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ABSTRACT OF THE DISSERTATION 

Cell Cultures of Genetic Variation 

by 

Joshua Turner Witten 

Doctor of Philosophy in Biology and Biomedical Sciences (Molecular Cell Biology) 

Washington University in St. Louis, 2010 

Professor Barak Cohen, Chairperson 

 Studying genetic variation presents a dilemma. While the genetic variation of 

greatest interest is that causing variation in traits and disease risk in natural populations, 

natural populations have characteristics that make them challenging to study. In this 

work, I have assessed the use of cell culture methods as a solution to some of these 

challenges. In particular, I studied genetic variation in the budding yeast Saccharomyces 

cerevisiae that was generated by selection in the lab as a model for natural genetic 

variation. I have found that even simplistic selection programs in the laboratory, 

including the use of chemical mutagenesis to introduce genetic variation, can be used to 

rapidly generate genetic variation with the same characteristics as that observed in natural 

populations of budding yeast. 

I also explored the use of human-derived lymphoblastoid cell lines as source of 

genetic variation that eliminates some of the most challenging problems that arise from 

the use of humans as research subjects. In addition to the ethical limitations, there are 

also severe technical limitations to the study of human subjects, not least of which is the 

difficulty of direct experimentation to confirm hypotheses. 
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 I found that lymphoblastoid cell lines are a reliable experimental system in which 

phenotypic variation, at the cellular level, primarily represents differences between lines, 

a significant portion of which is due to additive genetic variation. Due to the growth of 

publicly available genotype data, these lines can be used to locate genetic variants with 

phenotypic effects by linkage-association mapping. In addition to the shared database 

resources, cell lines are amenable to distribution from central repositories, suggesting that 

cell culture could form the basis of a community resource for the study of human genetic 

variation.     

While cell culture methods have share weaknesses with traditional genetic model 

systems, the use of a variety of cell culture approaches, including microorganisms and 

human-derived cell lines, represents an important, complementary approach to the 

investigation of genetic variation both for basic, mechanistic questions and for 

understanding the genetic causes of diversity in human phenotypes.   
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CHAPTER ONE: GENERAL INTRODUCTION 

INTRODUCTION 

 Gregor Mendel’s discovery of the Laws of Inheritance was, to a degree, 

serendipitous. The choice of model system (peas) and phenotype (round/wrinkled seeds, 

among others) was essential. That system presented Mendel with a situation ideally 

suited for the discovery of his Laws of Inheritance – a phenotype controlled by a single 

gene with two alleles, one of which was completely dominant (the round allele) over the 

other. It would, however, been very easy for Mendel to pick a system that did not have 

the necessary characteristics for the discovery of the Laws of Inheritance, because most 

of the traits he could have chosen (e.g., height, yield, drought resistance, etc.) are 

complex. This discussion serves not to downplay Mendel’s brilliance, but to highlight the 

fact that no amount of genius would have given the world his Laws of Inheritance 

without the right phenotype in the right model system. The right system is integral to 

address any question in science. The main goal of the work in this thesis was to 

investigate cell culture methods as systems to address questions about genetic variation. 

 Genetics is the study of how DNA polymorphism determines phenotypic 

variation. In classical genetics phenotypes are connected to single large effect mutations, 

which often identify key genes in biological pathways. In quantitative genetics 

phenotypes are modeled as being the output of alleles at multiple segregating loci. 

Population genetics is the study of how these alleles are distributed within and between 

populations.     
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 As the ability to determine genotype becomes simpler, the study of genetic 

variation could be augmented by model systems that can represent natural genetic 

variation, are amenable to high-throughput approaches, and allow methods to 

experimental test genotype-phenotype association hypotheses. A particularly challenging 

area that might benefit from model systems to complement traditional practices is 

research of natural genetic variaton. In this work, I have assessed the utility of studying 

selection in the laboratory using the budding yeast Saccharomyces cerevisiae as a model 

system for natural variation. I have also examined the utility of lymphoblastoid cell lines 

(LCLs) as a model system for the study of human genetic variation. Background specific 

to each model system follows below   

A description of my research on selection in S. cerevisiae as a model for natural 

genetic variation appears in Chapter Two. A description of my research on LCLs as a 

model for human genetic variation appears in Chapter Three. General conclusions and 

discussion appear in Chapter Four. 

CELL CULTURE AS A MODEL FOR NATURAL GENETIC VARIATION 

 The fundamental distinction between studies of laboratory and naturally occurring 

strains of a model organism is the degree to which the environment can be controlled. 

The variables affecting phenotype in laboratory strains can be limited and controlled by 

the researcher. This allows variables (e.g., genotype, environment, etc.) to be manipulated 

individually, which is ideal for the study of mechanism. Naturally occurring strains, on 

the other hand, are the product of multivariate processes, which have not been observed, 
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resulting in multifactor differences between strains. The variables affecting phenotype 

between natural strains are complex and have not been controlled. 

There are, however, reasons why laboratory researchers might wish to step away 

from pristine laboratory strains to examine variation in natural strains. Most phenotypic 

variation observed in nature is continuous, genetically complex, and dependent on the 

environment. The progressive goal of genetics is to build models that predict phenotype 

from knowledge of genotype and environment with increasing accuracy. While these 

models require a mechanistic basis, they also require an understanding of the 

consequences of small variation in their parameters that are frequently below the 

resolution of mechanistic studies. Variation in natural strains provides examples of this 

type of variation (GERKE et al. 2009; GERKE et al. 2006). The study of natural variation 

complements mechanistic study of laboratory strains.   

In addition, naturally occurring strains are reservoirs of variation and novelty in 

potentially useful traits. The search for useful variation in nature is a major component of 

agricultural science and pharmaceutical research.      

 One weakness in studying natural strains is that they are inherently anecdotal. 

These studies tend to assume that the experimental tools and accumulated knowledge 

base from the laboratory strain of the species (or closely related species) are directly 

applicable to the natural strains. Because each example of natural variation occurs in an 

uncontrolled, multivariate environment and is determined by chance events, it can be 

very difficult to identify the environmental variables driving that variation and to re-

examine the history of that variation in detail.  The multivariate, contingent evolutionary 
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history of natural strains makes it difficult, if not impossible, to systematically explore 

the effects of individual variables on phenotype.  

Laboratory selection as a model system: Can the systematic control of variables in 

laboratory strains be brought together with the continuous, complex variation of natural 

strains in a model system for the study of naturally occurring genetic variation? The use 

of selection in the laboratory to generate variation with the characteristics of natural 

variation is a potential solution.     

 Artificial selection (breeding determined by phenotype of interest) has a long and 

successful history in the agricultural breeding of plants and animals. William Ernst 

Castle, one of the earliest geneticists, used directional selection in hooded rats to 

demonstrate transgressive segregation and disproved the generality of the pure line 

genetic concept (CASTLE 1951). Since then, laboratory selection has been used to study a 

wide variety of areas of interest in genetics and evolutionary biology, such as the fitness 

effects of mutation (DE VISSER and LENSKI 2002; DE VISSER and ROZEN 2006; ESTES et 

al. 2004; HEGRENESS et al. 2006; KASSEN and BATAILLON 2006; LENSKI and TRAVISANO 

1994; OSTROWSKI et al. 2005a; SILANDER et al. 2007), the role of genome 

rearrangements (DUNHAM et al. 2002), the effects of haploidy and diploidy (PAQUIN and 

ADAMS 1983a; ZEYL et al. 2003), the frequency of parallelism versus convergence 

(BUCKLING et al. 2003; COHAN and HOFFMANN 1986; COOPER et al. 2003; HERRING et 

al. 2006; LENSKI and TRAVISANO 1994), the effects of asexual and sexual lifestyles (DE 

VISSER and ROZEN 2006; GRIMBERG and ZEYL 2005a), and evolutionary change in gene 

expression (COOPER et al. 2003; FEREA et al. 1999; PELOSI et al. 2006; RIEHLE et al. 
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2003; RIFKIN et al. 2005). Selection in the laboratory has also been used extensively to 

investigate questions in evolutionary theory and quantitative genetics. 

Laboratory selection of microorganisms as a model system: Microorganism cell 

culture is particularly advantageous for selection experiments in the laboratory. Cell 

culture systems using microorganisms generally have the following advantages: large 

population size, short generation time, amenability to high-throughput techniques, long-

term storage, environmental control, experimental tractability, and small genome size.  

Microorganisms routinely achieve extremely large population sizes under 

standard cell culture conditions (

! 

n >109 individuals/mL of culture for E. coli and 

! 

n >107 

individuals/mL of culture for S. cerevisiae) than those achievable for multicellular 

organisms. Large population sizes increase the efficiency of selection relative to drift 

(FALCONER 1989) making it tractable to detect small changes in fitness.  

The short generation time of microorganisms increases the number of generations 

that can be observed. The observation of evolutionary dynamics over long periods of the 

relevant time scale (i.e., generations) allows the detection of small fitness changes and a 

thorough exploration of the the genotype-phenotype landscape.  

Large population size and short generation time makes microorganisms suitable 

for culturing and assaying using high-throughput methods, including growth in 96-, 384-, 

and 1024-well plates. Because each well is an isolated environment, dense cell culture on 

plates increases sample sizes and the number of variables that may be tested.  
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In addition, standard, laboratory microorganism model systems can be maintained 

in long-term frozen storage, allowing samples from different generational time points 

during the evolution experiment to be directly compared.  

The environment of microorganisms - the variables determining the nature and 

intensity of selection - can be strictly controlled in the laboratory. The use of defined 

media allows the researcher to control resource availability and the presence of chemical 

challenges. The availability of both liquid and solid phase media allows the researcher to 

control the spatial structure of the environment. The use of incubators allows the 

researcher to control temperature, humidity, and gas mixture. Strict, well documented cell 

culture protocols have the additional advantage of controlling variables that have not 

been formally considered by the researcher. Environmental control removes uncertainty 

about the variables driving selection and explicit testing of evolutionary questions.  

Microorganims are also experimentally tractable. Depending on the species of 

microorganism, extensive experimental options for both phenotyping assays and direct 

hypothesis testing exist. For example, allelic conversion via homologous recombination 

in yeast can be used to test the phenotypic effect of a single nucleotide polymorphism 

(SNP) (GERKE et al. 2009). The experimental tools available for data collection and 

hypothesis testing in microorganisms are more extensive and more easily applied to large 

sample sets than those available in multicellular organisms. Among those experimental 

tools is the expansion of sequencing capacity with “next-generation” sequencing 

technology, which makes sequencing entire genomes to identify genetic variation 

between lines possible, especially for microorganisms due their small genome sizes. The 
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ability to experimentally confirm hypotheses, such as identifying the phenotypic effects 

of a SNP, is critical for understanding the molecular basis of genetic variation.     

  The paradigmatic laboratory selection experiment using microorganisms is 

Richard Lenski’s long-term experimental evolution in Escherichia coli. At last report, 

twelve lines of E. coli split from a single clone (i.e., all lines had the same genotype at the 

beginning of the experiment with variation introduced by mutation accumulation) were 

passaged through over 40,000 generations of asexual growth in glucose-limited medium 

for nearly twenty years (BARRICK et al. 2009).  

By way of comparison, a similar long-term selection in a multicelluar organism 

(Zea mays) has been operated at the University of Illinois since 1896. In that time, the 

divergent selection for kernel oil concentration on two lines has progressed through 

approximately 100 generations (LAURIE 2004). The Lenski selection experiment using E. 

coli has passed six times as many lines through 400 times as many generations in one-

fifth the time of a long-term selection in multicellular organisms (BARRICK et al. 2009; 

LAURIE 2004).   

The Lenski selection experiment, which has dominated both the literature and 

intellectual space of experimental evolution, illustrates the advantages of microorganism 

cell culture as a model system for laboratory selection experiments. The large population 

sizes and number of generations allowed very small fitness effects to be detected (DE 

VISSER and LENSKI 2002; OSTROWSKI et al. 2008). The number of generations allowed 

the dynamics of the evolutionary process to be observed, such as the slowing of the 

response to selection due to the number and effect size of available, potentially adaptive 
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mutations decreasing as the fitness landscape becomes more completely explored over 

evolutionary time (ARJAN et al. 1999; DE VISSER and LENSKI 2002). Samples from each 

line were taken and stored periodically, allowing samples from different generational 

time points in the evolutionary timeline to be directly compared (BLOUNT et al. 2008; DE 

VISSER and LENSKI 2002) and questions of historical contingency to be investigated 

(BLOUNT et al. 2008). This experiment has used the ability to control the E. coli 

environment to maintain constant cell culture conditions for nearly 20 years (BARRICK 

and LENSKI 2009) and to make defined changes in individual nutrients to examine the 

pleiotropic effects of adaptive mutations (OSTROWSKI et al. 2005b; OSTROWSKI et al. 

2008). The experimental tractability of E. coli has permitted the identification of 

molecular difference between the lines(WOODS et al. 2006), and the testing of those 

differences for their effects on fitness (OSTROWSKI et al. 2008). Most recently, the newest 

generation of high-throughput sequencing technology has begun to be applied to these 

lines to detect sequence changes during the evolutionary process (BARRICK and LENSKI 

2009; BARRICK et al. 2009; JEONG et al. 2009; OSTROWSKI et al. 2008; STUDIER et al. 

2009). The Lenski selection experiment has exploited many of the advantages of 

microorganisms for selection experiments to make wide-ranging contributions to the 

study of evolution. 

 Beyond the contributions of the literature devoted to this resource, the Lenski 

selection experiment stands as a rigorous, documented, empirical example of 

microevolution (i.e., changes in gene frequency due to selection, drift, mutation, and 

migration) in action, which alone has tremendous epistemological and rhetorical value.  
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The choice of E. coli as the model system and the design of the Lenski selection 

experiment impose certain constraints on the question that it can address. E. coli is an 

asexual, haploid making E. coli an unsuitable model system for the investigation of some 

of the most difficult issues in evolutionary biology. As an asexual organism, E. coli is not 

accommodated within the traditional textbook definition of speciation (FRASER et al. 

2009) proposed by Ernst Mayr, “groups of actually or potentially interbreeding natural 

populations, which are reproductively isolated from other such groups” (MAYR 1942), 

although others have argued that the definitional species concept problem is not 

significant (DE QUEIROZ 2007). E. coli is not a suitable model system to investigate 

macroevolution (i.e., speciation) under the most widely accepted species concepts.  

Asexuality also makes E. coli an unsuitable model system for the investigation of 

the relative advantages of asexual and sexual reproduction. Similarly, the fact that E. coli 

is a facultative haploid throughout its life cycle (except in the interval between 

completion of DNA replication and cytokinesis in mitosis) makes it an unsuitable model 

system to compare haploidy to diploidy – a distinct question from asexual/sexual 

comparisons as reproductive strategy does not necessarily constrain ploidy. The 

simplicity of E. coli is a strength, but it also prohibits the study these issues.      

 An interesting feature of the Lenski selection experiment is that no variables are 

manipulated in the selection. All twelve lines had the same ancestral genotype and were 

cultured in the same environment. Random effects, like mutation and experimental error, 

have introduced all variation between the lines. In this context, the number of lines under 

study is a limitation. In order to rigorously study the effects of such random processes, 
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one would prefer far more than twelve samples. Because this long-term evolution 

experiment did not use high-throughput cell culture methods, the number of samples that 

could be studied was limited by practical considerations. The decision to passage these 

lines through as many generations as possible dedicated experimental resources, which 

might have been used to explore environmental variables or expand the number of lines, 

to maximizing the number of generations that might have been used to explore 

environmental variables or expand the number of lines. In addition, using mutation 

accumulation to introduce genetic variation increases the time required for beneficial 

mutations to occur. The use of a chemical mutagen to introduce variation at the beginning 

of the experiment could reduce the time required for beneficial variant to arise in the 

population as well as permit the study of the evolutionary dynamics of highly variable 

populations. The Lenski selection experiment has been extremely productive, but has also 

been limited by the choice of model organism and the study design.  

Saccharomyces cerevisiae as a model system for natural genetic variation: As an 

alternative to the E. coli model system used in the Lenski selection experiment, the 

budding yeast S. cerevisiae is a potential model system for natural genetic variation that 

has the standard advantages of microorganism cell culture as well as a number of 

additional characteristics that are useful for the study of genetic variation.  

S. cerevisiae is a eukaryote making it a relevant model system for natural genetic 

variation in eukaryotes, due to the presence of eukaryotic specific features (e.g., 

mitochondria, etc.) that might be affected by genetic variation. S. cerevisiae can 

reproduce asexually or sexually, allowing the effects of reproductive strategy to be 
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investigated. S. cerevisiae, in the laboratory, can be maintained in either a haploid or a 

diploid state, allowing the effects of ploidy to be investigated independent of 

reproductive strategy. While questions regarding reproductive strategy (GRIMBERG and 

ZEYL 2005b; ZEYL et al. 2005a; ZEYL and BELL 1997), ploidy (PAQUIN and ADAMS 

1983a; PAQUIN and ADAMS 1983b; ZEYL 2004; ZEYL 2005; ZEYL et al. 2003), and 

eukaryotic features (TAYLOR et al. 2002; ZEYL et al. 2005a) were inaccessible in E. coli, 

they are active areas of research in S. cerevisiae.  

In addition, S. cerevisiae have many advantages that are relatively specific to 

yeast. Homologous recombination is efficient, which allows the phenotypic effects of 

SNPs to be tested by direct experimentation (DEUTSCHBAUER and DAVIS 2005; GERKE et 

al. 2009; GERKE et al. 2006). S. cerevisiae also enjoys extensive resource sharing in the 

research community. In addition to the reference genome (GOFFEAU et al. 1996), 

genomic sequences are available for several closely related species (CLIFTEN et al. 2003) 

and the phylogenetic relationships between species and strains have been described (LITI 

et al. 2009). Furthermore, resources like the yeast deletion collection, in which all non-

essential genes have been knocked-out (GIAEVER et al. 2002), has simplified discovery 

and genetic manipulation. The ability to identify causal molecular variation is combined 

with the community resources to allow that molecular variation to be understood in the 

context of the organism.   

Like E. coli, S. cerevisiae has been proposed as model system to investigate 

genetic variation and evolutionary dynamics (ZEYL 2000; ZEYL 2006). It has been used to 

study the effects of reproductive strategy (GRIMBERG and ZEYL 2005b; ZEYL and BELL 
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1997; ZEYL et al. 2005b), mutation effect size and frequency (ADAMS et al. 1985; 

GRIMBERG and ZEYL 2005b; TAYLOR et al. 2002; ZEYL and DEVISSER 2001; ZEYL et al. 

2001), ploidy(PAQUIN and ADAMS 1983a; PAQUIN and ADAMS 1983b; ZEYL 2004; ZEYL 

2005; ZEYL et al. 2003), mitochondrial defects (TAYLOR et al. 2002; ZEYL et al. 2005b), 

environment (GRIMBERG and ZEYL 2005b), and epistasis (PAQUIN and ADAMS 1983b; 

ZEYL et al. 2005b).  

In order to determine if laboratory selection of S. cerevisiae can be used as a 

model system for natural genetic variation, the characteristics of natural genetic variation 

in S. cerevisiae require description. The genetic basis of variation in sporulation 

efficiency in S. cerevisiae has been determined at the resolution of single nucleotides for 

several strains (DEUTSCHBAUER and DAVIS 2005; GERKE et al. 2009; GERKE et al. 2006), 

including a natural isolates (GERKE et al. 2009; GERKE et al. 2006). These studies have 

concluded that variation in sporulation efficiency is due to a small number of variants 

(three (DEUTSCHBAUER and DAVIS 2005) and four (GERKE et al. 2009)) at a small 

number of loci (five in total (DEUTSCHBAUER and DAVIS 2005; GERKE et al. 2009; 

GERKE et al. 2006)) with large additive effects (DEUTSCHBAUER and DAVIS 2005; GERKE 

et al. 2009; GERKE et al. 2006) and a smaller, but significant, contribution from epistatic 

interactions between loci (GERKE et al. 2009). Based on this single, well researched trait, 

natural genetic variation in S. cerevisiae can be described as being controlled by a few 

loci with large additive effects and some epistatic interactions between loci. 

One study estimated that a small number (n=2) of S. cerevisiae strains produced 

by 2000 generations of selection for growth in low-glucose media produced strains with 
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similar characteristics to the genetic variation seen in natural strains. They estimated that 

growth rate in the derived strains was controlled by only a few loci of large effect (ZEYL 

2005); supporting the use of S. cerevisiae strains derived from laboratory selection as a 

model system for the study of natural genetic variation. The small number of strains 

tested in this study (ZEYL 2005) underscores the need for cell culture and phenotyping 

techniques with increased throughput.   

Laboratory selection experiments with microorganisms generally use the 

spontaneous accumulation of mutations to introduce genetic variation, which is generally 

viewed as more natural than using mutagens. As mentioned above, this increases the 

number of generations needed for beneficial mutations to arise in the experimental 

population. An alternative method is to use chemical or radiation mutagenesis to 

introduce genetic variation, which would reduce the time needed to observe the 

phenotypic effects of introduced genetic variation in the experimental population, as well 

as allow the study of both isogenic and genetically variable populations. Although there 

may be concern that the known biases of different mutagens – it should be noted that 

naturally occurring mechanisms of mutation are also biased – may affect the distribution 

of mutation effect sizes, there is no theoretical reason to expect that mutagens have a 

different distribution of mutation effect sizes compared to normal sources of variation, 

only a greatly increased rate of mutation.   

Is the approach of artificially produced variation a viable method for the study of 

how genetic variation controls the complex phenotypic variation observed outside the 

laboratory? Does variation produced in the laboratory have similar genetic characteristics 
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to that observed outside the laboratory? Is the phenotype is controlled by a few genes of 

relatively large, not completely additive effects with evidence of many, small modifying 

variants? In experiments described in Chapter Two, I have used lines of the budding 

yeast S. cerevisiae derived by selection in the laboratory to address these questions and 

develop a quantitative, high-throughput phenotyping assay that should be applicable to 

most yeast cell culture environmental conditions.  A quantitative, high-throughput cell 

culture model of genetic variation would be an important tool in the addressing the 

complex relationship between genotype and phenotype in complex traits. 

MODEL SYSTEMS FOR THE STUDY OF HUMAN GENETIC VARIATION 

     Studying basic genetic mechanisms allows the researcher the freedom to select 

a model system ideally suited to the question. When the question is not a basic research 

one – how does genetic variation control phenotypic variation, but is directed toward 

understanding the causes of specific phenotypic variation in a specific organism – which 

genetic variants control the phenotypic variation of a specific trait, the researcher is 

generally restricted to pursuing the question in that organism. Understanding variation in 

maize crop qualities requires research in maize (LAURIE et al. 2004). Understanding 

variation in pig carcass quality requires research in pigs (HEUVEN et al. 2009). 

Understanding the genetic variation that affects both normal human variation and disease 

risk requires research using human subjects.  

While humans are the species of greatest practical interest to human researchers, 

they are a difficult experimental subject. Complementary approaches to the use of human 

subjects could be a useful in moving the field forward. Below, I will first discuss some of 
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the challenges in human genetics and how cell culture, and LCLs in particular, addresses 

these challenges, and then I will discuss considerations in the use of LCLs as a model 

system in the context of the existing literature.   

Challenges in human genetics: Homo sapiens is, at the same time, an extremely 

challenging species to research and the species in which we are most interested in 

studying. The difficulties with human studies have come under renewed focus recently as 

the results of genome-wide association studies continue to accumulate, but have so far 

failed to explain the majority of the genetic variation in common human diseases and 

traits. 

 Efforts to connect genetic variation with quantitative variation in phenotype via 

associations date back to at least 1953 (AIRD et al. 1953) – less than a decade after the 

discovery that DNA is the genetic molecule (AVERY et al. 1944) and the same year as the 

discovery of the structure of DNA (WATSON and CRICK 1953). The goal is to associate 

molecular variation in DNA with quantitative phenotypic variation. With the completion 

of the Human Genome Project in combination with high-density microarray technology, 

it became possible to genotype millions of SNPs simultaneously allowing the search for 

phenotype associated genetic variants across the entire genome without making any prior 

assumptions (BODMER and BONILLA 2008). The identification of molecular variation has 

become increasingly accessible, but associating it with phenotypic variation remains a 

significant challenge.  

 The technology allows an individual to be genotyped for millions of common 

SNPs (2007) (usually SNPs with a minor allele frequency > 5% (BODMER and BONILLA 
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2008)) rapidly and for relatively little cost. It is an ideal system for testing the common 

disease-common variant (CDCV) hypothesis. The CDCV hypothesis, as originally 

described by Reich and Lander, postulates that the genetic variation controlling the 

common versions of diseases, like diabetes, consists of common genetic variants at 

multiple loci, whose combined effects determine disease risk (REICH and LANDER 2001), 

and can be extended to other, non-disease quantitative traits. The Genome Wide 

Association Study (GWAS) design is an approach to genome-phenotype association 

studies based on this concept. 

 While genome-phenotype association studies have been enormously successful in 

identifying quantitative trait loci (QTL), they have not produced significant ability to 

predict phenotype from genotype for disease risk or any other human trait. At the level of 

the individual, the associated variants appear to have very small effects on phenotype 

(i.e., low penetrance). The odds ratios for most genome-phenotype association identified 

QTL are between 1.2 and 1.5 (BODMER and BONILLA 2008). As a result, the number of 

variants identified has, to some degree, supplanted predictive power as the metric by 

which success is measured. The largest genotype-phenotype association study group, the 

Wellcome Trust Case-Control Consortium (WTCCC) reports: 

The WTCCC has substantially increased the number of genes known to 

play a role in the development of some of our most common diseases and 

has to date identified approximately 90 new variants across all of the 

diseases analyzed. As well as confirming many of the known associations, 
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some 28 in total, the WTCCC has also identified many novel variants that 

affect susceptibility to disease. (CONSORTIUM 2010) 

It is this low predictive power that has precipitated the controversy over private 

genotyping services and slowed the progress toward personalized medicine. 

 Does the lack of predictive power accurately reflect the relationship of genetic 

variation in humans? The results of genome-phenotype association studies suggest that 

quantitative traits in humans are controlled by many variants of small effect. This, 

however, does not agree with experimentally confirmed quantitative trait nucleotides 

(QTN) in budding yeast, where the sporulation efficiency is controlled by a few QTN of 

relatively large effect (GERKE et al. 2009; GERKE et al. 2006). The dramatic differences 

may reflect real differences in the types of genetic variants that contribute to phenotypic 

variation between microorganims and multicellular organisms. On the other hand, the 

difference may reflect technical characteristics of the system under study. The 

complications inherent in research using human subjects make it difficult to clearly 

understand these issues.  

There are numerous human characteristics that make the species a difficult 

genetic system in which to work, such as the long developmental period (sexual maturity 

at 10-15 years of age depending on sex), long gestation period (38 weeks after 

conception), small generation size (one child per mother per generation), and inability to 

conduct directed crosses are either obvious or trivial and will not be discussed in detail. 

More significant complications for the study of human genetic variation include ethics, 

sample size, environmental variation, population stratification, and limited options for 
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direct experimentation. Below, I discuss each of these issues, before discussing the 

benefits  a complementary cell culture approach might provide. 

Ethics: In the United States of America’s National Institutes of Health Grants Policy 

Statement (Part II, Subpart A), the institutional review board evaluation of a human 

subject research program must meet ethical standards: 

The procedures to be used will minimize risks to subjects . . . Risks to 

subjects are reasonable in relation to expected benefits, if any, to subjects 

and the importance of the knowledge that may reasonably be expected to 

result. (HEALTH 2003) 

Researchers are required to both minimize the risk to human subjects and those risks 

must be relative to the expected benefit by both professional standards of ethics and 

funding agencies. 

Ethical standards complicate experiments in human subjects. The identification of 

diagnostic, genetic variants could beneficially inform treatment and prophylaxis. To use 

the example of personalized chemotherapeutic treatment of cancers, studying genetic 

variation in therapy response in human subjects would necessitate giving 

chemotherapeutics to otherwise healthy human subjects (MEUCCI et al. 2005; SHUKLA 

and DOLAN 2005; THOMAS et al. 2004). The requirement to balance potential benefit with 

risk poses a potentially severe, but necessary restriction on the number and extent of 

speculative and research programs that might be pursued, due to the potential for harm, 

relative to the probability of benefit.   
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 Similarly, understanding variation in susceptibility to infectious disease has the 

potential to impact the approaches taken to disease prevention and response. This 

information could inspire new approaches to infectious agents, like human 

immunodefiency virus (HIV), that have proven difficult targets for prophylaxis and 

treatment. 

 Cell culture methods are a potential solution to these ethical limitations. 

Dangerous treatments and conditions can ethically be tested in renewable cell culture 

(SHUKLA and DOLAN 2005), without a high expectation of beneficial outcome to balance 

the perceived risks. As opposed to the concern for subject safety in human studies, the 

major ethical consideration with cell culture is the handling of information. Individuals 

require protection from having the results of testing, phenotyping, and genotyping of their 

derivative cell lines being associated with their personal identity. Major collections of 

LCLs (such as the International HapMap Project collection at the Coriell Institute of 

Medical Research) are completely deidentified (THE INTERNATIONAL HAPMAP 2005).  

Thus, the ethical limitations restricting exposure of these cell lines to potentially 

dangerous chemicals or infectious agents, and association of their genotypes with 

observed phenotypic responses are not constrained to the same degree as human 

subjects.. 

Sample size: Sample size is a critical issue in quantitative genetics because it is the 

sample size that directly determines the power of the study to identify the locations of 

causal genetic variants.  There are two aspects of sample size – the number of individuals 

sampled (N) and the number of times an individual is sampled (n) – that affect studies of 
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genetic variation. Repeated sampling of an individual gives a more accurate 

quantification of the individual’s phenotype. Sampling more individuals gives a more 

accurate estimate of the distribution of phenotypic variation (FALCONER 1989). The 

increase in accuracy from more sampling allows smaller effects to be detected (BODMER 

and BONILLA 2008). Limited resources generally require any experimental design to 

balance these aspects of sample size against each other. The total number of assays 

available must be apportioned between the number of individuals included in the study 

and the number of times those individuals are assayed (the “N vs. n Problem”) in order to 

best support the goals of the research. The substantial costs and difficulties associated 

with recruiting and assaying human subjects (e.g., specialists required for phenotyping 

and limited supplies of willing subjects) imposes practical limitations on the amount of 

sampling that can be done.      

The International HapMap Project has provided a list of 3.1 million SNPs at 

which human subjects may easily be genotyped (2007). Microarrays are used routinely to 

genotype individuals at hundreds of thousands of SNPs. While these resources have 

fueled the enormous output of genotype-phenotype association studies, they have also 

fueled a need for ever-larger sample sizes. Genotype-phenotype association studies in 

humans have identified many QTL, but virtually all are of very small effect (odds ratios 

typically between 1.2 and 1.5 (BODMER and BONILLA 2008)). Novel QTL are likely to be 

within this range or below it, as a common variant with a significantly larger effect than 

these is unlikely to have escaped detection. Identifying QTL of decreasing effect size will 

require increasing sample sizes.  
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Additionally, the large number of hypotheses to be tested (each potential SNP-

phenotype association is tested as an independent hypothesis) imposes a substantial 

multiple testing penalty if large numbers of false positives are to be avoided. The P-

values required for genome-wide significance can approach 10-7 (BODMER and BONILLA 

2008). Increasing numbers of SNP-phenotype associations to test require increasing 

sample sizes. Therefore, the use of next-generation sequencing to identify all SNPs in 

individuals will actually exacerbate this problem.    

 While no system can eliminate the fundamental trade-off between more 

individuals and more replication, cell culture does address both problematic aspects of 

sample size. Renewable cell culture allows the same individuals to be resampled 

repeatedly for the same phenotype. In addition, the study of new phenotypes does not 

require collection of a new cohort, or obtaining informed consent for a new assay.  Cell 

lines can be maintained in long-term frozen storage and easily distributed from 

centralized repositories. This allows the number of individuals sampled to be 

cumulatively increased over time as cell lines are added, while allowing the same 

individual to be tested repeatedly.  

Environmental variation: A major complication of almost all research using human 

subjects is the lack of control over environmental variables. Control over life history prior 

to a study is non-existent and environmental control during a study is limited by 

practicality and the rate of subject compliance with study protocols, making it difficult to 

explicitly control environmental variables or to explicitly quantify their effects.  
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Stated simply, the total phenotypic variance for a trait in a population is composed 

of genetic variance and environmental variance: 

! 

"P
2 ="G

2 +"E
2 , 

where 

! 

"P
2  is the total phenotypic variance, 

! 

"G
2  is the genetic variance, and 

! 

"E
2  is the 

environmental variance (FALCONER 1989). In most studies of human genetic variation, 

only the phenotypic variance can be measured. Control over environmental variables is 

necessary to make comparisons between individuals that primarily reflect genetic 

differences. In the absence of control over environmental variables, statistical corrections 

are used to remove the effects of environmental covariates. Quantification of 

environmental variance allows the amount of phenotypic variance that can be explained 

by genetic variance to be defined. Monozygotic/dizygotic twins can be used to separate 

the genetic and environmental components, but are not frequent enough in the population 

to replace the use of non-twin individuals. Lack of control of environmental variables 

decreases a study’s power to detect genotype-phenotype associations.  

 In contrast to human subjects, the use of their derivative cell lines is subject to 

tight control of environmental variables. Different genotypes can be exposed to exactly 

the same conditions (e.g., media, incubator, and culturing practices). As a result, the 

contribution of environmental variance to the phenotypic differences between lines is 

expected to be small. The ability to control environmental variables and resample 

individuals allows the genetic and environmental components of the total phenotypic 

variance to be separated. Data on this topic, however, are generally not reported in the 
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literature, unless individual experiences do not conform to this expectation (CHOY et al. 

2008).  

Population structure: Population structure is the difference in allele frequencies between 

populations, due to deviation from the Hardy-Weinberg assumption of random mating, 

and is a potentially serious complication for any genotype-phenotype association study in 

natural populations. In case-control studies, unequal representation of populations in the 

case and control groups can cause spurious associations with the alleles at different 

frequencies in the two populations. The association is not genotype-phenotype, but 

genotype-population. Alternatively, the causal variant may be at lower frequency or be 

more poorly linked to a marker variant in one population, which could cause 

underestimation of the effect size associated with that marker and the failure to identify a 

true genotype-phenotype association. Population structure can cause both false positives 

and false negatives in these studies. 

In human studies, population structure takes on additional importance beyond its 

impact on the ability to correctly identify genotype-phenotype associations. When 

population structure is minimized, there is risk that research benefits may be population 

specific - depriving less studied populations of potential advances in diagnosis or 

treatment. In addition, there are potential sociopolitical implications of any discussion of 

human population differences. Population structure is both a technical complication and a 

heated topic in the public sphere.  

Because validation of genotype-phenotype associations is technically difficult 

(further discussion below), one practical standard for validation of a genotype-phenotype 
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association is replication between populations (CHANOCK et al. 2007). This practice 

increases the confidence that the observed association was not due to the specific 

population structure of the samples in the original study. Failure to replicate, however, 

does not necessarily indicate that a genotype-phenotype association is a false positive. 

The causal variant may be poorly linked to the marker in the second population. The 

causal variant may not be present in the second population. The success or failure of a 

genotype-phenotype association replication is not entirely dependent on the accuracy of 

that association.     

 Unlike many problems, increasing sample size does not resolve population 

structure issues. Current research suggests that genetic divergence between human 

populations is primarily dependent on geographic distance between individuals 

(NOVEMBRE et al. 2008). As a result, larger samples will have greater population 

structure. Larger sample sizes allow associations with smaller effects to be detected, but 

also increase the probability of spurious associations due to population structure.    

 Large association studies generally attempt to compensate for population 

structure. Cell culture methods have no specific, methodological advantages over human 

subjects when it comes to population structure. The ability to store lines do allow sample 

collections to be cumulatively built by adding samples over time from a constrained 

population. The accumulation of community knowledge, particularly genotypes, would 

allow the population structure of cell line samples to become progressively better defined 

over time.   
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Limited options for direct experimentation: Given an identified genotype-phenotype 

association, there are, currently, almost no options available to confirm the association by 

direct experimentation. A hypothetical case where the association leads to an effective 

disease prophylaxis or treatment may be considered practical evidence for the causal 

hypothesis, but it does not constitute a direct test. The lack of options for experimental 

confirmation has led to replication of genotype-phenotype associations between 

populations becoming the standard for genotype-phenotype association validation in 

humans (CHANOCK et al. 2007). This method of validation is not only susceptible to 

population structure (as discussed above), but is also vulnerable to the effects of 

statistical false negatives.   

The small effect size of genotype-phenotype associations places many of these 

associations just over the threshold of statistical significance. Therefore, it would be 

expected that a number of these associations, even if true positives would not be 

replicated as significant by chance even if the same population, but not the same 

individuals, was sampled again. True positives in one test may be false negatives in 

another test. While replication between populations is an accessible and useful approach 

to validation, direct, experimental confirmation is necessary to rigorously distinguish true 

associations from false positives without generating an excessive number of false 

negatives. 

In contrast to human subjects, cell culture does have options available for 

experimental confirmation of genotype-phenotype associations. LCLs can be 

transformed, permitting experiments using plasmids or short interfering RNA (siRNA). 
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Recently, Shukla et al. used siRNA in LCLs to confirm the hypothesis that CD44 

expression affects sensitivity to carboplatin, a hypothesis generated from genome-wide 

genotype-phenotype associations (SHUKLA et al. 2009). Although this experimental 

methodology may not be applicable to all phenotypes, this study demonstrates that 

experimental confirmation is practical in cell culture.   

It is also theoretically possible, due to the nature of cell culture phenotypes, to 

separate an untested set of samples to be used to confirm phenotypic predictions based on 

significant genotype-phenotype associations. Given the small average effect size and low 

predictive power of human QTL, this approach may not be practical and I am currently 

unaware of any applications of this method.      

Because cell culture is not constrained by the same ethical limits as human 

subjects, it is reasonable to suggest that methods to directly test genotype-phenotype 

associations will develop more rapidly for cell culture than human subjects in the future. 

Conclusion: The complications addressed above are common to natural populations, 

although not necessarily of the same degree (ethical limitations vary depending on the 

species, with humans being among the most restrictive), especially when compared to 

idealized model organisms in the laboratory, or domesticated organisms in controlled 

settings. The inescapable fact is that genetic variation of greatest interest to humans is 

human genetic variation. Regardless of the difficulty of the system, the study of human 

genetic variation will continue to be a high priority and essential avenue of research. Due 

to these limitations, however, the study of human genetic variation would benefit from 
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complementary cell culture systems models that might address some of the most serious 

limitations of human cohort studies. 

Cell culture as a model system for human genetic variation: The choice of cell lines 

to study and phenotypes to measure is of central importance to any study using cell 

culture to study human genetic variation. There are many available cell lines and 

collections with characteristics making each suitable for different applications. While the 

number of phenotypes that might conceivably be measured is effectively infinite, the 

number suited for measurement in cell culture is more limited. The applicability of the 

phenotypes chosen for measurement to cell culture may influence the reliability and 

applicability of experimental results. 

One of the major, perceived advantages of the use of cell culture for the study of 

human genetic variation is the ability to control environmental variables. This factor is a 

substantial balancing factor to counteract the weaknesses of cell culture as a human 

analog. Understanding the components of non-genetic variation in phenotype in cell 

culture is critical to investigating the sources of genetic variation in phenotype.  

First, we will discuss the available cell line collections that are available as 

experimental resources for the study of human genetic variation. Then, we will discuss 

phenotyping of these collections in other studies. Finally, we will discuss non-genetic 

variation in these cell lines.  

Available cell line collections: LCLs are a particularly attractive cell line for the study of 

human genetic variation. LCLs are derived from human B cells that have been 

immortalized by infection with Epstein-Barr Virus (EBV). LCLs grow as non-adherent 
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cell lines in liquid media making LCLs particularly easy to culture and manpulate. 

Because EBV immortalization of B cells is a relatively standard and straightforward 

procedure, LCLs have been routinely isolated from humans across many categories, such 

as ethnicity and disease, as a source of DNA and for phenotypic characterization. An 

LCL accurately represents the genotype of the individual from which it was derived. The 

LCL collections, therefore, represent the genetic variation in the human populations from 

which they are drawn, making LCL collections a compelling resource for the use of cell 

culture to investigate human genetic variation.    

Due to the presence of shared genotype data, LCL sets for the study of human 

genetic variation have primarily been drawn from two large, partially overlapping 

collections: the Foundation Jean Dausset-Centre d’Etude du Polymorphisme Humain 

(CEPH) (DAUSSET et al. 1990) and the International HapMap Project (2003; 2007). The 

LCLs in both were not collected to test genotype-phenotype associations, but to create a 

standard, renewable supply of genetic material for the identification and mapping of 

genetic variation in human populations (2003; 2007; DAUSSET et al. 1990; THE 

INTERNATIONAL HAPMAP 2005). The goal of the International HapMap Project (2003; 

THE INTERNATIONAL HAPMAP 2005) was to:  

…determine the common patterns of DNA sequence variation in the 

human genome, by characterizing sequence variants, their frequencies, 

and correlations between them, in DNA samples from populations with 

ancestry from parts of Africa, Asia and Europe. The project will thus 

provide tools that will allow the indirect association approach to be 
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applied readily to any functional candidate gene in the genome, to any 

region suggested by family-based linkage analysis, or ultimately to the 

whole genome for scans for disease risk factors. (2003) 

It must be noted that the utility of this goal has been questioned (BODMER and BONILLA 

2008; TERWILLIGER and HIEKKALINNA 2006). These collections were designed to 

represent diversity of human genomic sequence variation.  

Because the current use, testing genotype-phenotype associations, was not the 

original purpose of these collections, the suitability of these collections for this 

application should be assessed. Their utility will be strongly influenced by the collection 

design.    

Despite similar goals, these collections have different designs (2003; 2007; 

DAUSSET et al. 1990; THE INTERNATIONAL HAPMAP 2005), reflecting the technology 

available at the time the projects were implemented. The overall CEPH collection is an 

extremely diverse set of cell lines that includes all 1050 individuals from 51 populations 

comprising the Human Genome Diversity Cell Line Panel of the Human Genome 

Diversity Project (CANN et al. 2002). A subset of the larger CEPH collection, however, is 

generally used for testing genotype-phenotype associations. This subset normally consists 

of LCLs derived from complete, or nearly complete, three-generation pedigrees of Utah 

residents with large sibships in the final generation (CEPH-UT). These individuals are 

considered to representative of Americans of European-origin populations (MEUCCI et al. 

2005), as well as Northern (BAUCHET et al. 2007; LAO et al. 2008; MEUCCI et al. 2005; 

SMITH et al. 2006) and Western European populations (BAUCHET et al. 2007; HE et al. 
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2009; LAO et al. 2008; MEUCCI et al. 2005). At the time of collection (circa 1980 

(DAUSSET et al. 1990)), neither the human reference genome nor modern genotyping 

technologies were available. Mapping genetic variation required linkage. Linkage 

required pedigrees; hence, the pedigree structure of the collection. Publicly available 

genotypes exist for many CEPH-UT LCLs, but, because most of these data were 

generated by individual research groups, there is a great deal of variation in the type of 

data (e.g., microsatellite, SNP, etc.), quality, density, and number of polymorphisms. 

 A subset of the CEPH-UT LCLs are central to the International HapMap Project 

collection, but with a different structure. The International HapMap Project collection 

contains 270 individuals. Ninety individuals, representing 30 father-mother-adult child 

trios, come from the CEPH-UT collection (CEU). The International HapMap Project 

collection also contains LCLs from individuals in other world populations including 90 

Yoruban in Ibadan, Nigeria (YRI) individuals (30 father-mother-adult child trios), 45 

unrelated Han Chinese in Beijing, China (CHB) individuals, and 45 Japanese in Tokyo, 

Japan (JPT) individuals (2003; 2007; THE INTERNATIONAL HAPMAP 2005). Using 

microarray-based genotyping, these 270 individuals have been uniformly genotyped to 

generate a map of 3.1 million single nucleotide polymorphisms (SNPs). The density of 

SNPs genotypes increases the resolution of QTL mapping and the probability that a 

marker SNP will be tightly linked to a causal variant (limit case is the marker SNP being 

the causal variant) increasing the marker’s associated effect size and with it the 

probability of detection. The number of potential genotype-phenotype associations 
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available for testing, however, imposes substantial multiple hypothesis testing penalties 

(BODMER and BONILLA 2008).   

An estimate of the proportion of the total phenotypic variance that can be 

explained by genetic variance is critical for interpreting the results of GWA studies. The 

additive component of the genetic variance is of particular interest, as GWA studies must 

assume additive genetic models for genotype-phenotype associations (i.e., how much of 

the additive genetic variance is explained by significant QTL?). Genome-wide testing of 

interactions between pairs of loci is not possible for any reasonable sample size.  

The additive genetic component of phenotypic variance is estimated by the 

narrow-sense heritability (h2) of the phenotype within a population (FALCONER 1989). 

Methods for estimating narrow-sense heritability are based on estimating how well the 

mean progeny phenotypic value is predicted by the parental phenotype (FALCONER 1989; 

LYNCH and WALSH 1998), for example by regressing the mean progeny phenotypic 

values on the mid-parent phenotypic values (the mean phenotypic value of the two 

parents). The mean progeny phenotypic value will be estimated more accurately as the 

number of progeny measurements increase, increasing the confidence in narrow-sense 

heritability estimates.  

The three-generation pedigree structure of the CEPH-UT collection is informative 

for narrow-sense heritability analysis. Each pedigree contains up to three midparent-mean 

progeny comparisons (not all grandparents are present in every pedigree), two first 

generation-second generation comparisons and one second generation-third generation 



 32 

comparison. In addition, the large sibships in the third generation allow the mean progeny 

phenotypic value for that generation to be estimated with increased accuracy. 

In the International HapMap Project collection, the narrow-sense heritability of a 

phenotype is estimated from thirty CEU and thirty YRI father-mother-adult child trios, 

which are useful for SNP quality control via Mendelian inheritance. The mean progeny 

phenotypic value is estimated from the phenotypic value of a single individual. The error 

inherent in the individual estimates of means, is accommodated by the number of trios 

assayed; but, in general, the narrow-sense heritability estimates from trios have more 

associated error and less confidence than those from large sibships (LYNCH and WALSH 

1998).  

The CEPH-UT collection minimizes complications due to population structure by 

sampling from a single population (BAUCHET et al. 2007; HE et al. 2009; LAO et al. 2008; 

MEUCCI et al. 2005; SMITH et al. 2006). In contrast, the International HapMap Project 

collection contains samples from four identified populations (2003; 2007; THE 

INTERNATIONAL HAPMAP 2005). Population structure is a potential, major complication 

if all samples are pooled in order to increase sample size. On the other hand, the 

population substructure in the International HapMap Project collection is explicitly 

defined and can be included in all analyses. Furthermore, inter-population comparisons 

are possible within the International HapMap Project collection, although the individual 

population sample sizes are rather small (

! 

45 " n " 90) (2003; 2007; THE INTERNATIONAL 

HAPMAP 2005). 
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The selection of a sample set will strongly influence the limitations of a research 

study. Based on the above characteristics, the CEPH-UT collection is suited for studies 

attempting to define the components of phenotypic variance (e.g., narrow-sense 

heritability estimates) or testing genotype-phenotype associations for a limited number of 

phenotypes of great interest (e.g., chemotherapeutic cytotoxicity). The International 

HapMap Project collection is suited for studies requiring higher resolution QTL (e.g., 

distinguishing cis- and trans-expression QTL [eQTL]) or testing a large number of 

phenotypes simultaneously (e.g., genome-wide transcript abundance) where a substantial 

per phenotype false negative rate can be tolerated, in order to reasonably constrain the 

false positive rate.  

A 2008 study by Choy et al. that examined genetic variation in the International 

HapMap Project LCL lines for transcript abundance and drug response (CHOY et al. 

2008) provides an example of the importance of sample selection. This study reported 

poor repeatability between replicate samples (discussed further below) and failed to 

identify any drug response QTL (CHOY et al. 2008). In particular, they failed to replicate 

the genotype-phenotype association from a 2004 study by Watters et al. (WATTERS et al. 

2004) for 5-fluorouracil cytotoxicity (5-FOA) (CHOY et al. 2008; WATTERS et al. 2004).  

The failure to replicate may be explained by the poor repeatability and the 

different number of replicates samples in Choy et al. (n=2) (CHOY et al. 2008) and 

Watters et al. (n=12) (WATTERS et al. 2004). The two studies used different sets of LCLs. 

Choy et al. used the International HapMap Project collection, with all populations 

combined (CHOY et al. 2008). The LCL panel of Watters et al. was primarily drawn from 
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the CEPH-UT collection (WATTERS et al. 2004). Population structure may have 

contributed to the discrepancy. Furthermore, Choy et al. lacked the power to detect 

significant narrow-sense heritability for cell physiology phenotypes when the additive 

genetic variance accounted for less than half of the total phenotypic variance (significant 

h2>0.5) (CHOY et al. 2008). Watters et al. could detect significant narrow-sense 

heritabilities down to h2=0.21 (WATTERS et al. 2004). While Choy et al. are pessimistic 

about the use of LCLs as an experimental system for the study of human genetics (CHOY 

et al. 2008), their results were substantially affected by technical difficulties and the 

choice of a sample set that was not suited to their research goals. 

Not only does type of cell line chosen affect the utility of cell culture as a model 

system for human genetic variation, but the design of the sample set is also critical.  

Phenotypes studied in lymphoblastoid cell lines: Based on paper publications, the use of 

LCLs as a model system for human genetic variation is increasing (2 papers in 2003, 9 in 

2009), likely due to the International HapMap Project. The phenotypes most frequently 

tested for genotype-phenotype association are transcript abundance (BERGEN et al. 2007; 

CHEUNG et al. 2003; CHEUNG and EWENS 2006; CHEUNG et al. 2005; CHOY et al. 2008; 

CORREA and CHEUNG 2004; DEUTSCH 2005; DUAN et al. 2007; DUAN et al. 2009; FORD 

et al. 2001; HUANG et al. 2007a; HUANG et al. 2008b; JEN and CHEUNG 2003; LI et al. 

2008; LI et al. 2009; MONKS et al. 2004; MORLEY et al. 2004; PRICE et al. 2008; 

SMIRNOV et al. 2009; SPIELMAN et al. 2007; STRANGER et al. 2007; WANG et al. 2009; 

ZHANG et al. 2009), response to chemotherapeutics (BLEIBEL et al. 2009; CHOY et al. 

2008; CLOOS et al. 1999; DOLAN et al. 2004; DUAN et al. 2007; HARTFORD et al. 2009; 
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HUANG et al. 2007a; HUANG et al. 2008a; HUANG et al. 2008b; HUANG et al. 2007b; 

HUANG et al. 2007c; LI et al. 2008; LI et al. 2009; SHUKLA et al. 2008; SHUKLA et al. 

2009; WATTERS et al. 2004; WEI et al. 1996), and response to ionizing radiation (CORREA 

and CHEUNG 2004; FORD et al. 2001; HARRIS et al. 2005; JEN and CHEUNG 2003; 

SMIRNOV et al. 2009); but LCLs have also been used to study a variety of phenotypes 

including alternative splicing (DUAN et al. 2009; KWAN et al. 2007; ZHANG et al. 2009), 

infection susceptibility (LOEUILLET et al. 2008), ion transport (SCHORK et al. 2002), 

metabolism (ATLAS et al. 1976; DUAN et al. 2009; SCHORK et al. 2002), and micro RNAs 

(WANG et al. 2009). These studies draw on both the CEPH-UT and HapMap collections.  

This history does not necessarily indicate widespread community interest in LCLs 

as a model system. Only a few research groups produce many of the studies (e.g., Cheung 

(CHEUNG et al. 2003; CHEUNG and EWENS 2006; CHEUNG et al. 2005; CORREA and 

CHEUNG 2004; JEN and CHEUNG 2003; MORLEY et al. 2004; PRICE et al. 2008; SMIRNOV 

et al. 2009; SPIELMAN et al. 2007), Dolan (BLEIBEL et al. 2009; DOLAN et al. 2004; 

DUAN et al. 2007; DUAN et al. 2009; HARTFORD et al. 2009; HUANG et al. 2007a; HUANG 

et al. 2008a; HUANG et al. 2008b; HUANG et al. 2007b; HUANG et al. 2007c; SHUKLA et 

al. 2008; SHUKLA et al. 2009; ZHANG et al. 2009), and the Mayo Clinic (HARRIS et al. 

2005; LI et al. 2008; LI et al. 2009; WANG et al. 2009)). In addition, multiple publications 

from a group may exploit overlapping data sets. For example, 111 of 143 samples in a 

2006 study from the Cheung group overlap (CHEUNG and EWENS 2006) with the 355 

samples of a 2004 study (MORLEY et al. 2004) and 56 samples overlap with the 100 

samples of a 2005 study (CHEUNG et al. 2005) and the 208 samples of a 2007 study 
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(SPIELMAN et al. 2007); the 2005 study (CHEUNG et al. 2005) shares 71 of 100 samples 

with the 2007 study (SPIELMAN et al. 2007). Paper publication rates are not necessarily 

indicative of the amount of community interest or of the amount of work that has been 

done.   

 Because LCLs represent a single cell type and have been immortalized, it is 

relevant to question the applicability of LCL phenotypes to studies of human phenotypes 

(SHUKLA and DOLAN 2005). For studies interested in understanding the relationship of 

genetic variation to phenotypic variation, a relevant phenotype is one where genetic 

variance was a major component of the total phenotypic variance (discussed in detail 

below). For studies primarily interested in extracting clinically useful biomedical 

information from genetic variation, phenotypic relevance is defined by how well LCL 

phenotypes, and associated genotypes, translate to human phenotypes. 

 While primary tissue disease models are certainly more specific to the condition 

of interest (GRUNDBERG et al. 2009), LCLs are significantly more accessible. Current 

research indicates that eQTL identified in LCLs often co-occur in primary tissue samples 

(BULLAUGHEY et al. 2009). A 2008 study examining genetic variation in HIV-1 

susceptibility found that the LCL genotype-phenotype association was also associated 

with disease progression in one of two cohorts of HIV-1 infected human subjects 

(LOEUILLET et al. 2008). Although LCL phenotypes may not translate directly to human 

phenotypes, the variety and number of LCL phenotypes available for study suggests that 

LCLs are a useful complement to human subjects, especially as a platform for discovery 

and hypothesis development.    
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 An under-explored class of phenotypes is localized protein expression levels. 

Despite proteins being the primary functional unit of the cell and the ready access to 

monoclonal antibodies specific to B cell surface antigens, few LCL studies of human 

genetic variation have quantitated protein expression (CHOY et al. 2008; LOEUILLET et al. 

2008). Instead of being treated as a quantitative trait, immunological markers have been 

used to assess variation in B cell sub-type between lines (CHOY et al. 2008). While not as 

amenable to high-throughput analysis as transcript abundance, localized protein 

expression levels may integrate multiple sources of variation during localized expression 

(e.g., transcription, translation, post-translational modification, transport, etc.) with the 

potential to better represent how genetic variation generates phenotypic variation in 

humans.        

Non-Genetic variance in lymphoblastoid cell lines: The contribution of non-genetic 

variance to the total phenotypic variance in LCLs is relevant to the study of genotype-

phenotype associations, regardless of the biomedical importance of the phenotype. This 

topic, however, is not commonly addressed in the literature, and, then, only when results 

do not appear to conform to the expected strict control of environmental variance (CHOY 

et al. 2008).  

There are a number of potential sources of non-genetic variance during the 

phenotyping of LCLs. Although some sources will be specific to individual phenotyping 

assays, the general points at which non-genetic variation might be introduced are 

constrained by the cell culture process. The LCL specific components of non-genetic 
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variance, discussed in greater detail below, are the sampling/immortalization variance, 

freeze/thaw variance, cell culture variance, and assay variance.     

Sampling/Immortalization Variance: The sampling and immortalization process that 

establishes defined LCL stocks is not only the source of genetic variation between LCLs 

(samples are taken from different subjects with different genotypes), but it is also a 

potential source of non-genetic variation. Some sources are non-random in respect to that 

individual subject, such as life history and age. The CEPH collection, however, has 

limited information (only age at sampling, sex, and pedigree position) that would allow 

the impact of these variables on phenotypic variation to be understood. 

Sampling/immortalizaton variation will cause non-genetic differences between lines that 

cannot be distinguished from the genetic component of variation without samples that can 

be used to quantify the contribution of sampling/immortalizaton variance to phenotypic 

differences between lines.   

Unlike additional sources of variation discussed below, both the non-random and 

random variation introduced during the sampling and immortalization processes become 

fixed variation between lines during this process. While the non-genetic variation 

introduced during the collection and immortalization process will contribute to 

phenotypic variation between lines, it does not contribute to variation within a line. 

Random variation within a sample is converted into systematic variation between lines. 

 Because this variation is non-genetic, it will reduce the power of a study to 

identify genotype-phenotype associations.  
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Freezing, thawing, and cell culture variance: Following the establishment of LCLs, there 

are additional sources of variation, once the LCLs have entered the individual research 

lab. To reduce costs and insure consistency within samples by avoiding repeatedly 

ordering LCLs from a cell line repository, standard procedure is to freeze multiple 

aliquots from individual LCLs that can be stored and thawed individually as experiments 

require. The steps of freezing, thawing, and cell culture that necessarily fill the 

methodological space between the sampling and immortalization process and the 

phenotyping assay are all potential sources of non-genetic variation. 

Non-genetic variation within lines will affect the reliability of any phenotypic 

measurements made. There has, however only been one study, to date, that has attempted 

explicitly examined this question. The authors of this study concluded that LCLs are an 

unreliable experimental resource (CHOY et al. 2008). The reported correlation between 

two independent aliquots for drug response to three drugs and RNA transcript abundance 

was both low and inconsistent (ρ=0.39-0.82). Variation in response between aliquots was 

equal to the variation between drug treatments (CHOY et al. 2008). The methods used in 

this study, however, make it unclear whether the low correlation between aliquots was 

due to inherent variability in LCLs or the particular methods used. 

Non-genetic variation between and within LCLs will obscure the relationship 

between genetic variation and phenotypic variation by reducing the accuracy of 

phenotypic measurements.  

Assay variance: The final source of non-genetic variation in LCLs is variation in the 

phenotype assays. Random and non-random effects can affect the precision of the assays. 
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Random effects include sampling variance in the assay and variation introduced by the 

experimentalist. Non-random effects include one-time errors, systematic differences 

between equipment used at different locations, and tendencies of different 

experimentalists conducting the same assay. 

Although assay variation in phenotyping assays is not a major contributor to 

phenotypic variation, this variation is independent of sources of variation discussed above 

and will further reduce the ability to associate genetic variation with phenotypic variation 

by reducing the accuracy of phenotypic measurements. Sufficient sampling can control 

the random effects. Experimental consistency, including use of the same reagents, single 

experimentalists, and the same equipment, can control the non-random effects. A recent 

study suggests that variation between technical replicates is not a major contributor to 

overall phenotypic variation (CHOY et al. 2008). 

Conclusion: The numerous challenges facing human genetics require the use of multiple, 

complementary approaches, and that those approaches represent real human genetic 

variation. Cell culture as a model system for human genetic variation has obvious 

weakness, but also has strengths that address some of the challenges of studying human 

subjects. LCLs are a particularly attractive model system for the study of human genetic 

variation because they represent human genetic variation, can have a large sample sizes, 

are easy to use, and are publicly available. My efforts to test the utility of LCLs as a 

complementary resource for the study of human genetic variation are described in 

Chapter Three.  
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CHAPTER TWO: COMPLEX GENETIC CHANGES IN STRAINS OF 

SACCHAROMYCES CEREVISIAE DERIVED BY SELECTION IN THE 

LABORATORY 

STATEMENT OF EFFORT AND ATTRIBUTION 

 The work presented in this chapter was originally published in the July 2007 issue 

of Genetics (177:1) as “Complex genetic changes in strains of Saccharomyces cerevisiae 

derived by selection in the laboratory” authored by Joshua T. Witten, Christina T.L. 

Chen, and Barak A. Cohen (WITTEN et al. 2007). Witten and Cohen designed the 

experiments, analyzed the data, and wrote the paper. Witten conducted the experiments. 

Chen conducted the analysis of variance on transcript abundance data.   

Copyright for this article is held by Genetics. Per Genetics copyright policy, this 

article may be reprinted in this dissertation, in its entirety, by the first author without 

written permission from Genetics.  

ABSTRACT 

Selection of model organisms in the laboratory has the potential to generate useful 

substrates for testing evolutionary theories.  These studies generally employ relatively 

long term selections with weak selective pressures to allow the accumulation of multiple 

adaptations. In contrast to this approach, we analyzed two strains of Saccharomyces 

cerevisiae that were selected for resistance to multiple stress challenges by a rapid 

selection scheme to test whether the variation between rapidly selected strains might also 

be useful in evolutionary studies.  We found that resistance to oxidative stress is a 

multigene trait in these strains.  Both derived strains possess the same major effect 
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adaptations to oxidative stress, but have distinct modifiers of the phenotype.  Similarly, 

both derived strains have altered their global transcriptional responses to oxidative stress 

in similar ways, but do have at least some distinct differences in transcriptional 

regulation.  We conclude that short term laboratory selections can generate complex 

genetic variation that may be a useful substrate for testing evolutionary theories. 

INTRODUCTION 

 Selections of model organisms in the laboratory are a useful complement to the 

study of natural variation in wild populations aimed at understanding principles of 

adaptive evolution.  Indeed, selections in the laboratory have previously been used to 

address important questions in evolutionary biology such as the existence of transgressive 

segregation (CASTLE 1951), the fitness effects of mutation (DE VISSER and LENSKI 2002; 

DE VISSER and ROZEN 2006; ESTES et al. 2004; HEGRENESS et al. 2006; KASSEN and 

BATAILLON 2006; LENSKI and TRAVISANO 1994; OSTROWSKI et al. 2005; SILANDER et al. 

2007), the role of genome rearrangements (DUNHAM et al. 2002), the effects of haploidy 

and diploidy (PAQUIN and ADAMS 1983a; ZEYL et al. 2003), the frequency of parallelism 

versus convergence (BUCKLING et al. 2003; COHAN and HOFFMANN 1986; COOPER et al. 

2003; HERRING et al. 2006; LENSKI and TRAVISANO 1994), the effects of asexual and 

sexual lifestyles (DE VISSER and ROZEN 2006; GRIMBERG and ZEYL 2005), and 

evolutionary change in gene expression (COOPER et al. 2003; FEREA et al. 1999; PELOSI 

et al. 2006; RIEHLE et al. 2003; RIFKIN et al. 2005).  Microorganisms are particularly 

attractive for these kinds of experiments due to the ease of culturing, control of 

environment, short generation time, and genetic tractability (ESTES et al. 2004; ZEYL 
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2000). Several studies have employed the yeast, Saccharomyces cerevisiae as a model for 

natural selection (DUNHAM et al. 2002; FEREA et al. 1999; GRIMBERG and ZEYL 2005; 

PAQUIN and ADAMS 1983a; PAQUIN and ADAMS 1983b; ZEYL et al. 2005; ZEYL et al. 

2001; ZEYL et al. 2003).  

One goal of these studies is to generate diversity that resembles, in some respects, 

the diversity found in natural populations.  Most phenotypic variation in nature is 

continuous and results from the segregation of alleles at multiple genetic loci, as well as 

from environmental effects. Beneficial alleles that confer a fitness advantage tend to 

increase in frequency and eventually fix in natural populations.  One major question is 

how many different combinations of alleles can be beneficial when a continuously 

varying trait comes under selection.  The relative contribution of structural and regulatory 

changes to adaptive evolution is also unknown. Genetic diversity generated from 

selections in the laboratory could be a useful tool for addressing these questions. 

 Genetic diversity generated from selections in the laboratory must be sufficiently 

complex in order to serve as a useful model of natural variation.  Intuitively, strong 

selections applied over short intervals are expected to produce single genetic changes of 

large effect that show simple monogenic inheritance, while weak selections applied over 

long periods of time are expected to produce multiple genetic changes of smaller effect 

that show complex inheritance (ELENA and LENSKI 2003). Empirically, weak selection 

regimes applied over long periods of time do allow the accumulation of multiple genetic 

changes with smaller effect sizes (DE VISSER and LENSKI 2002; LENSKI and TRAVISANO 

1994), and may better mimic natural variation.  The practical difficulty, however, of 
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continually and accurately maintaining multiple lines over the course of long term 

selections presents a barrier to performing certain types of experiments.  For example, to 

address mechanisms of convergence, it is necessary to maintain a very large number of 

independent lines over a long period of time, an experiment that is not currently practical 

in many systems (CASTLE 1951; LAURIE et al. 2004; LENSKI and TRAVISANO 1994; 

PAQUIN and ADAMS 1983a; PAQUIN and ADAMS 1983b).  This barrier might be overcome 

if stronger selections conducted over shorter periods of time can generate comparable 

genetic variation. 

As a complement to existing studies on yeast selections, we analyzed two strains 

from a selection in the laboratory designed to produce stress resistant clones for industrial 

purposes (CAKAR et al. 2005).  We sought to determine whether the relatively short 

duration of selection, the stringency of selection, and the use of a mutagen would bias the 

selection toward less genetically complex phenotypes, or whether such selections could 

produce strains with genetically complex traits that can be used to study adaptive 

evolution. 

 MATERIALS AND METHODS 

Strains, plasmids, and primers: Strains were cultured on solid yeast extract-peptone-

dextrose (YPD) medium or in liquid synthetic complete (SC) medium unless otherwise 

noted.   

The haploid S. cerevisiae strain CEN.PK 113-14A (MATa, MAL2-8c, SUC2) was 

used as the ancestor for the selections performed.  JWY100 is a clonal isolate of the 

MATα CEN.PK 113-14A haploid with the MET14 locus replaced by the kanamycin 
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resistance cassette (KanMX4) (GOLDSTEIN and MCCUSKER 1999) (amplified using 

primers 5’-ACGACGCCTTGGCAATGTAGCA-3’ and 5’-

GCAAAGCACGCCTCAAAATCTGGT-3’) from the met14Δ0 homozygous diploid 

from the systematic deletion collection (GIAEVER et al. 2002).  All transformations were 

performed as described in (GIETZ and WOODS 2002). 

Strain JWY101 is a clonal isolate of population H1T2N3 that has been transformed 

with a plasmid containing a nourseothricin (Nat) resistance cassette (GOLDSTEIN and 

MCCUSKER 1999) (Mark Johnston, Washington University School of Medicine, St. 

Louis, MO).  Strain JWY102 is a clonal isolate of population H1H2 that has been 

transformed with a plasmid containing a Nat resistance cassette.  In order to cross 

JWY101 and JWY102 we transformed the same clonal isolate of H1H2 as JWY102 with a 

plasmid containing both a Kan resistance cassette and the HO locus (John McCusker, 

Duke University, Durham, NC).  We used dual selection (geneticin and Nat) to select 

hybrid diploids from all crosses.   

Quantitative 96-well growth assay: We arrayed samples in 96-well plate format.  Two 

days prior to the assay, frozen samples were pinned onto solid YPD and incubated 

overnight at 30°C.  One day prior to the assay, single colonies were suspended in 500µL 

SC medium and incubated overnight at 30°C with shaking at 325rpm in deep-well 96-

well plates (Corning #3960).  We diluted 10µL of each sample in 490µL fresh SC 

medium and incubated at 30°C for 5 hours with shaking at 325rpm. 

After incubation, all samples were diluted in SC medium to 5.26x106 cells /mL in 

190µL total volume.  We divided each dilute culture into two 95µL samples in adjacent 
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wells of a 96-well microtiter plate (Corning #3595).  We added 5µL of either SC medium 

or 20mM H2O2 in SC (1mM H2O2 final) to each well.  Samples were incubated on a 

BioTek Synergy HT plate reader (Winooski, VT) for 20 hours at 30°C with shaking at 

approximately 1200rpm (level 3) for 20 seconds every four minutes.  The reader 

measured the cell density (absorbance at 600 nm: A600) immediately after every shaking 

period (299 total measurements). 

In order to calculate the growth constant for a sample, we Log2 transformed the 

A600 measurements and analytically determined the best fit least squares linear regression 

through all time points where -2.5 < Log2(A600) < -2.  The best fit least squares linear 

regression assumes the form bmxy += , where y is Log2(A600), x is time in seconds, b is 

the intercept, and m is the growth constant in log2(OD600)•s-1 units. 

Biometric analysis of tetrads: Spores were identified as having the phenotype of either 

the ancestral parent (JWY100), the derived parent (JWY101 or JWY102), or neither 

using the z-test (α=0.05) to determine from which phenotypic distribution an individual 

spore measurement was drawn.  Tetrads with two spores with the ancestral phenotype 

and two with the derived phenotype were identified as having 2:2 segregation.  The 

probability of a false positive (a tetrad with 2:2 segregation identified as not having 2:2 

segregation due to mislabeling of a spore), if the phenotype is monogenic and all tetrads 

segregate 2:2, can be determined from the binomial distribution 
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where p=0.05 is the probability of incorrectly calling a spore derived from a parental 

distribution as being distinct, q=0.95 is the probability of correctly calling the spore, and 

N=4 is the number of spores in the tetrad.  This analysis assumes that the parental 

distributions are Gaussian and the probability of sampling one parent sample from the 

other parental distribution is infinitesimal (JWY100 vs. JWY101: P=1.83x10-44; JWY100 

vs. JWY102: P=6.38x10-48; two-tailed student’s t-test).  If any one of the four spores is 

incorrectly labeled, then the tetrad will also be incorrectly labeled.  Therefore, the 

probability, PI, of incorrectly labeling a tetrad that segregates 2:2 is  

 )0(1 =!= xPPI , 

 where P(x=0) is the probability of making no incorrect calls on the spores in a tetrad.  

The expected number of incorrect calls, if every tetrad is segregating 2:2, is  

 nPnE I=)( , 

where n is the number of tetrads assayed. 

 Additionally, we determined the distribution of growth constants in H2O2 for eight 

replicates of each spore from a single tetrad from the JWY100 x JWY101 and JWY100 x 

JWY102 crosses as above.  We ranked the spores in a tetrad by their average growth 

constant in H2O2 and defined 2:2 segregation as the null hypotheses where 

 !" µµµ ==DH :0  

 !" µµµ ==AH :'0 , 

where µ  is the mean growth constant (A, ancestral parent; D, derived parent; α, highest 

ranked spore; β, second ranked spore; γ, third ranked spore; δ, lowest ranked spore).  
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Deviation from either null hypothesis indicates non-2:2 segregation.  We used a single-

factor analysis of variance (ANOVA) (α=0.05) to test the 2:2 segregation null 

hypotheses. 

 We calculated the segregational variance ( 2
s! ) as described elsewhere (LYNCH 

and WALSH 1998).  Broad sense heritability (H2) for each cross was calculated as 

described elsewhere (MOORE and MCCABE 2006), 

 2

2
2 1

s

eH
!

!
"= , 

where 2
e!  is the variance due to environment, which is equal to the pooled variance of 

the parents (LYNCH and WALSH 1998).  

 To test for epistasis, we used an adaptation, from (BREM and KRUGLYAK 2005), 

of the Δ–statistic of (LYNCH and WALSH 1998).     

Transcription profiling: Three clones each of JWY100, JWY101, and JWY102 were 

suspended in 3mL SC medium and incubated overnight at 30°C with shaking at 325rpm.  

On the next day, we diluted the 3mL overnight cultures in 125mL fresh SC medium.  We 

incubated these cultures at 30°C for six hours at 325rpm until all cultures were in 

exponential-phase growth.  The cell density of each culture was measured on an 

Eppendorf BioPhotometer (Westbury, NY).  We diluted each culture to 8x106 cells/mL in 

SC medium (50mL total volume) twice.  Either 7µL SC medium or 8.8M H2O2 (1.2mM 

H2O2 final) was added to each replicate.  Both treatments were incubated at 30°C for one 

hour at 325rpm. 
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RNA extractions, sample labeling, microarray hybridizations, and mixed-model 

ANOVA were performed as described by (GERKE et al. 2006) with the following 

changes. 

The first mixed ANOVA model removes the genomewide effects of strain and 

condition on transcript levels, 

mijkijijkjiijkm SCACSYLog )()(2 )( !µ +++++= , 

where ijkmY  is the median of ratios for each spot, µ  is the baseline expression at each spot 

independent of all other factors, iS  is the average strain main effect, jC  is the average 

condition main effect, )(ijkA  is the average array main effect, ijSC  is the average strain-

by-condition interaction effect, and mijk )(!  is the residual. 

 The second mixed ANOVA model, applied separately to each transcript using the 

residuals of the first model with outliers removed,  

 mgijkgijijgkgjgigmijkg SCACS )()()( !"""""# +++++= , 

where mijkg )(!  is the residual from the first mixed ANOVA model for each spot, g!  is the 

average gene expression for each gene g, giS!  is the expression due to strain i, gjC!  is the 

expression due to condition j, )(ijgkA!  is the expression due to array k, gijSC!  is the 

expression due to the strain-by-condition interaction effect, and mgijk )(!  is the residual.  

Genes with significant effects were determined using a false discovery rate (FDR) of 0.05 

as described in (GERKE et al. 2006).  For genes with significant strain main effects, 



 

 58 

differences in expression between pairs of strains were identified by comparing the least-

square means of each strain using the t-test. 

 The unrooted tree and estimated branch lengths describing the relationships 

among transcription profiles were found using the CONTML from PHYLIP (Phylogeny 

Inference Package) version 3.6 (FELSENSTEIN 1985; FELSENSTEIN 1989; FELSENSTEIN 

2005).  Bootstrap support (FELSENSTEIN 1985) for this tree was determined using 1000 

pseudo-datasets by CONSENSE from PHYLIP version 3.6. 

RESULTS 

Oxidative stress resistance in ancestral and derived strains: In order to test whether 

the variation between rapidly selected strains might be useful in evolutionary studies, we 

isolated individual clones from two different populations of yeast that were selected for 

tolerance to multiple stresses (CAKAR et al. 2005) (Figure 1). JWY101 is an individual 

clone from the H1T2N3 population that was first selected for tolerance to the oxidizing 

agent hydrogen peroxide (H2O2) and then subjected to both a high temperature selection 

and a freeze/thaw selection. JWY102 is a clone from the H1H2 population, which was 

split from the H1T2N3 population after the initial selection in H2O2 and then subjected to 

additional selection in H2O2.  The ancestral strain for both populations is CEN.PK 113-

14A.   

We quantified the oxidative stress resistance phenotype of JWY100, an isogenic 

derivative of the ancestral strain, CEN.PK 113-14A, and of the two derived strains, 

JWY101 and JWY102. We measured the growth constants (Log2(A600)•s-1) of each of 

these strains in SC medium in either the presence or the absence of 1mM H2O2.  In 
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untreated SC medium, the growth curves for all three strains were similar (Figure 2A) 

and there was no statistical difference in growth constants in untreated media between the 

strains (P>0.044 for all comparisons, two-tailed student’s t-test, Figure 2B).  When 

challenged with H2O2, the two derived strains grew more rapidly than the ancestral strain 

(Figure 3A).  The growth constants of both JWY101 and JWY102 in oxidative stress are 

approximately two-fold greater than that of their ancestor, JWY100 (Figure 3B).  The 

differences between growth constants in oxidative stress for the two derived strains is not 

significant (P=0.087, two-tailed student’s t-test). 

Evidence that oxidative stress resistance segregates as a multigene trait: The 

derivation of JWY101 and JWY102 used a strong selection applied over a relatively 

small number of generations. We sought to determine if this scheme allowed time for 

multiple, adaptive, genetic changes to fix in these strains or if a single adaptive change 

could account for the phenotypic variation in the F2 generations of crosses between the 

ancestral strain, JWY100, and the derived strains, JWY101 and JWY102.    

The phenotypic distribution of the progeny of the JWY100 x JWY101 cross is not 

strictly bimodal, suggesting the phenotype is controlled by more than one locus (Figure 

4A).  The distribution of progeny phenotypes, however, is not significantly different from 

a composite of the two parental distributions (two-tailed P=0.1145, Mann-Whitney-

Wilcoxon test).  We, therefore, sought additional lines of evidence to determine whether 

oxidative stress resistance is a monogenic or a multigenic trait in JWY101. 

We took advantage of the fact that, in S. cerevisiae, the four meiotic products are 

encased in a structure called a tetrad and can be analyzed individually. In the case where 
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a single adaptive change is responsible for the oxidative stress resistance of a derived 

strain, the resistance phenotype should segregate 2:2 in tetrads. If more than one adaptive 

change is involved, the spores in tetrads will show a more complex pattern of 

segregation. 

We determined whether oxidative stress resistance segregates 2:2 in tetrads 

derived from the JWY100 x JWY101 cross. Among the progeny, the oxidative stress 

resistance phenotype does not segregate 2:2 in 44 of 54 tetrads (10/54 expected if all 

tetrads 2:2).  The phenotypes of the spores from a representative tetrad are shown in 

Figure 4B.  In this tetrad, there is significant variation in the mean oxidative stress 

resistance between JWY100 and the two lowest ranked spores (P=5.95x10-4, single-factor 

ANOVA) and between JWY101 and the two highest ranked spores (P=0.024, single-

factor ANOVA).  This segregation pattern is not consistent with oxidative stress 

resistance arising from a single genetic change in JWY101.  In addition, the progeny 

mean phenotypic value is located between the mean of JWY101 and the mid-parent 

value, suggesting epistasis between segregating loci.  In this cross, a t-test for epistasis 

was significant (P=0.024).  

Oxidative stress resistance is also a multigenic trait in JWY102. The progeny 

distribution from the JWY100 x JWY102 cross is not strictly bimodal suggesting the 

segregation of multiple involved genes (Figure 5A). This distribution of phenotypes in 

the progeny is significantly different from a composite of the JWY100 and JWY102 

phenotype distributions (two-tailed P=0.0007, Mann-Whitney-Wilcoxon test). Similarly, 

oxidative stress resistance does not segregate 2:2 in 38 of 48 tetrads (9/48 expected if all 



 

 61 

tetrads 2:2) from the JWY100 x JWY102 cross.  The phenotypes of the spores from a 

representative tetrad are shown in Figure 5B.  In this tetrad, there is significant variation 

in the mean oxidative stress resistance between JWY100 and the two lowest ranked 

spores (P=2.16x10-8, single-factor ANOVA), but there is not significant variation 

between JWY102 and the two highest ranked spores (P=0.667, single-factor ANOVA).  

This segregation pattern strongly suggests that oxidative stress resistance is not a 

monogenic trait in JWY102.  In addition, the progeny mean phenotypic value is located 

between the mean of JWY102 and the mid-parent value, suggesting epistasis between 

segregating loci.  A t-test for epistasis was significant (P<0.0001).  

JWY101 and JWY102 have the same major effect adaptations: We sought to 

determine whether JWY101 and JWY102 contain the same or different genetic 

adaptations. We compared the segregational variance (the additional variation in the F2 

progeny due to the segregation of parental genes (LYNCH and WALSH 1998)) from a cross 

between JWY101 and JWY102 ( 102 1010.2 != xs" ) (Figure 6) to the variance observed in 

the crosses of these strains to the ancestral strain (JWY100 x JWY101: 102 1069.5 != xs"  

and JWY100 x JWY102: 102 1048.6 != xs" ) (Figures 4A & 5A).  There is a three-fold 

reduction in segregational variance in the cross between the derived lines, suggesting that 

fewer parental genes are segregating in the cross between the derived lines and that 

JWY101 and JWY102 have the same major effect adaptations for oxidative stress 

resistance.  
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 The broad sense heritability (H2) represents the portion of the variance in the 

progeny phenotypes that can be explained by variance in their genotypes.  The 

heritability in the progeny of the JWY101 x JWY102 cross (H2=0.490) indicates that 

additional loci of small effect, which differ between JWY101 and JWY102, are also 

segregating in this cross. Because a t-test for epistasis was highly significant (P<0.0001), 

these additional minor effect loci appear to have epistatic interactions with each other or 

with the major effect loci in this cross. 

Transcription profiling of derived strains: The oxidative stress response in yeast 

includes dramatic changes in transcriptional regulation (GASCH et al. 2000; JAMIESON 

1998).  Accordingly, the transcriptional response to H2O2 treatment can be used to assess 

the level of similarity in the oxidative stress response of JWY100, JWY101, and 

JWY102.  In order to assess the similarity of transcriptional regulatory responses, we 

extracted mRNA from three replicate cultures of JWY100, JWY101, and JWY102 grown 

in both the presence and the absence of H2O2. We used a mixed model ANOVA to 

identify transcripts with significant (FDR<0.05) strain main effects, condition main 

effects, and strain-by-condition main effects (Figure 7A). 

Down regulation of oxidative phosphorylation and increased proteolysis 

characterize the response to oxidative stress in yeast (GASCH et al. 2000; JAMIESON 

1998). Transcripts with significant strain-by-condition effects, that are expressed 

similarly in JWY101 and JWY102, but differently in JWY100, are enriched for Gene 

Ontology (GO) Function terms (BERRIZ et al. 2003) related to oxidative phosphorylation 
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and protein catabolism.  The derived strains appear to have an exaggerated version of the 

typical response to oxidative stress.  

We evaluated the relationship of the transcriptional response to oxidative stress 

among the three strains by constructing an unrooted tree from all eighteen samples, using 

transcripts with either a significant strain main effect or strain-by-condition interaction 

effect (Figure 7B).  We did not include transcripts with only a significant condition main 

effect, because these transcripts represent the response to oxidative stress that is common 

among the three strains.  Samples group by condition.  Within conditions, there is strong 

bootstrap support indicating that the transcription profiles of the two derived strains, 

JWY101 and JWY102, are closer to each other than to JWY100, in both conditions.  The 

transcription profiles of the derived strains have the greatest divergence from the 

ancestral strain in the presence of H2O2 (Figure 7B).   

Although the expression profiles of the derived strains are far more similar to 

each other then they are to the ancestral strain, there are at least some distinct differences. 

In particular, the transcriptional response of JWY102 appears to have diverged further 

from the ancestral response then JWY101. We therefore tested the hypothesis that 

JWY101 has significantly fewer mRNAs transcribed differently from the ancestral line 

than JWY102. The results of this test indicate that the transcriptional profile of JWY101 

has diverged less from the ancestral strain than that of JWY102 (P=6.36x10-40, χ2- test).   

DISCUSSION 

It has been previously shown that long term, weak selections in the laboratory can 

produce variation similar to that observed in natural isolates.  The traits generated are 
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generally genetic, quantitative, increase directionally throughout the period of selection, 

and involve both regulatory and structural adaptations (BUCKLING et al. 2003; CASTLE 

1951; COHAN and HOFFMANN 1986; COOPER et al. 2003; CROZAT et al. 2005; DE VISSER 

and LENSKI 2002; DE VISSER and ROZEN 2006; DUNHAM et al. 2002; ELENA and LENSKI 

2003; FEREA et al. 1999; GRIMBERG and ZEYL 2005; LAURIE et al. 2004; LENSKI and 

TRAVISANO 1994; PAQUIN and ADAMS 1983a; PAQUIN and ADAMS 1983b; PELOSI et al. 

2006; RIEHLE et al. 2003; RIFKIN et al. 2005; ZEYL et al. 2005; ZEYL et al. 2003).  These 

studies, however, can be intensive in both labor and resources.  As a result, these studies 

are limited in the number of replicate strains and conditions that can be explored.  If 

comparable variation can be generated from short selections in the laboratory, the 

reduction in labor and cost would allow key questions to be explored more 

systematically, such as the frequency of convergence relative to parallelism or the 

relationship of the strength of selection to the genetic complexity of adaptation. 

We examined the adaptation to oxidative stress in two strains derived in the 

laboratory to determine whether a short intense selection can generate variation 

comparable to long term, weak selections.  A key element of this selection was the use of 

ethyl methanesulfonate (EMS) mutagenesis to create genetic variation in the starting 

population, therefore reducing the time required for mutation accumulation.   

In natural populations, quantitative variation is the result of segregation of alleles 

at multiple loci.  A primary concern with short term selections in the laboratory is that 

they are likely to produce adaptive phenotypes arising from a single genetic change.  We 

sought to determine whether a short term selection for stress resistance produced 
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multigenic phenotypes in the derived lines.  The oxidative stress phenotype in JWY102 is 

clearly multigenic. Both biometric and tetrad analysis indicated the presence of multiple 

involved genes segregating among the progeny of a cross between JWY102 and the 

ancestral strain.  The results with JWY101 were less clear cut. Biometric analysis showed 

no significant deviation from the progeny distribution that would be expected if only one 

gene caused the oxidative stress phenotype, but tetrad analysis showed clear deviation 

from 2:2 segregation, suggesting more than one involved locus. The evidence for 

epistasis in the JWY100 x JWY101 cross and transgressive segregation in the JW101 x 

JWY102 cross also suggests the involvement of more than one gene in the oxidative 

stress resistance phenotype of JWY101. Our interpretation of these data is that oxidative 

stress resistance phenotype is a relatively simple complex trait, perhaps with as few as 

one major effect locus and a few additional minor effect loci.  Our results suggest that 

short term selection in the laboratory can generate traits with a complex genetic basis, but 

that sometimes these complex traits will have relatively simple architectures. 

 Given that the ancestral strain was selected for oxidative stress resistance before it 

was split into two strains (Figure 1), we asked whether JWY101 and JWY102 had the 

same adaptations to oxidative stress.  To answer this question, we crossed the two derived 

strains and examined the segregation of the phenotype in the F2 haploid progeny.  We 

observed a three-fold reduction in segregational variance in the progeny of this cross 

compared to the progeny of either strain backcrossed to the ancestral strain.  This result 

suggests that JWY101 and JWY102 have the same major effect adaptations to oxidative 

stress.  It also suggests that the major effect adaptations fixed in the population early, 
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before the strains were split at H1 (Figure 1).  The transcriptional profiles of JWY101 and 

JWY102 also show marked similarities in both treated and untreated cells that are distinct 

from the ancestral strain, JWY100.  These differences in expression may result, directly 

or indirectly, from the influence of shared major effect loci. 

The two derived strains also have distinct differences that likely accumulated after 

the culture was split. The heritability of stress resistance in the JWY101 x JWY102 cross 

(H2=0.490) and evidence for epistatic interactions between loci indicate that unique 

modifiers of the phenotype have arisen in each strain after they were split from their 

common ancestor. Likewise there are small, but significant, differences in the expression 

profiles between the two derived strains.  Overall, the transcription data are in agreement 

with the genetic data.  The transcriptional responses of JWY101 and JWY102 are very 

similar, with some differences (Figures 6 & 7B); but, both strains differ substantially 

from JWY100 (Figures 4A, 5A, & 7B).      

 Regulatory effects have been shown to be important for evolutionary changes in 

several different lineages (CARROLL 2005; WRAY 2007).  The set of transcripts with 

significant strain-by-condition effects were enriched for functions related to oxidative 

phosphorylation and protein degredation. These classes of genes are known to be 

regulated as part of the typical response to oxidative stress (GASCH et al. 2000; JAMIESON 

1998). The fact that the regulation of these classes of genes is altered in the derived 

strains suggests that they are likely part of the adaptation to oxidative stress.  

 Here we have shown that a short term selection on a mutagenized population can 

be used to develop genetically complex adapted strains. These strains may be suitable 
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substrates for testing theories of adaptive evolution. While long term selection in the 

laboratory will continue to play an important role in testing evolutionary theories, short 

term selections will be a useful complement to these studies, especially when the study 

design requires generating large numbers of parallel strains. 
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FIGURE LEGENDS 

Figure 1.—Derivation and phenotype of strains. (A) Schematic of selection used to derive 

JWY101 and JWY102 after (CAKAR et al. 2005).  JWY100 is an isogenic, clonal 

derivative of CEN.PK 113-14A.  (CAKAR et al. 2005) performed the selection for stress 

resistant populations as follows.  The ancestral population was EMS mutagenized and 

then treated with H2O2 for one hour.  The surviving population recovered overnight in 

minimal medium (YMM).  This population was EMS mutagenized and split into two 

lines.  One line was exposed to heat stress followed by overnight recovery in YMM and 

EMS mutagenesis and freeze/thaw stress (H1T2N3) from which a clonal derivative was 

isolated (JWY101).  The second line was exposed to H2O2 and allowed to recover 

overnight in YMM.  From this population (H1H2), a clonal derivative was isolated 

(JWY102).  

Figure 2.—Growth in untreated media. (A) Growth in untreated SC medium for 

JWY100, JWY101, and JWY102 over 20 hours.  (B) Growth constants in untreated SC 

medium of JWY100, JWY101, and JWY102.  Growth constants in untreated SC medium 

are approximately equal in the three strains.  

Figure 3.—Growth in oxidative stress conditions. (A) Growth in SC medium treated with 

1mM H2O2 for JWY100, JWY101, and JWY102.  JWY101 and JWY102 show greater 

growth in the presence of H2O2 than the ancestral strain, JWY100. (B) Growth constants 

in SC medium treated with 1mM H2O2 of JWY100, JWY101, and JWY102.  Growth 

constants for JWY101 and JWY102 are approximately equal, but are significantly greater 

than that of JWY100 (***: P<<0.001). 
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Figure 4.—Segregation of oxidative stress resistance in JWY100 x JWY101 cross. (A) 

Frequency distribution of growth constants in SC medium treated with 1mM H2O2 of 

JWY100, JWY101, and the F2 progeny of the JWY100 x JWY101 cross.  (B) Growth 

constants in SC medium treated with 1mM H2O2 for JWY100, JWY101, and the four 

spores (α, β, γ, and δ) of a representative tetrad from the JWY100 x JWY101 cross.  

Oxidative stress resistance does not segregate 2:2 in this tetrad.   

Figure 5.—Segregation of oxidative stress resistance in JWY100 x JWY102 cross. (A) 

Frequency distribution of growth constants in SC medium treated with 1mM H2O2 of 

JWY100, JWY102, and the F2 progeny of the JWY100 x JWY102 cross.  (B) Growth 

constants in SC medium treated with 1mM H2O2 for JWY100, JWY102, and the four 

spores (α, β, γ, and δ) of a representative tetrad from the JWY100 x JWY102 cross.  

Oxidative stress resistance does not segregate 2:2 in this tetrad.  

Figure 6.—Segregation of oxidative stress resistance in JWY100 x JWY102 cross. (A) 

Frequency distribution of growth constants in SC medium treated with 1mM H2O2 of 

JWY101, JWY102, and the F2 progeny of the JWY101 x JWY102 cross.   

Figure 7.—Transcription profiling. (A) Venn diagram showing the number of transcripts 

with significant effects from mixed model ANOVA.  (B) Heat map of relative transcript 

abundance of transcripts with a significant strain main effect or a strain-by-condition 

main effect (1635 transcripts).  Relationship between transcription profiles shown by an 

unrooted tree (empty circles are nodes).  Bootstrap support for each branch is indicated 

above branch and estimated branch lengths below.   
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CHAPTER THREE: USE OF LYMPHOBLASTOID CELL LINES IN THE 

STUDY OF HUMAN GENETIC VARIATION 

ABSTRACT 

 Understanding human genetic variation is one of the most important goals of 

biomedical research and one of the most constrained by ethical considerations and 

technical limitations. The study of lymphoblastoid cell lines derived from human blood 

samples has been suggested as a complementary approach that may avoid some of these 

complications. The reliability of these cell lines, not only as a representation of human 

biology, but also a consistent experimental resource has recently been called into 

question.  

To examine these issues, I quantified variation in the expression of cell surface 

proteins amongst a panel of 255 lymphoblastoid cell lines using flow cytometry. I found 

that lymphoblastoid cell lines are a reliable experimental platform that can be used for 

consistently repeatable phenotyping, providing that sensible approaches to cell culture, 

experiment design, and data processing are adopted. Almost all of the phenotypic 

variation can be explained by intrinsic differences between lines, a small, but significant, 

fraction of which can be explained by additive genetic variation, suggesting that it will be 

possible to identify the genomic location of some putatively, causal variants by linkage-

association mapping.  

While acknowledging concerns that lymphoblastoid cell lines only represent a 

fraction of the diversity of human cell types, I conclude that lymphoblastoid cell lines, as 
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well as other cell culture methods, are reliable experimental resources with distinct 

strengths and weaknesses. When used with careful consideration of those strengths and 

weaknesses, cell culture methods should be an integral part of a complementary program 

to study human genetic variation.   

INTRODUCTION 

Certain classes of experiments necessary to discover the genetic differences 

between humans, such as unpredictable variation in response to cytotoxic 

chemotherapeutics, critical for functional, personalized medicine cannot be ethically 

conducted in healthy humans. Technical successes in identifying genotype-phenotype 

association for both disease risk and general traits in humans contrast with the low 

predictive power conferred by these associations to highlight the issue of validation.  

Direct experimentation to confirm genotype-phenotype associations are rarely ethical or 

technically feasible in human subjects. In response to these considerations, 

lymphoblastoid cell lines (LCLs) - circulating B cells immortalized by Epstein-Barr virus 

(EBV) infection - have been suggested as a potential, ex vivo model system for the study 

of human genetic variation. 

LCLs have a number of characteristics that make them an attractive model for 

human genetic variation. Genetic variation in LCLs represents genetic variation that 

exists in human populations (BAUCHET et al. 2007; HE et al. 2009; LAO et al. 2008; 

MEUCCI et al. 2005; SMITH et al. 2006). As cell culture lines, LCLs are not subject to the 

same ethical restrictions as human subjects, allowing discovery based pharmacogenomic 

studies that would otherwise be unacceptable. There are also options for direct 
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experimental confirmation of genetic hypotheses in LCLs that are not available in human 

subjects, such as siRNA (LI et al. 2009). These options are certain to expand for LCLs 

with technological advancements, while the options for human subjects may be 

fundamentally constrained by ethical considerations.       

In microorganisms, where it is possible to directly test genotype-phenotype 

associations, the nature of the genetic variation controlling phenotypic variation does not 

agree with the observations of genotype-phenotype association studies in humans, which 

indicate that human genetic variation is controlled by many loci with very small effect 

sizes. For example, variation sporulation efficiency between two isolates of the budding 

yeast Saccharomyces cerevisiae can be explained by only a few QTL resolved to the 

nucleotide level (quantitative trait nucleotides, QTN) of relatively large effect. The QTN 

effects are primarily additive, but there are significant epistatic interactions between QTN 

and with the genetic background. The effects of these QTN have been confirmed by 

direct experimentation (GERKE et al. 2009; GERKE et al. 2006). In contrast, height, a 

highly heritable human trait, has had 47 QTL associated with it by GWA studies, all of 

small effect. Although some of these QTL cover genes known to affect stature and the 

QTL can predict inclusion at the extremes of the height distribution, these QTL do not 

predict height for the vast majority of the population (LETTRE 2009).     

It is not known whether this discrepancy arises due to fundamental differences in 

the relationship of genotype and phenotype, such as different amounts of epistasis, 

between microorganisms and large, multicellular organisms, an artifact of technical 

challenges in human genetic studies, or a combination of both.    



 83 

To date, quantitative genetic studies using LCLs have not provided a resolution to 

this question. The few QTL identified in LCLs in both pharmacogenomic and transcript 

abundance studies also explain only a fraction of the phenotypic variation, suggesting 

that phenotypic variation in humans at the level of transcription, cell survival, and 

organismal disease is controlled by many loci of small effect. Again, it is not clear 

whether the small effect sizes reflect the true biology of human genetic variation, a result 

of LCLs not being a representative human analog, or an artifact of measuring 

“phenotypes” with potentially small organismal phenotypic effects (i.e., transcript 

abundance).  

The reliability of LCLs as an experimental resource, however, has recently been 

called into question (CHOY et al. 2008). Estimating the heritability of phenotypes and the 

identification of genetic variation associated or linked to phenotypic variation is 

dependent on the reliability of phenotypic quantification. If phenotypic quantification is 

unreliable as suggested (CHOY et al. 2008), then not only must the use of LCLs as a 

resource for identifying genetic variation that controls phenotypic variation in humans be 

questioned, but so must the results of a number of studies using LCLs for this purpose 

(ATLAS et al. 1976; BERGEN et al. 2007; BLEIBEL et al. 2009; CHEUNG et al. 2003; 

CHEUNG and EWENS 2006; CHEUNG et al. 2005; CLOOS et al. 1999; CORREA and CHEUNG 

2004; DEUTSCH 2005; DOLAN et al. 2004; DUAN et al. 2007; DUAN et al. 2009; FORD et 

al. 2001; HARRIS et al. 2005; HARTFORD et al. 2009; HUANG et al. 2007a; HUANG et al. 

2008a; HUANG et al. 2008b; HUANG et al. 2007b; HUANG et al. 2007c; JEN and CHEUNG 

2003; KWAN et al. 2007; LI et al. 2008; LI et al. 2009; LOEUILLET et al. 2008; MONKS et 
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al. 2004; MORLEY et al. 2004; SCHORK et al. 2002; SHUKLA and DOLAN 2005; SHUKLA et 

al. 2008; SHUKLA et al. 2009; SMIRNOV et al. 2009; WANG et al. 2009a; WATTERS et al. 

2004; WEI et al. 1996; ZHANG et al. 2009). This experimental variation may not only 

reduce the ability to identify genetic variants controlling phenotypic variation (i.e., false 

negatives), but also may cause spurious genetic correlations (i.e., false positives), if the 

experimental variation is correlated to unmeasured, potentially heritable phenotypes like 

growth rate.  

While there are a number of steps during the establishment of LCLs that may 

contribute to non-genetic variation between lines, there are three general processes in 

LCL phenotyping that could contribute to experimental variation using established lines 

(e.g., the CEPH collection): variation in the freezing and thawing of individual sample 

aliquots (freeze/thaw variance), variation in cell culturing on technical replicates of the 

same sample preparation (culture variance), and variation in the phenotype assay (assay 

variance). The ability to make repeatable measurements of LCL phenotypes is critical to 

both the correlation of genetic variation with phenotypic variation and confidence in 

those correlations. Accordingly, I have examined both the repeatability of LCL 

phenotyping and the correlation of genetic variation with phenotypic variation using this 

cell culture based resource.   

In this study, I have used a panel of 255 LCLs in 19 three-generation pedigrees 

from a population representative of Northern and Western European decent (BAUCHET et 

al. 2007; HE et al. 2009; LAO et al. 2008; MEUCCI et al. 2005; SMITH et al. 2006) to 

identify the genetic underpinnings of phenotypic variation in humans. In doing so, I have 
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explicitly tested the reliability of LCLs as an experimental resource to study human 

genetic variation. I have also explored whether the use of alternative phenotyping 

strategies, namely quantifying cell surface expression of proteins instead of mRNA 

transcript abundance, enables larger proportions of phenotypic variation to be explained 

by genotype.  

RESULTS 

Description of sample pedigrees: In order to study the genetic variation in cell surface 

expression of proteins using LCLs, I established a panel of 255 LCLs (Supplemental 

Table 1) from 19 three-generation families from the Utah population in the Foundation 

Jean Dausset-Centre d’Etude du Polymorphisme Humain collection (CEPH-UT) 

(DAUSSET et al. 1990). Both parents (second generation) were present in all pedigrees 

(

! 

N = 2). All four grandparents (first generation) were present in most pedigrees 

(

! 

N = 3.5). Third generation sibships were large (

! 

N = 7.9). 

Description of phenotypes: Phenotypes were measured by flow cytometry following 

paraformaldehyde fixation (fixes cells without permeablizing the cell membrane) and 

labeling with phycoerythrin (PE) labeled monoclonal antibodies (mAb) to targeted 

proteins (Materials and Methods). Targeted proteins were CD4, CD19, CD23 (or 

FCER2), CD38, CD40, CD45RA (or Protein Tyrosine Phosphotase, Receptor Type C), 

CD86, Intercellular Adhesion Molecule 1 (ICAM-1), and Toll-like Receptor 9 (TLR-9).  

The CD4 and TLR-9 antibodies are used as controls for the other antibodies. CD4 

is a major histocompatibility complex class II co-receptor typically observed only on TH1 

and TH2 helper T cells, an expression pattern that is routinely used to identify T cells. 
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Therefore, it is not expected to observe CD4 on the B cell derived LCLs. Indeed, 

measured CD4 transcript abundance is extremely low in LCLs (MORLEY et al. 2004). 

Here, the CD4 mAb is used as an isotype control for level of background signal resulting 

from the combination of auto-fluorescence and non-specific binding. TLR-9 is expressed 

in B cells and recognizes CpG DNA, typically from bacteria, but is localized to an 

intracellular endosomal compartment. Therefore, the TLR-9 mAb is an isotype control 

for cell surface localization of labeling. Comparison to CD4 and TLR-9 staining allows 

for the detection of staining over background levels. 

CD38 and CD86 are expressed on mature activated B-cells. CD38 has a role in B 

cell proliferation and is expressed both in early and germinal center B cells. CD38 

expression has been implicated as both risk factor and prognostic marker for chronic 

lymphocytic leukemia (DEAGLIO et al. 2008; JAMROZIAK et al. 2009). CD86 is a ligand 

for CD28 and CTLA-4 and is expressed on activated B cells. CD86 has been suggested to 

be a factor in the development of asthma (CORYDON et al. 2007; ZHU et al. 2004).  While 

these proteins are generally expressed in activated B cells, it is mature, inactivated B cells 

that are immortalized to form LCLs. EBV immortalization, however, may confer an 

activated phenotype to the LCLs (POKROVSKAJA et al. 1996; SATOH et al. 2003), and 

inappropriate activation of B cells could contribute to autoimmune disorders. Assays with 

CD38 and CD86 will yield information on the genetic differences in unactivated B-cells, 

which could contribute to conditions where inappropriate activation of B-cells is part of 

the etiology.  
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The remaining targeted proteins are expressed on the surface of the mature, 

unactivated B cells from which LCLs are derived. CD19 is a component of the B cell co-

receptor with CD21 and CD81. CD19 overexpression has been associated with loss of 

tolerance, production of autoantibodies, and systematic sclerosis (TAYLOR et al. 2006). 

CD23 is a low-affinity receptor for IgE, regulates IgE synthesis, and is a ligand for the B 

cell co-receptor. CD23 expression has been connected with the development of B-chronic 

lymphocytic leukemia (CALAMINICI et al. 2004; JURISIC et al. 2008; SCHWARZMEIER et 

al. 2005). CD40 is the receptor for a co-stimulatory, activating signal from CD154 (CD40 

ligand) on helper T cells. Variation at the CD40 locus is a risk factor for rheumatoid 

arthritis (RAYCHAUDHURI et al. 2008). CD45RA is a B cell specific isoform of CD45, 

which enhances the signal from the antigen receptor. Variation at the CD45 locus had 

been associated with multiple sclerosis (BALLERINI et al. 2002), but this association has 

since been refuted by more comprehensive studies (GOMEZ-LIRA et al. 2003; SZVETKO et 

al. 2009). ICAM-1 helps create a tight junction between B cells and T cells following 

antigen specific binding of the cells. Variation at the ICAM-1 locus has been associated 

with differentiation of colorectal cancer (WANG et al. 2009b). 

To obtain linear and informative measurements of this diverse set of cell surface 

expression phenotypes by flow cytometry, both “low” and “high” values were used for 

the photomultiplier tube (PMT) settings (Materials and Methods). CD4, CD38, CD40, 

CD45RA, and ICAM-1 were assayed using the “low” settings. CD4, CD19, CD23, 

CD86, and TLR-9 were assayed using the “high” settings. All flow cytometry 

measurements are reported below in arbitrary fluorescence units (AFU). 
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 Mean CD4 cell surface expression was not significantly different from auto-

fluorescence in the 1 PBS/0.2% BSA control (

! 

µPBS = 22.28; 

! 

µCD4 = 21.01; 

! 

P = 0.39 , 

two-tailed student’s t-test) suggesting that the effects of non-specific binding are low in 

this assay. Mean TLR-9 cell surface expression was significantly greater than CD4 

(

! 

P = 6.25 "10#73 , one-tailed, paired student’s t-test; Figure 1A) indicating that there are 

either low levels of cell surface expression of TLR-9 or that the fixed cell membrane is 

somewhat permeable to the PE-mAbs.  

Mean CD19 cell surface expression was significantly greater than CD4high 

(

! 

µCD4 high
= 59.30; 

! 

µCD19 = 63.67; 

! 

P =1.19 "10#20 , one-tailed, paired student’s t-test), but 

was not greater than TLR-9 (

! 

µTLR "9 = 81.06 ; 

! 

µCD19 = 63.67; 

! 

P = 5.93 "10#66, one-tailed, 

paired student’s t-test). A bimodal distribution of CD19 cell surface expression levels 

would suggest that CD19 expression is not a binary character where some lines are 

actively expressing (i.e., equal to or greater than TLR-9) and others are not (i.e., equal to 

CD4high. The distribution of CD19 cell surface expression levels is unimodal (Figure 1B), 

indicating that significant CD19 cell surface expression cannot be detected in this assay 

using standardized settings and protocols.  

The mean cell surface expression of all other phenotypes measured was 

significantly greater than the relevant controls (

! 

P " 5.00 #10$30, one-tailed, paired 

student’s t-test; Figure 1C-H). For the majority of phenotypes, the flow cytometry assay 

was able to quantify cell surface expression levels above the noise of auto-fluorescence 

and non-specific binding.    
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Experimental components of phenotypic variance: Previous work did not separate 

freeze/thaw variance and cell culture/assay variance (CHOY et al. 2008), making it 

difficult to identify factors contributing to poor replication. I separated freeze/thaw 

variance from cell culture/assay variance, by measuring cell surface expression of all 

targeted proteins and a no antibody control (1X phosphate buffered saline/0.2% bovine 

serum albumin [1X PBS/0.2% BSA]) for three independent cultures that were grown 

from a single frozen aliquot of each LCL in the panel. A subset (

! 

n Ab = 20.6 , 

! 

18 " nAb " 22 ) of the LCL panel was measured for each phenotype. Poorly growing 

samples were removed from analysis (Materials and Methods). Cell surface expression 

was repeatable between cell culture/assay replicates for control phenotypes (

! 

r = 0.76 ; 

! 

0.35 " r " 0.92) and experimental phenotypes (

! 

r = 0.86 ; 

! 

0.73 " r " 0.95).   

Due to the number of culture replicates measured (n=3), these data were highly 

sensitive to outlier data points. This supposition was supported by the fact that the lowest 

correlation (

! 

r = 0.35) was an isolate event that was an extreme deviation from all other 

observations (

! 

0.73 " r " 0.95) and appeared to be due to a single set of replicates (data 

not shown).  I removed outlier data points (Materials and Methods) and repeated the 

analysis.    

I found that cell surface expression was repeatable between cell culture/assay 

replicates for both control phenotypes (

! 

r = 0.93; 

! 

0.88 " r " 0.96) and experimental 

phenotypes (

! 

r = 0.94 ; 

! 

0.91" r " 0.97). Despite the potential increase in variance due to 

the culturing process, this result compares favorably with the assay repeatability reported 

previously for both drug response (Spearman’s rank correlation: 

! 

0.86 " # " 0.99) (CHOY 
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et al. 2008) and transcript abundance (

! 

r = 0.98 ; 

! 

0.94 " r " 0.99) (MORLEY et al. 2004). 

These results suggest that cell culture/assay variance only makes a minor contribution to 

total phenotypic variation (Figure 2). 

In order to determine the total experimental variation, the cell surface expression 

levels of the full panel were quantified for all phenotypes using four independent 

freeze/thaw replicates of each line. The number of freeze/thaw replicates assayed for each 

phenotype (

! 

n = 4) and experience from the cell culture/assay variance discovery 

indicated that the phenotypic mean would be highly sensitive to individual outlier data 

points.  

To test the impact of outlier data points, I quantified the repeatability before and 

after the removal of outlier data points (as above). Before the removal of outlier data 

points, freeze/thaw replicates had substantially lower repeatability for control (

! 

r = 0.48 ; 

! 

0.32 " r " 0.64) and experimental phenotypes (

! 

r = 0.65 ; 

! 

0.57 " r " 0.71) relative to the 

cell culture/assay replicates. These repeatablities for the experimental phenotypes were 

still at the upper limit of the range reported previously (CHOY et al. 2008). This result 

would suggest that experimental variance makes up a large portion of the total 

phenotypic variance.   

After the removal of outlier data points, however, freeze/thaw repeatability 

improved dramatically for both control (

! 

r = 0.84 ; 

! 

0.77 " r " 0.89; Table 1) and 

experimental phenotypes (

! 

r = 0.90 ; 

! 

0.87 " r " 0.92; Table 1). These results suggest that 

experimental variance is not a major component of the total phenotypic variance and that 

freeze/thaw variance does add substantially to cell culture/assay variance (Figure 2).  
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Because the median is robust to outliers, the median phenotype for each line was 

used in all subsequent analyses, instead of the mean following outlier removal with which 

the median is highly correlated (

! 

r = 0.98 ).    

Covariate components of phenotypic variance: The CEPH-UT LCLs are associated 

with limited information on the individuals from which they were derived (pedigree 

position, sex, and age at sampling). Females and males had approximately equal 

representation in the full panel (

! 

female = 47.8% ; 

! 

male = 52.1%). Due to the structure of 

the pedigrees, ages (years) were not evenly distributed, but cluster into three groups 

corresponding to generation within the pedigree (

! 

˜ g 1 = 70.5; 

! 

˜ g 2 = 45; 

! 

˜ g 3 =16; Figure 3A). 

In addition, the LCLs in the panel were randomly distributed into three 96-well sampling 

plates (Materials and Methods). Pedigree position, sex, and age are all potential 

covariates that may have non-genetic effects on phenotype.   

I used mixed model analysis of variance (ANOVA) to assess the significance or 

the effects of the potential covariates of generation in the pedigree, sex, age at sampling, 

and plate:   

! 

"ij = µi + a i gen j( ) +bi sex j( ) + c i age j( ) +di plate j( ) +# ij , 

where 

! 

"ij  is the median value for the 

! 

ith  phenotype of the 

! 

j th  line, 

! 

µi  is the population 

mean value for the 

! 

ith  phenotype, 

! 

gen j  is the generation in the pedigree of the 

! 

j th  line, 

! 

sex j  is the sex of the 

! 

j th  line, 

! 

age j is the age at sampling of the 

! 

j th  line, 

! 

plate j  is the 

plate of the 

! 

j th  line, and 

! 

" ij  is the residual for the 

! 

ith  phenotype of the 

! 

j th  line. 

Generation in the pedigree, sex, and plate were treated as class variables. Age was treated 
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as a continuous variable. As noted above, generation in the pedigree and age are not 

independent variables.  

Generation, sex, and age had a significant effect (

! 

" = 0.05) on a minority of 

phenotypes. Generation (Figure 3B; Table 2) had a significant effect on TLR-9 

(

! 

P = 8.38 "10#3; Figure 3C) and CD38 (

! 

P =1.83 "10#2 ; Figure 3D). Sex (Figure 4A; 

Table 2) had a significant effect on ICAM-1 (

! 

P =1.02 "10#2; Figure 4B). Age (Figure 5; 

Table 2) had a significant effect on TLR-9 (

! 

P = 4.43 "10#2; Figure 5B). Only the effect 

of generation on TLR-9 cell surface expression remained significant after Bonferroni 

correction for multiple hypothesis testing (

! 

" = 5 #10$3 ).           

 Plate assignment had a significant effect (Bonferroni correction) on half of the 

phenotypes measured (

! 

P < 5 "10#3; Table 2). Lines were randomized to sampling plates 

prior to any other steps (Materials and Methods). A given line had the same plate 

assignment in all replicates and all phenotype assays. Therefore, the significant plate 

effect could be due to experimental error or to differences in the phenotype value 

distributions between plates, as a result of the random assortment of a finite number of 

samples. If experimental error caused the plate effect, statistical correction of the plate 

effect would be necessary. If differences in phenotype distributions caused the plate 

effect, statistical correction would be undesirable, as it would alter accurate phenotype 

measurements unnecessarily. Therefore, determining the cause of the plate effect is 

important for all further data analyses.  

Comparing of replicate variation between plates could suggest the cause of the 

plate effect. Because all three sampling plates were handled at the same time for each 
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independent freeze/thaw replicate, the experimental error between replicates of a 

sampling plate is expected to be the same as the set of all plates assayed. If experimental 

error caused the plate effect, variation between sampling plate replicates would be 

expected to be the same as the variation between plates. If differences in phenotype 

distributions caused the plate effect, variation between sampling plate replicates would be 

expected to be less than the variation between plates. 

Because the scale phenotypic measurements vary by more than an order of 

magnitude, I used the coefficient of variation (CV) for this comparison. For phenotypes 

with a significant plate effect, the mean sampling plate CV (

! 

c v = 0.05) was the same as 

phenotypes without a significant plate effect (

! 

c v = 0.05), with one exception. The mean 

CV of CD4high (

! 

c v = 0.18) was inflated by an easily identified outlier replicate (Figure 6), 

the removal of which reduces the mean CV to the same level as other phenotypes 

(

! 

cv = 0.05). In contrast, the sampling plate CV (

! 

c v = 0.07) was greater than the replicate 

CV (

! 

c v = 0.05) for phenotypes with a significant plate effect, but not for phenotypes 

without a significant plate effect (

! 

c v = 0.02). The difference between sampling plate CV 

and replicate CV increases with the significance of the plate effect (e.g., CD40: 

! 

Pplate = 6.33 "10#12; 

! 

cv
plate = 0.19 ; 

! 

cv
thaw = 0.05 ; Figure 6B). These results suggest that the 

plate effect is most likely the result of uneven distribution of certain phenotypes across 

the sampling plates during randomization and should not be statistically corrected as it 

primarily represents actual phenotypic variation between lines, not the effect of a 

covariate and experimental error.   
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Differences in cell surface expression between lines: The demonstration of consistency 

in phenotypic measurements between replicates is not sufficient for identifying the 

genetic basis of phenotypic variation. There must also be variation between lines that is 

intrinsic to the lines themselves, which is distinct from the background variation due to 

experimental noise. The proportion of the total phenotypic variation that can be explained 

by differences between lines was estimated:  

! 

L =1" # E
2

#P
2 , 

where 

! 

L  is the proportion of phenotypic variance explained by , 

! 

"P
2  is the total 

phenotypic variance, and 

! 

" E
2  is the mean environmental variance. Intrinsic differences 

between lines explain the vast majority of variation in all phenotypes assayed 

(

! 

0.75 " L " 0.91; 

! 

˜ L = 0.89; Table 1).   

 Because there are known, plausible non-genetic components to variation between 

lines that are undefined, the proportion of the phenotypic variance explained by 

differences between lines does not necessarily represent the proportion of the phenotypic 

variance explained by differences in genotypes, but does represent the upper bound on 

the variation that might be explained by genetic variation. Almost all of the phenotypic 

variation is due to intrinsic difference between lines both for every phenotype assayed 

(Figure 2). 

Narrow-sense heritability of cell surface protein expression: The observation that 

differences between lines explain most variation for all phenotypes suggests that a 

portion of the total phenotypic variation may be under the control of additive genetic 
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variation. The proportion of the total phenotypic variation controlled by additive genetic 

variation can be estimated as the narrow-sense heritability (FALCONER 1989).    

 The narrow-sense heritabilities of all phenotypes assayed were estimated (Table 

1) with collaboration of Aldi Kraja and Michael Province from the Washington 

University School of Medicine Division of Statistical Genomics (Materials and 

Methods). The narrow-sense heritabilities ranged from 

! 

h2 = 0.03 ± 0.07 for CD23 to 

! 

h2 = 0.30 ± 0.11 (

! 

P = 3.54 "10#5) for CD38. These heritabilities were significant for 

seven of ten phenotypes (Table 1), but are on the low end of the range observed for 

common phenotypes in human subjects (e.g., 

! 

0.06 " h2 " 0.52 for lung function) (OBER 

et al. 2001). Although most of the phenotypic variation is due to difference between 

lines, only a fraction of that variation is controlled by additive genetic variation (Figure 

2).  

Comparison to pilot study: I compared the results of the full panel to those of a pilot 

study that had been restricted to measuring auto-flourescence (1X PBS), CD40 cell 

surface expression, and CD86 cell surface expression. The pilot’s sample set 

(Supplemental Table 2) partially overlapped (

! 

Npilot =108 ; 

! 

N" = 79 ) with the full panel 

(Supplemental Table 1). CD40 cell surface expression was more heritable in the pilot 

(

! 

hCD40
2 = 0.42) than in the full panel (

! 

hCD40
2 = 0.19). CD86 cell surface expression was less 

heritable in the pilot (

! 

hCD86
2 = 0.12) than in the full panel (

! 

hCD86
2 = 0.24 ).   

 In order to understand the causes of the divergence in narrow-sense heritability 

estimates, I compared measurements of cell surface expression of CD40 and CD86 in the 

samples shared samples by both the full panel and the pilot. Although cell surface 
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expression is highly repeatable within both the full panel (e.g., 

! 

rCD40 = 0.89 ; Figure 7A) 

and the pilot (e.g., 

! 

rCD40 = 0.81; Figure 7B), cell surface expression of CD40 

(

! 

rCD40 = 0.59 ) and CD86 (

! 

rCD86 = 0.69 ) in the pilot was not highly correlated with the full 

panel. These incomplete correlations may reflect methodological differences between the 

full panel and the pilot.   

 Because methodological differences, especially when phenotyping by flow 

cytometry, may cause nonlinear changes in the phenotypic measurement of a line, but 

should not change the phenotypic rank order of the line, I confirmed the divergence 

between the two sets by calculating Spearman’s rank correlation between the pilot and 

full panel for CD40 (

! 

"CD40 = 0.61; Figure 7C) and CD86 (

! 

"CD86 = 0.72; Figure 7D). The 

slight improvement in the rank correlation suggests that there may be a slight 

contribution of nonlinear effects. In light of the precision of these assays, as demonstrated 

above, these results likely represent real differences between the pilot and the full panel. 

Due to the methodological differences, it may be most accurate to consider the 

phenotypes, which are nominally the same, as being measured under different conditions 

and, therefore, not equivalent phenotypes.   

DISCUSSION 

Due to the challenges inherent in the study of genetic variation in humans, 

complementary approaches that do not require repeated recruitment or consent of large 

numbers of human subjects may have great utility. LCLs are non-adherent cell lines that 

are grown with simple culturing procedures allowing many, repeated samples to be taken 
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under conditions that are either technically or ethically impossible in human subjects. 

Most importantly LCLs are cell lines derived from human subjects. The genetic variation 

in LCLs is the genetic variation that is in the human population (BAUCHET et al. 2007; HE 

et al. 2009; LAO et al. 2008; MEUCCI et al. 2005; SMITH et al. 2006). These 

characteristics make LCLs an attractive model system for the study of human genetic 

variation.  

Yet, these characteristics alone are not sufficient to make LCLs a productive 

model system for the study of human genetic variation. The identification of genetic 

variants that control phenotypic variation is dependent on the ability to accurately 

phenotype individuals and to identify variation between individuals in those phenotypes.  

 There have been previous efforts to describe some components of phenotypic 

variance in LCLs. Assay variance has been a focus in transcript abundance phenotypes, 

in order to define a significant change relative to background noise (MORLEY et al. 2004). 

While quantification of assay variance is of technical import, it is not relevant to the 

suitability of LCLs individually as a model system – assuming that the utility of the 

model system is not strictly limited by the reliability of the assays available for that 

system. Understanding the relative contributions of both experimental and genetic 

components to the total phenotypic variance is relevant to the evaluation of LCLs as a 

model system for human genetic variation. This work represents the first reported effort 

that separates the components of the phenotypic variance in a way that allows intrinsic 

differences between LCLs to be explicitly separated from experimental sources of 

variation (i.e., freeze/thaw and cell culture/assay variance). 
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 A prior report by Choy et al. raised the concern that LCLs are unreliable due to 

excessive amounts of variation between freeze/thaw aliquots, but in their study 

freeze/thaw variance was confounded with cell culture/assay variance. They reported that 

phenotypic differences between aliquots within lines were larger than the differences 

between lines (CHOY et al. 2008).  In contrast, having experimentally separated cell 

culture/assay variance and freeze/thaw variance, I found that both culture/assay replicates 

and freeze/thaw replicates were highly repeatable. The discrepancy between these 

conclusions has several possible explanations based on cell culture methods, phenotypes 

assayed, and data processing.  

The cell culture methods used by Choy et al. may have contributed to increased 

experimental error relative to this work. The marginal decrease in repeatability from cell 

culture/assay replicates (

! 

r = 0.94 ) to freeze/thaw replicates (

! 

r = 0.90 ) in this work is 

consistent with the expectation that experimental error will increase with the number of 

manipulations. The cell culture methods used here involve no manipulations of the 

samples between thawing of a frozen aliquot and fixation of the culture (Materials and 

Methods). Choy et al., however, counted cell densities daily and adjusted cell densities to 

a target population size over a seven-day cell culture period. If each manipulations 

represents an independent opportunity to introduce additional experimental error, then the 

decrease in experimental error here would be expected based on the cell culture methods 

used.  

Data processing made a large, definable contribution to the improvement in 

repeatability relative to Choy et al. Any collection of large numbers of data points will 
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likely experience both technical failures and outliers, which are categorically distinct 

from the effects of covariates. Outliers may be due to statistical chance or experimental 

error. Repeatability of all phenotypes (

! 

r = 0.65 ) was substantially improved by the 

identification of outliers in the data (

! 

r = 0.90 ). 

There are several strategies for dealing with outiers. Large replicate sample size 

can minimize the influence of outliers on the data without explicit identification of the 

outlying data points (WATTERS et al. 2004). Such sample sizes are not always possible, 

due to factors like cost or availability of samples. In these cases, outliers may be 

identified and removed, or the median, which is robust to outliers, may be used 

preferentially to the mean. Choy et al. only had two replicate samples per measurement, 

at which sample size outliers cannot be identified and the robust median becomes 

equivalent to the sensitive mean. Furthermore, the impact of outliers increases as the 

sample size decreases. The ability, due to experimental design, to identify outliers (for the 

calculation of experimental repeatability) and to use the median may explain, in part, the 

substantial improvement here relative to previous work with LCLs (CHOY et al. 2008). 

The high repeatability of cells surface expression levels indicates that the majority 

of phenotypic variance was due to intrinsic, but not necessarily genetic, differences, 

between lines (Figure 2). This variance due to differences between lines may be divided 

into a genetic and non-genetic component. One potential source of non-genetic variation 

is potential covariates associated with lines in the panel, such as generation in the 

pedigree, sex, age, and plate assignment of the sample. The mixed model ANOVA 

demonstrated that, overall, the few known, potential covariates did not have significant 
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effects on phenotype. The significant plate effect is more likely due to differences in 

phenotype distributions (i.e., differences between plate median values are true 

differences) than due to bias or experimental error. Known, potential covariates were not 

significant contributors of non-genetic variation to the differences between lines.     

While, all components of the genetic differences between lines, like epistatic and 

dominance variance, cannot be estimated, the additive component may be estimated due 

to the pedigree structure of the full panel. The narrow-sense heritability estimates for 

most phenotypes were significant, but fell on the low end of the range of heritability 

estimates for common human phenotypes (OBER et al. 2001). Only a fraction of the 

differences between lines is composed of additive genetic variance. The remainder is 

composed of undefined contributions from epistasis, dominance, and non-genetic 

components.    

The pilot identified substantially greater narrow-sense heritability of CD40 cell 

surface expression compared to the full panel, which could indicate that the methods used 

in the pilot increase the additive genetic component of the differences between lines. 

Although, the narrow-sense heritability of CD86 cell surface expression was substantially 

greater in the full panel. Some of the methodological differences between the full panel 

and the pilot – the use of fluorescein (FITC) conjugated monoclonal antibodies, instead 

of phycoerithrin (PE) were used, requiring the use of different flow cytometer settings, 

antibody dilutions, and antibody incubation times - could cause non-linear scaling 

differences between the full panel and the pilot, resulting in imperfect correlation 

between the full panel and pilot. The rank correlation between the full panel and pilot, 
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however, is not substantially larger than the standard correlation, suggesting that the 

imperfect correlation is the result of real differences in the phenotypes measured in the 

full panel and pilot, not non-linear scaling effects. Because samples in the pilot were 

cultured in flasks, not plates, as in the full panel, it is possible that the phenotypes 

measured in the full panel and the pilot are not precisely equivalent, with a larger additive 

genetic component to CD40 cell surface expression and a smaller additive genetic 

component to CD86 cell surface expression when grown in flasks.  

Unfortunately, the samples necessary to assess the other components of the non-

genetic differences between lines, such as sampling and immortalization variation, do not 

exist for either the CEPH-UT or the International HapMap Project (2003; FRAZER et al. 

2007; THE INTERNATIONAL HAPMAP 2005) LCL collections. Because the non-genetic 

components are undefined, it is not possible to estimate the non-additive genetic 

components. Contributions to the non-genetic variation from sampling and 

immortalization variation could be defined by analyzing multiple LCLs derived from a 

single sample and LCLs derived from multiple samples from a single individual. These 

samples are absent from current collections because these collections were designed for 

genotype mapping, not studying phenotypic effect of genetic variation. They would, 

however, be an important addition to future collections.    

The ability to identify genotype-phenotype associations is dependent on the 

proportion of phenotypic variance that is controlled by additive genetic variance. While 

the non-additive component of the genetic variation is a product of the genetics of the 

system, the non-genetic variation can be minimized through the use of highly repeatable 
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experimental methods, such as those described here. Variation in the cell surface 

expression of the proteins measured was due to differences between lines. Because high 

experimental repeatability of cell surface expression is due to consistency between 

freeze/thaw replicates, I expect that this high repeatability will also be observed in other 

phenotypes, provided that similar cell culture methods, sample sizes, and data processing 

steps are used.   

With appropriate handling and experimental design to control for experimental 

sources of variation, LCLs can be used as a reliable resource for the study of genetic 

variation. This effort would benefit from quantification of the effects of sampling and 

immortalization, as well as increased sample sizes, requiring extensive additional 

sampling within the pedigree structures that made it possible to accurately estimate 

components contributing to variation between LCLs. These studies may also benefit from 

expanding genetic variation studies in cell culture to other cell types, perhaps through the 

use of induced pluripotent stem cell methods.  

It is not clear that there are any advantages to using localized protein expression 

as a phenotype when compared with transcript abundance in terms of the degree that 

phenotypic variation is controlled by additive genetic variance and the identification of 

QTL. The QTL identified for localized protein expression may still be more likely to be 

associated with traits in human subjects, like disease risk. Direct experimental 

confirmation of the causal hypotheses Establishing this relationship is an important goal 

for future research. 
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The measurement of phenotypes in LCLs is both highly repeatable within 

individual lines and variable between lines, important characteristics for any model 

system of genetic variation. The high repeatability of phenotypes measured here (cell 

surface expression of protein) is expected to extend to other phenotypes, including those 

that cannot ethically or technically be studied in human subjects. Provided that rigorous 

methods, reasonable data processing, and sensible experimental design are used, these 

conclusions may extend to other cell lines, like induced pluripotent stem cells, which 

would allow human genetic variation to be investigated in the cell type most relevant to 

the particular question. These characteristics, in combination with the developing 

capacity to test genotype-phenotype associations (SHUKLA et al. 2009) and the 

accessibility to independent research groups, strongly recommend cell culture as a 

complementary approach to the study of human genetic variation.   

MATERIALS AND METHODS 

Cell lines and culture conditions in the full panel: A panel of 255 lymphoblastoid cell 

lines (LCLs) was established from the CEPH-UT collection (Supplemental Table 1). 

Prior to any assays, a single, 1mL, frozen (-140°C) aliquot of each cell line was thawed in 

a 37°C water bath for five minutes.  The thawed aliquot was diluted in 10mL 37°C 1X 

phosphate buffered saline (PBS) and centrifuged (290xg for five minutes at room 

temperature [RT]) to pellet the cells.  The supernatant was aspirated and the cells were 

suspended in 1mL 37°C standard LCL media (media): RPMI-1640 media (Gibco), 15% 

fetal bovine serum (FBS) (Gibco), 2mM L-glutamine, 50µg/mL gentamycin (Gibco).  

The 1mL samples were diluted in 10mL 37°C media in 25cm2 flasks (Corning) and 
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incubated at 37°C with 5% CO2 and 95% humidity.  At five days post-thaw, 10mL 37°C 

media was added to each sample.  At nine days post-thaw, samples were transferred into 

larger 75cm2 flasks (Corning) and an additional 10mL 37°C media was added.  At twelve 

days post-thaw, 20mL 37°C was added for a total volume of 50mL. 

On day 15 post-thaw, cell line samples were frozen as follows.  50mL samples 

were transferred to conical vials and pelleted by centrifugation (290xg for five minutes at 

RT).  The supernatant was aspirated and the cells were suspended in 10mL freezing 

media (RPMI-1640 media, 20% FBS, and 10% DMSO).  1mL aliquots were distributed 

into 96-well deep well plates.  Plates were incubated for 48 hours at -80°C and then at -

140°C afterwards.    

To prepare samples for phenotyping, frozen (-140°C) plates were thawed by 

incubation in a 37°C water bath for 30 minutes.  20µL samples were diluted in 180µL 

37°C media in tissue culture treated 96-well flat bottom plates with low evaporation lids.  

Samples were incubated at 37°C with 5% CO2 and 95% humidity prior to antibody 

labeling. 

Quantification of cell surface expression in the full panel: On Day 5 after aliquot 

thawing, samples were fixed by adding a 150µL sample to 50µL 4% paraformaldehyde 

(PFA) in 96-well 2µM filter plates (Corning) and incubated for 10 minutes at RT.  Media 

was removed using a vacuum manifold (Millipore) with a pressure between -5 mmHg 

and -10 mmHg.  Cells were washed once with 100µL 1X PBS and then suspended in 100 

µL of R-phycoerythrin (PE) conjugated monoclonal antibody (mAb) diluted 1:500 in 

1XPBS/0.2% bovine serum albumin (BSA). All antibodies were from US Biological, 
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raised in mouse, and were IgG1 isotype.  An αCD4-PE (IgG1) mAb was used as an 

isotype control.  Samples were incubated for two hours at 4°C in the dark.  Following 

antibody labeling, media was removed with a vacuum manifold.  Cells were washed once 

in 100µL 1X PBS, suspended in 180µL 1X PBS, and transferred to 96-well round bottom 

assay plates.  Samples were stored at 4°C in the dark until assayed by flow cytometry. 

 Quantification of cell surface fluorescence was performed using a Cytomics 

FC500MPL flow cytometer and data was processed using FlowJo 8.8 software.  

Individual samples were measured for 30 seconds using the low flow setting.  PE 

fluorescence was measured in a channel defined by a 565±10nm band pass filter using 

one of two settings (low: PMT=750, gain=1.0; high: PMT=900, gain=1.0. Cell surface 

expression was defined as the median fluorescence magnitude for a sample.  

 Data were initially screened for samples that failed to grow. Any sample with 

fewer than a threshold number of cell counts during flow cytometry (n=75) was removed 

from analysis.  

 Outlier data points were identified as follows. For any phenotype (i) measurement 

for a line (j) combinations with three or more replicate samples after cell count filtering, a 

scaled deviation score (

! 

" ijk ) was calculated for each sample based on the line median for 

each phenotype: 

! 

" ijk =
xijk # ˜ x ij

˜ x ij
, 

where 

! 

" ijk  is the scaled deviation for the phenotype of the kth replicate of the jth line for 

the ith phenotype, 

! 

xijk  is the phenotypic measurement for the kth replicate of the jth line for 
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the ith phenotype, and 

! 

˜ x ij  is the median phenotypic measurement for the jth line for the ith 

phenotype. This metric was compared to a scaled deviation threshold (

! 

" = 0.13). For any 

set of line measurements for a phenotype where at least one replicate’s scaled deviation 

exceeded the scaled deviation threshold (

! 

" ijk > # ), the replicate with the greatest scaled 

deviation was identified as the outlier and eliminated from further analysis. 

Cell lines, culture conditions, and quantification of cell surface expression in the 

pilot: A panel of 108 lymphoblastoid cell lines (LCLs) was established from the CEPH-

UT collection (Table 4). On Day 0, a single, 1mL, frozen aliquot was thawed for five 

minutes at 37°C in a water bath. The sample was diluted in 10mL 1X PBS, centrifuged at 

290xg for five minutes at room temperature and the supernatant was removed. The pellet 

was resuspended in 1mL media. The sample was diluted in 10mL media in a 25cm2 flask 

and incubated at 37°C with 5% CO2 and 95% humidity for four days.   

 On Day 4, samples were fixed by aliquoting 75µL samples into 96-well 2µM 

filter plates and adding 25µL 4% PFA. Plates were incubated at room temperature for 

five minutes and then spun at 1000xg for ten minutes at 4°C. Samples were washed once 

in 100µL 1X PBS, resuspended in 90µL 1X PBS, and stored at 4°C until assayed. 

 Prior to the phenotype assay, 10µL of either 1X PBS or a 1:10 dilution of a 

flouroscein (FITC) conjugated mAb. Antibodies were specific to CD40 and CD86. 

Samples were incubated with mAb for ten minutes at room temperature in the dark and 

then spun at 1000xg for ten minutes at 4°C. Samples were washed once in 100µL 1X 

PBS, resuspended in 170µL 1X PBS, and 150µL was transferred to 96-well round bottom 

assay plates. 
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 Quantification of cell surface fluorescence was performed as above with the 

following exceptions. FITC fluorescence was measured in a channel defined by a 

565±10nm band pass filter using the following settings: PMT=1000, gain=1.0.  

Estimation of narrow sense heritability: Narrow-sense heritability estimates used the 

multivariate and multilocus, variance components method in SEGPATH (PROVINCE et al. 

2003) as described previously (WATTERS et al. 2004). Due to high kurtosis in the CD19 

cell surface expression, median CD19 cell surface expression levels were log10 

transformed prior to analysis.   

SUPPLEMENTAL FILES 

Complete data for all replicates of all lines for all phenotypes is available upon request. 

Supplemental Table 1: Details of the full 255 LCL panel with phenotypic values. 

Supplemental Table 2: Details of 79 LCLs from pilot that are shared with the full 255 

LCL panel. 
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TABLES 

Table 1: Phenotype distributions and variance components 

Phenotype N 

! 

x (AFU) 

! 

"P
2  

! 

"E
2  L 

! 

h2 

! 

SE h2( ) 

! 

P h2( )  
CD4low 249 17.57 13.93 1.67 0.88 0.20 0.09 1.78E-03 
CD4high 248 59.41 180.40 29.04 0.84 0.20 0.10 3.49E-03 
CD19 251 64.37 178.61 15.62 0.91 0.20 0.11 5.50E-03 
CD23 247 115.20 512.04 67.89 0.87 0.03 0.07 3.04E-01 
CD38 249 23.83 27.62 2.57 0.91 0.30 0.11 3.54E-05 
CD40 250 171.95 2585.54 277.39 0.89 0.19 0.09 1.55E-03 
CD45RA 250 40.73 93.69 9.53 0.90 0.22 0.09 6.91E-04 
CD86 249 93.07 351.28 38.43 0.89 0.24 0.12 2.76E-03 
ICAM-1 250 46.66 160.24 24.40 0.85 0.09 0.09 1.21E-01 
TLR-9 254 81.22 205.54 52.38 0.75 0.07 0.07 1.42E-01 

 

Table 2: P-values for covariate effects from mixed model ANOVA 
Phenotype Generation Sex Age Plate Assignment 
CD4low 0.316 0.473 0.467 1.51E-02 
CD4high 0.343 0.603 0.593 5.19E-13 
CD19 8.38E-03 0.693 4.43E-02 2.81E-03 
CD23 0.367 0.139 0.969 9.11E-05 
CD38 1.83E-02 0.337 0.528 0.435 
CD40 0.549 0.306 0.306 6.33E-12 
CD45RA 0.676 0.951 7.89E-02 8.42E-03 
CD86 0.159 0.522 0.361 2.95E-03 
ICAM-1 7.20E-02 1.02E-02 0.641 5.32E-02 
TLR-9 0.228 0.104 0.339 0.683 
*Italicized text indicates nominal significance (

! 

" = 0.05).  
**Bold and italicized text indicates significance after Bonferroni correction (

! 

" = 0.005).  
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FIGURE LEGENDS 

Figure 1: Distribution of cell surface expression of proteins compared to background. 

Histograms of the distribution of cell surface expression levels in arbitrary fluorescence 

units (AFU) across the entire panel relative to background controls. (A) TLR-9 (brown) 

control for cell surface localization versus CD4high (green). (B) CD19 (pink) versus 

CD4high (green) and TLR-9 (brown). (C) CD23 (pink) versus CD4high (green) and TLR-9 

(brown). (D) CD86 (pink) versus CD4high (green) and TLR-9 (brown). (E) CD38 (pink) 

versus CD4low (green). (F) CD40 (pink) versus CD4low (green). (G) CD45RA (pink) 

versus CD4low (green). (H) ICAM-1 (pink) versus CD4low (green). 

Figure 2: Components of phenotypic variance. Bars represent the cumulative 

contributions of different variance components (y-axis) to the total variance for each 

phenotype assayed (x-axis). The summed contributions of all variance components must 

equal the total phenotypic variance (i.e., 100% phenotypic variance explained) for each 

phenotype assayed. Therefore, the bars do not indicate the relative amounts of total 

variance of phenotypes in comparison to each other. Line variance (pink) indicates the 

amount of phenotypic variance that is due to differences between lines. Variance between 

cell culture/assay replicates is indicated by the cell culture/assay variance (teal). (B) Line 

variance (pink) indicates the amount of phenotypic variance that is due to differences 

between lines, including additive genetic variance (green). Error bars indicate standard 

error of narrow-sense heritability estimates. Statistically significant narrow-sense 

heritability estimates are indicated (*). Variation between freeze/thaw replicates is 

indicated by the freeze/thaw variance (teal), which includes cell culture/assay variance. 
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Differences between lines explain the majority of variation for all phenotypes assayed, 

but additive genetic variance does not explain a majority of the line variance for these 

phenotypes. 

Figure 3: Effect of generation on phenotype. (A) Histogram of distribution of ages in the 

panel. Due to generation structure within the pedigrees in the panel, the distribution of 

ages is not uniform. (B) Scatter plot comparing median cell surface expression (AFU) of 

indicated proteins of the first generation (grandparents; x-axis) with the median cell 

surface expression of the second (parents; green) and third (progeny; pink) generations 

(y-axis). Error bars indicate the 25th and 75th percentile values for the respective 

generation. Phenotypes with a significant generation effect from the mixed model 

ANOVA are indicated (*: 

! 

P < 0.05). (C) Histograms of TLR-9 cell surface expression 

(AFU), which had a significant generation effect (

! 

P = 8.38 "10#3), in the full panel for 

the first (grandparents; blue), second (parents; green) and third (progeny; pink) 

generations. (D) Histograms of CD38 cell surface expression (AFU), which had a 

significant generation effect (

! 

P =1.83 "10#2 ), in the full panel for the first (grandparents; 

blue), second (parents; green), and third (progeny; pink) generations.   

Figure 4: Effect of sex on phenotype. (A) Scatter plot compares the median cell surface 

expression level of proteins (as indicated) in arbitrary fluorescence units (AFU) in the 

panel for females (x-axis) and males (y-axis). Error bars indicate the 25th and 75th 

percentile values of their respective sex. Phenotypes with a significant generation effect 

from the mixed model ANOVA are indicated (*: 

! 

P < 0.05). (B) Histograms of ICAM-1 
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cell surface expression (AFU), which had a significant sex effect (

! 

P =1.02 "10#2), in the 

full panel for females (green) and males (green) generations. 

Figure 5: Effect of age on phenotype. (A) Relationship between age (years) and cell 

surface expression (AFU) shown as the best-fit linear regression of cell surface 

expression on age. (B) Scatter plot comparison of age (years; x-axis) with TLR-9 cell 

surface expression (brown; y-axis). TLR-9 cell surface expression had a significant age 

effect (

! 

P = 4.43 "10#2) in the mixed model ANOVA. Best-fit linear regression of TLR-9 

cell surface expression on age (blue) represents general trend of gradual increase in 

expression with age (

! 

m = 0.052  AFU/yr). 

Figure 6: Effect of plate assignment on phenotype. Median cell surface expression values 

(AFU; y-axis) for both sampling plates (large, empty circles) and freeze/thaw replicates 

of sampling plates (small, filled circles) are shown. Sampling plates are distinguished by 

color (plate A: pink, plate B: green, and plate C: blue; see Supplemental Table 1 for plate 

assignments). Each phenotype is in a separate column (x-axis). Phenotypes with a 

significant plate assignment effect from the mixed model ANOVA are indicated by the 

phenotype label (*:

! 

P < 0.05; and after Bonferroni correction **:

! 

P < 0.005).  

Figure 7: Comparison of the full panel and pilot. (A) Scatter plot of CD40 cell surface 

expression level (AFU) for two, representative replicates in the full panel. (B) Scatter plot 

of CD40 cell surface expression level (AFU) for two, representative replicates in the 

pilot. (C) Scatter plot of CD40 cell surface expression rank in the respective sample set 

for LCLs shared by the pilot (x-axis) and the full panel (y-axis). (D) Scatter plot of CD86 
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cell surface expression rank in the respective sample set for LCLs shared by the pilot (x-

axis) and the full panel (y-axis).           
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CHAPTER FOUR: CONCLUSION AND DISCUSSION 

INTRODUCTION 

 The primary utility of cell culture model systems for the study of genetic variation 

lies in the control over experimental conditions and the experimental tractability. Their 

primary weakness lies in the fact that cell culture model systems are somewhat artificial 

and divorced from natural conditions; even in those using mircoorganims or those in 

which the genetic variation is the same as variation observed in natural populations. 

While the phenotypes measured for cell culture model systems in the lab may be 

analogous or similar to those with fitness effects outside the lab, one cannot argue that 

they are the same. Therefore, cell culture model systems are only a useful resource for 

research when the question and application allow the utility of the system to overcome 

the weakness. Unfortunately, many applications of cell culture model systems do not 

maximize their utility. I have examined the use of two cell culture model systems, 

laboratory selection on yeast and human-derived LCL pedigrees, for the study of natural 

genetic variation.   

LABORATORY SELECTION ON YEAST AS A MODEL SYSTEM  

In this work, I have assessed the use of laboratory selection on S. cerevisiae as a 

model system for natural genetic variation. Although laboratory selections have been 

used experimentally to test aspects of evolutionary theory, their use as a resource to 

overcome the limitations of natural isolates in the study of natural genetic variation has 

not been explored. The selected lines described in Chapter Two had adaptive phenotypes 

with a complex genetic basis similar to that observed in natural isolates of S. cerevisiae, 
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confirming that laboratory selection could be used to generate genetic variation with the 

characteristics of natural variation. This alone, however, does not demonstrate that 

laboratory selection on yeast is a useful model system for natural genetic variation. 

Evaluating laboratory selection on yeast as a model system is dependent on both the 

genetic variation in the derived lines and the particular advantages of yeast as an 

experimental organism.  

 There are many advantages to the use of microorganisms and yeast, in particular, 

for the study of genetic variation; but there are a few advantages specific to yeast strains 

developed in the laboratory that make them particularly attractive complements to the use 

of natural isolates to study natural genetic variation. The specific advantages of 

laboratory selection on yeast focus around two points: the ability to observe the entire 

evolutionary history of the derived lines and to study many replicates simultaneously. 

 The ability to observe the entire evolutionary history of a line is based on two 

factors. First, samples can be taken and stored throughout the process. These samples can 

be revived later to allow direct comparison between different time points in the 

evolutionary history. Second, the ancestral population can be defined, allowing both the 

response to selection to be quantified and the genetic underpinnings of that response to be 

investigated. Although the lines studied in this work represent only the ancestral sample 

and the derived lines without any intermediate samples, simple knowledge of the 

selection procedure permitted additional conclusions (i.e., that major effect mutations 

fixed in the population during the initial selection) to be drawn with confidence that 



 127 

would not have been possible had the evolutionary history been unknown, as in the case 

of natural isolates. 

 The ability to define the ancestral population and to control the cell culture 

environment is critical for the use of multiple replicates and conditions in laboratory 

selections. Defining the ancestral population ensures that the initial genotype for all 

replicates is the same. Not only does this control an important variable during selection, 

but it may also simplify the identification of adaptive polymorphisms due to the reduced 

background noise of neutral polymorphisms (GRESHAM et al. 2008; GRESHAM et al. 

2006). Similarly, the ability to control the cell culture environment during selection 

allows the variable of interest to be manipulated while keeping all other environmental 

variables either constant or documented between lines. Genotype and environmental 

control are important advantages for laboratory selections that allow both rigorous 

experimentation and the use of many replications.       

 The ability to usefully exploit multiple replicates is also dependent on the 

development of methods to efficiently and accurately phenotype samples. I developed a 

high-throughput, quantitative method for phenotyping yeast to identify the response to 

selection. The ability to compare phenotypes by accurately and efficiently quantify the 

response to selection alone, however, is not sufficient for genetic analysis of replicates. 

The ability to efficiently compare the replicate genotypes is also needed. 

 Next-generation sequencing and microarray technology make it possible to 

identify polymorphisms throughout the entire genome in yeast. The associated costs of 

this approach, however, become impractical, as the number of replicate samples gets 
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larger. Because the high-throughput, quantitative growth assay described in this work 

could easily be used for multiple growth conditions in liquid media (e.g., carbon source, 

amino acid depletion, toxic challenge, etc.), the distribution of phenotypic value for 

characters that were not under selection can be used to obtain information on genotypic 

similarities between lines. Differences in these characters between lines may result from 

genetic variants that were selectively neutral, but affect the character in question. The 

characters may also be correlated characters – traits that are not directly under selection, 

but change due to pleiotropic effects from adaptive variants under selection. Phenotypic 

similarity for these characters would suggest genotypic similarity. The distance between 

the phenotypic values of lines for these characters (plotted in n-dimensional space, where 

n is the number of characters assayed) is expected to be proportional to the genotypic 

distance between lines. Two lines possessing the same adaptive, genetic variants (i.e., the 

same genotype) would not only have identical phenotypic values for the character under 

selection, but would have identical phenotypic values for all correlated characters 

measured. The high-throughput, quantitative growth assay provides the opportunity to 

estimate genotypic similarities between lines in order to prioritize comparisons for more 

labor intensive and costly analyses, such as crosses and genotyping. 

 Replicate samples would also be particularly useful for questions of frequency 

and probability in adaptive evolution. For example, two independent studies examining 

sporulation efficiency in two different sets of S. cerevisiae strains both identified causal 

polymorphisms at the RME1 locus, but not at any of the other four, combined loci that 

were identified (DEUTSCHBAUER and DAVIS 2005; GERKE et al. 2009; GERKE et al. 
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2006). That they did not identify the same polymorphism (DEUTSCHBAUER and DAVIS 

2005; GERKE et al. 2009; GERKE et al. 2006) suggests that the genetic variants arose, 

were selected for, and fixed independently in the strains, instead of sharing a common 

ancestor with the polymorphisms. This, in turn, suggests that the RME1 locus is the most 

likely site of large effect, beneficial mutations affecting sporulation efficiency.  

The hypothesis that RME1 is the most likely site of large effect, beneficial 

mutations affecting sporulation efficiency could be tested by placing a large number of 

replicate samples under selection for sporulation (e.g., by flow assisted cell sorting or 

ether treatment). Sporulation efficiency in the derived lines can be readily quantified by 

flow cytometry (GERKE et al. 2009; GERKE et al. 2006). Because the experiment is 

directed at a specific locus, genetic variation at the RME1 locus can be determined by 

direct sequencing. Stored samples during the selection process could be used to identify 

when variants arose. If the hypothesis that the RME1 locus is the most likely site of large 

effect, beneficial mutations affecting sporulation efficiency is correct, variants at the 

RME1 locus would be expected, on average, to fix early in the selection process. The 

effect of variants on phenotype can be established by allelic replacement via homologous 

recombination. The same samples could be used to apply similar analyses to the other 

sporulation efficiency QTL that have been identified (DEUTSCHBAUER and DAVIS 2005; 

GERKE et al. 2009; GERKE et al. 2006). They could also be used to study the possible 

distribution of variants with effects on sporulation efficiency or the influence of the 

genetics of sporulation efficiency on correlated characters. Laboratory selections on yeast 
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have the capacity to be applied to specific hypotheses in evolutionary biology and general 

discovery.  

These questions require the ability to generate both many replicate samples and 

genetic variation like that observed in nature. The first is a well-known advantage of 

microorganisms as a model system. The latter is demonstrated in this thesis work. Yet, 

the capacity to generate many sample lines in a yeast laboratory selection experiment has 

been underexploited due, perhaps, to a new focus on obtaining genome-wide sequence 

data, as opposed to other methods for genotypic comparison. The constraints imposed by 

genome-wide sequencing may also be alleviated by building on the knowledge gained in 

prior studies of both laboratory and natural isolates, as described above.           

LYMPHOBLASTOID CELL LINES AS A MODEL SYSTEM  

In this work, I have assessed the components of phenotypic variation in LCLs, in 

order to evaluate their use as a model system for human genetic variation. In addition, I 

examined the use of localized protein expression level as quantifiable alternative to 

transcript abundance studies that might better represent functional variation underlying 

phenotypes on the scale of human subjects.  

 Contrary to other work suggesting that LCLs are unreliable (CHOY et al. 2008), I 

found that the majority of phenotypic variation between LCLs is due to intrinsic 

difference between lines. The proportion of this variation that can be explained by 

additive genetic variation is not large (

! 

0.03 " h2 " 0.30).  

 There are two general explanations for the observation that additive genetic 

variance does not explain a majority of the differences between lines, which explains 
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most of the phenotypic variance in the LCLs for the phenotypes assayed. The remaining 

line variance is composed of non-additive genetic variance (e.g., dominance and 

epistasis) and non-genetic variance (e.g., sampling and immortalization). While it is 

generally believed that additive genetic variance dominates the genetic contribution to 

variance, even in human traits (HILL et al. 2008), this observation may indicate that the 

genetic component of phenotypic variation between the lines may be dominated by non-

additive genetic effects. Because it is not possible to define the non-genetic component of 

the variation between lines, the non-additive genetic hypothesis cannot be considered as 

anything more than a possibility. Indeed, parsimony favors the hypothesis that non-

genetic effects dominate the remaining line variance.   

 The large, publicly available LCL collections (CEPH and the International 

HapMap Project) completely lack the types of samples necessary to estimate the non-

genetic components of the line variance. The collections themselves can hardly be faulted 

for this oversight. These collections were established to investigate the distribution of 

DNA polymorphisms in human genomes in extant populations. The DNA sequence at a 

given base pair is not a continuous variable making the estimation of variance 

components, such as those with which I have been concerned, irrelevant. Therefore, these 

collections could not be expected to prioritize samples to address these issues. 

 As large LCL collections continue to be collected, now with an interest in using 

the LCLs for both phenotyping and genotyping, it would useful to comment on the types 

of samples that should be included in such collections in order to allow all the 
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components of phenotypic variance to be understood, in order to identify useful 

phenotypes and inform experimental design. 

 First, there may be variation in the immortalization process that causes LCLs to 

vary from each other by chance. With current collections, this variation is a component of 

variation between LCLs. The effect of variation in immortalization process could be 

defined by generating multiple LCLs by independent immortalization of aliquots from a 

single B cell sample from a single individual. The ability to generate these samples would 

be dependent on the efficiency of the immortalization process. These samples could 

easily be added to any new LCL collection, allowing the contribution of immortalization 

variation to the differences between LCLs to be defined for each phenotype of interest.   

Second, there may be variation in the sampling process from subjects that causes 

LCLs to vary from each other by chance. Some variation between independent samples is 

expected by chance. With current collections, this variation is a component of variation 

between LCLs. Although variation between independent samples from the same 

individual is expected to be small, it is not defined. Quantification of variation between 

independent samples from a single individual would require the development of LCLs 

from multiple, independent B cell samples from a single individual. Including this class 

of sample in new LCL collections in combination with replicate immortalization samples 

would allow key, non-genetic components of line variance to be defined. 

 Third, the age of the subject at the time of the sampling may affect phenotypes 

measured in LCLs. The analysis in Chapter 3 shows that the distribution of phenotypic 

values does not change with age. Although this suggests that the LCL phenotypes of an 
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individual remain constant as they age, it does not rigorously confirm that conclusion. 

Longitudinal collection of LCLs from the same subject over time, especially across the 

developmental stages represented in existing collections (e.g., esterus, puberty, 

menopause), would make it possible to explicitly define age dependent variability in 

phenotypic values. Because the relationship of age to phenotype may be different, this 

class of samples should be included in new LCL collections in order that this relationship 

can be defined for the phenotypes of interest for a particular research question. While it 

may difficult to identify subjects who are willing to be sampled multiple times over a 

period of years, only a small number of individuals, representing a tiny fraction of total 

individuals in a collection, would be needed to describe the relationship between age and 

phenotype. 

 Finally, immortalization converts B cells with normal physiology into 

continuously growing LCLs . This process changes the growth phenotype. It is 

reasonable to assume that this process causes changes in other phenotypes. The effect of 

these changes could be estimated by measuring the same phenotypes in isolated B cells 

before immortalization and the resulting LCLs after immortalization. This knowledge 

would help us understand how to connect the cell culture results in LCLs to the actual 

physiology of B cells in the human body. Because the B cells described would be primary 

cell culture, not immortalized cell culture, it would not be possible to add these cells to a 

publicly accessible cell repository. Furthermore, the phenotypes of interest would have to 

be identified before collection. Interest in new phenotypes would require the collection of 

new samples, negating a major advantage of cell culture relative to human subjects (i.e., 
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eliminating the need for new sampling for each new research question). This class of 

sample is both the least practical of the four listed and does not directly define 

components of variation between LCLs. It could reasonably be omitted from any future 

LCL collections. 

 How well LCLs represent normal B cell physiology could be addressed by 

comparing transcriptional profiles between LCLs and B cells across multiple samples 

from one individual and multiple individuals. There is evidence that transcript abundance 

QTL identified in LCLs replicate in primary tissue samples (BULLAUGHEY et al. 2009). 

Assaying transcript abundances using next generation sequencing (RNAseq) would allow 

these comparisons to be made efficiently. Efficient comparisons might be used in the 

construction of new collections to screen for the most representative lines amongst the 

sampling/immortalization replicates described above.     

 As LCLs have transitioned from being a renewable nucleic acid source to being a 

genetic model system, variables in the collection of LCLs that were not important before 

have become relevant as they may affect phenotypes measured in LCLs. Because current 

collections do not contain the samples necessary to evaluate these effects, new LCL 

collections would be needed to add the necessary samples.     

 If the goal of genetic research with LCLs is simply to identify genotype-

phenotype associations, then current collections may be sufficient. If, however, the goal 

is to understand the genetic underpinnings of complex traits, the samples described above 

needed to define the non-genetic sources of variation are necessary to understand the 
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genetics of complex traits - the relative contributions of additive, dominance, and 

epistatic genetic effects to overall genetic control of phenotype.     

The conclusion that existing new LCL collections are needed if LCLs are to be 

used a genetic model system for the basic study of complex traits in humans, highlights a 

more general issue regarding the utility of LCLs as a model system for human genetic 

variation, including practical genotype-phenotype association discovery, such as in 

pharmacogenomics.  

It was hoped that the ability to control the cell culture environment would, by 

reducing the non-genetic components of phenotypic variation, make it easier to identify 

the genetic variants controlling the phenotypes of interest more completely. Genotype-

phenotpe association studies using LCLs, however, have shown similar results, including 

small additive genetic effect sizes for identified QTL and low predictive power to those 

using human subjects. Because phenotypes measured in human subjects have the distinct 

advantage of being the biomedically relevant phenotypes of interest - LCL phenotypes 

are, at best, a proxy for these phenotypes, can situations in which LCLs are preferable to 

human subjects be identified, even without an improvement in genotype-phenotype 

association performance?  

Pharmacogenomics is an obvious area of research for which cell culture is 

preferable, because many of the experiments, such as evaluating genetic factors that 

determine the response to chemotherapeutics, cannot be ethically conducted with human 

subjects. LCLs, however, are derived from a single cell type (B cells), which may not 

represent the appropriate cell type for the chemical in question. Induced pluripotent stem 
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(iPS) cells may be a better resource for pharmacogenomics, as they can be differentiated 

into the appropriate cell type for the chemical in question.  

 Gene expression, primarily transcript abundance (BERGEN et al. 2007; CHEUNG et 

al. 2003; CHEUNG and EWENS 2006; CHEUNG et al. 2005; CHOY et al. 2008; CORREA and 

CHEUNG 2004; DEUTSCH 2005; DUAN et al. 2007; DUAN et al. 2009; FORD et al. 2001; 

HUANG et al. 2007; HUANG et al. 2008; JEN and CHEUNG 2003; LI et al. 2008; LI et al. 

2009; MONKS et al. 2004; MORLEY et al. 2004; PRICE et al. 2008; SMIRNOV et al. 2009; 

SPIELMAN et al. 2007; STRANGER et al. 2007; WANG et al. 2009; ZHANG et al. 2009), is 

also commonly studied in LCLs. Unlike pharmacogenomic studies, the fact that LCLs 

represent a single cell type is not necessarily a weakness. The reliability of expression 

levels are not influenced by the possible inclusion of multiple cell types, such as in 

primary tissue samples. Still, iPS cell lines may be preferable, as they would permit the 

study of expression differences between cell types and individuals.     

Transcript abundance studies measure thousands of phenotypes. The small effect 

sizes and multiple hypothesis penalties are accommodated with a low false discovery rate 

because the number of phenotypes assayed would allow an expected, high false negative 

rate to be tolerated. Protein expression cannot be quantified in such a high-throughput 

manner. As effect sizes do not appear to be significantly increased over transcript 

abundance phenotypes, it is not clear that protein expression enjoys a significantly lower 

false negative rate than transcript abundance. Similarly, the smaller number of 

phenotypes assayed does not allow protein expression studies to have the same flexibility 

with the false discovery rate that is enjoyed by transcript abundance studies. At this time, 
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localized protein expression levels do not appear to be inherently superior phenotypes for 

developing an understanding of complex human genetic variation. The use of both 

transcript abundance and protein expression to study the genetic basis of phenotypic 

variation in humans would benefit from the addition of samples to define the non-genetic 

components of phenotypic variation in LCLs. 

LCLs may be preferable to human subjects due to cost and labor. Genotype-

phenotype association studies using human subjects require sample sizes of thousands of 

individuals. These samples are not reusable. The phenotypes that can be studied are 

limited by the study design. Addressing phenotypes outside those included in the original 

sample collection requires recruiting new subjects. These factors have made genotype-

phenotype association studies the exclusive domain of large, collaborative research 

groups.  

LCL collections, however, are an accessible resource for individual research 

groups. Although obtaining LCLs from repositories are not without cost, the expense and 

administrative issues are substantially less daunting than obtaining comparable numbers 

of human subjects. While weaknesses in current collections have been discussed 

previously and may require new collections to be developed, these collections will allow 

independent research groups to participate in the study of human genetic variation while 

building a community knowledge base from research on a shared set of samples. 

Finally, LCLs carry some hope of testing genotype-phenotype association 

hypotheses by direct experimentation. These types of experiments are, in general, 

technically or ethically impossible, especially at the small effect sizes being discovered, 



 138 

in human subjects. Already, siRNA technology has been used to confirm a genotype-

phenotype association in LCLs (SHUKLA et al. 2009). These experiments may further 

benefit from future, technological developments. The use of cell culture to test genotype-

phenotype associations discovered in human subjects may, again, benefit from the use of 

iPS cell lines, which would allow disease-relevant cell types to be tested, instead of using 

B cell derived LCLs as a proxy.   

CONCLUSION 

 Laboratory selection on yeast can be used to produce genetic variation with the 

same characteristics as natural genetic variation: quantitative phenotypic variation 

controlled by a small number of loci of large effect. Many question of interest in 

evolutionary biology and quantitative genetics involve rare events, small differences in 

variables, or the interaction of multiple variables. These questions would benefit from the 

ability to systematically generate and phenotype samples. The demonstration that 

laboratory selection on yeast is relevant to natural genetic variation and the high-

throughput, quantitative growth curve method developed here make this systematic 

approach possible.  

The measurement of phenotypes in LCLs is both highly repeatable within 

individual lines and variable between lines, important characteristics for any model 

system of genetic variation. The high repeatability of phenotypes measured here (cell 

surface expression of protein) is expected to extend to other phenotypes and other cell 

types. If the advantages of cell culture for the study of human genetic variation are to be 

fully exploited, the non-genetic components of phenotypic variation must be well 
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defined. This will require new collection of cell lines, which provides the opportunity to 

consider other cell types, like iPS cells, as a resource.    

The costs of large genotype-phenotype studies with human subjects have 

increasingly excluded the independent laboratory from the leading edge of human genetic 

variation. Cell culture methods, as a complement to human subject studies, are accessible 

to individual researchers and may, once again, allow the creativity and flexibility of the 

independent laboratory to impact the direction of human genetic variation research. 

Cell culture, in both microorganisms and humans, provides an important 

complementary approach to the study of natural genetic variation that addresses many of 

the challenges inherent to this field of research. 
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