type 1 pili accompany the transition from the luminal niche of the 

bladder to the intracellular niche within the bladder epithelium.   

In addition to epithelial mechanisms that restrict IBC formation, the specific allele of 

FimH also impacts the ability of UPEC to form IBCs. The mannose-binding pocket of FimH is 

comprised of invariant residues among all clinical UPEC strains [88]. Variation outside of this 

pocket occurs frequently among UPEC strains. Sokurenko et al. have used a variety of methods 

to examine the natural variation and shown that FimH is under positive selection in UPEC [110-

112]. We performed in silico analysis of FimH gene sequences from 279 diverse E. coli isolates, 

which identified several amino acid (aa) residues outside of the mannose-binding pocket under 
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positive selection [88]. Our structure/ function analyses of these positively selected residues 

indicated that although they are not part of the mannose-binding pocket, they can impact 

mannose binding, IBC formation, and virulence [88]. It was previously shown that the majority 

of E. coli isolates including the pyelonephritis isolate CFT073 and the commensal K12 strain 

MG1655 have a serine at position 62 (S62) while cystitis isolates NU14 and UTI89 have an 

alanine [88, 113]. An alanine at position 62 (A62) was associated with increased collagen and 

monomannose binding [114], and increased virulence in the cystitis isolate NU14 [113]. We 

found that an A62S fimH mutation in the chromosome of UTI89 significantly attenuated 

invasion, IBC formation and virulence and affected phase variable type 1 pilus regulation. In 

addition, we found that a double mutation of the positively selected residues at positions 27 and 

163 (UTI89 fimH::A27V/V163A) had no effect on pilus assembly or mannose binding in vitro, 

but exhibited a 10,000-fold reduction in mouse bladder colonization at 24 hpi and was unable to 

form IBCs even though it bound normally to mannosylated receptors in the urothelium [88]. 

Thus, the A27V/V163A double mutation identified a function of FimH that is required, in 

addition to mannose binding, for IBC formation and in vivo fitness, suggesting that IBC 

formation is critical for successful UTI. Thus, many factors contribute to the ability of invaded 

UPEC to form IBCs including TLR4-mediated expulsion, bladder cell exfoliation, and FimH 

allele, which may alter regulation or the ability of UPEC to aggregate intracellularly.   

 

Reservoirs form in the underlying bladder tissue 

The intracellular pathogenic cascade that UPEC undergoes has been shown to be critical 

for several of the outcomes of infection. If the immune response effectively eradicates luminal 

bacteria as evidenced by sterile urine, mice may still have bacterial CFU in the bladder [80] (Fig. 
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2G). As mentioned earlier, during the acute infection cascade, infected and uninfected cells of 

the superficial epithelium are exfoliated in a caspase-dependent manner [10, 115, 116] (Fig. 2C). 

While this defense mechanism jettisons bacteria attached to and replicating within the 

epithelium, it exposes cells of the underlying, transitional cell layer, which UPEC can invade. 

UPEC establishes reservoirs consisting of 8-12 bacteria within Lamp1+ rosettes in the bladder 

tissue called Quiescent Intracellular Reservoirs (QIRs) (Fig. 2G) [82]. The mechanism of QIR 

formation is unknown. UPEC does not actively replicate within these reservoirs, but instead 

persists in a dormant state. Bacteria in the QIR can reactivate (by an unknown mechanism) to 

release bacteria into the lumen to begin the IBC cascade anew. Reactivation of QIRs has been 

triggered pharmacologically resulting in a recurrent infection with high titers of bacteria in the 

urine of mice [81, 82]. Reservoirs can thus form in the mouse bladder that can reactivate leading 

to a rUTI.  

 

An exuberant immune response during acute infection predisposes to chronic cystitis 

 Different murine models of UTI recapitulate the range of clinical outcomes of UTI [80]. 

WT inbred C57BL/6J mice resolve bacteriuria rapidly, but are susceptible to rUTI [81], possibly 

as a result of the large amount of QIRs formed in the bladder tissue [82] (Fig. 2G). C3H/HeOUJ 

mice are exquisitely susceptible to persistent bacterial replication of an inflamed bladder 

throughout the lifetime of a mouse, a phenomenon referred to as chronic cystitis [83] (Fig. 2F). 

Elevated levels of the cytokines IL-5, IL-6, Keratinocyte Cytokine (KC), and Granulocyte 

Colony-Stimulating Factor (G-CSF) in the serum of mice at 24 hpi predict the development of 

persistent bacteriuria and chronic cystitis at 4 weeks post infection (wpi) [83]. C3H/HeN mice 

exhibited a bimodal distribution of these two outcomes with persistent bacteriuria and chronic 
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cystitis occurring in 20% when infected with 107 CFU UTI89, a prototypical virulent UPEC 

isolate. Infection of mice with a dose of 108 CFU increased the proportion of C3H/HeN mice that 

developed chronic cystitis to 50% [83]. In the bladders of mice that experienced chronic cystitis, 

the superficial facet cells become completely denuded, and IBC formation ceases to occur after 

24 - 48 hpi. Thus, during chronic cystitis, bacteria proliferate in association with the underlying 

tissue, but do not invade to an appreciable degree (Fig. 2F). Furthermore, treatment of these mice 

with an antibiotic was shown to completely sterilize the bladder [83] in contrast to the tolerance 

observed for bacteria in QIRs [81]. Thus, these outcomes are likely mutually exclusive. An 

overexuberant immune response during acute infection to invasive UPEC leads to cytokine 

secretion and rampant bacterial replication. 

 

Dissemination to the kidneys is accompanied by regulatory changes 

  The dynamics of UTI are complex, especially when bacteria seed the kidneys. The mouse 

models of UTI differ in their propensity for kidney infection [80]. C3H/HeJ mice that lack the 

ability to respond to LPS via TLR4 sustain persistent kidney infection [117]. Kidney infection in 

C3H/HeN mice generally mirrors the outcome in the bladder; however, bacterial titers in the 

kidney are generally lower than in the bladders of the same animals [83]. The ability to ascend 

from the bladder to the kidneys depends on many factors including vesicoureteral reflux (VUR) 

and bacterial motility (Fig. 2). Bacterial inoculation into the bladder leads to reflux into the 

kidneys to varying degrees depending on the volume and speed with which the inoculum is 

introduced as well as the mouse strain [118, 119]. A minor, but significant role for flagella has 

been documented contributing to ascension to the upper urinary tract. Expression of flagella 

coincided with ascension to the upper urinary tract [120], and lacking flagella decreased the 
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ability of UPEC to colonize murine kidneys [120, 121]. Expression levels of the flagella 

promoter flhDC varied within IBCs, perhaps corresponding to their maturity and likelihood of 

releasing bacteria into the bladder lumen. Robust and rapid gene expression including activation 

of motility occurs prior to a transition from a bladder niche allowing transition and colonization 

of the upper urinary tract.   

 Bacterial strains that colonize the upper urinary tract are more likely to contain the pap 

operon than those strains isolated from patients suffering lower UTI only [122]. It has been 

shown that several UPEC CUP pili can bind receptors in the human kidney [123]. Type 1 pili 

were shown to bind tissue from the proximal tubules and the vessel walls, whereas P and S 

fimbriae bound Bowman’s capsule, the glomerulus, the renal tubules, and the vessels. F1C pili 

bound to endothelial cells and the collecting duct and distal tubules. The role of P pili has been 

clearly demonstrated in cynomolgus monkeys, where the receptor specificity more closely 

matches that of humans [124]. The PapG containing strain DS17 caused significantly more 

pathology in the monkey kidneys as assessed histologically as well as resulted in a greater loss of 

renal function as compared to an isogenic knockout [125]. Furthermore, immunization against 

PapG effectively reduced renal histopathology in monkeys [126]. The role of P pili has been 

difficult to assess in mouse models because the receptor for PapG is not present in the mouse 

kidney [124, 127]. However, Pap-expressing UPEC were isolated in higher numbers from the 

kidneys of CBA/J mice, a commonly used murine UTI model strain, than those lacking P pili in 

co-infection experiments [128]. Knockout analysis of the Pap genes in CFT073 was utilized to 

determine that P pili play only a minor role in kidney colonization in the CBA/J model [129]. It 

was recently shown that Ygi fimbriae bound kidney epithelial cells in vitro [36]. Therefore, P pili 
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appear to be an essential virulence determinant in causing human UTI, however other CUP pili 

may also contribute to kidney tropism in humans and animal models.  

UPEC may also occupy disparate niches in the kidneys, as illustrated by the ability of 

different adhesins to mediate attachment to different receptors within the kidney [123]. The 

infection dynamics of UPEC infecting the kidneys was recently demonstrated utilizing intravital 

multi-photon microscopy in rats [130]. Direct microinfusion of bacteria into the nephron 

revealed a synergistic role of P and type 1 pili. Interestingly, knockouts of FimH and P pili in 

distinct UPEC strains colonized the rat renal tubule, but the kinetics and dynamics of the 

infection differed. In the absence of P pili, attachment was temporally retarded, but spatially 

indistinguishable from the WT. Inversely, a FimH knockout rapidly colonized the rat renal 

tubules, but only areas adjacent to the epithelium. Likely, in the absence of FimH, UPEC was 

incapable of coalescing into a biofilm occupying the lumen of the renal tubule [130]. FimH-

mediated bacterial aggregation may play a role in biofilm formation in the kidney and IBC 

formation in the bladder [88]. Because of the variety of niches UPEC can occupy in the bladder 

and kidneys, the dynamics of UPEC UTI are complex with genetic regulatory networks likely 

governing the appropriate confluence of virulence factor expression for each given niche.  

 

Regulation of type 1 pili 

The most well associated virulence factor with UPEC strains causing cystitis is type 1 

pili, present in greater than 95% of cystitis isolates [73, 122]. Type 1 piliated UPEC are more 

effective at colonizing the mouse bladder than non-piliated UPEC [131-133]. Although type 1 

pili are essential for bladder colonization, their expression is dispensable and perhaps 

disadvantageous in other niches such as the kidneys, colon, or environment. In fact, loss of type 
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1 piliation does not decrease intestinal colonization of individual animals [134]; however, it does 

significantly reduce communicability [135], further supporting the argument that E. coli 

expressing type 1 pili is better suited for life in the urinary tract compared to the GI tract [88]. 

However, reports to the contrary have shown that type 1 pili are essential for GI tract 

colonization [136]. Interestingly, clinical data may be shifting this paradigm of a source-sink 

relationship in this complex disease. In a study of women experiencing multiple rUTIs, it was 

shown that at the time of infection, the dominant E. coli strain in the bladder and the GI tract was 

the same [137]. The role of type 1 pili in the gut niche has not been fully characterized. It has 

been demonstrated; however, that in transitioning niches out of the bladder, gene expression 

changes regulate pilus expression. Accordingly, type 1 pilus expression is reduced in kidney 

infections of mice [118]. Within the bladder niche where type 1 pilus expression governs 

pathogenesis, the fim genes are more likely to be expressed. Bacteria attached to epithelial cells 

sloughed in mouse urine were significantly more likely to express type 1 pili than planktonic 

bacteria in the same urine sample [138]. This niche specific difference in type 1 pilus expression 

provides strong evidence for the spatial and temporal regulation of this CUP operon and its 

necessity in causing cystitis. Accordingly, a vaccine against FimH was shown to dramatically 

decrease infection in both infected mice and monkeys [139, 140].  

Type 1 pili are phase variable, transcriptionally regulated by the inversion of the 314bp 

fim promoter, fimS, that is located between flanking invertible repeats which are recognized by 

the recombinases, FimB and FimE (Fig. 3A). FimB and FimE, which are 48% identical are 

encoded by two regulatory genes, fimB and fimE, 5’ of the fimS region [141-143]. FimB 

recombines the invertible repeats showing no preference in promoter orientation, while FimE 

inverts the promoter to the OFF orientation only [142, 144]. FimB appears to show no bias in 
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turning the switch ON or OFF; however, the rate with which FimE turns the switch OFF is an 

order of magnitude greater than FimB [145]. Thus, the abundance and activity of FimE and 

FimB appear to be the determining factors of the orientation of the phase switch.  

A number of factors have been identified that in turn control expression or activation of 

FimB and FimE, thus contributing to modulation of type 1 pili expression in response to 

environmental changes. For example, in broth cultures at 37oC, FimB is produced in excess 

leading to the population distribution skewed to more piliated bacteria [146, 147]. Recently, in 

silico analysis has demonstrated stringent control of the type 1 fimbriation switch, such that at 

temperatures lower than body temperature, FimE dominates, inverting the promoter to the OFF 

orientation [145]. At physiological or elevated host temperatures, during febrile episodes for 

example, the ON-to-OFF switching rates are lowered dramatically via increasing activity of 

FimB, locking UPEC into the more fimbriate state. Additionally, mutation of one of the 

invertible repeats of the fim promoter such that the promoter was irreversibly “locked” in the 

OFF orientation, resulted in significantly fewer CFUs retrieved from urine and bladders at 24hpi, 

compared to the WT strain, CFT073 [148]. As expected, when the promoter was locked in the 

ON orientation, the resulting strain slightly out-competed WT CFT073 in the bladder at 4 and 24 

hpi. In a recently conducted study with globally spreading, multi-drug resistant UPEC strains of 

the clonal group ST131, Totsika et al. found that growth in static conditions, known to enrich for 

fim expression [149], increased bladder colonization without affecting urine titers at 18 hpi 

[133]. In contrast strains from the same collection that lacked the ability to turn fim ON were 

unable to colonize the bladder [133]. Affecting the orientation of the promoter via genetic 

manipulation or through natural environmental changes alters the degree of piliation and fitness 

in the bladder. 
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Multiple studies have demonstrated that UPEC lacking both FimB and FimE rapidly 

inverted the fim promoter to the ON orientation when inoculated into mice [150, 151]. These 

experiments revealed that additional recombinase enzymes influence phase variation. Genome 

analysis of the pyelonephritis isolate CFT073 revealed 3 such recombinases ipuA, ipuB, and ibpA 

with 65-70% sequence similarity to FimE and FimB (Fig. 3A) [151]. ipuA and ibpA were able to 

invert the fim switch in the absence of FimE and FimB in vitro and when inoculated into the 

urinary tract of mice. Further analysis revealed that IpuA acts similarly to FimB, inverting the 

switch bidirectionally, whereas IpbA can only invert the promoter from OFF to ON. The cystitis 

isolate UTI89 contains FimX, an IpbA homolog, with 49.1% amino acid similarity to FimB 

[150] but does not contain IpuA or IpuB. A phase OFF triple fimBEX deletion mutant was 

completely deficient in bladder colonization at 6 hpi, whereas a phase OFF fimBE mutant 

colonized at WT levels, indicating that fim phase inversion was due to the activity of FimX. 

Indeed, complementation of the fimBEX mutant with fimX alone was sufficient to restore wild 

type levels of bladder colonization at 6 hpi, suggesting that UPEC has several functionally 

redundant recombinases that enable colonization of the bladder by mediating fim promoter 

inversion to the ON orientation [150]. In addition, these functionally redundant recombinases 

may serve to fine-tune the phase status of the population in certain niches or they may represent 

redundant regulators in the event of a fimB or fimE mutation, which occurs in certain UPEC 

strains, such as the multi-drug resistant clones of the ST131 lineage [133]. The majority (59 to 

71%) of strains from this clonal group were shown to have an insertional mutation in fimB, yet 

87% of tested isolates were still able to express type 1 pili as assessed by yeast agglutination, and 

adherence to and invasion into bladder epithelial cells [133]. One representative member of this 

group, EC958 contained ipbA, which may account for the observed fim promoter recombination. 
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By virtue of its importance in bladder colonization, type 1 pili are regulated by many 

functionally redundant recombinases. 

DNA binding proteins that impact structure of the chromosome and global regulators also 

influence the directionality of the fim promoter. Integration host factor (IHF) plays a dual role in 

governing phase status of UPEC [152]. Mutations in IHF locked the phase switch in the OFF or 

ON orientation, thereby preventing inversion of the promoter [153]. Additionally, when the fim 

switch was locked in the ON orientation, mutation of IHF led to a sevenfold reduction in LacZ 

expression of a FimA-LacZ fusion [152]. Mutations in the histone-like protein H-NS were shown 

to dramatically increase the rate of fim promoter inversion [154]. Conversely, mutations in the 

master regulator Leucine-responsive regulatory protein (Lrp) decreased the rate of fim promoter 

inversion. Lrp increased the transcription of fimB and decreased fimE expression [155]. 

Additionally, Lrp binds directly to the fim invertible repeat region, thereby sterically hindering 

FimB/FimE binding or RNA polymerase complex recruitment [156]. Binding of the catabolite 

repression system through cAMP-CRP (cAMP receptor protein or Catabolite Activator Protein, 

CAP) also influenced the fim promoter (Fig. 3A) [157]. Deletion of the crp gene led to higher 

expression of fimA transcript while decreasing P pili and flagella. The effects of cAMP-CRP on 

the fim promoter are complex likely because this regulator imparts pleiotropic effects in response 

to the nutritional status of the cell and growth phase. Additionally in log phase of growth, CRP-

cAMP repressed fimbriation whereas in stationary phase, it appeared to have little effect. The 

contribution of multiple regulatory networks and proteins like the ones we discussed here are 

likely to be critical in ensuring appropriate expression of type 1 pili during transitions between 

niches with varying temperatures and nutritional availability. 
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FimH allele regulates type 1 pili 

 In addition to the aforementioned external regulators of type 1 pili, the allele of fimH can 

also regulate type 1 pilus expression. A mutation of the FimH binding pocket from a glutamine 

to a lysine at position 133 resulted in 50% of the bacterial population to turn type 1 pili off 

relative to 90% in WT UTI89 [88]. Similarly an A62S mutation had the same effect. This 

regulation may be due in part to the structural conformations that FimH adopts during its 

translocation. The pilus initiation complex for type 1 pili has recently been crystallized, 

demonstrating that FimH adopts an elongated conformation when being assembled [158]. 

Immediately therafter, FimH adopts a bent, compressed conformation when it is extruded out of 

the FimD usher [159]. These conformational differences are similar to those observed when 

FimH is bound by the chaperone FimC versus when it is assembled into a tip [160]. When FimH 

binds mannose or when it is bound by its chaperone, it adopts an elongated, high affinity 

conformation [43, 161]. When mannose is absent, FimH is in a low affinity, compressed state 

[160]. FimH allelic differences may govern both mannose binding as well as the regulation of the 

expression of this virulence factor.    

 

Differential methylation regulates P pili 

Unlike the DNA-inversion based phase variation of type 1 pili, phase variation of the pap 

operon is mediated by differential methylation of two DNA adenine methyltransferase (DAM) 

sites in the promoter (Fig. 3B) [162], while additional regulation is accomplished by the cis-

encoded regulators PapB [163] and PapI [164] as well as several DNA binding proteins 

including H-NS, Lrp, and CRP-cAMP. PapB and PapI, are encoded upstream of the pap operon. 
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PapI is transcribed from its own promoter in the opposite direction to the papBA transcript [164]. 

Two GATC methylation regions are present upstream of the papBA promoter [162]. Methylation 

of GATC1130 (GATCprox) results in phase ON cells that can be actively transcribed, whereas 

methylation of GATC1028 (GATCdist) results in phase OFF bacteria (Fig. 3B). Because 

methylation is the main mechanism for P pilus phase variation, P piliation is linked to cell 

division during which these epigenetic changes can be enacted [165]. Furthermore, pap genes 

were not expressed when Dam was present in too high or too low quantities within the bacterial 

cell, implying that appropriate methylation is essential for proper regulation. The regulator PapI 

binds to DNA upstream of the papBA promoter at distal sites. With Dam absent, the proper 

methylation of GATC1130 does not occur, and transcription is abrogated. Conversely, 

overexpression of Dam prevented phase OFF bacteria from turning ON, presumably as a result 

of aberrant methylation of GATC sites [162]. As for type 1 pili, Lrp also affects P piliation. 

Methylation of GATC1028 (distal) and cooperative Lrp binding at proximal sites prevented RNA 

polymerase from transcription at the papBA promoter [165].   

Autoregulation of the pap operon by PapB is exquisitely tuned to the amount of the 

regulator present. PapB binds to three locations within the operon: 200 bp upstream of the papI 

promoter adjacent to the binding site of CRP, adjacent to the -10 area of the papBA promoter, 

and within the PapB coding sequence (Fig. 3B) [166, 167]. PapB binds upstream and activates 

the transcription of papI, perpetuating a positive feedback loop, maintaining bacteria in the P 

piliated state [168]. However, overexpression of PapB led to repression of P piliation, by 

blocking the binding of RNA polymerase at the -10 region of the papBA promoter [167, 168]. 

CRP-cAMP is essential for the transcription of the pap operon [169]. Binding of CRP-cAMP 

215 bp upstream of the papBA promoter led to increased levels of transcript. Binding of Lrp 140 
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bp upstream of the promoter was essential for CRP-mediated papBA transcription [170]. 

Addition of PapI in trans dramatically increased OFF to ON switching rates and subsequent 

papBA transcription. The precise control of P pilus regulation by metabolite binding proteins and 

cis-encoded regulators serves to assess local environmental conditions and respond accordingly 

with the timely expression of the appropriate pilus system.  

 

Pilus cross-regulation 

 In order to accomplish accurate and rapid exchange of expressed CUPs, regulators of the 

P, type 1, and S pilus systems interact with other operons, regulating their expression (Fig. 3C). 

These regulatory networks are likely responsible for ensuring UPEC expresses the appropriate 

pili in a timely manner to colonize a specific niche. Most E. coli only express one pilus type at a 

time [171] with cross-regulatory networks likely responsible for switching between expressed 

pilus systems [172].  

 Deletion of a pathogenicity operon encoding P-related fimbriae in the UPEC strain 536 

diminished expression of S pili encoded by the sfa operon [173, 174]. The regulators PrfB and 

PrfI encoded by the P-related fimbriae operon are 76% and 87% homologous to the S pili 

regulators, SfaB and SfaI, respectively. PrfB and PrfI act in trans on S fimbriae promoting their 

expression and complemented sfaB and sfaI knockouts [174]. Coordinate expression of these two 

pilus operons and other interactions not yet known may serve to enhance the probability of 

attaching to a host surface. It is possible that attachment feedback through master regulators 

selects for the expression of appropriate adhesin systems for that environment. This theory is 

consistent with data suggesting that attachment altered complex genetic regulatory networks [92, 

175, 176]. Further, negative cross-regulatory interactions between pili may serve to divert 
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resources to the conditions for most effective persistence or transit throughout hosts. 

Transcription of both the P and S pilus operons repressed type 1 pili expression (Fig. 3C) [177, 

178]. PapB binds to several regions of the fim operon and enhances the expression of fimE and 

also prevents the ability of FimB to invert fimS [178] (Fig. 3). SfaB represses FimB-mediated 

recombination without affecting FimE [177] (Fig. 3C). When expressed from its native promoter 

in E. coli K12 and CFT073, PapB was shown to inhibit type 1 pili. Furthermore, the expression 

of P pili in clinical isolates from patients with varying clinical UTI syndromes repressed type 1 

pili [179]. These data present a model of coordinate regulation of virulence factors in which 

during cystitis, type 1 pilus expression is dominant whereas other CUPs such as P or S pilus 

expression are expressed in the kidneys during pyelonephritis, repressing type 1 pilus expression.  

 Altering the balance of the two-component regulatory system QseBC that is present in 

many pathogenic bacteria [180], affects many UPEC virulence factors, CUP systems chief 

among them [62, 181]. Aberrant and uncontrolled phosphorylation of QseB via deletion of the 

sensor kinase QseC in UTI89 lead to decreased type 1 pilus expression, decreased flagella 

expression, and increased expression of the sfa operon encoding S pili, the F-17 operon, and the 

fml operon. The expression of the CUP operons yqi, yeh, and auf were decreased. The alteration 

of conserved metabolic processes likely accounts in part for these pleiotropic effects [62]. It is at 

present unclear whether these changes are direct effects of QseB phosphorylation or whether the 

decrease in fim expression leads to the concomitant changes in other CUP expression.     

  

Anti-virulence compounds to treat UTI 

 UPEC colonization of the diverse urinary tract niches largely depends on its ability to 

adhere to different receptors that are niche-specific. Therefore, inhibiting the adhesive organelles 
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that mediate attachment poses an attractive strategy for treating or preventing UTIs. The 

mannose-binding pocket of FimH is invariant among sequenced UPEC, and a mutation in this 

region rendered FimH defective in mannose binding, as well as bladder cell invasion and IBC 

formation [60, 88]. FimH is known to bind human uroplakins that coat the luminal surface of the 

bladder [84]. Recently small molecular weight orally available compounds called mannosides 

that bind the FimH binding pocket with low nanomolar affinities were developed using rational 

structure-directed design [182-185]. The addition of mannosides to an oral regimen of the 

antibiotics trimethoprim-sulfamethoxazole (TMP-SMX) was additive in reducing bacterial 

burden by the sensitive strain UTI89 [185]. By utilizing a strain resistant to TMP-SMX, PBC-1, 

it was shown that mannoside addition potentiated the effects of this antibiotic combination. 

Mannoside prevented PBC-1 from accessing the intracellular niche of the bladder, thus 

partitioning organisms to the urine and bladder lumen, where antibiotic levels were above the 

minimum inhibitory concentration for the clinically resistant PBC-1 strain. Mannoside was also 

effective at reducing bacterial titers by greater than 4 logs in as little as 6 hours after its oral 

administration to mice experiencing chronic cystitis at 2 wpi [185]. Because mannosides do not 

need to access the bacterial cytosol, they are not subject to efflux pumps, degradation, or changes 

in outer membrane permeability, implying that resistance development is unlikely.  

While type 1 pilus inhibition would likely be effective for preventing and treating cystitis, 

a more general approach targeting multiple CUPs could incapacitate multiple pilus systems 

limiting colonization of multiple niches. Accordingly, compounds have been designed to block 

pilus biogenesis by taking advantage of the structural similarity between CUPs [27]. These 

bicyclic 2-pyridinones known as pilicides reduced type 1 and P pilus based hemaggluttination 

and biofilm formation. Structural analysis revealed that these compounds bind to the surface of 
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the chaperone that interacts with the usher [27]. Therefore, pilicides function by entering the 

bacterial periplasm and binding to the chaperone to prevent pilus assembly through the usher. 

Anti-virulence compounds such as pilicides and mannosides represent novel strategies to 

translate basic knowledge from the investigation of pilus structure and function into new 

therapeutics that may have efficacy in treating UTIs by affecting CUP expression and function. 

 

Conclusions and Perspectives 

 Surface expressed organelles with terminal adhesins mediate the first interaction between 

host and pathogen. In colonizing a host or the environment, bacteria encounter many niches with 

disparate surfaces on which to attach. Accordingly, many pathogens have the capacity to express 

different adhesins assembled into different surface organelles to mediate attachment to the 

various niches and surfaces they encounter.  Understanding the regulatory interplay between 

pilus function and regulation and the cross-talk between operons has led to the development of 

novel anti-virulence therapeutics such as mannosides and pilicides, which target the FimH 

adhesin expressed at the distal tip of type 1 pili or multiple chaperone usher pili, respectively [27, 

182, 185, 186]. Furthermore, understanding the complex population dynamics, niche occupation, 

and bacterial fluxing between urinary tract niches in time and space is crucial to dissecting the 

importance of virulence factors. Virulence gene expression is precisely regulated over time and 

space by the local environmental conditions including the receptors for attachment, 

immunological response, and other bacterial populations nearby.  
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Overview 

 This thesis describes the ability of UPEC to occupy intracellular and extracellular bladder 

niches throughout infection in multiple models. I hypothesized that occupation of an intracellular 

niche would precede and lead to the development of chronic cystitis. To this end, I determined 

the population dynamics and niche distribution throughout infection using a panel of isogenic, 

signature-tagged, UPEC strains. This work revealed a dramatic population bottleneck that 

accompanies acute infection. UPEC transit this bottleneck by occupying intracellular niches in 

the form of IBCs. I also determined the role of several residues of FimH that are evolving under 

positive selection. UTI89 and CFT073 harboring FimH::A62/V163 were more fit throughout 

infection, especially in the ability to cause and persist during chronic cystitis. Thus, these 

positively selected alleles conferred a colonization advantage to both intracellular and 

extracellular niches. By conducting biolayer interferometry, I determined that these residues 

impacted the ability of FimH to bind mannose. Finally, I developed a model of repeat infection 

to mimic the clinical situation of frequent sexual intercourse. I found that this process induced 

higher rates of chronic cystitis in susceptible and resistant mouse strains. This increase in chronic 

cystitis depended on invasion, IBC formation, and regulation of host cell exfoliation. The 

information herein will help to identify certain factors, both bacterial and behavioral, that might 

portend worse prognosis for women suffering an acute UTI, necessitating more aggressive and 

novel treatments. 
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Figures 

Table 1. Distribution of chaperone usher pathway pili in sequenced uropathogenic E. coli 

genomes. 

K12 UPEC CUP 

Operons MG1655 UTI89 CFT073 536 

fim + + + + 

pap - + +* + 

F17-like - + - + 

sfa - + - + 

yad + + + + 

auf - ± + + 

yfc + + + + 

ygi + + + - 

yeh + + + + 

fml ± ± + - 

foc - - + - 

yde + - + - 

Dr family1 - - - - 

fso1 - - - - 

fst1 - - - - 

pix - - - + 
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(+) indicates presence, (-) indicates absence, and (±) indicates that an operon is present, but 

likely nonfunctional due to mutation or deletion of genes. 

(*) indicates that two copies of the operon are present. 

1 indicates that these operons are not present in these UPEC, but are present in many clinical 

isolates. 

Figure is modified with permission from Chen et al. (2006). Copyright (2006) National 

Academy of Sciences, U.S.A. 
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Figure 1. Model of type 1 pilus biogenesis.  

A) Subunits are secreted across the Sec apparatus and immediately bound by the cognate 

periplasmic chaperone, the absence of which results in subunit misfolding and degradation. The 

chaperone donates its G1 beta strand to the subunit to complete its incomplete Ig-like fold in 

donor strand complementation. B) The chaperone then delivers the subunit to the NTD of the 

membrane usher, FimD. The subunit is then transferred to the CTD, where donor strand 
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exchange occurs with the previously added subunit. P pilus biogenesis occurs in a similar 

fashion. (A) modified with permission from John Wiley and Sons. Henderson et al. 2011. 

Molecular Microbiology. 
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Figure 2. Pathogenesis of UPEC UTI.  

A) A population of UPEC from the GI tract is introduced into the bladder where the bacteria 

attach to the epithelial surface with the FimH adhesin at the tip of type 1 pili. B) UPEC invades 
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the superficial facet cells of the bladder within the first hour of infection. C) UPEC replicates 

within the facet cells in a type 1 pili-dependent manner unless they are expelled via a TLR4-

dependent process or infected epithelial cells are jettisoned by an apoptotic, exfoliation 

mechanism. D) UPEC form intracellular bacterial communities (IBCs) within the cytoplasm of 

superficial facet cells of the bladder. E) Between 16-24 hpi, UPEC flux out of the IBC with some 

bacteria becoming filamentous to become the dominant population of the bladder. Additional 

UPEC clones may descend from the infected kidneys. F) chronic cystitis is marked by bacterial 

replication in the lumen of the bladder and adherence to the tissue via type 1 pili. If the infection 

resolves, the formation of Quiescent Intracellular Reservoirs (QIRs) may result, as shown in (G). 
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Figure 3. Type 1, P, and S pilus regulation.  

A) Type 1 pili are transcriptionally regulated by recombinases that invert the promoter, fimS. 

FimE binds the inverted repeats, turning the promoter OFF. FimB can invert the promoter 

bidirectionally; however, its major function is turning the promoter ON. The functionally 

redundant recombinases FimX/IpbA can also turn the promoter ON, whereas ipuA functions 

similarly to FimB. Lrp and CAP inhibit FimB-mediated OFF-to-ON inversion. B) The pap 

operon is regulated via differential Dam methylation. In the ON orientation, PapI-Lrp complexes 

bind the distal methylation sites, allowing RNA polymerase to transcribe the pap genes. Binding 

of Lrp to proximal GATC sites prevents Dam methylation and RNA polymerase binding, 

shutting down P pilus transcription. C) The cross-regulation between pilus operons serves to 

ensure appropriate adhesin expression for in vivo niche. PapI binds the sfa operon and enhances 

its transcription. PapB and SfaB inhibit FimB-mediated OFF-to-ON inversion of the fim 

promoter, preventing type 1 pilus transcription. 
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Abstract  

 Urinary tract infections (UTIs) have complex dynamics with uropathogenic E. coli 

(UPEC), the major causative agent, capable of colonization from the urethra to the kidneys in 

both extracellular and intracellular niches while also producing chronic persistent infections and 

frequent recurrent disease. In mouse and human bladders, UPEC invades the superficial 

epithelium, and some enter the cytoplasm to rapidly replicate into intracellular bacterial 

communities (IBCs) comprised of ~104 bacteria each. Through IBC formation, UPEC expands in 

numbers while subverting aspects of the innate immune response. Within 12 hr of murine 

bladder infection, half of the bacteria are intracellular, with 3-700 IBCs formed. Using mixed 

infections with GFP and WT UPEC, we discovered that each IBC is clonally derived from a 

single bacterium. Genetically tagged UPEC and a multiplex PCR assay were employed to 

investigate the distribution of UPEC throughout urinary tract niches over time. In the first 24 hpi, 

the fraction of tags dramatically decreased in the bladder and kidney while CFUs increased. The 

percentage of tags detected at 6 hpi correlated to the number of IBCs produced, which closely 

matched a calculated multinomial distribution based on IBC clonality. The fraction of tags 

remaining thereafter depended on UTI outcome, which ranged from resolution of infection with 

or without quiescent intracellular reservoirs (QIR) to the development of chronic cystitis as 

defined by persistent bacteriuria. Significantly more tags remained in mice that developed 

chronic cystitis arguing that a higher number of IBCs formed during the acute stages of infection 

precedes chronic cystitis, while fewer precede QIR formation.  
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Introduction  

Population bottlenecks exist for many infections and are particularly well-documented 

during transmission between hosts for RNA viruses and parasites [1-6]. Localizing bottlenecks in 

time and space during an infection can identify steps in pathogenesis where an organism 

encounters the strongest barriers to establishing a foothold within a host. Bottlenecks may also 

represent important steps in host colonization and pathogenesis to target with therapeutics. 

Similar studies have been undertaken to identify genes important for tissue colonization and 

transit between tissues for bacterial pathogens ([7-9]. Several potential bottlenecks limiting the 

progression of uropathogenic E. coli (UPEC) to later stages of infection exist in the pathogenic 

cascade of UTI: i) invasion of the superficial bladder epithelium, ii) avoidance  of Toll-like 

receptor 4 (TLR4)-mediated expulsion [10], iii) persistence in the face of superficial facet cell 

exfoliation, iv) the maturation process of IBCs, v) ascension from bladder to the kidneys, and vi) 

possible descent from kidneys to the bladder. These population dynamics all occur in the face of 

clearance mechanisms, including micturition and the innate immune system [11]. Understanding 

these bottlenecks in the setting of mucosal infection of the urinary tract will provide insight into 

the pathogenesis of this complex infection with the goal to develop better treatments.   

UTIs are painful, expensive to the individual and society, and will affect 50% of women 

during their lifetime [12]. The vast majority of community-acquired UTIs are caused by UPEC. 

The clinical diagnosis of UTI hinges upon the ability to culture bacteria from clean-catch urine 

samples. When the uropathogen is sensitive to the chosen agent, oral antibiotics typically 

produce a rapid improvement in symptoms and sterilization of the urine [13, 14]. Despite 

appropriate treatment of a primary UTI, 25-40% of adult women will have at least one 

recurrence (rUTI) within 6 months of her initial infection [15, 16]. Additionally, up to 20% of 
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women may experience the symptoms of cystitis, or infection of the bladder, with accompanying 

urine cultures from clean catch specimens below the diagnostic cutoff of 105 CFU/mL [17]. This 

implies that bacterial occupation of urinary tract niches even in the absence of clinical diagnosis 

can contribute to symptoms of UTI. The exact location of bacteria within the urinary tract in 

these syndromes is, at present, unknown. The high prevalence of UTI, frequent repeated 

antibiotic therapy for rUTI, and the failure to use stringent diagnoses of UTI may drive rising 

antibiotic resistance [13, 14, 18]. Through a thorough examination of the molecular basis for 

rUTI and the identification of the major persistent reservoirs for UPEC within the urinary tract, 

new therapeutic strategies may be designed to eliminate UPEC from the urinary tract and thus, 

better guide appropriate antibiotic usage. 

 Current knowledge of the pathogenesis of UPEC UTI is incomplete, but accumulated 

molecular studies demonstrate tremendous complexity in the pathogenesis of the disease. In most 

primary UTIs, UPEC is thought to ascend the urethra from the perineum to colonize the bladder 

lumen. Additionally, UPEC can ascend the ureters and colonize the kidneys. Increased 

vesicoureteral reflux (VUR) enhances the likelihood of bacterial ascension into the kidneys and 

subsequent renal scarring in children and individuals with neurogenic bladder [19]. Through 

studies in a murine model of UTI, several novel intracellular pathways within the bladder 

important for UPEC pathogenesis have been elucidated. After experimental transurethral 

inoculation of UPEC into the urinary tract, UPEC invades the superficial facet cells of the 

bladder in a type 1-pilus dependent manner [11, 20, 21]. In order to evade expulsion from these 

cells via a TLR4-dependent mechanism [10], UPEC must escape into the cell cytoplasm, where 

they rapidly replicate and aggregate into cytosolic clusters of bacteria called intracellular 

bacterial communities (IBCs), a process that occurs independent of specific host genotypes [22, 
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23]. After full maturation of the IBCs, UPEC become filamentous and flux out of the superficial 

facet cell in response to a TLR4-dependent host signal [24]. The luminal bacteria may then 

invade other superficial facet cells, renewing the invasion and intracellular replication cascade 

[24, 25]. Thus, UPEC undergo at least two rounds of IBC formation over the first 24 hours post 

infection (hpi). Occupation of an intracellular niche by UPEC is not unique to the mouse model, 

as IBCs and filamentous bacteria have been frequently identified in urine from women with 

acute cystitis [26]. Replication within epithelial cells may protect UPEC from being cleared by 

neutrophils, antimicrobial peptides, micturition, and antibiotic administration [24, 27]. In the 

C3H/HeN mouse model of UTI, the IBC stage is most active during the first 24 hpi [25]. Thus, 

during UTI many niches within the urinary tract are colonized including the bladder lumen, 

within cells of the bladder epithelium, and the kidneys. 

IBCs are not typically observed in C3H/HeN mice after 48 hpi. However, outcomes of 

the infection are dependent on the immune response to acute events [28]. The C3H/HeN mouse 

model of UTI recapitulates several of the outcomes present in humans. The outcome of bladder 

infection in these mice is bimodal with twenty to forty percent of infected C3H/HeN mice 

developing persistent bacteriuria and chronic cystitis [28]. Placebo-controlled trials have 

demonstrated persistent bacteriuria in women with or without resolution of symptoms in the 

absence of antibiotic treatment [15, 29]. High levels of interleukin (IL) -5, IL-6, keratinocyte 

cytokine (KC), and granulocyte colony-stimulating factor (G-CSF) in the serum of C3H/HeN 

mice at 24 hpi are nearly 100% predictive of ensuing chronic cystitis [28]. The remaining mice 

have low levels of these cytokines and resolve the acute infection, evidenced by sterile urine. 

However, even upon resolution of bacteriuria, UPEC may occupy niches in the underlying 

epithelium in quiescent intracellular reservoirs (QIRs) [30]. Thus, UTI pathogenesis has 
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complexity in both space (tissue niche) and time. During the acute stages of pathogenesis, IBC 

formation facilitates the expansion of bacterial numbers in the face of innate defenses. A 

multitude of consequences to the acute events exist ranging from resolution of infection with or 

without accompanying QIRs, or ensuing chronic cystitis or pyelonephritis. The relationship 

between IBC formation during acute infection and the subsequent outcome of infection is not 

known. The dynamics of acute infection and the subsequent outcomes may also be altered if the 

kidneys are infected concurrently with the bladder. Underlying conditions such as vesicoureteral 

reflux (VUR) increase the likelihood of co-infection of the kidneys and bladders. These 

complicated population dynamics may be modeled in specific mouse strains such as C3H/HEN. 

These mice are also susceptible to kidney infection due to a high rate of VUR [31-33]. 

With all of the transitions UPEC makes between anatomic and cellular spaces, it is likely 

that only a fraction of the total bacterial population transitions from one niche to another, in 

which case, population bottlenecks likely occur. Based on the complexity of UTI and the various 

niches UPEC inhabits during infection, we sought to determine transit between relevant niches 

and barriers within the urinary tract over time and whether the penetration of infection barriers 

resulted in an expansion of those descendents. A prior study indicated that intracellular UPEC 

make up a significant proportion of bacteria in the bladder during the first 48 hours post infection 

(hpi), as determined by ex vivo gentamicin protection assays [11]. Early in infection, micturition 

and neutrophil influx may disproportionately reduce or eliminate luminal bacteria, while 

intracellular UPEC are largely protected from these clearance mechanisms.  

 We addressed the role of bottlenecks in UPEC population dynamics during UTI using a 

panel of 40 unique genetically-tagged isogenic UPEC that were tracked using a multiplex PCR 

assay. We modeled the dynamics of population flux using a calculated multinomial distribution 
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and compared theoretical values to a complicated model of infection using the C3H/HEN mouse, 

which is susceptible to VUR, thus resulting in UPEC being distributed during acute infection in 

the bladder and kidneys. In the bladder, we demonstrated that each IBC arises from replication of 

a single invasive bacterium and that the number of IBCs present at 6 hpi strongly correlates with 

the number of unique tags present. In mice that would likely resolve bacteriuria and/or develop 

QIRs, the fraction of uniquely tagged UPEC decreased to 10-20% of the tags present in the 

initial inoculum during the first 24 hpi in whole bladder specimens. In contrast, in mice with 

persistent bacteriuria, a hallmark of chronic cystitis, nearly 60% of unique tags remained. Thus, a 

high number of IBCs formed at 6 hpi and/or an inability to clear bacteria from the bladder lumen 

precedes chronic cystitis. Utilizing ex vivo gentamicin protection assays to separate intracellular 

and extracellular bladder populations, we found that during acute UTI the majority of remaining 

clones occupied all niches within the urinary tract while later in infection disparate clonal 

populations existed independently in the bladders or kidneys. 

Results 

IBCs arise from a single invasive bacterium. 

 UPEC invade the superficial facet cells of the bladder 15 minutes – 1 hour post 

inoculation into the urinary tract as determined by ex vivo gentamicin protection assays [34]. 

Over the next 8-12 hours, IBC formation ensues for bacteria that have successfully invaded and 

escaped into the cytosol of the superficial facet cells [25]. To address whether IBCs contain a 

clonal population expanded from a single bacterium or an aggregate of multiple distinct 

founders, we performed co-infections of mice with 1:1 and 50:1 ratios of unlabeled and GFP-

marked isogenic UPEC [35]. Six hours post infection, mice were euthanized, and the bladders 

were splayed, fixed, and stained with TOPRO-3 and examined by confocal microscopy. As a 
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result the unlabeled UPEC appeared red and the GFP-marked UPEC appeared yellow-green. Of 

the approximately 500 IBCs examined, each was exclusively red or yellow-green, regardless of 

the inoculation ratio (Figure 1). When superficial facet cells contained more than one IBC 

derived from a different inoculating strain, a clear demarcation existed such that no bacterial 

mixing occurred (Figure 1 C-D), indicating that IBCs are clonal formations arising from a single 

invasive bacterium. 

 

Formation of IBCs strongly correlates to tag diversity. 

 Given that each IBC is derived from a single bacterial founder and IBC formation is rare, 

with only 0.01-0.001% of the initial inoculum successfully undergoing IBC formation, we 

anticipated that various bottlenecks restricting invasion and subsequent IBC formation may 

result in a significant founder effect in later stages of infection. At 6 hpi following an initial 

inoculation of 1-5 X 107 CFU UPEC, each mouse bladder contained between 3 and 700 IBCs 

(Figure 2; median 49.5; geometric mean 40), consistent with previously reported data for 

C3H/HeN mice [36-38]. Combining prior knowledge that the bacterial population is primarily 

intracellular at 12 hpi [11, 39] with the finding that IBCs are clonal, we hypothesized that the 

invasion and IBC formation cycle acts as a strong population bottleneck that restricts overall 

bacterial diversity and may subsequently contribute a significant proportion of bacteria 

populating later stages of infection. In order to test this hypothesis, we designed 40 isogenic 

strains of UTI89 each with a unique 100-300 bp genetic sequence inserted into the λ phage 

region of the genome (See Materials and Methods). Bacteria containing these unique tags were 

identified using 8 multiplex PCR reactions. We reasoned that the small number of clonal IBCs 
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relative to the total inoculum, which was at primarily intracellular by 12 hpi [11], may contribute 

to a founder effect in the number of unique genotypes arising from this early bottleneck event.  

We infected mice with a pool of the tagged strains in equal proportions. At 6 hpi, the 

mice were sacrificed and the infected bladders were splayed and stained with X-gal to detect 

bacterial beta-galactosidase and thus localize UPEC in mature IBC formations, which stained 

punctate purple. Following enumeration of IBCs, the bladders were homogenized, and genomic 

DNA was extracted from the bacteria present in the bladder. We found a broad range of unique 

bacterial signatures corresponding to the range of IBCs formed per bladder at 6 hpi (Figure 2, 

black squares). Based on the hypothesis that the bacteria contained in IBCs account for the 

majority of bacteria in the bladder at 6 hpi, we calculated the fraction of tags that most likely 

would be remaining relative to the number of IBCs present using a multinomial distribution 

(Figure 2, line). Superimposition of the theoretical multinomial distribution onto the 

experimental data revealed a close fit (see Discussion and Supplemental Material). The five data 

points marked with asterisks represent bladders that contained more tags than IBCs. The 

increased fraction of tags in these bladders likely represented invasion events of bacteria that had 

not yet replicated into a mature IBC and thus not yet discerned in the X-Gal-stained bladders but 

were detected by the more sensitive multiplex PCR assay. For mice whose bladders contained 

>100 IBCs at 6 hr, all 40 tags were present. These data suggest that early in infection, the clonal 

IBC populations, arising from a small number of bacterial founders, may contribute the majority 

of bacterial diversity to later stages of infection. 
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Bacterial diversity decreased dramatically in the bladders and kidneys over time. 

 During the most acute stages of isolated cystitis, the formation of IBCs each from a single 

invasive bacterium, coincident with luminal clearance of bacteria, would be anticipated to 

constitute a stringent bottleneck, limiting the genetic diversity of organisms progressing to later 

stages of infection. We first determined the overall dynamics of infection using our set of 40 

uniquely tagged UPEC as a proxy for bacterial diversity to understand the occupation of the 

urinary tract over time. We infected C3H/HeN mice with 1-5 X 107 total CFU (2.5 X 105 – 1.25 

X 106 CFU/unique strain) and tracked them over the course of 4 wks. At the designated times 

after infection, the bladders and kidneys were homogenized, and 6% of the sample was plated to 

enumerate CFU (Figure 3 A-B). Through this approach, rare abundance tags are likely amplified 

to above the limit of detection in the multiplex PCR assay. A tag comprising <20 CFU in the 

sample could potentially be lost with this method, but such rare abundance tags are not likely to 

persist within the urinary tract for an extended period of time. 

Total bacterial diversity in the bladder decreased significantly over the first 24 hpi (p = 

0.003, 1 hpi vs. 24 hpi) to a median plateau of 25-40% of initial tags remaining (Figure 3C) 

while CFUs increased over this same time period to 105 CFU (Figure 3A). The simultaneous 

reduction in tag diversity with an increase in CFUs occurred during the time in which IBCs 

formed, suggesting a relationship between the IBC bottleneck and a founder effect in populating 

the bladder. Bacterial diversity in the kidneys also decreased over this same timespan (p = 0.003, 

1 hpi vs. 24 hpi) with approximately the same fraction of tags present in the bladders and kidneys 

by 1 week post infection (Figure 3D).  
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IBC formation correlates with outcome of infection. 

 In C3H/HeN mice, the fate of disease is determined within the first 24 hours of infection 

[28]. The two disease outcomes of resolution of bacteriuria concomitant with the establishment 

of QIRs and the development of persistent bacteriuria indicative of chronic cystitis, result in a 

bimodal distribution of bacterial CFU within the bladder that occurs after 1 week [40]. Thus, we 

investigated the relationship between the number of IBCs formed early in infection and the 

impact on the fraction of tags remaining later in infection and disease outcome [28, 30]. 

We infected 20 mice with equal proportions of the 40 unique, tagged UTI89 and 

determined the bacterial CFU and the number of unique tags that remained by 2 weeks post 

infection (wpi). Mice were stratified based on their urine titers over time and their 2 wpi bladder 

titer. Chronic cystitis was categorized by persistent bacteriuria of >104 CFU/mL at 1,3, 7,10, and 

14 days post infection (dpi) and a 2 wpi bladder titer of >104 CFU [28]. The remaining mice 

were classified based on bladder titers <104 CFU and at least one urine collection over the 2 

week infection that contained <104 CFU/mL UPEC (Figure 4 A, B). Mice that developed 

persistent bacteriuria and chronic cystitis had significantly more unique UPEC signatures present 

in the bladder by 2 wpi than mice that resolved infection (Figure 4C). Based on the founder 

effect theory, this would argue that development of chronic cystitis is correlated with increased 

IBC formation during the acute stage of infection, which is consistent with the strong correlation 

between IBC formation and the fraction of tags present throughout the bladder during the IBC 

cycle (Figure 2). Conversely, decreased IBC formation is more likely correlated with resolution 

of bacteriuria with reservoir bladder titers <104 CFU.  
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Population dynamics in acute vs. chronic infection. 

UTI is a dynamic infection sometimes entailing concomitant kidney infection. 

Populations of UPEC within the bladder and kidneys of C3H/HeN mice may thus be shaped by 

different independent environmental forces, including unique bottlenecks.  These physically 

separated populations may subsequently intermix to generate some intermediate, combined 

population. Abundant influx of neutrophils and immune mediators into the bladder occurs very 

early during UTI in both mice and humans [31, 41, 42]. Invasion of the bladder epithelium may 

represent a mechanism for UPEC to increase its population during UTI while remaining 

separated from much of the innate immune response. Gentamicin protection assays on ex vivo 

infected bladders support this concept, demonstrating that by 12 hpi in murine UTI, the majority 

of UPEC are intracellular [11]. On the basis of these prior studies, we sought to determine the 

location of UPEC within urinary tract niches throughout infection. In order to obtain a more 

complete understanding of how bacterial subpopulations are distributed within the urinary tract 

at a given time, sampling of different niches within the urinary tract was performed using mice 

infected with equal numbers of each of the 40 genetically tagged UTI89 strains at different times 

post infection. We obtained clean-catch urine from mice by gentle suprapubic pressure and 

plated it to enumerate CFU (Figure 5A). Afterwards, the mice were sacrificed, and the bladder 

was bisected twice and washed with sterile PBS to liberate loosely bound and planktonic UPEC, 

heretofore referred as “luminal” or “extracellular” fraction (Figure 5B). The intact, quadrisected 

bladder was incubated with the antibiotic gentamicin, which does not penetrate the bladder 

epithelium, thus selectively eliminating extracellular organisms. After the gentamicin was 

washed away, the bladder tissue was homogenized to liberate the intracellular bacteria, 

designated as the “gentamicin-protected bladder” population (Figure 5C). During the first 24 hpi, 
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this fraction represented bacteria that invaded superficial facet cells and were, in some cases, 

within IBCs. After 48 hpi when IBC formation no longer occurs, the gentamicin-protected 

fraction consisted of bacteria within QIRs or another niche protected from gentamicin. Kidneys 

were also homogenized and plated to enumerate CFU (Figure 5D). 

All of the 40 uniquely tagged UPEC strains were present in both the extracellular and 

intracellular populations at 1 hpi (Figure 5F-G). This amount of tag diversity was not statistically 

different than that observed in the whole bladder at 1 hpi (Figure 3C; p> 0.05, Wilcoxon signed 

rank, hypothetical median = 1.0). At 6 hpi, the proportion of genetic tags approached 1 in the 

kidneys, likely due to VUR of the inoculum in the C3H/HEN mice at the initiation of the 

infection.  However, the proportion of genetic tags was decreased in the urine and all 

compartments of the bladder (Figure 5F-G) during the time when host innate defenses have been 

shown to be induced and engaged [42].  The data re-confirmed that only 0.1-1% of invasive 

events lead to the formation of an IBC, perhaps as a result of TLR4 mediated bacterial expulsion 

[10]. Furthermore, the wide range of unique tags present in the intracellular compartment at 6 hpi 

(Figure 5G) corresponded with the natural variation in IBC number between mice, correlating 

with our earlier results (Figure 2).  

  Between 6 and 24 hpi, the bacterial tags detected in the kidneys decreased (Figure 5H).  

However, the tags detected in the bladder lumen and intracellular bladder fractions increased 

(Figure 5F-G), suggesting that the overall bacterial diversity of the bladder was increasing due to 

shedding of bacteria carrying independent, unique tags from the kidney. In order to understand 

the overlap of bacteria in different niches, the identities of each tag were determined in each 

niche at each time point. We then determined on a per-mouse basis the fraction of unique and 

shared tags present within and between the following niches: urine, bladder lumen, within the 
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bladder epithelium, and kidneys. For each time point, we determined the fraction and identity of 

each tagged strain present in each of the 15 possible overlapping and distinct niche combinations 

out of the total number of tags present within the urinary tract (Figure 5I-M). At 6 hpi, the 

kidneys and urine contained 34% of bacterial diversity not present in a bladder niche, likely 

reflecting the population that gained access to the kidney earlier in the infection as a result of 

VUR. At 24 hpi, 38% of the total tagged strains still present within the urinary tract were shared 

between all of the compartments (Figure 5J). These data show that at 24 hpi the majority of 

individual clones of bacteria are populating every niche within the urinary tract likely as a result 

of emergence from IBCs earlier in infection and descent from the kidneys to seed other niches of 

the urinary tract.   

By 48hpi, the CFU in the bladder stratified into a bimodal distribution reflecting the 

development of persistent bacteriuria and bladder titer of >104 CFU or resolution of bacteriuria 

and establishment of QIR with UPEC titer of <104 CFU [28, 30]. The bimodal distribution was 

evident in the bladder lumen and gentamicin-protected fractions at 1 wpi (Figure 5C). At 2 wpi 

in this experimental set, bacteria were no longer present in the lumen and urine in 4/5 of the 

mice, and instead exclusively occupied gentamicin-protected reservoirs within the bladder 

epithelium or kidney (Figure 5L). Among the mice 1 wpi with high bladder bacterial counts 

indicative of chronic cystitis, 21% of the tags were shared in all niches. In contrast, 15% of the 

tags remaining in mice that resolved bacteriuria and formed QIRs, were located exclusively in a 

gentamicin-protected niche, which increased to 28% of all urinary tract diversity by 4 wpi 

(Figure 5K,M). The majority of tags at 4 weeks post infection (60%) were present only in the 

urine without a bladder or kidney niche colonized, potentially suggesting that these bacteria 

colonized the ureter, urethra or peri-urethral area, explaining why they were not found in another 
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niche (Figure 5M). The lumen in these mice was not colonized with bacteria, while the 

gentamicin-protected fraction had 103 CFU, suggesting that these mice were resolved with QIR 

formation. Thus at different times during the infection, the urine fraction contains bacteria shed 

from the kidneys, planktonic bacteria from the bladder lumen, bacteria strongly adhered to or 

within exfoliated epithelial cells, or bacteria otherwise lost from bladder and kidney niches 

(Figure 5I-M). 
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Discussion 

We created 40 isogenic uniquely tagged UPEC strains and assessed the presence of these 

bacteria in niches within the urinary tract over time with a multiplex PCR assay. This approach 

allowed us to provide an accurate accounting of the strains distributed throughout different 

compartments in the urinary tract over the course of UTI. By recovering bacteria from the 

samples on agar overnight to amplify even rare genetic tags, our approach resulted in a highly 

sensitive assay that provided a conservative estimate of the strains present in each compartment 

and their distribution throughout the urinary tract at the time of sampling. Using this molecular 

approach to better understand the obstacles in UPEC pathogenesis, we have revealed a series of 

population bottlenecks and interactions between distinct populations of the bladder and kidneys 

that impact on the dynamics of the UPEC population during infection as a whole.  

When C3H/HeN mice are inoculated with 107 CFU UTI89, 103-104 CFU invade the 

bladder epithelium at 1 hpi, and all of bacterial tags can be accounted for in the bladder 

intracellular population (Figure 5G). Subsequently, 3-700 IBCs are formed per bladder by 6 hpi, 

and as demonstrated herein, each IBC is derived from a single bacterium that enters into the 

cytoplasm of a superficial facet cell (Figure 1, 2). Together, 0.1% of the inoculum invades the 

epithelium, and <2% of the invasive bacteria successfully form IBCs. The most stringent 

population bottleneck observed is between 1 and 24 hpi corresponding to the time frame when a 

limited number of invasive bacteria have entered into the IBC cycle while innate immunity is 

engaged to clear luminal organisms. These dynamics produce a founder effect. The variance of 

the fraction of tags present within the bladder epithelium at 6 hpi and in the whole bladder at 24 

hpi (Figures 2, 3C, 5G) reflects the large bladder to bladder variance in IBC number and begins 

to reflect the bimodal distribution in infection outcome. The cause of the variance in IBC number 
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is unknown, but presumably reflects factors necessary to penetrate the various bottlenecks 

described here. 

Our experimental data demonstrating the clonality of IBCs suggest that IBC formation 

with a concurrent reduction of the luminal UPEC population places a significant constraint on 

the number of organisms progressing through to later stages of infection. Indeed, modeling 

clonal IBC formation as the only pathway by which organisms can persist in the urinary tract fits 

the observed data very well and supports this hypothesis (Supplemental Figure 1). Given that 

IBCs are clonal, a single IBC can only contribute to the detection of a single tag.  So long as a 

tag is detected in our PCR assay, we cannot distinguish whether it was present in one or many 

IBCs.  Therefore, assuming that tags are equivalent and detection by PCR is efficient, this is akin 

to an experiment where for every IBC, a die with 40 different numbers (each corresponding to a 

tag) is cast, and we count how many different numbers were thrown as a result of all casts of the 

die. With these assumptions, the probability distribution of the number of tags detected (different 

numbers of the die) given a number of IBCs formed (number of casts of the die) can be 

calculated exactly using a multinomial distribution (Supplemental Figure 1).  If there are other 

pathways to persistence that do not involve IBC formation (such as persistence exclusively in the 

lumen of the bladder), the number of tags detected can be modeled as additional throws of the 

die, 1 per each additional extracellular clone (Supplemental Figure 1A). Given the close fit 

between the multinomial expectation (based solely on IBC number) and the observed number of 

tags (Figure 2), if there is another pathway to persistence, its contributions in terms of diversity 

are very small and effectively not measurable in our data. Small exclusively luminal populations 

(not necessarily clonally derived from a single founder) would be predicted to drastically 

increase the expected fraction of tags persisting when low numbers of IBCs are present, though 
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this is not experimentally observed (see Fig. S1A in the supplemental material and Fig. 2). 

Although it is formally possible that clonal, extracellular populations contribute to bacterial 

diversity within the bladder at 6 hpi, the most likely interpretation of our data is that by 24 hpi, 

the extracellular population is largely a subset of bacteria arising from bacterial subpopulations 

that have emerged from other niches with IBCs being a major source (Figure 5I, J).  

The outcomes of acute infection are: 1) resolution of bacteriuria which can be 

accompanied by formation of a QIR, which can lead to recurrent infection or 2) chronic active 

cystitis marked by persistent bacteriuria for >7 months, which presumably reflects extracellular 

replication of bacteria [28, 30]. Our data described above indicate that the strongest population 

bottlenecks exist within the first 24 hpi. Prior studies of UPEC mutants with defects in IBC 

development suggest that the first generation IBCs are important for the establishment of acute 

cystitis [24, 34].  

The studies presented herein have several key implications. First, in species such as 

humans, where isolated cystitis is common, the bottlenecks due to invasion and the IBC cycle 

may be even more stringent than observed in our studies in C3H/HeN mice because there may be 

no mixing of bacteria being shed from the kidneys into the bladder. Inhibitors at the point of the 

major bottlenecks within the first 24 hours of infection may significantly attenuate infection, 

both acute and chronic. For instance, inhibition of the IBC pathway, either by blocking IBC 

formation, development, or dispersal, may alter outcomes by reducing the QIR and limiting 

chronic active cystitis. Combined with a FimH vaccine, invasion inhibitors may be particularly 

potent in preventing and treating UTI [43]. A recent study showed that in a urological cohort of 

women, UPEC isolated from urine from 6/8 patients were not actively expressing type 1 pili 

[44]. Our results from figure 5M showing that 60% of strains detected were present only in the 
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urine argue that these UPEC may indeed reflect strains lost from the bladder as they were not 

detectable in any other urinary tract niche. Thus, although it is possible that these strains are not 

expressing type 1 pili as suggested by the results of Hagan et al 2010 [44], their existence 

presumably depended on earlier colonization events involving type 1 pili and other virulence 

factors. Finally, the development and maintenance of genomic changes by UPEC during UTI 

may be contingent on the timing of acquisition of mutations, rearrangements, or deletions in the 

genome due to the bottleneck constraints present in the system. For instance, a mutant 

subpopulation obtaining antimicrobial resistance to trimethoprim through a mutation in 

dihydrofolate reductase (DHFR) may be extinguished by a stringent stochastic bottleneck even 

under circumstances when the antibiotic is being administered and an antibiotic resistance 

mutation provides a selective advantage. This would be expected to occur if the proportion of the 

population with that advantage is sufficiently too small to overcome the inherent stochastic 

barriers that eliminate the vast majority of the population and produce a founder effect, likely in 

this case to arise from majority members that do not have the advantageous mutation. 

Alternatively, hosts in which bacteria more effectively penetrate the early bottlenecks such as 

those developing chronic cystitis where diversity is maintained, may provide productive 

environments for the selection and perpetuation of adaptive mutations. Thus, diversity and 

selective evolution may be constrained by these stochastic mechanisms during cystitis and/or 

dramatically favor mutations that facilitate invasion and IBC formation. Indeed, several genes 

important for invasion, IBC formation and living within host cells were shown to be under 

positive selection in UPEC [37, 45].  

The findings herein present the hypothesis that an increased number of IBCs activates a 

host immune response that predisposes to persistent bacteriuria and chronic cystitis. In C3H/HeN 
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mice, increasing the inoculum to 108 CFU/mL increases the average number of IBCs formed and 

increases the percentage of mice experiencing persistent bacteriuria [28]. Currently, it is not 

possible to evaluate these metrics of infection within the same mouse. Longitudinal monitoring 

of bacterial populations in vivo using techniques in development such as intravital multi-photon 

microscopy to enumerate acute IBC formation at 6 hpi and determine bacteriuria and tissue titers 

at 2 wpi will provide further resolution to the consequences of early infection events on subacute 

and chronic outcomes. Our findings are especially relevant for mucosal pathogens that have to 

transit through potential population bottlenecks similar to those described in this work [5, 6, 46]. 

Finally, the methodology described herein would be ideal to analyze population bottlenecks, 

niche occupation, and clonality by other bacterial pathogens of mucosal sites. 

 

Materials and Methods 

Construction of 40 isogenic tagged UPEC strains. 

Unique tags were inserted into the chromosome following the ybhC gene in the region of 

the lambda phage attachment site into the clinical isolate UTI89 [39]. This site was chosen since 

prior insertions in this region (gfp reporter fusions) did not adversely affect pathogenesis [35]. 

The tags were designed using unique sequences as reported by Lehoux et al [47, 48]. Primer 

sequences are shown in Supplemental Table 1. For the construction of the genomic insertion 

cassettes, the chloramphenicol or kanamycin cassette from pKD3 or pKD4 [49] was amplified 

using primers BP-1 in combinations with BP-2A, BP-2B, BP-2C. The respective products were 

digested with EcoRI and column purified (Qiagen). Each of the BP-00F primers was 

phosphorylated in a reaction that included 1 x T4 ligase buffer (NEB), 10 mM dATP (Promega) 

and 1 U of T4 polynucleotide kinase (Invitrogen) for 30 min at 37oC. The appropriate BP 00F 
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and BP 00R primers were annealed by mixing an equal molar ratio in dH2O, heating to 95oC for 

5 min, and cooling slowly to RT. In a similar method, primers BP-5 and BP-6 were annealed to 

each other. A tripartite ligation was performed using the BP-1/BP-2 digested PCR products with 

the annealed products of BP-00F/R and BP-5/BP-6 in 1 x T4 ligase buffer and 10 U of T4 ligase 

for 1 hr at RT. To a PCR reaction containing 1 x Pfx buffer (Invitrogen), 2 mM MgSO4, 0.2 mM 

dNTP, 2.5 U of Pfx polymerase (Invitrogen), and 200 pmol each of primers BP-1 and BP-6, 0.5 

µl of each ligation was added. The reactions were cycled at 94 oC for 3 min followed by 30 

cycles of 94 oC for 15 sec, 55 oC for 45 sec, and 68 oC for 1.5 min. A final extension at 68 oC for 

7 min was performed. The ~1.6 kb products were verified by gel electrophoresis and column 

purified (Qiagen). Chromosomal insertion of the tag constructs was performed using the Red 

Recombinase method [49]. The tags were verified by colony PCR in a reaction mixture 

containing 1 x PCR buffer (Invitrogen) with 0.2 mM dNTP, 2.5 mM MgCl2, 2.5 U of Taq 

polymerase (Invitrogen) and 200 pmol each of the appropriate primers pairs BP-8K (kanamycin 

template) or BP-8C (chloramphenicol template) and BP-00F. Growth curves of each individual 

strain were performed to ensure no gross growth defects in broth culture (data not shown).  

Evaluation of isogenic UPEC strains in a murine cystitis model.   

In preparation for inoculation into mice, each of the 40 isogenic UTI89 derivatives was 

grown individually in LB statically at 37oC overnight and then sub-cultured 1:1000 into 2 ml of 

fresh LB with static growth at 37oC for 18-24 hr. Cell density was measured using an OD600 

value, and each clone was added in approximately equal cell numbers to a central pool. The 

pooled bacteria were centrifuged for 10 min at 6,500 x g at 4oC. The pellet was resuspended in 

20-25 ml of sterile PBS to yield a final cell suspension where 50 µl contained ~1-2 x 107
 CFU. 

Fifty µL was introduced over 10 seconds into 7-8 week old C3H/HeN mice under 2.5% 
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isofluorane inhalation via a transurethral route. The infections were allowed to proceed for 1 hr 

up to 4 wks at which time the mice were sacrificed under anesthesia, and the bladders and 

kidneys were removed and homogenized in 1 mL or 0.800 mL sterile PBS, respectively. 

Homogenates were serially diluted and plated to enumerate the bacteria in the tissues. Genomic 

DNA was obtained from the bacterial lawns by the addition of two milliliters of sterile water in 

each Petri dish and scraped using a bacterial cell scraper (BD Falcon). The bacteria were pelleted 

by centrifugation and washed with PBS. The final pellet was processed using the Promega 

Genomic DNA Isolation Kit per the manufacturer’s instructions. Genomic DNA was also 

prepared from a bacterial pellet of the pooled input inoculum. 

BAR-PATH multiplex PCR was performed using 50 ng of genomic DNA in a PCR 

reaction mix including 1 x Taq buffer (Invitrogen), 2.5 mM MgCl2, 0.2 mM dNTP, 100 pmol 

each of BP-8C and BP-8K, and 2.5 U Taq DNA polymerase (Invitrogen). The BP 00F primers 

(see Table S1 in the supplemental material) were mixed in sets of 3 primers for inclusion in PCR 

reactions: [BP 01F, BP 02F, BP 03F], [BP 04F, BP 05F, BP 06F], etc. and added to the reaction 

mixture at final concentrations of ~66.6 pmol/primer. Reactions were cycled with a hot start then 

94 C x 3 min followed by touchdown PCR with 10 cycles of 94 oC for 30 sec, 62 oC for 30 sec 

with a 1 degree decrease per cycle, and 72oC for 30 sec.  Next, 30 cycles were performed at 94oC 

for 15 sec, 55oC for 15 sec, 72oC for 30 sec. A final 7 min extension at 72oC was performed.  

Ten microliters of the 25 µl reaction was run a 2.5 % TBE-agarose gel. Presence or absence of 

an individual strain present in the multiplex PCR was determined by eye in comparison to the 

intensity of its cognate band in the inoculum. If a strain was not detected in the inoculum pool, it 

was not included in the analysis for that experiment. Thirty-seven of the forty tags were routinely 

detected in the inoculum. Three tags were statistically underrepresented in the PCR of the 
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inoculum pool and were thus excluded in the subsequent analyses of the endpoint samples. 

Ambiguous bands were analyzed in an independent multiplex PCR replicate. All mouse infection 

studies were approved by the Animal Studies Committee of Washington University in St. Louis. 

IBC enumeration.  

To quantify the number of IBCs per bladder, bladders were bisected and splayed onto 

sterile silica plates and fixed with 3% paraformaldehyde (Sigma). The bladders were washed 3X 

with 2mM MgCl2 (Sigma), 0.01% Na deoxycholate (Sigma), 0.02% Nonidet-P40 (Roche) in 

sterile PBS, pH 7.4. Bladders were then stained in 0.4 mL 25 mg/mL X-gal (Sigma) and a 

solution containing 1 mM potassium ferrocyanide and 1mM potassium ferricyanide (Sigma). 

After incubating at 30oC for 16 hours, bladders were visualized under a dissecting microscope 

where IBCs appeared as bright blue punctate circles. 

Confocal scanning laser microscopy. 

 Female 6-7 week old C3H/HeN mice were infected with a 1:1 or 1:50 mixture of UTI89 

and UTI89::HKGFP and sacrificed at 6 or 12 hpi [35]. Bladders were extracted, splayed, and 

counterstained with Topro-3 and imaged with a Zeiss LSM410 confocal scanning laser 

microscope. 

Ex vivo gentamicin protection assay.  

At the indicated times post-infection, bladders were removed aseptically and bisected 

twice. The bladders were washed three times with 500 µL sterile PBS. The washes were pooled, 

spun at 500 rpm for 5 min and dilution plated as described earlier. This wash was termed 

“luminal” or “extracellular.” The bladders were then incubated for 90 min. with 100 µg/mL 

gentamicin to kill adherent extracellular bacteria. After this incubation, the bladders were washed 
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twice with 1 mL sterile PBS. The bladder was then homogenized in 1 mL sterile PBS and 

dilution plated to enumerate intracellular CFU. Bacterial pellets were obtained and processed as 

described earlier. 
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Figures  

 

 

Figure 1.  IBCs are clonal, derived from single invasive bacteria.  

C3H/HeN mice were co-infected with UTI89 and UTI89::HKGFP and sacrificed at 6 hpi 

and 12 hpi. Bladders were aseptically removed and splayed and imaged with confocal 

microscopy. (A-B): IBCs in whole mount at 6 hpi, counterstained with TOPRO-3. Each image 

shows the merged red and green channel data. (C-D): Co-resident IBCs inside a single 

superficial facet cell at 12 hpi. Representative images of over 500 independent IBC are shown. 
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Figure 2. IBC number correlates with number of tags present.  

C3H/HeN mice were infected as described and processed to enumerate IBCs and extract 

bacterial genomic DNA (see methods). Black squares represent the number of IBCs and the 

number of tagged strains present per mouse bladder. The line is the median number of tags 

expected based on a multinomial distribution of IBC number (see Discussion and Supplemental 

Material). Data represent 3 independent experiments with 5-10 mice per experiment. * represent 

bladders with a greater number of tags than IBCs. 

 

 

 

 

 

 

 



81 

 

Figure 3. Bacterial diversity decreased dramatically during first 24 hpi.  

At the indicated times post infection, C3H/HeN mice were sacrificed, and the bladder and 

kidneys were removed aseptically, homogenized in PBS, and 6% of the homogenate was plated 

to enumerate CFU in the bladders (A) and kidney pair (B). Genomic DNA was isolated from a 

lawn of UPEC isolated from the tissue homogenates, and multiplex PCR was conducted to 

determine the fraction of the 40 unique tags present in each bladder (C) and kidney pair (D).  
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CFU data are presented as CFU/whole organ. Bars are median values. N = 1-2 experiments with 

5-8 mice each. P values were calculated using a two-tailed Mann Whitney non-parametric 

comparison. An Initial experiment conducted with 43 tags is also included in this analysis. 
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Figure 4. Higher fraction of unique bacterial signatures remain in mice experiencing chronic 

cystitis.  

A) 2 weeks post infection, C3H/HeN mice were sacrificed, and the bladders were 

removed aseptically, homogenized, and plated to enumerate CFU. B) Urines were obtained by 

gentle suprapubic pressure and plated to enumerate CFU. The dashed line at 104 CFU represents 

the limit for assessing the presence of UTI in clean catch urine samples (40). Urine titers above 

this point are considered bacteriuria indicative of a UTI, while bladder titers greater than this 

cutoff indicate chronic cystitis. C) Genomic DNA was then obtained from the bacteria from each 

bladder sample and multiplex PCR was conducted. Bars are median values. P values were 

calculated using a two-tailed Mann Whitney non-parametric comparison. 
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Figure 5. Niche specific diversity over time demonstrates population dynamics throughout UTI.  

At the indicated times post infection, urine was obtained via gentle suprapubic pressure and 

plated to enumerate CFU (A) and fraction of tags remaining (E). A gentamicin protection assay 

was performed to enumerate luminal CFU (B) and fraction of tags remaining (F) and gentamicin 

protected CFU (C) and tags remaining (G). Kidneys were also plated to enumerate CFU (D) and 
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tags remaining (H). The niche occupation of specific tags was determined and is represented as 

average fraction of tags present in distinct and overlapping niches (15 total permutations) and 

displayed as a 4-set Venn diagram at 6 hpi (I), 24 hpi (J), 1 wpi (K), 2 wpi (L), and 4 wpi (M). 

Each percentage listed displays the fraction of tags present in that unique or shared niche out of 

the total number of tags in each murine urinary tract. Data for (A-H) represent 1-3 experiments 

with 5 mice per timepoint. Data for (I-M) represents experiments where kidney information was 

available: 2 experiments with 4-5 mice for panel I and 1 experiment with 5 mice each for panels 

J to M. * signifies the niche combination with the greatest unique diversity present. Bars are 

median values. P values were calculated using a two-tailed Mann Whitney non-parametric 

comparison. 
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Supplemental Information 

 

 

 

 

Supplemental Information 1 

Table 1S: Primers Used for Polymerase Chain Reaction (PCR). 2 

Primer Name  Sequence (5’3’) Target 

kps Reg1 

KO#1 

GTTACAACCCATTGATTTAGCATAAATAAATTATAGTGGGTTCGGGTTTGT

TGTGTAGGCTGGAGCTGCTTC 

kps Region I, 5’ / pKD4  

kps Reg1 

KO#2 

TGGAAATGATTTTTTGGCTACTTAAAATTCAAAAGATATTGACTTGAAATAT

GGGAATTAGCCATGGTCC 

kps Region I, 3’ / pKD4 

kps Reg1 #1 ATGTTCCCGGTGGTCAACATGCTTCCAGCACTCCTT kps Region I, 5’ 

kps Reg1 #2 CCTCTTTGCACGATAAAAGGATTTTCTTG kps Region I, 3’ 

BP 1F GTACCGCGCTTAAACGTTCAG BAR-PATH 

BP 1R AATTctgaacgtttaagcgcggtacAGC BAR-PATH 

BP 2F GTACCGCGCTTAAATAGCCTG BAR-PATH 

BP 2R AATTcaggctatttaagcgcggtacAGC BAR-PATH 

BP 3F GTACCGCGCTTAAAAGTCTCG BAR-PATH 

BP 3R AATTcgagacttttaagcgcggtacAGC BAR-PATH 
 

 

BP 4F GTACCGCGCTTAATAACGTGG BAR-PATH 

BP 4R AATTccacgttattaagcgcggtacAGC BAR-PATH 

BP 5F GTACCGCGCTTAAACTGGTAG BAR-PATH 

BP 5R AATTctaccagtttaagcgcggtacAGC BAR-PATH 

BP 6F GTACCGCGCTTAAGCATGTTG BAR-PATH 

BP 6R AATTcaacatgcttaagcgcggtacAGC BAR-PATH 

BP 7F GTACCGCGCTTAATGTAACCG BAR-PATH 

BP 7R AATTcggttacattaagcgcggtacAGC BAR-PATH 

BP 8F GTACCGCGCTTAAAATCTCGG BAR-PATH 

BP 8R AATTccgagattttaagcgcggtacAGC BAR-PATH 

BP 9F GTACCGCGCTTAATAGGCAAG BAR-PATH 

BP 9R AATTcttgcctattaagcgcggtacAGC BAR-PATH 

BP 10F GTACCGCGCTTAACAATCGTG BAR-PATH 

BP 10R AATTcacgattgttaagcgcggtacAGC BAR-PATH 

BP 11F GTACCGCGCTTAATCAAGACG BAR-PATH 
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BP 11R AATTcgtcttgattaagcgcggtacAGC BAR-PATH 

BP 12F GTACCGCGCTTAACTAGTAGG BAR-PATH 

BP 12R AATTcctactagttaagcgcggtacAGC BAR-PATH 

BP 13F CTTGCGGCGTATTACGTTCAG BAR-PATH 

BP 13R AATTctgaacgtaatacgccgcaagAGC BAR-PATH 

BP 14F CTTGCGGCGTATTATAGCCTG BAR-PATH 

BP 14R AATTcaggctataatacgccgcaagAGC BAR-PATH 

BP 15F CTTGCGGCGTATTAAGTCTCG BAR-PATH 

BP 15R AATTcgagacttaatacgccgcaagAGC BAR-PATH 

BP 16F CTTGCGGCGTATTTAACGTGG BAR-PATH 

BP 16R AATTccacgttaaatacgccgcaagAGC BAR-PATH 

BP 17F CTTGCGGCGTATTACTGGTAG BAR-PATH 

BP 17R AATTCTACCAGTAATACGCCGCAAGAGC BAR-PATH 

BP 18F CTTGCGGCGTATTGCATGTTG BAR-PATH 

BP 18R AATTCAACATGCAATACGCCGCAAGAGC BAR-PATH 

 

 

BP 19F CTTGCGGCGTATTTGTAACCG BAR-PATH 

BP 19R AATTCGGTTACAAATACGCCGCAAGAGC BAR-PATH 

BP 20F CTTGCGGCGTATTAATCTCGG BAR-PATH 

BP 20R AATTCCGAGATTAATACGCCGCAAGAGC BAR-PATH 

BP 21F CTTGCGGCGTATTTAGGCAAG BAR-PATH 

BP 21R AATTCTTGCGGCGTATTTAGGCAAGAGC BAR-PATH 

BP 22F CTTGCGGCGTATTCAATCGTG BAR-PATH 

BP 22R AATTCACGATTGAATACGCCGCAAGAGC BAR-PATH 

BP 23F CTTGCGGCGTATTTCAAGACG BAR-PATH 

BP 23R AATTCGTCTTGAAATACGCCGCAAGAGC BAR-PATH 

BP 24F CTTGCGGCGTATTCTAGTAGG BAR-PATH 

BP 24R AATTCCTACTAGAATACGCCGCAAGAGC BAR-PATH 

BP-2A Tgattaagatgaattcatgggaattagccatggtcc BAR-PATH 

BP-2B Tgattaagatgaattcgtgacacaggaacacttaacggctgac BAR-PATH 

BP-2C tgattaagatgaattccgcactgagaagcccttagagcctc BAR-PATH 
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BP-8K gcttcaaaagcgctctgaagttcctatac BAR-PATH 

BP-8C Cgtgccgatcaacgtctcattttcg BAR-PATH 

BP-1 gaaccgtaggccggataaggcgtttacgccgcatccggcacatagttaacagctcgtgtaggctggagctgc

ttc 

BAR-PATH 

BP-5 /5Phos/ctacttcttcgcctctgcaaccactttgctacccacgccgcggttattgtattcc BAR-PATH 

BP-6 ggaatacaataaccgcggcgtgggtagcaaagtggttgcagaggcgaagaagtaggct BAR-PATH 

 3 

 4 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Mathematical model of tag diversity subsequent to a population bottleneck

As discussed in the main text, IBC formation is clonal and hypothesized to be the main contribution to
bacterial persistence in the bladder. Assuming that bacteria carrying different tags are equivalent both in
terms of IBC formation and in detection efficiency, the number of tags expected to be detected due solely
to IBCs can be modeled as a multinomial distribution. Because tag detection does not differentiate between
whether one or multiple IBCs contained that tag, we are interested simply in the number of different tags
(multinomial outcomes) detected at all, and not in their relative abundance. In short, the problem of how many
tags remain following a population bottleneck is identical to asking how many distinct bar codes are chosen
when they are randomly sampled with replacement, the number of samples taken representing the population
bottleneck. From the point of view of tags detected, we can calculate other populations from other bacterial
niches by including additional samplings (multinomial trials), with one additional sample per bacterial clone.

This problem has been previously examined in (Ma, 2001), where formulas for the number of ”live” terms
in a complete multinomial expansion were presented - this corresponds precisely to our problem of calcu-
lating how many tags are expected to be detected in a given experiment. In the notation of (Ma, 2001),
n is the number tags, representing mutually exclusive categories that result from a sampling (i.e. multino-
mial choices); k is the number of bacterial clones (either IBCs or clones included in other niches), or the
number of multinomial trials; m is the number of tags detected, or those that have been sampled at least
once in an experiment (live terms). A closed formula for the complete multinomial distribution is well known:
ai1,i2,...,ink,p = n!/k!(n� k1)!(n� k2)!...i

k1
1 ik22 ...iknn However, as noted by (Ma, 2001), this is computationally in-

tractable for values of n and k that we are interested in. (Ma, 2001) developed a closed formula for calculating
individual terms of the multinomial expansion, but use of this requires iterating over all combinations of live
terms, which is equivalent to finding all combinations of a set of k integers that sum to n. To translate from this
into the distribution of total number of live terms is also computationally intractable for reasonable n.

Therefore, we have extended the reasoning used by (Ma, 2001) to directly calculate the number of multi-
nomial samplings that have a given number of live terms. Our calculation has polynomial complexity because
it does not explicitly calculate each term of the multinomial; instead, it calculates sums of distinct sets of the
multinomial expansion, which are precisely the values that we are interested in.

We do a direct calculation of the number of ways that k samples from a multinomial with n possibilities,
all with equal probability, results in exactly m outcomes occuring at least once. We let Tm be the number
of possibilities that have exactly m live terms. For m = 1, this is trivial; for every sample, there is only 1
possibility, and thus there is 1k = 1 combination. However, there are n choices for which outcome is the only
successful one; thus, there are n ⇥ 1 = n total ways that exactly one outcome is successful in all k samples:
T1 = (n1 )1

k = n.
For m = 2, each of the k samples has two possibilities, resulting in 2k total combinations. However, 2k

counts all the possibilities of no more than 2 successful outcomes; this includes outcomes where only one of
the two is successful (all k choices result in the same outcome) and thus these must be subtracted. There are
(21) = 2 possibilities for the single successful outcome, thus we have 2k � (21)1

k total outcomes where exactly
two possibilities are successful. There are (n2 ) ways to pick which two outcomes are successful, giving us a
total of T2 = (n2 )[2

k � (21)1
k] ways to have exactly two successful outcomes after k trials.

A similar reasoning is used for m = 3. Given the 3 outcomes, there are 3k possibilities that have no more
than those 3 outcomes; we must now subtract the possibilities that only 2 or 1 of the 3 desired outcomes is
successful. When subtracting the possibilities that only 2 of the desired 3 outcomes is successful, we must only
count those outcomes where exactly 2 of the outcomes is successful and not include the subset where only 1
of the 2 outcomes is successful. As above, the possibilities for exactly 2 successful outcomes is 2k�(21)1

k, and
there are (32) combinations of two outcomes, giving (32)[2

k � (21)1
k]. The correction for outcomes with only one

successful outcome is (31)[1
k]. Again, there are (n3 ) ways of choosing a subset of three successful outcomes,

giving a total of T3 = (n3 )[3
k � (32)[2

k � (21)1
k]� (31)[1

k]].
We now introduce a recursive definition for the term cm,k = mk �⌃m�1

i=1 (mi )ci,k for m > 1, and c1,k = 1k = 1.
The term cm,k represents the number of ways to get exactly m successful outcomes in k trials. Note that cm,k
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does not depend on the total number of possible outcomes. Then we can simplify the above expressions to:
T1 = (n1 )c1,k
T2 = (n2 )c2,k
T3 = (n3 )c3,k
In general, we have
Tm = (nm)cm,k

which is now, as expected, dependent on the total number of possible outcomes.
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Supplementary Figure 1 

 

 

 

 

 

 

 

Figure 1. Predictive stochastic selection models of tag diversity 
in relationship to clonal intra- and extra-cellular communities. 
(A): Median number of tags (total = 40) expected based on a multinomial expan-
sion with increasing contributions of tags from theoretical, clonal extracellular 
populations (see supplemental material). (B): The probability distributions for the 
likelihood of detecting a specific number of tags based on the amount of IBCs 
formed.
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ABSTRACT 

Chaperone-usher pathway (CUP) pili are a widespread family of extracellular, Gram-

negative bacterial fibers with important roles in bacterial pathogenesis. Type 1 pili are important 

virulence factors in uropathogenic Escherichia coli (UPEC), which cause the majority of urinary 

tract infections (UTI). FimH, the type 1 adhesin, binds mannosylated glycoproteins on the 

surface of human and murine bladder cells, facilitating bacterial colonization, invasion, and 

formation of biofilm-like intracellular bacterial communities (IBCs). The mannose-binding 

pocket of FimH is invariant among UPEC. We discovered that pathoadaptive alleles of FimH 

with variant residues outside the binding pocket affect FimH-mediated acute and chronic 

pathogenesis of two commonly studied UPEC strains, UTI89 and CFT073. In vitro binding 

studies revealed that while all pathoadaptive variants tested displayed the same high affinity for 

mannose when bound by the chaperone FimC, affinities varied when FimH was incorporated 

into pilus tip-like, FimCGH, complexes. Structural studies have shown that FimH adopts an 

elongated conformation when complexed with FimC, but when incorporated into the pilus tip, 

FimH can adopt a compact conformation. We hypothesize that the propensity of FimH to adopt 

the elongated conformation in the tip corresponds to its mannose binding affinity. Interestingly, 

FimH variants, which maintain a high-affinity conformation in the FimCGH tip-like structure 

were attenuated during chronic bladder infection arguing that FimH’s ability to switch between 

conformations is important in pathogenesis. Our studies argue that positively-selected residues 

modulate fitness during UTI by affecting FimH conformation and function, providing an 

example of evolutionary tuning of structural dynamics impacting in vivo survival. 
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Significance 

 Evolution of multidrug-resistance in pathogenic bacteria, including uropathogenic E. coli 

(UPEC) that cause most urinary tract infections (UTIs), is becoming a worldwide crisis. UPEC 

utilize a variety of virulence factors and adhesins, including the mannose-binding FimH adhesin, 

to colonize and invade bladder tissue, often forming intracellular biofilms and quiescent 

reservoirs that can contribute to recurrent infections recalcitrant to treatment. Using two 

prototypical UPEC strains, we discovered that positively-selected residues outside of the FimH 

mannose-binding pocket, affect transitions between low and high-affinity FimH conformations 

which extraordinarily impacts FimH function during pathogenesis. Thus, this work elucidates 

mechanistic and functional insights into pathoadaptation and evolutionary fine-tuning of critical 

virulence interactions. 
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Introduction 

 Urinary tract infections (UTI) are common infections causing serious morbidity and 

significant expenditures in healthcare dollars and lost wages. Women are disproportionately 

affected, with over half of women experiencing at least one UTI during their lifetime [1]. In the 

absence of treatment, 50-80% of women will resolve a UTI within 2 months, but up to 60% of 

women may remain bacteriuric with or without symptoms for at least 5-7 weeks after the initial 

infection [2]. Furthermore, even when effective therapy is given and bacteriuria and symptoms 

of the acute UTI resolve, 25-40% of women experience a recurrent UTI (rUTI) [2, 3]. rUTI can 

occur by recolonization of the urinary tract from the gastrointestinal (GI) tract or from another 

environmental source by the same or different strain or may be due to reactivation of the original 

UTI strain from a bladder reservoir [4-6]. Uropathogenic Escherichia coli (UPEC) cause 80-90% 

of community acquired UTI and 50% of nosocomial UTI [7]. The increasing prevalence of 

multidrug-resistant organisms can prolong the infection [8]. Thus, chronic and recurrent UTI 

represents a major health concern worldwide, necessitating molecular understanding of disease 

pathogenesis and investigations into novel diagnostics and therapies. 

UTI is a highly complex disease involving colonization of multiple niches, each of which 

presents a unique set of evolutionary pressures shaping host-microbe and microbe-microbe 

interactions involving a multitude of virulence factors that determine disease onset, progression, 

and outcome. Adhesive pili assembled by the chaperone-usher pathway (CUP), such as type 1 

pili, are well-characterized UPEC UTI virulence determinants. Type 1 pili, like other CUP pili, 

contain an adhesin (FimH) at their tip that plays an important role in host-pathogen interactions 

and biofilm formation. Type 1 pili are nearly ubiquitous among clinical UPEC isolates [9, 10] as 

well as commensal E. coli and other Enterobacteriaceae. Expression of type 1 pili is essential for 
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colonization of the murine urinary tract [11]; however, expressing type 1 pili is not sufficient for 

long-term colonization, as commensal E. coli are rapidly cleared [12]. 

Upon UPEC entrance into the bladder, FimH binds mannosylated glycoproteins, 

including uroplakins expressed throughout human and murine bladders [13]. Subsequent to 

attachment, UPEC invade superficial facet cells in a FimH-dependent manner [12, 14] and 

replicate in the cytoplasm, forming large biofilm-like structures called intracellular bacterial 

communities (IBCs) [15]. The formation of IBCs has been observed for numerous clinical UPEC 

isolates in multiple mouse models and in exfoliated uroepithelial cells in urines of patients with 

acute UTI, but not from healthy controls [16, 17]. The process of invasion and IBC formation 

provides UPEC an ability to survive stringent bottlenecks during pathogenesis in the urinary tract 

[18, 19]. Outcomes of infection range from resolution with or without accompanying quiescent 

intracellular reservoirs (QIRs) in the bladder tissue [4] to persistent bacteriuria and chronic 

cystitis [20]. In C3H/HeN mice, the formation of a high number of IBCs at 6 hours post infection 

(hpi) and an exuberant systemic innate immune response at 24 hpi, measurable in both urine and 

serum, correlate with the development of chronic cystitis marked by persistent urine and bladder 

titers >104 CFU/mL and severe bladder immunopathology [18, 20]. In addition to colonizing the 

bladder, UPEC can ascend the ureters and infect the kidneys, leading to pyelonephritis. The 

connection between acute and chronic UTI is just now beginning to be characterized [21-23]. 

Type 1 pili and the tip adhesin, FimH, are encoded by the fim operon [24, 25]. Mature FimH is a 

279 amino acid (aa) two-domain protein containing a mannose-binding lectin domain (residues 1 

– 150) and a pilin domain (residues 159 to 279) with an 8 amino acid (aa) linker connecting the 

domains (Fig. 1) [26-28]. The mannose-binding pocket of FimH is invariant among sequenced 

UPEC [29, 30]; however, several residues outside the mannose-binding pocket (positions 27, 62, 
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66 and 163) were found to be evolving under positive selection in clinical UPEC isolates 

compared to fecal strains (Fig. 1) [29, 31, 32]. Among four fully sequenced UPEC isolates 

(UTI89, CFT073, 536, and J96), differences exist in positively selected residues 27, 62, and 163 

(Table 1). Clinical isolates expressing different fimH alleles have observable differences in the 

degree of pathogenicity as measured by IBC formation [16] and the development of chronic 

cystitis [20]. We found that UTI89, a cystitis isolate, formed more IBCs and had higher bladder 

titers at 6 hpi than CFT073, a pyelonephritis isolate, in single and co-infections. Because of the 

demonstrated importance of type 1 pilus function in pathogenesis, we conducted fimH allele 

swap experiments to determine whether the differences in fimH between UPEC strains were 

responsible for the phenotypic differences. We generated CFT073 and UTI89 strains containing 

different fimH alleles inserted into the normal chromosomal position. We found that presence of 

a fimH sequence encoding FimH from UTI89 (denoted FimH::A62/V163) resulted in significant 

increases in IBC development and the propensity to cause chronic cystitis compared to 

expression of CFT073 FimH (FimH::S62/A163). In co-infections, strains expressing 

FimH::A62/V163 significantly outcompeted otherwise isogenic strains harboring 

FimH::S62/A163 in both CFT073 and UTI89. FimH complexed with its chaperone FimC adopts 

an elongated conformation (Fig. 1A), which binds mannose with high affinity [26, 33]. When 

complexed with the FimG adaptor, FimH can adopt a compact conformation which binds 

mannose with low affinity (Fig. 1B) [33]. The identity of residues at positively selected positions 

outside the binding pocket dramatically impacts the mannose binding affinity of FimH when in 

the FimCGH tip-like complex but not in the FimCH complex. Thus, we argue that the 

combination of residues at positively selected positions affects the propensity of FimH to adopt 

an elongated conformation in the tip and thus its relative mannose binding affinity. FimH alleles 
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that retained the high affinity binding conformation in the tip were significantly attenuated in a 

mouse model of UTI suggesting that equilibrium between FimH conformations, which is 

modulated by positively-selected residues, is critical in pathogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



99 

Results 

Prevalence of positively selected FimH alleles in humans  

Comparing UPEC-infected urine isolates to fecal E. coli from healthy humans and 

animals has previously identified genes and residues within genes under positive selection in 

UPEC [29, 34, 35]. We analyzed a collection of fimH sequences obtained from 33 fecal E. coli 

from healthy, uninfected humans as well as 232 urine and periurethral isolates from women 

suffering acute or rUTI, asymptomatic bacteriuria, or pyelonephritis [16, 17, 29, 36-39]. We 

were particularly interested in cataloguing naturally occurring residue combinations at positions 

27, 62, and 163, since in previous studies these residues showed evidence of positive selection, 

and mutations in these residues impacted fitness of the cystitis isolate UTI89 [29]. In sequences 

of fecal and E. coli from infected urine, we found one of two residues at each of these positions. 

An alanine occurred at position 27 in 85% of fecal isolates and 81% of urine isolates, while a 

valine occurred at position 27 in the other sequenced isolates. A serine occurred at position 62 in 

all of the fecal isolates and in 93% of urine isolates, while an alanine occurred in 7% of urine 

isolates. At position 163, a valine occurred in all fecal isolates and in 93% of urine isolates, with 

alanine occurring in the other 7% of urine isolates. Of the eight possible combinations of these 

three residues, we found only the four combinations shown in Table 1. Most E. coli isolates 

encode FimH::A27/S62/V163, with this allele being present in a higher percentage of fecal 

strains than urine strains. The prototypical UPEC isolates, UTI89 and CFT073 encode two 

different pathoadaptive FimH variants, A27/A62/V163 and A27/S62/A163, respectively. Neither 

fimH allele was observed in healthy feces (Table 1). All other residues in the mature FimH of 

UTI89 and CFT073 are identical. UTI89 was isolated from the urine of a patient experiencing an 

uncomplicated acute UTI [12]. CFT073 was isolated from the blood and urine of a woman 
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suffering acute pyelonephritis and sepsis [40]. Because of these differences in occurrence of 

different fimH alleles in different types of clinical samples, we examined their impact on 

pathogenesis in the urinary tract. 

 

FimH sequence modulates IBC number 

 We first performed a systematic analysis of the differences in infection between UTI89 

and CFT073. We transurethrally inoculated female C3H/HeN mice with 107 or 108 CFU of 

UTI89 or CFT073 in 50 µL of PBS (Fig. 2). The median number of IBCs formed at 6 hpi was 

significantly higher for UTI89 than the number of IBCs formed by CFT073 at both inoculum 

concentrations (Fig. 2A). Similar, statistically significant results were observed at 6 hpi in whole 

bladder titers (Fig. 2B). Bacterial titers at 6 hpi in the kidneys (Fig. 2C) did not significantly 

differ between strains, and we observed only a slight increase in kidney titers with an increased 

UTI89 inoculum.   

To assess the impact of different fimH alleles in isogenic UTI89 and CFT073 

backgrounds, we conducted fimH allele swaps. Hereafter, we will refer to these FimH alleles by 

the residue expressed at the relevant, positively selected position. We examined the effect on 

pathogenesis of three fimH alleles in each background: A62/V163, S62/V163 and S62/A163. 

Except for the previously published in vitro defects of FimH::S62/V163 [29], we saw no effect 

of FimH variants on growth in LB media in single and co-culture (Fig. S1A, Fig. S2), status of 

the fim promoter (Fig. S1B), total surface piliation (Fig. S1C), or 1 hpi invasion into 5637 

cultured bladder cells (Fig. S1D) in either the UTI89 or CFT073 backgrounds. We found a 

moderate, but statistically significant, 2-fold increase in guinea pig red blood cell 

hemagglutination (HA) for FimH::A62/V163 in both strain backgrounds (Fig. S1E) and 48 hr 
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biofilm formation in LB in PVC plates in CFT073 (Fig. S1F). A reproducible HA titer difference 

of 2-fold has previously been shown to affect IBC formation [29]. Accordingly we saw that 

CFT073 encoding FimH::A62/V163 (UTI89 FimH) resulted in a greater number of IBCs (Fig. 

3A) than WT CFT073 in an independent challenge experiment. No statistically significant 

difference in 6 hpi IBC number was obtained between UTI89 FimH::A62/V163 and UTI89 

FimH::S62/A163, suggesting possible strain-dependent effects. Additionally, it is possible that 

subtle fim regulation defects exist in vivo even though we observed no differences in vitro with 

these strains. 

 

FimH sequence modifies ability to persist during chronic cystitis  

We then assessed the effect of FimH variation on development of chronic cystitis. Sixty-

eight percent of mice developed persistent bacteriuria and chronic cystitis with bladder titers 

greater than 104 CFU at sacrifice 4 weeks post infection (wpi) when infected with 107 CFU 

UTI89 expressing its cognate FimH::A62/V163 compared to 40% of mice infected with UTI89 

expressing the CFT073 cognate allele, FimH::S62/A163 (p<0.05; Fig. 3B). CFT073, expressing 

its cognate FimH::S62/A163 caused chronic cystitis in only 23% of mice, statistically 

significantly different from both UTI89 FimH::A62/V163 (68%) (p<0.0005) and CFT073 

FimH::A62/V163 (47%) (p<0.05; Fig. 3B). Kidney titers were also increased for both UTI89 

and CFT073 strains expressing FimH::A62/V163 (Fig. 3C), which likely reflects the higher 

bladder titers and the noted vesicoureteral reflux and/or ability of UPEC to ascend the ureters in 

this model [18, 41].   
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Strains expressing FimH::A62/V163 displace strains expressing FimH::S62/A163 during chronic 

co-infection 

  We found that in both backgrounds, strains expressing FimH::A62/V163 had subtle, yet 

significant, increases in tissue occupation versus strains expressing FimH::S62/A163 after co-

infections (Fig. S3). At three hpi, 1.7-1.8-fold more bacteria encoding FimH::A62/V163 were 

found in the gentamicin-protected fraction in both strain backgrounds (Fig. S3).  At 6 hpi, 2.2-

fold more CFU of CFT073 FimH::A62/V163 was obtained (Fig. S3B). In addition to this acute 

advantage, strains expressing FimH::A62/V163 outcompeted strains expressing 

FimH::S62/A163 in the bladders and kidneys of mice experiencing chronic cystitis at four wpi 

based on log10 competitive index in both strain backgrounds (Fig. 4; p<0.005, Wilcoxon Signed 

Rank). With the average chronic cystitis bladder containing 107 CFU at 4 weeks, a log10CI of > 5 

indicates that strains with FimH::S62/A163 are near the limit of detection (20 CFU). The median 

log10 CI for co-infecting UTI89 FimH::A62/V163 SpectR and UTI89 FimH::S62/A163 KanR was 

also significantly higher than a control competition between UTI89 KanR and UTI89 SpectR with 

the same fimH, confirming that the difference in antibiotic resistance marker could not account 

for the infection phenotypes (Fig. S4). Thus, in co-infections, independent of strain background, 

expressing FimH::A62/V163 was advantageous over expressing FimH::S62/A163 in the urine as 

well as in chronic organs at four wpi (Fig. 4). 

 

UTI89 outcompetes CFT073 in co-infection experiments even when expressing the same FimH 

To further clarify the relative contribution of FimH differences versus other factors in 

UTI89 and CFT073 for different pathogenic phenotypes, we conducted additional co-infection 

experiments. We first, co-inoculated CFT073 and UTI89 each expressing their natural fimH 
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allele. UTI89 had higher titers than CFT073 in the bladder lumen as well as the intracellular 

compartment (Fig. S5A – B, D). We observed no difference between UTI89 and CFT073 in the 

kidneys (Fig. S5C). We then co-inoculated UTI89 and CFT073, both of which were expressing 

FimH::A62/V163 and found that UTI89 outcompeted CFT073 during chronic cystitis even when 

both expressed the same fimH allele (Fig. 4C), suggesting UTI89 expresses other factors, which 

in addition to its fimH allele contribute to chronic cystitis.  

 

Positively selected FimH residues impact affinity, but only when FimH is incorporated into a tip-

like complex 

We hypothesized that the fitness advantage of expressing FimH::A62/V163 over 

FimH::S62/A163 throughout infection was due to differences in the ability to bind mannosylated 

epitopes on the bladder surface. Therefore, we used BioLayer Interferometry to assess mannose 

binding of different FimH variants. FimH is known to adopt two different conformations, which 

vary in their affinity for mannose [33]: an elongated conformation with high mannose affinity 

and a compressed conformation with low mannose affinity (Fig. 1). In the first set of binding 

experiments, FimCH complexes were used in which FimC traps FimH in the elongated, high 

mannose binding conformation [33, 42]. We immobilized biotinylated BSA-mannose on 

SuperStreptavidin pins and tested for binding of FimCH complexes in solution. For these assays 

we utilized FimH with variations at positions 62 and 163 as seen in UTI89 and CFT073. We also 

varied position 27 since this position was previously found to be under positive selection [29]; 

this residue is variable in both uropathogens and fecal strains (Table 1). All FimCH complexes 

had very similar affinity to BSA-mannose regardless of the variant with the exception of 

FimH::Q133K, which has a mutation within the mannose binding pocket resulting in an inability 
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to bind to mannose (Fig. 5A) [26]. The FimCH fit curves had very high R2 values and KD values 

between 1.5 and 4.2 µM (Table 2), consistent with previously reported affinity calculations for 

the isolated FimH lectin domain [42].  

Each variant was then reconstituted into a tip-like FimChisGH complex in vitro by 

combining FimChisG and FimCH (Fig. 5B). In addition to FimChisGH complexes, small 

quantities of higher order structures such as FimChisGGH and FimChisGGGH were detected, but 

the distributions of these complexes were equal among FimH alleles. FimH within the 

FimChisGH complex is able to adopt the compact conformation seen in tip structures, as the 

lectin domain is no longer restrained from bending by FimC [33, 43, 44]. In the tip-like 

FimChisGH complexes, different FimH alleles elicited dramatic differences in BSA-mannose 

binding affinity (Fig. 5C), with three general affinity patterns: high, intermediate, and low. 

FimChisGH::V27/A62/A163 and FimChisGH::A27/A62/A163 maintained the same high affinity 

as their FimCH counterparts (Table 2, Fig. 5), suggesting that these variants may not adopt the 

compressed, low-affinity conformation in the pilus or that their propensity to transition to the 

elongated state is increased accounting for higher relative affinities. The UTI89 natural variant 

(FimH::A27/A62/V163) and CFT073 natural variant (FimH::A27/S62/A163) both showed 

intermediate-affinity when in the FimChisGH complexes. However, FimChisGH::A27/A62/V163 

had a significant (p = 0.0087, Mann-Whitney U Test), two-fold higher affinity than 

FimChisGH::A27/S62/A163 (1.2 vs. 2.5 x 10-4 M; Table 2). A two-fold difference in FimH KD 

would likely translate to a very large difference in adherence in piliated UPEC containing 20-200 

pili per bacterium (Fig. S1C). FimChisGH::A27/S62/V163 and FimChisGH::Q133K both had low 

affinity with KD values in the 3 mM range (Table 2). This suggests that FimH::A27/S62/V163 

may not be able to adopt the elongated high-affinity conformation as efficiently.  
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To assess whether higher binding correlated with increased in vivo infection, we tested 

virulence at 4 wpi mice were co-infected with UTI89 expressing either of the high affinity FimH 

variants, FimH::A27/A62/A163 or FimH::V27/A62/A163 and WT UTI89 (Fig. 5D). Both 

FimH::A27/A62/A163 and FimH::V27/A62/A163, but not the WT control were attenuated in the 

bladders of mice 4 wpi compared to WT UTI89 (Table 2). This result suggests that mannose-

binding affinity does not directly correlate with pathogenicity. Instead, an intermediate binding 

affinity is the best predictor of virulence, implying that FimH may dynamically interconvert 

between conformations depending on the local environment.  
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Discussion 

The looming worldwide crisis of globally spreading, multi-drug resistant microorganisms 

[45], the growing body of work delineating the important benefits of the host’s normal 

microbiota [46], and the deleterious effects of broad-spectrum anti-microbial treatments on these 

symbiotic/commensal relationships [47], argue that we need to develop new approaches to treat 

and prevent common infectious diseases such as UTI. With the delineation of Koch’s postulates 

and Falkow’s molecular postulates [48, 49], infectious disease experts have learned to associate a 

particular disease with the presence or absence of a particular pathogen or “virulence factor”, 

respectively, in a diseased host.  In considering UTI pathogenesis, a critical factor is that 

virulence is not simply dichotomous (presence/absence of a microorganism in the host or 

virulence factor within a bacterium). Outcomes of infectious disease in general, and UTIs 

specifically, are determined by a complex, yet seemingly subtle, interplay between differing host 

genetics and immune states [50, 51], host experiences/exposures [52, 53], bacterial gene carriage 

[9, 10, 16], co-infecting species [54], and many other factors. In this study, we detail an instance 

that goes beyond presence or absence of virulence factors, showing that possession of particular 

allelic variants of a critical adhesin of UPEC modulates the pathogenic process. We have 

combined an evolutionary analysis of fimH, multiple clinical UPEC isolates, representative in 

vivo models of infection, and biochemical structure-function correlation to explain how the 

identity of individual amino acid residues, far from the ligand binding “active site” (Fig. 1), alter 

FimH binding affinity likely through modulation of conformational dynamics, governing 

virulence of two pathogenic UPEC strains.  

Adhesive pili assembled by the chaperone-usher pathway (CUP), such as P and type 1 

pili, contain adhesins at their tips that play important roles in host-pathogen interactions. Each 
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sequenced UPEC strain has been found to encode numerous CUP operons [55]. Some CUP 

adhesins are known to recognize specific receptors with stereochemical specificity, such as 

FimH for mannosylated glycoproteins. Type 1 pili, like other CUP pili, are encoded in a gene 

cluster comprised of regulatory genes (FimB, FimE), a major pilin subunit (FimA), a periplasmic 

chaperone (FimC), an outer membrane usher (FimD), minor tip pilins (FimF, FimG) and the 

adhesin (FimH). Type 1 pili, like P pili and others, are composite structures, consisting of long, 

rigid, helical rods made up of FimA, joined at the distal end to a short, linear fiber consisting of 

FimF, FimG and the FimH adhesin [56, 57]. Tip adhesins consist of two domains: a lectin 

domain and a pilin domain (Fig. 1). Pilin domains and subunits are incomplete immunoglobulin 

(Ig)-like folds, encoding just six of the needed seven strands and thus pilin subunits require the 

action of dedicated periplasmic chaperones for folding and stability. We discovered that the 

molecular basis of chaperone-assisted folding was a reaction that we named donor-strand 

complementation (DSC) [58-60] in which the chaperone transiently completes the Ig-like fold of 

each subunit, providing the missing 7th beta strand needed for pilin subunit folding [61]. The 

DSC subunit-chaperone complex holds the subunit in a primed high-energy state with connecting 

loops disordered and the subunit hydrophobic core incompletely collapsed [60-62]. These 

complexes are then differentially targeted to the outer membrane usher [63, 64] (Fig. 6A), which 

is a five domain gated channel that catalyzes pilus assembly by driving subunit polymerization in 

a reaction we termed donor strand exchange (DSE). Each of the non-adhesin subunits contains a 

short N-terminal extension (Nte). DSE occurs in a zip-in-zip-out mechanism where an incoming 

subunit’s Nte zips into the chaperone-bound groove of a nascently incorporated subunit at the 

growing terminus of the pilus resulting in chaperone dissociation [65]. This allows the final 

folding of the subunit with the collapse of the hydrophobic core and the ordering of loop regions, 
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such that every subunit in the pilus completes the Ig fold of its neighbor. The usher converts 

subunit binding and folding energy into work, acting by sequential allosteric interactions, 

promoting sequential DSE and incorporation of subunits into the growing pilus while stably 

maintaining contact with the growing pilus and ensuring the integrity of the outer membrane 

barrier in the absence of ATP [66, 67].  

FimH has a distal mannose binding lectin domain (FimHL) and a proximal pilin domain 

(FimHp). The FimG pilin adapts FimH to the tip of the pilus (Fig. 1). Le Trong et al recently 

compared FimHL and Fim tip crystal structures, and found that FimH adopts at least two 

conformations with FimHL elongated or compact (Fig. 1, 6A) [33, 68]. Functional biochemical 

assays indicated that mannose binds tightly to the elongated FimHL but weakly, if at all, to the 

compact FimHL [33, 42]. Recent structural “snapshots” of pilus assembly captured these same 

FimH conformations during its assembly across the usher: elongated while still bound to FimC 

prior to DSE and compact after DSE with FimG, which incorporates FimH into the pilus tip and 

its extrusion through the usher pore (Fig. 6A insets) [43, 67].  

The advent of high-throughput sequencing has allowed the examination of hundreds of 

FimH alleles, providing insight into the evolutionary process of this virulence factor [29, 35]. 

FimH is highly conserved both in clinical and commensal E. coli isolates, with all alleles 

encoding identical amino acids at 90% of the positions [29]. The mannose-binding pocket of 

FimH is invariant among sequenced UPEC, but residues 27, 62, and 163 outside of this binding 

pocket showed evidence of positive selection (Fig. 1), suggesting the identity of residues at these 

positions can confer increased fitness in the urinary tract [29, 35]. All of the positively selected 

residues in FimH are in locations previously identified to displace significantly between 
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elongated and compressed conformations, suggesting that residues may impart steric clashes in 

one conformation or the other (Fig. 1) [33, 44, 69].  

The FimH of the two prototypical UPEC isolates, UTI89 (a cystitis isolate) and CFT073 

(a pyelonephritic/sepsis isolate) are identical at residues 27 (both having A), but differ at 62 and 

163; UTI89 expresses A62/V163 and CFT073 expresses S62/A163 and are otherwise identical. 

Here, we demonstrate that both of these alleles show high affinity for mannose when complexed 

with FimC and an intermediate affinity when complexed with FimG in a tip-like FimChisGH 

complex. Strains harboring a FimH sequence coding for A27/A62/V163, present in the cystitis 

isolates NU14 and UTI89, demonstrated increased fitness in the bladder compared to strains 

expressing A27/S62/A163, present in UPEC 536 and CFT073, as determined in single and co-

infections at 4 weeks post infection (Table 2; Fig. 6B). Because strains with 

FimH::A27/S62/A163 were essentially absent in 4 week bladders (Fig. 4, 6B), it is likely that 

bottlenecks enforced by innate defenses were more easily transcended by strains harboring 

FimH::A27/A62/V163 likely because of differences in binding and invasion efficiencies (Fig. 

6B) leading to higher IBC numbers during early infection [18]. In addition, the UTI89 fimH 

allele demonstrated enhanced fitness relative to all of the other tested wild type and mutant 

variations of these alleles during chronic cystitis (Table 2), when the superficial facet cells are 

completely denuded [20] suggesting continued selection based on fimH allele during chronic 

infection.  

All of the FimH alleles tested, except Q133K, exhibited high affinity for mannose when 

complexed with FimC and held in the elongated conformation, and all naturally occurring FimH 

alleles exhibited a low or intermediate affinity for mannose when incorporated into the tip 

structure. Interestingly, while UTI89 FimH functions with an A62 and CFT073 functions with an 
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A163, in a survey of FimH sequences from naturally occurring E. coli strains the combination of 

A62/A163 has never been observed. We show that A62/A163 variants (both 

FimH::V27/A62/A163 and FimH::A27/A62/A163) retain their high affinity for mannose even 

when incorporated into tip-like complexes suggesting that FimH::A62/A163 does not adopt the 

low-affinity compact conformation when in the pilus tip or that it’s transition to the high affinity 

elongated form is greatly enhanced in the presence of mannose. Despite their increased relative 

affinity for mannose, strains harboring these fimH alleles were severely attenuated, and it was 

previously shown that FimH::V27/A62/A163 does not form IBCs at 6 hpi [29]. This may reflect 

a critical role in pathogenesis for the compact state in pathogenesis and/or for the ability to 

convert between the compact and elongated conformation states. The elongated conformation 

may prevent detachment from the uroplakin receptor, making UPEC more vulnerable to TLR4-

mediated expulsion from the urothelium [70]. Alternatively, the compact or low-affinity state 

may be needed within the IBC or to resist shear stress in the urinary tract. Sokurenko et. al. 

discovered that FimH binds via a “catch-bond” mechanism in which shear force can influence 

the strength of binding [71, 72]. We posit that a dynamic equilibrium of FimH between the two 

conformations may allow UPEC to resist shear forces within host niches and that residues at 

positions 27, 62 and 163 may impact the transitioning between the two conformations.  It is 

possible that FimH::A62/A163 has dramatically higher mannose binding affinity in its compact 

state thus potentiating transitioning to the elongated state, but the binding pocket of the compact 

state of FimH is partially occluded, and would have to adapt to accommodate mannose to an 

appreciable degree [33].  

 Possession of an alanine at position 62 (instead of serine) has been associated 

with increased virulence, mannose binding, and an increased ability to bind to collagen [29, 73, 
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74]. Further, it was previously determined that mutation of position 62 from a serine to a leucine 

or glutamic acid enhanced bacterial binding to surface mannose [69], consistent with our 

findings. Our work would suggest that mutation of this residue from alanine to serine, in the 

context of V163 (FimH::A27/S62/V163) may decrease the ability of FimH to transition from the 

compressed, low-affinity conformation seen in the tip in the absence of mannose to the high 

affinity, elongated conformation. Thus, the combination of amino acids present at positions 62 

and 163 modulate FimH function. We propose that evolutionary pressure on UPEC isolates has 

led to the selection of FimH residue combinations, which alter the stability or affinity of one 

conformation or the other, affecting the equilibrium between the different conformations and 

thus mannose affinity and pathogenesis. The FimH alleles with intermediate binding affinity, 

A27/A62/V163 and A27/S62/A163, expressed by UTI89 and CFT073, respectively, may be able 

to dynamically switch between conformations allowing them to bind to and invade superficial 

facet cells, and then detach and enter the cytoplasm to replicate into IBCs (Fig. 5, 6B).   

We have recently characterized the population dynamics between gastrointestinal (GI) 

and bladder niches in women suffering UTI (Fig. 6C). At the time of UTI in four patients, we 

found that the UPEC strain that occupied the urinary tract was the same as the dominant E. coli 

found in the GI tract [6]. Interestingly, in one patient from this study, when a recurrent UTI was 

caused by a different strain of UPEC, this new strain also replaced the previous strain in the GI 

tract, implying that increased fitness in the urinary tract was not accompanied by a decrease in 

fitness in the gut, which was corroborated by a fitness analysis in both niches in animal models 

(Fig. 6C) [6]. The most common combination of positively-selected residues we found in both 

healthy human feces as well as the urinary tracts of women suffering UTI was A27/S62/V163, 

perhaps suggesting a generalist FimH, capable of colonizing both niches. The low affinity for 
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mannose of a UTI89 FimH mutated to carry this combination of residues suggests that this FimH 

allele likely is very poor in adopting an elongated conformation perhaps signifying that the 

compact conformation is of greater importance throughout infection. Additionally, residues 

elsewhere in FimH may further modulate the conformation equilibrium of this particular 

combination of positively-selected residues. The two combinations we found only in diseased 

urine but not in healthy feces (FimH::A27/A62/V163 and FimH::A27/S62/A163) suggests that 

these alleles may have increased virulence in the urinary tract. It is possible that E. coli 

expressing this allele may invariably lead to UTI, which may accelerate the decision to seek 

treatment. Selection for fimH is likely quite different in the urinary and GI tracts due to 

differences in shear stress, which has been shown to influence FimH binding, due to urine flow 

and peristalsis [71, 72, 75]. Thus, it will be interesting to assess the effect of FimH variants in the 

GI tract. These types of studies and investigations similar to those performed by Chen et al in 

which multiple niches are sampled longitudinally may further help refine the source-sink 

hypothesis of virulence and pathoadaptation of UPEC in multiple niches [6, 76].  

Increasing rates of antibiotic resistance in bacteria, including uropathogens [77], the 

spread of multi-drug resistant strains [45], and the dearth of new antibiotic candidates in 

pharmaceutical development pipelines make a compelling argument and opportunity for novel 

virulence-based therapeutics (Fig. 6D-E) [78]. Multiple groups are investigating methods to 

inhibit the ability of UPEC to bind and invade bladder tissue as well as to block catheter 

colonization via anti-adhesive small molecule inhibitors and vaccines (Fig. 6D-E) [79-82]. High 

affinity mannosides that bind in the FimH binding pocket have been shown to block invasion and 

IBC formation as well as biofilm formation on abiotic surfaces [79, 80]. Additionally, 

mannosides delivered orally were shown to dramatically reduce bacterial burden during chronic 
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cystitis (Fig. 6D) [80]. Pilicides have been designed aimed at disrupting assembly of multiple 

CUP pili in order to incapacitate bacterial adhesion in various tissue niches and body habitats 

(Fig. 6E) [83]. These molecules work, in part, by blocking the interaction of the usher with 

chaperone-subunit complexes, thus blocking pilus assembly [83]. These anti-virulence 

therapeutics hold promise for targeting recalcitrant UPEC infections.  
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Conclusion 

Our current understanding of the pathogenic lifestyles of UPEC is in part an extension of 

the molecular and structural characterization of type 1 pili. This has led to a new understanding 

of clinical UTIs and its complicating factors. Combining this with genomic and pathoadaption 

studies, we have elucidated a connection between evolutionary pressures, protein structural 

dynamics, and in vivo disease pathogenesis. UTIs are one of the greatest contributors to 

antibiotic consumption and thus likely an important driver of the development of antibiotic 

resistance. Our analysis here would argue that, in addition to the therapeutic strategies addressed 

above, therapeutics that block the interconversion of the FimH adhesin between conformations; 

locking it in either conformation would impede UPEC pathogenesis [69, 84]. Analyses of other 

pathogens and virulence genes by combining positive selection analyses, in vivo models of 

pathogenesis, and biochemical and structural characterization could lead to identification of 

similar targets for the development of novel therapeutics that will be needed to fend off the 

looming crisis of multi-drug resistant bacterial pathogens. 
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Materials and Methods 

Bacterial Strains.  

UTI89 strains with chromosomally integrated fimH variants were generated using the λ Red 

recombinase system [85] and are the same as previously published [29]. The same method was 

used to create similar fimH variants in CFT073. Creation of HK marked antibiotic resistant 

strains was conducted similarly. 

Mouse infections.  

Infections, LacZ staining of bladders, and ex vivo gentamicin protection assays were conducted 

as previously described [18, 41, 86]. All mouse infection studies were approved by the Animal 

Studies Committee of Washington University in St. Louis, MO.  

Protein Purification.  

See Supplemental Materials for purification details. 

Biolayer Interferometry (BLI).  

OCTET was used to attain BLI progress curves, which allowed us to extract kinetic parameters 

(kon, kdis, and KD). See Supplemental Materials for more details. Analysis was conducted on 

ForteBio Data Analysis 6.4. Processed data was fit globally for each variant at 3 concentrations 

between 1.25 and 12 µM for FimCH and 1.8 to 200 µM for FimChisGH per experiment in a 1:1 

kinetic binding model.  

Statistical analysis.  

Statistical analysis was performed in GraphPad Prism 5.0. CFU values of zero were set to the 

limit of detection of the assay. Competitive Index (CI) = (CFUoutput strain A/ CFUoutput strain 

B)/(CFUinput strain A/ CFUinput strain B). Wilcoxon Signed Rank was used on log transformed CI 
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to determine if the median value was different than 0. Statistical analysis to compare median 

values between groups was determined by Mann-Whitney U test. To compare proportions of 

mice experiencing persistent bacteriuria and chronic cystitis, we used Fisher’s Exact Test. p 

<0.05 was considered significant.    
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Figures and Tables 

 

Figure 1. FimH positively selected residues  

FimH is a two-domain adhesin comprised of a lectin domain of residues 1-150 (green) and a 

pilin domain with residues 159-279 (blue), and a linker loop (yellow) connecting them. 

Positively selected residues are mapped onto the structures of FimH as red spheres. A) In the 

elongated FimH (V27/S62/V163) structure, mannose is observed at the distal binding pocket in 

white sticks (J96 FimH; PDB:1KLF; FimC removed for clarity). B) In the compressed FimH 

(A27/S62/A163) structure in the absence of mannose, position 133 of the binding pocket is 

colored white (F18 FimH; PDB:3JWN). Note the distance of these positively selected residues 

from the mannose binding pocket. 
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Figure 2  

CFT073 and UTI89 acutely infect mouse urinary tracts. A) IBCs per bladder were enumerated 

with LacZ stain. B) Total bladder bacterial counts were determined after homogenization. C) 

Total bacteria present in both kidneys was enumerated. N = 2 experiments with 5 mice per 

group. Panel C includes kidney titers of mice from panels A and B. 
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Figure 3  

FimH allele modulates acute and chronic pathogenesis. Mice were infected with 107 CFU (range 

3.4 x 106 – 1.8 x 107; median 1.02 x 107) of the indicated strains. A) IBCs were enumerated after 

LacZ staining. B) Urine was collected at days 1, 7, 14, and 21, and the number of bacteria 

present in bladders was determined at 4 wpi. Data points above 104 CFU reflect mice that had 

persistent bacteriuria and are considered to have chronic cystitis. Red symbols denote mice that 

resolved bacteriuria and either had a recurrence or high levels of reservoir titers, and were thus 

included in the resolved category because they did not experience persistent bacteriuria and 

chronic cystitis. The percentage of mice per group experiencing chronic cystitis is displayed at 

the top of each column. C) Kidney titers of the mice from panel B. A) N = 2 – 11 experiments 

with 2 – 8 mice per group. B-C) N = 2 – 8 experiments with 5 – 10 mice each.    
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Figure 4 

FimH::A62/V163 displaces FimH::S62/A163 during chronic co-infection. Co-infections were 

conducted A) between UTI89 with FimH::A62/V163 and FimH::S62/A163, B) between CFT073 

with FimH::A62/V163 and FimH::S62/A163, and C) between UTI89 FimH::A62/V163 and 

CFT073 FimH::A62/V163. Urine was collected at days 1, 3, 7, 14, and 21 days post infection 

(dpi), and bladder and kidney titers were determined at 28 dpi. Log10 of competitive indices of 

the mice experiencing chronic cystitis is plotted as determined via plating on selective 

antibiotics. N = 2-3 experiments with 5-10 total mice per group. Wilcoxon signed rank test was 

conducted to evaluate whether the median value was significantly different from 0; **, p<0.01, 

***, p<0.005.    
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Figure 5 

Effect of FimH on mannose binding and chronic fitness. A) Representative curves showing 

FimCH association to and dissociation from immobilized BSA-mannose at indicated 

concentrations. Two biological replicates conducted. B) Representative 14% SDS-PAGE gel 

indicating select variants in FimCHisGH samples. “B” marks the boiled lanes. C) Representative 

curves showing FimCHisGH association to and dissociation from immobilized BSA-mannose at 
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the indicated concentrations. Representative of three biological replicates with two technical 

replicates each with combined KD data shown in Table 2. D) Four week bladder titer is shown 

for mice experiencing chronic cystitis with co-infections of the listed strains. N = 1-3 

experiments with 5-10 mice each. 
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Figure 6 

Structure-function-treatment model of UPEC pathogenesis. A) Model of pilus biogenesis 

including delivery of chaperone-subunit complexes to the NTD (blue) of the usher (orange) with 

transfer to the CTDs (yellow and pink). The next subunit reacts with the previous by DSE 

polymerizing the pilus rod. Insets represent recent crystal structures demonstrating the 

orientation of FimH as it binds to and exits the usher [43, 67] (PDB: 3RFZ and PDB: 4J30). B) 

UPEC pathogenic cascade showing type 1 piliated UPEC attaching to superficial cells of the 

bladder, invasion into these cells, and replication in the cytoplasm to form IBCs. Mice can then 

either resolve the infection with potential recurrences thereafter or develop persistent bacteriuria 

and chronic cystitis. C) The dynamics of transmission from the gut to the bladder and vice versa 

is an intriguing concept that is just now beginning to be studied [6]. D) Mannoside treatment can 

detach bacteria from the bladder epithelium during chronic cystitis leading to clearance. E) 

Pilicides block the ability of the pilus to polymerize. 
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Table 1. Prevalence of positively selected FimH residues. 

Residuea Frequency 

in healthy 

fecesb (%) 

Frequency in 

urine/ 

periurethrab 

(%)  

Sequenced 

Analogc 

V27/S62/V163 5/33 (15) 49/254 (19) MG1655/J96 

A27/A62/V163 0 19/254 (7) UTI89/NU14 

A27/S62/A163 0 17/254 (7) CFT073/536 

A27/S62/V163 28/33 (85) 169/254 (67) None 

a All other possibilities not observed. 

b 287 strains utilized from human ECOR and clinical E. coli isolates with 33 fecal samples from 

uninfected women and 254 infected urine/periurethral isolates.   

c Published strain for which fimH sequence is available [34, 73, 87-90]. No fully sequenced analog of 

A27/S62/V163 is published.   
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Table 2. Affinity values and fits for Fim allele complexes 

Pathogenesisb FimH allelea FimCH 

Mean KD 

(µM) 

Mean 

Fit 

(R2) 

FimChisGH 

Mean KD 

(µM) 

Mean 

Fit 

(R2) 

Acute Chronic 

Q133K 0 0.46 7193 ± 2957  0.94 - -- 

A27/S62/V163 3.6 ± 0.2 0.99 3198 ± 1917  0.99 + - 

A27/S62/A163 

(CFT073) 

1.5 ± 0.8 0.99 252 ± 110 0.98 + + 

A27/A62/V163 

(UTI89) 

4.2 ± 0.6 0.99 119 ± 33   0.98 ++ ++ 

V27/A62/A163 3.0 ± 0.0 0.99 2.4 ± 0.2 0.98 - -- 

A27/A62/A163 1.7 ± 0.0 0.99 7.0 ± 0.6 0.98 ? -- 

aRelative to UTI89 FimH, where applicable 

bfrom figures 2, 3, 5D, or inferred based on data from Chen et al 2009. 
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Supplementary Material  

Supplemental Methods 

In vitro bacterial assays.  

Guinea pig hemagglutination assays (HA) were conducted as previously described [91] with 

minor modifications. Bacteria were grown 2 x 24 hours in 10 mL LB at 37oC statically. Bacteria 

were centrifuged 6500 RPM for 10 min. and resuspended in PBS to an OD600 of 1.0. Guinea pig 

serum (Colorado Serum) was washed with PBS and diluted to OD640 of 1.9-2.0. Twenty-five µL 

of guinea pig blood was added to each well. The HA titer reported is the well containing the last 

amount of visible RBC agglutination. Invasion assays were similar to those previously described 

[92, 93]. Bladder 5637 cells were grown to confluence and split such that 1 – 5 x 105 cells were 

in each well in RPMI. UPEC was added to each well at a multiplicity of infection (m.o.i.) of 10. 

After centrifugation, we aspirated the media and replaced it with RPMI supplemented with 120 

µg/mL gentamicin (Sigma) and incubated for 60 min at 37 oC. Bacteria were serially diluted and 

plated to LB-agar plates with the appropriate antibiotics after eukaryotic lysis with 1% Triton X-

100. Biofilm assays were conducted in LB in PVC plates and quantified by Crystal Violet at 600 

nm as described previously [83, 94]. 

 

Protein Purification 

FimCH complexes were expressed in E. coli C600 with a pBAD33 plasmid containing the 

appropriate fimH allele and pTRC99a plasmid containing UTI89 fimC. The protein sequence of 

FimC is identical for UTI89 and CFT073 [34, 95]. Periplasm was prepared as previously 

described [96]. The supernatant was purified over columns as previously described [97] and 
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cleaned on an additional Source 15S column in 15mM 2-(N-morpholino)ethanesulfonic acid 

(MES) pH 5.8 in the absence of mannose. His-tagged FimC was co-expressed on pETS1000 with 

FimG expressed on pETS2A and FimChisG purified essentially as previously described [64]. 

Periplasm was dialyzed with PBS and 250 mM NaCl overnight. A Talon column (Clontech) was 

run with a gradient of PBS with 300 mM imidazole. Pooled fractions were dialyzed against 15 

mM MES at pH 5.8 overnight. A 2nd Source column (15S GE) was run with a gradient of 15 mM 

MES pH 5.8 with and without 400 mM NaCl. For generation of FimChisGH variant complexes, 

FimCH variant complexes were mixed with FimChisG complexes in equimolar ratios and 

incubated at 4 oC for 18-20 hrs.  

 

Biolayer Interferometry 

For BLI experiments, SuperStreptavidin (SSA) pins were first dipped in a baseline in HEPES-

Buffered Saline (HBS) pH 7.5 for 120 seconds, followed by loading of 10 µg/ml biotinylated 

BSA-mannose (DEXTRA) in HBS for 240-300 seconds, quenching by 10 µg/ml biocytin in HBS 

for 180 seconds, and another baseline step in HBS for 120 seconds. Thereafter, pins were dipped 

in HBS + 1% BSA + 0.05% TWEEN-20 to block non-specific interactions for 300 seconds, 

transferred to protein samples (either FimCH or FimChisGH variants) for association for 300-600 

seconds, and moved to HBS for dissociation for 300 seconds. KD values for pilot FimChisGH 

experiments were not included for FimH::A27/A62/V163, FimH::A27/S62/A163, 

FimH::A27/S62/V163, and FimH::Q133K because determined KD values were greater than 10-

fold above the highest tested concentration, below the limit of detection of the instrument. R2 

values greater than 0.98 and 0.90 were included in the analysis for FimCH and FimChisGH 

complexes, respectively. 
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Supplementary Figures 
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Supplementary figure 1: in vitro effects of fimH allele  

A) Growth was determined for 16 hrs in LB in 96 well plates. B) PCR was conducted on 1 µL of 

bacteria grown 2 x 24 hrs in static culture at 37 oC and graphed as the fraction of the bacterial 

population with the fim promoter in the ON orientation. C) Degree of piliation was assessed by 

TEM for each strain. Fraction of cells expressing no (bald), 1-20 (low), 20-100 (moderate) or 

>100 (abundant) pili per cell. Represents 2 pooled experiments. D) Titers of bacterial strains 

after 1 hr invasion into cultured 5637 cells is shown. Data are pooled from 3 biological replicates 

with 3 technical replicates each. E) Guinea pig RBC HA in the absence of mannose was 

conducted for the strains indicated. Titer is listed as the last well showing visible agglutination. 

Pooled data from 2-9 biological replicates with 2 technical replicates each. F) Strains were 

grown in LB statically at room temperature in a 96-well PVC plate for 42-45 hrs to evaluate 

biofilm formation. Percent of biofilm relative to UTI89 is displayed. 3 biological replicates with 

6-8 technical replicates each are pooled.  
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Supplementary Figure 2: in vitro LB co-infections 

One µL of a 2 x 24 LB culture was inoculuated after dilution into 10 mL LB and allowed to 

grow statically for 24 hrs. Two hundred microliters was taken 2, 4, 7.5, 12, and 24 hrs after 

inoculation and plated to selective media. A) All Log10 CIs are graphed for a sample co-

inoculated with UTI89 FimH::S62/A163 Kanr and UTI89 FimH::A62/V163 Spectr in magenta. 

Orange is a co-inoculation of CFT073 FimH::A62/V163 Kanr and CFT073 FimH::S62/A163 

Chlorr. B) All Log10 CIs are graphed for a sample co-inoculated with UTI89 FimH::S62/A163 

Kanr and CFT073 FimH::S62/A163 chlorr (blue). Black squares represent all timepoint Log10CIs 

of a co-inoculation of CFT073 FimH::A62/V163 Kanr and UTI89 FimH::A62/V163 Spectr. C-D) 

Log10CI for each strain comparison over time for panels A and B, respectively. 
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Supplementary Figure 3: FimH allele modulates acute niche occupation  

Ex vivo gentamicin protection assay was conducted on bladders extracted at 3 and 6 hpi. Log10CI 

of FimH::A62/V163 relative to FimH::S62/A163 is shown for 3 (A) and 6 (B) hpi for 

competitions in CFT073 and UTI89 backgrounds. Wilcoxon Signed Rank, *, p<0.05; **, p< 

0.01; ***, p<0.005. 

 

 



139 

 

Supplementary Figure 4.  

Log10CI of chronic bladder titers graphed for a co-infection between isogenic strains differing by 

antibiotic marker.  Data in the left column reproduced from Figure 3A representing the effect of 

FimH on chronic fitness. Data in the right column is a control co-infection of isogenic strains 

differing only by antibiotic resistant marker. 
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Supplementary Figure 5: UTI89 outcompetes CFT073 during acute infection  

7-8 week old female C3H/HeN were infected with a 50 µL inoculum containing CFT073 and 

UTI89 totaling 2 x 107 CFU (range 1.46 x 107 – 2.2 x 107). At 6 hpi, mice were sacrificed, and an 

ex vivo gentamicin protection assay was conducted on the bladder. A) Bacterial titers present in 

the lumen were enumerated by plating onto antibiotic selective agar plates. B) Intracellular 

UPEC were enumerated after gentamicin treatment. C) Kidney pairs were homogenized and 

plated. D) Log10 CI were computed for UTI89 titers relative to CFT073 to control for varying 

inoculum concentrations. Data is pooled from 2 experiments with 2 competitions of 5 mice each 
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where UTI89 KanR and CFT073 chlorR were co-infected as well as UTI89 chlorR and CFT073 

KanR. A-C) statistical analysis was conducted using Mann-Whitney U-test. D) Wilcoxon Signed 

rank relative to zero was determined. **, p<0.01. 
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Chapter 4: Uropathogenic Escherichia coli Superinfection Enhances the Severity of 

Mouse Bladder Infection  

 

D. J. Schwartz, M. S. Conover, T. J. Hannan, and S. J. Hultgren 

 

PLoS Pathogens 2015 11(1). doi:10.1371/journal.ppat.1004599. PMID25569799 
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Abstract  

Urinary tract infections (UTIs) afflict over 9 million women in America every year, often 

necessitating long-term prophylactic antibiotics. One risk factor for UTI is frequent sexual 

intercourse, which dramatically increases the risk of UTI. The mechanism behind this increased 

risk is unknown; however, bacteriuria increases immediately after sexual intercourse episodes, 

suggesting that physical manipulation introduces periurethral flora into the urinary tract. In this 

paper, we investigated whether superinfection (repeat introduction of bacteria) resulted in 

increased risk of severe UTI, manifesting as persistent bacteriuria, high titer bladder bacterial 

burdens and chronic inflammation, an outcome referred to as chronic cystitis. Chronic cystitis 

represents unchecked luminal bacterial replication and is defined histologically by urothelial 

hyperplasia and submucosal lymphoid aggregates, a histological pattern similar to that seen in 

humans suffering chronic UTI. C57BL/6J mice are resistant to chronic cystitis after a single 

infection; however, they developed persistent bacteriuria and chronic cystitis when superinfected 

24 hours apart. Elevated levels of interleukin-6 (IL-6), keratinocyte cytokine (KC/CXCL1), and 

granulocyte colony-stimulating factor (G-CSF) in the serum of C57BL/6J mice prior to the 

second infection predicted the development of chronic cystitis. These same cytokines have been 

found to precede chronic cystitis in singly infected C3H/HeN mice. Furthermore, inoculating 

C3H/HeN mice twice within a six-hour period doubled the proportion of mice that developed 

chronic cystitis. Intracellular bacterial replication, regulated hemolysin (HlyA) expression, and 

caspase 1/11 activation were essential for this increase. Microarrays conducted at four weeks 

post inoculation in both mouse strains revealed upregulation of IL-1 and antimicrobial peptides 

during chronic cystitis. These data suggest a mechanism by which caspase-1/11 activation and 
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IL-1 secretion could predispose certain women to recurrent UTI after frequent intercourse, a 

predisposition predictable by several serum biomarkers in two murine models.   

 

Author Summary 

 Urinary tract infections (UTIs) affect millions of women each year resulting in substantial 

morbidity and lost wages. Approximately 1.5 million women are referred to urology clinics 

suffering from chronic recurrent UTI on a yearly basis necessitating the use of prophylactic 

antibiotics. Frequent and recent sexual intercourse correlates with the development of UTI, a 

phenomenon referred to clinically as “honeymoon cystitis.” Here, using superinfection mouse 

models, we identified bacterial and host factors that influence the likelihood of developing 

chronic UTI. We discovered that superinfection leads to a higher rate of chronic UTI, which 

depended on bacterial replication within bladder cells combined with an immune response 

including inflammasome activation and cytokine release. These data suggest that bacterial 

inoculation into an acutely inflamed urinary tract is more likely to lead to severe UTI than 

bacterial presence in the absence of inflammation. Modification of these risk factors could lead 

to new therapeutics that prevent the development of recurrent UTI. 
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Introduction 

 Nearly nine million people present each year to primary care physicians with a urinary 

tract infection (UTI), costing nearly $2 billion yearly [1, 2]. Women suffer the majority of these 

infections, with the lifetime risk approaching 50% [3]. Furthermore, 25-40% of these women 

will suffer recurrent UTI (rUTI), with 1.5 million women referred to urology clinics and often 

requiring prophylactic antibiotics to prevent recurrence [4-6]. Uropathogenic E. coli (UPEC) are 

responsible for >80% of community acquired UTI and 50% of nosocomial UTI [7, 8]. In the 

absence of antibiotic therapy, up to 60% of women experience symptoms and/or bacteriuria 

lasting months after initial infection [9-12], implying that cystitis is not always self-limiting. 

Furthermore, if the infection persists without adequate treatment, the organisms have the 

capacity to ascend the ureters, causing pyelonephritis and sepsis [13]. Antibiotic resistant 

organisms further complicate infection and threaten to increase the likelihood of chronic UTI, 

pyelonephritis and potentially bacteremia [14, 15]. UTIs are increasingly being treated with 

fluoroquinolones, which in turn has led to a rise in resistance and the spread of multi-drug 

resistant microorganisms globally, which is a looming worldwide crisis [16, 17]. It is therefore 

imperative to understand the molecular mechanisms that underlie this problematic disease in 

order to develop novel therapies. 

 Sexual intercourse is one of the most significant risk factors predisposing otherwise 

healthy women to UTI. Early studies demonstrated that sexual intercourse led to a 10-fold 

increase in bacteria/ml of urine and a subsequently increased predisposition to developing a UTI 

within 24 hours thereafter [5, 18-21]. More recent studies have shown that the frequency with 

which a woman has sexual intercourse dramatically impacts the likelihood of developing both 

acute and rUTI [4, 22, 23]. Scholes et. al found a direct association between the number of 
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episodes of sexual intercourse in a given month and the risk of developing rUTI. However the 

significance of the timing between these episodes of sexual intercourse is unknown. Are evenly 

spaced episodes associated with an equal risk or, instead, does an episode prime the bladder for 

rUTI if another insult follows within a sensitive period? To address this question, we developed a 

model of sequential infection in mice to explore the hypothesis that a sensitive period exists after 

an initial bacterial insult to the bladder in which the likelihood of developing severe, chronic 

infection is dramatically increased. 

Murine models of UTI have been used to decipher complexities of this disease in naïve 

individuals. UPEC are capable of colonizing multiple body habitats and niches, including both 

intracellular and extracellular locations within the bladder, as well as in the gastrointestinal (GI) 

tract and the kidneys. Selective pressure and bacterial population bottlenecks during colonization 

impact the ultimate fate of disease [24-27]. Adhesive pili assembled by the chaperone/usher 

pathway (CUP), such as type 1 pili, contain adhesins at their tips that function in adherence and 

invasion of host tissues and in biofilm formation on medical devices. Upon introduction of 

UPEC into the bladder, bacteria bind to either mannosylated uroplakin plaques or b1-a3 integrin 

receptors on the epithelial surface of the bladder via the type 1 pilus FimH adhesin [28-30]. 

Upon internalization, UPEC can be exocytosed as part of a TLR4 dependent innate defense 

process [31]. In addition to expulsion of individual bacteria, the host can exfoliate superficial 

facet cells to shed attached and invaded bacteria into the urine for clearance [29]. A small 

fraction of invaded bacteria escape into the host cell cytoplasm, where they are able to subvert 

expulsion and innate defenses by replicating into biofilm-like intracellular bacterial communities 

(IBCs) [24, 32]. UPEC eventually flux out of these communities with a substantial proportion 

existing as neutrophil resistant filaments [33, 34]. Importantly, evidence of IBCs and bacterial 
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filaments have been observed in women suffering acute UTI, one to two days post self-reported 

sexual intercourse, but not in healthy controls or infections caused by Gram-positive organisms, 

which do not form IBCs [21]. IBCs have also been observed in urine from children with an acute 

UTI [35]. Additionally, IBC formation and the innate immune response of cytokine secretion and 

exfoliation have been observed in all tested mouse strains, but the long-term outcome of 

infection differs [36-38].  

There are two main, mutually exclusive, outcomes to acute infection in C3H/HeN mice: 

either chronic bacterial cystitis (chronic cystitis), which is characterized by persistent high titer 

bacteriuria (>104 CFU/ml) and high titer bacterial bladder burdens (>104 CFU) two or more 

weeks after inoculation, accompanied by chronic inflammation [37, 39], or resolution of 

bacteriuria [37]. Mice that resolve infection may harbor small populations of dormant UPEC 

called Quiescent Intracellular Reservoirs (QIRs) [40]. Other mouse strains exhibit varied 

proportions of these two outcomes. C57BL/6J mice resolve bacteriuria within days and thus are 

resistant to chronic cystitis, but are susceptible to QIR formation [40, 41]. In contrast, other 

TLR4-responsive C3H background sub-strains and closely related CBA/J and DBA/2J mice 

experience persistent high-titer bacteriuria and bladder colonization by UPEC in the presence of 

chronic inflammation lasting at least four weeks post-infection (wpi). During chronic cystitis, 

persistent lymphoid aggregates and urothelial hyperplasia with lack of superficial facet cell 

terminal differentiation accompany luminal bacterial replication [37]. These same histological 

findings of submucosal lymphoid aggregates and urothelial hyperplasia have been observed in 

humans suffering persistent bacteriuria and chronic cystitis [42]. Since murine chronic cystitis 

predisposes to recurrent chronic UTI after antibiotic-mediated bacterial clearance, this is also a 

relevant model to interrogate the mechanism of recurrent cystitis [37]. In mouse models of UTI, 
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mice initially experience urinary frequency and dysuria as determined by reaction to noxious 

stimuli and nerve responses during acute infection [43, 44]; however, during chronic cystitis 

bacterial replication may exist in an asymptomatic carrier state as studies have not been 

conducted to determine whether dysuria persists. Interestingly, higher serum levels of 

interleukins (IL) 5 and 6, keratinocyte cytokine (KC/CXCL1), and granulocyte colony-

stimulating factor (G-CSF) in C3H/HeN mice at 24 hours post infection (hpi) predicted the 

development of persistent bacteriuria and chronic cystitis thereafter, suggestive of a host-

pathogen checkpoint during acute infection that predicts long term outcome [26, 37]. In women 

with an acute UTI, increased amounts of serum CXCL1, M-CSF, and IL-8 correlated with 

subsequent rUTI, suggesting a similar checkpoint [45].  

 In this manuscript, we developed a superinfection model to mimic the clinical scenario of 

frequent sexual intercourse whereby sequential inocula are introduced within a brief period of 

time. C57BL/6J mice are resistant to chronic cystitis when singly infected; however, 30% of 

C57BL/6J mice developed chronic cystitis when superinfected 24 hours after the initial infection. 

Serum elevations of IL-6, KC, and G-CSF prior to superinfection predicted the development of 

persistent bacteriuria in C57BL/6J mice similar to singly infected C3H/HeN mice. 

Superinfecting C3H/HeN mice 1-6 hours after the initial inoculation increased the proportion of 

mice experiencing chronic cystitis. In order for this elevation to occur, we found that the initial 

UPEC inoculum (the “priming” inoculation) must be alive, invasive, capable of intracellular 

replication, and able to regulate hemolysin expression. Inhibition of the caspase 1/11 

inflammasome prior to priming reduced bacterial CFU at four wpi relative to DMSO-treated 

mice. Microarray analysis of mouse bladders four wpi revealed that both C57BL/6J and 

C3H/HeN mice secreted antimicrobial peptides and IL-1 during chronic infection.  In contrast to 
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C3H/HeN mice, immunoglobulin expression was upregulated in C57BL/6J mice experiencing 

chronic cystitis. This immunoglobulin expression was absent in C57BL/6J mice that resolved 

infection and in C3H/HeN mice. Our data suggest mechanisms whereby certain women may be 

susceptible to rUTI after frequent sexual intercourse dependent on intracellular bacterial 

replication and the host immune response.  

 

Results  

Time-sensitive enhancement of infection 

 Studies suggest that a host-pathogen checkpoint within the first 24 hpi determines UTI 

outcome in C3H/HeN mice [26, 37]. In addition, the chronic inflammation observed in mice 

experiencing chronic cystitis was found to predispose to rUTI after re-infection [37]. Thus, we 

hypothesized that superinfecting mice during this period of acute inflammation would increase 

the proportion of mice experiencing chronic cystitis. We transurethrally infected 7-8 week old 

female C3H/HeN mice with 107 CFU UTI89 or PBS as the priming inoculation and 

superinfected them 1-2, 6, or 24 hours thereafter. Enumeration of bacterial CFU at one wpi as an 

initial screen revealed a dramatic increase in the proportion of mice experiencing chronic cystitis 

in mice superinfected 1-6 hours after priming compared to singly infected or PBS treated mice 

(Fig. 1A). We used a cutoff of 106 CFU to demarcate mice experiencing high-titer bacterial 

infection at one week. Importantly, we did not observe a significant increase in CFU when a 

single inoculum was doubled (2 x 107 CFU). Superinfection at 24 hpi had no effect on bacterial 

titers at one week, suggesting that the factors predisposing to increased susceptibility to chronic 

cystitis upon superinfection wane over time [26]. However, inoculation with PBS followed by 

UTI89 24 hpi did lead to high titers in 60% of mice. While this result is perplexing, it possibly 
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reflects that sacrifice six days post infection was not sufficient to delineate the typical bimodal 

distribution of outcomes [37]. The process of catheterization also induces inflammation, which 

may not have resolved by 6 dpi [46]. We conducted all subsequent C3H/HeN superinfections 

one hour after priming. 

Since early severe inflammatory responses predispose to chronic cystitis [37], we hypothesized 

that the initial inoculum primed the bladder by initiating an innate immune response to 

intracellular bacteria that predisposed to a higher proportion of mice experiencing chronic 

cystitis upon superinfection. We utilized a panel of UTI89 mutants in fimH, ompA, and kps that 

have been shown to differ in their ability to: i) invade and form IBCs and ii) persist during 

chronic cystitis in co-infection experiments [47, 48]. Mature IBCs caused by WT bacteria are 

clonally derived from a single invasive event [24]. The mannose-binding pocket of FimH is 

invariant among sequenced UPEC [47], and the binding pocket mutant, FimH::Q133K, is 

defective in mannose-binding and can neither invade the bladder epithelium nor form IBCs. 

FimH undergoes compact and elongated conformational changes wherein the receptor binding 

domain bends approximately 37° with respect to the pilin domain. The mannose-binding pocket 

is deformed in the compact conformation whereas the elongated conformation is mannose 

binding proficient [49, 50]. Several residues outside the mannose-binding pocket (positions 27, 

62, 66 and 163) are under positive selection in clinical UPEC isolates compared to fecal strains 

[47] and have been shown to function in modulating the conformational changes between the 

elongated and compact states [48]. FimH::A27V/V163A predominantly adopts a high-mannose 

binding, elongated conformation. Its expression results in: i) a 10-fold reduction in intracellular 

CFU one hpi and ii) a defect in the ability to form IBCs at six hpi. FimH::A62S shifts the 

equilibrium towards the compact conformation. Expression of this allele results in: i) a 10-fold 
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reduction in intracellular CFU one hpi and ii) a 10-fold reduction in IBC formation compared to 

WT UTI89 [47, 48]. UTI89ΔompA forms half the number of IBCs as UTI89 [51], and 

UTI89Δkps is defective in IBC formation. UTI89Δkps can replicate intracellularly and the IBC 

defect can be rescued by co-inoculation with WT UTI89, which results in mixed strain, non-

clonal, IBCs [52].  

We primed mice with these strains and superinfected one hpi with WT UTI89 and assessed 

bacteriuria at days 1, 7, 14, and 21 and enumerated bladder titers at 28 dpi. Mice were designated 

as having chronic cystitis if they had urine bacterial titers greater than 104 CFU/ml at each time 

point and bladder titers greater than 104 CFU at sacrifice [37]. We found that the 

FimH::A27V/V163A allele was incapable of priming the bladder for the development of chronic 

cystitis (p<0.05 relative to WT superinfection). In contrast, FimH::A62S did not significantly 

differ from PBS or WT superinfection; therefore, it may be capable of priming, though to a lesser 

degree. UTI89ΔompA and UTI89Δkps were both able to prime the bladder for enhanced chronic 

cystitis relative to PBS when superinfected one hpi with WT UTI89 (p<0.05 and p<0.01 

respectively; Fig. 1C). We also primed with heat-killed UTI89 and found that live, but not heat 

killed, UTI89 were capable of priming the bladder indicating that bacterial products such as LPS 

were insufficient (Fig. 1B). These data indicate that live and invasive UTI89 capable of at least 

some degree of intracellular replication are required for the priming to enhance the incidence of 

chronic cystitis upon superinfection of UTI89. Taken together these data suggest that priming 

begins during invasion and early IBC formation. 
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UPEC Hemolysin and Caspase 1/11 activation are essential 

 One of the most potent host defenses to eliminate adherent and invaded UPEC is 

superficial facet cell exfoliation [29]. The process of exfoliation is activated in part by the 

bacterial expression of hemolysin (HlyA) [53](Nagamatsu et al. in review). UTI89ΔcpxR 

overexpresses HlyA, leading to exfoliation and attenuation in our murine model of cystitis 

(Nagamatsu et al. in review). The UTI89ΔcpxRΔhlyA double mutant was not attenuated, 

suggesting that the in vivo defect was due to increased hemolysin expression (Nagamatsu et al. in 

review). The ability of UPEC to rapidly build up in numbers in the form of IBCs and then 

disperse to neighboring cells may be part of a mechanism to subvert an exfoliation response. 

Thus, fine-tuning the expression of HlyA during acute bladder infection may serve to maximize 

UPEC persistence and give UPEC a fitness edge against the host innate inflammatory response. 

Interestingly, in C3H/HeN mice, UTI89 ΔhlyA is not attenuated throughout infection and causes 

chronic cystitis comparable to UTI89; however, other reports suggest deletion of HlyA in UPEC 

CFT073 decreases virulence [54]. We investigated the role of hemolysin in priming the bladder 

for chronic cystitis upon superinfection by utilizing UTI89ΔhlyA or UTI89ΔcpxR as the initial 

inoculation followed by WT UTI89 one hpi. Both of these strains were statistically significantly 

different when compared to WT UTI89 as the priming inoculum. Therefore, we conclude that 

neither was capable of priming the bladder for enhanced chronic cystitis (Fig. 1D). Thus, too 

high or low expression of hemolysin abolished the ability of UTI89 to prime for enhanced 

chronic cystitis implying that an optimal level of hemolysin expression is critical for priming the 

bladder for enhanced chronic cystitis.  

HlyA-mediated exfoliation is in part due to its ability to trigger degradation of paxillin, a 

scaffold protein that modulates the dynamics of cytoskeletal rearrangements [55]. HlyA can also 
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trigger cell death in human bladder epithelial cells and release of IL-1α via caspase-4 (the 

murine ortholog is caspase-11) activation and caspase-1-dependent IL-1β secretion via activation 

of the NLRP3 inflammasome pathway, which orchestrates additional cell death (Nagamatsu et 

al. in review). We hypothesized that inflammasome and caspase 1/11 activation were essential 

for superinfection. Thus, mice were treated intravesically with a dose of caspase 1/11 inhibitor or 

DMSO one hour prior to priming and a second dose with the priming inoculum to test this 

hypothesis (Fig. 2A). Providing two doses of the inhibitor was previously shown to be effective 

in dampening in vivo inflammatory responses. In vitro, the inhibitor dramatically reduced 

downstream elements of inflammasome activation, IL-1α and IL-1β secretion, when bladder 

cells were infected with UTI89 (Nagamatsu et al. in review). Caspase 1/11 inhibition 

significantly reduced median bladder titers at four weeks after superinfection relative to the 

DMSO control group (Fig. 2B). We also saw a trend of caspase 1/11 inhibition in reducing the 

proportion of WT superinfected mice experiencing chronic cystitis to single infection levels (Fig. 

2B). DMSO also reduced the proportion of mice experiencing persistent bacteriuria and chronic 

cystitis, but to a lesser degree than caspase 1/11 inhibition (Fig. 2B vs. Fig. 1B-D), suggesting an 

anti-inflammatory role of DMSO alone. Intriguingly, DMSO was recently found to inhibit the 

NLRP3 inflammasome [56]. Taken together, these data implicate hemolysin and the NLRP3 

inflammasome in the priming response to enhanced chronic cystitis.   

We further investigated whether chemical exfoliation could enhance the proportion of 

mice experiencing chronic cystitis prior to a single infection. We utilized the cationic protein, 

protamine sulfate, which has previously been used to exfoliate the superficial facet cell layer of 

the urothelium [40, 57]. A 10 mg/mL dose delivered intravesically in 50 µL PBS was shown to 

exfoliate 65% of the facet cell layer 12 hours after treatment while an additional booster dose of 
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50 mg/mL led to 95% exfoliation [40]. We utilized these concentrations to initiate, but likely not 

complete, the process of exfoliation one hour prior to infection with UTI89. We did not observe 

a significant increase in the proportion of mice experiencing chronic cystitis over PBS 

pretreatment (Fig. 2C). Thus, these data suggest that at least partial IBC formation in conjunction 

with caspase 1/11 activation primes the bladder for enhanced chronic cystitis, but chemical 

initiation of exfoliation is not sufficient. Taken together, these data suggest that exfoliation per se 

might not play a significant role in impacting the likelihood of enhanced chronic cystitis but 

instead may reflect a downstream marker of the priming event. 

 

Superinfection leads to chronic cystitis in a resistant mouse strain 

 C57BL/6J mice typically rapidly resolve bacteriuria and are resistant to chronic cystitis 

upon single inoculation with UPEC [37, 38]. Five to ten percent of the time after inoculation 

with UTI89, C57BL/6J mice experience persistent bacteriuria, but this is generally due to kidney 

infection without concomitant high titer bladder infection [37, 41]. This degree of kidney 

infection is not infectious dose dependent and therefore likely due to ureteric reflux of the 

bacteria during experimental inoculation [37]. We investigated whether superinfecting C57BL/6J 

mice during acute infection would stimulate an immune response leading to chronic cystitis. We 

inoculated bladders with PBS or 107 CFU of UTI89 followed by superinfection with UTI89 1, 6, 

24, 48 hours or one week after initial infection and collected urine at days 1, 7, 14, and 21 dpi 

followed by enumeration of bladder and kidney titers at 28 dpi (Fig. 3). A 24 hpi superinfection 

resulted in 35% of mice sustaining persistent bacteriuria with bladder titers > 104 CFU at four 

weeks compared to 0% in the singly infected group (Fig. 3A). Kidney titers were also increased 

in the mice with persistent bacteriuria, but we did not observe a significant increase in the 
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proportion of mice with kidney infection greater than 104 CFU (Fig. 3B). These data suggest that 

at 24 hours after infection the bladders of C57BL/6J mice were primed to develop chronic 

cystitis upon superinfection. We investigated whether an ascending kidney infection plays a role 

in predisposing these mice to chronic cystitis by inoculating PBS into the bladder, either 24 

hours before or after infection with UTI89, to stimulate a bladder and ureter stretch response or 

potentially increase reflux of bacteria into the kidneys, respectively. We determined the 

percentage of mice with persistent bacteriuria and those with bladder and kidney titers greater 

than 104 CFU at sacrifice (Table 1). We found in all conditions that persistent bacteriuria was a 

100% predictor of kidney titers >104 CFU at four wpi. Persistent bacteriuria also predicted 

bladder titers greater than 104 CFU at four wpi in C57BL/6J mice superinfected 24 hpi with 

UTI89. For the group of mice inoculated with PBS before the initial UTI89 infection, persistent 

bacteriuria did not correlate with high bladder titers suggesting these bacteria were only 

replicating in the kidneys. Serially infecting with two inocula of UTI89 trended towards 

increased persistent bacteriuria and chronic cystitis compared to the group inoculated with 

UTI89 followed by PBS at 24 hpi (P = 0.066; Table 1 and Fig. 4A). Kidney titers of UTI89 

superinfected mice were significantly higher than when PBS was used to prime or superinfect 

perhaps suggesting that repeat infection may also increase susceptibility to pyelonephritis (Fig. 

4B). Thus, a 24 hpi superinfection of WT UTI89 led to increased rates of persistent bacteriuria 

and chronic cystitis; however, bladder/ureter stretch or kidney ascension at 24 hpi may contribute 

to this increase. 

C3H/HeN mice that progress to chronic cystitis upon single inoculation can be predicted 

by elevated serum levels of IL-5, IL-6, KC, and G-CSF at 24 hpi [37]. We hypothesized that 

similar elevations would predict sensitization to chronic cystitis in C57BL6/J mice if they were 
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subsequently superinfected. Thus, we determined levels of 23 serum cytokines from C57BL/6J 

mice 24 hrs after initial inoculation with PBS or UTI89 prior to superinfection. We then 

superinfected a subset of the mice initially infected with UTI89 (superinfection in Figure 5) 

leaving the other mice untouched (UTI89 group). All mice were evaluated with urine titers over 

28d and sacrificed to enumerate bladder titers. We stratified the superinfected mice based on 

outcome four weeks later as determined by persistent bacteriuria and chronic cystitis. We found 

elevations of serum KC (Fig. 5A), IL-6 (Fig. 5B), and G-CSF (Fig. 5C) in mice that progressed 

to chronic cystitis relative to those that resolved infection or were mock-infected with PBS. 

Therefore, higher levels of these cytokines correlate with chronic cystitis that develops later if 

mice are superinfected. At the time we obtained serum, the single infection and superinfection 

groups were identical, and no statistical differences existed among them. These data demonstrate 

that a subset of C57BL/6J mice respond to an initial infection in a way that results in higher 

specific serum cytokine levels and primes them to develop chronic cystitis if an additional insult 

is delivered 24 hpi.    

 

Response to infection differs between C3H/HeN and C57BL/6J 

 During chronic cystitis of singly-infected C3H/HeN mice, the bladder epithelium is 

hyperplastic and normal terminal differentiation of the superficial facet cell layer, including the 

expression of surface uroplakins, does not occur [37]. In this environment, the bacteria are able 

to persist extracellularly by an unknown mechanism. To assess this, we conducted scanning 

electron microscopy analysis on bladder tissue harvested at four wpi and found that bacteria 

replicate in the presence of ongoing epithelial exfoliation and neutrophil influx in chronic cystitis 

of both C3H/HeN and C57BL/6J mice (Fig. S1A-D). This analysis supports previous 



157 

experiments that have shown that during chronic cystitis the majority of bacteria are 

extracellular, replicating in the urine or adherent to underlying transitional epithelial cells [24, 

37]. The mechanism by which bacteria adhere in the absence of uroplakins has not been 

demonstrated in vivo, but in vitro studies have shown that FimH binds integrins and other host 

proteins such as TLR4 [30, 58, 59]. Alternatively additional adhesive factors such as other CUP 

pili may play a role. Interestingly, during chronic cystitis, neutrophils, which we observed to be 

actively engulfing bacteria, are insufficient for clearing infection; however, the reason for this is 

unclear. Mature superficial facet cells could not be discerned at this time point, but were present 

in mock-infected mice (Fig. S1E). Patients with persistent bacteriuria or rUTI have been reported 

to have similar histopathology [42]. In order to identify the bladder micro-environment in which 

UPEC replicate during chronic cystitis, we conducted microarray analysis on RNA extracted 

from bladders four wpi. C3H/HeN mice were singly-infected and C57BL/6J mice were 

superinfected to develop chronic cystitis. Mice from each strain inoculated with PBS were used 

as controls. Depicted in Figure 6 are the expression profiles relative to the global average with 

green indicating increased expression and red denoting decreased. C3H/HeN mice experiencing 

chronic cystitis had a dramatically different expression profile from resolved and mock-infected 

mice (Fig. 6A). Uroplakins were among the most downregulated genes during chronic cystitis in 

both mouse models, consistent with the lack of terminally differentiated superficial facet cells 

(Fig. S1). Eleven of the 20 (55%) most upregulated genes during chronic cystitis were the same 

in both mouse strains (Table S1). The functional categorization revealed that most of the up-

regulated genes function in inflammatory response, cytokine release, and ion binding [60-62]. Of 

interest among these genes in both of these mouse models is the inflammasome-related cytokines 

IL-1. We have shown that UPEC activate the caspase 4 murine homologue, caspase 11, during 
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acute infection in a hemolysin-dependent fashion (Nagamatsu et. al. in review). Despite these 

similarities, interesting differences existed in the ongoing inflammatory response in mice 

experiencing chronic cystitis (Table S1). In C57BL/6J mice, the inflammatory response is 

immunoglobulin- and cytokine-mediated whereas in C3H/HeN mice, we noted a remarkable 

absence of upregulated immunoglobulin genes. The increased expression of antimicrobial 

peptides such as RegIIIγ and the calgranulins (s100a8 and s100a9) is interesting because this 

increased expression is not sufficient to eliminate bacterial replication during chronic cystitis. 

Interestingly, C3H/HeN mice that were mock infected exhibited a very similar profile to mice 

that resolve infection (Fig. 6A). Contrary to C3H/HeN mice, C57BL/6J mice that resolved 

infection differed significantly from either chronic cystitis or mock infected mice, suggesting an 

element of altered physiology and immunological memory of the infection (Fig. 6B). This 

information supports research that serially infecting mice that resolve infection makes them less 

susceptible to recurrent infection [37, 63]. What is interesting here is that the mechanisms by 

which this occurs may differ between mouse strains, and possibly by extension, women. 
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Discussion  

 We have developed models of bacterial superinfection of the urinary tract, which may 

provide insight into the connection between recent and frequent sexual intercourse and the 

susceptibility to the development of chronic UTI [5, 22]. Our results demonstrate that 

superinfection resulted in increased susceptibility to chronic cystitis in both susceptible and 

resistant mouse genetic backgrounds, but the time window for priming differed between strains. 

We have previously shown that chronic cystitis predisposes to severe rUTI upon a subsequent 

infection weeks to months after clearance of the first infection with antibiotics [37]. Clinically, 

millions of women take post-coital and prophylactic antibiotics so as not to develop rUTI [64]. 

Therefore, if clinically applicable, our results detailed here may partially explain why frequent 

sexual intercourse is such a strong risk factor for UTI. The necessity of prophylactic antibiotics 

could be obviated if the risk factors and bacterial traits identified here can be altered in the 

clinical population of women suffering chronic rUTIs. 

 Frequent sexual intercourse is among the most important risk factors for rUTI in young 

women [22]. Peri-urethral carriage of the causal strain and sexual intercourse immediately 

precede the development of a rUTI [5]. Sexual intercourse likely introduces mixed populations 

of bacteria into the urinary tract, with E. coli being the most common [18]. In this environment, 

UPEC invade bladder tissue and replicate, forming IBCs and bacterial filaments, which have 

been observed in human urine in 40% of patients suffering acute UTI, 24-48 hours after reported 

sexual intercourse [21]. These data may provide mechanistic insight as to the frequent clinical 

observation that recent and frequent sexual intercourse over a brief period of time leads to 

increased rates of rUTI [23]. Furthermore, elevated levels of serum CSF1, CXCL-1, and CXCL-

8 in women with acute UTI were associated with a higher rate of rUTI [45]. Using C3H/HeN and 
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C57BL/6J mice, we have shown that superinfection during the period of acute infection 

dramatically increases the proportion of mice that experience chronic cystitis with inoculations 

of 107 UPEC (Fig. 1A and 3A). The bacterial characteristics responsible for frequent recurrences 

are beginning to be assessed [65]. Hemolysin is expressed by 50% of UPEC isolates, but is more 

likely to be associated with symptomatic UTI [66]. It is possible that hemolysin-mediated 

exfoliation and caspase 1/11 activation leads to UTI-associated symptoms. In our studies, we 

found that an increase in priming for chronic cystitis correlated with the bacterial ability to 

invade and replicate within the bladder tissue (Fig. 1B-C), and through hemolysin to activate 

caspase 1/11 leading to IL-1 secretion and bacterial replication (Fig. 1D and 2B). Activation of 

caspase 1/11 has been shown to contribute to epithelial cell death in vitro and exfoliation in vivo 

in C3H/HeN mice, suggesting that caspase-mediated exfoliation may expose the underlying 

epithelium upon which UPEC replicates during chronic cystitis (Nagamatsu et. al. in review). 

Inhibition of caspase 1/11 protected superinfected mice from chronic cystitis (Fig. 2), suggesting 

a role for cytokines downstream of caspase activation including IL-1α and IL-1β, identified in 

our microarray of four-week bladders (Fig. 6; Table S1). A microarray analysis revealed that in 

C3H/HeN and C57BL/6J mice, 11/20 of the most upregulated genes during chronic cystitis were 

the same. Differences between the responses to infection in these mouse strains may result from 

the dramatic increase in kidney infection or QIR presence in C57BL/6J relative to C3H/HeN 

mice [37, 40]. Further, this data supports the hypothesis that a muted inflammatory response to 

UPEC infection is more likely to lead to resolution [26]. Also, our studies suggest that serum 

biomarkers such as IL-6, KC, and G-CSF may predict a predisposition to rUTI (Fig. 5) [37]. 

Recently, it was demonstrated that cytokines involved in immune cell chemotaxis and maturation 



161 

(the human homolog of KC included) during acute UTI enhanced the likelihood of developing 

rUTI [45].  

We have created mouse models that have identified both bacterial and host immune 

factors that may predispose women to rUTI. Inhibiting caspase-mediated inflammation or 

downstream effectors may serve to prevent a UTI from becoming a chronic or recurrent UTI. 

Further work to identify bacterial and host factors that influence the balance between resolution 

and chronic infection is required to lead to better treatments clinically. The ability of UPEC to 

invade bladder tissue allows it to transcend stringent bottlenecks during infection [24, 25, 27]. 

The ability to replicate intracellularly also impacts the ability of a second invading strain to 

proliferate in the bladder environment (Fig. 1B-C). The molecular basis of bacterial colonization 

of the bladder during chronic cystitis is an area of active investigation. Previously, it has been 

shown that mannosides are effective in treating chronic cystitis arguing that FimH-mediated 

binding plays an important role [67]. It has recently been demonstrated that FimH variation 

outside of the binding pocket affects protein conformation and pathogenicity of UPEC [48]. This 

variation may impact bacterial adherence and replication during chronic cystitis. Furthermore, 

because invasion and intracellular replication appear to influence the likelihood to develop 

chronic cystitis, treatments with soluble compounds such as mannosides that block the ability of 

UPEC to invade the tissue or compounds that might alter FimH conformation hold promise as 

effective means to prevent or treat rUTI [67-70]. These analyses may allow us to identify high-

risk patients for more aggressive therapy and/or anti-virulence compounds to limit this troubling 

disease.  
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Materials and Methods 

Bacterial strains  

All WT bacterial strains utilized were derivatives of UTI89, including tagged, isogenic UTI89 

isolates, kanamycin resistant UTI89 attHK022::COM-GFP, kanamycin resistant UTI89 with re-

integrated UTI89 FimH, spectinomycin resistant UTI89 attλ::PSSH10-1, and chloramphenicol 

resistant UTI89 [24, 47, 71]. FimH mutant strains, ΔompA, Δkps, ΔhlyA, ΔcpxR were all 

previously published [47, 51, 52](Nagamatsu et al. in review).  

 

Mouse infections  

Bacteria for infection were prepared as previously described [72]. Six to seven week old 

female C3H/HeN (Harlan) or C57BL/6J (Jackson) were transurethrally infected with a 50 µL 

suspension containing 5 x 106 – 2 x 107 CFU of UTI89 or relevant mutant in PBS under 3% 

isofluorane. Protamine Sulfate (Sigma) was dissolved in PBS and caspase 1/11 inhibitor Ac-

YVAD-CMK (BACHEM) was dissolved in DMSO and transurethrally inoculated into the 

bladder. At indicated timepoints after infection, mice were anesthetized and infected again. 

Venous blood was obtained at 24 hpi, just prior to re-infection, by submandibular puncture and 

centrifuged at max speed at 4 oC in Microtainer serum separation tubes (BD) and stored at -20 oC 

until use. Cytokine expression was measured using the Bio-Plex multiplex cytokine Group I bead 

kit array (Bio-Rad), which measures 23 cytokines. Urine was obtained by gentle suprapubic 

pressure and serially diluted and plated on appropriate antibiotic plates. Mice were sacrificed by 

cervical dislocation under isofluorane anesthesia, and their organs were aseptically removed. 

Chronic cystitis was determined if animals had urine titers > 104 CFU/mL at 1, 7, 14, 21 dpi and 
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bladder titers > 104 CFU at sacrifice at 28 dpi [37]. Animals that resolved infection and had a 

recurrence or had resolved the infection with reservoir titers >104 CFU were marked in red and 

considered to have resolved the chronic infection. Organ titers shown are the total bacterial 

burden. 

Ethics statement 

 The Washington University Animal Studies Committee approved all mouse infections 

and procedures as part of protocol number 20120216, which was approved 01/11/2013 and 

expires 01/11/2016. Overall care of the animals was consistent with The guide for the Care and 

Use of Laboratory Animals from the National Research Council and the USDA Animal Care 

Resource Guide. Euthanasia procedures are consistent with the “AVMA guidelines for the 

Euthanasia of Animals 2013 edition.” 

 

Microarray experiments 

C3H/HeN or C57BL/6J mice were infected as discussed above. After 28 days, animals 

that had developed chronic cystitis, resolved the infection, or aged matched PBS controls were 

sacrificed for RNA isolation. Upon sacrifice, 5 bladders from each condition were immediately 

pooled and homogenized in Trizol for RNA isolation according to the manufacture’s suggested 

protocol. DNase treatment was performed to remove any contaminating DNA before submission 

to the Genome Technology Access Center for sample processing and hybridization on 

Affymetrix Mouse Gene 1.0 chips in triplicate. Data was analyzed using the Partek Genomics 

Suite. Gene lists were compiled using fdr-ANOVA analysis with a significance cut off of 

p<0.001. Experiments were repeated twice with a representative analysis shown. Microarray data 
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are available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession 

number E-MTAB-2930.   

 

Scanning electron microscopy 

 Mice were infected as described above. Bladders were aseptically harvested, bisected, 

and splayed. Bladders were fixed in 2.0% glutaraldehyde in 0.1M sodium phosphate buffer 

overnight. Bladders were then washed three times with 0.1M sodium phosphate buffer and de-

ionized water before being fixed in 1.0% osmium tetroxide. Bladders were washed and then 

critical point drying was performed with absolute ethanol and liquid carbon dioxide. Sputter 

coating was performed with gold-palladium using a Tousimis Samsputter-2a. Images were 

obtained on a Hitachi S-2600H operated at 20kV accelerating voltage. 

 

Statistical analysis  

Datapoints below the limit of detection (LOD) were set to the LOD for graphical 

representation and statistical analysis. For cytokine data, values out of the range of the 

instrument were not included for analysis. Fisher’s exact test was utilized to determine 

differences between groups for rates of chronic cystitis. One-way ANOVA was utilized to 

determine whether any cytokine differences were apparent and pairwise assessment of median 

values was determined by Mann-Whitney test. Unless otherwise indicated, p<0.05 was 

considered significant. Analyses were performed in Graphpad Prism 5.0.   
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Figures and Tables 

  

Figure 1. Superinfections of C3H/HeN mice.  

A) Mice were infected with 107 CFU UTI89, 2 x 107 CFU UTI89, or PBS and re-infected with 

UTI89 at the indicated time points. One week total bladder titers are shown. Percentage of mice 

likely to develop chronic cystitis is displayed at the top of the column based on a CFU cutoff of 

106. Asterisks indicate p<0.05 from the PBS control and singly infected mice. B-D) Mice were 

infected with the indicated strain or PBS and re-infected one hour later. Urine titers were 

determined over time and four-week bladder titers are displayed. The fraction of mice with 

chronic cystitis is displayed at the top of each column. Red data points indicate resolved 

infection. Horizontal bars indicate median values. The dashed line at 20 CFU represents the 
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LOD, and the dashed line at 106 (A) or 104 CFU (B-D) represents the chronic cystitis cutoff for 

urine and bladder titers. Panel A reflects 2-4 experiments with 5-9 mice per group. Panel B is 2-7 

experiments with 4-5 mice per group. Panel C-D are 3 experiments with 4-5 mice per group. 

Statistical comparisons were determined using Fisher’s exact test based on the fraction of mice 

experiencing chronic cystitis.  
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Figure 2. Role of caspase 1/11 and exfoliation in C3H/HeN superinfections.  

A) Inoculation protocol shown for caspase inhibition studies of panel B. B) Four-week total 

bladder titer based on inhibitor or vehicle. C) Mice were inoculated with PBS, UTI89 or the 

indicated dose of protamine sulfate in 50 µL PBS and inoculated one hour later with UTI89. 

Urine was collected weekly and overall bladder titers are shown at four weeks. Panel B 

represents 5 experiments with n = 5-10 mice per group. Panel C represents 2 experiments with n 

= 5-10 mice per group. B-C) Observations in red indicate resolved infection. Percent of mice 

with persistent bacteriuria and chronic cystitis is shown at the top of each column. For Panel B 
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and C, a Fisher’s Exact Test was used to determine significance between proportions of mice 

experiencing chronic cystitis. Mann-Whitney U Test was used to compare median CFU values in 

Panel B. 
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Figure 3. C57BL/6J mice are susceptible to chronic cystitis when superinfected 24 hpi.  

A-B) Mice were transurethrally infected with PBS or UTI89 and re-infected at the indicated 

timepoints with UTI89. Urine was tracked weekly and four-week total bladder (A) and kidney 

pair (B) titer is displayed. N = 2-4 experiments with 4-5 mice per group. Statistical differences 

determined by Fisher’s Exact test.  
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Figure 4. UTI89 Superinfection of C57BL/6J mice increases bladder and kidney infection. 

A-B) mice were infected with PBS or UTI89 Kanr and re-infected 24 hrs later with PBS or 

UTI89 Spectr. Urine was tracked over four weeks and total bladder (A) and kidney pair titer (B) 

is displayed. Number above columns indicates number of mice with persistent bacteriuria with 

bladder (A) or kidney (B) titer > 104 CFU. Data represents 3-8 experiments with n = 4 – 29 mice 

per group. Panels also include data reproduced from Figure 3.Statistical differences determined 

by Fisher’s Exact test. 
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Figure 5. Serum cytokine signature of C57BL/6J mice with persistent bacteriuria.  

Serum was obtained 24 hrs after initial inoculation prior to superinfection. Levels of 23 

cytokines were determined and cytokines showing significant differences between resolved and 

chronic superinfected mice are shown. Levels of KC (A), IL-6 (B), and G-CSF (C) shown in 

pg/mL. Data represent 4- 6 experiments with n = 4 – 29 mice per group. Statistical differences 

determined by One-Way ANOVA overall and Mann-Whitney U test for pairwise comparisons.  
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Figure 6. Microarray gene changes for C3H/HeN and C57BL/6J bladders. 

A) C3H/HeN heatmap analysis for mice that resolved infection, experienced chronic cystitis, or 

were mock infected with PBS. B) C57BL/6J heatmap analysis for mice mice that resolved 

infection, experienced chronic cystitis, or were mock infected with PBS. Depicted is a 

representative analysis of two biological and three technical replicates. 
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Table 1. Characteristics of C57BL/6J superinfections 

Persistent 

Bacteriuriab 

Resolved 

Bacteriuria 

Persistent 

Bacteriuria 

Resolved 

Bacteriuria 

Conditiona 

Incidence 

% (n) 

Bladder 

Titersc,d PPVe  

Bladder 

Titers NPVe 

Kidney 

Titers PPVe 

Kidney 

Titers NPVe  

UTI89! 

UTI89 

30 

(28/94)  

4.4x106 92 

(22/24) 

5.5x102 100 

(50/50) 

3.6x107 100 

(28/28) 

1.2x103 73 

(49/67) 

UTI89! 

PBS 

16  

(6/37) 

2.5x106 83 

(5/6) 

3.2x102 100 

(31/31) 

8.6x107 100 

(6/6) 

6.0x101 90 

(28/31) 

PBS! 

UTI89 

9  

(3/32) 

1.9x103 0  

(0/3) 

3.4x102 100 

(29/29) 

4.0x107 100 

(3/3) 

2.0x101 100 

(29/29) 

a. All mice infected 24 hours after initial infection 

b. Defined as >104 CFU/mL bacteria in clean catch urine throughout four-week infection 

c. Median values listed 

d. Bladders of 20 mice were used for imaging purposes so no titers were available. 

e. PPV is the positive predictive value of persistent bacteriuria predicting bladder/kidney titer 

greater than 104 CFU. NPV is the negative predictive value of resolved bacteriuria predicting 

bladder/kidney titer less than 104 CFU. 
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Figure S1. Bacteria replicate on the bladder surface during chronic cystitis.  

Bladders of C3H/HeN and C57BL6 mice were splayed four wpi and fixed in glutaraldehyde. A-

B) Chronic C3H/HeN bladders. C-D) Chronic C57BL/6J bladders. E) Mock infected C57BL/6J 

bladder shown for comparison.  
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Table S1. Genes with highest fold change of chronic cystitis versus resolved. 

 

 

 

 

 

       

C57BL6 C3H/HeN 

Gene name 

Fold 
change 

(chronic v 
resolved) 

Functional 
Annotation 

Gene name 

Fold 
change 

(chronic v 
resolved) 

Functional 
Annotation 

Ubd$ 119.405$ Proteosome BC100530 144.401 Unknown 

Saa3$ 112.203$ Inflammatory 
Response 

S100a8 88.7327 Cytokine/Ion 
Binding 

S100a8$ 85.4193$ Cytokine/ Ion 
Binding 

Mmp7 87.0008 Ion Binding 

Mmp7$ 77.6183$ Ion Binding Ubd 77.6292 Proteosome 

RegIIIγ $ 66.2146$ Inflammatory 
Response 

S100a9 74.4965 Cytokine/ Ion 
Binding 

S100a9$ 44.9876$ Cytokine/ Ion 
Binding 

RegIIIγ  62.1077 Inflammatory 
Response 

Igk$V19$14) 31.1745) Immunoglobulin Cxcl2 39.3707 Cytokine 

Igk$V28) 27.7003) Immunoglobulin Il1b 38.9361 Cytokine 

Fam3b$ 25.7301$ Cytokine Sprr2f 38.7662 Tissue 
Remodeling 

Plekhs1) 24.3332) Tissue 
Remodeling 

Saa3 36.8235 Inflammatory 
Response 

Duox2) 23.492) Ion Binding Cxcl5 34.2451 Cytokine 

Gm5571) 22.2598) Immunoglobulin Il1a 33.0689 Cytokine 

Sprr2f$ 22.0386$ Tissue 
Remodeling 

Gabrp 31.6717 Ion Binding 

AA467197) 21.9697)  Sprr2d 31.4934 Tissue 
Remodeling 

Cxcl9) 21.46) Cytokine Fam3b 29.3965 Cytokine 

Cxcl2$ 17.698$ Cytokine Cxcr2 27.6748 Cytokine 

Pigr) 17.1008) Immunoglobulin Tmprss11g 26.263 Tissue 
Remodeling 

Tmprss11g$ 15.7865$ Tissue 
Remodeling 

Lcn2 25.9349 Ion Binding 

Nos2) 15.644) Inflammatory 
Response 

Il1f9 24.0818 Cytokine 

Il1a$ 15.0219$ Cytokine Sprr2g 23.4676 Tissue 
Remodeling 
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Chapter 5: Discussion, Future Directions, and Concluding Remarks 
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The pathogenesis of UPEC UTI is complex because UPEC invades tissue and colonizes 

multiple niches during infection, each niche presenting different advantages and challenges to 

persistence. Many of these niches allow UPEC to resist immune defense and antibiotic treatment 

[1-3]. Furthermore, the high rate of same strain recurrence and the rising incidence of infections 

with antiobiotic resistant pathogens necessitates a thorough examination into the pathogenesis of 

this complex disease [4-7]. It is imperative to investigate novel therapeutics targeting unique 

elements of the UPEC pathogenic cascade to specifically target the disease and avoid unwanted 

side effects [8-10]. Prior to this work, the role of the intracellular bladder niche during acute 

infection was believed to be important; however, the degree to which intracellular replication 

impacted infection outcome was unknown. Additionally, a host-pathogen checkpoint at 24 hpi 

was predictive of infection outcome, but the specific mechanisms feeding into this checkpoint 

had not yet been characterized [11]. The work presented in this thesis identifies key elements of 

the UPEC pathogenic cascade as well as implicates human behavioral factors that predispose to 

chronic and recurrent urinary tract infections. I have discovered and detailed the stringent 

population bottleneck that accompanies acute infection [12]. Additionally, I elucidated the 

molecular mechanism whereby pathoadaptive changes in the adhesive protein FimH impact 

mannose-binding, conformation, and virulence. Moreover, this work identified a balance 

between mannose-binding and dynamic flexibility, which leads to maximal success within the 

urinary tract. This trait may be generalizable to other organisms that adhere to different surfaces. 

Finally, I developed a model of frequent bacterial inoculation and determined a possible 

mechanism whereby women are susceptible to chronic, recurrent UTI after frequent sexual 

intercourse. Targeting these important pathogenic elements therapeutically could dramatically 

reduce the morbidity and economic cost of this common disease. 
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 This final chapter consists of three parts: Discussion (A), Future Directions (B), and 

Concluding Remarks (C). The Discussion (A) section will expand on the data presented herein 

and offer its context within the field regarding the pathogenesis of UTI. Specifically, I will 

discuss the 1) colonization of niches and reservoirs, 2) role of invasion and IBC formation during 

UTI, 3) UTI pathogenesis and symptoms, 4) factors responsible for colonization in a chronically 

inflamed bladder, 5) novel treatment modalities, and 6) bacterial population bottlenecks and 

virulence factors. In the Future Directions (B), I will outline the experimental design to test 1) 

virulence defects of high affinity pathoadaptive FimH alleles, 2) Identification of the FimH 

receptor during chronic cystitis, 3) mannoside efficacy against alternative FimH alleles in 

multiple niches, and 4) the role of IL-1 in priming the bladder during superinfection. Finally, I 

will offer my perspectives on the future of this disease in the Concluding Remarks (C). 
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A. Discussion 

Colonization of niches and reservoirs 

During UTI, UPEC is capable of colonizing multiple intracellular and extracellular niches 

in multiple organs. The pathogenesis is thought to begin with introduction of GI flora into 

periurethral or vaginal niches. The presence of UPEC in these areas increases prior to a UTI [13]. 

Some mechanical force such as sexual intercourse is thought to introduce bacteria into the 

urinary bladder [14, 15]. The bladder environment may not be sterile, as previously suspected 

[16]. UPEC would have to displace or interact with colonizers in order to establish productive 

infection of these niches. Furthermore, it is unlikely that an inoculum is monomicrobial. 

Mounting evidence suggests that the clinical practice of ignoring non-traditional uropathogens as 

contaminants may not accurately reflect the disease state [17, 18]. In fact, murine models of 

these polymicrobial infections suggest that the presence of other organisms may enhance UPEC 

pathogenesis [19]. When Group B Streptococcus and UPEC are co-inoculated, UPEC invade to a 

higher degree and form more IBCs than when inoculated singly [19]. Thus, the presence of other 

bacteria may enhance intracellular niche occupation, which would be predicted to enhance 

pathogenesis (Chapter 2) [12, 19]. Recent data suggests that other organisms may also be able 

to establish intracellular niche colonization [18, 20]. The ability to access this intracellular niche 

protected from the immune response and antibiotics may be a common component of the 

pathogenic cascade of multiple uropathogens. 

 Many recurrent UTI are caused by the same strain as the initial infection [4], suggesting 

that antibiotics are not effective at sterilizing niches colonized by UPEC. It was recently 

discovered that at the time of UTI, the dominant E. coli strain in the bladder was also the 

dominant E. coli species in the GI tract [21]. Antibiotic therapy may not be completely effective 
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in sterilizing this gut niche or Quiescent Intracellular Reservoirs (QIRs) within the bladder 

epithelium [22, 23]. Furthermore, it is possible that UPEC colonizes multiple niches within the 

GI tract as has previously been observed for other organisms [24, 25]. UPEC pili and other 

virulence factors may contribute to colonization of multiple niches within the GI tract in addition 

to the bladder [26]. Little is known about kidney colonization in humans because mice do not 

express the same receptor to which UPEC P pili bind in humans [27-29]. However, it has been 

suggested that multiple pilus systems contribute to kidney colonization in addition to P pili [30]. 

Type 1 and P pili may act in concert in the kidneys to facilitate attachment and biofilm formation 

(Figure 1) [31]. Colonization of these kidney niches may contribute to recurrent pyelonephritis 

[4, 32]. The ability of UPEC to ascend the ureters and colonize kidneys in an asymptomatic state 

may also lead to recurrent cystitis or pyelonephritis (Chapter 2). Data from multiple mouse 

models suggests that bacteria that colonize the kidney are the result of multiple cycles of 

ascension, colonization, and descent [12, 33]. UPEC infection is thus a highly dynamic process 

whereby multiple niches and reservoirs are colonized. The appropriate virulence factors are 

likely both niche-specific as well as general. The ability to regulate these genes to govern 

colonization and transition between these niches is essential for persistence [34]. 

 

Role of Invasion and IBC Formation During UTI 

UPEC bind to and invade superficial facet cells of the bladder epithelium immediately 

upon entry into the murine urinary tract [2, 35, 36]. Rapid, intracellular bacterial replication 

within the cytoplasm results in biofilm-like communities known as intracellular bacterial 

communities (IBCs) that protrude into the lumen of the mouse bladder [37, 38]. The first round 

of IBC formation is well synchronized within an individual mouse and across mice for the first 
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six hpi [12, 36]. Each IBC contains 104 – 105 CFU at 6 hpi derived from a single, invasive 

bacterium (Chapter 2) [12]. Thereafter, the infection is highly variable with regard to the timing 

of pathogenic events and the outcome [36]. That is, the variance of bladder bacterial titers at 6 

hpi is very small, but at later timepoints, a bimodal distribution of bacterial titer begins to 

develop [39]. This bimodal distribution reflects mice that progress to chronic cystitis with high 

titers in the bladder, and those that resolve infection with low titers in QIRs. Thus far, the 

importance of the invasion and IBC cycle has only been assessed through mutations affecting 

this process, among other elements of pathogenesis. In this thesis, I provided evidence 

demonstrating the importance of this cascade during infection with WT UPEC strains. 

 We developed a library of 40 strains of UTI89 each with a unique DNA sequence that 

could be detected by eight multiplex PCR reactions (Chapter 2) [12]. During the first six hours 

of infection, bacterial CFU increased while the fraction of unique tags decreased. This increase 

in CFU corresponds to bacterial replication within IBCs, and the decrease in tag fraction results 

from innate defenses of neutrophil influx and superficial facet cell exfoliation [2, 12]. In 

extracted bladders, we found that higher numbers of IBCs corresponded to a higher fraction of 

unique tags isolated. An average C3H/HeN bladder has 50 IBCs from an inoculum of 107 CFU 

[12]. A higher fraction of tags was also present at two weeks post infection in mice experiencing 

chronic cystitis than mice that resolved infection [12]. Taken together, these data regarding the 

population bottleneck present several hypotheses regarding the transition between acute and 

chronic infection. These three hypothesis explain how UPEC transcend the stringent acute 

population bottleneck to cause chronic cystitis. The following hypotheses address how bacteria 

are able to cause chronic cystitis by transiting the acute population bottleneck: 1) IBC formation 
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and subsequent release allow clones to perpetuate infection, 2) increased luminal bacteria or 

increased flux out of IBCs, or 3) kidney colonization.    

The first hypothesis assumes that the most stringent bottleneck occurs simultaneously 

with IBC formation, and that UPEC emerging from an IBC would produce a founder effect on 

the UPEC population. I have seen a direct relationship between IBC number and the proportion 

of mice experiencing chronic cystitis based on inoculum concentrations and bacterial strain 

(Chapters 2-3). Bacteria that flux out of the IBC to colonize the bladder during chronic cystitis 

persist luminally, adherent to exposed underlying epithelial cells (Chapter 4) [40]. UPEC resist 

the inflammatory response of this chronic condition and replicate indefinitely throughout the 

lifetime of the animal [40]. As a stable, extracellular infection it would seem unlikely for a 

continued decrease of the roughly 50% of remaining unique clones. This observation is 

consistent with other systems in which stable, luminal infections by WT organisms are not 

significantly diminished [41]. This hypothesis would predict that a larger number of IBCs 

precedes chronic cystitis while fewer precede resolution of the infection [11, 12, 34]. This 

hypothesis is consistent with the observation that an increased inoculum of either UTI89 or 

CFT073 leads to an increase in IBC number and an increase in the proportion of mice that 

experience chronic cystitis (Chapter 3). Furthermore, FimH mutants that form fewer IBCs, but 

bind the tissue equally well, are less likely to cause chronic cystitis. Based on these data, this is 

my favored hypothesis, but I will now describe possible alternative hypotheses.     

An alternative hypothesis is that 1st generation IBC number does not significantly differ 

based on eventual infection outcome, but increased 2nd generation IBCs or bacterial flux precede 

chronic cystitis. Serum elevations of IL-5, IL-6, KC, and G-CSF at 24 hpi predict the 

development of chronic cystitis later [40]. Because the immune response to infection differs 
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between longterm outcomes, it is likely that some difference in the pathogenic cascade or niche 

occupation leads to this variance in immune response. Therefore, for this hypothesis, we will 

assume that mice that progress to chronic cystitis and mice that resolve infection have equal 

IBCs at 6 hpi. The difference between these conditions would result from either an increase in 

bacterial flux from the IBC to colonize the bladder, an increase in 2nd generation IBCs, or an 

increase in luminal bacteria throughout acute infection. These possibilities are not mutually 

exclusive. However, each of these would imply that the immune response would react to the 

increase in luminal bacteria. At 24 hpi, mice that progress to chronic cystitis have elevated urine 

titers and an increased inflammatory score relative to their littermates who resolve infection [40]. 

The developmental history of these bacteria is unknown, but it is unlikely that these bacteria 

were luminal throughout infection for several reasons. First, neutrophil and macrophage influx 

into the bladder would preferentially target these bacteria, eliminating them [36]. Additionally, 

the ability to attach to the bladder is not sufficient for longterm persistence. UTI89 

FimH::A27V/V163A binds bladder tissue and invades superficial facet cells, but is not able to 

form IBCs nor cause chronic cystitis (Chapter 3) [42]. Interestingly, this mutant has enhanced 

mannose-binding ability, suggesting an increased attachment to bladder tissue (Chapter 3) [42]. 

Despite this increased binding, this strain is rapidly cleared from the urinary tract [42]. 

Additionally, a FimH mutant regulated by tetracycline expresses FimH in the lumen of the 

bladder, but once it invades the tissue, FimH expression is turned off [43]. Despite equal levels 

of luminal and invasive bacteria at 1 hpi, this mutant was attenuated as soon as 6 hpi. Taken 

together, these data suggest that IBC formation is essential for pathogenesis, and that bacteria 

that remain luminal throughout infection are unlikely to be the founder population later. While it 

is formally possible that increased bacterial flux out of initial IBCs or increased IBC formation 
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during the 2nd round predicts chronic cystitis, it is unlikely as these events occur between 16 and 

24 hpi, when the predictive immune response has already been initiated [11, 40]. Therefore, 

based on these data, I do not favor this alternative hypothesis.  

A third hypothesis is that bacterial ascension/replication in the kidneys results in the 

systemic immune response predictive of infection outcome. The C3H/HeN model of UTI is 

susceptible to a high rate of vesicoureteral reflux (VUR) and immediate post-inoculation kidney 

colonization [39, 44]. Treatment of mice with dexamethasone to dampen the inflammatory 

response significantly decreased the proportion of mice experiencing chronic cystitis without 

altering urine, bladder, or kidney titers at 24 hpi [40]. This result suggests that the host mediated 

inflammatory signal was blocked without dramatically affecting the pathogenic cascade. 

Furthermore, elevation of cytokines at 24 hpi did not correlate with kidney titers, but did 

correlate with urine titers suggesting a higher bladder contribution to this immune response. 

Increasing the inoculum to 108 CFU dramatically increased the proportion of mice that 

experienced chronic cystitis, but did not significantly increase kidney titers [40] (Chapter 3). 

While it is possible that kidneys can be colonized in a niche specific way in this model, as has 

been suggested (Figure 1) [30, 31], the data do not support kidney colonization differences as 

predictors of chronic cystitis in C3H/HeN mice. Therefore, taken together, our data best fits the 

hypothesis that an increase in UPEC intracellular niche presence leads to the systemic immune 

response predictive of chronic cystitis. Bacteria that colonize IBCs and flux out are therefore the 

most likely to colonize the bladder after the IBC cycle has concluded. 
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UTI pathogenesis and symptoms 

Much of the work in this thesis attempts to explain UTI pathogenesis based on virulence 

factors and bacterial niche occupation in the urinary tract. Understanding the pathogenesis of a 

disease can also explain elements of symptomatology. Recent work is beginning to shed light on 

how UPEC and other inflammatory responses lead to UTI symptoms [45-47]. Interestingly, 

many of these studies have shown that bacterial presence is not essential, as LPS introduction 

into the bladder can lead to pain [45]. However, many of these symptoms are likely the result of 

inflammation and bacterial replication in preventing adequate bladder stretch or activating and 

repressing neuronal communication [48]. I believe bacterial replication in the urinary tract in the 

context of virulence factors and niche occupation may influence immediate and recurrent 

symptoms. 

Although E. coli LPS has been shown to lead to a bladder pain response [45], the degree 

to which it affects the host is likely multifactorial. The particular LPS O-antigen structure and 

LPS shed frequency affect this bladder response [45]. Furthermore, the composition of the 

bacterial inoculum can likely influence the bladder response. As mentioned above, it is unlikely 

that a typical UTI-causing inoculum is monomicrobial [14, 15]. It is possible that other 

organisms, such as the gram positive, Streptococcus agalactiae, that are often co-inoculated, can 

dampen the pain response in addition to the inflammatory response [19, 20]. Additionally, the 

degree to which UPEC invades the epithelium will likely regulate the ability of the bladder to 

stretch during filling and voiding [47]. The confluence of bacterial virulence factors including 

the specific allele of FimH governs the pathogenesis of this organism. These virulence factors 

and the attributes they confer likely also impact how the host responds to the infection, resulting 

in symptoms. Ongoing bacterial replication during chronic cystitis would likely lead to persistent 



192 

and common UTI symptoms of dysuria, urgency, and frequency. If the infection resolves and 

QIRs form in the tissue [22], ongoing host responses may lead to symptoms in the absence of 

bacteriuria [4, 49]. Clinical investigations into these issues may begin to shed light on confusing 

diseases such as interstitial cystitis [48, 50]. 

 

Factors responsible for colonization in a chronically inflamed bladder 

During the transition from acute to chronic infection, bladder physiology changes 

depending on outcome (Chapter 4) [11, 40]. In mice that resolve infection, the superficial facet 

cell layer regenerates with basal stem cell proliferation [51, 52]. Alternatively, during chronic 

cystitis, the entire superficial facet cell layer is denuded, no mature uroplakins are found on the 

bladder surface, and uroplakin genes are among the most downregulated murine genes in this 

state (Chapter 4). Several mutants in bacterial genes exhibit subtle defects during acute 

pathogenesis, but are dramatically outcompeted once chronic cystitis develops (Chapter 3) [11]. 

Therefore, different virulence factors may be required for bacteria to maintain bladder presence 

in this chronic inflammatory environment. During chronic cystitis, invasion does not occur to an 

appreciable degree [40]. Despite this observation, roughly 20% of the bacteria are present in a 

gentamicin-protected niche, which may exist at tight junctions (Chapter 4). What UPEC are 

binding in this niche and in the entire bladder during this period remains to be characterized 

because of the absence of mannosylated uroplakins.  

Several alleles of the FimH adhesin are under positive selection among UPEC compared 

to fecal E. coli [42] FimH alleles such as FimH::S62/A163 have a slight competitive defect 

during the first 6 hpi (Chapter 3), which is dramatically accelerated thereafter. I have shown that 

FimH is able to adopt at least two different conformations, which alter mannose-binding affinity. 
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It is unclear as yet whether FimH is able to dynamically interconvert between these 

conformations or whether binding affinity differs in the elongated, mannose-bound, state 

between FimH alleles. FimH alleles with the highest mannose-binding affinity are attenuated in 

vivo, as are strains with the lowest affinity (Chapter 3). Furthermore, a gradient exists whereby 

subtle differences in mannose binding between FimH::A62/V163 and FimH::S62/A163 lead to 

large differences in pathogenesis. Thus, FimH::A62/V163 may bind even tighter to a different 

epitope that is exposed during chronic cystitis. UTI89 FimH has been shown to bind to α3 and 

β1 integrins in a cell culture system resembling undifferentiated, transitional bladder epithelial 

cells such as those exposed during chronic cystitis [53]. Additionally, strains possessing 

FimH::A62 were shown to have enhanced binding to type I and type IV collagen in vitro [54]. 

Type IV collagen is present in the basement membrane, which is unlikely to be exposed during 

chronic cystitis, but an epitope with a similar terminal sugar may be present. UTI89 FimH is 

more likely to adopt the compressed conformation (Chapter 3). In this state, shifts in loop 

positions cause a partial occlusion of the mannose-binding pocket, but an adjacent, deep groove 

may accommodate a different epitope.  

Other non-FimH colonization factors may also be important during chronic cystitis, 

including other CUP pili [34]. As mentioned above, due to superficial facet cell exfoliation and 

ongoing neutrophil influx and inflammation, additional binding epitopes and nutrients may be 

exposed. UPEC has the ability to downregulate neutrophil influx and function [55], perhaps 

implicating immune-downregulatory factors during chronic infection. Similarly, nutritional 

acquisition or other virulence factors may confer benefit in this context. UTI89 outcompetes 

CFT073 expressing UTI89 FimH, but only after 7 dpi (Chapter 3). Therefore, UTI89 expresses 
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other factors allowing for longterm survival including transcendence of possible extracellular 

bottlenecks that CFT073 is incapable of transiting [11]. 

 

Novel treatment modalities 

 The rising rates of antibiotic resistant uropathogens and their worldwide spread 

necessitates the need for developing alternative therapies for UTI. Anti-virulence compounds 

represent one promising target for enhanced target specificity without increased side effects and 

off target effects of antibiotics [8]. Mannosides are mannose analogs that bind with high 

specificity to the FimH binding pocket of UPEC, preventing attachment to the bladder 

epithelium [56-58]. These molecules have enhanced affinity over the natural substrate, are 

readily available in mouse urine after one oral dose, and are effective against multi-drug resistant 

strains [57, 59]. The mannose-binding pocket of FimH is invariant among UPEC, likely because 

of its essential role in uropathogenesis [42]. Thus, complete resistance to mannosides would be 

unlikely because it would dramatically reduce affinity for the natural substrate. Furthermore, 

based on recent data demonstrating the presence of uropathogens in the GI tract during the time 

of infection, mannosides may help to eliminate a gut reservoir of bacteria [21]. The data 

presented in this thesis provides a strong rationale for the use of these compounds. 

 UPEC transit the stringent bottleneck during acute infection by invading bladder tissue 

and forming IBCs (Chapter 2). Blocking this crucial step would help eliminate infection. 

Furthermore, animals are more likely to develop chronic cystitis and recurrent, chronic cystitis, 

when infected with two invasive UPEC strains (Chapter 4). Inhibiting a fraction of the invasive 

organisms would also likely lead to clearance or a less severe infection. Alternatively, if the drug 

is admistered after the initiation of chronic cystitis, it effectively reduces bacterial burden 
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10,000-fold after three doses [57]. The FimH allele varies among UPEC, but mannosides have 

been shown effective for at least three different alleles encompassing over 70% of natural 

sequence variation [42, 57, 59, 60].  

I can envision several potential problems with mannoside treatment. First, if the drug is 

administered during acute infection, but after the bacteria have established IBCs, it would not be 

effective [57]. Because of the possibilities of QIR formation leading to recurrences or the 

development of chronic cystitis, the invasion process may already establish negative downstream 

sequelae. Second, downregulation of type 1 pili because of mannoside administration might lead 

to the expression of other pilus systems, increasing the risk for pyelonephritis [12, 33, 61]. 

Nevertheless, these molecules can be utilized instead of antibiotics or in synergistic combination 

[57]. In addition to inhibiting type 1 pili by blocking its interaction with the mannosylated 

receptors in vivo, compounds known as pilicides can block the synthesis of multiple types of 

extracellular fibers [62, 63]. Pilicides could obviate some of the negative side effects including 

possible ascension and pyelonephritis. These molecules may have more side effects because of 

the near ubiquitous presence of CUP pili among enterobacteriaceae, including gut commensals 

[64, 65]. Further evaluation of mannosides and pilicides is necessary, but these treatments hold 

promise as alternative or complementary therapies for UTI. The work described in this thesis 

describes the key elements of UPEC pathogenesis, providing rationale for aggressive and novel 

treatments aimed at limiting this disease. 

 

Bacterial population bottlenecks and virulence factors 

UPEC must overcome several bottlenecks and barriers to establish colonization of the 

urinary tract [12, 33]. The bottlenecks that organisms transit to cause disease are numerous and 
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likely similar between mucosal infections [11, 66-70]. These host and environmental filters 

attempt to reduce the numbers of pathogenic organisms that reach protected sites. For UPEC, the 

increased immune response corresponds with the ability to access deeper tissues [11, 40]. 

Organisms of the genus Vibrio have several virulence factors allowing them to carve out niches 

within the host. Vibrios express Type VI secretion systems allowing them to target other species 

to eliminate niche competition [71]. Once certain Vibrio species have attached to the appropriate 

niche, they can also invade the epithelium, likely presenting another bottleneck to pathogenesis 

[72]. Within these genes, positive selection has likely occurred favoring certain allelic variants. 

Thus, many of the findings presented for UPEC in this thesis can and should apply to the 

consideration of other infectious diseases. 

One very important consideration that should be taken from this thesis is that presence or 

absence of a virulence factor is not sufficient to mediate disease phenotype. Furthermore, allelic 

variation among virulence factors may serve to modulate that particular event in the host-

pathogen interface. For example, positively selected residues in the FimH adhesin modulate the 

ability of UPEC to attach to bladder tissue, invade, form IBCs, and bind mannose (Chapter 3). 

A spectrum of disease severity exists partially regulated by the specific FimH variant an E. coli 

expresses. Similar investigations into other mucosal pathogens would likely yield similar 

findings [72]. Therefore, I propose that it is not what specific virulence factors an organism 

expresses, but rather which allele of each virulence factor that it expresses that confers specific 

niche pathogenicity.    
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B. Future Directions 

Virulence defects of high affinity pathoadaptive FimH alleles 

 UTI89 expressing FimH::A27V/V163A and FimH::V163A are attenuated during chronic 

infection, and UTI89 FimH::A27V/V163A invades the urothelium but does not form IBCs 

(Chapter 3) [42]. Purified Fim tips containing these mutations have high mannose affinity and 

presumably only exist in the elongated conformation. The experiments outlined below will 

determine the reason for the inability of these strains to form IBCs and whether these high-

affinity strains can colonize the bladder after the onset of chronic cystitis. 

 

Is high mannose affinity inhibiting IBC formation a general phenomenon? 

 I hypothesize that the high affinity state is mutually exclusive with the ability to form 

IBCs in vivo. UTI89 FimH::A27V/V163A does not form IBCs at 6 hpi and is rapidly cleared by 

24 hpi [42]. UTI89 FimH::V163A was not dramatically different from UTI89 at 24 hpi in single 

infection; however, this result was accompanied by a large titer variance and was not explored at 

other timepoints [42]. Both FimH mutants exhibit high mannose affinity and an increased ability 

to form biofilm ex vivo (Chapter 3) [42]. Both strains were also defective in co-infection with 

WT UTI89 during chronic cystitis. In order to test my hypothesis, I would inoculate C3H/HeN 

mice with UTI89 or UTI89FimH::V163A and determine IBC number at 6 hpi using whole 

mount LacZ staining [73]. I expect UTI89 FimH::V163A will not form IBCs.  
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Why are strains expressing high mannose affinity FimH incapable of forming IBCs? 

 I hypothesize that FimH cannot detach from its uroplakin receptor on the bladder cell 

surface if it is locked in the elongated, high-affinity conformation. To test this hypothesis mice 

could be infected UTI89 with FimH::A27V/V163A and FimH::V163A as well as strains 

artificially locked in the elongated or compressed conformation via cysteine bonds [74]. Invasive 

UPEC co-stained with uroplakin III and Rab27b, indicating UPEC internalization into fusiform 

vesicles with its receptor [75]. A TLR4-dependent process can expel bacteria within these 

vesicles into the lumen of the bladder [76]. Hours later, bacteria within IBCs are no longer 

coated with Rab27b, and appear to replicate in the cytoplasm of the epithelial cell [38]. How 

bacteria burst out of this vesicle and replicate within the cytoplasm is unknown. The following 

experiments will determine the role of FimH in this mechanism:  

A) I would determine whether UTI89 FimH::A27V/V163A cannot form IBCs because it is 

trapped within fusiform vesicles by utilizing a GFP expressing strain and staining bladders at 6 

hpi for uroplakin III, Rab27b, and host cell nuclei with DAPI. By examination using confocal 

microscopy, I would expect to find UTI89 FimH::A27V/V163A and other strains with highest 

mannose affinity to remain in vesicles, whereas UTI89 will be free within the cytoplasm.  

B) UPEC can be expelled from within the epithelial cell by elevations of cAMP and fusion of 

fusiform vesicles to the bladder surface [75]. I would inhibit this elevation of cAMP by 

introduction of compound H89, which has been previously shown to decrease UPEC expulsion 

[75]. I predict that administration of this molecule will lessen the defect of strains expressing 

high mannose affinity. It is also possible that the ability of these high affinity strains to escape 

the vacuole is reduced temporally, in which case H89 may restore IBC formation. Alternatively, 

these strains may be incapable of detaching from the uroplakin receptor, which would result in 
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increased bacterial titers without increasing IBC formation. This hypothesis can be tested using a 

uroplakin transgenic mouse and intravital multiphoton microscopy [77]. C57BL/6J mice 

expressing RFP from the uroplakin 1 locus (UpkIb) are commercially available through Jackson 

Laboratories. These mice can be infected with GFP-expressing UTI89 strains expressing various 

FimH alleles. As a pilot experiment, confocal microscopy can be conducted on bladders 

extracted at 1, 3, 6, and 12 hpi to determine bacteria-uroplakin colocalization. If this staining is 

successful, I would image, in real time in a live mouse, the engagement and detachment of the 

uroplakin receptor and the impact of FimH allele on this process. I predict that strains with high 

mannose affinity will be unable to detach from the receptor resulting in a high degree of bacteria-

uroplakin colocalization, whereas FimH that can adopt the compact conformation will separate 

from the receptor by 6 hpi to form IBCs.   

 

3) Can fitness defects of high affinity FimH alleles be rescued after the onset of chronic cystitis? 

 When co-inoculated with WT UTI89, UTI89 with FimH::V163A and 

FimH::A27V/V163A are attenuated in the urine and in the bladders at four weeks. UTI89 

FimH::A27V/V163A cannot form IBCs, likely explaining this virulence defect [42]. I have 

shown that both of these mutations increase mannose-binding affinity (Chapter 3). During 

chronic cystitis, uroplakins are not present, implicating another receptor for FimH (see 

Discussion). If binding affinity is the sole determinant of success for otherwise isogenic strains, I 

would predict that FimH::A27V/V163A would outcompete UTI89 in this environment.  

To test whether enhanced binding increases pathogenesis during chronic infection, I 

would infect mice with UTI89 Spectr and re-infect at four weeks with UTI89 

FimH::A27V/V163A or FimH::V163A; both kanamycin resistant. WT UTI89 Kanr will serve as 
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the control in a separate set of mice. In a pilot of a small number of mice, a WT re-infection was 

not able to colonize a mouse experiencing chronic cystitis. If this result replicates, it suggests 

that adaptation to the inflamed environment has occurred, excluding the incoming inoculum. In 

that event, I would treat mice with antibiotics to sterilize the urinary tract, and challenge them 

with FimH::A27V/V163A after the antibiotics have cleared. Preliminary data suggests that IBC 

formation does not occur at 6 hpi after a re-infection when mice are sensitized to develop chronic 

cystitis by the above protocol (Figure 2). I predict that in mice that have developed chronic 

cystitis, exfoliation is so rapid, that there is no invasive bacterial population. This hypothesis can 

be tested by conducting ex vivo gentamicin protection assays and confocal microscopy 1, 6, and 

24 hours after infection of sensitized mice with UTI89 expressing GFP. The degree of 

exfoliation can be assessed using scanning electron microscopy [2, 78]. Whole bladders from 

naïve mice can be examined as well as mice that resolved infection or developed chronic cystitis 

on the first infection. If sensitized mice exfoliate more completely and more rapidly than mice 

that resolved infection, I would predict that UTI89 FimH::A27V/V163A can cause chronic 

cystitis. If this strain is still attenuated and IBC formation is not essential in this condition, it 

would suggests that the compact state of FimH is favored during chronic cystitis.    

 If the introduced inoculum is capable of colonizing to an equal degree, I would predict 

that introduction of UTI89 FimH::A27V/V163A or UTI89 FimH::V163A would outcompete the 

WT strain because of its enhanced mannose binding. If it is not able to colonize, this also 

suggests that the compact state that FimH adopts in WT UTI89 is important for colonizing the 

chronic bladder. These experiments can also be conducted with strains locked in the elongated 

and compact states [74]. 
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Identification of the FimH receptor during chronic cystitis  

 As mentioned above and in the Discussion (A), the superficial epithelial layer is denuded 

during chronic cystitis, and mature uroplakins are not expressed [40]. I will outline a biased and 

unbiased approach to identify the receptor for FimH in a chronic bladder. 

Biased approach 

Several epitopes have been reported to bind FimH in vitro including α3 and β1 integrins, TLR4, 

and collagen [53, 54, 79]. I would infect mice with GFP-expressing UTI89 and stain bladders at 

4 weeks post infection with antibodies to α3 integrin, β1 integrin, TLR4, and collagen IV. I 

would determine the percentage of these receptors that co-localize with green bacteria and vice 

versa. In chronic mice, if one of these is the potential receptor, bacteria and the receptor will 

colocalize to a high degree. I would additionally extract bladders from chronically infected mice, 

wash them with α-methyl-D-mannopyranoside to detach bacteria, and incubate with fluorescein-

labeled UTI89 or FimH mutants, and stain with antibodies for the prospective receptors and 

DAPI. The ability to bind purified FimCH and FimCGH could then be analyzed using biolayer 

interferometry with OCTET. 

Unbiased approach  

I would use a similar biolayer interferometry setup with biotinylated FimCH and FimCGH 

bound to OCTET pins and add the following homogenized bladder preparations: uninfected, 

protamine sulfate-exfoliated urine and bladder tissue, and bladder tissue from mice experiencing 

chronic cystitis. If the biotinylation reaction prevents binding, I would immobilize FimCH and 

FimCGH on eliza plates, and conduct the following analyses. I would run these samples in 

separate wells to bind mouse bladder proteins to immobilized WT or binding-null FimCH or 

FimCGH. I would then wash the wells to remove unbound samples, add mannose to elute the 
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receptor, and run these samples on a gel to identify bands specific to chronic mouse bladders. 

The band corresponding to uroplakins in naïve mouse bladders should be present in uninfected as 

well as protamine-treated bladders and absent from chronic cystitis bladders. This internal 

control ensures the assay is functional. Mice that are pretreated with protamine sulfate and 

infected 1 hpi later do not develop chronic cystitis at a higher rate (Chapter 4), suggesting either 

that the receptor is not exposed without immune activation or that IBC formation is required 

prior to exfoliation. Comparing bladders of protamine-treated mice and mice experiencing 

chronic cystitis will help to identify the receptor as well as answer the previous question. Protein 

bands satisfying these conditions will be sent for mass spectrometry analysis to identify the 

receptor that FimH binds during chronic cystitis. 

Mannoside efficacy against multiple FimH alleles in multiple niches 

 Oral administration of mannosides has proven effective in dramatically reducing bacterial 

colonization of the mouse bladder [57, 59, 60]. The infecting strain in these experiments has 

been UTI89, EC958, and PBC1, all of which express different FimH alleles. In order to test 

whether mannosides are equally effective against common FimH alleles of UPEC strains, I 

would infect mice with UTI89 differing only by FimH allele. For strains less effective than 

UTI89 at causing chronic cystitis, an inoculum of 108 CFU can be introduced to initiate a greater 

proportion of chronic cystitis. I would administer a single oral dose of a high affinity mannoside 

and evaluate bladder and kidney bacterial burden 6 hrs after mannoside or PBS administration.  

An interesting experiment would be to colonize the GI tracts of mice with UTI89 

expressing FimH alleles after a four-day course of streptomycin [80]. Oral gavage of bacteria 

with or without mannoside will test whether FimH is necessary for gut colonization. Previous 

reports regarding the role of type 1 pili in gut colonization are conflicting [80, 81]. Inocula 
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containing multiple strains differing only by FimH can be introduced to answer the question of 

whether these differences impact gut fitness. These competitive experiments may help us 

understand why the most common alleles observed in the population are less fit in the urinary 

tract (Chapter 3). These gut colonization experiments will answer multiple questions. First, is 

FimH necessary for gut colonization? Second, if FimH is necessary, does the FimH allele impact 

GI colonization as has been shown previously for one allele in gnotobiotic mice [42]? Third, can 

mannoside effectively eliminate UPEC from this niche as well as from the bladder? This last 

question is important given the recent data showing gut and bladder colonization of UPEC in 

humans at the time of UTI [21]. Mannoside could be used bifunctionally to eliminate the 

immediate cause of UTI as well as reduce bladder and GI reservoirs that could serve as sources 

of recurrent UTI [22, 23].  

 

The role of IL-1 in priming the bladder for superinfection 

 The precise molecular mechanism underlying the proportional increase in the 

development of chronic cystitis for superinfected mice is unknown (Chapter 4). This increase 

does not occur when the initial inoculum has mutations in hlyA or cpxR, nor does it occur when 

the bladder is pretreated with a caspase1/11 inhibitor prior to infection. Taken together, these 

results suggest that activation of the inflammasome without an exaggerated response is essential 

to increase the proportion of mice suffering chronic cystitis.  

The inflammasome is a mutli-protein assembly complex resulting in the activation and 

release of caspase-1/11, IL-18, IL-1β, and Il-1α, dependent on whether caspase-11 is also 

activated [82]. Inflammasome activation depends on the type of stress, and can be named based 

on a particular scaffolding protein that aids in stimulus recognition. UPEC activates the non-
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canonical bladder inflammasome via NLRP3 in conjunction with caspase-11 elaboration by the 

sensing of hemolysin (Nagamatsu et al. in preparation). Strains overexpressing hemolysin 

(ΔCpxR) lead to increased activation, while strains lacking hemolysin do not activate the 

inflammasome. mRNA levels of caspase-1, caspase-11, nlrp3, and IL-1β are increased in the 

serum of infected mice in a dose-dependent manner. Although systemic levels of IL-1α and IL-

1β were not predictive of ensuing chronic cystitis [40] (Chapter 4), the local bladder 

environment may be enriched for these cytokines. Indeed, infected bladders had increased levels 

of IL-1β in a hemolysin-dependent manner (Nagamatsu et. al. In Preparation). UTI89ΔHlyA is 

not attenuated for the development of chronic cystitis, but does not prime the bladder for 

enhanced chronic cystitis in superinfected C3H/HeN mice. This result suggests that an 

alternative pathway may also lead to chronic cystitis, but that elevations in Hemolysin-mediated 

exfoliation and inflammasome activation increase this response.  

In order to test the role of the inflammasome during superinfection further, I would 

superinfect mice 1-6 hours after the initial infection and determine serum and bladder levels of 

IL-1α, IL-1β, IL-5, IL-6, KC, and G-CSF using ELISA or Bioplex at 24 hpi. Bladder levels of 

IL-1α and IL-1β will be correlated to serum levels of IL-5, IL-6, KC, and G-CSF to predict 

which mice had triggered the checkpoint to develop chronic cystitis [11, 40]. I would predict that 

superinfected mice have increased bladder IL-1α and/or IL-1β, and that this would correspond to 

mice with elevated serum IL-5, IL-6, KC, and G-CSF. If this result is seen, I would treat mice 

with Anakinra to block the IL-1 receptor, which I predict would block the enhancement of 

chronic cystitis in superinfected mice. If Anakinra prevents increased chronic cystitis, it could be 

used instead of, or in combination with, antibiotics for extreme cases of UTI. For additional 

proof of the role of the inflammasome in superinfected mice, I would backcross C3H/HeN mice 
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with caspase-1/11-/- C57BL/6 mice for > 10 generations to develop C3H/HeN mice that lack 

caspase 1/11. I would predict these mice do not develop chronic cystitis.  

C. Concluding Remarks 

 This dissertation expounds upon the growing complexity of UPEC UTI that is just now 

being appreciated. I detailed the complex population dynamics and niche distribution of UPEC 

throughout UTI, identifying a key bottleneck that bacteria need to transit in order to establish 

long-term colonization. This work additionally showed that the degree of IBC formation 

correlates with disease outcome. Further, positively selected FimH residues conferred enhanced 

fitness during acute and chronic UTI. These studies brought up a mannose-binding paradox, 

whereby affinity extremes were less fit than FimH exhibiting moderate affinity. This affinity 

relates to the ability of FimH to adopt at least two conformations, both of which are essential 

during bladder colonization. Finally, I established a model to mimic frequent sexual intercourse, 

showing that caspase 1/11 activation leads to enhanced chronic cystitis in a susceptible mouse 

strain. I also showed that this model lead to chronic cystitis in a strain resistant when infected 

singly. This thesis provides added rationale for treating the invasive stage of the UPEC 

pathogenic cascade aggressively before long-term, negative sequelae develop. Accordingly, the 

ability of UPEC to occupy specific niches in a time and space dependent manner is crucial for 

successful colonization. By targeting UPEC within these niches at the appropriate times during 

the complex pathogenic cascade, we can eradicate this troublesome disease.   
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Figures 

 

      

Figure 1. Potential role of type 1 and P pili during pyelonephritis. 

P pili bind to receptors on the kidney epithelium when UPEC enters the kidney. Type 1 pili may 

serve to coalesce bacteria within biofilms in this environment [31]. Possible intracellular niches 

or antibiotic resistant niches may also exist.  
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Figure 2. IBC formation in sensitized mice. 

Mice were infected with 108 CFU UTI89 or PBS and urine was tracked for 28 days. Mice were 

then treated with trimethoprim-sulfamethoxazole for 7 days in drinking water. After 21 days free 

from antibiotics, mice were infected with 107 CFU UTI89 and bladders were extracted for whole 

mount LacZ analysis 6 hpi.  
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