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Chapter 1 

 
Introduction 

 

J. Garrecht Metzger 

 

 The isotopic composition of the marine dissolved inorganic carbon (δ13CDIC)1 has been 

the focus of intense research as marine DIC is the largest reactive pool of carbon on the surface 

of the Earth.  On short time scales (≤ 102 years) δ13CDIC changes largely as a function of the rates 

of biological uptake during photosynthesis and respiration of organic matter (e.g., Patterson & 

Walter 1994; Gruber et al., 1999).  Over longer time scales δ13CDIC is thought to change largely 

as a function of the isotopic signatures and fluxes of carbon being delivered to the ocean during 

weathering, volcanic emissions, and carbon being buried in the ocean as organic carbon and 

carbonates (sensu Kump & Arthur, 1999).  Because the ocean is thought to be isotopically well-

mixed on the ~1,500 year scale, changes in δ13CDIC are recorded in sediments deposited 

synchronously across the ocean.  The isotopic fractionation between DIC and carbonate is small 

so that δ13CDIC ≈ δ13CDIC.  Therefore, a carbonate deposited in the Atlantic Basin should record 

the same δ13Ccarb signal in the Pacific Basin.  This allows δ13Ccarb to be used as a stratigraphic 

tool that correlates relative time and has given rise to the field of “carbon isotope 

chemostratigraphy.” 

                                                 
1 δ13Ccarb = [(13C/12C)sample – (13C/12C)standard -1] ! 1,000‰ where (13C/12C) is the abundance ratio in either a sample or 
standard.  The standard, V-PDB, is defined as 0‰.  This is analogous to a percent difference from a standard, but in 
parts per thousand (“per mil”) rather than per hundred (“per cent”).  Subscript “carb” referes to carbonate. 



 
 

2 

The first modern study that utilized the stable isotopes of carbonate carbon (δ13Ccarb) for 

stratigraphic correlation was Scholle and Arthur (1980).  While these authors were not the first to 

produce a record of δ13Ccarb through time, previous workers had sampled at too coarse of a 

resolution to notice secular (i.e., temporal) changes in δ13Ccarb, giving rise to the erroneous 

hypothesis that the isotopic composition of oceanic dissolved inorganic carbon reservoir did not 

vary significantly through time.  The new appreciation for high spatial and temporal resolution 

data sets that Scholle and Arthur produced gave rise to the field of carbon isotope 

chemostratigraphy.  In the near three and a half decades since the Scholle and Arthur paper was 

published, carbon isotopes have become one of the main “workhorses” of the stratigrapher and 

Earth historian (e.g., Saltzman & Thomas, 2012).  Intimate links have been made between major 

biological events – including evolutionary radiations (e.g., Maloof et al. 2010) and mass 

extinctions (e.g., Kump, 2003) – and environmental events such as glaciations (Kump et al., 

1999) and asteroid impacts (D’Hondt, 2005).  Despite significant advances in our understanding 

of the biogeochemical carbon cycle, uncertainty remains in how to interpret much of the δ13Ccarb 

record.  Divergent interpretations stem in part from 1) sampling practices and screening methods, 

2) an incomplete geological and climate record, 3) poor constraints on carbon cycle model 

parameters, and 4) the abundance of strata deposited in environments that have no modern 

analog with which to compare.  This dissertation attempts to address points 1-3 and in turn is 

able to directly test some existing hypotheses about the carbon cycle and stratigraphic 

correlations.  While this dissertation is focused on the Ordovician Period (444-485 Ma) many of 

the concepts should have general applications to rocks of various ages. 

The Ordovician was chosen as the study interval for several reasons.  First, Ordovician-

aged rocks are widespread on the surface and in the subsurface of the United States of America, 
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which allowed us to test questions related to spatial variations in δ13Ccarb across different 

depositional environments.  Second, there are numerous K-bentonites (altered volcanic ash beds) 

that are scattered throughout the interval (Kolata et al., 1996), which allows for temporal 

correlations independent of δ13Ccarb and supplies absolute ages using radiometric dating 

techniques.  Third, much of the Late Ordovician of North America is carbonate-rich, which is 

required for δ13Ccarb stratigraphy.  Scientifically, the Ordovician is amongst the most important 

intervals in Earth history.  Within this geologic period is the greatest diversification in marine 

invertebrates in history (Webby et al., 2004), the first of the five major mass extinctions of the 

Phanerozoic (Sepkowski, 1996), the first major ice age in ~140 Ma and the first glaciation since 

the evolution of metazoa (animals), some of the largest carbonate platforms of the Phanerozoic 

(Kiessling et al., 2003), some of the highest relative sea levels of the Phanerozoic (Haq & 

Shutter, 2008), and two of the largest volcanic ash deposits of the Phanerozoic.  These strata 

have been studied, in many cases, for over a hundred years (e.g., Ulrich, 1904; Ruedemann, 

1925; Kay, 1935; Kay, 1937; Martin et al., 1961; Thompson, 1992) and have substantial 

geologic context already established.  This allowed us to employ recent analytical and theoretical 

advancements to refine the time and nature of environmental change as well as test hypotheses 

related to the chemical composition of the Ordovician ocean. 

Chapter 2 focuses on method development for identifying post-depositional alteration 

(i.e., diagenesis) of δ13Ccarb signals in two outcrop sections from Missouri.  This topic is of 

central interest to stratigraphers and Earth historians because a primary ocean δ13Ccarb signal is 

required for correlations and environmental reconstructions.  The chapter focuses specifically on 

the Guttenberg δ13C excursion, a globally correlated, positive ~3‰ event that is ~400 kyr in 

duration.  The Guttenberg excursion is one of two globally correlated δ13Ccarb excursions in the 



 
 

4 

Late Ordovician and is found on multiple modern and paleocontinents (e.g., Patzkowsky et al., 

1997; Martma, 2005; Ludvigson et al., 2004; Young et al., 2005; Bergström et al., 2010; 

Munnecke et al, 2011).  Observed spatial heterogeneity in δ13Ccarb data during the Guttenberg 

excursion was previously interpreted as primary heterogeneity in δ13C of the marine inorganic 

carbon pool (Holmden et al., 1998; Young et al., 2005), the source of carbonate carbon.  We use 

thin section petrography, trace element geochemistry, and stable isotope analyses of C and O to 

show that differences in the abundance of cements, which contain post-depositional C and O 

signatures, can produce cm-scale variations in δ13Ccarb and δ18Ocarb.  The covariation between 

petrographic evidence for cement abundance and diagenetic overprint of the primary δ13Ccarb and 

δ18Ocarb signal allows the construction of an isotope data filter.  Filtering samples increases 

correlation quality.  We find that locations with supposed primary δ13Ccarb signals that are 

different than the global δ13Ccarb signal are instead consistent with local diagenetic alteration and 

are located only short distances from locations δ13Ccarb signals that appear to track the global 

δ13Ccarb trend.  Consideration of the spatial patterns in δ13Ccarb in the new diagenetic framework 

leads us to conclude there is no evidence for a significant long-distance isotopic gradient and that 

the isotopic signature of the dissolved inorganic carbon reservoir of the Laurentian epeiric sea 

was isotopically well-mixed. 

Chapter 3 investigates an expanded time interval and spatial scale from that of the 

previous chapter to demonstrate how δ13Ccarb chemostratigraphy can be applied to well cuttings, 

crushed rock commonly collected from boreholes during subsurface oil and gas exploration.  Six 

cuttings wells and one solid rock core were sampled in New York State and cover at a distance 

of ~300 km.  Unlike solid rock core, which is expensive to collect and store, well cuttings are 

relatively inexpensive and are therefore collected continuously during exploration rather than in 
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limited intervals like cores.  Unlike outcrops, subsurface samples are not limited by surface 

exposure and are therefore available in high spatial resolution. This allows us to construct a 

continuous δ13Ccarb record at high spatial and temporal resolution.   Increased vertical continuity 

and spatial coverage come at a price, as facies information (e.g., bedding textures, macroscopic 

fossils) and textural evidence of alteration is greatly reduced; however, the high sampling 

resolution and close spacing of wells does allow identification of alteration on the regional scale. 

While we are not the first to publish δ13Ccarb records obtained from well cuttings (e.g., 

Burns & Matter, 1993; Fike et al., 2006), no study had outlined sampling strategies for these 

materials, so we tackle this very issue in Chapter 3.  We demonstrate that if cuttings are collected 

over small enough intervals  (e.g., 3 m per sample) and in areas of sufficiently rapid 

sedimentation rate, δ13Ccarb records from cuttings suffer little to no loss in fidelity as compared to 

outcrop or core studies.  The sampling of closely spaced wells allowed us to confidently identify 

δ13Ccarb intervals for chemostratigraphic correlation, which were used to construct a refined 

δ13Ccarb reference curve for the Late Ordovician. We also used this high spatial sampling density 

to identify regional variations in diagenetic alteration, thereby expanding the research goal of 

identifying diagenetic alteration from Chapter 2 to a new spatial scale.  Finally, we were able to 

unambiguously demonstrate the diachronous facies shift from carbonates to shales across New 

York State, an issue that geologists and paleontologists have debated for nearly a century. 

Chapter 4 takes the sampling methods from the previous chapter and expands the study 

region to include Pennsylvania, West Virginia, Ohio, and Kentucky while adding 46 new 

locations.  We are able to provide absolute age constraints by measuring U-Pb content in zircons 

found in K-bentonites.  K-bentonites were from taken outcrops in Missouri because in those 

locations the Guttenberg excursion is tightly bracketed by K-bentonites.  With a calibrated 
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δ13Ccarb timeline established, we are able to investigate temporal patterns in sediment 

accumulation rate and sea level change.  The study includes the upper Sandbian and lower 

Katian Stages, the boundary of which has been hypothesized to represent a shift from 

“Greenhouse” to “Icehouse” conditions ~10 Myr prior to the End Ordovician Hirnantian glacial 

maximum (Frakes et al., 1992; Pope & Steffan, 2003; Saltzman & Young, 2005; Page et al., 

2007; Loi et al., 2010), an issue that is still being debated (Ettensohn, 2010; Quinton & 

MacLeod, 2014).  The creation of a large δ13Ccarb data set obtained from subsurface samples 

revealed changes in the sediment accumulation rate across the Sandbian-Katian boundary that 

were not previously identifiable using outcrop data alone.  The sedimentation shifts are 

consistent with a eustatic sea level change, which we interpret as likely glaciogenic.  This 

chapter supplies more stratigraphic evidence that the major climatic shifts that ultimately resulted 

in the Hirnantian mass extinction began ~10 Myr prior earlier than the event itself, which 

represents a glacial maximum rather than the initiation of glaciation. 

Chapter 5 uses the environmental and temporal constraints supplied in Chapter 4 along 

with a carbon cycle box model to identify the source of the Guttenberg excursion.  The most 

prevalent theory invokes enhanced burial of organic carbon in the cratonic seas as the result of 

upwelling of nutrient-rich waters (Patzkowsky et al., 1997; Holmden et al., 1998; Saltzman & 

Young, 2005; Young et al., 2005).  Another competing theory is that the Guttenberg excursion is 

the result of a change in weathering regime where proportionally more carbonates are weathered 

during sea level lowstand (Page et al., 2007).  Organic carbon burial in cratonic seas is unlikely 

to quantitatively impact the global carbon budget and therefore upwelling (and burial in general) 

in the midcontinent is ruled out as a tenable explanation for the source of the excursion.  The 

weathering of carbonates can only drive the excursion if weathering is balanced (i.e., the 
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absolute flux of weathering is constant, but the relative fraction of carbonates, volcanic input, 

and organic carbon weathering shifts).  This is because any increase in weathering flux 

additional carbonate weathering will have a negligible effect on δ13Ccarb or produce a minor 

negative excursion.  It seems likely that weathering flux does increase when large carbonate 

platforms are exposed, which makes it much more difficult to drive the excursion by weathering.  

We suggest that the main driver of the excursion was a rapid increase in the burial of organic 

matter in marginal and deep marine settings with a gradational drop in organic carbon burial 

roughly proportional to sea level rise at the end of the excursion.   The changes in organic carbon 

burial may result from the temperature-dependent oxidation of organic matter by marine 

microorganisms.  Tight chronological constraints supplied by K-bentonite ages allow us to 

directly convert the stratigraphic expression (shape) of the δ13Ccarb excursion to time.  This gives 

us another level of interpretive power to further constrain the source and timing of forces that 

drove the δ13Ccarb excursion.  We suggest that rate of change in forcing is rapid during the initial 

portion of the excursion and declines more gradually during the latter portion. 
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1. ABSTRACT 

The sedimentary record of carbonate carbon isotopes (δ13Ccarb) provides one of the best methods 

for correlating marine strata and understanding the long-term evolution of the global carbon 

cycle. This work focuses on the Late Ordovician Guttenberg isotopic carbon excursion, a ~2.5‰ 

positive δ13Ccarb excursion that is found in strata globally.  Substantial variability in the apparent 

magnitude of the Guttenberg excursion and in its stratigraphic morphology between different 

localities has hampered high-resolution correlations and led to divergent reconstructions of ocean 

chemistry and the biogeochemical carbon cycle.  This work investigates the magnitude, spatial 

scale, and sources of isotopic variability of the Guttenberg excursion in two sections from 
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Missouri, USA.  Centimetre-scale isotope transects revealed variations in δ13Ccarb and δ18Ocarb 

greater than 2‰ across individual beds.  Linear δ13Ccarb–δ18Ocarb mixing lines, together with 

petrographic and elemental abundance data, demonstrate that much of the isotopic scatter in 

single beds was due to the mixing of isotopically distinct components and allowed objective 

sample screening to determine the ‘least-altered’ data. A δ18Ocarb filter based on empirical 

δ18Ocarb values of well-preserved carbonate mudstones allowed further sample discrimination.  

The resulting ‘least-altered’ δ13Ccarb profile improves the understanding of regional as well as 

continental-scale stratigraphic relationships in this interval.  Correlations with other Laurentian 

sections strongly suggest that: (i) small-scale variability in Guttenberg excursion δ13Ccarb values 

may result in part from local diagenetic overprinting; (ii) peak-Guttenberg excursion δ13Ccarb 

values of the Midcontinent are not distinct from their Taconic equivalents; and (iii) no primary 

continental-scale spatial gradient in δ13Ccarb (e.g., arising from chemically distinct “aquafacies”) 

is required during Guttenberg excursion-time.  This study demonstrates the importance of 

detailed petrographic and geochemical screening of samples to be used for δ13Ccarb 

chemostratigraphy and for enhancing understanding of epeiric ocean chemistry. 

 

2. INTRODUCTION 

2.1 General Background 

Secular variation in the carbon isotopic composition of marine limestones (δ13Ccarb)2 can 

be used to map the spatial and temporal patterns in sedimentation across basins and link these to 

environmental and ecological changes.  A time-varying δ13C signal in the marine dissolved 

inorganic carbon (DIC) reservoir can arise from changes in the flux and isotopic composition of 

                                                 
2 δ13C = [(13C/12C)sample)/(13C/12C)std -1]!103, measured in permil (‰))  
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the major sources and sinks of carbon to and from the ocean (Kump & Arthur, 1999).  The 

variation in δ13CDIC can be captured in coeval sediment as carbonate carbon (δ13Ccarb) or 

following biological uptake as organic carbon (δ13Corg). The resulting δ13C data provide a means 

to correlate sedimentary strata within and between sedimentary basins by aligning their δ13C 

chemostratigraphic profiles (e.g., Knoll et al.,, 1986; Hayes et al., 1999) revealing stratigraphic 

information undetectable using conventional lithostratigraphic or biostratigraphic methods.  For 

example, discontinuous changes in δ13Ccarb profiles provide a means to identify cryptic hiatal 

surfaces in sedimentary strata (e.g., Jones et al., 2011) because δ13Ccarb should smoothly vary 

when deposition is continuous.  Even when deposition is continuous, various post-depositional 

processes, such as microbial oxidation of organic carbon (Patterson & Walter, 1994) and 

meteoric diagenesis (Allan & Matthews, 1982; Joachimski, 1994; Immenhauser et al., 2002), 

may alter a primary δ13Ccarb signal, typically toward more 13C-depleted values.  As such, 

screening for diagenetic alteration is critical when using δ13Ccarb data for basinal correlation or 

for reconstructing the evolution of the global carbon cycle.   

The potential utility of δ13Ccarb chemostratigraphy for correlations and environmental 

reconstructions depends on spatial homogeneity in the isotopic composition of the marine DIC 

reservoir.  Recently, it has been suggested that many marine strata, particularly those formed in 

epeiric settings with uncertain connections to the global ocean, have carbon isotope signatures in 

which local processes (e.g., aging of the water mass; Immenhauser et al., 2008) variably 

overprint a global δ13C signal (Simo et al., 2003; Panchuk et al., 2005; Panchuk et al., 2006; 

Fanton & Holmden, 2007; Brand et al., 2009), complicating regional- to global-scale correlations 

and attempts to understand the processes driving carbon cycle variability.   
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This work focuses on the Guttenberg carbon isotope excursion, a positive ~2.5‰ 

excursion in δ13Ccarb during the Mohawkian Series of the Upper Ordovician, which provides an 

example where chemostratigraphy has allowed for regional and global correlation of strata from 

different palaeoenvironments across much of the United States (Patzkowsky et al., 1997; 

Ludvigson et al., 2000; Ludvigson et al., 2004; Young et al., 2005; Bergström et al., 2010a; 

Bergström et al., 2010b; Coates et al., 2010), portions of southeastern Canada (Bergström et al., 

2010a, Bergström et al., 2010b), Sweden (Bergström et al., 2004), Estonia (Martma, 2005; Kaljo 

et al., 2007), China (Young et al., 2005; Bergström et al., 2009a), and Malaysia (Bergström et 

al., 2010c).  However, differences in the stratrigraphic expression of the Guttenberg excursion 

(including the shape of the δ13Ccarb curve as a function of stratigraphic position, as well as the 

pre-excursion, peak-excursion and post-excursion δ13Ccarb values and the degree of scatter) have 

hampered detailed correlation between sections and obscured a fundamental understanding of the 

environmental and/or ecological changes that caused the Guttenberg excursion (Patzkowsky et 

al., 1997; Ludvigson et al., 2004; Panchuck et al., 2005; Young et al., 2005; Panchuck et al., 

2006; Young et al., 2008; Bergström et al., 2010a). 

In North America, stratigraphic correlations have been facilitated by the co-occurrence of 

the Guttenberg excursion and the two widely traceable K-bentonites, the Deicke and Millbrig 

(Kolata et al., 1986; Kolata et al., 1987; Kolata et al., 1996; Kolata et al., 1998; Kolata et al., 

2001).  These bentonites act as time markers used to test chemostratigraphic and sequence 

stratigraphic models, providing a framework in which to investigate temporal and spatial 

variation in sedimentation rates (Leslie & Bergström, 1997), erosion (Railsback et al., 2003), 

facies migration and sequence development (Holland & Patzkowsky, 1998), as well as 

geochemical and isotopic heterogeneities in carbonates and their palaeoceanographic sources 
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(Panchuk et al., 2006; Fanton & Holmden, 2007).   Ordovician strata are replete with bentonites 

(e.g., Kolata et al. 1996) and care must be taken in cross-continental correlation of K-bentonites, 

as apatite phenocryst geochemistry (Sell & Sampson, 2011) and radiometric ages (e.g., Huff, 

2008) of Laurentian and Baltoscandian K-bentonites suggest that some previous bentonite-based 

correlations may not be correct. 

The goals of this work are to: (i) document cm-scale variability in δ13Ccarb and δ18Ocarb 

and use petrographic and trace geochemical indicators of diagenesis better to understand the 

processes by which isotopic signals can be altered as they relate to depositional setting; (ii) 

develop an objective sample screening procedure to be used in bulk carbonate analysis for 

identifying least-altered data; (iii) use δ13Ccarb chemostratigraphy to correlate between two 

localities in Missouri, USA and re-evaluate existing stratigraphic relationships; and (iv) use this 

interpretative framework to compare the stratigraphic expression of the Guttenberg excursion in 

Missouri with existing records from across the continent to test hypotheses on the existence of 

large scale (103 to 104 km) spatial gradients in δ13Ccarb (i.e., “aquafacies” of Holmden et al., 

1998) at this time. 

 

2.2 Geologic Setting 

Strata investigated in the present study occur within the Mohawkian Series of North 

America, which is roughly equivalent to the uppermost Sandbian to lower Katian Global Series 

(Figure 1;lBergström et al., 2009b).  Sections begin in the uppermost Turinian and end in the 

lower to middle Chatfieldian (North American Stages) based on correlations using globally 

extensive K-bentonites and biostratigraphy (Thompson, 1991; Leslie, 2000; Bergström et al., 

2009b; Bergström et al., 2010a,b).  During this time, Missouri was located in sub-equatorial 
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latitudes 15 to 30°S (Scotese & McKerrow, 1990 where sedimentation occurred in a warm, 

shallow sea (Figure 2A).  The Mohawkian contains a major change in sediment deposition across 

Missouri (Thompson, 1991), other portions of the upper Mississippi Valley (Kolata et al., 1998), 

and the mid-South (Holland & Patzkowsky, 1998).  In Missouri, the geographic thickness 

patterns of stratigraphic units become roughly inverted by early Chatfieldian time (Kolata et al., 

1998) as the carbonate depocentre shifted north towards Iowa.  The uplift of the Ozark Dome 

(modern day St. Francois Mountains) may have partially controlled sedimentation patterns and is 

thought to have intermittently interrupted regional carbonate sedimentation during the Early to 

Middle Ordovician, although sedimentation became more continuous during the Late Ordovician 

highstand (McCracken, 1966; Thompson, 1991).  Further, the rhyolites and granites of the Ozark 

dome may have been an important siliciclastic source for the present study sections (Figure 2B).  

Although Mohawkian-aged strata in Missouri have been studied for over 100 years (e.g., Ulrich, 

1904; Kay, 1935; Templeton & Willman, 1963; Kolata et al., 1986), there is a dearth of literature 

that directly focuses on their deposition, sequence stratigraphy, and chemostratigraphy, 

especially when compared to the time-equivalent Trenton-Black River succession of the eastern 

United States (e.g., Brett et al., 2004; Mitchell et al., 2004; McLaughlin & Brett, 2007). 

Chronostratigraphic relationships of selected Upper Ordovician sections across the North 

American Craton are shown in Figure 1 and were constructed using K-bentonite stratigraphy, 

biostratigraphy, and δ13Ccarb stratigraphy.  The studied interval ranges from the upper Plattin 

Group through the lower Kimmswick Limestone. The Plattin Group (Platteville equivalent 

outside of Missouri, Figure 1) is thickest in nearby southwestern Illinois where it reaches over 

200 m (Kolata et al., 2001).  The Plattin is ~140 m thick in southeastern Missouri near Cape 

Girardeau and thins northwestward, where 300 km northwest it is 14 m thick (Martin et al., 
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1961).  The Plattin is uppermost Turinian and is equivalent to the upper Black River succession 

of New York, based on K-bentonite stratigraphy of the Deicke K-bentonite dated to 454.5 ± 0.5  

 

 

Figure 1. Proposed chronostratigraphic relationships of select locations within the United States.  Series 
and stages taken from Bergström et al. (2009b).  M4 and M5 refer to Mohawkian sequences (Holland & 
Patzkowsky, 1997; Holland & Patzkowsky, 1998). Biozones taken from Leslie (2000).  Information for 
“Missouri (previous)” taken from Thompson (1991).  “Missouri (this report)” constructed from new data 
and placement of the Castlewood Limestone into the Plattin group according to Kolata et al. (1998).  
“Upper KL” and “Lower KL” correspond to new divisions of the Kings Lake Limestone used in this work 
for central-southern Missouri.  IA stratigraphy adapted from Ludvigson et al. (2004).  Kentucky and Ohio 
information taken from Leslie (2000) and McLaughlin & Brett (2007). New York information adapted 
from Leslie (2000) and Mitchell et al. (2004).  Horizontal bars with “X” correspond to K-bentonites.  CM 
= Carimona, CV = Curdsville, CW = Castlewood, D = Deicke K-bentonite, Fm = Formation, Gp = 
Group, HS = House Springs K-bentonite, KW = Kimmswick Limestone, Ls = Limestone, M = Millbrig 
K-bentonite.  Where correlations are ambiguous dashed lines and questions marks are used. 
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Ma (Tucker, 1992), and conodont biostratigraphy (Leslie, 2000; Brett et al., 2004).  The Plattin 

Group is interpreted to represent a major transgressive cycle as flooding spread north and west 

from the Sebree Trough, a bathymetric low that runs NE to SW along the northwestern Kentucky 

border (Witzke & Kolata, 1988). Plattin Group strata are dominated by thin-bedded, somewhat 

nodular mudstones characterized by fine-grained, heavily bioturbated, high-purity (>95% 

carbonate) limestones with partially dolomitized burrows (Thompson, 1991). 

 

 

Figure 2. (A) Palaeogeographic map showing general depositional environment and important geologic 
structures (adapted from Scotese & McKerrow, 1990; Holland & Patzkowsky, 1998, Kolata et al., 2001; 
Simo et al., 2003).  Stars represent sample locations HM = Highway MM and NL = New London.  (B) 
Map of Missouri showing sample locations, generalized surface stratigraphy (under the Pleistocene 
alluvium), and major structural features of eastern Missouri.  Surface strata adapted from Missouri 
Department of Natural Resources (2009).  Structural features adapted from McCracken (1966).  Strata are 
sedimentary except Precambrian igneous rocks. 

 

The overlying Galena Group is thickest in the northwest and pinches out approaching the 

Sebree Trough, where Plattin Group deposits are thickest; this represents an apparent 
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restructuring of sediment deposition patterns from Plattin time (Witzke & Kolata, 1988). In 

Missouri, Galena Group strata comprise the Decorah Formation (composed of the Glencoe 

Shale, Kings Lake Limestone, and Guttenberg Limestone) and the overlying Kimmswick 

Limestone.  The Glencoe Shale contains dark, thinly bedded, fissile, carbonate-poor shales 

intercalated with planar, thin, sometimes discontinuous brachiopod-bryozoan calcarenites and 

calcirudites (Thompson, 1991; Kolata et al., 1998), as well as the Millbrig K-bentonite, which is 

dated to 453.1 ± 1.3 Ma (Tucker & McKerrow, 1995) and defines the Turinian-Chatfieldian 

boundary (Ludvigson et al., 2004).  The overlying Kings Lake Limestone is composed mostly of 

blue-grey carbonate mudstones and storm-bed packstones, both with thin blue shale partings. 

Kings Lake facies have been interpreted as transitional between the Glencoe Shale and the 

overlying Guttenberg Limestone in northeastern Missouri (Kolata et al., 1986).  In central and 

southern Missouri, the Kings Lake Limestone is unconformably overlain by the Kimmswick 

Limestone, while it is conformable with the overlying Guttenberg Limestone in northernmost 

Missouri.  The Guttenberg Limestone is only found north of St. Louis, Missouri and like the 

underlying Kings Lake Limestone, is composed of mudstones with frequent carbonate storm 

beds.  In Missouri, the brown mud and shale partings of the Guttenberg distinguish the unit from 

the underlying blue-grey mud and shale partings of the Kings Lake Limestone.  The contact 

between the Guttenberg and the overlying Kimmswick Limestone is a minor unconformity in 

northern Missouri and rip-up lithoclasts from the Guttenberg Limestone and Kings Lake 

Limestone are found up to 20 cm into the lowermost Kimmswick Limestone (Kolata et al., 

1998).  

The Kimmswick Limestone is a well-cemented, medium-grained to fine-grained crinoid-

brachiopod-bryozoan grainstone (Thompson, 1991; Kolata et al., 1998).  Strata are thick to 
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massively bedded with evidence for crossbedding rare or absent in upper portions (Thompson, 

1991).  The Kimmswick is a very pure limestone (>98% carbonate) that contains abundant cm-

diameter burrows that weather to a ‘Swiss-cheese’ texture similar to the Plattin Limestone.  It is 

exposed at the surface in northern Missouri and erosionally truncated and overlain by Mid–Late 

Paleozoic sandstones south of St. Louis. 

 

2.3 Study Locations 

Two locations in eastern Missouri were chosen for high-resolution chemostratigraphic 

study (Figure 2).  The first site is located 8 kilometres south of New London, Missouri along the 

eastern frontage road (East Side Drive) off of Highway 61, which is located a few hundred 

metres north of Spencer Creek (Lat: 39.522415°N, Long: 91.344629°W).  The New London 

section is the same as Location 53 in Kolata et al. (1986).   The sampled interval begins with 7.5 

metres of the upper Plattin Limestone and continues through the Decorah Formation and extends 

8 metres into the Kimmswick Limestone (Figure 3). The second site, Highway MM, is a fresh 

road-cut exposure found along Missouri State Highway MM near Barnhart, Missouri (Lat: 

38.394101°N, Long: 90.543364°W) approximately 15 kilometres west of Location 63 of Kolata 

et al. (1986).  This study is the first published geologic record for this location that the authors 

are aware of.  The Highway MM section begins in the uppermost 10 to 15 m of the Plattin 

Limestone and continues through the Decorah Formation and into the first 5 m of the 

Kimmswick Limestone (Figure 4). 
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3. METHODS 

3.1 Sampling and petrology methods 

Field sampling in both locations was completed over a lateral distance of ~300 m along a 

single outcrop face.  Individual beds (Highway MM: n = 80; New London: n = 69) were sampled 

at regular intervals where possible and some beds were collected in replicate (Tables 1 and 2).  

No large faults, fractures, folds, joints, or igneous features were observed at either location.  

Stratigraphic columns were constructed using a combination of the Dunham nomenclature and 

Wentworth-Udden grain-size terminology (Flügel, 2009).  Stratigraphic units were identified in 

the field using the criteria in Thompson (1991).  Deicke, Millbrig, and House Springs K-

bentonites were identified in the field based on stratigraphic position (Kolata et al., 1986), 

thickness, colour, clay content, degree of lithification, bedding geometry, and zircon abundance.  

In addition, several minor bentonites (HMMA, HMKL-1, NLKL-1, and NLM-2) were identified 

and named for the location/formation.  Two of these bentonites (HMKL-1 and NLKL-1) were 

tentatively correlated in this study and may be equivalent to the Elkport K-bentonite of the upper 

Mississippi Valley (Kolata et al., 1986); however, no definitive correlation of these minor 

bentonites to equivalents outside of the study area is made.  

Forty-seven thin sections from 45 individual beds were analysed under transmitted and 

reflected light microscopy on a Leica petrographic microscope (model DM-2500P; Leica 

Microsystems GmbH, Wetzlar, Germany) with a maximum magnification of 500x.  Photographs 

were taken with a Leica (model DFC 295) microscope-mounted camera. 
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3.2 Geochemical methods 

3.2.1 Stable Carbon and Oxygen Isotope Analysis of Carbonate 

Carbonate samples were drilled from polished rock slabs cut perpendicular to the bedding 

plane using a Woodtek Drill (model 109370; Woodworkers Supply Inc., Casper, Wyoming, 

USA) fitted with 1 to 2 mm carbide drill bit tips.  Powdered samples were placed in vials, 

flushed with He gas, and converted to CO2 through reaction with anhydrous phosphoric acid 

(Epstein & Mayeda, 1953).  Acidified samples were heated for 1 to 23 hours at 70°C on a Gas 

Bench II (Thermo Fisher Scientific, Waltham, MA, USA).  Evolved CO2 was analysed on a 

Thermo Fischer Delta V Plus Isotope Ratio Mass Spectrometer at Washington University.  

Values are reported in permil (‰) relative to the Vienna Pee Dee belemnite (VPDB) standard. 

All runs contained internal standards as well as international standards NBS-18, NBS-19 and 

LSVEC. For a single run, one standard deviation (1σ) averaged 0.04‰ for δ13Ccarb and δ18Ocarb 

for all standards, while average reproducibility (1σ) for δ13Ccarb of replicate samples for a single 

run was 0.07‰.   Reproducibility (1σ) across all sampling days for δ13Ccarb was 0.09‰ for NBS-

18, 0.10‰ for NBS-19, and 0.25‰ for LSVEC and for δ18Ocarb was 0.12‰ for NBS-18 and 

NBS-19 and 0.13‰ for LSVEC.  

Samples were dominantly micrite and skeletal grainstones with no large altered phases or 

features (e.g., spar, marl, stylolites, dolomitized burrows, etc.), although selected diagenetic 

textures were analysed to test for isotopic alteration and trace element abundance patterns as a 

function of distance from the altered texture. The desired sampling resolution in these sections 

precluded relying on a brachiopod-based approach (Veizer et al., 1997; Veizer et al., 1999; 

Brand, 2004).  In total, more than 700 samples (with over 100 duplicates) were drilled with 

multiple parallel transects to identify lateral intra-sample variability and pinpoint the mixing of 
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isotopically distinct components.  More than 450 samples were screened to construct bed-

averaged isotope values for 66 beds from Highway MM and 69 beds from New London. Bed-

averaged values were obtained by taking an unweighted average of individual microdrilled 

samples identified as ‘least-altered’ based on textural and petrographic analyses (see below). 

 

3.2.2 Carbonate content (%carb), total organic carbon content (TOC), δ13Corg 

Carbonate content (wt. %carb) was determined using a gravimetric method from the 

dissolution of 2to 5 g of bulk material. Hand samples were cut in ~2 cm vertical intervals to 

document vertical variability across a single bed and diagenetic textures were avoided.  Total 

organic carbon content (TOC) and δ13Corg were measured on aliquots of rinsed and dried residues 

of acid digestion by combustion to CO2 on an ECS 4010 Elemental Analyzer (Costech 

Analytical Technologies Inc., Valencia, California, USA) and measured on a Thermo Fischer 

Delta V Plus Isotope Ratio Mass Spectrometer at Washington University.  Values are reported in 

permil (‰) relative to the Vienna Pee Dee belemnite (VPDB) standard. TOC was determined by 

comparing the area of the evolved CO2 peak to standards run at varied masses, and corrected for 

the carbonate content of the sample. A total of 151 samples were analysed for δ13Corg.  Average 

standard deviations (1σ) for δ13Corg standards USGS 24 (graphite), IAEA CH-6 (sucrose), and 

IAEA CH-3 (cellulose) were 0.11‰, 0.14‰, and 0.13‰, respectively. 
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Figure 3. Lithology and selected facies for New London. See Figure 1 for biozone, sequence, and 
stratigraphic designations.  Scale bars (white) are 1 cm.  Pen markings used for carbonate sampling.  
Samples are as follows: (A) NL59, lower Plattin wackestone, (B) NL21, burrowed calcarenite with 
dolomitic zones (green), (C) NL32, muddy tempestite wackestone, (D) NL37, muddy tempestite 
packstone, (E) NL49, cross-laminated mudstone, (F) NL56, lowermost Kimmswick with Guttenberg rip-
up clasts, (G) NL65, clean Kimmswick grainstone with burrowing (brown). 
 
 
3.3.3 Elemental abundance 

Samples were prepared for inductively coupled plasma optical emission spectrometry 

(ICP-OES) on an Optima 7300DV ICP-OES (PerkinElmer Inc., Waltham, Massachusetts, USA) 

at Washington University.  Approximately 1.0 mg of carbonate powder was dissolved in 10% 

(Optima grade) acetic acid or with 5% HNO3 (Optima grade) in 15 mL Falcon centrifuge tubes. 

Samples were placed on a shaker table and left to dissolve overnight (~12 hours).  Samples were 

filtered through a 0.2 mm nylon filter prior to analysis. Standards were run at 1, 10, 20, 50, 100, 

and 500 ppb concentrations for Mn and Sr, while Ca and Mg were run using 1, 10, 50, and 100 

ppm standards.  Costech multi-element standards were used in combination with single element 

standards with no first-order spectral interferences.  Standards for Ca, Mg, Mn, and Sr had an 

average reproducibility (1σ) of <1% across concentrations.  The spectral lines used were Ca = 

317.933 nm, Mg = 279.077 nm, Mn = 257.61 nm, and Sr = 407.771 nm. 
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Figure 4. Lithology and selected facies for Highway MM. See Figure 1 for biozone, sequence, and 
stratigraphic designations.  See Figure 3 for legend.  Scale bars (white) are 1 cm. Pen markings used for 
carbonate sampling. Samples are as follows: (A) HM2, upper Plattin mudstone-wackestone with yellow 
dolomitized burrows, (B) HM18, coarse-grained calcarenite with dolomitic green clay,  (C) HM25, fine-
grained calcarenite, (D) HM27, tempestite packstone, (E) HM28, mudstone with black stained burrows, 
(F) HM55, wackestone showing dolomitic ‘wispy brushtrokes’, (G) HM61, zone i (0-3 cm) mudstone 
capped by hardground, zone ii (3-5 cm) is argillaceous and dolomitized, zone iii (5-8 cm) is a tempestite 
lens, and zone iv (8-14 cm) is stylonodular mudstone, (H) HM42, burrowed lower Kimmswick 
grainstone. 
 

4. PETROGRAPHIC, SEDIMENTOLOGIC RESULTS & INTERPRETATIONS 

4.1 Plattin Limestone 

4.1.1 Observations 

The upper Plattin Limestone consists of the Macy and Castlewood Members. The Macy 

Member is composed of thin-bedded to medium-bedded, heavily burrowed mudstones and 

wackestones with occasional grainstone lenses (Figs 3A, 4A, and 4B).  When weathered, 

differential cementation of burrows and surrounding sediment imparts a ‘Swiss cheese-like’ 

appearance to the rock. The overlying Castlewood Limestone is heavily bioturbated, thick to 

massively bedded with occasional stylolites.  Burrows in the Plattin are large (~2 cm diameter), 

pastel-yellow (Figure 4A) or brown-grey (Figs 3A and 4A) in hand sample.  Burrows are filled 

with euhedral dolomite crystals 20 to 100 µm in diameter set in a fine-grained calcite matrix 

(Figure 5A).  Dolomite abundance is positively correlated to bioturbation intensity, which 

decreases stratigraphically up within the Plattin Group. Thin section analysis shows dolomite 

abundance decreasing to <1% (by area) a few mm away from burrows.  In general, bioclastic 

lenses and matrix materials were predominantly calcite. Plattin strata occasionally contain 

identifiable bryozoa, echinoderm fragments, and trilobites set in a calcite micrite matrix. Fossil 

texture preservation was poorer relative to the Decorah Formation and average whole fossil size 

smaller in the Plattin Limestone relative to other units in this study.   
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4.1.2 Interpretation 

The Plattin Limestone is interpreted to represent a sub-tidal environment with stable sea-

level conditions that terminated with the upward shoaling Castlewood Member.  The small grain 

size and high burrow abundance is interpreted to represent deposition in oxygenated, 

intermittently calm conditions, while the absence of evaporites and obvious subaerial exposure 

features are in agreement with a consistently submerged subtidal environment. 

 

4.2 Glencoe Shale 

4.2.1 Observations 

The Glencoe Shale is composed of dark green to grey, thinly bedded, fissile shales and 

deep blue to purple calcarenites and calcirudites (Figs 4B and 5B) that sometimes pinch out over 

decimetres to metres.  Occasional bioclastic beds were present (Figure 5C). Sedimentological 

structures (e.g., cross-bedding, grading) and burrows were uncommon.  Scouring created cm-

scale relief in some beds.  Dolomite is absent or in trace amounts throughout most of the matrix, 

but is found in yellow, red, and green diagenetic textures associated with bedding planes and 

burrow fill.  Thin section analyses showed clasts to be supported in a granular cement fabric with 

higher total cement content found in finer-grained grainstones.  The Glencoe Shale was nearly 

twice as thick at Highway MM compared to New London with a larger amount of shale found at 

Highway MM.  The boundary between the Glencoe Shale and overlying Kings Lake Limestone 

is more abrupt at Highway MM and marked by a significant reentrant, while the lithologic 

transition is more gradational at New London.  
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4.2.2 Interpretation 

The Glencoe Shale formed in a shallow sub-tidal environment (Thompson, 1991).  The 

presence of shales and calcareous tempestites suggests calm-water conditions punctuated by 

high-energy storm events that brought in allochthonous bioclasts.  

 

4.3 Kings Lake Limestone 

4.3.1 Observations 

The Kings Lake Limestone differs lithologically between sections.  The entirety of the 

Kings Lake at New London and the interval from the base of the Kings Lake to just above 

HMKL-1 at Highway MM is made of blue-grey wackestones and grainstones (Figs 3B, 4C, 4D, 

and 4E) with abundant thin shale partings.  Above HMKL-1 the Kings Lake Limestone is more 

mud rich (Figure 4).  Fossils are abundant in hand sample and thin section throughout the entire 

Kings Lake and include trilobites, brachiopods, ostrocods, and bryozoa (Figs 4D and 5D), while 

rare crinoid stalks were found in shale partings.  At New London, the Kings Lake contact with 

the overlying Guttenberg Limestone occurs just above a bentonite horizon (NLKL-1). 

The contact between the Kings Lake and Kimmswick Limestones at Highway MM has relief up 

to 7 cm with possible evidence for karstification in the uppermost 30 cm of the Kings Lake.  A 

potential hardground was identified ~15 cm below the Kimmswick contact (Figure 4G).  In both 

locations, the Kings Lake contains little dolomite (<3%), except in the ‘wispy brushstroke’ 

textures, which are only found at Highway MM (Figure 4F) and which vary in dolomite 

concentration up to ~40%.  
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4.3.2 Interpretation 

The Kings Lake Limestone was deposited during transgression in a sub-tidal, shallow 

sea, likely distal to a siliciclastic sediment source.  At Highway MM, the Kings Lake represents a 

wider range of depositional environments than at New London, as evidenced by the lithologic 

differences above and below HMKL-1.  Hereafter, the zones above and below HMKL-1 are 

referred to as the Lower and Upper Kings Lake, respectively.  The transition to higher mud 

content and increased fossil preservation in the Upper Kings Lake (Highway MM) is interpreted 

to represent deposition in the deepest and most distal water facies at this location, similar to 

conditions ascribed to the Guttenberg Limestone at New London.  The Lower Kings Lake at 

Highway MM is lithologically correlative with all of the Kings Lake at New London, while the 

Upper Kings Lake is lithologically equivalent with the Guttenberg Limestone at New London 

(see below).   

 

4.4 Guttenberg Limestone 

4.4.1 Observations 

The Guttenberg Limestone is only found at New London and is lithologically similar to 

the Upper Kings Lake Limestone at Highway MM.  This is seen in the mudstones and 

wackestone-packstone tempestites of the Upper Kings Lake (Highway MM) and Guttenberg 

(New London) (Figure 3C, D, and E), except that Guttenberg Limestone mud and shale fractions 

are brown (rather than blue), which is correlated with higher TOC content.  Macrofossils and 

microfossils are abundant (Figure 3C and D), while spar and dolomite abundances are low.  

Burrowing textures are common, but textures are less obvious in hand sample relative to other 

units in this study.  Low-angle cross-laminations were observed in the upper 1 to 2 m with lighter 
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laminations corresponding to coarser grain sizes, decreased organic content, and increased 

cement abundance (Figure 3E).  The Guttenberg Limestone is unconformably overlain by the 

Kimmswick Limestone with a few centimetres of erosional relief present at the contact. 

 

4.4.2 Interpretation 

Similar to the Kings Lake Limestone, the Guttenberg Limestone formed in a shallow 

epeiric sea distal to siliclastic sediment sources.  Lithologic similarities between the Guttenberg 

at New London and the Upper Kings Lake at Highway MM argue for similar depositional and 

environmental characteristics.  This also suggests that the Upper Kings Lake and Guttenberg 

may be partially time-equivalent.  There is no evidence to support erosion of the Guttenberg 

Limestone south of St. Louis as previously reported (Thompson, 1991; Kolata et al., 1998).   

 

4.5 Kimmswick Limestone 

4.5.1 Observations 

The Kimmswick Limestone is a heavily burrowed, fine- to coarse-grained limestone and 

appears somewhat saccharine in outcrop.  The dominant mineral is calcite with up to 1 to 3% 

disseminated dolomite in a granular mosaic cement fabric (sensu Flügel, 2009).  Grains are 

dominantly bioclastic.  Burrows contain variable dolomite concentrations with darker, better-

defined burrows bearing the highest dolomite concentrations (up to ~40% dolomite) (Figure 4H). 

The lowermost ~20 cm of the Kimmswick contains large (up to 10 cm) rip-up clasts from the 

underlying Guttenberg (at New London) (Figure 3F) and Upper Kings Lake (at Highway MM) 

strata.   
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Figure 5. Thin section photomicrographs and their corresponding hand sample location.  Scale bars in 
hand samples (white) are 1 cm.  (A) Stained thin section of HM2 in plane polarized light shows muddy 
and dolomitized burrows.  Calcite (CC) is red and dolomite (Dol) is white.  Darker spots in hand sample 
are dolomitized similar to yellow burrows. (B) Fine-grained calcarenite NL19 in plane polarized light.  
(C) NL14 under plane-polarized light showing carbonate silt or mud aggregates that possibly formed by 
vadose zone alteration. (D) HM26 with plane-polarized light shows whole bioclast-bearing storm bed.  Tr 
= trilobite (partially pyritized), Cr = crinoid arm, and Br = bryozoan. 
 

Porosity is highest in the upper portions of the Kimmswick where pores are lined by a 

chalky yellow dolomitic material.  While Kimmswick burrow structures are similar to those of 

the Plattin Limestone, the burrow walls are not as well defined and overall mud content is much 

lower (Figs 3G and 4H).  Cross-bedding was not observed in this study, but has been reported 

stratigraphically farther up the Kimmswick from a section near Barnhart, Missouri (Thompson, 

1991).   

 

4.5.2 Interpretation 

The Kimmswick Limestone marked a return to a higher energy environment impacted by 

wave-tide action, consistent with the presence of fragmented bioclasts, and mud-poor 

composition.  The nature of the contact (including rip-up clasts) with the underlying Guttenberg 

Limestone (New London) and Kings Lake Limestone (Highway MM) is also consistent with a 

transition to a higher energy environment with the onset of Kimmswick deposition. The 

stratigraphically thick, monotonous grainstones of the Kimmswick Limestone suggest constant 

environmental conditions during deposition.  
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5. GEOCHEMICAL RESULTS 

5.1 Stratigraphic trends 

Overall, δ13Ccarb and δ18Ocarb values range from -2‰ to 3‰ and -8‰ to -4‰, 

respectively, with similar profiles in both sections (Figure 6; Table S1 (New London); Table S2 

(Highway MM). The Guttenberg excursion dominates the δ13Ccarb profile, rising from a baseline 

of δ13Ccarb near 0‰ in the base of the Kings Lake Limestone to a peak of 3‰ in the middle 

Kings Lake Limestone (Highway MM) and Guttenberg Limestone (New London), before 

returning to 0‰ in the Kimmswick Limestone (Fig 6).  In addition, there is a small (1 to 2‰) 

negative excursion in δ13Ccarb found across the Deicke K-bentonite. δ18Ocarb averages -5.5‰ and 

-5‰ for New London and Highway MM, respectively, with lower values in the Glencoe Shale 

(Highway MM only), Kings Lake Limestone (New London only), and Kimmswick Limestone.  

A rise in δ18Ocarb accompanies the rising limb of the δ13Ccarb Guttenberg excursion at both 

localities, while a less-pronounced fall in δ18Ocarb is paired with the falling limb of the 

Guttenberg excursion only at Highway MM. 

 Superimposed on these first-order trends is permil-level scatter associated with 

different textures and mineralogy.  Spar, single large clasts, and cement-rich and microclast-rich 

zones typically had lower δ13Ccarb and δ18Ocarb, while dolomite-rich regions had variable δ13Ccarb 

and δ18Ocarb, depending upon formation and texture.  For example, yellow dolomitic burrow fill 

in the Plattin Limestone had δ13Ccarb values similar to the calcitic matrix and elevated in δ18Ocarb 

by 0.2-0.9‰, while the smoky grey dolomite-rich zone in the same formation had δ13Ccarb values 

and δ18Ocarb up to 4‰ and 0.4‰ higher, respectively.  Geochemical analysis ([Ca]/[Mg] ratios 

and [Sr] values) and thin section observations support the link between observed isotopic 
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variability and dolomitization and/or secondary cementation. Samples with significant dolomite 

(>5%) were omitted from stratigraphic correlation. 

Isotopic variability can occur in data across multiple spatial scales from the individual 

hand sample to the formation level. Secondary carbonates of meteoric origin often contain lower 

δ13Ccarb and δ18Ocarb values than primary material (e.g., Allen & Mathews, 1982; Veizer et al., 

1997; Veizier et al., 1999; Brand, 2004) and high-temperature calcite has a lower δ18Ocarb 

signature owing to the strongly temperature-dependent fractionation of oxygen isotopes during 

calcite precipitation (Epstein & Mayeda, 1953).  To test for the influence of secondary phases of 

meteoric origin, δ13Ccarb vs. δ18Ocarb cross-plots were constructed (Figure 7). Data were divided 

into the three main stratigraphic units: the Plattin, Decorah, and Kimmswick.  No consistent 

formation-scale covariance patterns were observed between sections.  

δ13Corg values ranged from -33‰ to -24‰ (Figure 6).  δ13Corg is most negative beneath 

the Deicke K-bentonite and peaks in the Guttenberg (New London) (Figure 6A) and Kings Lake 

Formations (Highway MM) (Figure 6B). From the initial baseline values in the Plattin 

Limestone, δ13Corg increases twice, once each across the Deicke and Millbrig K-bentonites, 

above which it steadily rises up to the contact with the Kimmswick Limestone.  δ13Corg rapidly 

returns to pre-excursion values (-30 ‰) in the basal Kimmswick.  The isotopic offset between 

carbonate carbon and organic carbon, Δ13C (= δ13Ccarb – δ13Corg), shows no systematic 

relationship between sections except in the interval from the HMKL-1/NLKL-1 bentonite to the 

Kimmswick contact, where Δ13C steadily decreases from 30‰ to 29‰ (Figure 6). 

TOC is less than 0.2% in most of the Plattin Limestone, Glencoe Shale, and Kimmswick 

Limestone.  Highest TOC values are found in the Decorah Formation (0.6% at Highway MM, 

2.5% at New London). In contrast, carbonate content was highest in the Plattin Limestone and 
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Kimmswick Limestone and lowest in the Decorah Formation.  Two intervals of decreased 

carbonate content are observed: one near the Millbrig K-bentonite and the other, a few metres 

above the HMKL-1/NLKL-1 bentonite (Figure 6). 

Strontium concentrations ([Sr]) were consistent and averaged ~300 ppm in the Plattin 

Limestone.  [Sr] also averaged ~300 ppm in the Glencoe Shale, increased to around 1,000 ppm 

in the Lower Kings Lake Limestone (Highway MM only) and Guttenberg Limestone (New 

London only), and consistently averaged ~200 ppm in the Kimmswick Limestone (Tables 1,2).  

Formational averages were similar between sections. Microdrilling results show dolomite-rich 

and recrystallized zones had decreased [Sr].  

In summary, geochemical characteristics show little variation throughout the Plattin (with 

the exception of the Castlewood Limestone) and Kimmswick Limestones (Figure 6). These units 

are characterized by low TOC, [Sr], δ13Ccarb, δ13Corg, δ18Ocarb, and high carbonate purity. This 

homogeneous geochemical profile is paralleled by the observed lithologic homogeneity in these 

units.  Geochemical patterns show clear signals of increasing δ13Ccarb, TOC, [Sr], and decreasing 

%carb in the Decorah Formation.  Within the Decorah the Upper Kings Lake Limestone at 

Highway MM has geochemical trends similar to those seen in the Guttenberg Limestone of New 

London (Figure 6), but with lower TOC.  The geochemical similarities between the Upper Kings 

Lake Limestone (Highway MM) and Guttenberg Limestone (New London) are consistent with 

the lithologic similarities for the same strata.  
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Figure 6. Isotopic and geochemical data for New London (top) and Highway MM (bottom).   δ13Ccarb and 
δ18Ocarb are microdrilled samples.  All other values are bed-averaged (Tables 1 and 2). Isotopic data are 
reported in ‰ relative to VPDB. 
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Figure 7. Geochemical cross-plot results for New London  (left) and Highway MM (right).  Values are 
isotope-texture screened and δ18Ocarb filtered (see Methods).  r2 corresponds to linear least-squares fit; see 
Tables 1 and 2 for values.  δ13Ccarb, δ13Corg, and δ18Ocarb values are reported in ‰ relative to VPDB. 
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5.2 Intra-bed δ13Ccarb and δ18Ocarb variability 

Centimetre-scale drilling transects were completed to assess small-scale δ13Ccarb and 

δ18Ocarb variability within individual samples in order to better constrain primary signatures  used 

for correlation and carbon cycle reconstruction. These results revealed significant isotopic 

heterogeneity within single beds (Figure 8) and many samples showed vertical increases in 

δ13Ccarb and δ18Ocarb over just a few cm (Figure 8A and B), while isotopic scatter in other samples 

was restricted to bedding planes (Figure 8C).  Excluding heavily dolomitized zones and other 

obviously altered textures, the magnitude of change within individual beds in δ13Ccarb was up to 

2.0‰, while the change in δ18Ocarb was up to 3.0‰.  This isotopic variability was sometimes 

related to lithological transitions.  For example, in Plattin sample NL4 (Figure 8A), a fine-

grained calcarenite that grades upward to a mudstone, δ13Ccarb was 1‰ higher and δ18Ocarb was 

1.6‰ higher in the mudstone portion. These data fell along a mixing line (r2 = 0.99, n = 6) and 

correlate with cement content and grain size. 

Drilling transects across differing textures (Figure 9) allowed the identification of 

component mixing where dolomite, cement, and clasts influenced bulk isotope signatures.  

Coupled petrographic and isotopic analyses showed the highest δ13Ccarb and δ18Ocarb samples to 

be muds and dolomite-rich zones while cements and recrystallized materials had the lightest 

δ13Ccarb and δ18Ocarb (e.g., Figure 8A).  A linear δ13Ccarb-δ18Ocarb trend is then an isotope mixing 

line where points on the line represent gradational changes in the relative proportions of two 

components.  This logic was the basis for constructing an “isotope-texture screen” to select the 

‘least-altered’ δ13Ccarb and δ18Ocarb values from populations within single samples.   
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Figure 8. Vertical and lateral trends in δ13Ccarb (black symbols) and δ18Ocarb (white symbols) in hand 
samples.  Multiple transects are split by symbol type (left = triangles, right = circles).  All values are 
reported in ‰ relative to VPDB.  Scale bar (white) is 1 cm.  (A) Calcarenite grading upwards to 
mudstone NL4.  Linear regression of NL4 showing correlation in δ13Ccarb and δ18Ocarb.  Strong correlation 
results from linear mixing of a coarser, cement-rich component in base of rock with an isotopically 
heavier mud component near the top. Sample contains <1% dolomite.  (B) Wackestone-Packstone NL14.  
Vertical enrichment primarily results from increasing fractions of isotopically heavy mud, but contains 
more than two isotopically distinct components.  (C) Mudstone HM57.  Lower δ13Ccarb and higher δ18Ocar 
at bottom result from mixing with ‘wispy brushstroke’ texture, which contains abundant dolomite and 
affects the bulk isotope signals in the lower 2 cm.   
 

In some cases, plots showed changes in δ13Ccarb while δ18Ocarb was invariant.  For 

example, brown Guttenberg mudstones-packstones had higher δ13Ccarb in darker brown micrite 

and lower δ13Ccarb in light brown micrite while δ18Ocarb was constant.  Petrographic analyses 

revealed a larger average crystal size, a likely diagenetic feature, in lighter shades of micrite that 

corresponded with lower δ13Ccarb, therefore the higher δ13Ccarb values from darker zones were 
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taken as more representative of primary δ13Ccarb. When no petrographic or geochemical evidence 

could indicate which textures/phases were most primary, an average of all values was taken. 

 

5.3 δ18Ocarb filter 

While the ‘isotope-texture screen’ is useful in identifying the ‘least-altered’ values within 

a single sample, it does not necessarily help in deciding whether those values are themselves 

well-suited for chemostratigraphic correlation.   To address this problem, samples can be filtered 

using their δ18Ocarb value.  δ18Ocarb filtering is done by excluding samples with δ18Ocarb values 

below a certain threshold where the threshold is defined as some value below the mean δ18Ocarb 

value for samples that passed the ‘isotope-texture’ screen for a given formation.  The δ18Ocarb 

cutoff value was arbitrarily picked as one standard deviation (1σ) lighter than the formational 

average.  The δ18Ocarb cutoff values for each formation can be found in Table S3.  

Hereafter, correlations and environmental reconstructions use only δ13Ccarb data that 

passed isotope-texture screening and δ18Ocarb filtering.  A decision tree (Figure 10) shows the 

process used to construct these ‘least-altered’ δ13Ccarb values.  The full list of samples along with  

information as to whether they pass or fail the isotope-texture screening and δ18Ocarb filter can be 

found in Tables 1 and 2. 
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Figure 9.  Plots of δ13Ccarb vs. δ18Ocarb for single hand samples.  All values are reported in ‰ relative to 
VPDB.  Scale bar (white) is 1 cm.  Filled green rectangles show 2σ error (δ13Ccarb = 0.18‰, δ18Ocarb = 
0.26‰) and represent inferred ‘primary’ values. ‘Dolomitization’ refers to the trend for increasing 
amounts of dolomite in microdrilled samples; ‘secondary’ refers exclusively to non-primary calcite. (A) 
Mudstone HM58 showing typical two-component mixing line. (B) Wackestone HM53 showing three 
components.  (C) Mudstone-packstone HM52 showing similar trends to HM53. (D) Mudstone-Packstone 
HM26 showing different mixing line slopes.  Convergence upon a single value is consistent with both 
lithologies in the sample having common primary δ13Ccarb and δ18Ocarb values with differing diagenetic 
histories associated with the different Dunham classification. 
 

 

Figure 10. Decision tree for isotope-texture screening and δ18Ocarb filtering. 

 

6. DISCUSSION 

6.1 Intra-sample geochemical variability 

Variations in bulk δ13Ccarb values within and between individual samples can result from 

analysing mixtures of two or more isotopically distinct components (i.e., mud, cement, and 

clasts).  This was elegantly demonstrated by Swart (2008) who showed that Cenozoic 

periplatform and ramp δ13Ccarb values were decoupled from open ocean signal due to mixing of 
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isotopically distinct aragonite from the shallow platform with pelagic calcite materials.  As 

shown in Figs 8 and 9, varying mixtures of mud, clasts, cements, and dolomite explain much of 

the isotopic variability within individual hand samples. The largest range in δ13Ccarb values 

within an individual sample was greater than 2.0‰ (equal to ~80% of the magnitude of the 

Guttenberg excursion), highlighting the importance of both sample screening and high-resolution 

data for stratigraphic correlation and palaeoenvironmental or palaeoceanographic 

reconstructions.  From these results, it is apparent that δ13Ccarb and δ18Ocarb scatter within a single 

sample is often unrelated to a primary marine (i.e., water column) environmental signal and, 

instead, reflects the mixing of diagenetic components and primary materials.  This framework 

provides an objective criterion for the selection of the ‘least-altered’ δ13Ccarb values. 

Because secondary carbonates often contain lower δ13Ccarb and δ18Ocarb, the heaviest 

δ13Ccarb values are usually considered more primary (Figure 9A). For this work, accepting only 

the heaviest δ13Ccarb would lead to incorporation of substantial diagenetic artifacts because 

dolomite-rich samples occasionally had δ13Ccarb signatures and frequently had δ18Ocarb signatures 

heavier than the reconstructed ‘least-altered’ values.  When dolomite was present, plots with two 

linear mixing lines provided an objective argument for choosing most-primary δ13Ccarb and 

δ18Ocarb values (e.g., Figure 9B and C). 

Not all of the samples characterized fell along a linear mixing line.  This may be the 

result of multi-component mixing (e.g., Figure 9B, C, and D), natural environmental variation, or 

cryptic diagenetic alteration; samples that showed poor covariation across δ13Ccarb and δ18Ocarb 

over a range in excess of analytical precision are believed to result from one of these causes.  For 

example, Figure 9D shows two intersecting mixing lines for the mudstone and packstone 

portions of sample HM26.  The intersection of these two lines is interpreted to represent primary 
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δ13Ccarb and δ18Ocarb signatures for all components, while the different downward trajectories 

represent the inclusion of different secondary cements possibly relating to different diagenetic 

histories.  Such scatter prevented development of a well-constrained dolomite-rich δ13Ccarb and 

δ18Ocarb signature and is thought to result either from multiple generations of dolomite and/or 

calcite cement that precipitated under different conditions or from variable amounts of 

calcite/dolomite within the dolomitized zone.  In such cases, ‘least-altered’ samples were 

selected based on qualitative trends in the δ13Ccarb-δ18Ocarb sample population.   

Centimetre-scale isotope transects revealed that the majority of samples had isotopic 

offsets arising from variable amounts of secondary material.  Only 2 of 11                                                                                                                                                                        

samples (18%) were identified as ‘least altered’ in Figure 9A, demonstrating that most samples 

carried a significant secondary signal (i.e., offset from ‘primary’ by more than twice instrumental 

precision).  The impact of secondary alteration on δ13C and δ18O may be further tested on the 

micron-scale using secondary ion mass spectrometry (SIMS) or similar instruments to allow for 

grain-specific isotope analysis.  In sum, confident identification of ‘least-altered’ components 

requires a combination of petrographic, elemental abundance, and isotopic analyses, particularly 

when the magnitude of intrabed δ13Ccarb variability is similar to that of the stratigraphic signal 

being investigated. 

 

6.2 δ18Ocarb filter 

A δ18Ocarb filter was applied to all samples that passed the above isotope-texture 

screening.  This filter was designed to exclude samples subjected to pervasive resetting of 

δ18Ocarb such as would occur during meteoric diagenesis.  The δ18Ocarb isotope filter provides an 

objective criterion for formation-scale sample discrimination in isotopically heterogeneous rocks, 
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provided careful petrographic and chemical characterization has been done.  Because δ18Ocarb is 

easier to reset than δ13Ccarb during diagenesis (Lohmann, 1988), a δ18Ocarb filter provides a 

conservative method for isolating ‘least-altered’ δ13Ccarb data. Without δ18Ocarb filtering, some 

δ13Ccarb data sets may be artificially noisy and the resulting chemostratigraphic correlations and 

environmental reconstructions may be misleading or inaccurate.   

While careful screening and filtering can aid in arriving at a ‘least-altered’ δ13Ccarb profile 

a small number of samples that displayed clear textural evidence of post-depositional alteration 

would have passed both the isotope-texture screening and the δ18Ocarb filter.  This demonstrates 

that the isotope-texture and δ18Ocarb filters remain imperfect screens for identifying alteration and 

that petrographic and trace element abundance data should be considered.  Some beds yielded 

δ13Ccarb values different than those from beds above and below representing a break in a 

stratigraphically consistent δ13Ccarb pattern.  If these aberrant δ13Ccarb values were primary, they 

would represent a complex and rapidly changing global carbon cycle (Kump & Arthur, 1999), 

but it is mechanistically simpler to invoke alteration by diagenetic fluids.  While no samples in 

this work were discarded based on stratigraphic continuity of δ13Ccarb alone this may be sufficient 

evidence to omit samples in other studies.   If done, care should be taken to avoid a model-driven 

interpretation of data that excludes real negative excursions in δ13Ccarb. 

 

6.3 δ13C chemostratigraphic correlations and relative sedimentation rates 

Figure 11 shows the proposed chemostratigraphic relationships between Localities 

Highway MM and New London using δ13Ccarb data that passed both the isotope-texture screen 

and δ18Ocarb filter.  The Guttenberg excursion is a conspicuous feature of the δ13Ccarb profile at 

both sections, where it is preserved as an ~2.5‰ positive excursion, a magnitude similar to those 
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previously reported from other Laurentian sections (Bergström et al., 2010a). The continuity of 

the δ13Ccarb signal throughout the Guttenberg excursion at Highway MM suggests that the 

Guttenberg Limestone was never deposited at Highway MM and that any erosion was less 

substantial than previously thought (Kolata et al., 1986; Kolata et al., 1987, Thompson, 1991) as 

the Guttenberg Limestone is the member that contains the Guttenberg excursion in northern 

Missouri.  A comparison of δ13Ccarb profiles shows that the difference in thickness of the Kings 

Lake Limestone between New London and Highway MM and the absence of the Guttenberg 

Limestone at Highway MM can be best explained if the Upper Kings Lake Limestone (Highway 

MM) is a synchronous southern facies equivalent of the Guttenberg Limestone (New London).  

Figure 12A shows the Guttenberg excursion curve for Missouri sections normalized for 

excursion duration.  The similarity in morphologies between Highway MM and New London 

during the falling stage of the Guttenberg excursion shows that sedimentation at Highway MM 

was as continuous as that at New London, but slower.  This provides further evidence against 

erosion of the Guttenberg time-equivalent strata at Highway MM as erosion would produce a 

different normalized excursion morphology.  These data are in strong agreement with 

lithological and geochemical observations. 

Comparison of relative sedimentation rate (RSR) between localities can be used to 

understand spatial differences in deposition rates.  The RSR is a unitless ratio of lithological 

thickness of a given δ13Ccarb interval from one section to another (here the ratio of stratigraphic 

thickness in New London strata relative to that in Highway MM strata).  In the present case, the 

intervals are defined by a combination of K-bentonites and features in the δ13Ccarb profiles 

(Figure 11).  In this manner, the isotopes reveal the partitioning of time between units and show 

the geographic relationship in relative sedimentation rates.  
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Figure 11. δ13Ccarb correlations with screened and filtered data across the Guttenberg isotopic carbon 
excursion (GICE).  Height is in metres.  Colours correspond to chonostratigraphic intervals.  “K-bent” 
chronozone is bounded by K-bentonites and independent of δ13Ccarb. The remaining intervals are defined 
by δ13Ccarb chemostratigraphy.  Bar graph shows relative sedimentation rate (RSR) of New London 
relative to Highway MM. Error bars represent standard deviation (1σ) of bed-averaged values. 
 

The RSR is near unity during the “K-bent” chronozone and through the onset of the 

Guttenberg excursion, arguing for a similar sedimentation rates at Highway MM and New 

London.   The RSR increases above the HMKL-1/NLKL-1 bentonite near peak Guttenberg 

excursion δ13C values, as net sedimentation rates at New London outpaced those at Highway 

MM.  A possible hardground ~15 cm below the Kimmswick contact at Highway MM suggests 

that sedimentation was very condensed at this locality, but as Figure 12A shows, not so 

condensed as to significantly change the normalized excursion morphology at Highway MM.  

Lack of evidence for subaerial exposure is consistent with a continuously submerged 

environment at Highway MM and that the high RSR resulted, at least in part, from declining 

sediment production rates and/or a decrease in the creation of new accommodation space at this 

location.  The shift in RSR is roughly coincident with the start of the Taconic Orogeny (Rodgers,  
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Figure 12. Plot of normalized Guttenberg δ13Ccarb excursions in Laurentian sections where the duration of 
the excursion is normalized from 0 to 1, with 0 defined as the beginning of the excursion and 1 as the end.  
Generalized global δ13Ccarb values (heavy solid line) for the pre-, peak-, and post-Guttenberg excursion 
taken from Bergström et al. (2009b). Instrumental error (1 standard deviation) is less than symbol size. 
(A) Normalized excursions for Missouri (MO) sections.  Eureka (MOE, black diamonds) from Ludvigson 
et al. (2000), Highway MM (MOHM, red pentagrams) and New London (MONL, red hexagrams) from this 
report.  (B) Normalized excursions “Midcontinent aquafacies”.  Iowa (IA) subscripts refer to sample 
localities of Ludvigson et al. (2004).  Note the general agreement in pre- Guttenberg, peak- Guttenberg, 
and post-Guttenberg excursion values and lower degrees of scatter in least-altered sections compared to 
altered sections.  (C) Normalized excursions for all aquafacies with aquafacies designations taken from 
Young et al. (2005).   Data for Virginia (VA), West Virginia (WV), and Kentucky (KY) from Young et 
al. (2005).   New York (NY) data is unpublished. 
 

1971), and the differential subsidence may be the result of a far-field tectonic forcing on the 

inner craton (see discussion in Holland & Patzkowsky, 1998) or changing regional tectonics 

related to the Ozark Dome.  Future development of robust correlations in the overlying 

Kimmswick Limestone could test whether these sedimentation patterns continue in younger 

strata. 
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6.4 δ13Corg 

Sedimentary organic carbon is filtered through a complex network of biological 

processing during carbon fixation, heterotrophic reworking, and microbial respiration.  As such, 

the δ13Corg signal reflects not only variations in δ13C from the parent dissolved inorganic carbon 

(DIC) source, but also changing ecological and environmental (e.g., facies-dependent) factors.  

Therefore, fractionation can be influenced strongly by local signals and resulting interpretations 

of δ13Corg data are less straightforward than δ13Ccarb (Hayes et al., 1999).  The Guttenberg 

excursion is weakly expressed in δ13Corg, where the signal is either superimposed over varying 

biological fractionation or variable organic sourcing, as evidenced by the difference in 

stratigraphic expression in δ13Corg relative to δ13Ccarb (Figure 6).  The magnitude of the 

Guttenberg excursion in δ13Corg is ~2‰, while the δ13Ccarb excursion is ~2.5‰ at both locations.  

Other reported Guttenberg excursion δ13Corg excursions were found to have magnitudes of ~1‰ 

from West Virginia (Young et al., 2008), ~3‰ from Pennsylvania (Patzkowsky et al., 1997), and 

~8‰ from Iowa (Pancost et al., 1999).  In this latter case, compound-specific analysis of TOC 

components was used to correct for organic matter source mixing; the resulting reconstructed, 

source-independent magnitude of the Guttenberg excursion was ~3.5‰ (Pancost et al., 1999).  

The δ13Corg is particularly variable in the zone above and below the Millbrig at Highway MM 

and New London making exact correlations difficult and the absence of the Millbrig in the Iowa 

core makes comparison speculative.  Higher order trends in δ13Corg are apparent at Highway 

MM, which may result from source mixing (Pancost et al., 1999), unidentified diagenesis, a 

complex local signal, and/or decoupling of the δ13Corg and δ13Ccarb system. 

During catagenesis (i.e., thermal cracking), TOC decreases as organic matter is converted 

to simple hydrocarbons (e.g., methane).  These resulting hydrocarbons are often depleted in 13C, 
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leaving the residual TOC enriched in 13C.  Similar trends can be obtained by biological 

remineralization of organic matter by microbial respiration during or after deposition.  As such, 

cross-plots of δ13Corg vs. TOC can provide insight into processes that alter δ13Corg.  A pattern of 

increasing δ13Corg as TOC decreases can thus be indicative of alteration in the δ13Corg signal (e.g., 

Dehler et al., 2005) or mixture of isotopically distinct components (e.g., Johnston et al., 2012). 

Instead, a trend toward low δ13Corg with low TOC (this is particularly noticeable at New London) 

is observed; however, because the low TOC and 13C-depleted samples come from strata below 

and above the Guttenberg excursion (Plattin and Kimmswick Limestones, respectively), while 

the high TOC, 13C-enriched samples come from strata containing the Guttenberg excursion, this 

pattern most likely reflects primary environmental variability rather than alteration or 

contamination.  

Nearly all autochthonous marine organic carbon is originally derived from the marine 

inorganic carbon reservoir by way of photosynthesis. Assuming a constant fractionation factor 

during photosynthesis, δ13Corg should be consistently offset from δ13Ccarb by a fixed amount.  

This means that δ13Ccarb and δ13Corg should move in parallel.  The isotopic offset between coeval 

carbonate and organic carbon, Δ13C (= δ13Ccarb - δ13Corg), can be plotted to visually show if either 

carbon profile deviates from parallel behavior.  The Δ13C profiles (Figure 6) are similar between 

sections only from the HMKL-1/NLKL-1 bentonites on the rising limb of the Guttenberg 

excursion to the excursion termination.  Δ13C curves from Highway MM and New London have 

a similar morphology to the Δ13C curves from Iowa (IA) Iowa and Pennsylvnaia 

(PA)(Patzkowsky et al., 1997) in that all curves immediately decline following peak-Guttenberg 

excursion values.  This is evidence of a spatially coherent Δ13C signal (on at least the 

continental-scale) with varying degrees of local overprinting.  The authors agree with Pancost et 
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al. (1999), who argued that δ13Corg correlations during this interval will be complicated by source 

mixing and prefer to use (screened and filtered) δ13Ccarb, rather than δ13Corg for continental and 

global correlations.  Excluding the Decorah Formation, the lack of strong agreement in Δ13C 

between sections suggests that existing paired δ13Ccarb and δ13Corg data are insufficient to answer 

questions of global biogeochemical C cycling patterns across the whole study interval.  More 

data, reflecting regionally reproducible trends, will be needed to extract additional meaning and 

evaluate possible causes of Δ13C variation. 

 

6.5 Correlation summary 

The Guttenberg excursion is a clearly identifiable chemostratigraphic feature in both 

sections presented here regardless of the degree of sample screening and filtering.  Correlations 

with unprocessed data have higher scatter (Figure 6) and as such, the unprocessed signal has less 

potential to make the confident high-resolution correlations needed to test geochemically based 

hypotheses.  For example, a compilation of all data from this work (i.e., including those that did 

not pass the screening or filtering) would result in a Guttenberg excursion morphology that is 

relatively depleted in 13C and more similar to that of the δ13Ccarb profile from Eureka, Missouri, a 

location ~13 km from Highway MM (Ludvigson et al., 1996).  It is possible that differences 

between the ‘least-altered’ data and the adjacent δ13Ccarb profile from Eureka could arise from 

local water column gradients; however, based on both the scatter in the unscreened data and the 

similarity between the two ‘least-altered’ δ13Ccarb profiles, it seems mechanistically more 

plausible that the lower δ13C values and stratigraphic variability of the Eureka section 

(Ludvigson et al., 1996) may in part arise from sample selection, insufficient sampling density, 

and/or diagenetic overprinting rather than the preservation of a primary δ13Ccarb signature. 
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Detailed analysis of isotopic variability – in the context of petrographic and geochemical 

indicators for alteration – is necessary to ascertain the origin of these disparities.  High-resolution 

correlations using processed data (Figure 11) show that carefully screened bulk δ13Ccarb data can 

be used to correlate sections that at first glance seem to have significant local overprints, a 

problem that has hindered high-resolution correlations across Late Ordovician Laurentia (e.g., 

Ludvigson et al., 2004; Young et al., 2005; Bergström et al., 2010a; Bergström et al., 2010b; 

Coates et al., 2010).  While it may not be required for lower-order correlations, detailed sample 

screening can greatly increase knowledge of the sources of δ13Ccarb variability and fine-tune the 

understanding of basin-scale sedimentary and geochemical processes. 

 

6.6 Depositional facies, sea level, δ13C and δ18O 

Facies likely exhibited both direct and indirect controls on δ13Ccarb and δ18Ocarb values at 

the bed scale and formation scale.  Single beds (i.e., hand samples) showed differing isotope 

values related to burrow abundance and grain size.  For example, samples from the peritidal 

Plattin Limestone contained high amounts of calcitic mud with relatively invariant δ13Ccarb and 

δ18Ocarb values, while burrows were isotopically more variable.  The burrows likely functioned as 

conduits for post-depositional fluids and represent an indirect control of facies on isotope values.  

Samples from more hydrologically energetic facies, such as the Kimmswick Limestone, 

contained exhumed clasts from underlying formations, a direct control on bulk isotope values.  

Grainstones also are more porous than mudstones, facilitating inclusion of primary cements 

(direct control) and later recrystallization (indirect control).  The more energetic facies limit the 

amount of carbonate mud, requiring sampling of the clast-cement mixtures that are associated 

with lower δ13Ccarb and δ18Ocarb values.  In this context grainstone facies are more susceptible to 
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alteration (and an apparent isotopic offset) than muddier lithologies from less energetic facies.  

This seems to be the most likely cause for the low δ18Ocarb values in the grainstones of the 

Glencoe Shale and Kimmswick Limestone relative to the Decorah Formation and Plattin 

Limestone. 

 Facies controls on isotope values at the formation scale include the biological pump 

(Freeman, 2001) and “aquafacies” model (sensu Holmden et al., 1998) and are the result of sea-

level, microbial activity, and connectivity with the open ocean.  As a result of the biological 

pump, DIC in shallow waters will become relatively enriched in 13C as 12C-rich organic carbon is 

formed and subsequently exported to the deep ocean (where part of it may be oxidized back to 

DIC).  In contrast, the aquafacies model invokes local oxidation of organic matter to generate 

shallow waters of the cratonic interior that are hydrologically restricted and depleted in 13C 

relative to the open ocean.  These models can be compared with δ13Ccarb values observed for 

Localities Highway MM and New London. The highest δ13Ccarb values were observed in the 

Kings Lake and Guttenberg Formations, both of which are thought to represent the deepest and 

lowest energy facies.  This result is opposite of what the biological pump model predicts and 

suggests that the biological pump is not controlling the stratigraphic variation in δ13Ccarb values 

in this interval in the Missouri area.  The peak Guttenberg excursion values observed here match 

those in other Laurentian localities and do not match predicted δ13Ccarb for the Missouri region 

based on aquafacies-induced gradients in δ13CDIC (Young et al., 2005).  This suggests that the 

aquafacies model is not appropriate for this interval at these locations. 

Isotope gradients can also result from more localized phenomena.  Previous work on a 

slope-to-platform top transect of Carboniferous carbonates from Northwest Spain (Immenhauser 

et al., 2003) revealed a δ13Ccarb gradient with heaviest values occurring in the deepest facies.  
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Immenhauser et al. (2003) explain the heavier δ13Ccarb values as resulting from the increased 

proportion of 13C-enriched ocean water mixed in during high-amplitude transgression and 

varying early diagenetic histories.  A proportionally lower amount of 13C-enriched waters is 

mixed with the ‘aged’ platform top water in offshore areas resulting in a relatively lower δ13Ccarb 

profile in the more shoreward facies.  This mixing model is also not appropriate for the 

Guttenberg excursion for several reasons.  First, this excursion is confidently correlated over 

multiple basins on the Laurentian craton and believed to be a global event, which is not the case 

for the middle Atokan δ13Ccarb shift (Immenhauser et al., 2003). This suggests that the 

mechanism responsible for the Guttenberg excursion would have to apply to the entire craton, if 

not the globe, and therefore includes numerous different facies and at a spatial scale where it is 

unrealistic to expect riverine waters to significantly impact δ13Ccarb.  Second, if the Guttenberg 

excursion represents the simple mixing of ocean water with 13C-depleted, chemically-evolved 

epeiric platform water then the open ocean baseline must have been ~+3‰. (The absence of any 

abyssal Ordovician-aged seafloor precludes establishing an independent open ocean baseline.)  If 

so, then the entire suite of existing records for this geologic period do not preserve an open ocean 

signal (e.g., Bergström et al., 2009b). Finally, while sea level is thought to have risen throughout 

the Late Ordovician (Munnecke et al., 2010), there is no corresponding, continuous increase in 

δ13Ccarb of epeiric carbonates associated with this increase in ocean connectivity.  Therefore, it 

does not appear that a transgression that increased ocean connectivity everywhere was the 

responsible for the Guttenberg excursion. 

Another model explaining the relationship between sea level and δ13Ccarb has been 

proposed by Fanton & Holmden (2007), whereby sea level rise was accompanied by an 

increased flux of nutrient-rich open ocean water to the inner craton.  This led to locally increased 
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primary productivity and organic carbon burial, which in turn increased δ13CDIC.    However, the 

agreement in δ13Ccarb values during the Guttenberg excursion across the Laurentian 

palaeocontinent argues that the origin of the higher δ13Ccarb values is the result of global 

processes (e.g., global organic carbon burial) rather than local or regional processes (e.g., runoff 

contributions from nearby highlands, microbial oxidation of organic matter). 

 

6.7 Regional & global implications 

Correlations from screened and filtered data give insight into the geochemical nature of 

ancient epeiric seas by discriminating against secondary signals. The correlations between New 

London and Highway MM are consistent with the Guttenberg excursion being an isochronous 

excursion that occurred in an isotopically well-mixed ocean.  The magnitude of the Guttenberg 

excursion reported here (2.5‰) is comparable to those reported for the Guttenberg excursion 

from Iowa (2‰, Pancost et al., 1999; 1.5-3‰, Ludvigson et al., 2004), Pennsylvania (3‰, 

Patzkowsky et al., 1997), Kentucky (2.0‰, Coates et al., 2010), Virginia (2‰, Young et al., 

2005), West Virginia (2‰, Young et al., 2005), and Tennessee (2.0-2.5‰, Bergström et al., 

2010a) (Figure 12).  The pre-excursion, peak-excursion, and post-excursion values reported here 

also very closely match those reported for the “generalized δ13Ccarb curve” of Bergström et al. 

(2009b) (Figure 12).  Compilation of these data can be used to understand geographic gradients 

and stratigraphic variability in δ13Ccarb records and their possible syndepositional and diagenetic 

causes. 

Despite the general agreement in the aforementioned Guttenberg excursion δ13C records, 

a detailed examination of some reports reveals local and regional variations in the stratigraphic 

expression of the Guttenberg excursion.  For a single location in eastern Iowa, Ludvigson et al. 
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(1996) argued that primary micritic δ13Ccarb might be decoupled from coeval brachiopod δ13Ccarb 

signatures as a result of water column stratification. Comparisons of bulk carbonate δ13Ccarb data 

with coeval brachiopods from St. Louis County, Missouri (Shields et al., 2003) show no 

systematic difference between the two material types, although the stratigraphic resolution of the 

brachiopods is low and the scatter in δ13Ccarb is relatively high in the Castlewood Limestone and 

Glencoe Shale equivalents, where the brachiopods were sampled.  The present authors find no 

evidence for the stratification of the inner cratonic sea in the Missouri region. 

Laterally restricted aquafacies with unique water column isotopic signatures have been 

proposed as an explanation for regional patterns in δ13Ccarb during the Guttenberg excursion (e.g., 

Young et al., 2005). The data set of Ludvigson et al. (2004) shows apparent spatial variability in 

Guttenberg excursion δ13Ccarb curves in 6 cores from Iowa.  Localities 4 and 5 of Ludvigson et 

al.(2004) have a δ13Ccarb profile very similar to that of New London while Locality 1 (located 

<50 km away from Localities 4 and 5) shows a different morphology; cores farther away have 

even more divergent profiles (Figure 12B).  It is possible that these cores reflect different water 

column processes on the regional scale.  Yet, the presence of Guttenberg excursion curves in 

Iowa that have the same pre-excursion, peak-excursion, and post-excursion values as the 

Missouri sections presented in this work (Figure 12B) and from more distal locations (e.g., West 

Virginia) (Figure 12C) suggests an alternative explanation, namely: local syndepositional and 

post-depositional alteration is superimposed over a signal representing precipitation from an 

isotopically homogenous epeiric sea.  A prevalent mechanism by which such local variation 

could result is the metabolic oxidation of organic matter by microbes, which has been proposed 

as a contributing factor producing lower δ13Ccarb values in the pore waters and modern sediments 

of the Bahama Banks and Florida (Patterson & Walter, 1994).  This results in scattered and lower 
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average δ13Ccarb values on the local scale.  The present authors find this explanation more 

consistent with the data from this report than stratigraphically coherent gradients in δ13CDIC in 

the ancient ocean, which should not produce the observed δ13Ccarb trends characterized by high 

scatter and low δ13Ccarb values.  The Iowa cores with δ13Ccarb profiles similar to the two new 

Missouri sections (despite the ~1,000 km distance between the Iowa and Missouri sections) may 

be the most representative of open marine values, whereas the stratigraphically variable δ13Ccarb 

profiles in adjacent cores (despite their proximity to each other) would result from diagenetic 

alteration or a local water-column signal that is unrelated to any large-scale ‘ocean-to-inner 

craton’ gradient.   Importantly, the sections with low stratigraphic scatter in δ13Ccarb all meet the 

‘generalized’ peak-Guttenberg excursion value (~2.5‰) of Bergstrom et al. (2009b), while 

sections with higher scatter do not meet the peak value.  The δ13Ccarb scatter is preferentially 

toward lower δ13Ccarb values.  This differs from true ‘noise’ (i.e., random scatter around a mean 

value), which should also have values that are heavier than the mean δ13Ccarb, which is not 

observed (Figure 12B and C).   In this view, the midcontinent Guttenberg excursion curve 

(corresponding to “midcontinent aquafacies”) of Young et al. (2005) was constructed using 

sections that may have been impacted by diagenetic overprinting and does not reflect a primary 

craton-scale δ13Ccarb gradient.  This interpretation suggests that more locations may have 

undergone more substantial diagenetic alteration than previously assumed. 

This work does not argue that large-scale isotopic gradients could not exist in another 

time period or location, or for isotopic systems other than carbon (e.g., neodymium).  This work 

does argue that for the specific case of midcontinent records of the Guttenberg excursion no 

long-range spatial gradient in δ13Ccarb is required to explain the observed trends.  Instead, the 

existing Guttenberg excursion records are more parsimoniously interpreted as reflecting 
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differential alteration of a spatially homogenous primary δ13Ccarb signal, rather than faithful 

preservation of what is essentially a spatially heterogenous δ13Ccarb primary signal.  Figure 12B 

separates the midcontinent aquafacies into two categories, those thought to track the global 

δ13Ccarb record and those that do not, the former being suitable for chemostratigraphic correlation 

and reconstructions of ocean chemistry.  Missouri sections Highway MM and New London 

(Midcontinent aquafacies) have the same basic Guttenberg excursion values as the more 

hydrologically connected Taconic and Southern aquafacies sections.  Correlation with Iowa 

sections suggests that any pre-existing regional δ13Ccarb gradient (Panchuck et al., 2006) was 

abolished in the Missouri-Iowa region during Guttenberg excursion-time coincident with the 

craton-wide Mohawkian transgression (e.g., Kolata et al., 1998; Kolata et al., 2001).   

It is clear that studies used to reconstruct spatial or temporal variability in ocean 

chemistry or carbon cycling need to be conducted at a high sampling resolution and data need to 

be placed in a rigorous depositional context and evaluated based on petrographic and 

geochemical indicators of alteration whenever possible. Because the understanding of oceanic 

connectivity and the biogeochemical C-cycle hinge on δ13Ccarb chemostratigraphic correlations, 

differing treatment of data sets can profoundly change the understanding of the Earth System. 

 

7. CONCLUSIONS 

This work supplies techniques for assessing diagenetic alteration of δ13Ccarb and 

δ18Ocarb over a large range of spatial scales and contributes to the general understanding 

of C-isotope homogeneity and hydrologic connectivity in ancient epeiric seas.  Results 

from this work demonstrate that the variable Guttenberg carbon isotope excursion 

profiles can be explained in terms of local diagenetic alteration and are not consistent 



 
 

60 

with the previously proposed “aquafacies” model, which invoked an isotopically 

heterogeneous epeiric sea that formed as a result of a stable long-term and long-range 

ocean-to-craton δ13CDIC gradient.  Specifically: 

 

1. Significant isotopic heterogeneity (up to 2‰ in δ13Ccarb and 3‰ in δ18Ocarb) 

within single hand samples can be superimposed over the Guttenberg carbon 

isotope excursion.  These variations typically result from the admixture of 

multiple isotopically distinct components of primary and secondary origin, rather 

than from dynamic carbon cycling or spatially heterogeneous reservoirs.  

Screening of δ13Ccarb data using petrographic, geochemical, and isotopic methods 

explains apparent differences in δ13Ccarb profiles between sections and the 

resulting correlations have higher stratigraphic resolving power than unprocessed 

data.  

2. Normalized δ13Ccarb excursion profiles can help identify alteration at the 

outcrop scale by comparing δ13Ccarb morphologies from within a single basin.  

Normalized δ13Ccarb curves for the Guttenberg excursion show that 13C-enriched 

locations have regionally reproducible δ13Ccarb profiles and low δ13Ccarb scatter.  In 

contrast, sections that are relatively depleted in 13C are associated with poor 

regional reproducibility of δ13Ccarb trends and high δ13Ccarb scatter, patterns 

consistent with local diagenetic alteration.  

3.  The strong agreement in absolute values of δ13Ccarb before, at the peak of, and 

after the Guttenberg excursion in sections identified as ‘least-altered’ support an 

isotopically homogenous carbon reservoir.  



 
 

61 

4.  Paired δ13Ccarb and δ13Corg data yield Δ13C profiles that are similar during the 

peak and falling stage of the Guttenberg excursion; the regional reproducibility of 

this trend suggests preservation of a primary Δ13C signature in this interval with 

possible global implications. 

 

Chemostratigraphic correlations between Localities Highway MM and New London give 

insight into the temporal and spatial relationships of Upper Ordovician strata in central and 

northern Missouri and relate them to other strata of similar age.   

1. High-resolution δ13Ccarb records show that the Upper Kings Lake and 

Guttenberg Limestones in Missouri, previously thought to be successive, are 

largely coeval.  The stratigraphically smooth δ13Ccarb profiles support a less 

substantial erosional history in eastern Missouri during post-Kings Lake, pre-

Kimmswick time than has been previously reported. 

2.  Lithologic and chemostratigraphic evidence suggests that a thickening of the 

Guttenberg excursion interval in northern Missouri largely resulted from an 

increased relative sedimentation rate in northern Missouri during the last half of 

the Guttenberg excursion. 
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Sample ID
Height 

(m)
δ13Ccarb 

(‰)
α δ18Ocarb 

(‰)
α Screen δ18Ocarb filter

δ13Corg 
(‰)

Δ13C 
(‰)

Sr 
(ppm)

Mn/Sr %CO3

TOC 
(%)

Unit

NL57 0.24 -0.88 0.27 -5.31 0.31 2/2 2/2 -29.7 28.85 271 0.22 97.9 0.09 P:MA
NL58 0.47 -0.87 0.26 -5.71 0.13 2/2 2/2 -30.2 29.37 207 0.26 98.6 0.10 P:MA
NL59 1.78 1/1 0/1 -29.9 213 0.37 98.6 0.08 P:MA
NL60 3.18 -0.78 0.04 -5.87 0.04 1/1 1/1 -29.9 29.13 262 0.25 98.2 0.07 P:MA
NL61 3.93 -0.53 0.09 -5.94 0.06 1/1 1/1 -29.8 29.24 395 0.11 98.2 0.06 P:MA
NL1 4.09 -0.20 0.09 -5.75 0.62 4/4 1/4 P:MA
NL2 4.45 -0.57 0.22 -5.94 0.13 8/8 8/8 -30.1 29.50 280 0.25 98.9 0.12 P:MA
NL3 5.00 -0.32 0.02 -5.56 0.20 2/2 2/2 -30.5 30.15 411 0.14 99.1 0.09 P:MA
NL4 5.42 0.20 0.00 -4.41 0.00 1/6 1/1 -31.2 31.39 377 0.17 96.7 0.16 P:MA
NL5 5.70 -0.12 0.02 -5.41 0.00 2/2 2/2 -31.5 31.37 98.1 0.16 P:MA
NL6 5.89 -0.63 0.31 -5.64 0.25 4/4 4/4 -30.4 29.72 97.8 0.15 P:MA
NL7 6.14 FAIL N.A. -30.5 96.5 0.11 P:MA
NL8 6.35 FAIL N.A. -29.3 381 0.27 97.5 0.05 P:CW
NL9 6.80 -1.42 0.17 -5.63 0.46 3/3 3/3 -29.6 28.21 264 0.30 94.8 0.03 P:CW
NL10 6.93 -0.55 0.29 -5.16 0.29 1/3 1/1 -28.1 27.54 268 0.26 95.7 0.04 P:CW
NL11 7.03 -0.43 0.77 -5.25 0.45 6/6 6/6 -28.8 28.37  94.9 0.06 P:CW
NL12 7.27 0.23 0.53 -4.99 0.00 3/3 3/3 -28.8 29.07  96.4 0.33 P:CW
NL13 7.41 -0.92 0.11 -5.86 0.80 2/2 1/2 -30.6 29.71 409 0.26 97.4 0.09 P:CW
NL14 7.60 0.81 0.14 -4.97 0.14 5/5 4/5 -30.4 31.19 586 0.18 98.0 0.06 D:GS
NL15 7.70 0.46 0.89 -4.49 0.40 3/3 3/3 -30.4 30.84 382 0.34 95.4 0.08 D:GS
NL16 8.02 -0.74 0.02 -4.88 0.05 1/1 1/1 -30.4 29.61  91.6 0.07 D:GS
NL17 8.09 -0.18 0.04 -4.34 0.08 4/4 4/4 -29.5 29.37  90.2 0.13 D:GS
NL70 8.22 FAIL N.A. D:GS
NL18 8.37 1.50 0.12 -4.75 0.06 1/1 1/1 -28.5 30.04 487 0.91 89.4 0.09 D:GS
NL19 8.61 1/3 0/1 323 0.74 80.3 0.13 D:KL
NL71 8.86 -0.11 0.05 -6.00 0.06 3/3 2/3 D:KL
NL20 9.22 FAIL N.A. -27.8 28.51 187 2.09 84.8 0.10 D:KL
NL72 9.60 5/5 0/5 D:KL
NL21 9.93 0.99 0.01 -5.37 0.16 3/3 3/3 429 0.54 93.3 0.04 D:KL
NL22 10.24 2.33 0.09 -5.13 0.06 1/6 1/1 -27.9 30.21  89.5 0.19 D:KL
NL23 10.63 2.47 0.04 -5.07 0.16 3/3 3/3 -28.1 30.59  88.7 0.25 D:KL
NL24 10.74 2.55 0.02 -5.14 0.05 1/3 1/1 -28.2 30.77  88.7 0.27 D:G
NL25 10.98 2.13 0.04 -5.55 0.07 1/1 1/1 -28.0 30.13 986 0.24 97.5 0.27 D:G
NL26 11.05 2.25 0.00 -5.65 0.00 1/1 1/1 -28.3 30.56 852 0.28 91.2 0.78 D:G
NL27 11.28 2.22 0.15 -5.51 0.29 2/2 2/2 -27.5 29.69  99.0 D:G
NL28 11.41 2.63 0.05 -5.33 0.12 4/6 4/4 -27.8 30.41 601 0.43 90.7 0.67 D:G
NL29 12.01 2.45 0.29 -5.45 0.02 1/4 1/1 -28.0 30.42  88.1 1.03 D:G
NL30 12.30 2.75 0.00 -5.29 0.00 1/3 1/1 -27.2 29.96 912 0.27 87.5 1.32 D:G
NL31 12.39 2.73 0.19 -5.47 0.38 2/3 2/2 -27.3 30.06  88.6 1.60 D:G
NL32 12.54 2.70 0.00 -5.28 0.00 1/2 1/1 -27.5 30.25 783 0.34 94.2 0.95 D:G
NL33 12.67 2.83 0.00 -5.27 0.12 2/3 2/2 -26.9 29.69 89.5 1.36 D:G
NL34 12.76 2.65 0.01 -5.44 0.10 1/5 1/1 -27.0 29.70 84.4 2.52 D:G
NL35 13.14 2.43 0.00 -5.19 0.00 2/2 2/1 88.9 1.32 D:G
NL36 13.46 2.67 0.00 -5.19 0.00 1/3 1/1 -27.6 30.26 791 0.34 91.4 1.10 D:G
NL37 13.59 2.52 0.02 -5.45 0.04 1/3 1/1 -27.5 30.00 83.9 0.16 D:G
NL38 13.92 2.40 0.03 -5.01 0.03 2/2 2/2 -27.0 29.42 755 0.32 86.7 1.43 D:G
NL39 14.23 2.50 0.03 -5.55 0.06 1/5 1/1 -27.3 29.84 748 0.36 91.7 0.82 D:G
NL40 14.49 2.33 0.00 -5.38 0.00 1/5 1/1 -27.4 29.78 91.4 0.71 D:G
NL41 14.58 2.11 0.21 -5.48 0.08 1/1 1/1 -27.3 29.44 92.5 0.98 D:G
NL42 14.67 1.95 0.39 -5.68 0.13 1/2 1/1 -26.9 28.89 92.7 0.89 D:G
NL43 15.02 1.98 0.11 -5.45 0.06 1/3 1/1 -27.4 29.36 606 0.44 96.0 0.67 D:G
NL44 15.09 1.84 0.04 -5.38 0.02 1/3 1/1 -27.3 29.14 667 0.39 95.5 0.87 D:G
NL45 15.25 1.66 0.00 -5.69 0.00 1/3 1/1 -27.6 29.25 636 0.43 91.5 1.87 D:G
NL46 15.40 1.70 0.00 -5.48 0.27 2/3 2/2 -27.2 28.92 613 0.45 96.5 0.74 D:G
NL47 15.50 1.68 0.00 -5.62 0.19 5/5 5/5 -27.5 29.19 606 0.47 93.2 1.16 D:G
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Table S1. Geochemical data for location New London.  Values are bed average. δ13Ccarb.  δ13Corg, and 
δ18Ocarb reported relative to VPDB. σ: one standard deviation for total number of samples (n) in a given 
bed. “Texture screen” refers to number of samples that passed the isotope-texture screen out of total 
number of samples.  “FAIL” corresponds to beds that had only secondary textures present.  “δ18Ocarb 
filter” refers to the number of samples that passed the δ18Ocarb filter out of total number of samples that 
passed the isotope-texture screen.  Unit abbreviations are CW = Castlewood, D = Decorah Formation, G 
= Guttenberg Limestone, GS = Glencoe Shale, KL = Kings Lake Limestone, KW = Kimmswick 
Limestone, MA = Macy Member, P = Plattin Group. 

NL48 15.58 1.55 0.00 -5.36 0.03 1/3 1/1 -27.1 28.66 94.7 1.06 D:G
NL49 15.73 3/3 0/3 -27.0 447 0.75 95.7 0.90 D:G
NL50 15.75 1.17 0.16 -5.78 0.19 3/3 2/3 -27.1 28.26 480 0.66 96.9 0.66 D:G
NL51 15.77 2/3 0/2 -25.6 97.9 0.61 D:G
NL52 15.90 0.39 0.03 -5.49 0.24 1/3 1/1 -28.2 28.59 321 1.38 99.3 0.02 KW
NL53 15.96 0.64 0.02 -6.00 0.04 2/2 2/2 -28.1 28.72 187 2.45 91.6 0.20 KW
NL54 16.13 0.51 0.12 -6.54 0.14 1/3 1/1 -28.8 29.31 177 2.51 98.9 0.06 KW
NL55 16.21 0.47 0.00 -7.00 0.09 2/2 1/2 -29.6 30.05 181 2.51 98.2 0.26 KW
NL62 16.81 0.51 0.05 -6.83 0.07 1/1 1/1 -28.7 29.17 174 2.73 98.5 0.10 KW
NL64 17.70 0.37 0.08 -6.85 0.07 2/2 2/2 -28.5 28.86 121 4.27 99.4 0.05 KW

NL65 17.80 0.50 0.02 -6.67 0.27 2/2 2/2 -28.8 29.32 145 3.52 99.2 0.06 KW

NL66 18.15 -0.01 0.01 -6.46 0.47 2/2 2/2 207 2.45 98.5 0.01 KW

NL67 20.85 0.09 0.08 -6.36 0.05 1/1 1/1 121 3.03 99.7 KW

NL68 21.18 -0.01 0.25 -5.85 0.10 1/3 1/1 196 2.52 99.9 KW

NL69 23.01 -0.73 0.04 -6.59 0.29 2/2 2/2 172 2.55 98.7 0.02 KW
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Sample ID
Height 

(m)
δ13Ccarb 

(‰)
α δ18Ocarb 

(‰)
α Texture 

screen
δ18Ocarb 

filter
n

δ13Corg 
(‰)

Δ13C 
(‰)

Sr 
(ppm)

Mn/Sr %CO3

TOC 
(%)

Unit

HM62 0.92 0.00 0.07 -5.33 0.08 3/3 1/3 1 -29.3 29.3 276 0.11 98.5 0.08 P:MA
HM63 1.38 -0.21 0.03 -5.63 0.05 2/2 1/2 1 -29.3 29.1 220 0.14 98.9 0.07 P:MA
HM64 2.54 -0.53 0.02 -5.60 0.02 3/3 1/3 1 -29.4 28.9 262 0.10 99.0 0.06 P:MA
HM65 3.94 2/2 0/2 220 0.15 P:MA
HM66 4.48 2/2 0/2 -30.0 251 0.13 98.9 0.10 P:MA
HM1 5.17 0.12 0.07 -5.20 0.21 6/6 5/6 5 -31.8 32.0 392 0.12 98.1 P:MA
HM2 5.40 -0.31 0.02 -5.15 0.04 1/3 1/1 1 -30.0 29.7 312 0.12 98.4 P:MA
HM3 5.67 -0.23 0.06 -5.12 0.05 1/2 1/1 1 -31.5 31.3 94.5 P:MA
HM4 6.09 0.18 0.09 -4.66 0.40 3/3 3/3 3 -30.3 30.5 405 0.10 98.5 P:MA
HM5 6.59 0/3 N.A. 96.0 P:MA
HM6 7.07 -0.01 0.24 -4.95 0.32 2/6 2/2 2 -29.1 29.1 97.8 0.05 P:MA
HM7 7.58 -0.07 0.31 -5.15 0.15 9/9 9/9 9 -30.7 30.6 362 0.17 99.1 0.05 P:MA
HM8 7.98 0.39 0.20 -5.02 0.60 2/2 2/2 2 -30.6 31.0 99.2 P:MA
HM9 8.60 0.07 0.24 -4.66 0.32 8/9 8/8 8 -30.0 30.1 98.9 P:MA
HM10 8.93 0.31 0.04 -4.48 0.04 1/3 1/1 1 -30.3 30.6 305 0.28 97.9 P:MA
HM11 9.16 0.14 0.24 -4.37 0.27 4/4 4/4 4 -30.2 30.4 97.8 P:MA
HM12 9.52 -0.16 0.42 -4.89 0.49 7/7 7/7 7 -29.6 29.4 97.1 P:CW
HM13 9.67 -1.49 0.65 -4.72 0.24 3/3 3/3 3 -29.4 27.9 308 0.32 99.3 P:CW
HM14 9.87 -1.17 0.16 -5.25 0.27 2/2 2/2 2 -29.4 28.2 97.9 P:CW
HM15 10.26 FAIL N.A. -28.6 91.6 P:CW
HM16 10.28 FAIL N.A. 389 0.37 93.7 P:CW
HM17 10.55 -0.36 0.54 -4.64 0.50 4/4 3/4 3 -28.1 27.8 92.2 0.06 P:CW
HM18 10.73 0.02 0.05 -4.44 0.03 1/1 1/1 1 348 0.75 78.8 D:GS
HM19/70 10.85 0.18 0.14 -4.04 0.17 5/5 5/5 5 -29.6 29.8 94.0 D:GS
HM20 11.13 -0.30 0.06 -5.24 0.02 2/2 1/2 1 -29.1 28.8 448 0.75 81.7 D:GS
HM21 11.24 2/2 0/2 -29.7 442 0.96 85.1 D:GS
HM71 11.55 2/2 0/2 D:GS
HM73/22 11.57 -0.66 0.08 -5.06 0.40 4/4 2/4 2 -28.2 27.5 359 1.52 96.3 0.05 D:GS
HM78 11.64 -0.54 0.14 -4.90 0.36 3/3 3/3 3 -27.2 26.6 90.6 0.08 D:GS
HM23 11.71 -0.40 0.14 -5.29 0.04 2/2 2/2 2 92.8 D:GS
HM72 12.28 FAIL N.A. D:GS
HM50 12.35 -0.59 0.02 -5.10 0.04 1/9 1/1 1 96.0 0.05 D:GS
HM24 12.42 1/3 0/1 2 -26.8 461 1.43 97.6 0.05 D:KL
HM74 12.48 1.09 0.03 -4.17 0.01 1/4 1/1 1 -28.2 29.3 91.1 0.25 D:KL
HM75 12.48 FAIL N.A. 96.8 0.08 D:KL
HM77 12.58 1.78 0.03 -4.45 0.03 1/1 1/1 1 -25.1 26.8 94.1 0.28 D:KL
HM25/60 12.67 2.11 0.09 -4.63 0.11 3/23 3/3 3 -26.2 28.3 664 0.65 96.0 0.13 D:KL
HM26/76 12.76 2.62 0.00 -4.53 0.19 2/13 2/2 2 -28.3 31.0 843 0.39 94.6 0.31 D:KL
HM27 12.90 2.39 0.06 -4.67 0.01 1/5 1/1 1 -28.1 30.5 1036 0.30 93.7 D:KL
HM51 13.01 2.39 0.03 -4.78 0.01 1/8 1/1 1 -28.0 30.4 721 0.38 92.3 0.22 D:KL
HM28 13.14 2.00 0.18 -4.75 0.11 4/4 4/4 4 -27.9 29.9 88.3 0.24 D:KL
HM29 13.34 2.41 0.05 -4.49 0.11 3/13 3/3 3 -27.5 29.9 769 0.38 91.9 0.32 D:KL
HM30 13.75 2.53 0.05 -4.55 0.04 1/3 1/1 1 -29.1 31.6 93.7 D:KL
HM31 14.04 2.11 0.06 -4.65 0.03 1/3 1/1 1 -28.0 30.2 95.7 0.13 D:KL
HM32/52 14.15 2.55 0.09 -4.65 0.19 1/21 1/1 1 -27.3 29.9 657 0.46 88.9 0.59 D:KL
HM53 14.24 2.44 0.02 -4.30 0.03 1/7 1/1 1 -28.7 31.1 99.0 0.10 D:KL
HM33 14.41 2.35 0.03 -4.57 0.03 1/4 1/1 1 -27.5 29.8 582 0.66 89.4 D:KL
HM54 14.59 2.41 0.17 -4.50 0.09 1/9 1/1 1 -27.5 30.0 89.9 0.35 D:KL
HM55 14.74 2.35 0.03 -4.58 0.03 1/11 1/1 1 -27.3 29.7 636 0.61 92.7 0.38 D:KL
HM56 14.78 2.24 0.03 -4.47 0.03 1/6 1/1 1 -27.3 29.5 582 0.69 88.9 0.43 D:KL
HM57 14.97 2.45 0.04 -4.52 0.04 1/13 1/1 1 -28.3 30.8 686 0.52 95.4 0.23 D:KL
HM34 15.24 2.06 0.03 -4.70 0.10 3/3 3/3 3 -27.4 29.5 662 0.55 94.1 0.19 D:KL
HM35 15.40 2.09 0.01 -4.74 0.02 2/2 2/2 2 -28.6 30.7 711 0.55 86.7 D:KL
HM36 15.52 1.90 0.00 -4.86 0.01 2/2 2/2 2 -28.4 30.3 93.4 D:KL
HM58 15.58 1.74 0.04 -4.91 0.06 1/10 1/1 1 -27.5 29.3 676 0.66 92.6 0.27 D:KL
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Table S2. Geochemical data for location Highway MM.  See Table S1 for column header definitions and 
stratigraphic abbreviations. 
 

 

Table S3. δ18Ocarb filter table. “Average δ18Ocarb” refers to formational average δ18Ocarb of beds that passed 
isotope-texture screening. σ: one standard deviation of formation-averaged values; “δ18Ocarb cutoff” is set 
to be 1σ below the formation-averaged δ18Ocarb values;  samples with δ18Ocarb values below this cutoff 
were omitted from chemostratigraphic correlations. 

HM61/79/80-1 15.64 1.40 0.16 -4.83 0.18 8/8 8/8 8 -26.9 28.3 553 0.72 93.8 D:KL
HM61/79/80-3 15.69 1.09 0.27 -5.21 0.27 6/6 6/6 6 -25.7 26.7 259 1.78 90.5 0.38 D:KL
HM61/79/80-4 15.74 0.55 0.34 -5.13 0.24 6/6 4/6 4 -26.8 27.3 259 1.78 90.4 1.20 D:KL
HM38 15.86 0.12 0.19 -5.59 0.12 4/4 3/4 3 -29.8 29.9 98.9 KW
HM39 16.46 0.28 0.11 -5.35 0.20 7/7 7/7 7 -27.5 27.7 99.8 0.04 KW
HM40 16.81 FAIL N.A. -29.3 98.6 KW
HM41 16.96 FAIL N.A. -30.0 KW
HM42 17.40 0.73 0.05 -5.20 0.05 3/3 1/3 1 -29.7 30.4 202 2.23 99.3 0.63 KW
HM67 17.96 2/2 0/3 220 2.53 99.5 KW
HM68 19.54 0.62 0.14 -5.57 0.16 3/3 3/3 3 -24.2 24.8 202 6.36 80.5 0.01 KW
HM69 19.91 0.82 0.04 -5.32 0.38 3/3 3/3 3 99.5 0.17 KW

Location Unit Avg δ18Ocarb 1σ δ18Ocarb Cutoff
Highway MM Plattin -5.1‰ 0.6‰ -5.7‰
Highway MM Decorah -4.9‰ 0.5‰ -5.4‰
Highway MM Kimmswick -5.5‰ 0.3‰ -5.8‰

New London Plattin -5.6‰ 0.5‰ -6.1‰
New London Decorah -5.4‰ 0.5‰ -5.9‰
New London Kimmswick -6.5‰ 0.5‰ -7.0‰
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1. ABSTRACT 

Basin-scale correlations in the subsurface generally rely on lithostratigraphic information 

synthesized from wire-line logs and, in some cases, well cuttings and cores. However, 

lithostratigraphic boundaries are often diachronous and, as such, the correlations based upon 

them may not provide reliable timelines. In this paper, we use δ13Ccarb data from well cuttings 

and a core to generate chronostratigraphic logs of Late Ordovician-aged strata spanning the 

Black River Group, Trenton Group, and Utica Shale across the subsurface of New York State.  

While particular δ13Ccarb values may be impacted by (primary) variability in local dissolved 

inorganic carbon reservoirs and/or (secondary) diagenetic alteration, it is possible to identify 
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spatially and stratigraphically coherent patterns in δ13Ccarb, which can be used to effectively 

correlate time-equivalent strata on a basin-wide (or even global) scale, including across 

lithologies (e.g., between limestone and calcareous shale).  The present study emphasizes the use 

of well cuttings, as these are commonly collected during drilling and can provide the maximum 

lateral resolution for subsurface correlation.  Parallel geochemical (percent carbonate and total 

organic carbon) and isotopic (δ18Ocarb and δ13Corg) data are used to understand the origin of 

stratigraphic and spatial variability in the δ13Ccarb signal and to identify diagenetic alteration.  

Stratigraphically coherent δ13Ccarb trends across New York were used to identify six isotopically 

distinct packages of time-equivalent strata within these formations.   Pairing chemostratigraphic 

and lithostratigraphic data improves our ability to document the diachronous nature of lithologic 

contacts, including the base of the Utica Shale, which is progressively younger moving west 

through New York. 

 

2. INTRODUCTION 

Several chronostratigraphic tools that can be combined with lithostratigraphy to allow for 

the temporal correlation of strata. Radiometric dating of detrital minerals in ash beds (e.g., U/Pb 

or Ar/Ar), provide a means for absolute time determination in sedimentary strata (Bowring et al., 

1993; Goldman et al., 1994; Berkley and Baird, 2002; Maloof et al., 2005; Ramezani et al., 

2007).  These approaches, however, are often difficult to apply in the subsurface because ash 

beds are infrequently deposited, limited subsurface volcanic materials may be available for 

sampling, and the resulting age resolution may be too coarse for fine-scale correlations.  When 

ash beds are not present, radiometric ages of organic-rich strata can be obtained using Re-Os 

isotopes; however, this approach is unlikely to provide sufficient resolution (< 1 Myr) for fine-
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scale correlations (e.g., Selby & Creaser, 2005; Selby et al., 2009) and the potential impact of 

diagenesis on the resulting Re-Os ages remains poorly understood.  Biostratigraphy is a powerful 

tool for chronostratigraphic correlation of strata on a local, regional, and global scale (Goldman 

et al., 1994; Brett, 1995; Patzkowsky, 1995; Kirchner and Brett, 2008).  While biostratigraphy 

can often be productively applied in the subsurface (Gartner et al., 1983; Gradstein et al., 1988; 

Gradstein et al., 1992; Armentrout 1996; Witrock et al., 2003) there can be challenges arising 

from the limited sample availability from cores and destruction of larger biostratigraphically 

relevant fossils during generation of cuttings fragments. These challenges are most pronounced 

in the Paleozoic before the rise of abundant planktonic microfossils (e.g., foraminifera, 

coccolithophores) that are so useful for Mesozoic and Cenozoic biostratigraphy (see Witrock et 

al., 2003). 

Isotope chemostratigraphy has the potential to generate high-resolution 

chronostratigraphic correlations.  The stable isotope composition of marine carbonates (δ13Ccarb = 

[(13C/12Csample)/(13C/12Cstandard) – 1] * 103 in units of per mil (‰) relative to the V-PDB standard) 

records the coeval carbon isotopic composition of ambient dissolved inorganic carbon (DIC) in 

the ocean. Changes in δ13CDIC are thought to primarily derive from changes in the global burial 

flux of organic carbon, which is enriched in 12C, the lighter stable isotope of carbon, relative to 

the local DIC pool, and can occur at timescales greater than 103 years (Mitchell et al., 1996; 

Hayes et al., 1999; Kump and Arthur, 1999; Saltzman, 2003).  Increased burial of organic matter 

with low δ13C values, results in a concomitant increase in δ13C of the marine DIC reservoir from 

which it is derived.  Because δ13CDIC is well mixed in the surface ocean on the thousand-year 

time scale, coeval carbonates from around the globe preserve similar δ13Ccarb signatures, which 

enables high-resolution correlation of strata across vast distances.  However, the preservation of 
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a global δ13Ccarb signature can be overprinted either by (primary) environmental variability in the 

local δ13CDIC composition (Gruber et al., 1999) or by (secondary) diagenetic alteration (Patterson 

and Walter, 1994); chemostratigraphic data need to be screened to assess these impacts and 

reconstruct representative δ13Ccarb records. The resulting time-varying δ13Ccarb patterns preserved 

in marine carbonates have been used extensively to correlate both outcrop and subsurface 

sections from around the globe (Knoll et al., 1986; Burns and Matter, 1993; Hayes et al., 1999; 

Veizer et al., 1999; Pancost et al., 1999; Saltzman et al., 2000; Herrle et al., 2004; Tsikos et al., 

2004; Fike et al., 2006; Hesselbo et al., 2007; Young et al., 2008; Maloof et al., 2010; Jones et 

al., 2011; Sabatino et al., 2013).  Yet, the majority of existing chemostratigraphic work has 

focused on generating a time-series record of particular paleoenvironmental conditions (e.g., 

ocean redox) or global (basin-to-basin) stratigraphic correlation; such studies do not often have a 

sampling density sufficient to generate high-resolution chronostratigraphic tie points within 

individual basins.  Furthermore, with limited sampling locations within a basin, it is difficult to 

assess local variability in δ13Ccarb (e.g., arising from spatial gradients in ocean chemistry or 

subsequent diagenetic alteration) that may be superimposed on the primary temporal signal of 

interest (Patterson and Walter, 1994; Immenhauser et al., 2003; Swart and Eberli, 2005; Swart, 

2008).  Diagenetic alteration typically results from precipitation of carbonate cements in 

porewaters, wherein bacterial processes have altered the local δ13CDIC composition (e.g., through 

respiration, Coleman and Raiswell, 1981; or methanogenesis; Hein et al. 2006) or via later-stage 

recrystallization of carbonates under the influence of meteoric or basinal fluids in which ambient 

δ13CDIC has been similarly impacted by oxidation of organic matter (Allan and Mathews, 1982; 

Joachimski, 1994; Swart & Kennedy 2012). 
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Here, by combining chemo- and lithostratigraphic data from multiple subsurface 

boreholes, we demonstrate the potential of δ13Ccarb–based approaches for high-resolution, 

intrabasinal correlations, assessment of diagenetic alteration, and the identification of 

diachronous lithostratigraphic contacts.  The resulting δ13Ccarb chemostratigraphy can be used to 

reconstruct how sedimentation and facies varied across a basin as a function of space and time. 

The purpose of this study is fivefold: (1) to collect δ13Ccarb data from a series of core and 

cuttings samples from multiple subsurface wells; (2) to assess respective impacts of cuttings 

sampling resolution (vertical) and well density (lateral) on the ability to resolve δ13Ccarb signals in 

a single well and across a region; (3) to evaluate diagenetic alteration of δ13Ccarb in cuttings 

samples; (4) to produce chemostratigraphic logs suitable for correlation through the Late 

Ordovician-aged subsurface strata of New York State, USA (Figure 1); and (5) to identify 

stratigraphic intervals with distinctive δ13Ccarb character that can be used for basin-wide 

correlation.  By focusing on ubiquitous cuttings samples, we hope to encourage the broad 

application of these techniques for the correlation of source rock and reservoir strata in basins of 

varying age from around the world. 

 

3. GEOLOGIC CONTEXT 

The study interval ranges from the Beekmantown Group, which straddles the Cambro-

Ordovician boundary, through the Late Ordovician Black River Group, Trenton Group, and 

Utica Shale (Figure 2).  The lowermost unit of the study is the Beekmantown Group, composed 

of the Upper Cambrian Galway Formation and Little Falls Dolomite and the more limestone-rich 

Lower Ordovician Tribes Hill Formation (Smith, 2006).  The Beekmantown Group is at least 

partially equivalent with the Knox Group of the southern United States (e.g., Tennessee; Patchen  
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Figure 1.  Outcrop map of Late Ordovician sedimentary rocks (gray) and study locations (black 
diamonds).  Map modified from Dicken et al. (2008).  For study location information see Table 1. 
 

 

 
Table 1.  Well and core information.  API = American Petroleum Institute. 
 

et al., 2006).  Beekmantown strata are truncated by the Knox Unconformity, a major 

unconformity that spans most of Lower Ordovician and all of Middle Ordovician time in the 

New York area (Patchen et al. 2006).   

Overlying the Knox Unconformity, the Late Ordovician Black River Group consists of 

clean to argillaceous, burrowed limestones, variably dolomitized, that were deposited in a 

regionally extensive peritidal to subtidal ramp (Keith 1989; Patchen et al., 2006).  The Black 

100 200

KILOMETERS

W2

W7

Study locations in New York State, USA

41oN

43oN

45oN

W4

W5
W6W3

W1

C1

79oW 81oW 83oW 85oW

44oN

42oN

Well ID Type API# Operator County Well Name Lat. (°) Long. (°) δ13Ccarb ref.

W1 Cuttings 31-073-09540 Consolidated Gas Supply Corp. Orleans Maxon Roger 1 43.1885 -78.0376 Smith, 2006; this work
W2 Cuttings 31-117-04754 William J. Duscherer Wayne Smith Frank 1 43.0824 -77.2696 Smith, 2006; this work
W3 Cuttings 31-101-03924 Dominion Transmission Inc. Steuben Olin 1 42.0631 -77.4303 This work
W4 Cuttings 31-011-23158 Hensoil Inc. Cayuga Carter 1 42.7843 -76.5421 This work
W5 Cuttings 31-007-05087 Fenix and Scisson Inc. Broome Richards 1 42.3235 -75.9474 This work
W6 Cuttings 31-077-10834 Amoco Production Company Otsego Hoose 1 42.9291 -74.7438 This work
W7 Cuttings 31-071-01001 Croms-Well Inc. Orange Fee High Barney 1 41.4246 -74.4539 This work
C1 Core NA National Lead Company Montgomery NA 42.9291 -74.7438 This work
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River Group lithology is uniform over large distances extending as far west as Missouri 

(Thompson, 1991).  The Black River Group is overlain unconformably by the Trenton Group 

(Mitchell et al., 2004), although in places Trenton Group strata are found directly above the 

Knox Unconformity.   

 

 

Figure 2.  Chronostratigraphic relationships of Late Ordovician formations in New York (left), 
generalized δ13Ccarb intervals and δ13Ccarb chemostratigraphic profiles (right, see discussion in text).  Stage 
abbreviations are Whit = Whiterockian, Cinc = Cininnatian, Sand = Sandbian, D-D = Darriwilian to 
Dapingian, Tre = Tremadocian.  New δ13Ccarb intervals (BR = Black River Group, TR = Trenton Group, 
UT = Utica Shale) are named for lowest formation they are found in. GICE = Guttenberg isotopic carbon 
excursion (see text).  “?” next to UT-1 suggests interval is not suitable for correlation (see Discussion).  
δ13Ccarb reference curve with intervals taken from data in this work.  Values are in permil (‰) relative to 
V-PDB.  Study locations (W1-W7, C1) are shown in their approximate position along the west to east 
transect. 
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The Trenton Group is primarily composed of limestone and argillaceous limestone and 

was deposited in a subtidal environment in central and western New York with deeper basinal 

sections deposited in the east (Brett and Baird, 2002).   

Lithologies are varied, ranging from muddy, light gray and brown, mostly pure 

carbonates to dark, organic-rich calcareous shales.  Rocks are most often muddy, but do contain 

shelly lag beds, arenites, and other coarser-grained materials (e.g., Brett and Baird, 2002). In the 

western and central parts of New York, the Trenton Group is capped by the Thruway 

Disconformity (Baird and Brett, 2002; Brett and Baird, 2002), which cuts down into 

progressively older strata to the south and east.  Where present, the Thruway Disconformity is 

overlain by the Utica Shale; where the disconformity is absent in southeastern New York, the 

Trenton grades upward into the Utica Shale.  

In eastern New York, the dark gray to black facies of Mohawkian and Cincinnatian 

(Upper Ordovician North American Stages) strata are referred to here as the Utica Shale, which 

comprises the Flat Creek and Indian Castle Shale members (after Brett and Baird, 2002). The 

Utica Shale is composed of variably calcareous shales with infrequent micritic beds, with colors 

ranging from gray to black.  Deposition of the Trenton Group and Utica Shale is concurrent with 

the last stage of the Taconic Orogeny (van Staal and Barr, 2012).  Here, organic-rich strata were 

deposited in a zone between the shallow marine carbonates of the Trenton to the west and deep-

water turbidite facies found in eastern New York (Smith, 2010).  The Lorraine Shale overlies the 

Utica Shale and has upward increasing sand and silt content. 

Despite much study, it remains uncertain how to best correlate the Trenton Group of 

western New York with the Utica Shale of the eastern part of the state (Figure 2) and multiple 

different correlations have been proposed (see Brett and Baird, 2002 for an in-depth discussion 
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of correlation history). Outcrop-based correlations using lithostratigraphic, biostratigraphic, and 

K-bentonite data suggest that the Trenton Group-Utica Shale contact is time-transgressive with a 

younger Utica Shale base in the west (Brett and Baird, 2002).  Specifically, the calcareous and 

organic-rich Flat Creek, Dolgeville and Lower Indian Castle Formations are thought to be time-

equivalent to the Trenton Group, while the Upper Indian Castle Shale (Utica Shale) is younger 

than the Trenton Group in New York State.  Additional work, particularly in the subsurface, is 

needed to further clarify geographic and temporal relationships of the Trenton Group-Utica Shale 

interval. 

  

4. METHODS 

Geophysical wireline logs and geological sample logs were obtained from the Empire 

State Oil and Gas Information system (http://esogis.nysm.nysed.gov/).  A list of all wells and 

cores used in this study can be found in Table 1.  Hereafter, wells are referred to by a 5-digit 

numerical identifier; the full API 10-digit identifier and well location can be found in Table 1.  

Lithologies for statigraphic columns were obtained from geologic sampling logs for each well 

and were described by a geologist soon after the well was completed. Gamma ray values for core 

C1 were obtained using a CoreLab Instruments Spectral Gamma Logger Model SGL-300 at the 

Ohio Department of Natural Resources Division of Geological Survey.  Calibration was run each 

day with API standards 0 and 200 (API units). 

Cuttings samples were collected from the New York State Geologic Survey and 

catalogued at Washington University.  A representative subsample of each cuttings sample was 

collected for analyses. Cuttings were collected into stratigraphic intervals of  ~0.5-9 m at the 

borehole and therefore represent a lithologic average over that interval.  To help assess the 
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impact of lithologic mixing in analysis of cuttings samples, several individual carbonate chips 

were taken from selected intervals in well W7.  When picking individual chips those with 

macroscopic pyrite, recrystallized material, or macroscopic spar were excluded.   Individual 

chips were powdered for chip-specific analysis, alongside aggregated subsamples (~0.5g, 

representing ~10% total cuttings mass) and bulk-homogenized powder. For other samples, 

cuttings were homogenized by powdering 0.5-10 g of samples. Core samples were micro-drilled 

to collect powders for isotopic and geochemical analysis.  

Weight percent carbonate minerals (%carb) was determined by gravimetric analyses 

following the dissolution of 0.1-0.5 g of powder with 6M HCl at Washington University.  

Complete dissolution of carbonate fraction was obtained by addition of excess acid and agitation 

on a shaker table for >12 hours. TOC was measured at Washington University by combustion of 

homogenized acid-insoluble residues on a Costech ECS 4010 Elemental Analyzer, whereby the 

emitted CO2 was quantified and calibrated against standards of known TOC compositions.  

Additional TOC for well W7 was measured at the New York State Museum on a UIC 

Coulometrics CM 5130 Acidification module. 

Stable isotope analyses were conducted at Washington University.  Carbon isotopes are 

reported as δ13C = (13C/12Csample/13C/12Cstandard – 1) * 103 in units of per mil (‰) relative to the V-

PDB standard.  Oxygen isotopes are reported as δ18O = (18O/16Osample/18O/16Ostandard – 1) * 103 in 

units of per mil (‰) relative to the V-PDB standard.  Carbonates (δ13Ccarb and δ18Ocarb) were 

analyzed on a Gas Bench II attached to a ThermoFischer Delta V Plus isotope ratio mass 

spectrometer.  A test set of samples were roasted at 380°C for ~12 hours to liberate volatile 

organic compounds and revealed no systematic offset for δ13Ccarb and a minor (< ~0.3‰) effect 

on δ18Ocarb in roasted and unroasted samples.  The effect on δ18Ocarb was too small relative to the 
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magnitude of δ18Ocarb to impact our interpretations.  Therefore, the remaining samples were not 

roasted prior to δ13Ccarb and δ18Ocarb analysis.  Additional carbonate analyses were done at the 

University of Albany using a GV Instruments Optima mass spectrometer for well W1 and 

portions of W2.  Calibration of δ13Ccarb and δ18Ocarb was done by comparison to International 

Atomic Energy Association standards NBS-19 and NBS-18, National Institute of Standards and 

Technology standard LSVEC, and in-house standards.  Long-term running reproducibility (1σ = 

1 standard deviation) for multiple day replicates for δ13Ccarb and δ18Ocarb was 0.09‰ and 0.12‰, 

respectively 

Cuttings samples for organic carbon analyses were washed prior to processing to reduce 

contamination from organic carbon in the drilling fluid. Organic carbon isotopes (δ13Corg) were 

measured from the acid-insoluble organic matter (see TOC and %carbonate [%carb]  methods 

discussed previously) and were analyzed by combustion to CO2 on a Costech ECS 4010 

Elemental Analyzer attached to a Delta V Plus mass spectrometer. δ13Corg was calibrated against 

international standards from the United States Geological Survey, USGS 24 (graphite), and 

International Atomic Energy Association standards IAEA CH-6 (sucrose) and IAEA CH-3 

(cellulose).  During this study, typical precision (1σ) for δ13Ccarb and δ18Ocarb replicates of NBS-

19 for a single run was 0.04‰.  Typical multi-day reproducibility (1σ) for δ13Corg standards was 

0.13‰. 

 

5. RESULTS 

5.1 Stratigraphic Trends 

δ13Ccarb and δ18Ocarb data are presented alongside gamma ray logs in Figure 3. Clear 

stratigraphic δ13Ccarb trends are apparent in the sections.  A rise in δ13Ccarb is observed from ~-3 
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to 1‰ above the Knox unconformity to the top of the Black River Group.  A conspicuous 

interval where δ13Ccarb changes from 0‰ to 3‰ and returns to 0‰ is observed in the four 

westernmost wells above the top of the Black River Group. This interval thickens towards the 

center of the transect.  Above this interval, δ13Ccarb values average around 1‰ in all wells, 

thickening towards the eastern and western edges of the transect.  Above the 1‰ interval, 

δ13Ccarb values average ~0‰ in all but the two central wells, W3 and W5.  δ13Ccarb values fall 

below 1‰ where the gamma ray values are highest in the uppermost parts of the wells. 

 

 
 
Figure 3.  δ13Ccarb, δ18Ocarb, and gamma ray log data for select wells.  Isotope values are in permil (‰) 
relative to V-PDB.  D = Dolgeville, FCS = Flat Creek Shale.  Formations unmarked below FCS in core 
C1 are Sugar River Limestone and Black River Group (see text).  Map shows transect through these wells 
with Trenton-Utica outcrop belt shown in gray.  Where gamma ray logs are truncated, data were not 
available. 
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Group.  Variation in δ18Ocarb is lowest in the Black River Group and lower to mid Trenton 

Group. 

Gamma ray values are intermediate and variable in the Beekmantown Group.  Upsection, 

gamma ray readings are lowest in the Black River, intermediate in the Trenton Group, and 

highest in the Utica Shale.  The gamma ray values increase gradually from the Trenton Group to 

Utica Shale in the easternmost wells.  Conversely, in the three westernmost wells, the gamma ray 

values sharply increase at the Trenton-Utica contact. 

Figures 4-6 show lithologic and geochemical trends of locations W5, W6, and C1.  The 

Beekmantown Group is dolomitized and locally sandy with high %carbonate and low total 

organic carbon (TOC).  The Black River Group (where present) has a high %carbonate and very 

low TOC and can be variably dolomitized in the lower portions near the contact with the 

Beekmantown Group (Smith, 2006).  The overlying Trenton Group carbonates are argillaceous 

with increasing clay content upsection.  The Utica Shale is dominated by dark, carbonate strata 

with dark shale interbeds in the eastern locations (W6, C1) and is more correctly described as a 

marl in much of the section due to its relatively high carbonate content.  The Utica Shale is the 

western sections (W1-4) is exclusively a carbonate-poor black shale. 

Percent carbonate slowly declines through the Utica Shale in the easternmost locations 

W6 (Figure 4) and C1 (Figure 6) and the Trenton Group in W5 (Figure 5).  The %carbonate is 

higher in the Utica Shale of eastern locations W6 and C1.  Total organic carbon (TOC) averages 

~2% the Utica Shale of eastern locations W6 (Figure 4) and C1 (Figure 6), while it is more 

varied in W5 (Figure 5).  In this well, TOC ~0% Black River and lower Trenton strata, ~0.75% 

in the upper Trenton, and ~1.5% in the Utica. 
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Figure 4.  Geologic, geophysical, and geochemical results for well W6.  %carb and %TOC are given as 
mass percent.  Isotope values are in permil (‰) relative to V-PDB. Symbol size is > 1σ long-term average 
analytical error.  Knox Unconformity marked by thick wavy line.  Flat Creek, Dolgeville, and Indian 
Castle are all part of the Utica Shale Group (see text).  BR = Black River.    Lithological color 
corresponds to general shade of rocks. 
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Figure 5.  Geologic, geophysical, and geochemical results for well W5.  %carb and %TOC are given as 
mass percent.  Isotope values are in permil (‰) relative to V-PDB.  Symbol size is > 1σ long-term 
average analytical error.  One outlier (δ13Corg = -22.68‰, Δ13C = 22.83‰) at depth 7765 ft. was removed 
for clarity.  Knox Unconformity marked by thick wavy line.  See Figure 4 for lithology and symbol 
legend. 
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Figure 6. Geologic and geochemical results for core C1.  Isotope values are in permil (‰) relative to V-
PDB.   Symbol size is > 1σ long-term average analytical error.  Isotope legend refers to δ13Ccarb and 
δ18Ocarb logs, where colors refer to color-specific sampling of lithologies (see text).  Knox Unconformity 
marked by thick wavy line. BK = Beekmantown Group, BR = Black River Group, SR = Sugar River 
Limestone.  See Figure 4 for lithology and symbol legend. 
 

In general, δ13Corg is relatively constant in the highest %carbonate strata where post-

Black River Group gamma ray values are lowest in (Figures 4 and 5).  δ13Corg averages ~-27‰ in 
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W5 and declines to ~-30 in the Utica Shale.  δ13Corg averages -28.5‰ in W6 (Figure 4) and 

declines to ~-30‰ in the Indian Castle Member of the Utica Shale.  Δ13C ( = δ13Ccarb – δ13Corg) 

averages 28.5‰ in W6 and very closely matches the pattern of δ13Ccarb because δ13Corg has little 

variability.  In W5, Δ13C increases from ~23‰ to 30‰ from the Black River Group to the upper 

Trenton Group values then vary 29‰ upsection.  The large-scale changes in Δ13C are not 

dominantly controlled by δ13Ccarb or δ13Corg, but rather a combination of changing values in both.  

 

5.1.1 Location C1 

Location C1, the most northeastern study section and only core, is dominated by dark 

calcareous shales and shaley carbonates.  The strata above the Knox Unconformity are all part of 

the Utica Shale except for a very thin (tentative) Black River Group and Sugar River Limestone 

(Trenton Group) in the ~10m of section immediately above the unconformity (Figure 6).  Some 

lithologies contained lighter and darker beds (e.g., the Flat Creek Shale).  The lighter beds were 

dominantly fine-grained with occasional coarse sand-sized grains composed of fossil debris.  

Lighter beds sometimes displayed a diffuse contact with surrounding beds.  Evidence of cm-

scale scouring was present in the Utica Shale members. 

Additional samples were taken at cm-scale resolution in select intervals to investigate 

possible lithology-dependent variability in the δ13Ccarb signal.  Samples were split into five 

different categories based upon a qualitative assessment of their color.  In general, the 2 darkest 

shades are stratigraphically coherent (i.e., have little scatter) in their isotopic trends.  In contrast, 

the two lightest, most carbonate-rich layers displayed high degrees of scatter in both δ18Ocarb and 

δ13Ccarb, where the δ13Ccarb scatter is skewed toward heavier values relative to the overlying and 

underlying strata 
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5.1.2 Stratigraphic Summary 

We focus on the stratigraphic trends observed in the strata of the Black River Group, 

Trenton Group and Utica Shale.  Gamma ray logs show similar patterns across formation 

boundaries with the Utica Shale having highest gamma ray emission.  Percent carbonate is 

highest in the Beekmantown and Black River Groups and decreases upsection.  Trends in %carb 

and gamma ray values are roughly opposite one another. The inverse relationship between %carb 

and gamma ray logs suggests that the gamma ray signatures predominantly track potassium-rich 

siliciclastic input (e.g., from detrital clay minerals), rather than organic carbon. TOC is highest in 

Trenton Group and Utica Shale.  δ18Ocarb is generally highest in the formations with highest 

%carb (i.e, Beekmantown Group to Trenton Group).  δ18Ocarb is not stratigraphically consistent 

between sections from the middle Trenton upwards and is most variable in dolomitized zones (as 

described in the cuttings geologic sampling logs) and zones with low %carb.  Consistent patterns 

in δ13Ccarb are apparent across multiple wells.  These include (stratigraphically ascending): 1) a 

rise from -3‰ to 0‰ in the Black River, 2) a stable interval of 0.5‰ in the Black River, 3) a rise 

from ~1‰ to ~1.5‰ in the Black River, 4) a peak at 3‰ in the Trenton, 5) a stable interval of 

1‰ in the Trenton and Utica, 6) a stable interval of 0‰ in the Trenton and Utica, 7) and a drop 

to -1.5‰ in the Utica.  This drop in δ13Ccarb below 0‰ is coincident with a decline in %carb as 

well as a parallel decrease in δ13Corg. 

 

5.2 Impact of Lithologic Mixing on δ13Ccarb in Cuttings 

A series of tests were conducted on select cuttings samples from well W7 to evaluate the 

impact of lithologic mixing in analysis of cuttings samples.  Three stratigraphic intervals were 
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investigated in well W7 (Figure 7), each containing a different background δ13Ccarb trend 

(declining, increasing, or constant) with decreasing depth as defined by data from bulk-

homogenized cuttings.  For each sample investigated, several carbonate chips (‘single chips’) 

were individually analyzed for δ13Ccarb and δ18Ocarb, as well as a powder representing  ~0.5g 

(‘subsample’).  These were compared with the δ13Ccarb and δ18Ocarb data from the homogenized 

bulk sample (‘bulk’).  A comparison of these results is shown in Figure 7, with the intervals 

comprising the distinct δ13Ccarb trends represented in Figure 7B-D.  Single chip data are 

characterized by increased variability in δ13Ccarb and δ18Ocarb when compared with bulk samples 

or the subsamples.  Single chip δ13Ccarb scatter increases when the baseline bulk δ13Ccarb signal is 

increasing or decreasing.  Single chip δ13Ccarb scatter is low when the bulk δ13Ccarb signal is not 

changing.  While single chips reasonably track the bulk δ13Ccarb signal (albeit with increased 

variability), the ~0.5 g subsample more closely tracks the δ13Ccarb signal of the bulk signal. 

 

5.3 Impact of Sampling Resolution 

A comparison of δ13Ccarb profiles sampled at different resolutions through the same 

interval is shown in Figure 8.  The variable vertical sampling resolution between locations results 

in differing stratigraphic morphologies of the same δ13Ccarb signal, where a lower sampling 

resolution results in a smoother isotopic record. The interval of elevated δ13Ccarb (gray) is ~30ft at 

the New London outcrop in Missouri (see Metzger & Fike, 2013 for discussion of locality), 

while the same interval is >300ft in New York well W4.  The sampling resolution in well W4 is 

30ft; a similar sampling resolution in New London would reduce the entire interval of elevated 

δ13Ccarb values to a single data point. 
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Figure 7.  Comparison of isotopic results of bulk material (filled symbols), multi-chip subsamples (gray 
symbols), and single chips (empty symbols) for well W7.  Three intervals from the entire well (A) were 
chosen for their distinct δ13Ccarb patterns; upwards declining (B), upwards increasing (C), and constant 
(D).  Isotope values are reported in permil (‰) relative to V-PDB.  In subplots B, C, and D, bulk material 
values are shown only when single chips were analyzed at the same depth.  Bulk material values are 
connected by a solid line.  Up to three single chips were analyzed for a given depth.  Symbol size is > 1σ 
long-term average analytical error.  One outlier (δ13Ccarb = 5.13‰, δ18Ocarb = -6.69‰) from bulk carbonate 
at depth 4540 ft. was removed for clarity. 
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Figure 8.  Comparison of sampling resolution for wells and outcrop during the Guttenberg excursion 
interval (shaded). (A) Correlations between age-equivalent outcrop in Missouri, USA (Chapter 2) and 
New York wells presented here.  Sampling resolution is coarser moving to the right, associated with 
decreasing resolution of the GICE interval.  Missouri outcrop y-axis (left) is exaggerated relative to the 
three subsurface sections.  (B) Bar graph of sampling resolution for the different locations showing 
number of feet per sample.  High values correspond to low sampling resolution 
 

6. DISCUSSION 

δ13Ccarb can be used to chronologically correlate strata because the δ13CDIC value 

synchronously changes across any well-mixed portion of the ocean.  Stratigraphically 

meaningful correlations require preservation of the original δ13Ccarb signal and various post-

depositional processes may alter δ13Ccarb values.  Sampling methods (e.g., vertical sampling 

resolution and sample selection) are an additional control on the resolution and accuracy of 

δ13Ccarb logs.  Here, we identify 7 intervals with distinctive δ13Ccarb signatures that can be used  
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Figure 9.  Proposed correlations of the New York subsurface based on δ13Ccarb.  Red line (map) shows 
sampling transect for both (A) and (B). GM = gamma ray (in API units).  (Note that API range is 0-200 
API units for all locations except for W3 where range was 0-15 API units due to a different gain setting 
during analysis.  The 0-15 API unit range in this well is roughly equivalent to the 0-200 units in other 
wells.)  δ13C = δ13Ccarb given in ‰ relative to VPDB, δ18O = δ18Ocarb given in permil (‰) relative to 
VPDB, BK = Beekmantown Group, BR = Black River Group, SR = Sugar River Limestone.  (A) Isotopic 
intervals (colored zones) show shift in the sediment depocenter from western and central New York from 
δ13Ccarb to eastern New York following the GICE.  Isotopic intervals are defined and discussed in text (see 
Correlations).  Generalized δ13Ccarb curve for New York region and chronostratigraphic relationships are 
found in Figure 1.  The basal contact of the Utica Shale is marked by a thick dashed red line.   Wells are 
hung on base of δ13Ccarb interval TR-1. (B) Sampling transect showing time-equivalent nature of lower 
Utica (dark gray) and upper Trenton (light gray) facies.  Wells hung on top of δ13Ccarb interval TR-2. 
 

for correlation. We then examine evidence of alteration of the original δ13Ccarb signal and the 

impact of sampling resolution on the morphology of δ13Ccarb logs. 

Seven discrete δ13Ccarb intervals, bounded by correlation points in the carbon isotope logs, 

have been identified within the stratigraphic interval examined (Figure 9): three in the Black 

River Group (BR-1, BR-2 and BR-3) and four in Trenton Group and Utica Shale (GICE, TR-1, 

TR-2, and UT-1).  These are defined as follows:  

• BR-1: an interval of increasing δ13Ccarb from -3‰ to 0‰ in the Black River Group. 

• BR-2: a stable interval of ~ +0.5‰ in δ13Ccarb in the Black River Group above BR-1.   

• BR-3: an interval starting at ~1‰ in δ13Ccarb and increasing to ~1.5% in the Black River 

Group above BR-2.  

• GICE: a positive excursion in δ13Ccarb, increasing from ~0.5‰ to 3‰ before decreasing 

back to ~0‰. Known as the Guttenberg isotopic carbon excursion (GICE), this positive 

δ13Ccarb excursion has been identified in much of central and eastern Laurentia (e.g., 

Ludvigson et al, 2004; Young et al., 2005; Bergström et al., 2010; Chapter 2) as well as 

Sweden (Bergström et al., 2004), China (Young et al., 2005; Bergström et al., 2009), and 

Malaysia (Bergström et al., 2010).  In this study it begins near the base of the Trenton 

Group. 



 
 

98 

• TR-1: a stable interval of +1‰ in δ13Ccarb in the Trenton Group (western-central NY) and 

Utica Shale (eastern NY) that postdates the Guttenberg excursion.   

TR-2: a stable interval of ~ 0‰ in δ13Ccarb above TR-1.   

• UT-1: an interval of decreasing δ13Ccarb from ~ 0 to -1.5‰. 

Figure 2 shows a δ13Ccarb reference curve (divided into seven δ13Ccarb intervals) for the New York 

region and its relationship to formation boundaries across the state. 

 

6.1 Evaluating Diagenetic Alteration 

Diagenetic (post-depositional) processes can alter original δ13Ccarb values in marine 

carbonates (Allan and Matthews, 1982; Patterson and Walker, 1994; Melim et al. 2004; Chapter 

2), giving rise to apparent spatial heterogeneities in δ13Ccarb values and limiting the ability to use 

δ13Ccarb for correlations.  There are several recognized mechanisms by which diagenesis can alter 

δ13Ccarb.  The most common is oxidation of organic matter (δ13Corg ~ -30‰), which results in a 

decrease in δ13CDIC of pore fluids and subsequently a decrease in δ13Ccarb of any strata that re-

equilibrate with such porefluids.  This can happen either as meteoric diagenesis, where soil 

carbon is the source (e.g., Knauth & Kennedy, 2009; Swart and Kennedy, 2012), or during burial 

diagenesis (e.g., Derry, 2010), where oxidation results from thermal breakdown of migrating 

hydrocarbons or in situ organic matter.   

 

6.1.1 Covariation in δ13Ccarb, δ18Ocarb, and %carb 

Geochemical cross-plots can provide context for identifying possible post-depositional 

alteration. An examination of covariation between geochemical parameters and δ13Ccarb can 

constrain possible diagenetic pathways.  Often, covariation in δ13Ccarb and δ18Ocarb are examined.  
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This is because changes in δ18Ocarb are largely or entirely independent of changes in δ13Ccarb prior 

to alteration and therefore covariation between these two parameters is not expected.  However, 

in meteoric fluids both δ13C and δ18O are low (e.g., Bathurst, 1975; Allan and Matthews, 1982; 

Lohmann, 1988) and covarying δ13Ccarb and δ18Ocarb can indicate isotopic alteration by meteoric 

diagenesis (we note that while covariation can indicate diagnetic alteration, the absence of 

covariation cannot be taken as evidence of primary δ13Ccarb values being retained).  For example, 

covariation in δ13Ccarb and δ18Ocarb is observed in formations that have undergone visibile 

karstification (e.g., Lohmann, 1988).  When considering diagenetic alteration of δ13Ccarb two 

important points must be considered: 1) most diagenetic mechanisms decrease δ13Ccarb; and 2) 

δ18Ocarb is easier to reset than δ13Ccarb during diagenesis because of the relative abundance of O 

relative to C in any diagenetic fluid (e.g., Banner and Hanson, 1990).  This offset in oxygen and 

carbon concentrations in diagenetic fluids allows quantitative description of the volume of 

diagenetic fluid required to change the rock’s δ13Ccarb and δ18Ocarb values.  This is normally 

described in terms of fluid to rock ratios (fluid:rock). Most relevant here is the molar ratio of the 

cumulative flux of porefluids migrating through a sample to the volume of carbonate material 

within the sample.  Under low fluid:rock, the δ18Ocarb is vulnerable to change, while the δ13Ccarb 

is less susceptible due to the lower carbon content of the fluids (Banner and Hanson, 1990).  For 

a given flux of diagenetic fluids, siliciclastic-dominated strata with low percent carbonate will 

have their δ13Ccarb and δ18Ocarb signatures more easily altered compared to the same volume of 

carbonate-rich strata.  However, the low porosity/permeability of fine-grained siliciclastics (e.g., 

shales) results in decreased fluid flux, thereby increasing preservation potential of a primary 

isotopic signature in lower %carb strata.  Bulk rock δ13Ccarb signatures can also be altered by the 

addition of pore-filling secondary cement, which adds secondary material to void spaces, rather 
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than sequential equilibration of the bulk rock itself with the diagenetic fluid.  These factors must 

be considered when interpreting δ13Ccarb records in fine-grained lithologies with low carbonate 

contents. 

Most of the formations in this study do not show strong covariation in δ13Ccarb and 

δ18Ocarb (Figure 10) and therefore we find no formation-scale evidence of meteoric diagenesis.  

However, in Trenton Group strata, δ13Ccarb and δ18Ocarb show moderate to strong correlation in all 

wells (r2 = 0.33 to 0.65).  Understanding the origin of the covariation in the Trenton Group 

requires closer examination and we will look at well W3 as an example.  There are three δ13Ccarb 

intervals present in the Trenton Group: the GICE, TR-1, and TR-2.  These intervals are all 

characterized by minimal stratigraphic variability (i.e., scatter) and relatively high values of 

δ13Ccarb, both inconsistent with the variably decreasing δ13Ccarb expected from alteration by 

diagenetic fluids with low δ13C values.  Examining δ18Ocarb values in these three intervals we see 

a general trend toward decreased δ18O values.  This trend, however, is not consistent from well to 

well.  Thus, while the uppermost GICE, TR-1 and TR-2 show consistent δ13Ccarb signatures 

between sections, they are characterized by variable δ18Ocarb profiles.  The low and spatially 

variable δ18Ocarb values and spatially reproducible δ13Ccarb profiles supports diagenetic alteration 

to δ18Ocarb, but not δ13Ccarb (Figure 9).  This is consistent with low water:rock (because δ18Ocarb is 

more easily reset) suggesting that the low scatter δ13Ccarb did not result from homogenization 

during diagenesis.  The simultaneous decrease in both δ13Ccarb and δ18Ocarb in the uppermost 

GICE is merely coincidental because the GICE shows the same decline in other wells (wells W2 

and W1) with no change in δ18Ocarb (Figure 9).  It is the combination of variably altered δ18Ocarb 

values against a changing primary δ13Ccarb trend, rather than diagenetic alteration of δ13Ccarb 

itself, that produces a moderate degree of covariance in each of the three isotopic intervals in  
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Figure 10.  Geochemical cross-plots of well W1 (A), W2 (B), W3 (C), W5 (D-G), W6 (H-K), and core 
C1 (L-N). Western sections have gray background.  Eastern sections have white background. * indicates 
outliers omitted from r2 calculation.  These outliers are shown by arrows. For all isotope values, symbols 
are larger than 1σ long-term average analytical error.  No r2 is given for data sets with n<3.  
 

Trenton Group strata (e.g., Figure 10, well W5: r2 = 0.55).  Further evidence of a low water:rock  
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can be seen in TR-1 of wells W1, W2, and W3 (Figure 9), where δ13Ccarb is consistent while 

δ18Ocarb shows great disparity between wells. 

Another interval of possible isotopic alteration is UT-1. The δ13Ccarb interval UT-1 shows 

an upward decrease in δ13Ccarb from 0‰ to -1.5‰, a parallel decrease in %carb, and constant, but 

low δ18Ocarb (Figures 4,5).  Because δ18Ocarb can be reset under low water:rock (in this case 

“rock” is equivalent to carbonate content), then UT-1 can be plausibly the result of 1) meteoric 

diagenesis under a fixed flux of fluid where strata with lower %carb have lower δ13Ccarb or, 2) 

differential fluid:rock ratios across the strata with a fixed %carb where δ13Ccarb is lower in strata 

where fluid flux was higher.  If δ13Ccarb interval UT-1 is diagenetic in origin, then this unit may 

not represent coeval strata, but instead capture a regionally extensive diagenetic event or episode, 

information which may be useful for other purposes (e.g, reservoir development) beyond 

chronostratigraphic correlation. 

 

6.1.2 δ13Corg & Δ13C 

Another isotopic parameter, δ13Corg, can be used to identify potential alteration of δ13Ccarb.  

This is because organic matter is derived from the local dissolved inorganic carbon (DIC) 

reservoir and is isotopically offset from DIC as a result of biological carbon fixation (e.g., Hayes 

et al., 1999).  The offset is relatively constant when the conditions controlling the source (e.g., 

growth rate, [CO2]aq, Popp et al., 1997) and preservation (e.g., thermal maturity, Des Marais, 

1997) of organic matter are stable, so any variation in δ13CDIC (i.e., what is eventually recorded in 

δ13Ccarb) should appear as a parallel variation in δ13Corg. This, in turn, leads to a constant Δ13C ( = 

δ13Ccarb – δ13Corg; e.g., Kump and Arthur, 1999).  Variations in δ13C can provide constraints on 

possible processes that change δ13Ccarb or δ13Corg signatures.  For example, in the middle of the 
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GICE interval of well W5 (Figure 6), Δ13C increases for ~90ft upsection before returning to a 

relatively stable value of 29‰.  This results from a larger decrease in δ13Corg than δ13Ccarb.  

Meteoric diagenesis should not affect δ13Corg and the stable and high δ18Ocarb values in this 

interval provide further evidence that meteoric diagenesis is unlikely the source of the change in 

Δ13C.  Rather, a short-term change in organic carbon source or composition (with a different 

isotopic fractionation from DIC and therefore a different δ13Corg value) could explain the pattern 

and this explanation has been proposed for strata of similar age in Iowa (Pancost et al. 1999) and 

elsewhere (Pancost et al. 2013). 

 

6.1.3 Stratigraphic Reproducibility 

Consistent δ13Ccarb patterns across multiple locations in a region are deemed 

stratigraphically reproducible.  The lack of regional stratigraphic reproducibility can reveal local 

(diagenetic or primary) overprints on the δ13Ccarb signals. A primary oceanic δ13Ccarb signal will 

be consistent over a large area, whereas the isotopic composition of diagenetic fluids (or a local 

deviation in δ13CDIC) are inherently variable over large distances.  To have stratigraphically 

reproducible diagenetic δ13Ccarb patterns means all locations must have been modified in such a 

way that the combination of (1) the degree of diagenesis and (2) the isotopic signature of the 

diagenetic fluid(s) resulted in the same alteration of the δ13Ccarb signal.  The large local range in 

O and C isotope signatures of diagenetic fluids and the differing lithological properties of the 

rocks in different areas will tend to produce scatter in δ13Ccarb and δ18Ocarb of altered rocks.  The 

inverse, low scatter (particularly in δ13Ccarb) is consistent with a primary oceanic signal, which 

should produce a smoothly changing isotopic record through time.  Intervals BR-2, BR-3, GICE, 

TR-1, and TR-2, show very consistent, smoothly changing δ13Ccarb patterns between sections, 



 
 

104 

strong evidence for a primary signal.   Some δ13Ccarb intervals show minor discrepancies between 

wells (TR-1 of W2, BR-1 of W1), but the overall trends are clear enough to distinguish between 

δ13Ccarb intervals. 

All but one of the δ13Ccarb intervals in this work are characterized by stable, high δ13Ccarb 

values or during positive rather than negative trends.  The single negative interval, UT-1, does 

not carry a stratigraphically reproducible morphology, is found in strata with low carbonate 

abundance and low δ18Ocarb suggesting this interval is the product of alteration.  However, the 

stable Δ13C values in UT-1 suggest alteration is minimal.  There are stratigraphic arguments 

arguing against UT-1 being a correct chronostratigraphic correlation.  The base of the Utica 

Shale is younger in the west (Ruedemann, 1925; Kay, 1937), because of this we would predict 

that the isotopes would not align.  At this time, the primary nature of this interval is unlikely. 

Absence of covariation in geochemical parameters and stratigraphic reproducibility 

cannot prove alteration did not occur; they merely provide no evidence for alteration.  

Conversely, covariation and lack of stratigraphic reproducibility can show areas where alteration 

most likely did occur (e.g. UT-1), an important distinction.  Minor differences in δ13Ccarb for a 

given isotope interval do exist between wells (e.g., small negative shifts in TR-1 of W2) and may 

be the result of primary or secondary overprints to the δ13Ccarb trend, but the larger δ13Ccarb 

patterns (at the scale of 10s-100s of feet) in each interval are sufficient to distinguish them from 

the other δ13Ccarb intervals. 

 

6.1.4 Relationship between color and isotopes in core C1 

Centimeter-scale sampling of light and dark layers (Figures 6,11) in core C1 reveals 

significant color-specific covariation between δ13Ccarb and δ18Ocarb.  Stratigraphically, the 
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intervals TR-1 and TR-2 are clearly defined in the darkest layers of core C1, while interbedded 

lighter layers showed high isotopic scatter as well as δ13Ccarb values higher than observed in other 

wells (Figure 6).  While data from the dark layers cluster together in a δ13Ccarb vs. δ18Ocarb cross-

plot (Figure 11), the lighter layers are arranged along a line that intersects the centroid of the 

samples from the darker layers, a pattern consistent with a linear mixture of two isotopically 

distinct components: a dark primary carbonate phase and a lighter-colored diagenetic carbonate 

component.  Therefore δ13Ccarbvalues obtained from the lighter layers are not representative of 

global (or even basin-wide) δ13Ccarb and should not be used for chemostratigraphic correlation.  

 

 

Figure 11.  Isotopic cross-plots for light (concretionary) and dark samples from core C1.  r2 refers to 
linear least-squares fit. * = one outlier (arrow) omitted from regression calculation.  

 

One possible source for the higher δ13Ccarb values observed in the lighter component is 

precipitation in fluids that were impacted by microbial methanogenesis.  Because methane 

carries a low δ13C value relative to the surrounding dissolved inorganic carbon (DIC) reservoir 

0 

1 

2 

3 

4 

5 

-8 -7 -6 -5 

δ18Ocarb (‰)

δ13
C

ca
rb

(‰
)

= 0.96*r2

Light grey

Dark grey

Samples

Figure 11



 
 

106 

(e.g., Conrad, 2005), methane production leads to an increase in local δ13CDIC if the methane is 

not re-oxidized and returned to the DIC reservoir.  Methanogensis has been argued to be the 

source of high δ13Ccarb values in septarian concretions of the Devonian-aged Marcellus Shale of 

central New York (Siegel et al. 1987).  Some of the lighter beds in core C1 are fossil-poor 

micrite in thin section, display diffuse contacts with darker beds and appear concretionary in 

outcrop (G.C. Baird, 2013, personal communication) suggesting that some of the lighter bands 

may be concretionary or impacted by in situ carbonate precipitation during lithification and/or 

diagenesis.  Widespread, abundant concretions have been observed in the Kope Formation of 

Kentucky and Ohio (Brett et al., 2008), which is partially contemporaneous with the Utica Shale 

of New York.  The high degree of scatter, lack of regionally reproducible δ13Ccarb values or 

vertical trends, and petrographic characteristics of some of the lighter-colored layers is consistent 

with a significant secondary overprint of isotope values and suggests these materials should be 

avoided when correlating. 

The higher δ13Ccarb values in the lighter carbonate layers may explain the origin of the 

heavier than expected δ13Ccarb values in depths 5,350-5,370ft of well W6 (Figure 4) as the lighter 

colored layers correlate lithologically to the higher than expected δ13Ccarb values in W6.  While 

cuttings samples were screened for obvious alteration (e.g. macroscopic spar or pyrite), they 

were not screened by color, so it is possible that these three samples contain the lighter material 

with higher δ13Ccarb values as seen in core C1.  Alternatively, the higher δ13Ccarb values in W6 

could be explained by a local δ13CDIC signal.  Grain specific δ13Ccarb analyses and an increased 

well density could test this hypothesis. 
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6.2 Evaluation of Lithologic Mixing on δ13Ccarb in Cuttings 

Results from the single chip test in well W7 indicate moderate degrees of isotopic 

heterogeneity on a scale smaller than the cuttings sampling resolution (i.e., within a single 

cuttings sampling interval).  Variability in δ13Ccarb of single chips is higher when the baseline 

δ13Ccarb values of bulk cuttings is changing.  This variability is interpreted to result from the 

mixture of stratigraphically varying components within the cuttings sample.  The δ13Ccarb values 

of multiple individual chips approximate the subsample δ13Ccarb values (~0.5g) which in turn 

approximate the bulk δ13Ccarb values of the bulk material (except in cases of strongly varying 

background δ13Ccarb and/or δ18Ocarb signals).  The range of values in δ13Ccarb suggests that only a 

small number of chips (coarse sand and larger) need to be powdered to satisfactorily approximate 

the total sample values. 

In general, the magnitude of δ18Ocarb variability was higher than that of the 

stratigraphically equivalent δ13Ccarb.  This is consistent with the theoretical prediction that 

δ18Ocarb is easier to reset during diagenesis (e.g., Banner and Hanson, 1990).  Small-scale 

variation in porosity and permeability can result in variable δ18Ocarb over the stratigraphic 

interval that a single cuttings sample represents (e.g., 10 ft).  Those materials with higher 

permeability will have more fluids pass through them and therefore are more susceptible to 

alteration of the original δ18Ocarb signal (for a fixed carbonate content).  When picking material in 

a given sample, micritic components seem to have the best potential to record a primary oceanic 

δ13Ccarb signal (e.g., Metzger & Fike, 2013). 
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6.3 Evaluation of Sampling Resolution 

In chemostratigraphic studies, the geographic resolution is set by the lateral well spacing, 

while the temporal resolution is set by the stratigraphic (vertical) sampling resolution.  A high  

stratigraphic sampling density most closely reproduces the evolving marine δ13Ccarb record.  

Cuttings typically average lithology over depths of ~1-10m, while core and outcrop studies only 

average over the width of the drill bit used for sampling (a few mm).  For this reason, at a given 

sampling resolution, chemostratigraphic profiles from cuttings will be smoother than the 

equivalent profiles obtained from cores or outcrops.   As seen in Figure 8, low sampling 

resolution in well W4 dampens the magnitude of isotopic variations and can give the appearance 

of lateral isotopic variability between localities where there is none.  Low sampling resolution 

also obscures the stratigraphic position of distinct isotopic tie points (e.g., the low sampling 

resolution in well W4 is not appropriate for detailed chemostratigraphic correlation).  Similar 

effects of averaging are present in other geochemical records, such as TOC and %carb. This 

stratigraphic averaging is important for calibrating isotopic data against other borehole data such 

as wireline logs (e.g., gamma ray), which more accurately track true depth.  When choosing 

wells for a study, especially across a large range of sedimentation rates, the sampling resolution 

must be sufficient to identify, resolve, and correlate geochemical features of interest. 

 

6.3.1 Summary 

Covariation in isotopic and geochemical parameters can supply one method for 

evaluating diagenetic alteration.  Pairing of δ13Ccarb with δ13Corg can be used to test for meteoric 

diagenesis during negative δ13Ccarb excursions; however, this method is limited by the natural 

variability in organic carbon sources and should be used in tandem with other screening 
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procedures.  Stratigraphic reproducibility of δ13Ccarb trends in closely spaced wells can 

discriminate between basin-wide and local δ13Ccarb signals.  This combined approach helped in 

identifying the diagenetic origin of both high δ13Ccarb (e.g., core C1) and low δ13Ccarb  values 

(e.g., TR-1 in well W2, Figure 9).  Low degrees of scatter and stratigraphic reproducibility of 

δ13Ccarb intervals BR-2, BR-3, GICE, TR-1, and TR-2 strongly suggest these intervals represent a 

primary basin-wide or global δ13CDIC signal.  Analysis within this report suggests that the vast 

majority of the rocks within the interval BR-1 retain the original δ13Ccarb signal, but are variably 

impacted by local diagenetic processes.  It is unlikely that δ13Ccarb values in UT-1 track a primary 

oceanic signal. 

 

6.4 Geologic Implications 

Correlations using δ13Ccarb intervals reveal stratigraphic relationships not apparent using 

gamma ray logs and geologic sampling logs.  For example, the Black River Group can be 

confidently subdivided into 3 chronstratigraphic units based on δ13Ccarb logs.  These 

chronostratigraphic divisions are very similar to divisions that would be made using gamma ray 

logs (except for the uppermost part of the Black River Group in W3, where isotopic data suggest 

variable erosion of the upper Black River strata) and suggest that the environmental change was 

synchronous across the basin.  Conversely, δ13Ccarb interval TR-1 shows the diachronous nature 

of environmental change across the basin as the shaley facies form in the eastern portion of the 

basin first.  Further, δ13Ccarb intervals BR-1, BR-2, and BR-3 show that differences in thickness 

of the Black River Group between sections result mainly from differences in the thickness of the 

upper portion of the Black River (i.e., BR-3).  The fact that BR-3 is proportionally much 

thicker in the well W3 may result from non-deposition or erosion of the uppermost Black 



 
 

110 

River strata in the regions of the flanking wells.  In this interpretation, the top of interval BR-3 

in wells W1 and W2 are truncated and would correlate with the middle of interval BR-3 in well 

W3. This correlation is supported by the fact that the highest δ13Ccarb values in BR-3 are found in 

the upper part of this interval in well W3 and not seen in BR-3 from adjacent wells with a thinner 

BR-3 interval.  An unconformity between the Black River and overlying Trenton groups is 

known in outcrop strata north of the western wells near Lake Erie (Mitchell et al., 2004) and the 

unconformity may extend down to our study area, manifested as variable truncation of the 

uppermost BR-3 interval. 

The δ13Ccarb interval above BR-3 is the GICE.  This interval appears to be fully preserved 

in the western 3 wells examined here (W1, W2, and W3) and mostly present in W5.  This is 

evidenced by the gradual thickening and thinning of the GICE and the preservation of both the 

rise and fall in δ13Ccarb values across the basin.  In eastern New York, either nondeposition 

occured during  GICE-time or erosion subsequently removed GICE strata.  This is shown in 

Figure 9A where δ13Ccarb intervals BR-2, BR-3, and the GICE pinch out between wells W5 and 

W6.  TR-1 sediment accumulation in the eastern wells began immediately following the GICE 

interval, as evidenced by the thick rising limb of interval TR-1 prior to the 1‰ plateau.  If more 

time were missing, the rise in δ13Ccarb would not be captured and would instead appear as a step-

change in δ13Ccarb.  This places tight chronostratigraphic boundaries on the events and factors 

that controlled sedimentation across the basin.  Assuming that sedimentation was restricted in 

eastern New York due to insufficient accommodation space, then new accommodation space was 

created just after the end of the GICE.  The increase in accommodation space likely arose from 

extensional faulting where eastern New York was rapidly thrust downward following the GICE 
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interval.  The tectonic activity shifted the basin depocenter from southwestern New York (near 

well W3) in pre-GICE time to eastern New York (near core C1) in post-GICE time. 

Coupled lithostratigraphy and chemostratigraphy can be used to reconstruct basin 

dynamics.  Figure 9 shows the relative position of the base of the Utica Shale contact 

(lithostratigraphic contact; red wavy line in Figure 9) and top of TR-1 (chemostratigraphic 

contact; top of blue zone in Figure 9). These lines cross as followed from east to west across 

New York State. This relationship demonstrates the time-transgressive nature of the Utica Shale 

contact, where the basal Utica Shale is progressively younger westward across New York.  This 

is in general agreement with interpretations of Brett and Baird (2002) who used 

lithostratigraphic, biostratigraphic, and K-bentonite data to construct their chronostratigraphic 

correlations of outcrops in central and eastern New York. 

 Figure 9B shows two sets of correlations arising from lithostratigraphic (light and dark 

gray shaded backgrounds) and chemostratigraphic methods (colored lines). A detailed 

chronostratigrpahic understanding of the diachronous nature of the lithologic change is made 

possible using the δ13Ccarb data and produces a different depositional history than may otherwise 

be constructed for the Trenton-Utica sequence using gamma ray logs and geologic sample logs 

alone.  Correlations based upon shifts in gamma ray logs and lithologic transitions from 

limestones to shales would suggest more missing strata in eastern New York than the 

correlations based upon δ13Ccarb data. While the time-transgressive nature of the Trenton-Utica 

contact has been identified in previous studies (see Baird and Brett, 2002; Brett and Baird, 2002), 

these studies were done using outcrops with abundant fossils, event beds, and K-bentonites, 

materials which are rare or unavailable in the subsurface.   This agreement suggests δ13C 

chemostratigraphy is a fruitful way to link together subsurface regions and their correlative 
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outcrop belts within a unified chronostratigraphic framework. This study demonstrates the power 

of δ13Ccarb stratigraphy for understanding chronostratigraphic relationships in the subsurface, 

especially across different depositional facies and lithologies (Figure 9B) where biostratigraphy 

may not be practical or feasible. 

 

7. CONCLUSIONS 

The ubiquity of well cuttings and the ability to rapidly analyze large numbers of samples 

for δ13Ccarb, δ18Ocarb, and δ13Corg have created an opportunity to scale-up chemostratigraphic 

studies from a few outcrops and cores to a network of wells to obtain the spatial density needed 

to assemble a high-resolution, basin-wide correlative framework in the subsurface.  The 

sampling of wells in a high spatial density that results in large data sets can be used to resolve 

small (‰-level) changes in δ13Ccarb that may otherwise be ascribed to “noise” when considering 

single sections alone.  Multiple δ13Ccarb intervals can be found within a single formation or 

lithology demonstrating the potential high-resolution correlative power of δ13Ccarb 

chemostratigraphy from large data sets.  We believe this study demonstrates that δ13Ccarb can 

provide robust chronostratigrpahic correlations across thick stratigraphic packages and over large 

lateral distances with small sample volumes and limited labor investments.  δ13Ccarb 

chemostratigraphic may be particularly useful in basins where environmental segregation of 

species during deposition limits the utility of biostratigraphy, such as the Permian Kuff 

Formation of Saudi Arabia (Dasgupta et al., 2001), the Jurassic Arab Cycles of Saudi Arabia (Al-

sharhan and Whittle, 1995), and the Silurian of the Michigan Basin (Mesolella et al., 1974). 

Several points must be kept in mind for a cuttings-based chemostratigraphic study:  
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1) Wells for cuttings-based studies must be chosen carefully based on their maximum vertical 

sampling resolution and the number of available wells in a given area needed to create the 

desired spatial resolution.  Wells with coarse sampling intervals can limit the stratigraphic 

resolutions possible, as well as shift the isotopic values and stratigraphic position of local 

isotopic minima and maxima.  

2) Isotopic analysis of single chips show that only a small fraction (e.g., < 0.5g) of a standard 

cuttings sample must be homogenized to obtain representative isotopic values. 

3) The resulting data must be screened for diagenetic alteration that could otherwise skew 

resulting chemostratigraphic correlations.   In particular, parallel δ13Ccarb and δ13Corg trends are 

strong evidence for a primary δ13C signal in both phases.  Similarly, covariation in δ13Ccarb, 

δ18Ocarb, TOC, and carbonate abundance can be indicators for diagenetic alteration 

4) Diagenetic alteration of a single location cannot be fully assessed without comparison of 

isotopic trends (here δ13Ccarb, δ13Corg, and δ18Ocarb) from multiple sections within a basin because 

traditional techniques for assessing diagenetic alteration (e.g., covariation in δ13Ccarb, δ18Ocarb) can 

also result from primary environmental signals.  Testing for reproducible δ13Ccarb patterns from 

closely spaced wells (“stratigraphic reproducibility”) is a rigorous technique for assessing 

diagenetic alteration at the basin scale. 

 

Chemostratigraphic study of Late Ordovician strata of New York has revealed that:  

1) Consistent with results using biostratigraphic, lithostratigraphic, and event bed stratigraphic 

methods from outcrops in central New York State, the Trenton Group-Utica Shale contact is 

time-transgressive in subsurface regions south and west of the outcrop belt with the basal Utica 

Shale being progressively younger moving west across New York.  This can be seen in the 
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δ13Ccarb composite presented herein for the New York region of the Upper Ordovician 

Mohawkian and Cinncinnatian Series. 

2) The locus of sedimentation shifted from southwestern New York (during the deposition of the 

Black River Group to middle Trenton Group) to eastern New York during deposition of the 

Utica Shale as a result of local tectonic forces likely related to the Taconic orogeny. 
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1. ABSTRACT 

 The Ordovician Period marks the first transition from Greenhouse to Icehouse conditions 

in the Phanerozoic.  This glaciation was previously thought to be confined to the terminal stage 

of the Ordovician, the Hirnantian, but is now believed to start in the penultimate stage, the 

Katian.  The onset of the glaciation is not well understood and may extend back to the Sandbian-

Katian boundary ~10 Myr prior to the Hirnantial glacial maximum.  Different studies have 

offered arguments for early Katian glaciation based on temperature and ice volume proxies, the 

initiation of upwelling zones in Laurentia, contraction of carbonate platforms to more equatorial 

latitudes, widespread erosional unconformities, and shifts from “tropical-type” to “temperate-

type” carbonates.  Here we present stratigraphic data from the subsurface of the eastern United 

States spanning the late Sandbian to early Katian Stages.  Spatial patterns in sediment 

accumulation are consistent with long-term averages for the Ordovician except near the 

Sandbian-Katian boundary where the locus of sedimentation locus shifts basinward briefly 

before moving onto the platform.  The sedimentation pattern is assumed to be controlled by 

changes in sea level.  The interpreted changes in sea level are consistent with sea level curves 
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from other regions of Laurentia, Gondwana, and a eustatic curve.  The regression-transgression 

cycle occurs entirely within the duration of the Guttenberg isotopic carbon excursion (GICE), a 

globally correlated +3‰ event.  U-Pb ages from K-bentonites (altered volcanic ash beds) that 

bracket this excursion in Missouri are used to constrain the depositional cycle to ~400 kyr.  The 

brief duration of the cycle suggests it is not due to long-term sedimentation patterns associated 

with downwarping or extensional faulting in Laurentia.  Rather, it is consistent with a eustatic 

sea level change driven by glaciation.  The stratigraphic trends outlined here along with multiple 

lines of evidence from previous studies are consistent with an early Katian glacial cycle.   

 

2. INTRODUCTION 

2.1 Background 

 The Ordovician Period (444-485 Ma) was a time of extremely high relative sea level, 

which peaked near the Sandbian-Katian boundary ~453.4 Ma (Haq & Shutter, 2008).  Beneath 

the surface of the water some of the largest carbonate platforms of the Phanerozoic were formed 

(Kiessling, 2003).   The vast, shallow oceans served as incubators for marine invertebrates, 

helping drive the greatest biological radiation of metazoa (animals) in Earth history (Webby et 

al, 2004).  The diversification came to a halt at the end of the Ordovician when climatic shift 

brought about the first major glaciation in nearly 140 Myr and the first since the evolution of 

calcifying animals.  Approximately 85% of marine species disappeared from the face of the 

Earth in what would be the first of five major mass extinctions of the Phanerozoic, the 

Hirnantian Extinction (Sepkoski, 1996; Sheehan, 2001).  The temporal association of the 

extinction and the glaciation has been interpreted as a causal link between climate change and 

extinction as ocean temperatures dropped and habitats shrank (Finnegan et al. 2012a).  
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Glaciation and global cooling may also have had profound impacts on the carbon cycle 

(Finnegan et al., 2012b), ocean circulation (Hermann et al., 2004; Pope & Steffan, 2003), and 

weathering (Page et al., 2007; Kump et al., 1999).  Because of this, emphasis has been placed on 

understanding the timing and extent of glaciation (e.g., Frakes et al., 1992; Loi et al., 2010; 

Finnegan et al., 2011; Holmden et al., 2013; Melchin et al., 2013).  The glacial episode known in 

the Hirnantian Epoch is now viewed as the “peak” glacial episode as various lines of evidence 

are converging to suggest low temperatures and initiation of glaciation in the preceding Katian 

(Pope & Read, 1998; Hamoumi, 1999; Pope & Steffan, 2003; Saltzman & Young, 2005; Young 

et al., 2005; Haq & Shutter, 2008; Page et al., 2007; Trotter et al., 2008; Finnegan et al., 2011; 

Rosenau et al., 2012; Elrick et al, 2013; Melchin et al., 2013); however, Katian cooling and 

glaciation does not go unchallenged (Brenchley et al., 1994; Ettensohn, 2010; Quinton & 

MacLeod, 2014). 

 The most direct test for glaciation is the presence of glaciogenic deposits such as 

diamictites, drop stones, tunnel valleys, and glacial pavements.  Unfortunately, the chronological 

constraints on unambiguous glaciogenic deposits remain poor (e.g., Frakes et al., 1992) and we 

are aware of only one study that shows tentative glacial deposits prior to the Hirnantian (Dennis 

et al., 2007).  Early and Middle Katian glaciogenic deposits may not be recorded in the rock 

record as the glaciers are thought to have resided in the interior of Gondwana far removed from 

sedimentary basins (Loi et al., 2010).  Therefore, while some stratigraphic, sedimentological, 

geochemical, and paleontological data may be consistent with glaciation, they do not necessarily 

demonstrate the presence of terrestrial ice.  Here, we detail the existing stratigraphic and sea 

level interpretations for the Sandbian and Katian Stages of Laurentia and discuss how new data 

presented here further supports an onset of glaciation in the Katian.   
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 We employ two main methods of correlation in this study.  Geophysical correlations 

using gamma ray logs allow correlation based on rock composition.  This is done using logs 

acquired in the subsurface (all cuttings locations and some cores) or direct scanning of selected 

cores.  In the interval discussed in this chapter, the gamma ray signal is almost entirely a function 

of K-bearing mineral abundance, specifically K-aluminosilicate clays (unpublished data).  Strata 

high in carbonate produce low gamma ray values while shale- and silt- dominated strata produce 

high values.  K-bentonites show prominent spikes in gamma ray values and are used as time 

planes.  The second method employed for correlation is based on δ13Ccarb values.  δ13Ccarb is a 

time-varying signal that can be used for chronostratigraphic correlations in relative time 

(Chapters 2,3). This method is especially useful for correlation in intervals with few unique 

gamma ray or lithological signals.  Detailed explanation of δ13Ccarb methods can be found in 

Chapters 2 and 3. 

 

2.2 Evidence for Ordovician Glaciation 

 The Late Ordovician glaciation was a high-latitude event that took place near the paleo 

south pole on the Gondwanan paleocontinent (Brenchley, 2004).  In an early summary work, 

Frakes et al. (1992) argued that glaciation began during the Katian or earlier (Figure 1) citing 

glaciogenic deposits, contraction patterns in carbonate deposition from 45° to 30° latitude 

(interpreted as cooling), and ecological shifts recorded in the fossil record to more cold-favoring 

species.  The ages of the glaciogenic deposits have since been revised so that nearly all of them 

fall within the Hirnantian or Lower Silurian (Loi et al., 2010).  Other support for glaciation in the 

Katian comes from a combination of indirect evidence.  Conodont apatite oxygen isotopes 

(δ18OPO4) show an inflection at the Sandbian-Katian boundary interpreted as a shift toward cooler 
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temperatures and/or increased ice volume (Trotter et al., 2008).   However, more recent work on 

conodont paleothermometry in the Katian is contradictory.  Quinton & MacLeod (2014) found 

no evidence for Katian cooling, while Elrick et al. (2013) interpreted δ18OPO4 oscillations in 

mixed shale-limestone facies as cyclic changes in sea water temperature and/or ice volume.  The 

estimated sea level oscillations (<60 m) calculated from Laurentian conodonts (assuming 

changes in δ18OPO4 are derived in part from changes in global terrestrial ice volume) are 

consistent with sea level change estimates based on stratigraphic interpretations from Gondwana 

(25-75 m), the paleocontinent at the south pole that would have hosted the glaciers (Loi et al., 

2010).  Clumped isotope (Δ47) data from carbonates are consistent with the presence of terrestrial 

ice as far back as the early Katian (Eiler, 2007; Finnegan et al., 2011), but are too sparse in this 

interval for firm conclusions.  

 In Laurentia there is a significant lithological shift across the Sandbian-Katian boundary. 

A transition in carbonate composition and texture from the Black River to Trenton Groups is 

interpreted to represent a shift from tropical-type carbonates (sensu Lees, 1975) to temperate-

type carbonates (Holland & Patzkowsky, 1997; Pope & Read, 1998; Kolata et al., 2001; Pope & 

Steffan, 2003; Ettensohn, 2010) based on associations of faunal and compositional 

characteristics of modern carbonates (e.g., Lees, 1975; Nelson, 1988; Jones & Desrochers, 

1992).  The cause of the carbonate transition is thought to be from upwelling of cooler water 

(Kolata et al., 1998; Kolata et al., 2001; Pope & Steffan, 2003) or, in the absence of upwelling, a 

drop in seawater temperature.  A dramatic increase in the abundance of phosphorite and chert 

deposits in Laurentia has been interpreted as the birth of an upwelling zone (Pope & Steffan, 

2003), which results from increased ocean circulation and the growth of downwelling zones on 

the edges of glaciated continents (Schlesinger, 1996).  Upwelling may also be driven by 



 
 

128 

tectonism where changes in basin topography in epeiric seas facilitates the upward movement of 

cool, deep ocean water (Ettensohn, 2010).  The deposition of black shales found in the lower 

Katian is also hypothesized to represent a drop in the vigorousness of ocean circulation possibly 

from deglaciation (Page et al., 2007; Melchin et al., 2013).  The development of less oxygen-rich 

facies, such as black shales, could also arise form tectonic activity, where sills and mountain 

ranges formed during orogenies inhibit circulation atop the craton (Lehmann et al., 1995; 

Ettensohn, 2010).   

 Other indicators of glaciogenic sea level change may be found in stratigraphic surfaces.  

A craton-scale unconformity separates the Black River and Trenton Groups and has been 

interpreted as a significant drop in relative sea level (Kolata et al., 1998).  This Laurentian sea 

level lowstand is roughly contemporaneous with a Gondwanan lowstand (Loi et al., 2010), but 

age-calibration for Gondwanan locations is currently inadequate to establish firm conclusions.  

The coincident occurrence of significant lithological, paleontological, and geochemical change 

unambiguously shows that major environmental shifts are occurring, but the exact cause of this 

change is inconclusive and remains contested. 

 

2.3 Study Region Geology 

 In general, the major structural features of the Taconic Foreland Basin that influenced 

sedimentation patterns, such as basin orientation, are associated with reactivated basement faults, 

crustal topography, and downwarping during the Taconic Orogeny (Lehmann et al., 1995; 

Ettensohn, 2010).  The orogeny was largely a compressional event with the collision of island 

arcs in the eastern edge of Laurentia (van Staal & Baar, 2012; Macdonald et al., 2014), but 

extensional faulting was also present in New York resulting from lithospheric flexture distal to 
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the collision zone (Lehman et al., 1994). During the majority of the study interval, the 

accumulation of sediments was most rapid in the foreland basin sections where sediment loading  

 

Figure 1. A) Chronostratigraphic relationships between δ13Ccarb and terrestrial ice in the Ordovician.  
δ13Ccarb and timescale modified from Bergström et al., (2009) to include revised upper Sandbian-lower 
Katian δ13Ccarb and U-Pb age data (Chapter 3).  Guttenberg excursion (GICE) and Hirnantian isotope 
excursion (HICE) highlighted in yellow.  Ice represents confirmed glaciogenic deposits (solid) and 
tentative (dashed) glacial presence (based on Frakes et al., 1992; Salzmann & Young, 2005; Loi et al., 
2010; Finnegan et al., 2011).  Research interval for this work bracketed by dashed lines and shown in (B).  
Sil = Silurian, L = Lower, R = Rhuddanian. B) Selected interval for this study showing relationship 
between stratigraphic units, generalized lithology, and δ13Ccarb for foreland basin deposits in Laurentia. 
 

drove the highest subsidence rates (Figure 2).  Most areas, with the exception of the most rapidly 

subsiding portions of the foreland basin, show a prominent unconformity (the “Knox” 

unconformity) that separates the Lower Ordovician with the Middle and Upper Ordovician 

(depending on location) and is tectonic in origin (Ettensohn, 1994).  Above the Knox 

Unconformity, the lowermost unit in the study, the Black River Group, is nearly a kilometer 
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thick in eastern West Virginia (Patchen et al., 2006) and a few hundred meters thick in the 

interior platforms.  The overlying unit is the Trenton Group carbonates.  The Trenton Group is 

~100 m in much of the study region. The transition to darker, more argillaceous Trenton strata 

above the Black River began earlier in the more basinal sections (Lehmann et al., 1995).  

Following deposition of the argillaceous Trenton Group carbonates, the Utica Shale completes 

the transition to fully silicilastic strata (Figure 1) and is thought to represent a decrease in oxygen 

availability (e.g., Baird & Brett, 2002).  The onset of Utica Shale deposition is known to be 

diachronous, where the base of the unit is younger to the west (i.e, landward; Ettensohn, 1994; 

Baird & Brett, 2002; Brett & Baird, 2002; Chapter 3).  Siliciclastic deposition dominated eastern 

Laurentia for the rest of the Ordovician (Swezey, 2008). 

 K-bentonites are frequently deposited in the Late Ordovician (Kolata et al., 1996).  These 

ash beds often contain zircons, which can be radiometrically dated using the U-Pb decay series. 

These zircons are thought to crystallize shortly before eruption so that their calculated U-Pb age 

is equivalent to their age of deposition.  This allows bentonites to be used as indicators of 

absolute age.  Because δ13Ccarb can be used as a relative chronostratigraphic tool, the coupling of 

K-bentonite beds with strong δ13Ccarb signals allows K-bentonite ages to be confidently 

extrapolated to areas outside of where they were collected or deposited.  Quantitative 

sedimentation rates can be then calculated in areas without radiometric ages.  The concentration 

of zircons in K-bentonites is sufficiently low that it requires a large sample size to obtain 

sufficient quality zircons also, bentonites are difficult to identify in cores that have not 

undergone surface weathering.  This precludes the use of cuttings and most cores for this age 

dating method, which leaves outcrops as the only viable option.  Eastern Missouri is an ideal 

study region because it contains both the entirety of the GICE as well as bentonites before, 
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during, and after the excursion.  Two sections are described in detail in Chapter 2 and were 

chosen for K-bentonite sampling.  The reader is referred to this work for detailed geological and 

geochemical discussion. 

 
Figure 2.  Generalized facies of study region during latest Sandbian to early Katian time (after Keith, 
1986; Patchen et al., 2006).  Study locations are cores (squares), cuttings for geophysical and δ13Ccarb 
correlation (diamonds), cuttings for geophysical correlation (triangles), and outcrop (star) used for δ13Ccarb 
correlation.  Grey scale represents general depth and color of samples.  Platform regions have highest 
carbonate content. 
 

3. METHODS 

3.1 Stratigraphic Methods 

 Most geophysical well logs, cuttings samples, and cores were obtained from publicly 

available wells and cores at the New York, Pennsylvania, Ohio, and West Virginia state geologic 

surveys.  Cuttings and core were were donated from Range Resources and EQT while Smithstrat 

LLC donated data.  Three cores were scanned for gamma ray analyses at the Ohio State 
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Geological Survey using a CoreLab Instruments Spectral Gamma Logger (Model SGL-300).  

Cross sections and isopachs were made using Petra™.  δ13Ccarb correlations were based upon the 

δ13Ccarb timeline in Chapter 3.  Cross sections only include wells with robust δ13Ccarb correlations. 

For isopach maps constructed using δ13Ccarb, wells with noisy, insufficient, or absent δ13Ccarb 

records were only correlated when δ13Ccarb and lithologic signals were tightly coupled in nearby 

locations, which resulted in the exclusion of some locations.  Such lithologic tie points include 

K-bentonites, which can be easily traced across closely spaced wells. 

 

3.2 Sample collection 

 The average cuttings sample interval was 10 ft. (0.91 m) and the range was from 1-20 ft.  

Approximately 2 g of material was collected for each cutting sample, but this varied depending 

on availability.  When necessary, cuttings were washed to remove remnants of drilling mud.  A 

representative fraction of the cuttings was then selected for powdering.  Obvious diagenetic 

material and large fossils were removed by hand (e.g., spar, oxidized pyrite, brachiopod 

fragments) when possible.  Some cuttings were too fine-grained to filter manually and the 

relative abundance of materials (e.g., color, spar, oxidized Fe) was qualitatively assessed and 

noted.   Cuttings were crushed using a carbide or ceramic mortar and pestle. Each core was 

drilled every 5 ft. (1.5 m) when possible and different textures and materials (e.g., fossil, matrix, 

clasts, spar) were occasionally sampled to identify diagenetic alteration.  Cores were drilled 

using a carbide drill bit ~0.5-2 mm in diameter and ~10-100 mg of sample was collected. 

 K-bentonites were identified in the field based on lithologic features and stratigraphic 

position.  Bentonites were unlithified, off-white clays that would stain a deep orange when 

coated with oxidized iron.  Bentonites were collected across single, continuous beds.  Fresh 
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material was exposed manually by scraping away bentonite coated by oxidized iron (Figure 3).  

1-10 L were collected for zircon isolation using fresh gloves for each sample to avoid any cross 

contamination. 

 

 

Figure 3.  Millbrig K-bentonite at location Highway MM (see Chapter 2 for map).  Oxidized iron (likely 
from pyrite) bounds the upper and lower portions of the bed.  Lack of staining indicates minimal exposure 
to oxidizing fluids.  Green shale bounding bentonite is Glencoe Shale (Chapter 2, Figures 1,4).   Hammer 
head is 18 cm. 
 

3.3 Carbon and oxygen isotope methods 

 Carbonate carbon (δ13Ccarb) and carbonate oxygen (δ18Ocarb) analyses were analyzed on a 

Gas Bench II attached to a Delta V Plus or a MAT 252 isotope ratio mass spectrometer at 

Washington University in Saint Louis.  Data were corrected by comparison to international 

isotope standards NBS-18, NBS-19, and LSVEC and/or in-house standards calibrated to the 

international standards.  Most samples were run on the Delta V Plus where long-term 
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reproducibility (1σ = 1 standard deviation) for multi-day replicates was 0.09‰ and 0.12‰ for 

δ13Ccarb and δ18Ocarb, respectively.  Long-term reproducibility for multi-day replicates on the 

MAT 252 was 0.11‰ and 0.26‰ for δ13Ccarb and δ18Ocarb, respectively. 

 

3.4 Zircon methods 

 Bentonites were processed for zircon isolation at the Bowring Isotope Geochronology 

Lab at the Massachusetts Institute of Technology.  Separation of clays from denser material was 

done by suspending clay particles in a beaker and washing them over the top by continually 

cycling fresh water.  Solids were dried under a heat lamp for 1 hour.  Heavy-mineral 

concentrates were obtained using heavy-liquid separation.  Zircons were isolated manually under 

a light microscope.  Preference was given to prismatic zircons with elongated glass inclusions 

(Figure 4).  Zircons were chemically annealed using the method of Mattinson (2005) to 

preferentially dissolve high-U zones that are the most vulnerable to radiation damage and Pb-

loss, which would result in dischordant ages.  Annealing was done in a 900°C furnace for 60 

hours.  Zircons were loaded into FEP Teflon® capsules and leached in 29M HF in high-pressure 

Parr® vessels at 210°C for 12 hours leaving the samples partially dissolved.  Zircons are then 

transferred to Sallivex® FEP beakers and successively exposed to 4N HNO3 and 6N HCl on a 

hot plate inside of an ultrasonic bath.  Samples were rinsed with ultra-pure deionized water 

between acid rinses.  Clean zircons were loaded intro microcapsules and mixed with a 205Pb-

233U-235U spike (EARTHTIME ET535) and completely dissolved in 29M HF at 210°C for 48 

hours. 

 Pb and U were separated using ion-exchange chromatography modified from Krogh 

(1973).  For each sample, U and Pb isolates were loaded together with a silica gel-H3PO4 



 
 

135 

solution onto a single degassed Re filament.  U and Pb isotope abundances were measured on a 

VG Sector 54 multi-collector thermal ionization mass spectrometer.  Pb measurements were 

made using a peak-hopping mode by ion counting with a Daly photomultiplier detector.  U 

isotopes were measured as U-oxide ions on three Faraday detectors in static mode.  Pb/U ratios 

were corrected for initial Th/U ratios in magma.  Data reduction and error propagation were done 

using Tripoli and U-Pb_Redux applications as part of EARTHTIME (Bowring et al., 2008; 

McLean et al., 2008).  Mean weighted 206Pb/238U ages are taken from coherent clusters of the 

youngest ages obtained. 

 

 

Figure 4.  Zircons (pre-annealing) under reflected light [70x mag.].  Sample shown is Deicke K-bentonite 
from New London.  Prominent examples of glass inclusions are shown with arrows. 
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4. RESULTS 

4.1 δ13Ccarb stratigraphy 

 4,697 unique samples were analyzed for δ13Ccarb and δ18Ocarb from 53 locations (see 

Appendix for data tables).  These data were combined with data from Chapter 3 and from 

unpublished data (personal communication, T. Smith) for a total data set of ~7,000 δ13Ccarb and 

δ18Ocarb values.  Isopach maps were constructed for δ13Ccarb time slices using the least squares 

method in Petra™ (Figure 5).  This visualizes sediment thickness through time based on δ13Ccarb 

intervals (Chapter 3).  Sediment accumulation during deposition of the Black River and lower 

Trenton Group was greatest in the most basinal part of West Virginia.  The locus of 

sedimentation shifts northeast to Pennsylvania during the deposition of the upper Trenton (Figure 

5E) and continues to migrate northeast into New York.  Another area of prominent sedimentation 

appears in the Ohio-West Virginia border region (Figure 5F).  The sedimentation locus then 

shifts to eastern New York overlaying areas of known extensional faulting (Figure 5G).  

Sedimentation then moves landward into the argillaceous basins of Ohio and onto the Trenton 

Platform at the close of the Trenton-Utica transition (Figure 5H). 

 A cross-section through West Virginia and southeastern Pennsylvania reveals shifts in 

sedimentation locus on a finer scale (Figure 6).  Sedimentation is relatively even through 

deposition of the Black River Group and shifts basinward during the lower-mid GICE.  

Sedimentation then becomes highest in the most landward sections at the end of the GICE and 

subsequent TR-1 interval.  Location M244 suggests sedimentation moved basinward again 

during TR-2, but this trend is not reproduced in the other basinward sections and may be the 

result of local diagenetic alteration (see Chapter 3). 
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4.2 Zircon geochronology 

 Zircon ages were obtained for 7 different K-bentonite beds at two locations in Missouri, 

USA (Table 1).  Internal analytical uncertainty averaged 0.13 Ma.  Deicke and Millbrig ages are 

within 2σ uncertainty between sections.  The Deicke and Millbrig are also indistinguishable from 

one another at each location.  M-2, a bed just above the Millbrig at New London is also 

indistinguishable from the Millbrig.  At Highway MM, the KLKB-1 and House Springs K-

bentonites are calculated be 0.24 and 0.49 Ma years younger than the Millbrig, respectively.  The 

Millbrig K-bentonite is found stratigraphically just below the Guttenberg δ13Ccarb excursion, the 

KLKB-1 K-bentonite is located near the peak, and the House Springs K-bentonite is found just 

above (Figure 7).  Sedimentation rates were calculated for each section (Figure 8). 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 5. Isopachs (in feet) of δ13Ccarb intervals. Generalized δ13Ccarb reference curve is plotted alongside 
generalized lithological changes for Taconic Foreland Basin.  Each δ13Ccarb interval is represented by a 
capital letter where the GICE is found in D-F.  * = measured ages while other ages are extrapolated based 
on calculated sedimentation rate. 
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Figure 6. Landward (left) – basinward (right) transect across West Virginia and southwestern 
Pennsylvania.  Colored zones represent δ13Ccarb intervals from Chapter 3.  W351 is a composite of solid 
rock core and well cuttings sampling (see Appendix).  M593, 24659, M244, and H12 are cuttings.  DR is 
“Dolly Ridge” outcrop section of Young et al., (2005).  GR = gamma ray data in API units.  δ13Ccarb in 
units of ‰ relative to Vinnna Peedee Belemnite (V-PDB).  δ13C data can be found in Appendix. Bk = 
Beekmantown and is Lower to Middle Ordovician in age. 
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Figure 7. Missouri sections sampled for K-bentonites and their calculated mean ages with X internal 
uncertainty (2σ, Table 1).  KLKB-1 and House Springs K-bentonites at New London are thought to 
correlate with beds of same name at Highway MM based on stratigraphic position.  At New London, both 
represent thin (≤ 1 cm) shale beds.  An insufficient number of zircons for analysis were obtained for 
KLKB-1 at New London, possibly indicating it represents a different bentonite (or a non-bentonitic 
horizon) than KLKB-1 at Highway MM.  Not enough material from the House Springs K-bentonite at 
New London was able to be collected for zircon isolation.  The Guttenberg excursion at Highway MM 
may actually begin at the Millbig K-bentonite and is shown in light yellow (see Section 5.1). 
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Table 1.  Age results for K-bentonites. HM = Highway M, NL = New London.  X = internal (analytical) 
uncertainty in the absence of all external or systematic errors; Y = incorporates the U-Pb tracer calibration 
error; Z—includes X and Y, as well as the uranium decay constant errors. MSWD = mean square of 
weighted deviates. n = number of zircon analyses included in the calculated date.   Comparison with U-Pb 
dates obtained using different tracers or different isotopic chronometers (e.g., 40Ar-39Ar) requires Z error.  
Internal comparison for this study requires only X error. 
 

 

Figure 8.  K-bentonite bed heights plotted versus time.  Height is given as distance above reference 
bentonite.  Sedimentation rate given in boxes for different combinations of bentonites.  Error bars 
represent 2σ internal analytical uncertainty (X-type).  D = Deicke, HS = “House Springs”, M = Millbrig.  
Reference bentonite for Highway MM is Deicke (black) or Millbrig. Using either the Deicke or the 
Millbrig as the reference bed results in ~26% difference in slope at Highway MM and a ~5% difference at 
New London.  House Springs bentonite age at New London is taken from Highway MM because the 
House Springs bentonite was too small to be sampled for zircons.  KLKB-1 at New London may not 
correlate with KLKB-1 at Highway MM so the sedimentation rate was calculated using an alternative 
correlation (KLKB-2).  Using the mean height of the Deicke and Millbrig (beds with identical ages) and 
either KLKB-1 or KLKB-2 results in a <2 % difference in slope. 
 

5. DISCUSSION 

5.1 K-bentonite Ages 

 The high-resolution ages obtained from zircons sampled in Missouri are within external 

uncertainty (Z-type) of existing published values for the Deicke & Millbrig (Tucker et al., 1990; 

Table x  
Summary of calculated U-Pb dates and their uncertainties 
 
 
 
 
 

Sample Section 206Pb error (2σ) 
  238U 

Date 
(Ma) X Y Z 

MSWD n 

M-2 New London 453.37 0.13 0.23 0.54 0.68 5 
Millbrig New London 453.36 0.11 0.22 0.53 1.4 7 
Deicke New London 453.44 0.12 0.22 0.53 0.55 6 

House Springs Highway MM 452.85 0.13 0.23 0.54 0.31 5 
KLKB-1 Highway MM 453.10 0.17 0.26 0.55 0.70 5 
Millbrig Highway MM 453.34 0.14 0.24 0.54 0.49 4 
Deicke Highway MM 453.34 0.10 0.22 0.53 0.19 6 

        
 
 
 
 
 
Note:  
Sample locations are shown on Figure x; HM—Highway M, NL—New London. 
X—internal (analytical) uncertainty in the absence of all external or systematic errors; Y—incorporates the 
U-Pb tracer calibration error; Z—includes X and Y, as well as the uranium decay constant errors. 
MSWD—mean square of weighted deviates. 
n—number of analyses included in the calculated date.  
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Sell et al., 2013); however, the age obtained for the Deicke is ~1 Myr younger than previously 

calculated (Tucker et al., 1990).  This may be due to changes in instrumentation, lab techniques, 

and international standard calibration. The Millbrig K-bentonite is most closely associated with 

the lower bound of the GICE. We discuss the following ages in the context of an internally 

consistent data set of bentonite ages rather than extrapolate to all purported Deicke and Millbrig 

beds across Laurentia (Kolata et al., 1987; Sell et al., 2013).  The duration of the GICE is 

calculated to be ~370-450 kyr using sedimentation rates for Highway MM and New London, 

respectively.  At Highway MM, the GICE duration was calculated assuming the top of the 

Millbrig is the base of the GICE.  At Highway MM, the base of the GICE is in heavily altered 

rocks in which the initial δ13Ccarb rise is believed to be obscured by diagenesis.  For the purposes 

of this manuscript, an intermediate value of 400 kyr was chosen as the duration of the GICE. The 

most important distinction is that the different sedimentation rates all still produce an excursion 

that is hundreds of thousands of years in duration. This duration can be used to help constrain the 

mechanisms driving changes in sedimentation during the study interval. 

 

5.2 Correlations and sea level 

 The δ13Ccarb intervals of Chapter 3 that were established in the foreland basin strata of 

New York State were readily identifiable across the southerly portions of the foreland basin 

(Figure 6), as expected for widespread and relatively continuous deposition across the foreland 

basin.  In the interior sections, some intervals were condensed or absent, namely the lower 

portions of the GICE (Figure 5).  This is consistent with previous subsurface correlations using 

geophysical data that suggest the lower portion of the Trenton Group in Ohio is missing (Kolata 

et al., 1998).  The shallow-to-deep transect across West Virginia (Figure 6) shows a prominent 
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shift in sedimentation locus during the GICE.  The lowermost portions of the excursion are 

thickest in the deeper sections and increasingly condensed in the shallower sections.  The 

uppermost limb of the GICE shows the reverse trend and is thickest in shallower sections.  This 

oscillation is a departure from the background trends in sedimentation, both at the scale of the 

Black River δ13Ccarb intervals and at the scale of whole formations (Patchen et al., 2006), which 

show consistently thicker deposits in the more basinal sections.  If this pattern of shifting 

sedimentation locus during the GICE is related to sea level then sections in the interior carbonate 

platform should only preserve the top portion of the GICE, if any all.  This pattern is observed in 

multiple regions in Kentucky where only the top part of the GICE is preserved (Figure 5; Coates 

et al., 2010).  This is also observed in Ohio (Figure 5).   

 Sediment accumulation rate is related to sea level because sea level can change 

accommodation space, which is the vertical distance that sediment can accumulate without being 

suspended and carried away by waves or currents.  Accommodation space decreases when sea 

level falls, during uplift, or when sedimentation is faster than subsidence.  Accommodation space 

increases when sea level rises or subsidence outpaces sediment supply.  Subsidence is often the 

main control on accommodation space over long time scales (≥ 106 yrs) or within active tectonic 

areas, such as zones of extensional block faulting (Coe et al., 2005).  Eustatic sea level change 

can become the dominant control on accommodation space at shorter time scales.  Assuming 

sediment deposition is a function of sea level, then shifts in the locus of sedimentation can be 

used to infer changes in sea level.   

 A descriptive model was constructed to illustrate how the region of sediment 

accumulation would change over time with shifting sea level (Figure 9).  The model begins with 

fairly even sediment accumulation rates across the basin, consistent with long-term trends 
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(Patchen et al., 2006).  During the GICE, the shift in sedimentation locus can be interpreted as an 

initial fall and then subsequent rise in sea level.  Sedimentation during the intervals following the 

GICE largely continues the pattern associated with sea level rise.  This is manifest in the isopach 

map as a shift in depositional locus from the foreland basin to the platform (Figure 5).  The 

change in sea level during δ13Ccarb interval TR-1 is somewhat ambiguous, but trends during the 

intervals just before the GICE and after TR-2, are much less so.  A sea level curve can then be 

generated for the foreland basin sections (Figure 10), broadly consistent with other Taconic 

Foreland Basin sea level curves (Patzkowsky et al., 1997) and some (Haq & Shutter, 2008), but 

not all eustatic reconstructions (Munnecke et al., 2010).  The regression-transgression pattern 

observed in the GICE is consistent with that proposed in the Tennessee carbonate platform 

regions (Holland & Patzkowsky, 1998).  Our sea level curve is also consistent with that proposed 

for parts of Gondwana (Loi et al., 2010), but not Baltica (Munnecke et al., 2010). Correlations at 

this temporal resolution across continents are difficult, as radiogenic ages for K-bentonites have 

not produced sufficiently similar or precise ages for supposedly equivalent eruptions (Min et al., 

2001; Sell et al., 2013). 

 

 

 

 

 

Figure 9. Descriptive depositional model showing relationship between relative rate of sediment 
accumulation (black bars) over time in a simplified low-angle basin.  (A) is youngest interval and model 
time corresponds to highlighted portion of the δ13Ccarb curve.  A) TR-1 up to TR-2, B) falling limb of 
GICE, C) base of GICE up falling limb, D) δ13Ccarb intervals are BR-1 to 3.  FWB = fair-weather wave 
base, SWB = storm wave base. 
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Figure 10.  Proposed generalized sea level curve for the Taconic Foreland Basin based on δ13Ccarb and 
lithological correlations.  δ13Ccarb intervals from Chapter 3.  In general, the GICE represents an initial 
regression and subsequent transgression.  Transgression continues through the Utica Shale, but is less 
clear in δ13Ccarb interval TR-1 (Figure 5F-G).  For sea level curve, (1) is drawn for southerly parts of 
foreland basin (Figure 6), and (2) is drawn for northern parts (Figure 5G).  Spatial differences in 
deposition in TR-1 in different parts of the foreland basin may reflect local differences sedimentation 
supply and/or subsidence rate that overprint the eustatic rise. 
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5.3 Driver of sea level change 

 The prominent bi-directional shift in sedimentation locus during the GICE can be 

constrained to take place within ~400 kyr.  If the cycle is caused by changing sea level, then we 

must propose a mechanism that can both lower and raise sea level in less than half of a million 

years.  Processes in the solid Earth (such as mantle convection) that drive craton-scale 

subsidence operate on time scale of 106-109 years (Conrad, 2013).  Ettensohn (1994) argues that 

the major controls on basin development and sedimentation in Laurentia are tectonogenic and 

that these processes may be cyclic on the scale of ~5 Myr.  The GICE sea level shift (~400 kyr 

cycle) is too brief to be caused by tectonic processes such as downwarping and foreland bulge 

migration (Ettensohn, 1994) .  Even if migration of a foreland bulge was rapid, the predicted 

trends in sedimentation are different than those observed in Figure 6.  However, tectonic activity 

is clearly expressed in some areas.  Extensional faulting immediately following the GICE in New 

York (Figure 5G) results in a dramatic shift in deposition rates over short distances, in agreement 

with field-based studies in the same region (Baird & Brett, 2002).  This pattern is not consistent 

with the trend observed in Figure (6) in the southerly parts of the foreland basin.  If the gradient 

in sediment accumulation rate along the transect was due to a similar gradient in subsidence, then 

the faulted blocks would need to be infilled within a few hundred thousand years.  We cannot 

exclude this as a possible mechanism, but the large distance (hundreds of kilometers), short 

duration, and similarity in sea level curves from other regions (Patzkowsky et al., 1997; Holland 

& Patzkowsky, 1998; Saltzman & Young, 2005) suggest a short-lived, long-distance period of 

differential subsidence is not likely the driving mechanism for the observed sedimentation 

patterns.  The progradational-retrogradational cycle coincident with the GICE also appears to be 
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anomalous within the older Late Ordovician sediment accumulation patterns, which show stable 

long-term patterns through the Sandbian (Patchen et al., 2006). 

 Glaciation is known to drive short-lived (103-105 yr) sea level changes (Conrad, 2013).   

The duration of the sea level cycle is ~400 kyr, consistent with the period of Earth’s orbital 

eccentricity (413 kyr).  Orbitally forced glacial cycles are thought to drive the Pleistocene 

glaciations (Imbrie et al., 1993), but the periodicity of glacial cycles does not always correlate 

with a prominent Milankovitch cycle frequency and may depend in part on ocean circulation 

patterns or indirect responses to orbital forcing (Imbrie et al., 1993).  No attempt is made here to 

analytically assess Milankovitch-like orbital forcing as this is beyond the scope of this study.  

Others have asserted that meter-scale cycles in siliciclastic strata represent 400 kyr cycles in the 

Katian (Loi et al., 2010).  These workers constructed a backstripping model with astronomically 

calibrated sediment cycles that agrees with the long-term eustatic sea level curve proposed for 

the Katian (Haq & Shutter, 2008) and the curve proposed here.  Whether or not the backstripping 

model is an accurate representation of true sea level change is debatable, but the convergence of 

similar sea level curves from vastly different regions using different methods suggests that the 

general trend of falling and subsequent rising sea level during the early Katian is real. 

 Numerous arguments using different approaches have been put forth invoking seawater 

cooling and/or glaciation near the Sandbian-Katian boundary (e.g., Frakes et al., 1992; Pope & 

Read, 1998; Pope & Steffan, 2003; Saltzmann & Young, 2005; Young et al., 2005; Trotter et al., 

2008).  The dramatic increase in the deposition of phosphorites and cherts at this time is thought 

to derived from upwelling of cooler, nutrient-rich ocean water, a phenomenon that is interpreted 

as representing increased vigor of ocean circulation during glacial periods.  Alternatively, 

upwelling waters could stem from a deepening of a cratonic trough to a depth sufficient to 
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become connected with cool, open ocean waters (Ettensohn, 2010).  However, others have 

argued that sustained, long-distance upwelling is unrealistic (Page et al., 2007).  Therefore, while 

phosphorite and chert deposition is consistent with recent upwelling during glaciation and 

thought to be coincident with the GICE, no clear mechanism is agreed upon that can bring cool, 

nutrient-rich water over such a large area and long period of time. 

 In a review of Ordovician and Silurian black shales, Melchin et al., (2013) argue that the 

prominent glacial episodes of the Late Ordovician and Early Silurian are followed by extensive 

black shale deposition.  This includes black shale deposition in the early Silurian following the 

terminal Ordovician (Hirnantion) glaciation.  The deposition of black shales has been interpreted 

to represent a decline in ocean circulation and an advance of oxygen-poor water into the cratonic 

seas during warming and deglaciation (e.g., Page et al., 2007).  Deposition of the Utica Shale is 

diachronous across Laurentia with the base of the unit being progressively younger towards the 

continental interior.  Deposition likely started around the Sandbian-Katian boundary (base of the 

GICE) in the most basinal areas and become widespread across much of eastern North America 

following the GICE (Patchen et al., 2006). This pattern in black shale deposition seems to be in 

general agreement with patterns summarized by Melchin et al. (2013), but black shales could 

form in other ways.  Ettensohn (2010) argues that the closing phase of the Taconic Orogeny 

could have resulted in restricted and isolated basins due to sill formation and basin closure 

during uplift.  Black shales are also known to occur in eastern North America during two other 

major orogenic phases in the Paleozoic (Ettensohn, 1994).  The sedimentological shift from 

carbonate to black shales and changing sea level proposed here are broadly consistent with the 

deglacial black shale theory reviewed by Melchin et al., (2013).  This does not exclude a tectonic 

(or other) origin for black shales, but it does show a similar relationship between sea level 
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change and black shale deposition for the early Katian and the Hirnantian, a confirmed glacial 

interval. 

 Temperature and sea level proxies are somewhat contradictory during the Katian.  Trotter 

et al. (2008) noticed a long-term increase in δ18OPO4 interpreted as declining seawater 

temperatures beginning at the Sandbian-Katian boundary.  Elrick et al., (2013) argue that the 

changes in δ18OPO4 in mixed carbonate-siliciclastic sequences are cyclic and likely orbitally 

forced.  They ascribe the changes in δ18OPO4 to combined shifts in temperature and ice volume. 

Quinton & MacLeod (2014) argue, however, there is no statistical evidence for an increase in 

δ18OPO4 through the Katian, in direct disagreement with Trotter et al. (2008).  Quinton & 

MacLeod also identify taxon-specific offsets in δ18OPO4.  More comprehensive spatial sampling 

of conodonts in more continuous sections may elucidate the current discrepancies in δ18OPO4 

records.  Similar treatment of δ13Ccarb was able to resolve apparent spatial offsets in isotope 

values (Chapters 2,3) suggesting that diagenesis or miscorrelation between sections may be a 

current confounding factor for interpreting the δ18OPO4 record.  Clumped isotope (Δ47) data for 

the Katian are consistent with the presence of terrestrial ice (Finnegan et al., 2011), but there is 

only one sample in the early Katian, preventing any strong conclusions.  We interpret the 

temperature records as ambiguous in their current state. 

 

6. CONCLUSIONS 

 The depositional pattern observed during the study interval is consistent with a eustatic 

sea level change driven by a glacial cycle.  Various other sedimentological, geochemical, and 

paleontological trends are also consistent with, but not unique to, cooling and/or glaciation and 

some evidence is contradictory (e.g., δ18OPO4).  Many geochemical and geological signals in the 
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early Katian appear to be similar, but less dramatic versions of the same signals seen in the 

Hirnantian.  The erosional unconformity at the base of the Katian-aged Trenton group, which 

could represent sea level fall during initial glaciation, is not as severe an unconformity as the one 

at the base of the Hirnantian.  This is in agreement with the estimated sea level drop during the 

early Katian being lower than that during the Hirnantian (Haq & Trotter, 2008; Loi et al. 2013).  

The inferred temperature and/or ice volume changes in the early Katian are smaller in magnitude 

than those calculated for the Hirnantian (Finnegan et al., 2011; Elrick et al., 2013).  Similarly, the 

extinction event at the base of the Katian is minor compared to the Hirnantian (Shourd, 1972; 

Webby et al., 2004).  It appears that if glaciation occurred in the early Katian, then it was less 

severe than that of the Hirnantian glacial maximum. 

 The key points of this chapter are: 

1. Seven high precision U-Pb ages were obtained for K-bentonites in two Late Ordovician 

locations in Missouri, USA.  The Deicke and Millbrig beds are analytically 

indisinguishable at 453.40 ± 0.11 and Ma  452.35 ±0.13 Ma, respectively. 

2. The stratigraphic position of K-bentonites ages is consistent with a linear sedimentation 

rate during the Guttenberg isotopic carbon excursion (GICE) in Missouri.  The duration 

of the GICE is estimated to be ~370-450 kyr with a preferred intermediate duration of 

400 kyr. 

3. Cross-sections and isopachs based on δ13Ccarb correlation reveal a major shift in 

sedimentation locus during the latest Sandbian-early Katian.  This is interpreted as a rapid 

shift in sea level.  The sea level curve proposed within is generally consistent with other 

Laurentian and Gondwannan sea level curves, as well as the eustatic curve of Haq & 

Shutter (2008). 
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4. The stratigraphic trends outlined here along with multiple lines of evidence from previous 

studies are consistent with a glacial episode during this time. Future high-resolution 

temperature/ice volume data from δ18OPO4 and Δ47 would complement the results of this 

study. 
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Chapter 5 
 

The Source of the Guttenberg δ13C Excursion 

 
J. Garrecht Metzger and David A. Fike 

 

 

1. ABSTRACT 

A carbon isotope box model was employed to constrain the mechanisms driving the Late 

Ordovician Guttenberg isotopic carbon excursion (GICE).  The excursion is thought to be 

coincident with glaciation and a regressive-transgressive cycle.  Two plausible mechanisms that 

could drive the GICE are increased organic carbon burial (Fb,org) and an increase in the isotopic 

signature of the weathering flux to the ocean (δw).  The amount of excess organic carbon 

estimated to drive the excursion is ~1.1 ! 1018 moles, equivalent to ~30% the size of the marine 

dissolved inorganic carbon reservoir (Mo) and a 50% increase in Fb,org over 200 kyrs.  Physically 

unrealistic changes in sedimentation rate and organic carbon content are required to bury 

sufficient organic carbon in Laurentian seas, suggesting that organic carbon burial may have 

been most important in deltas and marginal marine settings, consistent with modern organic 

carbon burial patterns.  Changes in Fb,org may have been due to the temperature-dependent 

microbial oxidation of organic matter in the oceans.  Increases in δw will only result in 

substantial changes to δ13Ccarb if they reflect an increase in carbonate weathering at the expense 

of the flux of oxidized organic carbon to the ocean.  A change in δw alone from -5 to -1.75‰ 

could drive the GICE. This δw shift represents a 22-35% increase in the fraction of weathering 

from carbonates with a concomitant 60-75% drop in the relative fraction of organic carbon 
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oxidation, depending on whether volcanic flux was constant or zero.  Increased carbonate 

weathering during sea level lowstand is consistent with geologic interpretations and sea level 

curves for the study interval.  

Absolute time constraints allowed us to invert the temporal trend in δ13Ccarb to stratigraphic 

height to understand the timing and rate of forcing change.  The GICE, apparently, was deposited 

during an apparent constant rate of sedimentation.  Both the rising and falling limbs of the 

excursion are concave (≡ dδ13Ccarb
2/d2height < 0).  A model was constructed that converts 

temporal changes δ13Ccarb to height under different sedimentation rates.  Our results strongly 

suggest that δ13Ccarb excursions that are purely or strongly concave with respect to time are not 

likely the result of declining sedimentation rate except when changes in sedimentation rate are 

extreme (e.g., highly condensed beds).  The stratigraphic expression of δ13Ccarb is interpreted as a 

more gradual change in forcing during the end of the GICE than in the beginning. 

 

2. INTRODUCTION 

The carbon cycle is intimately linked to the biosphere as carbon is the backbone of all 

organic molecules.  Changes in the abundance and types of organisms through time have 

profoundly impacted the global carbon cycle, climate, and the redox state of the ocean-

atmosphere system (e.g., Canfield, 2005; D’Hondt, 2005; Maloof et al., 2010a; Schulte et al., 

2010).  One of the principal ways to study the biogeochemical carbon cycle over geologic time 

scales is to measure changes in the stable isotopes of marine carbonate carbon (δ13Ccarb) (e.g., 

Kump & Arthur, 1999; D’Hondt, 2005; Saltzman & Young, 2005; Maloof et al., 2006; Hurtgen 

et al., 2009; Maloof et al., 2010b; Bowen & Zachos, 2011).  Changes in δ13Ccarb correspond to 

changes in the fluxes or isotope ratios of the various sources and sinks of carbon to and from the 
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ocean (Kump & Arthur, 1999).  The most common way to mathematically model the carbon 

cycle is to view the ocean-atmosphere system as a box model (Figure 1).  The simple 

parameterization of inputs and outputs allows quantitative testing of hypotheses that seek to 

explain the origin of deviations in δ13Ccarb from stable long-term values.  The main advantages to 

this approach is the ability to eliminate certain mechanisms as possible drivers of carbon isotope 

excursion based on the directionality of change in δ13Ccarb and by placing constraints on the 

magnitude of change in fluxes and δ13C values of the inputs and outputs.  This approach has been 

used to evaluate possible changes in the burial of organic matter (Pancost et al., 1999; Katz et al., 

2005; Saltzman & Young, 2005; Maloof et al., 2010b; Jones & Fike, 2013), pCO2 (Kump & 

Arthur, 1999; Saltzman & Young, 2005; Young et al., 2008; Young et al., 2009; Pancost et al., 

2013), and weathering (Kump et al., 1999; Page et al., 2007) over geologic time.  The application 

of a box model in tandem with stratigraphic and geochemical context can provide further insights 

into carbon cycle dynamics during important intervals of Earth history.  Here, we use a box 

model to understand the environmental changes that occurred during the Late Ordovician 

Guttenberg isotopic carbon excursion (GICE). 
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Figure 1.  Biogeochemical carbon box model (after Kump & Arthur, 1999).  Values given are for pre-
excursion steady-state and are best-guesses for Paleozoic values.  Fractionation (Δ) between carbonate 
carbon (δcarb) and organic carbon (δorg) being buried is 29‰ (Δ = δcarb - δorg).  Weathering flux (Fw) is 
composite of carbonate weathering, organic carbon oxidation, and volcanic CO2 emissions. 
 

 The Guttenberg carbon isotope excursion (GICE) is a ~3‰ positive δ13Ccarb excursion 

which occurred in the latest Sandbian and earliest Katian Stages of the Late Ordovician Period 

(~453.4 Ma).  It has been identified in carbonate strata from around the world including 

numerous parts of the United States (Patzkowsky et al., 1997; Young et al., 2005; Pancost et al., 

1999; Chapter 2; Chapter 3; Ludvigson et al., 2004; Coates et al., 2010), China (Young et al., 

2005; Bergström et al. 2009; Munnecke et al, 2011), Malaysia (Bergström et al., 2010), Estonia 

(Martma, 2005; Kaljo et al, 2007), and Sweden (Bergström et al., 2004).  The duration of the 

excursion is likely ~400 kyr (Chapter 4).  The first portion of the excursion correlates with an 

initial sea level fall and the falling limb of the excursion with subsequent sea level rise (see 

Chapter 4).  To-date, no consensus has been reached on the origin of the excursion.  The most 

prevalent theory suggests the excursion was driven by an increase in organic carbon burial 
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(Pancost et al., 1999; Saltzman & Young, 2005) associated with either upwelling of nutrient rich 

waters (causing increased primary production, Patzkowsky et al., 1997; Young et al., 2005; 

Young et al., 2008) or, alternatively, by decreased oxygen levels (causing increased organic 

matter preservation).  Other mechanisms that could drive the excursion include a decrease in 

δ13C of the organic matter being buried (Pancost et al., 1999), an increase in the δ13C value of the 

material entering the ocean (sensu Kump et al., 1999; Page et al., 2007), and a decrease in pCO2, 

which could change the fractionation (Δ) between organic matter and dissolved inorganic carbon 

(Kump & Arthur, 1999; Young et al., 2008; Young et al., 2009).  It is important to constrain 

which mechanisms are the most likely because each one of them has different implications for 

environmental change over Earth history.  For example, Saltzman & Young (2005) argue that 

increased organic carbon burial may have drawn down atmospheric CO2 levels to the threshold 

of glaciation, but recent evidence suggests that glaciation was coincident with the GICE (Chapter 

4). 

In this chapter we use numerical box models coupled with geochemical and stratigraphic 

data to evaluate the contributions that each of these mechanisms might play in driving the 

Guttenberg δ13C excursion.  We evaluate the geologic evidence for different drivers of the 

excursion by examinating the type and magnitude of forcings required to reproduce the GICE 

and interpret them in a geologic context.  The apparent constant sedimentation rate across the 

GICE allows the direct conversion of time to stratigraphic height.  This imposes an additional 

constraint on the nature and timing of possible forcings responsible for driving the δ13Ccarb 

excursion, as the δ13Ccarb morphology of the model results must match that of the stratigraphic 

expression of δ13Ccarb.   
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3. METHODS 

The biogeochemical carbon cycle can be modeled by parameterizing the reactive pools of 

carbon at the surface of the Earth (see Kump & Arthur (1999) for further discussion of each 

parameter).  The majority of reactive carbon is found in the form of dissolved inorganic carbon 

(DIC) in the ocean.  Atmospheric CO2 equilibrates with the DIC pool at a geologically rapid rate 

(Broecker & Peng, 1974), which means changes in DIC record a combined change in the oceanic 

and the atmospheric carbon cycle.  Therefore, the main reservoir of reactive carbon is referred to 

collectively as the ocean-atmosphere system (Figure 1).   The main sources of carbon into the 

ocean are volcanic CO2 and weathering inputs from oxidized organic matter and carbonates.  

Each flux (Fi) has an associated isotopic composition (δi).  A combined term, Fw, is used to 

represent the total weathering flux, while δw is used for its isotope value.  Silicate weathering is 

ignored in the weathering flux because it does not contribute new carbon to the ocean-

atmosphere system; rather, it converts CO2 to HCO3
-. 

 

        Eq. (1) 

 

The outputs of the system are the burial of carbonate carbon (Fb,carb) and organic carbon (Fb,org).   

 

€ 

Fout = Fb,carb +Fb,org          Eq. (2) 

 

The offset between δ13Ccarb and δ13Corg in the marine record is large (~20-30‰), 

predominantly due to the isotopic fractionation during photosynthetic uptake of DIC (Freeman & 

Hayes, 1992).  This assumes organic carbon is dominated by the remains of marine 

€ 

Fin = Fvolcanic +Fw,org +Fw,carb
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photosynthetic organisms (e.g., algae and cyanobacteria) as well as those of heterotrophic 

organisms that utilize organic matter derived from photosynthetic organisms without any 

substantial additional fractionation. Because this photosynthesis-derived organic carbon is 

sourced from DIC, an increase in Fb,org will result in simultaneous increase in δ13CDIC of the 

ocean as more 13C-depleted organic matter is removed from the ocean-atmosphere system.  This 

is one example of a “lever” that is used to perturb the model. 

 The following is a mathematical description of biogeochemical carbon cycle box model.  

The model is developed using δ notation rather than the more exact R notation because doing so 

does not result in an errors larger than analytical uncertainty and is easier to relate model results 

to data.  Knowing that 

€ 

dMo

dt
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = Fin −Fout( )         Eq. (3) 

 

where Mo is the mass of DIC in the ocean (in moles) and F values are fluxes (in moles/yr).  The 

isotopic signature of the reservoir also changes with respect to time as a function of the isotopic 

values and fluxes of the inputs and outputs (Equation 4). 

 

        Eq. (4) 

 

Using the product rule of calculus on Equation (4) results in 

 

      Eq. (5) 
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and 

 

     Eq. (6) 

 

Substituting Equation (3) into Equation (6) yields 

 

     Eq. (7) 

 

and  

 

     Eq. (8) 

 

Using the δ values for each associated flux portion in equations (1) and (2) produces 

 

  Eq. (9) 

 

Because δ13CDIC ≈ δ13Ccarb, Equation (9) can be reduced to 

 

€ 

dδcarb
dt

# 

$ 
% 

& 

' 
( =

1
Mo

# 

$ 
% 

& 

' 
( Finδin −Foutδout − δcarb

dMo

dt
# 

$ 
% 

& 

' 
( 

* 

+ 
, 

- 

. 
/ 

€ 

dδcarb
dt

# 

$ 
% 

& 

' 
( =

1
Mo

# 

$ 
% 

& 

' 
( Finδin −Foutδout −Finδcarb −Foutδcarb[ ]

€ 

dδcarb
dt

# 

$ 
% 

& 

' 
( =

1
Mo

# 

$ 
% 

& 

' 
( Fin δin − δcarb( ) −Fout δout − δcarb( )[ ]

€ 

dδcarb
dt

# 

$ 
% 

& 

' 
( =

1
Mo

# 

$ 
% 

& 

' 
( Fw δw − δcarb( ) −Fb,org δb,org − δcarb( ) −Fb,carb δb,carb − δcarb( )[ ]



 
 

169 

     Eq. (10) 

 

The isotopic offset between organic matter being buried and carbonate carbon can be expressed 

as 

 

         Eq. (11) 

 

Substituting Equation (11) into Equation (10) yields 

 

 

       Eq. (12) 

 

Equation (12) shows how the δ13C of marine carbonates changes through time as a function of 

the isotopic signature and fluxes of inputs and outputs, the fractionation between organic and 

inorganic carbon, and the size of the reservoir.  This model can be used to develop a quantitative 

understanding of how the carbon system responds to changes in these parameters.  The 

directionality and magnitude of these changes can then be discussed in a geological context to 

exclude certain mechanisms as possible causes of the Guttenberg excursion. 

One variable, δw, is a composite variable and can be written as a function of weathering 

fluxes of carbonate, volcanic input, and organic matter oxidation.  This is to allow more direct 

investigation of the effects of changing sources during weathering on δw.  Fw is free to increase 
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or decrease without changing any other fluxes.  This is described as unbalanced weathering 

where an increase in one component of Fw does not require a change in the other Fw components. 

 

     Eq. (13) 

 

Weathering fluxes can also be written as relative fluxes (fw) where a change in one 

weathering component is balanced by opposite changes in one or more of the other components 

and because of this, it is described as balanced weathering.  During balanced weathering, each of 

the weathering components can be described as a relative fraction of fw in the following manner: 

 

       Eq. (14) 

 

       Eq. (15) 

 

       Eq. (16) 

 

where Fi are fluxes in moles/yr and 

 

       Eq. (17) 
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 δw can then be described in terms of fw where 

 

     Eq. (18) 

 

 Changes in δw as a function of fw,carb can by accompanied by proportional changes in the 

opposite direction of fw,org and fw,volc.  Alternatively, two-end-member scenarios can be used to 

constrain the maximum changes in each fw component because a change in one fw component 

results in a change in only one other fw component.  In the first scenario, changes in fw,carb affect 

only fw,org and in the second scenario changes in fw,carb affect only fw,volc.  Restating Equation (17) 

in a different form yields 

 

        Eq. (19) 

 

and substituting Equation (19) into Equation (18) yields 

 

   Eq. (20) 

 

and 

 

      Eq. (21) 
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Equation (20) shows how δw can be calculated independently of fw,org while Equation (21) shows 

how fw,carb can be calculated independently of fw,org.  By assuming fw,volc and δw,carb, δw,org, and 

δw,volc  are constant in Equation (20), changes in δw are now a function of the balance between 

fw,carb and fw,org so that an increase in fw,carb results in an equal magnitude decrease in fw,org.  This is 

a useful arrangement to use as volcanism is likely less variable over the time scales investigated 

here compared to organic carbon weathering.  Equation (21) is then used to calculate fw,carb while 

fw,org is solved for from Equation (19).  The same method can be used to make δw a function of 

fw,carb and fw,volc (holding fw,org constant) so that an increase in fw,carb results in an equal magnitude 

decrease in fw,volc. Rearranging Equation (17) in terms of fw,volc yields 

 

               Eq. (22) 

 

which, when substituted into Equation (18) yields 

 

           Eq. (23) 

 

and 

 

             Eq. (24) 

 

For the present discussion, δw,carb, δw,volc, and δw,org are assumed to be constant and given values 

of 0‰, -5‰, and -22‰, respectively (Kump & Arthur, 1999).  With all other variables defined, a 
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change in δw can now be quantified as the result of changes Fw or fw.  The most general form of 

the box model does not assume balanced weathering: 

 

         Eq. (25)
 

 

Assuming balanced weathering, the two end member fw scenarios from Equations (21,24) can be 

modeled as:  

 

 Eq. (27) 

 

and 

 

 Eq. (28) 

 

4. RESULTS 

 Changes in fluxes and isotope signatures of material into and out of the ocean can drive 

δ13Ccarb excursions.  A change in isotope signatures will produce an identical result in steady 

state (fixed Mo) and dynamic state (free Mo) assuming the initial reservoir sizes are the same.  

However, changes in fluxes will produce different responses, as changes in δ13Ccarb are 
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dependent in part on Mo (Figure 2A).  A smaller Mo (as would result from increased Fb,org in 

dynamic state) will allow δ13Ccarb to change faster than in steady state.  The opposite is true when 

Mo increases, such as during increased Fw in dynamic state.  This is demonstrated in Figure 2A 

where the longer elevated Fb,org proceeds, the greater the divergence in results between steady 

state and dynamic state.  These effects are generally small when Mo is not significantly altered.  

The equations above do not assume steady state and are valid for a variable Mo.  The following 

results and discussion focus on modeling in a dynamic state unless otherwise noted. 

 The burial of the same amount of organic carbon for different durations will produce a 

different peak δ13Ccarb value and a different excursion morphology with the longer durations 

displaying a lower slope due to the smaller distance from equilibrium (Figure 2B).  Different 

parameters can produce a 3‰ excursion, but with different δ13Ccarb morphologies and effects on 

Mo (Figure 2C).  Both reduced Fw and increased Fb,org will drive δ13Ccarb up and Mo down, but an 

excursion driven by decreased Fw results in a much larger drop in Mo. This is caused by the 

differences between δw and δb,org relative to δ13Ccarb.  The greatly reduced Mo during an excursion 

driven by Fw allows δ13Ccarb to change much faster.  Large changes in Mo are not considered to 

be physically reasonable. 

Changes in Fb,org, δw, and Fw can produce the observed 3‰ excursion, while no change in 

Δ can produce the required excursion magnitude as the theoretical maximum for Δ (32‰; Kump 

& Arthur, 1999) produces only a 0.5‰ excursion (Figure 2C). 

Excursion morphology can be differentiated by whether the rising limb and falling limb 

are concave or convex (Figure 3).  The following descriptions and discussion deal only with 

positive excursions driven by the forcings of Fb,org and δw.  The rising limb of the excursion will 

only be purely concave (i.e., d2δ13Ccarb/dt2 always < 0) if forcing onset is sufficiently fast relative 
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to the residence time of C in the ocean.  In this model, the change in forcing occurs across a 

single time step (5,000 yrs).  The falling limb responds differently to a similar change in forcing.  

A rapid change in forcing (both on and off) changed across a single time step will produce a 

purely concave rise and a purely convex fall (Figure 3A).  A gradational drop in forcing back to 

initial values will produce an initially concave fall, but shift to convex towards the end of the 

excursion (Figure 4).   The exception to this case is when Fb,org is changed gradationally to 

baseline values in such a way as to decrease Mo to <10 % initial values (Figure 3B, 4F).  This 

cannot happen in steady state conditions as Mo is fixed (Figure 3B).   
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Figure 2.  Box model results (lines) for various scenarios.  Baseline variable values are given in Figure 1.  
A) Changing Fb,org in steady state (SS) and dynamic state (DS) for three different forcing durations. This 
changes the absolute flux (Fb,org) equally (+50% for all positive runs and -50% for all negative runs), but 
yields different relative fluxes of organic carbon burial (fb,org) depending on steady state or dynamic state 
assumptions (i.e., in steady state Fb,carb decreases to balance increase increases in Fb,org while Fb,carb is 
constant in dynamic state).  Yellow box represents the magnitude and inferred duration of GICE.  B) 
Model results showing the same total organic carbon buried, but over different durations.  Change in 
forcing was instantaneous for indicated duration.  C) Four different variables with instantaneous forcing 
over 200 kyr in dynamic state.  ∆B increased from Phanerozoic average (~28.2‰) to theoretical maximum 
of 32‰ (Kump & Arthur, 1999). 
 

A rapid, but gradational drop in forcing to below baseline values will produce a purely 

concave falling limb in both steady and dynamic states (Figure 4).  Specifically, falling limbs are 

most concave when forcing drop is also concave, near linear when drop in forcing is linear, and 

slightly convex when forcing drop is convex (Figure 4). 

 

 

Figure 3.  A) Box model results showing the difference in concave and convex rising and falling limbs of 
the δ13Ccarb excursion.  Lower panels shows changes in relative forcing of Fb,org and the size of the 
marine inorganic carbon reservoir (Mo).  B) Box model results showing how dynamic state can produce a 
concave falling limb when the reservoir (Mo) has been significantly depleted (here to 8% of the original 
value).  Less extreme reservoir depletions do not produce a concave excursion and further depletion of Mo 
results in complete depletion of the reservoir. 
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Simultaneous changes in Fb,org and δw can also produce concave excursions.  The falling 

limb will only be concave if Fb,org and δw gradationally change together (Figure 5).  An 

instantaneous change in Fb,org and δw that is offset in time by a single time step will produce a 

purely convex falling limb.  A gradational change in one parameter coupled with an 

instantaneous change in another will produce a linear or mixed concave/convex falling limb 

depending the how Fb,org and δw are changed.  Only a select set of Fb,org and δw forcing 

combinations are shown here, but they capture important features.  In general, Fb,org and δw must 

gradationally change together and the more concave the forcing change is the more concave 

δ13Ccarb will be. 

 

 

Figure 4.  Model runs showing effect of changes in Fb,org on δ13Ccarb and Mo.  All models run in dynamic 
state.   Model runs showing effect of a linear, concave, or convex drop in Fb,org to baseline (top row) or 
below baseline (bottom row) values over 100 kyr (A,C,D,F,G,I) or 200 yrs (B,E,H,J). The only 
excursions that are purely concave (green dots) during the falling limb are those that drop Fb,org to below 
baseline values or when the reservoir (Mo) is depleted to <10% of it’s original value (red dot).  (Yellow 
dots) Falling limbs that are not purely concave because of insufficient organic carbon burial before 
forcing was removed.  Note differences in scale bar of δ13Ccarb plots. 
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If sedimentation rate is not constant then the morphology of δ13Ccarb through time will 

differ from the stratigrpahic expression of δ13Ccarb.  This was investigated using a model that 

produces a synthetic stratigraphic column with different sedimentation rates during the falling 

limb of the excursion.  The modeled excursion was a 200 kyr pulse of increased Fb,org (1.53x 

baseline).  This duration and forcing magnitude was chosen because it produces a 3‰ excursion 

that lasts ~400 kyr.  It was also chosen because it is the most concave excursion that can be 

produced using Fb,org and therefore represents an endmember scenario.  For a δ13Ccarb excursion  
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Figure 5.  Box model results showing changes in δ13Ccarb due to changes in Fb,org and δw.   All excursions 
beging with a step-change in forcing and end with a step-change, linear, or exponential drop in both 
forcings.   The falling limb of the δ13Ccarb excursion is only purely concave (i.e., dδ13Ccarb

2/dt2 < 0) when 
Fb,org and δw decline gradationally together (green dots).  Samples with yellow dots represent concave 
falling limbs where forcing was of insufficient magnitude to return to baseline levels before forcing was 
removed.  Different combinations of gradiational decline in forcing produce similar results as shown here.  
Specifically, the more concave a forcing is, the more concave the δ13Ccarb falling limb will be. 
 

that is convex with respect to time to appear concave with respect to height, sedimentation rate 

must decline at a greater rate with each time step (Figure 6).  The drop in sedimentation rate 

means that all δ13Ccarb excursions with convex character that appear concave with respect to 

stratigraphic height are condensed.  The sedimentation rate used was calculated from U-Pb ages 

of bentonites and was 1.84 x 10-2 mm/yr (Chapter 4).  For the chosen δ13Ccarb, sedimentation rate 

must exponentially decline so that the falling limb of the GICE is only 1.04 m at New London, 

Missouri (Chapter 2).  The boundary between concave and convex is explicitly defined as when 

(dδ13Ccarb
2/dh2) < 0.  The observed thickness of the falling limb at New London is 3.23 m.  
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Figure 6.  Guttenberg excursion modeled by increasing Fb,org  53% for 200 kyr.  Forcing was turned on 
and off in single time steps.  Time was converted directly to height using a linear sedimentation rate 
calculated for New London (see text).  Sedimentation rate is constant until the forcing is turned off.  
Different colors correspond to different sedimentation rates during falling limb of excursion. Data points 
show different falling limb of excursion in yellow displayed in right panel.  Exponential rates (ex = y) 
refer to maximum value obtained for normalization.  For example, ex = 103 refers to an exponential 
function that had a maximum y value of 1,000.  Exponential curves with larger y values means the 
normalization values will represent an exponential curve with a higher proportion of large slopes.  Solid 
line shows inflection point (linear), to the right of which is convex and to the left of which is concave.  
This upper limit of concavity (1.04 m) is significantly less than that observed falling limb width at study 
location New London.  Similarly, the theoretical maximum at study location HM is 0.81 m while the 
observed distance is 1.6 m. 
 

5. DISCUSSION 

 Model results show the GICE could be driven by changes in Fb,org, and δw, but exclude a 

changing fractionation factor (Δ) as a significant driver.  Biological changes in primary 

producers (cell growth rate, cell geometry, cell size) that influence Δ and environmental controls 

on Δ (pCO2) therefore did not drive or were only a minor influence on the GICE.  Environmental 

shifts (e.g., CO2) that affect Fb,org cannot be ruled out.  The remaining possible drivers of the 

excursion, Fb,org and δw, are evaluated below. 
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5.1 Organic carbon burial (Fb,org) 

Upwelling of nutrient-rich waters in the midcontinent of Laurentia has been hypothesized 

to have caused abundant phosphorite and chert deposits in the Middle and Late Ordovician 

(Kolata et al., 1998; Pope & Read, 1998; Pope and Steffan, 2009; Ettensohn, 2010). Upwelling 

has been invoked to explain the GICE as the result of increased organic carbon burial (Saltzman 

& Young, 2005; Young et al., 2005; Patzkowsky et al., 1997).  The question then is can organic 

carbon burial in epeiric seas and epicontinental foreland basins drive a global δ13Ccarb excursion?  

To address this question we used geological data that estimate the area of Ordovician oceans 

(Kiessling et al., 2003) coupled with geochemical data estimating organic carbon concentration 

and burial rates (Berner, 1982; Kump & Arthur, 1999; Table 1).  Sedimentation rates and organic 

carbon burial were also calculated for the study area using geochemical data (Chapters 2-4).  The 

average sedimentation rate was calculated using sedimentation rates representative of the 

foreland basin calculated using U-Pb ages from Chapter 4. The average sedimentation rate (0.02 

mm/yr) was obtained by an area-weighted average of three environments: the foreland basin 

(10% area, 0.18 mm/yr), intermediate platform and basin environments (25% area and 

0.01mm/yr) and the cratonic interior (50% area and 0.00055 mm/yr.  Kiessling et al. (2003) 

estimated that the average global extent of carbonate platforms was 1.1 x 107 km2.  For 

simplicity we used 1 x 107 km2 and this is likely a significant overestimate of the sedimentary 

marine basins of Laurentia.  Organic carbon content was chosen from modern carbonate 

sediments (1%, Berner, 1982) and is also likely an overestimate.  If the excursion was driven by 

organic carbon burial alone then ~1.1 ! 1018 extra moles of organic carbon would need to buried, 

equivalent to ~30% the size of the marine dissolved inorganic carbon reservoir (Mo).  Table 1 

shows that sedimentation rate, Corg, or area must increase by 10-100x to bury sufficient organic 



 
 

182 

carbon despite using parameter estimates that favor high organic carbon burial rates.  It is 

unlikely that organic carbon concentration increased more than 5x across the platforms on 

average as 5% Corg is much higher than is commonly observed in most of the study interval 

(Chapter 2, Figure 6; Chapter 3, Figure 5; Young, personal communication).  Seafloor area for 

carbon burial likely decreased during the GICE as a result of regression (Chapter 4).  

Sedimentation rate also could not have increased much on average across the platform as many 

areas do not contain the lower portions of the GICE during the sea level lowstand (Chapter 4).  

Therefore, current geological and geochemical data suggest that organic carbon in Laurentian 

cratonic seas is an untenable mechanism to drive the GICE.   

The estimates used in this study are a first pass in quantifying organic carbon burial rates 

using stratigraphic δ13Ccarb data.  The shortcomings of the estimates notwithstanding, it seems 

that upwelling in the Midcontinent and the proposed organic carbon burial (Pope & Steffan, 

2009; Patzkowsky et al., 1997; Saltzman & Young, 2005; Young et al., 2005) are unlikely to 

have been the cause of organic carbon burial simply because of their low organic carbon content 

and low sedimentation rates.  Furthermore, the most organic-rich deposits (the ones in which 

economically viable oil and gas deposits are found, (Kirschbaum et al., 2012; unpublished data) 

are found immediately after the GICE and are coincident with lower (but still positive) δ13Ccarb 

values of 0-1‰.  This provides more geological evidence that organic carbon burial on the 

Laurentian platform is not the dominant control on the GICE.  The uncoupled nature of platform  
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Table 1. Area approximately equivalent to mean global carbonate platform area in Ordovician (Kiessling 
et al., 2003).  Sedimentation rate (SR) calculated from different sections (see Discussion).  Corg wt. % 
from Berner, (1982).  Extra Fb,org calculated from 3‰ excursion in Figure 2A.  Percent global burial 
referes to organic carbon burial relative to estimated global flux of 1 x 1013 moles/yr (Kump & Arthur, 
1999). 
 

organic carbon burial and global δ13Ccarb could in part be due to the fact that in the modern ocean 

the majority of organic carbon burial occurs in deltas (Berner, 1982).  While carbonate platforms 

may have served as primary repositories for the body fossils of metazoa, but they were not 

similarly important in storing the organic components of life. 

 

5.2 Weathering (Fb,org and δw)  

 The GICE is coincident with an initial regression during the rising limb of the excursion 

and a transgression during the falling limb (Chapter 4).  These sea level changes may have had 

great effects on weathering fluxes and their isotopic signatures (δw).  This is the result of the 

extremely low slope of the basin (often 0.01-0.001°) and the widespread carbonate deposits that 

underlie much of the equatorial and subequatorial oceans (Ronov, 1994; Kiessling et al., 2003).  

(SR +       ) 

Area (106 km2)
Sed Rate 
(mm/yr)

Corg

 (wt. %)
Fb,org 

(mol/yr)

Target Fb,org 
extra 

(mol/yr)

Target 
duration 
(years)

10 0.02 1 1.92E11 1.1E18 2.0E5

EXCURSION Multiplier Parameter
Fb,org 

(mol/yr)
Exra Fb,org 
(mol/yr)

% Global 
burial

Time to 
bury extra 

(years)

  Time to
     bury
(Multiples) 

2 SR,Corg, or Area 3.8E11 1.9E11 3.8 5.7E6 27.7
10 SR,Corg, or Area 1.9E12 1.9E12 19.2 6.4E5 2.2

100 SR,Corg, or Area 1.9E13 1.9E13 192.0 5.8E4 -0.7

2 SR + Corg 7.7E10 5.8E10 7.7 1.9E6 8.6
5 SR + 4.8E12 4.6E12 47.2 2.4E5 0.2

BASELINE

10 1.9E13 1.9E13 192.0 5.8E4 -0.7

% Global 
burial

1.9

Corg

SR + Corg

2 Corg 0.5 (Area) 9.6E11 7.7E11 10.0 1.4E6 6.2
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A small sea level fall would result in the exposure of massive regions of carbonate.  Because δw 

is controlled, in part, by carbonate weathering, an increase in the fraction of weathering derived 

from carbonates will drive an increase in δw (Equation 19).  Loi et al. (2010) use a backstripping 

procedure to argue that there was an ~25-75 m eustatic sea level fall, likely glaciogenic, in 

Gondwana that was concurrent with the GICE.  Large regions of carbonate would then be 

exposed for weathering.  However, an increase δw will be accompanied by an increase in Fw as 

carbonate weathering proceeds rapidly.  When all the components of Fw have δ < δ13Ccarb (as is 

the case in this model) then an increase in Fw will result in a drop in δ13Ccarb or a negligible 

change in δ13Ccarb.  This is because all the components of Fw have δ < δ13Ccarb in this model. 

Therefore, if there is no synchronous decrease in the weathering of other components then no 

increase in Fw,carb can drive a positive δ13Ccarb excursion (Figure 9).  If the weathering is balanced 

(i.e., fixed absolute total Fw, variable relative total fw) then an excursion can be easily driven by 

an increase in Fw,carb (Figure 7).   If the GICE was driven by elevated δw during sea level 

lowstand, the weathering flux would have had to be balanced and balanced weathering has been 

proposed to explain the End Ordovician Hirnantian isotope excursion (Kump et al., 1999).   

Increases in the absolute weathering flux (driven by increases in Fb,carb) may significantly 

alter ocean chemistry in such a way as to alter Fb,carb, Fb,org, or Δ.  We have not quantitatively 

evaluated how the ocean would response to such a flux, but more sophisticated models that track 

carbonate saturation states and detailed biological feedbacks may help in discriminating between 

whether Fw or fw is a more realistic parameter to use.  

As mentioned above, it has been proposed that the Hirnantian glaciation may have driven 

a large δ13Ccarb excursion as a result of increased δw (Kump et al., 1999).  Sea level during the 

recent Pleistocene glacial-interglacial cycles is thought to vary > 100 m. The relative dearth of 
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carbonate platforms in the Pleistocene means a change in sea level is unlikely to produce the 

same magnitude increase in Fw,carb as predicted for the Ordovician.  Rather, large drops in sea 

level during the Pleistocene glacials partially exposed coastal deltas (e.g., southeastern Asia, 

Louisiana), environments that are thought to store the majority of organic carbon (Berner, 1982), 

which may have increased Fw,org and driven negative δ13Ccarb excursions. Small (0.5-1.0‰) 

negative excursions are in fact coincident with decreases in temperature and/or increases in ice 

volume (Raymo et al., 1997).  This is consistent with significant variations in Fw,org over short 

time scales, but could also be due to other processes such as changes in ocean mixing patterns 

(Raymo et al., 1997; Sigman & Boyle, 2000). 

 

5.3 Excursion Morphology 

 Like many other positive δ13Ccarb excursions (e.g., Gill et al., 2007; Keller et al., 2004; 

Mitchell et al., 1996; Maloof et al., 2010; Zachos et al., 2001; Cramer et al., 2010; Sabatino et 

al., 2013; Burns & Matter, 1993), both the rising and falling limbs of the GICE are concave with 

respect to stratigraphic height (Figure 7).  Assuming that the constant sedimentation rate 

calculated for New London reasonably represents the actual sedimentation history of New 

London, the δ13Ccarb excursion morphology can be interpreted to constrain mechanisms and the 

tempo of the forcing that drove the excursion.  The rising limb at New London is interpreted to 

be concave, although moderate alteration during the rising limb of the GICE requires some 

extrapolation from noisy data (Chapter 2).  The qualitative fit drawn in Figure 7 is based on the 

highest δ13Ccarb, which are those believed to be least-altered (Chapter 2).  Many unambiguous 

GICE sections in Laurentia show a concave rising limb (Patzkwosky et al., 1997; Young et al., 

2005; Chapter 3; Chapter 4) in areas of low and high sedimentation rates.  The continuous (but 
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noisy) rising limb suggests that no large gap in time is present.  Acknowledging the imperfect 

record during the rising limb at New London, the sedimentation rate calculated for New London 

and shape of the rising limb suggest a rapid change in forcing. 

An equal drop in forcing does not produce a δ13Ccarb drop that mirrors the rise (Figure 3), 

requiring that the change in forcing during the falling limb be different than that of the rising 

limb to generate a similar morphology.  If only a single parameter is changing during the falling 

limb then the purely concave shape must result from a gradational change in forcing to below 

the pre-excursion baseline.  The two exceptions to this are an increase in Fb,org or a decrease in Fw 

that deplete the carbon reservoir to <10% of its initial values.  We see no evidence to suggest a 

near complete depletion of the carbon reservoir (which would likely result in a major extinction 

and drop in carbonate deposition) and exclude this as a possibility.   

If the GICE was driven by increased δw during balanced weathering, then δw must briefly 

drop farther below baseline values during the end of the excursion than it increased above 

baseline during the peak of the excursion (Figure 7).  The carbonate weathering hypothesis 

predicts the exposure of carbonate platforms during sea level lowstand which are rapidly 

weathered into the ocean (sensu Kump et al., 1999).  The sea level curve proposed in Chapter 4 

is consistent with this hypothesis; however, the concave shape requires that δw decouple from the 

sea level curve and no mechanism is known that would drop δw to the necessary values.  

Alternatively, this decoupling could be the result of a sea level curve that does not accurately 

reflect true sea level change.  If the excursion were driven by Fb,org then a ~50% increase in 

organic burial must be followed by a drop to ~25% below baseline values.  Fb,org could be related 

to temperature where the microbially mediated oxidation of organic matter is sensitive to 

temperature while primary production is less so, resulting in increased organic carbon burial 
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efficiency during colder periods (Finnegan et al., 2012).  This hypothesis suggests a coupling of 

Fb,org and temperature.  If sea level in this interval is also a function of temperature-dependent ice 

volume, then Fb,org should also be roughly correlated with sea level.  The drop in Fb,org below 

baseline at the end of the GICE is consistent with a larger increase in respiration rate for a rise in 

temperature than drop in respiration rate for an equal drop in temperature (Finnegan et al., 2012).  

This mechanism could be tested by establishing high-resolution temperature and/or ice volume 

proxies (e.g., δ18OPO4, Δ47 through the study interval. 
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Figure 7. Qualitative fit for model results (A-C) in dynamic state assuming a change in only a single 
parameter δw and Fb,org.  Data fit to match least-altered δ13Ccarb values in altered zone (~6m-10m).  δw is 
plotted during “balanced” weathering where Fw is constant, but fw is not. Sea level curve (D) based on 
facies changes correlates closely with the sea level curve determined for the Taconic Foreland Basin 
(Chapter 4).  A step-change in sea level at ~7m corresponds to facies change associated with sea level 
drop.  Time is estimated based on linear sedimentation rate where time = 0 half way between the Deicke 
and Millbrig K-bentonites (two lowermost K-bentonites) and the House Springs K-bentonite is ~0.5 Myr 
younger.  This is done because the Deicke and Millbrig yield statistically indistinguishable ages and the 
House Springs in this section is a very thin (<1 cm) clay parting and correlated with the confirmed House 
Springs K-bentonite at Highway MM location (Chapter 2).  The bentonite at ~11m was previously 
correlated to the Bentonite KLKB-1, which was dated to be ~0.25 Myr younger than the Deicke and 
Millbrig K-bentonites (Chapter 2).  The offset between the calculated 0.25 Myr mark using a continuous, 
constant sedimentation rate and KLKB-1 does not significantly change interpretations of this figure.  B 
and C show changes in parameters δw and Fb,org that produce the same δ13Ccarb signal in (A).  CW = 
Castlewood Limestone, GS = Glencoe Shale, KL = Kings Lake Limestone, LS = Limestone.  See Chapter 
2 for discussion of geology and global stratigraphic correlations. 
 

A change in both Fb,org and δw can also drive an excursion.  If both parameters track sea 

level and co-vary back to baseline during the falling limb of the excursion the coeval change in 

both parameters reduces the magnitude of change in both parameters when compared to each 
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changing alone, but it will not produce a purely concave falling limb of the excursion.  

Therefore, the same problem remains as when one parameter drives the excursion, namely, at 

least one parameter must drop below baseline for a brief period.  The sedimentation rate model 

may offer some insight into this problem.  It was shown that conversion of a purely convex 

δ13Ccarb trend vs. time to a purely concave trend vs. height requires extensive stratigraphic 

condensation (Figure 6).  However, many different forcing patterns produce δ13Ccarb signals that 

are concave until near the end of the excursion (e.g., Figure 4A,B,E).  The rate of change in 

δ13Ccarb with respect to height is greatest near the end of the excursion.  The Guttenberg 

Limestone does not show obvious signs of condensation except perhaps during the last meter 

(where dδ13Ccarb/dh is greatest), where beds thin.  This interval at New London correlates to a 

series of five thin beds of different facies cemented together and bearing rip-up clasts (Chapter 2; 

Figure 4G).  No consensus on the nature of the contact between the Guttenberg Limestone and 

the overlying Kimmswick exists.  It may be a submarine unconformity showing signs of 

submarine scour during transgression (Kolata et al., 1998; D.R. Kolata, 2011, personal 

communication; Chapter 4).  Rapid transgression can starve sediments, resulting in condensation 

as has been argued for this time interval in the midcontinent (Kolata et al., 1998).  Condensation 

could also occur during regression/lowstand due to a decrease in accommodation space (Coe et 

al., 2005). 

 The apparent constant sedimentation rate during the GICE suggests that no large hiatuses 

in deposition or changes in sedimentation rate are present unless they are balanced by opposite 

changes in sedimentation rate.  The general morphology of the δ13Ccarb curve at New London is 

similar to that of rapidly subsiding sections of the Taconic Foreland Basin (Young et al., 2005; 

Chapter 3), which is also consistent with a relatively constant sedimentation rate.  Nevertheless, 
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condensation may occur during the last meter or so of the excursion.  If the last meter of the 

excursion were nearly completely condensed to ~0 m, this would represent only ~10% of the 

duration of the interval.  Such a process could explain the strong linear agreement in U-Pb ages 

and stratigraphic height, but also the δ13Ccarb morphology.  The forcing exercises from this 

chapter and geologic evidence suggest that the majority of the excursion is coincident with a 

relatively constant sedimentation rate accompanied by a minor condensation event at the end.  

Therefore, no unique evidence exists supporting any one specific pattern in forcing(s).  Rather, 

the results of this study suggest that the falling limb of the excursion was driven by a gradual 

change in forcing while change during the rising limb may have been more rapid. 

 

6. CONCLUSIONS  

A carbon cycle box model and recent chronological constraints were used to constrain the 

source of the Guttenberg isotopic carbon excursion (GICE).  The conclusions below apply to the 

GICE, but also have broader implications for the biogeochemical carbon cycle and the 

interpretation of the δ13Ccarb record. 

1. If the GICE represents only organic carbon burial (Fb,org), then an additional ~1.1 x 1018 

moles of carbon were buried, equivalent to ~30% of the marine inorganic carbon 

reservoir. 

2. Organic carbon burial likely occurred in deltas and marginal marine settings.  Upwelling 

and organic carbon burial within epeiric seas is not a likely mechanism for the GICE. 

3. Fb,org may be strongly influenced by global changes in temperature-dependent marine 

microbial respiration rates. 
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4. An increase in the isotopic signature of the weathering flux due to increased weathering 

during sea level lowstand is consistent with our sea level curve, but requires balanced 

weathering. 

5. A sedimentation rate model that converts δ13Ccarb signals through time to stratigraphic 

height strongly suggests that the change in forcing during the falling limb was gradual.  

The change in forcing is interpreted to have been more gradual that the rising limb of the 

excursion. 
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