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ABSTRACT OF THE DISSERTATION 

The Role of DNMT3A in Acute Myeloid Leukemia Pathogenesis 

by 

Christopher Browning Cole 

Doctor of Philosophy in Biology and Biomedical Sciences 

(Immunology) 

Washington University in St. Louis, 2016 

Professor Timothy Ley, Chairperson 

Loss of function mutations in the DNA methyltransferase DNMT3A are highly recurrent in acute 

myeloid leukemia (AML).  DNMT3A and the highly homologous gene DNMT3B encode the two 

methyltransferases that are primarily responsible for mediating de novo methylation of specific 

DNA sequences during cellular differentiation.  DNMT3A mutations are mutually exclusive of 

several translocations that create oncogenic fusion genes (PML-RARA, RUNX1-RUNX1T1, 

CBFB-MYH11, and MLL-X), suggesting that these fusions may require functional DNMT3A to 

initiate leukemogenesis.  Using bone marrow cells from a constitutive Dnmt3a null mouse, we 

show that loss of Dnmt3a caused a striking loss of DNA methylation throughout the genome of 

bone marrow cells, and a complete loss of methylation at hundreds of specific loci, suggesting 

that these regions are entirely dependent on Dnmt3a for maintaining normal methylation 

patterns.  Using both retroviral vectors and a transgenic model, we demonstrated that the 

methyltransferase activity of Dnmt3a but not Dnmt3b is required for aberrant self-renewal ex 

vivo that is driven by PML-RARA (but not RUNX1-RUNX1T1 or MLL-AF9); further, the PML-

RARA competitive transplant advantage and leukemia generation both required Dnmt3a.  In 

contrast, Dnmt3a was not required for leukemia generation caused by MLL-AF9, which is known 

to have a requirement for Dnmt1 activity.  Together, these findings demonstrate that PML-RARA 
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is specifically dependent on Dnmt3a to drive leukemogenesis, and may explain why DNMT3A 

mutations are mutually exclusive of PML-RARA in AML patients. 

While the most common mutation in DNMT3A in AML patients is the missense mutation R882H, 

other heterozygous mutations produce frameshifts, premature stop codons, or deletions of the 

entire coding sequence of the gene, strongly suggesting that these mutations lead to simple 

haploinsufficiency for DNMT3A.   To test the hypothesis that Dnmt3a haploinsuffiency may 

initiate AML, we performed a long-term tumor watch comparing wild-type mice (Dnmt3a+/+) to 

mice carrying one wild-type Dnmt3a allele and one targeted allele that contains a neomycin-

resistance cassette inserted into the sequence coding for the catalytic domain of the protein, 

producing a true null allele (Dnmt3a+/- mice).  At 6 weeks of age, Dnmt3a+/- mice have normal 

hematopoiesis, with no detected differences from wild-type littermates in myeloid, lymphoid, 

erythroid, or stem/progenitor populations in the bone marrow or spleen.  However, after 1.5 

years of age, 15/43 Dnmt3a+/- mice (35%) became moribund and were euthanized for 

pathologic evaluation, and at conclusion of the tumor watch at 2 years similar pathologic 

findings were observed in an additional 9 Dnmt3a+/- mice, for an overall disease penetrance of 

24/43 (56%).  In contrast, 0/20 WT littermate control animals developed myeloid malignancies 

over the same time period.  Based on flow cytometric and morphologic findings, we classified 16 

splenic tumors according to the Bethesda criteria: 11/16 had myeloid proliferative disease/MPD, 

2/16 had myeloid leukemia with maturation, 2/16 had MPD-like myeloid leukemia, and 1 case 

had myeloid sarcoma.  Six tumors out of 18 tested were able to successfully engraft and lead to 

lethal disease in sublethally irradiated wild-type recipients, providing further evidence that these 

tumors represent transplantable, cell-autonomous myeloid malignancies.  Exome sequencing of 

engrafted tumors revealed mutations in the Ras/MAPK pathway, including the canonical gain-of-

function mutation Kras G12C, a Ptpn11 E76K mutation, and a missense mutation in the tumor 

suppressor Neurofibromatosis 1 (Nf1).  Importantly, 9/51 AML samples with DNMT3A mutations 
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in the TCGA AML cohort also contained activating NRAS or KRAS mutations.  Examination of 

the Dnmt3a locus in 4 sequenced samples revealed no evidence for mutations in or deletions of 

the residual wild-type Dnmt3a allele. These data strongly suggest that Ras/MAPK pathway 

mutations can cooperate with Dnmt3a haploinsufficiency to induce AML in C57Bl/6 mice and in 

humans.  

vii



Chapter 1 

Introduction 
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Section 1: Whole Genome Sequencing and the Genetics of AML 

1.1 Historical Background on the Genetics of AML 

Acute myeloid leukemia (AML) is a group of heterogeneous hematologic malignancies 

which are all characterized by the accumulation of immature myeloid “blast” cells in the bone 

marrow and blood.  Aberrantly proliferating blast cells preclude the development of normal 

hematopoietic cells and lead to cytopenias, immune compromise, and death.  No targeted 

therapy is available for most subtypes of AML, and the 5-year survival for these patients with 

conventional chemotherapeutic treatment remains at a dismal 45%1.  

Historically, efforts to understand the pathogenesis of acute myeloid leukemia relied on 

grouping similar cases according to morphology of the leukemic cells, eventually being 

systematized in the FAB (French-American-British) System2.  One such example was acute 

promyelocytic leukemia (APL), which was noted as early as the 1950s to comprise a distinct 

diagnostic entity marked by blasts resembling normal promyelocytes and an explosive 

presentation with disseminated intravascular coagulation and rapid lethality3.  Subsequently, an 

increased appreciation of the causal role of genetic mutations in oncogenesis led to a focus on 

the genetics of acute myeloid leukemia and other cancers in the hopes of identifying driver 

mutations that might be used to stratify risk or ideally result in mutation-specific targeted 

therapies.  In the case of acute promyelocytic leukemia, identification of the causative mutation 

was greatly facilitated by the observation of a characteristic t(15;17) chromosomal translocation 

in  >90% of APL patients by Janet Rowley and colleagues4.  The resulting translocation gene 

product, PML-RARA, was cloned and has since been decisively established by our group and 

others as the key initiating event in the promyelocytic subtype of AML5–9.  Similar efforts have 

identified an initiating role for other common AML translocation products, including RUNX1-

RUNX1T110, MYH11-CBFB11, and a variety of MLL-fusion genes12–14. 
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By comparison with leukemias with recurrent chromosomal translocations, AML cases 

that lack recurrent chromosomal abnormalities (normal karyotype or NK-AML) did not provide a 

good starting point for finding causative genetic lesions.  Recurrent internal tandem duplication 

mutations in the tyrosine kinase FLT3 were found serendipitously by Nakao and colleagues 

when expression studies on AML patients detected an RT-PCR product of aberrantly increased 

length in several patients15.  Targeted sequencing efforts subsequently uncovered these FLT3 

ITD mutations and other mutations in FLT3 in approximately 25% of AML patients16–18.   

Discovery of another recurrent mutation in NK-AML, a frameshift insertion leading to aberrant 

cytoplasmic localization of the NPM1 gene product (NPMc mutations), was aided by the fact 

that the gene had already been implicated as a recurrent fusion partner with various genes in 

AML cases with recurrent cytogenetic abnormalities19–21.  A subset of NK-AML patients were 

also found to display aberrant cytoplasmic localization of the NPM1 protein and targeted 

sequencing efforts of the NPM1  gene then uncovered recurrent frame-shift mutations in these 

patients22.  Although, these genes were discovered almost serendipitously, approaches to find 

the other recurrently mutated genes in AML patients needed to be unbiased, and to explore all 

regions of the genome. 

1.2 Application of Next-Generation Sequencing in AML 

The advent of whole-genome sequencing has greatly accelerated the search for driver 

mutations in leukemia, and has led to the discovery of recurrent mutations in several genes 

which had not previously been implicated in cancer, such as the DNA methyltransferase 

DNMT3A23, the metabolic enzymes Isocitrate Dehydrogenase (IDH) 124 and 225, multiple 

components of the spliceosome complex (including U2AF1)26, and all members of the cohesin 

complex27.  The ability of whole-genome sequencing to survey the entire genome in an 

unbiased manner has been crucial for the discovery of these novel mutations in unsuspected 

genes, and has implicated entirely new cellular pathways in leukemogenesis. 
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In addition to allowing the discovery of these new mutations, whole-genome sequencing 

has provided the ability to focus on the mutational profile of individual patients and determine 

which genes are affected in a given patient’s cancer.  This new technology has facilitated two 

entirely new types of studies that promise to have far-reaching implications for our 

understanding of leukemia biology, as well as our ability to develop improved therapeutics.  The 

first type of study is the ability of deep sequencing to interrogate the clonality of leukemia.  

Studies from our lab and others have demonstrated that a given patient’s leukemia nearly 

always consists of multiple clones, including a founding clone and one or more subclones that 

are derived from it28–30.  The clonal architecture of a leukemia can be inferred using deep 

sequencing, in which mutations with similar variant allele frequencies (VAF) form clusters that 

represent the founding clones or subclones.  One study from our group utilized exome 

sequencing on  the progeny of individual hematopoietic stem/progenitor stem cells from normal 

volunteers to survey to determine how many mutations are “background” mutations present in 

normal hematopoietic cells prior to transformation28.  This study discovered that the majority of 

mutations present in leukemias are likely already present in the hematopoietic stem cell in which 

the initiating mutation occurred.  In addition, the clone with the initiating mutation acquires a 

small number of cooperating mutations to form the founding clone (in some cases as few as 1 

or 2 mutations), and then additional mutations are acquired in the subclones.  A subsequent 

study demonstrated that when transplanted into immunologically impaired mice, individual 

subclones may be selected for during the engraftment process, and that resultant xenografted 

leukemias are generally enriched for a single subclone, and thus may not adequately reflect the 

clonal diversity of the primary tumor30.  

1.3 Mutational Patterns and Clonality in Tumors 

Whole genome sequencing has revolutionized studies of the mutational patterns within 

individual leukemias.  It had long been theorized that mutations that tend to occur together have 
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a cooperative effect, where the second mutation is able to augment the oncogenic effect of the 

first, providing an additional advantage to the developing cancer which is either additive to or 

synergistic with the initiating mutation.  Elegant targeted sequencing studies by Vogelstein and 

colleagues provided clinical evidence for this hypothesis, by elucidating one temporal sequence 

of acquired mutations in colon cancer; the sequential addition of mutations drives disease 

progression from benign adenoma to full-blown colonic adenocarcinoma in a subset of 

patients31.   Direct in vivo experimental evidence for cooperativity has come from transgenic 

mouse models.  For example, sequencing of tumors from PML-RARA mice uncovered the 

spontaneous acquisition of Jak1 V657F mutations, suggesting that gain-of-function mutations in 

this tyrosine kinase cooperate with PML-RARA to drive leukemogenesis32.  This hypothesis was 

experimentally verified by transducing bone marrow from young PML-RARA+/- mice with 

retrovirus encoding the corresponding mutated human gene JAK1 V678F, which led to greatly 

accelerated onset of disease in recipients when compared with PML-RARA+/- bone marrow 

transduced with an empty vector control. 

The opposite of cooperativity is mutual exclusivity, i.e. mutations that never occur 

together in an AML sample.  A striking example from whole genome sequencing of AML 

patients is that DNMT3A mutations almost never occur in AML patients with the common AML-

initiating fusion genes MLL-X, RUNX1-RUNX1T1, MYH11-CBFB, and PML-RARA27,28.  This 

mutual exclusivity suggests several possible interaction scenarios: 1) the two mutations act in 

the same pathway and are functionally redundant, so there is no selective pressure for a cancer 

cell to acquire both mutations, 2) the two mutations have antagonistic or synthetically lethal 

effects, 3) functional DNMT3A enzyme is required for these fusion proteins to drive 

leukemogenesis.  In this thesis, a variety of experiments were performed to assess which of 

these biological scenarios accounts for the mutual exclusivity of the common AML fusions and 

DNMT3A mutations. 
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Section 2: DNMT3A Mutations in AML 

2.1 DNMT3A Mutations are highly recurrent in AML and Carry a Poor Prognosis 

Recent whole genome sequencing efforts by our group have discovered mutations in the 

DNA Methyltransferase 3A (DNMT3A) gene in approximately 37% of AML patients with a 

normal karyotype (22% of all cases)23.  These mutations are almost always heterozygous, and 

have been demonstrated by our group and others to be associated with high blast count, 

advanced age, and poor prognosis23,33–35.  In addition, these mutations have been demonstrated 

to be stable at relapse35, indicating that they are probably in the founding clone for most 

patients.  DNMT3A mutations are enriched for changes at a single amino acid in the catalytic 

domain, R882 (37 out of 62 DNMT3A-mutated patients in our study), but other patients had 

nonsense, splice-site, and frame-shift mutations, and in one case, deletion of a 1.5 MB region 

including DNMT3A (Figure 1)23.  Studies from our group and others confirmed that these 

heterozygous R882 mutations lead to a hypomorphic effect on the methyltransferase activity of 

the enzyme, and also a dominant negative affect on the WT DNMT3A present in the same AML 

cells36–38.  DMNT3A with the R882H mutation forms stable heterodimers with WT DNMT3A, 

disrupting the ability of the wild-type DNMT3A protein to form active tetramers.  The high 

prevalence, poor prognostic association, and stability throughout the course of disease strongly 

argue for a key pathogenetic role for DNMT3A mutations in AML. 

2.2 DNMT3A Haploinsufficiency as a Possible Disease Mechanism 

There are two distinct groups of DNMT3A-mutated AML patients.  The first and most 

common comprises those with point mutations at amino acid R882.  These patients are 

predicted to have very low DNMT3A activity due to the hypomorphic activity of the R882 mutant 

protein and the dominant negative effect of the mutated allele23.  Correspondingly, these cases 

have been demonstrated to have canonical CpGs that are hypomethylated when compared to 

the same sequences in AML patients without DNMT3A mutations36.  The other groups consists 
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of non-R882 mutations.  While some are missense mutations in functional domains, others are 

predicted to have translational effects that would disrupt the coding sequence of one allele by 

introducing premature stop codons, frameshifts, or whole gene deletions23.  Many of these 

mutants would not be predicted a priori to have dominant negative activity, suggesting that they 

create haploinsufficiency for DNMT3A.  This raises the intriguing possibility that simple 

haploinsufficiency for DNMT3A may also be an initiating event for AML in these patients.  

Dnmt3a conditional null mice exhibit an aberrant expansion and loss of differentiation 

potential in the long-term hematopoietic stem cell compartment when serially transplanted 

39(described below).  However, conditional Dnmt3a+/- mice have not been similarly 

characterized.  Constitutive Dnmt3a-/- mice carrying knockout alleles of Dnmt3a (which produce 

no detectable Dnmt3a protein) die with progressive runting at age 3 to 4 weeks, whereas mice 

with one Dnmt3a KO allele do not display runting or early lethality34.  No gross abnormalities 

have been reported in Dnmt3a+/- mice, except for an increased variation in body size which 

may reflect instability in quantitative traits induced by DNA hypomethylation40.  Notably, 

hematopoiesis in Dnmt3a+/- mice has not been fully characterized, and these mice have never 

been monitored in a long-term tumor watch.  Thus the effects of loss of one copy of DNMT3A on 

normal hematopoiesis and leukemogenesis remain to be experimentally tested. 

Section 3: DNMT3A and DNMT3B mediate DNA methylation involved in cell differentiation and 

loss of pluripotency 

3.1 Structure and Function of DNMT3A and DNMT3B 

DNMT3A and the highly homologous enzyme DNMT3B are the two known de novo DNA 

methyltransferases, which are characterized by the ability to introduce DNA methylation to 

sequences which are not methylated on either strand41.  In contrast, DNMT1 is the maintenance 

DNA methyltransferase, and is responsible for methylating the unmethylated strand of a 

hemimethylated sequence after DNA replication, thus maintaining methylation patterns after cell 
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divisions.  DNMT3A and DNMT3B share similar domain structures, including a catalytic 

methyltransferase domain, an ADD domain mediating protein-protein interactions as well as 

interaction with the unmethylated histone tail of H3K4, and a PWWP domain necessary for 

targeting to heterochromatin via recognition of H3K3642.  Both proteins have been primarily 

studied for their ability to introduce DNA methylation to the C5 carbon of cytosine in CpG-

dinucleotides (so-called CpG residues), since this is the most prominent DNA methylation 

observed in the genome, but the enzymes also possess the ability to methylate cytosine in CA 

and to a lesser extent CT and CC dinucleotide motifs43.  The importance of this non-CpG 

methylation remains unclear.    In addition, DNMT3A and DNMT3B have been shown to 

physically interact with each other, and with DNMT1, in vitro44. 

Despite these similarities, DNMT3A and DNMT3B exhibit differences in flanking 

sequence specificity both in an in vitro cell-free assay and in an “in vivo” yeast episome 

system45.  These distinct preferences likely result from differences in the amino acids in the 

catalytic domain, which have been demonstrated by X-ray crystallography to make contact with 

the nucleotides flanking the CpG residue42,46.  Recently ChIP-seq studies have compared genes 

bound by DNMT3A vs DNMT3B in NCCIT cells (a mixed germ cell tumor cell line), either 

undifferentiated or induced to differentiate with retinoic acid.  In the undifferentiated cells, there 

was substantial overlap between the genes bound by DNMT3A and DNMT3B; after retinoic-

acid-induced differentiation, less than 50% of bound genes were shared between the two 

enzymes47.  This study was not capable of elucidating cause and effect relationships between 

binding of the DNMTs and DNA methylation, and an important caveat of ChIP-seq studies like 

this one is that binding of a DNA methyltransferase does not necessarily correspond to the 

induction of methylation.  Nevertheless, this study indicates that in addition to differences in 

flanking site preference for the two de novo DNA methyltransferase enzymes in vitro and in the 

episomal system, there are also differences in the DNA sequences that are bound. This 
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suggests that different genes may have different potentials to be regulated by DNA methylation 

mediated by DNMT3A vs DNMT3B in vivo. 

 

3.2 Importance of DNMT3A and DNMT3B for de novo DNA Methylation in Development 

As the mediators of de novo DNA methylation, DNMT3A and DNMT3B have been 

demonstrated to play a key role in catalyzing the methylation of genomic DNA required for an 

organism to normally develop and differentiate34,42,48.  The phrase “de novo DNA methylation” 

originally referred to the experimental observation that exogenously induced viral sequences 

were capable of being methylated and having their expression silenced in mammalian cells49; 

this activity was subsequently discovered to be dependent on DNMT3A/B34.  Later it was 

observed that after a sweeping phase of demethylation in the fertilized gamete, embryonic cells 

subsequently exhibited active methylation at specific sequences50.  This developmental 

methylation process was termed “de novo” methylation to differentiate it from the process by 

which newly synthesized strands of DNA have their methylation copied to the daughter strand 

(primarily by DNMT1) to maintain methylation patterns after cell divisions (so-called 

maintenance methylation)51.    

De novo DNA methylation is thought to be crucial for an organism’s somatic cells to turn 

off pluripotent stem cell gene expression programs and undergo tissue specific differentiation.  

Indeed, mouse ES cells that are null for Dnmt3a and 3b lose the ability to differentiate with 

repeated passages51.  Both Dnmt3a and Dnmt3b knockout mice suffer from early lethality, with 

Dnmt3b mice dying in utero due to cardiac defects and hemorrhage, and Dnmt3a knockout mice 

dying at 3-4 weeks of age with severe runting34.  In humans, biallelic germline mutations in 

DNMT3B lead to the ICF syndrome (Immunodeficiency—Centromeric instability—Facial 

anomalies), an autosomal recessive syndrome characterized by multiple developmental defects, 

hypomethylation of satellite repeats, and developmental defects in lymphocytes52.  The 

lymphocyte development defects result from hypomethylation of pericentromeric chromatin, 
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which facilitates the formation of unbalanced translocations and ultimately, the induction of 

apoptosis resulting in lymphopenias.  Several of these mutations have been demonstrated to 

result in loss of Dnmt3b function; knock-in mouse models of two common ICF mutations, A609T 

and D823G, recapitulated features of the human disease, including low body weight and 

craniofacial abnormalities, apoptotic death of T cells, and hypomethylation of repetitive genomic 

sequences.53   De novo germline mutations in DNMT3A were recently reported in a cohort of 

British teenagers, and were associated with a syndrome of developmental intellectual disability, 

large body size, and distinctive facial features54.  The translational consequences of these 

mutations, which are primarily point mutations in all three of the functional domains of the 

enzyme (ADD, PWWP, and methyltransferase domains) remain to be determined, and the 

mutational pattern is notably different from that observed in AML patients23,54.  It is therefore 

unclear at present unclear whether this syndrome represents DNMT3A haploinsufficiency or 

dominant negative effects of the mutant protein on the residual wild-type allele.  It is tempting to 

speculate that the large body size in these teenagers is mechanistically related to the variability 

in body size observed in Dnmt3a+/- mice discussed above40.  Because these patients are very 

young and the mutations are de novo rather than inherited, it also remains to be seen whether 

these individuals have an increased risk of hematologic malignancy.   

 

3.3 DNMT3B Has a Tumor Suppressive Role in Mouse Lymphoma Models 

 In contrast to the high frequency ofDNMT3A mutations in AML, DNMT3B mutations are 

rare (2/200 in the TCGA study)27. One case had a R538C mutation, and the second had an out-

of-frame fusion of DNMT3B which presumably inactivated that allele.  An expression of a 

dominant negative isoform of DNMT3B lacking the catalytic domain, DNMT3B7, has been 

observed in some lymphoma patients, and is postulated to facilitate oncogenesis by inhibiting 

the activity of the wild-type DNMT3B allele55.  In order to test this hypothesis, a transgenic 

mouse was constructed in which lymphomas spontaneously develop due to the overexpression 
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of Myc in B cells (Eu-Myc mice56  The role of Dnmt3b expression was investigated by crossing 

these mice to a transgenic mouse expressing DNMT3B755,and then to a mouse with one 

knockout allele of Dnmt3b (Dnmt3b+/-)57.  Constitutive DNMT3B7 overexpression was found to 

lead to developmental defects reminiscent of the phenotype of Dnmt3b-/- mice, whereas 

conditional expression of the Eu-Myc driver led to an increased incidence of mediastinal 

lymphomagenesis.  The Dnmt3b+/- mice likewise exhibited an increased incidence of 

mediastinal lymphomas, and targeted sequencing indicated that the remaining wild-type allele 

had not been mutated.  Interestingly, mediastinal tumors from the DNMT3B7 expressing mice 

were found to have increased 5-meC levels relative to mediastinal tumors from Eu-Myc mice 

with a wild-type Dnmt3b allele, and tumors from Dnmt3b+/- mice were found to have the highest 

level of methylation of the three genotypes.  Similar results were obtained in another Eu-Myc 

lymphoma model, in which Dnmt3b was selectively knocked out in T cells under the control of 

the EμSR-tTA; the resultant Dnmt3b-/- mice developed an increased incidence of T cell 

lymphoma58.  In this model, DNA methylation levels by HPLC exhibited the expected pattern, in 

which Dnmt3b loss led to hypomethylation compared to tumors from Dnmt3b+/+ controls.  

Collectively, these results demonstrate that loss of one or both copies of Dnmt3b is capable of 

facilitating lymphomagenesis in the context of Eu-Myc mouse models.   

These studies of mouse lymphoma models do not address the question of whether 

Dnmt3b loss would contribute to the development of myeloid malignancies; the role of Dnmt3b 

in mouse models of AML pathogenesis remains to be tested.  Intriguingly, although DNMT3B is 

highly expressed in AML samples, most patients predominantly express isoforms such as 

DNMT3B3 which, like DNMT3B7 , lacks the exons coding for the catalytic domain of the protein 

(Russler-Germain et al 2014)36.  This suggests that these isoforms are catalytically inactive, and 

it is formally possible that they may interact with the DNMT3B and/or DNMT3A proteins in a 

dominant negative manner.  
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3.4 Loss of Dnmt3a Leads to Impaired Hematopoietic Differentiation and Increased Self-renewal 

Dnmt3a and Dnmt3b are highly expressed in murine HSCs, and their expression 

decreases in more differentiated cells59. Surprisingly, a conditional hematopoietic knockout 

mouse with a large deletion in the catalytic domain of Dnmt3a exhibits grossly normal resting 

hematopoiesis39.  However, subtle abnormalities in the stem cell population of these mice were 

discovered when the bone marrow from a Dnmt3a -/- mouse was mixed with wild type bone 

marrow and transplanted into irradiated recipients29.  Serial competitive transplants resulted in 

progressive increases in the size of the long-term stem cell compartment, combined with 

progressive decreases in the ability of the Dnmt3a-/- stem cells to develop into mature, 

differentiated cells.  Although these mice did not develop AML (at least in this competitive 

transplant experiment) their stem cells exhibit impaired differentiation and increased self-

renewal, which are two hallmarks of leukemic blasts.   

Section 4: Role of DNA Methylation in Modulation of Gene Expression and Cancer 

4.1 Relationships between DNA Methylation and Gene Expression 

The canonical relationship between DNA methylation and repression of gene expression 

was based on studies of the promoters of genes that contain a CpG island (a CpG-dense region 

usually defined as >=1KB with at least a 50% increase in CpG density over the observed ratio in 

the rest of the genome)60.  These promoters, known as CpG-island promoters, tend to have a 

high degree of promoter methylation when repressed, and conversely are mostly unmethylated 

when the gene is highly expressed.  It was subsequently discovered that only a minority of CpG 

islands, including those in promoters, are methylated in normal cells, and that CpG-island 

promoters with a high degree of methylation tend to be those which are stably silenced for long 

periods of time, such as imprinted genes, inactive X chromosome genes, and genes that are 

specifically expressed in germ cells61.  Additionally, genes with CpG-island promoters were 

found to be predominantly housekeeping genes and tumor suppressors.  Other genes with more 
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dynamic, tissue-specific expression usually lack CpG islands, but many have CpG residues 

near their transcription start site that are capable of being methylated. 

 The mechanisms by which many heavily methylated CpG-island promoters lead to gene 

silencing (usually via repressive chromatin remodeling) have been well elucidated60,62.  

Generally, methylated DNA binding proteins stabilize nucleosomes with the repressive H3K9 

mark, which in turn recruits histone deacetylases leading to the formation of heterochromatin.  

In contrast, the mechanisms that lead to DNA methylation in promoters that lack CpG islands 

appear to be varied and complex.  In some cases, such as OCT4 target sites in embryonic stem 

cells, DNA methylation appears to directly inhibit binding of a transcription factor.  In other 

cases, proteins with methylated DNA binding domains may directly repress transcription by 

competing with transcription factors for binding sites, or by recruiting co-repressors that lead to 

the formation of heterochromatin60,63,64. 

 Aside from promoters, various other functional units in the genome are capable of being 

methylated, including gene bodies, insulators, and enhancers.  Gene body methylation tends to 

be positively correlated with gene expression65, and may also regulate alternative splicing66.  In 

addition, some gene bodies possess CpG islands.  The function of these CpG island gene 

bodies is poorly understood, but one possibility is that they serve to regulate the transcription of 

as yet undiscovered transcripts within genes65.   Methylation at insulators has been 

demonstrated to decrease the ability of insulators to repress their target genes (for example, 

near imprinted loci)67, but it is unclear whether this principle holds outside of the special case of 

imprinting.  Similarly, enhancer methylation has been demonstrated to lead to gene silencing in 

reporter assays68. 

 Other groups have expanded their methylation analyses from individual CpG islands to 

larger, surrounding genomic regions.  Studies from Andrew Feinberg’s group and others have 

demonstrated a high inverse correlation between the methylation state of the regions directly 

flanking CpG islands, (called CpG shores) and their neighboring genes69.  CpG shores from 
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different normal tissues also displayed a greater degree of differential methylation than CpG 

islands themselves, and were also more differentially methylated when compared to tumors 

derived from that same tissue (e.g. colonic adenocarcinoma vs normal colonic tissue).  Peggy 

Goodell’s group has used whole genome bisulfite sequencing of hematopoietic stem cells to 

demonstrate the existence of large hypomethylated regions they termed “canyons”, which are 

enriched for genes involved in transcriptional regulation, including the HOX genes70.  

Interestingly, the highly methylated boundaries of these canyons were “eroded” and either 

expanded or contracted in size in Dnmt3a-null hematopoietic stem cells, leading the authors to 

posit that maintaining these boundaries and thus stabilizing the expression of genes associated 

with hypomethylated “canyons” is a specific function of Dnmt3a. 

4.2 Altered DNA Methylation is a Hallmark of Cancer Cells 

A pathogenetic role for de novo DNA methylation in cancer is supported by the fact that 

many tumors show marked global DNA methylation abnormalities, which are thought to facilitate 

their aberrant self-renewal capability and lack of normal differentiation71.  Studies from different 

malignancies have noted that tumors can be distinguished by methylation state from normal 

tissues using unsupervised clustering algorithms69,72,73.  In general, cancer genomes tend to be 

globally hypomethylated when compared to the matched normal tissue, but focally 

hypermethylated at tumor suppressor genes71.  In stark contrast with normal cells, CpG-island 

promoters are often hypermethylated in tumor samples.  For example p15, a cyclin-dependent 

kinase inhibitor and well-known tumor suppressor that is epigenetically silenced in 

approximately 60% of AML cases due to hypermethylation in its promoter region, appears to be 

actively silenced in a manner that is dependent on transcription of an antisense RNA74.  In most 

cases, it is unclear whether hypermethylation at tumor suppressors is directly induced by an 

oncogene, or whether it occurs stochastically and is then selected for by transformation.  Direct 

recruitment of DNA methyltransferase to repress target genes has been suggested 
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experimentally for various transcription factors important in leukemia including PU.175 and 

MYC64, and oncogenic drivers such as RAS have been demonstrated to indirectly induce DNA 

methylation at target genes through the cooperation of a third corepressor protein76.  As 

discussed below, there is evidence that PML-RARA is capable of directly interacting with 

DNMT3A and thus inducing hypermethylation and gene expression changes, but the 

importance of this direct induction of methylation for PML-RARA’s ability to alter gene 

expression remains to be established. 

The functional importance of DNA methylation in cancer is illustrated by the activity of 

methylation inhibitors such as 5-Azacytidine in some cancer types, including AML77.  In addition, 

the forced expression of genes that are selectively hypermethylated in cancer cells has been 

shown to result in cancer cell death78.  The mediators of the aberrant DNA methylation in cancer 

largely remain to be elucidated, but a role for DNMT3A and DNMT3B is strongly suggested by 

the known de novo DNA methylation functions of these genes, and the fact that they are both 

highly expressed in a variety of malignancies, including AML59.  In the case of DNMT3A R882H 

mutations, DNA methylation arrays have demonstrated the existence of canonical 

hypomethylated CpGs that distinguish these patients from other NK-AMLs with wild-type 

DNMT3A, strongly suggesting that these specific aberrantly hypomethylated CpGs result 

directly or indirectly from the DNMT3A R882 mutation36. 

4.3 Mutations in the DNA Methylation Pathway are Common in NK-AML 

As mentioned above, DNMT3A mutations are prevalent in NK-AML, but are mutually 

exclusive of the common initiating chromosomal translocations, including PML-RARA.  

Importantly, mutations in several other genes that target the DNA methylation pathway have 

recently been identified in AML cases.  Specifically, the IDH1 and IDH2 mutations, which were 

originally thought to confer a metabolic effect because of their known role in the citric acid cycle, 

were subsequently demonstrated to produce a neomorphic substrate that inhibits the DNA 
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methylation pathway and thus leads to hypermethylation in AML cases79.  Likewise, TET2 

mutations disrupt the removal of methyl-CpGs from DNA by subsequent oxidation steps, 

resulting in a global increase in CpG methylation in AML patients with this mutation80.  IDH 

mutations and TET2 mutations appear to be mutually exclusive27, which is in line with their 

predicted antagonistic effects on the DNA methylation pathway, whereas DNMT3A mutations 

and IDH mutations tend to co-occur for reasons that are not yet clear. 

 Collectively, mutations affecting the DNA methylation pathway are rare in cases with the 

common initiating chromosomal translocations.  For example, the TCGA study of AML identified 

0/16 PML-RARA cases, 1/7 RUNX1-RUNX1T1 cases, 0/11 MYH11-CBFB cases, and 1/11 

MLL-X fusions with DNA methylation pathway mutations27.  As discussed above, this raises the 

intriguing possibility that these chromosomal fusions require a functional DNA methylation 

pathway in order to drive leukemogenesis.  Further support for this hypothesis comes from the 

fact that each of the four common translocations can be distinguished from each other, and from 

all other leukemias, by unsupervised clustering of the most differentially methylated CpGs in 

AML samples27 (see Figure 2 and related discussion below).  The fact that each of these 

chromosomal fusions is associated with a specific set of methylation changes suggests the 

importance of DNA methylation for their ability to drive disease, and may provide an explanation 

for the absence of mutations in the DNA methylation pathway in these cases.   

 

Section 5: PML-RARA and its Relationship to DNA Methylation 

5.1 PML-RARA is an Oncogenic Fusion Protein which Represses Myeloid Maturation 

 Chromosomal translocations involving the transcription factor Retinoic Acid Receptor 

Alpha (RARA) are pathognomonic for Acute Promyelocytic Leukemia.  The most common of 

these translocations, t(;15,17)(q22;q21), fuses RARA to the nuclear protein Promyelocytic 

Leukemia (PML)81.   Wild type RARA is a key regulator of normal myeloid differentiation82,83.  By 

binding to promoters containing Retinoic Acid Response Elements (RAREs) and repressing 

16



them, RARA inhibits myeloid maturation until exposure to its ligand, retinoic acid, causes its 

release from DNA84.   In contrast, the PML-RARA fusion protein displays aberrant 

oligomerization and nuclear localization85,86, and binds repressively to DNA in a manner that is 

unresponsive to physiologic concentrations of retinoic acid, but responds to pharmacologic 

inhibition by the ligand All-Trans-Retinoic Acid (ATRA), which is now a first-line therapy for 

APL84.  ATRA binding causes release of PML-RARA protein from target promoters, degradation 

of PML-RARA, subsequent re-expression of myeloid differentiation genes, and induction of 

myeloid differentiation.  

 

5.2 PML-RARA is Associated with DNA-Methylation and Silencing of Key Target Genes, and 

Interacts with DNMT3A and DNMT3B 

 PML-RARA has been demonstrated to repress gene expression by interacting with 

several corepressor molecules, including HDAC3, NRCP187, and MBD 1 88.  In addition, a 

physical interaction and colocalization of DNMT3A and PML-RARA has been demonstrated in 

cell lines89.  Investigations at known PML-RARA target genes, such as the tumor suppressor 

RARB, have established that PML-RARA causes repression of gene expression and 

hypermethylation of the RARB promoter in the NB4 cell line (which is derived from an APL 

patient with t(15;17)) and in patient samples.  ATRA treatment leads to reduced methylation of 

DNA near the RARB promoter, and re-expression of the gene90,91.  Both DNMT3A and DNMT3B 

are highly expressed in NB4 cells, and were found by ChIP-qPCR to be bound (along with PML-

RARA) at the RARB promoter91.  Interestingly, ATRA treatment led to a rapid and potent 

downregulation of both DNMT3A and DNMT3B expression in NB4 cells and in patient samples 

(by western blotting).  Downregulation was detectable as early as 4 hrs after ATRA addition to 

NB4 cells, and preceded induction of differentiation, demonstrating that it was not a secondary 

effect of gene expression changes related to differentiation.  The importance of methylation for 

maintaining repression of RARB was demonstrated by the fact that this repression can be 
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partially relieved by pharmacologic inhibitors of DNA methylation, such as 5-azacytidine, and 

these synergize with ATRA to cause the release of PML-RARA, reduced promoter methylation, 

and myeloid differentiation in NB4 cells91.  These experiments provide support for a model in 

which PML-RARA recruits DNMT3A and/or DNMT3B to promoters, leading to de novo promoter 

methylation, induction of repressive chromatin changes, and repression of target gene 

expression. 

5.3 The Relationship between PML-RARA binding and DNA methylation remains to be fully 

elucidated      

Recent genome-wide approaches in APL cell lines have confirmed the association 

between PML-RARA binding at promoter regions, the presence of transcriptionally repressive 

histone modifications, and repression of gene expression.  A ChIP-Chip study of the PR-9 cell 

line (containing zinc-inducible PML-RARA) used an anti-PML antibody with human promoter 

and CpG arrays to discover 372 genomic regions that are bound when PML-RARA expression 

is induced92.  Subsequent ChIP experiments on the same cells revealed that virtually all PR 

target binding sites exhibited increases in H3-K9 trimethylation, increased HDAC1 binding, and 

decreases in H3 acetylation.  These repressive chromatin changes were accompanied by 

decreased gene expression for some of the target genes.  A ChIP-Seq study of NB4 cells93 

used antibodies against PML and against RARA, and then used a bioinformatics approach to 

compute overlapping peaks between the two antibodies, which were presumed to correspond to 

PML-RARA binding sites.  This study found 2,722 unique PML-RARA binding sites in NB4 cells, 

including sites in the gene body of DNMT3A and other epigenetic modifier genes such as 

HDAC4, HDAC9 and PRMT3, as well as in genes encoding hematopoietic transcription factors, 

such as RUNX1, GATA2, and PU.1.  Early (24-48 hours) epigenetic and gene expression 

changes in response to ATRA were examined using ChIP for histone acetylation and 

methylation marks, and RNA polymerase II occupancy as a surrogate for gene expression.  
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Only a small subset of PR target genes were found to be upregulated in response to ATRA at 

this time point, and upregulated genes were found to be enriched for H3K9 trimethylation and 

H3 acetylation.  

In addition to confirming that PML-RARA binding is associated with repressive chromatin 

conformations and decreased transcription of target genes, these studies demonstrated the low 

predictive value of bioinformatically-driven, motif-based approaches to predict PR binding sites.  

All studies found that only a small subset of bound loci possessed the canonical Retinoic Acid 

Response Element that typifies wild type RARA targets92,93.  This finding confirms in vitro 

evidence that PML-RARA possesses novel sequence specificity compared to wild type PML 

and RARA, and highlights the need for unbiased ChIP-sequencing approaches in order to 

discover genuine PR targets. 

Unsupervised clustering of APL samples based on methylation array data demonstrates 

that APL samples have a methylation profile which distinguishes them from all other types of 

AML (Figure 2, data from the TCGA study on AML, unpublished).  Importantly, no study has 

yet assessed the role of DNA methylation on the ability of PML-RARA to repress target genes.  

In the above-mentioned ChIP-seq paper93, a GST-methyl DNA binding (methyl-cap) approach 

coupled with ChIP-seq revealed what the authors describe as “a low level of methylation” near 

PML-RARA peaks in NB4 cells, but the absence of a control makes their methylation data 

impossible to interpret.  Inferring relationships between the DNA methylation and expression 

level of a given gene is complicated by the fact that genes have multiple CpG sites both in their 

promoter and gene body regions, and it is not currently possible to computationally sum the 

methylation states of all of a gene’s CpG sites to predict whether it will be “on” or “off.”  Thus, 

the most meaningful way to examine DNA methylation is by comparing the methylation state of 

a given gene under two different conditions.  In the case of PML-RARA, comparing the 

methylation and gene expression status of cells that contain PML-RARA to those of normal 
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hematopoietic cells that lack PML-RARA will better define the relationships between PML-RARA 

binding, DNA methylation, and repression of gene expression. 

Section 6: Application of Mouse Models to Genetic Studies of AML 

 6.1 Ctsg-PML-RARA mice develop APL and exhibit aberrant self-renewal ex vivo 

To elucidate the role of PML-RARA in initiating leukemia, our lab developed a transgenic 

mouse model in which control of the human PML-RARA gene is under control of the 

endogenous mouse Cathepsin G regulatory locus, leading to expression of PML-RARA 

primarily in myeloid progenitor cells (the Ctsg-PML-RARA mouse).  This mouse spontaneously 

develops APL with high penetrance (c. 60% in C57Bl/6 mice) and long latency (8-12 months for 

most APLs), which is preceded by a mild proliferation of myeloid cells with normal maturation in 

the bone marrow and spleen6.  The disease phenotype of this mouse faithfully recapitulates 

salient aspects of human APL, including the acquisition of genetic cooperating events, such as 

an interstitial deletion of chromosome 2 (with loss of the PU.1 gene)94, and the ability to 

cooperate with other mutations observed in APL patients, such as FLT3-ITD95 .  The long 

latency of the disease suggests the need for additional mutations to cooperate with PML-RARA, 

as mentioned above. The cooperative ability of the Jak1 V657F mutation has been 

experimentally verified.  Intriguingly, when mice with the human CTSG-PML-RARA transgene 

(also made in our lab) were crossed with a transgenic mouse overexpressing DNMT3A, the 

resulting progeny exhibited decreased disease latency96, suggesting cooperativity between 

DNMT3A and PML-RARA.  However, the mechanistic nature of this cooperativity and the 

relationship with DNA methylation was not evaluated.  

Young, non-leukemic Ctsg-PML-RARA mice exhibit an abnormal “serial replating 

phenotype”.  This phenotype is measured with an assay where whole bone marrow cells are 

plated in a semi-solid methocellulose medium; rare progenitor cells in the marrow give rise to 

myeloid colonies that are subsequently replated.  In the case of bone marrow from wild-type 
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mice, the progenitors are not capable of forming colonies after the 2nd or third weekly replating.  

However, cells from Ctsg-PML-RARA mice are capable of being serially replated, and form 

myeloid colonies week after week.  This phenotype has also been detected in other PML-RARA 

mouse models6,9798, and is thought to be the earliest indicator of aberrant myeloid progenitor 

self-renewal in these mice.  The intimate link between this aberrant self-renewal and the 

eventual development of leukemia was illustrated by the fact that a Ctsg-PML-RARA mouse 

with mutations preventing sumoylation in PML-RARA lost its replating potential, and in turn, no 

longer spontaneously developed APL98. 

 

6.2 Retroviral Models of AML-Initiating Fusion Genes will Allow the Role of DNA Methylation in 

Aberrant Self-renewal to be Experimentally Defined 

 In addition to genetically engineered mouse models, the biology of the common AML-

initiating translocations has been studied by retroviral overexpression studies, where the fusion 

gene of interest is introduced into bone marrow cells from a wild-type mouse, and then the 

transduced cells are studied either in vitro or transplanted into irradiated wild-type mice for in 

vivo studies.  In vitro studies have demonstrated that overexpression of PML-RARA97, MLL-

AF999, or AML-ETO100 is sufficient to induce a replating phenotype similar to that described 

above for the Ctsg-PML-RARA mouse.  One appealing feature of these retroviral models is that 

they quickly induce an aberrant self-renewal phenotype in wild-type cells, which is one hallmark 

of leukemia initiation.  Additionally, the ability of these retroviruses to induce aberrant self-

renewal can be tested in the context of bone marrow with deficits in DNA methylation (e.g. 

Dnmt3a-deficient marrow) in order to determine whether a functional DNA methylation pathway 

is required for these fusion genes to drive aberrant self-renewal. 

 

Section 7: Summary 
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In this thesis, we will study mouse models of leukemia to provide a mechanistic 

explanation for two clinical observations: 

1) In addition to recurrent point mutations at amino acid R882, DNMT3A mutations include

premature stop codons, frameshift mutations, and whole gene deletions that are predicted to 

lead to haploinsufficiency for the Dnmt3a protein.  This suggests that Dnmt3a haploinsufficiency 

may be able to initiate AML. 

2) DNMT3A mutations are mutually exclusive of the common AML fusion genes, PML-RARA,

MLL-X, AML-ETO, and CBF-MYH11.  There are multiple scenarios that could explain the

mutual exclusivity, including functional redundancy, antagonistic effects, and a requirement of 

these fusions for functional DNMT3A to induce leukemogenesis. 

In Chapter 2, we will test the common AML fusions for their ability to induce aberrant self-

renewal in a Dnmt3a-null mouse.  We will further characterize the finding that PML-RARA 

cannot induce replating in Dnmt3a deficient marrow by performing additional studies in a Ctsg-

PML-RARA mouse lacking both copies of Dnmt3a. 

In Chapter 3, we will test the ability of Dnmt3a haploinsufficiency to initiate AML in a mouse 

model, and will further examine the effect of Dnmt3a loss on normal hematopoiesis and the 

ability to induce competitive transplant advantage against wild-type in bone marrow 

transplantation experiments. 

In Chapter 4, we will summarize our results and consider future experiments in order to further 

investigate the role of DNMT3A haploinsufficiency in AML and the role of functional Dnmt3a in 

leukemias initiated by the common chromosomal fusions. 
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Section 9: Figure Legends 

Figure 1.   

DNMT3A Mutations are Recurrent in AML.  188 bone marrow samples from AML patients were 

banked at Washington University and all 24 exons of DNMT3A were amplified by PCR and 

Sanger sequenced.  Frequency of mutations including those at R882 is indicated by colored 

dots, and the location of mutations is indicated relative to the methyltransferase (MTase), zinc 

finger (ZNF), and proline-tryptophan-tryptophan-proline domains. 

Figure 2.  

Unsupervised Clustering Analysis Demonstrates an APL Methylation Signature.  DNA from 178 

AML patients was hybridized to Illumina Human Methylation 450 microarrays and unsupervised 

clustering was performed using a K-means algorithm.  Mutation status for common recurrent 

AML mutations is indicated for each patient.  APL patients with PML-RARA form a contiguous 

cluster indicating a common methylation signature (red arrow). 
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Figure 2 
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Chapter 2 

The PML-RARA fusion gene requires Dnmt3a to initiate APL 
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2.1  Abstract  

DNMT3A and DNMT3B encode the two DNA methyltransferases that are primarily 

responsible for the de novo methylation of specific cytosine residues in CpG 

dinucleotides during mammalian cellular differentiation. Loss-of-function mutations in 

DNMT3A are highly recurrent in acute myeloid leukemia (AML), but are almost never 

found in AML patients with translocations that create oncogenic fusion genes (e.g. PML-

RARA, RUNX1-RUNX1T1, and MLL-AF9). To explore how DNMT3A is involved in the 

function of these fusion genes, we used retroviral vectors to express PML-RARA, 

RUNX1-RUNX1T1, or MLL-AF9 in bone marrow cells of wild-type (WT) or Dnmt3a 

deficient mice; we also examined the phenotypes of hematopoietic cells from Ctsg-

PML-RARA mice (which express PML-RARA in early hematopoietic progenitors and 

myeloid precursors) with or without Dnmt3a. We demonstrate that the methyltransferase 

activity of Dnmt3a—but not Dnmt3b—is required for aberrant self-renewal ex vivo that is 

driven by PML-RARA, and that Dnmt3a is dispensable for self-renewal driven by 

RUNX1-RUNX1T1 and MLL-AF9. Furthermore, both the PML-RARA-driven competitive 

transplantation advantage and acute promyelocytic leukemia (APL) development 

require Dnmt3a. Together, these findings suggest that PML-RARA has a unique 

requirement for Dnmt3a to initiate APL in mice. 
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2.2 Introduction 

Recent efforts by our group and others have identified most of the highly recurrent 

somatic mutations that are relevant for the pathogenesis of acute myeloid leukemia (1).  

In addition to discovering recurrent mutations in genes that were not previously known 

to be important for AML, patterns of mutational co-occurrence and mutual exclusivity 

are providing important clues regarding the biology of pathways that may contribute to 

this disease.  Mutations in DNMT3A, one of the two mammalian de novo DNA 

methyltransferases, occur in ~20% of patients with AML; however, they almost never 

co-occur with the common chromosomal translocations that create fusion genes such 

as PML-RARA, RUNX1-RUNX1T1 (also referred to as AML-ETO), and MLL-fusions 

such as MLL-AF9 (1,2), suggesting a possible relationship between these fusion 

oncogenes and a fully functional DNMT3A to initiate leukemia. 

DNMT3A and the highly homologous enzyme DNMT3B are responsible for inducing 

specific patterns of de novo DNA methylation in bone marrow stem/progenitor cells, 

which is important for the ability of hematopoietic stem cells to develop into 

differentiated peripheral blood cells (3-5).  The most common DNMT3A mutation, which 

leads to a heterozygous R882H amino acid change in the catalytic domain of the 

enzyme, reduces DNMT3A methylase activity by 80% and, in a dominant negative 

fashion, inhibits the ability of wild-type (WT) DNMT3A protein to form active 

homotetramers (6,7).  Although a requirement for functional DNMT3A has not been 

tested for any of the common chromosomal translocations, all of these translocations 

are associated with distinct DNA methylation signatures in primary AML samples, 
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suggesting that alterations in DNA methylation are a common consequence of these 

chromosomal alterations.  In addition, previous studies have suggested a functional 

relationship between PML-RARA and DNMT3A.  PML-RARA is known to act as an 

oncogenic transcription factor that is capable of initiating leukemia in mouse models (8-

14), and has been shown to repress target genes by interacting with a co-repressor 

complex that includes the methylated DNA binding protein MBD1 and DNMT3A (15-22).  

At the RARB locus, the physical binding of PML-RARA coincides with recruitment of 

DNMT3A, methylation of the RARB promoter, and silencing of gene expression (23).  

However, it is not yet known whether PML-RARA requires DNMT3A to act as an 

oncogene.  Recent ChIP-seq studies in AML cell lines have shown that the DNA 

methylation changes in close proximity to PML-RARA binding sites are relatively subtle 

(24-25), suggesting that the functional relationship between PML-RARA and DNMT3A 

on a whole genome level may be more complex than that observed at the RARB locus.   

 

To directly test the hypothesis that AML-initiating fusion genes and DNMT3A mutations 

are mutually exclusive because the fusions may require DNMT3A to exert their 

activities, we utilized bone marrow cells from a previously described, constitutive 

Dnmt3a null mouse; we tested the ability of three different fusion oncogenes to induce 

aberrant self-renewal and leukemia in the absence of Dnmt3a. Our results show that 

Dnmt3a (but not Dnmt3b) is required only for PML-RARA to induce aberrant self-

renewal in myeloid progenitor cells, and to initiate APL in vivo. It is not required for the 

leukemogenic potential of MLL-AF9, or the self-renewal of myeloid progenitors induced 

by RUNX1-RUNX1T1. These data point out the complexity in understanding the mutual 
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exclusivity of AML mutations, but demonstrate one mechanism that helps to explain this 

finding in APL.  

 

2.3 Results 

Constitutive loss of Dnmt3a leads to canonical, locus-specific DNA hypomethylation in 

hematopoietic cells 

For the studies of Dnmt3a deficiency in this report, we utilized a constitutive Dnmt3a 

knockout mouse that contains a deletion of part of the catalytic methyltransferase 

domain of the Dnmt3a enzyme (26).  We verified that this allele is a true null for Dnmt3a 

protein (Supplemental Figure S1A), and that Dnmt3a RNA expression is dramatically 

reduced, with no effects on neighboring genes (data not shown, and see below). Since 

constitutive Dnmt3a-/- mice die of severe runting at about three weeks of age (26), we 

harvested the bone marrow cells from wild-type (WT) or Dnmt3a-/- mice at 2.5 weeks of 

age, and transplanted them into lethally irradiated C57Bl/6 recipients to study the effects 

of Dnmt3a loss on hematopoiesis.  These mice were allowed to engraft for eight weeks, 

and were then harvested for morphologic examination, flow cytometry, and DNA 

methylation studies. Importantly, there were no detectable perturbations in the 

populations of the stem/progenitor cells or mature cells of any lineage in the engrafted 

marrow from the Dnmt3a-/- donors (see below). Bone marrow cells from three WT and 

three Dnmt3a-/- mice were subjected to CpG-capture and bisulfite sequencing.  The 

targeted genomic regions included all annotated CpG islands, as well as areas of the 

genome that have been previously established to exhibit differential patterns of 
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methylation in different tissues, and other regulatory DNA sequences such as 

enhancers and insulators (Supplemental Table S1).  The coverage data for each 

sample is shown in Supplemental Table S2.  

All three Dnmt3a-/- bone marrow samples displayed a global decrease in highly 

methylated CpGs, and a corresponding increase in CpGs that were unmethylated 

(Supplemental Figure S1B).  Nearly all of the CpGs that were differentially methylated 

were hypomethylated in the Dnmt3a-/- samples (231,001 hypomethylated CpGs, vs. 

5,488 that were more methylated in Dnmt3a-/- samples, Supplemental Figure S1C). This 

hypomethylation phenotype is in general agreement with previously published studies 

using a conditional Dnmt3a knockout mouse, where the CpGs from purified stem cell 

and B cell populations of serially transplanted mice were predominantly hypomethylated 

(3, 27).  

Nearly all of the 5,000 most differentially methylated CpGs were hypomethylated in all 

three Dnmt3a-/- samples (Supplemental Figure S1D), and most of the canonically 

hypomethylated CpGs occurred in defined genomic regions (3, 27).  For example, a 

region on chromosome 16 near the internal (P2) promoter of the Runx1 gene contains a 

“canyon” that is completely unmethylated in both WT and Dnmt3a-/- bone marrow cells 

(Supplemental Figure S1E) (27). This canyon is flanked on both sides by regions that 

are highly methylated in wild-type bone marrow cells, but essentially unmethylated in 

Dnmt3a-/- bone marrow cells.   
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These results establish that this Dnmt3a deficient mouse strain has a strong focal 

hypomethylation phenotype in hematopoietic cells, credentialing it for these studies. A 

complete description of the methylation and expression phenotypes of the bone marrow 

cells of these mice will be presented elsewhere (Ketkar et al., unpublished 

observations). 

Dnmt3a is required for aberrant self-renewal induced by PML-RARA, but is dispensable 

for self-renewal caused by RUNX1-RUNX1T1 and MLL-AF9.   

We next asked whether Dnmt3a deficiency influenced aberrant self-renewal induced by 

the AML fusion genes RUNX1-RUNX1T1, MLL-AF9, and PML-RARA.  These 

oncogenes are capable of inducing an aberrant self-renewal phenotype ex vivo when 

expressed in wild-type mouse bone marrow cells with retroviral vectors (13, 28-29).  

Whole bone marrow cells, when transduced with MSCV viruses containing cDNAs for 

RUNX1-RUNX1T1, MLL-AF9, or PML-RARA, and then plated in semi-solid MethoCult 

media, form CFU-GM (Colony-Forming Unit, Granulocyte-Monocyte) colonies that 

express CD11b (a marker of terminally differentiated myelomonocytic cells). Progenitor 

cells from these transductions can be serially replated for several weeks.  Wild-type 

bone marrow cells do not serially replate in this assay, losing the ability to form new 

myeloid colonies containing cells that express CD11b after one week.  To test whether 

self-renewal in this assay was dependent on Dnmt3a, we harvested whole bone marrow 

cells from 2-2.5 week old WT or Dnmt3a-/- littermates, and transduced them with MSCV 

viruses containing either an empty vector with an IRES-YFP cassette, or with viruses 

that contain cDNAs for RUNX1-RUNX1T1, MLL-AF9, or PML-RARA (and an IRES-YFP 
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cassette to identify the transduced populations). Transduced cells were plated in 

MethoCult media (Figure 1A).  Each week, colonies were quantified, and cells were 

assessed for expression of CD11b by flow cytometry, and then cells were replated.  

Both WT and Dnmt3a-/- bone marrow cells transduced with “empty” control YFP vector 

lost the ability to form colonies after one or two replating cycles (Figure 1B).  In contrast, 

both WT and Dnmt3a-/- bone marrow transduced with either MLL-AF9 or RUNX1-

RUNX1T1 gave rise to increasing numbers of colonies over time (Figure 1C-D).  In 

contrast, the PML-RARA expressing virus could induce serial replating in WT but not 

Dnmt3a-/- derived marrow cells (Figure 1E).  Both WT and Dnmt3a-/- bone marrow 

transduced with either the MLL-AF9 or RUNX1-RUNX1T1 viruses maintained 

expression of the myeloid marker CD11b after three replatings; in contrast, CD11b 

expression was maintained in WT bone marrow transduced with PML-RARA, but lost in 

the absence of Dnmt3a (Figure 1 F-G).  Additional flow cytometry and morphologic 

examination demonstrated that the few remaining cells at week three in the Dnmt3a-/- 

marrow transduced with PML-RARA were FcεR positive, c-kithigh mast cells, similar to 

cells transduced with the empty vector GFP (data not shown).  Together, these results 

indicate that in a retroviral transduction system, aberrant myeloid self-renewal by PML-

RARA requires Dnmt3a, whereas self-renewal driven by MLL-AF9 or RUNX1-RUNX1T1 

does not. 

 

Dnmt3a is required for the aberrant self-renewal of hematopoietic progenitor cells from 

Ctsg-PML-RARA mice.   
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To orthogonally validate these results, we crossed Dnmt3a+/- mice to a well-

characterized PML-RARA-expressing transgenic mouse model created in our laboratory 

(Ctsg-PML-RARA, hereafter called PR+/-) (12), to ultimately generate PML-RARA 

expressing mice lacking both copies of Dnmt3a (PR+/-, Dnmt3a-/-) as well as all relevant 

control genotypes (WT, Dnmt3a-/-, and PR+/-). 

 

Ctsg-PML-RARA mice express a human PML-RARA fusion gene under control of the 

endogenous mouse Cathepsin G locus, which leads to PML-RARA expression in early 

myeloid progenitor cells (with highest expression levels in GMPs, where dysregulation 

of target genes is most pronounced) (30), and the development of lethal acute 

promyelocytic leukemia (APL) with long latency and high penetrance (~60% at one year 

in C57Bl/6 mice) (12).   Bone marrow cells derived from these mice display an 

advantage with competitive transplantation, and give rise to self-renewing myeloid 

progenitors on semi-solid medium ex vivo (30).   We reasoned that if functional Dnmt3a 

were required for any of these aberrant self-renewal phenotypes, they would be 

abrogated in PR+/-, Dnmt3a-/- mice. 

We first measured PML-RARA expression (by qRT-PCR) in bone marrow cells derived 

from wild-type, PR+/-, and PR+/-, Dnmt3a-/- mice (Figure 2A), to determine whether 

Dnmt3a deficiency altered the expression of PML-RARA.  No PML-RARA transcripts 

were detected in wild-type bone marrow cells, confirming the specificity of this assay 

(30).  The level of PML-RARA expression was not reduced by Dnmt3a deficiency, and 

was in fact slightly higher than in PR+/- mice.    
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We next assessed the engraftment and differentiation potential of Dnmt3a-/- vs. PR+/-, 

Dnmt3a-/- donor cells (compared to WT and PR+/- donor cells) by harvesting whole bone 

marrow from 2-2.5 week old littermates from all four genotypes, and transplanting these 

cells into lethally irradiated wild-type recipients.  After 8-10 weeks, the engrafted bone 

marrow cells from all donor genotypes were assessed for their contributions to myeloid 

and lymphoid lineages (Figure 2B).  There was no significant difference in the 

proportion of mature myeloid (Gr-1+ and/or Cd11b+) or mature lymphoid (B220+ or 

CD3+) cells regardless of Dnmt3a status.  Similarly, there were no differences in the 

numbers of stem and progenitor cells in recipients of marrow with or without Dnmt3a 

(Figure 2C).  At 16 weeks post-transplant, no differences were observed in numbers of 

peripheral blood leukocytes, red blood cells, or platelets, regardless of the presence or 

absence of Dnmt3a (Supplemental Figure S2A).  Histologic examination of the bone 

marrow cells of engrafted recipients demonstrated normal cellular morphology with no 

evidence of dysplastic changes (data not shown). Collectively, these data demonstrate 

that Dnmt3a loss does not lead to impaired engraftment or grossly altered steady-state 

hematopoiesis for at least four months after transplantation into wild type recipient mice. 

 

We next tested whether ex vivo self-renewal was directly altered in bone marrow cells 

derived from 2-2.5 week old mice from all genotypes (i.e. not transplanted, Figure 2D). 

WT cells lost the ability to form colonies after one or two replatings, whereas PR+/- 

marrow gave rise to increasing numbers of colonies with serial replating.  PR+/-, 

Dnmt3a-/- cells gave rise to similar numbers of colonies as WT and PR+/- with the first 
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and second platings, but failed to replate thereafter.  PR+/- cells maintained expression 

of CD11b with serial replating (Figure 2E).  In contrast, replated PR+/-, Dnmt3a-/- cells 

lost expression of CD11b by the end of the second week (Figure 2E-F).  We also tested 

whether this phenotype was intrinsic to the hematopoietic compartment (as opposed to 

an effect from Dnmt3a-/- stromal cells) by transplanting bone marrow from young (2 to 

2.5-week-old) mice into lethally irradiated wild-type C57Bl/6 recipients, and harvesting 

marrow for replating assays at ten weeks post-transplant (Supplemental Figure S2B).  

As expected, bone marrow derived from the recipients of PR+/- donors formed colonies 

with serial replating, whereas bone marrow derived from PR+/-, Dnmt3a-/- donors did not 

(Supplemental Figure S2C).  These data demonstrate that this phenotype is due to a 

cell-autonomous defect in the hematopoietic compartment. 

 

Dnmt3a deficiency attenuates the expression of genes that are normally upregulated by 

PML-RARA in Granulocyte Monocyte Progenitor cells (GMP cells) 

To determine whether Dnmt3a loss affects genes that are specifically dysregulated by 

PML-RARA, we analyzed the expression of genes previously shown to be differentially 

expressed between WT and Ctsg-PML-RARA (PR+/-) mice (30). In that study, we 

observed that these genes show the greatest differences in the GMP compartment of 

PR+/- mice, where Ctsg is maximally expressed: 112 probesets from the Affymetrix 

mouse exon ST1.0 arrays were significantly upregulated by PML-RARA in an ANOVA 

analysis (fold change ≥2.0, FDR <0.05), and 127 probesets were downregulated (30). 

We therefore performed expression profiling using purified GMP cells from the 

engrafted marrows of several donor mice from all four genotypes (WT n=4; PR+/- n=2; 
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PR+/-, Dnmt3a-/- n=4; and Dnmt3a-/- n=3) harvested 6-8 weeks after transplantation.  The 

results of these analyses are highly concordant with the results of Wartman et al. Of the 

112 upregulated probesets (designated as the PR+/-a dataset in Figure 3), 96 (86%) 

exhibited a similar ≥2 fold increase in expression in the data obtained for this study 

(denoted as the PR+/-b dataset, Figure 3, Panel A, and Supplemental Table S3).  The 

average fold change (comparing WT to PR+/- ) for this set of probes in the PR+/-a dataset 

was 8.52 +/- 1.10 (SEM), which was not significantly different from the average fold 

change of the same genes in the PR+/-b dataset (8.71 +/- 1.11; p=0.75; Figure 3A, left 

panel). GMP cells from the PR+/-, Dnmt3a-/- mice demonstrated significantly less 

upregulation of many of these probes: the average fold change was 6.24 +/- 0.66 (p = 

9.73E-06 compared to PR+/-b); these data suggest that Dnmt3a loss attenuates the 

expression of a set of genes that are normally upregulated by PML-RARA in GMP cells. 

Of the 127 probes that were downregulated at least two-fold in the PR+/-a dataset, 107 

(84%) were likewise downregulated in the PR+/-b dataset, but to a lesser extent (Figure 

3, Panel A, right). The average level of downregulation was only -2.91 fold for the PR+/-a 

dataset, and -1.71 fold for the PR+/-b dataset. The average expression of these 

downregulated genes was not appreciably attenuated by Dnmt3a loss, perhaps 

because the fold changes were relatively small, and therefore more difficult to detect. A 

heatmap of probeset level data is shown for the 239 dysregulated probes defined by the 

PR+/-a dataset (Figure 3, Panel B), plotting only the average values for the data 

generated in this study from mice with the designated genotypes.  These data extend 

the fold change data shown in Panel A, and demonstrate that a large number of PR+/- 

dysregulated probesets are affected by Dnmt3a loss.  As expected, GMP cells from 
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Dnmt3a-/- mice had very few changes in expression of the genes that are canonically 

dysregulated by PML-RARA.  We also independently defined differentially expressed 

genes from the four genotypes using only the data from this study (Supplemental Figure 

S3, Supplemental Table S4).  As expected, this data corroborated the Wartman et al. 

(30) study for the PR+/- dysregulated genes, and identified Dnmt3a itself as one of the 

most downregulated genes in the Dnmt3a-/- and PR+/-, Dnmt3a-/- GMP cells.  The 

expression signature for Dnmt3a deficient GMP cells was subtle and limited to very few 

probesets, which is consistent with other studies of both mouse and human 

hematopoietic cells with reduced or absent Dnmt3a expression (1, 2, 3, 5).  

 

DNA methyltransferase activity of DNMT3A is required for aberrant self-renewal by 

PML-RARA ex vivo.    

Both DNMT3A and the highly homologous enzyme DNMT3B are known to possess de 

novo DNA methyltransferase activities (31). The most common DNMT3A mutations in 

AML occur at residue R882 (2). DNMT3A possessing the R882H mutation has been 

shown to exhibit reduced DNA methyltransferase activity and produce a dominant 

negative effect against WT DNMT3A, which leads to a focal DNA hypomethylation 

phenotype in primary AML samples (6).  Some other mutations, such as the Q615* 

mutation, introduce a premature stop codon that is predicted to form a truncated protein 

lacking the entire C-terminal methyltransferase domain (Figure 4A) (2).  However, 

DNMT3A has also been reported to influence gene expression by interacting with and 

stabilizing a co-repressive complex, in a manner that is independent of its 

methyltransferase activity (32).  To determine whether the DNA methyltransferase 
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activity of DNMT3A is necessary for PML-RARA functions, we conducted 

complementation experiments where PR+/-, Dnmt3a-/- cells were transduced with 

retroviruses containing either full-length WT human DNMT3A, full-length DNMT3A with 

the R882H mutation, the Q615* truncation mutant, or an empty IRES-YFP vector 

control.  We verified that all constructs were expressed in PR+/-, Dnmt3a-/- bone marrow 

cells that were sorted for transduced (YFP+) cells using western blotting with an 

antibody against the N-terminus of DNMT3A (Figure 4B).  All proteins were highly 

expressed, and migrated at their predicted sizes on SDS-PAGE.  When sorted YFP+ 

cells were plated in MethoCult medium, PR+/-, Dnmt3a-/- cells transduced with the empty 

YFP vector ceased to produce colonies by week four.  Reintroduction of wild-type 

DNMT3A was able to restore both colony formation (Figure 4C) and CD11b expression 

(Figure 4D-E).  However, neither of the two mutants known to be deficient for DNA 

methyltransferase activity (DNMT3A R882H and DNMT3A Q615*) was able to restore 

replating ability (Figure 4C), or expression of CD11b (Figure 4D-E). 

We also asked whether WT DNMT3A was able to restore the normal methylation of a 

subset of CpG residues in the Runx1 P2 promoter region shown in Supplemental Figure 

S1E (green numbers 1-4 shown above the gene).  We developed a set of PCR 

amplicons that each contained a single site for the methylation-sensitive restriction 

endonuclease HpaII (i.e. a single assayable CpG residue, see Supplemental Table S5). 

We obtained DNA from the bone marrow cells of PR+/-, Dnmt3a+/- mice transduced with 

empty YFP, wild-type DNMT3A, or the catalytically impaired DNMT3A mutants, and 

cultured the transduced YFP+ cells in MethoCult media for six or seven days.  DNA 

harvested from these cells (and appropriate control mice) was then digested to 
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completion with HpaII, and qPCR was performed to assess the total level of HpaII 

cleavage within each amplicon (as a surrogate for the level of cytosine methylation at 

that particular CCGG cleavage site).  Compared to WT or PR+/- derived cells, PR+/-, 

Dnmt3a-/- cells transduced with empty YFP displayed near complete hypomethylation at 

site 1 (shown in Figure 4F) and site 2 (Supplemental Figure S4B) within the Runx1 P2 

promoter region.  Reintroduction of wild-type DNMT3A, but not the R882H or Q615* 

mutants, restored a nearly normal level of methylation to these two sites after only one 

week, a time frame corresponding to the rapid reintroduction of self-renewal by 

expression of wild-type DNMT3A.  Sites 3 and 4, in the hypomethylation “canyon” that is 

normally unmethylated in bone marrow cells, did not display remethylation with 

overexpression of DNMT3A for one week (Supplemental Figure S4A-C); these controls 

demonstrate that HpaII was capable of cleaving unmethylated sites in these DNA 

samples, and that the overexpression of DNMT3A did not cause abnormal methylation 

of CpGs that are not normally methylated. Together, these results strongly suggest that 

it is the DNA methyltransferase activity of DNMT3A per se that is required for PML-

RARA to drive aberrant self-renewal in myeloid progenitor cells. 

 

Dnmt3b is dispensable for the aberrant self-renewal ability of PML-RARA mouse bone 

marrow ex vivo.   

DNMT3B exhibits different sequence specificity from DNMT3A in vitro (33), but ChIP-

seq studies have demonstrated extensive overlap in the genomic regions bound by 

DNMT3A and DNMT3B in vivo (34).  To determine whether PML-RARA also requires 

Dnmt3b for its ability to induce self-renewal, we generated PR+/- mice that were null for 
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the Dnmt3b allele in bone marrow cells.  Because Dnmt3b loss leads to embryonic 

lethality, we crossed mice with floxed Dnmt3b alleles (35) to mice expressing the pan-

hematopoietic Vav1-Cre transgene (36) to generate animals with a selective loss of 

Dnmt3b in hematopoietic cells.  This conditional null allele of Dnmt3b has previously 

been demonstrated to result in no production of Dnmt3b protein by western blot analysis 

(37).  We intercrossed these three strains of mice to generate PR+/-, Dnmt3b flox/flox 

mice with or without Vav1-Cre (PR+/-, Dnmt3b flox/flox, Vav1-Cre+, vs. PR+/-, Dnmt3b 

flox/flox, Vav-Cre-), and then compared the ability of bone marrow cells from these mice 

to self-renew ex vivo, as described above (Figure 5A).  Importantly, total bone marrow 

cells from Dnmt3b flox/flox, Vav1-Cre+ mice demonstrated >95% floxing efficiency of 

Dnmt3b (data not shown), and had a focal hypomethylation phenotype that was 

overlapping but distinct from that of Dnmt3a deficient mice (7, and Ketkar et al., 

unpublished observations). Dnmt3b was not required for PML-RARA to drive self-

renewal, since PR+/-, Dnmt3b flox/flox marrow could be serially replated, and formed 

equal numbers of colonies regardless of the presence or absence of Cre-mediated 

Dnmt3b excision (Figure 5B).  In addition, Dnmt3b loss was essentially dispensable for 

maintaining CD11b expression with serial replating (Figure 5C), although PR+/-, Dnmt3b 

flox/flox, Vav-Cre+ positive cells did display a slight decrease in CD11b positivity that 

was statistically significant over time (Figure 5D).  We also performed a 

complementation experiment by transducing PR+/-, Dnmt3a-/- bone marrow cells with a 

retrovirus expressing a full-length wild-type human DNMT3B cDNA (Figure 5E and 

Supplemental Figure S5).  Overexpression of DNMT3B was unable to restore colony 

formation (Figure 5F).  These results reinforce the hypothesis that the requirement of 
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PML-RARA for DNMT3A is specific for the methyltransferase activity of this protein, and 

it cannot be replaced by DNMT3B. 

Dnmt3a is dispensable for leukemia induction by MLL-AF9 

The replating results shown above revealed that aberrant self-renewal by MLL-AF9 and 

RUNX1-RUNX1T1 did not require Dnmt3a.  We next tested whether MLL-AF9 leukemia 

induction was Dnmt3a-independent in vivo.  We expressed MLL-AF9 cDNA in WT or 

Dnmt3a-/- bone marrow cells via retroviral transduction, and then transplanted these 

cells into lethally irradiated wild-type recipients (Figure 6A). This retroviral model of 

MLL-AF9 produces a rapid onset, high-penetrance AML (29).  At four weeks post-

transplant, recipients of MLL-AF9 transduced bone marrow exhibited elevated white 

blood cell counts regardless of the genotype of the transduced donor cells (Figure 6B), 

and shortly thereafter succumbed to AML (Figure 6C) with identical latency, similar 

degrees of splenomegaly (Figure 6D) and 100% penetrance (Figure 6E).  There were 

no detectable phenotypic differences between the leukemias that arose in WT vs. 

Dnmt3a-/- bone marrow. 

Dnmt3a is required for PML-RARA-driven competitive advantage and APL development 

in vivo 

Previous studies using a conditional Dnmt3a deficient mouse model revealed a 

progressive deficit in hematopoietic maturation in serial competitive transplants (3).  In 

contrast, PR+/- derived bone marrow cells have a competitive transplantation advantage, 

51



as demonstrated by an increased ability to contribute to peripheral blood lineages 

(especially myeloid) over time (38).  To determine whether Dnmt3a is required for this 

competitive advantage, we mixed whole bone marrow cells from mice with the indicated 

genotypes (Figure 7A) in an equal ratio with wild-type competitor marrow, and 

transplanted the cells into lethally irradiated wild-type mice.  Serial analyses of 

peripheral blood at four week intervals confirmed that PR+/- bone marrow is able to 

outcompete wild-type marrow over time, with 72 +/- 3.7% (SEM) of all peripheral blood 

cells being derived from PR+/- donor marrow at 16 weeks after transplantation (Figure 

7B). Dnmt3a loss eliminated this competitive advantage, leading to 33.2 +/- 8.6% and 

28.7 +/- 7.8% of peripheral blood cells derived from Dnmt3a-/- or PR+/-, Dnmt3a-/- donor 

marrow cells, respectively.  To determine whether this reflected a defect in 

peripheralization rather than a true competitive disadvantage, we sacrificed animals six 

months post-transplant and examined donor-derived cells from each genotype in the 

bone marrow and spleen (Figure 7C).  The competitive advantage for PR+/- derived cells 

was evident in both of these tissues, with 73.4 +/- 6.4% of bone marrow cells and 67.2 

+/- 3.6% of spleen cells derived from PR+/- derived donor cells.  In contrast, cells derived 

from PR+/-, Dnmt3a-/- mice comprised only 38.2 +/- 12.8% of total bone marrow cells and 

25.9 +/- 7.3% of total spleen cells, with similar competitive deficits observed in the 

marrow from the Dnmt3a-/- donors. 

Dnmt3a loss has been shown to have effects at the level of long-term hematopoietic 

stem cells (3, 39) but PML-RARA is primarily expressed in multipotent progenitors and 

myeloid progenitors in Ctsg-PML-RARA mice (30). We therefore performed additional 

experiments comparing recipients of PR+/- versus PR+/-, Dnmt3a-/- marrow to determine 
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whether Dnmt3a loss in this model might negatively affect the ability of HSPCs to 

differentiate into more committed progenitors. We evaluated donor-derived long-term 

HSCs (as well as more committed progenitor populations), and calculated the lineage 

bias for each genotype, defined as the ratio of donor-derived cells of a given population 

(e.g. the percentage of long-term HSCs) to the total percentage of donor-derived cells 

(percentage of Ly5.2+ cells).  The expected ratio is 1:1 for cells contributing equally to 

all lineages.  Despite an overall competitive disadvantage (compared to PR+/- donor 

cells), PR+/-, Dnmt3a-/- donor cells were twice as likely to contribute to long-term HSCs 

(Figure 7D), p<0.001, two-way ANOVA.  In agreement with previous experiments using 

conditional Dnmt3a-/- mice (3, 39), the ratio of contributions to other downstream 

populations (such as short-term-HSC, GMP, and CMP) was not different among the 

genotypes (Figure 7E).  Collectively, these results suggest that Dnmt3a is required for 

the competitive advantage provided by PML-RARA, perhaps by acting upstream from 

the myeloid progenitor cells that PML-RARA ‘reprograms’. 

 

To determine whether Dnmt3a is required for PML-RARA to induce APL in vivo, we 

transplanted bone marrow from 2-2.5 week old PR+/- or PR+/-, Dnmt3a-/- animals into 

lethally irradiated wild-type recipients as described in Figure 2A, and performed a long-

term tumor watch.  Within one year of transplantation, 6/16 PR+/- mice developed the 

typical features of APL, including splenomegaly, an abnormal proliferation of mature 

myeloid cells, and atypical promyelocytes in the bone marrow and blood, as previously 

described (12).  In contrast, 0/13 PR+/-, Dnmt3a-/- animals developed APL during the 
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same period of observation (Figure 7D, p<0.05 by both Mantel-Cox and Gehan-

Breslow-Wilcoxon tests).  
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2.4 Discussion 

In this report, we have explored mechanisms underlying the mutual exclusivity of AML-

initiating fusion genes and mutations in DNMT3A, both of which are common in AML 

patients. Although retroviral expression of RUNX1-RUNX1T1 or MLL-AF9 induced self-

renewal regardless of Dnmt3a status, PML-RARA required Dnmt3a to induce self-

renewal ex vivo.  Dnmt3a was likewise required for the self-renewal of myeloid 

progenitor cells derived from Ctsg-PML-RARA mice, and also their ability to out-

compete wild-type progenitors in a competitive transplant model. We demonstrated that 

aberrant self-renewal ex vivo is specifically dependent on the DNA methyltransferase 

activity of DNMT3A, since neither DNMT3B nor mutant DNMT3A genes from AML 

patients that are deficient in catalytic activity were able to restore myeloid self-renewal. 

Reintroduction of wild-type human DNMT3A was able to restore normal DNA 

methylation to a canonically hypomethylated locus, and restore aberrant self-renewal 

ability.  Finally, Ctsg-PML-RARA mice that were deficient for Dnmt3a had a reduced 

penetrance of APL in vivo. 

 

PML-RARA confers an aberrant self-renewal activity to myeloid progenitors, a finding 

that is evident long before the development of overt leukemia (30, 38, 40). This property 

allows myeloid progenitor cells to be serially replated ex vivo, and to out-compete wild-

type progenitors in competitive transplants (30,38).  Aberrant self-renewal may be an 

essential feature of AML pathogenesis; this phenotype may increase the likelihood that 

additional, cooperating mutations will occur in cells with increased self-renewal 
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potential.  Our findings demonstrate that functional Dnmt3a is required for both the in 

vivo and ex vivo myeloid self-renewal phenotypes induced by PML-RARA.  

The hematopoietic phenotype we demonstrate for PR+/-, Dnmt3a-/- marrow displays both 

similarities and differences from the previously reported phenotypes in serially 

transplanted hematopoietic cells derived from conditional Dnmt3a deficient mice.  Like 

Challen et al. (3), we observed a differentiation bias towards self-renewal in Dnmt3a-/- 

long-term HSCs. However, we found that loss of Dnmt3a decreased the competitive 

engraftment ability of progenitors derived from the marrow of PR+/- mice. We used 

whole bone marrow in our study, because it was designed to recapitulate our previous 

studies (30) that demonstrated that whole bone marrow cells from PR+/- mice display a 

competitive advantage in vivo.  There are numerous methodological differences 

between the two studies, including the use of unfractionated marrow and a single 

transplantation event in our studies, versus the use of sorted long-term stem cells and 

serial transplantation in the previous study, which may partially explain apparent 

discrepancies.  

Mayle et al. (39) have shown that sorted hematopoietic stem cells from conditional 

Dnmt3a deficient mice have an increased propensity to develop both myeloid and 

lymphoid malignancies after a long latent period, whereas in this study, Dnmt3a 

deficiency protected Ctsg-PML-RARA mice from developing APL. Further, our PR+/-, 

Dnmt3a-/- mice did not spontaneously develop other forms of AML or ALL.  In this study, 
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we transplanted whole bone marrow rather than purified hematopoietic stem cells, the 

number of animals at risk was small (n=13), and the study was terminated when 

significance was achieved at one year.  It is therefore possible that some of these mice 

could have developed alternative hematopoietic malignancies had they been followed 

for a longer period of time.  We did not perform an independent tumor watch using the 

germline Dnmt3a-/- mice, so we do not yet know whether there are biologically relevant 

differences between these two different Dnmt3a deficient models, or whether 

differences in phenotypes result from the methodological differences described above.  

Additional studies will be required to better understand the differences between these 

model systems. 

 

Dnmt3a was not required for the aberrant ex vivo self-renewal induced by two common 

AML-initiating fusions, RUNX1-RUNX1T1 and MLL-AF9, and was not required for MLL-

AF9 to induce AML in vivo.  This data strongly suggests that Dnmt3a loss does not 

cause a general state of hematopoietic dysfunction that is incompatible with the 

development of AML.  In fact, previous studies have shown that Dnmt1 (but not Dnmt3a 

or Dnmt3b) is highly expressed in a putative leukemic stem cell population from MLL-

AF9 expressing AML cells (L-GMP) (41,42).  In this model, haploinsufficiency for Dnmt1 

delayed leukemia progression, suggesting that MLL-AF9 requires maintenance 

methylation by Dnmt1 for the induction of leukemia, rather than de novo DNA 

methylation by Dnmt3a or Dnmt3b.  Likewise, RUNX1-RUNX1T1 has been reported to 

recruit DNMT1 and histone deacetylases in order to silence gene expression, 
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suggesting that it also may require Dnmt1 to induce leukemia in mice, instead of 

Dnmt3a (43,44). 

 

We have shown that Dnmt3a deficiency attenuates the upregulation of several genes 

that are normally dysregulated by PML-RARA expression in GMP cells. Additional 

studies will be necessary to determine the specific genes and pathways that PML-

RARA uses to drive aberrant self-renewal, and how these pathways are affected by 

DNMT3A.  Previous studies have suggested that PML-RARA recruits DNMT3A to 

induce DNA methylation at specific sites in the genome, resulting in the repression of 

gene expression (18, 20, 23).  However, alternative hypotheses have also been 

proposed: a recent study has suggested that PML-RARA binding to DNA may actually 

protect target sites from CpG methylation; these findings argue that the characteristic 

methylation changes of APL cells are not actually required for initiation of APL, but 

rather occur after transcription factors leave key binding sites (45, 46).   

 

Neither DNMT3B nor catalytically inactive mutants of DNMT3A were capable of 

restoring replating to PR+/-, Dnmt3a-/- marrow.  This specific requirement for Dnmt3a 

may be due to the fact that the two enzymes have different sequence specificities in 

vitro (33,47) and have been shown to act on overlapping but distinct genomic regions in 

vivo (5,34).  Therefore, Dnmt3a-specific methylation patterns may be required for PML-

RARA to induce leukemia.    
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Collectively, these results suggest an important role for DNMT3A in the development of 

APL: PML-RARA appears to specifically require DNMT3A to initiate the self-renewal 

phenotype in myeloid progenitor cells.  These findings have helped to define a 

mechanistic relationship between two recurrent but independent AML driver mutations, 

and add to the growing body of evidence implicating epigenetic changes in the induction 

of AML.   
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2.5  Methods 

Mice 

The Ctsg-PML-RARA and Dnmt3a-/- mice have previously been described (12, 26). Both 

strains have been backcrossed to C57Bl/6 mice for more than ten generations. 

Dnmt3a+/- mice were obtained from the Mutant Mouse Regional Resource Centers 

repository (MMRRC Strain Name B6.129S4-Dnmt3atm2Enl/Mmnc).  PR+/-, Dnmt3a-/- mice 

and all control genotypes were produced by intercrossing PR+/-, Dnmt3a+/- mice. 

Dnmt3b flox/flox mice in the B6 background (B6.129S4(Cg)‐Dnmt3btm5.1Enl/Mmnc) 

were obtained from the Mutant Mouse Regional Resource Center at UNC. Vav1-Cre 

mice in the B6 strain were obtained from the Jackson Laboratory (B6.CG-TG(VAV1-

CRE)A2KIO/J).  Whenever possible, littermate controls were used for all experiments.  . 

Bone Marrow Harvest and Transplantation 

Bone marrow was harvested from femurs, tibias, pelvi, and humeri of 2 to 2.5-week-old 

mice.  After lysis of red blood cells (ACK buffer: 0.15 M NH4Cl, 10 mM KHCO3, 0.1 mM 

Na2EDTA), cells were washed with FACS buffer, filtered through 50-μm cell strainers 

(Partec) and resuspended in PBS at 1 million cells/100 uL for transplantation.  For 

competitive transplant experiments, bone marrow was mixed 50:50 with freshly 

harvested cells from 6-week-old Ly5.1 mice (The Jackson Laboratory, Bar Harbor, ME).  

Transplantation was performed by retro-orbital injection of 1 × 106 total bone marrow 

cells into lethally irradiated Ly5.2 or Ly5.1x5.2 recipients that had received 2 split doses 

of 550 cGy total body irradiation spaced at 4 hours (Mark 1 Cesium-137 irradiator, JL 

Shepherd) 24 hours prior to transplantation.  
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Mouse Analysis and Tumor Watch 

Peripheral blood counts were assessed at regular intervals as indicated by automated 

CBC (Hemavet 950, Drew Scientific Group).  For long-term tumor watch experiments, 

bone marrow transplant recipients were monitored daily and animals displaying signs of 

illness (lethargy, hunched posture, ruffled fur, dyspnea, or pallor) were euthanized and 

spleen and bone marrow harvested for analysis.  Diagnosis of leukemia was made by 

light microscopic examination of spleen and/or peripheral blood cells according to the 

Bethesda criteria (48) and previously published phenotyping of the Ctsg-PML-RARA 

and MLL-AF9 viral transduction mouse models.  Cytospin tissue slides were stained 

with Wright-Giemsa stain (Sigma-Aldrich) and were imaged using a Nikon 

MICROPHOT-SA microscope equipped with an oil-immersion 50×/0.90 or 100×/1.30 

objective lens (Nikon Corp.)  The tumor watch was terminated at one year post-

transplantation.  

MSCV Vectors 

Full-length human DNMT3A (NM_175629) and DNMT3B (NM_006892) cDNAs 

(Origene) were cloned into MSCV IRES YFP or MSCV IRES GFP (Addgene) using 

PCR-introduced EcoRI restriction digest sites and standard ligation techniques.  

DNMT3A R882H and Q615* mutations were introduced using QuikChange II XL 

mutagenesis kit (Agilent).  PML-RARA cDNA was prepared from the BCR3 PML-RARA 

cDNA used to create the Ctsg-PML-RARA mouse and cloned into MSCV-IRES-YFP as 
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described above.   MSCV MLL-AF9-IRES-GFP and MSCV RUNX1-RUNX1T1-IRES-

GFP vectors were the kind gifts of Dr. Andy Lane.  Virus was produced using co-

transfection of MSCV vector and EcoPak packaging plasmid (Addgene) into 293T cells, 

using standard calcium-phosphate transfection, and then harvested at 48 hours post-

transfection and stored at -80°C.  For transduction of mouse bone marrow, marrow was 

harvested as above and plated overnight in transplant media containing RPMI +15% 

FBS + SCF (100 ng/mL), Il-3 (10 ng/mL), FLT-3 (50 ng/mL) and TPO (10 ng/mL).  All 

cytokines were purchased from PeproTech.  Cells were transduced by spinfection at 

2500 RPM for 90 minutes at 30 degrees in transplant media with the addition of 1M 

HEPES Buffer/0.85% sodium chloride supplemented with polybrene (10 ug/mL, 

American Bioanalytical).  After two rounds of spinfection, GFP- or YFP-positive cells 

were sorted using an I-Cyt Synergy II sorter (I-cyt Technologies) and plated in 

methocellulose for colony formation assays. 

 

Methylcellulose Colony Formation Assay 

10,000 cells per plate were plated in triplicate in M3534 MethoCult media containing Il-

3, Il-6, and SCF (Stem Cell Technologies) and incubated at 37°C for one week.  Each 

week, clusters of cells meeting the morphologic criteria for CFU-GEMM, CFU-GM, CFU-

G, or CFU-M 

(http://www.stemcell.com/~/media/Technical%20Resources/8/3/E/9/0/28405_methocult

%20M.pdf?la=en) were counted as myeloid colonies and cells were lifted using warm 

DMEM media + 2% FBS, spun down, and replated as before.  An aliquot of cells was 

taken for analysis of myeloid markers by flow cytometry.  
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Methylation Capture Sequencing 

Whole bone marrow was isolated from 2 to 2.5-week-old mice (n=3 per genotype) and 

transplanted into lethally irradiated wild-type mice and allowed to stably engraft for 8-10 

weeks before whole marrow was harvested and DNA isolated using QiaAmp DNA Mini 

Kit (Qiagen).  12 ug of input DNA from each sample was processed with the 

SureSelectXT Methyl-Seq Target Enrichment System for the Illumina Multiplexed 

Sequencing protocol (Agilent Technologies, Santa Clara, CA).  DNA was subsequently 

fragmented using a Covaris S2 (Covaris Inc., Woburn, MA) with the following settings:  

Duty Cycle: 10%, Intensity: 5, Cycles per Burst: 200, Cycles: 6, Time/Cycle: 6 seconds.  

Library preparation followed the SureSelect Methyl-Seq Library Prep Kit (Agilent 

Technologies, Santa Clara, CA) with minor modifications.  After end-repair, the DNA 

was purified using Ampure-XP kit (Beckman-Coulter, Brea, CA) and was recovered in 

80µL 10mM Tris-HCl, pH 7.8.  Samples were subsequently divided into four A-tailing 

and adapter ligation reactions following the manufacturer’s recommendations for 3µg of 

input DNA.  Post-ligation, all four reactions for each sample were pooled and processed 

for hybridization using the SureSelect Methyl-Seq Target Enrichment and Methyl-Seq 

Hybridization Kits (Agilent Technologies, Santa Clara, CA).  In the hybridization 

reactions, we combined the SureSelect Indexing Block #1 and #2 oligonucleotides with 

5µg of Mouse Cot-1 DNA (Invitrogen, Carlsbad, CA).  The hybridized probe:library 

fragment duplexes were immobilized with streptavidin-bound paramagnetic M280 

particles (Invitrogen, Carlsbad, CA).  The hybridized (captured) ssDNA library fragments 

were eluted from their duplexes and neutralized using the supplied elution and 
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neutralization buffers, respectively.  The methyl-captured fragments were bisulfite-

converted using the DNA Methylation Gold Kit (Zymo Research, Irvine, CA), and the 

converted ssDNA library fragments were amplified, 8 cycles, with non-indexed primers 

as described in the manufacturer’s protocol.  A subsequent amplification incorporated 

library-specific index sequences during the PCR.  The final library amplifications were 

treated with 0.8:1.0 ratio for AmpureXP beads-to-DNA, eluted with 20µl 10mM Tris-HCl 

(pH 7.8), quantified by Qubit (Invitrogen, Carlsbad, CA), and sized with the DNA 1000 

Chip Kit (Agilent Technologies, Santa Clara, CA) for a molarity determination.  All four 

samples were diluted to 5nM, assayed by qPCR, and based on qPCR results diluted to 

a 2nM solution.  Each 2nM sample was mixed at equal volumes, and the 2nM pool was 

sequenced, 2x100 bp, across four lanes of an Illumina HS2000 flow cell using V3 

chemistry.  BSMAP version 1.037 was used to align the bisulfite sequencing reads.   

Methylation ratios per base were calculated via methratio.py script.   The methylation 

ratios were read into Methylkit package in R to generate coverage and methylation 

statistics, sample correlation, clustering, and differential methylation analysis.  The 

datasets for the CpG-capture experiments are deposited in the Short Read Archive, with 

accession number PRJNA283621; the Superseries ID that links the methylation and 

expression data for this study is Umbrella BioProject PRJNA284138. 

 

Expression profiling 

Expression array profiling was performed exactly as described (30). Labeled RNA 

targets were hybridized to Mouse Exon 1.0 ST arrays (Affymetrix), washed, stained, and 
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scanned using standard protocols from the Siteman Cancer Center, Molecular and 

Genomic Analysis Core Facility (http://pathology.wustl.edu/research/core 

s/lcg/index.php).  

Affymetrix CEL files were imported into Partek Genomics Suite™ 6.6 (Partek Inc., St. 

Louis, MO). Probe-level data were pre-processed, including background correction, 

normalization, and summarization, using robust multi-array average (RMA) analysis. 

RMA adjusts for background noise on each array using only the PM probe intensities; 

and subsequently normalizes data across all arrays using quantile normalization (49,50) 

followed by median polish summarization to generate a single measure of expression 

(50).  Data was filtered to include only core probesets having raw expression signal 

greater than 100 in all samples in order to limit the analysis within well-annotated exons. 

The Analysis of Variance (ANOVA) and multi-test correction for p-values in Partek 

Genomic Suite were used to identify differentially expressed genes. Sample genotypes 

(WT; PR+/-; PR+/-, Dnmt3a-/-; and Dnmt3a-/-) were chosen as the candidate variables in 

the ANOVA model to obtain genotype-specific expression changes. ANOVA p-values 

were corrected using the Bonferroni method. The list of genes with significant variation 

in expression level was generated by using a fold change of 2 and a 0.05 FDR criterion 

as a significant cutoff. 

Exon array data for all samples used in this study have been deposited on GEO 

(http://www.ncbi.nlm.nih.gov/geo/: accession number GSE68844). 
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HpaII qPCR Assay 

DNA was isolated from MethoCult-plated cells after 1 week in MethoCult M3534 media, 

and genomic DNA was isolated using QiAmp mini kit (Qiagen).  500 ng of genomic DNA 

was digested with 0.5 uL (5 units) of HpaII enzyme (New England Biolabs) or mock 

(water) for 90 minutes at 37o C, then heat inactivated at 80o C for 20 minutes.  1.5 

microliters of each 30 microliter digest (25 ng gDNA) was amplified using KAPA SYBR 

FAST qPCR Kit (KapaBiosystems) and PCR primers (IDT).  Four amplified regions 

were selected based on our methylation capture sequencing showing hypomethylation 

in Dnmt3a-/- vs. wild-type cells, and ~200BP amplicons were designed containing HpaII 

recognition sites (CCGG) using Primer3 software.  Each sample was assayed in 

triplicate.  The percentage methylation was calculated at 2-delta Ct where delta Ct is 

Ct(HpaII digested)-Ct(undigested). 

 

 

Western Blotting  

For blotting of whole embryos, E18 embryos were snap frozen in liquid nitrogen and 

homogenized with mortar and pestle before lysis in RIPA buffer (50mM Tris pH 8.0, 150 

mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40) supplemented with 

protease inhibitor cocktail (Sigma Aldrich).  For blotting of retrovirus-transduced bone 

marrow cells, 250,000 cells were rinsed with PBS and resuspended in urea lysis buffer 

(7M urea, 2M thiourea, 30mM Tris pH 8.5) supplemented with protease inhibitor cocktail 

and snap-frozen in liquid nitrogen.   Lysates were boiled in 6X SDS loading dye (0.01M 
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Tris HCl pH 6.8, 8% glycerol, 0.1 mg/ml bromophenol blue, 2% SDS, 1% Beta-

mercaptoethanol) for 5 minutes at 95 degrees.  Lysates were separated on a 10% SDS-

PAGE gel and transferred onto Hybond C Extra nitrocellulose membrane (Amersham). 

The membrane was probed with an anti-Dnmt3A antibody (1:2000; Cell Signaling, 

#2160), anti-Dnmt3B antibody (1:2000, Santa Cruz, sc-10236) or anti-αActin (1:5000; 

Millipore). Immune complexes were revealed by peroxidase-conjugated anti-mouse IgG 

(1:10,000; GE) or conjugated anti- rabbit IgG (1:2,500; GE) and visualized by 

chemiluminescence (GE). 

Cell Staining and Flow Cytometry 

After ACK lysis of red blood cells, peripheral blood, bone marrow,or spleen cells were 

treated with anti-mouse CD16/32 (clone 93, eBioscience) and stained with the indicated 

combinations of the following antibodies (all antibodies are from eBioscience unless 

indicated, see Supplemental Table 6): CD34 FITC (RAM34), CD11b PE or APC-e780 

(M1/70), c-kit PerCP-Cy5.5 or APC-e780 (2B8), CD115 APC or PE (AFS98), Gr-1 

Pacific-blue (Invitrogen, RM3028), Gr-1 biotin (RB6-8C5),  B220 PE, APC, or biotin 

(RA3-6B2), CD3 e450 or PE (145-2C11), CD71 PE( R17217), Ter-119 Pacific-blue 

(TER-119), CD16/32 APC (93), Flk2 APC (A2F10).   Analysis was performed using a 

FACScan (Beckman Coulter) or I-Cyt Synergy II sorter (I-cyt Technologies), and data 

analyzed using FlowJo (Tree Star), Excel (Microsoft), and Prism 5 (Graphpad). 

Statistics 
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All statistical comparisons were made using GraphPad Prism 5 software, except for 

statistics on sequencing data, which were calculated using the R statistical 

programming software as described above.  Statistical tests employed and significance 

cut-offs are detailed in each figure legend.   When used, Student’s T-test was two-tailed 

and a p value of less than 0.05 was considered significant.  All data represent mean 

plus/minus the standard error of the mean unless indicated. 

Study Approval 

All mouse procedures were done in accordance with institutional guidelines and 

approved by the Animal Studies Committee at Washington University in accordance 

with current NIH policies.  
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2.8 Figure Legends 

Figure 1 

Dnmt3a is required for aberrant self-renewal ability conferred by PML-RARA on 

hematopoietic progenitor cells.  (A) Design of experiments in (B) through (E).  Bone 

marrow from 2-2.5 week old mice of the indicated genotypes was transduced with the 

indicated retroviruses, plated in MethoCult media containing IL-3, IL-6, and SCF, and 

then replated each week.  (B) A YFP-expressing control vector does not induce 

replating in WT or Dnmt3a-/- cells.  (C)-(D) Dnmt3a is unnecessary for aberrant self-

renewal driven by retroviruses expressing MLL-AF9 (C) or RUNX1-RUNX1T1 (AML-

ETO).(D).  E) Loss of Dnmt3a eliminates replating driven by a PML-RARA-containing 

retrovirus.  (F) Representative flow cytometry plots for the myeloid markers Gr-1 and 

CD11b for week 1 vs. week 4 of replating.  (G) Flow data for CD11b positivity week 4 of 

replating, demonstrating loss of myeloid cells in Dnmt3a-/- marrow transduced with PML-

RARA.  N=3-6 for all experiments.  *P<0.05, *** P<0.001 by two-tailed unpaired t-test. 

Figure 2 

Dnmt3a is required for aberrant self-renewal ability of PML-RARA (“PR”) expressing 

mouse bone marrow cells ex vivo.  (A) RT-PCR for PML-RARA expression in bone 

marrow cells derived from Ctsg-PML-RARA mice (PR+/-), or Ctsg-PML-RARA mice that 

are also deficient for Dnmt3a (PR+/-, Dnmt3a-/-). (B-C).  Bone marrow from 2-2.5 week 

old mice of the indicated genotypes was transplanted into lethally irradiated wild-type 

recipients in a non-competitive transplant.  (B) Quantification of cell numbers in the 

mature myeloid compartment (Gr-1+, left panel) vs. the mature B cell compartment 
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(B220+, right panel) at ten weeks post-transplant demonstrates ability of Dnmt3a-/- 

donor stem cells to engraft and contribute normally to both myeloid and lymphoid 

lineages (also see Supplementary Figure S3A).  (C) Quantification of the indicated 

progenitor and stem cell compartments shows no significant differences for any 

genotype at ten weeks post-transplant.  (D-F) Bone marrow from 2-2.5 week old mice of 

the indicated genotypes was plated in MethoCult media containing IL-3, IL-6, and SCF, 

and replated weekly.  (D) Quantification of colony numbers demonstrates loss of colony 

formation by PR+/-, Dnmt3a-/- cells.  (E) Representative flow cytometry for the myeloid 

markers Gr-1 and CD11b demonstrates loss of myeloid cells from PR+/-, Dnmt3a-/- mice 

after two weeks of replating in MethoCult media.  (F) Graph of CD11b positivity over 

time. N=3-6 for all experiments.    *P<0.05, *** P<0.001 for PR+/- vs. all other genotypes 

by two-way ANOVA.   

Figure 3 

Expression analysis of previously identified PML-RARA-dysregulated genes in GMP 

cells derived from PR+/-, PR+/- Dnmt3a-/-, and Dnmt3a-/- mice.  (A-B) Using Affymetrix 

Mouse Exon 1.0ST arrays, we interrogated gene expression in GMP cells purified from 

the bone marrow cells of mice transplanted with WT (N=4), PR+/- (N=2), PR+/-Dnmt3a-

/- (N=4) and Dnmt3a-/-(N=3) marrow cells, and harvested 6-8 weeks later. (A) Mean fold 

changes for 239 probesets that were previously found to be significantly dysregulated in 

GMP cells derived from the bone marrow of 6-8 week old Ctsg-PML-

RARA mice (labeled as PR+/-a) vs. WT GMP cells (N=4 for each, 30, Supp Table S3). 

The mean fold changes (compared to WT GMP cells) for the 112 probesets that were 
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upregulated in the PR+/-a are shown in the left panel, and the mean fold changes for the 

127 probesets that were downregulated are on the right.  Fold changes for the PR+/-

b, PR+/- Dnmt3a-/-, and Dnmt3a-/- probesets were calculated by comparing to the WT 

data from the current set of experimental data. (B). Heat map of Z-scored data using the 

same 239 PR+/- dysregulated probesets defined in Wartman et al., and displaying the 

average values obtained from the arrays generated from GMP purified cells with the 

designated genotype used in this study. The list of genes with significant variation in 

expression level was generated by using a fold change of 2 and a FDR criterion of less 

than or equal to .05. 

Figure 4 

DNA methyltransferase activity of DNMT3A is required for aberrant self-renewal by 

PML-RARA ex vivo.  (A) Schematic of human DNMT3A cDNAs used in panels B 

through E.  Mutations in the methyltransferase domain (MTase) from AML patients 

induce loss of catalytic function (R882H, red arrow) or lack the methyltransferase 

domain altogether (Q615*, black arrow) (B) Western blot from PR+/- or PR+/-, Dnmt3a-/- 

bone marrow cells transduced with retroviruses containing human DNMT3A cDNAs and 

IRES-YFP, and then sorted for YFP+ cells.  Cells were harvested after one week in 

MethoCult medium. The positions of full length and truncated DNMT3A are indicated on 

the right.  (C) Bone marrow from 2-3 week old mice was transduced with the indicated 

viruses, and GFP+ cells were sorted and serially replated in MethoCult medium.  Week 

4 colony numbers demonstrate that only wild-type DNMT3A with intact DNA 

methyltransferase activity is able to restore colony formation to PR+/-, Dnmt3a-/- myeloid 

cells.    (D) Flow cytometry of week 4 Methocult cells demonstrates persistence of 
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CD11b expression in PR+/-, Dnmt3a-/- cells, conferred only by wild-type DNMT3A.  (E) 

Graph of CD11b expression percentages at four weeks of serial replating in MethoCult 

medium.  (F) Assay of methylation at a specific HpaII site in the Runx1 locus that is 

dependent on Dnmt3a for methylation in wild-type bone marrow cells (Site 1 in 

Supplemental Figure S1E). Re-expression of WT, full length DNMT3A by retroviral 

transduction restores a normal level of methylation to these sites after seven days in 

MethoCult media.  Retroviruses containing mutant DNMT3A (R882H or Q615*) did not 

restore methylation at this site.  N=3-4 for all experiments.  N.S. Not statistically 

significant by two-way ANOVA, *P<0.05, **P<0.005, ***P<0.001.   

Figure 5 

 Dnmt3b is not required for the aberrant self-renewal ability conferred by PML-RARA in 

mouse bone marrow progenitor cells.  (A) Design of experiments in (B) through (D).  

Bone marrow from 2-2.5 week old mice of the indicated genotypes was plated in 

MethoCult media containing IL-3, IL-6, and SCF and replated each week.  B) 

Quantification of colony numbers demonstrates no difference in colony formation in 

PR+/-, Dnmt3b fl/fl cells with or without Vav-Cre.  (C) Representative flow cytometry for 

the myeloid markers Gr-1 and CD11b after week 6 MethoCult replating demonstrates 

that self-renewal of myeloid cells from PR+/- mice is not dependent on Dnmt3b.  (D) 

Graph of CD11b positivity over time.  (E) Design of experiment in (F).   Marrow from 2-

2.5 week old mice of the indicated genotypes was retrovirally transduced with MSCV 

vectors containing WT DNMT3B-IRES-YFP or YFP only, and then sorted for YFP 

positive cells and plated in MethoCult media as in (A).  (F) Quantification of colony 

numbers at week 4 illustrates that overexpression of DNMT3B is not able to rescue 
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aberrant self-renewal in PR+/-, Dnmt3a-/- bone marrow cells.  N=3-6 for all experiments.  

N.S. Not statistically significant by two-tailed unpaired t-test, *P<0.05. 

Figure 6  

Dnmt3a is dispensable for leukemia induced by MLL-AF9 overexpression.  (A) Design 

of experiments in B through E.  Bone marrow from 2-3 week old mice of the indicated 

genotypes was harvested and transduced with an MLL-AF9 expressing retrovirus 

before transplantation into lethally irradiated wild-type mice.  (B) White blood cell counts 

at 28 days post-transplant demonstrate an equal degree of leukocytosis in recipients of 

MLL-AF9-transduced WT and Dnmt3a-/- bone marrow.  (C) Spleen weights of moribund

animals were not significantly different regardless of Dnmt3a status.  (D) MLL-AF9 was 

able to initiate lethal leukemia with 100 percent penetrance and equal latency using 

bone marrow cells with or without Dnmt3a (n = 11 for WT + MLL-AF9, n=9 for Dnmt3a-/- 

+ MLL-AF9).  N.S. Not significant by two-tailed unpaired t-test.

Figure 7 

Dnmt3a is required for the competitive repopulation advantage conferred by PML-

RARA, and its ability to induce APL in vivo.  (A) Design of competitive transplant 

experiments in (B)-(E), where marrow from 2-2.5 week old mice of the indicated 

genotypes was mixed with wild-type competitor marrow and transplanted into lethally 

irradiated recipients (week zero) for monitoring of relative contribution to peripheral 

blood cells, bone marrow and spleen (n=4-21 per genotype).  (B) Flow cytometry at the 

indicated weeks post-transplant demonstrates that the competitive advantage for PR+/- 

bone marrow in contributing to peripheral blood cells is completely abrogated in PR+/-, 

78



Dnmt3a-/- bone marrow, and that Dnmt3a-/- and PR+/-, Dnmt3a-/- bone marrow cells have 

a competitive disadvantage versus wild-type marrow cells in this assay.  (C) 

Examination of chimerism in bone marrow and spleen at six months after 

transplantation indicates a decreased contribution of PR+/-, Dnmt3a-/- marrow compared 

to PR+/- marrow in both compartments.  (D) Characterization of the stem/progenitor 

compartments in chimeric mice 10 weeks after competitive transplantation.  The 

composition of all compartments is the same for both genotypes, except that PR+/-, 

Dnmt3a-/- donors displayed a significantly increased contribution to the long-term 

hematopoietic stem cell compartment.  (E) Quantification of myeloid progenitor 

compartments demonstrates no significant differentiation biases in either genotype. (F) 

Long-term tumor watch of WT animals transplanted with PR+/- or PR+/-, Dnmt3a-/- bone 

marrow demonstrated that 6/16 recipients of PR+/- and 0/13 recipients of PR+/-, Dnmt3a-

/- bone marrow had succumbed to APL at one year post-transplant (P = 0.0336 by 

Mantel-Cox Test).  N.S. No differences between any two genotypes were statistically 

significant by two-way ANOVA, **P<0.005, ***P<0.001 by two-way ANOVA. 
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Chapter 3 

Myeloproliferation and Myeloid Leukemia in Dnmt3a+/- Mice 
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3.1 Abstract 

Recent whole genome sequencing efforts by our group and others have identified recurrent 

mutations in the DNA methyltransferase DNMT3A in various hematologic malignancies, 

including acute myeloid leukemia (AML), MPN, MDS, CMML, and T-ALL.  The most common 

point mutation in AML, R882H, is nearly always heterozygous in AML, and has been 

demonstrated to reduce enzyme activity by ~80%; the mutant protein also exerts a potent 

dominant negative effect on the methylation activity of the wild-type protein.  However, other 

heterozygous mutations produce frameshifts, premature stop codons, or deletions of the entire 

coding sequence of the gene, strongly suggesting that these mutations lead to simple 

haploinsufficiency for DNMT3A.   To test the hypothesis that Dnmt3a haploinsuffiency may 

initiate AML, we performed a long-term tumor watch comparing wild-type mice (Dnmt3a+/+) to 

mice carrying one wild-type Dnmt3a allele and one targeted allele that contains a neomycin-

resistance cassette inserted into the sequence coding for the catalytic domain of the protein, 

producing a true null allele (Dnmt3a+/- mice).  At 6 weeks of age, Dnmt3a+/- mice have normal 

hematopoiesis, with no detectable differences from wild-type littermates in myeloid, lymphoid, 

erythroid, or stem/progenitor populations in the bone marrow or spleen.  However, after 1.5 

years of age, 15/43 Dnmt3a+/- mice (35%) became moribund and were euthanized for 

pathologic evaluation.  Affected mice generally exhibited massive splenomegaly with myeloid 

infiltration of the spleen, liver, and other extramedullary organs.  At the conclusion of the tumor 

watch at two years, all remaining mice were euthanized, and similar pathologic findings were 

observed in an additional 9 Dnmt3a+/- mice, for an overall disease penetrance of 24/43 (56%).  

In contrast, 0/20 WT littermate control animals developed myeloid malignancies over the same 

time period.  Flow cytometric evaluation of splenic tumors demonstrated positivity for the 

myeloid markers Gr-1 and CD11b, and the presence of a subpopulation of Gr-1 and CD34 

double positive cells.  Based on flow cytometric and morphologic findings, we classified 16 
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splenic tumors according to the Bethesda criteria: 11/16 had myeloid proliferative disease/MPD, 

2/16 had myeloid leukemia with maturation, 2/16 had MPD-like myeloid leukemia, and 1 case 

had myeloid sarcoma.  Six tumors out of 18 tested were able to successfully engraft and lead to 

lethal disease in sublethally irradiated wild-type recipients, providing further evidence that these 

tumors represent transplantable, cell-autonomous myeloid malignancies.  Analysis of exome 

sequencing data from 5 primary tumor samples is ongoing.  One MPD-like myeloid leukemia 

was engrafted into four separate wild-type recipients, and all 5 tumors were sequenced.  

Collectively, this set of samples was found to contain mutations in the Ras/MAPK pathway, 

including the canonical gain-of-function mutation Kras G12C, a Ptpn11 E76K mutation, and a 

missense mutation in the tumor suppressor Neurofibromatosis 1 (Nf1).  A second, independent 

primary tumor was also found to contain an activating Kras G13D mutation.  Importantly, 9/51 

AML samples with DNMT3A mutations in the TCGA AML cohort also contained activating 

NRAS or KRAS mutations.  Examination of the Dnmt3a locus in all 5 sequenced samples 

revealed no evidence for mutations in or deletions of the residual wild-type Dnmt3a allele. 

These data strongly suggest that Ras/MAPK pathway mutations can cooperate with Dnmt3a 

haploinsufficiency to induce AML in C57Bl/6 mice and in humans.  

3.2 Introduction 

Recent whole genome sequencing efforts by our group have identified mutations in the 

DNA Methyltransferase 3A (DNMT3A) gene in approximately 37% of AML patients with a 

normal karyotype (22% of all cases)1.  These mutations are almost always heterozygous, and 

have been demonstrated by our group and others to be associated with high blast counts, 

advanced age, and poor prognosis1–3.  In addition, these mutations have been demonstrated to 

be stable at relapse3, suggesting that they are probably in the founding clone for most patients.  

DNMT3A mutations are enriched for changes at a single amino acid in the catalytic domain, 

R882 (37 out of 62 DNMT3A-mutated patients in our study)1, but other patients had nonsense, 
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splice-site, and frame-shift mutations, and in one case, deletion of a 1.5 MB region including 

DNMT3A1.  Studies from our group and others confirmed that these heterozygous R882 

mutations lead to a hypomorphic effect on the methyltransferase activity of the enzyme, and 

also a dominant negative affect on the WT DNMT3A present in the same AML cells4,5.  

DMNT3A with the R882H mutation forms stable heterodimers with WT DNMT3A, disrupting the 

ability of the wild-type DNMT3A protein to form active homotetramers, and leading to a 

canonical hypomethylation signature in DNMT3A R882H AML patients4.  

In contrast to the dominant negative effect of R882H mutations, other DNMT3A 

mutations are predicted to have translational effects that would disrupt the coding sequence by 

introducing premature stop codons, frameshifts, or whole gene deletions1.  These mutants 

would not be predicted a priori to have dominant negative activity, suggesting that they create 

simple haploinsufficiency for DNMT3A; this raises the possibility that simple haploinsufficiency 

for DNMT3A may also be an initiating event for AML. Remarkably, AML samples with non-R882 

mutations also have poor outcomes, but no discrete DNA methylation signature4. 

Dnmt3a conditional null mice exhibit an aberrant expansion and loss of differentiation 

potential in the long-term hematopoietic stem cell compartment when serially transplanted6, but 

hematopoietic abnormalities in Dnmt3a+/- mice have not been reported.  No phenotypic 

abnormalities have been reported in Dnmt3a+/- mice, except for an increased variation in body 

size that may reflect instability in quantitative traits induced by DNA hypomethylation7.  Notably, 

Dnmt3a+/- mice have not been monitored in a long-term tumor watch.  Thus the effects of loss 

of one copy of DNMT3A on normal hematopoiesis and leukemogenesis have not yet been 

experimentally tested. 

In the present study, we fully characterize hematopoiesis in Dnmt3a+/- mice, and 

demonstrate that despite minimal effects on hematopoiesis in young mice, older mice  

succumbed to a variety of myeloid malignancies (including myeloproliferative disease, myeloid 

sarcoma, and acute myeloid leukemia) after a very long latent period,.  Transplantation of these 
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tumors into sublethally irradiated wild-type recipient mice allowed for studies of the clonality of 

the tumors using exome sequencing on the primary and secondary tumors.  These data 

revealed mutations in the RAS-MAPK pathway in 2/5 samples; these mutations became 

enriched in secondary tumors.  Together, these studies suggest that loss of one copy of Dnmt3a 

can facilitate leukemogenesis in both mice and AML patients. 

3.3 Results 

Dnmt3a+/- mice exhibit normal hematopoiesis 

To characterize the effect of loss of one copy of Dnmt3a on hematopoiesis, we used a 

previously described Dnmt3a constitutive knockout mouse with a neomycin resistance cassette 

inserted into the exons coding for the catalytic domain of Dnmt3a8.  We have verified that this 

allele produces no detectable Dnmt3a protein, including any truncated forms, by western 

blotting of whole embryos with an N-terminal Dnmt3a antibody.  We intercrossed WT C57Bl/6 

mice with Dnmt3a+/- mice to generate Dnmt3a+/- mice and Dnmt3a+/+ littermates.  Dnmt3a+/- 

mice were born at Mendelian ratios and did not exhibit the severe runting phenotype that leads 

to premature death in Dnmt3a-/- mice (data not shown).  6 week-old Dnmt3a+/- and Dnmt3a+/+ 

mice were euthanized and bone marrow was harvested for study of mature lineage 

compartments (myeloid, B and T cells, Figure 1A) as well as for myeloid precursors (GMP, 

CMP, MEP) and long-term hematopoietic cells (KLS-SLAM cells, Figure 1B).  No differences 

between wild-type and Dnmt3a+/- bone marrow cells were present in any of these 

compartments.  Microarray analysis of gene expression in an enriched progenitor population of 

these mice (KLS cells) uncovered no signature for the Dnmt3a+/- cells, and unsupervised 

clustering using the top 5000 genes with the highest variance did not cluster the samples by 

genotype (Figure 1C).   
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Loss of one copy of Dnmt3a did not lead to an aberrant self-renewal phenotype when 

whole bone marrow from these mice was serially replated in methocult media (Figure 1D).  

When whole bone marrow cells from 6-week-old Dnmt3a+/- animals were competed against 

wild-type bone marrow in a competitive transplant experiment, there was no advantage for 

Dnmt3a+/- bone marrow over time (Figure 1E); no apparent lineage bias was detected in the 

peripheral blood cells of Dnmt3a+/- donor cells (Figure 1F).  A large cohort of Dnmt3a+/- (n=43) 

and WT mice (n=20) was set up and was bled at regular intervals for studies of peripheral blood 

counts by automated CBC, and no differences were exhibited between either genotype at any 

time point up to one year (data not shown).  Collectively, these studies demonstrate that loss of 

one copy of Dnmt3a does not grossly perturb hematopoiesis or induce a specific gene 

expression signature in the progenitor cells of young Dnmt3a+/- mice. 

 Dnmt3a+/- mice develop myeloid malignancies with long latency 

To test whether loss of one copy of Dnmt3a leads to hematopoietic changes in older 

mice, we monitored our cohort of Dnmt3a+/- and wild-type mice in a tumor watch for two years.  

Beginning at 1.5 years, some Dnmt3a+/- mice (15/43, 35%) became moribund, exhibiting 

lethargy, abdominal bloating, ruffled fur, and pale extremities (Figure 2A).  Affected mice were 

euthanized and were found to have varying degrees of hepatosplenomegaly, with myeloid 

infiltrates in the spleen, liver, and other organs, including the mediastinal and cervical lymph 

nodes.  At the conclusion of the tumor watch at two years, all remaining mice were euthanized 

for pathologic examination, and an additional 9 Dnmt3a+/- mice were found to display similar 

pathologic findings, for an overall disease penetrance of 24/43 (56%).  “Affected mice” had 

spleen sizes greater than 5 standard deviations above the mean of spleen size of wild-type mice 

at 2 years (Figure 2B).  In addition to splenomegaly, many Dnmt3a+/- mice displayed anemia 

and thrombocytopenia, but not significant leukocytosis.  Flow cytometry of the spleen cells of 

affected animals revealed positivity for the myeloid markers Gr-1 and/or CD11b (Table1).  In 
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addition, many spleens contained sizable populations of cells that were double positive for both 

the late myeloid marker Gr-1, and the progenitor marker CD34, a hallmark of leukemic myeloid 

cells.  No cases of myeloid disease were observed in 20 wild-type mice during the duration of 

the tumor watch. 

On the basis of flow cytometry and histopathologic findings, 11 of the 16 splenic tumors 

were classified (Bethesda criteria9) as myeloproliferative disease/MPD, two had myeloid 

leukemia with maturation, two had MPD-like myeloid leukemia, and one had a myeloid sarcoma 

(Figure 2C-D and Table 1).   

Transplantable Tumors from Dnmt3a+/- mice exhibit mutations in the Ras-MAPK pathway 

Six tumors out of 16 that were tested were able to be secondarily transplanted and 

induce acute disease in sub-lethally irradiated wild-type secondary recipients, with median 

disease latencies ranging from 26-90 days for each tumor (Figure 3A).  Flow cytometry and 

gross pathologic examination demonstrated that tumors derived from the secondary animals 

were myeloid malignancies that recapitulated the cell surface phenotypes of the primary tumors 

(Figure 3B).    

Whole exome sequencing was performed to analyze the mutational spectrum in the 

primary and secondary tumors from these mice.  Tumors were compared against sorted B220+ 

B cells from the primary animal’s spleen, as a normal control population.  Sequencing of DNA 

derived from unsorted spleen cells yielded low variant allele frequencies (VAF) for most putative 

mutations in the primary tumors, probably because all tumors were heavily contaminated with 

non-malignant lymphocytes (data not shown). All tumors were therefore resorted for Gr-1 

CD34+ double-positive cells to enrich for the myeloid tumor population.  In several of these 

tumors, potential cooperating mutations were identified.  In particular, analysis of one primary 

MPD-like myeloid leukemia (and secondary tumors derived from it) revealed somatic mutations 
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in the Ras-MAPK pathway, including a putative loss-of-function mutation in the tumor 

suppressor Nf1 (R1444I), and canonical activating mutations in SHP2 (E76K) and in Nras 

(G12C) (Figure 3C).  A second independent primary tumor contained a canonical gain-of-

function mutation in Nras (G13D).   

These mutations were present at a higher VAF in the secondary tumors than the primary 

tumor, suggesting that they were part of a subclone in the primary tumor that was selected for 

when engrafted into secondary recipients.  Interestingly, 9 of 51 AML patient samples with 

DNMT3A mutations from the TCGA study also contained Nras or Kras mutations10.  This 

suggests that loss of Dnmt3a function and mutations in the Ras-MAPK pathway can cooperate 

in both humans and Dnmt3a+/- mice. 

Tumors from Dnmt3a+/- mice retain the residual wild-type Dnmt3a allele 

We examined the sequence of the residual wild-type Dnmt3a allele in all tumors to see 

whether it was still wild type, or whether loss of heterozygosity (LOH) affected the residual 

allele.  No point mutations or indels in the residual Dnmt3a allele were detected by our mutation-

calling algorithm, and this result was confirmed by manual review of the Dnmt3a coding 

sequence.  A specialized algorithm for detecting copy number changes, CopyCat2, did not 

detect additional copy number changes at the Dnmt3a locus in any of the four sequenced 

tumors.  This result is currently being corroborated by comparing the Dnmt3a locus to that in 

wild-type controls, but our preliminary analyses indicate that the wild-type Dnmt3a allele is 

maintained in these tumors.   

3.4 Discussion 

In this study, we investigated hematopoiesis and leukemia development in Dnmt3a+/- 

mice.  We found that although young Dnmt3a+/- mice exhibited no hematopoietic abnormalities 

or aberrant self-renewal phenotypes, 56% of Dnmt3a+/- mice developed myeloid diseases after 
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a very long latent period.  Several of these malignancies were transplantable to sub-lethally 

irradiated wild-type recipients.  Exome sequencing of primary tumors, and corresponding 

engrafted secondary tumors, revealed that 2/4 tumors tested had mutations in the Ras-MAPK 

pathway, which mimics NRAS and KRAS mutations in human AML patients with DNMT3A 

mutations.  Finally, our sequencing studies revealed that the residual wild-type Dnmt3a allele 

was intact and not mutated in these tumors; these malignancies were therefore haploinsufficient 

for Dnmt3a, not deficient for this protein. 

The motivation for this study was provided by the observation that many mutations at the 

DNMT3A locus in AML cases apparently cause haploinsufficiency (i.e. frameshifts and whole 

gene deletions)1.  We discovered that Dnmt3a+/- mice developed a variety of myeloid 

malignancies with very long latencies.  These malignancies were often aggressive, with most 

cases exhibiting massive splenomegaly and leukemic infiltrates into various extramedullary 

tissues. While DNMT3A mutations are found in both myeloid and lymphoid malignancies, they 

are much more prevalent in myeloid malignancies; likewise, we did not detect any lymphoid 

malignancies in the Dnmt3a+/- mice.  This is particularly striking, since C57 Bl/6 mice have a 

greater tendency to spontaneously develop lymphoid vs. myeloid malignancies11–13, and it 

suggests that haploinsufficiency for Dnmt3a specifically facilitates myeloid leukemogenesis. 

The long latency of leukemia development in Dnmt3a+/- mice suggests the need for 

cooperating mutations for the development of overt leukemia.  By performing whole exome 

sequencing of primary tumors and their corresponding engrafted tumors from wild-type 

recipients, we were able to identify cooperating hits in the Ras-MAPK pathway in two separate 

tumors.  Several of these are well characterized oncogenic mutations that lead to activation of 

the RAS-MAPK pathway, and result in increased proliferative activity in various cell types14.  

Both NRAS and KRAS mutations frequently occur in human AML patients with mutant 

DNMT3A10, and studies in mice have demonstrated the ability of RAS and NF1 mutations to 
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cooperate with other AML-initiating mutations, such as PML-RARA15,  AML-ETO16,17 and MLL 

fusions17,18. 

DNMT3A R882H mutations in AML are almost always heterozygous, because this 

mutation creates a protein that is a potent dominant negative inhibitor of WT DNMT3A4.  

Although rare AML patients appear to have biallellic mutations in DNMT3A, many others appear 

to have heterozygous mutations that cause simple haploinsufficiency1.  The development of 

leukemias in our Dnmt3a+/- mice raised the question of whether the residual allele was 

mutationally inactivated in the manner of a classical “two hit” tumor suppressor.  However, we 

found no evidence for this phenomenon, suggesting that myeloid malignancies that arise in 

these mice result from simple haploinsufficiency of Dnmt3a. 

Since their initial discovery in AML patients, DNMT3A mutations have been implicated in 

a variety of hematologic malignancies, including MPN, MDS, CMML, and T-ALL19.  In this study, 

we discovered numerous myeloid malignancies in our Dnmt3a+/- mice with retention of the wild-

type Dnmt3a allele.  Mutational hits in the Ras-MAPK pathway in multiple tumors mirrored 

similar findings in DNMT3A-mutated AML patients, and are suggestive of the ability of DNMT3A 

mutations to cooperate with mutations in the Ras-MAPK pathway to drive leukemogenesis.  

These studies shed light on the clinical observation that many DNMT3A mutations are predicted 

to lead to inactivation of one copy of the gene, and suggest that simple haploinsufficiency for 

DNMT3A facilitates the development of myeloid leukemia in mice and in humans. 

96



3.5 Methods 

Mice 

The Dnmt3a-/- mice have been previously described.  Dnmt3a+/- mice were obtained from the 

Mutant Mouse Regional Resource Centers repository (MMRRC Strain Name B5.129S4-

Dnmt3atm2Enl/Mmnc).  Whenever possible, littermate controls were used for all experiments.  All 

mouse procedures were done in accordance with institutional guidelines and approved by the 

Animal Studies Committee at Washington University in accordance with current NIH policy. 

Bone Marrow Harvest and Transplantation 

Bone marrow was harvested from femurs, tibias, pelvi, and humeri of 6-week-old mice.  After 

lysis of red blood cells (ACK buffer: 0.15 M NH4Cl, 10 mM KHCO3, 0.1 mM Na2EDTA), cells 

were washed with FACS buffer, filtered through through 50-μm cell strainers (Partec) and 

resuspended in PBS at 1 million cells/100 uL for transplantation.  For competitive transplant 

experiments, bone marrow was mixed 50:50 with freshly harvested cells from 6-week-old Ly5.1 

mice (The Jackson Laboratory, Bar Harbor, ME).  Transplantation was performed by retro-

orbital injection of 1 × 106 total bone marrow cells into lethally irradiated Ly5.2 or Ly5.1x5.2 

recipients that had received 2 split doses of 550 cGy total body irradiation spaced at 4 hours 

(Mark 1 Cesium-137 irradiator, JL Shepherd) 24 hours prior to transplantation.  For tumor 

transplants, recipient Ly5.1 mice were sublethally irradiated (600 cGy) and retro-orbitally 

injected with 1 million tumor cells. 

Mouse Analysis and Tumor Watch 

Peripheral blood counts were assessed at regular intervals as indicated by automated CBC 

(Hemavet 950, Drew Scientific Group).  For long-term tumor watch experiments, bone marrow 

transplant recipients were monitored daily and animals displaying signs of illness (lethargy, 

hunched posture, ruffled fur, dyspnea, or palor) were euthanized and spleen and bone marrow 
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harvested for analysis.  Diagnosis of leukemia was made by light microscopic examination of 

spleen and/or peripheral blood cells according to the Bethesda criteria.  Cytospin tissue slides 

were stained with Wright-Giemsa stain (Sigma-Aldrich) and were imaged using a Nikon 

MICROPHOT-SA microscope equipped with an oil-immersion 50×/0.90 or 100×/1.30 objective 

lens (Nikon Corp.)  The tumor watch was terminated after 1 year post-transplant, at which time-

point recipients of wild-type marrow begin to succumb to complications related to the irradiation 

procedure.  

Methylcellulose Colony Formation Assay 

10,000 cells per plate were plated in triplicate in M3534 Methocult media containing Il-3, Il-6, 

and SCF (Stem Cell Technologies) and incubated at 37 degrees for 1 week.  Each week, 

clusters of cells meeting the morphologic criteria for CFU-GEMM, CFU-GM, CFU-G, or CFU-M 

(http://www.stemcell.com/~/media/Technical%20Resources/8/3/E/9/0/28405_methocult%20M.p

df?la=en) were counted as myeloid colonies and cells were lifted using warm DMEM media + 

2% FBS, spun down, and replated as before.  An aliquot of cells was taken for analysis of 

myeloid markers by flow cytometry.  

Illumina library construction and exome sequencing 

Genomic DNA from all tumor samples and/or matched normal samples were fragmented using 

a Covaris LE220 DNA Sonicator (Covaris, Woburn, MA) within a size range between 100-400bp 

using the following settings: volume = 50µL, temperature = 4°C, duty cycle = 20, intensity = 5, 

cycle burst = 500, time = 120 seconds. The fragmented samples were transferred from the 

Covaris plate and dispensed into a 96 well BioRad Cycle plate by the CyBio-SELMA instrument. 

Small insert dual indexed Illumina paired end libraries were constructed with the KAPA HTP 

sample prep kit according to the manufacturer's recommendations (KAPA Biosystems, Woburn, 

MA) on the SciClone instrument according to the manufacturer's recommendations (Perkin 
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Elmer, Waltham, MA). Dual indexed adaptors were incorporated during ligation; the same 8bp 

index sequence is embedded within both arms of the library adaptor. Libraries were enriched 

with a single PCR reaction for 8 cycles. The final size selection of the library was achieved by a 

single AMPure XP paramagnetic beads (Agencourt, Beckman Coulter Genomics, Beverly, MA) 

cleanup targeting a final library size of 300-500bp. The libraries undergo a qualitative (final size 

distribution) and quantitative assay using the HT DNA Hi Sens Dual Protocol Assay with the HT 

DNA 1K/12K chip on the LabChip GX instrument (Perkin Elmer, Waltham, MA). 

Libraries were captured using the Nimblegen SeqCap EZ Library reagent.  The final 

concentration of each capture pool was verified through qPCR utilizing the KAPA Library 

Quantification Kit - Illumina/LightCycler® 480 kit according to the manufacturer's protocol (Kapa 

Biosystems, Woburn, MA) to produce cluster counts appropriate for the Illumina HiSeq2000 

platform. Each capture pool was loaded on the HiSeq2000 version 3 flow cell according to the 

manufacturer's recommendations (Illumina, San Diego, CA). 2 X 101bp read pairs were 

generated for each sample, yielding approximately 6-7Gb of data per sample.  

Variant detection pipeline 

Sequence data was aligned to mouse reference sequence mm9 (with the OSK vector sequence 

added) using bwa version 0.5.9[14] (params: -t 4 -q 5::). Bam files were deduplicated using 

picard version 1.46. 

Single Nucleotide Variants (SNVs) were detected using the union of three callers: 1) samtools 

version r963[15] (params: -A -B) intersected with Somatic Sniper version 1.0.2[16] (params: -F 

vcf -q 1 -Q 15) and processed through false-positive filter v1 (params: --bam-readcount-version 

0.4 --bam-readcount-min-base-quality 15 --min-mapping-quality 40 --min-somatic-score 40) 2) 

VarScan version 2.2.6[17] filtered by varscan-high-confidence filter version v1 and processed 

through false-positive filter v1 (params: --bam-readcount-version 0.4 --bam-readcount-min-
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base-quality 15 --min-mapping-quality 40 --min-somatic-score 40), and 3) Strelka version 

0.4.6.2[18] (params: isSkipDepthFilters = 1). 

Indels were detected using the union of 4 callers: 1) GATK somatic-indel version 5336[19] 

filtered by false-indel version v1 (params: --bam-readcount-version 0.4 --bam-readcount-min-

base-quality 15), 2) pindel version 0.5[20] filtered with pindel false-positive and vaf filters 

(params: --variant-freq-cutoff=0.08), 3) VarScan version 2.2.6[17] [filtered by varscan-high-

confidence-indel version v1 then false-indel version v1 (params: --bam-readcount-version 0.4 --

bam-readcount-min-base-quality 15), and 3) Strelka version 0.4.6.2[18] (params: 

isSkipDepthFilters = 1). 

Variants were filtered to remove non-homozygous or heterozygous sites using an R script 

(https://github.com/genome/gms-

core/blob/f00200864a9d0b87e6b6257c5e6bcadab4e6f685/lib/perl/Genome/Model/Tools/Analysi

s/RemoveContaminatingVariants.R) 

Cell Staining and Flow Cytometry 

After ACK lysis of red blood cells, peripheral blood, bone marrow,or spleen cells were treated 

with anti-mouse CD16/32 (clone 93, eBioscience) and stained with the indicated combinations 

of the following antibodies (all antibodies are from eBioscience unless indicated): CD34 FITC 

(RAM34), CD11b PE or APC-e780 (M1/70), c-kit PerCP-Cy5.5 or APC-e780 (2B8), CD115 APC 

or PE (AFS98), Gr-1 Pacific-blue (Invitrogen, RM3028), Gr-1 biotin (RB6-8C5),  B220 PE, APC, 

or biotin (RA3-6B2), CD3 e450 or PE (145-2C11), CD71 PE( R17217), Ter-119 Pacific-blue 

(TER-119), CD16/32 APC (93), Flk2 APC (A2F10).   Analysis was performed using a FACScan 

(Beckman Coulter) or I-Cyt Synergy II sorter (I-cyt Technologies), and data analyzed using 

FlowJo (Tree Star), Excel (Microsoft), and Prism 5 (Graphpad). 

Exon Array Gene Expression Analysis 
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For expression array profiling, total cellular RNA was purified using TRIzol reagent (Invitrogen), 

quantified using UV spectroscopy (Nanodrop Technologies), and qualitatively assessed using 

an Experion Bioanalyzer. Amplified cDNA was prepared from 20 ng total RNA using the whole 

transcript WT-Ovation RNA Amplification System and biotin-labeled using the Encore Biotin 

Module, both from NuGen Technologies, according to the manufacturer's instructions. Labeled 

targets were then hybridized to Mouse Exon 1.0 ST arrays (Affymetrix), washed, stained, and 

scanned using standard protocols from the Siteman Cancer Center, Molecular and Genomic 

Analysis Core Facility (http://pathology.wustl.edu/research/cores/lcg/index.php). Affymetrix 

Expression Console software was used to process array images, export signal data, and 

evaluate image and data quality relative to standard Affymetrix quality control metrics.  Gene 

expression analysis was carried out in R using packages available through Bioconductor 

(www.bioconductor.org). 

Statistics 

All statistical comparisons were made using GraphPad Prism 5 software, except for statistics on 

sequencing data, which were calculated using the R statistical programming software as 

described above.  Statistical tests employed and significance cut-offs are detailed in each figure 

legend.   All data represent mean plus/minus the standard error of the mean unless indicated. 
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3.7 Figure Legends 

Figure 1 

Normal hematopoiesis in young Dnmt3a+/- mice.  (A) Quantification of myeloid cells (Gr-1+), 

B220+ B cells, and CD3+ T cells in bone marrow of 6-week-old wild-type and Dnmt3a+/- mice. 

(B) Quantification of myeloid progenitor compartments (GMP, CMP, MEP) and KLS-SLAM cells

(HSC) from young mice as in A).  (C) Unsupervised hierarchical clustering of exon array data 

from sorted enriched progenitor cells (KLS cells) from 6-week-old mice in which samples are 

clustering using the 5000 probes with the highest standard deviation demonstrates the lack of a 

distinct gene expression signature in Dnmt3a+/- cells v. wild-type.  (D) Bone marrow from 6-

week-old mice was plated in methocult media containing IL-3, IL-6 and SCF, and replated every  

7 days.   Quantification of colony numbers demonstrates that Dnmt3a+/- cells have no aberrant 

self-renewal phenotype ex vivo.  (E-F) Bone marrow from 6-week-old wild-type or Dnmt3a+/- 

mice was mixed 50:50 and transplanted into lethally irradiated wild-type mice.  (E) Chimerism in 

peripheral blood at 16 weeks demonstrates no competitive advantage for Dnmt3a+/- donor cells 

versus wild-type.  (F) Lineage bias for each donor genotype was quantified by measuring 

dividing the number of cells positive for each marker by the total chimerism.  No lineage biases 

were detected for Dnmt3a+/- vs wild-type bone marrow cells.  N.S. = not significant by two-way 

ANOVA with Bonferroni post-test.  N=3 for all experiments. 

Figure 2 

Dnmt3a+/- mice develop myeloid malignancies.  (A) Dnmt3a+/- and wild-type mice were 

monitored in long-term (2 year) tumor watch and mice which became moribund were euthanized 

for pathologic analysis.  (B) At 2 years all remaining mice were bled for CBCs, euthanized, and 

all mice on tumor watch were grouped by spleen size into wild-type, unaffected Dnmt3a+/-, and 

affected Dnmt3a+/- (see Results for details).  Affected Dnmt3a+/- mice exhibited anemia and 

thrombocytopenia but not significant leukocytosis.   (C) Distribution of pathologic diagnoses 
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according to Bethesda criteria for all mice that could be definitively classified.  (D)  

Representative histology of tissues from affected Dnmt3a+/- mice.   *p<0.05, ***p<0.001 by two-

tailed t-test. 

Figure 3 

Transplantable tumors from Dnmt3a+/- mice exhibit mutations in the Ras-MAPK pathway.  (A) 

Kaplan-Meier curve illustrating disease latency for sublethally irradiated wild-type animals 

engrafted with Dnmt3a+/- tumors.  (B) Representative flow cytometry from primary and 

secondary tumors demonstrating that secondary tumors recapitulate the immunophenotypes of 

their corresponding primary tumors.   (C) Schematic of Ras-MAPK pathway illustrating location 

of mutations in Dnmt3a+/- tumors discovered by exome sequencing of sorted Gr-1+Cd34+ cells. 
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Table 1 

Case Spleen
Wgt (g)

Gr-
1+

CD11b+ Gr1+CD34+ Gr1+ckit+ B220+ CD3+ Pathologic Diagnosis

1 4 85.7 94.5 50.4 3.2 1.0 23.6 Myeloid proliferation (nonreactive); Myeloproliferative disease

2 0.82 84.1 99.1 36.2 1.6 Myeloid leukemia with maturation

3 2.7 50.3 69.8 17.9 4.3 5.7 16.6 Myeloid proliferation (nonreactive); Myeloproliferative disease

4 0.44 33.1 64.8 12.1 1.1 9.7 6.6 Myeloid proliferation (nonreactive); Myeloproliferation (genetic)

5 0.92 43.2 75.4 20.1 1.8 1.7 6.8 Myeloid leukemia; MPD-like myeloid leukemia

6 0.5 4.1 24.9 1.3 0.2 12.1 2.9 Myeloid leukemia; MPD-like myeloid leukemia

7 1.77 1.3 2.3 0.5 0.0 0.1 4.3 Myeloid proliferation (nonreactive); Myeloproliferation (genetic)

8 2.02 1.9 5.8 1.0 0.2 0.1 6.6 Myeloid proliferation (nonreactive); Myeloproliferation (genetic)

9 1.55 3.4 6.0 1.0 0.2 0.3 3.0 Myeloid leukemia with maturation

10 N/A Myeloid Sarcoma

11 1.56 54.9 71.7 26.2 0.5 7.5 24.2 Myeloid proliferation (nonreactive); Myeloproliferation (genetic)

12 5.22 52.7 72.6 41.3 1.6 0.9 34.6 Myeloid proliferation (nonreactive); Myeloproliferation (genetic)

13 4.77 56.3 81.1 41.7 1.9 4.9 16.1 Myeloid proliferation (nonreactive); Myeloproliferation (genetic)

14 1.27 71.8 92.1 32.6 0.4 3.5 9.3 Myeloid proliferation (nonreactive); Myeloproliferation (genetic)

15 0.56 48.6 69.7 29.3 0.3 16.3 10.3 Myeloid proliferation (nonreactive); Myeloproliferation (genetic)

16 4.17 60.1 84.5 37.7 1.3 2.3 21.6 Myeloid proliferation (nonreactive); Myeloproliferation (genetic)
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Chapter 4 

Summary and Future Directions 
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4.1 Summary 

In this thesis, we used mouse models of acute myeloid leukemia in order to explain two 

observed patterns of mutations that have emerged from recent whole genome sequencing of 

acute myeloid leukemia patients.  In Chapter 2, we applied well-characterized retroviral and 

transgenic mouse models to investigate the mechanistic basis for the observation that DNMT3A 

mutations are exclusive of the common fusion proteins PML-RARA, RUNX1-RUNX1T1, and the 

MLL fusions.  We discovered that of these fusion genes, only PML-RARA is dependent on 

Dnmt3a for its ability to drive aberrant self-renewal ex vivo, and provide a competitive 

advantage and leukemia in vivo.  The ability to drive aberrant self-renewal is specifically 

dependent on the methyltransferase activity of Dnmt3a, since neither DNMT3B nor catalytically 

deficient DNMT3A mutants are able to restore aberrant self-renewal to Ctsg-PML-RARA bone 

marrow cells lacking Dnmt3a.  Using a methylation-sensitive restriction enzyme, we 

demonstrated that restoration of self-renewal ability by expression of retroviral DNMT3A 

coincides with restoration of DNA methylation at several informative loci.  In Chapter 3, we 

studied Dnmt3a+/- mice to model a subset of DNMT3A mutations observed in AML patients (i.e. 

heterozygous mutations predicted to create haploinsufficiency for DNMT3A).  We discovered 

that although young Dnmt3a+/- mice exhibit no detectable hematopoietic abnormalities 

(including a lack of a competitive transplant advantage, and no aberrant self-renewal phenotype 

ex vivo), a long-term tumor watch demonstrated the development of myeloid malignancies in 

approximately 60% of animals, with a very long latency (1.5 years or longer).  Some of these 

tumors were transplantable to sublethally irradiated wild-type recipients, and resulted in tumors 

that were morphologically and immunophenotypically similar to the primary tumors from which 

they were derived.   Whole exome sequencing demonstrated mutations in the Ras-MAPK 

pathway in several tumors, and also verified that the residual Dnmt3a wild-type allele was intact, 

demonstrating that these phenotypes are due to Dnmt3a haploinsufficiency.  In Chapter 4, we 
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will examine unresolved questions raised by these results, and propose future experiments 

designed to investigate the role of DNMT3A in APL and DNMT3A haploinsufficiency in AML. 

4.2 Early and late epigenetic changes in Ctsg-PML-RARA mice 

The observation that the DNA methylation signature of APL patients can distinguish 

them from cases with the other chromosomal fusions--as well as all other AML cases--is striking 

and has been observed by multiple groups1,2.  This finding, and our observation of abrogation of 

aberrant self-renewal and disruption of leukemogenesis in PR+/-, Dnmt3a-/- mice, strongly 

suggest a role for DNA methylation in the pathogenesis of APL, but the nature of the precise 

methylation changes and their relationship to PML-RARA activity remain unclear.  Previous 

studies of methylation signatures in APL have largely been limited to technologies such as 

reduced representation bisulfite sequencing, which is capable of interrogating the methylation 

status of a small fraction of genomic CpGs3–5.  Further, all studies to date have also focused on 

fully transformed APL cells.  In addition, studies of methylation in APL patient cells have lacked 

appropriate controls that are critical to determine “normal” methylation patterns. 

The gold standard for interrogating genomic methylation is whole genome bisulfite 

sequencing, which allows a non-biased measurement of CpG methylation across the genome6.  

Presently we are initiating studies of whole genome bisulfite sequencing to examine methylation 

patterns in 1) the non-leukemic promyelocytes of 6-week-old mCG-PML-RARA+/- mice, 2) 

promyelocytes of wild-type littermates, and 3) APL samples from mCG-PML-RARA+/- mice.  

The promyelocyte compartment was chosen because it is an enriched progenitor compartment 

with high expression of the PML-RARA allele, and well-documented dysregulation of many 

genes by PML-RARA7.  Using this system, we will interrogate early methylation changes 

induced by PML-RARA expression relative to a wild-type control, and we will compare these 

changes to the methylation state of fully transformed tumors from the same mouse model.  This 
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experiment will elucidate early methylation events induced by PML-RARA at high resolution.  

Additional interrogation of chromatin modifications and accessibility, using techniques such as 

H3K27 and H3K4 ChIP-seq and ATAC-seq8, will allow for a comprehensive description of the 

epigenetic changes accompanying PML-RARA expression in preleukemic and leukemic mice. 

4.3 Elucidation of the Mechanisms by which PML-RARA and Dnmt3a Affect Gene 

Expression 

The classical model of PML-RARA function is that fusion to PML disrupts the ability of 

RARA to release from DNA, thus leading to a repression of gene expression that is 

unresponsive to endogenous retinoic acid ligand, possibly by recruitment of a co-repressive 

complex that includes Dnmt3a9.  However, early gene expression changes in the myeloid 

progenitor compartment of mCG-PML-RARA+/- mice include both down-regulated and up-

regulated genes7.  Further, confirmation of a direct PML-RARA-DNMT3A protein-protein 

interaction has not yet been reported by any lab.  We are currently performing rigorous pull-

down experiments to establish whether PML-RARA and DNMT3A are in fact capable of a direct 

interaction, and also establishing whether this interaction exists between PML-RARA and 

mouse Dnmt3a, since this is directly relevant to understanding the requirement for functional 

Dnmt3a in our Ctsg-PML-RARA mouse. 

Another outstanding question concerns the relationship between PML-RARA binding 

and induction of DNA methylation.  Although it is clear from our studies that PML-RARA needs 

functional Dnmt3a to drive leukemogenesis, it is still unclear whether this reliance is the direct 

result of PML-RARA recruitment of Dnmt3a to methylate and repress DNA target genes, as has 

been proposed9,10.  Efforts to relate PML-RARA binding and DNA methylation genome-wide 

have relied on a correlative approach (using two antibodies against RARA and PML) and have 

only been able to capture DNA methylation changes in a limited fashion (using RRBS at an 
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early time point after induction of PML-RARA expression, in a transformed cell line)3.  To 

circumvent these limitations, we will express a tagged version of PML-RARA in mouse bone 

marrow cells, and allow it to stably engraft in recipients before harvesting expressing cells for 

PML-RARA ChIP-seq.  This approach will allow us to interrogate PML-RARA binding in an 

endogenous cellular context, and in combination with the above studies of DNA methylation and 

chromatin conformation, will enable a genome-wide view of how PML-RARA binding relates to 

local DNA methylation and chromatin conformation changes.  Finally, the above data will be 

combined with  comprehensive RNA-sequencing to describe the relationships between PML-

RARA binding, the induction of chromatin structure changes, and changes in gene expression.   

4.4 Examination of DNA Methylation in Dnmt3a+/- Mice 

A DNA methylation analysis has not yet been reported for Dnmt3a+/- mice.  Future 

research will seek to determine whether loss of one copy of Dnmt3a results in hypomethylation 

at specific canonical loci, for example the Dnmt3a-dependent loci identified in our methylation 

sequencing studies in Chapter 2.  Given the lack of detectable hematopoietic abnormalities in 

young Dnmt3a+/- mice, it is possible that a methylation deficit in these mice due to 

haploinsufficiency for Dnmt3a is far more subtle than that in Dnmt3a-null mice, requiring multiple 

divisions of hematopoietic stem cells throughout the lifespan of the mouse in order to 

accumulate changes in CpG methylation.  This, along with the need for cooperating mutations 

such as those in the Ras-MAPK pathway, might explain the very long latency to leukemia in the 

Dnmt3a+/- mice.  One method to examine a possible progressive methylation deficit is to 

serially examine methylation in Dnmt3a+/- bone marrow cells in mice of different ages, using 

either the HpaII assay we employed in this thesis, or a more comprehensive genome-wide 

approach.  Additional experiments that might support the hypothesis of a progressive 

methylation deficit would include examining the methylation state in cultured cells induced to 

rapidly proliferate, e.g. by growth of a small starting number of bone marrow cells expanded on 
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stromal cells in the presence of cytokines, or in mice treated with 5-FU to induce rapid stem cell 

expansion.  Methylation changes at individual loci observed in these studies will need to be 

correlated with gene expression changes to determine their role in the development of disease. 

4.5 Identification and Phenotyping of DNMT3A-Haploinsufficient Patients 

Our group has made considerable progress in understanding the dominant negative 

mechanism of DNMT3A R882H mutations, and correlating these with a canonical 

hypomethylation phenotype in patients11, but other DNMT3A mutations remain poorly 

understood.  While it can be confidently predicted that some DNMT3A mutations, such as a 

whole gene deletion, will result in protein production from only one allele12, this needs to be 

empirically tested for other mutations.  For many of the frame-shift mutations, it is likely that 

premature termination leads to induction of nonsense-mediated decay, but it is also formally 

possible that some of these mutations result in formation of a truncated protein with biochemical 

activity.  For DNMT3A nonsense and missense mutations, the effect of expression of the 

mutated allele on the methylation activity of the wild-type allele remains to be determined.   We 

are currently in the process of creating expression constructs for a number of these DNMT3A 

mutations to determine which lead to production of a DNMT3A protein.  The  mutant alleles that 

result in expression of detectable protein will be further evaluated with biochemical studies to 

quantify their degree of methylation activity and their effects on wild-type DNMT3A, using 

methods previously published by our group11. 

By biochemically characterizing these mutant DNMT3A alleles, we will be able to 

determine which alleles lead to true haploinsufficiency versus a dominant negative effect (or 

other unexpected effects).  By grouping together the haploinsufficient DNMT3A patients and 

comparing them to patients that have dominant negative alleles (e.g. R882), we will be able to 

use existing data on gene expression and methylation phenotypes to see if there are common 
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gene expression or methylation signatures that define DNMT3A haploinsufficiency in AML.  By 

comparing these signatures to corresponding data from our Dnmt3a+/- mice, we hope to be 

able to arrive at an understanding of the role of DNMT3A in AML pathogenesis, which may have 

important therapeutic implications for this disease. 
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