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ABSTRACT OF THE DISSERTATION
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This dissertation explores, proposes, and examines methods of applying modern ma-

chine learning and Bayesian statistics in the quantitative and qualitative modeling of

gene regulatory networks using high-throughput gene expression data. A semi-parametric

Bayesian model based on random forest is developed to infer quantitative aspects of gene

regulation relations; a parametric model is developed to predict gene expression levels

solely from genotype information. Simulation of network behavior is shown to comple-

ment regression analysis greatly in capturing the dynamics of gene regulatory networks.

Finally, as an application and extension of novel approaches in gene expression analysis,

new methods of discovering topological structure of gene regulatory networks are devel-

oped and shown to provide improvement over existing methods.
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1. Introduction

1.1 Motivation

A gene regulatory network (GRN) is a collection of DNA segments in a cell which

interact with each other indirectly (through their RNA and protein expression products)

and with other substances in the cell to govern the gene expression levels of mRNA and

proteins. GRNs are an important module of cells’ ability to respond to environmental

changes and are essential to cell lineage differentiation in multicellular organisms. Un-

derstanding the mechanisms of GRNs aids the study of human diseases, pharmaceutical

research, and industrial genetic engineering.

Various experiment methods provide data for the study of GRNs. Methods such as

ChIP-chip, ChIP-seq, and ChIP-exo give insights to the binding locations of proteins on

DNA sequences; micro-array and RNA-seq can measure the mRNA abundance of different

genes in cells. These methods generate high-throughput data whose processing demands

not only strong computational power but also advanced statistical methods.

Using data from the unicellular model species Saccharomyces cerevisiae and Cryp-

tococcus neoformans, this dissertation develops and discusses mathematical models and

computational approaches for investigating GRNs and simulating their behavior.

1



1.2 Background

1.2.1 Dynamics of Gene Regulatory Networks

Genes interact with each other through the proteins that they encode. Gene sequences

are transcribed to mRNAs which are translated to proteins, some of which affect the

transcription rates of genes by binding to their promoter sequences and interacting with

the RNA synthesis mechanism.

In Saccharomyces cerevisiae and Cryptococcus neoformans, alternative splicing of mR-

NAs is rare and it can be considered that each expressed gene is transcribed to one unique

mRNA sequence which is then translated to one unique protein. By considering the tran-

scription rate of each gene as a function of protein levels, the dynamics of a GRN (without

biological noise) can be modeled as


d[proteini]

dt
= τi[mRNAi]− δi[protein i]

d[mRNAi]
dt

= fi([protein1], [protein2], . . .)− di[mRNAi]

(1.1)

where [·] denotes concentration, i indexes genes, τi is the translation rate of gene i, δi the

degradation of proteini, di the degradation rate of mRNAi, t is the time variable, and fi

describes the dependence of the transcription rate of gene i on protein levels.

In RNA-seq and expression micro-array experiments, mRNA concentrations are mea-

sured with some random measurement error and biological noises. Conceptually, we

identify the mRNA abundance of a gene with its expression level.

2



1.2.2 Steady State of Gene Expression Levels

Although gene expression levels form a dynamic system and could be constantly chang-

ing, the system can reach or approximate a steady state when there is little change in the

environment.

Numerous micro-array and RNA-Seq experiments are available that measure the ex-

pression levels of genes in cell cultures at single time points in steady environments.

Although they do not track the time course trajectory of the gene expression profile of

any single sample, the differences in genotype and environment across samples result in

different expression profiles which are captured in the experiments and enable the study

of gene interactions.

To study steady state expression data, we specialize (1.1) into a steady state model.

Assuming


d[proteini]

dt
= 0

d[mRNAi]
dt

= 0

(1.2)

(1.1) implies that


[protein i] = τi

δi
[mRNAi]

[mRNAi] = 1
di
fi

(
τ1
δ1

[mRNA1], τ2
δ2

[mRNA2], . . .
) (1.3)

3



Denoting

gi(m1,m2, . . .) =
1

di
fi

(
τ1

δ1

m1,
τ2

δ2

m2, . . .

)
(1.4)

we can rewrite

[mRNAi] = gi ([mRNA1], [mRNA2], . . .) (1.5)

and gi will describe the relation between the mRNA levels of different genes. In fact, many

steady state expression studies focus on investigating the relation between gene expression

levels without explicitly inferring protein levels. The majority of the methods developed

and discussed in this thesis are intended for the analysis of steady state expression data.

The presence of technical and biological noise in the measurement of mRNA concen-

trations demands proper statistical modeling.

1.2.3 Artificial Genetic Perturbations

Without time course data of expression levels, the interaction between genes has to

be revealed by comparison between steady state expression arrays of different strains of an

organism or that in different environments. Micro-array data of Saccharomyces cerevisiae

by Hu et al. [14] consists of 263 mutant strains, each of which has one regulator-encoding

gene deleted artificially; micro-array data of Holstege et al. [2] provides the steady state

expression profiles of 1484 single-gene-deletion strains.
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Expression data of mutant strains or environmental changes has been used for network

structure inference [3, 4, 15,16] and expression prediction [8, 13,15].

1.3 Structure and Contribution

Chapter 2 studies regression analysis that predicts the expression level of a target

gene from the levels of its regulator genes. In particular, we developed a method based

on Bayesian Additive Regression Trees (BART) [9] that predicts target gene level from

regulator levels and is competitive with published methods for the same task. Chapter 3

develops a pioneering model for predicting steady state expression levels of genes from the

combination of regulator deletions. In Chapter 4, we design a specific scheme for applying

models developed in Chapter 2 for the task for network structure discovery. Using this

method and the latest expression data in literature, we construct a functional network

for Saccharomyces cerevisiae that shows improved accuracy over previously published

network inferences.
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2. Expression Level as a Function of Regulator Concentrations

2.1 Background

A gene regulatory network can be represented by a graph whose nodes are gene ex-

pression levels and whose edges are regulations. The majority of protein-encoding genes

do not participate directly in the transcriptional regulation of other genes. A small por-

tion of the protein-encoding genes encode transcription factors, proteins of transcription

factor complexes, or modifiers of transcription factors. Transcription factors then bind

to the promoter sequences of genes and alter the rate that they transcribe into mRNA’s.

The genes who play a role in regulating the expression level of other genes are referred to

as regulators.

Although interactions between regulators may involve feed back loops and other com-

plicated structures, the relation between regulators and non-regulator genes are relatively

simple: the directed edges of gene regulation graph can go into, but not out of, the set of

non-regulator nodes. In this chapter, we study different ways of modeling the influence

of regulator levels on non-regulator levels.

We work with gene expression arrays such as micro-array and RNA-Seq data to study

regulator-target interactions. To formulate the task as statistical problem, we consider
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regulator expression levels as explanatory variables and non-regulator gene expression

levels as response variables; we propose and examine several models for predicting the

latter from the former.

Each target gene may have multiple regulators and the modeling of the combinatorial

effect is non-trivial. Moreover, the number of regulators in the studied species corre-

spond to the number of explanatory variables, or features in the terminology of machine

learning. In many cases, the number of samples are on the same level as number of fea-

tures, rendering conventional regression methods subject to the risk of overfitting. An

appropriate modeling approach will help understanding both the network structure and

quantitative features of gene regulation and inform strategies for simulating the behavior

of gene regulatory networks.

2.2 Previous Works

2.2.1 Inferelator

There are several pieces of previous works in expression prediction that incorporates

the lasso [18] as their key parts. The regression lasso performs least-square fitting in

a linear regression setting subject to a constraint on maximum allowed L1 norm of the

coefficient vectors. The maximum allowed L1 norm is typically determined by maximizing

the prediction accuracy in cross-validation on the training data.

One of the published method of this kind is Inferelator [15]. The explanatory variables

that Inferelator passes to lasso include logarithm of regulator levels and of minimum
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levels of pairs of regulators (e.g. min{xj1k, xj2k} where xjk is the level of regulator j in

sample k) representing the concentrations of heterodimer TFs; regulators whose levels

are highly correlated are combined into one single feature. These features (regulator

log-levels, combined regulator log-levels, minima of regulator pairs) are filtered by their

correlation with the response variable and only a few features are handed to the lasso for

the prediction of each response variable. A response variable in the problem formulation

of Inferelator can be either the log-level of a single target gene or the average log-level of

multiple co-regulated genes, as grouped by biclustering in [15]. Inferelator is designed to

work with both steady state expression data and/or time-course expression data.

The minimum of the levels of a regulator pair min{xj1k, xj2k} in Inferelator was in-

tended for representing the level of the protein heterodimer that is composed of one copy

of regulator j1 and one copy of regulator j2. However, in data sets where only mRNA

levels are measured and no direct measurement of protein concentration is available, it is

unclear what is the constant ratio between the mRNA level xjk and the concentration of

its translated protein. Different regulators can have different [mRNA]/[protein] ratios due

to difference in translation rate and protein degradation rate, therefore it is impossible to

construct a feature to represent the minimum of the levels of two different proteins.

Another example of lasso application can be found in [5]. A gene regulatory network

was built for Drosophilia melanogaster; using the learned network as feature selection

method, the same study performed prediction of target levels from regulator levels using

the lasso. It was shown that accurate understanding of network structure provides feature

selection criteria that improve the accuracy of expression prediction.
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2.2.2 k-Nearest Neighbors

An expression prediction method based on k-nearest neighbors (kNN) was published

in [10]. There expression prediction is treated as a missing data imputation problem. A

distance is calculated for each pair of genes according to the Euclidean distance between

their log expression level vectors across different training samples. Based on this distance

measure, each gene is assigned with a certain number of nearest neighbors, which can be

interpreted as a set of co-regulated genes. The expression level of a query gene in a query

sample is predicted by the average level of its neighbor genes whose levels are known in

the query sample. Despite the simplicity of the model, it ranked high in the expression

prediction competition in DREAM3 (Dialogue for Reverse Engineering Assessments and

Methods 3).

The method developed in [10] can be directly applied to the task of predicting target

levels from regulator levels. Although the method was originally applied on time-course

expression data, the simplicity of the data allows it be applied to steady state expression

data without any modification.

This method is tested and evaluated in this chapter along with other methods. Several

variations of this method are available and they are tested separately. There are two

factors of variation:

1) Whether the Euclidean distance between genes is calculated in the space of fold

changes Yij with respect to wild type or in the space of log-fold-changes log(Yij).
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2) The choice of parameter k which stands for number of nearest neighbors assigned

to each gene. As the original paper [10] pointed out that k = 10, 11, . . . , 30 provided

best performance in cross-validation on the training data, in this chapter we explore the

options k = 1, 2, . . . , 30. Since it is not a task of this dissertation to determine the optimal

k for the kNN-bases method, we test different choices of k directly on the test data instead

of determining it from cross-validation on the training data.

2.2.3 PWM-based Expression Prediction

There have been efforts to predict expression levels using models that incorporate

sequence affinity information such as position weight matrix (PWM) [17] scores. One ex-

ample is [11], where the product of transcription factor concentration and the exponential

function of position probability matrix (PPM) [17] score at a position on the genome is

considered proportional to the statistical weight of the binding between that position and

the TF. The model was able to successfully predict the expression level of certain modules

in the segmentation network of Drosophila from the levels of 8 TFs. This model requires

a smaller number of parameters (proportional to the sum of the number of regulators

and the number of targets, while that of a linear regression model is proportional to the

product of regulator number and target number). However the complexity of the form of

the optimizand could render the model fitting process very time consuming as the number

of regulators and targets goes higher. This model requires prior knowledge of the PWM

of the studied regulators.
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2.3 Data and Evaluation Criteria

2.3.1 Data Type and Interpretation

The methods and models described in this chapter are developed on micro-array data

and RNA-Seq data; the methods can be extended to any expression array data. Regulator

levels are handled as explanatory variables and non-regulator gene levels as response

variables. Each data set is partitioned in to training samples and test samples: the

former used for supervising model fitting and the regulator levels of the latter for query

features.

2.3.2 Training and Test Data

The methods are trained and tested on RNA-Seq data of Cryptococcus neoformans

produced in Brent Lab (http://mblab.wustl.edu/) and Doering Lab (

http://www.crypto.wustl.edu/) and on micro-array data of Saccharomyces cerevisiae pub-

lished in [2].

The RNA-Seq data of Cryptococcus neoformans consists of genome-wide expression

profiles of 318 samples, including 117 wild type (the serotype A reference strain H99)

samples, 171 samples of 41 single-gene deletion strains, 3 samples of an over-expression

strain and 27 samples of 10 double-gene deletion strains. Samples were cultivated and

collected in different batches over a 3-year period. Each batch contains wild type samples

and may or may not include mutant strains. The training data consists of expression
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profiles of single-gene deletion strains and wild type samples; the test data consists of the

expression profiles of double-gene deletion strains.

The micro-array data of Saccharomyces cerevisiae consists of genome-wide expression

profiles of 1484 single-deletion strains and wild type yeast of haploid MATalpha (BY4742)

and MATa(BY4741) cultivated in G418 YPD [2]. The processed data published in [2] is

used, where the differential expression analysis tool LIMMA [16] was applied to the raw

data, generating the p-values of differential expressions as well as estimated fold changes

of expression levels with respect to wild type. The fold changes of expression levels with

respect to wild type is used in this thesis as expression array data. The data consists

of the expression profiles of 1484 mutant strains of single deletions of both regulator

genes and non-regulator genes. To test the contribution of regulator deletion strains to

the predictive power of the model, we perform 2-fold cross-validation between the set of

regulator deletion strains and the set of non-regulation strains.

2.3.3 Normalization of RNA-Seq

The unit of expression levels in an analysis can potentially be arbitrary. This subsec-

tion standardizes the unit of RNA-Seq data for later analysis in this thesis.

Using the wild type expression level of a gene as the unit can provide great convenience

for notations and parameterization. However, wild type samples as well as mutated

samples are collected in multiple experiments and might not be readily comparable with

each other due to batch effect. To correct the batch effect, we use the average wild type

expression profile of each batch as its normalizer.
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Denote the index set of samples in a certain batch as batchj and the index set of

wild type samples WT . The index set of wild type samples in the jth batch is therefore

batchj ∩WT . The average wild type expression level of gene i in batch j is defined as

1

|batchj ∩WT |
∑

l∈batchj∩WT

FPKM il (2.1)

where FPKM il is the expression level of gene i in sample l measured in fragments per

kilobase per million reads (FPKM).

Using this quantity as the normalizer, the normalized expression level of a gene i in

sample k ∈ batchj is defined as:

∀k ∈ batchj, Yik =
FPKM ik + ν∑

l∈batchj∩WT FPKM il

|batchj∩WT | + ν
(2.2)

where a small pseudocount ν > 0 is added to both the numerator and denominator to avoid

the case of zero denominator and to provide numerical stability when the expression levels

is very low. The pseudocount is picked to be a number much smaller than the majority

FPKM.

This definition normalizes each batch of samples using wild type information from the

same batch. At the same time, it enforces the average wild type expression level of a

gene as its unit of expression levels - hence Yik may also be interpreted as the fold change

of expression level with respect to wild type. The normalization is applied on both the

training data and the test data.
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Note that under this definition, there is a positive minimum expression level for each

gene i due to the usage of pseudocount:

Yik ≥
ν

max

{ ∑
l∈batchj∩WT

FPKM il

|batchj∩WT | : j = 1, 2, . . .

}
+ ν

(2.3)

The normalized expression level Yik will henceforth be used in all analyses in this thesis

unless otherwise indicated. They will simply be referred to as “expression levels” or “fold

changes”.

2.3.4 Assessment of Quantitative Prediction

The performance of methods is measured in their accuracy of predicting log-fold-

changes of expression levels with respect to wild type.

In particular, denoting the prediction of Yik as Ŷik, we examine the accuracy of log2(Ŷik)

as the prediction of log2(Yik). Mean square error (MSE), R-Squared, and correlation are

the metrics of accuracy.
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Denoting the index set of test samples as S and the set of genes to predict as G, the

metrics of accuracy are defined as:



MSE =
∑
i∈G,k∈S (log2 Ŷik−log2 Yik)

2

|G||S|

rmse =
√

MSE

R2 = 1− MSE
s2G×S(log2 Y )

Corr =
∑
i∈G,k∈S ((log2 Ŷik)(log2 Yik))√∑

i∈G,k∈S (log2 Ŷik)
2∑

i∈G,k∈S (log2 Yik)2

(2.4)

where

s2
G×S(log2 Y ) =

1

|G||S| − 1

∑
i∈G,k∈S

(log2 Yik)
2 − 1

|G||S|(|G||S| − 1)

( ∑
i∈G,k∈S

log2 Yik

)2

(2.5)

is the sample variance of log2 Y in the test data.

2.4 Simple Parametric Models

Given the complexity of molecular mechanism of gene-protein interactions, the mod-

eling approaches can range from detail-oriented such as the PWM-based model in [11]

to highly abstracted such as a simple linear regression. In this chapter, we focus on the

more abstract approaches, which requires little specific knowledge and few assumptions

regarding the molecular level mechanism.
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This subsection explores several options of modeling the deterministic relation between

regulator levels and target levels.

The most basic model would be a linear regression model. However, a linear model

cannot guarantee that the predictions of the response variable, i. e. the expression level of

the target gene, are non-negative. Here we discuss several modified versions of the näıve

linear regression model.

The first one enforces a cutoff at zero when the linear combination of regulator levels

calculates to a negative number. It will be referred to as the additive model with cutoff:

F
(add)
i (x1, x2, . . . ) = max

{
0, bi +

∑
j

cijxj

}
(2.6)

A more common way is to model the relation between target levels and regulator levels

as log-linear:

log
(
F

(lln)
i (x1, x2, . . . )

)
= log(bi) +

∑
j

cij log(xj) (2.7)

This model is used in Inferelator [15]. It may be expressed equivalently as

F
(lln)
i (x1, x2, . . . ) = bi

∏
j

x
cij
j (2.8)
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This model suffers from an inherent limitation in modeling repressor effects. Consider

a certain regulator j that is a repressor. It is modeled by setting cij < 0, which along

with (2.8) implies that

lim
xj→0

F
(lln)
i (x1, x2, . . . ) =∞ (2.9)

That is, when cij is significantly smaller than 0 and xj ≈ 0, F
(lln)
i (x1, x2, . . . ) will be

a huge number and would introduce numerical instability. Alternatively, if cij < 0 but

|cij| � 1, F
(lln)
i (x1, x2, . . . ) may behave well around xj ≈ 0, but x

cij
j ≈ 1 for even slightly

larger xj, implying that the repression effect of regulator j has to be modeled to saturate

at a very low concentration.

This particular limitation can be avoided by modeling the logarithm of the target

level as the linear combination of regulator levels. This model will be referred to as the

exponential model:

F
(exp)
i (x1, x2, . . . ) = bi exp

(∑
j

cijxj

)
(2.10)

However, while not suffering from the limitation of the log-linear model, the exponen-

tial model introduces another instability: when cij > 0, F
(exp)
i would increase exponen-

tially as xj increases.

It has been suggested that in Saccharomyces cerevisiae the in vivo basal transcription

level of a gene in absence of regulators is close to zero due to repression by histones

and that the presence of activators is required to release such repression and to allow

transcription [7,19]. In the exponential model, this requires bi ≈ 0 but bi exp(cij)� 0 for
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certain i, j, implying that cij � 0 and further contributing to the numerical instability as

xj increases.

To avoid the numerical limitation of both the log-linear model and the exponential

model, a combination of the two is proposed here:

F
(lle)
i (x1, x2, . . . ) = bi exp

(∑
j

(cij log(xj) + dijxj)

)
(2.11)

This model will be referred to as the log-linear-exponential model. Note that this model

has a larger number of parameters than the log-linear model and the exponential model.

In this model, the repression effects have the option of been modeled exponentially while

the activation effects have the option of been modeled log-linearly. We do not enforce a

preference for these options a prior but leave the choice to the training process. In fact,

we later confirmed in the trained models that log-linear coefficients cij has a slightly yet

significantly higher chance of been positive than exponential coefficients dij, with p-value

< 2.2−16 for C. neoformans and p-value < 0.03 for S. cerevisiae. Details can be found in

Table 2.5 in the result section.

Inspired by the thermodynamic understanding of gene-protein interactions, it is pos-

sible to define a model enforcing a maximum expression level for each gene:

F
(th)
i (x1, x2, . . . ) =

Mi

1 + 1

ri
∏
j

1+ωijθjxj
1+ωijxj

(2.12)
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where Mi is the maximum expression level of gene i, ωij describes the affinity between

gene i and regulator j, and θj describes the affinity between RNA polymerase (RNAP)

and regulator j: θj < 1 implies that the regulator is a repressor and θj > 1 implies that

the regulator is a activator. This model will be referred to as the thermodynamic model.

The training of this model would be challenged by the larger number of parameters, the

coupling between the effect of certain parameters, and difficulty to fit Mi when the genes

are seldom expressed close to the maximum expression level. Moreover, since the affinity

between a regulator j and RNAP is described only by one parameter θj, it is impossible

to model a regulator as both activator and repressor.

Five different parametric models have been introduced in this subsection: log-linear

model (2.8), additive model with cutoff (2.6), exponential model (2.10), log-linear-exponential

model (2.11), and thermodynamic model (2.12).

2.5 Optimization of Parametric Models

2.5.1 Formulation as Lasso-regression

The coefficient parameters in all three of the log-linear model (2.8), the exponential

model (2.10), and the log-linear-exponential model (2.11) can be fit as linear regression

coefficients. The number of coefficients per target is equal to the number of regulators

for the former two and twice the number of regulators for log-linear-exponential model.

The number of regulators can be more than 200 in Cryptococcus neoformans and in

Saccharomyces cerevisiae and poses a potential overfitting problem.
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The method lasso [18] is intended to guard against overfitting in linear regression by

enforcing a restriction on the maximum L1 norm of the coefficient vector:

loss(α, ~β; ~y, x) =
∑
k

(
yk − (α + ~β · ~xk)

)2

; (2.13)

(
α̂(ls), ~̂β(ls) | ~y, x

)
= argmin

α,~β

(
loss(α, ~β; ~y, x)

)
; (2.14)

(
α̂(lasso), ~̂β(lasso) | ~y, x, τ

)
= argmin

α,~β:‖~β‖1≤τ‖~̂β(ls)‖1

(
loss(α, ~β; ~y, x)

)
; (2.15)

where
(
α̂(ls), ~̂β(ls)

)
is the ordinary least square fit,

(
α̂(lasso), ~̂β(lasso)

)
is the lasso fit, τ ∈

[0, 1] is a tuning parameter, and ‖~β‖1 =
∑

j |βj| is the L1 norm of ~β.

The tuning parameter τ is referred to as L1-shrinkage and its choice is vital for the

predictive power of the lasso. It is determined by minimizing the mean squared error in

cross-validation on the training set.

It is typical to use a scaling factor (normalizer) between variables in a practical problem

and the lasso variables. For example, to formulate the log-linear model (2.8) as a lasso

regression problem, we reparameterize it as

log(Yik)

υi
= αi +

∑
j

βij
log(xjk)

ξj
(2.16)

where ξj and υi are scalers or normalizers. In Inferelator for example, ξj is taken as the

sample standard deviation of log(xj) and υi the sample standard deviation of log(Yi) in
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the training data. A lasso regression problem is defined for each gene i with observations

of the response variable being

log(Yi1)

υi
,
log(Yi2)

υi
, . . . (2.17)

and log(xjk)/ξj is the kth observation of the jth lasso explanatory variable.

The relation between the lasso parameters (αi, βij) and parameters in (2.8) is


bi = exp(υiαi)

cij = υi
ξj
βij

(2.18)

2.5.2 Normalization of Lasso Variables

The most common lasso normalizer is standard deviation in the training data, as

described in the previous subsection. We explore two other options here: 1) no normalizing

- i. e. all normalizers equal to one and 2) the normalizing method used in NetProphet

[4].

NetProphet enforces two “noise floors” ξ0, υ0. When the sample standard deviation

is bigger than the noise floor, the sample standard deviation is used as the normalizer (as

in Inferelator); otherwise, the noise floor is used as the normalizer:

ξj = max
{
slog(xj), ξ0

}
(2.19)

υi = max
{
slog(Yi), υ0

}
(2.20)
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where slog(xj) is the sample standard deviation of (log(xj1), log(xj2), . . .) and slog(Yi) is the

sample standard deviation of (log(Yi1), log(Yi2), . . .).

The noise floors are calculated from average sample standard deviations and deviation

of sample standard deviations. Denoting the index set of investigated genes as I,

υ0 =
1

|I|

(∑
i∈I

slog(Yi)

)
+

√√√√ 1

|I| − 1

(∑
i∈I

s2
log(Yi)

)
− 1

|I|(|I| − 1)

(∑
i∈I

slog(Yi)

)2

(2.21)

Similarly, denoting the index set of regulators as J ,

ξj =
1

|J |

(∑
j∈J

slog(xj)

)
+

√√√√ 1

|J | − 1

(∑
j∈J

s2
log(xj)

)
− 1

|J |(|J | − 1)

(∑
j∈J

slog(xj)

)2

(2.22)

Tested on C. neoformans data, the standard deviation normalizer provided slightly

better prediction (R2 ≈ 0.51) than NetProphet normalizer (R2 ≈ 0.47), both better than

the unnormalized lasso (R2 ≈ 0.37) (see the result section).

2.5.3 Determination of L1-Shrinkage Parameter

The fitting of parameters pertaining to each target gene can be considered as an

individual lasso regression problem, therefore there is allowed to be one L1- shrinkage

parameter τi for each target gene. In this setup, each τi is determined separately by

cross-validation and is referred to as local shrinkage parameters.

In NetProphet [4], it has been shown that using a global shrinkage parameter, i.e

requiring τ1 = τ2 = τ3 = . . . enhances the power of the model for recovering the edges of
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the gene regulatory network of Saccharomyces cerevisiae. The global shrinkage parameter

can be determined by minimizing the mean squared error of all response variables in cross-

validation.

Tested on C. neoformans data, local shrinkage provided better prediction (R2 ≈ 0.51)

than global shrinkage (R2 ≈ 0.42) (see the result section).

2.6 Semi-parametric Bayesian Model

2.6.1 Modeling Noise

Besides the lasso-based approach that minimizes mean square error of log-expression

level prediction, alternatively the expression prediction problem can be tackled using a

Bayesian approach.

As biological and technical noises are prevalent in expression array data, it is necessary

to include noise modeling in expression prediction. For micro-array data, expression levels

are modeled to follow the log-normal distribution when parameters are fixed. When

being extended to RNA-Seq data, the log-normal noise model exhibited incompetency as

the read counts can be equal or close to zero yet log-normal distributed variables only

take positive values. Although the pseudocount used in normalization process (2.2) may

guarantee that Yik never reaches zero, small variations in the Yik when Yik is close to zero

will be exaggerated by log(Yik) and a log-normal noise distribution might strive to train

the model to explain these variations beyond their biological significance.
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Here we aim to design a noise model that behaves like the log-normal distribution

when Yik � 0 yet is not oversensitive when Yik ≈ 0.

The adoption of the log-normal noise model would imply that log(Yi) follows a normal

distribution. This inspires us to design a smooth transformation u such that u(0) > 0 but

u(y) ≈ ln(y) for y � 0 and to model u(Yik) as a normal distributed variable. This will

allow us to take advantage of many convenient qualities of the normal distribution.

The proper design of transformation u depends on the behavior of the expression noise

when the expression is close to zero or at a low level. Literature discussed the relation

between noise level and expression level of genes measured in RNA-Seq experiments [3,6].

Measured in counts per million reads (cpm), the variance and expectation of expression

levels have been suggested to approximate a quadratic relation. Specifically, denoting the

expected level of cpm of gene i in sample k as λik,

Var(CPM ik) ≈ λik + φiλ
2
ik (2.23)

where the first term accounts for technical noise and the second term for biological noise;

φi defines the magnitude of biological noise and does not depend on the condition.

In practice cpm might not always be the unit of expression levels. Thus the variance

instead could be approximated by with an additional scaling factor ψi for each gene:

Var(Yik) ≈ ψi E(Yik) + φi E
2(Yik) (2.24)
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Moreover, literature [4] suggests a noise floor - i. e. a minimum nonzero noise level that

is present even when then the expression level is close to zero, which can be incorporated

as:

Var(Yik) ≈ θi + ψi E(Yik) + φi E
2(Yik) (2.25)

Above is an empirical statement about the dependency of the noise level of Yik on

E(Yik). It remains to define a specific statistical model that caters to this empirical

observation.

Note that if we let the transformed variable Uik = ui(Yik) and assume that
√

Var(Yik)�

E(Yik), then

Var(Yik) ≈ Var(Uik)u
′
i (E(Yik))

−2 (2.26)

If the transformation ui(·) satisfies u′i (y)−2 = 1 + θ−1
i ψiy+ θ−1

i φiy
2 and Uik is modeled

as a normally distributed variable of unknown variance σ2
i = θi and unknown mean, (2.25)

will naturally follow. Hence we denote pi = θ−1
i ψi, qi = θ−1

i φi and solve for the following

differential equation for u:



u′i (y)−2 = 1 + piy + qiy
2

ui(1) = 0

y > 0

(2.27)
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The solution is:

ui(y) =
√

1 + pi + qi ln

(
y + pi/2 +

√
y2 + piy + qi

1 + pi/2 +
√

1 + pi + qi

)
(2.28)

Therefore the noise model is defined, with additional parameters pi, qi, and σ2
i :


Uik | pi, qi, σ2

i , Fi ∼ N
(
u
(
Fi(x1k, x2k, . . .); pi, qi

)
, σ2

i

)
Yik = u−1 (Uik; pi, qi)

(2.29)

where x1k, x2k, . . . are transcription factor levels in sample k, Fi is the function that

determines gene i level from regulator levels without considering noise, Yik is the observed

expression level of gene i in sample k, and


u(y; p, q) :=

√
1 + p+ q ln

(
y+p/2+

√
y2+py+q

1+p/2+
√

1+p+q

)
u−1(ξ; p, q) :=

(
1 + p

2

)
cosh

(
ξ√

1+p+q

)
+
(√

1 + p+ q
)

sinh
(

ξ√
1+p+q

)
− p

2

(2.30)

Note that u′(y; p, q) = (y2 + py + q)−1/2, u′(1; p, q) = 1, and u(1; p, q) = 0.

Calculations show that:


E(Yik | pi, qi, σ2

i , Fi) =
√

1 + σ̃2
i Fi(x1k, x2k, . . .) + (

√
1 + σ̃2

i − 1)pi/2

Var(Yik | pi, qi, σ2
i , Fi) = σ̃2

i E2(Yik) + σ̃2
i pi E(Yik) + σ̃2

i q + σ̃4
i (qi/2− p2

i /8)

(2.31)
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where

σ̃2
i = exp(

σ2
i

1 + pi + qi
)− 1 (2.32)

Note that Var(Yik) is a quadratic form of E(Yik), which is in agreement with the heuristic

noise model (2.25). Specifically, when σ2
i � 1,

σ̃2
i ≈ σ2

i (2.33)

Var(Yik | pi, qi, σ2
i , Fi) ≈ σ2

i E2(Yik) + σ2
i pi E(Yik) + σ2

i q + σ4
i (qi/2− p2

i /8) (2.34)

= σ2
i E2(Yik) + σ2

i pi E(Yik) + σ2
i q(1 + σ2

i (1/2− p2
i q
−1
i /8)) (2.35)

≈ σ2
i E2(Yik) + σ2

i pi E(Yik) + σ2
i q (2.36)

= θi + ψi E(Yik) + φi E
2(Yik) (2.37)

with the last step almost identical to (2.25).

One may consider (2.29) as a generalization of log-normal noise model: if pi = qi = 0,

u(·; pi, qi) = ln.

Later we did normality test on the transformed variable Uik and saw its consistently

higher similarity with the normal distribution than that of log(Yik) (see Table 2.2 and

Table 2.3).
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2.6.2 Bayesian Prior of Noise Parameter σ2

Parameters pi, qi are tuning parameters and are not modeled with a prior. The tuning

process is described in Subsection 2.7.1.

When other parameters are fixed, the estimation of each σ2
i is simply a normal es-

timation problem with known mean (0) and unknown variance: denote Zik = Uik −

u(Fi(x1k, x2k, . . .); pi, qi), the noise model (2.29) can be rewritten as

Zi1, Zi2, . . . | σ2
i , Fi, pi, qi i.i.d. ∼ N (0, σ2

i ) (2.38)

This motivates us to assign an inverse-gamma distribution to σ2
i | Fi, pi, qi, which is

the conjugate prior of variance in Bayesian normal parameter estimation.

The Bayesian estimation problem of σ2
i | Fi, pi, qi for each i is then formulated as:

σ2
i | Fi, pi, qi ∼ InvΓ

(
dfi
2
,
dfs2

i0

2

)
(2.39)

Zi1, Zi2, . . . | σ2
i , Fi, pi, qi i.i.d. ∼ N (0, σ2

i ) (2.40)

Zik = Uik − u(Fi(~xk); pi, qi) (2.41)

where dfi (degree of freedom) and s2
i0 (prior suggested value of σ2

i ) are super parameters.

The criterion of choosing dfi and s2
i0 and the estimation method of σ2

i given Fi, pi, qi

can be found in Subsection 2.7.2.
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2.6.3 Modeling Regulator-target Interaction with Regression Trees

Regulator-target interactions may be complicated and involve various molecular mech-

anisms such as DNA-reshaping, histone relocation, etc. Aside from modeling the details

of all known mechanisms or attempting to simplify the interactions into simple parametric

regression models, one can invoke non-parametric models to describe the relation between

regulator and target levels.

Bayesian Additive Regression Tree (BART) [9] proves to be an effective method for pre-

dicting target gene expression level from regulator levels. BART is an ensemble Bayesian

regression model, with the predictive function being a sum of small decision trees, re-

ferred to as “weak learners”. One significant feature that distinguishes BART from other

ensemble methods is that it penalizes the complexity of each member tree, motivated by

the observation that an ensemble of weak learners sharing well distributed weights is more

robust than a model than relies on a small number of strong learners.
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Copying the noise model (2.29), the full BART-based expression model is defined as:



σ2
1, σ

2
2, . . . | Bi, pi, qi i.i.d. ∼ InvΓ

(
dfi
2
,
dfis

2
i0

2

)
Bi | pi, qi ∼ BART Prior Distribution

Uik | pi, qi, σ2
i , Bi ∼ N (Bi(log(x1k), log(x2k), . . .), σ

2
i )

Yik = u−1 (Uik; pi, qi)

u(y; p, q) :=
√

1 + p+ q ln

(
y+p/2+

√
y2+py+q

1+p/2+
√

1+p+q

)
u−1(ξ; p, q) :=

(
1 + p

2

)
cosh

(
ξ√

1+p+q

)
+
(√

1 + p+ q
)

sinh
(

ξ√
1+p+q

)
− p

2

(2.42)

With pi and qi fixed, the non-parametric Bi(·) is a BART predictive function, which is

an ensemble of regression trees whose form and prior distribution follows the definition in

[9]. Regulator levels in sample k are denoted as x1k, x2k, . . . and target levels as Y1k, Y2k, . . .

2.7 Optimization of Semi-Parametric Model

2.7.1 Choosing Tuning Parameters

Parameters pi and qi affect the form of the loss function hence we do not attempt to

modify them during the process of optimizing the model. It is necessary to determine

these parameters prior to model optimization.

For micro-array data, pi and qi are set to zero. Note that expression level measurements

in micro-array are usually non-zero, therefore u(Yik; 0, 0), which is equal to ln(Yik), is

guaranteed to take finite values only.
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For RNA-Seq data, an approach inspired by that in the voom method [3] is adopted

to determine pi and qi. We calculate cross-replicates variance for each gene in each strain

and tune pi, qi and σ2
i to fit the quadratic relation between Var(Yik) and E(Yik).

Denoting the level of gene i in sample k measured in count per million reads (cpm)

as CPM ik, we assume that there are universal parameters σ2, p̃, q̃ for all genes in all

conditions such that

Var(CPM ik + νi) ≈ σ2 E2(CPM ik + νi) + σ2p̃E(CPM ik + νi) + σ2q̃ (2.43)

where νi � E(CPM i) is the pre-determined pseudocount in cpm. νi is equivalent to the

pseudocount ν in the data normalization process (2.2), but measured in cpm instead of

FPKM.

The tuning parameters pi and qi are related to σ2, p̃, q̃ and latter ones are estimates

from the data in the following steps.

Assuming that Var(CPM ik)� E2(CPM ik), by straight forward calculation similar to

that is shown in [3],

Var(log(CPM ik + νi)) ≈ σ2 + σ2p̃(E(CPM ik + νi))
−1 + σ2q̃(E(CPM ik + νi))

−2 (2.44)

This quadratic relation is fitted in the following procedure.
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First, sample variance s2
ij(log) of log-cpm of gene i in strain j is calculated, as well as

the sample mean µij of cpm:

µij =
1

|Kj|
∑
k∈Kj

CPM ik + νi (2.45)

µij(log) =
1

|Kj|
∑
k∈Kj

log(CPM ik + νi) (2.46)

s2
ij(log) =

1

|Kj| − 1

∑
k∈Kj

(log(CPM ik + νi)− µij(log))
2 (2.47)

where Kj is the index set of samples from strain j.

Linear regression is performed to solve for coefficients c0, c1, c2 in:

s2
ij(log) ∼ c0 + c1µ

−1
ij + c2µ

−2
ij (2.48)

We define p = c1/c0 and q = c2/c0. Further, another linear fit is solved to determine

the proper conversion coefficient that relate expression levels measured in cpm and in fold

change Yik:

CPM ik + νi ∼ wiYik (2.49)

Converting the unit from cpm to fold change, the tuning parameters pi and qi are

determined as 
pi = p̃/wi

qi = q̃/w2
i

(2.50)
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2.7.2 Marginalizing Noise Parameters

When all other parameters are fixed, the noise parameters σ2
i and the observation

forms a Bayesian normal estimation problem with known mean:


σ2
i | pi, qi, Fi ∼ InvΓ

(
dfi
2
,
dfs2i0

2

)
u(Yik; pi, qi)− u(Fi(~xk);Fi, pi, qi) | pi, qi, Fi independently ∼ N (0, σ2

i );

(2.51)

where ~xk = (x1k, x2k, . . . , )
T is the regulator expression profile of sample k.

In the implementation of the method, the super parameters dfi and s2
i0 may be user

specified. By default, they are determined using linear model estimation in R package

BayesTree, where a linear regression is performed between the Uik and (log(x1k), log(x2k), . . .)

and dfi and s2
i0 are chosen to make the prior distribution InvΓ(dfi/2, dfs

2
i0/2) of σ2

i emulate

the distribution of the squared error of the linear model [9].

Since the conjugate prior is used, the posterior distribution of σ2
1, σ

2
2, . . . conditioning

on other parameters is, by calculation in [12]:

σ2
i | pi, qi, Fi, Yi1, Yi2, . . . ∼ InvΓ

(
df

2
+
n

2
,
dfs2

0

2
+

∑n
k=1 (u(Yik; pi, qi)− u(Fi(~xk); pi, qi))

2

2

)
(2.52)

where k = 1, 2, . . . , n are the indices of the training samples.
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The model evidence of this Bayesian problem is by definition equal to p(Yi1, Yi2, . . . |

Fi, pi, qi). By calculation in [12], the model evidence as a conditional probability density

function is

p(Yi1, Yi2, . . . | pi, qi, Fi) =
p(Yi1, Yi2, . . . | σ2

i , pi, qi, Fi)p(σ
2
i | pi, qi, Fi)

p(σ2
i | pi, qi, Fi, Yi1, Yi2, . . .)

(2.53)

=
1

(2π)
n
2

βαβ +

n∑
k=1

(u(Yik;pi,qi)−u(Fi(~xk);pi,qi))2

2

α+n
2

Γ(α + n/2)

Γ(α)

(2.54)

where

α =
df

2
(2.55)

β =
dfs2

0

2
(2.56)

The easiness of the marginalization of the noise parameters σ2
1, σ

2
2, . . . allows us to fit

other parameters alone without the fitting noise parameters.

2.7.3 Fitting Bayesian Additive Regression Trees

After pi and qi are determined in the way described in Subsection 2.7.1, the BART

predictive function Bi in model (2.42) is optimized using a backfitting MCMC algorithm

described in [9]. The R package BayesTree is applied to carry out the optimization process.
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2.8 Results

2.8.1 In Cryptococcus neoformans

RNA-Seq data of Cryptococcus neoformans produced in Brent Lab and Doering Lab

is used to measure the performance of the methods.

For data normalization, the pseudocount in (2.2) is set as ν = 5249, which is the 0.5

percentile of nonzero fpkm’s from all single deletion and wild type strains.

The explanatory variables here are the normalized expression levels of 224 regulators

of Cryptococcus neoformans, as listed in Appendix E. The normalization follows the

procedure described in Subsection 2.3.3.

Aside from these 224 regulator genes, the normalized (Subsection 2.3.3) expression

levels of the other 6756 genes among the 6980 Cryptococcus neoformans genes studied are

considered response variables.

Models were trained on the single deletion strain samples and the wild type samples

and tested on the double deletion samples. Benchmarks of quantitative predictions include

R2, rmse, and correlation of log2 expression as defined in (2.4).

We first examined the performance of log-linear model (2.8) with lasso L1 shrinkage

determined by cross-validation. Logarithms of regulator levels and target levels are scaled

to have standard deviation of 1 (i. e. using standard deviations as lasso normalizers). The

prediction of log2-fold-change (with respect to wild type) reached accuracy of R2 ≈ 0.51.

To determine the importance of normalization of lasso variables, we also examined

the performance of log-linear model without variable scaling and log-linear model with
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NetProphet-type variable normalization (2.20) (2.22). Normalization seems to provide a

great improvement in the predictive power (see Table 2.1).

Also tested is the log-linear model with global shrinkage parameter (introduced in

[4], also see Subsection 2.5.3). Contrary to the improvement it provided on network

edge recovery in the data used in [4], switching from local shrinkage to global shrinkage

appeared to be counterproductive to the performance in expression prediction in this data:

Table 2.1: Influence of nuances in log-linear model on the predictive power

Normalizer Standard deviation NetProphet None Standard deviation
Shrinkage type Local Local Local Global

R2 0.51 0.47 0.37 0.42

Aside from log-linear model, we tested the exponential model (2.10) and the log-linear-

exponential model (2.11). Both are implemented with standard deviations as normalizers

of lasso variables and with local L1-shrinkage. The comparison between the performance

of the log-linear model, the exponential model, and the log-linear exponential model is

illustrated and discussed in Subsection 2.8.3.

Next, we applied BART-based semi-parametric model (2.42) and tested its perfor-

mance. The tuning parameters pi, qi were fitted using steps in Subsection 2.7.1 and used

to define the transformed variables Uik in (2.29). Since the noises in the transformed ex-

pression levels Uik are modeled as normal variables, we examined the similarity between
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the distribution of centralized Uik and the normal distribution. Define U ik as the strain

average Uik: e.g., for the index set strainj of samples in the jth strain,

∀k ∈ strainj, U ik :=
1

|strainj|
∑

l∈strainj

Uil (2.57)

We compared the sample distribution of Uik − U ik and the normal distribution. Sim-

ilarly, we can define the strain average Yik of Yik and the strain average log(Yik) of

log(Yik). Shapiro-Wilk normality test [20] was performed on Uik − U ik, Yik − Y ik, and

log(Yik)− log(Yik) for each gene across strains in the training data and Lilliefors test [21]

was performed on them across all genes and strains in the training data.

The distribution of Uik −U ik seems to show highest similarity to the normal distribu-

tion, slightly yet significantly (p-value < 2.2×10−16) higher than that of log(Yik)−log(Yik)

and much higher than that of Yik − Y ik and FPKM ik − FPKM ik

Table 2.2: Normality test on transformed expression levels

Variable U log(Y ) FPKM Y
Average S-W correlation per gene 0.928 0.926 0.870 0.857
Median S-W correlation per gene 0.943 0.941 0.930 0.913

Overall Lilliefors statistic 0.1264 0.1358 0.4249 0.3769

Since each gene is assigned with a Shapiro-Wilk correlation for each transformation,

we can perform paired t-test between the Shapiro-Wilk correlation vectors of different

transformations:

Table 2.3: Comparison of S-W correlation per gene

Candidates U vs log(Y ) log(Y ) vs FPKM FPKM vs Y
p-value of A > B < 2.2× 10−16 < 2.2× 10−16 9.251× 10−16
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We conclude that log-fold-change alone is capable of greatly increasing similarity with

the normal distribution over FPKM and fold-change while u(·; pi, qi) provides even higher

similarity than log-fold-change.

BART-based semi-parametric model showed robust and competitive performance. Its

R2, mse, corr, and comparison with other methods are illustrated and discussed in Sub-

section 2.8.3.

We also tested the performance of kNN-based expression prediction published in

[10]. As the performance kNN depends on the parameter k, we explored options of

k = 1, 2, . . . , 30 and the correspondent R2 at different k are listed in appendix B. The

best performance is achieved at k = 5 applying kNN on log-fold-change (as opposed to

fold change) of expression levels (R ≈ 0.26).

2.8.2 In Saccharomyces cerevisiae

Micro-array data of Saccharomyces cerevisiae published in [2] is used to measure the

performance of the methods. The published fold-change with respect to wild type is used

as the raw data for this chapter, with an artificial vector included to represent wild-type

expression profile, all of whose entries are 1.

We consider 320 S. cerevisiae genes as regulators (Appendix F). The majority of

these regulators are transcription factors. The data set consists of 283 single deletion

strains of regulator genes and 1201 single deletion strains of non-regulator genes. To test

the contribution of regulator deletion strains to the predictive power of the model, we
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performed 2-fold cross-validation between the set of regulator deletion strains and the set

of non-regulation strains for each model.

We tested the performance of the log-linear model (2.8), the exponential model (2.10),

and the log-linear-exponential model (2.11), all with standard deviations as lasso variable

normalizers. Local L1-shrinkage was used (see Subsection 2.5.3).

The BART-based semi-parametric model (2.42) was also tested. Note that for micro-

array data we set pi, qi in the noise model (2.29) to zero, i.e. modeling the noise of

expression level with a log-normal distribution.

For comparison purposes, the kNN-based method published in [10] was also tested for

performance. The parameter k of number of neighbors that we tried ranges from 1 to 30.

Detailed R2 information for different values of k is listed in Appendix B. Trained on reg-

ulator deletion strains and tested on non-regulator deletion strains, the best performance

(R2 ≈ 0.22) is achieved applying kNN on log-fold-change with k = 5. Trained on non-

regulator deletion strains and tested on regulator deletion strains, the best performance

(R2 ≈ 0.27) is achieved applying kNN on fold change with k = 6.

The performance of these methods and their comparison can be found in the following

subsection.
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2.8.3 Comparison

We present the performance of the methods tested on C. neoformans and S. cerevisiae.

In addition, we have taken the average of BART-based semi-parametric prediction and

lasso-based log-linear prediction in hope to combined the strength of the two methods.

Table 2.4: Prediction accuracy of log2 target levels from regulator levels

C. neoformans S. cerevisiae, #1 S. cerevisiae, #2
Training set WT and single∆ Regulator∆ Non-regulator∆

Test set Double∆ Non-regulator∆ Regulator∆
R2 rmse corr R2 rmse corr R2 rmse corr

log.kNN 0.26 0.88 0.54 0.22 0.15 0.48 0.24 0.17 0.50
linear.kNN 0.20 0.91 0.48 0.22 0.15 0.47 0.27 0.17 0.52

log.linear 0.51 0.71 0.72 0.51 0.12 0.71 0.37 0.16 0.69
exponential 0.40 0.79 0.63 0.53 0.11 0.73 0.42 0.15 0.71

log.linear.exp 0.44 0.76 0.69 0.54 0.11 0.74 0.44 0.15 0.67
BART 0.47 0.74 0.69 0.48 0.12 0.69 0.59 0.13 0.77

BART+log.linear 0.52 0.71 0.73 0.52 0.12 0.72 0.60 0.13 0.78

In contrary to the frustration that the developers of the kNN-based method [10] ex-

pressed about the failure of most model-based approaches in surpassing the performance

of kNN in the DREAM3 challenge, we observe here that both the lasso-based models

and the BART-based semi-parametric model surpass the performance of kNN by a great

margin.

Log-linear model is most similar to Inferelator [15]. Although it is typical in many

different methods and tasks to work with log-transformed expression levels, we find it

inconclusive which one among the log-linear model (2.8), the exponential model (2.10),

and the log-linear-exponential model (2.11) is the most desirable.
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The BART-based model stands out to be the most robust model across all cases,

although not always the one with best performance in every case. In S. cerevisiae, it

appears that the performance of lasso-based models is hindered when being trained on the

expression profiles of non-regulator deletion strains, while BART-based semiparametric

model benefits from the abundance of data of non-regulator deletion strains (1201 strains,

compared to 283 regulator deletion strains).

Finally, the combination of BART-based prediction and lasso-based log-linear predic-

tion indeed provides a robust improvement.

The initial motivation in proposing the log-linear-exponential model (2.11) is the ob-

servation of the limitation of the log-linear model (2.8) in modeling repression and the

numerical instability of the exponential model (2.10) in modeling activation (see Sub-

section 2.4). The log-linear-exponential model gives the option of circumventing such

limitation by modeling repression using its exponential module and modeling activation

using its log-linear module. This distribution of functionality is not a priori enforced or

encouraged. Instead, we trained the model and looked into the learned parameters and

confirmed that the log-linear module tends to have more positive coefficients (represent-

ing activation) and that the exponential module tends to have more negative coefficients

(representing repression).
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For each target gene i, we extract all its nonzero coefficients in the log-linear module,

calculating in which the fractions of positive and negative coefficients:

P
(lln)+
i =

|{j : cij > 0}|
|{j : cij 6= 0}|

(2.58)

P
(lln)−
i =

|{j : cij < 0}|
|{j : cij 6= 0}|

(2.59)

where the notation of parameters follow that of (2.11). Similarly, we define the fractions

of positive and negative coefficients among the nonzero coefficients of the exponential

module for each target gene:

P
(exp)+
i =

|{j : dij > 0}|
|{j : dij 6= 0}|

(2.60)

P
(exp)−
i =

|{j : dij < 0}|
|{j : dij 6= 0}|

(2.61)

Also, we calculated the overall fraction of positive (and negative) coefficients of each

module across all genes:

Q(lln)+ =
|{(i, j) : cij > 0}|
|{(i, j) : cij 6= 0}|

(2.62)

Q(exp)+ =
|{(i, j) : dij > 0}|
|{(i, j) : dij 6= 0}|

(2.63)

By directly comparing Q(lln+) and Q(exp+) and by performing a paired t-test between

P (lln)+ and P (exp)+, we found that the log-linear module has slightly yet significantly

stronger tendency to have positive coefficients than the exponential module:
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Table 2.5: Distribution of coefficient signs in log-linear-exponential model

C. neoformans S. cerevisiae, #1 S. cerevisiae, #2
Training data Regulator∆ Non-regulator∆
Overall % of

positive log-lin coeff
56.28% 50.41% 55.83%

Overall % of
positive exp coeff

47.59% 49.72% 50.28%

p-value of difference < 2.2× 10−16 0.005696 0.02281

We observed a tendency of over-extrapolation in the prediction produced by exponen-

tial models (and also, but less severely, by log-linear exponential models) for certain ex-

pression levels higher than the wild type. In contrast, these over-extrapolation points were

not observed in BART-based prediction log-linear model prediction. In C. neoformans,

for example, we notice these points in the upper-right corner of the prediction-observation

plot, where the predicted levels are much higher than the observed levels in the test data:
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Figure 2.1.: Comparison of BART-based prediction and exponential model prediction in
C. neoformans

(a) BART-based semi-parametric model (b) Exponential model

This tendency of over-extrapolation does not fall out from our expectation, for 1)

the exponential model is transformable to a linear model, which inherently extrapolates

unboundly whereas actual gene expression levels may have a maximum and 2) we have
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observed in Subsection 2.4 that exponential modeling of activation induces instability.

On the other hand, BART is an ensemble of decision trees, which do not attempt to

extrapolate when encountered with a query value of an explanatory variable (regulator

level) outside its range observed in the training data.

In S. cerevisiae, over-extrapolation is more common in models trained on the non-

regulator deletion strains than in those trained on regulation deletion strains:
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Figure 2.2.: Comparison of S. cerevisiae target levels predicted from different data sets
by the exponential model and the log-linear-exponential model

(a) Exponential model trained on
regulator∆, tested non-regulator∆

(b) Exponential model trained on non-
regulator∆, tested regulator∆

(c) Log-linear-exponential model
trained on regulator∆, tested non-
regulator∆

(d) Log-linear-exponential model
trained on non-regulator∆, tested
regulator∆
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Direct artificial perturbation of regulators provides a wider variation range of regulator

levels, which might account for the absence of over-extrapolation of models trained on the

regulator deletion strains.

In contrast to the simple parametric methods, BART-based semi-parametric models

are proof from over-extrapolation whether trained on regulator deletion strains or on

non-regulator strains.

2.9 Discussion

2.9.1 Further Improvement of the Noise Model

In Subsection 2.29, we have successfully developed a transformation function (2.29)

that converts expression levels closer to a normal variable than a logarithm transforma-

tion is capable of. But we find the similarity between the distribution of noises of the

transformed expression levels and the normal distribution not yet satisfying, as shown by

the normal quantile-quantile plot of noises in the training data of C. neoformans:
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Figure 2.3.: Normal Q-Q plot of transformed expression noises

(a) Fold-change (b) Log-fold-change (c) Novel transform (2.29)

We propose some potential improvements in the transformation function: 1) Instead

of the linear fitting method for tuning transformation parameters pi and qi in Subsection

2.7.1, pi and qi maybe tuned to optimize certain indicators of normality of the transformed

noise, e. g. Shapiro-Wilk correlation [20]; 2) in addition to the transformation u(·; pi, qi)

in (2.29) whose shape is similar to logarithm transformation, transformations with vastly

different shapes may be tried; 3) an empirical transformation may be learned from the

relation between expression levels and noise levels.

2.9.2 Non-lasso Type Parametric Models

As indicated by Table 2.5, log-linear modeling is more capable of depicting activation

effects and exponential modeling more capable of depicting repression effects. A modi-
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fication of the log-linear-expression model (2.11) that reduces the number of parameters

may be considered:

F
(llaer)
i (x1, x2, . . . ; θ) = bi

 ∏
j:cij>0

(xj)
cij

 e

 ∑
j:cij<0

cijxj


(2.64)

We refer to this modified model as log-linear-activation-exponential-repression (LLAER).

It enforces all activation effects to be modeled log-linearly and all repression effects ex-

ponentially. With these restrictions, the optimization of this model can no longer be

formulated as a lasso regression problem. However, this model has fewer parameters than

the log-linear-exponential model and we consider it a possibility that this model might

provide more robustness than the log-linear-exponential model.

It has been observed [7, 19] that the basal transcription level of a gene in absence of

regulators is close to zero due to repression by histones and that the presence of activators

is required to release such repression and to allow transcription. In Section 2.4, we have

reasoned that the exponential model (2.10) would introduce numerical instability when

describing this observation. The Log-linear-exponential model and the LLAER model

however also have their share of limitation in modeling this observation, for they require

all activators of a gene to be nonzero to allow transcription. We consider another modeling

approach that allows transcription of a gene in the presence of some but not necessarily

all of its activators:

F
(aaer)
i (x1, x2, . . . ; θ) = bi

 ∑
j:cij>0

(cijxj)

 e

 ∑
j:cij<0

(cijxj)


(2.65)
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We refer to this model as additive-activation-exponential-repression (AAER). This

optimization of this model cannot be formulated as a lasso regression problem either

and requires development of ad hoc preventive measures against overfitting. This model

by definition implies a strong restriction on the sensitivity of a gene to the levels of its

activators. Note that

∀j : cij > 0,
∂ ln

(
F

(aaer)
i (x1, x2, . . . ; θ)

)
∂ ln(xj)

=
cijxj∑

j:cij>0

(cijxj)
(2.66)

which implies that

∑
j:cij>0

∂ ln
(
F

(aaer)
i

)
∂ ln(xj)

= 1 (2.67)

∀j : cij > 0,
∂ ln

(
F

(aaer)
i

)
∂ ln(xj)

≤ 1 (2.68)

The log-scale sensitivity of target level to activator levels is implied to be less than or

equal to 1 and should add up to one. It would be interesting to investigate whether this

strong consequential restriction is supported or undermined by experimental data.

2.9.3 Relating Sequence Affinity to Gene Expression

Successful efforts have been seen in predicting expression levels of transcription fac-

tor levels with the aid of knowledge of protein-DNA binding affinity. In [11], protein-

DNA binding affinity were calculated through sequence analysis and used for modeling

protein-DNA interaction mechanism and expression regulation. With sequence affinity in-
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formation and transcription factor (TF) levels as inputs, [11] was able to correctly predict

the expression patterns of certain genes in the segmentation gene network of Drosophila

melanogaster.

We propose here a modification of the model in [11] that greatly reduces the time

complexity of calculation.

The sequence selectivity of a TF is conventionally represented by position-specific

weight matrix (PWM), position-specific probability matrix (PPM), position-specific scor-

ing matrix (PSSM), et cetera introduced in [17]. Over the decade, these representations

have been shown to accurately depict the affinity between TFs and DNA sequences.

A PPM of a TF takes the form a 4× L matrix:

PPM =



PPM 11 PPM 12 . . .

PPM 21 PPM 22 . . .

PPM 31 PPM 32 . . .

PPM 41 PPM 42 . . .



A

C

G

T

(2.69)

All entries are non-negative and the column sums of the matrix are 1; PPMij can be

understood as the proportion of nucleobase i (A, C, G, T) appearing at the jth position

of the binding site of the concerned TF. PPM is intended for the calculation of the affinity

between the TF and an arbitrary sequence s of length L on the DNA by the product:

ω(PPM , s) =
L∏
i=1

PPM sii (2.70)

52



where si is represents the base on the ith location of the sequence, with the code



1 A

2 C

3 G

4 T

(2.71)

since each sequence s on a DNA strand has its reverse complement on the other strand

s̃, the affinity between the TF and the location of s may be represented by:

PTF (s) =
ω(PPM (TF ), s) + ω(PPM (TF ), s̃)

2
(2.72)

We refer to this term as the PPM score of the given position and the given TF.

In addition to PPMs of TFs, a background PPM is defined to represent the random

chance of bases appearing in the DNA sequence. Denote the number of bases A, C, G, T

in the DNA of a certain species as nA, nC , nG, nT respectively,

PPM (bg) =
1

nA + nC + nG + nT



nA

nC

nG

nT


(2.73)
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The background PPM score of a position on the DNA provide a baseline that one may

compare TF PPM scores with.

PWM is defined as

PWM =



log

(
PPM 11

PPM
(bg)
11

)
log

(
PPM 12

PPM
(bg)
11

)
. . .

log

(
PPM 21

PPM
(bg)
21

)
log

(
PPM 22

PPM
(bg)
21

)
. . .

log

(
PPM 31

PPM
(bg)
31

)
log

(
PPM 32

PPM
(bg)
31

)
. . .

log

(
PPM 41

PPM
(bg)
41

)
log

(
PPM 42

PPM
(bg)
41

)
. . .



A

C

G

T

(2.74)

and the PWM score of a sequence s is defined as

φ(PWM , s) =
L∑
i=1

PWM sii (2.75)

The relation between the PWM score and the PPM score (2.70) is

φ(PWM , s) = log(ω(PPM , s))− L log(ω(PPM (bg), s)) (2.76)

The PWM and the PPM of a TF can be statistically inferred from experimental data

of protein-DNA binding locations. These matrices have been calculated for many TFs in

various model species (especially S. cerevisiae) and are available in the literature.

To relate binding affinity to gene expression, the work in [11] simplifies the interac-

tion between transcription factors (TF) and promoter sequences of genes with several

assumptions:
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1) When a TF is binding to a location on the DNA, the recognition site, or the span

of its PPM aligned on the sequence, is considered identical to the physical area that the

TF occupies on the sequence.

2) In general, two TFs cannot occupy overlapping areas on the sequence at the same

time (the authors also introduced a more complicated model involving cooperative binding

which may or may not make an exception to this assumption; modeling cooperative

binding will not be in the scope of this discussion).

3) The Boltzmann weight of an TF binding to a certain position on a sequence is

proportional to the product of the amount of that TF in the cell and to the exponential

of the PWM score of that position:

W (TF -s) ∝ [TF ] exp(φ(PWM (TF ), s)) (2.77)

4) Given the number of molecules of each TF species bound on a promoter sequence

of a gene, the transcription rate of the gene is determined by a logistic transformation

of a linear combination of the numbers of the TFs, with each coefficient representing

activation (positive signed) or repression (negative signed) and depending on TF species

but not on the identity of the gene:

1

1 + exp
(
−w0 −

∑
j wjnTF j

) (2.78)

where nTF j is the number of molecules of TF species j bound on the promoter.
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With these assumptions, the authors refer to the locations of all TFs bound to a

promoter sequence as a “configuration” and are able to represent The Boltzmann weight

of each configuration with an expression involving TF levels, unknown parameters, and

PWM scores. Denoting the set of the binding locations of TF species j in configuration

config as Sj(config), the Boltzmann weight of config given TF levels ~x = (x1, x2, . . .)
T is

W (config | ~x) =


0 - if the binding areas of any two TFs overlap in config

∏
j

∏
s∈Sj(config)

τjxj exp(φ(PWM (TFj ), s)) otherwise

(2.79)

where τj is a proportionality parameter.

In thermodynamic modeling, the Boltzmann weight of a configuration is proportional

to its probability of occurring. For a given profile of TF levels and values of parame-

ters, the distribution of configurations may be numerically estimated by (2.79). Given

a configuration (and the choice of parameter values), the transcription rate can be de-

termined; the distribution of configurations and the values of parameters will determine

the expectation of transcription rate, which is proportional to the expression level of the

gene.

The estimation of configuration distribution from Boltzmann weights (or the expecta-

tion of a variable in this probability space - e.g. transcription rate) involves calculating

the sum of Boltzmann weights of all configurations and sampling from the universe of

configurations. The authors discovered that the sum of Boltzmann weights can be calcu-
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lated efficiently by formulating the problem as a generalized Hidden Markov-chain Model

(gHMM) and invoking a dynamic programming algorithm of time complexity O((number

of TF species) × (length of promoter sequence)). However, the calculation of expected

transcription rate requires sampling from the probability space of configurations and cal-

culating the amount (2.78) and may cause a time complexity of � O((number of TF

species) × (length of promoter sequence)).

Here, we propose a modification to the assumptions in [11] and simplify the calculation

of the expression level for given values of parameters and TF levels to O((number of TF

species) × (length of promoter sequence)) while completely avoiding the cost of sampling

from configurations, providing a significant speed up.

We include RNA polymerase (RNAP) in the picture of thermodynamic modeling,

considering RNAP along with all TFs as a DNA-binding protein (or protein complex).

The Boltzmann weight of a configuration with RNAP bound and one with RNAP unbound

can both be represented. In addition, we assume that the expression level is proportional

to the probability of RNAP bound to the sequence:

W (config | ~x) = (2.80)

0 - if the binding areas of any two TFs overlap in config

∏
j

∏
s∈Sj(config)

τjxj exp(φ(PWM (TFj ), s)) - no overlap, RNAP not bound in config

ρi
∏
j

∏
s∈Sj(config)

ωjτjxj exp(φ(PWM (TFj ), s)) - no overlap, RNAP bound in config

(2.81)
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where parameter ωj describes the affinity between TFj and RNAP and parameter ρi

describes the affinity between the promoter of gene i and RNAP. ωj only depends on the

identity j of the TF and ρi only depends on the identity i of the target gene. A value of

ωj smaller than 1 represents repression and a value larger than 1 represents activation.

We define Zon as the sum of the Boltzmann weights of all the configurations with

RNAP bound to the promoter and Zoff as the sum of the Boltzmann weights of the

configurations without RNAP bound. Hence the expression level is

Fi(x1, x2, . . .) =
αiZ

on

Zon + Zoff
(2.82)

where αi is a proportionality parameter.

Both Zon and Zoff can be calculated using the gHMM formulation and dynamic pro-

gramming approach discussed in [11] with time complexity of O((number of TF species)

× (length of promoter sequence)).

If we define a function

Qconfig(ξ1, ξ2, . . .) =


0 - if the binding areas of any two TFs overlap in config

∏
j

∏
s∈Sj(config)

ξj exp(φ(PWM (TFj ), s)) - otherwise

(2.83)

then by (2.78), the expression level in the original model [11] can be written as

αi
∑

config

Qconfig (τ1x1,τ2x2,...)

1+exp(−w0−
∑
j wj |Sj(config)|)∑

config

Qconfig(τ1x1, τ2x2, . . .)
(2.84)
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while the expression level in our modified model is

αi

1 +

∑
config

Qconfig (τ1x1,τ2x2,...)

ρi
∑

config
Qconfig (ω1τ1x1,ω2τ2x2,...)

(2.85)

Our model completely avoids sampling from the the probability space of configurations,

yet does not add significantly to the number of parameters in [11].

Neither the sequence affinity model [11] nor our modification of it in (2.81) considers

the effect of histones on gene transcription. It has been observed [7, 19] that the basal

transcription level of a gene in absence of regulators is close to zero due to repression by

histone proteins in nucleosomes. But on the contrary, [8] observed that the inclusion of

histones in the thermodynamic picture of sequence affinity analysis is counter-productive

for the task of predicting ChIP-evidenced binding sites. It is questionable whether the re-

pression by histones has the same quantitative features as the repression by a transcription

factor.

A simple way to include the repression effect of histones in the model based on sequence

affinity is to make an exception to the Boltzmann weight definition (2.81) by stating that
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the weight of an TF-less promoter-RNAP complex is zero or an unknown parameter ρ̃i

close to zero:

W (config , ~x) =



0 - if the binding areas of any two TFs overlap in config

ρ̃i(≈ 0) - RNAP bound, but no TF bound in config

∏
j

∏
s∈Sj(config)

τjxj exp(φ(PWM (TFj ), s))

- no overlap, RNAP not bound in config

ρi
∏
j

∏
s∈Sj(config)

ωjτjxj exp(φ(PWM (TFj ), s))

- no overlap, RNAP bound, at least one TF bound in config

(2.86)

This modification do not add to the time complexity of (2.81). It would be interesting

to test whether (2.86) or the histone-free model (2.81) better explains the variance in the

experimental data.

2.9.4 Spectrum between Simple Regression Models and Sequence-based Mod-

els

In (2.81), we have made a modification to the sequence-based model (2.79) defined

in [11] which would greatly reduce time complexity. Yet, the resulting time complexity

is proportional to the length of promoter sequences and several magnitudes higher than

that of simple regression models (2.8), (2.10), and (2.11). These highly detailed sequence-
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thermodynamic models are viable for sub-networks involving only a small number (e.g.

< 10) of regulators, but their extension to genome-wide analysis might be difficult under

current technology even with the aid of parallel computing.

Some intermediates between simple regression models and sequence based models are

possible and may provide both frugal time complexity and the ability to borrow from the

knowledge of sequence affinity.

In [8], it has been observed that the modeling of TF-TF interactions such as com-

petition and cooperativity or even simply disallowing overlapping binding is generally

counter-productive to the task of predicting ChIP evidenced binding sites. If we infer

from this the hypothesis that a location on a promoter sequence has much larger chance

of not being bound by any TF than otherwise (sparse binding), the interaction between

TFs is omittable and the Boltzmann weight (2.81) can be approximated by a more simple

form

W (config , ~x) =


∏

j

∏
j∈Sj(config)

τjxjPTFj
(s)

(Pbg (s))
L RNAP not bound in config

ρi
∏

j

∏
j∈Sj(config)

ωjτjxjPTFj
(s)

(Pbg (s))
L RNAP bound in config

(2.87)
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where Sj(config) is the set all locations on the promoter bound by TF species j. The

weight sum of all RNAP-bound configurations as well as that of RNAP-unbound config-

urations is simplified to, by straightforward factoring:

Z(off ) =
∏
j,s

(
1 +

τjxjPTFj (s)

(Pbg(s))L

)
(2.88)

Z(on) = ρi
∏
j,s

(
1 +

ωjτjxjPTFj (s)

(Pbg(s))L

)
(2.89)

We may define a polynomial for each target i and TF j:

Pij(ξ) =
∏

s: a location on promoter i

(
1 +

ξPTFj (s)

(Pbg(s))L

)
(2.90)

The coefficients of these polynomials can be pre-calculated from known sequence affin-

ity information without dependence on parameters or regulator levels. Applying these

polynomials,

Z(off ) =
∏
j

Pij(τjxj) (2.91)

Z(on) = ρi
∏
j

Pij(ωjτjxj) (2.92)

(2.93)
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and the expression level of target i is

F (simp)(x1, x2, . . . ; parameters) =
αiZ

on

Zon + Zoff
(2.94)

=
αi

1 + 1

ρi
∏
j

Pij(ωjτjxj)

Pij(τjxj)

(2.95)

Similarly, the model with histone consideration (2.86) can be simplified to

Z(off ) =
∏
j

Pij(τjxj) (2.96)

Z(on) = ρi

((∏
j

Pij(ωjτjxj)

)
− 1

)
+ ρ̃i (2.97)

F (simp.hist)(x1, x2, . . . ; parameters) =
αi

1 +
∏
j Pij(τjxj)

(ρi
∏
j Pij(ωjτjxj))−ρi+ρ̃i

(2.98)

If we approximate Pij by only the first D terms in its Taylor expansion, then Z(on),

Z(off ), F (simp), and F (simp.hist) can be calculated with time complexity of O((number of

TF species) ×D) for given values of parameters and TF levels. In particular if D = 2,

the approximated form of F (simp) simplifies to a special case of the thermodynamic model

(2.12).
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3. Predicting Gene Expression from Genotype

3.1 Background

The goal of this chapter is to develop a method to predict steady state expression

levels of genes from genetic perturbation information.

This goal is comparable to, yet in contrast with, that of Chapter 2: in Chapter 2,

regulator levels are treated as explanatory variables and are revealed in both training and

query data, while target gene levels are treated as response variables with random noise.

In this chapter, only perturbation information is treated as explanatory variables and we

aim to predict the expression levels of all genes, including regulators and non-regulators,

from perturbation information.

The ability to predict expression levels from perturbation information can give insight

to the functional dependence and logic between the regulatory roles of genes, aid the

prediction of phenotypes from genotypes, and provide suggestions to genetic engineering

tasks that aim to shift gene expressions and metabolism to a target state.

3.2 Previous Works

Prediction of gene expressions from genotype is a less charted territory in bioinfor-

matics.
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In [13], a model based on linear decomposition was used to predict Saccharomyces

cerevisiae expression levels from gene deletion information. The training data there is

composed of the single deletion strains of five regulator genes (TEC1, CUP9, SFL1,

SOK2, SKN7) and all 10 possible double deletion strains of these genes. These five genes

were chosen for their involvement in the regulation of filamentous growth. The test data

contains the the single deletions train yap6∆ and double deletion strains yap6∆tec1∆,

yap6∆cup9∆, yap6∆sfl1∆, yap6∆sok2∆, and yap6∆skn7∆.

The accuracy in R2 or MSE was not given; the method was able to predict the direction

of expression change in certain cases in the test data. However, the model is difficult to

be generalized to cases where the training data contains few or no double deletion strains

(see equation (A.3)) or if the knowledge of the regulatory pathways of the studied species

is not comprehensive.

3.3 Data and Evaluation Criteria

3.3.1 Data Type and Interpretation

The Same as in Chapter 2, we work with high-throughput expression data such as

RNA-Seq and micro-array. Yet different from Chapter 2, here we only use perturbation

information as explanatory variables. Perturbation information consists of two aspects:

1) whether a gene is artificially perturbed (e.g. deleted, underexpressed, or overexpressed)
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in a certain sample and 2) the perturbed expression level of a gene in a certain sample

where it is artificially perturbed (e.g. 0 if deleted). To formalize, denote:

Ptrain = {(i, k) ∈ G× T : gene i is artifcially perturbed in sample k } (3.1)

Ptest = {(i, k) ∈ G× S : gene i is artifcially perturbed in sample k } (3.2)

P = Ptrain ∪ Ptest (3.3)

y
(pert)
ik =


Yik if (i, k) ∈ P

1 otherwise

(3.4)

where G is the index set of investigated genes, T is the index set of training samples, S

is the index set of test samples, and Yik is the expression level of gene i in sample k.

Since the artificial perturbation of a transcription factor might affect not only its

direct target genes but also the downstream targets of its targets, the prediction problem

in this chapter requires a model that captures the propagation of the effect of genetic

perturbation in the network.

3.3.2 Training and Test Data

The method is trained and tested on RNA-Seq data of Cryptococcus neoformans pro-

duced in Brent Lab (http://mblab.wustl.edu/) and Doering Lab (

http://www.crypto.wustl.edu/). The expression profiles of all single-gene deletion sam-

ples and wild type samples are used as training data and the expression profiles of all

double-gene deletion strains as test data.
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3.3.3 Normalization of RNA-Seq Data

The RNA-Seq data used in this chapter is normalized in the same manner described

in Subsection 2.3.3. In particular, the normalized expression level gene i in sample k from

batch j is defined as in (2.2):

∀k ∈ batchj, Yik =
FPKM ik + ν∑

l∈batchj∩WT FPKM il

|batchj∩WT | + ν
(2.2)

where batchj is the index set of samples in the jth batch, WT is the index set of wild

type samples, FPKM il is the number of fragments per kilobase per million reads of gene

i in sample l, and ν is a small pseudocount to ensure that the fraction does not evaluate

to ∞ or 0/0.

This definition uses wild type expression levels as normalizers and Yik can also be

interpreted as the fold change of expression level with respect to wild type.

3.3.4 Assessment of Quantitative Prediction

The quantitative precision of the predictions is measured in the same way as in subsec-

tions 2.3.4. However, if a gene is artificially perturbed in a sample (deleted, overexpressed,

etc), it is not the task of this chapter to predict its level there.
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Using the notations in (3.3), the performance measures of quantitative predictions are:



MSE = 1
|G×S−P |

∑
(i,k)∈G×S−P

(
log2 Ŷik − log2 Yik

)2

rmse =
√

MSE

R2 = 1− MSE
s2G×S−P (log2 Y )

Corr =

∑
(i,k)∈G×S−P

((log2 Ŷik)(log2 Yik))√ ∑
(i,k)∈G×S−P

(log2 Ŷik)
2 ∑

(i,k)∈G×S−P
(log2 Yik)2

(3.5)

where

s2
G×S−P (log2 Y ) =

∑
(i,k)∈G×S−P

(log2 Yik)
2

|G× S − P | − 1
−

( ∑
(i,k)∈G×S−P

log2 Yik

)2

(|G× S − P |)(|G× S − P | − 1)
(3.6)

is the sample variance of log2(Y ).

3.3.5 Assessment of Qualitative Prediction

Another interesting question is how well the significant differential expressions in the

novel genotypes can be revealed by the prediction. Here, differential expression (DE) of

a gene is defined as a level significantly different from its wild type level.

The assessment requires a DE score that is credible enough to be used as the gold

standard (true label) on the test data and another DE score drawn from the prediction

of the model trained on the training data. In addition, we are interested in how well the

direction of differential expression (higher or lower than wild type) can be predicted.
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The discovery of differential expressions can be formulated as two binary classifica-

tion problems: 1) discovery of upward differential expression, with prediction score s+

as a continuous classifier with variable discrimination threshold and L+ as the true la-

bels describing whether the genes are expressed significantly higher than in wild type;

2) discovery of downward differential expression, with prediction score s− as a continu-

ous classifier with variable discrimination threshold and L− as the true labels describing

whether the genes are expressed significantly lower than in wild type.

The gold standard L+ and L− is obtained by applying certain published DE evaluation

algorithms on the test data. E.g. voom [3] for RNA-Seq and LIMMA [16] for micro-array

are both well accepted methods for evaluating the significance of differential expressions.

These methods calculate for each gene in each sample a p-value representing the statistical

significance of differential expression and a number representing estimated fold change

with respect to wild type. Denote the p-value assigned to gene i in sample k as pik and

the estimated fold change as mik. A reasonable significance threshold α0 (e.g. 0.001) is

chosen and the true labels are defined as:

L+
ik =


1 pik < α0 ∧mik > 1

0 otherwise

(3.7)

L−ik =


1 pik < α0 ∧mik < 1

0 otherwise

(3.8)

The continuous classifiers s+ and s− are drawn from the prediction.
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For Bayesian prediction methods, they are the posterior probability of the predicative

being larger (or conversely, smaller) than the ideal wild type level 1:


s+
ik = P (Yik > 1 | training.data,model)

s−ik = P (Yik < 1 | training.data,model)

(3.9)

For maximum likelihood prediction without Bayesian interpretation, the predicted

log-fold-change is used as the score:


s+
ik = log(Ŷik)

s−ik = − log(Ŷik)

(3.10)

The score s+ is then used as a binary classifier with variable threshold on the index

set G × S − P with L+ being the true labels. Similarly, s− is used as a binary classifier

with L− being the true labels. Here S denotes the index set of test samples. We vary the

threshold of the classifiers and plot precision recall curves (PRC) to visualize accuracy of

classification.

3.4 Näıve Nearest-neighbor Approach

A näıve way to predict expression levels from perturbation information is simple yet

effective: averaging the expression profiles of related mutant strains in the training data

to infer the expression profile of a novel query strain. For a query double deletion strain

A∆B∆ with genes A and B deleted, suppose that the single deletion strains A∆ and B∆
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are both available in the training data. Denote the index set of A∆ samples as KA∆ and

that of B∆ samples as KA∆. The geometric mean of these samples is taken to predict

gene expression levels in A∆B∆:

Ŷ
(geo)
i,A∆B∆ =

( ∏
k∈KA∆

Yik

) 1
2|KA∆|

( ∏
k∈KB∆

Yik

) 1
2|KB∆|

(3.11)

3.5 An Approach Based on Network Modeling and Simulation

3.5.1 Modeling regulator-target interaction

We propose a prediction model based on simulation of gene regulatory networks.

A necessary part of relating genetic perturbation to expression profile is to model

regulator-target interaction. This partly overlaps with the task of Chapter 2.

Two options are explored here. The first one is to model the relation between target

levels and regulator levels as log-linear, the same as in (2.8) and inferelator [15]. In

particular,

F
(llnp)
ik (x1k, x2k, . . . ; θ) =


y

(pert)
ik if gene i is perturbed in sample k

F
(lln)
i (x1k, x2k, . . . ; θ) otherwise

(3.12)

where F (lln) is defined as in (2.8) and y
(pert)
ik is the perturbed level of gene i in sample

k, e.g. zero if it is deleted. Note that F (llnp) differs from F (lln) only in considering the

perturbation information.
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The second option enforces a truncation on the functional range of regulator levels as

well as maximum and minimum allowed levels of target genes:

P = {(i, k) : gene i is perturbed in sample k} (3.13)

F
(llcp)
ik



x1k,

x2k,

...

; θ


=



y
(pert)
ik (i, k) ∈ P

F
(lln)
i



min{max{x1k, r1}, r1},

min{max{x2k, r2}, r2},

...

; θ



(i, k) /∈ P

∧F (lln)(· · · ; θ) ∈ [mi,mi]

mi

(i, k) /∈ P

∧F (lln)(· · · ; θ) < mi

mi

(i, k) /∈ P

∧F (lln)(· · · ; θ) > mi

(3.14)

Additional tuning parameters are introduced: mi and mi are the minimum and maximum

allowed levels of gene i, respectively; rj and rj are the minimum and maximum recogniz-

able functional range of regulator j. The truncation on the functional range of regulator

levels is inspired by the observation of the limitation of the log-linear model as repressor

levels approach zero in Section 2.4; the minimum and maximum allowed target levels are
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intended to prevent over-extrapolation as observed in Subsection 2.8.3. This model will

be referred to as log-linear-cutoff model.

3.5.2 Modeling Transcription Factor Concentration

At steady state, equation (1.3) implies that the concentration of a certain protein is

proportional to the transcription rate of its encoding gene. Fold-change with respect to

wild type has been used as the measurement of gene expression levels in this thesis; the

same measure will be used for the measurement of protein concentration. Therefore the

notation Yik can be interpreted either as steady state gene expression level or as steady

state protein level.

In case a transcription factor is composed of multiple proteins, it is assumed that

the concentration of the TF is far less than the concentration of the individual species

of its member proteins. Under such assumption, the concentration of the TF is nearly

proportional to the product of the levels of its member proteins. Assume that TF j

contains nij protein molecules of gene i for each i, then:

[TFj] ∝
∏
i

(transcriptionRatei)
nij (3.15)

We can therefore define a function G to describe the level of a TF as determined by

the levels of its encoding genes:

Gj(y1, y2, . . .) =
∏
i

y
nij
i (3.16)
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The composition of transcription factors, i.e. the value of nij’s, is drawn from biological

knowledge of the transcription factors in the investigated species. In absence of the

knowledge of TF compositions, all TFs are modeled as monomers.

3.5.3 Modeling Propagation of the Effect of Genetic Perturbation

This subsection addresses the problem of determining gene expression levels from a

given set of gene interaction parameters and genetic perturbation information.

Inheriting the notations of (3.12), (3.14), and (3.16), we further denote

~F
(llnp)
k = (F

(llnp)
1k , F

(llnp)
2k , . . .)T (3.17)

~F
(llcp)
k = (F

(llcp)
1k , F

(llcp)
2k , . . .)T (3.18)

~G = (G1, G2, . . .)
T (3.19)
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A difference equation system is defined in order to simulate the propagation of per-

turbation effects in the gene regulatory network:

y
(0)
ik =


1 if gene i is not perturbed in sample k

y
(pert)
ik otherwise

(3.20)

~H
(j)
k (θ) =



(~F
(llnp)
k (·; θ) ◦ ~G)j



y
(0)
1k

y
(0)
2k

...


if the interaction model is F (llnp)

(~F
(llcp)
k (·; θ) ◦ ~G)j



y
(0)
1k

y
(0)
2k

...


if the interaction model is F (llcp)

(3.21)

The vector ~H
(0)
k (θ) is a trivial prediction of the expression levels: except for the directly

perturbed genes, all other genes has level 1, i.e. the wild type level. ~H
(1)
k (θ), applying

the function ~Fk which determines target levels from regulator levels, propagate the per-

turbation in regulator genes to their predicted direct targets. Every ~H
(j+1)
k propagate the

perturbation one step further than ~H
(j)
k .

While there is no guarantee that ~H
(j)
k will converge as k goes to infinity, we choose

two positive integers M (e.g. 8) and N (e.g. 16) and define the prediction as

~Hk(θ) =
1

N

M+N∑
j=M+1

~H
(j)
k (θ) (3.22)
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The parameter optimization task then involves finding the θ so that ~Hk(θ) approaches

the observed expression level ~Yk.

3.5.4 Modeling Data Noise

A similar noise model to that used in Chapter 2 is adopted here, as described by

(2.29). The noise model is:



Uik (independently) ∼ N
(
u
(
Hik(θ); pi, qi

)
, σ2

i

)
Yik = u−1 (Uik; pi, qi)

u(y; p, q) :=
√

1 + p+ q ln

(
y+p/2+

√
y2+py+q

1+p/2+
√

1+p+q

)
u−1(ξ; p, q) :=

(
1 + p

2

)
cosh

(
ξ√

1+p+q

)
+
(√

1 + p+ q
)

sinh
(

ξ√
1+p+q

)
− p

2

(3.23)

where pi, qi are tuning parameters.
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3.5.5 Full Model

The full model can be summarized as:

y
(0)
ik =


y

(pert)
ik if gene i is perturbed in sample k

1 otherwise

(3.24)

θ =


b1 c11 c12 . . .

b2 c21 c22 . . .

...
...

...
. . .

 (3.25)

η = (~p, ~q,M,N, ~m, ~m,~r,~r) (3.26)

F = F (llnp) or F (llcp) (3.27)

Gj(~y) =
∏
i

y
nij
i (3.28)

~H
(j)
k (θ; η) = (~Fk(·; θ, η) ◦ ~G)j

(
y

(0)
1k , y

(0)
2k , . . .

)
(3.29)

~Hk(θ; η) =
1

N

M+N∑
j=M+1

~H
(j)
k (θ; η) (3.30)

Uik | σ2
i , θ, η, F (independently) ∼ N

(
u
(
Hik(θ); pi, qi

)
, σ2

i

)
(3.31)

Yik = u−1 (Uik; pi, qi) (3.32)

u(y; p, q) = (1 + p+ q) ln

(
y + p/2 +

√
y2 + py + q

1 + p/2 +
√

1 + p+ q

)
(3.33)

u−1(ξ; p, q) =
(

1 +
p

2

)
cosh

(
ξ√

1 + p+ q

)
+
(√

1 + p+ q
)

sinh

(
ξ√

1 + p+ q

)
− p

2

(3.34)
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Table 3.1: List of parameters and variables in network simulation

Variables
Yik observed expression level of gene i in sample k

Known quantities
nij number of protein molecules encoded by gene i per TF complex j

y
(pert)
ik perturbed level of gene i in sample k

y
(0)
ik trivial prediction of Yik

Tuning parameters
F which regulator-target interaction model is used: see (3.12) and (3.14)
η collective notation of all tuning parameters
M ∈ Z+ number of simulation steps discarded
N ∈ Z+ number of simulation steps to include for estimating expression levels
pi > 0 noise shape tuner
qi > 0 noise shape tuner
mi ≥ 0 minimum allowed level of gene i
mi ≥ 0 maximum allowed level of gene i
rj ≥ 0 lower truncation point of the functional range of regulator j
rj ≥ 0 upper truncation point of the functional range of regulator j

Optimizable parameters
θ matrix for collectively denoting all bi’s and cij’s
bi > 0 basal transcriptional level of gene i
cij regulative power of TF j on gene i
σ2
i fold noise of the level of gene i

The model defined above can be described as two layers: one to describe how tran-

scription factor levels determine target levels and the other using the first layer recursively

to describe the effect of the perturbation of transcription factors on the whole network.
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3.5.6 Bayesian Prior Distribution of Parameters

The prior distribution of parameters σ2
i is modeled to be independent from bi and cij

as well as from each other:

p(θ, σ2
1, σ

2
2, . . . | η, F ) = pθ(θ | η, F )

∏
i

(
pσ2

i
(σ2

i | η, F )
)

(3.35)

where θ is the collective matrix notation of parameter bi’s and cij’s:

θ =


b1 c11 c12 . . .

b2 c21 c22 . . .

...
...

...
. . .

 (3.36)

and η is the collective notation of tuning parameters.

The prior distribution of σ2
i is the inverse-gamma distribution, similar as defined in

2.6.2:

σ2
i | η, F ∼ InvΓ

(
df

2
,
dfs2

0

2

)
(3.37)

This definition facilitates the marginalization of σ2
i (see 3.6.2).

The prior probability density function of θ consists of three factors:

pθ(θ | η, F ) ∝ f (pen)(θ | η, F )f (s)(θ)f (r)(θ) (3.38)
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where f (pen) penalizes the inconsistency between ~H
(M+1)
k , ~H

(M+2)
k , . . . , ~H

(M+N)
k , f (s) carries

out the task of feature selection, and f (r)(θ) serves the purpose of ensuring that the

product (3.38) has a finite integral so that pθ is normalizable.

The fact that wild type and mutant strains of the studied organism can survive and

each exhibits relatively a consistent gene expression profile implies that their dynamic gene

regulatory networks are stabilizing systems, with steady state expression profile being the

stable equilibrium. Since the later simulation steps in the system (3.21) are intended to

predict the steady state of the real biological network, it is important to require (3.21) to

be auto-stabilizing as well, although we do not require it be strictly convergent.

This requirement is carried out by a factor in the prior probability density of θ that

penalizes the magnitude of difference between ~H
(M+1)
k , ~H

(M+2)
k , . . . , ~H

(M+N)
k .

Denote the index set of training samples as T , the penalizing factor is defined as

f (pen)(θ | η, F ) =
∏

i∈G,j∈T

e

(
− 1

2Ns2
(pen)

∑N
k=M+1

(
u(H

(j)
ik (θ;η);pi,qi)−u(Hik(θ;η);pi,qi)

)2
)

(3.39)

where Hik is the average of (H
(M+1)
ik , H

(M+2)
ik , . . . , H

(M+N)
ik ) as defined in (3.22) and s2

(pen)

is a super parameter. By default, s2
(pen) is equal to s2

0, the prior variance suggestion of

Uik|θ, η, F . The smaller s2
(pen) is, the harsher the penalty on the inconsistency between

~H
(M+1)
k , ~H

(M+2)
k , . . . , ~H

(M+N)
k .

The second factor f (s)(θ) in the prior density (3.38) of θ is enforced to carry out certain

feature selection and regularization techniques.

The form of f (s) is designed with the aid of the lasso [18].
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Note that (3.16) relates transcription factor levels with the level of their encoding

genes. Now we define

Xjk = Gj(Y1k, Y2k, . . .) (3.40)

and refer to Xjk as observed regulator levels.

For each gene i, we perform lasso regression with log(Yi) as the response variable and

the log-level of all regulators that are not encoded by gene i as explanatory variables.

This process is in its nature explaining target expression levels from regulator expression

levels, which has been addressed in the previous chapter. The fitting process is described

in 2.5. All lasso variables are normalized using their standard deviations and the lasso

L1-shrinkage parameter is determined by trials in cross-validation.

The lasso regression generates coefficients for a log-linear expression model:

log(Yik)

υi
∼ α(lasso)i +

∑
j

β(lasso)ij
log(Xjk)

ξj
(3.41)

where ξj and υi are lasso variable normalizers, in this case calculated from standard

deviation of lasso variables. The L1 norm of row vector ~βi, i.e.
∑

j |βij|, is constrained by

the L1-shrinkage parameter (as in (2.15)).

Although this model itself is unsuitable for the predicting expression levels from per-

turbation information, we can take certain advice from it for the sake of feature selection

and regularization.
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The log-linear model (2.7) can be rewritten as:

log(F
(lln)
i )

υi
=

log(bi)

υi
+
∑
j

(
cijξj
υi

)
log(xj)

ξj
(3.42)

Recall that the lasso uses L1-shrinkage to guard against overfitting; we can enforce

the same L1-shrinkage on the θ for the network simulation model. Comparing (3.41) and

(3.42), we require that

∑
j

∣∣∣∣cijξjυi

∣∣∣∣ ≤∑
j

|β(lasso)ij| (3.43)

We define the feature selection factor f (s) of the prior density (3.38) as

f (s)(θ | β(lasso)) =


1 ∀i,

∑
j

∣∣∣ cijξjυi

∣∣∣ ≤∑j |β(lasso)ij|

0 otherwise

(3.44)

In this definition, although we do not appoint in advance which cij’s are allowed to be

nonzero, the restriction on L1 norm will force the optimization process to set only a limited

number of coefficients to be non-zero.

The factor f (r) in the prior density (3.38) of θ ensures that the prior density has a finite

integral. The restriction on coefficient L1 norm enforced by f (s)(·) already ensures that
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the prior density has a finite support in the coefficient space, therefore we can regularize

only the basal transcription parameter distribution by simply defining

f (r)(θ) =
∏
i

φ(bi; 0, s2
(b)) (3.45)

where s2
(b) is a super parameter and φ is the probability density function of the standard

normal distribution.

3.6 Optimization Method

3.6.1 Choosing Tuning Parameters

Parameter M represents the number of propagation steps before simulated levels are

used for predictions and is chosen empirically. Since the effect of indirect regulation

would usually be insignificant when the number of intermediate regulators exceeds 3 [4],

an integer larger than 3 but at the same level of magnitude will be a valid choice. The

default M used in this research is 8.

Parameter N represents the number of simulation steps to include for the prediction.

A larger N is preferable for the robustness of the model. Computational affordability is

another concern in choosing N . The default N used in this research is 16.

Parameters pi and qi dictate the form of the noise model. They are determined in the

same procedure as in Subsection 2.7.1.
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The minimum and maximum allowed gene levels mi and mi are set using the minimum

and maximum observed levels in the training data:

mi = min
k∈training

Yik (3.46)

mi = max
k∈training

Yik (3.47)

The recognizable functional range of regulators is also learned from the observations

in the training data:

rj = min
k∈training

Gj(Y1k, Y2k, . . .) (3.48)

rj = max
k∈training

Gj(Y1k, Y2k, . . .) (3.49)

where Gj is defined as in (3.16) and Gj(Y1k, Y2k, . . .) is considered as the observed level of

transcription factor j in sample k.

3.6.2 Marginalizing Noise Parameters

The noise parameters σ2
1, σ

2
2, . . . can be marginalized out so that the explicit form of

the marginal likelihood p(Y | θ, η, F ) may be calculated, which does not contain any

reference of σ2
i . This will facilitate the fitting process of parameter θ.
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By calculation similar to that in Subsection 2.7.2 and [12], this marginal likelihood is

equal to

p(Y | θ, η, F ) =

(
dfs20

2

) df |G|
2

∏
i∈G

(
dfs20

2
+

∑
k∈T

(u(Yik;η)−u(Hik(θ;η);pi,qi))2

2

) df+|T |
2

 Γ
(
df+|T |

2

)
(2π)

|T |
2 Γ
(
df
2

)
|G| (3.50)

where G is the index set of studied genes, T the set index set of training samples, and s2
0

and df are super parameters of the prior distribution of σ2
i .

In the implementation of the method, the super parameters s2
0 and df may be user

specified. By default, df = 1 and s2
0 is the average cross-replicates sample variance of Uik

per gene per strain in the training data.
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With the tuning parameters η fixed and σ2
i marginalized, the unnormalized posterior

probability density function of θ is, by (2.54):

p(θ, | Y, η, F ) ∝ p(θ, Y | η, F ) (3.51)

= p(Y | θ, η, F )p(θ | η, F ) (3.52)

∝ p(Y | θ, η, F )f (pen)(θ | η, F )f (s)(θ)f (r)(θ) (3.53)

= (3.54)(
dfs20

2

) df |G|
2

∏
i∈G

(
dfs20

2
+

∑
k∈T

(u(Yik;pi,qi)−u(Hik(θ;η);pi,qi))2

2

) df+|T |
2

 Γ
(
df+|T |

2

)
(2π)

|T |
2 Γ
(
df
2

)
|G| ·

f (pen)(θ | η, F )f (s)(θ)f (r)(θ)

(3.55)

=
f (pen)(θ | η, F )f (s)(θ)f (r)(θ)(dfs2

0)
df |G|

2 Γ|G|
(
df+|T |

2

)
Γ−|G|

(
df
2

)
π−

|G||T |
2

∏
i∈G

(
dfs2

0 +
∑
k∈T

(u(Yik; pi, qi)− u(Fi(~xk; θ, η); pi, qi))
2

) df+|T |
2

(3.56)

=: f(θ | Y, η, F ) (3.57)

By this definition, f(θ | Y, η, F ) is proportional to the posterior density of θ | Y, η, F

and monotonically increases as the prediction error of u(Yik; pi, qi) decreases. f (pen)f (s)f (r)

defines the prior distribution of θ and has an explicit form as defined in Subsection 3.5.6.

We optimize θ to maximize the function f (3.57) or estimate the posterior distribution

of θ according to it.
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3.6.3 Optimizing Interaction Parameters with Evolutionary Algorithm

As the tuning parameters η have been pre-determined and the noise parameters σ2
i

marginalized, it remains to fit the regulator-target interaction parameters θ.

By the definition (3.57), f is an unnormalized posterior density function of θ | η, F

and can be calculated explicitly. Maximization of f will provide the optimal value of θ;

by integrating or sampling according to f one can sample from the posterior distribution

of θ.

In Chapter 2, the interaction parameters are fitted in the regression problem with

regulator levels being explanatory variables and target levels being response variables.

The optimization method from Chapter 2 however fails to serve the task of predicting gene

expression levels solely from perturbation information. In this task, regulator levels are

not available as predictors, especially given the fact that many target genes are themselves

regulators of other genes.

Instead, we deem perturbation information as the only explanatory variables and aim

to optimize parameter θ so that Hik(θ; η) approaches Yik in the training data.

This is the most computationally challenging part of the problem, since the function

Hik(θ; η) (hence f) is of very complicated form and may exhibit chaotic behavior in

certain ranges of θ. With the landscape of the posterior distribution of θ | η, F unknown

and potentially very complicated, conventional sampling methods may be inefficient in

simulating its distribution.
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Ideally the entire posterior distribution of θ is to be estimated. However, the calcu-

lation of its unnormalized posterior density f (3.57) consumes a significant amount of

computational resource even for one fixed value of θ (e.g. around 3 CPU seconds in some

of our fitting tasks). Given the computational cost and that the landscape of f might be

very complicated, we only attempt to optimize θ to a certain level and sample in a small

neighborhood around the optimized value.

The evolutionary optimization approach has proved to be an effective tool for opti-

mizing θ.

We start with an initial pool of parameter matrices: θ(11), θ(12), . . . , θ(1K), which can

be random, trivial, or näıve guesses of parameter values.

For any array θ(i1), θ(i2), . . . , θ(iK), referred to as generation i, the pool is updated in

the following manner:

First, we randomly pick two different indices ji0 and ji1 from 1, . . . , K with probabilities

proportional to their posterior density:

(
f(θ(i1)), f(θ(i2)), . . . , f(θ(iK))

)
f(θ(i1)) + f(θ(i2)) + . . .+ f(θ(iK))

(3.58)

Next, we mix θ(iji0) and θ(iji1) by rows. This step is referred to as “mating” in the

terminology of evolutionary algorithm. We generate independent standard Bernoulli vari-

ables ki11, ki12, . . ., each takes value 0 or 1 with equal probabilities. The value 0 indicates

taking a row from θ(iji0) and 1 indicates taking a row from θ(iji1). Thus the sth row of

the mixed parameter is taken from the sth row of θ(iji0) if ki1s = 0, or of θ(iji1) if ki1s = 1.
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The mixed parameter is denoted as θ(i)(mix1). In the same way we generate independently

θ(i)(mix2), . . . , θ(i)(mixL); these are referred to as the offspring.

The third step is mutation. Each offspring matrix is mutated randomly and indepen-

dently. For θ(i)(mixl), we randomly pick a few entries ( < 20) from it and add to each of

these entries an independent Gaussian variable. The standard deviation of the Gaussian

variables is pre-determined and denoted as s(muta). The probability of each entry being

picked is determined by a prior score of likelihood of regulation. Denote

θ(i)(mixl) =


b

(i)(mixl)
1 c

(i)(mixl)
11 c

(i)(mixl)
12 . . .

b
(i)(mixl)
2 c

(i)(mixl)
21 c

(i)(mixl)
22 . . .

...
...

...
. . .

 (3.59)

Since c
(i)(mixl)
αβ represents the regulation relation between target α and TF β, its probability

of being chosen to mutate is higher if we have assigned a higher regulation score to this

pair of target-regulator. The regulation score is defined as

0.1 + |corr ((Ui1, Ui2, . . .), (log(Xj1), log(Xj2), . . .))| (3.60)

where Xjk is the observed level of regulator j in training sample k. Alternatively, other

regulation scoring system such as NetProphet [4] may also be used.

The mutated parameter is denoted as θ(i)(mutal).

The last step in an updating cycle is “selection”. The combined array comb(i) =(
θ(i)(muta1), θ(i)(muta2), . . . , θ(i)(mutaL), θ(i1), θ(i2), . . . , θ(iK)

)
consists of previous pool and cur-
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rent mutated parameter matrices. Function f (3.57) is applied on each of them to calculate

their unnormalized posterior density. The K members with largest posterior probabilities

are chosen to form the new generation
(
θ((i+1)1), θ((i+1)2), . . . , θ((i+1)K)

)
.

These steps are repeated to generate newer generations until the best performance of

members in the latest generations cease to improve significantly.

3.6.4 Pipelining Perturbation-based Prediction and Regulator-based Predic-

tion

The method described in this chapter mainly addresses the problem of predicting ex-

pression levels from genetic perturbation information. The methods described in Chapter

2 are intended for predicting target gene levels from regulator levels. In practice, we can

incorporate the methods in Chapter 2 to execute a part of the task of this chapter, greatly

reducing the computational cost.

Consider the task of predicting the genome-wide expression levels from perturbation

information: In both Saccharomyces cerevisiae and Cryptococcus neoformans, this requires

the prediction of nearly 7000 genes, up to 300 of which are considered regulators. It would

demand an extremely high dimensionality of parameter space and result in enormous space

and time complexity.

However, the problem can be decomposed to two stages: 1) predicting regulator ex-

pression levels from perturbation information and 2) predicting levels of non-regulators

from the predicted levels of regulators.

91



Stage 2) employs methods from Chapter 2, which demands much less spatial and

temporal complexity compared to the task of perturbation-based prediction. Stage 1)

now handles only the regulator genes and fall into the affordable range of computational

complexity (see Subsection 3.7.1).

In the data of C. neoformans, for example, the work flow of the expression prediction

system and its training process can be summarized as:
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Figure 3.1.: Predicting genome-wide expression levels from perturbation information
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Figure 3.2.: Training the simulation module and the regression module in the expression
prediction system
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3.7 Results

3.7.1 Predicting Expression Levels of Regulators

RNA-Seq data of Cryptococcus neoformans produced in Brent Lab and Doering Lab is

used to measure the performance of the methods. For data normalization, the pseudocount

in (2.2) is set as ν = 5249, which is the 0.5 percentile of nonzero expression levels in FPKM

from all single deletion and wild type strains.

The tuning parameters are determined using the procedures described in 3.6.1. In

particular, M = 8, N = 16 and pi and qi are determined using the genome-wide expression

data of single deletion samples and wild type samples by the same method as in the

previous chapter (details can be found in 2.7.1). The parameters follow the semantics of

Table 3.1.

First, we trained two network simulation models, based on the choice log-linear reg-

ulation F = F (llnp) (3.12) and the choice log-linear-cutoff regulation F = F (llcp) (3.14)

respectively, of the 224 regulator genes of Cryptococcus neoformans as listed in Appendix

E using the expression matrix of the single deletion strains and wild types for supervision.

The major time consumption of the training process is due to the calculation of the

unnormalized posterior density f (3.57) of θ. Denote the number of genes in the network

as |I| and the number of training samples |T |, the time complexity for calculating each

value of f(θ | η, F ) is approximately O(|I|2|T |(M +N)).

With 224 genes, all of which are regulators, and 291 samples, the calculation of f

took 3 to 4 CPU seconds for each value of θ. We invoked 32 parallel processes using
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Message Passing Interface (MPI) to calculate f of the offspring parameter matrices in the

evolutionary algorithm. The generation size was 256 and offspring size of each generation

was 32. The updating process of each generation therefore consumed 3 to 4 real-world

seconds; the optimization of both models were completed in one week.

We used these network simulation models to predict the expression levels of the 224

regulator genes in the double deletion strains and compared its accuracy with the näıve

prediction made from taking the geometric mean of the single deletion strain profiles as

discussed in Section 3.4. The performance is:

Table 3.2: Prediction accuracy of log2 levels of 224 C. neoformans regulators

R2 rmse corr
NetSim|F=F (llnp) 0.19 0.74 0.53
NetSim|F=F (llcp) 0.29 0.68 0.54
Single∆ geometric mean 0.25 0.70 0.51

Here NetSim|F=F (llnp) is based on log-linear interaction model and NetSim|F=F (llcp) is

based on log-linear-cutoff interaction model; the latter exhibit much stronger predictive

power than the former and than the prediction produced by taking geometric mean of

single deletion strain profiles. Moreover, the R2 of log-fold-change predicted on the train-

ing data by NetSim|F=F (llcp) is 0.30, only slightly larger than its R2 on the test data,

indicating that over-fitting has been minimal.
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Figure 3.3.: Prediction of 224 C. neoformans regulators by network simulation

We also tested the ability of NetSim|F=F (llcp) in recovering differential expressions

(DE) of the 224 regulators in the double deletion strains. To generate a gold standard, we

used voom [3] to identify the statistically significant differential expressions in the double

deletion strains compared to their same-batch wild type samples. An expression with

p-value smaller than 0.001 is considered significantly differential. Using the procedure

described in Subsection 3.3.5, the precision-recall curves (PRC) of DE recovery are:
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Figure 3.4.: Recovery of differential expression in 224 C. n. regulators

(a) Recovery of positive DE (b) Recovery of negative DE

For comparison, we included “voom sum”, which stands for a näıve DE recovery

method made from combining the voom scores of single deletion strains. Denote the DE

p-value of gene i in strain j as pij and the fold change as mij, we define voom scores as

sij =



| log(pij)| pij ≤ 0.001 ∧mij > 1

0 pij > 0.001

−| log(pij)| pij < 0.001 ∧mij < 1

(3.61)

To recover DE in strain ∆A∆B, the voom sum si∆A + si∆B is used as a näıve score

and tested using the procedures described in Subsection 3.3.5.

Alternatively we tried training the network simulation model on a larger network,

involving 332 genes, all of which are considered regulators, and the same 291 samples.
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The time complexity increased but no clear improvement in prediction accuracy was

observed.

3.7.2 Predicting Expression Levels of All Genes

After the expression of the 224 regulator genes was predicted, we used the methods in

Chapter 2 to extend the prediction to all the 6980 studied genes of C. neoformans.

Contrasting from Chapter 2, the expression of non-regulator genes in the test data is

predicted from network simulation predicted regulator levels instead of observed regulator

levels. Correspondingly when training methods borrowed from Chapter 2, we use not only

the observed regulator levels in the training data, but also the network simulation fitted

regulator levels.

First we applied the trained network simulation model NetSim|F=F (llcp) on the training

data (i.e. single deletions and wild types) itself, producing a fit of the regulator expression

levels X̂
(train)
jk . Denoting the observed regulator levels in the training data as Xjk and the

sample indices of training data as 1, 2, . . . , K, we constructed a data set

X(cons) =


X11 X12 . . . X1K X̂

(train)
11 X̂

(train)
12 . . . X̂

(train)
1K

X21 X22 . . . X2K X̂
(train)
21 X̂

(train)
22 . . . X̂

(train)
2K

...
...

...
...

...
...

...
...

 (3.62)

Y (cons) =


Y11 Y12 . . . Y1K Y11 Y12 . . . Y1K

Y11 Y12 . . . Y1K Y11 Y12 . . . Y1K

...
...

...
...

...
...

...
...

 (3.63)
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so that X(cons) contains both the observed level of regulators and the predicted level of

regulators in the training data, while Y (cons) contains two copies of observed target levels.

We used X(cons) and Y (cons) to train models described in Chapter 2. Finally, we applied

the trained model on the regulator levels predicted by the network simulation model in

the test data, generating genome-wide expression predictions.

The two models from Chapter 2 used here are 1) the BART-based semi-parametric

model and 2) the lasso-based log-linear model (2.8).

Table 3.3: Prediction accuracy of log2 levels of all 6980 C. neoformans genes

R2 rmse corr
NetSim→(BART+lasso) 0.27 0.86 0.53
NetSim→BART 0.27 0.87 0.52
NetSim→lasso 0.26 0.87 0.52
Single∆ geometric mean 0.23 0.89 0.49
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Figure 3.5.: Prediction of all 6980 genes by network simulation

We partitioned the entries in the test data according to their absolute value of log-fold-

change and analyzed the performance of our predictions in each log-fold-change window:
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Table 3.4: RMSE of log2 expression by fold windows

NetSim→(BART + lasso) Single∆ geometric mean
Range of | log2(Y )| rmse R2 rmse R2

[0, log2(1.5)) log2(1.34) -0.84 log2(1.29) -0.46
[log2(1.5), 2) log2(1.95) 0.23 log2(1.98) 0.19

[2, 3) log2(3.86) 0.30 log2(4.16) 0.22
[3, 4) log2(6.17) 0.36 log2(6.99) 0.27

(4,∞) log2(13.1) 0.34 log2(16.3) 0.22

As the fold change of actual expression level increases, rmse of log2(Ŷ ) increases but

R2 increases as well. Except in the log-fold window (− log2(1.5), log2(1.5)) which may not

include many biologically significant expression changes, the network simulation model

appear to provide better prediction than the geometric mean.

We ranked the observed expression levels of all genes in all test samples by | log2(Y )|

and created a sliding window of 1000 observations in the sorted list. Variance of log2(Y )

and mse and R2 of the predictions log2(Ŷ ) are calculated for each position of the sliding

window in order to analyze the fraction of variance explained by the predictions:
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Figure 3.6.: Variance explained by predictions per fold window

The improvement in predictive power that the network simulation model provided over

the näıve prediction (geometric mean) is consistent across the broad strata of | log2(Y )|.

BART-based semi-parametric model also generates a posterior predicative distribu-

tion. Such a distribution can be used in the procedure in Subsection 3.3.5 for discovering

differential expression in the test data. The PRCs are:
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Figure 3.7.: Recovery of differential expression in all 6980 C. n. genes

(a) Recovery of positive DE (b) Recovery of negative DE

Network simulation pipelined with BART-based expression prediction provides the

most accurate and efficient inference of differential expression in the test data.

3.7.3 Zooming into Well Predicted Network Logic

We investigated individual cases where the network simulation model is able to cor-

rectly predict the direction of differential expression but the geometric mean fails to do

so.

The first case involves the genes PKR1 (i. e. CNAG 00570, homolog of BCY1 in

S. cerevisiae), GAT201 (i. e. CNAG 01551, a homolog of GAT2 in S. cerevisiae), and

CNAG 04878.
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Figure 3.8.: Prediction of CNAG 04878 in pkr1∆gat201∆

In the training data, CNAG 04878 is expressed higher in pkr1∆ than in wild type

and lower in gat201∆ than in wild type. In the test data, CNAG 04878 is expressed

significantly lower in the double deletion strain pkr1∆gat201∆ than in wild type. Simply

taking the arithmetic or geometric mean of these two single deletion strains does not

provide a correction prediction of the differential expression of CNAG 04878 observed in

the double deletion strain. The network simulation model has inferred CNAG 04878 to

be directly repressed by PKR1 and indirectly activated by GAT201 (through intermediate

repressors including SKN7). Moreover, PKR1 is inferred to repress GAT201, forming a

consistent feed forward loop. Deletion of the direct represssor PKR1 alone is explained

to both directly de-repress CNAG 04878 and indirectly de-repress it by lowering the level

of SKN7, but the deletion of both PKR1 and GAT201 is predicted to unleash SKN7 on

CNAG 04878 and cause more repression than de-repression.
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The second case involves GAT201, USV101 (CNAG 05420, a homolog of USV1 in

saccaromyces cerevisiae), and JJJ1 (CNAG 05538).

Figure 3.9.: Prediction of JJJ1 in gat201∆usv101∆

Compared to wild type, JJJ1 is expressed higher in gat201∆ and lower in usv101∆. In

the double deletion strain gat201∆usv101∆ of the test data, JJJ1 is expressed significantly

higher than in wild type. Taking the arithmetic or geometric mean of the single deletion

expression levels does not provide a correct prediction about the double deletion strain.

The network simulation model has inferred that USV101 represses GAT201 which in turn

represses JJJ1, therefore predicting that the removal of both regulators would induce a

higher expression level of JJJ1.
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3.8 Discussion

Initially, we have attempted to use parameters trained in Chapter 2 to describe

regulator-target interactions for the task for predicting expression profiles from pertur-

bation information. Those parameters, intended for the regression problem of predicting

target levels from regulators, failed the task of this chapter.

The methods developed in this chapter instead train the parameters to emulate the

behavior of the gene regulatory network in the training data, including penalization of

instability of the simulated network. The success of this pioneering effort indicates that

the network nature of gene regulation relations should be emphasized; the mathemati-

cal modeling of this nature provides insight of gene regulation beyond the capability of

regression analysis.

The development of methods in this chapter has focused on predicting the effect of

novel combination of deletions, with each single deletion strain available in the training

data. It would be another interesting task to predict novel deletion strains of genes that

have never been deleted in the training data.
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4. Discovering Gene Network Edges from Gene Expression

4.1 Background

The emphases in the studies of gene regulatory networks range between two ends:

learning quantitative features of the kinetics of gene-protein interaction and inferring

topological structure of networks.

In the well studied model species Saccharomyces cerevisiae, for example, there are

hundreds of transcription factors (TF) and thousands of genes, resulting in a set of >

106 possible interactions; however, only a small fraction of this set are actual regulation

relations. In S. cerevisiae and other species as well, it is an important task to infer which

regulators interact with which target genes: 1) it helps breaking down the genome scale

network into small sub-networks and provides a relative small set of genes of interest for

specific metabolism research tasks; 2) It rules out impossible regulator-target interactions,

simplifying and facilitating quantitative study of the network; 3) it narrows down the set

of genes of interest for genetic modification and engineering challenges.
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4.2 Previous Works

4.2.1 Differential Expression Analysis

One of the commonly used method for identifying targets of a regulator gene is differ-

ential expression (DE) analysis. To infer the targets of a certain regulator A, genome-wide

expression profiles of wild type samples and samples of deletion strain A∆ are measured.

DE methods such as LIMMA [16] and voom [3] are applied to identify the genes whose ex-

pression levels show significant differences between the wild type and the deletion strain.

These genes are referred to as differentially expressed genes and are inferred to be tar-

gets of the regulator A. Quantitatively, a score can be generated from the statistical

significance of differential expression, e.g. 1− (p.value) or | log(p.value)|.

DE is a powerful tool for discovering direct regulation targets. However it may also

reveal targets of indirect regulations, leaving out the task of distinguishing direct and

indirect regulations.

4.2.2 Regression-based Methods

Regression analyses may also be used for network inference: in Inferelator [15], a lasso

[18] regression model that explains target levels from regulator levels is used to construct

a regulatory network. A similar lasso-based approach is used also in NetProphet [4]

as a module. In these methods typically, the lasso is applied on the expression array

with normalized logarithm of regulator levels being predictor variables and normalized
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logarithm of target levels being response variables. The magnitude of each entry Sij in

the coefficient matrix is then used as the regulation score for target i and regulator j.

4.2.3 NetProphet

NetProphet [4] is a network reconstruction method that combines the regulation score

generated by differential expression analysis [16] and the score generated by lasso regres-

sion analysis [18] in a certain manner to generate a hybrid score. Using the micro-array

data of S. cerevisiae published in [14], the hybrid score was shown to combine the strength

of DE analysis and regression analysis and performed better than both DE and the lasso

with a great margin.

4.3 Data and Evaluation Criteria

In this chapter, we develop novel approaches to address the problem of gene network

inference. The methods are examined in Saccharomyces cerevisiae and compared with

existing methods from the literature.

The data on which the methods are applied is the published micro-array expression

profiles of wild type and mutant strains in [14] and [2].

In [14], 263 transcription factors were individually deleted and the mRNAs of the

resulting strains were hybridized with that of wild type S. cerevisiae giving a micro-array

measurement of gene expression levels of the mutant strains compared to the wild type.
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The micro-array expression data in [2] is also given in the form of comparison with the

wild type. This data consists of a much larger collection of single-deletion strains: 1484

genes have been individually deleted, among which 283 belong to the set of genes that we

consider as regulators (Appendix F).

Both data sets provide multiple replicates of each mutant strain, enabling differential

expression analysis and hence also the application of NetProphet. Besides the statistical

significance of differential expression, DE analysis also estimates the fold change of expres-

sion level of each gene in each strain with respect to wild type. The fold-change matrices

are used for regression analyses in both NetProphet and the new methods proposed in

this chapter.

Each method generates a matrix of regulation scores. Denote the index set of genes

as G and the index set of transcription factors as C, for each (i, j) ∈ G × C, a method

generates a score Sij whose magnitude |Sij| represents the confidence that target i is

directly regulated by regulator j. For some methods, Sij can be positive or negative,

representing activation or repression, respectively.

Two standards are used as true labels for examining the quality of the constructed

network.

The first set of true labels is the Chromatin Immunoprecipitation (ChIP) evidenced

network compiled in Yeastract (http://www.yeastract.com/). The gold standard is repre-

sented by the matrix (Lij), where Lij = 1 represents that gene i is bound by the protein

of regulator j according to ChIP evidence and Lij = 0 represents otherwise. There are

184 regulators with ChIP-evidenced true labels available.
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The second set of true-labels is generated from PWM analysis. PWM (2.74) is a matrix

representation of the sequence selectivity of a TF and can be used to calculate the PWM

score (2.75), which is an inference of the affinity between the TF and a given sequence.

In [4], a set of PWMs of regulators was compiled from previous literature and applied on

the promoter sequences of S. cerevisiae generating a PWM score for each regulator-target

pair. Among the ChIP-available regulators, 116 have PWM scores. For each of these

regulators, a cutoff on the PWM score is determined so that the set of targets with a

score larger than the cutoff recovers 10% of the ChIP-evidenced targets of that regulator.

The targets with scores above the cutoff are considered PWM-evidenced targets of the

regulator.

Both of these two sets of true labels are identical to those used in the initial published

validation of NetProphet in [4]. Each set of true labels is only available for a subset of

the regulators for which we construct the network.

With the inferred regulation score (Sij) being the classifier and (Lij) being the true la-

bels, the network inference task is treated as a binary classification problem with variable

threshold on Sij. Precision recall curves (PRC) and precision-versus-number-of-positive-

prediction curves may be plotted to reveal the performance of different inference meth-

ods.
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4.4 New Approach Based on Bayesian Additive Regression Trees

4.4.1 Motivation

This approach is an application of the method described in Subsection 2.6.3, where

a BART-based semi-parametric model has been developed to predict target levels from

regulator levels.

Each target gene can have multiple regulators and the combination of their effects

complicate the problem of investigating the interaction of the target and a single regulator.

It naturally raises the question: Is it possible to fix the level of all other regulators while

varying the level of one single regulator, therefore enabling the observation of the isolated

effect of that regulator on potential target genes?

The in vivo realization of this task might be difficult, as the artificial perturbation

of one regulator can affect the level of other regulators that are its downstream targets;

moreover, biological noise may also be present and contribute to the fluctuation of the

levels of all regulators.

However, equipped with reliable methods to predict target levels from regulators levels,

this experiment can be simulated in silico. We simply construct a query data composed

of desired regulator levels and predict the resulted target levels using a model trained on

in vivo expression data.
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4.4.2 Model Training

The model described in 2.6.3 is



σ2
i | Bi, pi, qi i.i.d. ∼ InvΓ

(
dfi
2
,
dfis

2
i0

2

)
Bi | pi, qi ∼ BART Prior Distribution

Uik | pi, qi, σ2
i , Bi ∼ N (Bi(log(x1k), log(x2k), . . .), σ

2
i )

Yik = u−1 (Uik; pi, qi)

u(y; p, q) :=
√

1 + p+ q ln

(
y+p/2+

√
y2+py+q

1+p/2+
√

1+p+q

)
u−1(ξ; p, q) :=

(
1 + p

2

)
cosh

(
ξ√

1+p+q

)
+
(√

1 + p+ q
)

sinh
(

ξ√
1+p+q

)
− p

2

(4.1)

where xik is the level of regulator i in sample k, Yik is the level of gene i in sample k, dfi

and s2
i0 are super parameters, σ2

1, σ
2
2, . . . are unknown noise parameters, and B1, B2, . . . are

unknown functions of a non-parametric family referred to as Bayesian Additive Regression

Trees. The shape of the transformation u(·; pi, qi) depends on tuning parameters pi and

qi, which are tuned in procedures described in Subsection 2.7.1. In particular, they are

set to zero for micro-array data, simplifying u(·; pi, qi) to the log-transformation ln(·).

Expression levels Yik and xik are measured as fold changes with respect to wild type:

In micro-array data, the sequence library of mutant strains are commonly measured with

hybridization with the wild type sequence library and the ratio between the probe signal

strength of a gene in the mutant strain and that in the wild type strain is used as the

expression level measurement. For RNA-seq data, the direct measurement is in CPM
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(counts per million reads) and are converted to fold-change expression levels through the

normalization process described in Subsection 2.3.3.

Finally, the posterior distribution of Bi and σ2
i are estimated on the training data

using the method published in [9], with implementation in the R package BayesTree.

The posterior predicative function of Yik is:

u−1 (Bi(log(x1k), log(x2k), . . .) + σiεik; pi, qi) (4.2)

where {εik}i=1,2,...,k=1,2,... are independent standard normal variables representing the noise.

Note that both σi and εik are modeled as random variables and Bi is a random function.

The posterior distribution of σi and Bi can be estimated and the method is capable of

generating an estimated posterior distribution of Yik.

4.4.3 Predicting Isolated Effect of Regulator Levels on Target Levels

We perturb the level of a regulator in silico by setting it to its minimum and maximum

observed levels in the training data. Denote the index set of training data as T , we define

xi(min) = min
k∈T

xik (4.3)

xi(max) = max
k∈T

xik (4.4)
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Two query matrices of regulator levels are constructed:

Q(low) =



x1(min) 1 1 · · ·

1 x2(min) 1 · · ·

1 1 x3(min) · · ·

...
...

...
. . .


(4.5)

Q(high) =



x1(max) 1 1 · · ·

1 x2(max) 1 · · ·

1 1 x3(max) · · ·

...
...

...
. . .


(4.6)

Each column vector is a query expression profile of regulators. Since expression levels

are measured in fold change with respect to wild type, 1 represents the ideal wild type

expression level of any gene. Each query regulator expression profile has one and only

one regulator perturbed (being different from its wild type level).

The BART-based expression prediction method will generate an estimation of the

posterior distribution of predictions for each query profile, represented by a finite number

of posterior samples of BART predictions and t-distributions. The posterior predicted
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expression matrices are henceforth denoted as Y (low) and Y (high) for the query matrices

Q(low) and Q(high) respectively and

U
(low)
ij = u(Y

(low)
ij ; pi, qi) (4.7)

U
(high)
ij = u(Y

(high)
ij ; pi, qi) (4.8)

Note that

U (low) | training.data

U (high) | training.data

Y (low) | training.data

Y (high) | training.data

are all random variables with learned distributions.

Also, define

Û (low) = E(U (low) | training.data) (4.9)

Û (high) = E(U (high) | training.data) (4.10)
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4.4.4 Scoring Regulator-target Interaction

The more u(Y
(high)
ij ; pi, qi) deviates from u(Y

(low)
ij ; pi, qi), the more likely the expression

of gene i could be affected by the expression change of regulator j. Therefore the regulation

score is defined as:

Sij = Û
(high)
ij − Û (low)

ij (4.11)

We also explored an alternative option of scoring the regulations, using the posterior

probability of differential expression:

S̃ij = max{P (U
(low)
ij > u(1; pi, qi) | training.data),

P (U
(low)
ij < u(1; pi, qi) | training.data),

P (U
(high)
ij > u(1; pi, qi) | training.data),

P (U
(high)
ij < u(1; pi, qi) | training.data)}

(4.12)

We found that this scoring system is less capable of precisely revealing network edges

than (4.11) (see the result section).

4.5 Combining BART-based Network Construction with NetProphet

In [4], a way to combine the regulation scores generated by differential expression (DE)

analysis and lasso regression analysis was defined. The performance of DE score, lasso

score, and the combination of both was examined. The combined method was shown to
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surpass both DE score and lasso score by a great margin in performance. Motivated by

this observation, in this thesis we also look into the performance of combined scores for

recovering network edges.

A new procedure of combining different scores is developed here.

In general, the magnitude of the score of an edge corresponds to the inferred likeli-

hood of a network edge. However, different score systems may have different numerical

representations of the likelihood of network edges. The scores cannot be interpreted in

the same way and are not readily comparable or convertible to each other. For exam-

ple, DE scores are usually given in | log(p.value)|, lasso scores in the magnitude of linear

coefficients, and the BART-based scores developed in the previous section are given in

estimated log-fold-change of target level in response to change of regulator level.

The difference in the semantics of the scores renders näıve arithmetic averaging invalid

for combining the scores. Moreover, even the scales and distributions of different scoring

systems may be distinct, thus directly averaging the scores may arbitrarily assign too

much weight to the score system with the larger scale.

One way to circumvent the difference in interpretation of scoring systems is rank-

averaging. The regulation score matrix from each scoring method is converted to a matrix

of ranks, with smaller rank numbers corresponding to smaller scores. In case of ties,

fractional ranking is used to assign equal non-integer ranking numbers to candidates in a

tie. After the conversion, rank matrices are averaged to generate a combined regulation

score matrix.
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The rank-averaging combination scheme is capable of removing difference in semantics

between different score systems, but at the price of losing almost all quantitative aspects

of every score system: the non-uniform distributional information of each score matrix.

Here, we propose a simple yet robust method for combing score matrices without losing

all the distributional information. It is then used to combine NetProphet regulation score

[4] with BART-based regulation score developed in the previous section.

Consider two sign-less score matrices A and B (signed score matrices are taken absolute

value of before combination). The former is available for regulation relations (i, j) ∈ RA,

the latter available for regulation relations (i, j) ∈ RB, and RA∩RB 6= ∅. We define FA as

the empirical cumulative distribution function (ecdf) representing the sample distribution

of all available scores in matrix A and similarly FB is defined as the ecdf of all available

scores in B. The quantile functions of A and B are denoted as QA and QB respectively.

For a value b of an entry in matrix B, the function QA ◦ FB abstracts b to a percentile in

the sample distribution of B and then converts it to a quantity in the sample distribution

of A, making it comparable with the entries in A. We define:

S
(AB)
ij =



Aij+QA◦FB(Bij)

2
(i, j) ∈ RA ∩RB

Aij (i, j) ∈ RA −RB

QA ◦ FB(Bij) (i, j) ∈ RB −RA

(4.13)

121



S(AB) represents the combination generated by first converting both score systems to

conform to the distribution of A and then taking the average. Similarly, we define

S
(BA)
ij =



Bij+QB◦FA(Aij)

2
(i, j) ∈ RB ∩RA

Bij (i, j) ∈ RB −RA

QB ◦ FA(Aij) (i, j) ∈ RA −RB

(4.14)

Now both S(AB) and S(BA) are combined scores with consideration of distributional

information. The last step is to combine S(AB) and S(BA). Since the scale and sample

distribution of entries of S(AB) and S(BA) might still be distinct, they need to be both

converted to ranks or percentiles before averaging. Denoting the empirical cumulative

distribution functions (ecdf) of them as FS(AB) and FS(BA) , the final combined score is

defined as

S
({A,B})
ij =

FS(AB)

(
S

(AB)
ij

)
+ FS(BA)

(
S

(BA)
ij

)
2

(4.15)

4.6 Results

4.6.1 BART-based Network Construction Competitive with DE and the Lasso

We applied the BART-based network construction method in Section 4.4 to the data

set in [14] (henceforth referred to as the Hu Data) and the data set in [2] (henceforth

referred to as the Holstege Data) of S. cerevisiae. For comparison, NetProphet [4], its

differential expression module, and its lasso module are also applied individually on the
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two data sets (in the initial validation of NetProphet published in [4], the methods were

also applied on the Hu Data).

The 320 genes listed in Appendix F are considered regulators. ChIP evidence and

PWM evidence described in Section 4.3 are used to determine whether a predicted network

edge is supported by DNA-protein binding experiments.

Each constructed network is given as numeric scores. As the threshold of score varies,

the precision, the recall, and other measurements of classification accuracy may vary. We

plot ChIP-support rate and PWM-support rate against the average number of targets

predicted per regulator:

Figure 4.1.: Validation of lasso, DE and BART networks on the Hu Data

(a) ChIP validation (b) PWM Validation
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Figure 4.2.: Validation of lasso, DE and BART networks on the Holstege Data

(a) ChIP validation (b) PWM Validation

In both the Hu Data and the Holstege Data, BART-constructed networks performed

better than lasso-constructed networks by a large margin.

The BART-constructed network is more accurate than the DE-constructed network

in the Holstege Data but less accurate than the DE-constructed network in the Hu Data.

Since the Holstege Data has much larger sample size (1484) than the Hu Data (269)

and regression methods may benefit from large sample size, it is possible that sample

size may be the major reason that the BART-constructed network is more accurate than

the DE-constructed network on the Holstege Data. To test this possibility, we excluded

the non-regulator deletion strains of the Holstege Data and ran the lasso and BART on

only the regulator deletion strains on the Holstege Data, whose sample size is 283 and

comparable to that of the Hu Data.
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Figure 4.3.: Validation of lasso, DE and BART networks on Holstege regulator deletion
strains

(a) ChIP validation (b) PWM Validation

Despite the shrinkage of sample size, we continue to see the BART-constructed network

more accurate than the DE-constructed network.

4.6.2 BART-predicted Fold-change More Informative than Posterior DE Prob-

ability

We explored the alternative scoring system provided by BART-based expression pre-

diction defined in (4.12), which is calculated from the posterior probability of differential

expression. Surprisingly, it did not perform as good as the log-fold-change score (4.11):
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Figure 4.4.: Validation of BART networks on the Holstege Data

(a) ChIP validation (b) PWM Validation

4.6.3 Further Accuracy Improvement by Combining BART-based Score and

NetProphet Score

Next, we combined the network constructed by the BART-based method and the

network constructed by NetProphet using the procedure described in Section 4.5. The

resulting network is even more accurate than both NetProphet- and BART-constructed

networks:
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Figure 4.5.: Combination of BART network and NP network on the Holstege Data

(a) ChIP validation (b) PWM Validation

4.6.4 Improvement Provided by New Method and New Data Set

NetProphet inferred a much more accurate network using the Holstege Data than

using the Hu Data. Same trend is true for the combination of NetProphet- and BART-

constructed networks. We attribute this to the high precision and large sample size of

the Holstege Data. The validation is done on the set of regulators equipped with both

ChIP-evidenced and PWM-evidenced true labels:

127



Figure 4.6.: Network recovery on the Hu Data and the Holstege Data

(a) ChIP validation (b) PWM Validation

In addition, we made a sliding window of size 4000 in the sorted rank list of the

combined scores and examined the ChIP-support rate and the PWM-support rate of each

window:
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Figure 4.7.: Precision of network recovery by rank window

(a) ChIP validation (b) PWM validation

Each integer point x on the horizontal axis represent the rank window [x − 3999, x]

(or [1, x] if x < 4000). Up to the 50,000th in the rank list, recovered edges are supported

by ChIP and PWM more than chance.

4.6.5 More Insight Provided by Regulator Deletion Strains than Non-regulator

Deletion Strains

The Holstege Data [2] consists of the single deletion strains of 1484 genes, 283 of which

intersect with the genes that we consider as regulators (Appendix F) in this research. We

partitioned the Holstege Data into the set of regulator deletion strains and the set of

non-regulator deletion strains and asked which set of strains contributes more to the
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predictive power of regression-based network recovery. We applied BART-based network

construction and the lasso individually on these two sets of strains to answer the question:

Figure 4.8.: BART-based network recovery on subsets of the Holstege Data

(a) ChIP validation (b) PWM validation

The non-regulator deletion strains did inform BART better than random guesses.

However, despite its large sample size (1201), the network learned from it is less accurate

than the network learned from the regulator deletion strains, which has a much smaller

sample size (283). This reaffirmed the great value of regulator deletions in network study,

not only for enabling DE analyses but also for empowering regression analyses.
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Figure 4.9.: Lasso-based network recovery on subsets of the Holstege Data

(a) ChIP validation (b) PWM validation

As for lasso-based network recovery, ChIP and PWM validation disagree on whether

regulator deletion strains or non-regulator deletion strains contribute more to the predic-

tive power. Under ChIP validation, the regulator deletion strains provided a network more

accurate even in comparison with the one constructed using the entire data set, which

in turn is better than the network constructed from the non-regulation deletion strains.

Under PWM validation, the order of performance is the opposite:the non-regulator dele-

tion strains provided a network more accurate than both regulator deletion strains and

the entire data set.
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4.7 Discussion

In this chapter, we have developed a new method for recovering network edges from

expression profiles. Both our new method and the usage of the latest large scale single

deletion expression array [2] of Saccharomyces cerevisiae have contributed to the improved

accuracy of network recovery.

Our new method uses the quantile combination of the predictions provided by pre-

viously published method NetProphet and the novel BART-based expression prediction

method developed in this dissertation. The latter produces a network recovery more

accurate than the lasso and even in some cases than differential analysis. Finally the

combination of the BART-based method and NetProphet provided unprecedented accu-

racy.

The accuracy also owes to the high-quality of the latest expression array data published

in 2014 [2], which we refer to as the Holstege data. Another comprehensive regulator

deletion expression array of S. cerevisiae which preceded [2] was published in 2007, known

as the Hu data [14]. The progress in micro-array technology over the years has enabled

a much higher precision in measurement. In addition, the Holstege data contains much

more mutant strains (> 1400) than the Hu data (≈ 260). Both the precision and the size

of the Holstege data have helped our task of network recovery.

By assessing the network recovered from the subset of the Holstege data which contains

only the 283 regulator deletion strains, we have confirmed that measurement precision

contributed to the accuracy of network recovery more than data size did. Moreover,
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regulator deletion strains provide more strength to network recovery than non-regulator

deletion strains.
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5. Discussion

5.1 Prospects

5.1.1 Non-parametric and Semi-parametric Bayesian Models for Gene Reg-

ulation

In Chapter 2, we have developed a BART-based semi-parametric model for predicting

target expression levels from regulator levels and shown its robustness applied on different

data sets. This suggests the potential of non-parametric and semi-parametric Bayesian

methods in the field of gene regulatory network modeling.

Non-parametric Bayesian methods do not provide a direct interpretation of the mech-

anistic aspect of gene regulations. On the other hand, modeling approaches of gene

regulation ranges from the highly abstract end to the highly mechanistic end.

Literature has seen various modeling approaches that emphasize the representation of

the molecular and thermodynamic aspects of gene regulations, such as sequence affinity

and cooperative and competitive DNA-binding. Converting mechanistic hypotheses to

accurate quantitative and predictive models is not a trivial task. In fact, given the large

amount of noise contributed by unknown factors, the theoretical correctness of an mech-
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anistic explanation may not always be clearly reflected in quantitative precision. But in

the long term, it is the compilation of mechanistic stories that defines our understanding

of the biological processes and dictates our ability to quantitatively describe and predict

their behavior.

It will be an interesting endeavor to bridge between mechanistic emphases and the pre-

dictive power of highly abstract semi-parametric and non-parametric models. Equipped

with a powerful tool to predict target levels from regulators levels, it is possible to draw in-

formation from the trained models to indirectly hint possible mechanistic hypotheses. For

example, constructing in silico query profiles of regulator levels that are experimentally

unavailable and predicting their effect on target genes may allow the study of isolated or

combinatorial effect of regulator perturbations, bringing our knowledge one step closer to

their mechanistic nature; in a trained model of Bayesian Additive Regression Trees, the

frequency of two explanatory variables appearing in a same decision tree might suggest

the likelihood of cooperative or competitive regulation; isolating effects of individual reg-

ulators on target genes and searching for unusual response curves (such as non-monotonic

curves) might provide a short list of complicated regulation relations; et cetera.

5.1.2 Expression Prediction with the Aid of Sequence Analysis

In Subsection 2.9.3 and Section 2.9, we have discussed various models for predicting

expression levels from regulator levels and sequence affinity information. These models,

compared to the simple regression models (2.8), (2.10), and (2.11), have much fewer

parameters hence potentially more resistance to overfitting. However, the time complexity
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of fitting and applying some of these models is several magnitudes higher than that of the

simple regression models. The viability of these methods for genome-wide analysis will

depend on the development of computational technology.

The value of these models lies not only in their ability to predict expression from

sequence affinity, but also in the reverse way: assessing the accuracy of sequence affinity

information based on their ability to explain expression data. Up to date, the majority

of protein-sequence affinity knowledge such as PWM [17] and DNA accessibility has been

gained from experimental data measuring protein binding locations (e. g. ChIP-seq,

DNase-seq). Given the availability of large amount of expression data in the literature, a

method that systematically transfers expression information to sequence affinity knowl-

edge will provide new perspectives on gene-protein interaction.

5.1.3 Network Model for Network

The methods and results in Chapter 3 suggest that gene regulatory networks, especially

the sub-networks composed of regulator genes, need to be understood as an entity that is

capable of sustaining its state and responding to environmental or genetic perturbations

through robust self-adjustment. Not failing its nomenclature, the network aspect of GRN

needs to be emphasized in mathematical modeling.

In [13] which also aims at the task of predicting gene expression profiles from genotypes,

a few number of “seed genes” were held accountable as the source of variance in the data;

in [15], [11], and [4], gene regulatory networks were constructed by solving the regression

problem where target expression levels are response variables and regulator levels are
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explanatory variables. It is common in expression-based network studies to consider the

network as a hierarchy of causal relations, where transcription factors are on the top the

of causal chains. There has been less work in modeling the mutual interactions between

regulators and reconstructing these mutual interactions from observed network behavior.

The ability of an in vivo network to adjust its gene expression levels to a certain state

given the genetic or environmental perturbations and stabilize around the final state is a

fairly non-trivial property. It is a strong requirement for a network model to exhibit this

same property and network simulation is necessary for enforcing this requirement. Given

a space of hypothetical networks, the expression data, the ability to simulate and predict

the behavior of a hypothetical network, and proper computational approaches, one can

construct a network model supported by the experimental data and the network behavior

that it implies. The network simulation approach differs greatly from regression analysis

and can provide new insights to the dynamics of gene regulatory networks.

5.1.4 Incorporating Semi-parametric Modeling to Network Simulation

Considering the power of semi-parametric models shown in Chapter 2 and the success

of network simulation in Chapter 3, we find it an enticing direction to incorporate Bayesian

non-parametric and semi-parametric modeling into gene regulatory network simulation.

For example, the target-regulator interaction function F (3.27) in the network simulation

framework may be replaced by a non-parametric function with Bayesian prior distribution.

It has to be admitted that both of the parametric descriptions (3.12) and (3.14) are

highly simplified forms of actual target-regulator relations. Aside from these parametric
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descriptions, non-parametric or semi-parametric families of functions, especially ensemble

functions, give an alternative option for modeling complicated quantitative relations.

The usage of non-parametric functions might endow the ability to capture non-linear

and non-monotonic target-regulator relations and unknown combinatorial effects of regu-

lators and help avoiding the issues caused by over-extrapolating which is common to the

simple parametric models.

Non-parametric approaches in network simulation may impose computational chal-

lenges in spatial and temporal complexity of the optimization process as well as conver-

gence issues that is to be addressed by the developing theory of Bayesian non-parametric

statistics and requires careful modeling and tuning.

5.1.5 Incorporating Advanced Network Structure Inference to Network Sim-

ulation

Part of the training process of the simulated networks in Chapter 3 may be preceded

by and benefit from narrowing the set of possible network edges to a small subset. The

edge selecting process could both protect against overfitting and reduce time complexity.

On the other hand, we have developed methods in Chapter 4 that recovers network edges

from expression data with a great performance. It is possible to use the methods developed

in Chapter 4 to select network edges for the network simulation task.
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5.1.6 Diversity Provides Strength

Throughout the studies, it has been repeatedly seen that combined models exhibit

enhancement in performance. Bayesian Additive Regression Trees per se is an ensemble

of weaker learners, which interestingly benefits from the absence of individual strong

learners in the ensemble; in Chapter 4, the combination of the BART-based network

reconstruction approach and NetProphet results in a method that is stronger than each

of the components; moreover, NetProphet alone is a combination of differential expression

analysis and lasso regression.

It is important and desirable to uncover an accurate and consistent mechanistic ex-

planation of the biological process that we study; but until a perfect mechanistic model

is reached, the combination of multiple models, even the ones based on apparently con-

tradicting assumptions, remains a practical way to complement the unique limitations of

different modeling approaches.

5.2 Conclusion

In this dissertation, various machine learning and Bayesian-statistical approaches have

been studied for mapping and modeling gene regulatory networks.

In Chapter 2, a competitive and reliable semi-parametric model based on Bayesian

Additive Regression Trees has been developed to predict target expression levels from

regulator levels and various modeling approaches that relates sequence affinity to gene

expression levels in theory have been discussed.
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In Chapter 3, we took on the task of predicting expression levels in strains of novel

combination of genetic perturbations and have shown that network simulation is an effec-

tive approach for studying and predicting the propagation of genetic perturbation effects.

With the new method developed, we succeeded to predict the expression level changes in

double deletion strains of C. neoformans quantitatively and qualitatively.

Chapter 4 has shown that our ability of discovering gene interactions and distinguish-

ing between direct and indirect regulation relations has been greatly improved both by

our novel methods and by the currently available high-quality data in the field of bioinfor-

matics; in addition, we further validated the value and performance of methods developed

earlier in Chapter 2.

This dissertation has revealed the great potential of theories and methods of modern

machine learning and Bayesian statistics in the research of gene regulatory networks and

developed powerful novel methods to solve problems in both the more explored and the

uncharted territories of bioinformatics. With advanced mathematical tools and strong

computational power, we have significantly improved our efficiency and precision in ex-

tracting qualitative and quantitative features of gene regulation networks from the ocean

of data.
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APPENDICES



A. Previous Methods on Expression Prediction from Genotype

The method in [13] is recapitulated here.

Consider an expression array matrixD, where the (i, k) entry denotes the log-expression-

level of gene i in strain k and strain 1 stands for wild type. The construction of the model

in [13] requires decomposition of D into an “influence” matrix X and a “genotype” matrix

G so that D ≈ XG.

The major regulators potentially responsible for causing most of variances in the ex-

pression array were referred to as the “seed genes”. In the study of [13] particularly,

the five transcription factors that were deleted in the training data were considered seed

genes.

The (i, 1) entry of X represents the background expression level of gene i and the

(i, j+1) entry represents the influence (direct or indirect) of seed gene j on the expression

level of target gene i.

All entries in the first row and the first column of G are set to 1. The (j+1, k) entry of

G represents the “activity level” of seed gene j in strain k. “Activity level” was described

to be an abstract representation of the overall magnitude of influence of that seed gene

on other genes in a certain strain. Naturally, Gj+1,k is set to zero if seed gene j is deleted

in strain k.
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To simplify the computation, expression array D is singular-value-decomposed into

uvwT , where u and w are orthogonal matrices and v is a diagonal matrix (not necessarily

square) of decreasing non-negative diagonal entries. Denoting the index set of seed genes

as J and the number of seed genes |J |, D is then approximated by D̃ = ũṽw̃T , where ũ

is the first |J | + 1 columns of u, ṽ is the top-left (|J | + 1) × (|J | + 1) block of v, and w̃

the first |J |+ 1 columns of w. The approximation is based on the authors’ belief that the

|J |+ 1 largest singular values of matrix v accounts for most of the variance caused by the

|J | seed genes and the presence of a background.

The next step in the method was to perform a least square fit ṽw̃T ∼ xG solving for

matrices x(|J |+1)×(|J |+1) and G, where G is used as the fore-mentioned genotype matrix

and ũx is used as the influence matrix.

The least square fit ṽw̃T ∼ xG is done with the constraint that 1) the first row and

first column of G are all equal to 1.0 and 2) Gj+1,k = 0 if seed gene j is deleted in strain

k.

The number of unknown entries in matrix G is therefore |J |(|K| − 1) −
∑

k∈K |∆k|,

where K denotes the index set of strains and |∆k| the number of deleted genes in strain

k. The number of unknown entries in matrix x is (|J |+ 1)2.

For the least square fit ṽw̃T ∼ xG, the total degree of freedom of the unknowns is

thus (|J |+ 1)2 + |J |(|K| − 1)−
∑

k∈K |∆k|. The number of “observations” in matrix w̃ is

(|J |+ 1)|K|. Without consideration of degeneracy, the number of observations has to be
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at least as large as the degree of freedom of the unknowns in order to guarantee a unique

best fit, i. e. requiring that

(|J |+ 1)2 + |J |(|K| − 1)−
∑
k∈K

|∆k| ≤ (|J |+ 1)|K| (A.1)

That is

|J |2 + |J |+ 1−
∑
k∈K

|∆k| ≤ |K| (A.2)

|J |2 + |J |+ 1 ≤
∑
k∈K

(|∆k|+ 1) (A.3)

As the number |J | of seed genes goes bigger, this implies that
∑

k∈K (|∆k|+ 1) has to

have at least a magnitude of O(|J |2), which is impossible to achieve when the majority

of the strains are single deletions of seed genes, as |K| ≈ O(|J |) and |∆k| ≈ O(1).

To predict expression levels in strains of novel deletions or novel deletion combinations,

it is necessary to construct a genotype matrix Ĝ for the novel query strains and an influence

matrix X̂ for each query strain.

To construct the influence matrix X̂ for the query strain, the method relies on prior

knowledge of the regulatory network structure of the studied species. Note that the

(i, j+1) entry of X describes the effect of seed gene j on the target gene i. If the deletion

in the query strain cuts off all regulator pathway(s) that transmit the regulatory signal

from seed gene j to target gene i, X̂i,j+1 is set to zero; otherwise, X̂i,j+1 = Xi,j+1.

143



To construct the novel genotype matrix Ĝ, the authors assumed an underlying pattern

in the genotype matrix G of the training strains. Denoting column k of G as

 1

~gk

 (A.4)

the activity levels of seed genes in strain k is then represented by ~gk. In wild type for

example, the author assumed that the wild type genotype vector ~g1 satisfies that

 1

~g1

 ≈ A

 1

~g1

 (A.5)

where

A =

 1 0 . . . 0

~g0 m

 (A.6)

and m|J |×|J | is an unknown matrix whose (i, j) entry describes the effect that seed gene

j exerts on the activity level of seed gene i; ~g0 is an unknown basal activity vector. The

diagonal entries of m are assumed to be zero. (A.5) is equivalent as saying that the first

column of G is an eigenvector of the matrix A with eigenvalue 1.

(A.5) can be rewritten as

~g1 ≈ m~g1 + ~g0 (A.7)
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Generally, for the column vector ~gk, if genes j1, j2, . . . are deleted in strain k, rows

j1, j2, . . . of gk are by definition equal to zero. One can define a matrix Dk such that DkA

extracts all the rows of any matrix A except rows j1, j2, . . .. With this notation, (A.7)

may be generalized to

Dk~gk ≈ Dk(m~gk + ~g0) (A.8)

Note that ~gk = DT
kDk~gk. Therefore (A.8) can be reshaped as

Dk~gk ≈ Dk(mD
T
kDk~gk + ~g0) (A.9)

(I −DkmD
T
k )Dk~gk ≈ Dk~g0 (A.10)

Dk~gk ≈ (I −DkmD
T
k )−1Dk~g0 (A.11)

The authors then solved the least square fitting problem Dk~gk ∼ (I−DkmD
T
k )−1Dk~g0

using the columns of genotype matrix G of the training data solving for m and g0 under

the constraint that all diagonal entries of m are zero. They then used (A.11) again with

the learned m and g0 to construct the columns of the genotype matrix Ĝ of the test data.
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B. Dependence of Performance of kNN-based Expression

Prediction on Parameter k

Expression levels of target genes are predicted from expression levels of regulator genes

using an method based on k-nearest-neighbors. The parameter k stands for the number

of neighbors used for prediction in each query profile. Here options of k = 1, 2, . . . 30 are

probed and their corresponding performance in R2 is listed below.

Data C. neoformans S. cerevisiae, #1 S. cerevisiae, #2

Training set WT and single∆ Regulator deletion Non-regulator deletion

Test set Double∆ Non-regulator deletion Regulator deletion

Method kNN.log kNN.linear kNN.log kNN.linear kNN.log kNN.linear

R2 R2 R2 R2 R2 R2

k = 1 0.14 -0.06 0.13 0.09 -0.08 -0.12

2 0.23 0.16 0.20 0.18 0.14 0.20

3 0.25 0.19 0.22 0.20 0.20 0.24

4 0.26 0.20 0.22 0.21 0.22 0.25

5 0.26 0.20 0.22 0.22 0.23 0.26

6 0.26 0.20 0.22 0.22 0.23 0.26

7 0.26 0.20 0.21 0.22 0.24 0.27

8 0.25 0.20 0.21 0.21 0.24 0.26

9 0.25 0.20 0.21 0.21 0.24 0.26

10 0.25 0.20 0.20 0.21 0.24 0.26

11 0.24 0.20 0.20 0.21 0.24 0.25

12 0.24 0.20 0.20 0.21 0.24 0.25

13 0.24 0.20 0.19 0.21 0.23 0.25

14 0.24 0.19 0.19 0.20 0.23 0.25

15 0.23 0.19 0.19 0.20 0.23 0.25

16 0.23 0.19 0.18 0.20 0.23 0.24

17 0.23 0.19 0.18 0.20 0.23 0.24

18 0.22 0.19 0.18 0.20 0.23 0.24

19 0.22 0.19 0.17 0.19 0.22 0.24

20 0.22 0.19 0.17 0.19 0.22 0.23

21 0.22 0.18 0.17 0.19 0.22 0.23

22 0.22 0.18 0.17 0.19 0.22 0.23

23 0.21 0.18 0.16 0.19 0.22 0.23

24 0.21 0.18 0.16 0.19 0.21 0.23

25 0.21 0.18 0.16 0.19 0.21 0.23

26 0.21 0.18 0.16 0.18 0.21 0.22

27 0.21 0.18 0.16 0.18 0.21 0.22

28 0.20 0.17 0.15 0.18 0.21 0.22

29 0.20 0.17 0.15 0.18 0.20 0.22

30 0.20 0.17 0.15 0.18 0.20 0.22
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C. Prediction-observation Plots of Target Gene Levels

Predicted from Regulator Levels

Figure C.1.: Prediction of C. neoformans target levels from regulator levels by the log-
linear model
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Figure C.2.: Prediction of C. neoformans target levels from regulator levels by the expo-
nential model
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Figure C.3.: Prediction of C. neoformans target levels from regulator levels by the log-
linear-exponential model
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Figure C.4.: Prediction of C. neoformans target levels from regulator levels by the BART-
based semi-parametric model
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Figure C.5.: Prediction of S. cerevisiae target levels from regulator levels by the log-linear
model

(a) Trained on regulator deletion strains,
tested on non-regulator deletion strains

(b) Trained on non-regulator deletion strains,
tested on regulator deletion strains
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Figure C.6.: Prediction of S. cerevisiae target levels from regulator levels by the exponen-
tial model

(a) Trained on regulator deletion strains,
tested on non-regulator deletion strains

(b) Trained on non-regulator deletion strains,
tested on regulator deletion strains
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Figure C.7.: Prediction of S. cerevisiae target levels from regulator levels by the log-linear-
exponential model

(a) Trained on regulator deletion strains,
tested on non-regulator deletion strains

(b) Trained on non-regulator deletion strains,
tested on regulator deletion strains
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Figure C.8.: Prediction of S. cerevisiae target levels from regulator levels by the BART-
based semi-parametric model

(a) Trained on regulator deletion strains,
tested on non-regulator deletion strains

(b) Trained on non-regulator deletion strains,
tested on regulator deletion strains
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D. List of Cryptoccous neoformans Strains Used in the Study

Wild type

Strain

Serotype A reference strain H99

Single overexpression strain

Strain CNAG ID of overexpressed gene

USV101Over CNAG 05420

Double deletion strains

Strain CNAG ID of deleted genes

pkr1∆rim101∆ CNAG 00570, CNAG 05431

tup1∆rim101∆ CNAG 02153, CNAG 05431

nrg1∆usv101∆ CNAG 05222, CNAG 05420

gat201∆usv101∆ CNAG 01551, CNAG 05420

tup1∆cac1∆ CNAG 02153, CNAG 03202

hog1∆cac1∆ CNAG 01523, CNAG 03202

gat201∆tup1∆ CNAG 01551, CNAG 02153

pkr1∆gat201∆ CNAG 00570, CNAG 01551

ada2∆usv101∆ CNAG 01626, CNAG 05420

ada2∆tup1∆ CNAG 01626, CNAG 02153

Single deletion strains

Strain CNAG ID of deleted gene

mlr1∆ CNAG 00031

ssn801∆ CNAG 00440

pkr1∆ CNAG 00570

ccd3∆ CNAG 00732

clr3∆ CNAG 00871

ecm2201∆ CNAG 00883

swi6∆ CNAG 01438

hog1∆ CNAG 01523

gat201∆ CNAG 01551

ada2∆ CNAG 01626

tup1∆ CNAG 02153

hap3∆ CNAG 02215

fkh2∆ CNAG 02566

mal13∆ CNAG 02774

asg101∆ CNAG 03018

cac1∆ CNAG 03202

ccd4∆ CNAG 03279

clr2∆ CNAG 03378

asg1∆ CNAG 03849

pdr802∆ CNAG 03894

rds2∆ CNAG 03902

yrm103∆ CNAG 04093

aro8001∆ CNAG 04345

clr1∆ CNAG 04353

none∆ CNAG 04369

cir1∆ CNAG 04864

clr4∆ CNAG 04908

clr5∆ CNAG 05067

nrg1∆ CNAG 05222

usv101∆ CNAG 05420

rim101∆ CNAG 05431

fkh101∆ CNAG 05861

ccd6∆ CNAG 06252

cep3∆ CNAG 06276

bik1∆ CNAG 06352

hap2∆ CNAG 07435

mbs1∆ CNAG 07464

fap1∆ CNAG 07506

hap5∆ CNAG 07680

clr6∆ CNAG 07797

mcm1∆ CNAG 07924
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E. List of Cryptococcus neoformans Genes Considered as

Regulators in the Study

224 genes of Cryptococcus neoformans are considered as regulators. Their CNAG ID

numbers, names, and orthologs in Saccharomyces cerevisiae are given here.

CNAG ID Name S. c. ortholog
CNAG 00017 YCR065W HCM1
CNAG 00018 YPL248C GAL4
CNAG 00031 MLR1 YLR014C PPR1
CNAG 00039 YNL027W CRZ1
CNAG 00055 YOR028C CIN5
CNAG 00068 YKL062W MSN4
CNAG 00132 YNL167C SKO1
CNAG 00156 SP1 YNL027W CRZ1
CNAG 00184 YDR228C PCF11
CNAG 00193 GAT1 YFL021W GAT1
CNAG 00239 YML007W YAP1
CNAG 00332 YGR142W BTN2
CNAG 00376 YCR042C TAF2
CNAG 00440 SSN801 YNL025C SSN8
CNAG 00460 LIV1 YOR032C HMS1
CNAG 00505 YLR098C CHA4
CNAG 00514 YER040W GLN3
CNAG 00559 YNL167C SKO1
CNAG 00570 PKR1 YIL033C BCY1
CNAG 00670 YBR297W MAL33
CNAG 00732 CCD3 YML076C WAR1
CNAG 00791 YJR060W CBF1
CNAG 00828 SIP401 YLR098C CHA4
CNAG 00830 YIL130W ASG1
CNAG 00841 YML076C WAR1
CNAG 00871 CLR3 YFL031W HAC1
CNAG 00883 ECM2201 YLR228C ECM22
CNAG 00896 YBL005W PDR3
CNAG 00998 YLR313C SPH1
CNAG 01014 YDR146C SWI5
CNAG 01018 YER025W GCD11
CNAG 01069 YIL130W ASG1
CNAG 01173 PAN1 YDR333C
CNAG 01242 HAPX YDR259C YAP6
CNAG 01317 YJR060W CBF1
CNAG 01370 YFL036W RPO41
CNAG 01431 YDL106C PHO2
CNAG 01438 SWI6 YLR182W SWI6
CNAG 01454 STE12a YHR084W STE12
CNAG 01523 HOG1 YLR113W HOG1
CNAG 01549 YDL030W PRP9
CNAG 01551 GAT201 YMR136W GAT2
CNAG 01626 ADA2 YDR448W ADA2
CNAG 01645 YJR151C DAN4
CNAG 01708 YMR136W GAT2
CNAG 01841 GLN3 YER040W GLN3
CNAG 01858 YDR451C YHP1
CNAG 01883 YJL110C GZF3
CNAG 01948 YPL248C GAL4
CNAG 01952 YPL088W
CNAG 01973 YPL230W USV1
CNAG 01977 YML076C WAR1
CNAG 01999 YGR171C MSM1
CNAG 02066 YLR451W LEU3
CNAG 02134 RSC8 YFR037C RSC8
CNAG 02153 TUP1 YCR084C TUP1
CNAG 02215 HAP3 YBL021C HAP3
CNAG 02241 YMR087W
CNAG 02305 YDR421W ARO80

CNAG ID Name S. c. ortholog
CNAG 02322 YDL170W UGA3
CNAG 02364 YLR266C PDR8
CNAG 02435 CWC2 YMR136W GAT2
CNAG 02476 YRM101 YOR172W YRM1
CNAG 02516 YOR032C HMS1
CNAG 02555 SIP402 YJL089W SIP4
CNAG 02566 FKH2 YNL068C FKH2
CNAG 02589 YDL058W USO1
CNAG 02603 YDR216W ADR1
CNAG 02671 YMR213W CEF1
CNAG 02698 YBL047C EDE1
CNAG 02700 YNL027W CRZ1
CNAG 02723 YBR150C TBS1
CNAG 02774 MAL13 YKL038W RGT1
CNAG 02788 YDR423C CAD1
CNAG 02877 YPR196W
CNAG 02936 YCR093W CDC39
CNAG 03018 ASG101 YIL130W ASG1
CNAG 03055 YLR074C BUD20
CNAG 03059 YJL206C
CNAG 03086 YLR098C CHA4
CNAG 03115 YDR213W UPC2
CNAG 03116 HCM1 YCR065W HCM1
CNAG 03125 YMR029C FAR8
CNAG 03129 YPR186C PZF1
CNAG 03132 YKL038W RGT1
CNAG 03183 YIL130W ASG1
CNAG 03202 CAC1 YJL005W CYR1
CNAG 03212 YCR065W HCM1
CNAG 03229 YOX101 YML027W YOX1
CNAG 03261 YJL056C ZAP1
CNAG 03279 CCD4 YDR213W UPC2
CNAG 03336 YHR178W STB5
CNAG 03346 YNL167C SKO1
CNAG 03366 ZNF2 YNL027W CRZ1
CNAG 03378 CLR2 YLR399C BDF1
CNAG 03401 YMR136W GAT2
CNAG 03409 SKN7 YHR206W SKN7
CNAG 03431 YJL206C
CNAG 03527 YDR266C
CNAG 03561 YBL066C SEF1
CNAG 03710 YLR228C ECM22
CNAG 03741 YKL015W PUT3
CNAG 03768 YLR228C ECM22
CNAG 03788 YLR403W SFP1
CNAG 03790 YBL066C SEF1
CNAG 03817 YCR087C-A
CNAG 03826 ESA1 YOR244W ESA1
CNAG 03849 ASG1 YIL130W ASG1
CNAG 03894 PDR802 YLR256W HAP1
CNAG 03902 RDS2 YPL133C RDS2
CNAG 03904 YDR394W RPT3
CNAG 03914 YGL059W PKP2
CNAG 03976 YNL167C SKO1
CNAG 03998 RLM1 YPL089C RLM1
CNAG 04012 YBR150C TBS1
CNAG 04023 YOR162C YRR1
CNAG 04036 YGL073W HSF1
CNAG 04090 ATF1 YNL167C SKO1
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CNAG ID Name S. c. ortholog
CNAG 04093 YRM103 YLR014C PPR1
CNAG 04130 YPL248C GAL4
CNAG 04176 YGL073W HSF1
CNAG 04184 YHR178W STB5
CNAG 04226 YOR308C SNU66
CNAG 04262 YDR421W ARO80
CNAG 04263 YFL021W GAT1
CNAG 04268 YBL019W APN2
CNAG 04345 ARO8001 YDR421W ARO80
CNAG 04352 ZAP103 YJL056C ZAP1
CNAG 04353 CLR1 YJR127C RSF2
CNAG 04369 YMR123W PKR1
CNAG 04398 YDR421W ARO80
CNAG 04457 YDR421W ARO80
CNAG 04518 YDR146C SWI5
CNAG 04530 YJL048C UBX6
CNAG 04583 YGL133W ITC1
CNAG 04586 YDL106C PHO2
CNAG 04588 YBR239C
CNAG 04594 YDL170W UGA3
CNAG 04600 YLR234W TOP3
CNAG 04630 YIR018W YAP5
CNAG 04637 MBF1 YOR298C-A MBF1
CNAG 04774 YKR064W OAF3
CNAG 04790 YJL056C ZAP1
CNAG 04798 GCN4 YEL009C GCN4
CNAG 04804 SRE1 YOR032C HMS1
CNAG 04807 YMR019W STB4
CNAG 04836 YIL130W ASG1
CNAG 04837 MLN1 YBL103C RTG3
CNAG 04841 YIL130W ASG1
CNAG 04855 YKR054C DYN1
CNAG 04864 CIR1 YJL110C GZF3
CNAG 04878 YKL222C
CNAG 04895 YIL130W ASG1
CNAG 04908 CLR4 YGR089W NNF2
CNAG 04916 YKR064W OAF3
CNAG 05010 YKL062W MSN4
CNAG 05019 YLR450W HMG2
CNAG 05049 YDR034C LYS14
CNAG 05055 RTS2 YOR077W RTS2
CNAG 05067 CLR5 YLR399C BDF1
CNAG 05093 YPL124W SPC29
CNAG 05112 YOR337W TEA1
CNAG 05153 YER040W GLN3
CNAG 05170 YOR363C PIP2
CNAG 05176 YDL106C PHO2
CNAG 05222 NRG1 YDR043C NRG1
CNAG 05255 YJL206C
CNAG 05311 YFR023W PES4
CNAG 05314 GLO3 YER122C GLO3
CNAG 05375 YBL103C RTG3
CNAG 05380 YJL206C
CNAG 05392 ZAP104 YJL056C ZAP1
CNAG 05420 USV101 YPL230W USV1
CNAG 05431 RIM101 YHL027W RIM101
CNAG 05436 YEL009C GCN4
CNAG 05535 FHL1 YPR104C FHL1
CNAG 05538 JJJ1 YNL227C JJJ1
CNAG 05642 YJL206C
CNAG 05785 STB4 YMR019W STB4
CNAG 05861 FKH101 YIL131C FKH1
CNAG 05940 YPR008W HAA1
CNAG 06097 YLL054C
CNAG 06134 BZP1 YFL031W HAC1
CNAG 06156 YHR056C RSC30
CNAG 06163 YOR326W MYO2
CNAG 06188 YKL038W RGT1
CNAG 06223 YDR409W SIZ1
CNAG 06252 CCD6 YDR213W UPC2
CNAG 06276 CEP3 YMR168C CEP3
CNAG 06283 LIV4 YDR026C
CNAG 06322 SAS3 YBL052C SAS3
CNAG 06327 MIG1 YGL035C MIG1
CNAG 06339 YCR106W RDS1
CNAG 06352 BIK1 YCL029C BIK1
CNAG 06425 YLR014C PPR1
CNAG 06483 YEL071W DLD3
CNAG 06719 YHR178W STB5
CNAG 06742 YLR387C REH1
CNAG 06751 YFR034C PHO4
CNAG 06762 GAT204 YMR136W GAT2
CNAG 06814 SXI1α YPL177C CUP9
CNAG 06818 HAP1 YLR256W HAP1
CNAG 06826 YDR485C VPS72
CNAG 06871 YJL206C
CNAG 06921 YKR002W PAP1
CNAG 07011 YLR014C PPR1
CNAG 07329 YLR403W SFP1
CNAG 07370 YER045C ACA1
CNAG 07411 RUM1 YJR119C JHD2

CNAG ID Name S. c. ortholog
CNAG 07435 HAP2 YGL237C HAP2
CNAG 07443 YJR060W CBF1
CNAG 07460 YGL073W HSF1
CNAG 07464 MBS1 YDL056W MBP1
CNAG 07506 FAP1 YNL023C FAP1
CNAG 07528 YOR317W FAA1
CNAG 07560 YIL036W CST6
CNAG 07607 YIR004W DJP1
CNAG 07680 HAP5 YOR358W HAP5
CNAG 07724 CUF1 YPR008W HAA1
CNAG 07797 CLR6 YKL070W
CNAG 07901 YLR256W HAP1
CNAG 07922 YHR178W STB5
CNAG 07924 MCM1 YMR043W MCM1
CNAG 07940 YIL036W CST6
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F. List of Saccharomyces cerevisiae Genes Considered as

Regulators in the Study

OAF1 (YAL051W), PDR3 (YBL005W), HIR1 (YBL008W), HAP3 (YBL021C), SAS3 (YBL052C), TOD6 (YBL054W), SEF1 (YBL066C),

RTG3 (YBL103C), EDS1 (YBR033W), REB1 (YBR049C), NRG2 (YBR066C), TEC1 (YBR083W), NHP6B (YBR089C-A), SIF2 (YBR103W),

CYC8 (YBR112C), TBS1 (YBR150C), SMP1 (YBR182C), MSI1 (YBR195C), ERT1 (YBR239C), THI2 (YBR240C), ISW1 (YBR245C), RIF1

(YBR275C), SNF5 (YBR289W), MAL33 (YBR297W), KAR4 (YCL055W), HMLα1, HMLα2, SRD1 (YCR018C), MATα2, MATα1, HCM1

(YCR065W), SRB8 (YCR081W), TUP1 (YCR084C), HMRA2 (YCR096C), HMRA1 (YCR097W), RDS1 (YCR106W), NHP10 (YDL002C),

RPN4 (YDL020C), SIR2 (YDL042C), SIT4 (YDL047W), STP4 (YDL048C), MBP1 (YDL056W), BDF2 (YDL070W), PHO2 (YDL106C),

UGA3 (YDL170W), GAL3 (YDR009W), YDR026C, LYS14 (YDR034C), NRG1 (YDR043C), VMS1 (YDR049W), SNF11 (YDR073W), PDC2

(YDR081C), GIS1 (YDR096W), INO2 (YDR123C), SWI5 (YDR146C), STB3 (YDR169C), ARG82 (YDR173C), HMO1 (YDR174W), NGG1

(YDR176W), SAS4 (YDR181C), HST4 (YDR191W), UME6 (YDR207C), UPC2 (YDR213W), ADR1 (YDR216W), MET32 (YDR253C), YAP6

(YDR259C), YDR266C, MTH1 (YDR277C), RSC3 (YDR303C), SUM1 (YDR310C), ESC2 (YDR363W), SPT3 (YDR392W), ARO80 (YDR421W),

CAD1 (YDR423C), SSN2 (YDR443C), ADA2 (YDR448W), YHP1 (YDR451C), STP1 (YDR463W), SNF1 (YDR477W), DIG2 (YDR480W),

PLM2 (YDR501W), URC2 (YDR520C), GCN4 (YEL009C), HAT2 (YEL056W), MIG3 (YER028C), GLN3 (YER040W), ACA1 (YER045C),

JHD1 (YER051W), MOT2 (YER068W), DOT6 (YER088C), FLO8 (YER109C), SWI4 (YER111C), YER130C, SPT15 (YER148W), SPT2

(YER161C), RPH1 (YER169W), YER184C, GAT1 (YFL021W), HAC1 (YFL031W), OTU1 (YFL044C), YFL052W, CDC14 (YFR028C),

PHO4 (YFR034C), PDR1 (YGL013C), PIB2 (YGL023C), PGD1 (YGL025C), MIG1 (YGL035C), AFT1 (YGL071W), HSF1 (YGL073W),

TOS8 (YGL096W), SNT2 (YGL131C), NUT1 (YGL151W), SUT1 (YGL162W), CUP2 (YGL166W), GTS1 (YGL181W), MDS3 (YGL197W),

MIG2 (YGL209W), HAP2 (YGL237C), RTF1 (YGL244W), RTG2 (YGL252C), FZF1 (YGL254W), KSS1 (YGR040W), RME1 (YGR044C),

RSC1 (YGR056W), SPT4 (YGR063C), YGR067C, NNF2 (YGR089W), ASK10 (YGR097W), SRB5 (YGR104C), MGA1 (YGR249W), MAL13

(YGR288W), YAP3 (YHL009C), OPI1 (YHL020C), SNF6 (YHL025W), RIM101 (YHL027W), STP2 (YHR006W), SRB2 (YHR041C), RSC30

(YHR056C), STE12 (YHR084W), NDT80 (YHR124W), RTT107 (YHR154W), STB5 (YHR178W), RPN10 (YHR200W), SKN7 (YHR206W),

DOT5 (YIL010W), CST6 (YIL036W), NOT3 (YIL038C), SDS3 (YIL084C), XBP1 (YIL101C), RPI1 (YIL119C), MET18 (YIL128W), ASG1

(YIL130W), FKH1 (YIL131C), IMP2’ (YIL154C), GAT4 (YIR013C), MET28 (YIR017C), YAP5 (YIR018W), DAL81 (YIR023W), MGA2

(YIR033W), ZAP1 (YJL056C), SIP4 (YJL089W), GSM1 (YJL103C), GZF3 (YJL110C), ASF1 (YJL115W), SPT10 (YJL127C), SET2 (YJL168C),

SWI3 (YJL176C), YJL206C, CBF1 (YJR060W), IME1 (YJR094C), IBA57 (YJR122W), RSF2 (YJR127C), HIR3 (YJR140C), HMS2 (YJR147W),

BYE1 (YKL005C), PUT3 (YKL015W), SPT23 (YKL020C), IXR1 (YKL032C), RGT1 (YKL038W), PHD1 (YKL043W), MSN4 (YKL062W),

STB6 (YKL072W), HAP4 (YKL109W), ABF1 (YKL112W), ASH1 (YKL185W), YKL222C, DAL80 (YKR034W), CAF4 (YKR036C), OAF3

(YKR064W), BAS1 (YKR099W), SIR1 (YKR101W), YLL054C, GAT3 (YLR013W), PPR1 (YLR014C), RIC1 (YLR039C), CHA4 (YLR098C),

HOG1 (YLR113W), ACE2 (YLR131C), TIS11 (YLR136C), RFX1 (YLR176C), SWI6 (YLR182W), TOS4 (YLR183C), IFH1 (YLR223C),

ECM22 (YLR228C), HAP1 (YLR256W), PDR8 (YLR266C), YLR278C, RSC2 (YLR357W), STP3 (YLR375W), SFP1 (YLR403W), CDC73

(YLR418C), SIR3 (YLR442C), LEU3 (YLR451W), RIF2 (YLR453C), YAP1 (YML007W), YOX1 (YML027W), GAL80 (YML051W), WAR1

(YML076C), TDA9 (YML081W), ARG81 (YML099C), CAC2 (YML102W), DAT1 (YML113W), SOK2 (YMR016C), STB4 (YMR019W), MAC1

(YMR021C), MSN2 (YMR037C), ARG80 (YMR042W), MCM1 (YMR043W), STB2 (YMR053C), MOT3 (YMR070W), ABF2 (YMR072W),

RCO1 (YMR075W), MSS11 (YMR164C), CEP3 (YMR168C), HOT1 (YMR172W), RGM1 (YMR182C), ZDS1 (YMR273C), CAT8 (YMR280C),

ELP6 (YMR312W), HDA1 (YNL021W), CRZ1 (YNL027W), FKH2 (YNL068C), PHO23 (YNL097C), MET4 (YNL103W), THO2 (YNL139C),

SKO1 (YNL167C), GCR2 (YNL199C), SPS18 (YNL204C), RAP1 (YNL216W), SIN4 (YNL236W), GIS2 (YNL255C), SIP3 (YNL257C), STB1

(YNL309W), DAL82 (YNL314W), RPD3 (YNL330C), CSE2 (YNR010W), POP2 (YNR052C), YNR063W, SIN3 (YOL004W), YAP7 (YOL028C),

GAL11 (YOL051W), RTG1 (YOL067C), HST1 (YOL068C), HAL9 (YOL089C), INO4 (YOL108C), MSN1 (YOL116W), SPT20 (YOL148C),

HST3 (YOR025W), CIN5 (YOR028C), HMS1 (YOR032C), HIR2 (YOR038C), RTS2 (YOR077W), AZF1 (YOR113W), SFL1 (YOR140W),

YRR1 (YOR162C), YRM1 (YOR172W), ULS1 (YOR191W), SAS5 (YOR213C), WTM2 (YOR229W), WTM1 (YOR230W), SNF2 (YOR290C),

MBF1 (YOR298C-A), ISW2 (YOR304W), TEA1 (YOR337W), TYE7 (YOR344C), HAP5 (YOR358W), PIP2 (YOR363C), NDD1 (YOR372C),

RDR1 (YOR380W), HAT1 (YPL001W), ECM23 (YPL021W), MET31 (YPL038W), SSN3 (YPL042C), DIG1 (YPL049C), GCR1 (YPL075W),

RLM1 (YPL089C), TBF1 (YPL128C), TAF14 (YPL129W), RDS2 (YPL133C), UME1 (YPL139C), CUP9 (YPL177C), AFT2 (YPL202C),

USV1 (YPL230W), GAL4 (YPL248C), HFI1 (YPL254W), MDL2 (YPL270W), HAA1 (YPR008W), SUT2 (YPR009W), YPR013C, YPR015C,

RLF2 (YPR018W), YPR022C, NHP6A (YPR052C), SMK1 (YPR054W), ROX1 (YPR065W), RDS3 (YPR094W), FHL1 (YPR104C), HPA2

(YPR193C), YPR196W, ARR1 (YPR199C)
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