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ABSTRACT OF THE DISSERTATION 
Excessive Complement Activation Due to Genetic Haploinsufficiency  

of Regulators in Multiple Human Diseases 
by 

Michael Triebwasser 
Doctor of Philosophy in Biology and Biomedical Sciences 

Human and Statistical Genetics 
 Washington University in St. Louis, 2015  

Professor John P. Atkinson, Chairperson 
 
The complement system is an ancient and powerful form of innate immunity. The 

alternative pathway (AP), a positive feedback loop, is at the core of the complement system. 

Activating components and regulators of the AP are genetically implicated in atypical hemolytic 

uremic syndrome (aHUS) and age-related macular degeneration (AMD).  aHUS features kidney 

failure, and often affects young children, but may occur throughout life and can be precipitated 

by pregnancy. aHUS associated variants are extremely rare and are considered highly penetrant. 

At the opposite end of the spectrum, AMD affects the retina leading to loss of central vision with 

a late age of onset. Risk variants in AMD are common in the population and have smaller effect 

sizes.  

I endeavored to understand the role of rare variants of large effect, similar to those 

causative in aHUS, in common diseases involving the kidney, specifically preeclampsia and 

lupus nephritis.  I also examined the role of such variants in AMD. Because thousands of people 

must be studied to assess the impact of rare variation, I developed novel approaches allowing 

these experiments to be done with 10- to 100-fold reductions in both cost and labor. 

aHUS-like variants are present in preeclampsia, a syndrome that affects pregnant women 

and shares multiple pathologic findings with aHUS. These variants are present in ~1% of 

preeclamptic individuals. Additionally, aHUS-like rare variants are found in severe AMD 



 xv 

patients. A diversity of variants in factor H and factor I are enriched in AMD cases. Subsets of 

these alleles have high penetrance in families and defective function. 

To study the effect of unregulated AP activation in vivo I studied a mouse deficient for 

the ubiquitous membrane regulator of complement Crry. Embryos that lack Crry are not viable 

due to attack by the maternal AP early in development. Damage in this model is unrelated to 

traditional forms of complement-mediated inflammation such as neutrophil activation or 

anaphylatoxin signaling. 

The findings of this body of work are an important step forward in understanding the risk 

individuals have of the common diseases PE and AMD and has implications for how these 

patients could be treated. 
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Chapter 1 
 
 

Introduction 
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Complement System 

The complement system is an ancient component of innate immunity. In humans, its most 

appreciated role is in defense against infection. It opsonizes targets for phagocytosis and can lyse 

them as well. Activation of the pathway is initiated through three arms: the classical (CP), lectin 

pathway (LP) and the alternative (AP) (Figure 1-1). Each pathway is highly regulated and 

controlled, as excessive activation will lead to disease (1). C3 activation and the terminal 

pathway (C5-C9) are common to each cascade. 

Activation 

 The classical pathway is antibody-dependent and activation is highly coordinated. It 

begins when C1q in the C1 complex (C1q, C1r, C1s) is engaged by IgM or IgG subclasses 1 and 

3 bound to a target. Upon Fc receptor binding by C1q, the pro-enzyme C1r autoactivates and 

cleaves C1s (also a proenzyme) to form active C1ś. C1ś then cleaves C4 to generate C4a and 

C4b. This exposes a reactive thioester in C4b, allowing C4b to covalently attach to a target. 

When C4b binds C2, C1s cleaves the proenzyme C2, leading to the active enzymatic fragment 

C2a. The complex of C4bC2a forms the CP C3 convertase.  
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Figure 1-1. Alternative Pathway (AP) Amplification Loop. 

 

The AP, CP, and LP converge on the cleavage of C3 to C3b (Figure 1-2). C3b engages in the 

amplification loop by factor B and forming a new AP C3 convertase. Properdin can bind the AP 

C3 convertase and stabilize it. The AP C3 convertase cleaves additional C3 to C3b, thus feeding 

forward. Negative regulation is critical and occurs at the level of the C3b and the C3 convertase. 

Cofactor activity cleaves and inactivates C3b, preventing it from binding FB. Decay acceleration 

accelerates the natural decay of C3bBb to its two components C3b and Bb. C3b can still bind FB 

again and form a new convertase. 
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This complex cleaves C3 to C3b, generating the anaphylatoxin C3a and C3b.  C3b’s thioester, 

like that in C4b, is also exposed upon cleavage, which leads to covalent binding of the majority 

of C3b to the target and some to the C4bC2a complex. 

 The combination of C3bC4bC2a is the classical pathway C5 convertase, which cleaves 

C5 to C5b and C5a, a potent anaphylatoxin. C5b binds C6 and then C7; C5b-7 deposits on cell 

membranes.  C8 then binds the trimeric complex followed by multiple copies of C9 to form a 

pore. The C5b-9 complex is known as the membrane attack complex (MAC). MAC deposition 

leads to lysis or, in the case of sublytic attack, membrane perturbation (2-4). 

 The LP of complement is initiated when mannose binding lectin (MBL) or a ficolin 

protein (both analogous to C1q) bind a target and activate mannose activated serine proteases 

(MASP) -2 (analogous to C1s) (5). MASP-2 then cleaves and activates C4 and C2, and at this 

point the CP and LP share the same C3 and C5 convertases. Instead of binding antibody like C1q, 

MBL recognizes sugar moieties on pathogens rather than specific antigens. 

 In contrast to the CP and LP, where activation is targeted through adaptive and innate 

immunity, the AP is not activated specifically. The AP also proceeds through an ordered 

stepwise activation, but it is unique from the CP and LP in that it consists of a positive feedback 

loop. AP activation relies on the continuous “tickover” of C3. The thioester of C3 is inherently 

unstable and approximately 1-2% of C3 turns over every hour (6). Much of this will bind water, 

forming C3(H2O). But should the thioester bond hydrolyze and bind a sugar, protein or 

phospholipid on the surface of a cell or piece of debris, it will covalently attach (sometimes 

called C3-Target, C3-T). Upon hydrolysis of its thioester, C3 undergoes a massive 

conformational change, which allows factor B to bind (Figure 1-3). When B is bound, factor D 
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cleaves the proenzyme B to the active enzyme Bb. C3-TBb is the AP C3 convertase and cleaves 

C3 to C3b and C3a.  

C3(H2O), C3-T and C3b all share the same conformation with the thioester exposed and 

are able to bind FB and form a new C3 convertase (the positive feedback loop). In exposing 

C3b’s thioester, it can attach either to a surface (target) or the C3bBb convertase to form the AP 

C5 convertase. Additionally, properdin (P) binds the C3 and C5 convertases dramatically 

stabilizing them. C3bBb has a half-life of 2 to 3 minutes, whereas properdin increases this ten-

fold (7). The AP is a positive feedback loop capable of exponentially increasing complement 

activation on a target.  

 

 

 

Figure 1-2. Linear diagram of the C3 protein.  
The β chain is comprised of MG 1-6 (left side) and the α chain is comprised of the ANA, αNT, 
part of MG6, MG7, CUB, TED, MG8 and C345C domains. The TED domain is where the 
cysteine of the thioester bond is contained. In the presence of a cofactor, Factor I cleaves in the 
CUB domain converting C3b to iC3b. Cleavage of C3 to C3b removes the ANA domain. The β 
and α chain are joined by a disulfide bond. 
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Figure 1-3. C3 Changes Conformation With the Conversion to C3b. 
A. C3 protein with the β chain (red) and α chain (teal) with the thioester in black. PDB ID 2A73. 
B. The TED domain (C3d fragment site of the thioester) of C3b radically changes position upon 
cleavage of C3 to C3a and C3b. C3-T, C3(H2O), and C3b all share the same conformation. PDB 
ID 2I07. C. Factor B (purple) bound to C3b. Factor B makes contacts to C3b at the CUB domain, 
C345C domain and some of the MG (macroglobulin domains). PDB ID 2XWJ. 
 
 
Regulation of Complement Activation 

Complement activation is subject to negative regulation particularly at the level of the C3 

and C5 convertases, both through accelerating the natural decay of the enzyme complexes (decay 

acceleration activity, DAA) and through proteolytic cleavage of C4b and C3b by the serum 

protease factor I to prevent formation of additional C3 convertases (Figure 1-4) (8). Host cells 
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express negative regulators on their surface to perform both roles. Decay acceleration activity 

(DAA) (define) is provided by the GPI-anchored protein decay accelerating factor (DAF, CD55) 

(Figure 1-4). On the other hand, cleavage by factor I in concert with an absolutely required 

cofactor protein (Figure 1-4B). On the cell surface, the most widely distributed protein with 

cofactor activity (CA) is membrane cofactor protein (MCP, CD46).  

 

Figure 1-4. Negative Regulation of the AP Occurs at the Level of the C3 Convertase 
A. Decay acceleration separates the C3bBb into C3b and Bb. Bb cannot rebind to C3b. A new 
FB must rebind C3b and factor D to reform the C3 convertase. Cofactor activity allows the 
protease FI to cleave C3b to iC3b and a small fragment C3f. iC3b cannot rebind factor B and 
thus cannot form a new C3 convertase. C3f is not covalently linked to iC3b. B. A diagram 
illustrating how MCP (or FH) participates in cofactor mediated cleavage on the cell surface. 
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A more limited variety of cells also express complement receptor 1 (CR1, CD35), which 

contains sites for both decay and cofactor activity. Lastly, on the cell membrane is CD59, a GPI-

anchored protein that inhibits C8 and C9 pore formation.  

 In blood, factor H (FH) carries both DAA and CA for the AP C3 convertase. FH 

functions in the fluid phase by limiting the ability of C3(H2O) to form the C3 convertase. It is 

also able to deposit on surfaces with exposed glycosaminoglycans (GAGs) as well at previous 

sites of complement activation (C3b/C3d) to limit AP activity on surfaces and debris (9) (Figure 

1-5).  

 Factor H, DAF, MCP and CR1 are all comprised largely or entirely of complement 

control protein repeats domains (CCP, sushi domains). CCPs are approximately 60 amino acids 

and have a conserved disulfide structure: the first cysteine bonds to the third, and the second 

cysteine to the forth (10). MCP, DAF and FH all contain their regulatory activity in the first 4 

CCPs (MCP and DAF each only have 4 CCPs). CR1 has three separate regulatory sites, but their 

organization is similar.  

Factor H has 20 CCPs. Besides the complement regulatory activity of CCP 1-4 (Figure 1-

6), CCP7 and 8 comprise a heparin (anionic) binding domain, and CCPs 19-20 have both heparin 

binding and C3b and C3d binding activity (Figure 1-5). In the case of CR1 and factor H, the 

CCPs between known functional sites may be conserved in evolution to allow optimal spacing. 
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Figure 1-5. FH’s Domains Allows it to Bind GAGs and C3b/C3d  on Surfaces 
A. FH’s structure contains regulatory activity in CCP1-4 (blue box). GAG binding domains 
(squiggle above FH) present in CCP6-8 and 19-20. C3b binding (arrow below FH). Shows sites 
with evidence for C3b binding. Arrow size is proportional to the binding affinity. B. FH may 
bind and regulate the same C3b molecule through CCP19-20 binding of the TED domain, while 
the CCP1-4 domain can perform DAA and CA. C. FH may also bind to a surface with CCP19-20 
by binding either the C3d scar (TED domain) that will permanently tag a site of complement 
activation or though GAGs present on the cell or extracellular matrix. FI would interact with the 
FH:C3b complex to perform CA. Figure adapted from Schmidt, CQ, et al. J. Immunology, 2008, 
181: 2610-2619 
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Figure 1-6. FH Binds in a Groove over the CUB and TED Domain of C3b 
A. Factor H CCP1 to 4 (orange) binds to both the β chain (red) and α chain (teal) of C3b. CCP2-
3 make the majority of contacts with C3b, including the CUB domain and TED domain. B0. 
Rotated 90°. PDB ID 2WII. 
 
 
 C3b is cleaved to iC3b by FI in concert with MCP, FH, or CR1. CR1, complement 

receptor 2 (CD21), and complement receptor 3 (CR3/integrin M/CD11b) all have a high affinity 

for iC3b (11). CR1 and FI can cleave iC3b further to C3dg, which remains covalently bound to 

the target, and can be bound by CR2, and complement receptor 4 (CR4/integrin X/CD11b) (12, 

13). These degradation products of C3b are an “immunologic scar” and lead to adherence and 

signaling in those cell types expressing the requisite receptors. For example, B cells express CR2, 

and without CR2 signaling mice have dramatically reduced adaptive immune responses (14). 

CR3’s recognition of C3b is one of the main mechanisms by which phagocytic cells traffic into 

areas of inflammation and by which they phagocytose opsonized targets (15).  
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Rare Variation in Human Disease 

Rare variation has previously been assumed to be the purview of devastating Mendelian 

disorders. Common diseases were postulated to be the result of nearly neutral alleles with small 

effect sizes that have risen to high frequencies in the population though a mixture of migration, 

selection, and, largely, genetic drift (Common Disease Common Variant hypothesis) (16). After 

increasingly large genome wide association studies (GWAS), not all of the heritability of 

common disease is fully explained by these common SNPs, many of which have odds ratios on 

the order of 1.1 - 1.5 (17). 

Heritability estimates may be overstated as many of these estimates were based on twin 

studies, not on large populations (18). Additionally, interactions between the common SNPs may 

yield non-additive effects; however, detecting these is problematic because of the burden 

imposed by testing so many hypothesizes. Ever larger GWAS studies will likely uncover alleles 

with increasingly small effect size, further capturing the spectrum of genetic risk. It is possible 

that genetic interactions with the environment, and in the case of common autoimmune diseases, 

pathogens such as viruses, may explain some of the risk. Another possible source of genetic risk 

is a diversity of rare variants with relatively large effects on disease risk (19).  

 New mutations enter the population at every cell division. The empirically determined 

mutation rate is ~1x10-8 per meiosis (20). The implication of this is that every person has ~60 de 

novo point mutations at birth, along with structural variations (copy number changes), the 

frequency of which is harder to estimate. If a population is of a fixed size, selection will remove 

even mildly deleterious alleles while neutral ones will be fixed or lost due to genetic drift (i.e., 

random chance) (16). The human population has been rapidly expanding for 5-10,000 years 
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(roughly coinciding with the advent of agriculture), which obfuscates the ability of natural 

selection to exert strong pressure on deleterious alleles and remove them from the population (21, 

22). Rare mutations are more likely to have arisen recently, whereas common SNPs are likely to 

have arisen a long time ago (thousands versus hundreds of thousands of years). 

Rare variants, by their low frequency, are likely to be detrimental (23). We propose here 

to look for such mutations that have a relatively large effect size compared to the majority of 

those identified recently by GWAS. This paradigm, the Rare Variant Common Disease (RVCD) 

hypothesis, is proving to be of significant interest for at least several forms of common diseases 

including cardiovascular disease, AMD and Alzheimer’s. 

Estimates of the study sizes required to detect rare variants tell us that large sample sizes 

will be required. Early estimates were that 660 individuals (half cases, half controls) would be 

required to detect an association between a gene that carried rare variants in 1% of controls and 

for which rare variants increase the risk of disease eight-fold (24). This is an optimistic 

assumption as many genes have more than 1% of individuals carrying a rare variant (<0.5% 

MAF). The fraction of people carrying a rare variant will generally increase with gene size. More 

importantly, if some variants have an effect this large those variants would likely be observed 

segregating with disease in pedigrees in Mendelian or near-Mendelian modes of inheritance (25). 

Based on recent studies, rare variation in a gene is likely to only increase the rate of mutations in 

cases 2 to 3-fold above that seen in the control group (26, 27). This will necessitate studies 

comprised of thousands to tens of thousands of individuals.  

  



 13 

 

Atypical Hemolytic Uremic Syndrome 

 Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy (TMA) 

characterized by glomerular endotheliosis and formation of clots throughout the 

microvasculature, with a preference for the glomerulus of the kidney (28, 29). In addition to 

renal failure, cases exhibit refractory hypertension, platelet consumption and a hemolytic anemia.  

Over the past decade, aHUS has been shown to be primarily caused by loss of function 

mutations in the negative regulators of complement activation. This is in contrast to the more 

common shiga-toxin associated HUS, or diarrheal HUS, where exposure to a Shiga toxin 

expressing bacteria, often E. coli, precipitates the TMA. In D-HUS the Shiga toxin itself 

damages the endothelial cells lining the glomerulus (30, 31). 

Initially, a small number of pedigrees showed linkage to FH and MCP (32-34). 

Subsequent sequencing of FI, C3 and FB revealed rare highly penetrant mutations in both 

familial and sporadic aHUS (35-37). Mutations in the negative regulators abrogate binding or 

cofactor activity in relation to C3b, and mutations in C3 and FB lead to escape from interactions 

with negative regulators or increased stability of the AP convertase. Thus, the common 

mechanism in aHUS is loss of proper regulation of the AP leading to excessive activation. Such 

mutations are seen in 40-60% of aHUS patients (38). Autoantibodies to FH that either deplete or 

impair function are seen in another ~10% of aHUS patients (39). Surprisingly, no mutations in 

DAF have led to loss of function (40). CA appears to be the most crucial mode of AP regulation. 

It fundamentally stops the AP, whereas DAA only slows it down as the C3b remains, ready to 

generate a new C3 convertase.  
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The degree of haploinsufficiency that is sufficient to cause disease is striking: individuals 

heterozygous for a mutation may have one functional allele of MCP and one allele with 50% 

activity, leading to 75% of the regulatory activity of a sibling that does not carry the risk allele; 

however, 75% activity is not enough, and they are at risk of developing aHUS (41). 

Mutations that cause aHUS act in a dominant manner with incomplete (~50% penetrance) 

(42, 43). Often children are reported to have had a viral infection immediately prior to an episode 

and pregnancy is also a trigger (44, 45). If a mutation carrier does not encounter an exposure 

while young, they may graduate into lower risk adulthood. A “stressor” may be required to 

trigger an aHUS episode, similar to the Shiga toxin that precipitates D+HUS. 

 Until recently, therapy for aHUS involved plasma exchange, with the thought that one 

could replace the defective factor H or factor I of the host with that of a healthy donor.  Renal 

transplants are often required due to kidney damage, and only in individuals with MCP 

mutations is this curative because the defect, haploinsufficiency of MCP on glomerular 

endothelial cells, is corrected. Based in part on the finding that mice deficient for C5 are rescued 

from an aHUS like disease (46), there is now a mAb to C5 that prevents cleavage, which is 

effective in most aHUS cases. This proved that C5 cleavage triggered by the AP is critical to 

developing microthrombi (47). 

 

Alternative Pathway Activation is Pathologic to the Kidney 

 Excessive AP activation is central to a variety of diseases of the kidney. This is illustrated 

by the central role of dysregulated complement activation in not only aHUS but also 

membranoproliferative glomerular nephritis type II (MPGN II, also known as Dense Deposit 

Disease, DDD), C3 glomerulonephropathies, and mesangioproliferative glomerulonephritis (48). 
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DDD is characterized by progressive loss of kidney function that primarily affects children 

between the age of 5 and 15 and generally leads to end stage renal disease in 10 years (49). It is 

characterized by subendothelial deposits, which contain C3b (50).  

More than 80% of patients have an autoantibody that stabilizes the AP C3 convertase, 

termed C3 nephritic factor (C3NeF) (49). In ~10% of DDD patients, there are mutations, often 

recessive, in factor H (51). The end result of C3NeF and the mutations are the same, constant 

activation of the AP and turnover of C3. Other kidney diseases also feature C3NeF and varying 

rates of AP gene mutations. 

In contrast to aHUS, FH mutations in MPGN II are largely in the N-terminal regulatory 

domain in contrast to the C-terminal localization domain. Such a mutation would lead to 

excessive amounts of C3b being produced in the fluid phase, like a C3NeF, and being deposited 

in the kidney. The majority of aHUS mutations in FH are in the C-terminal domain that localizes 

FH to surfaces, leading to only excessive local activation (Figure 1-5). 

It may be the amount of this C3b that is depositing in the kidney in MPGN II, not 

necessarily the local activation occurring on exposed basement membranes or damaged cells as 

in aHUS. Some mutations are shared between aHUS and DDD and showcase the variability with 

which AP mutations can present. 

 The kidney may be extremely sensitive to complement activation because of the 

fenestrated endothelium of the glomerulus. This structure allows filtration, but it also puts the 

blood in direct contact with the basement membrane, which, unlike cells, does not contain 

intrinsic negative regulators of complement such as MCP and DAF.  
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Preeclampsia is a Common TMA 

Preeclampsia (PE), a pregnancy specific syndrome, is the leading cause of maternal and fetal 

mortality and morbidity globally (52). Diagnosis is based on the new onset of hypertension and 

proteinuria in the latter half of gestation (53). Glomerular endothelial cells swell occluding the 

vessel lumen, and clots are seen in the kidney and placenta (54). PE occurs in 3 to 8% of first 

pregnancies and is responsible for ~15% of preterm births, largely because delivery is the only 

cure (55). A unifying histopathological finding is shallow invasion of the uterine spiral arteries 

by the placenta and failure to remodel them into high flow, low resistance vessels.  

  Human biomarker studies and other work have led to the model that the placenta, in 

reaction to this abnormal vascular development, elaborates anti-angiogenic and nephrotoxic 

molecules that cause maternal decompensation. (56-59). Specifically, multiple studies have 

found low levels of placental growth factor (PlGF) and high levels of the soluble VEGF (and 

PlGF) receptor 1 (Flt1) are correlated with the development of PE. This soluble receptor opposes 

the VEGF-dependent glomerular endothelial cells, damaging them. The kidney pathology of PE 

mimics an adverse reaction to anti-VEGF antibodies used in oncology (60). 

Fragments generated by AP activation are also elevated early in pregnancy in those who 

will later develop PE (61) suggesting that even from a very early point in pregnancy there is 

more AP activation at the feto-maternal interface (Figure 1-7). In this model, complement 

activation occurs and exacerbates the initial effects of sFlt-1 (62). 

There is an incidence of aHUS associated with pregnancy, likely due to the vascular stress 

imposed by the fetus on the maternal vasculature and specifically the kidney. Individuals with 

pregnancy-associated aHUS often have rare mutations in complement regulatory proteins (63). 



 17 

Four out of eleven patients with hemolysis, elevated liver enzymes, and low platelets (HELLP), a 

serious complication of PE, have been reported to have complement regulatory mutations (64). 

We observed rare mutations in PE patients that result in uncontrolled complement activation AP 

(65); one had been previously described in two aHUS patients that presented in the first year of 

life (66). 

 

 

Figure 1-7. Complement Activation is a Shared Feature of aHUS and PE. 
The AP activates on damaged or stressed endothelium and/or placenta cells. In individuals with 
normal complement regulators AP activation is controlled. In those with mutant regulators, AP 
activation amplifies leading to inflammation, anti-angiogenic factors and thrombosis. In our 
model these effects are involved in the syndrome of preeclampsia. Figure adapted from Salmon, 
JE, Heuser, C, Triebwasser, MP, et al. PLoS Medicine, 2011, 8(3): e1001013. 
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AP Genes Contribute Substantially to AMD 

Age-related macular degeneration (AMD) AMD is a common disease of the retina and features 

loss of central vision. This area, called the macula, is responsible for the high resolution we have 

in the center of our field of view. The characteristic finding is the formation of proteinaceous 

deposits, known as drusen, between the retina and the supporting tissue behind. Damage to the 

retina occurs either because blood vessels from behind the retina proliferate and damage the 

retina (wet form) or because of loss of retinal cells in areas of deposition (geographic atrophy, 

dry form).  

 After efforts to find the cause of AMD through linkage, the best candidate region was 

chosen for an association study. Using 44 SNPs in this region spanning 2.2 Mb, the factor H 

gene, CFH, was found to harbor a missense variant Y402H, which increases the risk of AMD 

(odds ratio=2.5) (67). This common variant is present in 30-40% of controls (and 60-65% of 

cases); it was estimated to explain ~40% of the disease burden in AMD (68).  

Functional studies of this part of FH and of the H402 allele have shown that it affects the 

ability of the protein to bind to glycosaminoglycans and oxidized lipids like those that might be 

present basement membranes or damaged cells (69, 70). The risk variant may have experienced 

positive selection because it reduces binding of FH to some S. pyogenes proteins, which would 

lead to increased complement activation on them and decreased virulence in vivo (71).  

Subsequent genome-wide association studies in AMD have identified common variants 

that increase the risk of AMD in CFI, CFB, and C3 (72-74). Common SNPs account for ~50% of 

the risk in AMD (75). AP activation is strongly implicated by genetics in the pathophysiology of 

AMD. The idea of a person’s complotype, their genotype at all of the AMD risk SNPs in the AP, 
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has arisen. The greater the burden of AMD risk SNPs in a complotype, the higher the AP activity, 

even when each variant separately has only modest effects on function (76) 

In addition to these common variants that have a small effect size, a single rare variant in 

CFH has been reported in aHUS and also associated with AMD (25). The R1210C variant in FH 

leads to a diminished heparin binding activity similar to the common Y402H allele (70, 77, 78). 

The inability to bind correctly leads to a local deficiency in FH activity, even though serum 

levels are normal.  

AMD has no robust therapies currently. Anti-VEGF mAbs are able to stop, and in some 

cases reverse, the disease seen in wet AMD. Therapeutics that modulate complement are a 

promising therapy, and an anti-factor D antibody therapy recently showed benefit in a phase II 

trial of AMD patients with geographic atrophy. The largest predictor of response was the 

common factor I risk allele (Roche Press Release, August 27th, 2013). 

 

Complement Regulator Deficient Mouse Models of Disease 

Mice deficient for FH develop glomerular nephritis similar to DDD (79). Due to 

unregulated fluid phase consumption, these animals have profoundly low C3 and C5 levels; 

Neutrophils are present around the glomerulus (80). Further the development of renal disease is 

C5, but not C5b-9 dependent (80). A mouse model of aHUS utilizes a FH allele with CCP 16-20 

deleted. These mice have higher C3 levels in the blood than do FH-/- animals (81), and the 

development of kidney disease is also C5 dependent (46). 

The ubiquitously expressed membrane bound regulator with cofactor activity is Crry in 

the mouse. It is analogous to MCP in humans. Deficiency leads to embryonic lethality (82), and 

loss is dependent on the AP (C3 and FB), but not the CP or C5b-C9 (83, 84). Maternal AP 
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attacks the developing embryo, and if the mother is FB or C3 deficient, it is possible to generate 

Crry-/- mice (85, 86). Crry-/- mice have low levels of C3, but higher than FH-/- animals, and do not 

develop renal disease (84, 85). C5 deficiency had a minor effect on the rate of embryonic loss. 

This model is unique in that is not entirely C5 dependent and the mechanism linking AP 

activation to loss is not understood. 

 

Specific Aims 

This thesis has two focuses. The first is to investigate a mouse model of AP activation in 

which the main regulator that possesses CA on the surface of mouse cells, Crry, has been deleted. 

One effect of this is unrestricted activation by the maternal AP on Crry-/- embryos and fetal loss 

(82). The goal was to further understand the components of the AP involved, what part of the AP 

is mediating loss, and the impact of AP activation on development.  

The second focus was to assess the effect of rare variants in AP genes on a variety of 

human diseases, including AMD, PE, lupus nephritis and diarrheal HUS. To address this second 

component, significant technical innovations had to be made to allow large scale sequencing of 

the complement system, and related pathways like coagulation, in large enough patient 

populations to yield sufficient statistical power.  
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Introduction 

 The alternative pathway (AP) of complement activation is central to both the ability to 

defend against a variety of pathogens but also to a number of human disease processes. In the 

kidney, AP activation is pathogenic as illustrated by atypical hemolytic uremic syndrome 

(aHUS), membranoproliferative glomerular nephritis type II/dense deposit disease (MPGN 

II/DDD), and C3 glomerulopathies (1-3). In these diseases, overlapping rare genetic mutations 

have been identified that lead to excessive AP activation. Likewise, in AMD complement 

regulation due to genetic risk factors is associated with retinal disease (4). 

 The AP is composed of four serum proteins C3, factor B (FB) , factor D (FD) and 

properdin (P). C3 continuously turnovers over to C3b, which can then bind FB.  Bound to C3b, 

FB is cleaved by factor D to generate Bb and Ba. C3bBb is an active enzyme (the AP C3 

convertase) and efficiently cleaves C3 to form additional C3b. Properdin binds the C3bBb 

complex and stabilizes it, increasing the half-life approximately five-fold. Nascent C3b can then 

form additional C3 convertases, a positive feedback or amplification loop. Factor I can cleave 

C3b, with a required cofactor protein, to inactivate it and prevent the formation of new AP 

convertases. 

The AP also leads to the formation of membrane attack complex (MAC). A C5 

convertase is formed when an additional C3b binds to the C3 convertase. The AP C5 convertase 

(C3b)2Bb cleaves C5 to C5b and C5a. C5a is a potent anaphylatoxin. C5b binds C6 and C7 and 

this complex can bind to cell membranes. Upon binding of C8 and multiple C9 molecules, a pore 

is formed (C5b-C9, MAC). 

Regulation at the level of C3b is required to maintain homeostasis. If regulation is 

lacking, the positive feedback mechanism will cause activation to outstrip regulatory activity. At 
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least in aHUS, C5 cleavage is implicated by animal models and the response of most aHUS 

patients to anti-C5 mAb therapy (5, 6). The mechanism linking excessive AP activation and 

disease is not as clear in AMD and other diseases of the kidney.  

 To study how complement activation affects disease, we studied a complement dependent 

model of fetal loss in which the ubiquitous regulator of complement in the mouse, Crry, is 

deleted. Crry is a type I transmembrane protein with cofactor activity (CA). (7). Without Crry, 

the AP activates continuously on all surfaces. Crry-/- embryos in Crry+/- x Crry+/- matings are 

lost in utero because maternal AP activates on the developing ectoplacental cone. 

 Work with C3 and factor B deficient mice demonstrated that embryonic loss is dependent 

on the AP (8). The same investigation reported that demise was not dependent on other 

mechanisms of complement activation (C4-/-) or B cells (µMT). Studies by another group showed 

that a C6-/- background did not rescue and that the MAC was not involved in loss (9). Both 

groups found a small effect of C5 deficiency. The C5-/- background led to ~5% of offspring (3 of 

62 pups) being Crry-/- versus the expected 25% of offspring (8). Studies with an anti-mouse C5 

monoclonal antibody (BB5.1) produced a single Crry-/- mouse in approximately 20 treated liters 

(9). These results argue against a central role for C5 in loss.  Because C6 deficiency did not 

rescue, if C5 does have a role, it is likely through the anaphylatoxin C5a.  

 Crry-/- mice have low systemic blood levels of C3 and FB (10-25%) because of 

heightened, continuous turnover. Crry-/- female mice mated to Crry+/- males result in a full 

rescue of embryonic lethality (10). This is because the Crry-/- mother’s AP levels are so reduced 

that they are insufficient to cause loss. Heterozygosity for C3 had no effect and heterozygosity 

for FB had a partial effect on rescue. Crry+/- mice have normal C3 and factor B levels at baseline. 
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 There is another pertinent mouse model of fetal loss that is AP dependent (11). In this 

model, human anti-phospholipid antibodies (APLA) are injected into mice and bind in the 

placenta to activate complement (11). The proposed mechanism is Ab dependent AP triggering 

leading to C5 activation. The liberated C5a engages the C5aR and signaling leads to upregulation 

of tissue factor (TF) (12, 13). The TF:VIIa complex then forms, which cleaves protease activated 

receptor 2 (PAR-2). PAR-2 in turn activates neutrophils and leads to an oxidative burst (14). 

Neutrophil depletion at the time of APLA exposure rescues fetal loss. Neutrophils have been 

reported around Crry-/- embryos prior to loss (8). Based on these findings, we hypothesized that 

complement activation of neutrophils mediates fetal loss in the Crry-/- model. 

 

Materials and Methods 

Mouse Breeding and Genotyping 

All mice were bred and maintained under pathogen-free conditions at Washington 

University School of Medicine in St. Louis, MO in accordance with institutional animal care 

guidelines. The Crry knockout mouse was originally generated by Hector Molina and colleagues 

(7) and maintained at Washington University.  The Crry-/- allele was genotyped by PCR as 

described (7). The C3aR knockout mouse was generated by and obtained from Rick Wetsel 

(University of Texas, Houston). It was genotyped by PCR as previously described (15). 

Timed Matings and Harvesting Embryos 

Female mice were placed in the male’s cage. Each subsequent d the female was checked 

for a vaginal plug. The d of its observance was considered 0.5 d post conception (dpc).  Mice 

were checked daily for seven to ten d. If a new plug appeared, it was then considered 0.5 dpc. 

Mice were expected to deliver at 19.5 dpc. Pregnant mice were sacrificed by CO2 asphyxiation in 
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accordance with institutional guidelines. The uterus was then removed and each implantation site 

was separated surgically. The muscular uterus was removed under a dissecting microscope while 

the implantation site was in cold PBS. All liters sacrificed at or before 13.5 dpc were weighed. 

Intact implantation sites, consisting of the embryo within the intact chorion surrounded by 

decidua, were weighed to confirm the dpc. Genotyping was performed on all liters. To 

accomplish this, the embryo was removed, washed 7 times in cold PBS and then digested in 

proteinase K overnight at 55°C. DNA was precipitated, resuspended in 10mM Tris, 0.1mM 

EDTA and analyzed by PCR. 

Transcardial Perfusion 

Mice were anesthetized with ketamine/xylazine and transcardial perfusion with 50 ml 20 

U/ml heparin (Sigma-Aldrich) in DPBS was performed to remove serum and red blood cells 

(RBCs) from the vasculature. 

Frozen Section Histology 

 Implantation sites were harvested as above and dehydrated in 20% sucrose o/n at 4°C. 

They were then flash frozen in OCT with 2-methylbutane and cooled with dry ice. Cassettes 

were stored at -80° C. Frozen sections (7 µm) were made on a Leica CryoStat. For Gr-1 staining, 

frozen slides were fixed in pre-chilled acetone at RT. Endogenous peroxidase was quenched with 

0.3% H2O2 in methanol. Blocking was performed in PBS, 1% BSA, 5% mouse serum, and 5% 

goat serum. RB6-8C5 (BioXCell 3.5 mg/ml) was used at 1:500 in the blocking buffer. 1A8 was 

used at (1:500, BioXCel). The secondary Ab was goat anti-rat light chain HRP (Jackson 

Immunoresearch). Staining was visualized with DAB (Vector, IMPACT DAB KIT). 

Formalin Fixed Parafin Embedded Histology 
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Embryos were harvested as above, excluding transcardial perfusion. They were fixed in 

10% formalin overnight then embedded. Sections were rehydrated, antigen retrieval was 

performed, blocked, and stained. In the case of Crry staining, antigen retrieval was in 10 mM 

citric acid (anhydrous), 0.05% Tween-10, pH 6.0 in a pressure cooker for 3 min. Blocking and 

staining was done in 1% BSA, PBS, 10% donkey serum, 5% mouse serum. Rabbit anti-Crry 

(1:1000) was used in blocking buffer overnight. Donkey anti-rabbit HRP (Jackson 

Immunoresearch) was used at 1:200. Staining was visualized with DAB (Vector, IMPACT DAB 

KIT).  

For TROMA-I staining, 7.5 dpc embryos were collected as described, without 

transcardial perfusion. Antigen retrieval was done with 10 mM Tris EDTA ph 9.0 for 3 minutes 

in a pressure cooker. Staining was accomplished with TROMA-I(1:50 dilution hybridoma 

supernatant) (Developmental Studies Hybridoma Bank, Univ. Of Iowa). goat anti-rat light chain 

HRP (Jackson Immunoresearch). Staining was visualized with DAB (Vector, IMPACT DAB 

KIT). Goat anti-rat light chain HRP (Jackson Immunoresearch) was used in blocking buffer. 

Staining was visualized with DAB (Vector, IMPACT DAB KIT). 

FACS of d7.5 Embryos/Implantation Sites  
 

Implantation sites were harvested as described above. Sites were kept in cold PBS on ice 

until all sites were obtained. Each site was then cut into 12 pieces and placed in RPMI 5% fetal 

bovine serum (FBS). These were digested in RPMI containing 5% FBS, 300 µg/ml collagenase F 

(Sigma-Aldrich), 200 µg/ml collagenase L (Sigma-Aldrich), 500 µg/ml dispase (Gibco), and 2 

U/ml DNAse-1 (Roche) at 37°C for 30 to 45 min with a magnetic stir bar for agitation. Cells 

were passed over a 70 µm strainer (BD) to create a single cell suspension. Sites were washed in 

DPBS, 1% FBS, 25 mM EDTA. Cells were stained for FACS with anti-CD45 (30-F11, BD), 
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anti-CD11b (M1/70, BD), anti-Gr-1 (RB6-8C5, BD), and rabbit anti-Crry with a donkey anti-

rabbit DyLight 488 (Jackson ImmunoResearch).  Blocking for FACS was carried out employing 

DPBS, 1% FBS, 25 mM EDTA with 5% a donkey serum and 5% mouse serum.  Tissues were 

examined employing a FACScan (BD) retrofitted with a Cytek Upgrade. 

Cobra Venom Factor (CVF) Treatment 

20 µg of CVF (Quidel, A600) was administered intraperitoneally (IP) with a 31G insulin syringe 

(Terumo).  

Neutrophil Depletion with RB6-8C5 and 1A8 

Neutrophils were depleted by IP injection of RB6-8C5, a mAb against Gr1 (Ly6G/C). RB6-8C5 

is a rat IgG2b Ab. A 250 µg dose of RB6 depleted neutrophils in the periphery for 5 d and a 500 

µg dose depleted for 6 d. 1A8 is a rat IgG2a Ab (BioXCell). A 500 µg dose of 1A8 depleted 

~50% of neutrophils when peripheral blood was assayed at 72 h.  

Sources of RB6-8C5 

In the initial experiments, we used RB6-8C5 that was a gift from Emil Unanue (16). RB6-8C5 

was also produced within the laboratory by growing the hybridoma cells. The mAb was purified 

from supernatants on a protein G column and then dialyzed against PBS. RB6 was also 

purchased from BioXCell.  

C5aR Antagonist Treatment 

AcF-[OP(D-cyclcohexylalanine)WR was produced and purified to 99% in the acetate salt form 

by Biomatik. It was initially dissolved in DMSO (30 µg/µl) and then further diluted in sterile 

water. C5aR antagonist was given IP at 5 mg/kg. Because the half-life of this C5aR antagonist in 

the blood is approximately 4 h (after an initial rapid clearance in the first h) it was administered 

either every 12 or 24 h. Daily dosing spanned 4.5-7.5 dpc with twice a d dosing 6.5 and 7.5 dpc. 
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Results 

Neutrophils Are Not Responsible for Crry-/- Embryo Loss 

The absence of B cells, T cells, and macrophages in the decidua has been reported and 

argues against their involvement in fetal loss [#3117]. Genetic evidence has ruled out a role for 

humoral immunity, as Crry-/- embryo rescue did not occur on the µMT background that lacks B 

cells.  This was further reinforced by the lack of rescue in the C4-/- background. This result rules 

out a role for the lectin or classical pathway of complement. T cell deficient mice did not rescue 

either (unpublished data). A previous report showed neutrophils were present around 7.5 dpc in 

Crry-/- embryos (8). 

To investigate if neutrophils are required for complement dependent fetal loss in the 

Crry-/- model, we utilized the mAb RB6-8C5 that depletes Gr-1 (Ly-6C/G) positive cells , the 

majority of which are neutrophils. A 250 µg dose administered IP depletes neutrophils from the 

peripheral blood for 5 d. A 500 µg IP dose depletes for 6 d. Both doses are followed by a strong 

rebound neutrophilia (approximately doubling of pre-depletion levels), which we were unable to 

overcome with an additional IP dose 4 d after the first dose.  

Embryo loss was reported to occur by 9.5 dpc so we depleted prior to that focusing on 

initiating therapy around 5.5 dpc. The embryo does not reach the uterus and implant until 4.5 dpc 

(17). 5.5 dpc ensured depletion prior to establishment of the maternal vascular connection to the 

embryo and up to the previously noted time of loss. Neutrophil depletion with anti-Gr1 did not 

rescue Crry-/- embryos in utero when mothers were sacrificed between 10.5 and 13.5 dpc (Table 

2-1). This was further born out when liters treated and allowed to deliver (Table 2-2). Multiple 

sources of anti-Gr1 were tried with the same effect including purified IgG from mouse ascities, 



 36 

mAb produced by the hybridoma cell culture facility, and, finally, mAb purchased from 

BioXCell. Depletion of neutrophils with an anti-Ly6G specific antibody (1A8 500 µg) also did 

not have an effect. 

Table 2-1.  Neutrophil Depletion Does Not Prevent Embryonic Loss 
Female x  Male Treatment / 

dpc 
Full Size 
EmbryosΔ

 
Resorbed 
EmbryosΔ 

oEmbryos 
{Liters} 

Rescue 

Crry+/- x Crry+/- RB6 / 5.5 19 (70%, 75%) 8 (30%, 25%) 27 {3} No 
Crry+/- x Crry+/- RB6 / 6.5 13 (76%, 75%) 4 (24%, 25%) 17  {2} No 
Crry+/- x Crry+/- PBS / 6.5 17 (68%, 75%) 8 (32%, 25%) 25 {3} No 
Crry+/- x Crry-/- RB6 / 4.5 6 (43%, 50%) 8 (57%, 50%) 14 {2} No 
Crry+/- x Crry-/- RB6 / 4.5, 6.5 9 (60%, 50%) 6 (40%, 50%) 15 {2} No 
Crry+/- x Crry-/- 1A8 / 5.5 13 (54%, 50%) 8 (46%, 50%) 21 {3} No 
RB6: RB6-8C5 (mAb anti-Gr1) 250 µg IP in Crry+/- x Crry+/- matings and 500 µg IP in Crry+/- x 
Crry-/- matings. 1A8 (mAb anti-Ly6G) 500 µg IP. Two dates listed for dpc indicates the dose was 
given twice. ΔFirst number in parenthesis is the experimentally obtained percent and the second 
number is the percent of embryos expected to be resorbed when all Crry-/- embryos are lost given 
the parental genotypes. oBracketed number is number of liters. No treatment condition 
significantly differed from the expected rate of resorptions (p=0.05).  Embryos were examined at 
11.5 dpc. 
 

Table 2-2.  Neutrophil Depletion Does Not Lead to the Birth of Crry-/- Pups 
Female x  Male Treatment / dpc Crry+/- PupsΔ Crry-/- PupsΔ oTotal 

Pups 
Rescue 

Crry+/- x Crry-/- RB6 / 3.5 6 (100%, 100%) 0 (0%, 0%) 6 {1} No 
Crry+/- x Crry-/- 1A8 / 4.5 4 (100%, 100%) 0 (0%, 0%) 6 {1} No 
Crry+/- x Crry-/- 1A8 / 5.5 4 (100%, 100%) 0 (0%, 0%) 6 {1} No 
RB6: RB6-8C5 (mAb anti-Gr1) 500 µg IP. 1A8 (mAb anti-Ly6G) 500 µg IP. ΔFirst number in 
parenthesis is the experimentally obtained proportion and the second number is the proportion of 
the liter with that genotype in seven untreated Crry+/- x Crry-/- matings. oBracketed number is 
number of liters. No treatment condition significantly differed from the expected rate of 
resorptions (p=0.05)  
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Neutrophils are Present Around All d7.5 Embryos 

Using both FACS and immunohistochemistry, we detected neutrophils around Crry-/- and 

Crry+/- 7.5 dpc embryos (Crry+/- x Crry-/- female x male mating) (Figure 2-1A, C). There was no 

correlation between genotype and the number of neutrophils present (Figure 2-1D). Additionally, 

there was no correlation between CD45+ cells (a marker of hematopoietic derived cells) (or 

CD11b+ Gr1-) with Crry-/- or Crry+/- genotypes at d7.5 (Figure 2-1B, F). We confirmed that the 

anti-Gr1 Ab was able to deplete neutrophils at the site of embryo implantation at 7.5 dpc, three d 

after administration at 4.5 dpc (Figure 2-2). 
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Figure 2-1. Neutrophils are Present Around All Embryos 
A. Crry-/- embryos (left) have three cell populations when stained with anti-Crry and anti-CD45. 
Crry+CD45+ population (maternal hematopoietic derived cells), Crry+CD45- population 
(maternal decidua derived cells), and Crry- CD45- population (embryo and trophoblast derived 
cells). Crry+/- embryos (right) lack the Crry- CD45- population; the embryo and trophoblast 
derived cells cluster with maternal decidua derived cells. B. There is no trend towards different 
proportions of hematopoeitic derived (CD45+) cells around Crry+/- and Crry-/- embryos. C. The 
Crry+ CD45+ population contains Gr1+ CD11b+ positive cells, neutrophils. D. There is no 
difference in the proportion of neutrophils dependent upon genotype. E. Staining control for anti-
Crry.  Crry-/- splenocytes in red and Crry+/- in blue. F. There is no difference in the proportion of 
CD11b+ Gr1- cells dependent upon genotype (subset of Crry+ CD45+). 
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Figure 2-2. Neutrophils Are Present Around 7.5 dpc Embryos and RB6-8C5 Depletes Them 
From Around Embryos 
A. Neutrophils are present around the embryo at 7.5 dpc (anti-Gr1 staining) (200x).  B. This 
staining is specific for Gr-1 and is not present in the isotype control. C. At higher magnification 
(400x) the banded nuclear pattern characteristic of neutrophils can be seen inside of Gr-1+ cells.  
D,E. Identical staining patterns are observed in staining for Gr1 (RB6-8C5, D) and Ly6G (1A8, 
E). F. Ly6G staining is specific to 1A8 and not seen in the isotype control.  G-I. Neutrophil 
depletion with 500 µg RB6-8C5 at 4.5 dpc leads to complete depletion in the tissue at 7.5 dpc of 
Gr1+ (G) and Ly6G+ cells (H and I). em embryo. epc ectoplacental cone; d, decidua. 
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Transient Depletion of the AP Rescues Crry-/- Embryos 

A fully functional AP is required for embryo loss, so we transiently depleted C3 with 

cobra venom factor (CVF) (18, 19). This component of snake venom is a C3b analog that forms 

an AP convertase with Bb (CVFBb), but unlike the host’s C3 convertase (C3bBb) it is not 

susceptible to decay acceleration activity by regulators such as factor H. CVF is however highly 

antigenic and a second dose, after 5 or 6 d, does not deplete because of the development of 

neutralizing Abs.  

Treatment with CVF is sufficient to rescue Crry-/- embryos from attack by the maternal 

AP. Western blot analysis of serum showed no detectable C3 at four d post CVF treatment with 

levels returning to 50% of WT at d 11 (7 d post 20 µg CVF IP).  CVF treatment between 3.5 and 

5.5 dpc fully rescued Crry-/- embryos at 11.5 dpc. Treatment at 6.5 or 7.5 dpc gave a ~50% 

rescue (Table 2-3).  However, CVF at 8.5 dpc had no effect, indicating that the events that result 

in loss are irreversible by this time point.  

Early doses of CVF were also able to rescue the Crry-/- pups at birth (Table 2-4). Pups 

born to CVF treated mothers survived to adulthood and Crry-/- females were fertile. 
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Table 2-3.  Transient Depletion of the AP with CVF Prior to 8.5 dpc Prevents 
Embryonic Loss 
Female x  Male dpc of 

treatment 
Full Size 
EmbryosΔ

 
Resorbed 
EmbryosΔ 

oEmbryos 
{Liters} 

Rescue 

Crry+/- x Crry+/- 3.5 26 (96%, 75%) 1 (4%, 25%) 27 {3} YES** 
Crry+/- x Crry+/- 4.5 19 (95%, 75%) 1 (5%, 25%) 20 {2} YES** 
Crry+/- x Crry+/- 5.5 10 (100%, 75%) 0 (0%, 25%) 10 {1} YES 
Crry+/- x Crry+/- 6.5 13 (87%, 75%) 2 (13%, 25%) 15 {2} PARTIAL* 
Crry+/- x Crry+/- 7.5 24 (89%, 75%) 3 (11%, 25%) 27 {3} PARTIAL** 
Crry+/- x Crry+/- 8.5 17 (68%, 75%) 8 (32%, 25%) 25 {3} NO 
20 µg CVF.  ΔFirst number in parenthesis is the experimentally obtained proportion and the 
second number is the proportion of resorbed embryos expected when all Crry-/- embryos are lost. 
oBracketed number is number of liters. Partial rescue indicates the number of resorbed embryos 
was between a full rescue and no rescue. **p<0.01 and *p<0.05 compared with the proportion of 
full size embryos when not treated. 5.5 dpc had only one treated liter; a statistical test was not 
performed. 
 
 
Table 2-4.  Transient Depletion of the AP with CVF Leads to the Birth of Crry-/- Pups 
Female x  Male dpc of 

treatment 
Crry+/- PupsΔ Crry-/- PupsΔ oTotal 

Pups 
Rescue 

Crry+/- x Crry-/- 3.5 10 (59%, 100%) 7 (41%, 0%) 17 {3} YES*** 
Crry+/- x Crry-/- 4.5 6 (37%, 100%) 10 (63%, 0%) 16 {2} YES*** 
Crry+/- x Crry-/- 5.5 12 (46%, 100%) 14 (54%, 0%) 26 {5} YES*** 
20 µg CVF. ΔFirst number in parenthesis is the experimentally obtained proportion and the 
second number is the proportion of the liter with that genotype in seven untreated Crry+/- x Crry-

/- matings.  oBracketed number is number of liters. ***p≤0.005 compared to the proportion of 
Crry+/- pups when not treated. 
 
 
Properdin (P) Neutralizing Antibody Rescues 

The function of P is critical for efficient AP activity as it stabilizes the C3 convertase by a factor 

of five. The P-/- knockout mouse rescues Crry-/- lethality, similar to FB-/- and C3-/- (20). We 

utilized a rabbit polyclonal Ab to mouse P (Dennis Hourcade) and it rescued Crry-/- viability in 

utero and at birth. The dose required for rescue was 1 mg at 6.5 dpc and 7.5 dpc (Table 2-5). A 

single dose at 7.5 dpc did effect the size of Crry-/- embryos at 11.5 dpc but did not rescue them, 

some were ~2/3 the size of Crry+/- litermates (Supplemental Figure 1). Western blots confirmed 

that this Ab is not depleting. A mAb to properdin (1 mg at 6.5 and 7.5 dpc) was also able to 
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rescue Crry-/- lethality with 32% of offspring being Crry-/-  versus the expected 0% without 

treatment (p=0.0005, 25 pups, 4 liters). Though there was an effect with the mAb to P at 1 mg it 

appeared to rescue only 75% of the expected Crry-/- offspring, a higher dose was not explored. 

 

Table 2-5.  Blocking Properdin Prevents Embryonic Loss  
Female x  Male dpc(s) of 

treatment 
Full Size 
EmbryosΔ 

Resorbed 
EmbryosΔ 

oEmbryos 
{Liters} 

Rescue 

Crry+/- x Crr-/- 3.5 to 7.5 15 (88%, 50%) 2 (12%, 50%) 17 {2} YES*** 
Crry+/- x Crry-/- 6.5 to 7.5 20 (83%, 50%) 4 (17%, 50%) 24 {3} YES*** 
Crry+/- x Crry-/- 6.5 to 7.5† 12 (71%, 50%) 5 (29%, 50%) 17 {2} NO‡ 
Crry+/- x Crry-/- 7.5 14 (48%, 50%) 15 (52%, 50%) 29 {3} NO 

1 mg rabbit anti-properdin. † 500 µg rabbit anti-properdin. ΔFirst number in parenthesis is the 
experimentally obtained proportion and the second number is the proportion of resorbed embryos 
expected when all Crry-/- embryos are lost. Brackets is number of liters. ***p<0.005 difference 
between the expected number of resorptions in an untreated liter. ‡p=0.05 difference between 
resorptions observed and those expected. 
 
 
C3aR-/- Does Not Rescue Crry-/- Lethality 

C3aR-/- mice were mated with Crry--/- mice to generate Crry+/-C3aR-/- mice.  Absence of 

C3aR did not rescue Crry-/- embryos (Table 2-6). This confirms our finding that the small 

molecule C3aR antagonist SB 290157 was also unable to rescue Crry-/- embryos (data not 

shown). CVF was able to rescue Crry-/-C3aR-/- embryos, similar to its effect in the C3aR+/+ 

background. In the Crry-/-C3aR-/- mother (a product of CVF treatment), the low levels due to lack 

of Crry allowed Crry-/-C3aR-/- embryos to survive similar to Crry+/-C3aR-/- embryos. The 

reciprocal mating did not rescue because the Crry+/-C3aR-/- mother had normal AP component 

levels. C3aR transduces the signal of C3a, which is only generated as a result of complement 

activation and is relatively unstable. C5a is implicated because the C6-/- background does not 

rescue, ruling out the role of the MAC complex. The C5-/- background does lead to a small 

change in phenotype, with ~5% of pups being Crry-/- versus the expected 25% (8). This small 
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effect may be mediated by the C5a fragment. Our hypothesis had been that C5a:C5aR or 

C3a:C3aR signaling, or a mix of the two, could drive an inflammatory response around the 

embryo (21, 22).  

 
Table 2-6.  The C3aR-/- Background Does Not Rescue Crry-/- Pups 
Female x  Male Crry+/+ C3aR-/- 

PupsΔ 
Crry+/- C3aR-/- 

PupsΔ 
Crry-/- C3aR-/- 

PupsΔ
 

o Total 
Pups 

Rescue 

Crry+/- C3aR-/- x 
Crry+/- C3aR-/- 

16 (27%, 33%) 43 (73%, 67%) 0 (0%, 0%) 59 {11} NO 

ΔFirst number in parenthesis is the experimentally obtained proportion and the second number is 
the proportion of resorbed embryos expected when all Crry-/- embryos are lost. o Brackets is 
number of liters. There is no difference between what was observed with Crry+/-C3aR-/- x Crry+/-

C3aR-/- and eleven Crry+/- x Crry+/- liters at birth (p-value>0.05) 
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The C5aR Does Not Compensate in C3aR Deficient Animals  

To examine the role of anaphlyatoxin signaling in mediating Crry-/- loss, we administered a small 

peptide C5aR antagonist to Crry+/-C3aR-/- matings (23). Knowing that complement activation 

during this 6.5 to 7.5 dpc window causes the loss of Crry-/- embryos, a dose of 5 mg/kg was used 

either every 12 h on 6.5 dpc and d7.5 dpc or every 24 h from 4.5 to 7.5 dpc. No treatment 

regiment was able to rescue Crry-/- embryos or pups (Table 2-7). DMSO vehicle treatments (2%) 

did not have an adverse effect on viability of the Crry+/+C3aR-/- or Crry+/-C3aR-/- pups.  

 

Table 2-7.  C5aR Antagonist in the C3aR Background Does Not Rescue Crry-/- 
Lethality 
A. Effect on Delivered Liters 

Female x  
Male 

dpc(s) of 
Treatment 

Crry+/+ C3aR-/- 
PupsΔ 

Crry+/- C3aR-/- 
PupsΔ 

Crry-/- C3aR-/- 

PupsΔ 

o Total 
Pups 

Crry+/- C3aR-/- 
x Crry+/- C3aR-

/- 

6.5 to 7.5 bid 4 (33%, 25%) 8 (67%, 75%) 0 (0%, 0%) 12 {2} 

Crry+/- C3aR-/- 
x Crry+/- C3aR-

/- 

5.5 to 7.5 qd 2 (22%, 25%) 7 (78%, 75%) 0 (0%, 0%) 9 {2} 

Crry+/- C3aR-/- 
x Crry-/- C3aR-

/- 

3.5 to 7.5 qd 0 (0%, 0%) 5 (100%, 100%) 0 (0%, 0%) 5 {1} 

B. Effect on Embryos 
Female x Male dpc(s) of 

Treatment 
Full Size 
EmbryosΔ 

Resorbed 
EmbryosΔ 

  

Crry+/- C3aR-/- 
x Crry-/- C3aR-

/- 

4.5 to 7.5 qd 1 (25%, 50%) 3 (75%, 50%)  4 {1} 

Crry+/- C3aR-/- 
x Crry-/- C3aR-

/- 

5.5 to 7.5 qd 5 (63%, 50%) 3 (37%, 50%)  8 {1} 

5mg/kg C5aR antagonist IP. bid: every twelve hours. qd: every 24 h. No Crry-/-C3aR-/- full size 
embryos or pups were recovered. No condition differed from the expectations of no rescue 
(p=0.05). ΔFirst number in parenthesis is the experimentally obtained proportion and the second 
number is the proportion of resorbed embryos expected when all Crry-/- embryos are lost. o 
Brackets is number of liters.  
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Crry-/- Embryos are Lost Starting at 8.5 dpc 

 We observed that loss actually begins at 8.5 dpc where there is a difference in the size of 

the allantoic vessels, a lack of proliferation of the labyrinthine trophoblasts, and a smaller 

embryo in Crry-/- embryos (Figure 2-3). This had previously been noted at 9.5 dpc (Figure 2-4), 

but this process actually begins with fusion of the allantois to the ectoplacental cone at 8.5 dpc. 

The embryo enters the uterus at 4.5 dpc, but it is not until 6.5 dpc that the embryo comes into 

direct contact with maternal blood (17). It is clear that by 7.5 dpc the chorion is bathed in 

maternal blood, especially the ectoplacental cone where the placenta would normally form 

(Figure 2-5). From 6.5 dpc onwards, maternal complement will be in constant contact with the 

developing trophoblast. 

 
Figure 2-3.  Crry-/- Embryos Die at 8.5 dpc due to a Failure of the Allantoic Vessels to 
Attach to the Chorionic Plate 
A. The allantois of Crry+/- embryos attaches to the ectoplacental cone at 8.5 dpc and expands the 
chorionic plate. Crry+/- trophoblast giant cells stain positive (brown) for Crry. B. The allantois of 
Crry-/- embryos does not attach properly to the ectoplacental cone at 8.5dpc and the allantoic 
vessels and trophoblast fail to develop normally. Crry-/- trophoblast giant cells do not stain 
positive (brown) for Crry.  Areas of Crry positive cells in the decidua that are not of fetal origin 
are maternal blood cells within maternal vessels.  FFPE sections: em, embryo; a, allantois; av, 
allantoic vessels; cp, chorionic plate; tgc, trophoblast giant cell; d, decidua.
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Figure 2-4. 9.5 dpc embryos fail to develop allantoic vessels and labyrinth 
A. Crry+/+ embryo is fully developed at 9.5 dpc. Its allantois has fused with the mesoderm 
overlaying the ectoplacental cone (HE, 20x) Black bar delineates the labyrinth. B. The allantoic 
vessels (black bar) have expanded and nucleated fetal red blood cells (RBCs) are visible passing 
into the labyrinth where they come into close proximity with maternal RBCs (enucleated) (200X 
of box in A). C. Crry positive embryo at 9.5 dpc (20x). D. Trophoblast giant cells strongly 
express Crry (brown, rabbit anti-Crry) and separate the maternal decidua from the labyrinth. E. 
Crry-/- embryo at 9.5 dpc has failed to develop. F. The Crry-/- trophoblast giant cells do not stain 
for Crry, the labyrinth has not developed and allantoic vessels did not expand at 9.5 dpc. av 
allantoic vessels. l labyrinth. em embryo. tgc trophoblast giant cell. 
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Figure 2-5. Maternal blood contacts the trophoblast at 7.5 dpc 
A. Maternal RBCs are in contact with the ectoplacenta cone (200x). B.RBCs are visible at both 
ends of the amnionic sac. C. The cells in the epc are trophoblast cells and stain positive (brown) 
for cytokeratin 8 (TROMA-I). D. Gross dissection of 7.5 dpc implantation site shows blood 
around both ends of the implantation site. Space between black bars (right side) is 1 mm.  All 
panels were from a 7.5 dpc liter, sacrificed without perfusion to retain the maternal blood. 
Histology is from FFPE. A. and B. are HE stains. em embryo. epc ectoplacental cone. tgc. 
trophoblast giant cell. 
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Discussion 

 The AP is a constant sentinel activating continuously on surfaces and in the fluid phase. 

Cells carry regulators on their surface and in the plasma to limit this activation. Crry is expressed 

on the surface of mouse cells and carries cofactor activity (24); in plasma, factor H (FH) 

performs this role. Crry is able to permanently stop AP activation on cells and protect them from 

complement activation (25). In this mouse model of excessive AP activation, this protection is 

absolutely necessary as Crry-/- embryos are lost at 8.5 dpc of development. Crry-/- mice can be 

rescued by modulating the levels of the AP in the mother (because AP attack on the placenta 

cannot occur). Crry-/- mice have low AP levels in the plasma; 10-25% the amount of Crry+/+ and 

Crry+/- mice due to unrestricted complement activation on cellular surfaces throughout the 

animal (10). Similarly, FH-/- animals have even lower levels of AP components in the plasma 

due to unrestricted fluid phase turnover (26). The FH-/- mouse subsequently develops renal 

failure similar to patients with MPGN II due to a C3 nephritic factor antibody, which stabilizes 

the AP convertase and turns over the AP (27). 

 C3 deposition occurs on the placenta at 7.5 dpc because there is no regulator to prevent 

activation (8). The GPI-anchored regulator decay-accelerating factor is not expressed on the 

placenta until after ~10.5 dpc (8). Other regulators of complement such as CD59 and FH may be 

present but cannot compensate for Crry. CD59 is an inhibitor of the terminal pathway of 

complement and its expression is very high on human trophoblast cells and begins as early as six 

weeks (28). It is not known at which d CD59 is expressed on the mouse placenta, but it is likely 

present from an early time point. Maternal derived factor H is insufficient to limit the diffuse AP 
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activation seen in Crry-/- mice, indicating that its ability to localize to the sites of AP activation is 

limited in this model. 

 Crry-/- trophoblast cells appear remarkably healthy despite the AP activation that occurs 

on their surface (figure 2-3 and 2-4). Embryos are lost not due to excessive activation and lysis 

upon contact with maternal serum, but because fusion of the allantois to the chorion, a 

developmental process, fails to occur. This is demonstrated by the 8.5 and 9.5 dpc chorionic 

plate failing to develop in Crry-/- placentas. At 9.5 dpc it is clear that the labyrinthine component 

of the placenta has failed to mature because fetal vessels originating in the allantois do not 

infiltrate into the placenta (figure 2-4). The embryo needs to make the connection to the maternal 

vasculature at 8.5 dpc (figure 2-3). In contrast, the trophoblast giant cells that surround the 

implantation site are still present from 7.5-to 9.5 dpc. Intact embyronic and trophoblast tissue 

from Crry-/- implantation sites can be recovered at 9.5 to 12.5 dpc reliably and genotyped, even 

though the embryo is lost at 8.5 dpc.  

 Only transient depletion of the AP, either with CVF or an anti-properdin antibody, is 

required to rescue. There is a critical window at 6.5 to 7.5 dpc where AP activation leads to 

embryo loss. In the case of CVF treatment, treatment during this window produces 

approximately 50% rescue, whereas treatment prior to 6.5 dpc yields 100% rescue. Interestingly, 

if CVF is given at 3.5 dpc, prior to implantation of the fertilized embryo in the uterus, maternal 

C3 levels will have recovered to ~50% by 7.5 dpc (4 d after CVF treatment) and Crry-/- embryos 

survive. This replicates the finding in Crry-/- mothers that full blockade of the AP is not required 

as haploinsufficiency of AP components will rescue. The polyclonal anti-Properdin Ab that was 

able to fully rescue if given at 6.5 and 7.5 dpc produced a somewhat intermediate phenotype if 

only given at 7.5 dpc. Some of the Crry-/- embryos were developmentally delayed and smaller in 
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comparison to their litermates at 11.5 dpc, while other Crry-/- embryos in the same liter were 

fully resorbed similar to a rabbit IgG control treated liter.  

 Though immune cells (CD45+) are present around 7.5 dpc embryos, we saw no trend for 

an increase of CD45+ cells around Crry-/- embryos and specifically, there was no increase in 

neutrophils around Crry-/- embryos. Additionally, there was no correlation between Crry 

genotype and the number of CD11b positive cells at 7.5 dpc. Correspondingly, depletion of 

neutrophils failed to rescue loss. Neutrophils have been found to mediate the link between 

complement activation and embryonic loss in a model of antiphospholipid syndrome (APLS) 

mediated fetal loss. In this model of APLS, the classical pathway is activated by antibodies that 

bind to the placenta, and AP activation leads to C5 cleavage, neutrophil recruitment and reactive 

oxygen species (11, 12). 

Based on past experiments we know that the terminal pathway does not play a role in 

Crry-/- loss, and that if C5a is involved, it is not the dominant mediator of AP activation (8, 9). 

We ruled out the role of C5a and C3a by blocking both receptors (C3aR knockout and C5aR 

antagonist treatment). We were concerned that, because the C5-/- mouse had a limited effect on 

Crry-/- lethality, there might be some overlap in their ability to drive inflammation. C5a is critical 

in a number of mouse models of disease, including colitis, (29), Alzheimer’s disease (30), 

athlerosclerosis (31), and lupus nephritis (22). 

 We did not directly rule out the role of C3b’s interactions with CR3 (CD11b) and CR4 

(CD11c) on immune cells; thus, it is possible that immune cells recruited to Crry-/- embryos 

could be responsible for loss and mediate the developmental defect observed. No uterine decidua 

cells or embryo derived cells express CD11b. Increasing evidence implicates C3b in 

developmental processes. Neuronal cell pruning in development and in models of Alzheimer’s 
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disease implicate C3b deposition on unused synapses and subsequent engagement by microglial 

cells carrying CD11b (32). Previous efforts to identify macrophages (F480+ cells) around 

embryos at 7.5 dpc have failed (8). Efforts to examine CD11c/CR4 around the 7.5 dpc embryo 

have been limited, but the formation of its ligand, iC3b, would require maternal FH mediated 

cleavage of C3b.   

It is also possible that C3b deposition itself could affect the placental cells directly. C3b 

deposition on erythrocyte membranes has been shown to change the membrane properties by 

clustering a variety of cytoskeletal proteins together on the surface (33). The current evidence for 

embryo loss implicates an unknown mechanism that operates through C3b activation and leads 

to a failure of development of the embryonic vessels in the trophoblast from the very beginning, 

(8.5 dpc). This AP dependent mechanism is not mediated by any of the classical mediators of 

complement, including the MAC, anaphylatoxins or neutrophils. This model may be related to 

human diseases that do not involve these effects, but instead feature C3b deposition, specifically 

C3 glomerulonephritis, DDD and AMD, potentially Alzheimer’s disease, and the physiologic 

process of synapse remodeling. 
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!Supplemental Figure 2-1. Administration of anti-P at 7.5 dpc Partially Delays Embryonic 
Loss 
A. When compared to anti-properdin at 6.5 and 7.5 dpc, a single dose at 7.5 dpc results in some 
Crry-/- embryos weighing between what full size embryos weigh (all are Crry+/-, green) and what 
resorptions weigh. All Crry-/- embryos in the liter treated with a single anti-properdin dose at 6.5 
dpc were resorbed. Black symbols indicate embryos where no embryonic material could be 
recovered. 
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Chapter 3 
 
 

Improvements to Targeted Sequencing and Methods for Illumina Sample Preparation 
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Introduction 

 The expectations of the rare variant common disease hypothesis are that a diversity of 

rare, relatively recent mutations contribute to common diseases (1, 2). These mutations must be 

directly sequenced because of their diversity and rarity. This is in contrast to common variants, 

which are observed efficiently by genotyping.  Genotyping platforms have grown significantly 

and millions of SNPs can be interrogated simultaneously, but the majority of variants in a 

person’s genome are rare and will be invisible to genotyping methods. Ever larger genotyping 

platforms and those focused on rare coding alleles (Illumina “Exome” Chip) are available but 

their performance in terms of sensitivity and specificity on very rare variation has yet to be fully 

studied. 

 It is now possible to sequence the entire genome of a human for $1,000; however, this 

cost is still substantial when we consider the sample sizes required. Efforts to select portions of 

the genome using hybridization-based methods have been incredibly successful (1) but introduce 

significant additional labor and expense to the process. Recently, the cost of sequencing even the 

coding 1-2% of the genome (the exome, whole exome sequencing, WES) was approximately 10 

to 15% of whole genome sequencing (WGS). As the cost of sequencing itself has fallen, and thus 

the cost of WGS, WES is now only 25-50% of WGS. As sequencing technologies evolve, WES 

and WGS will converge in terms of obtaining the data. The analytic and storage costs will 

remain higher for WGS for longer. 

We undertook to significantly decrease the cost and labor required to partition specific 

areas of the genome, such as all known genes associated with a disease based on GWAS results 

and/or the coding parts of genes within a pathway. Such an approach would leverage our existing 
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knowledge about the genetics of disease and what we know about the underlying biology in 

order to increase our power relative to WES. 

 Initial efforts to use pooled sequencing of amplicon libraries were daunting because of 

the amount of follow-up genotyping required (3). When we initially utilized this approach on the 

Illumina Genome Analyzer IIx, the machine error rate was >1% and even covering each allele 

30-fold yielded an overwhelming number of potential variants. The lower error rate and 

substantially higher output of the HiSeq instrument likely improves the reliability of pooled 

sequencing. Additionally, because it is based on PCR, the number of genes that could be targeted 

was limited and did not scale well from five to 50. 

 Our goal was to adapt a method that allowed for unambiquous variant calling at the level 

of the individual. This would allow for highly confident genotype calling from the beginning and 

permit immediate comparison to a number of public datasets that were underway, such as the 

1000 Genomes Project (4). Hybridization based strategies that utilized short, custom oligos were 

an excellent candidate because of their rapid scalability and adaptability. Initially this approach 

utilized modified array comparative genomic hybridization (aCGH) methods (5) and later 

transitioned to biotinylated oligos in solution (6, 7). Array based methods were low throughput 

due to high labor commitments and they were technically challenging. Also, both strategies were 

very expensive on a per individual basis.  

 Illumina sequencing allows for the incorporation of a molecular barcode into the Illumina 

adapter and therefore multiple samples to be sequenced simultaneously on the same flow cell. 

Utilizing indexing adapters dramatically affects the efficiency of the capture (8-10). A larger 

proportion of the DNA recovered is not from the targeted regions. This is because the barcode in 

the adapter allows intermolecular base pairing of the adapters. The targeted fragments of DNA 
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anneal specifically to the oligos, but they bring non-specific fragments with them through these 

adapter interactions. 

We solved this problem by overcoming the challenges introduced by multiplexing 

samples prior to capture. This allowed us to both decrease the cost per individual of the capture 

step and also reduce the number of captures being done, resulting in a savings of labor. We 

validated this method in a number of commercial platforms and ultimately used the Nimblegen 

platform on over 2,000 individuals. 

 The other roadblock to scaling targeted capture is library preparation. I simultaneously 

improved a method of generating Illumina sequencing libraries for capture and sequencing. I 

focused on optimizing the enzymatic steps required and removed numerous steps yielding a 

protocol that requires a single cleanup and takes only a few hours to process 96 samples.  

  

Materials and Methods 

Illumina library preparation 

 A detailed step-by-step protocol for making 96 Illumina libraries is in Supplement 3-1.  

Illumina Adapter Oligos 

Illumina Multiplex Adapter 1:  

5′-/5Phos/GAT CGG AAG AGC ACA CGT C*T-3′ 

Illumina Multiplex Adapter 2:  

5′-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TC*T-3′ 

*=phosphorothioate bond. Underlined sequence is shared and the basis of annealing. These were 

HPLC purified. They must be annealed before use. See supplement 3-1 for protocol for 

annealing adapters.
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Indexing and Dual Indexing 

 We designed 108 indexes, 96 for routine use and an additional twelve. They are 7 bp in 

length and separated from each other and the 96 7 bp indexes the Washington University 

Genome Technology Access Center has by 3 errors (11) (Supplementary Table 1). We also 

designed six base pair indexes that are separated by four errors; these were incorporated into 

primers that index the other, non-indexed, Illumina adapter arm. This “dual index” is read by 

priming off the Illumina adapter flow cell following read one and subsequent uracil cleavage. 

Indexing Samples with PCR 

 A detailed protocol is included in Supplement 3-1. Multiplex Primer 1 was purchased 

HPLC purified or PAGE purified.  

Multiplex Primer 1: 5′ AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA 

CAC GAC GCT CTT CCG ATC *T-3′ 

The indexing primers used are in Supplement 3-2. They were ordered PAGE purified. 

Introducing the Dual Index with PCR 

 This used the same conditions as as in supplement 3-1, except the annealing temperature 

was 57°C. Dual index oligos are in Supplement 3-2. 

MyGenostics GenCap Capture 

 We followed the manufacturer’s protocol. No custom blocking oligos were used. 

Nimblegen SeqCap Arrays and SeqCap EZ Capture 

 We followed the manufacturer protocol expect the blocking oligos were custom and 

reflect the indexing strategy we used. 1000 pmol of each oligo was used for a single capture 

reaction (1 µg of a DNA pool input). 

These blocking oligos are: 
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Block 1: 5′-AAT GAT ACG GCG ACC AACC GAG ATC TAC ACT CTT TCC CTA CAC 

GAC GCT CTT CCG ATC T -3SpC -3 ′ 

Block 2 dI: 5′- CAA GCA GAA GAC GGC ATA CGA GAT III III IGT GAC TGG AGT TCA 

GAC GTG TGC TCT TCC GAT CT -3SpC-3′ 

Inosines are underlined. Some type of terminator group is required at the 3′ of Block 2 dI to 

avoid priming off of it in the post-capture PCR and thus erasing the barcode.  Both oligos were 

HPLC purified. 

Post-Capture PCR 

 We followed the Nimblegen SeqCap protocol, except for these modifications: “post-

capture oligo 1” and “post-capture oligo 2” or post-capture oligo 2 and a dual indexing oligo 

(Supplement 3-2) were used to either preserve the initial index and/or add a second index. Oligos 

were at a final concentration of 1 µM. Annealing was at 57°C for 30 seconds. Each capture was 

split into four 50 µl PCR reactions. No betaine was included in the post-capture PCR; it will 

cause DNA to bind to the streptavidin beads and inhibit the PCR substantially. Post-capture PCR 

was carried out for 10 cycles if the capture was to pooled prior to sequencing or 12 cycles if it 

was not. PCR reactions were cleaned up twice with 1.4-fold volume of Serapure beads (12), 

twice to remove PCR primers.  

Post Capture Oligos (desalted, not purified): 

Post-Cap 1: 5′-AAT GAT ACG GCG ACC ACC GAG ATC-3′ 

Post Cap 2: 5′-CAA GCA GAA GAC GGC ATA CGA GAT-3′ 
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Evaluation of Uniformity of Interval Capture 

 The Genome Analysis Toolkit (GATK) Depth of Coverage function was used to 

determine the average coverage of each targeted region (i.e. exon) (13).  

SybrGold DNA Quantification 

 SybrGold (Life Technologies) was diluted 1:2000 in 10mM Tris pH 8. 19 µl was mixed 

with 1 µl of sample in duplicate in a 384-well plate (Greiner #781076). Fluoresence was read on 

a BioTek Synergy with excitation at 495 nm and emission at 537 nm. Values were compared 

with standard curve with 11 values between 75 ng/ul and 1 ng/ul. 

Read Alignment and Data Processing 

 See Chapter 4. 

 
Results 

Novel Illumina Library Preparation Method Without Cleanup 

 Core labs and third party contractors often require 1 µg of genomic DNA for preparing 

Illumina libraries. This is a significant amount of DNA for many repositories and can be an 

impediment to conducting sequencing experiments. Using <500 ng, and often only 200 ng 

(~1000 samples), we constructed nearly 3,000 Illumina libraries using a modified protocol that 

removes all cleanup steps until after ligation. This protocol also keeps the DNA in the same tube 

minimizing losses due to transfer.  

This is accomplished by using temperature to modulate the activity of each enzyme. T4 

DNA polynucleotide kinase and T4 DNA polymerase both are active at 25°C and heat 

inactivatable. End repair of physically sheared DNA is carried out with these enzymes in 10x 
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ligation buffer with dNTPs. Subsequently, Taq polymerase is added instead of the Klenow 

exonuclease deficient (exo-) polymerase fragment because it is active in the temperature range 

that inactivates the end-repair enzymes. Like Klenow exo-, Taq has a ~1,000 fold preference for 

adenine over guanine addition to a non-overhanding 3′ end (14). Finally, ligation of the annealed 

Illumina adapters occurs at temperatures at which Taq is not functional (25°C). This allows the 

entire protocol to be done quickly with no cleanups (Figure 3-1). This method was highly 

reproducible in terms of the size of library recovered and the success rate. Of 690 libraries made 

in one set, only one failed. 

In a second group of 950 individuals using 200 ng of DNA, 24 failed in a first attempt. 

When these 24 individuals were re-processed, including shearing, 22 of 24 were successful. 
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Figure 3-1. Illumina Library Preparation 
A. DNA is randomly fragmented. B. Fragmented DNA has overhanging edges which is filled in 
with T4 DNA polymerase. T4 polynucleotide kinase phosphorylates the 5′ hydroxyl. C. An 
adenosine is added to the 3′ position at each end of the DNA fragment with either Klenow (exo-) 
fragment or Taq polymerase. D. Illumina adapters with an overhanging “T” are ligated onto the 
DNA fragment, utilizing TA cloning. These adapters are asymmetric with the common part 
shown in green and non-common part in purple and orange. E. Bead based size selection 
removes adapter-dimers and fragments below the desired size. F. PCR is done with primers 
specific for each of the non-complimentary Illumina adapter arms. One primer also contains a 
unique set of nucleotides, the barcode (red). 
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Covaris Fragmentation Is Optimal Compared with Plastic PCR Plates 

 DNA must be randomly fragmented prior to making an Illumina sequencing library. We 

required scalable methods that were reliable and wasted very little DNA. 96 well PCR plates can 

be used with the Covaris system in place of Covaris microTubes to reduce the cost of library 

preparation (15). However, in practice this protocol is extremely labor intensive as it is done in a 

very large volume relative to the plate well and requires subsequently concentrating the DNA by 

binding it to beads. Using such large volumes and additional manipulations also makes cross 

contamination more likely. Finally, the shearing that is produced is not nearly as tightly focused 

as that produced using Covaris microTubes on the Covaris E-series instrument (Figure 3-2). We 

utilized microTubes because they were extremely reliable, did not waste DNA in the 

fragmentation process, and the small volumes achievable simplified the workflow. 

 

Figure 3-2. Covaris Shearing Is Narrowly Focused Compared to Plastic Plate Based 
Shearing 
A. Initial attempts to do shearing based on the protocol in Fisher et. al. (15). B. Best results were 
obtained in a 96-well PCR plate (Applied Biosystems MicroAmp PCR plate). C. An Illumina 
library (post-PCR) using DNA sheared in a Covaris microTube. 
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Cleanup with “SeraPure” Beads versus AMPure XP Beads 

 We utilized a previously described “home-made” magnetic bead purification slurry based 

on the same properties utilized by AMPure beads (12) (16). This method was able to perform 

size selection as well. It removed any Illumina adapter dimers created during ligation prior to 

PCR (Figure 3-3). We saw no decrease in yield for ~1,200 libraries compared to ~1,500 libraries 

that utilized AMPure XP beads. 

 
 

 
Figure 3-3. Post Indexing PCR Versus Pre-PCR Library 
Illumina libraries, after 10 cycles of PCR with an Illumina indexing primer followed by cleanup 
with 1.2x magnetic beads (L). An equivalent amount of sheared library, after adapter ligation and 
bead clean-up (R). They are loaded in pairs and run on a 2% agarose gel to assess successful 
library construction   
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Nimblegen Sequence Capture Can be Efficiently Multiplexed with Degenerate Blocking Oligos 

 The original Nimblegen SeqCap protocol utilized the Illumina PCR primers for blocking 

the adapter arms during hybridization at ~100-fold molar excess compared to the Illumina library 

being hybridized. The incorporation of indexes into these barcodes means that the blocking 

oligos will only pair properly with one end. To correct this, we utilized blocking oligos with the 

an additional 7 bp where the index resides. Further, to make a generalized, oligo we utilized 

deoxyinosine, which pairs promiscuously with adenine, cytosine, or thymine (Figure 3-4). 

 

Figure 3-4. Capturing Indexed Samples Requires Blocking the Index. 
A. Our preferred strategy utilized a longer blocking oligo for the indexed adapter arm. The 
nucleotides encoding the barcode were represented as either a set of inosines, which will base 
pair promiscuously, or degenerate bases. B. An alternative strategy is to use two short oligos for 
each part of the barcoded adapter. This leaves the barcode itself unpaired and was not our 
preferred method. The shorter oligos may require a locked nucleic acid to make the base pairing 
stable during hybridization conditions. 
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Nimblegen Sequence Capture Outperforms MyGenostics GenCap 

 In terms of the percentage of reads on target and the diversity of the Illumina libraries on 

a per-individual level, SeqCap EZ captures outperformed Nimblegen Sequence Capture Arrays 

and the MyGenostics GenCap (Table 3-1). The MyGenostics capture had widely varying capture 

efficiencies. The SeqCap EZ was technical simple, robust and performed well with multiplexes 

up to 200 individuals. 

 
Table 3-1. Nimblegen SeqCap Outperforms Other Capture Methods in 
Multiplex Capture 
Capture Ind./Capture Avg % On Target % Duplicates 
SeqCap Array 24 {2} 67 24 
SeqCap Array 48 {1} 70 48 
MyGenostics 12 {3} 38 ± 5 26 ± 3 
MyGenostics 24 {4} 37 ± 5 41 ± 9 
MyGenostics 50 {3} 31 ± 6 42 ± 11 
SeqCap EZ 100 {8} 62.5 ± 3 8.7 ± 6 
SeqCap EZ 200 {1} 67.9 ± 2 10.4 ± 2 
Ind./Capture: Number of individuals uniquely indexed and captured together (ie “plex”). Number 
in brackets is number of captures at that “plex”. SeqCap EZ samples summarized here were 
sequenced to a median of ~70x average coverage for a 1 Mb target. SeqCap Array: Nimblegen 
2.1M SeqCap Arrays.  MyGenostics: GenCap capture. Both the 2.1M SeqCap arrays and 
GenCap targeted ~580 kb. SeqCap EZ is a solution-phase capture utilizing long biotinylated 
DNA oligos. 
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High Levels of Multiplexing Do Not Affect Capture Efficiency 

We systematically increased the number of individuals captured at one time from 24 to 

200 and saw very little effect on the specificity of the capture reaction and only a small effect on 

the diversity of post-capture libraries (percent duplicate reads). The difference between 100 and 

200 individuals was 1.7% of reads being duplicates at 70-fold average coverage for a 1 Mb target 

region (Table 3-1). 

Concordance to Array Based Genotypes 

 91 individuals that were sequenced also had array based genotyping data at 277 SNPs 

overlapping our targeted regions. At the individual level, we observed on average 99.8 ± 0.4% 

concordance (± standard deviation, maximum 1.0, minimum 96.4%) for the 277 SNPs between 

sequencing and arrays at a median depth of 70-fold coverage. Similar statistics were obtained for 

the average concordance for each SNP, 99.8% (maximum 100, minimum 96.7%).  

Empirical Rebalancing of Captures Improves Uniformity 

 Nimblegen capture probes are designed to be isothermal, which should mean that they all 

perform similarly in terms binding DNA during hybridization. In practice they do not perform 

equally well. The CV (standard deviation/average) for target interval average coverage in one 

initial design was 0.53 when we considered the coverage of all targets across 690 individuals 

captured (Figure 3-5). We empirically rebalanced the number of times a probe was replicated in 

the capture design for a second set of individuals captured for the same regions. We did this by 

assessing how many fold below the median an interval was and increasing the number of probes 

accordingly, up to a 12 fold increase. This improved the uniformity of the capture design. 950 

individuals captured for the same regions had a CV of 0.40. 
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Figure 3-5. Empirical Rebalancing of Nimblegen SeqCap EZ Probe Density Improves 
Capture Uniformity 
A. Variability in the coverage of intervals for the initial sequence capture design for our 
preeclampsia sequencing (737 kb) yielded a coefficient of variance of 0.53 across all 700 
individuals. B. Increasing the probe density for regions that were captured below the median 
improved the uniformity across all captured regions. The coefficient of variance was 0.40 across 
a different 950 individuals. 
 
 
Read Based Pooling is Superior to Pooling of Equivalent Masses 

 10 pools of 95 individuals were made using an equal volume of each sample. These were 

then assigned a unique dual index using PCR. All ten pools were sequenced on a MiSeq using a 

2x30 bp run with two index reads (7 bp index and 6 bp dual index). The relative concentration of 

each individual to the pools was assessed. 
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Pooling using relative read-depth based concentration estimates outperformed mass based 

pooling. Read-depth based pooling yielded pools exhibiting CV of 0.04-0.0.13, in contrast to 

mass based pooling that exhibited CVs of 0.25 to 0.3 (Figure 3-6). Mass based pools could be 

corrected based on their relative read-based concentrations to some extent (Table 3-2).  

Over multiple captures, the actual CV of the reads assigned to each individual after the 

capture enrichment step was greater than 0.2 (not all captures shown). In the ten pools we 

evaluated for relative read-based capture versus mass based capture the CV of pools went up for 

samples that had been pooled based on relative read-depth. Capture had more of an effect on 

these pools than it did on mass based pools, but it in the final post capture sequencing, read-

based pools were still better because they started with such a uniform composition (Table 3-2). 

 
Table 3-2. Read Depth Based Pooling Outperforms Mass 
Based Pooling 
VIP Group CV of Pool CV After 

Correction 
Capture CV 

1 4.1 3.6 12 
2 5.7 5.6 11.6 
3 9.4 - 16.8 
4 30.5† 20.4‡ 14.3 
5 8.4 - 14.5 
6 6.5 5.6 17.4 
7 13.1 - 17.5 
8 10.9 - 12.7 
9 6.6 - 9.1 
10 26.8† 19.0‡ 11.2 

CV: coefficient of Variance (average/standard deviation). †These pools were initially constructed 
using mass based metrics. ‡After sequencing the pool, corrections were calculated based on read 
depth, and this was sequenced again. Capture CV is based on the sequencing done after capture. 
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Figure 3-6. MiSeq Read-Depth Based Normalization is Superior to Mass Based Pooling. 
A. Pool of 96 samples based on combining equal masses of each sample. Masses were derived 
from a SybrGold based assay utilizing a standard curve. All samples were quantified in duplicate 
in a 384-well plate. Samples 22 and 66 are off the scale (actually double the height of the 
presented y-axis). The coefficient of variance of the pool in panel A is 30%. B. Pool of 96 
individuals combined based on their relative read depths from a pool of equal volumes. The 
coefficient of variance of this pool is 3.6%. Using the MiSeq platform and dual indexing, 
hundreds to thousands of samples can be normalized at the same time. 
 
 
 
Discussion 

 Partitioning the genome into regions of interest, such as subsets of genes will continue to 

be of interest until WGS becomes so affordable it is widely available in society. Until then WES 

and partitioning even smaller subsets will remain an attractive way to identify rare variants. 

Partitioning the genome introduces substantial labor and costs that do not scale linearly with the 

subset of the genome targeted. 

 This work helps reduce the cost in terms of labor and money in two ways: first by 

streamlining library prep, and second by reducing the number of captures that must be done. 
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Others recognized the need to simplify these steps too. Independently, Qiagen began marketing a 

“one-tube” library preparation kit. Nimblegen now supports multiplex capture, though our 

method was developed independently. A variety of other multiplex capture strategies have either 

been published or developed since we undertook to do this as well (17) (12) (Andrey Shaw, 

unpublished). While our pools of 100 to 200 individuals worked well for the purpose of detecting 

germline mutations, we did not evaluate if smaller pools would be suitable for applications that 

require very high depths of coverage (>200x).  

 Normalization of samples is incredibly important to maximize the number of individuals 

that can be sequenced simultaneously. For small numbers of samples, qPCR works well. But for 

hundreds or thousands of samples, read based pooling is superior to mass based pooling and 

requires significantly less time and labor while being more accurate. 

 Multiplex capture is another tool that can be used to identify rare variation in genes 

already associated with a disease. It is more scalable than MIP based methods (18) and allows 

immediate assignment of individual genotypes compared to pool based methods (3). 
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Supplement 3-1 
Illumina Multiplex Library Protocol 

 
Shearing: 
NOTE:  shearing takes place in 55ul. 6ul of that is 10x Ligase Buffer.  The rest is DNA and H2O. 
NOTE:  Pulse spin is a table top swinging bucket centrifuge spinning up to ~1200. 
 
This protocol works very well for 100ng-1ug.  We shoot for 500ng, but there are obviously 
quantitation errors.  
 
Quantities in excess of 1ug may need adjustment of one or more steps, specifically the amount of 
adapter.  
 

Component Volume for 1 sample 
10x Ligase Buffer 6ul 
H20 55-6=49-Vol DNA 
Total 55-Vol DNA 

1) In a prep plate, place the H20 and 10x Ligase Buffer mix in each well of a 96 well PCR 
plate. “Shearing Prep Plate”. 

2) Check orientation of gDNA plate and “Shearing Prep Plate”.  A1 in upper left.  Add 
DNA to H20 and 10x Ligase Buffer. 

3) Pulse spin the Shearing Prep Plate. 
4) Check  orientation of Shearing Prep Plate and Covaris 96 well plate (PN: 520078).   
5) Transfer samples from Shearing Prep Plate to Covaris 96 well plate. 
6) Cover with aluminum seal provided.  Cover with ELISA Plate film. 
7) Spin Plate. 
8) Take to GTAC.  

a. Make an appointment in advance.  email Matt Minton:  
mminton@pathology.wustl.edu or Toni Sinnwell tsinnwell@path.wustl.edu to 
reserve.) 

9) Use the following for 55 µl volume and a 250 bp size. 
Duty Cycle 10% 
Intensity 5 
Cycles/Second 200 
Time (sec) 85 
SHORTER SHEARING TIME WILL RESULT IN A 
LARGER FRAGMENT DISTRIBUTION.   

50seconds = 300bp 
85seconds = ~250bp 
120 seconds = 200bp 

10)  Check that the number of steps/samples on the Sonolab software is the same as the 
number of samples you will do. 

11) Save the protocol with a unique name.  You must save before starting. 
12)  Click Check Alignment (after you have finalized the protocol).  This will place the 

carrier arm at the same height and position it will start the protocol at.   
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13) Check water bath level.  Add Plate.  Water should be up to top of skirt but not over the 
aluminum foil cover.  Water can be added from MQ Carboy on bench. 

14) Use “Change Bath” to raise transducer to adjust water level if too much water. 
15) Shear. Check to make sure the AFA fiber is shaking in the first well. 
18) Can leave plate overnight at 4°C after shearing is done. 
 

THAWING/PREP STEP: 
Thaw 25mM each dNTPs (Bioline). 
Thaw Enzymatics 10x Taq Buffer. 
 
End Repair:   

1) Pulse spin the Covaris plate. 
2) Transfer samples out of Covaris plate into a new plate, the “Construction Prep Plate”.  

Using a multichannel with range ~5-200.   
3) Pulse spin the Covaris plate. 
4) Use a P10 multichannel to transfer any residual sheared DNA (uses 10ul skinny tips to 

get right to the bottom). 
5) Spin the “Construction Prep Plate.”   
6) Seal “Construction Prep Plate”.  
7) Make End Repair Mix 

Component 1x 100x 
Sheared DNA in ~1x Ligase Buffer 50 NOT IN MIX. 

ADD LATER 
dNTPs  (25mM each) 1 100ul 
Enzymatics T4 DNA Pol (3k U / ml) 2.25 225ul 
Enzymatics T4 PNK (10k U / ml) 2.25 225 
10x Ligase Buffer 0.545 54.5 
CLEAN H20 3.955 395.5 
 10ul of mix  

8) Use a P10 Multichannel to put 10ul End Repiar Mix in each well of a semi-skirted plate, 
“Library Making Plate”.  

9) Transfer 50ul of the Sheared DNA from “Construction Prep Plate” to “Library Making 
Plate”.  Pipette each row/column up and down 2x. 

10) Cover with sealer film.   
11)  Place in Thermo cycler. 40 min at 20°C and then 25 min at 75°C to heat inactivate. Use 

Heated Lid. 
 
A-tail: 
We use Taq here.  It is possible to use Klenow Exo (-) here instead in the same way.  Replace 
Taq Buffer with T4 Ligase Buffer and adjust volume, 3ul of Klenow (Exo -) and temperature 
accordingly (20 min 37°C, 20 min 75°C). 
 
We can add Taq or Klenow exo (-) here because they have a ~1000-fold preference for A over T 
addition to a blunt end, and very low affinity for G or C transfer to blunt ends. 
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It may be possible to add the dATP and Taq at the beginning and length the heat-inactivation 
step of the End Repair so it adds the A-tail too. 

A-Tail Reaction 
Component 1x 104x 

60ul End-Repair Rxn 60 NOT IN MIX! 
dATP (10mM) 0.65 67.6 
CLEAN H2O 1.95 202.8 

10X Enzymatics Taq Buffer 0.5 52 
Enzymatics Taq 1.9 197.6 

 5ul of mix!  
 

12)   Pulse spin. 
13)   Add 5ul of A-tail mix with P10 multichannel. 
14)   Set P200 multichannel to 60ul.  Use to mix each sample 3x.  
15)  Incubate at 70°C for 25 min.   

 
THAWING/PREP STEP 
Make FRESH 80% EtOH with MQ H2O and clean EtOH.  
Get 25uM Multiplex Adapter out of -20°C 
Get 2X Rapid Ligase Buffer out of -20°C. 
Thaw 5xHF Buffer. 
 
Adapter Annealing:   
Resuspend adapters in 1x HF Buffer (From Phusion Kit) to 100 µM.  
Combine them 1:1.   
98°C 5 min and then cool at 0.1°C/second down to 15°C.  
Dilute 1:1 with 10mM Tris, 0.1mM EDTA. Final concentration is 25 µM. 
 
Adapter Ligation:   
Prepare the following 104x reaction ON ICE. 

Reagent 1x 104x 
A-tailed Rxn 65ul NOT IN MIX!!!! 

2x Rapid Ligase Buffer 18.5ul 1924ul (962x2) 
25uM Multiplex Adapter 

Annealed 
1.5ul 156 

Enzymatics High Conc. Ligase 1ul 104-ADD LAST! 
CLEAN H2O 1ul 104 

 22ul to each sample  
Keep Ligation mix on ice.   
Transfer 22 µl of mix to Library Making Plate. With Plate on ice. 
Mix 2x with multichannel set to 80 µl. 
Incubate 25°C for 20 min. 
**CAN STOP HERE AND FREEZE!** 
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THAWING/PREP STEP 
Thaw Multiplex Primer 1 and Indexing Primers. 
Gather 5M Betaine, 5X HF Buffer and dNTPs (25mM each). 
 
The ligation already has 3.2% PEG from the ligation buffer.  We must take this into account 
when adding the cleanup beads or any Illumina adapter dimers will be carried forward into PCR. 
 
Beads retain DNA fragments >150bp at ~8% PEG. Below 6.7% PEG almost no DNA was bound 
to beads. 
 
Clean with 0.65x SERAPURE / AMPURE XP BEADS (Rohland et. al.) (12): 

1) Transfer 56.5ul of beads (0.65x) to each well. 
2) Mix 10x. 
3) Cover. Allow DNA to bind beads for 10 minutes. 
4) Place on magnetic plate for 10 minutes. The beads are much more stable after 10 minutes 

than after 5 minutes. 
5) Remove Bead/PEG Supernatant from wells (set pipette to 150ul) with multichannel. Use 

a smooth action to prevent disturbing beads.  
6) Wash with 200ul FRESH 80% EtOH.   
7)  Incubate 30sec with 80% EtOH. Remove EtOH. Repeat 30 sec EtOH wash. 
8)  Let wells air dry 3minutes. 
9)  Aspirate any EtOH that has gathered in the base of the well. 
10)   Dry 2-5 more minutes. Do not dry longer than 10 minutes. 
11)  Elute in 40ul Buffer HF/H20 mix.   

Component 1x 110x 
5x Buffer HF 10.7 1177 (2x588.6) 
H20 29.3 3223 (4x805.75) 

12) Place plate on magnet and transfer the whole volume to a new plate. Cover. 
13) Gently spin new plate. Separate on magnet.  
14) Second separation is a good idea to prevent ANY bead carryover into PCR. Betaine acts 
like PEG and if there are sufficient beads the bead+Betaine combo will substantially inhibit 
the PCR reaction (qPCR estimates of 1000-fold inihibition). 
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Multiplexing PCR:  This will select for fragments with an adapter on each end and will ensure 
that the finished library is predominately molecules with a different adapter on each end.  
 
Get a plate with 1 µl of Indexing Primer in each well or alternatively place the primer in after the 
PCR master mix and Cleaned Ligation Product. 

Reagent 1x 104x 
Cleaned Ligation Product 36 µl NOT IN MIX 
5x HF Buffer 1.37 µl 142.48 
5M Betaine 11ul 1144 
dNTPs, 25mM each mix .44 45.76 
Multiplexing Primer 1 @ 25mM 1 98.8 
Indexing Primer @25mM 1 already in plate NOT IN MIX 
Phusion polymerase 1 104 
CLEAN H2O 3.19 352.56 
55 ul rxn 18 to each (Indexing 

primer is separate) 
 

 
1) Add 18 µl to each well.   
2) Transfer the 36ul from the 2nd separation of the post-adapter ligated, cleaned sample to the 

PCR rxn. Mix 5x.   
3) Save remained for gel analysis 
4) Cover. Pulse spin. 
 
Indexing PCR: (10 cycles). If yield is a concern either because very low input or will capture 
one individual at time, do 12 – 14 cycles. 
1) 98°C 30 sec 
2) 98°C 10 sec 
3) 62°C 30 sec 
4) 72°C 45 sec 
5) go to 2, 9 times. 
6) 72°C 5 min 
7) 8°C forever. 
 
We want to limit the number of cycles to prevent artifacts from being introduced and to limit 
the skew in fragment representation.  Skewing results from the molecules that are “lucky” 
enough to be amplified in the first round; they will have a small chance of becoming a 
disproptionately large percentage of the mixture.   
 
Can freeze this reaction or run on gel the same day. 
Run 2ul of the pre-indexing pcr (cleaned ligation product) with 2.75ul of uncleaned PCR 
product on a 2% agarose gel. 

 
Goal: See a fragment of ~the correct size in all lanes (200-500bp).  PCR-Matured Adapter 
Dimer will be ~143bp.  This must be removed with a 1 x bead cleanup prior to capture. 
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Purify with 1.2x SERAPURE/ Ampure XP Beads: 
Check volume of remaining PCR reacations. 
Clean with 1.2x beads as above.   
 
Elute with 75ul of Clean H2O.   
Let sit for 5 minutes, place on magnet for 5 minutes,. 
Transfer supernatant to a new plate labeled with SAMPLES, DATE, INDEXES USED, and 
CLEANUP VOLUME and ELUTION VOLUME/TE or H2



81#

S
u
p
p
l
e
m
e
n
t
 
3
-
2
 
 

M
u
l
t
i
p
l
e
x
i
n
g
 
I
n
d
e
x
e
s
 

 I
n
d
e
x
 
 

N
a
m
e
 

P
r
i
m
e
r
 
S
e
q
u
e
n
c
e
 

A
A
C
C
A
G
G
 

MP
_T

_1
 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cc
tg

gt
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
A
C
C
G
T
C
 

MP
_T

_2
 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ga
cg

gt
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
A
C
G
C
G
A
 

MP
_T

_3
 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tc
gc

gt
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
A
G
A
T
G
A
 

MP
_T

_4
 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tc
at

ct
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
A
G
T
A
T
A
 

MP
_T

_5
 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ta
ta

ct
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
A
T
A
G
A
A
 

MP
_T

_6
 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tt
ct

at
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
C
C
G
G
C
C
 

MP
_T

_7
 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gg
cc

gg
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
C
G
A
A
G
T
 

MP
_T

_8
 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ac
tt

cg
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
C
G
C
A
T
C
 

MP
_T

_9
 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ga
tg

cg
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
C
T
A
C
T
A
 

MP
_T

_1
0 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ta
gt

ag
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
C
T
C
A
A
G
 

MP
_T

_1
1 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ct
tg

ag
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
G
A
A
C
G
G
 

MP
_T

_1
2 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cc
gt

tc
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
G
A
G
C
A
A
 

MP
_T

_1
3 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tt
gc

tc
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
G
C
T
C
T
T
 

MP
_T

_1
4 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

aa
ga

gc
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
G
G
C
C
G
C
 

MP
_T

_1
5 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gc
gg

cc
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
G
T
A
G
G
T
 

MP
_T

_1
6 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ac
ct

ac
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
G
T
C
T
A
C
 

MP
_T

_1
7 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gt
ag

ac
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
T
A
A
G
C
G
 

MP
_T

_1
8 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cg
ct

ta
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
T
A
C
G
A
T
 

MP
_T

_1
9 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

at
cg

ta
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
T
C
A
T
C
A
 

MP
_T

_2
0 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tg
at

ga
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
T
G
A
G
G
C
 

MP
_T

_2
1 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gc
ct

ca
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
T
T
A
A
G
G
 

MP
_T

_2
2 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cc
tt

aa
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
T
T
C
C
A
A
 

MP
_T

_2
3 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tt
gg

aa
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

A
T
T
G
A
T
T
 

MP
_T

_2
4 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

aa
tc

aa
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

C
A
A
G
G
A
C
 

MP
_T

_2
5 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gt
cc

tt
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

C
A
A
T
T
C
T
 

MP
_T

_2
6 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ag
aa

tt
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

C
A
G
A
A
G
G
 

MP
_T

_2
7 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cc
tt

ct
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

C
A
G
C
C
T
A
 

MP
_T

_2
8 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ta
gg

ct
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 



82#

CA
TG

GT
A 

MP
_T

_2
9 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ta
cc

at
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CC
AA

GA
G 

MP
_T

_3
0 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ct
ct

tg
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CC
GC

TC
G 

MP
_T

_3
1 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cg
ag

cg
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CG
AC

CA
G 

MP
_T

_3
2 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ct
gg

tc
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CG
AT

CT
A 

MP
_T

_3
3 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ta
ga

tc
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CG
AT

GC
G 

MP
_T

_3
4 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cg
ca

tc
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CG
CG

AG
G 

MP
_T

_3
5 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cc
tc

gc
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CG
CG

GA
T 

MP
_T

_3
6 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

at
cc

gc
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CG
GA

GA
A 

MP
_T

_3
7 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tt
ct

cc
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CG
GT

AT
T 

MP
_T

_3
8 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

aa
ta

cc
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CT
AG

AC
T 

MP
_T

_3
9 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ag
tc

ta
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CT
AT

GA
A 

MP
_T

_4
0 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tt
ca

ta
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CT
AT

TG
C 

MP
_T

_4
1 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gc
aa

ta
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CT
CG

GT
C 

MP
_T

_4
2 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ga
cc

ga
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CT
CT

AG
T 

MP
_T

_4
3 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ac
ta

ga
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CT
GA

CG
T 

MP
_T

_4
4 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ac
gt

ca
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CT
GA

TA
C 

MP
_T

_4
5 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gt
at

ca
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CT
GC

GC
A 

MP
_T

_4
6 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tg
cg

ca
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CT
TC

CT
G 

MP
_T

_4
7 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ca
gg

aa
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

CT
TG

AA
C 

MP
_T

_4
8 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gt
tc

aa
gG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GA
AC

CA
A 

MP
_T

_4
9 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tt
gg

tt
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GA
AT

AA
T 

MP
_T

_5
0 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

at
ta

tt
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GA
AT

CG
G 

MP
_T

_5
1 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cc
ga

tt
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GA
CG

TA
C 

MP
_T

_5
2 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gt
ac

gt
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GA
GA

TA
T 

MP
_T

_5
3 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

at
at

ct
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GA
GC

TG
C 

MP
_T

_5
4 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gc
ag

ct
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GC
AG

TA
A 

MP
_T

_5
5 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tt
ac

tg
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GC
AT

GA
C 

MP
_T

_5
6 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gt
ca

tg
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GC
CG

AA
G 

MP
_T

_5
7 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ct
tc

gg
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GC
CG

TC
T 

MP
_T

_5
8 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ag
ac

gg
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GC
GA

CC
G 

MP
_T

_5
9 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cg
gt

cg
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 



83#

GC
GG

TT
C 

MP
_T

_6
0 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ga
ac

cg
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GC
GT

TA
G 

MP
_T

_6
1 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ct
aa

cg
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GC
TC

CG
T 

MP
_T

_6
2 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ac
gg

ag
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GC
TC

TC
C 

MP
_T

_6
3 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gg
ag

ag
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GC
TG

CT
G 

MP
_T

_6
4 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ca
gc

ag
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GG
AA

TA
G 

MP
_T

_6
5 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ct
at

tc
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GG
AT

GG
A 

MP
_T

_6
6 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tc
ca

tc
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GG
CC

GG
T 

MP
_T

_6
7 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ac
cg

gc
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GG
TC

AG
G 

MP
_T

_6
8 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cc
tg

ac
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GG
TT

CC
G 

MP
_T

_6
9 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cg
ga

ac
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GT
AG

CA
G 

MP
_T

_7
0 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ct
gc

ta
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GT
CG

GC
A 

MP
_T

_7
1 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tg
cc

ga
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GT
CT

AT
C 

MP
_T

_7
2 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ga
ta

ga
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

GT
TA

GA
C 

MP
_T

_7
3 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gt
ct

aa
cG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TA
CG

AC
C 

MP
_T

_7
4 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gg
tc

gt
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TA
GA

AT
T 

MP
_T

_7
5 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

aa
tt

ct
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TA
GC

CG
G 

MP
_T

_7
6 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cc
gg

ct
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TA
GT

AG
C 

MP
_T

_7
7 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gc
ta

ct
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TA
GT

CC
T 

MP
_T

_7
8 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ag
ga

ct
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TA
TA

TA
C 

MP
_T

_7
9 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gt
at

at
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TA
TC

TC
T 

MP
_T

_8
0 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ag
ag

at
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TA
TG

CT
T 

MP
_T

_8
1 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

aa
gc

at
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TC
AT

AT
T 

MP
_T

_8
2 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

aa
ta

tg
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TC
CT

CG
T 

MP
_T

_8
3 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ac
ga

gg
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TC
CT

TC
A 

MP
_T

_8
4 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tg
aa

gg
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TC
GG

AT
G 

MP
_T

_8
5 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ca
tc

cg
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TC
TA

GC
C 

MP
_T

_8
6 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gg
ct

ag
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TC
TC

TG
G 

MP
_T

_8
7 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cc
ag

ag
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TC
TG

AG
T 

MP
_T

_8
8 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ac
tc

ag
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TG
AA

TC
T 

MP
_T

_8
9 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ag
at

tc
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TG
AG

CG
C 

MP
_T

_9
0 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gc
gc

tc
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 



84#

In
de

x 
is

 th
e 

7b
p 

se
qu

en
ce

 re
ad

 b
y 

th
e 

Ill
um

in
a 

ch
em

is
try

. P
rim

er
 s

eq
ue

nc
es

 c
on

ta
in

 a
 u

ni
qu

e 
7b

p 
se

qu
en

ce
 fl

an
ke

d 
by

 a
 

co
m

m
on

 s
eq

ue
nc

e 
co

rr
es

po
nd

in
g 

to
 th

e 
Ilu

m
in

a 
ad

ap
te

r s
eq

ue
nc

es
. T

he
 u

ni
qu

e 
pr

im
er

 s
eq

ue
nc

e 
is

 th
e 

re
ve

rs
e 

co
m

pl
em

en
t o

f 
th

e 
In

de
x.

 
  

 

TG
CC

GC
C 

MP
_T

_9
1 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gg
cg

gc
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TG
CG

TT
C 

MP
_T

_9
2 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ga
ac

gc
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TT
AC

TT
A 

MP
_T

_9
3 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

ta
ag

ta
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TT
AT

AC
C 

MP
_T

_9
4 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gg
ta

ta
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TT
CC

GT
T 

MP
_T

_9
5 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

aa
cg

ga
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

TT
GA

TC
G 

MP
_T

_9
6 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

cg
at

ca
aG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

 
 

 
AA

GG
CT

C 
MP

_T
_9

7 
CA

AG
CA

GA
AG

AC
GG

CA
TA

CG
AG

AT
ga

gc
ct

tG
TG

AC
TG

GA
GT

TC
AG

AC
GT

GT
GC

TC
TT

CC
GA
 

AC
GT

TG
C 

MP
_T

_9
8 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

gc
aa

cg
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

AC
TC

GC
A 

MP
_T

_9
9 

CA
AG

CA
GA

AG
AC

GG
CA

TA
CG

AG
AT

tg
cg

ag
tG

TG
AC

TG
GA

GT
TC

AG
AC

GT
GT

GC
TC

TT
CC

GA
 

AT
AG

TA
C 

MP
_T

_1
00

 
CA

AG
CA

GA
AG

AC
GG

CA
TA

CG
AG

AT
gt

ac
ta

tG
TG

AC
TG

GA
GT

TC
AG

AC
GT

GT
GC

TC
TT

CC
GA
 

AT
GC

AG
A 

MP
_T

_1
01

 
CA

AG
CA

GA
AG

AC
GG

CA
TA

CG
AG

AT
tc

tg
ca

tG
TG

AC
TG

GA
GT

TC
AG

AC
GT

GT
GC

TC
TT

CC
GA
 

CA
TA

CC
T 

MP
_T

_1
02

 
CA

AG
CA

GA
AG

AC
GG

CA
TA

CG
AG

AT
ag

gt
at

gG
TG

AC
TG

GA
GT

TC
AG

AC
GT

GT
GC

TC
TT

CC
GA
 

CC
TC

GA
C 

MP
_T

_1
03

 
CA

AG
CA

GA
AG

AC
GG

CA
TA

CG
AG

AT
gt

cg
ag

gG
TG

AC
TG

GA
GT

TC
AG

AC
GT

GT
GC

TC
TT

CC
GA
 

GA
CC

AT
T 

MP
_T

_1
04

 
CA

AG
CA

GA
AG

AC
GG

CA
TA

CG
AG

AT
aa

tg
gt

cG
TG

AC
TG

GA
GT

TC
AG

AC
GT

GT
GC

TC
TT

CC
GA
 

GC
CA

TT
G 

MP
_T

_1
05

 
CA

AG
CA

GA
AG

AC
GG

CA
TA

CG
AG

AT
ca

at
gg

cG
TG

AC
TG

GA
GT

TC
AG

AC
GT

GT
GC

TC
TT

CC
GA
 

GG
AA

CT
T 

MP
_T

_1
06

 
CA

AG
CA

GA
AG

AC
GG

CA
TA

CG
AG

AT
aa

gt
tc

cG
TG

AC
TG

GA
GT

TC
AG

AC
GT

GT
GC

TC
TT

CC
GA
 

TG
AG

AC
G 

MP
_T

_1
07

 
CA

AG
CA

GA
AG

AC
GG

CA
TA

CG
AG

AT
cg

tc
tc

aG
TG

AC
TG

GA
GT

TC
AG

AC
GT

GT
GC

TC
TT

CC
GA
 

TT
CA

GA
G 

MP
_T

_1
08

 
CA

AG
CA

GA
AG

AC
GG

CA
TA

CG
AG

AT
ct

ct
ga

aG
TG

AC
TG

GA
GT

TC
AG

AC
GT

GT
GC

TC
TT

CC
GA
 



85#

S
u
p
p
l
e
m
e
n
t
 
3
-
2
 
(
c
o
n
t
i
n
u
e
d
)
 

D
u
a
l
 
I
n
d
e
x
i
n
g
 
P
r
i
m
e
r
s
 

A
A
T
C
C
T
 
M
P
_
T
_
D
u
a
l
_
I
n
d
e
x
_
1
 
A
A
T
 
G
A
T
 
A
C
G
 
G
C
G
 
A
C
C
 
A
C
C
 
G
A
G
 
A
 
T
C
T
 
A
C
A
C
 
{
A
A
T
C
C
T
}
 

A
C
A
C
 
T
C
 
T
T
T
 
C
C
C
 
T
A
C
 
A
C
G
 
A
C
G
 
C
T
C
 
T
 

C
C
G
C
G
A
 
M
P
_
T
_
D
u
a
l
_
I
n
d
e
x
_
2
 
A
A
T
 
G
A
T
 
A
C
G
 
G
C
G
 
A
C
C
 
A
C
C
 
G
A
G
 
A
 
T
C
T
 
A
C
A
C
 
{
C
C
G
C
G
A
}
 

A
C
A
C
 
T
C
 
T
T
T
 
C
C
C
 
T
A
C
 
A
C
G
 
A
C
G
 
C
T
C
 
T
 

C
T
T
G
C
C
 
M
P
_
T
_
D
u
a
l
_
I
n
d
e
x
_
3
 
A
A
T
 
G
A
T
 
A
C
G
 
G
C
G
 
A
C
C
 
A
C
C
 
G
A
G
 
A
 
T
C
T
 
A
C
A
C
 
{
C
T
T
G
C
C
}
 

A
C
A
C
 
T
C
 
T
T
T
 
C
C
C
 
T
A
C
 
A
C
G
A
C
G
 
C
T
C
 
T
 

G
A
A
G
T
C
 
M
P
_
T
_
D
u
a
l
_
I
n
d
e
x
_
4
 
A
A
T
 
G
A
T
 
A
C
G
 
G
C
G
 
A
C
C
 
A
C
C
 
G
A
G
 
A
 
T
C
T
 
A
C
A
C
 
{
G
A
A
G
T
C
}
 

A
C
A
C
 
T
C
 
T
T
T
 
C
C
C
 
T
A
C
 
A
C
G
 
A
C
G
 
C
T
C
 
T
 

G
G
C
A
A
G
 
M
P
_
T
_
D
u
a
l
_
I
n
d
e
x
_
5
 
A
A
T
 
G
A
T
 
A
C
G
 
G
C
G
 
A
C
C
 
A
C
C
 
G
A
G
 
A
 
T
C
T
 
A
C
A
C
 
{
G
G
C
A
A
G
}
 

A
C
A
C
 
T
C
 
T
T
T
 
C
C
C
 
T
A
C
 
A
C
G
 
A
C
G
 
C
T
C
 
T
 

T
C
T
T
T
C
 

U
n
-
I
n
d
e
x
e
d
 

A
d
a
p
t
e
r
 

A
A
T
 
G
A
T
 
A
C
G
 
G
C
G
 
A
C
C
 
A
C
C
 
G
A
G
 
A
 
T
C
T
 
A
C
A
C
 
{
N
A
}
 
 

T
C
 
T
T
T
 
C
C
C
 
T
A
C
 
A
C
G
 
A
C
G
 
C
T
C
 

U
n-

in
de

xe
d 

ad
ap

te
r h

as
 n

o 
in

de
x 

{N
A

},
 in

st
ea

d 
th

e 
no

rm
al

 a
da

pt
er

 a
rm

 w
ill

 b
e 

re
ad

 a
s 

th
e 

in
de

x 
(u

nd
er

lin
ed

). 
 



 
 
 
 

86 

 
 
 
 
 
 
 
 
 
 

Chapter 4 
 
 
 

Rare Variants In The Complement Pathway in Two Kidney Diseases 
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Introduction 

 PE is a disease of pregnancy characterized by hypertension and proteinuria. It has clinical 

and pathological similarities to TMAs such as aHUS, specifically glomerular endotheliosis and 

clots in the microvasculature (1, 2). TMAs may be precipitated by pregnancy, likely due to the 

vascular stress imposed by the fetus on the maternal vasculature, and the kidney. Pregnancy-

associated aHUS is more commonly observed after delivery, but some individuals experience 

renal failure and hypertension as well as hemolytic anemia during pregnancy (4 of 21 individuals 

that had pregnancy-associated HUS) (3). Of 100 female patients with a diagnosis of aHUS, 21 

had their episode in connection to a pregnancy. Of these, 18 carried a mutation in MCP, FH, or 

FI. Many of these mutations had been noted in aHUS (or since have been identified and 

evaluated in the context of AP dysregulation). 

 High sFlt-1 levels antagonize VEGF signaling in PE patients (4). This disproportionately 

affects fenestrated endothelial cells, which are located in the kidney, liver, and cerebral plexus 

(5-7). These three sites are also sites affected by PE and its more serious related conditions 

HELLP (hemolysis, elevated liver enzymes, and low platelets) and eclampsia. Four of eleven 

consecutive HELLP patients admitted to a nephrology service were reported to have complement 

regulatory mutations (8). In a second study, three of 33 HELLP patients had a mutation in a 

complement regulatory gene (9). In preeclamptic patients elevated Bb fragment levels, indicative 

of AP activation, predict the development of PE (10). 

We sequenced CFH, CFI, and MCP in a cohort of women with lupus and/or anti-

phospholipid syndrome (PROMISSE study) and in a non-autoimmune PE cohort and identified 

individuals carrying a rare mutation. There is evidence for a genetic component to the risk of PE. 

Men and women born to a mother with PE have a two- to three-fold increase in the risk that they 
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will be part of a PE pregnancy (11, 12). Also, women with a sister affected by PE are at an 

increased risk of developing the syndrome (sib-sib OR of ~8) (13). 

Many candidate genes have been linked to PE, but meta-analyses have concluded that 

moderate effects may exist for a handful of genes (14, 15). The first GWAS in PE (~1000 

individuals) found a result with a p-value of 10-7, which did not replicate in two independent 

studies (16). Variants that increase the risk of PE will face negative selective pressure; thus, our 

focus on rare variants. 

To expand our study of the effect of rare variants in the complement pathway to another 

renal disease, we sequenced of severe lupus nephritis patients, specifically with end-stage renal 

disease (ESRD). The autoantibodies that occur in lupus deposit in the kidney as part of immune 

complexes, leading to CP and AP activation (17). If a regulator of either the CP or AP is 

deficient, this would lead to excessive complement activation.  

Because of the known complement activation occurring in PE and lupus nephritis, and 

the pleiotropic effects of AP mutations on other kidney diseases, we hypothesized that rare 

variants in the complement pathway would be present in these diseases. 
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Methods 

Illumina Library Preperation, Targeted Capture, and Sequencing 

Illumina libraires were prepared from genomic DNA as described in Chapter 3. Targeted 

Capture was done with Nimblegen SeqCap EZ Arrays (385k) for the initial PROMISSE PE (64) 

and SLE/APLS non-PE controls (34) in groups of 12 to 24. Additional PROMISSE controls, the 

FINNPEC study, and the VIP study were captured with Nimblgen SeqCap EZ in groups of 12 to 

200. The lupus nephritis cases, and controls were captured with Nimblegen SeqCap Arrays 

(2.1M) or MyGenostics GenCap in groups of 6 to 48. Captures were done following the 

manufacturer’s instructions. Alterations to the Nimblegen hybridization are described in Chapter 

3. Pre-capture pooling for all groups except the VIP was done based on equal mass. The VIP 

pools were constructed based on relative read depths of equivolume pools followed by MiSeq 

sequencing. Sequencing was done on Illumina HiSeq at the Washington University Genome 

Technology Access Center using 2x101 bp, 2x135 bp and 2x150 bp reads. 

Read Processing, Alignment, and Post-Alignment Processing 

 Reads from 2x135 bp and 2 150bp runs had any adapter sequences removed using 

fastq_scrubber.py (Eli Roberson). Reads were aligned with bwa aln (18). Duplicates were 

marked with Picard. Genome Analysis Toolkit (GATK) Best Practices were followed for indel 

realignment at the individual level (19-21). Base quality scores were recalibrated at the lane level.  
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Sample Coverage 

 We required all samples to be covered ≥ 10x at the targeted exons. The FINNPEC 

samples were sequenced to a median of 97% of bases with >10x coverage and with 94% of bases 

>20x coverage (median average coverage of the target of >100x). The VIP samples had a median 

average coverage of the target of >70x. 

Variant Calling 

Variant calling was done using the Unified Genotyper of the GATK on all individuals 

from a study simultaneously. Variants were filtered for quality in the FINNPEC, VIP and ESRD 

studies with Variant Quality Score Recalibration (4 Gaussians for SNPs and INDELS, 99% 

Truth Tranche). PROMISSE PE variants were filtered based on hard quality filtering metrics 

described in the GATK Best Practices for small studies. 

Variant Annotation 

Annotation was with SnpEff using GRCh37.70; variants that had a SNPEFF_IMPACT of High 

or Moderate were kept (22). SeattleSeq was also used for annotation.  

Variant Analysis  

PLINK/SEQ was used to manipulate genotype data. R was used for statistical tests. 

Target Intervals 

Target intervals were selected based on candidate genes. The complement pathway was 

central to all captures. The initial preeclampsia capture (used on the first 98 PROMISSE 

individuals) was approximately 500kb and targeted 118 genes. This evolved as areas like 

coagulation found additional support. The final capture used for the VIP samples was 1 Mb and 
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was designed to be used on patients with PE or alternatively individuals with thrombosis or 

hemostatic disorders. A list of genes is in Supplement 4-1. 

For lupus nephritis we sequenced the entire complement pathway because of the role of 

the classical and alternative pathways in lupus and kidney disease respectively. We also 

sequenced additional genes identified as potentially involved in kidney disease and inflammation 

(largely selected by our collaborators) and all known genetic risk factors for lupus (common 

variants from GWAS as well as Mendelian causes of lupus). This was 171 genes. We also 

included all ENCODE sites derived from ChIP-Seq experiments, that were within 500 bp of a 

SNP with an r2 ≥ 0.8 with a SNP associated with SLE risk by GWAS (HuGE Navigator, 

February 2012). The total target was 578 kb. 

Expression of FH Mutants and Functional Characterization 

 FH 1-4 mutations (L3V, R127H, R166Q) were expressed in 293T cells under serum-free 

conditions, and purified as described (23). Functional studies and biacore were performed as 

described (23). FH 18-20 mutations, C1077S and N1176K, were expressed in 293T cells under 

serum free conditions and purified as described with the exception that they eluted from a GE 

HisTrap column at 285 mM NaCl (FH 1-4 at 95 mM) (23). Heparin binding was assayed using a 

GE HiTrap Heparin column.  

 

Patient Populations 

PROMISSE 

Predictors of pRegnancy Outcome: bioMarkers In antiphospholipid antibody Syndrome 

and Systemic lupus Erythematosus (PROMISSE), a prospective multi-center observational study 

to identify predictors of pregnancy outcome initiated in 2003. Patients with SLE (defined as ≥4 
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ACR criteria) and/or APL Ab (defined as at east one of following documented twice between 6 

wk and 5 y apart: ACL [IgG or IgM ≥40 units], lupus anticoagulant, or anti-b2GPI [IgG or IgM 

≥40 units]) and disease controls were recruited by 12 wk gestation. At screening, patients with 

renal disease (proteinuria .1,000 mg/24 h, RBC casts, or serum creatinine .1.2 mg/dl), taking 

prednisone .20 mg/d,diabetes mellitus (Type I and Type II antedating pregnancy),hypertension 

(blood pressure $140/90 mmHg), or multiple gestations were excluded. Preeclampsia was 

defined as new onset of elevated systolic blood pressure (≥140 mmHg) and/or elevated diastolic 

blood pressure (≥90 mmHg) after 20 wk gestation on two occasions at least 4 h apart and 

proteinuria of 300 mg or greater in a 24 h urine specimen or $1+ on dipstick at least 4 h apart in 

the absence of pyelonephritis or hematuria. All controls sequenced here were self-reported 

Caucasian, non-Hispanic. 12 of 64 PE cases were NOT Caucasian non-Hispanic, the other 52 

were.  

FINNPEC 

The Finnish patient samples used in this study originate from the Finnish Genetics of 

Preeclampsia Consortium (FINNPEC) study cohort and the Southern Finland preeclampsia study 

cohort. FINNPEC is an ongoing multi-centre study where DNA samples and data have been 

collected prospectively at all university hospitals in Finland (i.e. Helsinki, Turku, Tampere, 

Kuopio and Oulu) from 2008. For each woman with preeclampsia, the next available woman 

giving birth at the same hospital, with no preeclampsia, is invited as a control. After initial 

review of hospital records by a research nurse, each diagnosis is confirmed by a study physician 

based on criteria described below. 

Finnish women who suffered a preeclamptic pregnancy and had no medical history of 

chronic hypertension, type 1 diabetes, or renal disease were eligible for the study as cases. 
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Diagnostic criteria used for the FINNPEC study cohort were SBP≥140 mmHg and/or DBP≥90 

mmHg on at least two occasions with new onset proteinuria (≥0.3 g/24 hrs, or ≥0.3 g/L, or in the 

absence of concurrent quantitative measurement, at least a ‘2+’ or more, or two ‘1+’ proteinuria 

dipstick readings) after 20 weeks gestation in a previously normotensive woman. 

VIP 

679 controls (women who did not develop pre-eclampsia) and 283 cases of pre-eclampsia, 

occurring either during the VIP pregnancy or a previous pregnancy. All patients were self-

declared Caucasian. All women recruited to the VIP study were at risk of pre-eclampsia, due to 

one or more of the following factors: obesity, multiple pregnancy, pre-eclampsia in a previous 

pregnancy, essential hypertension, diabetes, renal disease or APS. Controls had a risk factor but 

did not develop preeclampsia.  

Criteria for preeclampsia was SBP≥140 mmHg and/or DBP≥90 mmHg on at least two 

occasions with new onset proteinuria (≥0.3 g/24 hrs, or ≥0.3 g/L, or in the absence of concurrent 

quantitative measurement, at least a ‘2+’ or more, or two ‘1+’ proteinuria dipstick readings) after 

20 weeks gestation in a previously normotensive woman. 

Lupus Nephritis 

Participants were consenting adults (>18 years old) who self-report their ethnicity as 

African-American or European-American and undergoing peritoneal dialysis, hemodialysis, or 

had received a prior kidney transplant. Inclusion criteria for the diagnosis of SLE utilize those of 

American College of Rheumatology. SLE-ESRD will have been diagnosed in those with ESRD 

who have had kidney biopsy evidence of prior Stage 3, 4, 5 or 6 lupus nephritis, using World 

Health Organization criteria; or, in the absence of a renal biopsy, a history of SLE for > 2 years 

prior to developing ESRD and with historical evidence of proteinuria exceeding 500 mg/24 
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hours (or equivalent:  > 100 mg/dl proteinuria on dipstick or spot urine protein:creatinine ratio > 

0.5 gram/gram) and/or presence of cellular casts (red cell, hemoglobin, tubular cell or mixed) 

prior to the initiation of dialysis or kidney transplantation. Participants with SLE-ESRD that lack 

renal biopsy information will have confirmed to the study coordinator that they had onset of SLE 

at least two years prior to developing ESRD; they will meet entry criteria based on urinary 

findings and they will confirm that they lack risk factors for other forms of kidney disease (e.g., 

diabetes mellitus, urologic disease, first degree relatives with autosomal dominant polycystic 

kidney disease or Alport's syndrome, surgical nephrectomy). Individuals who are unwilling or 

unable to provide written informed consent are excluded 

 

Results 

PROMISSE PE 

We reported that 7 of 40 cases of preeclampsia from the PROMISSE study had a 

mutation in MCP, FI or FH ((24), Supplemental Manuscript 3). Importantly, we showed that the 

MCP mutation, K66N, had a reduced binding to and cofactor activity for C4b. Its regulatory 

activity for C3b was not affected. This PE case also had SLE and likely had complement-fixing 

immune complexes depositing in the kidney and possibly in the placenta. In a replication cohort 

of severe PE from Utah (without autoimmunity), we identified a variant in CFI that had 

previously been observed in aHUS and characterized as having a secretion defect (24, 25). Both 

cohorts also had enrichment for the MCP A304V allele that has been observed to have an impact 

on the ability of MCP to protect the cell from complement deposition in situ (26).  
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Targeted Sequencing of the PROMISSE Cohort 

To extend these studies, we sequenced all of the genes in the complement system in 64 

PE cases from the PROMISSE study, as well as all those previously reported to be associated 

with PE either by candidate gene studies or linkage. We also included genes in the clotting 

pathway. A number of these have been associated with PE in candidate gene studies, and 

coagulation is abnormal in PE, as increased clots have been reported in the placenta and kidney 

vasculature. 

 We sequenced 64 PE cases from the PROMISSE study (mostly Caucasian, non-Hispanic) 

and 34 controls with SLE but without PE (all Caucasian non-Hispanic).  

All SNPs within 200 bp of the targeted exons were included. Only variants that were genotyped 

in all individuals were included to minimize any possibility that a genotyping call rate was 

responsible for a difference between cases and controls. We excluded any variant that did not 

pass hard quality filtering. A gene-by-gene test of rare variant burden (MAF<5%) yielded 3 

genes that met the Bonferroni corrected statistical cutoff of 0.0004 (118 genes tested) using the 

gene-based variable threshold test (Table 4-5). These genes were VEGFA, FCN1 and CR1 

(Table 4-1).  
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Table 4-1. Genes Meeting Bonferroni Corrected Significance Threshold (VT test) 
Gene Number of Unique Variants p-value # of Alleles 

Cases/Cntls 
VEGFA 31 7.5x10-5 196/74 
FCN1 37 1.9x10-4 495/171 
CR1 60 4.3x10-4 526/236 

64 PE cases and 34 controls from the PROMISSE study. 

 

VEGFA: Multiple studies have identified low VEGFA signaling in PE due to elevated levels of 

the sFlt-1. Uncommon and rare variants (MAF <5% in this group) drive this signal, with 45 

alleles present in cases and 4 in controls. Only one is missense (Ser77Asn) and it was seen in 

only one of ~6500 individuals reported in the ESP GVS. The others are all intronic which 

complicates the interpretation.  

FCN1: Ficolin-1 (FCN1) initiates the lectin pathway of complement by recognizing sugars 

present on pathogens and altered self. There are 23 variants (4 missense) at <5%, of which 43 

alleles are present in cases and three in controls. The 4 missense variants are only observed in 

cases.  

CR1: Complement Receptor 1 (CR1) is a highly polymorphic gene that was originally cloned in 

the Atkinson laboratory. It can regulate both the CP and the AP (27). The locus is complicated 

because there is structural variation in this gene, with a 9 exon unit comprising a long 

homologous repeat (LHR) domain (28). Most individuals carry four LHRs, but some carry three 

and others five or six (Figure 4-1). Homology between the repeated LHR units is extremely high 

and no read aligned to this repeated unit has an unambiguous match (Map Quality (MAPQ)=0). 

The association is being driven by variants found in unique regions, specifically LHR D. It is 

unlikely that read mapping issues are responsible for a false positive. 
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Figure 4-1. CR1 Is Composed of Homologous Repeats 
Each repeat of CR1 (LHR) is composed of 7 CCP domains (9 exons). Decay activity resides in 
LHR A (yellow). Cofactor activity is present in LHR B and LHR C (purple). C1q binds in LHR 
D. The area of the gene duplicated in ~10% of the population is boxed in blue. The blue bar 
delineates regions were 2x100 bp reads are mapped ambiguously. LHR B is a hybrid LHR A and 
LHR C caused by a gene conversion event. 
 
 

Population Stratification is a Confounding Factor in the PROMISSE Cohort 

After sequencing additional Caucasian, non-Hispanic SLE only controls and healthy 

controls (no PE in either control group), it was concluded that the strong association in VEGFA, 

FCN1, and CR1 was due to population stratification. Non-Caucasian haplotypes present in these 

three genes could predict >80% of the non-Caucasian individuals. Because intronic variants were 

included in the analysis and each haplotype might carry one to three variants in the captured 

regions, only 10 or 20 non-Caucasian cases (15-30% of the total) were able to contribute 

substantially to the excess of variants seen in cases. Because only a fraction of the cases were 
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non-Caucasian (and none of the controls) these variants appeared disease specific. This 

highlights how stratification can lead to very significant false positives. 

Targeted Sequencing in a Finnish PE Population 

 We sequenced a more homogeneous Finnish population from the FINNPEC study. This 

included 500 cases, two-thirds of which had severe PE, and 190 controls (Table 4-2). Even with 

the expected homogeneity within Finland, these samples were matched between cases and 

controls across 8 geographic codes (Table 4-3). The Finnish population experienced a bottleneck 

as a result of migration and thus disease causing variants may be population specific and at a 

higher frequency than in other, related, European populations (29).  

 

 

Table 4-2.FINNPEC Sample Phenotypes 
Phenotype Number of Individuals 
Severe PE 362 

Non-Severe PE 138 
Non-PE Controls 190 

 

 

 

Table 4-3:  Geographic Distribution of Finnish Samples 
Region Cases (%) Controls (%) 

Southern Finland 22.0 27.4 
Southern Finland 15.2 18.4 
Southern Finland 7.2 6.8 
Eastern Finland 8.4 12.6 

Northern Finland 13.6 15.3 
Central Finland 8.6 11.6 
Western Finland 9.4 7.9 

Other 15.6 0 
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Gene Burden Test in Finnish Samples 

Association testing was done in plinkseq. We conducted the test with a MAF cutoff of 

5% and 1% as the population was relatively small and predominantly cases. Some results were 

unstable as the MAF changed, but generally the top ten results were consistent (Table 4-4). 

Though a number of interacting genes were towards the top of both lists (C1R, C1S, and CD93; 

INHA, TGFB3 and ACVR1), we initially have focused on CFH as it was consistent with our 

initial hypothesis. C5 was also consistent with our hypothesis but the connection between renal 

disease and FH was felt to be the strongest. 

Table 4-4. FINNPEC Gene-Based Burden Test at MAF ≤ 1% and ≤ 5%  
MAF ≤ 1% MAF ≤ 5% 

Rank Gene p-value Rank Gene p-value 
1 CD93 0.017 1 C1R 0.004 
2 ADAM28 0.027 2 C4B 0.011 
3 CFH 0.035 3 HEY2 0.018 
4 C5 0.045 4 ADAM28 0.019 
5 C1R 0.046 5 CFH 0.034 
6 HEY2 0.049 6 CD93 0.041 
7 INHA 0.051 7 FCN2 0.045 
8 F8 0.096 8 C5 0.062 
9 C1S 0.10 9 F8 0.070 
10 TGFB3 0.10 10 ACVR1 0.078 

499 cases and 190 controls. Burden testing conducted on 160 genes. Bonferroni corrected p-
value is 0.0003. 
 

AP Gene Mutations in FINNPEC 

Factor H: We found rare factor H mutations in 7 of the 499 FINNPEC cases and zero of the 190 

controls (Table 4-5). 6 of 7 individuals had severe PE and/or HELLP, but we would expect 4 or 5 

individuals (of 7) to have severe PE given the fraction of cases with severe PE (Table 4-6). We 

excluded variants that are known to be polymorphisms due to their frequency (≥ 1% MAF in the 

NHLBI ESP), that the aHUS literature considers a polymorphism, or that was balanced in a large 
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case:control AMD sequencing cohort (30, Supplemental Manuscript 1). These rare mutations 

cluster in CCP1-4 and CCP18-20, known sites of FH’s regulatory activity localization specificity 

(31-33). 

Table 4-5. CFH Variants (MAF<1% in the NHLBI ESP) in FINNPEC 
AA Cases Controls 

(1kG) 
Effect NHLBI ESP Observations 

(Disease Notes) 
L3V 3 0 Unknown 2 

No association 
R127H 1 0 Low secretion Novel 

(aHUS, DDD, AMD-Case) 
R166Q 1 0 Unknown Novel 

(AMD-Case) 
C1077S 1 0 Loss of conserved 

cysteine 
Novel 

N1176K 1 0 CCP20 Novel 
499 cases. 190 controls. 1kG: Number of observations in the 93 Finnish individuals from the 
1,000 Genomes Project. AMD: The variant was seen in AMD cases in the case:control 
sequencing experiment discussed.  CCP20 is a hotspot for aHUS associated mutations. NHLBI 
ESP is the number of alleles observed in the 6500 individual release. 
 

Table 4-6. Clinical History of Rare CFH Carriers 
Mutation  
L3V HELLP @ 28 wks. 
L3V Severe PE @ 32 wks. History of PE 
L3V Severe PE @ 31 wks. History of PE 
R127H Severe PE @ 34 wks 
R166Q Severe PE @ 30 wks 
C1077S HELLP @ 33 wks 
N1176K PE @ 37 wks 
2/3rd of all cases were severe PE. HELLP is more serious than severe PE. 
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L3V: Was secreted normally. Preliminary investigations into L3V’s cofactor activity showed no 

effect on function (data not shown). It is in the signal peptide, and as the protein appeared to be 

the correct size, the only defect likely is if carriers are haploinsufficient.  

R127H: Had previously been described to have a secretion defect and accumulate intracellularly 

(34) and we confirmed this (Figure 4-2).  

R166Q: It had a profound defect in cofactor activity and a ten-fold lower affinity for C3b in SPR 

(Figure 4-3). R166Q had a unique cleavage pattern of C3b compared to wild type 1-4 (and other 

mutants in CCP 1-4 (23)). R166Q was delayed in cleaving the α43 fragment to the α40 fragment. 

While both fragments may be seen, the α40 fragment is the predominant fragment of WT, 

especially when using full length FH and as time elapses. 
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 Figure 4-2. R127H and C1077S Are Not Secreted 
A. Non-reducing WB of CHO supernatants. R127H is not secreted (lane 4). B. Non-reducing 
WB of CHO cell lysates. R127H is not processed correctly (lane 3). C. Non-reducing WB of 
equivalent masses of each protein. D. Non-reducing WB of FH 18-20 fragments. C1077S does 
not accumulate intracellularly and is not secreted (lanes 2 and 5).  The N-glycosylation site in 
CCP 18 is likely used as a small fraction of protein always ran at a lower molecular weight 
(arrow). † It is possible some of the protein is in a dimeric form. *There is a non-specific band 
visible present in the negatve control transfection supernatant. E. Reducing WB of 18-20 
fragments removes the dimer. neg is negative control transfection.
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Figure 4-3. R166Q Has a C3b Binding and Cofactor Defects 
A. Fluid phase cofactor assay of WT and R166Q at 20 and 30 min. R166Q cleaves the α′ chain 
less quickly. α1 and α40 accumulate more slowly. Additionally, R166Q consistently has a 
problem cleaving α43 to α40. B. Quantification of the fluid phase cofactor activity based on the 
amount of α′ chain remaining compared to the amount at time 0. There is a significant difference 
at all three time points. *** p<5x10-4. **p<0.005. *p<0.05. C. Surface plasmon resonance traces 
with FH 1-4 fragments coupled to the chip.  R166Q has a 10-fold lower affinity for C3b (64 vs 
6.8 µM). WT had 300 RU and R166Q 600 RU coupled to the chip. KD calculated using the 
BiaEval 1:1 binding model. 
 
 

Y402H: The common allele Y402H has been reported to be enriched in cases of DDD (35). We 

do not find it enriched in the PE cases (42%) compared to the controls (44%).  

 
  



 
 
 
 

104 

 
C1077S: The loss of the second conserved cysteine in CCP18 led to a complete secretion defect 

with no protein present intracellularly (Figure 4-2 D).  

N1176K: It is produced similarly to wild type FH18-20 (Figure 4-2 D and E). It is on the face of 

CCP20 that faces the C3d fragment in the crystal structure. This is opposite face of CCP20 

compared to R1210C, which affects heparin binding (Figure 4-4).  Thus, it is expected to affect 

C3d/C3b binding, not heparin binding. Consistent with this interpretation, our experiments with 

heparin binding have shown it binds heparin comparable to wild type (not shown). Experiments 

to measure C3d binding have been limited by the quantity of C3d required to detect binding at 

150 mM NaCl. These experiments are ongoing.  

 

 

Figure 4-4. N1176K is Adjacent to 
C3d 
Factor H 19-20 is in green. C3d 
fragments are in orange. N1176K is on 
the opposite face relative to R1210C. 
This places N1176K adjacent to the 
C3d fragment in the crystal structure 
(PDB ID  2XQW) 
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Factor I: CFI does not have a similar burden of variants associated with PE (6 alleles in cases 

and 2 in controls). If the T107A variant is removed (2 cases and 1 control), comparing singletons 

in each group, there are 4 variants in case and 1 in controls (Table 4-7). The G261D variant is 

considered a polymorphism in the aHUS literature (after substantial debate), and it was nearly 

perfectly balanced in the AMD case:control cohort described (30). Q462H is in a PE case; it was 

observed in a non-AMD control, who had a serum level near the bottom of the normal range (30). 

 
Table 4-7. CFI Variants (MAF<1% in the NHLBI ESP) in FINNPEC 

AA Cases Controls 
(1kG) 

Effect NHLBI ESP Observations 
(Disease Notes) 

T107A 2 1 Unknown 2 
G119R 1 0 Secretion Defect 11 

(aHUS and AMD-Case) 
A258T 

 
0 1 Splice Site 4 

(AMD-Case) 
G261D 1 0 No functional or 

quantitative defect. 
22 

(aHUS, AMD-Both)  
G314V 1 0 Splice Site Novel 
Q462H 1 0 Pred. Secretion defect 2 

(AMD-Control) 
499 cases. 190 controls. 1kG: Number of observations in the 93 Finnish individuals from the 
1,000 Genomes Project. AMD: The variant was seen in AMD cases or controls from the 
case:control sequencing experiment discussed. NHLBI ESP is the number of alleles observed in 
the 6500 individual release. 
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Factor B: CFB has an uncommon polymorphism (1.8% in the ESP) that is enriched in cases 2.2-

fold, G252S. There is also a case that carries a variant previously reported in aHUS, I242L (36). 

These variants are of unknown significance; they sit in the loop containing the scissile bond 

involved in activation of factor B to Bb (37). Mutations here do affect Bb activation by factor D 

and other proteases (Hourcade, unpublished data). 

MCP: The K66N variant, observed in a PROMISSE PE case, was present in 2 controls and 2 

cases. The A304V variant, previously observed to be enriched in PROMISSE PE cases (25), had 

a minor allele frequency of 4.0% in cases and 4.4% in controls in the FINNPEC population. Two 

cases carried a rare variant, T353I, in one of MCP’s alternatively spliced tail isoforms. 

C3: C3 did not have any variants that are likely to affect AP activity.  
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Disease Related Clotting Mutations are Enriched in Preeclamptic Cases  

PE likely represents a state of systemic inflammation and has been considered (by some) 

to be a thrombotic state. There is an enrichment of rare, OMIM-annotated variants in the clotting 

pathway in PE cases vs controls. We are using the OMIM database to derive meta-information 

about these variants, much as we used the aHUS literature and structure-function analyses in our 

interpretation of AP variants. We observed an enrichment of known disease associated variants 

in FV (F5), protein S (PROS1) and Anti-thrombin III (SERPINC1), all of which would 

contribute to an excess of fibrin rich clots being formed (Table 4-8). We also observe an 

enrichment of known disease associated variants in von Willebran Factor (VWF) and FX (F10) 

(Table 4-9).  

Table 4-8.  OMIM Annotated Variants in the Prothrombotic Pathway Are Enriched 
in Cases  

Gene Variant Cases Controls 
(1kG) 

P-value ESP Phenotype 

FV Q534R 29 5 (2) 0.118 278 Protein C cannot 
inactivate. 

Protein S N365K 16 2 (3) 0.181 2 Cofactor to Protein C  
Anti-

thrombin III 
P73L 7 1 (0) 0.457 

 
5 Interferes with heparin 

binding. 
 499 cases, 190 controls. Numbers in parenthesis are alleles present in 93 Finnish individuals 
from 1000 Genomes. ESP: Number of alleles observed in the NHLBI ESP 6500 individual 
release 

 

Table 4-9. OMIM Annotated Variants Leading to Bleeding Are Enriched in Cases   
Gene Variant Cases Controls 

(1kG) 
P-value ESP Phentoype 

VWF P1266L 11 0 (0) 0.041 1 VWD type IIb.  
F10 E142K 19 2 (0) 0.082 27 Mild functional defect. 

499 Cases. 190 Controls. Numbers in parenthesis are alleles present in 93 Finnish individuals 
from 1000 Genomes. ESP: Number of alleles observed in the NHLBI ESP 6500 individuals. 
VWD: von Willebrand Disease. P1266L VWF has an abnormal response to ristocetin induced 
aggregation, but normal levels in the blood. 
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FV Leiden: While results have varied between studies, two recent meta-analyses (14, 15) of the 

literature concluded that FV Leiden has a real association (OR=1.7). We replicate this finding in 

the FINNPEC population (OR=2.2, 2.9% vs 1.3% MAF in cases vs controls) (Table 4-8). FV 

Leiden predisposes to clotting because it is resistant to inactivation by Protein C, which requires 

Protein S as a cofactor. This increases the amount of active Va, that in turn enhances the 

formation of the active Xa:Va enzyme leading to clot formation (Figure 4-5). 

 

Figure 4-5. The Coagulation Cascade 
Important points of negative regulation are highlighted. FINNPEC cases are enriched for 
mutations in the negative regulators anti-thrombin and protein S. Adapted from Bowen D J Mol 
Path 2002;55:127-144. 
 

Protein S: We find an excess of alleles in cases with the OMIM annotation for Protein S 

deficiency in cases as well, specifically N365K (Table 4-8). No missense changes were observed 

in the protease Protein C, Protein S’s binding partner. 

Anti-thrombin III (AT III): We identified an excess of alleles in the AT III gene in cases, which 

controls both thrombin (F2) and Xa. The “Clichy” mutation (P73L) is in 6 cases and 1 control 
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(Table 4-8). It interferes with heparin binding, leading to a secondary deficit in F2 and F10 

regulation. One individual is homozygous and had early onset of preeclampsia (31 weeks).  

von Willebrand Factor (VWF): This factor is at the center of a TMA, thrombotic 

thrombocytopenia purpura (TTP), as well as the bleeding disorder von Willebrand disease 

(VWD). It is a chaperone for FVIII in the blood and also mediates platelet adhesion to surfaces 

and clots. VWF responds in dynamic ways to increased shear stress, which would be present in 

the spiral artery that has not been appropriately remodeled in PE. We find a number of OMIM 

annotated variants in VWF. One in particular (P1266L) is seen in 11 cases and in no controls, 

none of the 1000 Genomes subjects of any ethnicity, and only a single time in the ESP (Table 4-

9). P1266L affects platelet aggregation in response to ristocetin (38-40), while it has normal size 

multimers and levels in the blood. Because of this, it is unclear how it relates to a pro-bleeding 

phenotype. 

There is a small allele bias issue with P1266L, with the non-reference base averaging 

38% of reads at this site versus the expected 50% (vs. 0.07% in non-carriers). However, we are 

confident that our 2x101bp alignments are correct because there are 18 nucleotide differences in 

the 600 bp surrounding this variant between VWF and its pseudogene on chromosome 22. This 

variant is present on at least four haplotypes based on our sequencing, three of which have been 

reported, and is thought to have arisen through gene conversion. 

There are two other OMIM annotated variants in VWF. They occur in cases and controls. 

A fourth variant is OMIM annotated, but is an uncommon polymorphism (~2% MAF) and is not 

related to disease. 

Factor X: F10 has an OMIM annotated variant that is over represented in cases (Table 4-9). This 

variant has a mild, but significant, decrease in function and is often observed in combination 
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with more severe variants (41). A significant decrease in F10 levels (<15% normal) must be 

present in order for patients to present clinically with bleeding secondary to a F10 deficiency. 

We observe a novel stop mutation in F10 in a separate case as well. 

Interpretation of Coagulation Variants in Light of OMIM 

Given our sample size, each of these clotting variants alone (and the many rare variants in 

these genes) do not account for a large enough risk of disease at the population level to reach 

significance in isolation. Considered as a risk class, OMIM recognized coagulopathy variants, in 

aggregate are associated with PE (Table 4-10). Inclusion of the un-phenotyped 93 Finnish 1,000 

Genomes participants does not change how we interpret these data.  

This metric may underestimate the risk of disease attributable to coagulation pathway 

mutations as there are many rare variants observed exclusively in cases that may be associated 

with disease (though some may be a neutral, rare variation).   

Table 4-10. Coagulation Pathway OMIM-Annotated Variants Are Increased in PE 
Cases 

 # of PE Cases # Controls Controls w/ 93 Finnish 
Individuals (1000 Genomes) 

Individuals Carrying A 
Coagulation Pathway 

Variant  

85 13 6 

Individuals Not 
Carrying A 

Coagulation Pathway  

414 177 87 

FINNPEC SAMPLES:  
p=1.6x10-4  (one-tailed hypergeometric) 
p=3.8x10-4 (two-tailed exact)   

FINNPEC SAMPLES w/ 1000 Genomes: 
p=1.1x10-5 (one-tailed hypergeometric) 
p=2.7x10-5 (two-tailed exact) 
499 cases. 190 controls. 93 Finnish individuals from the 1,000 Genomes project. 
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Replication in the Vitamins in Preeclampsia (VIP) Study 

 We are replicating these findings in an unrelated cohort of 350 PE cases and 650 controls 

from the VIP study. To leverage the increased output of the HiSeq 2000 as longer read lengths 

have become available, we utilized 2x150 and 2x135 bp reads initially. This was problematic 

because some of our reads contained adapter sequence, as the insert sequence was smaller than 

150 bp or 135 bp respectively (though far fewer had adapter in the 135 bp read length 

sequencing). This led to mapping problems for some reads. The bwa mem algorithm was very 

aggressive in aligning reads containing long Illumina adapter sequences to the genome. This 

resulted in spurious variant calls being made based on the mismatches. Inspection at the read 

level quickly revealed that something was wrong with the alignment.  

The read were reanalyzed starting with removing the adapters with the use of 

fastq_scrubber.py (Eli Roberson). This tool was able to preserve read order to take advantage of 

read pairing when doing paired end alignment. Many other tools fail to do this correctly. Reads 

were then aligned with bwa aln, which is what was used with the FINNPEC samples. The mem 

algorithm was evaluated as overly aggressive when the adapters were present. 

We are currently processing this data and evaluating it. However, we have some 

preliminary data. The variant calls were 99.8% concordant with array based genotyping results 

using 277 SNPs present in both platforms and 91 cases shared between the groups. 

aHUS-associated FH Variants Are Present in the VIP PE Group 

 There is one aHUS associated variant in the cases and none in the controls. Q400K is in 

the anionic binding site in CCP7 neighboring Y402H. The aHUS patient that carried Q400K had 

a fatal episode at 15 days after birth (34).  We have already defined the CA defect in R166Q. 
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There are two other variants in the case group in CCP6, G366Q and H373Y (Table 4-11).  The 

controls have only one variant, in CCP8, Y481F. There were no variants in CCP19-20.  

 Y402H was distributed evenly between cases and controls (38% in cases and 40.6% in 

controls. MCP A304V was distributed evenly between cases and controls (10 vs. 25 alleles, 2.4x 

as many controls as cases).  

Table 4-11. CFH Variants in Functional Domains in VIP 
AA Cases Controls CCP NHLBI ESP Observations 

(Disease Notes) 
R166Q 1 0 3 Novel 

(AMD) 
G366E 1 0 6 Novel 
H373Y 1 0 6 Novel 
Q400K 1 0 7 1 

(aHUS and AMD) 
Y481P 0 1 8 Novel 

282 Cases. 678 controls. AMD: The variant was seen in AMD cases in the case:control 
sequencing experiment discussed. NHLBI ESP is the number of alleles observed in the 6500 
individual release. 
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Thrombotic Risk Loci are Not Enriched in the VIP Cohort 

 FV Leiden was actually twice as prevalent in the control group (0.9% MAF in cases vs. 

1.7% in controls (Table 4-16). The only homozygous individual was a control as well.  

The other risk loci that were notably increased in the FINNPEC study were either not 

present or showed no trend towards enrichment in cases (Table 4-12. Only the E142K variant in 

F10 was enriched in cases. We did not observe the P1266L variant in any VIP individual. 

Table 4-12. OMIM Annotated Clotting Variants Enriched in FINNPEC  
Presence in VIP 

Gene AA VIP 
Cases 

VIP 
Controls 

FINNPEC 
Observations 

(Case/Control) 

NHLBI ESP 

F5 Q534R 5 27 29/5 278 
PROS1 N365K 0 0 16/2 2 
AT-III P73L 0 2 7/1 5 
VWF P1266L 0 0 11/0 1 
F10 E142K 3 0 19/2 27 

282 Cases. 678 controls. AMD: The variant was seen in AMD cases in the case:control 
sequencing experiment discussed. NHLBI ESP is the number of alleles observed in the 6500 
individual release. 
 
 
FINNPEC Extension with Additional Cases and Controls 

 I am sequencing C3, FI, FB, FH, and MCP in an additional 190 PE cases using the 

Fluidigm Access Array. This assay was developed by me for use by Alexion Pharmaceuticals as 

the basis for a CLIA approved aHUS genetic test. Also, we are genotyping 24 variants in 190 

additional (non-severe PE) cases and 475 additional Finnish controls with a focus on the clotting 

pathway variants enriched in cases. Given the discrepancy between the size of the Finnish case 

group and control group (2.6 fold), we would like to get a better estimate of these allele 

frequencies in the Finnish population as well as validate these variants in the sequenced samples. 
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Lupus Nephritis 
 We sequenced 200 cases of end stage renal disease in the setting of lupus (ESRD-SLE), 

192 lupus cases without renal disease (NN-SLE), and 190 healthy controls (Healthy). All were 

self-declared Caucasian, non-Hispanic. The ESRD-SLE group was from a number of centers 

around the country, while the NN-SLE and Healthy controls were largely from the University of 

Alabama-Birmingham. Our power to detect an association given the number of genes we were 

testing was estimated to be >70% if any gene was responsible for 7% of the population 

attributable risk of severe lupus nephritis (a 15-fold increase of variants over an anticipated 

aggregate rate of rare mutations in controls of <1 per 100 individuals (0.05% aggregate MAF). 

 We identified a single variant that we are confident will lead to haploinsufficiency in 

MCP (Y189D) (42). There were no other variants in AP genes where we were confident in their 

effect on function, or where there was any enrichment in cases versus controls for renal disease 

(ESRD-SLE vs NN-SLE). This data was transferred to our collaborators at Univ. Alabama 

Birmingham (Bob Kimberly) for further analysis of the effect of rare variants in genes known to 

increase the risk of lupus. 

 

Discussion 

AP Dysregulation in PE 

 Based on our results in sequencing genes of the complement system we conclude that 

dysregulation of the AP for genetic reasons is not a significant contributor to the prevalence of 

PE. There is a consistent trend in both the FINNPEC and VIP populations for enrichment of 

variants in the functional domains of FH in PE cases. However, this is on the order of 1% of 

cases. The R127H and C1077S variants have secretion defects as expected. While specifically 
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the R166Q mutation seen in both groups has a significant decrease in CA, and the Q400K is in 

close proximity to the AMD risk allele Y402H. It is also possible Q400K has a secretion defect 

(34). The other CFH variants are largely of unknown functional significance. The role of CCP6 

(site of 2 rare variants in the VIP study) is debated, however there is a burden of variants in this 

domain in AMD cases verus controls (Chapter 5).  

A counter argument for the role of AP regulatory mutations in PE, is that rare CFI 

variants known to cause haploinsufficiency or loss of function are present in cases and controls 

of the FINNPEC and VIP studies. Additionally, previous reports that A304V is a risk variant 

may be incorrect as it is not enriched in the FINNPEC or VIP studies. Its role in aHUS is also 

questionable due to its high frequency in the population.  

We rule out rare variants in the AP or its regulators from contributing significantly to the 

risk of PE. Mouse models of preeclampsia are far from perfect, but pharmacologic blockade of 

the AP has been reported to reverse the blood pressure and renal dysfunction observed in these 

mice during pregnancy. AP activation may exacerbate the effects of low VEGFA levels on 

glomerular endothelial cells or other specialized vascular beds. AP blockade may be an effective 

therapy in a subset of PE patients. 

Coagulation Pathway Variants in PE 

 The enrichment we see in the FINNPEC cohort for variants known to affect the clotting 

pathway is interesting considering the unique hemostatic environment of the placenta. Thus it is 

not surprising that a diversity of variants that alter hemostasis may increase the risk of 

preeclampsia. Meta-analyses have confirmed that both the F5 Leiden mutation and the 

prothrombin 3 ′UTR mutation (both prothrombotic) increase the risk of PE (14, 15). We replicate 
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the F5 Leiden finding in the FINNPEC group (the prothrombin mutation was not covered well in 

sequencing).  

This is the first report of rare variants in multiple genes of the clotting pathway increasing 

the risk of PE. The same report that noted pregnancy associated aHUS predominantly occurs 

after delivery did note that episodes of ADAMTS13 deficient TTP (a TMA that features CNS 

involvement) predominantly occur during pregnancy (15 of 21 cases between 20 weeks GA and 

37 weeks) (3). This is consistent with out data in the FINNPEC study that dysregulation of 

hemostasis may be exacerbated by pregnancy and increase the risk of PE. 

While the VIP study did not replicate these findings, we are examining if study inclusion 

requirements and or study design can explain why this finding is not replicated and why the F5 

Leiden allele is observed at ~50% the frequency in VIP cases versus controls. We are also 

genotyping all of the alleles discussed here in clotting genes in additional FINNPEC cases (190) 

and controls (475). 

 

Variants in the AP are Not Increased in Lupus Nephritis Cases 

 We can conclude that genetic deficiencies of AP regulation are not a common factor that 

exacerbates the renal disease observed in individuals with lupus. We examined the most extreme 

phenotype and found only one individual with a variant where we are confident they will be 

haploinsufficient for AP regulatory activity. No such mutations in CFH, CFI, or C3 were 

identified. This is counter to the idea that rare mutations in MCP and FH may lead to an early 

age of onset of lupus nephritis (43).  
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This may be due to a strict versus generous definition of which variants are loss of 

function in terms of if they are likely/proven to affect function and their MAF. Early screening of 

aHUS controls was limited to a few hundred people. Large collections of sequencing data are 

available, importantly the NHLBI ESP dataset, yielding much better estimates of the MAF of 

rare variants (44). Even more so than in PE, the case for complement dysregulation in the kidney 

leading to renal disease in a subset of patients is strong. The lack of genetic variants that increase 

risk does not preclude the idea that these individuals would benefit from complement 

therapeutics such as the anti-C5 antibody now used in aHUS (45). 
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Supplement 4-1.  PE Candidate Genes Selected for Sequencing 
AP/MAC/Regulators Classical Pathway Inhibin Axis 

C5AR1 C1QA INHBB 
GPR77 C1QB INHBA 
C3AR1 C1QC INHBC 

C3 C1S INHBE 
PZP C1R INHA 
CRP SERPING1 ACVR2A 
C5 C2 ACVR2B 
C6 C4A ACVRL1 
C7 C4B ACVR1B 

C8A C4BPA ACVR1C 
C8B C4BPB ACVR1 
C8G C1QBP INHBB 
C9 CD93  

MCP CALR TGFB/ENG 
DAF  TGFB1 
CFI Lectin Pathway TGFB2 
CFH MBL2 TGFB3 

CFHR1 MASP1 TGFBR1 
CFHR2 MASP2 TGFBR2 
CFHR3 FCN1 TGFBRAP1 
CFHR4 FCN2 ENG 
CFHR5 FCN3  

CFP SFTPA1  
CFD SFTPA2 Angiopoietin and Rec. 
CFB SFTPD ANGPT1 
CD59  ANGPT2 
CLU Angiogenesis ANGPT3 
VTN VEGFA ANGPT4 

THBD VEGFB TIE1 
 VEGFC TIE2 

Complement Receptors FLT1  
CR1 KDR  

CR1L FLT4  
CR2 PGF  

ITGAM   
ITGAX   
ITGB2   
VSIG4   
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Clotting Pathway Platelet Aggregation Candidate Genes 
TF PEAR1 STOX1 

TFPI ADRA2A STOX2 
TFPI2 PIK3CG Cdkn1c 
PROS1 JMJD1C EHD3 
PROC MRVI1 EHD4 

SERPINC1 SHH NOTCH2 
F2R  JAG1 

F2RL1  HEY1 
F2RL2 Cell Surface Ligands HEY2 
F2RL3 SELP ADM 

F7 SELPLG ADM2 
F10 CD36 ROCK1 
F3  ROCK2 
F9 VWF LEVEL: DEF6 
F8 ABO SWAP70 
F11 STXBP5 ADAM10 
F5 STX2 ADAM17 

PROCR SVIL ADAM8 
PROZ  ADAM9 

SERPINA1 VWF Binding: ADAM12 
SERPINA5 ITGA2B ADAM15 
SERPINE1 ITGB3 ADAM19 
SERPINB2 GP1BA ADAM28 

SERPINA10 GP1BB TNF 
FGA GP9 LCT 
FGG GP5 GPR98 
FGB GP6 IL10 

PLAT  TREX1 
PLAU  CORIN 
PLG Assc with CAD NODAL 

SERPINE2 LIPA CTLA4 
SERPIND1 PDGFD ACE 

F13B ADAMTS7 LPL 
 KIAA1462 F13A1 
 LRRFIP1 ITGB1 
 COMMD7 ANTXR1 
  ITGA2 
  ITGB1 
  DGKE 
  IP6K1 
  MAGI1 
  MME 
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 Chapter 5 
 
 
 

Rare Variants in the Alternative Pathway Increase the Risk of  
Age-Related Macular Degeneration 
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Introduction 

 Genetic evidence supporting the role of AP activation in the eye has already been 

discussed in Chapter 1. In summary, one of the most potent common SNPs discovered by 

GWAS is Y402H in CFH (OR=2.5). C3, CFB, and CFI, all components of the AP have also 

been found to associated with AMD. A highly penetrant mutation in CFH, R1210C, was found 

in families with AMD (1). This mutation had previously been described in aHUS and has a 

known defect in GAG binding, similar to the effect of the Y402H allele (2, 3). We identified 

additional that rare mutations in the AP that increase  

The studies summarized below are in different stages relative to being published. The 

first paper (Seddon, JM, et. al. 2013. Nature Genetics – Supplemental Manuscript #1) was a 

sequencing study utilizing a case and control design to find rare variants that affect the risk of 

AMD. I aided in study design and target selection as well as interpretation of the CFI, C3 and C9 

variants. I also made significant editorial contributions to the manuscript. Several additional 

unpublished studies relevant to the above findings are described below as well.  

A second manuscript detailing haploinsufficiency of FI in the blood of CFI rare variant 

carrier cases versus cases without a rare variant and versus controls with a rare variant is in 

preparation.  

The third study (Yi, Y, Triebwasser, MP, Schramm, EC, Wong, E, et. al. Submitted. 

American Journal of Human Genetics – Supplemental Manuscript #2), describes rare variants in 

CFH that are causative for AMD in families. Exome sequencing of pedigrees was used to 

identify these variants. I did the functional studies of the CFH variants in the mammalian system, 

which involved significant assay optimization given the intermediate loss of function defects 
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these variants confer. I also wrote a substantial portion of the manuscript contributed 

significantly editorially; I am a co-first author. 

A fourth paper is in preparation. It is entirely my work and is based on further analysis of 

the case control sequencing data that was also initially described in the Seddon, et. al. 2013 

Nature Genetics paper. In this study I identified a series of rare variants in factor H that are 

associated with AMD. 

 

A Diversity of Rare Variants in CFI Are Associated with AMD (Seddon, JM, et. al. 2013 Nature 

Genetics) 

Study Population, Design and Analysis 

 1,712 AMD cases and 781 phenotyped controls (2,493 total) were sequenced for 688 

candidate genes. They were chosen by identifying pathways involved in complement, retinal 

pigment epithelial cell biology, photoreceptor biology, HDL metabolism, inflammation and 

oxidative damage, as well as genes implicated by previous AMD GWAS results and those 

associated with diseases related to AMD. Genes were tested for either an increased burden in 

cases or an increased burden in controls for variants with a MAF <1% in the 2,493 samples and 

that led to missense, nonsense, read-through or splice-site changes.  

A Diversity of Rare Variants in CFI Increase the Risk of AMD 

CFI (p=1.6x10-8), exceeded a Bonferroni corrected threshold, 3.6x10-5 (0.05/(688 * 2)). 

7.9% of cases (136 individuals) carried a CFI variant and 2.3% of controls (18 individuals) 

carried such a variant. There were 59 unique variants in total in CFI. The association with CFI 

was significant when adjusting for ancestry (p=5.0x10-8, OR=3.6) or when adjusted for age and 

gender (p=6.7x10-9, OR=3.7). Enrichment was also unrelated to the presence of a common SNP 
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near CFI when a stratified analysis was done based on the genotype at rs4698775 (p=1.7x10-8 for 

rare variants increasing risk of AMD). The effect of the common SNP was not obviated by the 

rare variants (OR=1.15 when controlling for rare variant status), evidence against a synthetic 

association. 

 This finding is further supported by the fact that many of these variants (12 of 59) have 

been observed in aHUS. There were four nonsense mutations and one splice donor mutation that 

were present in a total of seven cases and zero controls. Importantly, no missense, splice site, 

nonsense or read through mutation in CFI was present at greater than 1% in the population.  

There is an increased burden of variants in the catalytic (serine protease) light chain 

relative to the heavy chain (OR=4.85 vs 2.63, respectively). The heavy chain is physically larger 

55 vs 35 kDa, and, if variants were distributed randomly throughout the protein, the heavy chain 

would be expected to have a larger share. Taken as a class, variants predicted to be loss of 

function or damaging by Polyphen-2 collectively had an OR of 7.5, whereas those predicted to 

be possibly damaging had an OR of 2.4. 

Rare CFI Variants in AMD Cases Lead to Low Blood Levels of FI 

 Subsequent analysis of serum levels of FI in 77 cases carrying a rare variant versus 48 

cases without a rare variant or 42 controls with a rare variant (and 48 controls without a rare 

variant) has demonstrated that roughly half of the variants in CFI cases lead to a production 

defect and haploinsufficiency (Figure 5-1 and 5-2) (Kavanagh, et. al. Hum Mol Genetics. 

Accepted). 
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Figure 5-1. AMD Cases that Carry a Rare Variant in CFI Have Lower Serum Levels Than 
Controls With a Rare Variant 
Controls (N=42) that carry a rare coding variant in FI have an average FI level of 44.1 µg/ml 
versus AMD Cases (N=77) which have an average FI level of 35.5 µg/ml  (p<0.05). The FI level 
observed for each individual carrying a given FI variant. Grey circles are cases and open circles 
are controls. Grey line delineates the lower bound of the normal range, 29.7 µg/ml. 
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Figure 5-2. FI Haploinsufficiency is Common Among AMD Cases with a Rare Variant in 
CFI.  
Grey circles are cases and open circles are controls. Roughly half of the cases with a rare variant 
have levels below the normal range (29.7 µg/ml) compared to 2 of 42 controls with a rare variant. 
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A Rare Variant in C3 and in C9 Increase the Risk of AMD 

 Two variants, K155Q in C3 and P167S in C9, were found to be associated with AMD in 

this population and subsequent replication cohorts populations. K155Q of C3 had an odds ratio 

of 3.8 (MAF 1.3% in cases and 0.4% in controls). It results in lower binding to CFH and a 

significant defect in cleavage by CFI when FH serves as the cofactor, but not when MCP or CR1 

is the cofactor. Two other groups reported the K155Q mutation in C3 at the same time we did (4, 

5). 

 The C9 variant had an OR of 2.2 (MAF 1.8% in cases vs 0.9% in controls). Attempts to 

demonstrate an effect on the hemolytic activity of serum from P167S heterozygous individuals 

have been unsuccessful and P167S was indistinguishable from wild type when examined by 

Western blotting under reducing or non-reducing conditions (unpublished data, Triebwasser, MP 

and Schramm, E). There was no enrichment for missense, stop or splice site mutations in C9 (75 

vs 37, 2-fold vs 2.2 fold expected).  

Because C9 interacts with the regulator CD59, we thought that mutations in CD59 might 

be able to tell us more about how mutations in C9 increase risk. No individual in the 2,493 

carried a coding mutation in CD59. In the 6500 individuals in the NHLBI ESP, 6 individuals 

carried a singleton or doubleton missense mutation in the mature protein sequence of CD59. 

From this summary, we conclude that CD59 function is critical and that coding changes in this 

gene are not well tolerated. The interaction of this C9 variant with CD59 requires further study. 
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Rare CFH Mutations are Causative in Families with a Low Burden of Common AMD Risk 

Variants (Yi, Y, Triebwasser, MP, Schramm, E, Wong, E, et. al. Submitted. AJHG) 

Family Selection and Variant Selection For Segregation Analysis 

 Ten families with a disproportionally low genetic risk given the burden of disease or with 

early onset of disease had the exome of multiple affected members sequenced. An unaffected 

family member was sequenced when one was available. Variants that were expected to alter the 

protein product, had a MAF of <0.1% in public datasets, and satisfied an autosomal dominant 

mechanism (present in all affecteds in that family and none of the controls) were considered. 

Additionally, variants were required to be deleterious by SIFT or probably damaging or worse by 

Polyphen-2. All such variants were genotyped in all available family members to confirm their 

existence and segregation. 

Two Families Have Rare or Novel CFH Variants That Segregate with Disease 

Two of the ten families had a mutation in FH that segregated with disease. The R53C 

variant in CFH was observed in eleven affected family members (LOD > 5). It had previously 

been observed in aHUS and a different change at the position, R53H, had also been reported in 

aHUS and DDD. The second family had a D90G variant in 5 affecteds (LOD=1.22). No other 

family had a unique variant that satisfied these requirements, though two families had variants 

with LOD scores >1, but in genes previously unassociated with AMD. Lacking a larger pedigree 

for either family, additional evidence is required to implicate these genes.  
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Functional Analysis of R53C and D90G 

  We studied (myself, Elizabeth Schramm (St. Louis) and Edwin Wong (Newcastle, UK)) 

the CFH variants in two different groups using protein made in yeast Pichia pastoris (Newcastle) 

and in human 293T cells (St. Louis). Both groups performed functional analyses and they agreed. 

R53C has a severe defect in carrying out decay acceleration and a minor loss of cofactor activity. 

R53C was identified in 3 additional unrelated cases in the case:control study already discussed 

(6). The D90G mutation that segregated with disease in the second family had normal decay 

accelerating activity, but significantly lower cofactor activity. Generally, C3b binding was 

normal, though both groups found R53C to have a higher KD. See Supplemental Manuscript #2 

for the details on these functional assessments. 

 

Rare Variants in the Functional Domains of CFH Are Associated with AMD (Triebwasser, MP, 

et. al. In Preparation). 

 The association observed in CFI was detectable because of its large effect size, 

prevalence in the population, and lack of neutral variants in the 0.5-1% MAF range in the control 

group. In fact, there were only two variants present at >0.1% (more than two observations in 

controls). Of these two, one was enriched 3.5-fold in cases and the other 1.4-fold. The ability to 

detect any signal is related to the “noise,” and in the case of CFI there was very little noise. 

I hypothesized that additional rare variants would be present in genes of the AP in AMD 

cases. Findings that support this include the penetrance of rare variants in CFH (1, 7), the 

presence of a rare variant in C3, and an excess of rare variants in CFI (6). 
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The Effect of CFH Variants is Dependent Upon the Definition of Rare 

Using the same 2,493 individuals as described above (6), I examined whether there was 

an excess of rare missense, nonsense, splice-site or read-through mutations in FH in AMD cases. 

At a definition of rare at 5% MAF in the control group, there is no excess of rare variants in the 

cases (OR=1.1, p=0.3). With a definition of rare at 1% MAF in the control group, there is an 

excess in cases (134 vs 49, OR=1.25, p=0.097). This is the set of criteria used in the analysis 

described above that discovered the association with CFI.  

This burden however becomes clearer as our definition of rare becomes increasingly 

stringent. At the 0.5% and 0.13% MAF points, the association is stronger with OR of 1.65 and 

2.88, respectively (p=7x10-3 and p=2x10-5) (Table 5-1) (MAF 0.13% in controls is 2 

observations of an allele in the 781 controls). Attempts to utilize more sophisticated alternatives 

to the burden test that use variant frequency to weight variants (Variable-Threshold test) failed to 

identify stronger evidence for an association between FH and variants below 1% MAF. 

 

Table 5-1. Burden of Rare Variants in CFH Increases as the Frequency of 
the Variants Decreases 
MAF in Controls # Unique 

Variants 
# Alleles 
in Cases 

# Alleles in 
Controls 

Odds 
Ratio 

p-value 
 

1% 75 134 49 1.25 0.1 
0.5% 73 111 31 1.65 7x10-3 

0.13%* 70 93 15 2.88 2x10-5 

Minor allele frequency (MAF) in the control group (1,562 chromosomes). *MAF 0.13% 
corresponds to 2 or fewer alleles in the control group. P-value derived from Fisher’s exact test 
using the number of alleles/chromosomes in each category. 
 
  



 
 
 
 

134 

 

Cases Exclusively Carry Loss of Function and aHUS-Associated Variants 

Complement factor H consists of 20 CCP domains, each having two conserved disulfide 

bonds. Loss of a conserved cysteine typically leads to a failure of the protein to be secreted 

because it is not folded properly. There are 11 cases and zero controls that carry a variant leading 

to a nonsense change, loss of a conserved cysteine or in a canonical splice site (Table 5-2). Very 

rare, essentially private variants previously reported in aHUS also only occur in cases.  

 

Table 5-2. Variants Likely to Impact CFH Serum Levels Are Present 
Exclusively in Cases 

 Cases Controls 
Nonsense 4 0 

Loss of Conserved Cysteine 4 0 
Splice Site 3 0 

Every CCP domain contains two conserved disulfide bonds. When one of the 4 conserved 
cysteines required to form these bonds is lost, the protein will not fold correctly. 
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Rare Variants in Functional Domains of CFH Confer Risk 

The domain of factor H that encodes regulatory activity (CCP1-4) has an excess of rare 

variants (MAF < 0.5%, OR=4.0, p=0.0018) (Table 5-3). Variants in cases cluster at the interface 

between FH1-4 and C3b whereas those in controls are consistently found facing away from the 

C3b interface (Figure 5-3). There is a precedent through for variants in CCP1 that do not contact 

the C3b structure to affect decay acceleration (for example, R53C), as CFB binds up against the 

C345C domain (8, 9). 

There is also an excess of rare variants in the anionic binding domains located at CCP 6-9 

and in CCP 19-20 (Table 5-3). CCP7 is the site of the common AMD risk variant Y402H, which 

affects heparin binding (3). The variants found in CCP20 all cluster on the same face as the 

R1210C variant, which is known to be highly penetrant and to affect GAG binding (Figure 5-4) 

(1, 2). Interestingly, there are no variants in CCP19 or 20 that directly oppose C3d binding.  

  



 
 
 
 

136 

Figure 5-3. Rare CFH Variants in AMD Cases Within CCPs 1-4 Cluster at the C3b:FH 
Interface  
Variants only in AMD cases are in purple. Variants that are nonsense or remove a conserved 
cysteine are in red (these are only seen in cases). Variants only in controls are in green. One 
variant was observed in cases and controls (magenta). The variants in CCP3 contact the CUB 
domain and variants in CCP4 contact the TED domain. 
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Figure 5-4. CFH Rare Variants in CCP20 Cluster Near R1210C 
FH CCP 19-20 is in orange. C3d is in teal. R1210C variant is in black. The crystal structure 
contains two C3d fragments (PDB ID 2XQW). Mutations only in AMD cases are in purple. The 
CCP19 variant (Q1143, in 1 control) is not present in the crystal structure. The rare variants 
cluster on the same face as R1210C, which is known to affect heparin/GAG binding (2). 
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If we consider the variants (Table 5-3) in these three functional domains as a single class 

(rare variants that are in domains of functional importance of CFH), they are associated with 

AMD (MAF < 0.5% in controls, OR=5.1, p=4.2x10-7). 4.4% of cases carry a rare variant versus 

0.9% of controls. The previously reported R1210C variant does account for some of this 

association, but carrying a rare variant in these domains is still associated if we exclude R1210C 

(OR=4.6, p=1.9x10-5).  

 
Table 5-3. Individuals Carrying Mutations in Functional Domains of FH 
Domain Function Cases Controls Odds Ratio p-value 
CCP 1-4 DAA/CA 35 (2.0) 4 (0.5) 4.05 0.0018 
CCP 6-9 Localization 15 (0.9) 1 (0.1) NA NA 
CCP 19-20 Localization 24 (1.4) 2 (0.3) NA NA 
CCP 19-20 w/o 
R1210C 

Localization 7 (0.4) 1 (0.1) NA NA 

All Functional 
Domains 

 76 (4.4) 7 (0.9) 5.1 4.2x10-7 

All Functional 
Domains w/o 
R1210C 

 69 6 4.6 1.9x10-5 

Number in parenthesis is % of individuals. If an individual carried two mutations mutation, they 
were assigned to be a carrier of the N-terminal mutation. All functional domains include 
missense mutations in CCP 1 to 4, 6 to 9, and 19 to 20, as well as nonsense and splice site 
mutations in other domains. NA: Test not done because few variants. R1210C is broken out as it 
is the single largest contributor to the effect seen in CCP19-20 and has previously been described. 
P-value derived from Fisher’s Exact Test using the number of individuals in each category. 
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 Finally, rare coding variants in CFH are associated with AMD independent of the two 

common risk loci in CFH (rs1061170 (Y402H) and rs10737680 (intronic) (Table 5-4). Y402H 

has an OR of 1.94, while rs10737680 has an OR of 1.85 in a conditional additive model. If all 

rare coding variants in FH are considered, they have an OR of 1.65 (p=0.029) when both 

common SNPs are accounted for. If only those rare coding SNPs in CCP 1-4 are considered, they 

have an OR of 4.7 (p=0.0045) (Table 5-4). Given the small sample sizes, I also tested the 

significance of the association of all rare coding variants in CFH or just those in CCP 1-4 using a 

permutation based conditional logistic regression that accounts for Y402H and rs10737680 and 

found the association to remain significant (p=0.024, all rare CFH variants, and p=6x10-4 rare 

variants in CCP 1-4). 

Table 5-4. Rare Variants are Associated with AMD Independent of the 
Common SNPs in CFH 

SNP Consequence OR p-value 
rs1061170 Y402H 1.94 4.8x10-14 

Rs10737680 Intronic 1.85 2.7x10 
All Rare Variants  1.65 0.029 

Rare Variants in CCP 1-4  4.7 0.0045 
 
 
In a conditional regression, the effect of the common variants is not affected by the addition of 

missense, nonsense and splice site mutations with MAF < 0.5%. Rare variants throughout the 

gene are also significantly associated if permutation is used to estimate significance (p=0.024).  

Rare variants in CCP 1-4 are associated independent of the common variants using either 

conditional logistic regression or permutation based conditional logistic regression (p=6x10-4). 
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Discussion 

 Rare variants in CFI, C3 and CFH are present in severe AMD cases. A subset of alleles 

in CFH have very high penetrance, including R53C, D90G and the previously identified R1210C. 

There is also a rare variant in CFB that is present in 19 cases and 1 control. This variant has 

previously been reported in an aHUS case as well and we are pursuing further studies. These 

variants implicate cofactor activity as required for homeostasis of the AP, and AP activity in the 

degenerative disease AMD.  

The mechanism linking excessive AP activity to the pathologic process in AMD is not 

known. But two different rare variants in C9 have been reported (6, 10). One is a nonsense 

mutation that is protective for wet AMD and the other is a missense mutation that increases risk 

of AMD. Sublytic C5b-9 deposition drives retinal pigment epithelial cells to produce vascular 

endothelial growth factor (VEGF) (11). This local production of VEGF would be central to the 

proliferation of vessels in wet AMD. If the null allele in C9 leads to decreased C5b-9, this would 

be consistent with a reduced production of VEGF and protection from wet AMD.  

It is particularly interesting why these individuals present with AMD and not aHUS or 

DDD. Additional genetic and environmental factors must exist that affect the risk of developing 

kidney disease versus retinal disease. While unaffected relatives of aHUS patients carry the same 

mutation, they often have normal renal function or only mild impairment. Penetrance here may 

reflect both different levels of AP activity or susceptibility in carriers with the same mutation, 

and also the susceptibility of the kidney versus the eye.  
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The kidney is an organ with enormous functional reserve. Throughout evolution the 

kidney and liver were the front line in eliminating toxins from the body and thus would have 

been under constant assault. It is estimated that only when a person has <10% functional renal 

capacity will they start to be symptomatic. Thus even those individuals with AP risk variants 

may live a life free of kidney disease. For example of the 11 R53C carriers in the AMD family 

discussed here, none had abnormal measures of kidney function.  

In contrast, AMD affects people in the last third of life and is a degenerative disease. It 

may be that both common variants and rare variants in the AP lead to excessive complement 

activation in the retina over decades, resulting in years of cumulative damage that destroys the 

excess capacity of the retina. The drusen deposits that accumulate between the retinal pigment 

epithelial cells and the vascular supply of the eye are known to activate complement and contain 

C3 fragments (12). Unlike the kidney, whose function most people do not monitor daily, eyes are 

used constantly.  Whether the functional reserve in the eye is lower or we are more vigilant in 

monitoring it, those with retinal damage will usually be diagnosed.  

 The enrichment of CFI variants was easily detected at the gene level employing a widely 

utilized MAF cutoff of 1%. However, no cutoff was necessary because there are effectively no 

common coding variants in CFI (none present at >0.5% MAF in our 781 controls or the NHLBI 

ESP European-American population). This is in contrast to CFH where there is a great diversity 

of alleles across the frequency spectrum. Only when considering the rarest alleles do we see a 

strong association. Further subsetting on the domains of FH known to have functional 

importance in AP control only increases the significance of this association.  
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Our current work is focused on understanding the effects of these FH variants, both 

whether they lead to decreased protein in the blood and if they have functional consequences. 

We are developing a high throughput assay that utilizes patient serum as a screening tool. 

Additionally, we are trying to extend as many cases with CFI and CFH mutations into families 

as possible to estimate the penetrance of these mutations. 
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Future Directions, Conclusions, and Final Remarks 
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The alternative pathway (AP) of complement is comprised of a powerful feedback loop 

that can spontaneously initiate as well as be engaged by adaptive and innate immunity. 

Regulation is critical to prevent tissue damage. A number of human diseases feature AP 

activation. 

Rare mutations in CFI, CFH, MCP, CFB and C3 are a known cause of the rare kidney 

disease atypical hemolytic uremic syndrome (aHUS) (1). This disease features microthrombi in 

the glomerular capillary network of the kidney, leading to renal failure (2). Antibodies in the AP 

and Ab that stabilize the C3 convertase (nephritic factors) are causative in several closely related 

renal diseases (DDD, C3GN, MPGN I) (3, 4). These diseases featuring renal failure showcase 

how the kidney is uniquely sensitive to AP activation.  

Common variants in C3, CFH, CFB, and CFI increase the risk of age-related macular 

degeneration (AMD) (5). The Y402H risk allele is one of the most potent risk factors of any 

common disease, with an odds ratio of ~2.5 and a minor allele frequency of 30-40% (6). 

Together, these common risk factors in the AP describe a significant amount of disease risk 

(~50%) and strongly implicate excessive AP activation in this retinal disease (7). 

The focus of this thesis was to understand the effects of unrestricted AP activation on 

tissue and to determine if individuals affected with common diseases featuring AP activation and 

kidney disease harbor rare variants in this pathway. 

 

Summary and Conclusions for Crry-/- Embryonic Loss 

 Unrestricted AP activation leads to loss of Crry-/- embryos before d8.5, earlier than 

previously reported (8). This is due to a failure in developmental such that the vessels of the  
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allantois (precursors to the umbilical vessels) do not proliferate and the labyrinth of the placenta 

is not developed at 9.5 dpc. We exhaustively ruled out the role of neutrophils as previous reports 

described them as present around Crry-/- embryos prior to loss. We did not observe evidence for 

an increased immune cell infiltrate (CD45+ cells) around Crry-/- compared to Crry+/- embryos.  

 Embryos can be rescued by temporarily blocking the AP with anti-properdin Ab or by 

depleting C3 utilizing cobra venom factor. AP activation likely begins as soon as the embryo 

starts to contact maternal blood at 6.5 dpc, with increasing contact happening at each subsequent 

day. The process that fails to occur in Crry-/- embryos is complete by 8.5 dpc and embryos are 

not susceptible to loss after this point. This is interesting because DAF, another cell membrane 

regulator, is not present until after 10.5 dpc. This means AP activation proceeds unchecked by an 

intrinsic regulator for two days after the normal point of loss. The expression of CD59 is not 

relevant to loss, as C6 deficient mice do not rescue. 

 Many mouse models of disease, including lupus nephritis, anti-phospholipid antibody 

dependent fetal loss, and inflammatory arthritides are complement dependent, and specifically 

involve neutrophils and C5a:C5aR signaling (9-11). Even models of aHUS and MPGN may be 

due to C5a or C5 cleavage (12, 13). We showed that embryonic loss was not neutrophil 

dependent, and it was previously known that C5 is not the critical mediator of loss (14). We 

further showed that both C3a and C5a signaling are not involved in mediating fetal loss. This 

means that C3b or factor B products are likely to be mediating fetal loss (15-17). This is a unique 

model of AP dependent tissue damage. 
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Future Directions for Defining the Mechanism of Crry-/- Embryonic Loss 

 While we did not find evidence of an increased inflammatory infiltrate around Crry-/- 

embryos, we did not exhaustively rule it out. A definitive look at what cell types are present 

around Crry-/- and Crry+/- embryos with a focus on CR2, CR3 (CD11b) and CR4 (CD11c) 

expressing cells would rule out a small population of cells that are recruited to the embryo by 

receptors for iC3b and/or C3d.  

Because we now know the exact days preceding fetal loss, gene expression profiling at 

the level of embryonic structures such as the allantois, the chorion and the trophoblastic giant 

cells surrounding the ectoplacental cone at 6.5 and 7.5 dpc are an attractive way to assess 

changes that may be happening in Crry-/- embryos as a result of exposure to the AP. Despite an 

effort to look at the RNA of grossly dissected 7.5 dpc implantation sites (chorion and embryo, 

with minimal decidua), we were never able to confidently distinguish the genotype of the 

embryos by real time PCR. Transcript from the knock-out allele persisted and we were 

comparing Crry+/- to Crry-/- in the setting of contaminating Crry+/- decidua.  

 

Summary and Conclusions on AP Variants in PE and Lupus Nephritis 

 Preeclampsia is a pregnancy specific condition whose only cure is delivery of the baby 

and removal of the placenta. It is thought that the placenta, in response to a high pressure, low 

flow maternal uterine spiral artery, releases vasculopathic molecules (18). These include sFlt-1, 

which antagonizes VEGFA and PLGF in the kidney, leading to hypertension and proteinuria. 

Clinical findings of a TMA are shared between aHUS and PE (2, 19). Individuals with 

complement regulatory gene mutations have been noted to have PE and HELLP (20-22). 
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Markers of AP activation are elevated early in pregnancy in individuals that will go on to 

develop PE (23). 

 We did identify rare variants in factor H that are haploinsufficient and likely lead to 

increased AP activity in two large independent groups. These alleles were in ~ 1% of cases. We 

did not find such alleles in MCP and those we observed in factor I were in both cases and 

controls. The common allele, Y402H, that is enriched in MPGN and AMD was not enriched in 

PE cases.  

 We did replicate two recent meta-analyses that confirm the association between the FV 

Leiden mutation and PE (24, 25). Further, our findings agree with these meta-analyses in 

concluding that other previously reported associations are not credible. We found a significant 

enrichment of known disease causing clotting pathway mutations in PE cases in a large Finnish 

cohort, but were unable to replicate the association in a separate UK cohort.  

 Complement activation is one way the autoantibodies present in lupus damage tissue. Our 

hypothesis was that, due to the kidney’s unique sensitivity to complement activation, rare 

variants that increase complement activation would increase the risk of lupus nephritis. In 200 

lupus nephritis cases we found only one rare variant that we predict would lead to this outcome, 

an aHUS associated mutation in MCP that has a secretion defect (26). We found no burden of 

mutations in C4 binding protein, a protein with function similar to factor H, but for the classical 

pathway. It is our conclusion that rare variants in the complement pathway that lead to excessive 

activation are not a significant contributor to lupus nephritis. 
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Future Directions for AP and Clotting Variants in PE 

 We await additional targeted sequencing on six AP genes in an additional 190 PE cases 

from the Finnish cohort. We have a particular interest in FH and FI. Also, we are awaiting 

additional genotyping from these 190 cases and 475 additional Finnish controls for the rare 

disease linked variants in the clotting pathway. Given there is a mix of prothrombotic and pro-

bleeding variants, some may be shown to not be enriched in cases with the addition of more 

controls.  

 We are exploring the possibility that the VIP study does not replicate our findings in the 

clotting pathway due to study design. Our focus was on the complement pathway when we 

originally began the collaboration. Also, we will examine both groups for previously un-

recognized relatedness. We did not explicitly receive families or pedigrees and generally the 

geographic origin of individuals with any given clotting pathway variant was diverse. This 

argues against a cryptic relatedness driving these trends. Given that we only have genotyping on 

750kb to 1 Mb of coding regions, relatedness measures may be inaccurate. The VIP cohort 

sequencing data is undergoing an additional round of quality control and a gene based burden 

test to determine if there are genes with an excess of variants shared between the two groups. 

 

Summary Conclusions from Rare Variants in AMD 

 We identified rare variants in the AP in severe AMD cases (5). These variants are in all 

the genes involved in cofactor-mediated control of the AP. They range from rare in the 

population (1%-0.1%) to extremely rare, essentially private. Study designs required to detect 

these variants differ: rare variants were successfully validated in case control cohorts, while 

strong statistical power for individual private variants can only be found in families.  
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 We demonstrated that power to detect these variants is highly dependent upon the gene 

considered, something disheartening when considering genome or exome wide efforts. We 

utilized the functional domains of FH and the aHUS literature to show that rare mutations in 

CFH that are known to affect secretion, cofactor activity or localization to anionic surfaces are 

enriched in AMD cases independent of the common variants in CFH.  

Future Directions for AMD 

 We would like to understand the effects of AMD associated CFH mutations. Serum from 

rare variant carries in CFH is being assayed for FH levels similar to the data presented in CFI. 

We hope to use serum from rare variant carriers to directly test FH function. Additionally, rare 

variant carriers in CFH and CFI are being extended into pedigrees where possible. 

 There is a rare variant in CFB (I242L) that is highly enriched in cases as well, 19 cases 

and 1 control from our previously reported study. This variant was reported in aHUS but no one 

has investigated its effect on function (27). It resides in the loop factor D cleaves when activating 

FB to Bb. It could affect the efficiency by which factor D activates factor B. We are seeking to 

confirm its association in exome chip data (MAF 0.13% in NHLBI ESP EA population) and also 

identify families that carry it (~600 families available for evaluation). 
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Final Remarks 

 While we did not find AP variants in a substantial fraction of PE cases as our initial pilot 

study of 40 PROMISSE PE patients suggested, looking back at that in light of the targeted 

sequencing of large cohorts we performed demonstrates several important points. First, the 

interpretation of aHUS association was made based on the aHUS literature, which often used 

100-200 controls from each center. This size control population is insufficient to truly estimate 

the frequency of variants in the 1% to 0.1% range. This is of great importance in all diseases as 

public datasets of disease-associated variants are being compiled. These must be constantly 

updated and curated as new variants are found and old variants are discredited. These datasets 

are currently of low quality with ambiguous annotations for the credibility of a deposition.  

Second, population stratification in the context of rare variant analysis is a potent source 

of false positives. Rare variants show larger fluctuations in frequency between populations then 

do common variants and therefore small differences in case and control populations can lead to 

false positives.  

 It is clear from this work that the evolutionary constraint present on two different genes 

can vary widely and even within a gene it can vary significantly between domains. The 

association detected between rare variants in CFI and AMD was well powered because there is 

no missense variant present at >0.5% in CFI in the NHLBI ESP European American (EA) 

population. Similarly, a recent report that reported an association between PLD3 and 

Alzheimer’s was well powered on a population level because PLD3 also has no missense 

variants present at >0.5% in the EA population (28). This means there was very little noise when 

considering the effect at the gene level, even if variants were clustered in certain areas of the 

protein. 
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 Our efforts to use frequency sensitive variations of the general burden approach to detect 

an association between rare variants in CFH and AMD were not better than a simple burden test 

with a reasonable MAF cutoff. However, when we looked at those variants that were very rare in 

controls and in functional domains of FH, we saw a strong enrichment. This highlights the 

potential for increasingly sophisticated statistical tests. One approach might use curated lists of 

domains critical for protein function. Another approach would be to utilize a sliding window 

along a transcript with weights based on the frequency and diversity of mutations present in a 

large control population such as the NHLBI ESP. This would give more weight to areas such as 

the regulatory domain of FH, where there are generally few mutations per/100bp and those that 

are observed are often singletons or doubletons in the ESP. 

 There is significant pleiotropy present in variants that increase AP activation. Variants 

seen in aHUS, R53C and R1210C of CFH, can be nearly 100% penetrant for AMD (29). There 

are likely additional genetic factors responsible for increasing the risk of they have for kidney 

diseases. The difference in penetrance for the two diseases may also be due to the fact that visual 

problems are much easier to recognize than kidney disease.  

I believe that in the degenerative disease AMD these variants will have high penetrance 

because they lead to a cumulative excess of AP activation over decades, and at a higher order of 

magnitude compared to common variants. This is of paramount importance for these families 

and has implications for their treatment. Such a scenario may play out in other common 

degenerative diseases as well.  
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It would be fortuitous if new risk variants in novel loci are already known to cause 

disease, even if clinically unrelated. This is unlikely to be the case. Once a toehold is established 

in the genetics of a disease, incorporating the review of experts in the structure/function 

relationships of these genes will be essential to incorporating genomic information into 

personalized medical care.  
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