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ABSTRACT OF THE DISSERTATION

Dynamic Pricing and Inventory Management: Theory and Applications

by

Renyu Zhang

Doctor of Philosophy in Business Administration

Washington University in St. Louis, 2016

Professor Nan Yang, Chair

Professor Fuqiang Zhang, Co-Chair

We develop the models and methods to study the impact of some emerging trends

in technology, marketplace, and society upon the pricing and inventory policy of a firm.

We focus on the situation where the firm is in a dynamic, uncertain, and (possibly)

competitive market environment. The market trends of particular interest to us are:

(a) social networks, (b) sustainability concerns, and (c) customer behaviors. The two

main running questions this dissertation aims to address are: (a) How these emerging

market trends would influence the operations decisions and profitability of a firm; and (b)

What pricing and inventory strategies a firm could use to leverage these trends. We also

develop an effective comparative statics analysis method to address these two questions

under different market trends.

Overall, our results suggest that the current market trends of social networks, sus-

tainability concerns, and customer behaviors have significant and interesting impact upon

the operations policy of a firm, and that the firm could adopt some innovative pricing

and inventory strategies to exploit these trends and substantially improve its profit. Our

main findings are:

(a) Network externalities (the monopoly setting). We find that network externalities

prompt a firm to face the tradeoff between generating current profits and inducing

future demands when making the price and inventory decisions, so that it should

increase the base-stock level, and to decrease [increase] the sales price when the

x



network size is small [large]. Our extensive numerical experiments also demon-

strate the effectiveness of the heuristic policies that leverage network externalities

by balancing generating current profits and inducing demands in the near future.

(Chapter 2.)

(b) Network externalities (the dynamic competition setting). In a competitive mar-

ket with network externalities, the competing firms face the tradeoff between gen-

erating current profits and winning future market shares (i.e., the exploitation-

induction tradeoff). We characterize the pure strategy Markov perfect equilib-

rium in both the simultaneous competition and the promotion-first competition.

We show that, to balance the exploitation-induction tradeoff, the competing firms

should increase promotional efforts, offer price discounts, and improve service lev-

els. The exploitation-induction tradeoff could be a new driving force for the fat-cat

effect (i.e., the equilibrium promotional efforts are higher under the promotion-first

competition than those under the simultaneous competition). (Chapter 3.)

(c) Trade-in remanufacturing. We show that, with the adoption of the very commonly

used trade-in remanufacturing program, the firm may enjoy a higher profit with

strategic customers than with myopic customers. Moreover, trade-in remanufac-

turing creates a tension between firm profitability and environmental sustainability

with strategic customers, but benefits both the firm and the environment with my-

opic customers. We also find that, with either strategic or myopic customers, the

socially optimal outcome can be achieved by using a simple linear subsidy and tax

scheme. The commonly used government policy to subsidize for remanufacturing

alone, however, does not induce the social optimum in general. (Chapter 4.)

(d) Scarcity effect of inventory. We show that the scarcity effect drives both optimal

prices and order-up-to levels down, whereas increased operational flexibilities (e.g.,

the inventory disposal and inventory withholding opportunities) mitigate the de-

mand loss caused by high excess inventory and increase the optimal order-up-to

levels and sales prices. Our extensive numerical studies also demonstrate that dy-

namic pricing leads to a much more significant profit improvement with the scarcity

effect of inventory than without. (Chapter 5.)

xi



(e) Comparative statics analysis method. We develop a comparative statics method to

study a general joint pricing and inventory management model with multiple de-

mand segments, multiple suppliers, and stochastically evolving market conditions.

Our new method makes componentwise comparisons between the focal decision vari-

ables under different parameter values, so it is capable of performing comparative

statics analysis in a model where part of the decision variables are non-monotone,

and it is well scalable. Hence, our new method is promising for comparative statics

analysis in other operations management models. (Chapter 6.)
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1. Introduction

1.1 Motivation

Price and inventory are definitely two key operations decisions of any firm that delivers

(physical) products to customers. The development of advanced information technologies

facilitates the sellers to plan, implement and take advantage of the dynamic pricing

strategies. Thanks to the IT decision support applications, sellers are now able to optimize

sales prices and inventory control policies based on complex analytics and optimization

methods. Therefore, the joint dynamic pricing and inventory management strategies

have been extensively studied in the literature, and widely used in practice. For example,

Amazon not only dynamically adjusts the sales prices of thousands of its items everyday,

but also adopts a complex procurement and delivery system to manage its inventories.

The emerging trends in technology, marketplace, and society have led to unprece-

dented challenges to optimize their pricing and inventory control policy. The primary

goal of this dissertation is to develop the models and methods to understand the impact

of some emerging market trends upon a firm’s pricing and inventory policy. Specifically,

we consider three types of current market trends: (a) social networks, (b) sustainability

concerns, and (c) customer behaviors.

� Social networks. The recent fast development of online social media has signif-

icantly intensified the interactions between customers. The social networks make

customers easily know and follow their friends’ purchasing decisions, thus giving rise

to (positive) network externalities for almost all products. That is, customers are

more likely to purchase a product if there are more other customers who purchase

the same product. Network externalities enable firms to use current customers to

attract future customers and, thus, may have interesting implications on the pricing

and inventory policy of a firm.

� Sustainability concerns. In the recent years, the society embraces an increasing

trend of sustainability/environmental concerns. Remanufacturing, and the asso-

ciated trade-in program to collect used products for remanufacturing, have been

1



increasingly used for the sake of its environmental benefit. We are especially inter-

ested in characterizing how trade-in remanufacturing would influence the pricing

and production policy of a firm, and the economic and environmental values of this

business practice. From the government’s perspective, it is also interesting to study

the public policy that could improve the social welfare when taking into account

firm profit, customer surplus, and environmental impact.

� Customer behaviors. We study two customer behaviors in this dissertation. The

first is the strategic waiting behavior of customers. With this behavior, customers

will strategically seek for future discount and trade-in opportunities. We are curious

about the impact of strategic customer behavior upon the economic and environ-

mental values of trade-in remanufacturing. The second customer behavior studied

in this dissertation is the scarcity effect of inventory, which refers to the phenomenon

that customers are discouraged by high inventory and encouraged by low inventory

available to them. The operational implications of the scarcity effect of inventory

have also been analyzed in this dissertation.

1.2 Contribution

In this dissertation, we establish dynamic programming and game theoretic models

to study the dynamic pricing and inventory control issues under the presence of these

new market trends. Our focus is to address two main questions: (a) How these emerging

market trends would influence the operations decisions and profitability of a firm; and

(b) What pricing and inventory strategies a firm could use to leverage these trends. Our

analysis reveals that the current market trends of social networks, sustainability concerns,

and customer behaviors give rise to some new tradeoffs the firm has to balance and, thus,

have significant and interesting impact upon the operations policy of a firm. On the other

hand, the firm could adopt some innovative pricing and inventory strategies to exploit

these trends and substantially improve its profit. To facilitate the analysis of the two

main questions, we also develop an effective comparative statics analysis method for a

general class of joint pricing and inventory management models.

Network externalities (the monopoly setting, Chapter 2). We study the im-

pact of network externalities upon a firms pricing and inventory policy under demand

2



uncertainty. The firm sells a product associated with an online service or communication

network, which is formed by (part of) the customers who have purchased the product.

The product exhibits network externalities, i.e., a customer’s willingness-to-pay and, thus,

the potential demand are increasing in the size of the associated network. We show that

a network-size-dependent base-stock/list-price policy is optimal. Moreover, the inventory

dynamics of the firm do not influence the optimal policy as long as the initial inven-

tory is below the initial base-stock level. Hence, we can reduce the dynamic program to

characterize the optimal policy to one with a single-dimensional state-space (the network

size). Network externalities give rise to the tradeoff between generating current profits

and inducing future demands, thus having several important implications upon the firm’s

operations decisions. Compared with the benchmark case without network externalities,

the firm under network externalities sets a higher base-stock level, and charges a lower

[higher] sales price when the network size is small [large]. When the market is stationary,

the firm adopts the introductory price strategy, i.e., it charges a lower price at the begin-

ning of the sales season to induce higher future demands. The price discrimination and

network expanding promotion strategies can effectively leverage network externalities and

improve the firm’s profit. Both strategies facilitate the firm to (partially) separate gener-

ating current profits and inducing future demands through network externalities. Finally,

we perform extensive numerical studies to demonstrate the significant profit loss of ignor-

ing network externalities. We also propose near-optimal heuristic policies that leverage

network externalities by balancing generating current profits and inducing demands in

the near future.

Network externalities (the dynamic competition setting, Chapter 3). We

study a dynamic competition model, in which retail firms periodically compete on promo-

tional effort, sales price, and service level over a finite planning horizon. The key feature

of our model is that the current decisions influence the future market sizes through the

service effect and the network effect, i.e., the firm with a higher current service level

and a higher current demand is more likely to have larger future market sizes and vice

versa. Hence, the competing firms face the tradeoff between generating current profits and

inducing future demands (i.e., the exploitation-induction tradeoff). Using the linear sep-

arability approach, we characterize the pure strategy Markov perfect equilibrium in both

the simultaneous competition and the promotion-first competition. The exploitation-
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induction tradeoff has several important managerial implications under both competi-

tions. First, to balance the exploitation-induction tradeoff, the competing firms should

increase promotional efforts, offer price discounts, and improve service levels under the

service effect and the network effect. Second, the exploitation-induction tradeoff is more

intensive at an earlier stage of the sales season than at later stages, so the equilibrium

sales prices are increasing, whereas the equilibrium promotional efforts and service levels

are decreasing, over the planning horizon. Third, the competing firms need to balance

the exploitation-induction tradeoff inter-temporally under the simultaneous competition,

whereas they need to balance this tradeoff both inter-temporally and intra-temporally

under the promotion-first competition. Finally, we show that, in the dynamic game with

market size dynamics, the exploitation-induction tradeoff could be a new driving force

for the “fat-cat” effect (i.e., the equilibrium promotional efforts are higher under the

promotion-first competition than those under the simultaneous competition).

Trade-in remanufacturing (Chapter 4). We investigate the impact of strategic

customer behavior on the economic and environmental values of the trade-in remanufac-

turing practice. There are several major findings. First, under trade-in remanufacturing,

a firm may earn a higher profit with strategic customers than with myopic customers,

which differs from the common belief that firms dislike forward-looking customer be-

havior due to its detrimental effect on profit. This is because strategic customers can

anticipate the future price discount brought by the trade-in option, so when the revenue-

generating effect of remanufacturing is strong enough, they might be willing to pay a

higher first-period price than the myopic customers. Second, we show that strategic cus-

tomer behavior may create a tension between profitability and sustainability: On one

hand, by exploiting the forward-looking customer behavior, trade-in remanufacturing is

more valuable to the firm with strategic customers than with myopic customers; on the

other hand, with strategic customers, trade-in remanufacturing may have a negative im-

pact on the environment and also on social welfare, since it may give rise to a significantly

higher production quantity without improving customer surplus. Therefore, our research

demonstrates that it is important to understand the interaction between trade-in reman-

ufacturing and strategic customer behavior. Finally, to resolve the above tension, we

study how a social planner (e.g., the government) should design a public policy to max-

imize social welfare. It has been shown that subsidizing remanufactured products alone
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may lead to undesired outcomes; however, the social optimum can be achieved by using

a simple linear subsidy and tax scheme for all product versions.

Scarcity effect of inventory (Chapter 5). We analyze a finite horizon periodic

review joint pricing and inventory management model for a firm that replenishes and

sells a product under the scarcity effect of inventory. The demand distribution in each

period depends negatively on the sales price and customer-accessible inventory level at the

beginning of the period. The firm can withhold or dispose of its on-hand inventory to deal

with the scarcity effect. We show that a customer-accessible-inventory-dependent order-

upto/dispose-down-to/display-up-to list-price policy is optimal. Moreover, the optimal

order-up-to/display-up-to and list-price levels are decreasing in the customer-accessible

inventory level. When the scarcity effect of inventory is sufficiently strong, the firm

should display no positive inventory and deliberately make every customer wait. The

analysis of two important special cases wherein the firm cannot withhold (or dispose

of) inventory delivers sharper insights showing that the inventory-dependent demand

drives both optimal prices and order-up-to levels down. In addition, we demonstrate

that an increase in the operational flexibility (e.g., a higher salvage value or the inventory

withholding opportunity) mitigates the demand loss caused by high excess inventory and

increases the optimal order-up-to levels and sales prices. We also generalize our model

by incorporating responsive inventory reallocation after demand realizes. Finally, we

perform extensive numerical studies to demonstrate that both the profit loss of ignoring

the scarcity effect and the value of dynamic pricing under the scarcity effect are significant

Comparative statics analysis method (Chapter 6). We consider a general joint

pricing and inventory management model, in which a firm sources from multiple supply

channels to serve a market with multiple demand segments. Moreover, both the market

size of each demand segment and the reference procurement cost of each supply channel

are fluctuating over the planning horizon according to an exogenous Markov process.

Comparative statics analysis is essential in this model, but the commonly used implicit

function theorem (IFT) approach and monotone comparative statics (MCS) approach are

not amenable. Hence, we develop a new comparative statics method for this model. We

utilize the method to characterize the structure of the optimal policy and the impact of

market fluctuation, demand segmentation, and supply diversification upon the optimal

policy in each period. The new method establishes the desired comparative statics results
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by iteratively linking the comparisons between optimizers and those between the partial

derivatives of the objective functions. The method makes componentwise comparisons

between the optimizers with different parameter values, so it applies to the models where

not all of the optimal decision variables are monotone in the parameter, and it is well

scalable. The method does not require the objective function to be twice continuously

differentiable or jointly supermodular. We also employ this comparative statics method

to study a joint price and effort competition model.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapters 2 and 3 examine

the impact of network externalities upon the pricing and inventory management policy

in the monopoly and dynamic competition settings, respectively. In Chapter 4, we study

how strategic customer behavior would influence the economic and environmental values

of trade-in remanufacturing. Chapter 5 presents the analysis of the combined pricing and

inventory control issue under the scarcity effect of inventory. Chapter 6 is devoted to

the development of a new comparative statics analysis method for a general class of joint

pricing and inventory management models. We conclude the dissertation in Chapter 7,

where we also discuss potential directions for future research. All proofs are relegated to

the Appendices. For Chapters 2 to 6, the notations within each chapter are self-contained,

so the same notation may have different meanings in different chapters.

6



2. Operations Impact of Network Externalities: the Monopoly

Setting

2.1 Introduction

1Network externalities refer to the general phenomenon that a customer’s utility of

purchasing a product is increasing in the number of other customers who buy the same

product. See, e.g., [66]. With the fast development of information technology, network

externalities have become a key driver of profitability for a high-tech firm. Take Apple

as an example. Around year 2000, Apple computers were better, by all accounts, than

the PCs with the Windows system. However, the vast majority of desktop and laptop

computers ran Windows as their operating systems because of network externalities (see,

e.g., [107]). Due to Windows’ dominating role in the operating system market, software

developers made only one sixth as many applications for Macintosh as they did for Win-

dows by the time of Microsoft’s antitrust trial. This, in turn, made Apple computers

unattractive to new consumers, despite its functional advantages (see [65]). At the era

of smartphones, however, Apple becomes the winning side of the network externalities

game. Since the launch of App Store in 2008, there have been more than 1.4 million

mobile apps with more than 75 billion downloads on this digital distribution platform.

The App Store not only generates huge revenues (Apple takes 30% of all revenues gener-

ated through apps), but also creates large availability of apps for iPhones, thus enabling

Apple to exploit network externalities to a large extent. As a consequence, iPhones have

a market share of 47.4% among all smartphones in November 2014 (see, e.g., [101]).

The example of Apple clearly demonstrates the importance of network externalities

upon a firm’s success in the market. In particular, the online mobile software distributing

platform App Store plays an important role in strengthening the network externalities

of Apple products, and in boosting the sales of iPhones. As an analogous example,

Xbox Live, the online multiplayer gaming network for Xbox game consoles, significantly

intensifies the network externalities of Xbox consoles. This is because the value of an

1This chapter is based on the author’s earlier work [190]
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Xbox to an user increases if she has more opportunities to play games with her friends

on Xbox Live (see, also, [127]). Thus, the size of the online gaming network Xbox Live

is crucial to Microsoft’s game console business, and the firm should manage the size

of this network carefully. Being aware of this, Microsoft offered a discount of $50 for

Xbox One customers who guaranteed to sign up for Xbox Live Gold membership for at

least one year ([85]). This strategy helps Microsoft price discriminate in favor of the

customers who would join Xbox Live. In another promotion, the 12-month Xbox Live

Gold membership was discounted by 33% in February 2015 to attract Xbox customers

into the online gaming network ([153]).

Firms like Apple and Microsoft naturally face the question of how to optimally co-

ordinate the price and inventory policy of their products (iPhone and Xbox One). To

address this question, we study a periodic-review single-item dynamic pricing and inven-

tory management model under network externalities. The firm may launch an online

service network associated with the product (e.g., App Store and Xbox Live). With the

recent trends of online social media, the associated network can also be in the form of a

social communication network (e.g., Facebook), where customers share their purchasing

and consumption experiences of the product. To model network externalities, we assume

that a customer’s willingness-to-pay is increasing in the size of the associated network.

Moreover, in each period, a fraction of the customers who make a purchase would join

the network, whereas the rest directly leave the market. We call the former customers the

social customers, and the latter ones the individual customers. The firm may generate

revenues from the network via, e.g., service fees. This model enables us to characterize

the optimal pricing and inventory policy of a profit-maximizing firm under network ex-

ternalities. Our analysis highlights the impact of network externalities upon the firm’s

optimal price and inventory policy, and identifies effective strategies to exploit network

externalities.

To the best of our knowledge, we are the first in the literature to study the dynamic

pricing and inventory management problem under network externalities. We show that

a network-size-dependent base-stock/list-price policy is optimal. Moreover, we make

an interesting technical contribution in this chapter: The inventory dynamics of the

firm would not affect its optimal policy. As a consequence, the optimal policy can be

characterized by a dynamic program with a single-dimensional state space (the network
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size). We perform a sample path analysis of the inventory system and show that, if the

firm adopts the optimal policy and the initial inventory is below the initial base-stock

level, the inventory level of the firm will stay below the optimal base-stock level in each

period throughout the planning horizon with probability 1. Under the base-stock/list-

price policy, inventory will not affect the optimal policy if it is below the base-stock level.

Therefore, although the firm carries inventory, the optimal policy does not depend on the

inventory dynamics once it falls below the base-stock level of any decision period. With

a simple transformation to normalize the value of current inventory, we can reduce the

dynamic program that characterizes the optimal policy to one with a single-dimensional

state space (the network size). This dimensionality reduction result significantly simplifies

the analysis, and enables us to deliver sharper insights on the managerial implications of

network externalities.

Our analysis reveals that network externalities drive the firm to balance the tradeoff

between generating current profits and inducing future demands. Under network exter-

nalities, since customers have a higher willingness-to-pay with a larger network size, the

optimal list-price are increasing in the current network size. The optimal expected de-

mand and base-stock level, however, may be either increasing or decreasing in the current

network size. Moreover, network externalities give rise to higher potential demand, thus

driving the firm to increase the base-stock level in each period. The optimal sales price,

however, may be higher or lower under network externalities, because the firm should

decrease the sales price to induce higher future demands when the network size is small,

and increase the sales price to exploit the better market condition when the network size

is big. From the intertemporal perspective, the firm should put more weight on inducing

future demands at the early stage of a sales season. Thus, when the market is station-

ary, the firm charges lower prices at the beginning of the planning horizon. Hence, the

widely-adopted introductory price strategy (offering price discounts when starting the

sales season of a product) may stem from network externalities.

We demonstrate the effectiveness of two commonly adopted strategies in the presence

of network externalities: (a) price discrimination and (b) network expanding promotion.

The key uniform idea of both strategies is that, the firm employs an additional leverage

(price or promotion) to (partially) separate generating current profits and inducing future

demands through network externalities. Under the price discrimination strategy, the firm
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tailors (potentially) different prices to different customer segments based on their social

influences. The prices for both the social and individual customers help generate current

profits, but the price for the social customers has the additional role of inducing future

demands via network externalities. Therefore, it is optimal for the firm to offer discounts

to social customers to induce future demands, and compensate for the reduced margin in

the social segment with an increased margin in the individual segment.

Our model validates the use of (costly) network expanding promotions (e.g., offer-

ing discounts for the service fee of the associated network or investing in social media

marketing strategies). When network externalities are sufficiently strong or the marginal

profit of the associated network is sufficiently high, it is optimal for the firm to offer net-

work expanding promotion, regardless of its inventory level. The optimal sales price in

each period is higher with network expanding promotion than without. In other words,

the firm employs network expanding promotions to induce future demands via network

externalities, while charging a premium product price to generate higher current profits

from selling the product.

We perform extensive numerical studies to demonstrate that (a) the profit loss of

ignoring network externalities is significant, and (b) some easy-to-implement heuristic

policies can effectively exploit network externalities and achieve low optimality gaps. Our

numerical results show that ignoring the demand-induction effect of network externalities

leads to a significant profit loss, especially when the network externalities intensity, the

social customer proportion, or the network size carry-through rate is high. In this case,

the firm faces a strong tradeoff between generating current profits and inducing future

demands, so ignoring network externalities yields a misleading myopic policy. On the

other hand, the heuristic policies that dynamically maximize the profit in a moving time

window of no more than 5 periods enable the firm to leverage network externalities to

a large extent, and achieve low profit losses relative to the optimal policy. Although

completely ignoring network externalities gives rise to significant profit losses, the firm

can effectively exploit network externalities by balancing the current profits and the near

future demands.

The rest of this chapter is organized as follows. In Section 2.2, we position this

chapter in the related literature. Section 2.3 presents the basic formulation, notations

and assumptions of our model. Section 2.4 analyzes the base model. We discuss how

10



price discrimination and network expanding promotion strategies help exploit network

externalities in Section 2.5. The numerical studies are reported in Section 2.6. In Section

2.7, we conclude this chapter by summarizing our main findings. All proofs are relegated

to Appendix A.1.

2.2 Related Research

This chapter is built upon two streams of research in the literature: (a) network

externalities and (b) joint pricing and inventory management.

Network externalities have been extensively studied in the economics literature. In

their seminal papers, [102, 103] characterize the impact of network externalities upon

market competition, product compatibility, and technology adoption. [62, 67] study the

network externality in financial markets. Several papers also study dynamic pricing un-

der network externalities. For example, [61] characterize the optimal nonlinear pricing

strategy for a network product with heterogenous customers. [19] consider the optimal

dynamic monopoly pricing under network externalities and show that the equilibrium

prices increase as time passes. [38] show that, for a monopolist, the introductory price

strategy is optimal under demand information incompletion or asymmetry. [36] study

the optimal pricing strategy in a network with given network structure, and characterize

the relationship between optimal prices and consumers’ centrality. Recently, the oper-

ations management (OM) literature starts to take into account the impact of network

externalities upon a firm’s operations strategy. For example, [185] propose and analyze

the consumer choice models that endogenize network externalities.

The literature on the joint pricing and inventory management problem under stochas-

tic demand is rich. [137] give a comprehensive review on the single period joint pricing

and inventory control problem, and extend the results in the newsvendor problem with

pricing. [70] show that a list-price/order-up-to policy is optimal for a general periodic-

review joint pricing and inventory management model. When the demand distribution

is unknown, [138] address the joint pricing and inventory management problem under

demand learning. [47, 48, 49] analyze the joint pricing and inventory control problem

with fixed ordering cost. They show that (s, S, p) policy is optimal for finite horizon, in-

finite horizon and continuous review models. [52] and [96], among others, study the joint

pricing and inventory control problem under lost sales. In the case of a single unreliable
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supplier with random yield, [112] show that supply uncertainty drives the firm to charge

a higher price. [88] and [43] characterize the joint dynamic pricing and dual-sourcing

policy of an inventory system facing the random yield risk and the disruption risk, re-

spectively. When the replenishment leadtime is positive, the joint pricing and inventory

control problem under periodic review is extremely difficult. For this problem, [136]

partially characterize the structure of the optimal policy, whereas [26] develop a simple

heuristic that resolves the computational complexity. [46] characterize the optimal joint

pricing and inventory control policy with positive procurement leadtime and perishable

inventory. When the firm adopts supply diversification to complement its pricing strat-

egy, [195] characterize the optimal dynamic pricing/dual-sourcing strategy, whereas [173]

demonstrate how a firm should coordinate its pricing and sourcing strategies to address

procurement cost fluctuation. We refer interested readers to [50] for a comprehensive

survey on joint pricing and inventory control models.

This chapter contributes to the above two streams of research by incorporating net-

work externalities into the standard joint pricing and inventory management model,

studying the impact of network externalities upon a firm’s pricing and inventory pol-

icy, and identifying effective strategies and heuristics to exploit network externalities.

Finally, from the modeling perspective, this chapter is related to the literature on

inventory systems with positive intertemporal demand correlations (see, e.g., [100, 89,

16]). The key difference between our work and this line of research is that we endogenize

the pricing decision in out model and, thus, the firm can partially control the demand

process via network externalities. As a consequence, our focus is on the tradeoff between

generating current profits and inducing future demands, whereas that literature focuses

on the demand learning and inventory control issues with intertemporally correlated

demands. The new perspective and focus of our work enable us to deliver new insights

on the managerial implications of network externalities to the literature on inventory

management with intertemporal demand correlations.

2.3 Model Formulation

Consider a periodic-review backlog joint pricing and inventory management model of

a firm who sells a network product (e.g., a smartphone or a video game console) over

a T -period planning horizon, labeled backwards as {T, T − 1, · · · , 1}. We assume that
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there is an online service network associated with the product (e.g., the App Store or

the Xbox Live) or an online social communication network (e.g. Facebook), so that

(part of) the customers who purchase the product can join the network and exhibit

network externalities onto potential customers in the future. More specifically, in each

period t, a continuum of infinitesimal customers arrive at the market. Each customer

requests at most one product. Following [102], we assume that the willingness-to-pay

of a new customer in period t is given by V + γ(Nt), where V is the customer type

uniformly distributed on the interval (−∞, V̄t] with density 1, and γ(·) is a nonnegative,

concavely increasing, and twice continuously differentiable function of the network size at

the beginning of period t, Nt. Hence, V is the type-V customer’s intrinsic valuation of the

product that is independent of network externalities, whereas γ(·) captures the network

externalities of the product, i.e., the larger the associated network, the greater utilities

customers gain to purchase the product. We call γ(·) the network externalities function

hereafter. For technical tractability, we assume that the customers are bounded rational

so that they base their purchasing decisions on the current sales price and network size,

instead of rational expectations on future prices and network sizes. Therefore, a type-

V customer would make a purchase in period t if and only if V + γ(Nt) ≥ pt, where

pt ∈ [p, p̄] is the product price the firm charges in period t. In each period t, there exists

a random additive demand shock, ξt, which captures other uncertainties not explicitly

modeled (e.g., the macro-economic condition of period t). Hence, the actual demand in

period t is given by:

Dt(pt, Nt) := V̄t + γ(Nt)− pt + ξt,

where ξt is independent of the price pt and the network size Nt with E[ξt] = 0. Moreover,

{ξt : t = T, T − 1, · · · , 1} are i.i.d. continuously distributed random variables. Without

loss of generality, we assume that Dt(pt, Nt) ≥ 0 with probability 1, for all pt ∈ [p, p̄] and

Nt ≥ 0.

We now introduce the dynamics of the network sizes {Nt : t = T, T − 1, · · · 1}. Given

the current network size Nt, the network size of the next period, Nt−1, is determined by

two effects. First, some customers may leave the network. For example, a game player

may lose its enthusiasm in online gaming three years after purchasing the Xbox console.

Analogously, an iPhone user may switch to Samsung for her next smartphone. Thus,

given Nt, let ηNt be the remaining number of customers staying in the network in period
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t − 1, where η ∈ [0, 1] is the carry-through rate of the network size. Second, a fraction

of new customers who purchase the product in period t would join the network. Not

all new customers will join the network and exhibit positive externalities onto potential

customers in the future, because, e.g., some Xbox players only play the games off-line

and, thus, are not part of the Xbox Live network. Clearly, these players exert few, if any,

network externalities onto other customers. For any given (pt, Nt), let θDt(pt, Nt) be the

number of new customers who opt to join the network associated with the product, which

we call the social customers hereafter, where θ ∈ (0, 1] is the proportion of such customers

in the market. The other (1− θ)Dt(pt, Nt) customers who exert no network externalities

are called individual customers hereafter. Although we implicitly assume that the utility

functions of the social and individual customers are identical, most of the results in this

chapter (except Theorem 2.5.1) continue to hold if V̄t and γ(·) are different for the social

and individual customers. To capture the market size dynamics, we notice that, due

to demand uncertainty and limited inventory availability, not all customers request a

product can get one in the current period. We assume that the social customers who

purchase but not get the product still join the network. It is commonly observed in

practice that customers exert network externalities upon future potential buyers before

receiving the product. For example, before obtaining the pre-ordered product, a customer

may comment on her excitement in waiting for and expecting the product on Facebook,

thus exerting network externalities upon potential buyers. Moreover, by Theorem 2.4.1(c)

below, if the firm adopts the optimal pricing and inventory policy, all backlogged demand

will be fulfilled in the next period, so the backlogged social customers will get the product

and join the network shortly. For simplicity, we ignore the differences in the timing of

joining the network between the customers who get the product upon request and those

who are backlogged to the next period. Therefore, given Nt, the network size at the

beginning of period t− 1 is given by:

Nt−1 = ηNt + θDt(pt, Nt) + ϵt, (2.1)

where ϵt is the additive random shock in the network size dynamics not explicitly captured

in our model. We assume that ϵt is independent of the price pt and the network size Nt

with E[ϵt] = 0. Moreover, {ϵt : t = T, T − 1, · · · , 1} are i.i.d. continuously distributed

random variables.
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If the associated network is a service network, the firm can generate profits via this

network by charging service/subscription fees. For example, Microsoft charges an annual

subscription fee of $59.99 for the Xbox Live Gold membership, whereas Apple takes 30%

of all revenues generated through apps in the App Store. For any network size N ≥ 0, let

rn(N) ≥ 0 denote the per-period profit the firm earns from the network. Without loss of

generality, we assume that rn(·) is a concavely increasing and continuously differentiable

function with rn(0) = 0. To focus on the firm’s pricing and inventory policy of its product,

we do not explicitly model the firm’s price decision of its network service. Hence, the

per-period profit function of the network, rn(·), is assumed to be exogenously given.

Without loss of generality, we assume that the service fees are paid at the end of each

period. Hence, the total expected profit the firm obtains from the associated network

in period t is given by: E[rn(ηNt + θDt(pt, Nt) + ϵt)]. If the associated network is a

social communication network where the social customers share their purchasing and

consumption experiences, the firm obtains no profit from this network, i.e., rn(·) ≡ 0.

The state of the inventory system is given by (It, Nt) ∈ R× R+, where

It =the starting inventory level before replenishment in period t, t = T, T − 1, · · · , 1;

Nt =the starting network size of the product in period t, t = T, T − 1, · · · , 1.

The decisions of the firm is given by (xt, pt) ∈ F(It) := [It,+∞)× [p, p̄], where

xt =the inventory level after replenishment in period t, t = T, T − 1, · · · , 1;

pt =the sales price charged in period t, t = T, T − 1, · · · , 1.

In each period, the sequence of events unfolds as follows: At the beginning of period

t, after observing the inventory level It and the network size Nt, the firm simultaneously

chooses the inventory stocking level xt ≥ It and the sales price pt, and pays the ordering

cost c(xt − It). The inventory procurement leadtime is assumed to be zero, so that

the replenished inventory is received immediately. The demand Dt(pt, Nt) then realizes.

The revenue from selling the product, ptE[Dt(pt, Nt)], and the profit from the associated

network, E[rn(ηNt + θDt(pt, Nt) + ϵt)], are collected. Unmet demand is fully backlogged.

At the end of period t, the holding and backlogging costs are paid, the net inventory is

carried over to the next period, and the network size is updated according to the network

size dynamics (2.1).
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We introduce the following model primitives:

α = discount factor of revenues and costs in future periods, 0 < α ≤ 1;

c = inventory purchasing cost per unit ordered;

b = backlogging cost per unit backlogged at the end of a period;

h = holding cost per unit stocked at the end of a period.

Without loss of generality, we make the following assumptions on the model primitives:

b > (1− α)c : the backlogging penalty is higher than the saving from delaying

an order to the next period, so that the firm will not backlog all of

its demand;

p > b+ αc : positive margin for backlogged demand.

The above assumptions are common in the joint pricing and inventory management lit-

erature (see, e.g., [189]).

For technical tractability, we make the following assumption throughout our analysis.

Assumption 2.3.1 For each period t, Rt(·, ·) is jointly concave in (pt, Nt) ∈ [p, p̄] ×

[0,+∞), where

Rt(pt, Nt) := (pt − b− αc)(V̄t − pt + γ(Nt)). (2.2)

Given the sales price, pt, and the network size, Nt, of period t, Rt(pt, Nt) is the

expected difference between the revenue and the total cost, which consists of ordering

and backlogging costs, to satisfy the current demand in the next period. Hence, the

joint concavity of Rt(·, ·) implies that such difference has decreasing marginal values with

respect to the current sales price and network size. We remark that Rt(·, Nt) is strictly

concave in pt for any given Nt. Moreover, the monotonicity of γ(·) suggests that Rt(·, ·) is

supermodular in (pt, Nt). The following lemma gives the necessary and sufficient condition

for Assumption 2.3.1.

Lemma 1 Assumption 2.3.1 holds for period t, if and only if, for all Nt ≥ 0,

−2(p− αc− b)γ′′(Nt) ≥ (γ′(Nt))
2. (2.3)
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Based on Lemma 1, we give more specific conditions on the network externalities

function γ(·) for Assumption 2.3.1 to hold in Appendix A.2. In a nutshell, Assumption

2.3.1 holds when (a) the curvature of the network externalities function γ(·) is not too

small in the region network externalities exist (i.e., γ′(·) > 0), and (b) the price elasticity

of demand (i.e., |( dE[Dt(pt, Nt)]/E[Dt(pt, Nt)])/( dpt/pt)|) is sufficiently big relative to

the network size elasticity of demand (i.e., |( dE[Dt(pt, Nt)]/E[Dt(pt, Nt)])/( dNt/Nt)|).

2.4 Analysis of the Base Model

In this section, we analyze the base model suitable for the usual sales season of the

network product, when the firm charges a single regular price for all customers with-

out any promotional campaigns. In Section 2.5, we introduce price discrimination and

network expanding promotion strategies, and analyze their effectiveness in leveraging

network externalities.

We first characterize the structure of the optimal pricing and inventory policy in our

model. Then, we show that the state space dimension of the dynamic program for the

joint pricing and inventory replenishment problem can be reduced to 1. Finally, we study

the managerial implications of network externalities.

2.4.1 Optimal Policy

We now formulate the planning problem as a dynamic program. Define

vt(It, Nt) := the maximum expected discounted profits in periods t, t− 1, · · · , 1, when

starting period t with an inventory level It and network size Nt.

Without loss of generality, we assume that, in the last period (period 1), the excess

inventory is salvaged with unit value c, and the backlogged demand is filled with ordering

cost c, i.e., v0(I0, N0) = cI0 for any (I0, N0). The optimal value function vt(It, Nt) satisfies

the following recursive scheme:

vt(It, Nt) = cIt + max
(xt,pt)∈F(It)

Jt(xt, pt, Nt), (2.4)
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where F(It) := [It,+∞)× [p, p̄] denotes the set of feasible decisions and,

Jt(xt, pt, Nt) = −cIt + E{ptDt(pt, Nt)− c(xt − It)− h(xt −Dt(pt, Nt))
+

−b(xt −Dt(pt, Nt))
− + rn(θDt(pt, Nt) + ηNt + ϵt)

+αvt−1(xt −Dt(pt, Nt), θDt(pt, Nt) + ηNt + ϵt)|Nt},

= (pt − αc− b)(V̄t − pt + γ(Nt)) + (b− (1− α)c)xt

+E{rn(θ(V̄t − pt + γ(Nt) + ξt) + ηNt + ϵt)

−(h+ b)(xt − V̄t + pt − γ(Nt)− ξt)
+

+α[vt−1(xt − V̄t + pt − γ(Nt)− ξt, θ(V̄t − pt + γ(Nt) + ξt) + ηNt + ϵt)

−c(xt − V̄t + pt − γ(Nt)− ξt)]|Nt}

= Rt(pt, Nt) + βxt + Λ(xt − V̄t + pt − γ(Nt))

+Ψt(xt − V̄t + pt − γ(Nt), θ(V̄t − pt + γ(Nt)) + ηNt), (2.5)

with Ψt(x, y) := E{rn(y + θξt + ϵt) + α[vt−1(x− ξt, y + θξt + ϵt)− cx]},

Λ(x) := E{−(b+ h)(x− ξt)
+},

β := b− (1− α)c = the monetary benefit of ordering one unit of inventory.

Hence, for each period t, the firm selects

(x∗t (It, Nt), p
∗
t (It, Nt)) := argmax(xt,pt)∈F(It)Jt(xt, pt, Nt) (2.6)

as the optimal price and inventory policy contingent on the state variable (It, Nt).

We begin our analysis by characterizing the preliminary concavity and differentiability

properties of the value and objective functions in the following lemma.

Lemma 2 For each t = T, T − 1, · · · , 1, the following statements hold:

(a) Ψt(·, ·) is jointly concave and continuously differentiable in (x, y). Moreover, Ψt(x, y)

is decreasing in x and increasing in y.

(b) Jt(·, ·, ·) is jointly concave and continuously differentiable in (xt, pt, Nt).

(c) vt(·, ·) is jointly concave and continuously differentiable in (It, Nt). Moreover,

vt(It, Nt) is increasing in Nt, and vt(It, Nt)− cIt is decreasing in It.

Lemma 2 proves that, in each period t, the objective function is concave and con-

tinuously differentiable, and the value function is jointly concave and continuously dif-

ferentiable. Moreover, the normalized value function vt(It, Nt) − cIt is decreasing in the

18



inventory level It and increasing in the network size Nt. Lemma 2 is a standard result in

the joint pricing and inventory management literature (see, e.g., Theorem 1 in [70]). The

concavity and continuous differentiability of Jt(·, ·, ·) ensure that, the optimal price and

inventory policy, (x∗t (It, Nt), p
∗
t (It, Nt)), is well-defined and can be obtained via first-order

conditions. Moreover, we can define the inventory-independent optimizer (xt(Nt), pt(Nt))

as follows:

(xt(Nt), pt(Nt)) := argmaxxt∈R,pt∈[p,p̄]Jt(xt, pt, Nt). (2.7)

In case of multiple optimizers, we select the lexicographically smallest one. We define

yt(Nt) := V̄t − pt(Nt) + γ(Nt) as the optimal inventory-independent expected demand of

period t. With Lemma 2, we characterize the optimal pricing and inventory policy in the

following theorem.

Theorem 2.4.1 For any t, the following statements hold:

(a) If It ≤ xt(Nt), (x
∗
t (It, Nt), p

∗
t (It, Nt)) = (xt(Nt), pt(Nt)).

(b) If It > xt(Nt), x
∗
t (It, Nt) = It and p

∗
t (It, Nt) = argmaxpt∈[p,p̄]Jt(It, pt, Nt).

(c) For any It ∈ R and Nt ≥ 0, x∗t (It, Nt) > 0.

Theorem 2.4.1 shows that the optimal policy in the base model is a network-size-

dependent base-stock/list-price policy. If the starting inventory level It is below the

network-size-dependent base-stock level xt(Nt), it is optimal to order up to this base-stock

level, and charge the network-size-dependent list-price pt(Nt). If the starting inventory

level is above the network-size-dependent base-stock level, it is optimal not to order

anything, and charge an inventory-dependent sales price p∗t (It, Nt). Moreover, as shown

in Theorem 2.4.1(c), the optimal order-up-to level x∗t (It, Nt) is always positive for any

inventory level It and network size Nt. This implies that, under the optimal policy, all

backlogged demand in any period t will be satisfied in the next period (i.e., period t− 1).

2.4.2 State Space Dimension Reduction

The original dynamic program to characterize the optimal pricing and inventory policy

(2.4) has a state space of two dimensions (inventory level It and network size Nt). Hence,

it is difficult to work with (2.4) directly. In this subsection, we demonstrate that the
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dynamic program (2.4) can be reduced to a much simpler one with a single-dimensional

state space (network size Nt). Moreover, with probability 1, the optimal policy in each

period t, (x∗t (It, Nt), p
∗
t (It, Nt)), is independent of the dynamics of inventory level {Is :

s = T, T−1, · · · , t}, as long as the initial inventory level IT is below the optimal period-T

base-stock level xT (NT ). The state space dimension reduction, as we will show in Section

2.4.3 and Section 2.5, enables us to deliver sharper insights on the managerial implications

of network externalities and the effective strategies to exploit network externalities.

To begin with, we employ the sample path analysis approach to characterize the

behavior of the inventory level dynamics under the optimal pricing and inventory policy.

Lemma 3 For each period t, the following statements hold:

(a) For all network sizes Nt and Nt−1, we have

P[xt(Nt)−Dt(pt(Nt), Nt) ≤ xt−1(Nt−1)] = 1.

(b) For all Nt ≥ 0, xt(Nt) = ∆∗ + yt(Nt), where ∆∗ := argmax∆{β∆+ Λ(∆)}.

Lemma 3(a) shows that, if the firm adopts the optimal policy and the starting in-

ventory level in period t, It, is below the period-t base-stock level xt(Nt), the starting

inventory level in period t− 1, It−1 = xt(Nt)−Dt(pt(Nt), Nt), is below the period-(t− 1)

base-stock level, xt−1(Nt−1), with probability 1. Lemma 3(a) also implies that once the

starting inventory level falls below the optimal base-stock level of one period, the firm

should replenish in each period thereafter throughout the planning horizon with proba-

bility 1. Since our model best fits the network product that is either a new product (e.g.,

the first-generation iPhone) or a new generation of an existing product (e.g., Xbox One),

zero inventory is stocked at the beginning of the sales season, i.e., IT = 0. Therefore,

Theorem 2.4.1(c) and Lemma 3(a) imply that It ≤ xt(Nt) with probability 1 for each

period t. As a corollary of Lemma 3(a), Lemma 3(b) shows that, if the starting inventory

is below the optimal base-stock level (i.e., It ≤ xt(Nt)), the optimal safety-stock ∆∗ is

invariant with respect to the period t and the network size Nt, and can be obtained by

solving a one-dimensional convex optimization.

Based on Lemma 3, we now show that the bivariate value functions of the dynamic

program (2.4), {vt(·, ·) : t = T, T−1, · · · , 1}, can be transformed into a univariate function

πt(·) of the current network size Nt by normalizing the value of the starting inventory cIt.
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Moreover, the normalized value function πt(·) is concavely increasing and continuously

differentiable in Nt.

Lemma 4 There exists a sequence of functions {πt(·) : 1 ≤ t ≤ T}, such that, (i)

πt(Nt) = max{Jt(xt, pt, Nt) : xt ≥ 0, , pt ∈ [p, p̄]} for all Nt ≥ 0; (ii) for each t, πt(·) is

concavely increasing and continuously differentiable in Nt; (iii) vt(It, Nt) = cIt + πt(Nt)

for all Nt ≥ 0 and It ≤ xt(Nt); (iv) for all Nt ≥ 0,

Jt(xt, pt, Nt) = Rt(pt, Nt)+βxt+Λ(xt−V̄t+pt−γ(Nt))+Gt(θ(V̄t−pt+γ(Nt))+ηNt), (2.8)

where Gt(y) := E[rn(y + θξt + ϵt) + απt−1(y + θξt + ϵt)] and xt − V̄t + pt − γ(Nt) ≤ ∆∗;

and (v) (xt(Nt), pt(Nt)) maximizes the right-hand side of equation (2.8).

Lemma 4 enables us to reduce the original dynamic program (2.4), which has a two-

dimension state-space, to one with a single-dimension state space. More specifically,

Lemma 4 implies that the optimal network-size-dependent base-stock level and list-price

in each period t, (xt(Nt), pt(Nt)), can be recursively determined by solving the following

dynamic program with a single dimensional state-space of network size Nt:

πt(Nt) = max
xt≥0,pt∈[p,p̄]

Jt(xt, pt, Nt), (2.9)

where Jt(xt, pt, Nt) = Rt(pt, Nt) + βxt + Λ(xt − V̄t + pt − γ(Nt))

+Gt(θ(V̄t − pt + γ(Nt)) + ηNt),

with Gt(y) := E{rn(y + θξt + ϵt) + απt−1(y + θξt + ϵt)}, and π0(·) ≡ 0,

Summarizing Theorem 2.4.1, Lemma 3, and Lemma 4, we have the following sharper

characterization of the optimal policy in each period.

Theorem 2.4.2 Assume that IT ≤ xT (NT ). In each period t and for each It and Nt,

(x∗t (It, Nt), p
∗
t (It, Nt)) = (xt(Nt), pt(Nt)) with probability 1. Moreover, {(xt(Nt), pt(Nt)) :

t = T, T − 1, · · · , 1} is the solution to the Bellman equation (2.9).

Theorem 2.4.2 shows that, as long as the planning horizon starts with an inven-

tory level below the optimal period-T base-stock level (i.e., IT ≤ xT (NT )), the optimal

pricing and inventory policy in each period t, (x∗t (It, Nt), p
∗
t (It, Nt)), is identical to the

optimal base-stock level and list-price, (xt(Nt), pt(Nt)), with probability 1. Although the

firm holds inventory throughout the sales horizon, the optimal policy is independent of
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the inventory dynamics if the initial inventory level IT is sufficiently low. As discussed

above, in most applications, the firm holds zero initial inventory at the beginning of the

sales season, i.e., IT = 0. Hence, (x∗t (It, Nt), p
∗
t (It, Nt)) = (xt(Nt), pt(Nt)) for all (It, Nt)

with probability 1. Therefore, we will focus on analyzing the properties of the optimal

inventory-independent base-stock level and list-price (xt(Nt), pt(Nt)) for the rest of this

section.

2.4.3 Managerial Implications of Network Externalities

This subsection studies the impact of network externalities upon the firm’s optimal

price and inventory decisions in each period. Specifically, we strive to answer the following

questions: (a) How should the firm adjust its price and inventory policy in response

to the network size evolution? (b) How do network externalities directly impact the

optimal policy of the firm? (c) How should the firm adjust its price and inventory policy

intertemporally throughout the sales season? And (d) how to balance earning profits

directly from selling the product and from the service fees of the network? The answers

to these questions shed lights on the managerial implications of network externalities.

To begin with, we characterize the impact of network size upon the firm’s optimal

pricing and inventory policy in the following theorem.

Theorem 2.4.3 For each period t, assume that N̂t > Nt. We have: (a) pt(N̂t) ≥ pt(Nt);

(b) if It ≤ xt(Nt), E[Nt−1|N̂t] ≥ E[Nt−1|Nt]; (c) if γ(N̂t) = γ(Nt), then yt(N̂t) ≤ yt(Nt)

and xt(N̂t) ≤ xt(Nt); and (d) if η = 0, then yt(N̂t) ≥ yt(Nt) and xt(N̂t) ≥ xt(Nt).

Theorem 2.4.3 characterizes how the current network size influences the optimal

joint pricing and inventory policy, the optimal expected current-period demand, and

the optimal expected next-period network size. More specifically, we show that the

optimal list-price, pt(Nt), and the optimal expected network size in the next period,

E[Nt−1|Nt] = θyt(Nt) + ηNt, are increasing in the current network size Nt. The opti-

mal expected demand yt(Nt), and the optimal base-stock level xt(Nt), however, may not

necessarily be increasing or decreasing in Nt (see Theorem 2.4.3(c,d)). Under network

externalities, a larger current network size Nt gives rise to a higher potential demand,

so the firm charges a higher price to exploit the better market condition. Hence, with
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a larger current network size, the combination of a better market condition and an in-

creased sales price may drive the resulting optimal expected demand and the optimal

base-stock level either higher or lower.

In the joint pricing and inventory management model without network externalities

(e.g., [70]), the optimal policy in each period is independent of either past demands

or past decisions. Since the current network size Nt is positively correlated with past

demands, Theorem 2.4.3 implies that network externalities create intertemporal correla-

tions between demands and optimal decisions throughout the planning horizon. Hence,

the firm can employ the current price and inventory decisions to control future demands.

Therefore, the firm needs to dynamically balance the tradeoff between generating current

profits and inducing future demands through network externalities.

Theorems 2.4.1-2.4.3 are silent on the properties of the optimal policy when the start-

ing inventory exceeds the optimal base-stock level (i.e., It > xt(Nt)). Though this sce-

nario occurs with probability 0 as long as IT ≤ xT (NT ) (see Theorem 2.4.2), we give the

following theorem that characterizes the structure of the optimal policy therein.

Theorem 2.4.4 Assume that η = 0. For each period t, the following statements hold,

(a) vt(It, Nt) is supermodular in (It, Nt).

(b) x∗t (It, Nt) is continuously increasing in It and Nt.

(c) p∗t (It, Nt) is continuously decreasing in It, and continuously increasing in Nt.

(d) The optimal expected demand y∗t (It, Nt) := V̄t − p∗t (It, Nt) + γ(Nt) is continuously

increasing in It and Nt. Hence, E[Nt−1|Nt] = θy∗t (It, Nt) is continuously increasing

in It and Nt.

(e) The optimal safety-stock ∆∗
t (It, Nt) := x∗t (It, Nt)− V̄t + p∗t (It, Nt)− γ(Nt) is contin-

uously increasing in It and continuously decreasing in Nt.

Theorem 2.4.4 generalizes Theorems 2.4.1 and 2.4.3 to the setting with high starting

inventory (i.e., It > xt(Nt)). More specifically, Theorem 2.4.4(a) shows that if η = 0 (i.e.,

all customers who are in the network will leave in the next period), the value function

in each period t, vt(It, Nt) is supermodular in (It, Nt). This is because, a larger network

size leads to a larger potential demand and, thus, a higher marginal value of inventory.
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Analogously, the optimal expected demand, y∗t (It, Nt), and the optimal expected network

size in the next period are all increasing in the network size Nt for all (It, Nt). As

a consequence, if the network size is larger, the firm increases the order-up-to level,

x∗t (It, Nt), to match demand with supply, and charges a higher sales price, p∗t (It, Nt), to

exploit the better market condition. Since the expected demand is higher with a larger

network size, the optimal safety-stock ∆∗
t (It, Nt) is decreasing in Nt. Theorem 2.4.4 also

yields how the starting inventory level It influences the optimal policy when it is above

the base-stock level. We show that, in this case, a higher starting inventory level prompts

the firm to increase the safety stock and, to match supply with demand, charge a lower

sales price.

Theorem 2.4.3 shows that network externalities impact the optimal joint pricing and

inventory policy of the firm through the current size of the associated network. We

proceed to directly analyze the impact of network externalities by comparing the optimal

policy in an inventory system with network externalities with that in an inventory system

without.

Theorem 2.4.5 Assume that two inventory systems are identical except that one with

network externalities function γ(·) and the other with γ̂(·), where γ(0) = γ̂(0) = γ0

and γ̂(Nt) ≥ γ(Nt) ≡ γ0 for all Nt ≥ 0, i.e., the inventory system with function γ(·)

exhibits no network externalities. Moreover, let r̂n(n) = rn(n) = rn for some constant

r ≥ 0. For each period t and each network size Nt ≥ 0, the following statements hold:

(a) ŷt(Nt) ≥ yt(Nt); (b) x̂t(Nt) ≥ xt(Nt); (c) There exists a threshold Nt ≥ 0, such that

p̂t(Nt) ≤ pt(Nt) for Nt ≤ Nt, whereas p̂t(Nt) ≥ pt(Nt) for Nt ≥ Nt.

Network externalities lead to a higher potential demand for the inventory system,

because social customers in the network can attract new potential customers to buy the

product. Hence, as shown in Theorem 2.4.5(a,b), the presence of network externalities

gives rise to a higher expected demand and, thus, drives the firm to increase the base-

stock level in each period t (i.e., ŷt(Nt) ≥ yt(Nt) and x̂t(Nt) ≥ xt(Nt)). Theorem 2.4.5(c)

characterizes the impact of network externalities upon the firm’s pricing policy: The

optimal list-price with network externalities, p̂t(Nt), may be either higher or lower than

that without, pt(Nt). More specifically, if the network size is sufficiently small (i.e., below

the threshold Nt), p̂t(Nt) ≤ pt(Nt). Otherwise, the network size is sufficiently large
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(i.e., above the threshold Nt) and p̂t(Nt) ≥ pt(Nt). Under network externalities, the

firm faces the tradeoff between decreasing the sales price to induce high future demands

and increasing the sales price to exploit the better market condition. When the current

network size is small (Nt ≤ Nt), the firm should put higher weight on inducing future

demands, so the optimal price is lower with network externalities. Otherwise, Nt ≥ Nt,

generating current profits outweighs inducing future demands, and, hence, the optimal

price is higher with network externalities. In short, Theorem 2.4.5(c) reveals that, because

of the tradeoff between generating current profits and inducing future demands, network

externalities can have some subtle implications on the pricing policy of the firm.

We now characterize the evolution of the optimal price and inventory decisions over

the planning horizon. As shown in the following theorem, when the market is stationary,

network externalities motivate the firm to set lower sales prices and higher base-stock

levels at the beginning of the planning horizon.

Theorem 2.4.6 Assume that V̄t = V̄t−1 for all t. For each t = T, T − 1, · · · , 2 and

any network size N ≥ 0, we have (a) xt(N) ≥ xt−1(N), (b) yt(N) ≥ yt−1(N), and (c)

pt(N) ≤ pt−1(N).

When the willingness-to-pay of the customers is stationary, Theorem 2.4.6 charac-

terizes the evolutions of the optimal base-stock level, expected demand, and sales price

under network externalities. More specifically, we show that, with the same network size

Nt (and, thus, the same potential market size), the optimal expected demand, yt(Nt),

and the optimal base-stock level, xt(Nt), is decreasing over the planning horizon, whereas

the optimal sales price, pt(Nt), is increasing throughout the planning horizon. Under

network externalities, the firm should put more weight on inducing future demands at

the beginning of the planning horizon and turn to generating the current profits as the

sales season approaches the end. Hence, it is optimal for the firm to offer discounts and

attract more customers to purchase the product and join the network at the early stage

of a sales season, and to charge a higher price to exploit the current market towards the

end of the planning horizon. To match demand with supply, with the same potential

market size, the optimal base-stock level is decreasing over the planning horizon. Theo-

rem 2.4.6 is consistent with the commonly used introductory price strategy under which

price discounts are offered at the introductory stage of a product. For example, when
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Microsoft introduced the 500 GB Xbox 360 into the India video game market, it charged

a surprisingly low introductory price of $313.9 (see, e.g., [108]). When the customer val-

uation is not stationary (i.e., V̄t is not equal to V̄t−1), the introductory price strategy may

not necessarily be optimal. This is because, if the customer valuation is higher at the

beginning of the sales season, the firm may charge a higher price to exploit the customer

preference as opposed to offering discounts to induce future demands.

In our joint pricing and inventory management model with network externalities, the

firm has two sources of profits: (i) selling the product, and (ii) the service fees collected

from the associated network. A natural question to ask is how should the firm balance

these two profit-generating sources? The following theorem addresses this question by

characterizing how the marginal profit from the associated network influence the optimal

policy.

Theorem 2.4.7 Assume that two inventory systems are identical except that one with

network profit function r̂n(·), and the other with rn(·), where r̂′n(N) ≥ r′n(N) for all N ≥

0. For each period t and any Nt ≥ 0, we have: (a) x̂t(Nt) ≥ xt(Nt), (b) p̂t(Nt) ≤ pt(Nt),

and (c) ŷt(Nt) ≥ yt(Nt).

Theorem 2.4.7 sheds lights on how different firms should balance the two profit sources.

More specifically, Theorem 2.4.7 shows that if the associated network has a higher profit

margin (i.e., r′n(·) is larger), the network externalities of the product are stronger and, as

a consequence, the firm should price down and increase the potential demand to exploit

the more intensive network externalities. To match demand with supply, the firm also

increases the base-stock level with a higher profit margin of the associated network.

Theorem 2.4.7 implies that for a product with high intrinsic customer valuations and a

low margin of the associated network (e.g., iPhone), the firm charges a premium price

for the product; whereas if the product has low intrinsic valuations from the customers

due to, e.g., fierce market competition, but the margin of the associated network is high

(e.g., Xbox), the firm charges a price with a low margin for the product so as to exploit

network externalities.

In summary, network externalities have several important managerial implications

upon the joint pricing and inventory policy of the firm. Most importantly, network exter-

nalities create another layer of complexity in balancing the tradeoff between generating
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current profit and inducing future demands. To exploit network externalities, the firm

should dynamically adjust its price increasing in the current network size. Moreover,

network externalities give rise to higher expected demand and, hence, drive the firm to

increase the base-stock level in each period. Since network externalities create the tension

between generating current profits and inducing future demands, the optimal sales price

with network externalities is lower than that without when the network size is small (to

induce high future demands), and is higher than that without when the network size

is big (to generate high current profits). From the intertemporal perspective, the firm

should put more weight on inducing future demands at the early stage of a sales season

than at later stages. Thus, if the customer valuation is stationary, the firm should employ

the introductory price strategy that offers early purchase discounts to induce high future

demands. Finally, the firm needs to trade off between generating profits from the product

and from the associated network as well. With higher marginal profits of the associated

network, the firm should decrease the sales price to exploit the more intensive network

externalities.

2.5 Effective Strategies to Exploit Network Externalities

In this section, we study two effective strategies to exploit network externalities: (a)

the price discrimination strategy and (b) the network expanding promotion strategy.

Both strategies adopt the uniform idea that, the firm employs an additional leverage

(price or promotion) to separate generating current profits and inducing future demands

through network externalities.

2.5.1 Price Discrimination

In this subsection, we study the price discrimination strategy that is commonly used

in practice under network externalities. More specifically, since only social customers will

join the associated network of the product and exert network externalities over potential

buyers in the future, the firm can better exploit network externalities by price discrim-

inating different customer segments in favor of social customers. For example, in 2015,

Microsoft offered price discounts for Xbox One buyers who commit to signing up for the

Xbox Live Gold membership for at least one year (see, e.g., [85]).
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In period t, in stead of announcing a single price pt, the firm under the price dis-

crimination strategy offers a price menu to customers: (pst , p
i
t) ∈ [p, p̄] × [p, p̄], where

pst is the unit price of the product with the network sign-up commitment, and pit is

the unit price of the product without any network service subscription commitment. If

pst > pit, all customers will take the price pit and the model is reduced to the based model

studied in Section 2.4. Hence, without loss of generality, we assume that pst ≤ pit. In

this case, social customers will take the price pst and, as committed, join the associated

network, whereas individual customers will take the price pit without joining the asso-

ciated network. Thus, in period t, the demand from the social customers is given by

Ds
t (p

s
t , Nt) := θ(V̄t − pst + γ(Nt) + ξt), and that from the individual customers is given by

Di
t(p

i
t, Nt) := (1 − θ)(V̄t − pit + γ(Nt) + ξt). The network size at the beginning of period

t− 1 is, thus, given by Nt−1 = Ds
t (p

s
t , Nt) + ηNt + ϵt.

We define

vdt (It, Nt) := the maximum expected discounted profits with price discrimination in

periods t, · · · , 1, when starting period t with an inventory level It

and network size Nt;

and (xd∗t (It, Nt), p
s∗
t (It, Nt), p

i∗
t (It, Nt)) as the optimal pricing and inventory policy. As

in the base model, we assume that, in the last period (period 1), the excess inventory

is salvaged with unit value c, and the backlogged demand is filled with ordering cost

c, i.e., vd0(I0, N0) = cI0 for any (I0, N0). Employing similar dynamic programming and

sample path analysis methods, we characterize the optimal policy in the model with price

discrimination in the following lemma.

Lemma 5 Define a sequence of functions {πd
t (Nt) : t = T, T − 1, · · · , 1} and a sequence

of pricing and inventory policies {(xdt (Nt), p
s
t(Nt), p

i
t(Nt)) : t = T, T−1, · · · , 1} as follows:

πd
t (Nt) = max

(xt,pst ,p
i
t)∈Fd

Jd
t (xt, p

s
t , p

i
t, Nt), (2.10)

where Jd
t (xt, p

s
t , p

i
t, Nt) = θRt(p

s
t , Nt) + (1− θ)Rt(p

i
t, Nt)

+Λ(xt − V̄t + θpst + (1− θ)pit − γ(Nt))

+βxt +Gd
t (θ(V̄t − pst + γ(Nt)) + ηNt),

with Gd
t (y) := E{rn(y + θξt + ϵt) + απd

t−1(y + θξt)}, πd
0(·) ≡ 0,

and (xdt (Nt), p
s
t(Nt), p

i
t(Nt)) := argmax(xt,pst ,p

i
t)∈Fd

Jd
t (xt, p

s
t , p

i
t, Nt).
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(a) πd
t (·) is concave, continuously differentiable, and increasing in Nt. Jd

t (·, ·, ·, ·) is

jointly concave and continuously differentiable in (xt, p
s
t , p

i
t, Nt).

(b) If It ≤ xdt (Nt), (xd∗t (It, Nt), p
s∗
t (It, Nt), p

i∗
t (It, Nt)) = (xdt (Nt), p

s
t(Nt), p

i
t(Nt)) and

vdt (It, Nt) = cIt + πd
t (Nt); otherwise, x

d∗
t (It, Nt) = It. If IT ≤ xdT (NT ),

(xd∗t (It, Nt), p
s∗
t (It, Nt), p

i∗
t (It, Nt)) = (xdt (Nt), p

s
t(Nt), p

i
t(Nt)) for all t and (It, Nt)

with probability 1.

Lemma 5 demonstrates that a network-size-dependent base-stock/list-prices policy is

optimal in the model with price discrimination. As in the base model, after normalizing

the value of current inventory, the state space dimension of the dynamic program can

be reduced to 1. Moreover, with probability 1, the optimal policy is independent of the

starting inventory level in each period, as long as the initial inventory level IT is below

the optimal period-T base-stock level xdT (NT ).

We remark that Theorems 2.4.3, 2.4.5, 2.4.6 and 2.4.7 can be generalized to the model

with price discrimination. Hence, the impact of network externalities upon the optimal

pricing and inventory policy is similar in the model with price discrimination to that

in the base model. To characterize the impact of the price discrimination strategy, we

directly compare the optimal policy and profit in the model with price discrimination

with that in the base model.

Theorem 2.5.1 Assume that two inventory systems are identical except that one with

the price discrimination strategy and the other without. For each period t, we have (a)

if γ′(·) > 0 and pit(Nt) > p, pst(Nt) < pit(Nt); (b) pt(Nt) ≤ pit(Nt) for all Nt; and (c)

πd
t (Nt) ≥ πt(Nt) for all Nt, where the inequality is strict if pit(Nt) > pst(Nt). Moreover, if

γ(·) ≡ γ0, π
d
t (Nt) = πt(Nt) and p

i
t(Nt) = pst(Nt) = pt(Nt) for all Nt.

Theorem 2.5.1 sheds lights on the impact of the price discrimination strategy upon the

firm’s optimal pricing policy and the optimal profit. More specifically, Theorem 2.5.1(a)

shows that, as long as network externalities are prevalent in the market (i.e., γ′(·) > 0)

and the optimal price for individual customers is not binding from below (i.e., pit(Nt) > p),

the firm should charge a strictly lower price for the social customers than that for the

individual customers. Under the price discrimination strategy, the firm can induce high

future demands by charging a low price for the social customers, and generate current

profits by a high price for the individual customers. Theorem 2.5.1(b) shows that, in each
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period t, the optimal price for customers without price discrimination is dominated by

that for the individual customers with price discrimination. Without price discrimination,

the firm should both generate the current profits and induce the future demands with

the single price charged to all customers, so this price is lower than that for individual

customers with price discrimination, which has the sole role of generating the current

profits. In Theorem 2.5.1(c), we demonstrate that the price discrimination strategy is

beneficial to the firm with network externalities. Without network externalities, however,

the firm should charge a single price to all customers in each period. An important

implication of Theorem 2.5.1 is that, under the price discrimination strategy, the firm

earns a higher profit because it can (partially) separate generating current profits and

inducing future demands, the former with the price for the individual customers and the

latter with the price for the social customers.

2.5.2 Network Expanding Promotion

Since the willingness-to-pay of the customers in each period is increasing in the size

of the associated network, the firm may launch network expanding promotion campaigns

to enlarge the network size and, hence, increase its profitability. The network expanding

promotion strategy is commonly used in practice for products with network externali-

ties. For example, in February 2015, Microsoft discounted the 12-month Xbox Live Gold

membership by 33 percent to both expand the size of Xbox Live and promote the sales

of Xbox One (see, e.g., [153]). In the case where the associated network is an online

communication network (i.e., rn(·) ≡ 0), network expanding promotion is the effort and

investment the firm makes in social media marketing to attract customers to create and

share the messages about the product in the network (i.e., through the electronic word-

of-mouth). As an example, in October 2014, Apple bought Twitter’s Promoted Trend at

a daily cost of $200,000 to engage Twitter users for the new iPad Air 2 launch (see, e.g.,

[93]).

To model the network expanding promotion of the firm, let nt be the number of

customers who join the associated service network in period t in addition to the social

customers who purchase the product. The total cost of attracting nt customers into the

network is cn(nt), where cn(·) is a continuously differentiable and convexly increasing

function of nt with cn(0) = 0. Note that the network expanding promotion do not change
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the inventory dynamics of the firm, but they do have some impacts on the network size

dynamics. More specifically, with network expanding promotion, the network size at the

beginning of period t− 1 is given by: Nt−1 = θDt(pt, Nt) + ηNt + nt + ϵt.

We define

vpt (It, Nt) := the maximum expected discounted profits with network expanding

promotion in periods t, t− 1, · · · , 1, when starting period t with

an inventory level It and network size Nt;

and (xp∗t (It, Nt), p
p∗
t (It, Nt), n

∗
t (It, Nt)) as the optimal pricing and inventory policy. As in

the base model, we assume that, in the last period (period 1), the excess inventory is

salvaged with unit value c, and the backlogged demand is filled with ordering cost c, i.e.,

vp0(I0, N0) = cI0 for any (I0, N0). Employing similar dynamic programming and sample

path analysis methods, we characterize the optimal policy in the model with network

expanding promotion in the following lemma.

Lemma 6 Define a sequence of functions {πp
t (Nt) : t = T, T − 1, · · · , 1} and a sequence

of pricing and inventory policies {(xpt (Nt), p
p
t (Nt), nt(Nt)) : t = T, T−1, · · · , 1} as follows:

πp
t (Nt) = max

(xt,pt,nt)∈Fp

Jp
t (xt, pt, nt, Nt), (2.11)

where Jp
t (xt, pt, nt, Nt) = Rt(pt, Nt) + βxt + Λ(xt − V̄t + pt − γ(Nt))− cn(nt)

+Gp
t (θ(V̄t − pt + γ(Nt)) + ηNt + nt),

with Gp
t (y) := E{rn(y + θξt + ϵt) + απp

t−1(y + θξt)}, πp
0(·) ≡ 0,

and (xpt (Nt), p
p
t (Nt), nt(Nt)) := argmax(xt,pt,nt)∈Fp

Jp
t (xt, pt, nt, Nt).

(a) πp
t (·) is concave, continuously differentiable, and increasing in Nt. Jp

t (·, ·, ·, ·) is

jointly concave and continuously differentiable in (xt, pt, nt).

(b) If It ≤ xpt (Nt), (xp∗t (It, Nt), p
p∗
t (It, Nt), n

∗
t (It, Nt)) = (xpt (Nt), p

p
t (Nt), nt(Nt)) and

vpt (It, Nt) = cIt + πp
t (Nt); otherwise, x

p∗
t (It, Nt) = It. If IT ≤ xpT (NT ),

(xp∗t (It, Nt), p
p∗
t (It, Nt), n

∗
t (It, Nt)) = (xpt (Nt), p

p
t (Nt), nt(Nt)) for all t and (It, Nt)

with probability 1.

Lemma 6 demonstrates that a network-size-dependent base-stock/list-price/promotion

policy is optimal in the model with price discrimination. By normalizing the value of cur-

rent inventory, we can reduce the state space dimension of the dynamic program to 1.
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With probability 1, the optimal policy is independent of the starting inventory level

in each period, as long as the initial inventory level IT is below the optimal period-T

base-stock level in the first period xpT (NT ).

As in the model with price discrimination, Theorems 2.4.3, 2.4.5, 2.4.6, and 2.4.7 can

be generalized to the model with network expanding promotion. We now demonstrate the

effectiveness [ineffectiveness] of network expanding promotion in the model with [without]

network externalities.

Theorem 2.5.2 (a) Let 0 < ι < 1, and S̄(N) := sup{∆ : P(Nt−1 ≥ ∆|Nt = N) ≥ ι}.

If

(1− ι)[r′n(S̄(N)) + α(p− c)γ′(S̄(N))] > c′n(0), (2.12)

then n∗
t (It, N) > 0 for all It. Moreover, S̄(N) is continuously increasing in N

and, for each 0 < ι < 1, there exists an N∗(ι) ≥ 0, such that (2.12) holds for all

N < N∗(ι).

(b) If γ(·) ≡ γ0 and (
∑t−1

τ=0(αη)
τ )r′n(0) ≤ c′n(0), n

∗
t (It, Nt) ≡ 0 for all It and Nt ≥ 0.

Theorem 2.5.2 characterizes the dichotomy on when the firm should offer network

expanding promotion. More specifically, Theorem 2.5.2(a) shows that, when either (i)

the intensity of network externalities is sufficiently strong or (ii) the associated service

network is sufficiently profitable (as characterized by inequality (2.12)), it is optimal

for the firm to offer network expanding promotion to customers as long as the current

network size is sufficiently low (i.e., n∗
t (It, Nt) > 0 if Nt ≤ N∗(ι)). The intuition behind

Theorem 2.5.2(a) is that, if a lower bound of the marginal value of offering network

expanding promotion, (1− ι)[r′n(S̄(N)) +α(p− c)γ′(S̄(N))], dominates its marginal cost

c′n(0), the firm should offer network expanding promotion to customers. Here, S̄(N)

can be interpreted as the threshold such that, conditioned on Nt = N , the probability

that the network size in period t − 1 exceeds S̄(N) is smaller than ι, regardless of the

pricing strategy the firm employs. Hence, network expanding promotion are effective in

exploiting network externalities, especially when Nt and, thus, the potential demand is

low. On the other hand, Theorem 2.5.2(b) shows that if network externalities do not

exist (i.e., γ(·) ≡ 0) and the associated service network is not sufficiently profitable (i.e.,

(
∑t−1

τ=0(αη)
τ )r′n(0) ≤ c′n(0)), it is optimal for the firm not to offer any network expanding

promotion.
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Next, we study the impact of network expanding promotion upon the firm’s optimal

policy.

Theorem 2.5.3 Assume that two inventory systems are identical except that one with

network expanding promotion and the other without. For each period t and each network

size Nt ≥ 0, the following statements hold: (a) ppt (Nt) ≥ pt(Nt); (b) y
p
t (Nt) ≤ yt(Nt); (c)

xpt (Nt) ≤ xt(Nt); and (d) πp
t (Nt) ≥ πt(Nt), where the inequality is strict if nt(Nt) > 0.

Theorem 2.5.3 highlights how the firm should adjust its price and inventory policy with

network expanding promotion. More specifically, we show in Theorem 2.5.3(a) that, with

the same network size (and, hence, the same potential market size), the firm should charge

a higher sales price with network expanding promotion. Since both the sales price and

the network expanding promotion helps induce future demands via network externalities,

the adoption of network expanding promotion allows the firm to increase the sales price

to generate higher profit in the current period. As a result, the optimal expected demand

and the optimal base-stock level are lower with market expanding promotion. In Theorem

2.5.3(d), we show that network expanding promotion can improve the profitability of the

firm.

To summarize, network expanding promotion helps the firm exploit network exter-

nalities by boosting the network size in each period. In particular, network expanding

promotion facilitates the firm to induce future demands with network expanding promo-

tion, while generating higher current profits with a higher sales price. The firm should

offer network expanding promotion when the intensity of network externalities is suffi-

ciently strong or the associated service network is sufficiently profitable.

2.6 Numerical Studies

This section reports a set of numerical studies that quantify the profit loss of ig-

noring network externalities. We also propose and quantitatively evaluate some easy-

to-implement heuristics in the presence of network externalities. Our numerical results

demonstrate that (1) ignoring network externalities and, thus, employing a myopic pric-

ing and inventory policy leads to staggering profit losses when the network externalities

intensity, the social customer proportion, or the carry-through rate of network size is high;
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and (2) the firm can achieve low optimality gaps and effectively exploit network external-

ities with heuristic policies that take into account the demand induction opportunities in

the near future only.

Throughout our numerical studies, we assume that the maximum intrinsic valuation

V̄t is stationary and equals 30 for each period t. The planning horizon length is T = 20.

The network externalities function is γ(Nt) = kNt (k ≥ 0). The parameter k measures the

network externalities intensity. The larger the k, the more intensive network externalities

the firm faces. Hence, the demand in each period t is Dt(pt, Nt) = 30 + kNt − pt + ξt,

where {ξt}Tt=1 follow i.i.d. normal distributions with mean 0 and standard deviation σ = 2.

Note that with the linear network externalities function γ(·), Assumption 2.3.1 does not

hold. This slight deviation from our analytical model, however, does not influence the

insights obtained in this section. For simplicity, we assume the random perturbation in

the market size dynamics ϵt is degenerate, i.e., ϵt = 0 with probability 1. We set the

discount factor α = 0.99, the unit procurement cost c = 8, the unit holding cost h = 1,

the unit backlogging cost b = 10, and the feasible price range [p, p̄] = [0, 34]. In the

evaluation of the expected profits, we take It = 0 as the reference initial inventory level

and Nt = 0 as the reference initial network size.

2.6.1 Impact of Network Externalities

This subsection numerically studies the impact of network externalities upon the firm’s

profitability under different values of network externalities intensity k, social customer

proportion θ, and carry-through rate of network size η. We evaluate the profit of the

firm which ignores the tradeoff between generating current profits and inducing future

demands in the presence of network externalities. More specifically, we assume that the

firm adopts the myopic policy in each period t, i.e., it adopts the pricing and inventory

policy that maximizes the expected current-period profit without taking into account

future demand-inducing opportunities. Equivalently, the firm employs the optimal final-

period policy, (x∗1(·, ·), p∗1(·, ·)), throughout the planning horizon. Let Vm be the expected

profit under the myopic policy, and V ∗ be optimal expected profit. Thus, the metric of

interest is

λm :=
V ∗ − Vm
V ∗ ×100%, which evaluates the profit loss of ignoring network externalities.
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We conduct the numerical experiments under the parameters t = 5, 10, 15, 20, k =

0.2, 0.5, 0.8, θ = 0.2, 0.5, 0.8, and η = 0.2, 0.5, 0.8.
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Figure 2.1. Value of λm: θ = 0.5, η = 0.5
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Figure 2.2. Value of λm: k = 0.5, η = 0.5

Figures 2.1 - 2.3 summarize the results of our numerical study on the impact of

ignoring network externalities upon the firm’s profitability. Our results reveal that, when

the future demand-inducing opportunity of network externalities is ignored, the firm

incurs a significant profit loss, which is at least 4.90% and can be as high as 36.60%, as

long as the network externalities intensity k, the proportion of social customers θ, and the

network size carry-through rate η are not too low (greater than 0.2 in our numerical case).

If k, θ, and η are higher, the current operations decisions have greater impact upon future

network sizes, thus leading to more intensive tradeoff between generating current profits

and inducing future demands. Therefore, adopting the myopic policy results in significant

losses if k, θ, and η are not too low. Another important implication of Figures 2.1 - 2.3

is that, if k, θ, and η are not too low, the profit loss of ignoring network externalities

may be significant even when the planning horizon length is short (i.e., t = 5). This calls

for caution that the firm under network externalities should not overlook the tradeoff

between generating current profits and inducing future demands even for a short sales

horizon.
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Figure 2.3. Value of λm: k = 0.5, θ = 0.5
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2.6.2 Effective Heuristic Policies under Network Externalities

In this subsection, we propose some easy-to-implement heuristic policies and explore

when these heuristics effectively leverage network externalities. As shown in Section

2.6.1, the myopic policy may have a poor performance because it ignores the opportunity

of inducing future demands via network externalities. Thus, we consider the heuristic

policies that balance generating current profits and inducing demands in the near future

(within 5 periods) through network externalities. More specifically, in each period t,

the firm dynamically maximizes the expected total discounted profit in the moving time

window from period t to period t+i (i = 1, 3, 5). We call the heuristic policy to maximize

the profit in the moving time window of length i as the i−heuristic (i = 1, 3, 5). Clearly,

obtaining the i−heuristic (i = 1, 3, 5) only involves solving a dynamic program with

planing horizon length i+ 1, and is, thus, computationally light. Hence, the i−heuristic

policy (i = 1, 3, 5) is easy to implement. Let V i
h be the expected total profit under the

i−heuristic policy. We have V ∗ ≥ V 5
h ≥ V 3

h ≥ V 1
h ≥ Vm. The metric of interest is

λih :=
V ∗ − V i

h

V ∗ × 100% which measures the optimality gap of the i−heuristic policy

(i = 1, 3, 5). We conduct the numerical experiments under the parameters t = 20,

k = 0.2, 0.5, 0.8, θ = 0.2, 0.5, 0.8, and η = 0.2, 0.5, 0.8.
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Figures 2.4 - 2.6 summarize the results of our numerical study on the performance

of i−heuritic policies (i = 1, 3, 5). The results show that, compared with the myopic
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policy that completely ignores the future demand-inducing opportunities, the i−heuristics

(i = 1, 3, 5) significantly improve the profitability of the firm in the presence of network

externalities. In particular, the 5−heuristic leads a very low profit loss compared with

the optimal policy (no more than 2%, in contrast to the more-than-30% optimality gap

of the myopic policy). Therefore, the firm can effectively exploit network externalities

by slightly looking into the future and balancing the tradeoff between generating current

profits and inducing near future demands. Moreover, as shown in Figures 2.4 - 2.6, if the

network externalities intensity k, the social customer proportion θ, or the carry-through

rate of network size η is higher, the i−heuristic policies are more valuable relative to the

myopic policy. As k, θ, or η increases, the tradeoff between generating current profits

and inducing future demands becomes more intensive, and, thus, the forward-looking

i−heuristics can deliver higher values to the firm compared with the myopic policy. We

have also performed numerical analysis for the i−heuristic policies with i > 5. These more

forward-looking heuristic policies cannot generate significantly better performances over

the 5−heuristic policy. This further demonstrates that, to exploit network externalities,

it suffices for the firm to balance generating current profits and inducing demands in

the near future. Finally, we remark that our numerical results are robust and continue

to hold in the settings where the planning horizon length T is greater than 20 and/or

the market non-stationary (i.e., the maximum intrinsic valuation V̄t varies with time t).

For concision, we only present the results for the case where T = 20 and the market is

stationary in this chapter.

2.7 Summary

This is the first paper in the literature to study the joint pricing and inventory man-

agement model under network externalities. To model network externalities, we assume

that there is an online service or communication network associated with the product,

and the customers’ willingness-to-pay is increasing in the size of this network. Moreover,

in each period, a fraction of the customers (i.e., the social customers) who purchase the

product would join the network and exert network externalities over potential customers

in the future. The firm may directly generate profits from the network via, e.g., ser-

vice subscription fees. Therefore, in each period, the firm faces the tradeoff between

generating current profits and inducing future demands via network externalities.
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We show that the optimal policy is a network-size-dependent base-stock/list-price

policy. Moreover, we demonstrate that, with probability 1, the inventory dynamics do

not influence the optimal policy of the firm. As a consequence, the state space dimension

of the dynamic program can be reduced to one by normalizing the current inventory

value. Such state space dimension reduction greatly facilitates the analysis and enables

us to deliver sharper insights from our model. Our analysis reveals that the firm needs

to balance the tradeoff between generating current profits and inducing future demands

through network externalities. Under network externalities, since the current demand

is stochastically increasing in the network size, the optimal base-stock level and the

optimal sales price are increasing in the network size as well. Network externalities lead

to higher potential demands and, thus, higher base-stock levels. The optimal sales price,

however, may not necessarily increase with the presence of network externalities. This

is because, with network externalities, the firm should decrease the sales price to exploit

the increased network externalities when the network size is small, and increase the sales

price to exploit the better market condition when the network size is large. From the

intertemporal perspective, the firm should put more weight on inducing future demands

at the early stage of a sales season than at later stages. Thus, when the market is

stationary, the firm employs the introductory price strategy that offers early purchase

discounts to induce high future demands at the beginning of the sale season. Moreover,

the firm needs to trade off between generating profit from the product and from the

associated network. With a higher marginal profit of the associated network, the firm

should decrease the sales price to exploit the more intensive network externalities.

Our analysis demonstrates the effectiveness of the price discrimination strategy and

the network expanding promotion strategy in exploiting network externalities. Both

strategies facilitate the firm to (partially) separate generating current profits and induc-

ing future demands through network externalities with an additional leverage (price or

promotion). Under the price discrimination strategy, the firm generates a higher current

profit with a higher price for individual customers, and induces higher future demands

with a lower price for social customers. Network expanding promotion should be em-

ployed when the intensity of network externalities is sufficiently strong or the associated

service network is sufficiently profitable. Moreover, the firm offers network expanding
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promotion to induce future demands through network externalities, while generating a

higher current profit with an increased price of the product.

We perform extensive numerical studies to characterize (a) the impact of ignoring

network externalities, and (b) the value of some easy-to-implement heuristic policies to

exploit network externalities. Our numerical results show that the profit loss of ignoring

network externalities is significant, especially when the network externalities intensity,

the social customer proportion, or the network size carry-through rate is high. In this

scenario, the tradeoff between generating current profits and inducing future demands is

most intensive, so the firm should by no means myopically optimize its current profit.

On the other hand, the heuristic policies that dynamically maximize the expected profit

in a moving time window of no more than 5 periods achieve low profit losses relative to

the optimal policy. Hence, to leverage network externalities, it suffices for the firm to

balance generating current profits and inducing demands in the near future.
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3. Operations Impact of Network Externalities: Dynamic

Competition Setting

3.1 Introduction

1In today’s competitive and unstable market environment, it is prevalent that modern

firms compete not only on generating current profits, but also on winning future market

shares (see, e.g., [106]). The current decisions of all competing firms in the market

not only determine their respective current profits, but also significantly influence their

future demands. We refer to such inter-temporal dependence of future demands on the

current decisions as market size dynamics. Under market size dynamics, myopically

optimizing the current profit may lead to significant loss of future demands, and hurt the

firm’s profit in the long run. Therefore, the competing firms face an important tradeoff

between generating current profits and inducing future demands, which we refer to as the

exploitation-induction tradeoff.

Among others, we focus on two main drivers of the aforementioned exploitation-

induction tradeoff: (a) The future demand is positively correlated with the current service

level, which we refer to as the service effect; and (b) the future demand is positively

correlated with the current demand, which we refer to as the network effect.

The service effect is driven by the well-recognized phenomenon that the past service

experience of a customer significantly impacts his/her future purchasing decisions (see,

e.g., [29, 2]). A poor service (e.g., a low fill rate of a customer’s orders) generally dimin-

ishes the goodwill of a customer, thus leading to lower future orders from this customer

([1]). Moreover, it is widely observed in practice that stockouts can adversely impact fu-

ture demands (see, e.g., [11, 84]). In the face of a stockout experience, a natural reaction

of a customer is to order fewer items and/or switch the seller in a subsequent purchasing

execution (see, e.g., [77, 131]). Therefore, good [poor] past services of a firm are likely to

induce high [low] demands in the future.

1This chapter is based on the author’s earlier work [191].
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The network effect, also known as network externalities, refers to the general phe-

nomenon that a customer’s utility of purchasing a product is increasing in the number

of other customers buying the same product (see, e.g., [66]). Under the network effect, a

higher current demand of a firm leads to more adoptions of its product, thus increasing

the utility of purchasing its product for future customers and boosting future demands.

There are three major mechanisms that give rise to the network effect: (a) the direct

effect, under which an increase in the adoption of a product leads to a direct increase in

the value of this product for other users (see, e.g., [102]); (b) the indirect effect, under

which an increase in the adoption of a product enhances the value of its complementary

products or services, which in turn increases the value of the original product (see, e.g.,

[37]); and (c) the social effect, under which the value of a product is influenced by the

social interactions of its customers with their peers (see, e.g., [36]).

In the highly inter-correlated and competitive market of the current era, the service

effect and the network effect reinforce each other. This is because the fast development

of information technology enables customers to easily learn the information (on, e.g.,

quality, service, popularity, etc.) of any product through communications with their

friends and/or the customer reviews on online reviewing platforms and social media.

Thus, the higher the current demand of a firm, the more information about its service

quality will be released to the public, and, hence, the higher impact its service quality

will have upon future demands. Moreover, the current service level of a firm impacts

the future demands of itself as well as its competitors, because customers are likely to

patronage the firms with good past service and abandon those with poor past service

based on either their own purchasing experience or the social learning process.

The primary goal of this chapter is to develop a model that can provide insights on how

the exploitation-induction tradeoff impacts the equilibrium market behavior under both

the service effect and network effect. To this end, we study a periodic-review dynamic

competition model, in which firms in a retail market compete under a Markov game over a

finite planning horizon. The random demand of each firm in each period is determined by

its market size and the current sales prices and promotional efforts of all competing firms.

The promotional effort (e.g., advertising, product innovation, and/or after sales service)

of a firm boosts the current demand of itself and diminishes that of its competitors. The

key feature of our model is that the market sizes of the competing firms are stochastically
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evolving throughout the planning horizon, and their evolutions are driven by the service

effect and the network effect. More specifically, to capture the market size dynamics, we

assume that the future market size of each firm is stochastically increasing in its current

service level and demand, and stochastically decreasing in the current service levels of its

competitors. Taking the market size dynamics into consideration, each firm chooses its

promotional effort, sales price, and inventory stocking quantity in each decision period,

with an attempt to balance generating current profits and inducing future demands in

the dynamic and competitive market. We study two competitions: (a) the simultaneous

competition, under which the firms simultaneously make their promotion, price, and

inventory decisions in each period; and (b) the promotion-first competition, under which

the firms first make their promotional efforts and, after observing the promotion decisions

in the market, choose their sales prices and inventory levels in each period.

Conducting a dynamic game analysis, we make two main contributions in this chapter:

(a) We study a dynamic competition model with the inter-temporal influences of current

decisions over future demands, and characterize the pure strategy Markov perfect equi-

librium under both the simultaneous competition and the promotion-first competition;

(b) we identify several important managerial implications of the exploitation-induction

tradeoff upon the equilibrium market behavior of the dynamic competition under the

service effect and the network effect.

We use the Markov perfect equilibrium paradigm to analyze our dynamic competition

model, because the competing firms need to adaptively adjust their strategies based on

their inventory levels and market sizes in each period. The analytical characterization of

Markov perfect equilibria in a dynamic oligopoly with planning horizon length greater

than two is, in general, prohibitively difficult (see, e.g., [132]). To characterize the equi-

librium market outcome in our model, we employ the linear separability approach (see,

e.g., [131]) and show that, under both the simultaneous competition and the promotion-

first competition, the equilibrium profit of each firm in each period is linearly separable

in its own inventory level and market size. Such linear separability greatly facilitates

the analysis and enables us to characterize the pure strategy Markov perfect equilibrium

under both competitions. Moreover, under both competitions, the pure strategy Markov

perfect equilibrium has the nice feature that the equilibrium strategy of each firm only

depends on the private information (i.e., inventory level and market size) of itself, but
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not on that of its competitors. Under the simultaneous competition, the subgame played

by the competing firms in each period can be decomposed into a two-stage competition,

in which the firms compete jointly on promotional effort and sales price in the first stage,

and on service level in the second. Under the promotion-first competition, the subgame

in each period can be decomposed into a three-stage competition, in which the firms com-

pete on promotional effort in the first stage, on sales price in the second, and on service

level in the third. Under both competitions, each stage of the subgame in each period has

a pure strategy Nash equilibrium, thus ensuring the existence of a pure strategy Markov

perfect equilibrium in the Markov game. We also provide mild sufficient conditions under

which the Markov perfect equilibrium is unique under each competition.

Under both the simultaneous and the promotion-first competitions, the market size

dynamics significantly impact the equilibrium behaviors of the competing firms via the

exploitation-induction tradeoff. This tradeoff is quantified by the linear coefficient of

market size for each firm in each period. The higher the market size coefficient, the

more intensive the exploitation-induction tradeoff for the respective firm in the previous

period. We identify three effective strategies under the service effect and the network

effect: (a) improving promotional efforts, (b) offering price discounts, and (c) elevating

service levels. These strategies are grounded on the uniform idea that, to balance the

exploitation-induction tradeoff, the competing firms can induce higher future demands

at the cost of reduced current margins. Our analysis demonstrates how the strength

of the service effect and network effect impacts the equilibrium market outcome. Under

stronger service and network effects, the exploitation-induction tradeoff is more intensive,

so the competing firms make more promotional efforts, offer heavier price discounts,

and maintain higher service levels. When the market is stationary, the intensity of the

exploitation-induction tradeoff decreases over the sales season under both competitions.

Hence, the equilibrium sales prices are increasing, whereas the equilibrium promotional

efforts and service levels are decreasing, over the planning horizon.

Our analysis reveals two interesting differences between the simultaneous competition

and the promotion-first competition under market size dynamics. First, under the si-

multaneous competition, the competing firms need to balance the exploitation-induction

tradeoff inter-temporally, whereas, under the promotion-first competition, they have to

balance this tradeoff both inter-temporally and intra-temporally. Second, we identify a
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new driving force for the “fat-cat” effect (i.e., in each period, the equilibrium promo-

tional efforts may be higher under the promotion-first competition than those under the

simultaneous competition): The exploitation-induction tradeoff is more intensive in the

promotion-first competition than in the simultaneous competition, thus prompting the

firms to make more promotional efforts under the promotion-first competition.

The rest of this Chapter is organized as follows. We position this chapter in the

related literature in Section 3.2. Section 3.3 introduces the model setup. We analyze

the simultaneous competition model in Section 3.4, and the promotion-first competition

model in Section 3.5. We compare the equilibrium outcomes in these two competitions

in Section 3.6. Section 3.7 concludes this chapter. All proofs are relegated to Appendix

B.1.

3.2 Related Research

Our work is related to several streams of research in the literature. The literature

on the phenomenon that the current service level impacts future demands is rich. For

example, [147, 148] first studies the inventory management model, in which future de-

mands are adversely affected by current poor service levels. [1] consider the dynamic

capacity allocation problem of a supplier, whose customers remember past service. [2]

propose a dynamic behavioral model to study the retention and service relationship man-

agement with the effect of past service experiences on future service quality expectations.

The impact of current service on future demands has also been analyzed in a competi-

tive environment. [92] investigate a dynamic customer service competition, in which the

duopoly firms compete by investing in capacity with a fixed total number of customers.

[114] study a dynamic inventory duopoly model, in which inventory is perishable and

customers may defect to a competitor. [131] generalize this model to the setting with

non-perishable inventory and the setting in which the firms may attract dissatisfied cus-

tomers from the competition. [82] investigates the supplier competition model, in which

each customer switches among suppliers based on her past service quality experience.

[84] study an inventory competition, in which each customer learns about a firm’s service

level from her previous shopping experience, and makes her potential patronage decision

among different firms accordingly. The contribution of this chapter to this literature is
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that we characterize the equilibrium market behavior in the joint promotional effort, sales

price, and service level competition under the service effect.

The optimal pricing strategy under network externalities has received considerable

attention in the economics and marketing literature. [61] characterize the optimal non-

linear pricing strategy for a network product with heterogenous customers. [188] examine

the equilibrium dynamic pricing strategies of an incumbent and a later entrant under net-

work externalities. [19] consider the optimal dynamic monopoly pricing under network

externalities and show that the equilibrium prices increase as time passes. [28] study the

optimal pricing strategy in a network with a given network structure and characterize

the relationship between optimal prices and consumers’ centrality. We contribute to this

stream of literature by analyzing the impact of network externalities upon the competing

firms’ operations decisions (i.e., the inventory policies) in a dynamic competition.

This chapter is also related to the extensive literature on dynamic pricing and inven-

tory management. This literature diverges into two lines of research: (i) the monopoly

model, in which a single firm maximizes its total expected profit over a finite or infinite

planning horizon, and (ii) the competition model, in which multiple firms play a nonco-

operative game to maximize their respective expected per-period profits over an infinite

planning horizon. The literature on the monopoly model of joint pricing and inventory

management is very rich. [70] give a general treatment of this problem and show the

optimality of the base-stock list-price policy. [47, 48, 49] study the joint pricing and

inventory management problem with fixed ordering costs for the finite horizon, infinite

horizon, and continuous review models. [52] characterize the optimal policy in the joint

pricing and inventory control model with fixed ordering costs and lost sales. [96] identify

a general condition under which (s, S)-type policies are optimal for a stationary joint pric-

ing and inventory control model with fixed ordering costs. [112] study the joint pricing

and inventory management problem with the random yield risk, and show that such risk

drives the firm to charge a higher price in each period. The joint pricing and inventory

control problem with periodic review and positive leadtime is extremely difficult. For

this problem, [136] and [46] characterize the monotonicity properties of the optimal price

and inventory policy for nonperishable and perishable products, respectively. We refer

interested readers to [50] for a comprehensive review on the monopoly models of joint

pricing and inventory management.
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The research on the competition model of dynamic pricing and inventory manage-

ment is also abundant. Under deterministic demands, [21] study the EOQ model of a

two-echelon distribution system, characterize the equilibrium pricing and replenishment

strategies of the competing retailers under both Bertrand and Cournot competitions,

and identify the perfect coordination mechanisms therein. [22] address infinite-horizon

models for oligopolies with competing retailers under price-sensitive uncertain demand.

[23] develop a stochastic general equilibrium inventory model, in which retailers compete

on both sales price and service level throughout an infinite horizon. [25] generalize this

model to a decentralized supply chain setting, and characterize the perfect coordinating

mechanisms under price and service competition. Our work differs from this line of liter-

ature in that we study the exploitation-induction tradeoff with the service effect and the

network effect in a dynamic and competitive market. To this end, we adopt the Markov

perfect equilibrium (i.e., the closed-loop equilibrium) in a finite-horizon model as opposed

to the commonly used stationary strategy equilibrium (i.e., the open-loop equilibrium)

in an infinite-horizon model.

Finally, from the methodological perspective, our work is related to the literature

on the analysis of Markov perfect equilibrium in dynamic competition models. Markov

perfect equilibrium is prevalent in the economics literature on dynamic oligopoly mod-

els (see, e.g, [122, 69, 57]). In the operations management literature, this equilibrium

concept has been widely adopted to study the equilibrium behaviors in dynamic games.

Employing the linear separability approach, [92, 114, 131] characterize the Markov perfect

equilibrium in dynamic duopoly models with market size dynamics, and [5] analyze the

structure of the pure strategy Markov perfect equilibria in a dynamic inventory competi-

tion with subscriptions. A similar approach based on the separability of player decisions

and probability transition functions has been used by [6] to study a joint pricing and ad-

vertising competition, and by [130] to study a multi-period inventory competition. Due to

limited technical tractability, the analysis of Markov perfect equilibrium in nonlinear and

nonseparable dynamic games is scarce. [120] characterize the Markov perfect equilibrium

price strategy in a finite-horizon dynamic Bertrand competition with fixed capacities.

[117] numerically compute the Markov perfect equilibrium in an infinite-horizon model,

in which a supplier allocates its limited capacity to competing retailers. [132] give con-

ditions under which the stationary infinite-horizon equilibrium is also a Markov perfect
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equilibrium in the context of inventory duopolies. This chapter adopts the linear separa-

bility approach to characterize the pure strategy Markov perfect equilibrium of a dynamic

joint promotion, price, and inventory competition under both the service effect and the

network effect, and analyze the exploitation-induction tradeoff therein.

3.3 Model

Consider an industry with N competing retail firms, which serve the market with

partially substitutable products over a T−period planning horizon, labeled backwards as

{T, T − 1, · · · , 1}. In each period t, each firm i selects a promotional effort γi,t ∈ [0, γ̄i,t],

which represents the effort the firm makes in advertising, product innovation, and/or

after-sales service to promote the demand of its product in the current period. We assume

that, in any period t, the total promotional investment cost of each firm i is proportional to

its realized demand in period t, Di,t, and given by νi,t(γi,t)Di,t. The per-unit demand cost

rate, νi,t(·), is a non-negative, convexly increasing, and twice continuously differentiable

function of the promotional effort γi,t, with νi,t(0) = 0. Before the demand is realized in

period t, each firm i selects a sales price pi,t ∈ [p
i,t
, p̄i,t] and adjusts its inventory level to

xi,t. We assume that the excess demand of each firm is fully backlogged. In summary,

each firm i makes three decisions at the beginning of any period t: (i) the promotional

effort γi,t, (ii) the sales price pi,t, and (iii) the inventory level xi,t.

The demand of each firm i in any period t depends on the entire vector of pro-

motional efforts γt := (γ1,t, γ2,t, · · · , γN,t) and the entire vector of sales prices pt :=

(p1,t, p2,t, · · · , pN,t) in period t. We denote the demand of firm i as Di,t(γt, pt). More

specifically, we base our analysis on the following multiplicative form of Di,t(·, ·):

Di,t(γt, pt) = Λi,tdi,t(γt, pt)ξi,t, (3.1)

where Λi,t > 0 is the market size of firm i in period t, di,t(γt, pt) > 0 captures the impact of

γt and pt on firm i’s demand in period t, and ξi,t is a positive continuous random variable

with a connected support. Let Fi,t(·) be the c.d.f. and F̄i,t(·) be the c.c.d.f. of ξi,t. The

market size Λi,t is observable by firm i at the beginning of period t through the pre-order

sign-ups and/or subscriptions before the release of its product in period t. The random

perturbation term ξi,t is independent of the market size vector Λt := (Λ1,t,Λ2,t, · · · ,ΛN,t),

the sales price vector pt, and the promotional effort vector γt. Moreover, {ξi,t : t =
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T, T − 1, · · · , 1} are independently distributed for each i. Without loss of generality, we

normalize E[ξi,t] = 1 for each i and any t, i.e., E[Di,t(γt, pt)] = Λi,tdi,t(γt, pt). Therefore,

di,t(γt, pt) can be viewed as the normalized expected demand of firm i in period t.

We assume that di,t(·, ·) is twice continuously differentiable on [0, γ̄1,t]× [0, γ̄2,t]×· · ·×

[0, γ̄N,t]× [p
1,t
, p̄1,t]× [p

2,t
, p̄2,t]× · · · × [p

N,t
, p̄N,t], and satisfies the following monotonicity

properties:

∂di,t(γt, pt)

∂γi,t
> 0,

∂di,t(γt, pt)

∂γj,t
< 0,

∂di,t(γt, pt)

∂pi,t
< 0, and

∂di,t(γt, pt)

∂pj,t
> 0, for all j ̸= i.

(3.2)

In other words, an increase in a firm’s promotional effort increases the current-period

demand of itself, and decreases the demands of its competitors. On the other hand, an

increase in a firm’s sales price decreases the demand of itself, and increases the demands

of its competitors. Moreover, we assume that di,t(·, ·) is log-separable, i.e., di,t(γt, pt) =

ψi,t(γt)ρi,t(pt), where ψi,t(·) and ρi,t(·) are positive and twice-continuously differentiable.

Inequalities (3.2) imply that

∂ψi,t(γt)

∂γi,t
> 0,

∂ψi,t(γt)

∂γj,t
< 0,

∂ρi,t(pt)

∂pi,t
< 0, and

∂ρi,t(pt)

∂pj,t
> 0, for all j ̸= i.

For technical tractability, we assume that ψi,t(·) and ρi,t(·) satisfy the log increasing

differences and the diagonal dominance conditions, i.e., for any t, all i and j ̸= i,

∂2 logψi,t(γt)

∂γ2i,t
< 0,

∂2 logψi,t(γt)

∂γi,t∂γj,t
≥ 0, and |∂

2 logψi,t(γt)

∂γ2i,t
| >

∑
j ̸=i

∂2 logψi,t(γt)

∂γi,t∂γj,t
; (3.3)

∂2 log ρi,t(pt)

∂p2i,t
< 0,

∂2 log ρi,t(pt)

∂pi,t∂pj,t
≥ 0, and |∂

2 log ρi,t(pt)

∂p2i,t
| >

∑
j ̸=i

∂2 log ρi,t(pt)

∂pi,t∂pj,t
. (3.4)

The log increasing differences and the diagonal dominance assumptions are not restric-

tive, and can be satisfied by a large set of commonly used demand models in the economics

and operations management literature, such as the linear, logit, Cobb-Douglas, and CES

demand functions (see, e.g., [124, 22, 23]).

The expected fill rate of firm i in period t, zi,t, is given by

zi,t =
E[x+i,t ∧Di,t(γt, pt)]

E[Di,t(γt, pt)]
=

E[(Λi,tdi,t(γt, pt)yi,t)
+ ∧ (Λi,tdi,t(γt, pt)ξi,t)]

Λi,tdi,t(γt, pt)
= E(y+i,t ∧ ξi,t),

where yi,t :=
xi,t

Λi,tdi,t(γt,pt)
and a ∧ b := min{a, b} for any a, b ∈ R. Thus, zi,t is concavely

increasing in yi,t for all yi,t ≥ 0. Moreover, zi,t = 0 if yi,t ≤ 0, and zi,t ↑ 1, if yi,t → +∞.

The key feature of our model is that current promotion, pricing, and inventory deci-

sions impact upon future demands via the service effect and the network effect. To model
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these two effects, we assume that the market size of each firm in the next period is given

by the following functional form:

Λi,t−1 = ηi,t(zt, Di,t,Λi,t,Ξi,t) = Λi,tΞ
1
i,t + αi,t(zt)Di,tΞ

2
i,t, (3.5)

where Ξ1
i,t is a positive random variable representing the market size changes driven

by exogenous factors such as economic environment. Let µi,t := E[Ξ1
i,t] > 0. The term

αi,t(zt)Di,tΞ
2
i,t summarizes the service effect and the network effect. Specifically, αi,t(·) ≥ 0

is a continuously differentiable function with

∂αi,t(zt)

∂zi,t
≥ 0, and

∂αi,t(zt)

∂zj,t
≤ 0, for all j ̸= i,

and Ξ2
i,t is a nonnegative random variable with E[Ξ2

i,t] = 1. Ξ2
i,t captures the random

perturbations in the market size changes driven by the service effect and the network

effect. We refer to {αi,t(·) : 1 ≤ i ≤ N, T ≥ t ≥ 1} as the market size evolution functions.

Moreover, for technical tractability, we assume that αi,t(·) is additively separable, i.e.,

αi,t(zt) = κii,t(zi,t)−
∑
j ̸=i

κij,t(zj,t),

where κii,t(·) > 0 is concave, increasing and continuously differentiable in zi,t, and

κij,t(·) ≥ 0 is continuously increasing in zj,t for all j ̸= i. Since αi,t(·) ≥ 0 for all zt,

κii,t(0) −
∑

j ̸=i κij,t(1) ≥ 0. Let ηt(·, ·, ·, ·) := (η1,t(·, ·, ·, ·), η2,t(·, ·, ·, ·), · · · , ηN,t(·, ·, ·, ·))

denote the market size vector in the next period.

The evolution of the market sizes, (3.5), has several important implications. First,

the future market size of each firm depends on its current market size in a Markovian

fashion. Thus, the dynamic competition model in this chapter falls into the regime

of Markov games. Second, although the service level of each firm does not influence the

current demand of any firm due to the unobservability of the firms’ inventory information

to customers, it will impact the firms’ future demands. This phenomenon is driven by

the service effect. The higher the service level of a firm, the better service experience

the customers have with this firm in the current period, and the more customers will

patronage this firm in the future. Analogously, if the service levels of a firm’s competitors

increase, customers will be more likely to purchase from its competitors in the future.

Therefore, the future demand of each firm is stochastically increasing in the current service

level of this firm and stochastically decreasing in the current service level of any of its
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competitors. Hence, the inventory decision of each firm has the demand-inducing value

driven by the service effect. Third, the future demand of each firm is positively correlated

with the current demand of this firm. This phenomenon is driven by the network effect.

If the realized current demand of a firm is higher, potential customers can get higher

utilities if purchasing from this firm, thus giving rise to higher future demand. Because

of the network effect, the sales price and promotional effort not only affect the current

demand, but also influence future demands. Fourth, the service effect and the network

effect reinforce each other. More specifically, the impact of current service levels upon

future market sizes is higher with higher realized current demands. With the explosive

growth of online social media, customers could easily learn the service qualities of all

firms through social learning. As a consequence, higher current demands lead to more

intensive social interactions among customers, and, hence, magnify the impact of current

service levels on future demands.

We introduce the following model primitives:

δi = discount factor of firm i for revenues and costs in future periods, 0 < δi ≤ 1,

wi,t = per-unit wholesales price paid by firm i in period t,

bi,t = per-unit backlogging cost paid by firm i in period t,

hi,t = per-unit holding cost paid by firm i in period t.

Without loss of generality, we assume the following inequalities hold for each i and t:

bi,t > wi,t − δiwi,t−1 : the backlogging penalty is higher than the saving

from delaying an order to the next period for each

firm in any period, so that no firm will backlog

all of its demand,

hi,t > δiwi,t−1 − wi,t : the holding cost is sufficiently high so that no firm

will place a speculative order.

p̄i,t > δiwi,t−1 + bi,t + νi,t(γ̄i,t) : positive margin for backlogged demand with highest

price and promotional effort.

We define the normalized expected holding and backlogging cost function for firm i in

period t:

Li,t(yi,t) := E{hi,t(yi,t − ξi,t)
+ + bi,t(yi,t − ξi,t)

−}, where yi,t ∈ R. (3.6)
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The state of the Markov game is given by:

It = (I1,t, I2,t, · · · , IN,t) = the vector for the starting inventories of all firms in period t,

Λt = (Λ1,t,Λ2,t, · · · ,ΛN,t) = the vector for the market sizes of all firms in period t.

We use S := RN×RN
+ to denote the state space of each firm i in the dynamic competition.

To characterize how the market size dynamics (i.e., the service effect and the network

effect) impact the equilibrium market outcome, we consider the Markov perfect equilib-

rium (MPE) in our dynamic competition model. An MPE satisfies two conditions: (a)

in each period t, each firm i’s promotion, price, and inventory strategy depends on the

history of the game only through the current period state variables (It,Λt), and (b) in

each period t, the strategy profile generates a Nash equilibrium in the associated proper

subgame. In other words, MPE is a closed-loop equilibrium that satisfies subgame per-

fection in each period. Because of its simplicity and consistency with rationality, MPE is

widely used in dynamic competition models in the economics (e.g., [122]) and operations

management (e.g., [131]) literature.

A major technical challenge to characterize the MPE in a dynamic inventory com-

petition model is that when the starting inventories are higher than the equilibrium

order-up-to levels, the model becomes illy behaved and analytically intractable (see, e.g.,

[132]). This issue is worsened under endogenous pricing decisions [25]. To overcome this

technical challenge, we make the following assumption throughout our analysis.

Assumption 3.3.1 At the beginning of each period t, each firm i is allowed to sell (poten-

tially part of) its onhand inventory to its supplier at the current-period per-unit wholesale

price wi,t.

Assumption 3.3.1 is imposed to circumvent the aforementioned technical challenge.

As will be clear by our subsequent analysis, with this assumption, the equilibrium profit

of each firm i in each period t is linearly separable in its starting inventory level Ii,t

and market size Λi,t. Assumption 3.3.1 enables us to eliminate the influence of current

inventory decision of any firm upon the future equilibrium behavior of the market, so

as to single out and highlight the exploitation-induction tradeoff with the service effect

and the network effect. Assumption 3.3.1 applies when the retail firms have such great

market power that they can reach an agreement with their respective suppliers on the
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return policy with full price refund. [25], among others, also make this assumption to

characterize the MPE in an infinite-horizon joint price and service level competition

model. With Assumption 3.3.1, we can define the action space of each firm i in each

period t: Ai,t(Ii,t) := [0, γ̄i,t]× [p
i,t
, p̄i,t]× [min{0, Ii,t},+∞).

3.4 Simultaneous Competition

In this section, we study the simultaneous competition (SC) model where each firm

i simultaneously chooses a combined promotion, price, and inventory strategy in any

period t. This model applies to the scenarios where the market expanding efforts (e.g.,

advertising, trade-in programs, etc.) take effect instantaneously, so, in essence, the pro-

motional effort and sales price decisions are made simultaneously in each period. Our

analysis in this section focuses on characterizing the pure strategy MPE and providing

insights on the impact of the exploitation-induction tradeoff in the SC model.

3.4.1 Equilibrium Analysis

In this subsection, we show that the simultaneous competition model has a pure

strategy MPE. Moreover, we characterize a sufficient condition on the per-unit demand

cost rate of promotional effort, νi,t(·), under which the MPE is unique. Without loss of

generality, we assume that, at the end of the planning horizon, each firm i salvages all the

on-hand inventory and fulfills all the backlogged demand at unit wholesale price wi,0 ≥ 0.

The payoff function of each firm i is given by:

E{
T∑
t=1

δT−t
i [pi,tDi,t(γt, pt)− wi,t(xi,t − Ii,t)− hi,t(xi,t −Di,t(γt, pt))

+

−bi,t(xi,t −Di,t(γt, pt))
− − νi,t(γi,t)Di,t(γt, pt)] + δTi wi,0Ii,0|IT ,ΛT}, (3.7)

s.t. Ii,t−1 = xi,t −Di,t(γt, pt) for each t,

and Λi,t−1 = Λi,tΞ
1
i,t + αi,t(zt)Di,t(γt, pt)Ξ

2
i,t for each t.
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Under an MPE, each firm i should try to maximize its expected payoff in each subgame

(i.e., in each period t) conditioned on the realized inventory levels and market sizes in

period t, (It,Λt):

E{
t∑

τ=1

δt−τ
i [pi,τDi,τ (γτ , pτ )− wi,τ (xi,τ − Ii,τ )− hi,τ (xi,τ −Di,τ (γτ , pτ ))

+

−bi,τ (xi,τ −Di,τ (γτ , pτ ))
− − νi,τ (γi,τ )Di,τ (γτ , pτ )] + δtiwi,0Ii,0|It,Λt}, (3.8)

s.t. Ii,τ−1 = xi,τ −Di,τ (γτ , pτ ) for each τ , t ≥ τ ≥ 1,

and Λi,τ−1 = Λi,τΞ
1
i,τ + αi,τ (zτ )Di,τ (γτ , pτ )Ξ

2
i,τ for each τ , t ≥ τ ≥ 1.

A (pure) Markov strategy profile in the SC model σsc := {σsc
i,t(·, ·) : 1 ≤ i ≤ N, T ≥

t ≥ 1} prescribes each firm i’s combined promotion, price, and inventory strategy in each

period t, where σsc
i,t(·, ·) := (γsci,t(·, ·), psci,t(·, ·), xsci,t(·, ·)) is a Borel measurable mapping from

S to Ai,t(Ii,t). We use σsc
t := {σsc

i,t(·, ·) : 1 ≤ i ≤ N, T ≥ t ≥ 1} to denote the pure

strategy profile in the induced subgame in period t, which prescribes each firm i’s (pure)

strategy from period t till the end of the planning horizon.

To evaluate the expected payoff of each firm i in each period t for any given Markov

strategy profile σsc in the simultaneous competition, let

Vi,t(It,Λt|σsc
t ) = the total expected discounted profit of firm i in periods t, t− 1, · · · , 1, 0,

when starting period t with the state variable (It,Λt) and the firms play

strategy σsc
t in periods t, t− 1, · · · , 1.

Thus, by backward induction, Vi,t(·, ·|σsc
t ) satisfies the following recursive scheme for each

firm i in each period t:

Vi,t(It,Λt|σsc
t ) = Ji,t(γ

sc
t (It,Λt), p

sc
t (It,Λt), x

sc
t (It,Λt), It,Λt|σsc

t−1),

where γsct (·, ·) = (γsc1,t(·, ·), γsc2,t(·, ·), · · · , γscN,t(·, ·)) is the period t promotional effort vector

prescribed by σsc, psct (·, ·) = (psc1,t(·, ·), psc2,t(·, ·), · · · , pscN,t(·, ·)) is the period t sales price

vector prescribed by σsc, xsct (·, ·) = (xsc1,t(·, ·), xsc2,t(·, ·), · · · , xscN,t(·, ·)) is the period t post-

delivery inventory vector prescribed by σsc,

Ji,t(γt, pt, xt, It,Λt|σsc
t−1) =E{pi,tDi,t(γt, pt)− wi,t(xi,t − Ii,t)− hi,t(xi,t −Di,t(γt, pt))

+

− bi,t(xi,t −Di,t(γt, pt))
− − νi,t(γi,t)Di,t(γt, pt)

+ δiVi,t−1(xt −Dt(γt, pt), ηt(zt, Dt(γt, pt),Λt,Ξt)|σsc
t−1)|It,Λt},

(3.9)
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and Vi,0(It,Λt) = wi,0Ii,0. We now formally define the pure strategy MPE in the SC

model.

Definition 3.4.1 A (pure) Markov strategy σsc∗ = {(γsc∗i,t (·, ·), psc∗i,t (·, ·), xsc∗i,t (·, ·)) : 1 ≤

i ≤ N, T ≥ t ≥ 1} is a pure strategy MPE in the SC model if and only if, for each firm

i, each period t, and each state variable (It,Λt),

(γsc∗i,t (It,Λt), p
sc∗
i,t (It,Λt), x

sc∗
i,t (It,Λt))

=argmax(γi,t,pi,t,xi,t)∈Ai,t(Ii,t)
{Ji,t([γi,t, γsc∗−i,t(It,Λt)], [pi,t, p

sc∗
−i,t(It,Λt)],

[xi,t, x
sc∗
−i,t(It,Λt)], It,Λt|σsc∗

t−1)}.

(3.10)

By Definition 3.4.1, a (pure) Markov strategy profile in the SC model is a pure strategy

MPE if it satisfies subgame perfection in each period t. Definition 3.4.1 does not guarantee

the existence of an MPE, σsc∗, in the SC model. In Theorem 3.4.1, below, we will show

a pure strategy MPE always exists in the SC model. Moreover, under a mild additional

assumption on νi,t(·), the SC model has a unique pure strategy MPE. By Definition 3.4.1,

the equilibrium strategy for firm i in period t, (γsc∗i,t (·, ·), psc∗i,t (·, ·), xsc∗i,t (·, ·)), may depend

on the state vector of its competitors (I−i,t,Λ−i,t). In practice, however, each firm i’s

starting inventory level Ii,t and market size Λi,t are generally its private information that

is not accessible by its competitors in the market. We will show that the equilibrium

strategy profile of each firm i in each period t is only contingent on its own realized state

variables (Ii,t,Λi,t), but independent of its competitors’ private information (I−i,t,Λ−i,t).

The following theorem characterizes the existence and the uniqueness of MPE in the SC

model.

Theorem 3.4.1 The following statements hold for the SC model:

(a) There exists a pure strategy MPE σsc∗ = {(γsc∗i,t (·, ·), psc∗i,t (·, ·), xsc∗i,t (·, ·)) : 1 ≤ i ≤

N, T ≥ t ≥ 1}.

(b) For each pure strategy MPE, σsc∗, there exists a series of vectors {βsc
t : T ≥ t ≥ 1},

where βsc
t = (βsc

1,t, β
sc
2,t, · · · , βsc

N,t) with β
sc
i,t > 0 for each i and t, such that

Vi,t(It,Λt|σsc∗
t ) = wi,tIi,t + βsc

i,tΛi,t, for each firm i and each period t. (3.11)

(c) If the following two conditions simultaneously hold for each i and t:
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(i) ν ′i,t(·) ≤ 1 for all γi,t ∈ [0, γ̄i,t]; and

(ii) ν ′′i,t(γi,t)(pi,t−δwi,t−1−νi,t(γi,t)+ci,t)+[ν ′i,t(γi,t)]
2 ≥ ν ′i,t(γi,t) for all pi,t ∈ [p

i,t
, p̄i,t]

and γi,t ∈ [0, γ̄i,t], where

ci,t := max{(δiwi,t−1 − wi,t)yi,t − Li,t(yi,t) : yi,t ≥ 0},

σsc∗ is the unique MPE in the SC model. In particular, if νi,t(γi,t) = γi,t, conditions

(i) and (ii) are satisfied.

Theorem 3.4.1(a) demonstrates the existence of a pure strategy MPE in the simulta-

neous competition model. Moreover, in Theorem 3.4.1(b), we show that, for each pure

strategy MPE σsc∗, the corresponding profit function of each firm i in each period t is

linearly separable in its starting inventory level Ii,t and market size Λi,t. We refer to

the constant βsc
i,t as the SC market size coefficient of firm i in period t. As we will show

later, the SC market size coefficient measures the intensity of the exploitation-induction

tradeoff. The larger the βsc
i,t, the more intensive the exploitation-induction tradeoff for

firm i in the previous period t + 1. Theorem 3.4.1(b) also implies that the equilibrium

profit of each firm i in each period t only depends on the state variables of itself (Ii,t,Λi,t),

but not on those of its competitors (I−i,t,Λ−i,t). Theorem 3.4.1(c) characterizes a suf-

ficient condition for the uniqueness of an MPE in the SC model. In particular, if the

promotional effort γi,t refers to the actual monetary payment of promotional investment

per-unit demand for each firm i in each period t (i.e., νi,t(γi,t) = γi,t for each i and t),

there exists a unique MPE in the SC model. For the rest of this chapter, we assume that

conditions (i) and (ii) are satisfied for each i and t and, hence, the SC model has a unique

pure strategy MPE σsc∗.

The linear separability of Vi,t(·, ·|σsc∗
t ) (i.e., Theorem 3.4.1(b)) enables us to charac-

terize the MPE in the SC model. Plugging (3.11) into the objective function of firm i in

period t, by xi,t = Λi,tdi,t(γt, pt)yi,t and zi,t = E(y+i,t ∧ ξi,t), we have:

56



Ji,t(γt, pt, xt, It,Λt|σsc∗
t−1) =E{pi,tDi,t(γt, pt)− wi,t(xi,t − Ii,t)− hi,t(xi,t −Di,t(γt, pt))

+

− bi,t(xi,t −Di,t(γt, pt))
− − νi,t(γi,t)Di,t(γt, pt)

+ δiVi,t−1(xt −Dt(γt, pt), ηt(zt, Dt(γt, pt),Λt,Ξt)|σsc∗
t−1)|It,Λt}

=E{pi,tΛi,tdi,t(γt, pt)ξi,t − wi,t(yi,tΛi,tdi,t(γt, pt)− Ii,t)

− hi,t(yi,tΛi,tdi,t(γt, pt)− Λi,tdi,t(γt, pt)ξi,t)
+

− bi,t(yi,tΛi,tdi,t(γt, pt)− Λi,tdi,t(γt, pt)ξi,t)
−

− νi,t(γi,t)Λi,tdi,t(γt, pt)ξi,t + δiwi,t−1(yi,tΛi,tdi,t(γt, pt)

− Λi,tdi,t(γt, pt)ξi,t)

+ δiβ
sc
i,t−1(Λi,tΞ

1
i,t + αi,t(zt)Λi,tdi,t(γt, pt)ξi,tΞ

2
i,t)|It,Λt}

=wi,tIi,t + Λi,t{δiβsc
i,t−1µi,t

+ ψi,t(γt)ρi,t(pt)[pi,t − δiwi,t−1 − νi,t(γi,t) + πsc
i,t(yt)]},

where πsc
i,t(yt) =(δiwi,t−1 − wi,t)yi,t − Li,t(yi,t) + δiβ

sc
i,t−1(κii,t(E[y+i,t ∧ ξi,t])

−
∑
j ̸=i

κij,t(E[y+j,t ∧ ξj,t])),

and βsc
i,0 :=0 for each i.

(3.12)

We observe from (3.12) that the payoff function of each firm i in the subgame of period

t has a nested structure. Hence, the subgame of period t can be decomposed into two

stages, where the firms compete jointly on promotion and price in the first stage, and on

inventory in the second stage. Since the service level of each firm i, as measured by the

expected fill rate zi,t, is increasing in the inventory decision yi,t, we refer to the second-

stage competition as the service level competition hereafter. By backward induction,

we first study the second-stage service level competition. Let Gsc,2
t be the N−player

noncooperative game that represents the second-stage service level competition in period

t, where player i has payoff function πsc
i,t(·) and feasible action set R. The following

proposition characterizes the Nash equilibrium of the game Gsc,2
t .
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Proposition 3.4.1 For each period t, the second-stage service level competition Gsc,2
t has

a unique pure strategy Nash equilibrium ysc∗t . Moreover, for each i, ysc∗i,t > 0 is the unique

solution to the following equation:

(δiwi,t−1 − wi,t)− L′
i,t(y

sc∗
i,t ) + δiβ

sc
i,t−1F̄i,t(y

sc∗
i,t )κ

′
ii,t(E(ysc∗i,t ∧ ξi,t)) = 0. (3.13)

Proposition 3.4.1 demonstrates the existence and uniqueness of a pure strategy Nash

equilibrium of the second-stage service level competition. Moreover, ysc∗i,t can be obtained

by solving the first-order condition ∂yi,tπ
sc
i,t(y

sc∗
t ) = 0. Let πsc∗

t := (πsc∗
1,t , π

sc∗
2,t , · · · , πsc∗

N,t) be

the equilibrium payoff vector of the second-stage service level competition in period t,

where πsc∗
i,t = πsc

i,t(y
sc∗
t ). For each i and t, let

Πsc
i,t(γt, pt) := ψi,t(γt)ρi,t(pt)[pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗

i,t ]. (3.14)

We define an N−player noncooperative game Gsc,1
t to represent the first-stage joint pro-

motion and price competition in period t, where player i has payoff function Πsc
i,t(·, ·) and

feasible action set [0, γ̄i,t] × [p
i,t
, p̄i,t]. We characterize the Nash equilibrium of the game

Gsc,1
t in the following proposition.

Proposition 3.4.2 For each period t, following statements hold:

(a) The first-stage joint promotion and price competition, Gsc,1
t , is a log-supermodular

game.

(b) The game Gsc,1
t has a unique pure strategy Nash equilibrium (γsc∗t , psc∗t ), which is the

unique serially undominated strategy of Gsc,1
t .

(c) The Nash equilibrium of Gsc,1
t is the unique solution to the following system of

equations: For each i

∂γi,tψi,t(γ
sc∗
t )

ψi,t(γsc∗t )
−

ν ′i,t(γ
sc∗
i,t )

psc∗i,t − δiwi,t−1 − νi,t(γsc∗i,t ) + πsc∗
i,t


≤ 0, if γsc∗i,t = 0,

= 0, if γsc∗i,t ∈ (0, γ̄i,t),

≥ 0 if γsc∗i,t = γ̄i,t;

and,

∂pi,tρi,t(p
sc∗
t )

ρi,t(psc∗t )
+

1

psc∗i,t − δiwi,t−1 − νi,t(γsc∗i,t ) + πsc∗
i,t


≤ 0, if psc∗i,t = p

i,t
,

= 0, if psc∗i,t ∈ (p
i,t
, p̄i,t),

≥ 0 if psc∗i,t = p̄i,t.

(3.15)
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(d) Let Πsc∗
t := (Πsc∗

1,t ,Π
sc∗
2,t , · · · ,Πsc∗

N,t) be the equilibrium payoff vector of the first-stage

joint promotion and price competition in period t, where Πsc∗
i,t = Πsc

i,t(γ
sc∗
t , psc∗t ). We

have Πsc∗
i,t > 0 for all i.

Proposition 3.4.2 shows that the first-stage joint promotion and price competition Gsc,1
t

is a log-supermodular game, and has a unique pure strategy Nash equilibrium (γsc∗t , psc∗t ).

The unique Nash equilibrium, (γsc∗t , psc∗t ), is determined by (i) the serial elimination of

strictly dominated strategies, or (ii) the system of first-order conditions (3.15). Under

equilibrium, by Proposition 3.4.2(d) and the objective function of period t, (3.12), each

firm i earns a positive normalized expected total discounted profit, Λi,t(δiβ
sc
i,t−1µi,t +

Πsc∗
i,t ), in the subgame of period t. Summarizing Theorem 3.4.1, Proposition 3.4.1 and

Proposition 3.4.2, we have the following theorem that sharpens the characterization of

the MPE in the SC model.

Theorem 3.4.2 For each period t, the following statements hold:

(a) For each i, βsc
i,t = δiβ

sc
i,t−1µi,t +Πsc∗

i,t .

(b) Under the unique (pure strategy) MPE σsc∗, the policy of firm i is given by

(γsc∗i,t (It,Λt), p
sc∗
i,t (It,Λt), x

sc∗
i,t (It,Λt)) = (γsc∗i,t , p

sc∗
i,t ,Λi,ty

sc∗
i,t ρi,t(p

sc∗
t )ψi,t(γ

sc∗
t )). (3.16)

Theorem 3.4.2(a) recursively computes the SC market size coefficient vectors {βsc
t :

T ≥ t ≥ 1}. Theorem 3.4.2(b) demonstrates that, under the MPE σsc∗, each firm i’s

joint promotion, price, and inventory policy in each period t only depends on its own

state variables (Ii,t,Λi,t), but not on those of its competitors (I−i,t,Λ−i,t), which are not

accessible to firm i in general. Thus, for each firm i in each period t, its equilibrium

strategy has the attractive feature that the strategy depends on its accessible information

only.

In some of our analysis below, we will consider a special case of the SC model, where

the market is symmetric, i.e., all competing firms have identical characteristics. We use

the subscript “s” to denote the case of symmetric market. In this case, for all i, j, and

t, let ρs,t(·) := ρi,t(·), ψs,t(·) := ψi,t(·), νs,t(·) := νi,t(·), αs,t(·) := αi,t(·), κsa,t(·) := κii,t(·),

κsb,t(·) := κij,t(·), ws,t := wi,t, hs,t := hi,t, bs,t := bi,t, µs,t := µi,t, and δs := δi. Thus, let

Ls,t(·) := Li,t(·) for each i. As shown in Theorem 3.4.1, there exists a unique pure strategy
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MPE in the symmetric SC model, which we denote as σsc∗
s . The following proposition is

a corollary of Theorems 3.4.1-3.4.2.

Proposition 3.4.3 The following statements hold for the symmetric SC model:

(a) For each t = T, T − 1, · · · , 1, there exists a constant βsc
s,t > 0, such that

Vi,t(It,Λt|σsc∗
s,t ) = ws,tIi,t + βsc

s,tΛi,t, for all i.

(b) In each period t, the second-stage service level competition Gsc,2
s,t is symmetric, with

the payoff function for each firm i given by

πsc
i,t(yt) =(δsws,t−1 − ws,t)yi,t − Ls,t(yi,t) + δsβ

sc
s,t−1(κsa,t(E[y+i,t ∧ ξi,t])

−
∑
j ̸=i

κsb,t(E[y+j,t ∧ ξj,t])).

Moreover, Gsc,2
s,t has a unique pure strategy Nash equilibrium which is symmetric, so

we use ysc∗s,t [πsc∗
s,t ] to denote the equilibrium strategy [payoff] of each firm in Gsc,2

s,t .

(c) In each period t, the first-stage joint promotion and price competition Gsc,1
s,t is sym-

metric, with the payoff function for each firm i given by

Πsc
i,t(γt, pt) = ψs,t(γt)ρs,t(pt)[pi,t − δsws,t−1 − νs,t(γi,t) + πsc∗

s,t ].

Moreover, Gsc,1
s,t has a unique pure strategy Nash equilibrium (γsc∗ss,t, p

sc∗
ss,t) which is

symmetric (i.e., γsc∗ss,t = (γsc∗s,t , γ
sc∗
s,t , · · · , γsc∗s,t ) for some γsc∗s,t and

psc∗ss,t = (psc∗s,t , p
sc∗
s,t , · · · , psc∗s,t ) for some psc∗s,t ).

(d) Under the unique pure strategy MPE, σsc∗
s , the policy of firm i in period t is

(γsc∗i,t (It,Λt), p
sc∗
i,t (It,Λt), x

sc∗
i,t (It,Λt)) = (γsc∗s,t , p

sc∗
s,t ,Λi,ty

sc∗
s,t ρs,t(p

sc∗
ss,t)ψs,t(γ

sc∗
ss,t)),

for each (It,Λt).

Proposition 3.4.3 characterizes the MPE, σsc∗
s , and the market size coefficients, {βsc

s,t :

T ≥ t ≥ 1}, in the symmetric SC model. Proposition 3.4.3 shows that, in the symmetric

SC model, all competing firms set the same promotional effort, sales price, and service

level in each period under equilibrium, whereas the equilibrium market outcome may

vary in different periods.
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3.4.2 Exploitation-Induction Tradeoff

In this subsection, we study how the market size dynamics (i.e., the service effect and

the network effect) influence the equilibrium market outcome in the SC model. We focus

on the managerial implications of the exploitation-induction tradeoff in a dynamic and

competitive market.

To begin with, we characterize the impact of the market size coefficient vectors {βsc
t :

T ≥ t ≥ 1} upon the equilibrium market outcome. The following theorem serves as the

building block of our subsequent analysis of the exploitation-induction tradeoff in the SC

model.

Theorem 3.4.3 For each period t, the following statements hold:

(a) For each i and j ̸= i, ysc∗i,t is continuously increasing in βsc
i,t−1 and independent of

βsc
j,t−1.

(b) For each i and j ̸= i, πsc∗
i,t is continuously increasing in βsc

i,t−1 and continuously

decreasing in βsc
j,t−1.

(c) If the SC model is symmetric, γsc∗s,t is continuously increasing in πsc∗
s,t , whereas p

sc∗
s,t

is continuously decreasing in πsc∗
s,t .

(d) If the SC model is symmetric and ψs,t(·) and ρs,t(·) satisfy the following monotonic-

ity condition

N∑
i=1

∂ψs,t(γt)

∂γi,t
> 0, for all γt, and

N∑
i=1

∂ρs,t(pt)

∂pi,t
< 0, for all pt, (3.17)

βsc
s,t is continuously increasing in πsc∗

s,t .

(e) If the SC model is symmetric and πsc∗
s,t is increasing in βsc

s,t−1, γ
sc∗
s,t is continuously

increasing in βsc
s,t−1, whereas p

sc∗
s,t is continuously decreasing in βsc

s,t−1.

(f) In the symmetric SC model, if the monotonicity condition (3.17) holds and πsc∗
s,t is

increasing in βsc
s,t−1, β

sc
s,t is continuously increasing in βsc

s,t−1.

Theorem 3.4.3 shows that the market size coefficients {βsc
i,t : 1 ≤ i ≤ N, T ≥ t ≥ 1}

quantify the intensity of the exploitation-induction tradeoff in the SC model. More

specifically, if βsc
i,t−1 is larger, firm i faces stronger exploitation-induction tradeoff in period
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t. Therefore, to balance this strengthened tradeoff and to induce high future demands,

each firm should improve service quality, decrease sales price, and increase promotional

effort, as shown in parts (a) and (e) of Theorem 3.4.3. Moreover, Theorem 3.4.3(f)

characterizes the relationship between the exploitation-induction tradeoffs in different

periods, demonstrating that if the exploitation-induction tradeoff is more intensive in

the next period, it is also stronger in the current period under a mild condition. The

monotonicity condition (3.17) implies that a uniform increase of all N firms’ promotional

efforts leads to an increase in the demand of each firm, and a uniform price increase by all

N firms gives rise to a decrease in the demand of each firm. This condition is commonly

used in the literature (see, e.g., [23, 9]), and often referred to as the “dominant diagonal”

condition for linear demand models. The assumption that πsc∗
s,t is increasing in βsc

s,t−1 is

not restrictive either. In Lemma 26 in Appendix B.2, we give some sufficient conditions

for this assumption. More specifically, Lemma 26 implies that πsc∗
s,t is increasing in βsc

s,t−1

if one of the following conditions holds: (i) The adverse effect of a firm’s competitors’

service upon its future market size is not strong; (ii) the network effect is sufficiently

strong; or (iii) both the service effect and the network effect are sufficiently strong.

Now we consider a benchmark case without the service effect and the network effect.

We use “ ˜ ” to denote this model. Thus, in the benchmark model, the market size

evolution function α̃i,t(·) ≡ 0 for each firm i and each period t. Without the service effect

and the network effect, the current promotion, price, and service level decisions of any

firm will not influence the future demands. Therefore, the competing firms can focus on

generating current profits in each period without considering inducing future demands,

i.e., the exploitation-induction tradeoff is absent in this benchmark case. To characterize

the impact of the service effect and the network effect upon the equilibrium outcome, the

following theorem compares the Nash equilibria in Gsc,2
t and G̃sc,2

t , and the Nash equilibria

in Gsc,1
t and G̃sc,1

t .

Theorem 3.4.4 (a) For each firm i and each period t , ysc∗i,t ≥ ỹsc∗i,t , z
sc∗
i,t ≥ z̃sc∗i,t , and

πsc∗
i,t ≥ π̃sc∗

i,t .

(b) Consider the symmetric SC model. For each period t, the following statements hold:

(i) γsc∗s,t ≥ γ̃sc∗s,t and, thus, γsc∗i,t (It,Λt) ≥ γ̃sc∗i,t (It,Λt) for all i and all (It,Λt).

(ii) psc∗s,t ≤ p̃sc∗s,t and, thus, psc∗i,t (It,Λt) ≤ p̃sc∗i,t (It,Λt) for all i and all (It,Λt).
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(iii) If the monotonicity condition (3.17) holds, we have xsc∗i,t (It,Λt) ≥ x̃sc∗i,t (It,Λt)

for all i and all (It,Λt).

Theorem 3.4.4 highlights the impact of market size dynamics upon the equilibrium

market outcome. Specifically, Theorem 3.4.4(a) shows that, under the service effect and

the network effect, each firm i should set a higher service level in each period t. In

the symmetric SC model, Theorem 3.4.4(b-i) shows that each firm should increase its

promotional effort in each period under the service effect and the network effect, in order

to induce higher future demands. Analogously, Theorem 3.4.4(b-ii) shows that the service

effect and the network effect give rise to lower equilibrium sales price of each firm in each

period. Under the monotonicity condition (3.17), Theorem 3.4.4(b-i,ii) implies that the

equilibrium expected demand of each firm in each period is higher under the service effect

and the network effect. As a consequence, to match supply with the current demand and

to induce future demands with the service effect, each firm should increase its base stock

level in each period under the service effect and the network effect, as shown in Theorem

3.4.4(b-iii).

Theorem 3.4.4 identifies effective strategies for firms to balance the exploitation-

induction tradeoff under both the service effect and the network effect. In this case, the

competing firms have to tradeoff generating current profits and inducing future demands.

To balance the exploitation-induction trade-off, the firms can employ three strategies to

exploit the service effect and the network effect: (a) elevating service levels, (b) offering

price discounts, and (c) improving promotional efforts. Elevating service levels does not

lead to a higher current demand, but helps the firm induce higher future demands via the

service effect. Offering price discounts and improving promotional efforts do not increase

the current profits but give rise to higher current demands and, thus, induce higher future

demands via the network effect. In a nutshell, the uniform idea of all three strategies

is that, to balance the exploitation-induction tradeoff under the service effect and the

network effect, the competing firms should induce higher future demands at the cost of

reduced current margins.

To deliver sharper insights on the managerial implications of the exploitation-induction

tradeoff, we confine ourselves to the symmetric SC model for the rest of this section. The

following theorem characterizes how the intensities of the service effect and the network

effect influence the equilibrium market outcome in the symmetric SC model.
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Theorem 3.4.5 Let two symmetric SC models be identical except that one with market

size evolution functions {α̂s,t(·)}T≥t≥1 and the other with {αs,t(·)}T≥t≥1. Assume that,

for each period t, (i) the monotonicity condition (3.17) holds, and (ii) κsb,t(·) ≡ κ0sb,t for

some constant κ0sb,t.

(a) If α̂s,t(zt) ≥ αs,t(zt) for each period t and each zt, we have, for each period t, β̂sc
s,t ≥

βsc
s,t, γ̂

sc∗
s,t ≥ γsc∗s,t , and p̂

sc∗
s,t ≤ psc∗s,t . Thus, for each period t, γ̂sc∗i,t (It,Λt) ≥ γsc∗i,t (It,Λt)

and p̂sc∗i,t (It,Λt) ≤ psc∗i,t (It,Λt) for all i and all (It,Λt) ∈ S.

(b) If, for each period t, α̂s,t(zt) ≥ αs,t(zt) for all zt and κ̂
′
sa,t(zi,t) ≥ κ′sa,t(zi,t) ≥ 0 for all

zi,t, we have, for each period t, β̂sc
s,t ≥ βsc

s,t, γ̂
sc∗
s,t ≥ γsc∗s,t , p̂

sc∗
s,t ≤ psc∗s,t , and ŷ

sc∗
s,t ≥ ysc∗s,t .

Thus, for each period t, γ̂sc∗i,t (It,Λt) ≥ γsc∗i,t (It,Λt), p̂
sc∗
i,t (It,Λt) ≤ psc∗i,t (It,Λt), and

x̂sc∗i,t (It,Λt) ≥ xsc∗i,t (It,Λt) for all i and all (It,Λt) ∈ S.

Theorem 3.4.5 sharpens Theorem 3.4.4 by showing that if the intensities of the network

effect and the service effect (captured by the magnitudes of αs,t(·) and κ′sa,t(·), respec-

tively) are higher, the exploitation-induction tradeoff becomes stronger. To balance the

strengthened exploitation-induction tradeoff, each firm should increase its promotional

effort, decrease its sales price, and improve its service level in each period. More specif-

ically, Theorem 3.4.5(a) shows that a higher intensity of the network effect (i.e., larger

αs,t(·)) drives all the firms to make more promotional efforts and charge lower sales prices.

Theorem 3.4.5(b) further suggests that higher intensities of both the network effect and

the service effect (i.e., larger αs,t(·) and κ′sa,t(·)) prompt all the firms to make more pro-

motional efforts, charge lower sales prices, and maintain higher service levels. Stronger

service effect and network effect intensify the exploitation-induction tradeoff, thus driving

the firms to put more weight on inducing future demands than on exploiting the current

market. Therefore, to effectively balance the exploitation-induction tradeoff, all the firms

should carefully examine the intensities of the service effect and the network effect.

Next, we analyze the exploitation-induction tradeoff from an inter-temporal perspec-

tive. Under the service effect and the network effect, how should the competing firms

adjust their promotion, price, and service strategies throughout the sales season to bal-

ance the exploitation-induction tradeoff? To address this question, we characterize the

evolution of the equilibrium market outcome in the stationary and symmetric SC model.

In this model, the model primitives, demand functions, and market size evolution func-
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tions are identical for all firms throughout the planning horizon. In addition, the random

perturbations in market demands and market size evolution are i.i.d. throughout the

planning horizon. The following theorem characterizes the evolution of the equilibrium

promotion, price, and service strategy in the stationary and symmetric SC model.

Theorem 3.4.6 Consider the stationary and symmetric SC model. Assume that, for

each period t, (i) the monotonicity condition (3.17) holds, and (ii) πsc∗
s,t is increasing in

βsc
s,t−1. For each period t, the following statements hold:

(a) βsc
s,t ≥ βsc

s,t−1, γ
sc∗
s,t ≥ γsc∗s,t−1, p

sc∗
s,t ≤ psc∗s,t−1, and y

sc∗
s,t ≥ ysc∗s,t−1.

(b) γsc∗i,t (I,Λ) ≥ γsc∗i,t−1(I,Λ), p
sc∗
i,t (I,Λ) ≤ psc∗i,t−1(I,Λ), and x

sc∗
i,t (I,Λ) ≥ xsc∗i,t−1(I,Λ) for

each i and each (I,Λ) ∈ S.

Theorem 3.4.6 sheds light on how to balance the exploitation-induction tradeoff from

an inter-temporal perspective. More specifically, we show that, if the market is sym-

metric and stationary, the exploitation-induction tradeoff is more intensive (i.e., βsc
s,t is

larger) at the early stage of the sales season. Moreover, the equilibrium sales price is

increasing, whereas the equilibrium promotional effort and service level are decreasing,

over the planning horizon. The service effect and the network effect have greater impacts

upon future demands (and, hence, future profits) when the remaining planning horizon is

longer. Therefore, to adaptively balance the exploitation-induction tradeoff throughout

the sales season, all the firms increase their sales prices and decrease their promotional

efforts and service levels towards the end of the sales season. Our analysis justifies the

widely used introductory price and promotion strategy with which firms offer discounts

and launch promotional campaigns at the beginning of a sales season to attract more

early purchases (see, e.g., [38, 134, 65]).

To summarize, under the service effect and the network effect, the competing firms

have to trade off between generating current profits and inducing future demands. To

effectively balance the exploitation-induction tradeoff, the firms should (a) increase pro-

motional efforts, (b) offer price discounts, and (c) improve service levels. Moreover, the

exploitation-induction tradeoff is more intensive (a) with stronger service effect and net-

work effect, or (b) at the early stage of the sales season.
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3.5 Promotion-First Competition

In this section, we consider the promotion-first competition (PF) model, i.e., in each

period t, each firm i first selects its promotional effort and then, after observing the

current-period promotional efforts of all firms, chooses a combined sales price and service

level strategy. This model is suitable for the scenario in which the stickiness of market

expanding choices is much higher than that of sales price and service level choices. For

example, due to the long leadtime for technology development, decisions on research

and development effort are usually made well in advance of sales price and service level

decisions.

Employing the linear separability approach, we will show that, in the PF model, the

firms engage in a three-stage competition in each period, the first stage on promotional

effort, the second on sales price, and the last on service level. We will also demonstrate

that the exploitation-induction tradeoff has more involved managerial implications in the

PF model than its implications in the SC model. In the SC model, the competing firms

balance the exploitation-induction tradeoff inter-temporally, whereas the firms in the PF

model balance this tradeoff both inter-temporally and intra-temporally.

For tractability, we make the following additional assumption throughout this section:

ρi,t(pt) = ϕi,t − θii,tpi,t +
∑
j ̸=i

θij,tpj,t, for each i and t, (3.18)

where ϕi,t, θii,t > 0 and θij,t ≥ 0 for each i, j, and t. Moreover, we assume that the

diagonal dominance conditions hold for each ρi,t(·), i.e., for each i and t, θii,t >
∑

j ̸=i θij,t

and θii,t >
∑

j ̸=i θji,t. In addition, we make the same assumption as [9] as follows:

Assumption 3.5.1 For each i and t, the minimum [maximum] allowable price p
i,t

[p̄i,t]

is sufficiently low [high] so that it will have no impact on the equilibrium market behavior.

We will give a sufficient condition for Assumption 3.5.1 in the discussion after Proposition

3.5.2.

3.5.1 Equilibrium Analysis

In this subsection, we use the linear separability approach to characterize the pure

strategy MPE in the PF model. In this model, a (pure) Markov strategy profile of firm i in
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period t is given by σpf
i,t = (γpfi,t (·, ·), p

pf
i,t (·, ·, ·), x

pf
i,t (·, ·, ·)), where γ

pf
i,t (It,Λt) prescribes the

promotional effort given the state variable (It,Λt), and (ppfi,t (It,Λt, γt), x
pf
i,t (It,Λt, γt)) pre-

scribes the sales price and the post-delivery inventory level, given the state variable (It,Λt)

and the current period promotional effort vector γt. Let γ
pf
t (·, ·) := (γpf1,t(·, ·), · · · , γ

pf
N,t(·, ·)),

ppft (·, ·, ·) := (ppf1,t(·, ·, ·), · · · , p
pf
N,t(·, ·, ·)), and x

pf
t (·, ·, ·) := (xpf1,t(·, ·, ·), · · · , x

pf
N,t(·, ·, ·)). We

use σpf
t to denote the (pure) strategy profile of all firms in the subgame of period t, which

prescribes their (pure) strategies from period t to the end of the planning horizon.

To evaluate the expected payoff of each firm i in each period t for any given Markov

strategy profile σpf in the PF model, let

Vi,t(It,Λt|σpf
t ) = the total expected discounted profit of firm i in periods t, · · · , 0,

when starting period t with the state variable (It,Λt) and the firms play

strategy σpf
t in periods t, t− 1, · · · , 1.

Thus, by backward induction, Vi,t(·, ·|σpf
t ) satisfies the following recursive scheme for each

firm i and each period t:

Vi,t(It,Λt|σpf
t ) = Ji,t(γ

pf
t (It,Λt), p

pf
t (It,Λt, γ

pf
t (It,Λt)), x

pf
t (It,Λt, γ

pf
t (It,Λt)), It,Λt|σpf

t−1),

where

Ji,t(γt, pt, xt, It,Λt|σpf
t−1) =E{pi,tDi,t(γt, pt)− wi,t(xi,t − Ii,t)− hi,t(xi,t −Di,t(γt, pt))

+

− bi,t(xi,t −Di,t(γt, pt))
− − νi,t(γi,t)Di,t(γt, pt)

+ δiVi,t−1(xt −Dt(γt, pt), ηt(zt, Dt(γt, pt),Λt,Ξt)|σpf
t−1)|It,Λt},

(3.19)

and Vi,0(It,Λt) = wi,0Ii,0. We now define the pure strategy MPE in the PF model.
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Definition 3.5.1 A (pure) Markov strategy σpf∗ = {(γpf∗i,t (·, ·), ppf∗i,t (·, ·, ·), xpf∗i,t (·, ·, ·)) :

1 ≤ i ≤ N, T ≥ t ≥ 1} is a pure strategy MPE in the PF model if and only if, for each

firm i, period t, and state variable (It,Λt) ∈ S,

(ppf∗i,t (It,Λt, γt), x
pf∗
i,t (It,Λt, γt))

=argmaxpi,t∈[pi,t,p̄i,t],xi,t≥min{0,Ii,t}[Ji,t(γt, [pi,t, p
pf∗
−i,t(It,Λt, γt)], [xi,t, x

pf∗
−i,t(It,Λt, γt)], It,Λt|σpf∗

t−1)],

for all γt; and

γpf∗i,t (It,Λt)

=argmaxγi,t [Ji,t([γi,t, γ
pf∗
−i,t(It,Λt)], p

pf∗
t (It,Λt, [γi,t, γ

pf∗
−i,t(It,Λt)]),

xpf∗t (It,Λt, [γi,t, γ
pf∗
−i,t(It,Λt)]), It,Λt|σpf∗

t−1)].

(3.20)

Definition 3.5.1 suggests that a pure strategy MPE in the PF model is a (pure) Markov

strategy profile that satisfies subgame perfection in each stage of the competition in each

period t. The following theorem shows that there exists a pure strategy MPE in the PF

model.

Theorem 3.5.1 The following statements hold for the PF model:

(a) There exists a pure strategy MPE σpf∗ = {(γpf∗i,t (·, ·), ppf∗i,t (·, ·, ·), xpf∗i,t (·, ·, ·)) : 1 ≤

i ≤ N, T ≥ t ≥ 1}.

(b) For each pure strategy MPE σpf∗, there exists a series of vectors {βpf
t : T ≥ t ≥ 1},

where βpf
t = (βpf

1,t, β
pf
2,t, · · · , β

pf
N,t) with β

pf
i,t > 0 for each i and t, such that

Vi,t(It,Λt|σpf∗
t ) = wi,tIi,t + βpf

i,tΛi,t, for each i, t, and (It,Λt) ∈ S. (3.21)

(c) If νi,t(γi,t) = γi,t for each i and t, σpf∗ is the unique MPE in the PF model.

Theorem 3.5.1 demonstrates the existence of a pure strategy MPE in the PF model.

As in the SC model, in Theorem 3.5.1(b), we show that, for each pure strategy MPE

σpf∗, the associated profit function of each firm i in each period t is linearly separable

in its own starting inventory level Ii,t and market size Λi,t. We refer to the constant βpf
i,t

as the PF market size coefficient of firm i in period t, which measures the exploitation-

induction tradeoff intensity in the PF model. Theorem 3.5.1(c) shows that the MPE in

the PF model is unique if νi,t(γi,t) = γi,t, i.e., the promotional effort γi,t is the actual
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per-unit demand market expanding expenditure of firm i in period t. For the rest of this

section, we assume that νi,t(γi,t) = γi,t for each i and t, and, hence, σpf∗ is the unique

pure strategy MPE in the PF model. We use {βpf
t : T ≥ t ≥ 1} to denote the PF market

size coefficient associated with σpf∗ hereafter.

The linear separability of Vi,t(·, ·|σpf∗
t ) enables us to have a sharper characterization

of MPE in the PF model. As in the SC model, we can rewrite the objective function of

firm i in period t as follows.

Ji,t(γt, pt, xt, It,Λt|σpf∗
t−1) =E{pi,tDi,t(γt, pt)− wi,t(xi,t − Ii,t)− hi,t(xi,t −Di,t(γt, pt))

+

− bi,t(xi,t −Di,t(γt, pt))
− − νi,t(γi,t)Di,t(γt, pt)

+ δiVi,t−1(xt −Dt(γt, pt), ηt(zt, Dt(γt, pt),Λt,Ξt)|σpf∗
t−1)|It,Λt}

=E{pi,tΛi,tdi,t(γt, pt)ξi,t − wi,t(yi,tΛi,tdi,t(γt, pt)− Ii,t)

− hi,t(yi,tΛi,tdi,t(γt, pt)− Λi,tdi,t(γt, pt)ξi,t)
+

− bi,t(yi,tΛi,tdi,t(γt, pt)− Λi,tdi,t(γt, pt)ξi,t)
−

− νi,t(γi,t)Λi,tdi,t(γt, pt)ξi,t + δiwi,t−1(yi,tΛi,tdi,t(γt, pt)

− Λi,tdi,t(γt, pt)ξi,t)

+ δiβ
pf
i,t−1(Λi,tΞ

1
i,t + αi,t(zt)Λi,tdi,t(γt, pt)ξi,tΞ

2
i,t)|It,Λt}

=wi,tIi,t + Λi,t{δiβpf
i,t−1µi,t

+ ψi,t(γt)ρi,t(pt)[pi,t − δiwi,t−1 − νi,t(γi,t) + πpf
i,t (yt)]},

where πpf
i,t (yt) =(δiwi,t−1 − wi,t)yi,t − Li,t(yi,t) + δiβ

pf
i,t−1(κii,t(E[y

+
i,t ∧ ξi,t])

−
∑
j ̸=i

κij,t(E[y+j,t ∧ ξj,t])),

and βpf
i,0 :=0 for each i.

(3.22)

We observe from (3.22) that, in the PF model, the payoff function of each firm i in each

period t has a nested structure. Hence, the competition in each period t can be decom-

posed into three stages: In the first stage, the firms compete on promotional effort; in

the second stage, they compete on sales price; in the third stage, they compete on service

level. By backward induction, we start the equilibrium analysis with the third-stage ser-

vice level competition. Let Gpf,3
t be the N−player noncooperative game that represents

the third-stage service level competition in period t, where player i has the payoff function
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πpf
i,t (·) and the feasible action set R. The following proposition characterizes the Nash

equilibrium of the game Gpf,3
t .

Proposition 3.5.1 For each period t, the third-stage service level competition Gpf,3
t has

a unique pure strategy Nash equilibrium ypf∗t . Moreover, for each i, ypf∗i,t > 0 is the unique

solution to the following equation:

(δiwi,t−1 − wi,t)− L′
i,t(y

pf∗
i,t ) + δiβ

pf
i,t−1F̄i,t(y

pf∗
i,t )κ′ii,t(E(y

pf∗
i,t ∧ ξi,t)) = 0. (3.23)

Proposition 3.5.1 characterizes the unique pure strategy Nash equilibrium of the third-

stage service level competition. Moreover, ypf∗i,t is the solution to the first-order condition

∂yi,tπ
pf
i,t (y

pf∗
t ) = 0. Let πpf∗

t := (πpf∗
1,t , π

pf∗
2,t , · · · , π

pf∗
N,t ) be the equilibrium payoff vector of

the third-stage service level competition in period t, where πpf∗
i,t = πpf

i,t (y
pf∗
t ). For each i

and t, let

Πpf,2
i,t (pt|γt) := ρi,t(pt)(pi,t − δiwi,t−1 − νi,t(γi,t) + πpf∗

i,t ). (3.24)

Therefore, given the outcome of the first-stage promotion competition, γt, we can define

an N−player noncooperative game Gpf,2
t (γt) to represent the second-stage price competi-

tion in period t, where player i has the payoff function Πpf,2
i,t (·|γt) and the feasible action

set [p
i,t
, p̄i,t]. We define At as an N ×N matrix with entries defined by Aii,t := 2θii,t and

Aij,t := −θij,t where i ̸= j. By Lemma 24(a) in Appendix B.1, At is invertible. Let ft(γt)

be an N−dimensional vector with fi,t(γt) := ϕi,t + θii,t(δiwi,t−1 + νi,t(γi,t) − πpf∗
i,t ). We

characterize the Nash equilibrium of the game Gpf,2
t (γt) in the following proposition.

Proposition 3.5.2 For each period t and any given γt, the following statements hold:

(a) The second-stage price competition Gpf,2
t (γt) has a unique pure strategy Nash equi-

librium ppf∗t (γt).

(b) ppf∗t (γt) = A−1
t ft(γt). Moreover, ppf∗i,t (γt) is continuously increasing in γj,t for each

i and j.

(c) Let Πpf∗,2
t (γt) := (Πpf∗,2

1,t (γt),Π
pf∗,2
2,t (γt), · · · ,Πpf∗,2

N,t (γt)) be the equilibrium payoff vec-

tor of the second-stage price competition in period t, where

Πpf∗,2
i,t (γt) = Πpf,2

i,t (ppf∗t (γt)|γt). We have Πpf∗,2
i,t (γt) = θii,t(p

pf∗
i,t (γt) − δiwi,t−1 −

νi,t(γi,t) + πpf∗
i,t )2 > 0 for all i.
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Proposition 3.5.2 shows that, for any given promotional effort vector γt, the second-

stage price competition Gpf,2
t (γt) has a unique pure strategy Nash equilibrium ppf∗t (γt) =

A−1
t ft(γt). By Proposition 3.5.2(b), we have ppf∗i,t (0) ≤ ppf∗i,t (γt) ≤ ppf∗i,t (γ̄t) for each

i and γt, where 0 is an N -dimensional vector with each entry equal to 0 and γ̄t :=

(γ̄1,t, γ̄2,t, · · · , γ̄N,t). Thus, a sufficient condition for Assumption 3.5.1 is that p
i,t

≤ ppf∗i,t (0)

and p̄i,t ≥ ppf∗i,t (γ̄t) for all i and t.

Now we study the first-stage promotion competition in period t. Let

Πpf,1
i,t (γt) := Πpf∗,2

i,t (γt)ψi,t(γt) = θii,t(p
pf∗
i,t (γt)− δiwi,t−1 − νi,t(γi,t) + πpf∗

i,t )2ψi,t(γt). (3.25)

Thus, we can define an N−player noncooperative game Gpf,1
t to represent the first-stage

promotion competition in period t, where player i has the payoff function Πpf,1
i,t (·) and

the feasible action set [0, γ̄i,t]. We characterize the Nash equilibrium of the game Gpf,1
t in

the following proposition.

Proposition 3.5.3 For each period t, the following statements hold:

(a) The first-stage promotion competition Gpf,1
t is a log-supermodular game.

(b) There exists a unique pure strategy Nash equilibrium in the game Gpf,1
t , which is the

unique serially undominated strategy of Gpf,1
t .

(c) The unique Nash equilibrium of Gpf,1
t , γpf∗t , is the solution to the following system

of equations: for each i,

∂γi,tψi,t(γ
pf∗
t )

ψi,t(γ
pf∗
t )

−
2(1− θii,t(A

−1
t )ii)ν

′
i,t(γ

pf∗
i,t )

ppf∗i,t (γpf∗t )− δiwi,t−1 − νi,t(γ
pf∗
i,t ) + πpf∗

i,t


≤ 0, if γpf∗i,t = 0,

= 0, if γpf∗i,t ∈ (0, γ̄i,t),

≥ 0 if γpf∗i,t = γ̄i,t.

(3.26)

(d) Let Πpf∗,1
t := (Πpf∗,1

1,t ,Πpf∗,1
2,t , · · · ,Πpf∗,1

N,t ) be the equilibrium payoff vector associated

with γpf∗t , i.e., Πpf∗,1
i,t = Πpf,1

i,t (γpf∗t ) for each i. We have Πpf∗,1
i,t > 0 for all i.

As shown in Proposition 3.5.3, in the PF model, the first-stage promotion competition

in period t is a log-supermodular game and has a unique pure strategy Nash equilibrium.

Moreover, the unique Nash equilibrium promotional effort vector γpf∗t can be determined
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by (i) the serial elimination of strictly dominated strategies, or (ii) the system of first-

order conditions (3.26).

The following theorem summarizes Theorem 3.5.1 and Propositions 3.5.1-3.5.3, and

characterizes the MPE in the PF model.

Theorem 3.5.2 For each period t, the following statements hold:

(a) For each i, βpf
i,t = δiβ

pf
i,t−1µi,t +Πpf∗,1

i,t .

(b) Under the unique pure strategy MPE σpf∗, the policy of firm i in period t is given

by

(γpf∗i,t (It,Λt), p
pf∗
i,t (It,Λt, γt), x

pf∗
i,t (It,Λt, γt))

=(γpf∗i,t , p
pf∗
i,t (γt),Λi,ty

pf∗
i,t ρi,t(p

pf∗
t (γt))ψi,t(γt)).

(3.27)

In particular, for any (It,Λt), the associated (pure strategy) equilibrium price and

inventory decisions of firm i are ppf∗i,t (γpf∗t ) and Λi,ty
pf∗
i,t ρi,t(p

pf∗
t (γpf∗t ))ψi,t(γ

pf∗
t ), re-

spectively.

Theorem 3.5.2(a) recursively determines the PF market size coefficient vectors, {βpf
t :

T ≥ t ≥ 1}, associated with the unique pure strategy MPE σpf∗. Theorem 3.5.2(b)

demonstrates that, under the unique pure strategy MPE σpf∗, each firm i’s promotion,

price, and inventory decisions in each period t depend on its private information (i.e.,

(Ii,t,Λi,t)) only, but not on that of its competitors (i.e., (I−i,t,Λ−i,t)). Hence, the unique

pure strategy MPE in the PF model has the attractive feature that the strategy of each

firm is contingent on its accessible information only.

As in the SC model, we will perform some of our analysis below with the symmetric PF

model, where all firms have identical characteristics. We use the subscript “s” to denote

the case of symmetric market in the PF model. In this case, ρs,t(pt) = ϕs,t − θsa,tpi,t +∑
j ̸=i θsb,tpj,t for some nonnegative constants ϕs,t, θsa,t, and θsb,t, where θsa,t > (N−1)θsb,t.

We use σpf∗
s to denote the unique pure strategy MPE in the symmetric PF model. The

following proposition characterizes σpf∗
s in the PF model.

Proposition 3.5.4 The following statements hold for the symmetric PF model.

(a) For each t = T, T − 1, · · · , 1, there exists a constant βpf
s,t > 0, such that

Vi,t(It,Λt|σpf∗
s,t ) = ws,tIi,t + βpf

s,tΛi,t, for all i.
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(b) In each period t, the third-stage service level competition Gpf,3
s,t is symmetric, with

the payoff function for each firm i given by

πpf
i,t (yt) =(δsws,t−1 − ws,t)yi,t − Ls,t(yi,t) + δsβ

pf
s,t−1(κsa,t(E[y+i,t ∧ ξi,t])

−
∑
j ̸=i

κsb,t(E[y+j,t ∧ ξj,t])).

Moreover, Gpf,3
s,t has a unique pure strategy Nash equilibrium, which is symmetric,

so we use ypf∗s,t [πpf∗
s,t ] to denote the equilibrium strategy [payoff] of each firm in Gpf,3

s,t .

(c) In each period t, the second-stage price competition Gpf,2
s,t (γt) is symmetric if γi,t =

γj,t for all 1 ≤ i, j ≤ N . In this case, Gpf,2
s,t (γt) has a unique pure strategy Nash equi-

librium ppf∗ss,t(γt), which is symmetric (i.e., ppf∗ss,t(γt) = (ppf∗s,t (γt), p
pf∗
s,t (γt), · · · , p

pf∗
s,t (γt))

for some ppf∗s,t (γt) ∈ [p
s,t
, p̄s,t]).

(d) In each period t, the first-stage promotion competition Gpf,1
s,t is symmetric. Moreover,

Gpf,1
s,t has a unique pure strategy Nash equilibrium γpf∗ss,t , which is symmetric (i.e.,

γpf∗ss,t = (γpf∗s,t , γ
pf∗
s,t , · · · , γ

pf∗
s,t ) for some γpf∗s,t ∈ [0, γ̄s,t]).

(e) Under the unique pure strategy MPE σpf∗
s , the policy of firm i in period t is

(γpf∗i,t (It,Λt), p
pf∗
i,t (It,Λt, γt), x

pf∗
i,t (It,Λt, γt))

=(γsc∗s,t , p
pf∗
i,t (γt),Λi,ty

pf∗
s,t ρs,t(p

pf∗
t (γt))ψs,t(γt)),

for all (It,Λt) and γt. In particular, for each firm i and any (It,Λt), the equilibrium

price is ppf∗s,t (γ
pf∗
ss,t), and the equilibrium post-delivery inventory level is

Λi,ty
pf∗
s,t ρs,t(p

pf∗
ss,t(γ

pf∗
ss,t))ψs,t(γ

pf∗
ss,t).

Proposition 3.5.4 shows that, in the symmetric PF model, all competing firms make

the same promotional effort, charge the same sales price, and maintain the same service

level in each period. The PF market size coefficient is also identical for all firms in each

period.

3.5.2 Exploitation-Induction Tradeoff

In this subsection, we study how the exploitation-induction tradeoff impacts the equi-

librium market outcome in the PF model. As in the SC model, we first characterize the

impact of the PF market size coefficient vectors, {βpf
t : T ≥ t ≥ 1}.
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Theorem 3.5.3 For each period t, the following statements hold:

(a) For each i and j ̸= i, ypf∗i,t is continuously increasing in βpf
i,t−1 and independent of

βpf
j,t−1.

(b) For each i and j ̸= i, πpf∗
i,t is continuously increasing in βpf

i,t−1 and continuously

decreasing in βpf
j,t−1.

(c) For each i, j, and γt , p
pf∗
i,t (γt) is continuously decreasing in πpf∗

j,t .

(d) If the PF model is symmetric, γpf∗s,t is continuously increasing in πpf∗
s,t . If, in ad-

dition, the monotonicity condition (3.17) holds, βpf
s,t is continuously increasing in

πpf∗
s,t as well.

(e) If the PF model is symmetric and πpf∗
s,t is increasing in βpf

s,t−1, γ
pf∗
s,t is continuously

increasing in βpf
s,t−1, whereas ppf∗i,t (γt) is continuously decreasing in βpf

s,t−1. If, in

addition, the monotonicity condition (3.17) holds, βpf
s,t is continuously increasing in

βpf
s,t−1 as well.

Theorem 3.5.3 demonstrates that the market size coefficients {βpf
i,t : 1 ≤ i ≤ N, T ≥

t ≥ 1} quantify the intensity of the exploitation-induction tradeoff in the PF model.

More specifically, a larger βpf
i,t−1 implies more intensive exploitation-induction tradeoff of

firm i in period t.

As in the SC model, we use “˜” to denote the benchmark case without the service

effect and the network effect, where the market size evolution function α̃i,t(·) ≡ 0 for

each firm i and each period t. Thus, the exploitation-induction tradeoff is absent in this

benchmark model, and it suffices for the firms to myopically maximize their current-

period profits. The following theorem characterizes the impact of the service effect and

the network effect in the PF model.

Theorem 3.5.4 (a) For each firm i and each period t, ypf∗i,t ≥ ỹpf∗i,t , zpf∗i,t ≥ z̃pf∗i,t , and

πpf∗
i,t ≥ π̃pf∗

i,t .

(b) For each firm i and each period t, ppf∗i,t (γt) ≤ p̃pf∗i,t (γt) for all γt. Moreover, if the

PF model is symmetric and (3.17) holds, xpf∗i,t (It,Λt, γt) ≥ x̃pf∗i,t (It,Λt, γt) for all i,

t, (It,Λt) ∈ S, and γt ∈ [0, γ̄s,t]
N .
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(c) Consider the symmetric PF model. For each period t, γpf∗s,t ≥ γ̃pf∗s,t . Thus,

γpf∗i,t (It,Λt) ≥ γ̃pf∗i,t (It,Λt) for all i and all (It,Λt) ∈ S.

Consistent with Theorem 3.4.4(a), Theorem 3.5.4(a) shows that, the service effect

and the network effect drive the competing firms to maintain higher service levels in the

PF model. Theorem 3.5.4(b) reveals the impact of the exploitation-induction tradeoff

upon the competing firms’ price and inventory strategy in the PF model. Specifically,

given any outcome of the first-stage promotion competition γt, in the second-stage price

competition, each firm i should charge a lower sales price under the service effect and

the network effect, so as to exploit the network effect and induce higher future demands.

Moreover, in each period t, the equilibrium post-delivery inventory levels contingent on

any realized promotional effort vector γt are also higher in the PF model under the service

effect and the network effect. Theorem 3.5.4(c) sheds light on how the exploitation-

induction tradeoff influences the equilibrium promotion strategies under the service effect

and the network effect. In the symmetric PF model, the equilibrium promotional effort

of each firm i in each period t is higher under the service effect and the network effect.

Note that, in the PF model, the equilibrium price and inventory outcomes under the

service effect and the network effect, ppf∗s,t (γ
pf∗
ss,t) and x

pf∗
i,t (It,Λt, γ

pf∗
ss,t), may be either higher

or lower than those without market size dynamics, p̃pf∗ss,t(γ̃
pf∗
s,t ) and x̃

pf∗
i,t (It,Λt, γ̃

pf∗
ss,t). This

phenomenon contrasts with the equilibrium market outcomes in the SC model, where

the equilibrium sales price [post-delivery inventory level] of each firm in each period is

lower [higher] under the service effect and the network effect (i.e., Theorem 3.4.4(b-i,iii)).

This discrepancy is driven by the fact that, in the PF model, each firm observes the

promotion decisions of its competitors before making its pricing decision. Hence, under

the service effect and the network effect, the competing firms may either decrease the

sales prices to induce future demands or increase the sales prices to exploit the better

market condition from the increased promotional efforts (recall that γpf∗s,t ≥ γ̃pf∗s,t ). In

general, either effect may dominate, so we do not have a general monotonicity relationship

between either the equilibrium price outcomes (i.e., ppf∗s,t (γ
pf∗
ss,t) and p̃pf∗s,t (γ̃

pf∗
ss,t)) or the

equilibrium inventory outcomes (i.e., xpf∗i,t (It,Λt, γ
pf∗
ss,t) and x̃pf∗i,t (It,Λt, γ̃

pf∗
ss,t)). Therefore,

the exploitation-induction tradeoff in the PF model is more involved than that in the SC

model. The competing firms only need to trade off between generating current profits
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and inducing future demands intertemporally in the SC model, whereas they need to

balance this tradeoff both inter-temporally and intra-temporally in the PF model.

To deliver sharper insights on the managerial implications of the exploitation-induction

tradeoff, we confine ourselves to the symmetric PF model for the rest of this section.

Theorem 3.5.5 Let two symmetric PF models be identical except that one with market

size evolution functions {α̂s,t(·)}T≥t≥1 and the other with {αs,t(·)}T≥t≥1. Assume that,

for each period t, (i) the monotonicity condition (3.17) holds, and (ii) κsb,t(·) ≡ κ0sb,t for

some constant κ0sb,t.

(a) If α̂s,t(zt) ≥ αs,t(zt) for each period t and all zt, we have, for each period t, β̂pf
s,t ≥

βpf
s,t, p̂

pf∗
i,t (γt) ≤ ppf∗i,t (γt) for all i and γt ∈ [0, γ̄s,t]

N , and γ̂pf∗s,t ≥ γpf∗s,t . Thus, for

each period t, p̂pf∗i,t (It,Λt, γt) ≤ ppf∗i,t (It,Λt, γt) and γ̂pf∗i,t (It,Λt) ≥ γpf∗i,t (It,Λt) for all

i, (It,Λt) ∈ S, and γt ∈ [0, γ̄s,t]
N .

(b) If, for each period t, α̂s,t(zt) ≥ αs,t(zt) for all zt and κ̂′sa,t(zi,t) ≥ κ′sa,t(zi,t) ≥

0 for all zi,t, we have, for each period t, β̂pf
s,t ≥ βpf

s,t, ŷ
pf∗
s,t ≥ ypf∗s,t , p̂

pf∗
i,t (γt) ≤

ppf∗i,t (γt), and γ̂
pf∗
s,t ≥ γpf∗s,t . Thus, for each period t, p̂pf∗i,t (It,Λt, γt) ≤ ppf∗i,t (It,Λt, γt),

x̂pf∗i,t (It,Λt, γt) ≥ xpf∗i,t (It,Λt, γt), γ̂
pf∗
i,t (It,Λt) ≥ γpf∗i,t (It,Λt) for all i, (It,Λt) ∈ S, and

γt ∈ [0, γ̄s,t]
N .

Theorem 3.5.5(a) shows that, in the symmetric PF model, higher intensity of the

network effect (i.e., larger αs,t(·)) drives all the competing firms to make more promotional

efforts and charge lower sales prices for each observed promotion vector. Moreover, if the

intensities of both the network effect and the service effect (i.e., the magnitudes of αs,t(·)

and κ′sa,t(·)) are higher, Theorem 3.5.5(b) demonstrates that all the competing firms are

prompted to maintain higher service levels as well. Therefore, in the PF model, the

exploitation-induction tradeoff is stronger with more intensive service effect and network

effect.

Theorem 3.5.6 Consider the stationary symmetric PF model. Assume that, for each

period t, (i) the monotonicity condition (3.17) holds, and (ii) πpf∗
s,t is increasing in βpf

s,t−1.

For each period t, the following statements hold:

(a) βpf
s,t ≥ βpf

s,t−1, y
pf∗
s,t ≥ ypf∗s,t−1, p

pf∗
s,t (γ) ≤ ppf∗s,t−1(γ) for each γ ∈ [0, γ̄s]

N , and γpf∗s,t ≥

γpf∗s,t−1.
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(b) ppf∗i,t (I,Λ, γ) ≤ ppf∗i,t−1(I,Λ, γ), x
pf∗
i,t (I,Λ, γ) ≥ xpf∗i,t−1(I,Λ, γ), and γ

pf∗
i,t (I,Λ) ≥ γpf∗i,t−1(I,Λ)

for each i, (I,Λ) ∈ S, and γ ∈ [0, γ̄s,t]
N .

Analogous to Theorem 3.4.6, Theorem 3.5.6 justifies the widely used introductory

price and promotion strategy. More specifically, this result shows that if the market is

stationary and symmetric in the PF model, the competing firms should decrease the

promotional efforts (i.e., γpf∗s,t ) and service levels (i.e., ypf∗s,t ), and increase the sales prices

contingent on any realized promotional efforts (i.e., ppf∗s,t (γt)), over the planning horizon.

Hence, Theorem 3.5.6 suggests that, in the PF model, the exploitation-induction tradeoff

is more intensive at the early stage of the sales season than at later stages.

To conclude this section, we remark that, because of the aforementioned intra-temporal

exploitation-induction tradeoff under the promotion-first competition, Theorems 3.5.5-

3.5.6 cannot give the monotone relationships on the equilibrium outcomes of each firm i’s

sales price (i.e., ppf∗i,t (It,Λt, γ
pf∗
ss,t)) and post-deliver inventory level (i.e., xpf∗i,t (It,Λt, γ

pf∗
ss,t)).

3.6 Comparison of the Two Competition Models

As demonstrated above, the exploitation-induction tradeoff is more involved in the

PF model than that in the SC model. In this section, we compare the unique MPE in the

SC model and that in the PF model, and discuss how the exploitation-induction tradeoff

impacts the equilibrium market outcomes under different competitions.

Theorem 3.6.1 Consider the symmetric SC and PF models. Assume that, for each

period t, (i) the demand function ρi,t(·) is linear and given by (3.18), (ii) νi,t(γi,t) = γi,t,

(iii) the monotonicity condition (3.17) holds, (iv) Assumption 3.5.1 holds, (v) πsc∗
s,t is

increasing in βsc
s,t−1, and (vi) πpf∗

s,t is increasing in βpf
s,t−1. The following statements hold:

(a) If βpf
s,t−1 ≥ βsc

s,t−1, y
pf∗
s,t ≥ ysc∗s,t and γpf∗s,t ≥ γsc∗s,t .

(b) For each period t, there exists an ϵt ∈ [0, 1
N−1

], such that, if θsb,t ≤ ϵtθsa,t, we have

(i) βpf
s,t ≥ βsc

s,t and, thus, Vi,t(It,Λt|σpf∗
t ) ≥ Vi,t(It,Λt|σsc∗

t ) for each firm i and all

(It,Λt) ∈ S;

(ii) ypf∗s,t ≥ ysc∗s,t ;

(iii) γpf∗s,t ≥ γsc∗s,t .
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Theorem 3.6.1 shows that, if the product differentiation is sufficiently high (as cap-

tured by the condition that θsb,t ≤ ϵtθsa,t), the PF competition leads to stronger exploitation-

induction tradeoff (i.e., βpf
s,t ≥ βsc

s,t). As a consequence, the competing firms should set

higher service levels and promotional efforts in the PF model. Compared with the si-

multaneous competition, the promotion-first competition enables the firm to responsively

adjust their sales prices in accordance to the market condition and their competitors’ pro-

motion strategies. If the product differentiation is sufficiently high, such pricing flexibility

gives rise to higher expected profits of all firms and more intensive exploitation-induction

tradeoff in the PF model.

Theorem 3.6.1 also reveals the “fat-cat” effect in our dynamic competition model:

When the price decisions are made after observing the promotional efforts in each period,

the firms tend to “overinvest” in promotional efforts. As shown in the literature (e.g.,

[78, 9]), one driving force for this phenomenon is that, under the PF competition, the firms

can charge higher prices in the subsequent price competition with increased promotional

efforts in each period. Theorem 3.6.1 identifies a new driving force for the “fat-cat” effect:

The firms under the PF competition make more promotional efforts to balance the more

intensive exploitation-induction tradeoff therein. Therefore, our analysis delivers a new

insight to the literature that the exploitation-induction tradeoff may give rise to the

“fat-cat” effect in dynamic competition.

3.7 Summary

This chapter studies a dynamic joint promotion, price, and service competition model,

in which current decisions influence future demands through the service effect and the

network effect. Our model highlights an important tradeoff in a dynamic and competitive

market: the tradeoff between generating current profits and inducing future demands

(i.e., the exploitation-induction tradeoff). We characterize the impact of the exploitation-

induction tradeoff upon the equilibrium market outcome under the service effect and the

network effect, and identify the effective strategies to balance this tradeoff under dynamic

competition.

We employ the linear separability approach to characterize the pure strategy MPE

both in the SC model and in the PF model. An important feature of the MPE in both

models is that the equilibrium strategy of each firm in each period only depends on the
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private inventory and market size information of itself, but not on that of its competitors.

Moreover, the exploitation-induction tradeoff is more intensive if the service effect and

the network effect are stronger; and this trade-off decreases over the planning horizon.

The exploitation-induction tradeoff is more involved in the PF model than in the SC

model. This is because the competing firms need to balance this tradeoff both inter-

temporally and intra-temporally in the PF model, whereas they only need to balance

it inter-temporally in the SC model. More specifically, in the SC model, to effectively

balance the exploitation-induction tradeoff, the firms should (a) increase promotional

efforts, (b) offer price discounts, and (c) improve service levels. In the PF model, the firms

should increase promotional efforts under the service effect and the network effect. Given

the same promotional effort in the first stage competition, the firms need to decrease their

sales prices under the network effect. However, with an increased promotional effort in

the first stage competition, the equilibrium sales prices in the second stage competition

may either decrease to increase. Analogously, the equilibrium post-delivery inventory

levels may either decrease or increase in the PF model under the service effect and

the network effect. Finally, we identify the “fat-cat” effect in our dynamic competition

model: If the product differentiation is sufficiently high, under the MPE, the firms make

more promotional efforts in the PF model than in the SC model. The driving force of

this phenomenon is that the exploitation-induction tradeoff is more intensive under the

promotion-first competition than under the simultaneous competition.

79



4. Trade-in Remanufacturing, Strategic Customer Behavior and

Government Subsidies

4.1 Introduction

1It is a common practice for firms to offer trade-in rebates to recycle used products. For

example, Apple offers both in-store and online trade-in programs, which allow customers

to exchange their used iPhones, iPads, and Macs for credits to purchase new ones ([13]).

Analogously, Amazon allows Kindle owners to trade in their old products for newer

versions at a discount price ([55]). More examples on the adoption of trade-in rebates to

collect cores for remanufacturing have been reported in industries like furniture, carpets,

and power tools, etc. (see [142]).

Recycling used products through trade-in rebates has been lauded for its various

benefits. From the economic perspective, the return product flow from trade-in rebates

serves as an important source for generating revenue and reducing costs. With the re-

cycled products, firms can recover the residual values by either remanufacturing them

into new ones or reusing their components and materials. Following the literature (e.g.,

[142]), throughout the chapter we use the term remanufacturing to represent the general

revenue-generating process through recycling and recovering used products. In practice,

the revenue-generating/cost-saving effect of trade-in based remanufacturing could be sig-

nificant. Xerox, which partly bases its remanufacturing on trade-in returns, has saved

several hundred million dollars each year, which accounts for 40%-65% of the company’s

manufacturing costs ([146]). From the strategic perspective, trade-in rebates may improve

firm profitability by elevating customer switching costs ([105]), discouraging second-hand

markets ([109]), increasing purchase frequency ([166]), and reducing inefficiencies arising

from the lemon problem ([141]). From the environmental perspective, trade-in rebates

encourage customers to return used products, thus generating less waste and disposals.

In particular, the electronics market is featured with frequent product introductions and

generates more than one million tons of so-called e-wastes each year ([140]). Using trade-

1This chapter is based on the author’s earlier work [193].
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in rebates, Apple collected more than 40,000 tons of e-wastes in 2014, which account for

more than 75 percent of the products they sold seven years earlier (see [12]).

It has been empirically verified that customers exhibit forward-looking behaviors in

the electronics market due to frequent product introductions ([140]). In particular, when

the firm offers trade-in rebates, strategic customer behavior naturally arises, because

customers can anticipate a possible price discount in the future if making a purchase

now ([166, 80, 141]). Moreover, advances in information technology enable customers

to easily obtain product and price information. For example, Kayak launched the price

forecast service to help customers decide when to book a flight ([68]). As a consequence,

strategic customer behavior has become more prevalent in today’s business world. Al-

though strategic customer behavior has been widely acknowledged in the literature, it

is not clear how such behavior would affect the economic and environmental benefits of

trade-in remanufacturing.

Governments around the world have made tremendous efforts to promote recycling

and remanufacturing used products. One commonly used strategy is to provide subsidies

for remanufacturing. For instance, in January 2015, the Chinese government released a

policy to subsidize the use of remanufactured vehicle engines and transmissions ([44]).

Analogously, the Chinese government established a special fund in 2011 to provide sub-

sidies to companies engaged in the recycling and recovering of waste electrical and elec-

tronic products (e.g., [174]). As another example, a recent report backed by the Scottish

government and Zero Waste Scotland (ZWS) concluded that Scotland was in a unique

position to develop a circular economy and called for government subsidies to help boost

closed loop recycling, reuse, bio-refining, and remanufacturing ([161]). In the literature,

the effects of government subsidies for remanufacturing/trade-in remanufacturing have

been studied in settings without explicitly modeling customer behaviors (e.g., [128, 118]).

Despite its importance, the question of how the government should design the subsidiza-

tion policy under strategic customer behavior to induce the social optimum has not been

thoroughly explored.

The primary goal of this chapter is to analyze how strategic customer behavior influ-

ences the value of trade-in remanufacturing from the perspectives of the firm, the environ-

ment, and the government. For this purpose, we develop a two-period model in which a

profit-maximizing firm sells two generations of a product in an ex-ante uncertain market.
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To highlight the impact of strategic customer behavior, we consider two scenarios, one

with strategic customers and the other with myopic customers. Strategic customers make

their purchasing decisions based on both current and anticipated future utilities, whereas

myopic customers make decisions based on current utilities only. In the first period, the

firm sells the first-generation product in the market. In the second period, the firm sells

the second-generation product to new customers (who have not purchased in the first

period); meanwhile the firm offers trade-in rebates through which repeat customers (who

have purchased in the first period) exchange used products for new second-generation

ones at a discounted price. The firm generates revenue by remanufacturing the recycled

products. This remanufacturing process also reduces the (negative) environmental im-

pact of the business, because it decreases energy and raw material consumption, as well

as waste disposal. We model the government as a policy-maker whose subsidy/tax policy

may affect the firm’s pricing and production strategy as well as the customers’ purchasing

decisions. The objective of the government is to maximize the social welfare, i.e., the sum

of firm profit and customer surplus less environmental impact.

We find that strategic customer behavior has important implications on the prac-

tice of trade-in remanufacturing. First, under trade-in remanufacturing, the firm can

earn a higher profit with strategic customers than with myopic customers if the revenue-

generating effect of remanufacturing is sufficiently strong. In other words, strategic cus-

tomer behavior may improve firm profit, which is in contrast with the commonly believed

notion that strategic customer behavior hurts firm profit. When the firm employs trade-

in remanufacturing, strategic customers will anticipate the future trade-in rebate (i.e.,

price discount) in the second period, which depends on the additional value generated by

remanufacturing. Note that a deeper discount in the second period will induce a higher

willingness-to-pay in the first period. Thus, strategic customers may be willing to pay a

higher first-period price than myopic customers if the revenue-generating effect of reman-

ufacturing is strong enough, which allows the firm to extract a higher profit. This implies

that when early purchases (of strategic customers) can be induced by the additional

benefits (i.e., the trade-in option and the deep discount brought by remanufacturing), a

firm may benefit from strategic customer behavior. Without trade-in remanufacturing,

however, strategic customer behavior always hurts the firm’s profit, as reported in the

literature.
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Second, with strategic customers, the adoption of trade-in remanufacturing may cre-

ate a tension between firm profitability and environmental sustainability. Trade-in re-

bate essentially offers an early purchase reward and thus can deliver additional value

by exploiting the forward-looking behavior of strategic customers. As a result, trade-in

remanufacturing is more valuable to the firm with strategic customers than with myopic

customers. However, the early-purchase inducing effect of trade-in remanufacturing also

prompts the firm to increase production quantities significantly under strategic customer

behavior. The increased production quantities may outweigh the environmental advan-

tage of remanufacturing unless the unit environmental benefit of remanufacturing is very

high. Hence, trade-in remanufacturing generally hurts the environment with strategic

customers. Moreover, we find that trade-in remanufacturing decreases customer surplus,

and consequently, the social welfare may decrease as well. Therefore, our results call for

caution on the adoption of trade-in remanufacturing under strategic customer behavior,

because it is likely to be severely detrimental to the environment and the society.

With myopic customers, however, trade-in manufacturing generally benefits the envi-

ronment. The price discrimination effect of trade-in rebates increases the expected unit

profit from new customers in the second period. This effect drives the firm to decrease

the first-period production quantity and thus increase the potential second-period mar-

ket size of new customers. As long as the unit environmental benefit of remanufacturing

is not too low, trade-in remanufacturing induces lower production quantities and, thus,

benefits the environment. Therefore, for the scenario with myopic customers, the tension

between firm and environment does not exist in general.

The tension between firm profitability and environmental sustainability under strate-

gic customer behavior motivates us to study how government intervention can achieve the

socially optimal outcome. Specifically, we focus on the subsidization policy the govern-

ment can use to promote the activities of used products recycling (e.g., trade-in rebates,

remanufacturing, and take-backs; see [128, 170, 161]). An intuitive policy observed in

practice is to subsidize the firm/customers for selling/purchasing remanufactured prod-

ucts. However, we find that subsidizing remanufactured products alone actually hurts

the environment and is not sufficient to achieve the social optimum. This cautions the

policy-makers about how to promote remanufacturing through subsidization. With either

strategic or myopic customers, in order to induce the social optimum, it suffices for the
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government to use a simple linear subsidy/tax scheme for the sales of both product gen-

erations and remanufacturing. In addition, if the total unit economic and environmental

value of remanufacturing is low, the government should provide more subsidies to the

firm with strategic customers than with myopic customers, and vice versa.

The rest of the chapter is organized as follows. In Section 4.2, we position this chapter

in the related literature. The base model and the equilibrium analysis are presented in

Section 4.3. In Section 4.4, we analyze the impact of trade-in remanufacturing upon the

firm and the environment. In Section 4.5, we characterize the government policy that

can induce the social optimum. This chapter concludes with Section 4.6. All proofs are

given in Appendix C.2.

4.2 Related Research

This chapter builds upon two streams of research in the literature: (1) remanufactur-

ing and closed-loop supply chain management, and (2) strategic customer behavior.

There is a rapidly growing stream of literature on remanufacturing and closed-loop

supply chain management. Comprehensive reviews of this literature are given by [91]

and [154]. Several papers study the optimal inventory policy with return flows of used

products; see, e.g., [167, 163], and [87]. These papers focus on characterizing the cost-

minimizing inventory policy in a system with exogenously given demand rate, price, and

remanufacturability. More recently, researchers start to explicitly model some strategic

issues related to remanufacturing, such as used product acquisition, demand segmenta-

tion, product cannibalization, and competition. [146] study the optimal reverse channel

structure for the collection of used products from customers. [74] analyze the compe-

tition between new and remanufactured products (i.e., the cannibalization effect) and

characterize the optimal recovery strategy. When remanufacturability is an endogenous

decision, [59] investigate a joint pricing and production technology selection problem of

a manufacturer who sells a remanufacturable product to heterogeneous customers. Un-

der the cannibalization effect of remanufactured products, [75] study the competition

between an original equipment manufacturer (OEM) and an independent operator who

only sells remanufactured products. [14] show that remanufacturing could serve as a

marketing strategy to target the customers in the green segment and, hence, enhance

the profitability of the OEM. [133] characterize the optimal relicensing strategy of an
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OEM to mitigate the cannibalization effect in the secondary market. [81] study how the

rate of product innovation affects the firm’s reuse and remanufacturing decisions. [90]

investigate the quality design and environmental consequences of green consumerism with

remanufacturing. There are papers that address behaviorial issues related to remanufac-

turing such as how the remanufactured products affect the customer valuation of new

products ([3]). Government regulations on remanufacturing have also been studied in the

literature; see, e.g., [118]. [56] study the impact of demand uncertainty on government

subsidies for green technology adoption. The impact of trade-in rebates has also received

some attention in the remanufacturing literature. For example, [142] examine the value of

price discrimination for new and repeat customers with differentiated ages (and qualities)

of the returned products.

The impact of strategic customer behavior has received an increasing amount of at-

tention in the operations management literature. [149] provide a comprehensive review

on customer behavior models in revenue management and auctions. [20] show that ra-

tional customers drive a monopolist firm to charge a lower price for any given state in

each period. [157] characterizes the optimal pricing strategy with a heterogenous group

of strategic customers. When customers are forward-looking, [17] study the optimal sin-

gle mark-down timing with finite inventories. In a newsvendor model where customers

anticipate the likelihood of stockout before deciding whether to make a purchase, [58] and

[159, 160] study the impact of strategic customer behavior on newsvendor profit, supply

chain performance, and the role of product availability in inducing demand, respectively.

[115] propose the effective capacity rationing strategy to induce early purchases with

strategic customers. [40, 41] and [176] demonstrate how quick response can be employed

to mitigate strategic customer behavior. [99] study opaque selling and last-minute selling

with strategic customers in a revenue management framework. In a cheap talk framework,

[8] show that, though nonverifiable, the availability information improves the profit of a

service firm and the expected utility of its customers. [7] further demonstrate that a single

retailer providing availability information on its own cannot create any credibility with

homogeneous customers. [54] investigate the integrated information and pricing strat-

egy with strategic customers and the customer preorders before product release. [135]

demonstrates how vertical product differentiability helps mitigate strategic customer be-

havior. Recently, there are papers addressing the optimal strategy with multiple product
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introductions and strategic customer behavior. For example, in the presence of strategic

consumers, [113] characterize the optimal product rollover strategies, whereas [116] study

the new product launch strategy.

There are a few papers that investigate trade-in rebates with forward-looking cus-

tomers. [166] show that, under strategic customer behavior, trade-ins can serve as a

mechanism to achieve price commitment. [80] study the monopoly pricing of overlap-

ping generations of a durable good with and without a second-hand market. In an

infinite-horizon model setting, [141] demonstrate that trade-in rebates can alleviate the

inefficiencies arising from the lemon problem.

This chapter contributes to the aforementioned streams of research by studying the

interaction between trade-in remanufacturing and strategic customer behavior, and how

such interaction affects the economic and environmental values of trade-in remanufactur-

ing. We demonstrate that strategic customer behavior may benefit the firm, but give rise

to a tension between firm profitability and environmental sustainability under trade-in

remanufacturing. In addition, we characterize how the government can achieve the so-

cial optimum, using a simple linear subsidy/tax scheme with either strategic or myopic

customers.

4.3 Model and Equilibrium Analysis

4.3.1 Model Setup

We consider a monopoly firm (he) in the market who sells a product to customers

(she) in a two-period sales horizon. In the first period, the firm produces the first-

generation product at a unit production cost c1. The potential market size X, which

is the total number of potential customers, is ex-ante uncertain. The customers are

infinitesimal, each requesting at most one unit of the product in any period. Demand

uncertainty is a common feature with new product introduction, but the firm can obtain

more accurate demand information as the market matures. Hence, in the second period,

the market uncertainty is resolved so the realized market size X becomes known to the

firm. Without loss of generality, we assume that X > 0, with a distribution function F (·)

and density function f(·) = F ′(·).
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A customer’s valuation V for the first-generation product is independently drawn from

a continuous distribution with a distribution functionG(·) supported on [v, v̄] (0 ≤ v < v̄).

We call the customer with product valuation V the type-V customer. At the beginning

of the sales horizon, each customer only knows the distribution of her own valuation G(·),

but not the realization V . This assumption captures the customers’ uncertainties about

the quality, and fits the situation where the product is brand new. In the second period,

all customers observe their own type V . For the customers who purchased the product in

period 1, they learn their type V by consuming the product. For the customers who did

not purchase the product in period 1, they learn its quality and fit (thus, their type V )

through social learning platforms (e.g., Facebook and Amazon customer review systems).

Hence, the customers are homogeneous ex ante (i.e., at the beginning of period 1), but

heterogeneous ex post (i.e., at the beginning of period 2). This is a common setting in the

models concerning strategic customer behavior (see, e.g., [175, 158]). We assume that the

valuation distribution G(·) has an increasing failure rate, i.e., g(v)/Ḡ(v) is increasing in v,

where g(·) = G′(·) is the density function and Ḡ(·) = 1−G(·). This is a mild assumption

and can be satisfied by most commonly used distributions. Let µ := E(V ) > c1, i.e., in

expectation, a customer’s valuation exceeds the production cost.

The firm offers an upgraded version of the product in period 2. This is a customary

practice for product categories like consumer electronics, home appliances, and furniture.

A type-V customer has a valuation of (1 + α)V for the upgraded second-generation

product, where α ≥ 0 is exogenously given and captures the innovation level (e.g., the

improved features) of the upgraded product. Accordingly, let the production cost of

the second-generation product be c2. To model the product depreciation, we take the

approach of [166]: If a type-V customer has already bought the product in period 1, her

valuation of consuming the used product in period 2 is (1−k)V , where k ∈ [0, 1] refers to

the depreciation factor. Specifically, if k = 0, the product is completely durable; if k = 1,

the product is completely useless after the first period (either the product is worn out

or the technology is obsolete). Therefore, the willingness-to-pay of a type-V customer in

period 2 is (1+α)V if she did not purchase the product in period 1 (i.e., a new customer),

and is (1 + α)V − (1− k)V = (k + α)V if she purchased the product in period 1 (i.e., a

repeat customer).
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As widely recognized in the literature, the firm can generate revenue from remanufac-

turing by reusing the materials and components of the recycled products (see [146, 142]).

We now model the revenue-generating effect of remanufacturing. There are two types

of remanufacturing in our model. First, the firm recycles the unsold first-generation

products at the end of period 1. The recycled leftover inventory in the first period is

remanufactured and can generate a net per-unit revenue r1 (r1 < c1) for the firm. That

is, in the base model we assume no excess inventory is carried over to the second period.

This assumption applies when the inventory holding cost is sufficiently high or the firm

does not want to dilute the sales of the newer generation product, which is usually the case

in the electronics market. Moreover, this assumption facilitates the technical tractability

of our model. Our results can be extended to the setting wherein the firm may hold

leftover inventory and offer both product generations in the second period. The second

type of remanufacturing is by using the returned products in period 2, i.e., customers

who bought the product in period 1 can trade the old product for a second-generation

one at a discounted price in period 2. The net revenue of remanufacturing from a used

product in period 2 is r2 (r2 < c2). Following [146], we assume that all remanufactured

products are upgraded to the quality standards of new ones, so that consumers cannot

distinguish them from newly made products. Relaxing this assumption will not affect

our qualitative results.

The environmental impact of the product is the aggregate (negative) lifetime impact

of the product on the environment. The total environmental impact is the production

quantity of the product multiplied by the per-unit impact (see, e.g., [162, 4]). Let κ1 > 0

denote the unit environmental impact of the first-generation product. Analogously, we

denote κ2 > 0 as the unit environmental impact of the second-generation product. Such

impact may refer to the use of natural resources, emission of harmful gases, and generation

of solid wastes. Moreover, κ1 and κ2 can be estimated by the conventional life-cycle

analysis (see, e.g., [4]). To model the environmental benefit of remanufacturing, let ι1

(ι1 < κ1) be the unit environmental benefit of recycling the first-period leftover inventory,

and ι2 (ι2 < κ2) be that of recycling the used products through trade-in rebates. Here, ι1

and ι2 refer to the reductions in both the production environmental impact in period 2 and

the end-of-use and end-of-life product disposal, by recycling and reusing the materials and

components of the first-generation products. To capture the environmental advantage
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of the second-generation product, we assume that κ1 − ιt ≥ κ2 (t = 1, 2), i.e., the

total environmental impact of the first-generation product dominates that of the second-

generation product even if the end-of-use/end-of-life first-generation products are recycled

and remanufactured.

The sequence of events unfolds as follows. At the beginning of period 1, the firm

announces the price p1 and decides the production quantity Q1. Each customer observes

p1, but not Q1, and makes her decision whether to order the product or to wait until

period 2. The first-period demand X1 ≤ X is then realized, the firm collects his first-

period revenue, and all customers stay in the market. Note that X1 is determined by the

collective effect of all customers’ purchasing behaviors. If X1 ≤ Q1, any customer who

requests a product can get one in period 1. Otherwise, X1 > Q1, then the Q1 products are

randomly allocated to the demand, and X1−Q1 customers have to wait due to the limited

availability. At the end of period 1, the firm recycles and remanufactures the leftover

inventory. At the beginning of period 2, the firm learns the realized total market size X,

and each individual customer learns her type V . The firm then announces the price pn2 for

new customers as well as the trade-in price pr2 ≤ pn2 (pn2−pr2 is the trade-in rebate); all new

customers decide whether to purchase the second-generation product, whereas all repeat

customers decide whether to trade their used products in for new second-generation ones.

Finally, the firm produces the second-generation products, recycles and remanufactures

the used products from repeat customers, and collects the second-period revenue.

For notational convenience, we will use E[·] to denote the expectation operation, x∧y

to denote the minimum of two numbers x and y, and ϵ1
d
= ϵ2 to denote that two random

variables ϵ1 and ϵ2 follow the same distribution. The scenario with myopic customers will

be denoted with “˜”.

4.3.2 Equilibrium Analysis

We consider two scenarios, one with strategic customers and the other with myopic

customers. Strategic customers maximize their total expected surplus over the two-period

horizon, whereas myopic customers maximize their expected current-period surplus in

each period. In both scenarios, the firm seeks to maximize his total expected profit over

the entire horizon. For expositional convenience, we assume there is a common discount

factor for the firm and the customers in period 2, denoted by δ ∈ (0, 1]. To highlight
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the impact of strategic customer behavior upon the economic and environmental values

of trade-in remanufacturing, we assume that the customers are either purely strategic or

completely myopic. In reality, the actual customer behavior may take a form between

these two extremes. Our model can be easily adapted to capture this situation by fixing

the discount factor of the firm at δ, and allowing the discount factor of the customers

δc to vary in the interval [0, δ]. The higher the δc, the greater the customers’ concern

about future utilities, and thus the more strategic they are. In particular, δc = δ (δc = 0)

corresponds to the scenario with purely strategic (myopic) customers.

To characterize the game outcome, we adopt the rational expectation (RE) equilibrium

concept. The RE equilibrium was proposed by [129] and has been widely used in the

operations management literature (e.g., [159, 160, 40, 41]). Using backward induction,

we start with the decisions of the two parties in period 2. There are Xn
2 = X− (X1∧Q1)

new customers and Xr
2 = X1∧Q1 repeat customers in the market. Note that, since period

2 is the final period, strategic and myopic customers exhibit the same purchasing behavior

therein. Hence, regardless of customer behavior, the firm should adopt the same pricing

strategy in period 2 as well. Given (Xn
2 , X

r
2), let p

n
2 (X

n
2 , X

r
2) and Qn

2 (X
n
2 , X

r
2) be the

equilibrium price and production quantity for new customers in period 2. Analogously,

pr2(X
n
2 , X

r
2) andQ

r
2(X

n
2 , X

r
2) are the equilibrium trade-in price and production quantity for

repeat customers, respectively. Correspondingly, we denote π2(X
n
2 , X

r
2) as the equilibrium

second-period profit of the firm.

Lemma 7 (a) For any (Xn
2 , X

r
2), p

n
2 (X

n
2 , X

r
2) ≡ pn∗2 and pr2(X

n
2 , X

r
2) ≡ pr∗2 , where

pn∗2 = argmaxpn2≥0(p
n
2−c2)Ḡ

(
pn2

1 + α

)
and pr∗2 = argmaxpr2≥0(p

r
2−c2+r2)Ḡ

(
pr2

k + α

)
.

Moreover, pr∗2 < pn∗2 if and only if k < 1 or r2 > 0.

(b) For any (Xn
2 , X

r
2), Q

n
2 (X

n
2 , X

r
2) = Ḡ

(
pn∗
2

1+α

)
Xn

2 , and Q
r
2(X

n
2 , X

r
2) = Ḡ

(
pr∗2
k+α

)
Xr

2 .

(c) There exist two positive constants β∗
n and β∗

r , such that π2(X
n
2 , X

r
2) = β∗

nX
n
2 +β

∗
rX

r
2

for all (Xn
2 , X

r
2), where

β∗
n = max

pn2≥0
(pn2 − c2)Ḡ

(
pn2

1 + α

)
and β∗

r = max
pr2≥0

(pr2 − c2 + r2)Ḡ

(
pr2

k + α

)
.

Lemma 7 characterizes the equilibrium pricing and production strategy of the firm

in period 2. Specifically, both the equilibrium price for new customers and the equilib-

rium trade-in price are independent of the realized market size (Xn
2 , X

r
2). Hence, the
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equilibrium production quantity for new (repeat) customers is a fixed fraction of the

corresponding market size Xn
2 (Xr

2) in period 2. As long as the used product is not

completely useless to customers in period 2 (i.e., k < 1) or remanufacturing generates

a positive revenue (i.e., r2 > 0), the firm offers positive trade-in rebates to repeat cus-

tomers. Moreover, the equilibrium profit of the firm in period 2, π2(X
n
2 , X

r
2), is linearly

separable in Xn
2 and Xr

2 .

We now analyze the firm’s and the customers’ decisions in period 1. We begin with

the customers’ purchasing behavior. A strategic customer forms beliefs about the first-

period product availability probability a, the second-period price for new customers pn2 ,

and the second-period trade-in price pr2, where a, pn2 , and pr2 are all nonnegative random

variables. Based on the belief vector (a, pn2 , p
r
2) and the observed first-period price p1,

she computes the expected utility of making an immediate purchase, Up := a(E[V ] +

δE[(k+α)V −pr2]
+−p1)+ (1−a)δE[(1+α)V −pn2 ]

+, and the expected utility of waiting,

Uw := δE[(1+α)V −pn2 ]
+. Hence, the first-period reservation price of a strategic customer,

ξr, is given by ξr := max{p1 : Up ≥ Uw}, and she will make a purchase in period 1 if and

only if p1 ≤ ξr. The decision-making process of a myopic customer is simpler because

she does not form beliefs about the first-period availability and second-period prices,

but bases her purchasing decision on the current utility only. Hence, the first-period

reservation price for a myopic customer equals her expected valuation of the product,

i.e., ξ̃r = E[V ] = µ. Following the standard approach in the marketing ([175]) and the

strategic customer behavior ([159, 41]) literature with homogeneous customers, we assume

that all customers will make a purchase in period 1 if p1 equals their reservation prices

(ξr for strategic customers and ξ̃r for myopic customers). Thus, with strategic (myopic)

customers, the first-period demand, X1, is given by X1 = X ·1{p1≤ξr} (X1 = X ·1{p1≤ξ̃r}).

Next, we consider the firm’s problem in period 1. The firm does not know the exact

reservation price of strategic (myopic) customers ξr (ξ̃r), but forms a belief r1 (r̃1) about

it. To maximize his expected profit, the firm sets the first-period price p1 (p̃1) equal to the

expected reservation price r1 (r̃1), which is the highest price (the firm believes) strategic

(myopic) customers are willing to pay in the first period. Thus, the firm believes that the

first-period demand X1 = X. Thus, the second-period market size of new customers is

Xn
2 = (X−Q1)

+, and that of repeat customers isXr
2 = X∧Q1. Moreover, the firm sets the

first-period production quantity Q1 to maximize the total expected profit with strategic
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(myopic) customers Πf (Q1) (Π̃f (Q1)), where Πf (Q1) = E{p1(X ∧Q1)− c1Q1 + r1(Q1 −

X)++ δπ2(X
n
2 , X

r
2)} and Π̃f (Q1) = E{p̃1(X ∧Q1)− c1Q1+ r1(Q1−X)++ δπ2(X

n
2 , X

r
2)},

with p1 = r1, p̃1 = r̃1, X
n
2 = (X − Q1)

+, and Xr
2 = X ∧ Q1. Finally, under the RE

equilibrium, all beliefs are rationally formulated and thus consistent with the actual

outcomes.

Let (p∗1, Q
∗
1, ξ

∗
r , r

∗, a∗, pn∗2 , p
r∗
2 ) and (p̃∗1, Q̃

∗
1, ξ̃

∗
r , r̃

∗) be the RE equilibria in the market

with strategic and myopic customers, respectively. For concision, the formal definitions

of the RE equilibria in both scenarios are given in Appendix C.1. To characterize the

RE equilibrium, we define two auxiliary variables m∗
1 := µ + δ[β∗

r − β∗
n + E((k + α)V −

p∗r)
+ − E((1 + α)V − p∗n)

+] and m̃∗
1 := µ+ δ(β∗

r − β∗
n). As will be clear in our subsequent

analysis, m∗
1 (m̃∗

1) is the first-period effective marginal revenue with strategic (myopic)

customers, which summarizes the impact of the second-period decisions on the first-period

firm profit. Based on Lemma 7, we can characterize the RE equilibrium market outcome

in the scenario with either strategic or myopic customers.

Theorem 4.3.1 (a) With strategic customers, an RE equilibrium

(p∗1, Q
∗
1, ξ

∗
r , r

∗, pn∗2 , p
r∗
2 , a

∗) exists with (i) p∗1 = µ + δ[E((k + α)V − pr∗2 )+ − E((1 +

α)V − pn∗2 )+]; and (ii) Q∗
1 = F̄−1( c1−r1

m∗
1−r1

). Moreover, all RE equilibria give rise to

the identical expected total profit of the firm, Π∗
f = (m∗

1 − r1)E(X ∧ Q∗
1) − (c1 −

r1)Q
∗
1 + δβ∗

nE(X).

(b) With myopic customers, an RE equilibrium (p̃∗1, Q̃
∗
1, ξ̃

∗
r , r̃

∗) exists with (i) p̃∗1 = µ;

and (ii) Q̃∗
1 = F̄−1( c1−r1

m̃∗
1−r1

). Moreover, all RE equilibria give rise to the identical

expected total profit of the firm, Π̃∗
f = (m̃∗

1− r1)E(X ∧ Q̃∗
1)− (c1− r1)Q̃

∗
1+ δβ

∗
nE(X).

Theorem 4.3.1(a) and (b) characterize the RE equilibrium market outcomes in the

scenarios with strategic and myopic customers, respectively. In each scenario, the first-

period price equals the corresponding expected reservation price of the customers, and

the first-period production quantity can be determined by the solution of a correspond-

ing newsvendor problem. In equilibrium, the total environmental impact should be the

difference between the total environmental impact of production/disposal and the total

environmental benefit of remanufacturing. Hence, the equilibrium environmental impact

with strategic customers is I∗e = E{κ1Q∗
1 + δκ2(Q

n
2 (X

n∗
2 , Xr∗

2 ) +Qr
2(X

n∗
2 , Xr∗

2 ))− ι1(Q
∗
1 −

X)+− δι2Q
r
2(X

n∗
2 , Xr∗

2 )}, where Xn∗
2 = (X −Q∗

1)
+ and Xr∗

2 = X ∧Q∗
1; whereas that with
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myopic customers is Ĩ∗e = E{κ1Q̃∗
1 + δκ2(Q

n
2 (X̃

n∗
2 , X̃r∗

2 ) +Qr
2(X̃

n∗
2 , X̃r∗

2 ))− ι1(Q̃
∗
1 −X)+ −

δι2Q
r
2(X̃

n∗
2 , X̃r∗

2 )}, where X̃n∗
2 = (X − Q̃∗

1)
+ and X̃r∗

2 = X ∧ Q̃∗
1.

4.4 Impact of Trade-in Remanufacturing

In this section, we analyze the impact of trade-in remanufacturing on the firm and the

environment under different customer behaviors (i.e., strategic or myopic customers). Our

focus is on how strategic customer behavior influences the economic and environmental

values of trade-in remanufacturing.

To facilitate our comparison, we first introduce a benchmark model where the firm

does not offer trade-in rebates to customers. As a consequence, the firm cannot recycle

used products for remanufacturing in period 2. We call this the No Trade-in Reman-

ufacturing (NTR) model, which is denoted by the superscript “u” hereafter. We use

pu2(X
n
2 , X

r
2) to denote the equilibrium second-period pricing strategy of the firm in the

NTR model, which does not depend on customer behavior. As in the base model, the

firm forms a belief about the customers’ expected willingness-to-pay in the first period,

and bases his price and production decisions on this belief. The customers, on the other

hand, form beliefs about the product availability and the second-period price, and time

their purchases. Again, the formal definitions of the RE equilibrium in the NTR model

are given in Appendix C.1. By the same argument in the proof of Theorem 4.3.1, we can

show that an RE equilibrium exists with either strategic or myopic customers in the NTR

model. Let (pu∗1 , Q
u∗
1 ) denote the equilibrium first-period price and production decisions

of the firm with strategic customers, and (p̃u∗1 , Q̃
u∗
1 ) denote those with myopic customers

in the NTR model. Accordingly, the associated equilibrium expected profit of the firm

(environmental impact) is denoted by Πu∗
f (Iu∗e ) in the scenario with strategic customers,

and by Π̃u∗
f (Ĩu∗e ) in the scenario with myopic customers.

Let Πu
f (Q1) (Π̃

u
f (Q1)) be the expected profit of the firm with strategic (myopic) cus-

tomers to produce Q1 products in the period 1 in the NTR model. We characterize the

objective functions Πf (·), Π̃f (·), Πu
f (·), and Π̃u

f (·) in the following lemma.

Lemma 8 The objective functions are given by Πf (Q1) = (m∗
1 − r1)E(X ∧ Q1) − (c1 −

r1)Q1 + δβn∗
2 E(X), Π̃f (Q1) = (m̃∗

1 − r1)E(X ∧Q1)− (c1 − r1)Q1 + δβn∗
2 E(X),

Πu
f (Q1) = (mu

1(Q1)−r1)E(X∧Q1)−(c1−r1)Q1+δE{(pu2(Xn
2 , X

r
2)−c2)Ḡ

(
pu2(X

n
2 , X

r
2)

1 + α

)
X},
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and

Π̃u
f (Q1) = (m̃u

1(Q1)−r1)E(X∧Q1)−(c1−r1)Q1+δE{(pu2(Xn
2 , X

r
2)−c2)Ḡ

(
pu2(X

n
2 , X

r
2)

1 + α

)
X},

where Xn
2 = (X −Q1)

+, Xr
2 = X ∧Q1. The expressions of mu

1(·) and m̃u
1(·) are given in

Appendix C.2.

Lemma 8 implies that, in the NTR model, the effective first-period marginal revenue

is production-quantity-dependent, and given by mu
1(·) in the scenario with strategic cus-

tomers and by m̃u
1(·) with myopic customers. The economic interpretation of mu

1(Q1)

(m̃u
1(Q1)) is that, when the first-period production quantity is Q1, it measures the ad-

ditional expected marginal revenue to sell the product in period 1 over that in period 2

with strategic (myopic) customers. Hence, the higher the mu
1(Q1) and m̃

u
1(Q1), the more

profitable it is for the firm to sell the first-generation product in the NTR model with

strategic and myopic customers, respectively. In other words, mu
1(·) and m̃u

1(·) capture

the willingness-to-produce of the firm in period 1. Without loss of generality, we focus on

the case where mu
1(·) > 0 and m̃u

1(·) > 0 for all Q1 ≥ 0, i.e., the firm can gain a positive

revenue to sell the first-generation product. Otherwise, the firm will not produce or sell

anything in period 1.

4.4.1 Impact on Firm Profit

This subsection investigates the value of trade-in remanufacturing to the firm. To

begin with, we characterize the role of strategic customer behavior, depending on whether

the firm adopts trade-in remanufacturing or not.

Theorem 4.4.1 (a) Under trade-in remanufacturing, let e∗ := E((k + α)V − pr∗2 )+ −

E((1+α)V −pn∗2 )+. Then, we have (i) p∗1 > p̃∗1 if and only if e∗ > 0, (ii) Q∗
1 > Q̃∗

1 if

and only if e∗ > 0, and (iii) Π∗
f > Π̃∗

f if and only if e∗ > 0. Moreover, there exists

a threshold r̄ ≥ 1−k
1+α

c2, such that e∗ > 0 if and only if r2 > r̄.

(b) Under no trade-in remanufacturing, we have (i) pu∗1 ≤ p̃u∗1 , where the inequality is

strict if k < 1, (ii) Qu∗
1 ≤ Q̃u∗

1 , and (iii) Πu∗
f ≤ Π̃u∗

f , where the inequality is strict if

k < 1 and Q̃u∗
1 > 0.

Under trade-in remanufacturing, Theorem 4.4.1(a) compares the equilibrium out-

comes with different customer behaviors. We find that the key to this comparison is the
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difference between the expected surplus of a repeat customer and that of a new customer

in period 2 (i.e., e∗). With strategic customers, the firm charges a higher first-period

price, sets a higher first-period production level, and earns a higher total expected profit,

if and only if the expected second-period surplus of a repeat customer is higher than

that of a new customer (i.e, e∗ > 0). In particular, the presence of strategic customer

behavior benefits the firm if the revenue-generating effect of remanufacturing is strong

enough (i.e., r2 > r̄). This result is in sharp contrast with the well-established notion

in the literature that strategic customer behavior hurts a firm’s profit (e.g., [17, 159]).

Trade-in remanufacturing leads to a price discount for repeat customers in period 2,

which can be perceived by strategic customers when deciding whether to make a pur-

chase in period 1. This discount outweighs the benefit of strategic waiting if the revenue

generated from remanufacturing is sufficiently high (i.e., r2 > r̄). In this case, the pres-

ence of forward-looking behavior will enable the firm to charge a higher price, produce

more, and thus earn a higher profit. We emphasize that both the trade-in option and

the revenue-generating effect of remanufacturing are essential for the firm to benefit from

strategic customer behavior: The former induces strategic customers to anticipate the

price discount for repeat customers, whereas the latter brings in the additional benefit

that guarantees a deep discount so that strategic customers are willing to pay an even

higher first-period price than myopic customers. In contrast, Theorem 4.4.1(b) shows

that, without trade-in remanufacturing, the firm always suffers from strategic customer

behavior, as reported in the existing literature.

Theorem 4.4.1 suggests that the presence of strategic customer behavior will make

trade-in remanufacturing more attractive to the firm. Next, we study how trade-in re-

manufacturing influences the profit and the pricing strategy of the firm under different

customer behaviors. The following theorem compares the equilibrium prices and profits

in the NTR model and those in the base model with either strategic or myopic customers.

Theorem 4.4.2 (a) In period 2, pu2(X
n
2 , X

r
2) is increasing in Xn

2 and decreasing in

Xr
2 . Moreover, for any (Xn

2 , X
r
2), p

r∗
2 ≤ pu2(X

n
2 , X

r
2) ≤ pn∗2 , where the inequalities

are strict if k < 1 and Xn
2 , X

r
2 > 0.

(b) With strategic customers, we have (i) pu∗1 ≤ p∗1, where the inequality is strict if

pr∗2 < pn∗2 ; and (ii) Πu∗
f ≤ Π∗

f , where the inequality is strict if pr∗2 < pn∗2 and Q∗
1 > 0.
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(c) With myopic customers, we have (i) p̃u∗1 = p̃∗1; and (ii) Π̃u∗
f ≤ Π̃∗

f , where the

inequality is strict if pr∗2 < pn∗2 and Q̃u∗
1 > 0.

Theorem 4.4.2 shows that the equilibrium second-period price without trade-in reman-

ufacturing, pu2(·, ·), is bounded from below by the equilibrium second-period trade-in price

pr∗2 , and from above by the equilibrium second-period price for new customers pn∗2 . Hence,

under trade-in remanufacturing, the expected utility of strategic customers to make a pur-

chase in the first period increases (i.e., δE[(k+α)V −pr∗2 ]+ ≥ δE[(k+α)V −pu2(Xn
2 , X

r
2)]

+),

whereas the benefit of waiting decreases decreases (i.e., δE[(1 + α)V − pn∗2 ]+ ≤ δE[(1 +

α)V − pu2(X
n
2 , X

r
2)]

+. This implies that trade-in remanufacturing makes strategic cus-

tomers more willing to purchase immediately than to wait until period 2. Therefore,

trade-in remanufacturing enables the firm to exploit the forward-looking behavior of

strategic customers and thus induces early purchases from them. With myopic cus-

tomers, however, trade-in remanufacturing does not have an early-purchase inducing ef-

fect because myopic customers do not care about their future surplus. This result is also

consistent with the finding in the durable product literature that the secondary market

gives rise to greater resale value of a durable product and thus can increase the sales of

the new product upfront (see, e.g., [94, 169]).

From Theorem 4.4.2, we can see there are three beneficial effects of trade-in remanu-

facturing that may improve firm profit: (a) the revenue-generating effect of remanufac-

turing, (b) the price discrimination effect of trade-in rebates, i.e., the differentiated prices

for new and repeat customers helps the firm exploit the customer segmentation in period

2, and (c) the early-purchase inducing effect of trade-in rebates, i.e., the price discount

to repeat customers enables the firm to exploit the forward-looking behavior of strate-

gic customers by offering early-purchase rewards. The first two effects benefit the firm

with either strategic or myopic customers, whereas the third effect improves the firm’s

profit with strategic customers only. In the following, we conduct extensive numerical

experiments to quantify the third effect, and deliver insights on how strategic customer

behavior influences the value of trade-in remanufacturing to the firm.

The design of the numerical study is as follows. Let the customer valuation V follow

a uniform distribution on [0, 1] (µ = E(V ) = 0.5). The discount factor is δ = 0.95,

the unit environmental impact of the first-generation product is κ1 = 1, and the unit

environmental impact of the second-generation product is κ2 = 0.75. To focus on the
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impact of customer behaviors, we set r1 = r2 = 0 (i.e., there is no revenue-generating

effect associated with remanufacturing), and the unit environmental benefits of recy-

cling/remanufacturing to be ι1 = 0 and ι2 = 0.3 (these two values will be useful when

studying the environmental impact in Section 4.2). The unit production cost of the

first-generation product is c1 ∈ {0.05, 0.1, 0.15, 0.2, 0.25}. The innovation level of the

second-generation product is α ∈ {0, 0.05, 0.1, 0.15, 0.2}, and the unit production cost

of the second-generation product is c2 = 0.25(1 + α) ∈ {0.25, 0.2625, 0.275, 0.2875, 0.3}.

We consider the depreciation factor k ∈ {0.3, 0.4, 0.5, 0.6, 0.7}. The demand X follows a

gamma distribution with mean 100 and coefficient of variation CV (X) taking values from

the set {0.5, 0.6, 0.7, 0.8, 0.9}. Thus, we have a total of 625 parameter combinations that

cover a wide range of reasonable problem scenarios. The above problem scenarios form a

subset of the extensive experiments we have conducted. Our numerical findings are very

robust. For concision, we will only present the results for the parameter combinations

listed above.

We calculate the expected profit for each scenario with either strategic or myopic

customers both in the base model, (Π∗
f , Π̃

∗
f ) and in the NTR model, (Πu∗

f , Π̃u∗
f ). The

two metrics of interest are: γs := (Π∗
f −Πu∗

f )/Πu∗
f × 100%, and γm := (Π̃∗

f − Π̃u∗
f )/Π̃u∗

f ×

100%, i.e., γs (γm) refers to the relative profit improvement of trade-in remanufacturing

with strategic (myopic) customers. We evaluate γs and γm under the 625 parameter

combinations and report that, under each combination, γs is significantly higher than

γm. More specifically, γs is at least 5.8% and can be as high as 61.6%, with an average of

30.2%; whereas γm ranges from 0.008% to 11.7%, with an average of 3.1%. We give the

summary statistics of γs and γm in Table 4.1.

Min 5th percentile Median 95th percentile Max Mean Stan. Dev.

γs 5.8 11.3 28.3 55.8 61.6 30.2 13.1

γm 0.008 0.22 2.5 8.1 11.7 3.1 2.5

Table 4.1
Summary Statistics: Firm Profit (%)

Our numerical results deliver an important message on the economic value of trade-in

remanufacturing: Trade-in remanufacturing delivers a much higher value to the firm with

strategic customers than with myopic customers (γs is significantly higher than γm for each
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problem instance). Recall that, with myopic customers, trade-in remanufacturing only

has the benefits of revenue-generating and price discrimination, whereas, with strategic

customers, this strategy has the additional value of inducing early purchases. Therefore,

these results indicate that the value of trade-in remanufacturing to the firm mainly comes

from the early-purchase inducing effect of trade-in rebates to exploit strategic customer

behavior, rather than from the revenue-generating effect of remanufacturing or the price

discrimination effect of trade-in rebates to exploit customer segmentation.

4.4.2 Impact on Environment and Customer Surplus

Our next goal is to examine the environmental value of trade-in remanufacturing

under different customer behaviors. We first characterize how trade-in remanufacturing

influences the effective first-period marginal revenue and production quantities of the

firm.

Theorem 4.4.3 Assume k < 1.

(a) With strategic customers, we have (i) mu
1(Q1) is decreasing in Q1; (ii) m

u
1(Q1) < m∗

1

for all Q1; (iii) Q
u∗
1 ≤ Q∗

1, where the inequality is strict if Q∗
1 > 0.

(b) With myopic customers, we have (i) m̃u
1(Q1) is increasing in Q1; (ii) for each

r2 < r̄2
2, there exists a threshold Q̄(r2) increasing in r2, such that m̃u

1(Q1) ≤ m̃∗
1 for

all Q1 ≤ Q̄(r2), and m̃
u
1(Q1) > m̃∗

1 for all Q1 > Q̄(r2); (iii) for each r2 < r̄2, there

exists a threshold c̄1(r2) > 0, such that Qu∗
1 > Q∗

1 if c1 ≤ c̄1(r2).

Theorem 4.4.3 provides an interesting comparison between the scenarios of strate-

gic and myopic customers: With strategic customers, trade-in remanufacturing always

increases the first-period production quantity of the firm, whereas it may prompt the

firm to produce less with myopic customers. More specifically, Theorem 4.4.3(a) shows

that, under strategic customer behavior, the effective marginal revenue with trade-in

remanufacturing always dominates that without (i.e., mu
1(·) < m∗

1). As a result, the

firm produces more in period 1 under trade-in remanufacturing. Theorem 4.4.3(b), how-

ever, suggests that, with myopic customers, trade-in remanufacturing may give rise to

a lower first-period effective marginal revenue if the production quantity is large (i.e.,

2The expression of r̄2 is given in Appendix C.2.
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m̃u
1(Q1) > m̃∗

1 if Q1 > Q̄(r2)), thus driving the firm to lower the first-period production

quantity if the first-period unit production cost is low (i.e., c1 ≤ c̄1(r2)). Recall from

Theorem 4.4.2 that trade-in remanufacturing increases the first-period willingness-to-pay

of strategic customers, which, in turn, drives the firm to produce more in period 1. Such

early-purchase and, thus, early-production inducing effects of trade-in remanufacturing,

however, are absent with myopic customers. In the scenario of myopic customers, on the

other hand, the price discrimination effect of trade-in remanufacturing improves the unit

profit generated from the new customers in period 2, thus leading to a lower effective

first-period marginal revenue if the revenue-generating effect of remanufacturing is not

too strong (i.e., r2 < r̄2). As a consequence, the firm decreases the first-period production

quantity to increase the second-period market size of new customers.

Theorem 4.4.3 demonstrates the contrasting effects of trade-in remanufacturing on

production quantities under different customer behaviors. How does trade-in remanufac-

turing affect the environment? The answer is given in the next theorem.

Theorem 4.4.4 (a) With strategic customers, there exists a threshold ῑu2 > 0, such

that I∗e ≥ Iu∗e if ι2 ≤ ῑu2 .

(b) Assume that r2 < r̄2 and c1 ≤ c̄1(r2). With myopic customers, there exists a

threshold ˜̄ιu2 < κ2, such that Ĩu∗e ≥ Ĩ∗e if ι2 ≥ ˜̄ιu2 .

When customers are strategic, trade-in rebates encourage them to recycle the used

first-generation products more frequently, so they also purchase the product more fre-

quently. In this scenario, trade-in remanufacturing leads to a worsened outcome for the

environment if the unit environmental benefit of remanufacturing is not high enough to

justify the early-production inducing effect (i.e., ι2 ≤ ῑu2 in Theorem 4.4.4(a)). When the

customers are myopic and the unit production cost is sufficiently low, trade-in remanu-

facturing motivates the firm to produce less in period 1 (see Theorem 4.4.3(b)). Hence,

trade-in remanufacturing helps improve the environment as long as the unit environmen-

tal benefit of remanufacturing is not too low (i.e., ι2 ≥ ˜̄ιu2 in Theorem 5(b)). Theorem

4.4.4 reveals the significant impact of customer behavior on the environmental value of

trade-in remanufacturing. With strategic customers, the adoption of trade-in remanufac-

turing is likely to be detrimental to the environment, whereas, with myopic customers,

adopting trade-in remanufacturing may benefit both the firm and the environment. Some
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papers in the literature (e.g., [59, 81, 90]) have also established that remanufacturing may

increase the production quantity and thus environmental impact. Our work, however,

demonstrates that the environmental impact of trade-in remanufacturing depends criti-

cally on customer behavior.

We now numerically illustrate the environmental value of trade-in remanufacturing.

We employ the same numerical setup as Section 4.4.1. Recall that I∗e (Ĩ∗e ) is the expected

environmental impact for the scenario with strategic (myopic) customers in the base

model, and Iu∗e (Ĩu∗e ) is that in the NTR model. We are interested in the following

two metrics: ηs := (I∗e − Iu∗e )/Iu∗e × 100%, and ηm := (Ĩ∗e − Ĩu∗e )/Ĩu∗e × 100%, i.e., ηs

(ηm) refers to the relative change of the environmental impact when adopting trade-in

remanufacturing with strategic (myopic) customers.

We evaluate ηs and ηm under the 625 parameter combinations and obtain the following

numerical findings: (i) Under each parameter combination, ηs is significantly higher than

ηm; and (ii) For most of the parameter combinations, ηs > 0 but ηm < 0. Specifically,

ηs takes values from -1.2% to 171.9%, with an average of 49.2%; whereas ηm ranges from

−10.2% to 4.5%, with an average of −5.0%. Moreover, ηs < 0 (i.e., trade-in remanufac-

turing benefits the environment with strategic customers) for 10 out of the 625 (i.e., 1.6%)

problem instances we examine, whereas ηm < 0 (i.e., trade-in remanufacturing benefits

the environment with myopic customers) for 585 out of the 625 (i.e., 93.6%) problem

instances. Table 4.2 summarizes the statistics of ηs and ηm.

Min 5th percentile Median 95th percentile Max Mean Stan. Dev.

ηs -1.2 2.0 37.8 117.8 171.9 49.2 41.4

ηm -10.2 -8.5 -5.5 0.51 4.5 -5.0 2.7

Table 4.2
Summary Statistics: Environmental Impact (%)

Table 2 confirms that trade-in remanufacturing generally leads to much higher envi-

ronmental impact with strategic customers than with myopic customers (ηs is significantly

higher than ηm). Though beneficial to the firm (see Table 4.1), the early-purchase in-

ducing effect of trade-in remanufacturing gives rise to much higher production quantities

under strategic customer behavior, and thus leads to a much worse outcome from the

environmental perspective. Therefore, strategic customer behavior has opposing effects
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on the value of trade-in remanufacturing to the firm and the environment: It makes this

strategy more attractive to the firm, but less desirable to the environment.

The above results suggest that trade-in remanufacturing may create a tension between

firm profitability and environmental sustainability with strategic customers, but benefits

both the firm and the environment with myopic customers. Since ηs is significantly larger

than zero for most of the numerical cases we examine, trade-in remanufacturing is detri-

mental to the environment for a large set of reasonable problem instances under strategic

customer behavior. Hence, in general, the early-purchase inducing effect dominates the

environmental benefit of remanufacturing with strategic customers. Under strategic cus-

tomer behavior, the firm significantly benefits from trade-in remanufacturing, but the

environment significantly suffers from this strategy (i.e., γs > 0 and, in general, ηs > 0).

With myopic customers, however, both the firm and the environment would benefit from

the adoption of trade-in remanufacturing (i.e., γm > 0 and, in general, ηm < 0).

Although an increased production quantity means more pressure on the environment,

it also increases the consumption level of the product. To conclude this section, we

explore how trade-in remanufacturing impacts the total customer surplus under different

customer behaviors. We use S∗
c (S̃∗

c ) and Su∗
c (S̃u∗

c ) to denote the equilibrium total

customer surplus for the scenarios with strategic (myopic) customers in the base model

and the NTR model, respectively.

Theorem 4.4.5 (a) In the base model, we have S∗
c = δE[((1 + α)V − pn∗2 )+X] and

S̃∗
c = δE[((1 + α)V − pn∗2 )+(X − Q̃∗

1)
+] + δE[((k + α)V − pr∗2 )+(X ∧ Q̃∗

1)].

(b) In the NTR model, we have Su∗
c = δE[((1 + α)V − pu∗2 )+X] and S̃u∗

c = δE[((1 +

α)V − pu∗2 )+(X − Q̃u∗
1 )+] + δE[((k + α)V − pu∗2 )+(X ∧ Q̃u∗

1 )].

(c) We have the following relationship on the customer surpluses of strategic customers:

S∗
c ≤ Su∗

c , where the inequality is strict if k < 1 and Qu∗
1 > 0.

Theorem 4.4.5(a) and (b) compute the total customer surpluses in the base model

and the NTR model. Moreover, in Theorem 4.4.5(c), we demonstrate that, with strate-

gic customers, the total customer surplus always decreases with the adoption of trade-in

remanufacturing. This is because, with strategic customers, the total customer surplus

only depends on the (perceived) price for new customers in period 2, which is higher
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under the adoption of trade-in remanufacturing (see Theorem 4.4.2(a)). By Theorem

4.4.3(a), one may argue that, under strategic customer behavior, trade-in remanufactur-

ing increases production quantities and thus increases the customer surplus. Theorem

4.4.5(c), however, shows that the total customer surplus actually decreases in this sce-

nario. Hence, under strategic customer behavior, trade-in remanufacturing gives rise to

higher production quantities without improving the customer surplus. Further, the social

welfare (i.e., firm profit plus customer surplus less environmental impact) is likely to de-

crease under trade-in remanufacturing as well. This has been confirmed in the numerical

study we explored in this section.

To summarize, customer behavior plays an important role in the economic and en-

vironmental values of trade-in remanufacturing. With myopic customers, trade-in re-

manufacturing benefits both the firm and the environment. With strategic customers,

trade-in remanufacturing would be even more beneficial to the firm; however, meanwhile

it may hurt the environment, decrease customer surplus, and possibly lower social welfare.

Therefore, it is important for firms and policy-makers to understand customer behavior

when making decisions related to trade-in remanufacturing.

4.5 Social Optimum and Government Intervention

As shown in Section 4.4, adopting trade-in remanufacturing may create a tension

between firm profitability and environmental sustainability under strategic customer be-

havior. In this section, we analyze how a policy-maker (e.g., the government) can design

the public policy to resolve this tension and maximize the social welfare under different

customer behaviors.

To characterize the socially optimal outcome, we assume that the government can set

the prices and production levels, with an objective to maximize the social welfare. Let

Ws denote the social welfare, which is defined by the expected profit of the firm Πf , plus

the expected customer surplus Sc, net the expected environmental impact Ie, i.e.,

Ws = Πf + Sc − Ie.

By backward induction, we start with the second-period pricing and production prob-

lem. As in the base model, strategic and myopic customers exhibit the same purchasing

behavior in period 2. For any given realized market size in period 2 (Xn
2 , X

r
2), we use
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(pns,2(X
n
2 , X

r
2), p

r
s,2(X

n
2 , X

r
2)) to denote the equilibrium pricing strategy, and

(Qn
s,2(X

n
2 , X

r
2), Q

r
s,2(X

n
2 , X

r
2)) to denote the equilibrium production strategy. Correspond-

ingly, we denote w2(X
n
2 , X

r
2) as the equilibrium second-period social welfare.

Lemma 9 (a) For any (Xn
2 , X

r
2), p

n
s,2(X

n
2 , X

r
2) ≡ pn∗s,2 and prs,2(X

n
2 , X

r
2) ≡ pr∗s,2, where

pn∗s,2 = c2 + κ2 and pr∗s,2 = c2 − r2 + κ2 − ι2. Hence, pn∗s,2 > pr∗s,2 if and only if r2 > 0

or ι2 > 0.

(b) For any (Xn
2 , X

r
2), Q

n
s,2(X

n
2 , X

r
2) = Ḡ

(
pn∗
s,2

1+α

)
Xn

2 , and Q
r
s,2(X

n
2 , X

r
2) = Ḡ

(
pr∗s,2
k+α

)
Xr

2 .

(c) There exist two positive constants β∗
s,n and β∗

s,r, such that w2(X
n
2 , X

r
2) = β∗

s,nX
n
2 +

β∗
s,rX

r
2 for all (Xn

2 , X
r
2), where β

∗
s,n = E[(1 + α)V − pn∗s,2]

+ and β∗
s,r = E[(k + α)V −

pr∗s,2]
+.

Lemma 9 implies that, with either strategic or myopic customers, the socially optimal

second-period pricing strategy takes the form that the prices for new and repeat customers

are equal to the respective net unit production cost plus the net unit environmental impact

(i.e., pn∗s,2 = c2 + κ2 and p
r∗
s,2 = c2 − r2 + κ2 − ι2). Moreover, the equilibrium social welfare

is linear in the realized market size (Xn
2 , X

r
2).

In period 1, strategic customers base their purchasing decisions on their rational

expectations, whereas myopic customers decide whether to make a purchase by comparing

the current price and the expected valuation. Let (p∗s,1, Q
∗
s,1) denote the equilibrium first-

period price and production quantity with strategic customers, and (p̃∗s,1, Q̃
∗
s,1) denote

those with myopic customers. As in the base model and the NTR model, we introduce the

first-period effective marginal welfare with either strategic or myopic customers, m∗
s,1 =

m̃∗
s,1 := µ+δ[β∗

s,r−β∗
s,n]. The following lemma characterizes the social welfare maximizing

equilibrium outcomes.

Lemma 10 (a) With strategic customers, we have (i) p∗s,1 = m∗
s,1;

(ii) Q∗
s,1 = F̄−1( c1+κ1−r1−ι1

m∗
s,1−r1−ι1

); and (iii) the equilibrium expected social welfare is

W ∗
s = (m∗

s,1 − r1 − ι1)E(X ∧Q∗
s,1)− (c1 + κ1 − r1 − ι1)Q

∗
s,1 + δβ∗

s,nE[X].

(b) With myopic customers, we have (i) p̃∗s,1 = µ; (ii) Q̃∗
1 = F̄−1( c1+κ1−r1−ι1

m̃∗
s,1−r1−ι1

); and (iii)

the equilibrium expected social welfare is W̃ ∗
s = (m̃∗

s,1 − r1 − ι1)E(X ∧ Q̃∗
s,1)− (c1 +

κ1 − r1 − ι1)Q̃
∗
s,1 + δβ∗

s,nE[X].
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(c) Let e∗s := β∗
s,r − β∗

s,n. Then, we have (i) p∗s,1 ≥ p̃∗s,1 if and only if e∗s ≥ 0; (ii)

Q∗
s,1 = Q̃∗

s,1; and (iii) W ∗
s = W̃ ∗

s .

Since the social planner needs to balance firm profit, customer surplus, and envi-

ronmental impact, whereas the firm maximizes its own profit only, the social-welfare-

maximizing equilibrium outcome may be quite different from the profit-maximizing one,

as shown by comparing Lemma 10 with Theorem 4.3.1. In particular, if the unit en-

vironmental impacts, κ1 and κ2, are sufficiently large, the social planner will set lower

production quantities than the firm will do to limit the total environmental impacts.

Lemma 10(c) characterizes how different customer behaviors influence the social-welfare-

maximizing RE equilibrium outcome. Specifically, we show that the expected optimal

social welfare with strategic customers is the same as that with myopic customers, and

so is the optimal first-period production quantity. The equilibrium first-period price,

however, depends on customer behavior. If the expected surplus of a repeat customer

dominates that of a new customer (i.e., e∗s ≥ 0), the equilibrium first-period price is

higher with strategic customers. Otherwise, e∗s < 0, the equilibrium first-period price is

higher with myopic customers. We notice that e∗s is the counterpart of e∗ (see Theorem

4.4.1), both of which characterize the additional expected utility of a repeat customer

over a new one in period 2.

We now analyze how the government, whose objective is to maximize the expected

social welfareWs, could induce the firm, whose objective is to maximize his expected profit

Πf , to set the socially optimal prices and production quantities under different customer

behaviors. A commonly-observed government subsidization policy is to subsidize the

firm or customers for the remanufactured products (see, e.g., [128, 44]). To model this

subsidization policy, we assume that the government offers the firm a per-unit subsidy

sr for remanufacturing leftover inventory and used products. The per-unit subsidy to

the firm is without loss of generality, because all results and qualitative insights in this

section continue to hold with the per-unit subsidy to customers, and the proportional

subsidy3 to either the firm or the customers. For expositional ease, we take the approach

of per-unit subsidy to the firm.

3The proportional subsidy refers to the government subsidization scheme under which the unit subsidy
is proportional to (e.g., 10% of) the sales price/trade-in price.
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We first study how the government subsidization policy for remanufactured products

would influence the equilibrium outcome in the following theorem.

Theorem 4.5.1 (a) For any (Xn
2 , X

r
2), we have (i) pr∗2 is decreasing in sr; and (ii)

Qr
2(X

n
2 , X

r
2) is increasing in sr.

(b) With strategic customers, we have (i) p∗1 is increasing in sr; (ii) Q
∗
1 is increasing in

sr; (iii) Π∗
f is increasing in sr; and (iv) I∗e is increasing in sr.

(c) With myopic customers, we have (i) p̃∗1 is independent of sr; (ii) Q̃
∗
1 is increasing

in sr; (iii) Π̃∗
f is increasing in sr; and (iv) Ĩ∗e is increasing in sr.

One of the main goals for the government to subsidize remanufacturing is to improve

the environment (see [44, 161]). Theorem 4.5.1(b,c), however, suggests that if the govern-

ment only subsidizes for remanufacturing (i.e., sr > 0), the environment actually suffers

from this subsidization policy with either strategic or myopic customers (i.e., I∗e and Ĩ∗e

are increasing in sr). This result follows from the rationale that subsidizing remanufac-

tured products not only promotes the adoption of remanufacturing, but also increases

the production levels of the first-generation product, which is the least environmentally

friendly product version. The environment thus suffers from the increased production lev-

els under the subsidization for remanufacturing alone. Therefore, the government should

be careful about designing the subsidization policy, because haphazard subsidization for

remanufacturing may result in an undesired outcome.

Motivated by the discrepancy between the intention and outcome of a commonly used

government subsidization policy for remanufacturing, we consider an alternative more

general government policy that subsidizes for/taxes on the production of both genera-

tion products and remanufacturing. Some other comprehensive government subsidization

policies on production, recycling, remanufacturing, and trade-in rebates are discussed in,

e.g., [186, 118], and [170]. The goal of such government subsidization programs is to

promote the development of remanufacturing, curb pollution, and stimulate consump-

tion. We assume that government subsidies (taxes) are provided (charged) for the sales

of both generation products, and recycling/remanufacturing the leftover inventory and

used products. Specifically, let sg := (s1, s2, sr) denote the subsidy/tax scheme the gov-

ernment adopts. The government offers the firm a per-unit subsidy s1 for sales of the
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first-generation product, a per-unit subsidy s2 for sales of the second-generation product,

and a per-unit subsidy sr for remanufacturing. If si < 0 (i = 1, 2, r), the firm taxes

on the sales of the product or remanufacturing leftover inventory and used products. In

particular, we remark that the aforementioned most common government subsidization

policy for remanufacturing alone is a special case of this general subsidy/tax scheme with

s1 = 0, s2 = 0, and sr > 0.

We now analyze how the government should design the linear subsidy/tax scheme to

induce the socially optimal outcome under different customer behaviors.

Theorem 4.5.2 (a) With strategic customers, there exists a unique linear subsidy/tax

scheme s∗g = (s∗1, s
∗
2, s

∗
r), under which the socially optimal RE equilibrium outcome is

achieved. Moreover, we have (i) s∗2 is the unique solution to pn∗s,2 = argmaxpn2≥0{(pn2+

s2 − c2)Ḡ(
pn2
1+α

)}; (ii) s∗r is the unique solution to pr∗s,2 = argmaxpr2≥0{(pr2 + sr + s∗2 −

c2 + r2)Ḡ(
pr2

k+α
)}; (iii) s∗1 is the unique solution to c1+κ1−r1−ι1−s∗r

m∗
s,1−r1−s∗r

= c1−r1
ms

1(s1)−r1
, where

ms
1(s1) := s1 + m∗

s,1 + δ[(κ2 + s∗2 + s∗r − ι2)Ḡ(
pr∗s,2
k+α

) − (κ2 + s∗2)Ḡ(
pn∗
s,2

1+α
)]; (iv) s∗1 is

decreasing in κ1, s
∗
2 is decreasing in κ2, and s

∗
r is increasing in ι2; and (v) there

exists a threshold vector (κ̄s1, κ̄
s
2, ῑ

s
2), such that s∗1 ≥ 0 if and only if κ1 ≤ κ̄s1, s

∗
2 ≥ 0

if and only if κ2 ≤ κ̄s2, and s
∗
r ≥ 0 if and only if ι2 ≥ ῑs2.

(b) With myopic customers, there exists a unique linear subsidy/tax scheme s̃∗g =

(s̃∗1, s̃
∗
2, s̃

∗
r), under which the socially optimal RE equilibrium outcome is achieved.

Moreover, we have (i) s̃∗2 = s∗2; (ii) s̃∗r = s∗r; (iii) s̃∗1 is the unique solution to

c1+κ1−r1−ι1−s∗r
m̃∗

s,1−r1−s∗r
= c1−r1

m̃s
1(s1)−r1

, where m̃s
1(s1) := s1 + µ + δ[(κ2 + s∗2 + s∗r − ι2)Ḡ(

pr∗s,2
k+α

)−

(κ2 + s∗2)Ḡ(
pn∗
s,2

1+α
)]; (iv) s̃∗1 is decreasing in κ1; and (v) there exists a threshold ˜̄κs1,

such that s̃∗1 ≥ 0 if and only if κ1 ≤ ˜̄κs1.

(c) We have (i) s∗1 ≥ s̃∗1 if and only if e∗s ≤ 0; and (ii) κ̄s1 ≥ ¯̃κs1 if and only if e∗s ≤ 0,

where e∗s is defined in Lemma 10(c).

Theorem 4.5.2 demonstrates that the government can use a simple linear subsidy/tax

scheme to induce the socially optimal outcome in the scenarios with either strategic or

myopic customers. The linear subsidy/tax policy sg helps control the margin of the firm

and the willingness-to-pay of the customers. Hence, the government can use this incentive

scheme to regulate the market and ensure the firm sets the socially optimal prices and

106



production quantities with either strategic or myopic customers. More specifically, in both

scenarios, the government should provide a combined subsidy/tax scheme for the sales of

both product generations and the recycle of leftover inventory and used products. Since

some components in s∗g and s̃∗g may be negative, it is possible that the government taxes

the firm on some product versions to discourage their sales. This phenomenon results from

the government’s goal of balancing the tradeoff between firm profit, customer surplus,

and environmental impact. In particular, with either strategic or myopic customers, the

government subsidizes more for (taxes less on) the sales of one product version if its

unit environmental impact increases. Analogously, more subsidies (less taxes) should be

provided for (charged on) remanufacturing if its unit environmental benefit is higher.

Comparing the scenarios with strategic and myopic customers (i.e., Theorem 4.5.2(c))

sheds light on how different customer behaviors influence the optimal government subsidy

policy. We find that the optimal subsidy/tax rates for the second-generation product and

remanufacturing are independent of whether the customers are strategic or myopic (i.e.,

s̃∗2 = s∗2 and s̃∗r = s∗r). The optimal subsidy/tax rate for the first-generation product,

however, is sensitive to customer behavior. The government should provide a higher

subsidy/lower tax for sales of the first-generation product with strategic customers than

with myopic customers (i.e., s∗1 ≥ s̃∗1) if and only if, in period 2, the expected surplus of

a new customer dominates that of a repeat customer (i.e., e∗s ≤ 0). If e∗s ≤ 0, strategic

customers are reluctant to make an immediate purchase, so, to regulate the market with

strategic customers, the government should provide more subsidies for the sales of the

first-generation product to induce early purchases. On the other hand, if e∗s > 0, a

repeat customer has higher expected surplus in period 2, and thus strategic customers

are more willing to purchase the product immediately in period 1. In this case, to

discourage strategic customers from overconsumption in period 1, the government offers

less subsidies for the sales of the first-generation product with strategic customers than it

does with myopic customers. The rationale behind the dichotomy in Theorem 4.5.2(c) is

that, with the adoption of trade-in remanufacturing, strategic customers anticipate both

the purchasing option as a new customer and the trade-in option as a repeat customer.

Depending on which option has a higher expected utility, a strategic customer may have a

higher or lower willingness-to-pay than a myopic customer does. Hence, the government
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may provide higher or lower incentives in period 1 to encourage or discourage the early

purchases of strategic customers accordingly.

Based on Theorem 4.5.2, we now compare the total government costs of the optimal

subsidy/tax scheme under different customer behaviors. For any subsidy/tax scheme sg,

we denote Cg(sg) (C̃g(sg)) as the associated expected total government cost under RE

equilibrium with strategic (myopic) customers. Define C∗
g := Cg(s

∗
g) and C̃∗

g := C̃g(s̃
∗
g)

as the social-welfare-maximizing government costs with strategic and myopic customers,

respectively.

Theorem 4.5.3 (a) C∗
g − C̃∗

g = (s∗1 − s̃∗1)E(X ∧Q∗
s,1).

(b) C∗
g ≥ C̃∗

g if and only if e∗s ≤ 0. Moreover, there exists a threshold V̄2 > 0, such that

e∗s ≤ 0, if and only if r2 + ι2 ≤ V̄2.

Theorem 4.5.3 compares the social-welfare-maximizing government costs in scenarios

with strategic and myopic customers. Specifically, we show that the total cost to regulate

a market with strategic customers is higher than with myopic customers whenever the

socially optimal subsidy for the first-generation product with strategic customers dom-

inates that with myopic customers (i.e., s∗1 ≥ s̃∗1). Equivalently, according to Theorem

4.5.3(b), it costs the government more to regulate a market with strategic customers if

the expected surplus of a new customer dominates that of a repeat customer in period

2 (i.e., e∗s ≤ 0). In this case, more subsidies should be provided to incentivise the more

reluctant strategic customers to make an early purchase in period 1. Another implication

of Theorem 4.5.3(b) is that if the total unit economic and environmental value of reman-

ufacturing, r2 + ι2, is sufficiently low (i.e., below the threshold V̄2), the total government

cost is lower with strategic customers. Therefore, our analysis delivers the new insight

to the literature that strategic customer behavior has a negative (positive) impact upon

the government if the total economic and environmental value of remanufacturing is low

(high).

4.6 Summary

In this chapter, we develop an analytical model to study how different customer behav-

iors influence the economic and environmental values of trade-in remanufacturing. From
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the firm’s perspective, we show that trade-in remanufacturing is generally much more

valuable with strategic customers than with myopic customers. This is because a trade-

in rebate essentially offers an early purchase reward and thus can deliver additional value

by exploiting the forward-looking behavior of strategic customers. In particular, with the

adoption of trade-in remanufacturing, strategic customer behavior may help increase the

firm’s profit, which contrasts the common belief in the literature that strategic customer

behavior hurts firm profit. In the trade-in remanufacturing setting, the price discount

in the second period increases with the revenue generated from remanufacturing; thus

when the revenue-generating effect is strong enough, the willingness-to-pay of strategic

customers in the first period could be even higher than that of myopic customers, which

allows the firm to extract more profit with strategic customers.

From the environmental perspective, trade-in remanufacturing decreases the unit en-

vironmental impact, but increases the production quantities through the early-purchase

inducing effect with strategic customers. Moreover, under strategic customer behavior,

adopting trade-in remanufacturing may decrease the customer surplus and social welfare.

Hence, with strategic customers, caution is needed on the adoption of trade-in remanufac-

turing, because it could be detrimental to the environment and the society. With myopic

customers, however, trade-in remanufacturing leads to a lower first-period production

quantity in general. Our results indicate that customer behavior plays an important role

in the value of trade-in remanufacturing. Specifically, with strategic customers, trade-

in remanufacturing may create a tension between firm profitability and environmental

sustainability; but, with myopic customers, it generally benefits both the firm and the

environment.

To resolve the above tension caused by trade-in remanufacturing, we also study how

the government should design a regulatory policy to balance firm profit, customer surplus,

and environmental impact. A commonly observed policy is to subsidize the remanufac-

tured products. However, we find that despite its intention to protect the environment,

such a policy fails to achieve the social optimum and is actually harmful to the environ-

ment. To achieve the socially optimal outcome, we show that it suffices for the government

to employ a simple linear incentive scheme. This scheme imposes either subsidy or tax on

the sales of both product generations as well as the remanufactured products: A subsidy
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(tax) should be applied if the environmental impact of the product is sufficiently low

(high).

110



5. Pricing and Inventory Management under the Scarcity

Effect of Inventory

5.1 Introduction

1In the operations management literature, joint pricing and inventory management

has received extensive attention. A key assumption in the existing models in this stream

of literature is that demand, though random, is independent of inventory (e.g., [70]), so

that sales and, hence, revenue link to inventory only through the stockout effect.

In quite a few industries (e.g., automobile, electronics and luxury products, etc.),

however, we have observed strong empirical and anecdotal evidence that demand may be

correlated with the amount of inventory carried by retailers. A high inventory level some-

times promotes sales because it creates a strong visual impact (the billboard effect) and

signals abundant potential availability, both of which can make the item more desirable

and increase the chance of customer purchase. On the other hand, it is also commonly

observed in practice that an ample inventory conveys to the customers the message that

the item is of low popularity and quality, thus inducing low demand.

The negative correlations between demand and inventory are well supported by psy-

chological and economic theories as well as rich anecdotal observations and empirical

data. The phenomena that a low inventory level may increase and a high inventory level

may decrease demand are often referred to as the “scarcity effect” of inventory. Three

major mechanisms drive the scarcity effect of inventory: (1) inventory level signals the

quality and popularity of a product; (2) inventory level implies the stockout risk of a

product; and (3) inventory level reveals the pricing strategy the retailer will employ. We

now discuss these three mechanisms in detail.

First, it has been well established in psychological commodity theory that supply

scarcity increases the attractiveness of a product to customers ([30]). This notion has

been tested and refined by various experiments with respect to a large scope of product

categories (e.g., food, wine and book) by, e.g., [187], [182] and [178]. The desirability

1This chapter is based on the author’s earlier work [189]

111



of the product is enhanced by scarce inventory, because customers are likely to infer

product quality and popularity from its inventory level. A lower inventory level signals

more consumption by other customers and, hence, the product is more popular and of

higher quality. On the other hand, observing a high inventory, a customer naturally

believes that the item has many units because no one wants to buy it. Some recent

marketing (e.g., [156]) and operations management (e.g., [180]) papers employ game

theoretic models to demonstrate that the scarcity strategy can effectively signal to the

customers the high quality of a product, thus creating a “hot product”. Empirical results

regarding the scarcity effect of inventory upon demand in automobile industry can also

be found in, e.g., [33] and [39].

Second, a low inventory level spreads a sense of urgency among customers that soon

the product will be sold out and potential buyers will be put on a wait-list. Such back-

logging risk motivates customers to make an immediate purchase instead of searching for

better options. A high inventory, however, grants customers the luxury of waiting and

searching, thus lowering the current demand. Similar mechanism also drives the search

behavior that a low inventory of one product type discourages a customer to search for

better types ([42]). Knowingly limiting the availability of a product, the retailer can

induce “buying frenzies” among uninformed customers and set a higher price ([60]).

Third, as shown in pricing and revenue management literature (e.g., [70], [83]), re-

tailers increase their sales prices when inventories are low. Therefore, customers infer

from a low inventory level that it is unreasonable to expect a lower price and would like

to purchase the item immediately (see, e.g., [17]). On the other hand, a high inventory

level suggests that the sales price will be more likely to decrease and, hence, encourages

customers to wait before buying. Carefully making use of this mechanism, the retailer

can enjoy the benefits of inducing customers to purchase early at high prices ([115]). A

similar idea has also been adopted in the advance selling literature (e.g., [175]), which

shows that firms may limit its capacity for advance selling to credibly signal its pricing

strategy to customers.

Along with the rich theoretical and empirical justifications of the scarcity effect of

inventory, practitioners have extensively adopted this idea in their marketing strategies.

[64] and [31] document that the “scarcity strategy”, in which the supply of products is

deliberately limited, has already become a basic tactic for marketers to promote their
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sales. An increasing number of automobile manufacturers create significant levels of

scarcity and make a long list of hard-to-get car models over years (see [33]). Albeit facing

thousands of customers who had signed up in the wait-lists, none of the manufacturers

rushed to accelerate its production ([184]). Likewise, [123] documents that the BMWMini

Cooper promotes its line by limiting its supply and letting the potential owners wait for,

on average, two and half months before they own their new cars. The limited distribution

strategy has helped the demand of Mini Cooper take off since its reintroduction in the US

market. Similar promotional strategy also appears in the electronics market, especially

at the introduction stage of a new product generation. Fans have been excited by the

long wait to get Sony Play Stations ([184]), Nintendo Game Boys ([183]) and Apple iPads

2 ([150]).

In this chapter, we study the dynamic pricing and inventory management model

under the scarcity effect of inventory. The stochastic demand is modeled as a decreasing

function of the sales price and the customer-accessible inventory level at the beginning

of each decision epoch. Unmet demand is fully backlogged to the next period. The wait-

lists observed or spread through “word-of-mouth” successfully signal the high quality

and popularity of the product and attract more customers (see, e.g., [31] and [64]).

From the strategic perspective, joint pricing and inventory decisions effectively deliver

the information regarding the quality and popularity of the product. Specifically, pricing

flexibility induces more strategic behavior of customers (e.g., waiting for potential price

discount), which further strengthens the scarcity effect of inventory, because customers

may anticipate the price changes based on current inventory (see, e.g., [115]).

We develop a unified joint price and inventory management model that incorporates

both inventory withholding and inventory disposal to deal with the scarcity effect. Un-

der the inventory withholding policy, the firm displays only part of its inventory and

withholds the rest in a warehouse not observable by customers, so as to induce higher

potential demand. Analogously, with inventory disposal, the firm can dispose its unneces-

sary excess inventory with some salvage value. Both inventory withholding and disposal

may incur a cost. We show that a customer-accessible-inventory-dependent order-up-

to/dispose-down-to/display-up-to list-price policy is optimal. Moreover, the order-up-

to/display-up-to and list-price levels are decreasing in the customer-accessible inventory

level. When the scarcity effect of inventory is sufficiently strong, the firm should display
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no positive inventory so that every customer must wait before getting the product. In

this case, the strong scarcity effect creates more opportunities than risks, so the firm can

proactively take advantage of it and induce more demand by making customers wait (e.g.,

the marketing strategy of BMW).

When it is too costly to withhold or dispose inventory, the unified model is reduced to

the model without inventory withholding or the model without inventory disposal, both

of which deliver sharper insights. In the model without inventory withholding/disposal,

we show that the inventory-dependent demand increases the overstocking risk and, thus,

lowers the optimal sales prices and order-up-to levels. With higher operational flexibility

(a higher salvage value or the inventory withholding opportunity), however, the firm deals

with the scarcity effect of inventory more effectively and, hence, increases its sales prices

and order-up-to/display-up-to levels. In short, inventory disposal/withholding benefits

the firm by enhancing its operational flexibility and agility.

We also generalize the unified model by incorporating responsive inventory realloca-

tion, which allows the firm to reallocate (with a cost) its inventory between display and

warehouse after demand realizes. In this case, the firm can keep a low inventory and

better hedge against risks of the demand uncertainty and the scarcity effect of inventory.

We perform extensive numerical studies to demonstrate (a) the robustness of our

analytical results, (b) the impact of the scarcity effect upon the profitability of the firm,

and (c) the value of dynamic pricing under the scarcity effect of inventory. Our numerical

results show that the analytical characterizations of the optimal policies in our model are

robust and hold in all of our numerical experiments. Both the profit loss of ignoring the

scarcity effect and the value of dynamic pricing under the scarcity effect are significant,

and increase in the intensity of the scarcity effect and/or demand variability. This is

because: (1) the scarcity effect decreases the future demand and magnifies future demand

variability; and (2) dynamic pricing facilitates the firm to induce higher future demand

and dampen future demand variability. In addition, a longer planning horizon increases

the impact of the scarcity effect, and decreases the value of dynamic pricing.

To conclude this section, we summarize our main contributions as follows: (1) To

the best of our knowledge, we are the first to study the joint pricing and inventory

management under the scarcity effect of inventory. We characterize the optimal policy in

a general unified model and generalize our results to the model with responsive inventory
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reallocation. (2) We analyze how the scarcity effect of inventory impacts the firm’s

optimal price and inventory policies and study the effect of operational flexibilities on

the firm’s optimal decisions under the scarcity effect. (3) We identify the rationale of

the phenomenon that firms with intense scarcity effect deliberately make their customers

wait before getting the product. (4) We numerically study the profit loss of ignoring the

scarcity effect and the value of dynamic pricing under the scarcity effect.

The rest of the chapter is organized as follows. In Section 5.2, we position this

chapter in the related literature. Section 5.3 presents the basic formulation, notations

and assumptions of our model. In Section 5.4, we propose and analyze the unified model.

Section 5.5 discusses the additional results and insights in two important special cases (the

model without inventory withholding and the model without inventory disposal). Section

5.6 generalizes the unified model to the model with responsive reallocation. Section 5.7

reports our numerical findings. We conclude this chapter by summarizing our findings

and discussing a possible extension in Section 5.8. All proofs are relegated to Appendix

D.1.

5.2 Related Research

This chapter is mainly related to two lines of research in the literature: (1) inven-

tory management with inventory-dependent demand and (2) optimal joint pricing and

inventory policy.

There is a large body of literature on inventory-dependent demand. We refer in-

terested readers to [177] for a comprehensive review. The dependence of demand on

inventory is usually modeled in two ways in the literature: (1) potential demand is in-

creasing in the inventory level after replenishment; and (2) potential demand is decreasing

in the inventory level before replenishment (leftover inventory from the previous period).

The first approach to model inventory-dependent demand assumes that demand in-

creases with inventory (the billboard effect). [86] study a periodic review inventory model,

in which the random demand in each period is increasing in the inventory level after re-

plenishment. [58] consider a single-period newsvendor model where demand is decreasing

in price and positively correlated with inventory level. Several other operations man-

agement and marketing papers also assume that demand depends on the instantaneous
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(after replenishment) inventory level, in particular via the shelf-space effect. We refer

interested readers to, e.g., [171, 172], [34, 35], [119], [18] and [53].

The other effect of inventory upon demand, as discussed in Section 5.1, is the scarcity

effect. That is, high leftover inventory (i.e., inventory at the beginning of the period

before replenishment) negatively influences the potential demand. In the psychological

commodity theory literature, [30] argues that supply scarcity increases the attractiveness

of a product, which has been tested by numerous experiments in, e.g., [187, 178]. [156, 180]

use game theoretic models to show that the firm can use the scarcity strategy to signal

the high quality of a product. [17], among others, demonstrate that customers may

strategically wait for price discounts when observing a high inventory. [115] propose an

effective pricing scheme to induce customers to make early purchases under a revenue

management framework. The idea that supply condition can signal the potential pricing

strategy and the product quality has also been adopted in the advance selling literature

(e.g., [175]). [33, 39] conduct empirical studies to show that the scarcity effect of inventory

upon demand prevails in automobile industry.

To the best of our knowledge, [145] is the only paper in inventory management lit-

erature that incorporates the scarcity effect of inventory (called “wait-list effect” in that

paper) and assumes that potential demand is a decreasing function of leftover inventory.

They show the optimality of understocking and propose the inventory withholding strat-

egy. This chapter generalizes [145] in the following aspects. (1) We introduce a unified

model that encompasses dynamic pricing, inventory withholding and inventory disposal,

and explicitly captures the interaction between price, inventory and demand. In par-

ticular, we analytically show the impact of inventory-dependent demand on the firm’s

pricing policy, whereas [145] do not allow price adjustment during planning horizon and

numerically test the improvement of inventory-withholding policy under different price

elasticities of demand. We also numerically show that the value of dynamic pricing under

the scarcity effect of inventory is significant and increases with the scarcity effect intensity

and/or demand variability. (2) Because of the endogenous pricing decision introduced to

the dynamic program, the analysis of our model is more involved and requires a different

approach. (3) Two special cases of our unified model (i.e., the model without inven-

tory withholding and the model without inventory disposal) demonstrate that inventory

withholding and inventory disposal help mitigate the overage risk of inventory-dependent
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demand. (4) In addition to the understocking and inventory withholding policy pro-

posed in [145], our model suggests three other strategies to dampen the negative effect

of inventory-dependent demand: (a) price reduction, (b) inventory disposal, and (c) re-

sponsive inventory reallocation. (5) We show that when the scarcity effect of inventory is

sufficiently strong, the firm should display no positive inventory and let every customer

wait. To sum up, this chapter generalizes the model in [145] and strengthens its results

and insights.

There is an extensive literature on dynamic pricing and inventory control under gen-

eral stochastic demand. [70] study the inventory system in a periodic review model, where

the firm faces price-dependent demand in each decision period and unsatisfied demand

is fully backlogged. A list-price order-up-to policy is shown to be optimal. This line

of literature has grown rapidly since [70]. For example, [47, 48, 49] analyze the joint

pricing and inventory control problem with fixed ordering cost and show the optimality

of (s, S, p) policy for finite horizon, infinite horizon and continuous review models. [52]

study the joint pricing and inventory control problem under lost sales. In the case of a

single unreliable supplier, [112, 73] show that supply uncertainty drives the firm to charge

higher prices under random yield and random capacity, respectively. [51] take into con-

sideration costly price adjustments in joint pricing and inventory management. When

the replenishment leadtime is positive, the joint pricing and inventory control problem

under periodic review is extremely difficult, and [136] partially characterize the structure

of the optimal policy. We refer interested readers to [50] for a comprehensive survey on

joint pricing and inventory control models. The major difference of this chapter from this

stream of research is that we take into account inventory-dependent demand and show

that the scarcity effect of inventory drives the firm to order less/dispose more/withhold

inventory and charge a lower sales price. To the best of our knowledge, only [58, 35] have

studied the joint pricing and inventory control problem with inventory-dependent de-

mand. However, both papers consider a single period model where demand is increasing

in the available inventory after replenishment.

5.3 Model Formulation

We specify our unified model, notations and assumptions in this section. Consider a

firm which faces random demand and periodically makes pricing and inventory decisions
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in a T−period planning horizon, labeled backwards as {T, T − 1, · · · , 1}. The firm stores

its on-hand inventory in two locations, one with customer-accessible inventory to satisfy

and stimulate demand, and the other as a warehouse to withhold inventory that is unob-

servable to customers. The firm can either replenish or dispose inventory, and it can also

reallocate its on-hand inventory between the customer-accessible storage and the ware-

house. If the firm places an order, the replenished inventory is delivered to the warehouse,

after which the firm decides how much inventory to reallocate to the customer-accessible

storage. On the other hand, if the firm disposes its on-hand inventory, it first ships in-

ventory, if any, from the customer-accessible storage to the warehouse, and then chooses

the disposal quantity.

In each period, the sequence of events unfolds as follows: At the beginning of each

period, the firm reviews its total and customer-accessible leftover inventories from last

period, simultaneously chooses the order/disposal and reallocation quantities and the

sales price, pays the ordering and reallocation costs, and receives the disposal salvages.

The ordering and reallocation lead times are assumed to be zero so that the replenished

and reallocated inventories are received immediately. Inventory disposal is also executed

at once. The demand then realizes and the revenue is collected. At the end of the decision

period, the holding and backlogging costs are paid, and the total and customer-accessible

inventories are carried over to the beginning of the next period.

The state of the system is given by:

Iat = the starting customer-accessible inventory level before replenishment/disposal

/reallocation in period t, t = T, T − 1, · · · , 1, where the superscript ‘a’ refers to

“customer-accessible”;

It = the starting total inventory level before replenishment/disposal/reallocation in

period t, t = T, T − 1, · · · , 1.

118



Note that, the amount of inventory the firm withholds in the warehouse is It − Iat ≥ 0.

We introduce the following notation to denote the decisions of the firm:

pt = the sales price charged in period t, t = T, T − 1, · · · , 1;

xat = the customer-accessible inventory level after replenishment/disposal/reallocation

but before demand realizes in period t, t = T, T − 1, · · · , 1;

xt = the total inventory level after replenishment/disposal/reallocation but before

demand realizes in period t, t = T, T − 1, · · · , 1.

We assume that the price pt is bounded from above by the maximum allowable price

p̄ and from below by the minimum allowable price p. Without loss of generality, we also

assume that the customer-accessible inventory storage capacity of the firm is Ka (0 <

Ka ≤ +∞), whereas the warehouse capacity is infinite. In other words, the customer-

accessible inventory level after replenishment/disposal/reallocation cannot exceed Ka in

each period, i.e., xat ≤ Ka for all t = T, T − 1, · · · , 1. Following the “no-artificial wait-

list” notion (see [145]), we assume that the firm cannot decrease its customer-accessible-

inventory level if a wait-list already exists, i.e., xt ≥ xat ≥ min{Iat , 0}.

We introduce the following model primitives:

α = discount factor of revenues and costs in future periods, 0 < α ≤ 1;

c = purchasing cost per unit ordered;

s = salvage value per unit disposed;

b = backlogging cost per unit backlogged at the end of a period;

ha = holding cost per unit stocked and accessible to customers at the end of a period;

hw = holding cost per unit stocked in the warehouse at the end of a period;

rd = unit reallocation fee from the warehouse to the customer-accessible storage;

rw = unit reallocation fee from the customer-accessible storage to the warehouse.

Without loss of generality, we assume the following inequalities hold:

b > (1− α)(rd + c) : the backlogging penalty is higher than the saving from delaying an

order to the next period, so that the firm will not backlog all of

its demand;

c > s : unit procurement cost dominates the unit salvage value;

p > α(c+ rd) + b : positive margin for backlogged demand.
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Note that although we assume that the parameters and demand are stationary through-

out the planning horizon, the structural results in this chapter remain valid when the

parameters and demand distributions are time-dependent.

As discussed in Section 5.1, we assume that demand in period t,Dt, depends negatively

on the prevailing price and customer-accessible inventory level at the beginning of this

period according to a general stochastic functional form: Dt = δ(pt, I
a
t , ϵt), where ϵt is a

random term with a known continuous distribution and a connected support. δ(·, ·, ϵt) is

a twice continuously differentiable function strictly decreasing in pt and decreasing in Iat

for any ϵt. We base our analysis of the problem on the following demand form:

δ(pt, It, ϵt) = (d(pt) + γ(Iat ))ϵ
m
t + ϵat , where E{ϵat } = 0 and E{ϵmt } = 1. (5.1)

We assume that ϵt’s are i.i.d. random vectors with ϵat supported on [a, a] and ϵmt supported

on [m,m] (m ≥ 0). At least one of the two random variables (ϵat and ϵ
m
t ) follows a contin-

uous distribution (i.e., a ̸= a or m ̸= m), which ensures that Dt follows a non-degenerate

continuous distribution supported on the interval: [(d(pt)+γ(I
a
t ))m+a, (d(pt)+γ(I

a
t ))m+

a], for any (pt, I
a
t ). Note that the above demand model is quite general and includes as

special cases several demand models from the existing literature. For example, when

ϵmt = 1 with probability 1, the demand model is reduced to the additive demand model;

if ϵat = 0 with probability 1, it is reduced to the multiplicative demand model (as a gener-

alized version of the one proposed in [145]); and if γ(·) ≡ 0, the demand model is reduced

to the standard price-dependent demand model (as the one proposed in [47]). The term

d(pt) summarizes the impact of price on demand in period t. As assumed above, d(·) is

strictly decreasing in pt. In some market where competition is fierce and the firm has

no pricing power, the price is exogenously fixed at p0 and the price induced demand is

fixed at d0 = d(p0). The term γ(Iat ), which is a decreasing function of Iat , captures the

scarcity effect of inventory on demand. Hereafter, we refer to γ(·) as the scarcity function,

and γ′(·) as the intensity of scarcity effect. The dependence of demand on inventory is

measured by γ′(·). i.e., the smaller the γ′(·), the more intensive the potential demand

depends on the customer-accessible inventory level. When demand is independent of in-

ventory, γ(Iat ) ≡ γ0 for all customer-accessible inventory level Iat . Note that our demand

model generalizes the one in [145] in the sense that our model also captures the impact

of endogenous sales price on demand.
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Since d(·) is strictly decreasing in pt, we assume p(dt) be its strictly decreasing inverse.

For the convenience of our analysis, we change the decision variable from pt to dt ∈ [d, d̄],

where d = d(p̄) and d̄ = d(p). To avoid the unrealistic case where demand becomes

negative, we assume that d + γ(Ka) ≥ 0 to ensure that E{Dt} = dt + γ(Iat ) ≥ 0 for

any dt ∈ [d, d̄] and Iat ≤ Ka. We impose the following three assumptions throughout our

analysis.

Assumption 5.3.1 p(·) is twice continuously differentiable and concavely decreasing in

dt, with p
′(dt) < 0 for dt ∈ [d, d̄]. In addition, p(dt)dt is concave in dt.

The concavity of p(dt)dt in dt suggests the decreasing marginal revenue with respect

to demand, which is a standard assumption in joint pricing and inventory management

literature, see, e.g., [47, 112, 136]. For a more comprehensive discussion on decreasing

marginal revenue assumptions, see [196]. The concavity of p(·) implies that the demand

is more price-sensitive when sales prices are higher. This is also a common assumption

in the literature, see, e.g., [70].

As [145], we also assume that demand is concavely decreasing in the customer-

accessible leftover inventory:

Assumption 5.3.2 γ(·) is concavely decreasing and twice continuously differentiable. In

addition,

lim
Iat →−∞

γ′(Iat ) = 0 and lim
Iat →−∞

γ(Iat ) = γ0.

The concavity of γ(·) refers to the phenomenon that a higher customer-accessible

leftover inventory level has a greater marginal effect on potential demand. However,

when the backlogged demand is very high, its value of stimulating high potential demand

is limited, because γ(·) is bounded from above. In other words, the impact of inventory on

demand is small under a large backorder volume so demand does not increase to infinity.

Therefore, the firm cannot induce arbitrarily high demand by creating an arbitrarily long

wait-list. The underlying intuition of the boundedness of γ(·) is that the high demand

induced by a long wait-list is canceled out by the impatience it arouses.

Assumption 5.3.3 Let

R(dt, I
a
t ) := (p(dt)− b− α(c+ rd))(dt + γ(Iat )). (5.2)

R(dt, I
a
t ) is jointly concave in (dt, I

a
t ) on its domain.

121



Assumption 5.3.3 is imposed mainly for technical tractability, because it is required

to establish the joint concavity of the objective and value functions in each period (see

the discussions after Lemma 14). Note that R(dt, I
a
t ) is the expected difference between

the revenue and the total cost (i.e., the procuring, displaying and backlogging costs) to

satisfy the current demand in the next period, when the firm holds a customer-accessible

inventory Iat and charges a sales price p(dt). The joint concavity of R(·, ·) implies that the

expected difference between the revenue and the total cost to meet the current demand

in the next period has decreasing marginal values with respect to both the expected

price-induced demand and customer-accessible inventory level. The joint concavity of

R(·, ·) is stronger than the concavity of expected revenue (Assumption 5.3.1), because

it also captures the impact of inventory-dependent demand upon revenue, procurement

cost, reallocation cost and backlogging cost. We discuss this assumption in detail in the

following subsection.

5.3.1 Discussions on Assumption 5.3.3

Assumption 5.3.3 is essential to show the analytical results in this chapter. We first

characterize the necessary and sufficient condition for Assumption 5.3.3:

Lemma 11 R(dt, I
a
t ) is jointly concave in (dt, I

a
t ) on its domain if and only if

(p′′(dt)(dt + γ(Iat )) + 2p′(dt))(p(dt)− b− α(c+ rd))γ
′′(Iat ) ≥ (p′(dt)γ

′(Iat ))
2, (5.3)

for all dt ∈ [d, d̄] and Iat ≤ Ka.

Condition (5.3) is complicated and somewhat difficult to understand. Hence, we give

the following simpler necessary condition for Assumption 5.3.3 to hold.

Lemma 12 If R(·, ·) is jointly concave on its domain, then we have:

(a) For any Iat such that γ′′(Iat ) = 0, γ′(Iat ) = 0 as well. Therefore, there exists

a threshold I∗ ≤ Ka (I∗ may be −∞), such that γ′(Iat )

< 0, if Iat > I∗,

= 0, otherwise,

and

γ′′(Iat )

< 0, if Iat > I∗,

= 0, otherwise.

122



(b) There exists an 0 < M < +∞, such that, for any Iat ≤ Ka, (γ
′(Iat ))

2 ≤ −Mγ′′(Iat ).

Lemma 12(a) shows that, if Assumption 5.3.3 is satisfied, there exists a threshold

inventory level I∗, such that there is no scarcity effect for all customer accessible inventory

level below this threshold and the scarcity function is strictly decreasing and strictly

concave for all customer accessible inventory level above this threshold. Lemma 12(b)

proves that R(·, ·) is jointly concave only if, for all Iat , compared with |γ′(Iat )|, |γ′′(Iat )|

is sufficiently big. In other words, in the region where the scarcity effect exists (i.e.,

γ′(Iat ) < 0), the curvature of the function γ(·) should be sufficiently big. This condition

is not restrictive and, for example, can be satisfied by the commonly used power or

exponential families of scarcity functions. We remark that, mathematically, Lemma 12(a)

is a corollary of Lemma 12(b). Next, we show that the necessary condition characterized

in Lemma 12(b) is also sufficient to some extent.

Lemma 13 If there exists an 0 < M < +∞, such that, for any Iat ≤ Ka, (γ
′(Iat ))

2 ≤

−Mγ′′(Iat ), the following statements hold:

(a) For any inverse demand curve p(·), there exists a threshold δ∗ < +∞, such that, for

any δ ≥ δ∗, with p̂δ(·) := p(·) + δ, R̂δ(dt, I
a
t ) := (p̂δ(dt)− b− α(c+ rd))(dt + γ(Iat ))

is jointly concave in (dt, I
a
t ) for dt ∈ [d, d̄] and Iat ≤ Ka.

(b) Suppose that p′′(·) ̸= 0 for any dt ∈ [d, d̄]. For any scarcity function γ(·), there

exists a threshold ς∗ < +∞, such that, for any ς ≥ ς∗, with γ̂ς(·) := γ(·) + ς,

R̂ς(dt, I
a
t ) := (p(dt) − b − α(c + rd))(dt + γ̂ς(I

a
t )) is jointly concave in (dt, I

a
t ) for

dt ∈ [d, d̄] and Iat ≤ Ka.

Lemma 13 demonstrates that, as long as the condition characterized in Lemma 12(b)

on the scarcity function, γ(·), is satisfied, R(·, ·) is jointly concave on its domain if (a) the

sales price of the product, p(·), is sufficiently high relative to the inverse of price sensitivity,

|p′(·)|; or (b) the price is not linear in demand, and the scarcity effect driven demand, γ(·),

is sufficiently high relative to the scarcity intensity, |γ′(·)|. These sufficient conditions have

a clear economic interpretation: the price elasticity of demand (i.e., | ddt/dt
dpt/pt

|) is sufficiently

high relative to the inventory elasticity of demand (defined as | dγ/γ
dIat /I

a
t
|). In practice, this

condition is not restrictive. Compared with the primary demand leverage (i.e., the sales

price), the customer accessible inventory (through the scarcity effect) has less impact
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upon the potential demand, because not every customer cares about the backlogging risk

of a product, but everyone cares about its price. Therefore, Assumption 5.3.3 can be

satisfied under a mild condition with economic interpretation.

Finally, when Assumption 5.3.3 does not hold (i.e., R(·, ·) is not jointly concave), we

have conducted extensive numerical experiments to test the robustness of our analytical

results. Our numerical results verify that the analytical characterizations of the optimal

policies in our model are robust and hold for non-concaveR(·, ·)’s in all of our experiments.

In particular, Lemma 12 implies that when the scarcity function γ(·) contains a linear

and strictly decreasing piece, R(·, ·) is not jointly concave. We present our numerical

experiments for this case in Section 5.7.1.

5.4 Unified Model

In this section, we propose a unified model to analyze the joint pricing and inventory

replenishment/disposal/reallocation problem when the firm faces random demand which

is negatively correlated with the customer-accessible leftover inventory. We characterize

the structure of the optimal pricing and inventory policy and give sufficient conditions

under which the firm does not (a) dispose its on-hand inventory, (b) withhold any inven-

tory, (c) reallocate its customer-accessible inventory to the warehouse, or (d) display any

positive inventory to customers.

This model is suitable for the case where the firm can both withhold its on-hand

inventory in its private warehouse not observable by customers (e.g., clothing and elec-

tronics markets) and dispose it (e.g., in the hi-tech industry, the evolution of product

generation is so fast that the retailers/manufacturers have to sell excess old versions at

a significantly discounted price). When potential demand is negatively correlated with

the customer-accessible leftover inventory, the firm faces greater overage risk, because a

high customer-accessible leftover inventory not only incurs a high holding cost but also

suppresses potential demand. Both inventory withholding and inventory disposal poli-

cies enable the firm to strategically keep a low customer-accessible inventory, so as to

induce high potential demand and mitigate the overstocking risk. Hence, we incorporate

inventory withholding and inventory disposal into our unified model.

The unified model is quite general and can be reduced to several specific models that

are of interest on their own. For example, we show that if the warehouse holding cost hw is
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sufficiently large, the unified model is reduced to the one without inventory withholding,

which is discussed in detail in Section 5.5.1. Besides, if the disposal salvage value s is

sufficiently low, the unified model is reduced to the one without inventory disposal, which

is discussed in detail in Section 5.5.2.

To formulate the planning problem as a dynamic program, let:

Vt(I
a
t , It) = the maximum expected discounted profits in periods t, t− 1, · · · , 1, when

starting period t with a customer-accessible inventory level Iat and a total

inventory level It.

Without loss of generality, we assume that the excess inventory in the last period (period

1) is discarded without any salvage value, i.e., V0(I
a
0 , I0) = 0, for any (Ia0 , I0).

The optimal value functions satisfy the following recursive scheme:

Vt(I
a
t , It) = rdI

a
t + cIt + max

(xa
t ,xt,dt)∈F (Iat )

Jt(x
a
t , xt, dt, I

a
t , It), (5.4)
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where F (Iat ) := {(xat , xt, dt) : xat ∈ [min{Iat , 0}, Ka], xt ≥ xat , dt ∈ [d, d̄]} denotes the set of

feasible inventory and pricing decisions, and

Jt(x
a
t , xt, dt, I

a
t , It) = −rdIat − cIt + p(dt)E[δ(p(dt), Iat , ϵt)]− c(xt − It)

+ + s(xt − It)
−

−rd(xat − Iat )
+ − rw(x

a
t − Iat )

− − hw(xt − xat )

−E{ha(xat − δ(p(dt), I
a
t , ϵt))

+ + b(xat − δ(p(dt), I
a
t , ϵt))

−}

+αE{Vt−1(x
a
t − δ(p(dt), I

a
t , ϵt), xt − δ(p(dt), I

a
t , ϵt))}

= p(dt)(dt + γ(Iat ))− (c− s)(xt − It)
− − (hw + c)xt

−(rd + rw)(x
a
t − Iat )

− + (hw − rd)x
a
t

+E[(b+ αrd)(x
a
t − (dt + γ(Iat ))ϵ

m
t − ϵat )

+αc(xt − (dt + γ(Iat ))ϵ
m
t − ϵat )]

+E{α[Vt−1(x
a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )

−rd(xat − (dt + γ(Iat ))ϵ
m
t − ϵat )− c(xt − (dt + γ(Iat ))ϵ

m
t − ϵat )]

−(b+ ha)(x
a
t − (dt + γ(Iat ))ϵ

m
t − ϵat )

+}

= (p(dt)− α(c+ rd)− b)(dt + γ(Iat ))− (c− s)(xt − It)
−

−(rd + rw)(x
a
t − Iat )

− − (hw + (1− α)c)xt

+(hw + b− (1− α)rd)x
a
t

+E{−(ha + b)(xat − (dt + γ(Iat ))ϵ
m
t − ϵat )

+

+α[Vt−1(x
a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )

−rd(xat − (dt + γ(Iat ))ϵ
m
t − ϵat )− c(xt − (dt + γ(Iat ))ϵ

m
t − ϵat )]}

= R(dt, I
a
t )− θ(xt − It)

− − (rd + rw)(x
a
t − Iat )

− − ψxt + ϕxat

+E{Gt(x
a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )},(5.5)

where Gt(x, y) := −(b+ ha)x
+ + α(Vt−1(x, y)− rdx− cy),

θ := c− s = the unit loss of inventory disposal, (5.6)

ψ := hw + (1− α)c

= the unit cost of replenishing and holding inventory in the

warehouse,

ϕ := hw + b− (1− α)rd

= the unit saving of reallocating warehouse inventory to the

customer-accessible storage.
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We use (xa∗t (Iat , It), x
∗
t (I

a
t , It), d

∗
t (I

a
t , It)) to denote the maximizer in (5.4), which stands

for the optimal policy in period t, with customer-accessible inventory level Iat and to-

tal inventory level It. To characterize the structure of the optimal inventory replen-

ishment/disposal/reallocation and pricing policies, we define the following optimizers:

(xat (I
a
t ), dt(I

a
t )) and (x̃at (I

a
t ), x̃t(I

a
t ), d̃t(I

a
t )). Let

(xat (I
a
t ), dt(I

a
t )) := argmaxxa

t∈[min{Iat ,0},Ka],dt∈[d,d̄]R(dt, I
a
t ) + βxat

+E[Gt(x
a
t − δ(p(dt), I

a
t , ϵt), x

a
t − δ(p(dt), I

a
t , ϵt))],

(5.7)

where β := b− (1− α)(c+ rd) > 0. (5.8)

xat (I
a
t ) is the optimal order-up-to inventory level, if the firm procures positive inventory

and displays all of its on-hand inventory to customers, whereas dt(I
a
t ) is the optimal

expected price-induced demand in this case. Let

(x̃at (I
a
t ), x̃t(I

a
t ), d̃t(I

a
t ))

:=argmax(xa
t ,xt,dt)∈F (Iat )

{R(dt, Iat ) + (θ − ψ)xt − (rd + rw)(x
a
t − Iat )

− + ϕxat

+ E{Gt(x
a
t − δ(p(dt), I

a
t , ϵt), xt − δ(p(dt), I

a
t , ϵt))}}.

(5.9)

When the firm disposes its on-hand inventory, x̃at (I
a
t ) is the optimal display-up-to inven-

tory level and x̃t(I
a
t ) is the optimal dispose-down-to inventory level, whereas d̃t(I

a
t ) is the

optimal expected price-induced demand. The following lemma establishes the properties

of the two optimizers:

Lemma 14 For each t = T, T − 1, · · · , 1, the following statements hold:

(a) Jt(x
a
t , xt, dt, I

a
t , It) is jointly concave and continuously differentiable in

(xat , xt, dt, I
a
t , It) except for a set of measure zero; for any fixed (Iat , It), Jt(·, ·, ·, Iat , It)

is strictly jointly concave in (xat , xt, dt).

(b) Vt(I
a
t , It) is jointly concave and continuously differentiable in (Iat , It),

whereas Vt(I
a
t , It)− rdI

a
t − cIt is decreasing in Iat and It.

Lemma 14 proves that the objective function in each period is jointly concave and al-

most everywhere differentiable and the value function is jointly concave and continuously

differentiable. Moreover, the second half of Lemma 14(b) implies that the normalized
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value function, Vt(I
a
t , It) − rdI

a
t − cIt, is decreasing in both the customer-accessible in-

ventory level Iat and the total inventory level It, which generalizes Proposition 5.1 in

[145]. We remark that the joint concavity of R(·, ·) on its entire domain is necessary

to prove that the objective functions Jt(·, ·, ·, Iat , It) and the value functions Vt(·, ·) are

jointly concave, which is essential to analytically establish other structural results in this

chapter. We can easily find examples in which R(·, ·) fails to be jointly concave (e.g., γ(·)

contains a linear and strictly decreasing piece) and leads to non-concave Jt(·, ·, ·, Iat , It)’s

and Vt(·, ·)’s. In this case, we are unable to analytically show the structural results in

this chapter (e.g., Theorem 5.4.1 and Theorem 5.5.1). In Section 5.7.1, we numerically

test whether the structure of the optimal policy characterized in our theoretical model

still holds. With the help of Lemma 14, we characterize the structural properties of the

optimal policy in the unified model as follows:

Theorem 5.4.1 For t = T, T − 1, · · · , 1, the following statements hold:

(a) xat (I
a
t ) ≤ x̃t(I

a
t ). Moreover, let q∗t (I

a
t , It) := x∗t (I

a
t , It) − It denote the optimal or-

der/disposal quantity and we have:

q∗t (I
a
t , It)


> 0 if It < xat (I

a
t ),

= 0 if xat (I
a
t ) ≤ It ≤ x̃t(I

a
t ),

< 0 otherwise,

i.e., it is optimal to order if and only if It < xat (I
a
t ) and to dispose if and only if

It > x̃t(I
a
t ).

(b) If It < xat (I
a
t ), x

a∗
t (Iat , It) = x∗t (I

a
t , It) = xat (I

a
t ), d

∗
t (I

a
t , It) = dt(I

a
t ), i.e., it is optimal

to order and display up to xat (I
a
t ) and charge a list-price p(dt(I

a
t )).

(c) If It > x̃t(I
a
t ), (xa∗t (Iat , It), x

∗
t (I

a
t , It), d

∗
t (I

a
t , It)) = (x̃at (I

a
t ), x̃t(I

a
t ), d̃t(I

a
t )), i.e., it

is optimal to dispose the total inventory level down to x̃t(I
a
t ), display x̃

a
t (I

a
t ), and

charge a list-price p(d̃t(I
a
t )).

(d) If It ∈ [xat (I
a
t ), x̃t(I

a
t )], x

∗
t (I

a
t , It) = It, i.e., it is optimal to keep the total inventory

level.

(e) xat (I
a
t ) is continuously decreasing in Iat , whereas dt(I

a
t ) is continuously increasing in

Iat .
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Theorem 5.4.1 generalizes Proposition 5 in [145] by characterizing the structure of

the optimal policy in our unified model. We show that a customer-accessible-inventory-

dependent order-up-to/dispose-down-to/display-up-to list-price policy is optimal. The

optimal policy is characterized by two thresholds: the ordering threshold xat (I
a
t ) and the

disposal threshold x̃t(I
a
t ), both of which depend on the customer-accessible inventory

level, Iat . If the total inventory level, It, is below the ordering threshold, i.e., It < xat (I
a
t ),

the firm should order-up-to this threshold, display all of its on-hand inventory to cus-

tomers, and charge a customer-accessible-inventory-dependent list-price p(dt(I
a
t )). If the

total inventory level is higher than the disposal threshold, i.e., It > x̃t(I
a
t ), the firm

should dispose-down-to this threshold, display part of its on-hand inventory, x̃at (I
a
t ), to

customers, and charge a customer-accessible-inventory-dependent list-price p(d̃t(I
a
t )). If

the total inventory level is between the above two thresholds, i.e., It ∈ [xat (I
a
t ), x̃t(I

a
t )],

the firm should keep its total net inventory and display part of it to customers. In partic-

ular, Theorem 5.4.1(b) implies that if it is optimal to order, the firm should not withhold

anything. Order-and-withhold policy is dominated by displaying the same amount of in-

ventory to customers but not ordering the inventory that will be withheld (so no inventory

will be withheld). This is intuitive, because the marginal cost of order-and-withhold is

at least c+hw (procurement cost and holding cost in the warehouse), while the marginal

benefit of inventory withholding is at most αc (saving from the purchasing cost in the next

period). Moreover, part (e) of Theorem 5.4.1 demonstrates that as the excess customer-

accessible inventory level increases, lower demand is induced and the firm has a greater

incentive to turn it over, both of which give rise to lower optimal order-up-to levels and

optimal sales prices.

The excess inventory of the firm generally has three impacts on the performance of

the system: (1) satisfying future demand, (2) incurring holding costs and (3) induc-

ing/suppressing potential demand, the first with positive marginal value and the other

two with negative marginal values. Hence, after normalizing the first effect (Vt(I
a
t , It)−

rdI
a
t − cIt), the value-to-go function of the firm is decreasing in its customer-accessible

inventory level and total inventory level. To better deal with the intertwined tradeoff be-

tween these three effects, the firm can adopt dynamic pricing, inventory withholding and

inventory disposal strategies. As suggested in Theorem 5.4.1, the firm needs to price the

product in accordance to the customer-accessible inventory level so as to better control
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the scarcity effect of demand. Theorem 5.4.1 also shows that when the total inventory

is high, the firm should withhold and dispose its on-hand inventory, which saves holding

costs and mitigates the risk of suppressing potential demand. On the other hand, the

opportunity to redisplay the withheld inventory in the warehouse enables the firm to

satisfy potential demand without discouraging it. In short, combining dynamic pricing,

inventory withholding and inventory disposal policies helps the firm better match supply

and demand and greatly enhances its profitability.

We proceed to analyze how the model primitives influence the firm’s optimal opera-

tional decisions, such as inventory disposal, inventory withholding, and inventory display.

Theorem 5.4.2 The following statements hold:

(a) If hw ≥ αc− s, x̃t(I
a
t ) = x̃at (I

a
t ) for any t = T, T − 1, · · · , 1.

(b) There exists an s∗ < c, such that, if s ≤ s∗, x̃t(I
a
t ) = +∞ for any Iat ≤ Ka and

t = T, T − 1, · · · , 1.

(c) If infIat <Ka γ
′(Iat ) ≥ −M , for someM < +∞, there exists an r∗ < +∞, such that, if

rw ≥ r∗, x̃
a
t (I

a
t ) ≥ Iat , for any I

a
t ≤ Ka and t = T, T − 1, · · · , 1. On the other hand,

if infIat <Ka γ
′(Iat ) = −∞, for any rw > 0, there exists a threshold I∗t (rw) < Ka, such

that, if Iat ≥ I∗t (rw), x̃
a
t (I

a
t ) < Iat , for any t = T, T − 1, · · · , 2.

(d) Let ι < 1, and D̄ := sup{∆ : P (Dt ≥ ∆) ≥ ι}, i.e., the probability that the demand

in period t exceeds D̄ is smaller than ι, regardless of the policy the firm employs. If

α(p− b− α(c+ rd) +mβ)(1− ι)γ′(−D̄) + (rd + rw + ϕ) ≤ 0, (5.10)

then xa∗t (Iat , It) ≤ 0 for any Iat ≤ Ka, It, and t = T, T − 1, · · · , 1.

Theorem 5.4.2(a) shows that, when the warehouse holding cost is sufficiently high

(hw ≥ αc− s), the firm should display all of its on-hand inventory to customers. Part (b)

demonstrates that, when inventory disposal is sufficiently costly (s ≤ s∗), the firm would

rather not dispose any of its inventory, regardless of its total inventory level. When

the condition in part (a) [part (b)] holds, the unified model is reduced to the model

without inventory withholding [inventory disposal], which generates additional insights

and is thoroughly discussed in Section 5.5.1 [Section 5.5.2]. Theorem 5.4.2(c) reveals

that the optimal inventory reallocation balances the tradeoff between saving the current
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reallocation cost and stimulating future demand. More specifically, if the intensity of

scarcity effect is bounded, the firm should not reallocate its inventory from the customer-

accessible storage to the warehouse, as long as the reallocation fee is sufficiently high.

Otherwise (i.e., the intensity of scarcity effect is unbounded), the firm should always

withhold part of its inventory in the warehouse, if the excess customer-accessible inventory

level is high enough.

Theorem 5.4.2(d) shows that when the demand-stimulating effect/scarcity effect of

inventory is sufficiently strong (characterized by (5.10)), the backlogging cost incurred

by the wait-list is dominated by the revenue generated by the scarcity effect. Therefore,

the firm should not display any positive inventory, and every customer has to join a wait-

list before receiving the product. This analytical result justifies the marketing strategy

adopted by, e.g., BMW, in which the availability of Mini Cooper is intentionally limited

and more customers are attracted by its wait-list.

5.5 Additional Results in Two Special Cases

In this section, we study two important special cases of our unified model that are of

interest on their own: the model without inventory withholding and the model without

inventory disposal. As shown in Theorem 5.4.2, when it is too expensive to withhold

[dispose] inventory, it is optimal for the firm not to withhold [dispose] any inventory.

These two special cases deliver new results and sharper insights on the impact of the

inventory-dependent demand upon the firm’s pricing and inventory decisions. We also

characterize how the operational flexibilities (e.g., an increase in the salvage value and the

inventory withholding opportunity) facilitate the firm to mitigate the additional overage

risk caused by inventory-dependent demand.

5.5.1 Without Inventory Withholding

In some circumstances, the firm cannot store its inventory in the warehouse, due to,

e.g., too costly withholding or too inconvenient transportation. For instance, car dealers

usually display all of its automobiles in the store, because withholding and redisplaying

the inventory is too costly and inconvenient. In this subsection, we confine our analysis to

the model without inventory withholding. In this model, since no inventory is stored in
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the warehouse, the state space dimension is reduced to one, and such reduction offers new

results and sharper insights on how the inventory-dependent demand influences the firm’s

optimal decisions. More specifically, we demonstrate that the scarcity effect of inventory

increases the overstocking risk and, thus, drives the firm to set a lower order-up-to level

and charge a lower sales price. On the other hand, when the firm is blessed with a higher

disposal flexibility (i.e., a higher salvage value), it has more capacity to mitigate such

overage risk by getting rid of its surplus inventory. We show that the firm with a higher

salvage value sets higher order-up-to levels and sales prices.

To formulate the planning problem as a dynamic program, let:

V s
t (I

a
t ) = the maximum expected discounted profits in periods t, t− 1, · · · , 1, when

starting period t with a customer-accessible inventory level Iat .

Since no inventory is withheld in the warehouse in this model, Iat = It, and we

don’t need to record the total inventory level It. Therefore, the state space dimension is

reduced to one. Similarly, we will not incur the warehouse inventory holding cost (hw),

the redisplay cost (rd), and the withholding cost (rw) in this model. The superscript ‘s’

refers to “single location storage”.

Without loss of generality, we assume the excess inventory in the last period (period

1) is discarded without any salvage value, i.e., V s
0 (I

a
0 ) = 0, for any Ia0 ≤ Ka. The value

functions satisfy the following recursive scheme:

V s
t (I

a
t ) = cIat + max

(xa
t ,dt)∈F s(Iat )

Js
t (x

a
t , dt, I

a
t ),

where F s(Iat ) := [min{0, Iat }, Ka]× [d, d̄] denotes the set of feasible order-up-to/dispose-

down-to levels and expected price-induced demand, and

Js
t (x

a
t , dt, I

a
t ) =p(dt)E[δ(p(dt), Iat , ϵt)] + s(xat − Iat )

− − c(xat − Iat )
+ − cIat

− E[b(xat − δ(p(dt), I
a
t , ϵt))

− + ha(x
a
t − δ(p(dt), I

a
t , ϵt))

+]

+ αE[V s
t−1(x

a
t − δ(p(dt), I

a
t , ϵt))].

Following the algebraic manipulation similar to that in (5.5), we obtain:

Js
t (x

a
t , dt, I

a
t ) =R

s(dt, I
a
t ) + βsxat − θ(xat − Iat )

− + E[Gs
t(x

a
t − δ(p(dt), I

a
t , ϵt))],

where Rs(dt, I
a
t ) :=(p(dt)− b− αc)(dt + γ(Iat )),

Gs
t(y) :=− (b+ ha)y

+ + α[V s
t−1(y)− cy],

βs :=b− (1− α)c,

(5.11)

132



and θ is defined in (5.6). Note that, under Assumption 5.3.3, Rs(dt, I
a
t ) = R(dt, I

a
t ) +

αrd(dt + γ(Iat )) is jointly concave on its domain.

As a corollary of Theorem 5.4.1, the optimal policy in the model without inventory

withholding is an inventory-dependent order-up-to/dispose-down-to list-price policy, as

shown below:

Theorem 5.5.1 Consider a model without inventory withholding. For each t = T, T −

1, · · · , 1, the following statements hold:

(a) gst (x
a
t , dt, I

a
t ) := E[Gs

t(x
a
t − δ(p(dt), I

a
t , ϵt))] is jointly concave and continuously dif-

ferentiable in (xat , dt, I
a
t ) if x

a
t ̸= Iat ; for any fixed Iat , g

s
t (·, ·, Iat ) is strictly concave.

(b) V s
t (I

a
t ) is concave in Iat . V

s
t (I

a
t )− cIat is decreasing and continuously differentiable

in Iat .

(c) Js
t (·, ·, Iat ) is strictly concave for any fixed Iat , and there exists a unique

(xs∗t (Iat ), d
s∗
t (Iat )) such that

(xs∗t (Iat ), d
s∗
t (Iat )) = argmax(xt,dt)∈F s(Iat )

Js
t (x

a
t , dt, I

a
t ).

(d) Let qs∗t (Iat ) = xs∗t (Iat ) − Iat denote the optimal order/disposal quantity. There exist

two threshold inventory levels IHt and ILt (ILt < IHt ), such that,

qs∗t (Iat )


> 0 if Iat < ILt ,

= 0 if ILt ≤ Iat ≤ IHt ,

< 0 otherwise,

i.e., the firm should order if its inventory level Iat is less than the lower threshold

ILt , dispose if it is more than the higher threshold IHt , and not order or dispose if it

is between the two thresholds.

(e) If Iat < ILt or Iat > IHt , the optimal order-up-to/dispose-down-to level xs∗t (Iat ) is de-

creasing in Iat . If I
L
t ≤ Iat ≤ IHt , the optimal inventory after replenishment/disposal

is increasing in Iat .

(f) The optimal price-induced-demand ds∗t (Iat ) is increasing in Iat .
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Theorem 5.5.1 implies that, when the firm cannot withhold its on-hand inventory,

the optimal policy is to order when the customer-accessible inventory level is low (below

ILt ), to dispose when it is high (above IHt ), and not to adjust when it is between the two

thresholds. The optimal order-up-to/dispose-down-to and list-price levels are customer-

accessible-inventory-dependent. As shown in Theorem 5.5.1, when the customer-accessible

inventory level is higher, both order-up-to/dispose-down-to levels and sales prices are

lower, because a high customer-accessible inventory level suppresses potential demand

and the firm has a strong incentive to turn it over.

We proceed to analyze how the scarcity effect of inventory impacts the optimal pricing

and inventory policies. Compared with the model in which demand is independent of in-

ventory, when potential demand is negatively correlated with customer-accessible leftover

inventory levels, the marginal value of on-hand inventory decreases and the firm suffers

from the demand reduction caused by a high inventory level. As a result, the firm should

order less/dispose more to mitigate the additional overstocking risk caused by the scarcity

effect of inventory. At the same time, to better catch the sales opportunity, it is optimal

to underprice the product so as to attract more customers. Moreover, in a market where

the firm has little power to set the sales price, we are able to prove a sharper result that

with a more intensive scarcity effect, the firm should keep a lower inventory level after

replenishment/disposal. The following theorem formalizes these intuitions.

Theorem 5.5.2 Consider a model without inventory withholding. Assume

Dt = δ(dt, I
a
t , ϵt) and D̂t = δ̂(dt, I

a
t , ϵt) with inventory dependent term γ(Iat ) and γ̂(Iat ),

respectively. We also assume that the demand is of additive form (i.e., ϵmt = 1 with

probability 1). The following statements hold:

(a) Assume that γ̂(Iat ) = γ0 = limx→−∞ γ(x) for all Iat ≤ Ka, i.e., D̂t does not depend

on the customer-accessible inventory level. We have that ILt ≤ ÎLt , I
H
t ≤ ÎHt ,

xs∗t (Iat ) ≤ x̂s∗t (Iat ) and d
s∗
t (Iat ) ≥ d̂s∗t (Iat ) for all Iat ≤ Ka.

(b) Assume that γ′(Iat ) ≤ γ̂′(Iat ) for all Iat ≤ Ka and that

lim
Iat →−∞

γ(Iat ) = lim
Iat →−∞

γ̂(Iat ) = γ0.

Let p = p̄ = p0 and d0 = d(p0). We have ILt ≤ ÎLt , I
H
t ≤ ÎHt and xs∗t (Iat ) ≤ x̂s∗t (Iat )

for all Iat ≤ Ka.
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As a generalization of Theorem 3.2 in [145] to the model with dynamic pricing and

inventory disposal, Theorem 5.5.2 shows that the firm should understock and underprice

the product under the scarcity effect of inventory. In Theorem 5.5.2, we need the additive

demand assumption, i.e., ϵmt = 1 almost surely. The additive demand model is widely

applied in the joint pricing and inventory control literature (see, e.g., [112, 73, 136]),

mostly because it enhances the technical tractability and facilitates the analysis. To

show Theorem 5.5.2 and other comparisons between the optimizers in different models

(Theorems 5.5.3 - 5.5.5 below), we need to iteratively establish the comparisons between

the derivatives of value functions. The additive demand form is necessary to link the

monotonicity relationship between optimizers and that between derivatives. All results

in this chapter, except Theorems 5.5.2 - 5.5.5, hold for the more general demand form

introduced in (5.1).

Efficiently disposing surplus inventory protects the firm from the demand-suppressing

effect of inventory. As the salvage value increases, the cost of inventory disposal decreases,

and the firm has greater disposal flexibility. We characterize how the salvage value

impacts the optimal pricing and inventory decisions in the following theorem:

Theorem 5.5.3 Consider a model without inventory withholding. For any t = T, T −

1, · · · , 1, assume that the demand is of additive form (i.e., ϵmt = 1 with probability 1),

and s < ŝ.

(a) ∂Iat V̂
s
t (I

a
t ) ≥ ∂Iat V

s
t (I

a
t ).

(b) ÎLt ≥ ILt .

(c) x̂s∗t (Iat ) ≥ xs∗t (Iat ) and, hence, q̂
s∗
t (Iat ) ≥ qs∗t (Iat ) for all Iat ≤ ÎHt .

(d) d̂s∗t (Iat ) ≤ ds∗t (Iat ).

Theorem 5.5.3(a) shows that the marginal value of on-hand inventory increases in the

salvage value. Parts (b) - (d) demonstrate that with a higher salvage value, the firm

should set higher ordering thresholds, order-up-to levels, and sales prices. On one hand,

recall from Theorem 5.5.2 that the inventory-dependent demand strengthens overstocking

risk by suppressing potential demand so that both optimal order-up-to/disposal-down-to

levels and optimal sales prices are lower in the model with inventory-dependent demand
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than those in the model with inventory-independent demand. On the other hand, how-

ever, Theorem 5.5.3 demonstrates that increased operational flexibility (i.e., a higher

salvage value) mitigates the demand loss driven by a high customer-accessible inventory

level and, hence, with higher disposal flexibility, the firm is able to set higher order-up-to

levels and sales prices to win more profit.

5.5.2 Without Inventory Disposal

The model without inventory disposal applies to the cases where the inventory is

either too expensive or too inconvenient to dispose. For example, in the automobile

industry, the unsold cars of the last year model is too costly to dispose. In other industries

like chemical engineering, products are often so environmentally unfriendly that they

cannot be disposed arbitrarily. The model without inventory disposal has a simpler

optimal policy structure (customer-accessible-inventory-dependent order-up-to/display-

up-to list-price policy) and, like the model without inventory withholding, delivers sharper

insights regarding the impacts of inventory-dependent demand and inventory withholding

policy. More specifically, we show that inventory-dependent demand motivates the firm

to order less and charge a lower sales price, whereas the inventory withholding policy

helps mitigate the overage risk and increases the optimal order-up-to levels and sales

prices.

As a counterpart of Theorem 5.5.2, the following theorem shows that inventory-

dependent demand drives down the optimal order-up-to levels and sales prices in the

model without inventory disposal:

Theorem 5.5.4 Consider a model without inventory disposal. For any t = T, T −

1, · · · , 1, assume that rd = rw = 0, and hw ≥ ha, i.e., reallocation is costless and it is more

costly to store the inventory in the warehouse. In addition, assume that Dt = δ(dt, I
a
t , ϵt)

and D̂t = δ̂(dt, I
a
t , ϵt) with inventory dependent term γ(Iat ) and γ̂(I

a
t ), respectively, where

γ̂(Iat ) = γ0 = limx→−∞ γ(x) for all Iat ≤ Ka, i.e., D̂t does not depend on the customer-

accessible inventory level. Further assume that, the demand is of additive form (i.e.,

ϵmt = 1 with probability 1). We have:

(a) The firm in the system with demand D̂t should not withhold any inventory.

(b) xat (I
a
t ) ≤ x̂s∗t (Iat ) and dt(I

a
t ) ≥ d̂s∗t (Iat ) for all Iat ≤ Ka.
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Inventory withholding policy enables the firm to better control demand by intention-

ally making part of its inventory unavailable to its customers. Hence, inventory withhold-

ing policy can stabilize the demand process and increase the optimal order-up-to levels

and sales prices, as shown below:

Theorem 5.5.5 Consider a model without inventory disposal. For any t = T, T −

1, · · · , 1, assume that the demand is of additive form (i.e., ϵmt = 1 with probability 1),

rd = rw = 0 (i.e., reallocation is costless). If It = Iat , we have xat (I
a
t ) ≥ xs∗t (Iat ) for

Iat ≤ max{Iat : xat (I
a
t ) ≥ Iat }, and d∗t (Iat , It) ≤ ds∗t (Iat ) for I

a
t ≤ Ka.

Note that, Theorem 6 needs the assumption that inventory reallocation is costless

(rd = rw = 0), because this assumption is necessary to reduce the state space dimension

in its proof. We also assume rd = rw = 0 for Theorem 7, mainly for expositional

convenience and the results still hold under the general condition that rd, rw ≥ 0.

To summarize, inventory withholding and inventory disposal have similar strategic im-

plications in dealing with inventory-dependent demand. The firm employs these strategies

to hedge against the overage risk caused by the scarcity effect of inventory and stimulate

more potential demand.

5.6 Responsive Inventory Reallocation

In our previous analysis, we assume that the firm can withhold and redisplay inventory

only at the beginning of the decision epoch before the demand realizes. In this subsection,

we relax this assumption by allowing the firm to responsively reallocate its on-hand

inventory after the demand realization. The responsive inventory reallocation enables

the firm to optimize its inventory policy after the demand uncertainty realizes, so that

the supply and demand are better matched and the tradeoff between meeting current

and inducing potential demand is better balanced. Note that when responsive inventory

reallocation is allowed, the firm should not reallocate its inventory before the demand

realizes.

At the beginning of each period, the firm chooses its inventory replenishment/disposal

quantity and the sales price. The demand then realizes, after which the firm decides

the inventory reallocation quantities between the warehouse and the customer-accessible

storage.
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To formulate the planning problem as a dynamic program, let

V r
t (I

a
t , It) = the maximum expected discounted profits in periods t, t− 1, · · · , 1, when

starting period t with a customer-accessible inventory level Iat and a total

inventory level It,

where the superscript ‘r’ refers to “responsive inventory reallocation”. Without loss of

generality, we assume the excess inventory in the last period (period 1) is discarded

without any salvage value, i.e., V r
0 (I

a
0 , I0) = 0, for any (Ia0 , I0).

We first analyze the optimal reallocation policy in period t. Assume that the order-

up-to/dispose-down-to level set by the firm before the demand realization is xt and the

realized demand is Dt. The optimal display-up-to level, xra∗t (Iat , xt, Dt), after inventory

reallocation, is given by:

xra∗t (Iat , xt, Dt)

= argmaxmin{0,Iat −Dt}≤xa
t≤xt−Dt

{−rd(xat − Iat +Dt)
+ − rw(x

a
t − Iat +Dt)

− − bxa−t

− hax
a+
t − hw(xt − xat −Dt) + αV r

t−1(x
a
t , xt −Dt)}

Hence, the optimal value functions satisfy the following recursive scheme:

V r
t (I

a
t , It) = max

(xt,dt)∈F r(Iat )
{p(dt)E{δ(p(dt), Iat , ϵt)} − c(xt − It)

+ + s(xt − It)
−

+ EDt{ max
min{0,Iat −Dt}≤xa

t≤min{Ka,xt−Dt}
{−rd(xat − Iat +Dt)

+ − rw(x
a
t − Iat +Dt)

−

− bxa−t − hax
a+
t − hw(xt − xat −Dt) + αV r

t−1(x
a
t , xt −Dt)}}},

where F r(Iat ) := {(xt, dt) : xt ≥ min{Iat , 0}, dt ∈ [d, d̄]}. Following the algebraic manipu-

lation similar to that in Equation (5.5), we have:

V r
t (I

a
t , It) =rdI

a
t + cIt + max

(xt,dt)∈F r(Iat )
{R(dt, Iat ) + rd(dt + γ(Iat ))− θ(xt − It)

− − ψxt

+ EDt{ max
min{Dt,Iat }≤yat ≤min{xt,Ka+Dt}

{−(rd + rw)(y
a
t − Iat )

− + ϕyat

+Gr
t (y

a
t −Dt, xt −Dt)}}},

with Gr
t (x, y) :=− (ha + b)x+ + α[V r

t−1(x, y)− rdx− cy].

(5.12)

Comparing the value functions (5.12) and (5.4), it is immediate that by postponing

the reallocation decision till after demand realization, the firm achieves a higher expected

138



total profit. In the following theorem, we characterize the optimal inventory replenish-

ment/disposal/reallocation and pricing policy in the model with responsive inventory

reallocation:

Theorem 5.6.1 The following statements hold for t = T, T − 1, · · · , 1:

(a) V r
t (I

a
t , It) is jointly concave and continuously differentiable in (Iat , It), whereas the

normalized value function V r
t (I

a
t , It)− rdI

a
t − cIt is decreasing in Iat and It.

(b) For any given xt and realized Dt, v
r
t (y

a
t |Iat , xt, Dt) := −(rd + rw)(y

a
t − Iat )

− + ϕyat +

Gr
t (y

a
t −Dt, xt −Dt) is concave in yat . Therefore, the optimal customer-accessible-

inventory level is:

xra∗t (Iat , xt, Dt) = argmaxmin{Dt,Iat }≤yat ≤min{xt,Ka+Dt}{v
r
t (y

a
t |Iat , xt, Dt)} −Dt.

(c) There exist two customer-accessible-inventory-level-dependent thresholds, xrt (I
a
t ) and

x̃rt (I
a
t ) (xrt (I

a
t ) ≤ x̃rt (I

a
t )), such that it is optimal to order up to xrt (I

a
t ) if and only

if It < xrt (I
a
t ), to dispose down to x̃rt (I

a
t ), if and only if It > x̃rt (I

a
t ), and to keep

the total inventory level otherwise. Moreover, there exist two customer-accessible-

inventory-level-dependent sales prices p(drt (I
a
t )) and p(d̃rt (I

a
t )), such that it is op-

timal to charge a sales price p(drt (I
a
t )) if It ≤ xrt (I

a
t ), and to charge a sales price

p(d̃rt (I
a
t )) if It ≥ x̃rt (I

a
t ).

Theorem 5.6.1(a) proves the joint concavity and continuous differentiability of the

optimal value functions. Part (b) shows that, in each period, the optimal reallocation

policy is obtained by solving a one-dimensional convex optimization after the demand

realizes. Consistent with Theorem 5.4.1, part (c) of Theorem 5.6.1 proves that it is

optimal to order if the total inventory level is low (It < xrt (I
a
t )), and to dispose if it

is high (It > x̃rt (I
a
t )), and to keep the starting inventory level otherwise. Compared

with Theorem 5.4.1, which characterizes optimal policy in the unified model, Theorem

5.6.1 demonstrates that it is possible that the firm order-and-withholds some inventory

under the optimal responsive inventory reallocation policy, because, in this case, the

firm is blessed with the flexibility to reallocate inventory after the demand uncertainty is

resolved.

As in Theorem 5.4.2, we can show that if the warehouse holding cost, hw, is high

enough, it is optimal not to hold any inventory in the warehouse; if the salvage value,
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s, is low enough, it is optimal not to dispose anything; and if the reallocation fee to

withhold inventory, rw, is high enough, it is optimal to not reallocate any customer-

accessible inventory to the warehouse.

5.7 Numerical Studies

This section reports a set of numerical studies that (a) verify the robustness of our

analytical results when Assumption 5.3.3 does not hold; (b) quantify the profit loss of

ignoring the scarcity effect of inventory when making the pricing and inventory decisions;

and (c) quantitatively evaluate the benefit of dynamic pricing in the presence of the

scarcity effect. Our numerical results demonstrate that (1) the structural results devel-

oped in our theoretical model are robust and hold for a large set of non-concave R(·, ·)

functions; (2) the impact of the scarcity effect is significant and it is higher when the

scarcity intensity, demand variability, and/or planning horizon length increase; and (3)

the value of dynamic pricing under the scarcity effect is significant and it is higher under

higher scarcity intensity, demand variability and/or shorter planning horizon.

Throughout our numerical studies, we assume that the firm can neither withhold

nor dispose its on-hand inventory for two reasons: (a) to have a clear illustration of the

optimal policy structure in a model where Assumption 5.3.3 does not hold; and (b) to

single out and highlight the impact of the focal operational elements (i.e., the scarcity

effect of inventory and the dynamic pricing strategy). We also assume that the demand

in each period is of the additive form, i.e., ϵmt = 1 almost surely and Dt = dt+γ(I
a
t )+ ϵ

a
t .

Let {ϵat }Tt=1 follow i.i.d. normal distributions with mean 0 and standard deviation σ. The

inverse demand function is linear with slope −1, i.e., p(dt) = p0−dt. We set the discount

factor α = 0.95, the unit holding cost h = 1, and the unit backlogging cost b = 10.

5.7.1 Optimal Policy Structure with Non-concave R(·, ·) Functions

In this subsection, we numerically examine whether the structural results in our the-

oretical model are robust when Assumption 5.3.3 does not hold, i.e., R(·, ·) is not jointly

concave. We have performed extensive numerical experiments to test the robustness of

our analytical results. In all our numerical experiments, although Assumption 5.3.3 is

violated, the characterizations of the optimal policy by our theoretical analysis (i.e., The-
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orem 5.4.1, Theorem 5.5.1, and Theorem 5.5.2) continue to hold. More specifically, our

numerical results verify that (a) the inventory-dependent order-up-to/list-price policy is

optimal and the order-up-to level is decreasing in the starting inventory level; (b) the

optimal sales price [price-induced demand] is decreasing [increasing] in the starting in-

ventory level; and (c) compared with an inventory system without the scarcity effect, the

firm with the scarcity effect sets lower order-up-to levels and lower sales prices. Therefore,

the structural results of our theoretical model are robust and hold for non-concave R(·, ·)

functions in all our numerical experiments.

Note that from Lemma 12(a) that if the scarcity function γ(·) contains a linear and

strictly decreasing piece, R(·, ·) is not jointly concave. Hence, we report our numerical

results for the case where γ(Iat ) =

γ0 − exp(ηIat ), for Iat ≤ 0,

γ0 − 1− ηIat , for 0 < Iat ≤ Ka,

with η > 0. It’s

clear that γ(·) is concavely decreasing and continuously differentiable in Iat for all Iat ≤ Ka,

but R(·, ·) is not jointly concave in the region {(dt, Iat ) : dt ∈ [d, d̄], Iat ∈ [0, Ka]}. We have

performed extensive numerical experiments which test many combinations of different

values of p0, γ0, c, η, σ, d, d̄, Ka, and t. In all the scenarios we examine, the predictions

of the optimal policy by our theoretical analysis (i.e., Theorem 5.4.1, Theorem 5.5.1, and

Theorem 5.5.2) continue to hold without Assumption 5.3.3. Figures 5.1 - 5.2 illustrate the

optimal order-up-to level and price-induced demand with the parameter values p0 = 30,

γ0 = 9, c = 8, η = 0.5, σ = 2, [d, d̄] = [6, 12], Ka = 18, and t = 20.
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5.7.2 Impact of Scarcity Effect

This subsection numerically studies the impact of the scarcity effect of inventory upon

the firm’s profitability by quantifying the profit loss of ignoring this effect under different

levels of scarcity effect intensity, demand variability and planning horizon length. As in

Section 5.7.1, we assume that γ(Iat ) =

γ0 − exp(ηIat ), for Iat ≤ 0,

γ0 − 1− ηIat , for 0 < Iat ≤ Ka,

where η > 0.

Note that η represents the scarcity effect intensity of the inventory system: the larger the

η, the more intense the scarcity effect. We need to evaluate the profit of a firm which

ignores the scarcity effect, Ṽ . To compute Ṽ , we first numerically obtain the optimal

policy in an inventory system without the scarcity effect and then evaluate the total

profits of this policy in an inventory system with the scarcity effect. We also evaluate the

optimal profit of a firm under the scarcity effect, V ∗. In the evaluation of V ∗ and Ṽ , we

take Iat = 0 as the reference customer-accessible inventory level. The metric of interest is

λscarcity :=
V ∗ − Ṽ

V ∗ , under different values of η, σ and t.

Our numerical experiments are conducted under the following values of parameters: p0 =

21, γ0 = 4, c = 4, η = 0.35, 0.4, 0.45, 0.5, 0.55, σ = 1, 2, 3, [d, d̄] = [6, 12], Ka = 18, and

t = 5, 10.
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Figure 5.3. Value of λscarcity: t = 5
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Figure 5.4. Value of λscarcity: t = 10

Figures 5.3 - 5.4 summarize the results of our numerical study on the impact of the

scarcity effect upon the firm’s profitability. Our results reveal that, when the scarcity
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effect is ignored, all numerical experiments exhibit a significant profit loss, which is at

least 16.41% and can be as high as 64.52%. Moreover, the impact of scarcity effect

is increasing in the scarcity intensity, demand variability, and planning horizon length.

The scarcity effect has two effects upon the firm’s profitability: (a) it decreases future

demand, and (b) it increases demand variability, because the variability of potential

demand is intensified by that of the past demand via the scarcity effect. Hence, with

higher scarcity intensity [demand variability], the first [second] effect lowers more profit

of the firm. The comparison between Figure 5.3 and Figure 5.4 implies that the impact of

the scarcity effect accumulates over time, so the profit loss of ignoring the scarcity effect is

higher under a longer planning horizon. In short, the scarcity effect of inventory matters

significantly to the firm’s profitability when the scarcity effect intensity and demand

variability is high, and the planning horizon is long. Our numerical finding confirms the

result in [145] that the profit loss is increasing in the scarcity effect intensity. On the

other hand, our numerical finding on the impact of demand variability contrasts that

in [145], which shows that the profit loss of ignoring the scarcity effect is decreasing in

demand variability. In their experiments, the potential demand is convexly decreasing in

the leftover inventory level, so higher demand variability increases the expected potential

demand and, thus, the firm’s profitability under the scarcity effect.

5.7.3 Value of Dynamic Pricing

In this subsection, we numerically explore the value of dynamic pricing under the

scarcity effect of inventory with different levels of scarcity effect intensity, demand vari-

ability and planning horizon length. As in Sections 5.7.1 - 5.7.2, we assume that γ(Iat ) =γ0 − exp(ηIat ), for Iat ≤ 0,

γ0 − 1− ηIat , for 0 < Iat ≤ Ka,

where η > 0. We need to evaluate the profit of a

firm, which adopts the optimal static pricing strategy, V̂ . To compute V̂ , we first eval-

uate the total profit of an inventory system for any fixed price pt in each t, and then

maximize over pt to select the optimal static price. Consistent with V ∗, V̂ is evaluated

at the reference customer-accessible inventory level Iat = 0. The metric of interest is

λpricing :=
V ∗ − V̂

V̂
, under different values of η, σ and t.
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Our numerical experiments are conducted under the following values of parameters: p0 =

21, γ0 = 4, c = 4, η = 0.35, 0.4, 0.45, 0.5, 0.55, σ = 1, 2, 3, [d, d̄] = [6, 12], Ka = 18, and

t = 5, 10.

0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

η Value

V
al

ue
 o

f D
yn

am
ic

 P
ric

in
g

 

 

σ=1

σ=2

σ=3

Figure 5.5. Value of λpricing: t = 5
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Figure 5.6. Value of λpricing: t = 10

Figures 5.5 - 5.6 summarize the results of our numerical study on the value of dynamic

pricing. The results show that the value of dynamic pricing is significant in the presence of

the scarcity effect. Federgruen and Heching (1999) document that the profit improvement

of dynamic pricing in a 5-period model is between 0.46%− 2.24%, when the coefficient of

variation for demand varies between 0.7 and 1.4. The numerical experiments of Figure

5.5 report a much higher profit improvement (between 0.91%−9.78%) of dynamic pricing

in a 5-period model with the coefficient of variation of demand between 0.11 and 0.33.

Thus, the scarcity effect of inventory gives rise to significantly higher value of dynamic

pricing. The value of dynamic pricing is driven by the following three effects: (a) it

achieves better match between supply and demand; (b) it helps induce higher future

demand; and (c) it dampens future demand variability. While effect (a) also improves

the performance of an inventory system without the scarcity effect, effects (b) and (c) have

their impact only upon a firm with the scarcity effect. Therefore, the value of dynamic

pricing is significantly increased by the scarcity effect. Moreover, with higher scarcity

effect intensity [demand variability], effect (b) [(c)] enhances the firm’s profitability more

significantly. The comparison between Figure 5.5 and Figure 5.6 implies that the value of

dynamic pricing decreases over time. This is consistent with the findings in Federgruen
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and Heching (1999) that the optimal dynamic pricing policy converges to the optimal

static pricing policy, as the planning horizon length goes to infinity. In short, the value

of dynamic pricing under the scarcity effect of inventory is most significant when the

intensity of scarcity effect and demand variability is high, and the planning horizon length

is moderate.

To conclude this section, we remark that all the numerical results and insights in this

section are robust and hold for (a) the general demand form, Equation (5.1), and (b) a

large variety of different inverse demand functions (i.e., p(·)) and scarcity functions (i.e.,

γ(·)) that give rise to concave or non-concave R(·, ·) functions.

5.8 Summary and Extension

We conclude this chapter with a summary of the main results and managerial insights

derived from our model and some thoughts on a possible direction of future research.

This chapter is the first in the literature to study the joint pricing and inventory man-

agement model under the scarcity effect of inventory. Demand is modeled as a decreasing

stochastic function of both price and customer-accessible inventory level. We propose

a unified model in which the firm has several operational flexibilities to hedge against

the risk of the stochastic inventory-dependent demand: (a) dynamic pricing, through

which the firm can dynamically adjust its sales price; (b) inventory withholding, through

which the firm can withhold part of its inventory from customers; and (c) inventory dis-

posal, through which the firm can dispose part of its surplus inventory. We show that a

customer-accessible-inventory-dependent order-up-to/dispose-down-to/display-up-to list-

price policy is optimal. The order-up-to/display-up-to and list-price levels are decreasing

in the customer-accessible inventory level, because of the negative dependence of de-

mand on inventory. When the scarcity effect of inventory is sufficiently strong, the firm

can strategically benefit from the scarcity effect by displaying no positive inventory and

making every customer wait, because the revenue generated by the strong scarcity effect

dominates the backlogging cost of the wait-list.

When the warehouse holding cost [salvage value] is sufficiently high [low], it is too

costly to withhold [dispose] inventory, and the unified model is reduced to the model

without inventory withholding [disposal]. The model without inventory withholding [dis-

posal] generates additional results and sharper insights. In the model without inventory
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withholding/disposal, we show that optimal sales prices and order-up-to levels are lower

under the scarcity effect of inventory than those under inventory-independent demand.

Higher operational flexibility (a higher salvage value or the inventory withholding oppor-

tunity), however, helps the firm hedge against the overstocking risk and, hence, drives

the firm to set higher order-up-to/display-up-to levels and sales prices.

In addition, responsive inventory reallocation is another effective way to deal with the

scarcity effect of inventory. The reallocation flexibility after demand realization enables

the firm to better hedge against the demand uncertainty and balance the tradeoff between

meeting current demand and inducing potential demand. In this case, since the firm can

reallocate its on-hand inventory after demand realizes, it may be optimal to order-and-

withhold when the realized demand is small.

We perform extensive numerical studies to demonstrate (a) the robustness of our

analytical results, (b) the impact of the scarcity effect upon the profit of the firm, and

(c) the value of dynamic pricing under the scarcity effect of inventory. Our numerical

results show that the analytical characterizations of the optimal policies in our model

are robust and hold for non-concave R(·, ·) functions in all our experiments. The impact

of scarcity effect upon the firm’s profit is two-fold: (a) it decreases future demand, and

(b) it increases demand variability. Hence, the profit loss of ignoring the scarcity effect

is higher under higher scarcity intensity (via effect (a)), higher demand variability (via

effect (b)), and longer planning horizon (via both effects). The value of dynamic pricing

under the scarcity effect is three-fold: (a) it better matches supply and demand; (b) it

helps induce higher future demand; and (c) it dampens future demand variability. Effect

(b) [(c)] leads to higher value of dynamic pricing under higher scarcity intensity [demand

variability]. Moreover, the optimal dynamic pricing policy converges to the optimal static

pricing policy as the planning horizon length goes to infinity, so the value of dynamic

pricing decreases over time.

Finally, we remark that all the analytical results in this chapter can be easily extended

to the infinite horizon discounted model with the standard argument that demonstrates

the preservation of the structural properties as the planning horizon length goes to infinity.

In this subsection, we propose a possible extension of our work: the analysis of the

model that encompasses both the scarcity effect and the promotional effect of inventory.

146



As discussed in Section 5.2, the displayed inventory has both the service and the

promotional effects (see, e.g., [34, 35]), because a higher customer-accessible inventory

level creates a stronger visual impact and customers infer a greater chance to get the

product. In the literature, this phenomenon is also called the billboard effect and the

shelf-space effect (e.g. [39, 18, 53]).

It is interesting to analyze the model which incorporates both the scarcity effect of

pre-replenishment inventory and the promotional effect of post-replenishment inventory.

More specifically, we assume that the demand in period t, Dt = δ(pt, I
a
t , x

a
t , ϵt) = (d(pt)+

γ1(I
a
t )+γ2(x

a
t ))ϵ

m
t +ϵat , where γ1(·) is a decreasing function of pre-replenishment customer-

accessible inventory level Iat , and γ2(·) is an increasing function of post-replenishment

customer-accessible inventory level xat . As before, assume that d(·) is a strictly decreasing

function of sales price pt, E{ϵmt } = 1 and E{ϵat } = 0.

It is challenging to characterize the optimal joint pricing and inventory management

policy under this generalized inventory-dependent demand. In particular, the effect of

inventory on the firm’s profitability is more involved and it is unclear how to strike a

balance between the overage and underage risks in this model. We will explore this

problem in our future research.
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6. Comparative Statics Analysis Method for Joint Pricing and

Inventory Management Models

6.1 Introduction

1Comparative statics analysis is integral to studying an inventory management sys-

tem under dynamic pricing, because it delivers important insights regarding how the

system should optimally respond to changes in the exogenous market condition and/or

internal state over the planning horizon. For instance, a firm under an uncertain market

environment often faces the conundrum that whether it should increase or decrease the

sales price and order-up-to level under a higher procurement cost. Analogously, it is also

important to modify the price and inventory policies in accordance to firm-level strategic

changes like contracting with an additional supplier or expanding the target customer

segments. As an essential tool in economics, engineering and operations management,

comparative statics analysis offers a systematic method to study these challenges that

are both common and essential in inventory management models under dynamic pricing.

More specifically, we consider the optimal pricing and replenishment policies in a gen-

eral periodic-review joint pricing and inventory management model with multiple cus-

tomer segments and supply channels under a fluctuating market environment. The firm

replenishes its inventory from a portfolio of supply channels with different cost functions.

The cost function of each supply channel is determined by a supply-channel-dependent

reference procurement cost (e.g., the raw material procurement cost in each supply chan-

nel). The customer market is segmented into several independent classes with different

demand functions. The firm charges a sales price to each demand segment in each deci-

sion period. The demand function of each demand segment is determined by a demand-

segment-dependent market size. Both the reference procurement cost of each supply

channel and the market size of each demand segment evolve according to an underlying

exogenous Markov process. Hence, our joint pricing and inventory management model

captures three important features in today’s competitive and unstable market: demand

1This chapter is based on the author’s earlier work [192].

148



segmentation, supply diversification, and market environment fluctuation. In this quite

general dynamic pricing and inventory management model, comparative statics analysis

plays an essential role in the characterization of (a) the optimal pricing and inventory

policies, and (b) the impact of market environment fluctuation, demand segmentation,

and supply diversification upon the optimal sales prices and order quantities.

There are two standard methods to perform comparative statics analysis in the eco-

nomics and operations management literature: (a) the implicit function theorem (IFT)

approach, and (b) the monotone comparative statics (MCS) approach.

The IFT approach characterizes the derivative of the optimizer with respect to the

parameters by applying the implicit function theorem to the first-order condition. In order

to apply this approach, it is clear from the assumptions of the implicit function theorem

that (a) the objective function needs to be twice continuously differentiable with respect

to the complete vector of decision variables and parameters, and (b) the Hessian of the

objective function with respect to the decision variables at the optimizer needs to be non-

degenerate. In our general joint pricing and inventory management model, as we will show

later, condition (a), in general, is not satisfied, whereas condition (b) is very difficult to

check. Moreover, the IFT approach is not scalable, i.e., the analytical characterization of

the derivatives via the implicit function theorem soon becomes intractable as the number

of demand segments and supply channels increases. See, e.g., [27, 168]. In short, the IFT

approach is not effective in performing comparative statics analysis in our model.

The MCS approach studies the impact of a parameter change on the marginal value

of decision variables for objective functions defined on lattices. The MCS approach is

very powerful in comparative statics analysis, because it does not require any regularity

assumption regarding the objective function. In order to apply the MCS approach, the

objective function needs to satisfy a certain form of complementarity conditions (e.g.,

joint supermodularity or, more generally, the single crossing property). Another feature

of the MCS approach is that, all of the optimal decision variables should be monotone (in

strong set order) in parameters. In our joint pricing and inventory management model,

either the joint supermodularity or the single crossing property is very difficult, if not

impossible, to establish in each decision epoch. Moreover, as we will show later, it is

possible in our model that only part of the optimal decision variables (i.e., sales prices
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and order quantities) are monotone in the market parameters. Hence, the MCS approach

does not apply to our model.

The limitations of the IFT and MCS approaches motivate us to develop a new method

for the comparative statics analysis of our general joint pricing and inventory manage-

ment model with demand segmentation, supply diversification, and market environment

fluctuation. The new method provides rigorous proofs of comparative statics analysis and

structural properties in our model. More specifically, our method proves the desired com-

parative statics results by contradiction and carefully analyzes how changes in parameter

values impact the marginal value of each decision variable (i.e., the first-order partial

derivative of the objective function). We identify a simple yet powerful lemma which

translates the monotonicity relationship between the optimizers into that between the

partial derivatives of the objective function under different parameter values. Our com-

parative statics method employs this lemma and some model-specific structural properties

(e.g., the concavity of the objective function and/or the supermodularity of the objective

function in one decision variable and one parameter) to construct a contradiction by it-

eratively linking the monotone relationship between the optimizers and that between the

partial derivatives of the objective function. Note that the structural properties needed

by our approach are weaker than those required by the IFT and MCS approaches (e.g.,

second-order continuous differentiability and complementarity). The lemma also enables

us to make componentwise comparisons between the optimizers under different param-

eter values, because the monotonicity of the objective function’s partial derivative with

respect to one decision variable at the optimizer of interest is independent of the values

of other decision variables. Hence, unlike the IFT approach, our new method is scalable;

and unlike the MCS approach, our new method enables us to perform comparative statics

analysis in a model where only part of the optimal decision variables are monotone in the

parameter.

To perform comparative statics analysis in each decision epoch of our general joint

pricing and inventory management model, we integrate our new method with the stan-

dard backward induction argument to iteratively link the comparison between optimizers

and that between partial derivatives of the value functions and objective functions. We

characterize the optimal joint pricing and ordering policy for an arbitrary number of

demand segments and supply channels as a threshold policy, under which there exists a
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market-environment-dependent threshold for each demand segment [supply channel] such

that it is optimal to sell to [order from] this segment [channel] if and only if the starting

inventory level is above [below] its corresponding threshold. Moreover, both the optimal

sales price for each demand segment and the optimal order quantity through each supply

channel are decreasing in the starting inventory level of the firm. We also show that the

optimal sales prices and order quantities are increasing in the market size. When the

reference procurement costs of some supply channels increase, the firm increases the sales

price in each demand segment, and the order quantities from the supply channels with

unchanged reference procurement costs. Each firm’s optimal order quantity may not be

monotone in its own reference procurement cost. Serving a new demand segment drives

the firm to increase its sales prices and order quantities, whereas expanding the supply

pool has the opposite effect: it prompts the firm to decrease its sales prices and order

quantities.

Our method is robust and applicable to comparative statics analysis in some other

settings. For example, we consider joint price and effort competition games in which

an arbitrary number of firms compete on price and effort level. More specifically, we

study two competition models: (a) the effort-level-first competition where the firms first

compete on effort and then on price, and (b) the simultaneous competition where the firms

simultaneously compete on price and effort. Each firm’s demand is increasing in the total

effort level of all firms. As we will show later, the IFT approach is not scalable whereas

the complementarity conditions required by the MCS approach are not satisfied, so the

standard IFT and MCS approaches do not work in this model. Our new comparative

statics method enables us to prove the existence and uniqueness of the equilibrium in the

effort-level-first competition. In both competition models, we show that the equilibrium

total effort level, and the equilibrium sales price and demand volume of each firm are

increasing in the market index of any firm. We also identify the fat-cat effect in this

setting, i.e., the equilibrium total effort level and the equilibrium price and demand of

each firm in the effort-level-first competition are higher than their counterparts in the

simultaneous competition.

To sum up, we propose a new method for comparative statics analysis in a general

joint pricing and inventory management model with demand segmentation, supply di-

versification, and market environment fluctuation. This new comparative statics method
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requires less restrictive assumptions than the standard IFT and MCS approaches. More-

over, our method makes componentwise comparisons between optimizers with different

parameter values, so it is well scalabile, and is capable of performing comparative statics

analysis in a model where some of the optimal decision variables are not monotone in

the parameter. The proposed method also applies to the comparative statics analysis in

some other settings where the standard approaches do not work.

The rest of the chapter is organized as follows. We position this chapter in the related

literature in Section 6.2. Section 6.3 presents our new method for comparative statics

analysis in joint pricing and inventory management models. In Section 6.4, we apply

the proposed method to study a general joint pricing and inventory management model

with demand segmentation, supply diversification, and market environment fluctuation.

Section 6.5 demonstrates the applicability of our method in competition games. We

conclude this chapter by summarizing our method and findings in Section 6.6. Most of

the proofs are relegated to Appendix E.1. Throughout this chapter, we use ∂ to denote the

derivative operator of a single variable function, and ∂x to denote the partial derivative

operator of a multi-variable function with respect to variable x. For any multivariate

continuously differentiable function f(x1, x2, · · · , xn) and x̃ := (x̃1, x̃2, · · · , x̃n) in f(·)’s

domain, we use ∂xi
f(x̃1, x̃2, · · · , x̃n) to denote ∂xi

f(x1, x2, · · · , xn)|x=x̃ for any i. For any

two n-dimensional vectors v = (v1, v2, · · · , vn) and v̂ = (v̂1, v̂2, · · · , v̂n), we use v̂ > v to

denote that v̂i ≥ vi for each 1 ≤ i ≤ n, and v̂ ̸= v.

6.2 Related Research

This chapter is built upon two streams of literature: (a) the method and application

of comparative statics analysis, and (b) dynamic pricing and inventory management.

Comparative statics analysis is formalized in the economics literature by [95] and [144],

where the classical IFT approach is introduced. The MCS approach is first established

by [164]. He shows that the maximizer of a supermodular function is increasing in

the parameters in the strong set order sense. [126] derive a necessary and sufficient

condition (i.e., quasi-supermodularity and the single crossing property) for the solution

set of an optimization problem to be monotone in parameters. [15] generalizes this result

to stochastic optimization problems and characterizes necessary and sufficient conditions,

based on the properties of utility functions and probability distributions, for comparative
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statics predictions to hold. [45] establish a new preservation property of supermodularity

in a class of two-dimensional parametric optimization problems, where the feasible sets

may not be lattices. Comparative statics analysis in game theoretic models has also been

extensively studied in the literature (e.g., [124, 125, 24]). This literature mainly focuses

on supermodular games. We refer interested readers to the monograph by [165] that

coherently synthesizes the theory and applications of the MCS approach.

There is extensive application of comparative statics analysis in the operations man-

agement literature. See, e.g., [151, 152, 98, 71, 111]. The majority of the papers in this

stream of research apply the IFT and MCS approaches to establish comparative statics

results and the structural properties of their models. [27] is a notable exception that de-

velops a novel analytical approach for the comparative statics analysis in multi-product,

multi-resource newsvendor networks with responsive pricing. In their setting, the IFT

approach is prohibitively difficult, whereas their new approach exploits the relationship

between convex stochastic orders and dual variables, and does not suffer from the curse

of dimensionality. This chapter contributes to this line of research by developing a new

analytical method for comparative statics analysis in a general joint pricing and inventory

management model. The major strength of the proposed method lies in the following

three aspects: (a) it does not need the conditions required by the IFT and MCS ap-

proaches that are restrictive in dynamic pricing and inventory management models (e.g.,

second-order continuous differentiability and complementarity); (b) it does not suffer from

the curse of dimensionality; and (c) it is amenable for comparative statics analysis in a

model where only part of the optimal decision variables are monotone in the parameter.

This work is also related to the growing literature on the dynamic pricing and in-

ventory management problem under general stochastic demand. [70] provide a general

treatment of this problem, and show the optimality of a list-price/order-up-to policy.

This line of literature has grown rapidly since [70]. For example, [47, 48, 49] analyze the

joint pricing and inventory control problem with fixed set-up cost, and show that (s, S, p)

policy is optimal for finite horizon, infinite horizon and continuous review models. [52]

and [96] study the joint pricing and inventory control problem under lost sales. In the

case of a single unreliable supplier with random yield, [112] show that supply uncertainty

drives the firm to charge a higher price. When the replenishment leadtime is positive, the

joint pricing and inventory control problem under periodic review is extremely difficult.
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For this problem, [136] partially characterize the structure of the optimal policy, whereas

[26] develop a simple heuristic that resolves the computational complexity. Several papers

in this stream of literature also take into consideration consumer behaviors. [179] study

the joint pricing and inventory management model in which customers bid for units of

a firm’s product over an infinite horizon. [97] characterize the optimal pricing and pro-

duction policy under customer subscription and retention/attrition. [110] establish the

concavity of the objective function in the nested logit model, and apply this model to

analyze the joint pricing and inventory management problem with multiple products.

The literature on the joint pricing and inventory management problem under a fluctuat-

ing market environment is scarce. To the best of our knowledge, [173] is the only paper

which studies the dynamic pricing and inventory management problem under fluctuat-

ing procurement costs. We refer interested readers to [50] for a comprehensive survey

on joint pricing and inventory control models. This chapter contributes to this stream

of research by developing a new analytical method for the comparative statics analysis

in a general joint pricing and inventory management model with demand segmentation,

supply diversification, and market environment fluctuation.

6.3 A New Comparative Statics Method

In this section, we first give an example to illustrate why the IFT and MCS approaches

are not applicable for comparative statics analysis in our general joint pricing and inven-

tory management model. We then develop a new analytical method for comparative

statics analysis therein.

6.3.1 An Illustrative Example

In this subsection, we give an example that clearly illustrates why the IFT and MCS

approaches do not apply to the general joint pricing and inventory management model

with demand segmentation, supply diversification, and market environment fluctuation.

Let fi(yi) be a first-order continuously differentiable and strictly concave function on

Yi = [Ai, Bi] for i = 1, 2, · · · , p, and gi(yi|γ) be continuously differentiable and strictly

concave in yi and submodular in (yi, γ), where yi ∈ Yi = [Ai, Bi] and γ ∈ Γ ⊂ [γ, γ̄], for

each i = p+1, p+2, · · · , p+q. Moreover, assume that h(y0|γ) is continuously differentiable
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and concave in y0 and supermodular in (y0, γ), where y0 ∈ R and γ ∈ Γ. Let λi be a

positive constant for any i = 1, 2, · · · , p+q. Consider the following optimization problem:

(y∗1(γ), y
∗
2(γ), · · · , y∗p(γ), y∗p+1(γ), · · · , y∗p+q(γ)) =argmaxy∈YF (y|γ),

s.t. F (y|γ) =
p∑

i=1

fi(yi) +

p+q∑
i=p+1

gi(yi|γ) + h(

p+q∑
i=1

λiyi|γ),

Y =Y1 × Y2 × · · · × Yp+q, γ ∈ Γ.

(6.1)

The objective function F (·|γ) in the optimization problem (6.1) is strictly jointly concave

in y = (y1, y2, · · · , yp+q). Hence, the optimizer y∗(γ) = (y∗1(γ), y
∗
2(γ), · · · , y∗p+q(γ)) is well

defined and unique. As we will show in Section 6.4, several optimization problems in

our general joint pricing and inventory management model can be reduced to a convex

program similar to (6.1). A natural question on (6.1) is: how does y∗(γ) change with γ?

We have the following lemma that addresses this question.

Lemma 15 For the optimization problem defined in (6.1), y∗i (γ) is increasing in γ, for

all 1 ≤ i ≤ p.

Lemma 15 characterizes the impact of the parameter γ upon the optimizer {y∗i (γ)}1≤i≤p.

Note that Lemma 15 does not give any comparative statics result for {y∗i (γ)}p+1≤i≤p+q,

because it is easy to construct functions {fi(·), gi(·|·), h(·|·)} and feasible set Y × Γ, such

that y∗i (·) is not monotone in γ for some p + 1 ≤ i ≤ p + q. See Appendix E.2 for an

example. We also remark that the assumption that fi(·)’s and gi(·|γ)’s are strictly concave

is mainly for expositional convenience. When this assumption is relaxed to that they are

weakly concave, the optimizers may not be unique and we select the lexicographically

smallest one. In this case, Lemma 15 still holds and our new comparative statics method

is also valid.

We now explain in detail why the IFT and MCS approaches cannot be used to prove

Lemma 15. The first issue related to the IFT approach is that F (·|·) may not be twice

continuously differentiable on its domain. For example, if Γ is finite, F (·|·) is not twice

continuously differentiable. Now we assume that Γ is an interval and F (·|·) is twice

continuously differentiable. For any optimizer y∗(γ) that lies in the interior of Y ×Γ, the
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implicit function theorem implies that y∗(γ) is continuously differentiable in γ, and the

derivative is given by:
dy∗

dγ
= −Ω−1V, (6.2)

where Ω is a (p+ q)× (p+ q) matrix with Ωi,j = λiλj∂
2
y0
h(
∑p+q

l=1 λly
∗
l (γ)|γ) for all i ̸= j,

Ωi,i = f ′′
i (y

∗
i (γ)) + (λi)

2∂2y0h(
∑p+q

l=1 λly
∗
l (γ)|γ) for 1 ≤ i ≤ p, and Ωi,i = ∂2yigi(y

∗
i (γ)|γ) +

(λi)
2∂2y0h(

∑p+q
l=1 λly

∗
l (γ)|γ) for p + 1 ≤ i ≤ p + q, and V is a (p + q)-vector with Vi =

λi∂y0∂γh(
∑p+q

l=1 λly
∗
l (γ)|γ) for 1 ≤ i ≤ p, and

Vi = ∂yi∂γgi(y
∗
i (γ)|γ) + λi∂y0∂γh(

∑p+q
l=1 λly

∗
l (γ)|γ) for p + 1 ≤ i ≤ p + q. As p and q

increase, however, computing Ω−1 in (6.2) suffers from the curse of dimensionality, and,

in general, we are unable to characterize the sign of dy∗i / dγ for each i. When y∗(γ)

is on the boundary of Y (i.e., some of the constraints are binding), the IFT approach

can be generalized to the perturbation analysis approach (see, e.g., [76]), which, again,

determines the sign of the derivative of y∗(γ) with respect to γ by characterizing the

inverse of Hessian, and, hence, suffers from the curse of dimensionality. Thus, it is very

difficult, if not impossible, to perform comparative statics analysis in (6.1) by the IFT

approach.

The MCS approach also fails to conduct the comparative statics analysis in (6.1).

More specifically, it’s clear that F (·|·) is not jointly supermodular in (y, γ), nor does

it satisfy the single crossing property in (y; γ). By [126], in order to apply the MCS

approach, it is necessary that the objective function should satisfy the single crossing

property with respect to the decision vector and the parameter. Moreover, the MCS ap-

proach, when applicable, always gives a comparative statics prediction for all the decision

variables of an optimization problem (see, e.g., [165]). In our optimization problem (6.1),

however, it is easy to specify functions {fi(·), gi(·|·), h(·|·)} and feasible set Y × Γ, such

that y∗i (·) is not monotone in γ for some p + 1 ≤ i ≤ p + q, as shown by the example in

Appendix E.2. Therefore, the MCS approach does not apply to the comparative statics

analysis in (6.1).

6.3.2 Proof of Lemma 15 with Our New Method

Since the standard IFT and MCS approaches are not applicable to conducting com-

parative statics analysis in (6.1), we develop a new method to prove Lemma 15. Before
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presenting the proof of Lemma 15 and our new method in detail, we introduce a lemma

that plays a key role therein:

Lemma 16 Let Fi(z, Zi) be a first-order differentiable function in (z, Zi) for i = 1, 2,

where z ∈ [z, z̄] (z and z̄ might be infinite) and Zi ∈ Zi, where Zi is the feasible set of

Zi. For i = 1, 2, let

(z∗i , Z
∗
i ) := argmax(z,Zi)∈[z,z̄]×Zi

Fi(z, Zi),

be the optimizer of Fi(·, ·). If z∗1 < z∗2, we have: ∂zF1(z
∗
1 , Z

∗
1) ≤ ∂zF2(z

∗
2 , Z

∗
2).

Proof. z∗1 < z∗2 , so z ≤ z∗1 < z∗2 ≤ z̄. Hence, ∂zF1(z
∗
1 , Z

∗
1)

= 0 if z∗1 > z,

≤ 0 if z∗1 = z;

and

∂zF2(z
∗
2 , Z

∗
2)

= 0 if z∗2 < z̄,

≥ 0 if z∗2 = z̄,

i.e., ∂zF1(z
∗
1 , Z

∗
1) ≤ 0 ≤ ∂zF2(z

∗
2 , Z

∗
2). Q.E.D.

Lemma 16 is straightforward, but it is a powerful tool in our new comparative statics

method, as illustrated by the proof of Lemma 15:

Proof of Lemma 15. We show by contradiction, i.e., we derive a contradiction

under the assumption that y∗i (γ) > y∗i (γ̂) for some 1 ≤ i ≤ p and γ < γ̂. Without loss of

generality, we choose i = 1, i.e.,

y∗1(γ) > y∗1(γ̂). (6.3)

Denote y∗0(γ) :=
∑p+q

j=1 λjy
∗
j (γ) for all γ ∈ Γ. Lemma 16 implies that ∂y1F (y

∗(γ)|γ) ≥

∂y1F (y
∗(γ̂)|γ̂), i.e.,

∂y1f1(y
∗
1(γ)) + λ1∂y0h(y

∗
0(γ)|γ) = ∂y1F (y

∗(γ)|γ) ≥∂y1F (y∗(γ̂)|γ̂)

=∂y1f1(y
∗
1(γ̂)) + λ1∂y0h(y

∗
0(γ̂)|γ̂).

(6.4)

The strict concavity of f1(·) yields that ∂y1f1(y∗1(γ)) < ∂y1f1(y
∗
1(γ̂)). Hence,

∂y0h(y
∗
0(γ)|γ) > ∂y0h(y

∗
0(γ̂)|γ̂). (6.5)

Since h(·|·) is supermodular in (y0, γ) and concave in y0, y
∗
0(γ) < y∗0(γ̂). Therefore,

there exists a j, 2 ≤ j ≤ p+ q, such that y∗j (γ) < y∗j (γ̂). (6.6)

If 2 ≤ j ≤ p, we invoke Lemma 16 again, so y∗j (γ) < y∗j (γ̂) implies that ∂yjF (y
∗(γ)|γ) ≤

∂yjF (y
∗(γ̂)|γ̂), i.e.,

∂yjfj(y
∗
j (γ)) + λj∂y0h(y

∗
0(γ)|γ) = ∂yjF (y

∗(γ)|γ) ≤∂yjF (y∗(γ̂)|γ̂)

=∂yjfj(y
∗
j (γ̂)) + λj∂y0h(y

∗
0(γ̂)|γ̂).
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Since ∂y0h(y
∗
0(γ)|γ) > ∂y0h(y

∗
0(γ̂)|γ̂) by (6.5), ∂yjfj(y

∗
j (γ)) < ∂yjfj(y

∗
j (γ̂)). Since fj(·) is

strictly concave, y∗j (γ) < y∗j (γ̂) implies that

∂yjfj(y
∗
j (γ)) > ∂yjfj(y

∗
j (γ̂)), which contradicts ∂yjfj(y

∗
j (γ)) < ∂yjfj(y

∗
j (γ̂)). (6.7)

Analogously, if p + 1 ≤ j ≤ p + q in (6.6), Lemma 16 implies that ∂yjF (y
∗(γ)|γ) ≤

∂yjF (y
∗(γ̂)|γ̂), i.e.,

∂yjgj(y
∗
j (γ)|γ) + λj∂y0h(y

∗
0(γ)|γ) = ∂yjF (y

∗(γ)|γ) ≤∂yjF (y∗(γ̂)|γ̂)

=∂yjgj(y
∗
j (γ̂)|γ̂) + λj∂y0h(y

∗
0(γ̂)|γ̂).

Since ∂y0h(y
∗
0(γ)|γ) > ∂y0h(y

∗
0(γ̂)|γ̂) by (6.5), ∂yjgj(y

∗
j (γ)|γ) < ∂yjgj(y

∗
j (γ̂)|γ̂). Since

gj(·|·) is submodular in (yj, γ) and strictly concave in yj, y
∗
j (γ) < y∗j (γ̂) implies that

∂yjgj(y
∗
j (γ)|γ) > ∂yjgj(y

∗
j (γ̂)|γ̂), which contradicts ∂yjgj(y

∗
j (γ)|γ) < ∂yjgj(y

∗
j (γ̂)|γ̂).

(6.8)

Combining the contradictions of (6.7) and (6.8), we have y∗1(γ) ≤ y∗1(γ̂). Repeat the

above argument for 1 < i ≤ p, it follows that y∗i (γ) ≤ y∗i (γ̂) for all 1 ≤ i ≤ p. Q.E.D.

As we can see from the proof of Lemma 15, our new method employs Lemma 16

to make componentwise comparisons between the optimizers under different parameter

values. More specifically, the method consists of five steps: Step (a). For each of the

focal decision variable with some potential comparative statics result, we first assume, to

the contrary, that the comparative statics prediction of this decision variable is reversed

for some parameter values (e.g., inequality (6.3) in the proof of Lemma 15). Step (b).

We invoke Lemma 16 to characterize some monotone relationships of the partial deriva-

tives of the objective function with respect to this decision variable at these parameter

values (e.g., inequality (6.4) in the proof of Lemma 15). Step (c). Using some model

specific properties of the objective function (e.g., the supermodularity in one decision

variable and the parameter, componentwise concavity, and first-order differentiability),

such monotone relationships of the partial derivatives can be translated back into the

monotone relationship of another optimal decision variable at the given parameter values

(e.g., inequality (6.6) in the proof of Lemma 15). Step (d). Repeating steps (b) - (c),

we employ Lemma 16 to iteratively establish the monotone relationship of partial deriva-

tives and that of some other optimal decision variables at the given parameter values.

This iterative procedure is stopped when either (i) the desired comparative statics result
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for the focal decision variable is proved by contradiction (e.g., inequalities (6.7) and (6.8)

in the proof of Lemma 15), or (ii) no further monotone relationship can be established

(e.g., the case in which we assume that y∗i (γ) > y∗i (γ̂) or y∗i (γ) < y∗i (γ̂) for γ < γ̂ and

p + 1 ≤ i ≤ p + q, see Appendix E.2). Step (e). We repeat the same iterative pro-

cedure, i.e., steps (a) - (d), for each focal decision variable to obtain its corresponding

comparative statics result.

Note that there are two stopping conditions for the iterative procedure in Step (d).

When the stopping condition (ii) applies, by our experience, it is very likely that there

exist some model specifications such that the desired comparative statics result for the

focal decision variable does not hold. For example, in the optimization problem (6.1),

no contradiction can be reached under any monotone comparative statics prediction of

y∗i (·) (p + 1 ≤ i ≤ p + q) with respect to γ for general {fi(·), gi(·|·), h(·|·)} functions.

In Appendix E.2, we discuss in detail on how the iterative procedure in Step (d) is

stopped without reaching a contradiction in this case, and give an example in which

y∗i (γ) (p + 1 ≤ i ≤ p + q) is not monotone in γ. Hence, our new method not only helps

prove the comparative statics results when they exist, but also helps identify cases in

which comparative statics results do not hold for some decision variables.

Our method proves the desired comparative statics result by contradiction. The

essence is to construct a contradiction by iteratively linking the monotone relationship

between the optimizers and that between the partial derivatives. Though simple, Lemma

16 plays a crucial role in this process, because, in Step (b), it translates the monotonic-

ity of the focal decision variable (in the parameter) into that of the partial derivative

of the objective function with respect to this decision variable at the optimizing point.

Hence, in Step (d), Lemma 16 enables us to iteratively link the monotone relationship

of optimizers and that of partial derivatives, which is the key to establish a contradiction

in our method. The main benefit of Lemma 16 is that the monotonicity of the partial

derivatives with respect to the focal decision variable is irrelevant to the values of other

decision variables at the optimizing point. This benefit allows us to perform comparative

statics analysis componentwisely in Step (e). Hence, our method enables us to perform

comparative statics analysis in a model where only part of the optimal decision variables

are monotone in the parameter, and it is scalable. The componentwise comparison be-

tween the optimizers is also the key difference between our method and the IFT and
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MCS approaches, both of which involve the analysis of some properties of the objective

function in terms of the whole decision vector (e.g., the Hessian and/or the joint super-

modularity of the objective function). Moreover, since the objective functions in Lemma

16, Fi(·, ·) (i = 1, 2), can be completely different, our method can be used to compare the

optimal decisions in different models. See, e.g., the proofs of Theorems 6.4.7, 6.4.8, and

6.5.5 in Appendix E.1.

Although our method is fundamentally different from the IFT and MCS approaches,

it shares some similarity with these two standard approaches. As the IFT approach, the

proposed method studies the first-order (KKT) condition at the optimizer of interest.

Hence, the objective function needs to satisfy the first-order continuous differentiabil-

ity condition, but not necessarily the second-order continuous differentiability condition.

Analogous to the MCS approach, our new method analyzes the impact of the parameter

upon the marginal value of each decision variable in detail, so that we can translate the

monotonicity of partial derivatives with respect to one decision variable back into the

monotonicity of another optimal decision variable. Thus, in order to obtain a contradic-

tion (and a comparative statics result), our method requires the objective function to be

supermodular in the parameter and each of the focal decision variables (e.g., F (y|γ) is

supermodular in (yi, γ) for each 1 ≤ i ≤ p in our example), but not necessarily jointly

supermodular or satisfying the single crossing property. The above two condition relax-

ations enhance the applicability of our method in the general joint pricing and inven-

tory management model with demand segmentation, supply diversification, and market

environment fluctuation, where the second-order continuous differentiability and/or, in

particular, the joint supermodularity of the objective function in each decision epoch are

hard, if not impossible, to establish. In the next section, we discuss in detail how the

new method facilitates the comparative statics analysis in this model. We also demon-

strate the applicability of our method in game theoretic models of joint price and effort

competition in Section 6.5.

6.4 Application of the New Comparative Statics Method in a General Joint

Pricing and Inventory Management Model

In this section, we employ our new comparative statics method to study a general

joint pricing and inventory management model with demand segmentation, supply di-
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versification, and market environment fluctuation. The comparative statics analysis is

essential to studying this model, because it enables us to characterize the optimal pricing

and replenishment policy, and the impact of demand segmentation, supply diversification,

and market environment fluctuation therein. The analysis in this section demonstrates

the applicability of our new method in joint pricing and inventory management models.

6.4.1 Model

We consider a T -period joint pricing and inventory management model, in which a

firm replenishes inventory from a portfolio of supply channels and serves multiple demand

segments with endogenous sales prices. The firm maximizes its total discounted profit

over the planning horizon by optimizing its joint pricing and inventory policy in each

period. The periods are indexed backwards as {T, T − 1, · · · , 1} and the discount factor

is denoted as α ∈ (0, 1).

We assume that the customer market is completely segmented, i.e., each customer in

the market unambiguously belongs to a specific demand segment. Complete segmentation

applies to the settings where customers are classified based on the differences in, e.g., (a)

geographic area, (b) the need for product feature, (c) socioeconomic attributes, and (d)

business sector (in B2B market) (see, e.g., [10, 139]). There are n demand segments in

the market, and we denote them as N := {1, 2, · · · , n}. In period t, the firm selects a

vector of prices, pt = (p1t , p
2
t , · · · , pnt ), for different demand segments. More specifically,

for each i ∈ N , pit ∈ [pimin, p
i
max] is the sales price for customers in segment i, where

pimin > 0 [pimax ≤ +∞] is the minimum [maximum] allowable price for this segment. We

use Λi
t > 0 to denote the expected maximum demand (i.e., the market size) from segment

i in period t. Let Λt := (Λ1
t ,Λ

2
t , · · · ,Λn

t ) be the market size vector. Since customers are

completely segmented, the demand from segment i is independent of the sales price in

segment j (i ̸= j). Specifically, we assume that, given the sales price pit and the market

size Λi
t, the demand from segment i in period t is given as follows:

Di
t(p

i
t,Λ

i
t) = Λi

td
i(pit)ςt + ϵit. (6.9)

In (6.9), di(pit) denotes the probability that an arriving customer in segment i will make

a purchase when facing a sales price pit, where d
i(·) is a strictly decreasing function of

pit. A typical example of this specification is the independent reservation price model
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(e.g., s[83]). ςt is the demand-segment-independent multiplicative market size pertur-

bation, which represents the common demand shock (e.g., global economic changes)

on each segment. We assume that {ςt}1t=T are i.i.d. positive random variables inde-

pendent of Λt with mean 1. The additive random perturbation term ϵit captures all

other uncertainties not explicitly considered in this model. We assume that {ϵit}1t=T

are i.i.d. continuous random variables independent of Λt and ςt with mean 0. Hence,

Di
t(p

i
t,Λ

i
t) follows a continuous distribution for any given (pit,Λ

i
t) and i ∈ N . We use

Dt(pt,Λt) = (D1
t (p

1
t ,Λ

1
t ), D

2
t (p

2
t ,Λ

2
t ), · · · , Dn

t (p
n
t ,Λ

n
t )) to denote the demand vector for all

demand segments, with the sales price vector pt and the market size vector Λt in period

t. Given (pt,Λt), the accumulative demand from all segments in period t is given by:

Da
t (pt,Λt) =

∑
i∈N

Di
t(p

i
t,Λ

i
t) = (

n∑
i=1

Λi
td

i(pit))ςt + ϵt, (6.10)

where the superscript ‘a’ refers to “accumulative”, and ϵt :=
∑n

i=1 ϵ
i
t represents the

accumulative additive perturbation in period t.

For each i, since di(pit) is strictly decreasing, it has a strictly decreasing inverse

pi(·) that maps from [dimin, d
i
max] to [pimin, p

i
max], where d

i
min = di(pimax) = 0 and dimax =

di(pimin) ≤ 1. We view the purchasing probability vector dt := (d1t , d
2
t , · · · , dnt ), instead of

the sales price vector pt, as the decision variable in each period. Without loss of generality,

we assume that dimax = dmax ≤ 1 for any i ∈ N , i.e., the maximum expected purchasing

probability is the same for every demand segment. Since di(pimax) = 0, our model endog-

enizes the option that, for any i ∈ N , the firm can choose not to sell to demand segment

i by charging a prohibitively high sales price pimax. We impose the following assumption

throughout our analysis:

Assumption 6.4.1 For each demand segment i ∈ N , Ri(dit) := pi(dit)d
i
t is continuously

differentiable and concave in dit ∈ [0, dmax].

Note that the strict monotonicity of pi(·), together with the concavity of Ri(·), suggests

that Ri(·) is strictly concave in dit for each i ∈ N . We remark that, when there is only

one demand segment (n = 1), our demand model is reduced to the most commonly

studied demand model in the joint pricing and inventory management literature. See,

e.g., [47, 50, 189].

The firm sources from a portfolio of m supply channels, which is denoted as M =

{1, 2, · · · ,m}. In period t, the firm selects a vector of order quantities, qt = (q1t , q
2
t , · · · , qmt ),
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from different supply channels. More specifically, the firm orders qjt ≥ 0 from supply chan-

nel j and pays a cost Cj(qjt |c
j
t), where C

j(·|cjt) is the cost function of supply channel j

when the reference procurement cost is cjt , and C
j(0|cjt) = 0 for all j ∈ M. The reference

procurement cost cjt is an index for the actual procurement cost of supply channel j,

which is independent of the firm’s pricing and inventory policy. For example, cjt can be

viewed as the unit procurement cost of the raw material in supply channel j. Since an

increase in cjt increases the marginal cost of sourcing from supply channel j, we assume

that Cj(·|·) is supermodular in (qjt , c
j
t) for any j ∈ M. We use ct := (c1t , c

2
t , · · · , cmt ) to

denote the reference procurement cost vector in period t. Moreover, we assume that there

exists diseconomy of scale to source from each supply channel, i.e., Cj(·|cjt) is convexly

increasing in qjt for each j ∈ M. In reality, this assumption applies when the supply

channel is capacitated, so that orders exceeding the standard capacity are charged a

higher rate for the additional outsourcing costs and/or overtime labor costs (see [155]).

The assumption of convex ordering cost is necessary to prove the convexity [concavity] of

the optimal cost [profit] function in a multi-period model, and common in the inventory

management literature (see, e.g., [181, 50]). Without loss of generality, we assume that

Cj(·|cjt) is continuously differentiable in qjt for any qjt ≥ 0. For expositional ease (i.e., to

ensure the uniqueness of the optimizer), we assume that Cj(·|cjt) is strictly convex for

each j. This assumption is made without loss of generality. If we relax this assumption

to that Cj(·|cjt)’s are weakly convex, all results in this section continue to hold with more

tedious proofs, as long as we select the lexicographically smallest optimizer in each deci-

sion epoch. Consistent with most of the joint pricing and inventory management models

in the literature, we assume that the replenishment leadtime to source from any supply

channel is 0. Finally, we remark that the firm employs the supply diversification strategy

to hedge against: (a) the procurement cost fluctuation risk caused by the volatility of ct,

and (b) the diseconomy of scale for each supply channel.

The firm operates under a fluctuating market environment with stochastically varying

market sizes Λt and reference procurement costs ct. Let the (n+m)-vector θt := (Λt, ct)

be the state of the market environment in period t. We assume that θt evolves ac-

cording to an exogenous Markov process throughout the planning horizon. Let Λ−i
t :=

(Λ1
t , · · · ,Λi−1

t ,Λi+1
t , · · · ,Λn

t ) and c
−j
t := (c1t , · · · , c

j−1
t , cj+1

t , · · · , cmt ). We assume that, for

any i ∈ N [j ∈ M], conditioned on Λi
t [c

j
t ], Λ

i
t−1 [c

j
t−1] is independent of (Λ

−i
t , ct) [(Λt, c

−j
t )],
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i.e., Λi
t [c

j
t ] is a sufficient statistic for Λi

t−1 [c
j
t−1]. Hence, the dynamics of θt can be repre-

sented as Λi
t−1 = ξΛ,it (Λi

t) and c
j
t−1 = ξc,jt (cjt), where E{ξΛ,it (Λi

t)|θt},E{ξ
c,j
t (cjt)|θt} < +∞.

We further assume that, if Λ̂i
t > Λi

t [ĉ
j
t > cjt ], ξ

Λ,i
t (Λ̂i

t) ≥s.d. ξ
Λ,i
t (Λi

t) [ξ
c,j
t (ĉjt) ≥s.d. ξ

c,j
t (cjt)],

where ≥s.d. denotes the first-order stochastic dominance. This is an intuitive assumption,

since a higher current market size is more likely to give rise to a higher market size in

the next period, and the same is true for the reference procurement cost. Moreover, we

assume that, for any given θt, ξ
Λ,i
t (Λi

t) and ξ
c,j
t (cjt) are independent of ϵt and ςt.

The sequence of events in each period unfolds as follows. At the beginning of period t,

the firm reviews its inventory level It and the realized state of market environment θt. The

firm then simultaneously decides the sales price for each demand segment and the order

quantity from each supply channel, and pays the total procurement cost
∑

j∈MCj(qjt |c
j
t).

The orders are received immediately, after which the price-dependent stochastic demand

vector Dt(pt,Λt) realizes. The firm then collects revenue from the realized demand.

Unmet demand is fully backlogged and excess inventory is fully carried over to the next

period. Finally, the firm pays H(z) for the inventory holding and backlogging cost for

z units of ending net inventory, where H(·) is a convex function with H(0) = 0 and

H(·) > 0 otherwise. Moreover, we assume that H(·) satisfies the Lipchitz continuity with

the Lipchitz constant cH , i.e., for any z1, z2 ∈ R, |H(z1)−H(z2)| ≤ cH |z1−z2|. Note that

although the demand, cost, and inventory penalty functions are assumed to be stationary

for expositional convenience, the structural results in this section remain valid when they

are time-dependent.

To formulate the planning problem as a dynamic program, let

Vt(It|θt) = the maximum expected discounted total profit in periods t, t− 1, · · · , 0,

when the starting inventory level in period t is It and the realized market

environment state is θt.

Without loss of generality, we assume that excess inventory at the end of the planning

horizon is discarded without any salvage value, i.e., V0(I0|θ0) = 0. The optimal value

functions satisfy the following recursive scheme:

Vt(It|θt) = max
(dt,qt)∈F

Jt(dt, qt, It|θt), (6.11)
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where F := {(dt, qt) : ∀i ∈ N , dit ∈ [0, dmax],∀j ∈ M, qjt ≥ 0}, and (6.12)

Jt(dt, qt, It|θt) := E{
∑
i∈N

pi(dit)D
i
t(p

i
t(d

i
t),Λ

i
t)−

∑
j∈M

Cj(qjt |c
j
t)

−H(It +
∑
j∈M

qjt −Da
t (p(dt),Λt))

+αVt−1(It +
∑
j∈M

qjt −Da
t (p(dt),Λt)|θt−1)|θt}

= (
∑
i∈N

Λi
tR

i(dit))−
∑
j∈M

Cj(qjt |c
j
t)

+Eςt{Ψt(It +
∑
j∈M

qjt − (
∑
i∈N

Λi
td

i
t)ςt|θt)}, (6.13)

with Ψt(z|θt) := Eθt−1,ϵt{−H(z − ϵt) + αVt−1(z − ϵt|θt−1)|θt}. (6.14)

Therefore, for each period t, the firm’s profit-maximizing problem is to select a joint

pricing and replenishment policy (d∗t (It, θt), q
∗
t (It, θt)) ∈ F to maximize Jt(dt, qt, It|θt),

with starting inventory level It and market environment state θt. We use xt := It +∑
j∈M qjt to denote the total order-up-to level, and x∗t (It, θt) := It +

∑
j∈M qj∗t (It, θt)

to denote the optimal total order-up-to level. Moreover, let N ∗
t (It, θt) := {i ∈ N :

di∗t (It, θt) > 0} and M∗
t (It, θt) := {j ∈ N : qj∗t (It, θt) > 0}, i.e., N ∗

t (It, θt) is the optimal

set of active demand segments to which the firm sells, and M∗
t (It, θt) is the optimal set

of active supply channels from which the firm orders.

To conclude this subsection, we characterize some preliminary concavity and differ-

entiability properties of the value and objective functions in the following lemma.

Lemma 17 For t = T, T − 1, · · · , 1 and any given (It, θt), the following statements hold:

(a) Ψt(·|θt) is concave and continuously differentiable in z.

(b) Jt(·, ·, It|θt) is strictly jointly concave and continuously differentiable in (dt, qt).

(a) Vt(·|θt) is concave and continuously differentiable in It.

It follows immediately from Lemma 17 that the optimal joint pricing and ordering policy

(d∗t (It, θt), q
∗
t (It, θt)) is well-defined and unique in the feasible set F .

6.4.2 Comparative Statics Analysis with Our New Method

First we observe that, by Equation (6.13), the objective function in each period

Jt(·, ·, It|θt) is of the similar form to our illustrative optimization problem (i.e., Equa-
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tion (6.1)) in Section 6.3. Therefore, following the same argument as the discussion in

Section 6.3.1, the standard IFT and MCS approaches are generally not applicable to com-

parative statics analysis in our general joint pricing and inventory management model

with demand segmentation, supply diversification and fluctuating market environment.

Therefore, we employ our new comparative statics method to study this model. Moreover,

Lemma 15 applies to the proofs of several comparative statics results in this subsection,

including Theorem 6.4.1 and Theorems 6.4.4-6.4.6. To begin with, we apply our new

comparative statics method to characterize the optimal policy structure in the following

theorem.

Theorem 6.4.1 (Optimal policy structure.) For t = T, T − 1, · · · , 1 and any

given θt, the following statements hold:

(a) For each i ∈ N , di∗t (It, θt) is continuously increasing in It. Moreover, there exists

a threshold Id,it (θt) < +∞, such that it is optimal to serve demand segment i, if

and only if It > Id,it (θt), i.e., d
i∗
t (It, θt)

> 0, It > Id,it (θt),

= 0, otherwise.

Moreover, N ∗
t (It, θt) ⊂

N ∗
t (Ît, θt) for all It < Ît.

(b) For each j ∈ M, qj∗t (It, θt) is continuously decreasing in It. Moreover, there exists a

threshold Iq,jt (θt) < +∞, such that it is optimal to order from supply channel j if and

only if It < Iq,jt (θt), i.e., qj∗t (It, θt)

> 0, It < Iq,jt (θt),

= 0, otherwise.

Moreover, M∗
t (Ît, θt) ⊂

M∗
t (It, θt) for all It < Ît.

(c) x∗t (It, θt) is continuously increasing in It.

Theorem 6.4.1 shows that, in each period, the optimal policy is a state-dependent

threshold policy. More specifically, for each demand segment i ∈ N [supply channel

j ∈ M], the firm should sell to this segment [order from this channel] if and only if the

starting inventory level It is above [below] the corresponding threshold Id,it (θt) [I
q,j
t (θt)].

This optimal policy structure is characterized by employing our new method to establish

the monotonicity of the optimal sales price/order quantity with respect to the starting

inventory level. More specifically, both the optimal sales price for each demand segment,

pi(di∗t (It, θt)), and the optimal order quantity from each supply channel, qj∗t (It, θt), are
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decreasing in the starting inventory level, whereas the optimal total order-up-to level

x∗t (It, θt) is increasing in the starting inventory level. Consequently, the optimal set

of active demand segments, N ∗
t (It, θt) [active supply channels, M∗

t (It, θt)], is increasing

[decreasing], in the set inclusion order, in the starting inventory level. Theorem 6.4.1

generalizes the base-stock list-price policy in the joint pricing and inventory management

literature to the general setting with demand segmentation, supply diversification, and

market environment fluctuation. Due to the diseconomy of scale and supply diversi-

fication, the order-up-to level and sales prices are inventory-dependent in this general

setting. Finally, we remark that if the multiplicative random perturbation in market size

is demand-segment-dependent (i.e., Di
t(p

i
t,Λ

i
t) = Λi

td
i(pit)ς

i
t + ϵit for i ∈ N and ς it ’s are

independent for different i’s), parts (b) and (c) of Theorem 6.4.1 still hold but part (a)

doesn’t. It is well established in the inventory management literature that when there

exist multiple multiplicative random perturbations in the system, the optimal order quan-

tities and/or sales prices are, in general, not monotone in the starting inventory level (see

[72]).

A key question in this inventory system is, for a given starting inventory level and

market state, how to determine the optimal set of active demand segments, N ∗
t (It, θt),

and the optimal set of active supply channels, M∗
t (It, θt). The following theorem par-

tially addresses this issue by comparing the optimal purchasing probabilities for different

demand segments, and the optimal order quantities from different supply channels.

Theorem 6.4.2 For t = T, T −1, · · · , 1 and any given θt, the following statements hold:

(a) Given i, î ∈ N , if ∂ditR
i(z) ≥ ∂

dît
Rî(z) for each z ∈ [0, dmax], d

i∗
t (It, θt) ≥ dî∗t (It, θt),

and Id,it (θt) ≤ Id,̂it (θt) for any (It, θt). In particular, if ∂d1tR
1(z) ≥ ∂d2tR

2(z) ≥ · · · ≥

∂dnt R
n(z) for each z ∈ [0, dmax], I

d,1
t (θt) ≤ Id,2t (θt) ≤ · · · ≤ Id,nt (θt) for any θt, and

N ∗
t (It, θt) = {1, 2, , · · · , i∗}, where i∗ = max{i : It > Id,it (θt)}.

(b) Assume that ct is fixed. Given j, ĵ ∈ M, if ∂qjt
Cj(z|cjt) ≥ ∂

qĵt
C ĵ(z|cĵt) for any z ≥ 0,

qj∗t (It, θt) ≤ qĵ∗t (It, θt) and Iq,jt (θt) ≤ Iq,ĵt (θt) for any It and Λt. In particular, if

∂q1tC
1(z|c1t ) ≥ ∂q2tC

2(z|c2t ) ≥ · · · ≥ ∂qmt C
m(z|cmt ) for any z ≥ 0, Iq,1t (θt) ≤ Iq,2t (θt) ≤

· · · ≤ Iq,mt (θt) for any Λt, and M∗
t (It, θt) = {j∗, j∗+1, , · · · ,m}, where j∗ = min{j :

It < Iq,jt (θt)}.
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In Theorem 6.4.2, we show that the firm sells more to a demand segment with higher

marginal revenue with respect to demand, and it orders more from a supply channel with

lower marginal procurement cost. Moreover, when the marginal revenues with respect

to demand [marginal procurement costs] for different demand segments [supply channels]

have the same order for all purchasing probabilities [order quantities], the optimal set of

active demand segments [supply channels], N ∗
t (It, θt) [M∗

t (It, θt)], is consecutive in the

marginal revenue with respect to demand [marginal procurement cost].

Next, we employ our new comparative statics method to study the impact of market

fluctuation upon the firm’s optimal pricing and ordering policy. In this application, we

integrate our new method with the standard backward induction argument to perform

comparative statics analysis in a dynamic program. More specifically, by employing

Lemma 16, we iteratively link the comparison between optimizers and that between

partial derivatives of the value functions and objective functions by backward induction.

This treatment is necessary because the current market state also impacts future market

states and, thus, the value functions in the future. For the rest of this subsection, we

make the additional assumption that ςt = 1 with probability 1 for all t, i.e., the demand

process follows an additive form. The additive demand assumption is commonly imposed

in the joint pricing and inventory management literature for tractability (see, e.g., [112,

136, 189]). In our model, this assumption enables us to iteratively link the monotone

relationship between the optimizers and that between the partial derivatives. For the

rest of this subsection, since ςt = 1 with probability 1 for all t, we rewrite the objective

function in period t as

Jt(dt, qt, It|θt) = (
∑
i∈N

Λi
tR

i(dit))−
∑
j∈M

Cj(qjt |c
j
t) + Ψt(It +

∑
j∈M

qjt − (
∑
i∈N

Λi
td

i
t)|θt).

Moreover, we define ∆∗
t (It, θt) := x∗t (It, θt) − (

∑
i∈N Λi

td
i∗
t (It, θt)) as the optimal safety

stock in period t with starting inventory level It and market state θt. The following

theorem characterizes the impact of current market size on the optimal sales prices and

order quantities.

Theorem 6.4.3 (Impact of market size.) Assume that, for each t = T, T−1, · · · , 1,

ςt = 1 with probability 1. For any given t, let θt = (Λt, ct) and θ̂t = (Λ̂t, ct) with Λ̂t > Λt.

For any It, the following statements hold:

(a) ∂ItVt(It|θ̂t) ≥ ∂ItVt(It|θt).
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(b) For each i ∈ N , di∗t (It, θ̂t) ≤ di∗t (It, θt), I
d,i
t (θ̂t) ≥ Id,it (θt), and, thus, N ∗

t (It, θ̂t) ⊂

N ∗
t (It, θt).

(c) For each j ∈ M, qj∗t (It, θ̂t) ≥ qj∗t (It, θt), I
q,j
t (θ̂t) ≥ Iq,jt (θt), and, thus, M∗

t (It, θt) ⊂

M∗
t (It, θ̂t).

(d) x∗t (It, θ̂t) ≥ x∗t (It, θt).

Theorem 6.4.3 proves that an increase in the current market size of any demand

segment has the following impacts: (a) it prompts the firm to increase the sales price

for each demand segment; (b) it drives the firm to order more from each supply channel;

and (c) it motivates the firm to set a higher total order-up-to level. As the market size

of one demand segment increases, the firm should increase its order quantities from all

the supply channels to match supply with demand, so the optimal set of active supply

channels is enlarged. At the same time, the firm should increase its sales prices in all

demand segments, and the optimal set of active demand segments is smaller. Moreover,

since the potential market size is more likely to become larger with a larger current market

size, it is optimal for the firm to keep a higher total order-up-to level.

The risks and opportunities of procurement cost fluctuation have been extensively

studied in [173]. In a model with one demand segment and two supply channels, the

paper shows that inventory becomes more valuable under a higher current procurement

cost, and the optimal sales price is increasing in the current procurement cost so that

the firm should pass part of the cost fluctuation risk to its customers. In Theorem 6.4.4

below, we generalize these results to our joint pricing and inventory management model

with demand segmentation, supply diversification, and market environment fluctuation.

More specifically, we show that, with a higher reference procurement cost of any supply

channel, the marginal value of inventory is higher, and the firm charges a higher sales

price in each demand segment. As a result, the demand in each segment and the optimal

set of active segments are decreasing in the reference procurement cost of any supply

channel.

On the other hand, [173] show that the impact of cost on the firm’s replenishment

policy is more involved, because the current procurement cost also summarizes the infor-

mation on future costs. When facing a higher current procurement cost, the firm faces

the tradeoff between ordering less to save current cost and ordering more to speculate
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on higher future costs. Numerical studies in [173] demonstrate that the optimal order

quantities may not be monotone in the current procurement cost when the firm orders its

inventory either from a spot market or through a forward-buying contract. In our model,

the optimal order quantity from a supply channel continues to be non-monotone in its

own reference procurement cost. However, we are able to show, in the following theorem,

that as the reference procurement costs of one or more supply channels increase, the

optimal order quantities and ordering thresholds of the supply channels with unchanged

reference procurement costs increase as well.

Theorem 6.4.4 (Impact of current reference procurement cost.) Assume

that, for each t = T, T−1, · · · , 1, ςt = 1 with probability 1. For any given t, let θt = (Λt, ct)

and θ̂t = (Λt, ĉt) with ĉt > ct. For any It, the following statements hold:

(a) ∂ItVt(It|θ̂t) ≥ ∂ItVt(It|θt).

(b) For each i ∈ N , di∗t (It, θ̂t) ≤ di∗t (It, θt), I
d,i
t (θ̂t) ≥ Id,it (θt), and, thus, N ∗

t (It, θ̂t) ⊂

N ∗
t (It, θt).

(c) If ĉjt = cjt , q
j∗
t (It, θ̂t) ≥ qj∗t (It, θt) and I

q,j
t (θ̂t) ≥ Iq,jt (θt).

In addition to the current market condition, the firm should also take into account

the future market trend to achieve the long-run optimality. Our new comparative statics

method enables us to offer insights on the optimal responses of the firm to potential

changes in the future market condition. We first study the impact of future market size

trend on the firm’s optimal decisions.

Theorem 6.4.5 (Impact of market size trend.) Assume that, for each t = T, T −

1, · · · , 1, ςt = 1 with probability 1. Let the two systems be equivalent except that ξ̂Λ,it (Λi
t) ≥s.d.

ξΛ,it (Λi
t) for any t, i ∈ N , and Λt. For any t and (It, θt), the following statements hold:

(a) ∂ItV̂t(It|θt) ≥ ∂ItVt(It|θt).

(b) For each i ∈ N , d̂i∗t (It, θt) ≤ di∗t (It, θt), Î
d,i
t (θt) ≥ Id,it (θt), and, thus, N̂ ∗

t (It, θt) ⊂

N ∗
t (It, θt).

(c) For each j ∈ M, q̂j∗t (It, θt) ≥ qj∗t (It, θt), Î
q,j
t (θt) ≥ Iq,jt (θt), and, thus, M∗

t (It, θt) ⊂

M̂∗
t (It, θt).
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(d) x̂∗t (It, θt) ≥ x∗t (It, θt) and ∆̂∗
t (It, θt) ≥ ∆∗

t (It, θt).

Theorem 6.4.5 shows that, under a higher market size trend for any demand segment,

it is optimal to charge higher sales prices to all demand segments and, thus, sell to a

smaller set of segments. On the other hand, a higher market size trend implies higher

future demand, so the firm should order more from all supply channels, expand the set

of active supply channels, and set a higher safety stock to hold more inventory for future

consumption.

As shown by [173], a higher procurement cost trend increases the marginal value of

inventory and prompts the firm to increase its order quantities both from the spot market

and through the forward-buying contract so as to save the future cost. A higher safety

stock should also be kept. In addition, the firm should raise its sales price to consume

its inventory in the most profitable way. In our general model, we show that, when the

reference procurement cost trend in one system is higher than that in the other, all of

the comparative statics results in [173] continue to hold for each demand segment and

supply channel. In addition, with a higher cost trend, the optimal set of active demand

segments [supply channels] is smaller [larger].

Theorem 6.4.6 (Impact of cost trend.) Assume that, for each t = T, T −1, · · · , 1,

ςt = 1 with probability 1. Let the two systems be equivalent except that ξ̂c,jt (cjt) ≥s.d. ξ
c,j
t (cjt)

for any t, j ∈ M and ct. For any t and (It, θt), the following statements hold:

(a) ∂ItV̂t(It|θt) ≥ ∂ItVt(It|θt).

(b) For each i ∈ N , d̂i∗t (It, θt) ≤ di∗t (It, θt), Î
d,i
t (θt) ≥ Id,it (θt), and, thus, N̂ ∗

t (It, θt) ⊂

N ∗
t (It, θt).

(c) For each j ∈ M, q̂j∗t (It, θt) ≥ qj∗t (It, θt), Î
q,j
t (θt) ≥ Iq,jt (θt), and, thus, M∗

t (It, θt) ⊂

M̂∗
t (It, θt).

(d) x̂∗t (It, θt) ≥ x∗t (It, θt) and ∆̂∗
t (It, θt) ≥ ∆∗

t (It, θt).

In addition, our new method enables us to perform comparative statics analysis for the

optimal decisions in different models with non-parameterizable changes. More specifically,

we employ our method to characterize the impact of sales and procurement flexibilities

(i.e., additional demand segments and supply channels) upon the firm’s optimal pricing
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and replenishment policy. When the firm is blessed with the opportunity to sell to

additional demand segments, the marginal value of inventory increases, and the firm

should charge higher prices in the original segments. Moreover, the firm should increase

its replenishment quantities from all supply channels and expand the set of active supply

channels, so as to match supply with the higher demand from a larger pool of segments.

These intuitions are formalized in the following theorem.

Theorem 6.4.7 (Impact of additional demand segments.) Assume that, for each

t = T, T − 1, · · · , 1, ςt = 1 with probability 1. Let the two systems be equivalent except for

N ⊂ N̂ . For t = T, T − 1, · · · , 1, and any (It, θt), the following statements hold:

(a) ∂ItV̂t(It|θt) ≥ ∂ItVt(It|θt).

(b) For each i ∈ N , d̂i∗t (It, θt) ≤ di∗t (It, θt), Î
d,i
t (θt) ≥ Id,it (θt), and, thus, (N̂ ∗

t (It, θt) ∩

N ) ⊂ N ∗
t (It, θt).

(c) For each j ∈ M, q̂j∗t (It, θt) ≥ qj∗t (It, θt), Î
q,j
t (θt) ≥ Iq,jt (θt), and, thus, M∗

t (It, θt) ⊂

M̂∗
t (It, θt).

(d) x̂∗t (It, θt) ≥ x∗t (It, θt).

On the other hand, the supply diversification strategy enables the firm to hedge against

the procurement cost fluctuation risk and the diseconomy of scale of the supply channels.

By sourcing from a larger supply pool, the firm enjoys more procurement flexibility, and

orders less from each of the original supply channels. Moreover, the marginal value of

inventory is smaller with a larger supply pool, and, to match supply with demand, the

firm should set lower sales prices in all demand segments and sell to more segments.

Theorem 6.4.8 (Impact of additional supply channels.) Assume that, for each

t = T, T − 1, · · · , 1, ςt = 1 with probability 1. Let the two systems be equivalent except for

M ⊂ M̂. For t = T, T − 1, · · · , 1, and any (It, θt), the following statements hold:

(a) ∂ItV̂t(It|θt) ≤ ∂ItVt(It|θt).

(b) For each i ∈ N , d̂i∗t (It, θt) ≥ di∗t (It, θt), Î
d,i
t (θt) ≤ Id,it (θt), and, thus, N ∗

t (It, θt) ⊂

N̂ ∗
t (It, θt).
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(c) For each j ∈ M, q̂j∗t (It, θt) ≤ qj∗t (It, θt), Î
q,j
t (θt) ≤ Iq,jt (θt), and, thus, (M̂∗

t (It, θt) ∩

M) ⊂ M∗
t (It, θt).

To sum up, comparative statics analysis is essential in our general joint pricing and

inventory management model with demand segmentation, supply diversification, and

market environment fluctuation. Although the standard IFT and MCS approaches do

not apply to this complex model, our new comparative statics method enables us to

characterize its optimal policy as a state-dependent threshold policy, and to analyze the

impact of market fluctuation and operational flexibilities upon the optimal policy.

6.5 Application of the New Comparative Statics Method in a Competition

Model

In this section, we apply our new method to comparative statics analysis in a joint

price and effort competition model, which, as we will show, cannot be conducted with

the standard IFT and MCS approaches. We remark that the notations in this section are

independent of those in Sections 6.3 and 6.4.

More specifically, we consider an oligopoly industry of N competing firms. Each firm

offers a partially substitutable product with unit production cost ci > 0. Each firm i

selects a sales price pi ∈ [pmin
i , pmax

i ] and an effort level yi ≥ 0. We assume that, for each

i, pmin
i = ci. In addition, we make the same assumption as [9] that pmax

i is sufficiently large

so that it has no impact on the equilibrium behavior. Each firm i can exert effort yi (on,

e.g., R&D or advertising) to increase its demand. We use Y :=
∑N

i=1 yi to denote the total

effort level. Let p := (p1, p2, · · · , pN) be the vector of sales prices and y := (y1, y2, · · · , yN)

be the vector of effort levels. For any decision vector (p, y), the demand for firm i is given

in the following quasi-separable form:

λi(p, y, θi) = (θi + f(Y )− bipi +
∑
j ̸=i

βijpj)
+, (6.15)

where θi ∈ [θmin, θmax] is the firm-dependent market index, capturing other impact factors

on demand beyond price and effort (e.g., brand image). It is commonly assumed in

the R&D and research joint venture literature (e.g., [104]) that the total effort level in

the industry has an accumulative effect upon the demand of each firm. We model this

accumulative effect by f(Y ), and assume that f(·) is a strictly increasing, continuously
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differentiable, and strictly concave function that is bounded from above by M < +∞.

As [9], we assume that λi(p, y, θi) > 0 whenever pi = pmin
i = ci, i.e., each firm i can

have a positive demand under zero profit margin, regardless of the competing firms’ price

decisions and all firms’ effort decisions. We remark that although we do not assume

λi(p, y, θi) > 0 for all feasible (p, y), we will show that the equilibrium demand of each

firm is positive. We also make the standard assumption that bi, βij > 0 for all i, j, and

that the dominant diagonal condition holds, i.e., bi >
∑

j ̸=i βij > 0 and bi >
∑

j ̸=i βji > 0.

The interpretation of the dominant diagonal condition is that an uniform price increase

of all firms cannot result in a demand increase in any firm, and that a price increase of

any firm cannot result in an increase in the total demand of the industry (see, also, [9]).

Consistent with the standard assumption in the economics literature ([121]), we as-

sume that, for each firm i, the cost of exerting effort yi is Ci(yi), where Ci(·) is an

increasing, strictly convex, and continuously differentiable function. Thus, the profit of

firm i in this joint price and effort competition is given by:

Πi(p, y|θ) = (pi − ci)λi(p, y, θi)− Ci(yi), (6.16)

where θ := (θ1, θ2, · · · , θN) represents the market index vector.

Depending on the industry dynamics, two competition models are considered: (a)

the effort-level-first competition (EF), and (b) the simultaneous competition (SC). In the

effort-level-first competition, the firms first choose their effort levels (on, e.g., R&D or

advertising), and then select the sales prices in the second stage. In the simultaneous

competition, the firms make effort and price decisions simultaneously. In the next two

subsections, we employ our new comparative statics method to characterize the equilib-

rium in these two competition models, and study how the equilibrium prices and effort

levels change with the market index vector θ. Finally, in Section 6.5.3, we compare the

equilibrium decisions in these two competition models.

6.5.1 Effort-Level-First Competition

In this subsection, we study the effort-level-first competition model. In this model,

the firms engage in a two-stage game, in which they compete on market expanding effort

in the first stage and on sales price in the second stage. This model is suitable for

the scenario in which the stickiness of market expanding effort choices is much higher
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than that of sales price choices. For example, due to the long leadtime for technology

development, decisions on R&D effort are usually made well in advance of price decisions.

To analyze this two-stage game, we begin with the price competition in the second stage.

In this stage, the effort level in the first stage y is observable by all firms. Let A be

an N × N matrix with Aii = 2bi, Aij = −βij for i ̸= j, a(Y, θ) be a column vector

with ai(Y, θ) = θi + f(Y ) = θi + f(
∑N

j=1 yj), and κ be a column vector with κi = bici.

Given any effort level y, the equilibrium price, p∗(y, θ), in the second-stage competition

is characterized by the following theorem.

Theorem 6.5.1 (Second-stage price competition.) For a given effort level vector

y, the following statements hold:

(a) The equilibrium in the second-stage price competition is unique and given by p∗(y, θ) =

A−1(a(Y, θ)+κ), with p∗i (y, θ) > pmin
i = ci. The unique equilibrium demand for firm

i is given by λ∗i (y, θ) = bi(p
∗
i (y, θ)− ci) > 0. Hence, for any i, p∗i (y, θ) and λ

∗
i (y, θ)

depend on the effort level vector y only through the total effort level Y .

(b) p∗i (y, θ) is strictly increasing in Y , with ∂yjp
∗
i (y, θ) = ∂Y p

∗
i (y, θ) = (

∑N
l=1(A

−1)il)f
′(Y )

for each i and j. Hence, λ∗i (y, θ) is strictly increasing in Y and, thus, yj for any i

and j.

Theorem 6.5.1 proves that, given any effort level vector in the first-stage, the second-

stage price competition has a unique equilibrium. Moreover, under the equilibrium, each

firm achieves a positive profit margin and a positive demand. Both the equilibrium price

and demand of each firm are strictly increasing in the total effort level. Higher effort

level in the first stage increases the market demand, and motivates each firm to charge a

higher sales price.

Based on Theorem 6.5.1, we study the first-stage competition, in which the firms

choose their effort levels. Since p∗(y, θ) depends on y only through the total effort

level Y , we use p∗(Y, θ) to denote the equilibrium price in the second-stage competi-

tion. As a result, the equilibrium demand can be represented as λ∗(Y, θ), with λ∗i (Y, θ) =

bi(p
∗
i (Y, θ)− ci). Plugging p

∗(Y, θ) and λ∗(Y, θ) into (6.16), we obtain the objective func-

tions in the first-stage game:

πi(y|θ) = bi(p
∗
i (Y, θ)− ci)

2 − Ci(yi), for i = 1, 2, · · · , N . (6.17)
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Following [104], we make the following assumption on f(·).

Assumption 6.5.1 (f(x)− f0)
2 is concave in x for x ≥ 0, where f0 := f(0).

Assumption 6.5.1 guarantees the concavity of the objective functions in the first-stage

effort competition and, thus, the existence of an equilibrium. This assumption is the

counterpart of Assumption 3 in [104]. With the help of Assumption 6.5.1, we characterize

the equilibrium of the first-stage effort competition in the following theorem.

Theorem 6.5.2 (Effort-level-first competition.) Under Assumption 6.5.1, the

following statements hold:

(a) Given any θ, the first-stage effort competition has a unique equilibrium y∗EF (θ).

(b) Let Y ∗
EF (θ) :=

∑N
i=1 y

∗
EF,i(θ) be the equilibrium total effort level in the first-stage

competition. p∗(Y ∗
EF (θ), θ) is the unique associated equilibrium price vector and

λ∗(Y ∗
EF (θ), θ) is the unique associated equilibrium demand vector in the second-stage

competition, where p∗(·, ·) and λ∗(·, ·) are given in Theorem 6.5.1(a).

Theorem 6.5.2 shows that the two-stage effort-level-first competition has a unique

subgame perfect equilibrium. The proof of Theorem 6.5.2 heavily relies on our new

comparative statics method, which enables us to establish the monotone relationship that

the equilibrium effort level of each firm, y∗EF,i(θ), is decreasing in the equilibrium total

effort level Y ∗
EF (θ). Such monotonicity, together with the identity that

∑N
i=1 y

∗
EF,i(θ) =

Y ∗
EF (θ), guarantees the uniqueness of the equilibrium in the first-stage effort competition.

A natural question in this competition is how the market index θ influences the equi-

librium price p∗(Y ∗
EF (θ), θ) and equilibrium effort y∗EF (θ). Intuition suggests that, under a

better market condition, the firms should decrease their market expanding efforts to save

costs. The following theorem shows that this intuition is reversed in the effort-level-first

competition.

Theorem 6.5.3 (Impact of market index.) Under Assumption 6.5.1, the following

statements hold:

(a) Y ∗
EF (θ) is increasing in θi for any i.

(b) p∗i (Y
∗
EF (θ), θ) and λ

∗
i (Y

∗
EF (θ), θ) are increasing in θj for any i and j.
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Theorem 6.5.3 shows that the equilibrium total effort level Y ∗
EF (θ) is increasing in

each market index, θi. As a result, the equilibrium sales price and demand of each

firm are increasing in the market index of any firm. Note that Theorem 6.5.3 cannot

be proved by the standard IFT and MCS approaches. It is possible that f(·), and

hence, the objective function πi(·|·), are not twice continuously differentiable. Even if

πi(·|·) is twice continuously differentiable in (y, θ) for each i, calculating the inverse of

the Hessian in the first-stage effort competition can be prohibitively difficult when N is

large. Therefore, the IFT approach has poor scalability, and it is very difficult, if not

impossible, to prove Theorem 6.5.3 by the IFT approach. On the other hand, although

πi(·|·) is supermodular in yi and θj for any i and j, it is not jointly supermodular in

(y, θj). Hence, the complementarity conditions required in supermodular games (see

[124]) do not hold, and the MCS approach does not apply to this model. We employ our

new comparative statics method to prove Theorem 6.5.3(a). We assume, to the contrary,

that Y ∗
EF (θ) is decreasing in θi for some i, and construct a contradiction with the iterative

procedure in Section 6.3.2. This approach exploits the supermodularity of πi(·|·) in yi

and θj for any i and j, but does not require the joint supermodularity of πi(·|·) in (y, θj).

Part (b) of Theorem 6.5.3 follows directly from part (a).

6.5.2 Simultaneous Competition

In some scenarios, the market expanding effort (on, e.g., advertising) takes effect in-

stantaneously. Hence, decisions on effort can be made at the same time as price decisions.

In this scenario, the firms engage in a simultaneous price and effort competition. Specif-

ically, each firm i simultaneously selects (pi, yi) to maximize Πi(p, y|θ) defined by (6.16).

The next theorem characterizes the equilibrium and the impact of market index upon

the equilibrium in the simultaneous competition.

Theorem 6.5.4 (Simultaneous competition.) Under Assumption 6.5.1, the follow-

ing statements hold:
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(a) Given any θ, the simultaneous competition has a unique equilibrium (p∗SC(θ), y
∗
SC(θ)),

which satisfies the system of equations:

p∗SC(θ) = p∗(y∗SC(θ), θ)

= A−1(a(Y ∗
SC(θ), θ) + κ), (6.18)

(p∗SC,i(θ)− ci)f
′(Y ∗

SC(θ))− C ′
i(y

∗
SC,i(θ))

= 0, if y∗SC,i(θ) > 0,

≤ 0, otherwise,

(6.19)

for all i = 1, 2, · · · , N ,

where Y ∗
SC(θ) =

∑N
i=1 y

∗
SC,i(θ). Conversely, the system of equations (6.18) and

(6.19) has a unique solution, which is the equilibrium of the simultaneous competi-

tion. The equilibrium demand is given by λ∗SC(θ) = (λ∗SC,1(θ), λ
∗
SC,2(θ), · · · , λ∗SC,N(θ)),

where λ∗SC,i(θ) = bi(p
∗
SC,i(θ)− ci). Moreover, for any i, p∗SC,i(θ) > ci and λ

∗
SC,i(θ) >

0.

(b) Y ∗
SC(θ) is increasing in θi for any i. Moreover, p∗SC,i(θ) and λ

∗
SC,i(θ) are increasing

in θj for any i and j.

Under Assumption 6.5.1, Theorem 6.5.4(a) proves the existence and uniqueness of the

equilibrium in the simultaneous price and effort competition. Moreover, we show that,

under the equilibrium, each firm earns a positive profit margin and a positive demand in

the simultaneous competition. Note that Assumption 6.5.1 does not guarantee the joint

concavity of Πi(p, y|θ) in (pi, yi). Hence, we cannot use the standard approach to prove

the existence of an equilibrium in the simultaneous competition. Instead, we show that

the system of equations (6.18) and (6.19) has a unique solution, which is an equilibrium

of the simultaneous competition. We prove the uniqueness of the equilibrium by showing

that any equilibrium of the simultaneous competition must satisfy the system of equations

(6.18) and (6.19).

In Theorem 6.5.4(b), we employ our new comparative statics method to show that,

in the simultaneous competition, the equilibrium total effort level, and the equilibrium

sales price and demand volume of each firm are increasing in the market index of any

firm. This result is consistent with its counterpart in the effort-level-first competition

(i.e., Theorem 6.5.3).
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6.5.3 A Comparison of Equilibria in the Two Competition Models

In this subsection, we compare the equilibrium in the effort-level-first competition

(characterized in Theorem 6.5.2) and that in the simultaneous competition (characterized

in Theorem 6.5.4). We summarize the comparison results in the following theorem:

Theorem 6.5.5 Under Assumption 6.5.1, the following statements hold:

(a) p∗i (y
∗
EF (θ), θ) ≥ p∗SC,i(θ) for any i and θ.

(b) Y ∗
EF (θ) ≥ Y ∗

SC(θ) for any θ.

(c) λ∗i (Y
∗
EF (θ), θ) ≥ λ∗SC,i(θ) for any i and θ.

Theorem 6.5.5 shows that, in the effort-level-first competition, the firms exert higher

total market expanding effort to dampen the subsequent price competition, which re-

sults in higher equilibrium price and demand of each firm than their counterparts in

the simultaneous competition. This phenomenon (i.e., the “fat-cat effect”, see [78]) has

also been identified by [9] in a joint price and service level competition setting. They

show that the equilibrium sales prices, demand volumes, and service levels are higher

in the service-level-first competition model than those in the simultaneous competition

model. To prove this result, [9] inductively show that, for each k, the kth iteration of the

tatônnement scheme for the service-level-first competition model is higher, in price and

service level, than that for the simultaneous competition model. Since the joint price and

service competition games in [9] are supermodular, the tatônnement scheme can generate

the minimum equilibria and, thus, their monotone relationship in the two competitions.

In our model, however, neither the effort-level-first competition nor the simultaneous

competition is supermodular, so we employ our new comparative statics method to prove

Theorem 6.5.5. We first prove part (b) by employing the iterative procedure in Section

6.3.2 to construct a contradiction under the (incorrect) assumption that Y ∗
EF (θ) < Y ∗

SC(θ)

for some θ. Parts (a) and (c) follow directly from part (b) by Theorem 6.5.1 and Theorem

6.5.4.

To conclude this section, we remark that all of the comparative statics results on the

equilibrium total effort level in Theorems 6.5.3 - 6.5.5 cannot be generalized to ones on

the equilibrium effort level of each firm. This is because, in both competition models,

although the objective function of each firm i is supermodular in yi and θj for any i
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and j, it is not jointly supermodular in (y, θj). In other words, some firms may free-ride

on a higher effort level of their competitors, and thus, decrease their own effort levels.

When this effect dominates the effort-prompting effect of a better market condition, the

equilibrium effort levels of some firms may be decreasing in the market indices.

6.6 Summary

In this chapter, we consider a general joint pricing and inventory management model

with demand segmentation, supply diversification, and market environment fluctuation.

In this model, comparative statics analysis is integral to characterizing its optimal pol-

icy and analyzing the impact of demand segmentation, supply diversification, and mar-

ket environment fluctuation upon the optimal policy. The standard comparative statics

methods (i.e., the IFT and MCS approaches) do not apply, because (a) the second-order

continuous differentiability and complementarity conditions are not satisfied in our model,

(b) the IFT approach is not scalable, and (c) some of the optimal decision variables are

not monotone in the parameter (i.e., the MCS approach does not work in this case).

Therefore, we develop a new comparative statics method. Our new method employs

a simple but powerful lemma (Lemma 16) and some model-specific properties (e.g., the

supermodularity in one decision variable and the parameter and the componentwise con-

cavity of the objective function) to iteratively link the comparison between optimizers

and that between the partial derivatives of objective functions, so as to construct contra-

dictions under the assumption that the desired comparative statics results are reversed.

Lemma 16 enables us to make componentwise comparisons of the optimal decision vari-

ables at different parameters, which is the essential difference between our method and

the standard approaches. The componentwise comparison between optimizers facilitates

the scalability of our method and its application in a model where only part of the op-

timizers are monotone in the parameter. We remark that when a contradiction cannot

be reached using our new method, a counterexample of the original comparative statics

prediction, in general, can be found. Hence, the proposed method can also help identify

cases in which comparative statics results do not hold for some decision variables.

Though fundamentally different, our new method shares some similarity with the stan-

dard IFT and MCS approaches. Analogous to the IFT approach, the proposed method

studies the first-order (KKT) condition at the optimizer of interest. Hence, our method
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requires the objective function be first-order continuously differentiable, but not neces-

sarily second-order continuously differentiable. Following the idea of the MCS approach,

our method carefully examines the impact of the parameter upon the marginal values of

the decision variables, so that we can translate the monotonicity of partial derivatives

back into the monotonicity of another decision variable at the optimizer. Thus, to reach

a contradiction (and hence, a comparative statics result), our method requires the objec-

tive function be supermodular in the parameter and each of the focal decision variables,

but not necessarily jointly supermodular or satisfying the single crossing property. The

above two condition relaxations enhance the applicability of our method in the general

joint pricing and inventory management model, where the second-order continuous dif-

ferentiability and joint supermodularity of the objective function in each decision epoch

are hard, if not impossible, to establish.

We employ our new method to analyze the joint pricing and inventory management

model under demand segmentation, supply diversification, and market environment fluc-

tuation. Our new comparative statics method enables us to characterize the optimal

joint pricing and ordering policy for an arbitrary number of demand segments and supply

channels as a threshold policy, under which there exists a market environment dependent

threshold for each demand segment [supply channel] such that it is optimal to sell to [or-

der from] this segment [channel] if and only if the starting inventory level is above [below]

its corresponding threshold. The optimal sales price for each demand segment and the

optimal order quantity from each supply channel are decreasing in the starting inventory

level of the firm, and increasing in the market size of any demand segment. When the

reference procurement costs of some supply channels increase, the firm increases the sales

price in each demand segment, and the order quantities from the supply channels with

unchanged reference procurement costs. Each firm’s optimal order quantity may not be

monotone in its own reference procurement cost. Expanding the set of demand segments

drives the firm to increase its sales price in each demand segment and order quantity

from each supply channel, whereas expanding the supply pool decreases the optimal sales

prices and order quantities.

To demonstrate the applicability of our new comparative statics method in other

settings, we employ it to study joint price and effort competition games, in which the

total effort level has a positive impact upon each firm’s demand. More specifically, we
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consider two competition models: (a) the firms compete on effort in the first stage and

on price in the second stage; and (b) the firms simultaneously compete on price and

effort. The standard IFT and MCS approaches are not amenable for the comparative

statics analysis in this setting, because the IFT approach has poor scalability, and the

complementarity conditions required by the MCS approach are not satisfied. We apply

our new method to show the existence and uniqueness of equilibrium in the effort-level-

first competition. We prove that, in both competition models, the equilibrium total effort

level, and the equilibrium price and demand of each firm are increasing in the market

index of any firm. We also demonstrate the fat-cat effect in this setting, i.e., the sequential

decision making gives rise to a higher total effort level and a higher price and demand of

each firm in the effort-level-first competition than those in the simultaneous competition.

In summary, our new method enables us to perform comparative statics analysis in a

general joint pricing and inventory management model and a joint price and effort com-

petition model. Standard IFT and MCS approaches are not amenable for both settings.

Our new method makes componentwise comparisons between the focal decision variables

under different parameter values, so it is capable of performing comparative statics anal-

ysis in a model where some of the decision variables are non-monotone, and it is scalable.

Hence, our new method is promising for comparative statics analysis in other operations

management models.
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7. Concluding Remarks

This dissertation focuses on the impact of some new market trends (such as social net-

works, sustainability concerns, and customer behaviors) upon a firm’s pricing and inven-

tory policies. Our results demonstrate that these emerging trends lead to interesting new

tradeoffs and, hence, would significantly influence a firm’s operations decisions. On the

other hand, the firm can adopt innovative pricing and inventory strategies to exploit these

market trends and substantially improve its profit. To facilitate the analysis, we develop

an effective comparative statics analysis method for a general class of joint pricing and

inventory management models.

The combined pricing and inventory policy is inarguably a very important operations

decision for any firm that delivers physical products to customers. We believe there are

several promising avenues for future research related to this topic. Instead of digging into

the details, we focus on the high-level discussions of future research directions.

Multi-item inventory systems. The dissertation only studies the pricing and

inventory policy of a single-product model. While this setting is interesting and relevant

by itself, multi-item inventory models would better capture the situation of a retailer in

the e-commerce market. For a retailer on an online e-commerce platform like Amazon, it

generally holds and sells inventories of different products. So the retailer needs to jointly

manage the pricing, sourcing, storing, and delivery strategies of all its products. With

multiple products handled together, the key issue the firm faces is how to allocate the

capital, transportation, and human capacities among different products. Among others,

it is interesting to study how the dynamic pricing flexibility would complement the firm’s

capacity allocation strategy, and alleviate its capacity constraint pressure.

Information asymmetry. In this dissertation, we assume in our model that infor-

mation is symmetric to everyone. If the market exhibits information asymmetry between

the firm and the customers, we need to employ dynamic mechanism design techniques

to study the optimal pricing and inventory control policy therein. From the application

perspective, introducing information asymmetry well captures the current market trends

of, e.g., sharing economy, social networks, and online auctions. An enriched joint pricing
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and inventory management model with information asymmetry enables us to character-

ize the operational impact of these new marketplace innovations, and study the role of

information in market design issues.

Data-driven integrated pricing and inventory optimization. In this disserta-

tion, the decision maker (i.e., the firm) have full knowledge about the demand function

and demand distribution. In reality, however, this is not necessarily the case, since the

demand function and distribution may not be available to the firm. In this situation,

the firm should collect the previous demand data and employ some data-driven methods

to do the prediction and prescription simultaneously. It is interesting to develop some

data-driven algorithms to optimize the joint pricing and inventory control policy in an

online manner. The objective is to achieve the maximum expected profit under the full

demand information assumption asymptotically. The key issue without knowing the de-

mand distribution is to balance the well-known exploration-exploitation tradeoff under

the integrated pricing and inventory management framework.

To sum up, the integrated pricing and inventory control problem is of both theoretical

interest and practical relevance. This dissertation’s main contribution is to establish new

models and methods to study the impact of new market trends on the joint dynamic

pricing and inventory policy of a firm. We also hope the dissertation would help inspire

future research on this topic.
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APPENDICES



A. Appendix for Chapter 2

A.1 Proofs of Statements

We use ∂ to denote the derivative operator of a single variable function, ∂x to denote the par-

tial derivative operator of a multi-variable function with respect to variable x, and 1{·} to denote

the indicator function. For any multivariate continuously differentiable function f(x1, x2, · · · , xn) and

x̃ := (x̃1, x̃2, · · · , x̃n) in f(·)’s domain, ∀i, we use ∂xif(x̃1, x̃2, · · · , x̃n) to denote ∂xif(x1, x2, · · · , xn)|x=x̃.

The following lemma is used throughout our proofs.

Lemma 18 Let Fi(z, Z) be a continuously differentiable and jointly concave function in (z, Z) for

i = 1, 2, where z ∈ [z, z̄] (z and z̄ might be infinite) and Z ∈ Rn. For i = 1, 2, let (zi, Zi) :=

argmax(z,Z)Fi(z, Z) be the optimizers of Fi(·, ·). If z1 < z2, we have: ∂zF1(z1, Z1) ≤ ∂zF2(z2, Z2).

Proof: z1 < z2, so z ≤ z1 < z2 ≤ z̄. Hence, ∂zF1(z1, Z1)

= 0 if z1 > z,

≤ 0 if z1 = z;

and

∂zF2(z2, Z2)

= 0 if z2 < z̄,

≥ 0 if z2 = z̄,

i.e., ∂zF1(z1, Z1) ≤ 0 ≤ ∂zF2(z2, Z2). Q.E.D.

Proof of Lemma 1: Since γ(·) is twice continuously differentiable, Rt(·, ·) is twice continuously dif-

ferentiable, and jointly concave in (pt, Nt) if and only if the Hessian of Rt(·, ·) is negative semi-definite,

i.e., ∂2pt
Rt(pt, Nt) ≤ 0, and ∂2pt

Rt(pt, Nt)∂
2
Nt
Rt(pt, Nt) ≥ (∂pt∂NtRt(pt, Nt))

2, where ∂2pt
Rt(pt, Nt) = −2,

∂2Nt
Rt(pt, Nt) = (pt − b − αc)γ′′(Nt), and ∂pt∂NtRt(pt, Nt) = γ′(Nt). Hence, Rt(·, ·) is jointly con-

cave on [p, p̄] × [0,+∞) if and only if −2(pt − b − αc)γ′′(Nt) ≥ (γ′(Nt))
2 for all (pt, Nt). Since

−2(pt − b − αc)γ′′(Nt) ≥ −2(p − b − αc)γ′′(Nt), −2(pt − b − αc)γ′′(Nt) ≥ (γ′(Nt))
2 for all (pt, Nt)

if and only if −2(p− b− αc)γ′′(Nt) ≥ (γ′(Nt))
2 for all Nt ≥ 0. This proves Lemma 1. Q.E.D.

Proof of Lemma 2: We prove parts (a) - (c) together by backward induction.

We first show, by backward induction that if vt−1(It−1, Nt−1)−cIt−1 is jointly concave in (It−1, Nt−1),

decreasing in It−1, and increasing in Nt−1, (i) Ψt(·, ·) is jointly concave in (x, y), decreasing in x, and

increasing in y; (ii) Jt(·, ·, ·) is jointly concave in (xt, pt, Nt); and (iii) vt(It, Nt) − cIt is jointly concave

in (It, Nt), decreasing in It, and increasing in Nt. It is clear that v0(I0, N0)− cI0 = 0 is jointly concave,

decreasing in I0, and increasing in N0. Hence, the initial condition holds.

Assume that vt−1(It−1, Nt−1) − cIt−1 is jointly concave in (It−1, Nt−1), decreasing in It−1, and

increasing in Nt−1. Because rn(·) is concavely increasing, E[rn(y + θξt + ϵt)] is concavely increasing

in y. Since concavity and monotonicity are preserved under expectation, Ψt(·, ·) is jointly concave in

(x, y), decreasing in x, and increasing in y. Analogously, Λ(x) is concavely decreasing in x. We now
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verify that Ψt(xt − V̄t + pt − γ(Nt), θ(V̄t − pt + γ(Nt)) + ηNt) is jointly concave in (xt, pt, Nt) and

increasing in Nt. Since γ(·) is increasing in Nt, whereas Ψt(x, y) is decreasing in x and increasing in y,

Ψt(xt− V̄t+pt−γ(Nt), θ(V̄t−pt+γ(Nt))+ηNt) is increasing in Nt. Let λ ∈ [0, 1], x∗ = λxt+(1−λ)x̂t,

p∗ = λpt + (1− λ)p̂t, and N∗ = λNt + (1− λ)N̂t, we have:

λΨt(xt − V̄t + pt − γ(Nt), θ(V̄t − pt + γ(Nt)) + ηNt)

+(1− λ)Ψt(x̂t − V̄t + p̂t − γ(N̂t), θ(V̄t − p̂t + γ(N̂t)) + ηN̂t)

≤ Ψt(x∗ − V̄t + p∗ − λγ(Nt)− (1− λ)γ(N̂t), θ(V̄t − p∗ + λγ(Nt) + (1− λ)γ(N̂t)) + ηN∗)

≤ Ψt(x∗ − V̄t + p∗ − γ(N∗
t ), θ(V̄t − p∗ + γ(N∗

t ) + ηN∗),

where the first inequality follows from the joint concavity of Ψt(·, ·), and the second from the concavity of

γ(·), and that Ψt(·, ·) is decreasing in x and increasing in y. It’s clear that Λ(x) = E{−(h+ b)(x− ξt)
+}

is concavely decreasing in x. Hence, similar argument to the case of Ψt(xt − V̄t + pt − γ(Nt), θ(V̄t − pt +

γ(Nt)) + ηNt) implies that Λ(xt − V̄t + pt − γ(Nt)) is jointly concave in (xt, pt, Nt) and increasing in Nt.

By Assumption 2.3.1, Rt(pt, Nt) is jointly concave in (pt, Nt). Moreover, since γ(·) is increasing in Nt,

Rt(pt, Nt) is increasing in Nt as well. Hence, by (2.5),

Jt(xt, pt, Nt) = Rt(pt, Nt) + βxt + Λ(xt − V̄t + pt − γ(Nt))

+Ψt(xt − V̄t + pt − γ(Nt), θ(V̄t − pt + γ(Nt)) + ηNt)

is jointly concave in (xt, pt, Nt) and increasing in Nt.

Since concavity is preserved under maximization (e.g., [32] Section 3.2.5), the joint concavity of

vt(·, ·) follows directly from that of Jt(·, ·, ·). Note that for any Ît > It, F(Ît) ⊆ F(It). Thus,

vt(Ît, Nt)− cÎt = max
(xt,pt)∈F(Ît)

Jt(xt, pt, Nt)

≤ max
(xt,pt)∈F(It)

Jt(xt, pt, Nt)

= vt(It, Nt)− cIt.

Hence, vt(It, Nt)− cIt is decreasing in It. Since Jt(xt, pt, Nt) is increasing in Nt for any (xt, pt, Nt), for

any N̂t > Nt,

vt(It, N̂t)− cIt = max
(xt,pt)∈F(It)

Jt(xt, pt, N̂t)

≥ max
(xt,pt)∈F(It)

Jt(xt, pt, Nt)

= vt(It, Nt)− cIt.

Thus, vt(It, Nt)− cIt is increasing in Nt.

Second, we show that by backward induction, that if vt−1(·, ·) is continuously differentiable, Ψt(·, ·),

Jt(·, ·, ·), and vt(·, ·) are continuously differentiable as well. For t = 0, v0(I0, N0) = cI0 is clearly

continuously differentiable. Thus, the initial condition holds.

If vt−1(·, ·) is continuously differentiable, Ψt(·, ·) is continuously differentiable with partial derivatives

given by

∂xΨt(x, y) = E{α[∂Itvt−1(x− ξt, y + θξt + ϵt)− c]}, (A.1)

∂yΨt(x, y) = E{r′n(y + θξt + ϵt) + α[∂Nt−1vt−1(x− ξt, y + θξt + ϵt)}, (A.2)
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where the exchangeability of differentiation and expectation is easily justified using the canonical ar-

gument (see, e.g., Theorem A.5.1 in [63], the condition of which can be easily verified observing the

continuity of the partial derivatives of vt−1(·, ·), and that the distributions of ξt and ϵt are continuous.).

Moreover, since ξt is continuously distributed, Λ(·) is continuously differentiable. Since Rt(·, ·) is con-

tinuously differentiable, by (2.5), Jt(·, ·, ·) is continuously differentiable. If It ̸= xt(Nt), the continuous

differentiability of vt(·, ·) follows immediately from that of Jt(·, ·, ·) and the envelope theorem. To com-

plete the proof, it suffices to check that, for all Nt ≥ 0, the left and right partial derivatives of the first

variable at (xt(Nt), Nt), ∂Itvt(xt(Nt)−, Nt) and ∂Itvt(xt(Nt)+, Nt) are equal. By the envelope theorem,∂Itvt(xt(Nt)−, Nt) = c,

∂Itvt(xt(Nt)+, Nt) = c+ β + ∂xΛ(xt(Nt)− yt(Nt)) + ∂xΨt(xt(Nt)− yt(Nt), θyt(Nt) + ηNt).

The first-order condition with respect to xt implies that

β + ∂xΛ(xt(Nt)− yt(Nt)) + ∂xΨt(xt(Nt)− yt(Nt), θyt(Nt) + ηNt) = 0.

Therefore, ∂Itvt(xt(Nt)−, Nt) = ∂Itvt(xt(Nt)+, Nt) = c. This completes the induction and, thus, the

proof of Lemma 2. Q.E.D.

Proof of Theorem 2.4.1: Parts (a)-(b) follow immediately from the joint concavity of Jt(·, ·, Nt) in

(xt, pt) for any Nt ≥ 0.

We now show part (c) by backward induction. More specifically, we prove that if xt−1(Nt−1) > 0

for all Nt−1 ≥ 0, xt(Nt) > 0 for all Nt ≥ 0. Since v0(I0, N0) = cI0, Ψ1(x, y) = E[rn(y+θξ1)]+αE{v0(x−

ξ1, y+ θξ1 + ϵ1)− cx} = E[rn(y+ θξ1)]. Since D1 ≥ 0 with probability 1, ∂xΛ(−V̄1 + p1 − γ(N1)) = 0 for

all p1 ∈ [p, p̄] and N1 ≥ 0. Hence, for any p1 ∈ [p, p̄] and N1 ≥ 0,

∂x1J1(0, p1, N1) = β − ∂xΛ(−V̄1 + p1 − γ(N1)) = β > 0.

Hence, x1(N1) > 0 for any N1 ≥ 0. Thus, the initial condition is satisfied.

Now we assume that xt−1(Nt−1) > 0 for all Nt−1 ≥ 0 and xt(Ñt) ≤ 0 for some Ñt ≥ 0. Thus, It−1 =

xt(Ñt)−Dt(pt(Ñt), Ñt) ≤ 0 < xt−1(Ñt−1) almost surely, where Ñt−1 = θDt(pt(Ñt), Ñt)+ηÑt+ϵt. Thus,

by part (a), ∂It−1vt−1(It−1, Nt−1) = c almost surely, when conditioned on Nt = Ñt. Hence, conditioned

on Nt = Ñt, ∂xΨt(x, y) = αE{∂It−1vt−1(It−1, Ñt−1) − c|Nt = Ñt} = c − c = 0, when (xt, pt) lies in the

neighborhood of (xt(Ñt), pt(Ñt)). As discussed above, since xt(Ñt) ≤ 0, ∂xΛ(−V̄t + pt − γ(Ñ1)) = 0 for

all pt ∈ [p, p̄]. Hence, for any pt ∈ [p, p̄],

∂xtJt(0, pt, Ñt) = β − ∂xΛ(−V̄t + pt − γ(Ñ1)) = β > 0.

Hence, xt(Ñt) > 0, which contradicts the assumption that xt(Ñt) ≤ 0 is the optimizer of (2.7) when

Nt = Ñt. Therefore, xt(Nt) > 0 for all Nt ≥ 0. This completes the induction and, thus, the proof of

part (c). Q.E.D.

Proof of Lemma 3: We show Parts (a)-(b) together by backward induction. We first show that
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Parts (a)-(b) hold for t = 1. Since Part (a) automatically holds for t = 1, we only need to check

Part (b). Because v0(I0, N0) = cI0, Ψ1(x, y) = E[rn(y + θξt + ϵt)]. Thus, taking the transformation

x1 = ∆1 + V̄1 − p1 + γ(N1),

J1(x1, p1, N1) =R1(p1, N1) + βx1 + Λ(x1 − V̄1 + p1 − γ(N1)) + E[rn(θ(V̄1 − p1 + γ(N1)) + ηN1)]

=(p1 − b− αc)(V̄1 − p1 + γ(N1)) + β(∆1 + V̄1 − p1 + γ(N1)) + β∆1 + Λ(∆1)

+ E[rn(θ(V̄1 − p1 + γ(N1)) + ηN1)]

=(p1 − c)(V̄1 − p1 + γ(N1)) + β∆1 + Λ(∆1) + E[rn(θ(V̄1 − p1 + γ(N1)) + ηN1)].

Therefore, the optimal joint price and safety-stock (p1(N1),∆1(N1)) can be determined by

p1(N1) = argmaxp1∈[p,p̄]{(p1 − c)(V̄1 − p1 + γ(N1)) + E[rn(θ(V̄1 − p1 + γ(N1)) + ηN1)]},

and

∆1(N1) = ∆∗ = argmax∆{β∆+Λ(∆)},

respectively. Hence, x1(N1) = ∆1(N1) + y1(N1) = ∆∗ + y1(N1). We have thus shown Parts (a)-(b) for

t = 1.

We now show that if Parts (a)-(b) hold for period t − 1, they also hold for period t. First, taking

the transformation xt = ∆t + V̄t − pt + γ(Nt),

Jt(xt, pt, Nt) =Rt(pt, Nt) + βxt + Λ(xt − V̄1 + pt − γ(Nt))

+ Ψt(xt − V̄t + pt − γ(Nt), θ(V̄t − pt + γ(Nt)) + ηNt)

=Rt(pt, Nt) + β(∆t + V̄t − pt + γ(Nt)) + Λ(∆t) + Ψt(∆t, θ(V̄t − pt + γ(Nt)) + ηNt)

=(pt − c)(V̄t − pt + γ(Nt)) + β∆t + Λ(∆t) + Ψt(∆t, θ(V̄t − pt + γ(Nt)) + ηNt).

Let (pt(Nt),∆t(Nt)) be the optimal price and safety-stock with network size Nt. We now show that

∆t(Nt) ≤ ∆∗. If, to the contrary, ∆t(Nt) > ∆∗, Lemma 18 yields that

∂∆[(pt(Nt)− c)(V̄t − pt(Nt) + γ(Nt)) + β∆t(Nt) + Λ(∆t(Nt))

+Ψt(∆t(Nt), θ(V̄t − pt(Nt) + γ(Nt)) + ηNt)]

≥ ∂∆[β∆+Λ(∆)],

i.e.,

β + Λ′(∆t(Nt)) + ∂xΨt(∆t(Nt), θ(V̄t − pt(Nt) + γ(Nt)) + ηNt) ≥ β + Λ′(∆∗).

The concavity of Λ(·) implies that Λ′(∆t(Nt)) ≤ Λ′(∆∗). Moreover, since Ψt(x, y) is decreasing in x,

∂xΨt(∆t(Nt), θ(V̄t−pt(Nt)+γ(Nt))+ηNt) ≤ 0. Therefore, Λ′(∆t(Nt)) = Λ′(∆∗) and ∂xΨt(∆t(Nt), θ(V̄t−

pt(Nt) + γ(Nt)) + ηNt) = 0. Thus, by the first-order condition with respect to ∆t, (pt(Nt),∆
∗) is also

the optimal price and safety-stock level, which is strictly lexicographically smaller than (pt(Nt),∆t(Nt)).

This contradicts the assumption that we select the lexicographically smallest optimizer in each period.

Hence, ∆t(Nt) ≤ ∆∗ for all Nt ≥ 0.
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We now show that P[xt(Nt) − Dt(pt(Nt), Nt) ≤ xt−1(Nt−1)] = 1 for all Nt and Nt−1. Note that,

with probability 1,

xt(Nt)−Dt(pt(Nt), Nt) = ∆t(Nt)− ξt ≤ ∆∗ − ξt = xt−1(Nt−1)− yt−1(Nt−1)− ξt

= xt−1(Nt−1)−Dt−1(pt−1(Nt−1), Nt−1),

where the inequality follows from ∆∗ ≤ ∆t(Nt), second equality from the hypothesis induction that

xt−1(Nt−1) = yt−1(Nt−1) + ∆∗ for all Nt−1 ≥ 0, and the last equality from ξt−1
d
= ξt and the identity

thatDt−1(pt−1(Nt−1), Nt−1) = yt−1(Nt−1)+ξt−1. BecauseDt−1(pt−1(Nt−1), Nt−1) ≥ 0 with probability

1,

xt(Nt)−Dt(pt(Nt), Nt) ≤ xt−1(Nt−1)−Dt−1(pt−1(Nt−1), Nt−1) ≤ xt−1(Nt−1)

with probability 1, i.e., part (a) follows for period t.

Next, we show that ∆t(Nt) = ∆∗. Observe that P[xt(Nt)−Dt(pt(Nt), Nt) ≤ xt−1(Nt−1)] = 1 implies

that ∂xΨt(∆t(Nt), θ(V̄t−pt(Nt)+γ(Nt))+ηNt) = 0 and, thus, ∂xtJt(∆
∗+yt(Nt), pt(Nt), Nt) = 0. Since

Jt(·, ·, Nt) is jointly concave, the first-order condition with respect to xt yields that ∆t(Nt) = ∆∗ for all

Nt ≥ 0. This completes the induction and, thus, the proof of Lemma 3. Q.E.D.

Proof of Lemma 4:. By parts (a) and (b) of Theorem 2.4.1, if It ≤ xt(Nt),

vt(It, Nt) = cIt + πt(Nt),

where

πt(Nt) := max{Jt(xt, pt, Nt) : xt ≥ 0, pt ∈ [p, p̄]}.

By Lemma 2, πt(·) is concavely increasing and continuously differentiable in Nt.

By Lemma 3(a), for each Nt ≥ 0, xt(Nt) −Dt(pt(Nt), Nt) ≤ xt−1(Nt−1) with probability 1. Since

vt−1(It−1, Nt−1) = cIt−1 + πt−1(Nt−1) for all It−1 ≤ xt−1(Nt−1),

vt−1(xt(Nt)−Dt(pt(Nt), Nt), θDt(pt(Nt), Nt) + ηNt) =c[xt(Nt)−Dt(pt(Nt), Nt)]

+ πt−1(θDt(pt(Nt), Nt) + ηNt)

with probability 1. Taking expectation with respect to ξt and ϵt, we have, for all Nt ≥ 0 and xt ≤ xt(Nt),

Ψt(xt − V̄t + pt(Nt)− γ(Nt), θ(V̄t − pt(Nt) + γ(Nt)) + ηNt)

=E[rn(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt + θξt + ϵt)] + αE[πt−1(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt + θξt + ϵt)].

Therefore, for all Nt ≥ 0, if xt ≤ ∆∗ + yt(Nt),

Jt(xt, pt, Nt) = Rt(pt, Nt)+ βxt − θqt +Λ(xt − V̄t + pt(Nt)− γ(Nt))+Gt(θ(V̄t − pt(Nt)+ γ(Nt))+ ηNt),

where Gt(y) := E[rn(y + θξt + ϵt)] + αE[vt−1(y + θξt + ϵt)].

Finally, it remains to show that (xt(Nt), pt(Nt)) maximizes the right-hand side of (2.8). Note that

Theorem 2.4.1(c) and Lemma 3(a) imply that, if It ≤ xt(Nt), with probability 1, Iτ ≤ xτ (Nτ ) for all

τ = t, t−1, · · · , 1 and, hence, {(xτ (Nτ ), pτ (Nτ ))}τ=t,t−1,··· ,1 is the optimal policy in periods t, t−1, · · · , 1.
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In particular, (xt(Nt), pt(Nt)) maximizes the total expected discounted profit given that the firm adopts

{(xτ (Nτ ), pτ (Nτ ))} for τ = t− 1, · · · , 1. It’s straightforward to check that if the firm adopts the policy

{(xτ (Nτ ), pτ (Nτ ))} for τ = t−1, · · · , 1; and orders-up-to xt and charges pt in period t, the total expected

discounted profit of the firm in period t is given by the right-hand side of (2.8). Since (xt(Nt), pt(Nt))

maximizes the total expected discounted profit in period t, it also maximizes the right-hand side of (2.8)

for each t. This proves Lemma 4. Q.E.D.

Proof of Theorem 2.4.2: By Theorem 2.4.1(c) and Lemma 3(a), if IT ≤ xT (Nt), It ≤ xt(Nt) for

all t = T, T − 1, · · · , 1 with probability 1. Therefore, by Theorem 2.4.1(a), (x∗t (It, Nt), p
∗
t (It, Nt)) =

(xt(Nt), pt(Nt)) with probability 1 if IT ≤ xT (NT ). The characterization of (xt(Nt), pt(Nt)) follows

immediately from Lemma 4 and its discussions. Q.E.D.

The following lemma is used throughout the rest of our proofs.

Lemma 19 For each period t and any network size Nt ≥ 0, the following statements hold.

(a) Jt(xt(Nt), pt(Nt), Nt) = Lt(pt(Nt), Nt) + β∆∗ + Λ(∆∗), where Lt(pt, Nt) := (pt − c)(V̄t − pt +

γ(Nt))+Gt(θ(V̄t − pt + γ(Nt))+ ηNt), and ∆∗ is the optimal safety stock characterized in Lemma

3(b). Hence, pt(Nt) = argmaxpt∈[p,p̄]Lt(pt, Nt).

(b) Jt(xt(Nt), pt(Nt), Nt) = Kt(yt(Nt), Nt)+β∆
∗+Λ(∆∗), where Kt(yt, Nt) := (V̄t+γ(Nt)−yt−c)yt+

Gt(θyt + ηNt). Hence, yt(Nt) = argmaxyt∈[y
t
(Nt),ȳt(Nt)]Kt(yt, Nt), where yt(Nt) = V̄t + γ(Nt)− p̄

and ȳt(Nt) = V̄t + γ(Nt)− p.

(c) Let mt(Nt) := θyt(Nt) + ηNt be the optimal expected network size in period t − 1, given the

current network size Nt. We have Jt(xt(Nt), pt(Nt), Nt) =Mt(mt(Nt), Nt)+ β∆∗ +Λ(∆∗), where

Mt(mt, Nt) := (V̄t + γ(Nt)− mt−ηNt

θ − c) (mt−ηNt)
θ +Gt(mt). Hence,

mt(Nt) = argmaxmt∈[mt(Nt),m̄t(Nt)]Mt(mt, Nt), where mt(Nt) = θy
t
(Nt) + ηNt and m̄t(Nt) =

θȳt(Nt) + ηNt.

Proof of Lemma 19: Part (a). By Lemma 3(b), xt(Nt) − yt(Nt) = ∆∗ for all Nt ≥ 0. By

Lemma 4, for all Nt,

Jt(xt(Nt), pt(Nt), Nt) =Rt(pt(Nt), Nt) + βxt(Nt) + Λ(xt(Nt)− V̄t + pt(Nt)− γ(Nt))

+Gt(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt).

Therefore,

Jt(xt(Nt), pt(Nt), Nt) =Rt(pt(Nt), Nt) + β(∆∗ + V̄t − pt(Nt) + γ(Nt)) + Λ(∆∗)

+Gt(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt)

=(pt(Nt)− c)(V̄t − pt(Nt) + γ(Nt)) +Gt(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt)

+ β∆∗ + Λ(∆∗)

=Lt(pt(Nt), Nt) + β∆∗ + Λ(∆∗),

(A.3)
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where Lt(pt, Nt) := (pt− c)(V̄t−pt+γ(Nt))+Gt(θ(V̄t−pt+γ(Nt))+ηNt). Since (xt(Nt), pt(Nt))

maximizes Jt(·, ·, Nt), pt(Nt) = argmaxpt∈[p,p̄]Lt(pt, Nt). This proves part (a).

Part (b). Since yt(Nt) = V̄t−pt(Nt)+γ(Nt), pt(Nt) = V̄t−yt(Nt)+γ(Nt). Plug this into (A.3),

we have

Jt(xt(Nt), pt(Nt), Nt) =(pt(Nt)− c)(V̄t − pt(Nt) + γ(Nt)) +Gt(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt)

+ β∆∗ + Λ(∆∗)

=(V̄t − yt(Nt) + γ(Nt)− c)yt(Nt) +Gt(θyt(Nt) + ηNt) + β∆∗ + Λ(∆∗)

=Kt(yt(Nt), Nt) + β∆∗ + Λ(∆∗),

where Kt(yt, Nt) := (V̄t + γ(Nt) − yt − c)yt + Gt(θyt + ηNt). Since (xt(Nt), pt(Nt)) maximizes

Jt(·, ·, Nt), yt(Nt) = argmaxyt∈[y
t
(Nt),ȳt(Nt)]Kt(yt, Nt). The expressions of y

t
(Nt) and ȳt(Nt)

follow directly from the identity yt(Nt) = V̄t − pt(Nt) + γ(Nt) and pt ∈ [p, p̄]. This proves part

(b).

Part (c). Observe that mt(Nt) = θyt(Nt) + ηNt and θ > 0 imply that pt(Nt) = V̄t − yt(Nt) +

γ(Nt) = V̄t + γ(Nt)− mt(Nt)−ηNt

θ . Plug this into (A.3), we have

Jt(xt(Nt), pt(Nt), Nt) =(pt(Nt)− c)(V̄t − pt(Nt) + γ(Nt)) +Gt(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt)

+ β∆∗ + Λ(∆∗)

=(V̄t + γ(Nt)−
mt(Nt)− ηNt

θ
− c)

mt(Nt)− ηNt

θ
+Gt(mt(Nt)) + β∆∗

+ Λ(∆∗)

=Mt(mt(Nt), Nt) + β∆∗ + Λ(∆∗),

whereMt(mt, Nt) := (V̄t+γ(Nt)−mt−ηNt

θ −c) (mt−ηNt)
θ +Gt(mt). Since (xt(Nt), pt(Nt)) maximizes

Jt(·, ·, Nt), mt(Nt) = argmaxmt∈[mt(Nt),m̄t(Nt)]Mt(mt, Nt). The expressions ofmt(Nt) and m̄t(Nt)

follow directly from the identity mt(Nt) = θyt(Nt) + ηNt and that yt ∈ [y
t
(Nt), ȳt(Nt)]. This

establishes part (c). Q.E.D.

Proof of Theorem 2.4.3: Part (a). We first show pt(N̂t) ≥ pt(Nt). By Lemma 19(a) pt(Nt) =

argmaxpt
Lt(pt, Nt) and pt(N̂t) = argmaxpt

Lt(pt, N̂t). Hence, it suffices to show that Lt(·, ·) is super-

modular in (pt, Nt). Since ∂ptLt(pt, Nt) = V̄t + γ(Nt)− 2pt + c− θG′
t(θ(V̄t − pt + γ(Nt)) + ηNt), Since

Gt(·) is concave, ∂ptLt(pt, Nt) is increasing in Nt. Hence, Lt(·, ·) is supermodular in (pt, Nt) and, thus,

pt(N̂t) ≥ pt(Nt) for all N̂t > Nt (See [165]).

Part (b). We now show that E[Nt−1|N̂t] = mt(N̂t) = θyt(N̂t) + ηN̂t ≥ E[Nt−1|Nt] = mt(Nt) =

θyt(Nt) + ηNt. By Lemma 19(c), mt(N̂t) = argmaxmt
Mt(mt(N̂t), N̂t) and

mt(Nt) = argmaxmt
Mt(mt(Nt), Nt). To show that mt(N̂t) ≥ mt(Nt), it suffices to prove that Mt(·, ·)

is supermodular in (mt, Nt) and the feasible set {(mt, Nt) : mt ∈ [m(Nt), m̄t(Nt)]} is a lattice. Direct

computation yields that

∂mt
Mt(mt, Nt) =

1

θ
(V̄t + γ(Nt)−

mt − ηNt

θ
− c)− mt − ηNt

θ2
+G′

t(mt).
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Since θ > 0, ∂mtMt(mt, Nt) is increasing in Nt. Thus,Mt(·, ·) is supermodular in (mt, Nt). Since mt(Nt)

and mt(Nt) are continuously increasing in Nt, the feasible set {(mt, Nt) : mt ∈ [m(Nt), m̄t(Nt)]} is a

lattice. Hence, mt(N̂t) ≥ mt(Nt) for all N̂t > Nt.

Part (c). Since γ(N̂t) = γ(Nt), pt(N̂t) ≥ pt(Nt) implies that yt(N̂t) = V̄t − pt(N̂t) + γ(N̂t) ≤

V̄t−pt(Nt)+γ(Nt) = yt(Nt). Moreover, by Lemma 3(b), xt(N̂t) = ∆∗+yt(N̂t) ≤ ∆∗+yt(Nt) = xt(Nt).

Part (d). Since η = 0 and mt(N̂t) ≥ mt(Nt), yt(N̂t) =
mt(N̂t)

θ ≥ mt(Nt)
θ = yt(Nt). By Lemma 3(b),

xt(N̂t) = ∆∗ + yt(N̂t) ≥ ∆∗ + yt(Nt) = xt(Nt). Q.E.D.

Proof of Theorem 2.4.4: Part (a). We show part (a) by backward induction. More specifically,

we show that if η = 0 and vt−1(·, ·) is supermodular in (It−1, Nt−1), vt(·, ·) is supermodular in (It, Nt).

Since v0(I0, N0) = cI0, the initial condition is satisfied.

Since supermodularity is preserved under expectation, Ψt(x, y) = E{rn(y + θξt + ϵt) + α[vt−1(x −

ξt, y + θξt + ϵt)− cx]} is supermodular in (x, y). Let yt = V̄t − pt + γ(Nt). Observe that

Jt(xt, pt, Nt) =Rt(pt, Nt) + βxt + Λ(xt − V̄t + pt − γ(Nt)) + Ψt(xt − V̄t + pt − γ(Nt), θ(V̄t − pt + γ(Nt)))

=(V̄t + γ(Nt)− yt − αc− b)yt + βxt + Λ(xt − yt) + Ψt(xt − yt, θyt).

Hence,

vt(It, Nt) = cIt + max
(xt,yt)∈F ′

t(It,Nt)
{(V̄t + γ(Nt)− yt − αc− b)yt + βxt + Λ(xt − yt) + Ψt(xt − yt, θyt)},

where F ′
t(It, Nt) := {(xt, yt) : xt ≥ It, yt ∈ [V̄t + γ(Nt) − p̄, V̄t + γ(Nt) − p]}. Because γ(·) is increasing

in Nt, Λ(·) is concave, and Ψt(·, ·) is concave and supermodular, (V̄t + γ(Nt) − yt − αc − b)yt + βxt +

Λ(xt − yt) +Ψt(xt − yt, θyt) is supermodular in (xt, yt, Nt). Moreover, it’s straightforward to verify that

the feasible set {(xt, yt, It, Nt) : Nt ≥ 0, (xt, yt) ∈ F ′
t(It)} is a lattice in R4. Therefore, vt(It, Nt) is

supermodular in (It, Nt). This completes the induction and, thus, the proof of part (a).

Part (b). The continuity results in parts (b)-(e) all follow from the joint concavity and continuous

differentiability of Jt(·, ·, ·) in (xt, pt, Nt). Since x∗t (It, Nt) = max{It, xt(Nt)}, x∗t (It, Nt) is increasing in

It. Moreover, because the objective function (V̄t+γ(Nt)−yt−αc−b)yt+βxt+Λ(xt−yt)+Ψt(xt−yt, θyt)

is supermodular in (xt, yt, Nt), x
∗
t (It, Nt) is increasing in Nt as well. This proves part (b).

Part (c). If It ≤ xt(Nt), p
∗
t (It, Nt) = pt(Nt), which is independent of It. If It > xt(Nt), x

∗
t (It, Nt) =

It and, thus,

Jt(x
∗
t (It, Nt), pt, Nt) = Rt(pt, Nt)+βIt+Λ(It−V̄t+pt−γ(Nt))+Ψt(It−V̄t+pt−γ(Nt), θ(V̄t−pt+γ(Nt))).

(A.4)

Since Λ(·) is concave and Ψt(·, ·) is concave and supermodular, Jt(x
∗
t (It, Nt), pt, Nt) is submodular in

(It, pt). Hence, p∗t (It, Nt) is decreasing in It for all (It, Nt). By Theorem 2.4.3(d), if It ≤ xt(Nt),

p∗t (It, Nt) = pt(Nt) is increasing in Nt. If It > xt(Nt), we observe from (A.4) that Jt(x
∗
t (It, Nt), pt, Nt)

is supermodular in (pt, Nt). Hence, p
∗
t (It, Nt) is increasing in Nt for all (It, Nt). This proves part (c).

Part (d). If It ≤ xt(Nt), y
∗
t (It, Nt) = yt(Nt), which is independent of It. If It > xt(Nt), x

∗
t (It, Nt) =

It and, thus,

Jt(x
∗
t (It, Nt), pt, Nt) = (V̄t + γ(Nt)− yt − αc− b)yt + βIt + Λ(It − yt) + Ψt(It − yt, θyt).
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Since Λ(·) is concave and Ψt(·, ·) is concave and supermodular, Jt(x
∗
t (It, Nt), pt, Nt) is supermodular in

(It, yt) and its domain is a sublattice of R2. Hence, y∗t (It, Nt) is increasing in It for all (It, Nt). By

Theorem 2.4.3(d), if It ≤ xt(Nt), y
∗
t (It, Nt) = yt(Nt) is increasing in Nt. If It > xt(Nt), x

∗
t (It, Nt) = It

and, thus, Jt(x
∗
t (It, Nt), pt, Nt) = (V̄t + γ(Nt)− yt − αc− b)yt + βIt +Λ(It − yt) + Ψt(It − yt, θyt). The

supermodularity of Jt(x
∗
t (It, Nt), pt, Nt) in (yt, Nt) follows directly from that γ(·) is increasing in Nt.

Moreover, the feasible set {(yt, Nt) : yt ∈ [V̄t + γ(Nt) − p̄, V̄t + γ(Nt) − p]} is clearly a sublattice of R2.

Therefore, y∗t (It, Nt) is increasing in Nt for all (It, Nt). This proves part (d).

Part (e). If It ≤ xt(Nt), by Theorem 2.4.1(c), ∆∗
t (It, Nt) = ∆∗ is independent of It and Nt. If

It > xt(Nt), since It −∆t = yt,

Jt(x
∗
t (It, Nt), pt, Nt) = (V̄t + γ(Nt) + ∆t − It − αc− b)(It −∆t) + βIt + Λ(∆t) + Ψt(∆t, θ(It −∆t)).

Since Ψt(·, ·) is concave and supermodular, Jt(x
∗
t (It, Nt), pt, Nt) is supermodular in (It,∆t). Moreover,

the feasible set {(It,∆t) : ∆t ∈ [It − V̄t − γ(Nt) + p, It − V̄t − γ(Nt) + p̄]} is clearly a sublattice of R2.

Hence, ∆∗
t (It, Nt) is increasing in It for all (It, Nt). Moreover, since ∆∗

t (It, Nt) = It − y∗t (It, Nt), by part

(d), ∆∗
t (It, Nt) is decreasing in Nt. This proves part (e). Q.E.D.

Proof of Theorem 2.4.5: Part (a). Since γ(·) ≡ γ0 and r′n(n) ≡ r, the optimal policy of the

firm (pt(·), xt(·)) is independent of the current network size Nt. Hence, π̂′
t(Nt) ≥ π′

t(Nt) ≡ 0 for all t and

Nt ≥ 0. We now show that ŷt(Nt) ≥ yt(Nt) for all Nt ≥ 0. Note that π̂′
t−1(Nt−1) ≥ π′

t−1(Nt−1) for all

Nt−1 ≥ 0 implies that

Ĝ′
t(y) = E{r′n(y + θξt + ϵt) + απ̂′

t−1(y + θξt + ϵt)} ≥ E{r′n(y + θξt + ϵt) + απ′
t−1(y + θξt + ϵt)} = G′

t(y),

for all y. By Lemma 3(b), x̂t(Nt) = ŷt(Nt) + ∆∗, xt(Nt) = yt(Nt) + ∆∗, ŷt(Nt) = V̄t − p̂t(Nt) + γ̂(Nt),

and yt(Nt) = V̄t − pt(Nt) + γ(Nt). By Lemma 19(b), we have Ĵt(x̂t(Nt), p̂t(Nt), Nt) = K̂t(ŷt(Nt), Nt) +

β∆∗ + Λ(∆∗) and Jt(xt(Nt), pt(Nt), Nt) = Kt(yt(Nt), Nt) + β∆∗ + Λ(∆∗).

We now show ŷt(Nt) ≥ yt(Nt). Assume, to the contrary, that ŷt(Nt) < yt(Nt). Lemma 18 yields

that ∂ytK̂t(ŷt(Nt), Nt) ≤ ∂ytKt(yt(Nt), Nt), i.e.,

−2ŷt(Nt) + γ̂(Nt) + θĜ′
t(θŷt(Nt) + ηNt) ≤ −2yt(Nt) + γ(Nt) + θG′

t(θyt(Nt) + ηNt).

Because Ĝ′
t(·) ≥ G′

t(·) and ŷt(Nt) < yt(Nt), the concavity of Ĝt(·) and Gt(·) implies that Ĝ′
t(θŷt(Nt) +

ηNt) ≥ G′
t(θyt(Nt) + ηNt). Since γ̂(Nt) ≥ γ(Nt), we have −2ŷt(Nt) ≤ −2yt(Nt), which contradicts the

assumption that ŷt(Nt) < yt(Nt). Hence, ŷt(Nt) ≥ yt(Nt). This completes the proof of part (a).

Part (b). By Lemma 3(b) and part (a), x̂t(Nt) = ŷt(Nt) + ∆∗ ≥ yt(Nt) + ∆∗ = xt(Nt) for all

Nt ≥ 0. This proves part (b).

Part (c). We first show that p̂t(0) ≤ pt(0). Observe that p̂t(0) = V̄t + γ̂(0) − ŷt(0) and pt(0) =

V̄t + γ(0) − yt(0). By part (a), ŷt(0) ≥ yt(0). Moreover, since γ̂(0) = γ(0) = γ0, p̂t(0) ≤ pt(0). Since

γ(·) ≡ γ0, pt(Nt) ≡ pt(0). Moreover, Theorem 2.4.3(a) implies that p̂t(Nt) is increasing in Nt. The joint

concavity of Ĵt(·, ·, ·) implies that p̂t(Nt) is continuously increasing in Nt. Thus, let Nt be the smallest

Nt such that p̂t(Nt) ≥ pt(Nt) = pt(0). The monotonicity of p̂t(·) then suggests that p̂t(Nt) ≤ pt(Nt) if
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Nt ≤ Nt, and p̂t(Nt) ≥ pt(Nt) if Nt ≥ Nt. This proves part (c). Q.E.D.

Proof of Theorem 2.4.6: We show Theorem 2.4.6 by backward induction. More specifically, we

show that if V̄t = V̄t−1 and π′
t−1(N) ≥ π′

t−2(N) for all N ≥ 0, (i) yt(N) ≥ yt−1(N) for all N ≥ 0, (ii)

pt(N) ≤ pt−1(N) for all N ≥ 0, (iii) xt(N) ≥ xt−1(N) for all N ≥ 0, and (iv) π′
t(N) ≥ π′

t−1(N) for all

N ≥ 0. Since π′
1(N) ≥ π′

0(N) ≡ 0 for all N , the initial condition is satisfied.

Note that π′
t−1(N) ≥ π′

t−2(N) for all N ≥ 0 implies that

G′
t(y) = E{r′n(y+ θξt + ϵt)+απ′

t−1(y+ θξt + ϵt)} ≥ E{r′n(y+ θξt + ϵt)+απ′
t−2(y+ θξt + ϵt)} = G′

t−1(y),

for all y. By Lemma 19(b), Jt(xt(N), pt(N), N) = Kt(yt(N), N) + β∆∗ + Λ(∆∗) and

Jt−1(xt−1(N), pt−1(N), N) = Kt−1(yt−1(N), N) + β∆∗ + Λ(∆∗).

We first prove that yt(N) ≥ yt−1(N) for all N . Assume, to the contrary, that yt(N) < yt−1(N) for

some N . Lemma 18 implies that ∂ytKt(yt(N), N) ≤ ∂yt−1Kt−1(yt−1(N), N), i.e.,

−2yt(N) + γ(N) + θG′
t(θyt(N) + ηN) ≤ −2yt−1(N) + γ(N) + θG′

t−1(θyt−1(N) + ηN).

Because G′
t(·) ≥ G′

t−1(·) for all y and yt(N) < yt−1(N), the concavity of Gt(·) and Gt−1(·) implies that

G′
t(θyt(N) + ηN) ≥ G′

t−1(θyt−1(N) + ηN). Thus, we have −2yt(N) ≤ −2yt−1(N), which contradicts

the assumption that yt(N) < yt−1(N). Hence, yt(N) ≥ yt−1(N) for all N ≥ 0. By Theorem 2.4.1(c), it

follows immediately that xt(N) = yt(N) + ∆∗ ≥ yt−1(N) + ∆∗ = xt−1(N) for all N ≥ 0.

Next, we show that pt(N) ≤ pt−1(N) for all N ≥ 0. By Lemma 19(a), Jt(xt(N), pt(N), N) =

Lt(pt(N), N) + β∆∗ + Λ(∆∗) and Jt−1(xt−1(N), pt−1(N), N) = Lt−1(pt−1(N), N) + β∆∗ + Λ(∆∗). As-

sume, to the contrary, that pt(N) > pt−1(N) for some N . Lemma 18 implies that ∂ptLt(pt(N), N) ≥

∂pt−1Lt−1(pt−1(N), N), i.e.,

− 2pt(N) + V̄t + c+ γ(N)− θG′
t(θ(V̄t − pt(N) + γ(N)) + ηN)

≥− 2pt−1(N) + V̄t−1 + c+ γ(N)− θG′
t−1(θ(V̄t−1 − pt−1(N) + γ(N)) + ηN).

Because G′
t(·) ≥ G′

t−1(·) for all y and pt(N) > pt−1(N), the concavity of Gt(·) and Gt−1(·) implies

that G′
t(θ(V̄t − pt(N) + γ(N)) + ηN) ≥ G′

t−1(θ(V̄t−1 − pt−1(N) + γ(N)) + ηN). Since V̄t = V̄t−1,

we have −2pt(N) ≥ −2pt−1(N), which contradicts the assumption that pt(N) > pt−1(N). Hence,

pt(N) ≤ pt−1(N) for all N ≥ 0.

Finally, to complete the induction, we show that π′
t(N) ≥ π′

t−1(N) for all N . By the envelope

theorem,

π′
t(N) = (pt(N)− c)γ′(N) + (η + θγ′(N))G′

t(θ(V̄t − pt(N) + γ(N)) + ηN),

and

π′
t−1(N) = (pt−1(N)− c)γ′(N) + (η + θγ′(N))G′

t−1(θ(V̄t−1 − pt−1(N) + γ(N)) + ηN),

If pt(N) = pt−1(N), π′
t(N) ≥ π′

t−1(N) follows immediately from γ′(N) ≥ 0 and G′
t(·) ≥ G′

t−1(·). If

pt(N) < pt−1(N), Lemma 18 yields that ∂ptLt(pt(N), N) ≤ ∂pt−1Lt−1(pt−1(N), N), i.e.,

− 2pt(N) + V̄t + c+ γ(N)− θG′
t(θ(V̄t − pt(N) + γ(N)) + ηN)

≤− 2pt−1(N) + V̄t−1 + c+ γ(N)− θG′
t−1(θ(V̄t−1 − pt−1(N) + γ(N)) + ηN).
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Hence, by V̄t = V̄t−1,

pt(N) + θG′
t(θ(V̄t − pt(N) + γ(N)) + ηN)

≥pt−1(N) + θG′
t−1(θ(V̄t−1 − pt−1(N) + γ(N)) + ηN) + (pt−1(N)− pt(N)).

(A.5)

Since θ > 0, pt(N) < pt−1(N) implies that G′
t(θ(V̄t − pt(N) + γ(N)) + ηN) ≥ G′

t−1(θ(V̄t−1 − pt−1(N) +

γ(N)) + ηN). Therefore,

π′
t(N)− π′

t−1(N) =[(pt(N)− pt−1(N)) + θ(G′
t(θ(V̄t − pt(N) + γ(N)) + ηN)

−G′
t−1(θ(V̄t−1 − pt−1(N) + γ(N)) + ηN))]γ′(N)

+ η(G′
t(θ(V̄t − pt(N) + γ(N)) + ηN)−G′

t−1(θ(V̄t−1 − pt−1(N) + γ(N)) + ηN))

≥0.

Hence, π′
t(N) ≥ π′

t−1(N) for all N . This completes the induction and, thus, the proof of Theorem 2.4.6.

Q.E.D.

Proof of Theorem 2.4.7: We show Theorem 2.4.7 by backward induction. More specifically, we

show that if π̂′
t−1(·) ≥ π′

t−1(·) for all Nt−1 ≥ 0 and r̂′n(·) ≥ r′n(·) for all N ≥ 0, (i) ŷt(Nt) ≥ yt(Nt) for all

Nt ≥ 0; (ii) x̂t(Nt) ≥ xt(Nt) for all Nt ≥ 0; (iii) p̂t(Nt) ≤ pt(Nt) for all Nt ≥ 0; and (iv) π̂′
t(Nt) ≥ π′

t(Nt)

for all Nt ≥ 0. Since π̂′
0(·) = π′

0(·) ≡ 0, the initial condition is satisfied.

Note that π̂′
t−1(Nt−1) ≥ π′

t−1(Nt−1) for all Nt−1 ≥ 0 and r̂′n(·) ≥ r′n(·) for all N ≥ 0 imply that

Ĝ′
t(y) = E{r̂′n(y + θξt + ϵt) + απ̂′

t−1(y + θξt + ϵt)} ≥ E{r′n(y + θξt + ϵt) + απ′
t−1(y + θξt + ϵt)} = G′

t(y),

for all y. By Lemma 19(a), Ĵt(x̂t(Nt), p̂t(Nt), Nt) = K̂t(ŷt(Nt), Nt) + β∆∗ + Λ(∆∗) and

Jt(xt(Nt), pt(Nt), Nt) = Kt(yt, Nt) + β∆∗ + Λ(∆∗).

We first show that ŷt(Nt) ≥ yt(Nt). Assume, to the contrary, that ŷt(Nt) < yt(Nt) for some Nt.

Lemma 18 yields that ∂ytK̂t(ŷt(Nt), Nt) ≤ ∂ytKt(yt(Nt), Nt), i.e.,

−2ŷt(Nt) + γ(Nt) + θĜ′
t(θŷt(Nt) + ηNt) ≤ −2yt(Nt) + γ(Nt) + θG′

t(θyt(Nt) + ηNt).

Because Ĝ′
t(·) ≥ G′

t(·) and ŷt(Nt) < yt(Nt), the concavity of Ĝt(·) and Gt(·) implies that Ĝ′
t(θŷt(Nt) +

ηNt) ≥ G′
t(θyt(Nt) + ηNt). Hence, we have −2ŷt(Nt) ≤ −2yt(Nt), which contradicts the assumption

that ŷt(Nt) < yt(Nt). Thus, ŷt(Nt) ≥ yt(Nt) and, hence, x̂t(Nt) = ŷt(Nt)+∆∗ ≥ yt(Nt)+∆∗ = xt(Nt).

Next, we show that p̂t(Nt) ≤ pt(Nt). By Lemma 19(a), Ĵt(x̂t(Nt), p̂t(Nt), Nt) = L̂t(p̂t(Nt), Nt) +

β∆∗ +Λ(∆∗) and Jt(xt(Nt), pt(Nt), Nt) = Lt(pt(Nt), Nt) + β∆∗ +Λ(∆∗) Assume, to the contrary, that

p̂t(Nt) > pt(Nt) for some Nt. Lemma 18 implies that ∂ptL̂t(p̂t(Nt), Nt) ≥ ∂ptLt(pt(Nt), Nt), i.e.,

− 2p̂t(Nt) + V̄t + c+ γ(Nt)− θĜ′
t(θ(V̄t − p̂t(Nt) + γ(Nt)) + ηNt)

≥− 2pt(Nt) + V̄t + c+ γ(Nt)− θG′
t(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt).

Because Ĝ′
t(·) ≥ G′

t(·) for all y and p̂t(Nt) > pt(Nt), the concavity of Ĝt(·) and Gt(·) implies that

Ĝ′
t(θ(V̄t − p̂t(Nt) + γ(Nt)) + ηNt) ≥ G′

t(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt). We have −2p̂t(Nt) ≥ −2pt(Nt),

which contradicts the assumption that p̂t(Nt) > pt(Nt). Hence, p̂t(Nt) ≥ pt(Nt) for all Nt ≥ 0.
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Finally, to complete the induction, we show that π̂′
t(Nt) ≥ π′

t(Nt) for all Nt. By the envelope

theorem,

π̂′
t(Nt) = (p̂t(Nt)− c)γ′(Nt) + (η + θγ′(Nt))Ĝ

′
t(θ(V̄t − p̂t(Nt) + γ(Nt)) + ηNt),

and

π′
t(Nt) = (pt(Nt)− c)γ′(Nt) + (η + θγ′(Nt))G

′
t(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt),

If p̂t(Nt) = pt(Nt), π̂
′
t(Nt) ≥ π′

t(Nt) follows immediately from γ′(N) ≥ 0 and Ĝ′
t(·) ≥ G′

t(·) for all y. If

p̂t(Nt) < pt(Nt), Lemma 18 yields that ∂pt
L̂t(p̂t(Nt), Nt) ≤ ∂pt

Lt(pt(Nt), Nt), i.e.,

− 2p̂t(Nt) + V̄t + c+ γ(Nt)− θĜ′
t(θ(V̄t − p̂t(Nt) + γ(Nt)) + ηNt)

≤− 2pt(Nt) + V̄t + c+ γ(Nt)− θG′
t(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt).

Hence,

p̂t(Nt) + θĜ′
t(θ(V̄t − p̂t(Nt) + γ(Nt)) + ηNt)

≥pt(Nt) + θG′
t(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt) + (pt(Nt)− p̂t(Nt)).

(A.6)

Since θ > 0, p̂t(Nt) < pt(Nt) implies that Ĝ′
t(θ(V̄t− p̂t(Nt)+γ(Nt))+ηNt) ≥ G′

t(θ(V̄t−pt(Nt)+γ(Nt))+

ηNt). Therefore, by (A.6),

π̂′
t(Nt)− π′

t(Nt) =[(p̂t(Nt)− pt(Nt)) + θ(Ĝ′
t(θ(V̄t − p̂t(Nt) + γ(Nt)) + ηNt)

−G′
t(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt))]γ

′(Nt)

+ η(Ĝ′
t(θ(V̄t − p̂t(Nt) + γ(Nt)) + ηNt)−G′

t(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt))

≥0.

Hence, π̂′
t(Nt) ≥ π′

t(Nt) for all Nt. This completes the induction and, thus, the proof of Theorem 2.4.7.

Q.E.D.

Proof of Lemma 5: Part (a). The concavity, differentiability, and monotonicity of πd
t (·) and Jd

t (·, ·, ·, ·)

follow from the same backward induction argument as the proof of Lemma 2. Hence, we omit the proof

of part (a) for brevity.

Part (b). The optimal value function vdt (It, Nt) satisfies the following recursive scheme:

vdt (It, Nt) = cIt + max
(xt,ps

t ,p
i
t)∈Fd(It)

Jd
t (xt, p

s
t , p

i
t, Nt), (A.7)

where Fd(It) := {(xt, pst , pit) ∈ [It,+∞)× [p, p̄]× [p, p̄] : pst ≤ pit} denotes the set of feasible decisions with

price discrimination and

Jd
t (xt, p

s
t , p

i
t, Nt) = θRt(p

s
t , Nt) + (1− θ)Rt(p

i
t, Nt) + βxt + Λ(xt − V̄t + θpst + (1− θ)pit − γ(Nt))

+Ψd
t (xt − V̄t + θpst + (1− θ)pit − γ(Nt), θ(V̄t − pst + γ(Nt)) + ηNt), (A.8)

with Ψd
t (x, y) := E{α[rn(y + θξt + ϵt) + vdt−1(x− ξt, y + θξt + ϵt)− cx]}.
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The derivation of (A.8) is as follows:

Jd
t (xt, p

s
t , p

i
t, Nt) := −cIt + E{pstDs

t (p
s
t , Nt) + pitD

i
t(p

i
t, Nt)− c(xt − It)− h(xt −Ds

t (p
s
t , Nt)

−Di
t(p

i
t, Nt))

+ − b(xt −Ds
t (p

s
t , Nt)−Di

t(p
i
t, Nt))

− + rn(D
s
t (p

s
t , Nt) + ηNt + ϵt)

+αvdt−1(xt −Ds
t (p

s
t , Nt)−Di

t(p
i
t, Nt), D

s
t (p

s
t , Nt) + ηNt + ϵt)|Nt},

= θ(pst − αc− b)(V̄t − pst + γ(Nt)) + (1− θ)(pit − αc− b)(V̄t − pit + γ(Nt))

+(b− (1− α)c)xt

+E{rn(Ds
t (p

s
t , Nt) + ηNt + ϵt)− (h+ b)(xt − V̄t + θpst + (1− θ)pit − γ(Nt)− ξt)

+

+α[vdt−1(xt − V̄t + θpst + (1− θ)pit − γ(Nt)− ξt,

θ(V̄t − pst + γ(Nt) + ξt) + ηNt + ϵt)

−c(xt − V̄t + θpst + (1− θ)pit − γ(Nt)− ξt)]|Nt}

= θRt(p
s
t , Nt) + (1− θ)Rt(p

i
t, Nt) + βxt + Λ(xt − V̄t + θpst + (1− θ)pit − γ(Nt))

+Ψd
t (xt − V̄t + θpst + (1− θ)pit − γ(Nt), θ(V̄t − pst + γ(Nt)) + ηNt).

We use (x̂dt (Nt), p̂
s
t (Nt), p̂

i
t(Nt)) to denote the unconstrained maximizer of (A.8). The same argument as

the proof of Lemma 2 yields that Jd
t (·, ·, ·, ·) is jointly concave in (xt, p

s
t , p

i
t, Nt). Hence, if It ≤ x̂dt (Nt),

(xd∗t (It, Nt), p
s∗
t (It, Nt), p

i∗
t (It, Nt)) = (x̂dt (Nt), p̂

s
t (Nt), p̂

i
t(Nt)); otherwise (It > x̂t(Nt)), x

d∗
t (It, Nt) = It.

The same argument as the proof of Lemma 3 implies that P[x̂dt (Nt)−Ds
t (p̂

s
t (Nt), Nt)−Di

t(p̂
i
t(Nt), Nt) ≤

x̂dt−1(Nt−1)] = 1. Hence, the same argument as the proof of Lemma 4 yields that (x̂dt (Nt), p̂
s
t (Nt), p̂

i
t(Nt)) =

(xdt (Nt), p
s
t (Nt), p

i
t(Nt)) for all Nt ≥ 0. Thus, if IT ≤ xdT (NT ), It ≤ xdt (Nt) for all t with probability 1.

Hence, part (b) follows. Q.E.D.

The following lemma is a counterpart of Lemma 19 in the model with price discrimination.

Lemma 20 For each period t and any network size Nt ≥ 0, the following statements hold.

(a) xdt (Nt) = yst (Nt)+y
i
t(Nt)+∆∗, where ∆∗ is the optimal safety stock characterized in Lemma 3(b).

(b) Jd
t (x

d
t (Nt), p

s
t (Nt), p

i
t(Nt), Nt) = Ls

t (p
s
t (Nt), Nt) + (1 − θ)Rt(p

i
t(Nt), Nt) + β∆∗ + Λ(∆∗), where

Ls
t (pt, Nt) := θ(pt−c)(V̄t−pt+γ(Nt))+G

d
t (θ(V̄t−pt+γ(Nt))+ηNt), and Rt(pt, Nt) := (pt−c)(V̄t−

pt + γ(Nt)). Hence, pst (Nt) = argmaxps
t∈[p,p̄]L

s
t (pt, Nt) and p

i
t(Nt) = argmaxpi

t∈[p,p̄]Rt(p
i
t, Nt).

(c) Jd
t (x

d
t (Nt), p

s
t (Nt), p

i
t(Nt), Nt) = Ks

t (y
s
t (Nt), Nt) + (1 − θ)Rt(p

i
t(Nt), Nt) + β∆∗ + Λ(∆∗), where

Ks
t (yt, Nt) := (V̄t+γ(Nt)−yt

θ −c)yt+G
d
t (yt+ηNt). Hence, y

s
t (Nt)argmax[ys

t∈[ys
t
(Nt),ȳs

t (Nt)]K
s
t (yt, Nt),

where ys
t
(Nt) := θ(V̄t + γ(Nt)− p̄) and ȳst (Nt) := θ(V̄t + γ(Nt)− p).

(d) Let ms
t (Nt) := yst (Nt) + ηNt be the optimal expected network size in period t− 1, given the current

network size Nt. We have Jd
t (x

d
t (Nt), p

s
t (Nt), p

i
t(Nt), Nt) =Ms

t (m
s
t (Nt), Nt)+(1−θ)Rt(p

i
t(Nt), Nt)+

β∆∗ + Λ(∆∗), where Ms
t (mt, Nt) := (V̄t + γ(Nt) − mt−ηNt

θ − c)(mt − ηNt) + Gd
t (mt). Hence,

ms
t (Nt)argmaxms

t∈[ms
t (Nt),m̄s

t (Nt)]M
s
t (m

s
t , Nt), wherem

s
t (Nt) := ys

t
(Nt)+ηNt and m̄

s
t (Nt) := ȳst (Nt)+

ηNt.
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Proof of Lemma 20: Part (a). Part (a) follows from the same argument as the proof of Lemma

3(b), so we omit its proof for brevity.

Part (b). By part (a), xdt (Nt)− yst (Nt)− yit(Nt) = ∆∗ for all Nt ≥ 0. By the Bellman equation

2.10, for all Nt,

Jd
t (x

d
t (Nt), p

s
t (Nt), p

i
t(Nt), Nt) =θRt(p

s
t (Nt), Nt) + (1− θ)Rt(p

i
t(Nt), Nt) + βxdt (Nt)

+ Λ(xdt (Nt)− yst (Nt)− yit(Nt))

+Gd
t (θ(V̄t − pst (Nt) + γ(Nt)) + ηNt).

Therefore,

Jd
t (x

d
t (Nt), p

s
t (Nt), p

i
t(Nt), Nt) =θRt(p

s
t (Nt), Nt) + (1− θ)Rt(p

i
t(Nt), Nt)

+ β(∆∗ + V̄t − θpst (Nt)− (1− θ)pit(Nt) + γ(Nt)) + Λ(∆∗)

+Gd
t (θ(V̄t − pst (Nt) + γ(Nt)) + ηNt)

=θ(pst (Nt)− c)(V̄t − pst (Nt) + γ(Nt)) + (1− θ)Rt(p
i
t(Nt), Nt)

+Gd
t (θ(V̄t − pst (Nt) + γ(Nt)) + ηNt) + β∆∗ + Λ(∆∗)

=Ls
t (p

s
t (Nt), Nt) + (1− θ)Rt(p

i
t(Nt), Nt) + β∆∗ + Λ(∆∗),

(A.9)

where Ls
t (pt, Nt) := θ(pt − c)(V̄t − pt + γ(Nt)) +Gd

t (θ(V̄t − pt + γ(Nt)) + ηNt), and Rt(pt, Nt) :=

(pt−c)(V̄t−pt+γ(Nt)). Since (x
d
t (Nt), p

s
t (Nt), p

i
t(Nt)) maximizes Jd

t (·, ·, ·, Nt) for all Nt, p
s
t (Nt) =

argmaxps
t∈[p,p̄]L

s
t (p

s
t , Nt) and p

i
t(Nt) = argmaxpi

t∈[p,p̄]Rt(p
i
t, Nt). This proves part (b).

Part (c). Since yst (Nt) = θ(V̄t − pst (Nt) + γ(Nt)) and θ > 0, pst (Nt) = V̄t − ys
t (Nt)
θ + γ(Nt). Plug

this into (A.9), we have

Jd
t (x

d
t (Nt), p

s
t (Nt), p

i
t(Nt), Nt) =θ(p

s
t (Nt)− c)(V̄t − pst (Nt) + γ(Nt)) + (1− θ)Rt(p

i
t(Nt), Nt)

+Gd
t (θ(V̄t − pst (Nt) + γ(Nt)) + ηNt) + β∆∗ + Λ(∆∗)

=(V̄t −
yst (Nt)

θ
+ γ(Nt)− c)yst (Nt) + (1− θ)Rt(p

i
t(Nt), Nt)

+Gd
t (y

s
t (Nt) + ηNt) + β∆∗ + Λ(∆∗)

=Ks
t (y

s
t (Nt), Nt) + (1− θ)Rt(p

i
t(Nt), Nt) + β∆∗ + Λ(∆∗),

whereKs
t (yt, Nt) := (V̄t− yt

θ +γ(Nt)−c)yt+Gd
t (yt+ηNt). Since (x

d
t (Nt), p

s
t (Nt), p

i
t(Nt)) maximizes

Jd
t (·, ·, ·, Nt) for allNt, y

s
t (Nt) = argmaxys

t∈[ys
t
(Nt),ȳs

t (Nt)]K
s
t (y

s
t , Nt). The expressions of y

s
t
(Nt) and

ȳst (Nt) follow immediately from the identity yst = θ(V̄t − pst + γ(Nt)) and that pst ∈ [p, p̄]. This

proves part (c).
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Part (d). Observe that ms
t (Nt) = yst (Nt) + ηNt and θ > 0 imply that pst (Nt) = V̄t − ys

t (Nt)
θ +

γ(Nt) = V̄t + γ(Nt)− ms
t (Nt)−ηNt

θ . Plug this into (A.9), we have

Jd
t (x

d
t (Nt), p

s
t (Nt), p

i
t(Nt), Nt) =θ(p

s
t (Nt)− c)(V̄t − pst (Nt) + γ(Nt)) + (1− θ)Rt(p

i
t(Nt), Nt)

+Gd
t (θ(V̄t − pst (Nt) + γ(Nt)) + ηNt) + β∆∗ + Λ(∆∗)

=(V̄t + γ(Nt)−
ms

t (Nt)− ηNt

θ
− c)(ms

t (Nt)− ηNt) +Gd
t (m

s
t (Nt))

+ β∆∗ + Λ(∆∗)

=Ms
t (m

s
t (Nt), Nt) + (1− θ)Rt(p

i
t(Nt), Nt) + β∆∗ + Λ(∆∗),

whereMs
t (mt, Nt) := (V̄t+γ(Nt)−mt−ηNt

θ −c)(mt−ηNt)+G
d
t (mt). Since (x

d
t (Nt), p

s
t (Nt), p

i
t(Nt))

maximizes Jd
t (·, ·, ·, Nt) for all Nt, m

s
t (Nt) = argmaxms

t∈[ms
t (Nt),m̄s

t (Nt)]M
s
t (m

s
t , Nt). The expres-

sions of ms
t (Nt) and m̄s

t (Nt) follow immediately from the identity ms
t = yst + ηNt and that

yst ∈ [ys
t
(Nt), ȳ

s
t (Nt)]. This establishes part (d). Q.E.D.

Proof of Theorem 2.5.1: Part (a). Direct computation yields that ∂ptL
s
t (pt, Nt) = θ[−2pt− c+ V̄t+

γ(Nt)−∂yGd
t (θ(V̄t−pt+γ(Nt))+ηNt)] and ∂ptRt(pt, Nt) = −2pt−c+ V̄t+γ(Nt). Since p

i
t(Nt) > p, the

first order condition with respect to pt implies that ∂ptRt(p
i
t(Nt), Nt) = 0, i.e., −2pit(Nt)−c+V̄t+γ(Nt) =

0. Hence, ∂ptL
s
t (p

i
t(Nt), Nt) = −θGd

t (θ(V̄t − pit(Nt) + γ(Nt)) + ηNt). Since γ′(·) > 0 for all Nt ≥ 0,

Gd
t (θ(V̄t − pit(Nt) + γ(Nt)) + ηNt) > 0. Moreover, θ > 0 implies that ∂ptL

s
t (p

i
t(Nt), Nt) < 0. Because

Ls
t (·, Nt) is concave in pt and p

i
t(Nt) > p, pst (Nt) = argmaxpt∈[p,p̄]L

s
t (pt, Nt) < pit(Nt). This proves part

(a).

Part (b). Assume, to the contrary, that pt(Nt) > pit(Nt). Lemma 18 yields that ∂ptLt(pt(Nt), Nt) ≥

∂ptRt(p
i
t(Nt), Nt), i.e., θ[−2pt(Nt)− c+ V̄t + γ(Nt)−G′

t(θ(V̄t − pt(Nt) + γ(Nt))+ ηNt)] ≥ θ[−2pit(Nt)−

c+ V̄t + γ(Nt)]. G
′
t(·) ≥ 0 implies that pt(Nt) ≤ pit(Nt), which contradicts the assumption that pt(Nt) >

pit(Nt). This proves part (b).

Part (c). Observe that, if piτ (·) = psτ (·) = pτ (·) for each τ ≤ t and any Nτ ≥ 0, πd
t (Nt) = πt(Nt)

for all Nt ≥ 0. Hence, πt(·) is a lower bound for πd
t (·). Now assume that pit(Nτ ) > pst (Nt). Because

pst (·) and pit(·) are the lexicographically smallest optimizers, we must have πd
t (Nt) > πt(Nt). Otherwise

there are two policies (one with pst (Nt) = pit(Nt) and the other with pst (Nt) < pit(Nt)) that are lexi-

cographically different but generate the same optimal profit, which contradicts that the optimal policy

(xdt (Nt), p
s
t (Nt), p

i
t(Nt)) is the lexicographically smallest optimizer. On the other hand, if γ(·) ≡ γ0 and

r(·) ≡ 0 for all Nt ≥ 0, ∂Ntπt(·) ≡ 0 for all t and, hence, pit(·) = pst (·) for all t and Nt ≥ 0. Moreover, since

pt(·) is the optimal pricing policy if the firm charges a single price to all customers in each period t, the

optimal price discrimination strategy should be pit(·) = pst (·) = pt(·) for each t. Hence, πd
t (Nt) = πt(Nt)

for all Nt ≥ 0. This proves part (c). Q.E.D.

Proof of Lemma 6: Part (a). Part (a) follows from the same argument as the proof of Lemma

2, so we omit its proof for brevity.
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Part (b). The optimal value function vpt (It, Nt) satisfies the following recursive scheme:

vpt (It, Nt) = cIt + max
(xt,pt,nt)∈Fp(It)

Jp
t (xt, pt, nt, Nt), (A.10)

where Fp(It) := [It,+∞)× [p, p̄]× [0,+∞) denotes the set of feasible decisions and

Jp
t (xt, pt, nt, Nt) = Rt(pt, Nt) + βxt + Λ(xt − V̄t + pt − γ(Nt))− cn(nt)

+Ψp
t (xt − V̄t + pt − γ(Nt), θ(V̄t − pt + γ(Nt)) + ηNt + nt), (A.11)

with Ψp
t (x, y) := E{rn(y + θξt + ϵt) + αvpt−1(x− ξt, y + θξt + ϵt)− cx}.

The derivation of (A.11) is given as follows:

Jp
t (xt, pt, nt, Nt) := −cIt + E{ptDt(pt, Nt)− c(xt − It)− h(xt −Dt(pt, Nt))

+ − b(xt −Dt(pt, Nt))
−

+rn(θDt(pt, Nt) + ηNt + nt + ϵt)− cn(nt)

+αvpt−1(xt −Dt(pt, Nt), θDt(pt, Nt) + ηNt + nt + ϵt)|Nt},

= (pt − αc− b)(V̄t − pt + γ(Nt)) + (b− (1− α)c)xt − cn(nt)

+E{rn(θ(V̄t − pt + γ(Nt) + ξt) + ηNt + nt + ϵt)

−(h+ b)(xt − V̄t + pt − γ(Nt)− ξt)
+

+α[vpt−1(xt − V̄t + pt − γ(Nt)− ξt, θ(V̄t − pt + γ(Nt) + ξt) + ηNt + nt + ϵt)

−c(xt − V̄t + pt − γ(Nt)− ξt)]|Nt}

= Rt(pt, Nt) + βxt + Λ(xt − V̄t + pt − γ(Nt))− cn(nt)

+Ψp
t (xt − V̄t + pt − γ(Nt), θ(V̄t − pt + γ(Nt)) + ηNt + nt).

We use (x̂pt (Nt), p̂
p
t (Nt), n̂t(Nt)) as the unconstrained optimizer of (A.11). The same argument as the

proof of Lemma 2 yields that Jd
t (·, ·, ·, ·) is jointly concave in (xt, pt, nt, Nt). Hence, if It ≤ x̂pt (Nt),

(xp∗t (It, Nt), p
p∗
t (It, Nt), n

∗
t (It, Nt)) = (x̂pt (Nt), p̂

p
t (Nt), n̂t(Nt)); otherwise (It > x̂pt (Nt)) x

p∗
t (It, Nt) = It.

The same argument as the proof of Lemma 3 implies that P[x̂pt (Nt)−Dt(p̂
p
t (Nt), Nt) ≤ x̂pt−1(Nt−1)] =

1. Hence, the same argument as the proof of Lemma 4 yields that

(x̂pt (Nt), p̂
p
t (Nt), n̂t(Nt)) = (xpt (Nt), p

p
t (Nt), nt(Nt)) for all Nt ≥ 0. Thus, if IT ≤ xpT (NT ), It ≤ xpt (Nt)

for all t with probability 1. Hence, part (b) follows. Q.E.D.

The following lemma is a counterpart of Lemma 19 in the model with network expanding promotion.

Lemma 21 For each period t and any network size Nt ≥ 0, the following statements hold.

(a) xpt (Nt) = ypt (Nt) + ∆∗, where ∆∗ is the optimal safety stock characterized in Lemma 3(b).

(b) Jp
t (x

p
t (Nt), p

p
t (Nt), nt(Nt), Nt) = Lp

t (p
p
t (Nt), nt(Nt), Nt) + β∆∗ + Λ(∆∗), where Lp

t (pt, nt, Nt) :=

(pt − c)(V̄t − pt + γ(Nt))− cn(nt) +Gp
t (θ(V̄t − pt + γ(Nt)) + ηNt + nt).

Hence, (ppt (Nt), nt(Nt)) = argmax(pt,nt)∈[p,p̄]×[0,+∞)L
p
t (pt, nt, Nt).

(c) Jp
t (x

p
t (Nt), p

p
t (Nt), nt(Nt), Nt) = Kp

t (y
p
t (Nt), nt(Nt), Nt) + β∆∗ + Λ(∆∗), where Kp

t (yt, nt, Nt) :=

(V̄t + γ(Nt)− yt

θ − c)yt − cn(nt) +Gd
t (θyt + ηNt + nt).
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Hence, (ypt (Nt), nt(Nt)) = argmax(yt,nt)∈{(yt,nt):yt∈[ys
t∈y

t
(Nt),ȳt(Nt)]}K

p
t (yt, nt, Nt), where y

t
(Nt)

and ȳt(Nt) are defined in Lemma 19(b).

(d) Let mp
t (Nt) := θypt (Nt) + ηNt be the optimal expected network size in period t − 1, given the

current network size Nt. We have Jp
t (x

p
t (Nt), p

p
t (Nt), nt(Nt), Nt) = Mp

t (m
p
t (Nt), nt(Nt), Nt) +

β∆∗+Λ(∆∗), where Mp
t (mt, nt, Nt) := (V̄t+γ(Nt)− mt−ηNt

θ − c) (mt−ηNt)
θ − cn(nt)+Gp

t (mt+nt).

Hence, (mp
t (Nt), nt(Nt)) = argmax(mtnt)∈{(mt,nt):mt∈[mt(Nt),m̄t(Nt)]}M

p
t (mt, nt, Nt), where mt(Nt)

and m̄t(Nt) are defined in Lemma 19(c).

Proof of Lemma 21: Part (a). Part (a) follows from the same argument as the proof of Lemma

3(b), so we omit its proof for brevity.

Part (b). By part (a), xpt (Nt)− ypt (Nt) = ∆∗ for all Nt ≥ 0. By the Bellman equation 2.11, for

all Nt,

Jp
t (x

p
t (Nt), p

p
t (Nt), nt(Nt), Nt) =Rt(p

p
t (Nt), Nt) + βxpt (Nt)− cn(nt(Nt))

+ Λ(xpt (Nt)− yt(Nt))

+Gp
t (θ(V̄t − ppt (Nt) + γ(Nt)) + nt(Nt) + ηNt).

Therefore,

Jp
t (x

p
t (Nt), p

p
t (Nt), nt(Nt), Nt) =Rt(p

p
t (Nt), Nt) + βxpt (Nt)− cn(nt(Nt))

+ Λ(xpt (Nt)− yt(Nt))

+Gp
t (θ(V̄t − ppt (Nt) + γ(Nt)) + nt(Nt) + ηNt)

=(ppt (Nt)− c)(V̄t − pst (Nt) + γ(Nt))− cn(nt(Nt))

+Gp
t (θ(V̄t − ppt (Nt) + γ(Nt)) + ηNt + nt(Nt)) + β∆∗ + Λ(∆∗)

=Lp
t (p

p
t (Nt), nt(Nt), Nt) + β∆∗ + Λ(∆∗),

(A.12)

where Lp
t (pt, nt, Nt) := (pt − c)(V̄t − pt + γ(Nt)) − cn(nt) + Gp

t (θ(V̄t − pt + γ(Nt)) + ηNt + nt).

Since (xpt (Nt), p
p
t (Nt), nt(Nt)) maximizes Jp

t (·, ·, ·, Nt) for all Nt,

(ppt (Nt), nt(Nt)) = argmax(pt,nt)∈[p,p̄]×[0,+∞)L
p
t (pt, nt, Nt). This proves part (b).

Part (c). Since ypt (Nt) = V̄t − ppt (Nt) + γ(Nt), p
p
t (Nt) = V̄t − ypt (Nt) + γ(Nt). Plug this into

(A.12), we have

Jp
t (x

p
t (Nt), p

p
t (Nt), nt(Nt), Nt) =Rt(p

p
t (Nt), Nt) + βxpt (Nt)− cn(nt(Nt))

+ Λ(xpt (Nt)− yt(Nt))

+Gp
t (θ(V̄t − ppt (Nt) + γ(Nt)) + nt(Nt) + ηNt)

=(V̄t − ypt (Nt) + γ(Nt)− c)ypt (Nt)− cn(nt(Nt))

+Gp
t (θy

p
t (Nt) + ηNt + nt(Nt)) + β∆∗ + Λ(∆∗)

=Kp
t (y

p
t (Nt), nt(Nt), Nt) + β∆∗ + Λ(∆∗),

whereKp
t (yt, Nt) := (V̄t−yt+γ(Nt)−c)yt−cn(nt)+Gd

t (θyt+ηNt+nt). Since (x
p
t (Nt), p

p
t (Nt), nt(Nt))

maximizes Jp
t (·, ·, ·, Nt) for all Nt,
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(ypt (Nt), nt(Nt)) = argmax(yt,nt)∈{(yt,nt):yt[y
t
(Nt),ȳt(Nt)]}K

p
t (yt, nt, Nt). This proves part (c).

Part (d). Observe that mp
t (Nt) = θypt (Nt) + ηNt and θ > 0 imply that ppt (Nt) = V̄t − ypt (Nt) +

γ(Nt) = V̄t + γ(Nt)− mp
t (Nt)−ηNt

θ . Plug this into (A.12), we have

Jp
t (x

p
t (Nt), p

p
t (Nt), nt(Nt), Nt) =Rt(p

p
t (Nt), Nt) + βxpt (Nt)− cn(nt(Nt))

+ Λ(xpt (Nt)− yt(Nt))

+Gp
t (θ(V̄t − ppt (Nt) + γ(Nt)) + nt(Nt) + ηNt)

=(V̄t + γ(Nt)−
mp

t (Nt)− ηNt

θ
− c)

(mp
t (Nt)− ηNt)

θ

+Gp
t (m

p
t (Nt) + nt(Nt)) + β∆∗ + Λ(∆∗)

=Mp
t (m

p
t (Nt), nt(Nt), Nt) + β∆∗ + Λ(∆∗),

where Mp
t (mt, Nt) := (V̄t + γ(Nt)− mt−ηNt

θ − c) (mt−ηNt)
θ − cn(nt) +Gp

t (mt). Since

(xpt (Nt), p
p
t (Nt), nt(Nt)) maximizes Jp

t (·, ·, ·, Nt) for all Nt,

(mp
t (Nt), nt(Nt)) = argmax(mt,nt)∈{(mt,nt):mt∈[ms

t (Nt),m̄s
t (Nt)]}M

p
t (mt, nt, Nt). This establishes part

(d). Q.E.D.

Proof of Theorem 2.5.2: Part (a). We first show that if (2.12) holds, n∗t (It, N) > 0 for all It.

Observe that, since ∂yΨ
p
t−1(x, y) ≥ 0,

∂Nt−1
vpt−1(It−1, Nt−1) ≥ (p− b− αc)γ′(Nt+1)− γ′(Nt−1)Λ

′(w∗
t−1),

where w∗
t−1 = x∗t−1(It−1, Nt−1)− y∗t−1(It−1, Nt−1). The first-order condition with respect to xt−1 yields

that Λ′(w∗
t−1) ≤ −β. Thus,

∂Nt−1vt−1(It−1, Nt−1) ≥ (p− c)γ′(Nt−1). (A.13)

Therefore, for any xt ≥ It and pt ∈ [p, p̄],

∂nt
Jp
t (xt, pt, 0, N) ≥E{r′n(Nt−1) + α∂Nt−1

vpt−1(xt −Dt(pt, N), Nt−1)|Nt = N} − c′n(0)

≥αE{r′n(Nt−1) + (p− c)γ′(Nt−1)|Nt = N} − c′n(0)

≥(1− ι)[r′n(S̄(N)) + α(p− c)γ′(S̄(N))]− c′n(0)

>0,

(A.14)

where the second inequality follows from (A.13), and the fourth from the assumption (2.12). The third

inequality of (A.14) follows from the following inequality:

E[r′n(Nt−1) + α(p− c)γ′(Nt−1)|Nt = N ] = ENt−1≥S̄(N)[r
′
n(Nt−1) + α(p− c)γ′(Nt−1)|Nt = N ]

+ENt−1<S̄(N)[r
′
n(Nt−1) + α(p− c)γ′(Nt−1)|Nt = N ]

≥ 0 + ENt−1<S̄(N)[r
′
n(S̄(N)) + α(p− c)γ′(S̄(N))]

≥ (1− ι)[r′n(S̄(N)) + α(p− c)γ′(S̄(N))],
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where the first inequality follows from the concavity of rn(·) and γ(·), and the second from the definition

of S̄(N). The inequality (A.14) yields that n∗t (It, N) > 0 for all It.

Since γ(·) is continuously increasing in Nt, S̄(N) is continuously increasing in N . The concavity of

rn(·) and γ(·) implies that r′n(S̄(N)) and γ′(S̄(N)) are continuously decreasing in N . Therefore, let

N∗(ι) := max{N ≥ 0 : (1− ι)[r′n(S̄(N)) + α(p− c)γ′(S̄(N))] > c′n(0)}.

We have (2.12) holds for all N < N∗(ι). This completes the proof of part (a).

Part (b). Since γ(·) ≡ γ0 and rn(·) is concavely increasing in Nt, ∂Nt−1v
p
t−1(It−1, Nt−1) ≤

∂Nt−1v
p
t (It−1, 0) ≤ (

∑t−1
τ=1(α

τ−1ητ )r′n(0). Thus, if (
∑t−1

τ=0(αη)
τ )r′n(0) ≤ c′n(0),

∂ntJ
p
t (xt, pt, nt, Nt) ≤E{r′n(nt) + α∂Nt−1v

p
t−1(xt −Dt(pt, N), Nt−1 + nt)|Nt} − c′n(0)

≤r′n(0) + α(
t−1∑
τ=1

(ατ−1ητ ))r′n(0)− c′n(0)

≤(
t−1∑
τ=0

(αη)τ )r′n(0)− c′n(0)

≤0.

Hence, n∗t (It, Nt) = 0 for all (It, Nt). This completes the proof of part (b). Q.E.D.

Proof of Theorem 2.5.3: Parts (a)-(c). We prove parts (a)-(c) together by backward induction.

More specifically, we show that if ∂Nt−1π
p
t−1(·) ≤ ∂Nt−1πt−1(·) for all Nt−1 ≥ 0, (i) ppt (Nt) ≥ pt(Nt),

(ii) ypt (Nt) ≤ yt(Nt), (iii) xpt (Nt) ≤ xt(Nt), and (iv) ∂Ntπ
p
t (·) ≤ ∂Ntπt(·) for all Nt ≥ 0. Since

∂N0
πp
0(·) = ∂N0

π0(·) ≡ 0, the initial condition is satisfied.

We first show that ypt (Nt) ≤ yt(Nt). Note that ∂Nt−1π
p
t−1(Nt−1) ≤ ∂Nt−1πt−1(Nt−1) for all Nt−1 ≥ 0

implies that

∂yG
p
t (y) =E{r′n(y + θξt + ϵt) + α∂Nt−1π

p
t−1(y + θξt + ϵt)}

≤E{r′n(y + θξt + ϵt) + α∂Nt−1πt−1(y + θξt + ϵt)}

=∂yGt(y),

for all y. By Lemma 19(b) and Lemma 21(c), Jp
t (x

p
t (Nt), p

p
t (Nt), nt(Nt), Nt) = Kp

t (y
p
t (Nt), nt(Nt), Nt)+

β∆∗+Λ(∆∗) and Jt(xt(Nt), pt(Nt), Nt) = Kt(yt(Nt), Nt)+β∆
∗+Λ(∆∗). Assume, to the contrary, that

ypt (Nt) > yt(Nt) for some Nt. Lemma 18 yields that ∂ytK
p
t (y

p
t (Nt), nt(Nt), Nt) ≥ ∂ytKt(yt(Nt), Nt), i.e.,

−2ypt (Nt) + γ(Nt) + θ∂yG
p
t (θy

p
t (Nt) + ηNt + nt(Nt)) ≥ −2yt(Nt) + γ(Nt) + θ∂yGt(θyt(Nt) + ηNt).

Since ypt (Nt) > yt(Nt),

∂yG
p
t (θy

p
t (Nt) + ηNt + nt(Nt)) > ∂yGt(θyt(Nt) + ηNt). (A.15)

Because ∂yGt(·) ≤ ∂yG
p
t (·) and y

p
t (Nt) > yt(Nt), the concavity of Gp

t (·) and Gt(·) implies that θypt (Nt)+

ηNt + nt(Nt) < θyt(Nt) + ηNt. However, nt(Nt) ≥ 0 and ypt (Nt) > yt(Nt) imply that θypt (Nt) + ηNt +

nt(Nt) > θyt(Nt) + ηNt, which forms a contradiction. Thus, ypt (Nt) ≤ yt(Nt) for all Nt ≥ 0. Hence,
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xpt (Nt) = ypt (Nt)+∆∗ ≤ yt(Nt)+∆∗ = xt(Nt) and p
p
t (Nt) = V̄t−ypt (Nt)+γ(Nt) ≥ V̄t−yt(Nt)+γ(Nt) =

pt(Nt).

Finally, to complete the induction, we show that ∂Ntπ
p
t (Nt) ≥ ∂Ntπt(Nt) for all Nt ≥ 0. By the

envelope theorem,

∂Ntπ
p
t (Nt) = (ppt (Nt)− c)γ′(Nt) + (η + θγ′(Nt))∂yG

p
t (θ(V̄t − ppt (Nt) + γ(Nt)) + ηNt + nt(Nt)),

and

∂Ntπt(Nt) = (pt(Nt)− c)γ′(Nt) + (η + θγ′(Nt))∂yGt(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt).

If ppt (Nt) = pt(Nt), ∂Ntπ
p
t (Nt) ≤ ∂Ntπt(Nt) follows immediately from γ′(N) ≥ 0 and ∂yG

p
t (·) ≤ ∂yGt(·)

for all y.

If ppt (Nt) > pt(Nt), Lemma 18 yields that ∂ptL
p
t (p

p
t (Nt), nt(Nt), Nt) ≥ ∂ptLt(pt(Nt), Nt), i.e.,

− 2ppt (Nt) + V̄t + c+ γ(Nt)− θ∂yG
p
t (θ(V̄t − ppt (Nt) + γ(Nt)) + ηNt + nt(Nt))

≥− 2pt(Nt) + V̄t + c+ γ(Nt)− θ∂yGt(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt).

Hence,

ppt (Nt)− c+ θ∂yG
p
t (θ(V̄t − ppt (Nt) + γ(Nt)) + ηNt + nt(Nt))

≤pt(Nt)− c+ θ∂yGt(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt) + (pt(Nt)− ppt (Nt)).
(A.16)

Since θ > 0, ppt (Nt) > pt(Nt) implies that ∂yG
p
t (θ(V̄t − ppt (Nt) + γ(Nt)) + ηNt + nt(Nt)) ≤ ∂yGt(θ(V̄t −

pt(Nt) + γ(Nt)) + ηNt). Therefore,

∂Ntπ
p
t (Nt)− ∂Ntπt(Nt) =[(ppt (Nt)− pt(Nt)) + θ(∂yG

p
t (θ(V̄t − ppt (Nt) + γ(Nt)) + ηNt + nt(Nt))

− ∂yGt(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt))]γ
′(Nt)

+ η(∂yG
p
t (θ(V̄t − ppt (Nt) + γ(Nt)) + ηNt + nt(Nt))

− ∂yGt(θ(V̄t − pt(Nt) + γ(Nt)) + ηNt))

≤0.

Hence, ∂Ntπ
p
t (Nt) ≤ ∂Ntπt(Nt) for all Nt ≥ 0. This completes the induction and, thus, the proof of parts

(a)-(c).

Part (d). Note that πt(·) is the normalized optimal profit with the Bellman equation (2.9) and

feasible decision set {(xt, pt, nt) : xt ≥ 0, pt ∈ [p, p̄], nt = 0} ⊂ Fp, which is the feasible decision set

associated with the profit πp
t (·). Thus, πp

t (Nt) ≥ πt(Nt) for all t and any Nt ≥ 0. If nt(Nt) > 0,

we must have πp
t (Nt) > πt(Nt). Otherwise there are two lexicographically different policies (one with

nt(Nt) = 0 and the other with nt(Nt) > 0) that generate the same optimal normalized profit πt(Nt). This

contradicts the assumption that the lexicographically smallest policy is selected. Thus, πp
t (Nt) > πt(Nt),

which establishes part (d). Q.E.D.

A.2 More Conditions on Assumption 2.3.1

Assumption 2.3.1 is essential to show the analytical results in this paper. Thus, we characterize the

conditions under which this assumption is satisfied in the following lemma.
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Lemma 22 The following statements hold:

(a) If Rt(·, ·) is jointly concave on its domain, then we have:

(i) For any Nt such that γ′(Nt) = 0, γ′′(Nt) = 0 as well. Thus, there exists a threshold N∗ ≥ 0,

such that γ′(Nt)

> 0, if Nt < N∗,

= 0, otherwise,

and γ′′l (Nt)

< 0, if Nt < N∗,

= 0, otherwise.

(ii) There exists a constant 0 < M < +∞ such that, for any Nt ≥ 0, (γ′(Nt))
2 ≤ −Mγ′′l (Nt).

(b) If there exists a constant 0 < M < +∞ such that, for any Nt ≥ 0, (γ′(Nt))
2 ≤ −Mγ′′l (Nt), then

we have:

(i) There exists a threshold δ∗ < +∞ such that, for any δ ≥ δ∗, with V̄ δ
t := V̄t + δ, pδ = p + δ,

and p̄δ = p̄+ δ, Rδ
t (pt, Nt) := (pt − b− αc)(V̄ δ

t − pt + γ(Nt)) is jointly concave in (pt, Nt) for

pt ∈ [pδ, p̄δ] and Nt ≥ 0.

(ii) For any network externalities function γ(·), there exists an threshold 0 < ς∗ < +∞ such that,

for any ς ≥ ς∗, with γς(·) := γς(·)/ς, Rς
t(pt, Nt) := (pt − b − αc)(V̄t − pt + γς(Nt)) is jointly

concave in (pt, Nt) for pt ∈ [p, p̄] and Nt ≥ 0.

Part (a) characterizes a simpler necessary condition for the joint concavity of Rt(·, ·). It implies that

Rt(·, ·) is jointly concave only if, for all Nt, |γ′′(Nt)| is sufficiently big compared with γ′(Nt). In other

words, in the region where network externalities exist (i.e., γ′(Nt) > 0), the curvature of γ(·) should

be sufficiently big. Part (b) shows that if the necessary condition characterized by part (a) is satisfied,

Rt(·, ·) is jointly concave if (i) pt is sufficiently big relative to the expected demand V̄t−pt+γ(Nt); or (ii)

γ′(·) is sufficiently small. Hence, the necessary conditions characterized in part (a) are also sufficient to

some extent. The sufficient conditions in part (b) have a clear economic interpretation: the price elastic-

ity of demand (i.e., |( dE[Dt(pt, Nt)]/E[Dt(pt, Nt)])/( dpt/pt)|) is sufficiently big relative to the network

size elasticity of demand (i.e., |( dE[Dt(pt, Nt)]/E[Dt(pt, Nt)])/( dNt/Nt)|). This condition is generally

satisfied in practice, because, compared with the primary demand leverage (i.e., sales price), network

externalities have less impact upon demand in general.

Proof of Lemma 22: Part (a-i). If γ′′(Nt) = 0, the left-hand-side of (2.3) equals 0. Moreover,

the right-hand-side of (2.3) is greater than or equal to 0 to ensure the joint concavity of Rt(·, ·) (see

Lemma 1). Hence, the right-hand-side of (2.3) has to be 0. Thus, γ′(Nt) = 0 for this case. For the

second half of part (a-i), it suffices to show that if γ′(N0) = 0 then γ′(Nt) = 0 for all Nt ≥ N0. Since

γ′′(Nt) ≤ 0 for all Nt ≥ 0, γ′(Nt) ≤ γ′(N0) = 0. On the other hand, γ′(Nt) ≥ 0 for all Nt ≥ 0. Thus,

γ′(Nt) = 0 for all Nt ≥ N0.

Part (a-ii). By part (a-i), for any Nt, γ
′′(Nt) = 0, γ′(Nt) = 0 as well. Thus, (γ′(Nt))

2 ≤ −Mγ′′(Nt)

for any 0 < M < +∞. We now consider the case γ′′(Nt) < 0. By (2.3), define M := 2(p− αc− b) > 0,

the joint concavity of Rt(·, ·) implies that −Mγ′′(Nt) ≥ (γ′(Nt))
2. This establishes part (a).
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Part (b-i). By Lemma 1, Rδ
t (·, ·) is jointly concave if and only if −2(pδ −αc− b)γ′′(Nt) ≥ (γ′(Nt))

2 for

all Nt ≥ 0. We define δ∗ := M
2 − p+ αc+ b. Hence, if δ ≥ δ∗, −2(pδ − αc− b) ≤ −M . Therefore,

−2(pδ − αc− b)γ′′(Nt) ≥ −Mγ′′(Nt) ≥ (γ′(Nt))
2

for all Nt ≥ 0, where the last inequality follows from the assumption that −Mγ′′(Nt) ≥ (γ′(Nt))
2 for all

Nt ≥ 0. Part (b-i) follows.

Part (b-ii). Note that ∂Ntγ
ς(Nt) = γ′(Nt)/ς and ∂2Nt

γς(Nt) = γ′′(Nt)/ς for any ς > 0 and Nt ≥ 0.

Thus, by Lemma 1, Rς
t(·, ·) is jointly concave if and only if

−2(p− αc− b)
γ′′(Nt)

ς
≥ (γ′(Nt))

2

ς2
⇐⇒ −2ς(p− αc− b)γ′′(Nt) ≥ (γ′(Nt))

2.

Define ς∗ = M
2(p−αc−b) > 0. We have, if ς ≥ ς∗,

−2ς(p− αc− b)γ′′(Nt) ≥ −Mγ′′(Nt) ≥ (γ′(Nt))
2,

where the last inequality follows from the assumption that −Mγ′′(Nt) ≥ (γ′(Nt))
2 for all Nt. Hence,

Rς
t (·, ·) is jointly concave if ς ≥ ς∗. Q.E.D.
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B. Appendix for Chapter 3

B.1 Proofs of Statements

We use ∂ to denote the derivative operator of a single variable function, and ∂x to denote the

partial derivative operator of a multi-variable function with respect to variable x. For any multivariate

continuously differentiable function f(x1, x2, · · · , xn) and x̃ := (x̃1, x̃2, · · · , x̃n) in f(·)’s domain, ∀i, we

use ∂xif(x̃1, x̃2, · · · , x̃n) to denote ∂xif(x1, x2, · · · , xn)|x=x̃. The following lemma is used throughout

our proof.

Lemma 23 Let Gi(z, Z) be a continuously differentiable function in (z, Z), where z ∈ [z, z̄] (z and z̄

might be infinite) and Z ∈ Rni for i = 1, 2. For i = 1, 2, let (zi, Zi) := argmax(z,Z)Gi(z, Z) be the

optimizers of Gi(·, ·). If z1 < z2, we have: ∂zG1(z1, Z1) ≤ ∂zG2(z2, Z2).

Proof: z1 < z2, so z ≤ z1 < z2 ≤ z̄. Hence, ∂zG1(z1, Z1)

= 0 if z1 > z,

≤ 0 if z1 = z;

and ∂zG2(z2, Z2)

= 0 if z2 < z̄,

≥ 0 if z2 = z̄,

i.e., ∂zG1(z1, Z1) ≤ 0 ≤ ∂zG2(z2, Z2). Q.E.D.

Proof of Theorems 3.4.1-3.4.2 and Propositions 3.4.1-3.4.2: We show Theorem 3.4.1, Propo-

sition 3.4.1, Proposition 3.4.2, and Theorem 3.4.2 together by backward induction. More specifically,

we show that, if Vi,t−1(It−1,Λt−1|σsc∗
t−1) = wi,t−1Ii,t−1 + βsc

i,t−1Λi,t−1 for all i, (a) Proposition 3.4.1

holds for period t, (b) Proposition 3.4.2 holds for period t, (c) there exists a Markov strategy profile

{(γsc∗i,t (·, ·), psc∗i,t (·, ·), xsc∗i,t (·, ·)) : 1 ≤ i ≤ N} which forms a Nash equilibrium in the subgame of period t,

(d) under conditions (i) and (ii) in Theorem 3.4.1(c), the Nash equilibrium in the subgame of period t,

{(γsc∗i,t (·, ·), psc∗i,t (·, ·), xsc∗i,t (·, ·)) : 1 ≤ i ≤ N}, is unique, and (e) there exists a positive vector βsc
t , such that

Vi,t(It,Λt|σsc∗
t ) = wi,tIi,t + βsc

i,tΛi,t for all i. Because Vi,0(I0,Λ0) = wi,0Ii,0 for all i, the initial condition

is satisfied.

Since Vi,t−1(It−1,Λt−1|σsc∗
t−1) = wi,t−1Ii,t−1 + βsc

i,t−1Λi,t−1 for all i, Equation (3.12) implies that the

objective function of player i in Gsc,2
t is

πsc
i,t(yt) = (δiwi,t−1 − wi,t)yi,t − Li,t(yi,t) + δiβ

sc
i,t−1(κii,t(E[y

+
i,t ∧ ξi,t])−

∑
j ̸=i

κij,t(E[y+j,t ∧ ξj,t])).

Thus, for any given strategy of other players y−i,t, player i maximizes the following univariate function:

ζsci,t(yi,t) := (δiwi,t−1 − wi,t)yi,t − Li,t(yi,t) + δiβ
sc
i,t−1κii,t(E[y

+
i,t ∧ ξi,t]).
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If yi,t < 0, (yi,t − ξi,t)
+ = 0, (yi,t − ξi,t)

− = ξi,t − yi,t, and, thus, −Li,t(yi,t) = −bi,tE(ξi,t − yi,t) =

−bi,t + bi,tyi,t. Moreover, yi,t < 0 implies that δiβ
sc
i,t−1κii,t(E[y

+
i,t ∧ ξi,t]) ≡ δiβ

sc
i,t−1κii,t(0). Hence, if

yi,t < 0,

ζsci,t(yi,t) = −bi,t + (δiwi,t−1 − wi,t + bi,t)yi,t + δiβ
sc
i,t−1κii,t(0).

Because bi,t > wi,t − δiwi,t−1, ζ
sc
i,t(·) is strictly increasing in yi,t for yi,t ≤ 0.

Observe that −Li,t(·) is concave and continuously differentiable in yi,t. Since E(y+i,t∧ξi,t) is concavely

increasing and continuously differentiable in yi,t for yi,t ≥ 0, and κii,t(·) is concavely increasing and

continuously differentiable, κii,t(E[y+i,t ∧ ξi,t]) is concavely increasing and continuously differentiable in

yi,t for yi,t ≥ 0. Hence, ζsci,t(·) is concave and continuously differentiable in yi,t for yi,t ≥ 0. Observe that

∂yi,tζ
sc
i,t(0+) = δiwi,t−1−wi,t+bi,t+δiβ

sc
i,t−1F̄i,t(0)κ

′
ii,t(E(0∧ξi,t)) = δiwi,t−1−wi,t+bi,t+δiβ

sc
i,t−1κ

′
ii,t(0) > 0,

where the inequality follows from δiwi,t−1 − wi,t + bi,t > 0 and κ′ii,t(0) ≥ 0. Therefore, the optimizer of

ζsci,t(·), ysc∗i,t , is the solution to the first-order condition: ∂yi,tζ
sc
i,t(y

sc∗
i,t ) = 0, or, equivalently,

(δiwi,t−1 − wi,t)− L′
i,t(y

sc∗
i,t ) + δiβ

sc
i,t−1F̄i,t(y

sc∗
i,t )κ

′
ii,t(E(ysc∗i,t ∧ ξi,t)) = 0.

Because ξi,t is continuously distributed, ysc∗i,t is unique for each i. Moreover, ysc∗i,t > 0 and ζsci,t(y
sc∗
i,t ) >

ζsci,t(0) = −bi,t + δiβ
sc
i,t−1κii,t(0) for each i.

We now show that Proposition 3.4.2 holds for period t. Since ζsci,t(y
sc∗
i,t ) > ζsci,t(0) = −bi,t +

δiβ
sc
i,t−1κii,t(0) and αi,t(zt) ≥ κii,t(0)−

∑
j ̸=i κij,t(1) ≥ 0, we have πsc∗

i,t > ζsci,t(0)−δiβsc
i,t−1

∑
j ̸=i κij,t(1) ≥

−bi,t. Observe that

p̄i,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t > p̄i,t − δiwi,t−1 − νi,t(γ̄i,t)− bi,t > 0.

Thus, if pi,t = p̄i,t, pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t > 0. Therefore, each firm i could at least earn a

positive payoff of (p̄i,t−δiwi,t−1−νi,t(γ̄i,t)−bi,t)ϵi,t by charging the maximum allowable price p̄i,t, where

ϵi,t := min{ψi,t(γt)ρi,t(pt) : γt ∈ [0, γ̄1,t]× · · · × [0, γ̄N,t]× [p
1,t
, p̄1,t]× · · · × [p

N,t
, p̄N,t]} > 0.

Let

ϵ̄i,t := max{ψi,t(γt)ρi,t(pt) : γt ∈ [0, γ̄1,t]× · · · × [0, γ̄N,t]× [p
1,t
, p̄1,t]× · · · × [p

N,t
, p̄N,t]} ≥ ϵi,t.

Hence, we can restrict the feasible action set of firm i in Gsc,1
t to

Asc,1
i,t := {(γi,t, pi,t) ∈ [0, γ̄i,t]× [p

i,t
, p̄i,t] : pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗

i,t

≥
(p̄i,t − δiwi,t−1 − νi,t(γ̄i,t)− bi,t)ϵi,t

ϵ̄i,t
> 0},

which is a nonempty and complete sublattice of R2. Thus, Πsc
i,t(γt, pt) > 0 and

log(Πsc
i,t(γt, pt)) = log(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗

i,t ) + log(ψi,t(γt)) + log(ρi,t(pt)) (B.1)

is well-defined on Asc,1
i,t . Because ρi,t(·) and ψi,t(·) satisfy (3.3) and (3.4), for each i and j ̸= i, we have

∂2 log(Πsc
i,t(γt, pt))

∂γi,t∂pi,t
=
∂2 log(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗

i,t )

∂γi,t∂pi,t
=

ν′i,t(γi,t)

(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t )

2
≥ 0,
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∂2 log(Πsc
i,t(γt, pt))

∂γi,t∂pj,t
= 0,

∂2 log(Πsc
i,t(γt, pt))

∂γi,t∂γj,t
=
∂2 log(ψi,t(γt))

∂γi,t∂γj,t
≥ 0,

∂2 log(Πsc
i,t(γt, pt))

∂pi,t∂γj,t
= 0, and

∂2 log(Πsc
i,t(γt, pt))

∂pi,t∂pj,t
=
∂2 log(ρi,t(pt))

∂pi,t∂pj,t
≥ 0.

Hence, Gsc,1
t is a log-supermodular game and, thus, has pure strategy Nash equilibria which are the

smallest and largest undominated strategies (see Theorem 5 in [124]).

Next, we show that if conditions (i) and (ii) in Theorem 3.4.1(c) hold, the Nash equilibrium of Gsc,1
t

is unique. First, we show that under conditions (i) and (ii) in Theorem 3.4.1(c),

∂2 log Πsc
i,t(γt, pt)

∂p2i,t
< 0, |

∂2 log Πsc
i,t(γt, pt)

∂p2i,t
| >

∑
j ̸=i

∂2 log(Πsc
i,t(γt, pt))

∂pi,t∂pj,t
+

N∑
j=1

∂2 log(Πsc
i,t(γt, pt))

∂pi,t∂γj,t
, (B.2)

∂2 log Πsc
i,t(γt, pt)

∂γ2i,t
< 0, and |

∂2 log Πsc
i,t(γt, pt)

∂γ2i,t
| >

∑
j ̸=i

∂2 log(Πsc
i,t(γt, pt))

∂γi,t∂γj,t
+

N∑
j=1

∂2 log(Πsc
i,t(γt, pt))

∂γi,t∂pj,t
. (B.3)

Note that, by (B.1) and (3.4),

∂2 log Πsc
i,t(γt, pt)

∂p2i,t
=
∂2 log ρi,t(pt)

∂p2i,t
− 1

(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t )

2
< 0,

and

|
∂2 log Πsc

i,t(γt, pt)

∂p2i,t
| = |∂

2 log ρi,t(pt)

∂p2i,t
|+ 1

(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t )

2
.

Since
∂2 log(Πsc

i,t(γt,pt))

∂pi,t∂γj,t
= 0 for j ̸= i, and

∂2 log(Πsc
i,t(γt, pt))

∂pi,t∂γi,t
=

ν′i,t(γi,t)

(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t )

2
,

we have

|
∂2 log Πsc

i,t(γt, pt)

∂p2i,t
| = |∂

2 log ρi,t(pt)

∂p2i,t
|+ 1

(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t )

2

>
∑
j ̸=i

∂2 log(Πsc
i,t(γt, pt))

∂pi,t∂pj,t
+

ν′i,t(γi,t)

(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t )

2

=
∑
j ̸=i

∂2 log(Πsc
i,t(γt, pt))

∂pi,t∂pj,t
+

N∑
j=1

∂2 log(Πsc
i,t(γt, pt))

∂pi,t∂γj,t
,

where the inequality follows from (3.4) and condition (i). Hence, (B.2) holds for all i and all (γt, pt).

Since ν′′i,t(·) ≥ 0 and (3.3), we have

∂2 log Πsc
i,t(γt, pt)

∂γ2i,t
=
∂2 logψi,t(γt)

∂γ2i,t
−
ν′′i,t(γt)(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗

i,t ) + (ν′i,t(γt))
2

(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t )

2
< 0,

and

|
∂2 log Πsc

i,t(γt, pt)

∂γ2i,t
| = |∂

2 logψi,t(γt)

∂γ2i,t
|+

ν′′i,t(γt)(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t ) + (ν′i,t(γt))

2

(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t )

2
.

Since
∂2 log(Πsc

i,t(γt,pt))

∂γi,t∂pj,t
= 0 for j ̸= i, and

∂2 log(Πsc
i,t(γt, pt))

∂γi,t∂pi,t
=

ν′i,t(γi,t)

(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t )

2
,
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we have

|
∂2 log Πsc

i,t(γt, pt)

∂γ2i,t
| = |∂

2 logψi,t(γt)

∂γ2i,t
|+

ν′′i,t(γt)(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t ) + (ν′i,t(γt))

2

(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t )

2

>
∑
j ̸=i

∂2 log(Πsc
i,t(γt, pt))

∂γi,t∂γj,t
+
ν′′i,t(γt)(pi,t − δiwi,t−1 − νi,t(γi,t) + ci,t) + (ν′i,t(γt))

2

(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t )

2

≥
∑
j ̸=i

∂2 log(Πsc
i,t(γt, pt))

∂γi,t∂γj,t
+

ν′i,t(γi,t)

(pi,t − δiwi,t−1 − νi,t(γi,t) + πsc∗
i,t )

2

=
∑
j ̸=i

∂2 log(Πsc
i,t(γt, pt))

∂γi,t∂γj,t
+

N∑
j=1

∂2 log(Πsc
i,t(γt, pt))

∂γi,t∂pj,t
,

where the first inequality follows from (3.4) and πsc∗
i,t ≥ ci,t, and the second from condition (ii). Hence,

(B.3) holds for all i and all (γt, pt).

We now show that if (B.2) and (B.3) hold, Gsc,1
t has a unique Nash equilibrium. Recall that the set

of Nash equilibria in Gsc,1
t forms a complete lattice (see Theorem 2 in [194]). If, to the contrary, there

exist two distinct equilibria (γ∗t , p
∗
t ) and (γ̂∗t , p̂

∗
t ), where p̂

∗
i,t ≥ p∗i,t for all i and γ̂

∗
j,t ≥ γ∗j,t for all j, with

the inequality being strict for some i or j. If, for some i, p̂∗i,t > p∗i,t, p̂
∗
i,t − p∗i,t ≥ p̂∗l,t − p∗l,t for all l, and

p̂∗i,t − p∗i,t ≥ γ̂∗l,t − γ∗l,t for all l, without loss of generality, we assume that i = 1. Lemma 23 suggests that

∂p1,t
log(Πsc

1,t(γ̂
∗
t , p̂

∗
t )) ≥ ∂p1,t

log(Πsc
1,t(γ

∗
t , p

∗
t )). (B.4)

On the other hand, by Newton-Leibniz formula, we have

∂p1,t log(Π
sc
1,t(γ̂

∗
t , p̂

∗
t ))− ∂p1,t log(Π

sc
1,t(γ

∗
t , p

∗
t ))

=

∫ 1

s=0

[
N∑
j=1

(p̂∗j,t − p∗j,t)
∂2 log(Πsc

1,t((1− s)γ∗t + sγ̂∗t , (1− s)p∗t + sp̂∗t ))

∂p1,t∂pj,t

+
N∑
j=1

(γ̂∗j,t − γ∗j,t)
∂2 log(Πsc

1,t((1− s)γ∗t + sγ̂∗t , (1− s)p∗t + sp̂∗t ))

∂p1,t∂γj,t
] ds

≤
∫ 1

s=0

[

N∑
j=1

(p̂∗1,t − p∗1,t)
∂2 log(Πsc

1,t((1− s)γ∗t + sγ̂∗t , (1− s)p∗t + sp̂∗t ))

∂p1,t∂pj,t

+

N∑
j=1

(p̂∗1,t − p∗1,t)
∂2 log(Πsc

1,t((1− s)γ∗t + sγ̂∗t , (1− s)p∗t + sp̂∗t ))

∂p1,t∂γj,t
] ds

< 0,

where the first inequality follows from p̂∗1,t − p∗1,t ≥ p̂∗l,t − p∗l,t for all l and p̂
∗
1,t − p∗1,t ≥ γ̂∗l,t − γ∗l,t for all l,

and the second from p̂∗1,t − p∗1,t > 0 and (B.2). This contradicts (B.4).

If, for some j, γ̂∗j,t > γ∗j,t, γ̂
∗
j,t − γ∗j,t ≥ p̂∗l,t − p∗l,t for all l, and γ̂

∗
j,t − γ∗j,t ≥ γ̂∗l,t − γ∗l,t for all l, without

loss of generality, we assume that j = 1. Lemma 23 suggests that

∂γ1,t log(Π
sc
1,t(γ̂

∗
t , p̂

∗
t )) ≥ ∂γ1,t log(Π

sc
1,t(γ

∗
t , p

∗
t )). (B.5)

226



On the other hand, by Newton-Leibniz formula, we have

∂γ1,t log(Π
sc
1,t(γ̂

∗
t , p̂

∗
t ))− ∂γ1,t log(Π

sc
1,t(γ

∗
t , p

∗
t ))

=

∫ 1

s=0

[
N∑
j=1

(γ̂∗j,t − γ∗j,t)
∂2 log(Πsc

1,t((1− s)γ∗t + sγ̂∗t , (1− s)p∗t + sp̂∗t ))

∂γ1,t∂γj,t

+
N∑
j=1

(p̂∗j,t − p∗j,t)
∂2 log(Πsc

1,t((1− s)γ∗t + sγ̂∗t , (1− s)p∗t + sp̂∗t ))

∂γ1,t∂pj,t
] ds

≤
∫ 1

s=0

[

N∑
j=1

(γ̂∗1,t − γ∗1,t)
∂2 log(Πsc

1,t((1− s)γ∗t + sγ̂∗t , (1− s)p∗t + sp̂∗t ))

∂γ1,t∂γj,t

+
N∑
j=1

(γ̂∗1,t − γ∗1,t)
∂2 log(Πsc

1,t((1− s)γ∗t + sγ̂∗t , (1− s)p∗t + sp̂∗t ))

∂γ1,t∂pj,t
] ds

< 0,

where the first inequality follows from γ̂∗1,t − γ∗1,t ≥ p̂∗l,t − p∗l,t for all l and γ̂
∗
1,t − γ∗1,t ≥ γ̂∗l,t − γ∗l,t for all l,

and the second from γ̂∗1,t − γ∗1,t > 0 and (B.3). This contradicts (B.5). Therefore, the Nash equilibrium

in Gsc,1
t is unique, if conditions (i) and (ii) in Theorem 3.4.1(c) hold.

If νi,t(γi,t) = γi,t, we have ν
′
i,t(γi,t) = 1 and ν′′i,t(γi,t) = 0 for all γi,t ∈ [0, γ̄i,t]. Thus, if νi,t(γi,t) = γi,t,

conditions (i) and (ii) in Theorem 3.4.1(c) hold.

Note that for any λ ∈ [0, 1] and (γi,t, pi,t), (γ̂i,t, p̂i,t) ∈ [0, γ̄1,t]× [0, γ̄2,t]× · · · × [0, γ̄N,t]× [p
1,t
, p̄1,t]×

[p
2,t
, p̄2,t]× · · · × [p

N,t
, p̄N,t],

λ log(p̂i,t − δiwi,t − νi,t(γ̂i,t) + πsc∗
i,t ) + (1− λ) log(pi,t − δiwi,t − νi,t(γi,t) + πsc∗

i,t )

≤ log(λp̂i,t + (1− λ)pi,t − δiwi,t − λνi,t(γ̂i,t)− (1− λ)νi,t(γi,t) + πsc∗
i,t )

≤ log(λp̂i,t + (1− λ)pi,t − δiwi,t − νi,t(λγ̂i,t + (1− λ)γi,t) + πsc∗
i,t ),

where the first inequality follows from the concavity of log(·), and the second from that log(·) is an in-

creasing function and νi,t(·) is a convex function. Thus, log(pi,t−δiwi,t−νi,t(γi,t)+πsc∗
i,t ) is jointly concave

in (γi,t, pi,t). Hence, the diagonal dominance condition (3.3) and (3.4) implies that log(Πsc
i,t(γt, pt)) is

jointly concave in (γi,t, pi,t) for any given (γ−i,t, p−i,t). Therefore, the first-order conditions with respect

to γi,t and pi,t is the necessary and sufficient condition for (γsc∗t , psc∗t ) to be the unique Nash equilibrium

in Gsc,1
t . Since

∂γi,t log(Π
sc
i,t(γt, pt)) =

∂γi,tψi,t(γt)

ψi,t(γt)
−

ν′i,t(γt)

pi,t − δwi,t − νi,t(γi,t) + πsc∗
i,t

,

and

∂pi,t log(Π
sc
i,t(γt, pt)) =

∂pi,tρi,t(pt)

ρi,t(pt)
+

1

pi,t − δwi,t − νi,t(γi,t) + πsc∗
i,t

,

the Nash equilibrium of Gsc,1
t is a solution to the system of equations (3.15). Since Gsc,1

t has a unique

equilibrium, (3.15) has a unique solution, which coincides with the unique pure strategy Nash equilibrium

of Gsc,1
t . As shown above, for all i,

Πsc
i,t(γ

sc∗
t , psc∗t ) ≥ (p̄i,t − δiwi,t−1 − νi,t(γ̄i,t)− bi,t)ϵi,t > 0.

Hence, Πsc∗
i,t = Πsc

i,t(γ
sc∗
t , psc∗t ) > 0 for all i.
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Next, we show that {(γsc∗i,t , p
sc∗
i,t ,Λi,ty

sc∗
i,t ρi,t(p

sc∗
t )ψi,t(γ

sc∗
t )) : 1 ≤ i ≤ N} is an equilibrium in

the subgame of period t. Since ysc∗i,t > 0, Λi,ty
sc∗
i,t ρi,t(p

sc∗
t )ψi,t(γ

sc∗
t ) > 0 for all i. Therefore, re-

gardless of the starting inventory in period t, Ii,t, firm i could adjust its inventory to xsc∗i,t (It,Λt) =

Λi,ty
sc∗
i,t ρi,t(p

sc∗
t )ψi,t(γ

sc∗
t ). Thus, by Propositions 3.4.1-3.4.2, {(γsc∗i,t , p

sc∗
i,t ,Λi,ty

sc∗
i,t ρi,t(p

sc∗
t )ψi,t(γ

sc∗
t )) :

1 ≤ i ≤ N} forms an equilibrium in the subgame of period t. In particular, if conditions (i) and (ii)

hold, {(γsc∗i,t , p
sc∗
i,t ,Λi,ty

sc∗
i,t ρi,t(p

sc∗
t )ψi,t(γ

sc∗
t )) : 1 ≤ i ≤ N} is the unique equilibrium in the subgame of

period t.

Next, we show that there exists a positive vector βsc
t = (βsc

1,t, β
sc
2,t, · · · , βsc

N,t), such that

Vi,t(It,Λt|σsc∗
t ) = wi,tIi,t + βsc

i,tΛi,t. By (3.12), we have that

Vi,t(It,Λt|σsc∗
t ) = Ji,t(γ

sc∗
t , psc∗t ,Λi,ty

sc∗
i,t ρi,t(p

sc∗
t )ψi,t(γ

sc∗
t ), It,Λt|σsc∗

t−1) = wi,tIi,t+(σiβ
sc
i,t−1µi,t+Πsc∗

i,t )Λi,t.

Since βsc
i,t−1 ≥ 0 and Πsc∗

i,t > 0, βsc
i,t = δiβ

sc
i,t−1µi,t + Πsc∗

i,t > 0. This completes the induction and, thus,

the proof of Theorem 3.4.1, Proposition 3.4.1, Proposition 3.4.2, and Theorem 3.4.2. Q.E.D.

Proof of Proposition 3.4.3: By Theorems 3.4.1-3.4.2, and Propositions 3.4.1-3.4.2, it suffices to show

that, if there exists a constant βsc
s,t−1 ≥ 0, such that Vi,t−1(It−1,Λt−1|σsc∗

t−1) = ws,tIi,t−1 + βsc
s,t−1Λi,t−1

for all i, we have: (a) the unique Nash equilibrium in Gsc,2
t is symmetric, i.e., ysc∗i,t = ysc∗j,t for all i, j;

(b) the unique Nash equilibrium in Gsc,1
t is symmetric, i.e., (γsc∗i,t , p

sc∗
i,t ) = (γsc∗j,t , p

sc∗
j,t ) for all i ̸= j,

and (c) there exists a constant βsc
s,t > 0, such that Vi,t(It,Λt|σsc∗

s,t ) = ws,tIi,t + βsc
s,tΛi,t for all i. Since

Vi,0(It,Λt) = ws,0Ii,0 for all i, the initial condition is satisfied with βsc
s,0 = 0.

Since Vi,t−1(It−1,Λt−1|σsc∗
t−1) = ws,tIi,t−1 + βsc

s,tΛi,t−1 for all i, by (3.12),

πsc
i,t(yt) = (δsws,t−1 − ws,t)yi,t − Ls,t(yi,t) + δsβ

sc
s,t−1(κsa,t(E(y

+
i,t ∧ ξi,t))−

∑
j ̸=i

κsb,t(E(y+j,t ∧ ξj,t))).

Hence, ζsci,t(yi,t) = (δsws,t−1 − ws,t)yi,t − Ls,t(yi,t) + δsβ
sc
s,t−1κsa,t(E(y

+
i,t ∧ ξi,t)). Thus, ζsci,t(·) ≡ ζscj,t(·) for

all i and j. Therefore, for all i and j,

ysc∗i,t = argmaxyζ
sc
i,t(y) = argmaxyζ

sc
j,t(y) = ysc∗j,t

and, hence,

πsc∗
i,t = πsc

i,t(y
sc∗
t ) = πsc

j,t(y
sc∗
t ) = πsc∗

j,t .

We denote ysc∗s,t = ysc∗i,t for each i, and πsc∗
s,t = πsc∗

i,t for each i. Observe that, the objective functions of

Gsc,1
t ,

{Πsc
i,t(γt, pt) = ρs,t(pt)ψs,t(γt)[pi,t − δsws,t−1 − νs,t(γi,t) + πsc∗

s,t ] : 1 ≤ i ≤ N}

are symmetric. Hence, if there exists an asymmetric Nash equilibrium (γsc∗t , psc∗t ), there exists another

Nash equilibrium (γsc∗
t
, psc∗

t
) ̸= (γsc∗t , psc∗t ), where γsc∗

t
is a permutation of γsc∗t and psc∗

t
is a permutation

of psc∗t . This contradicts the uniqueness of the Nash equilibrium in Gsc,1
t . Thus, the unique Nash

equilibrium in Gsc,1
t is symmetric. Hence, Πsc∗

i,t = Πsc
i,t(γ

sc∗
ss,t, p

sc∗
ss,t) = ρs,t(p

sc∗
ss,t)ψs,t(γ

sc∗
ss,t)[p

sc∗
s,t − δsws,t−1−

νs,t(γ
sc∗
s,t ) + πsc∗

s,t ] = Πsc
j,t(γ

sc∗
ss,t, p

sc∗
ss,t) = Πsc∗

j,t , which is positive. Thus, we denote the payoff of each firm i

as Πsc∗
s,t . By Theorem 3.4.2(a),

βsc
i,t = δsβ

sc
s,t−1µs,t +Πsc∗

i,t = δsβ
sc
s,t−1µs,t +Πsc∗

j,t = βsc
j,t > 0.

228



Thus, we denote the SC market size coefficient of each firm i as βsc
s,t. This completes the induction and,

thus, the proof of Proposition 3.4.3. Q.E.D.

Proof of Theorem 3.4.3: Part (a). Clearly, by (3.13), ysc∗i,t is independent of βsc
j,t−1 for all j ̸= i.

Moreover, because

∂2ζsci,t(yi,t)

∂yi,t∂βsc
i,t−1

=

δiF̄i,t(yi,t)κ
′
ii,t(E(yi,t ∧ ξi,t)) ≥ 0, if yi,t ≥ 0;

0, otherwise,

ζsci,t(yi,t) is supermodular in (yi,t, β
sc
i,t−1) . Therefore, ysc∗i,t = argmaxyi,t∈Rζ

sc
i,t(yi,t) is increasing in

βsc
i,t−1. The continuity of ysc∗i,t in βsc

i,t−1 follows directly from the continuous differentiability of ζsci,t(·)

in (yi,t, β
sc
i,t−1). This completes the proof of part (a).

Part (b). Note that, by part (a),
∑

l ̸=i κil,t(E((ysc∗l,t )+ ∧ ξl,t)) is independent of βsc
i,t−1 and continu-

ously increasing in βsc
j,t−1 for j ̸= i. Moreover,

ζsci,t(yi,t) = (δiwi,t−1 − wi,t)yi,t − Li,t(yi,t) + δiβ
sc
i,t−1κii,t(E[y

+
i,t ∧ ξi,t])

is continuously increasing in βsc
i,t−1 and independent of βsc

j,t−1 for all j ̸= i. Thus,

πsc∗
i,t = [max

yi,t≥0
ζsci,t(yi,t)]−

∑
j ̸=i

κij,t(E(ysc∗j,t ∧ ξj,t))

is continuously increasing in βsc
i,t−1 and continuously decreasing in βsc

j,t−1 for all j ̸= i. This completes

the proof of part (b).

Part (c). We denote the objective function of each firm i in Gsc,1
s,t as Πsc

i,t(·, ·|πsc∗
s,t ) to capture the

dependence of the objective functions on πsc∗
s,t . The unique symmetric Nash equilibrium in Gsc,1

s,t is denoted

as (γsc∗ss,t(π
sc∗
s,t ), p

sc∗
ss,t(π

sc∗
s,t )), where γ

sc∗
ss,t(π

sc∗
s,t ) = (γsc∗s,t (π

sc∗
s,t ), γ

sc∗
s,t (π

sc∗
s,t ), · · · , γsc∗s,t (π

sc∗
s,t )) and psc∗ss,t(π

sc∗
s,t ) =

(psc∗s,t (π
sc∗
s,t ), p

sc∗
s,t (π

sc∗
s,t ), · · · , psc∗s,t (π

sc∗
s,t )). It suffices to show that, if π̄sc∗

s,t > πsc∗
s,t , γ

sc∗
s,t (π̄

sc∗
s,t ) ≥ γsc∗s,t (π

sc∗
s,t ),

and psc∗s,t (π̄
sc∗
s,t ) ≤ psc∗s,t (π

sc∗
s,t ).

We first show that psc∗s,t (π̄
sc∗
s,t ) ≤ psc∗s,t (π

sc∗
s,t ) for all π̄sc∗

s,t > πsc∗
s,t . Assume, to the contrary, that

psc∗s,t (π̄
sc∗
s,t ) > psc∗s,t (π

sc∗
s,t ). Lemma 23 implies that

∂p1,t log(Π
sc
1,t(γ

sc∗
ss,t(π̄

sc∗
s,t ), p

sc∗
ss,t(π̄

sc∗
s,t )|π̄sc∗

s,t )) ≥ ∂p1,t log(Π
sc
1,t(γ

sc∗
ss,t(π

sc∗
s,t ), p

sc∗
ss,t(π

sc∗
s,t )|πsc∗

s,t )), i.e.,

∂p1,t log ρs,t(p
sc∗
ss,t(π̄

sc∗
s,t )) +

1

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t

≥∂p1,t log ρs,t(p
sc∗
ss,t(π

sc∗
s,t )) +

1

psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π

sc∗
s,t )) + πsc∗

s,t

.

(B.6)

By (3.4) and Newton-Leibniz formula, we have

∂p1,t log ρs,t(p
sc∗
ss,t(π̄

sc∗
s,t ))− ∂p1,t log ρs,t(p

sc∗
ss,t(π

sc∗
s,t ))

=

∫ 1

s=0

[

N∑
j=1

(psc∗s,t (π̄
sc∗
s,t )− psc∗s,t (π

sc∗
s,t ))

∂2 log ρs,t((1− s)psc∗ss,t(π
sc∗
s,t ) + spsc∗ss,t(π̄

sc∗
s,t ))

∂p1,t∂pj,t
] ds

< 0.

Hence, inequality (B.6) suggests that

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t < psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π

sc∗
s,t )) + πsc∗

s,t . (B.7)
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Since psc∗s,t (π̄
sc∗
s,t ) > psc∗s,t (π

sc∗
s,t ) and π̄sc∗

s,t > πsc∗
s,t , νs,t(γ

sc∗
s,t (π̄

sc∗
s,t )) > νs,t(γ

sc∗
s,t (π

sc∗
s,t )). Thus, γsc∗s,t (π̄

sc∗
s,t ) >

γsc∗s,t (π
sc∗
s,t ). Lemma 23 yields that

∂γ1,t log(Π
sc
1,t(γ

sc∗
ss,t(π̄

sc∗
s,t ), p

sc∗
ss,t(π̄

sc∗
s,t )|π̄sc∗

s,t )) ≥ ∂γ1,t log(Π
sc
1,t(γ

sc∗
ss,t(π

sc∗
s,t ), p

sc∗
ss,t(π

sc∗
s,t )|πsc∗

s,t )), i.e.,

∂γ1,t logψs,t(γ
sc∗
ss,t(π̄

sc∗
s,t ))−

ν′s,t(γ
sc∗
s,t (π̄

sc∗
s,t ))

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t

≥∂γ1,t logψs,t(γ
sc∗
ss,t(π

sc∗
s,t ))−

ν′s,t(γ
sc∗
s,t (π

sc∗
s,t ))

psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π

sc∗
s,t )) + πsc∗

s,t

(B.8)

Since νs,t(·) is convexly increasing, ν′s,t(γ
sc∗
s,t (π̄

sc∗
s,t ) ≥ ν′s,t(γ

sc∗
s,t (π

sc∗
s,t )). Thus, inequality (B.7) implies that

−
ν′s,t(γ

sc∗
s,t (π̄

sc∗
s,t ))

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t

< −
ν′s,t(γ

sc∗
s,t (π

sc∗
s,t ))

psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π

sc∗
s,t )) + πsc∗

s,t

.

Hence, (B.8) suggests that

∂γ1,t logψs,t(γ
sc∗
ss,t(π̄

sc∗
s,t )) > ∂γ1,t logψs,t(p

sc∗
ss,t(π

sc∗
s,t )). (B.9)

By (3.3) and Newton-Leibniz formula, we have

∂γ1,t logψs,t(γ
sc∗
ss,t(π̄

sc∗
s,t ))− ∂γ1,t logψs,t(p

sc∗
ss,t(π

sc∗
s,t ))

=

∫ 1

s=0

[
N∑
j=1

(γsc∗s,t (π̄
sc∗
s,t )− γsc∗s,t (π

sc∗
s,t ))

∂2 logψs,t((1− s)γsc∗ss,t(π
sc∗
s,t ) + sγsc∗ss,t(π̄

sc∗
s,t ))

∂γ1,t∂γj,t
] ds

< 0,

which contradicts (B.9). Therefore, for all π̄sc∗
s,t > πsc∗

s,t , we have psc∗s,t (π̄
sc∗
s,t ) ≤ psc∗s,t (π

sc∗
s,t ).

We now show that γsc∗s,t (π̄
sc∗
s,t ) ≥ γsc∗s,t (π

sc∗
s,t ) for all π̄sc∗

s,t > πsc∗
s,t . Assume, to the contrary, that

γsc∗s,t (π̄
sc∗
s,t ) < γsc∗s,t (π

sc∗
s,t ). Lemma 23 implies that

∂γ1,t log(Π
sc
1,t(γ

sc∗
ss,t(π̄

sc∗
s,t ), p

sc∗
ss,t(π̄

sc∗
s,t )|π̄sc∗

s,t )) ≤ ∂γ1,t log(Π
sc
1,t(γ

sc∗
ss,t(π

sc∗
s,t ), p

sc∗
ss,t(π

sc∗
s,t )|πsc∗

s,t )), i.e.,

∂γ1,t logψs,t(γ
sc∗
ss,t(π̄

sc∗
s,t ))−

ν′s,t(γ
sc∗
s,t (π̄

sc∗
s,t ))

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t

≤∂γ1,t logψs,t(γ
sc∗
ss,t(π

sc∗
s,t ))−

ν′s,t(γ
sc∗
s,t (π

sc∗
s,t ))

psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π

sc∗
s,t )) + πsc∗

s,t

.

(B.10)

By (3.3) and Newton-Leibniz formula, we have

∂γ1,t logψs,t(γ
sc∗
ss,t(π

sc∗
s,t ))− ∂γ1,t logψs,t(γ

sc∗
ss,t(π̄

sc∗
s,t ))

=

∫ 1

s=0

[
N∑
j=1

(γsc∗s,t (π
sc∗
s,t )− γsc∗s,t (π̄

sc∗
s,t ))

∂2 logψs,t(sγ
sc∗
ss,t(π

sc∗
s,t ) + (1− s)γsc∗ss,t(π̄

sc∗
s,t ))

∂γ1,t∂γj,t
] ds < 0.

Hence, inequality (B.10) implies that

−
ν′s,t(γ

sc∗
s,t (π̄

sc∗
s,t ))

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t

< −
ν′s,t(γ

sc∗
s,t (π

sc∗
s,t ))

psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π

sc∗
s,t )) + πsc∗

s,t

.

Since νs,t(·) is convexly increasing, ν′s,t(γ
sc∗
s,t (π̄

sc∗
s,t )) ≤ ν′s,t(γ

sc∗
s,t (π

sc∗
s,t )). Hence,

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t < psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π

sc∗
s,t )) + πsc∗

s,t .
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Since νs,t(γ
sc∗
s,t (π̄

sc∗
s,t )) ≤ νs,t(γ

sc∗
s,t (π

sc∗
s,t )) and π̄

sc∗
s,t > πsc∗

s,t , p
sc∗
s,t (π̄

sc∗
s,t ) < psc∗s,t (π

sc∗
s,t ). Lemma 23 implies that

∂p1,t log(Π
sc
1,t(γ

sc∗
ss,t(π̄

sc∗
s,t ), p

sc∗
ss,t(π̄

sc∗
s,t )|π̄sc∗

s,t )) ≤ ∂p1,t log(Π
sc
1,t(γ

sc∗
ss,t(π

sc∗
s,t ), p

sc∗
ss,t(π

sc∗
s,t )|πsc∗

s,t )), i.e.,

∂p1,t
log ρs,t(p

sc∗
ss,t(π̄

sc∗
s,t )) +

1

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t

≤∂p1,t log ρs,t(p
sc∗
ss,t(π

sc∗
s,t )) +

1

psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π

sc∗
s,t )) + πsc∗

s,t

.

(B.11)

Because

1

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t

>
1

psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π

sc∗
s,t )) + πsc∗

s,t

,

we have that

∂p1,t log ρs,t(p
sc∗
ss,t(π̄

sc∗
s,t )) < ∂p1,t log ρs,t(p

sc∗
ss,t(π

sc∗
s,t )). (B.12)

By (3.4) and Newton-Leibniz formula, we have

∂p1,t log ρs,t(p
sc∗
ss,t(π

sc∗
s,t ))− ∂p1,t log ρs,t(p

sc∗
ss,t(π̄

sc∗
s,t ))

=

∫ 1

s=0

[

N∑
j=1

(psc∗s,t (π
sc∗
s,t )− psc∗s,t (π̄

sc∗
s,t ))

∂2 log ρs,t(sp
sc∗
ss,t(π

sc∗
s,t ) + (1− s)psc∗ss,t(π̄

sc∗
s,t ))

∂p1,t∂pj,t
] ds

< 0,

which contradicts (B.12). Therefore, for all π̄sc∗
s,t > πsc∗

s,t , we have γ
sc∗
s,t (π̄

sc∗
s,t ) ≤ γsc∗s,t (π

sc∗
s,t ). The continuity

of γsc∗s,t (π
sc∗
s,t ) and psc∗s,t (π

sc∗
s,t ) in πsc∗

s,t follows directly from that Πsc
i,t(γt, pt|πsc∗

s,t ) is twice continuously

differentiable and the implicit function theorem. This completes the proof of part (c).

Part (d). By Theorem 3.4.2(a), βsc
s,t = δsβ

sc
s,tµs,t + Πsc∗

s,t , it suffices to show that Πsc∗
s,t (π

sc∗
s,t ) is

continuously increasing in πsc∗
s,t , where Πsc∗

s,t (π
sc∗
s,t ) := Πsc

i,t(γ
sc∗
ss,t(π

sc∗
s,t ), p

sc∗
ss,t(π

sc∗
s,t )).

Assume that π̄sc∗
s,t > πsc∗

s,t . Since part (c) implies that psc∗s,t (π̄
sc∗
s,t ) ≤ psc∗s,t (π

sc∗
s,t ) and γsc∗s,t (π̄

sc∗
s,t ) ≥

γsc∗s,t (π
sc∗
s,t ), the monotonicity condition (3.17) implies that

ρs,t(p
sc∗
ss,t(π̄

sc∗
s,t )) ≥ ρs,t(p

sc∗
ss,t(π

sc∗
s,t )) and ψs,t(γ

sc∗
ss,t(π̄

sc∗
s,t )) ≥ ψs,t(γ

sc∗
ss,t(π

sc∗
s,t )). (B.13)

If psc∗s,t (π̄
sc∗
s,t ) = psc∗s,t (π

sc∗
s,t ) and γ

sc∗
s,t (π̄

sc∗
s,t ) = γsc∗s,t (π

sc∗
s,t ), by π̄

sc∗
s,t > πsc∗

s,t , we have

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t > psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π

sc∗
s,t )) + πsc∗

s,t .

Thus,

Πsc∗
s,t (π̄

sc∗
s,t ) = Πsc

i,t(γ
sc∗
ss,t(π̄

sc∗
s,t ), p

sc∗
ss,t(π̄

sc∗
s,t )|π̄sc∗

s,t )

= (psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t )ρs,t(p
sc∗
ss,t(π̄

sc∗
s,t ))ψs,t(γ

sc∗
ss,t(π̄

sc∗
s,t ))

> (psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π

sc∗
s,t )) + πsc∗

s,t )ρs,t(p
sc∗
ss,t(π

sc∗
s,t ))ψs,t(γ

sc∗
ss,t(π

sc∗
s,t ))

= Πsc
i,t(γ

sc∗
ss,t(π

sc∗
s,t ), p

sc∗
ss,t(π

sc∗
s,t )|πsc∗

s,t )

= Πsc∗
s,t (π

sc∗
s,t ).

If psc∗s,t (π̄
sc∗
s,t ) < psc∗s,t (π

sc∗
s,t ), Lemma 23 yields that

∂p1,t log(Π
sc
1,t(p

sc∗
ss,t(π̄

sc∗
s,t ), γ

sc∗
ss,t(π̄

sc∗
s,t )|π̄sc∗

s,t )) ≤ ∂p1,t log(Π
sc
1,t(p

sc∗
ss,t(π

sc∗
s,t ), γ

sc∗
ss,t(π

sc∗
s,t )|πsc∗

s,t )), i.e.,

∂p1,t log ρs,t(p
sc∗
ss,t(π̄

sc∗
s,t )) +

1

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t

≤∂p1,t log ρs,t(p
sc∗
ss,t(π

sc∗
s,t )) +

1

psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π

sc∗
s,t )) + πsc∗

s,t

.

(B.14)
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By (3.4) and Newton-Leibniz formula, we have

∂p1,t log ρs,t(p
sc∗
ss,t(π

sc∗
s,t ))− ∂p1,t log ρs,t(p

sc∗
ss,t(π̄

sc∗
s,t ))

=

∫ 1

s=0

[
N∑
j=1

(psc∗s,t (π
sc∗
s,t )− psc∗s,t (π̄

sc∗
s,t ))

∂2 log ρs,t((1− s)psc∗ss,t(π̄
sc∗
s,t ) + spsc∗ss,t(π

sc∗
s,t ))

∂p1,t∂pj,t
] ds < 0.

Hence, (B.14) implies that

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t > psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π

sc∗
s,t )) + πsc∗

s,t .

Therefore,

Πsc∗
s,t (π̄

sc∗
s,t ) = Πsc

i,t(γ
sc∗
ss,t(π̄

sc∗
s,t ), p

sc∗
ss,t(π̄

sc∗
s,t )|π̄sc∗

s,t )

= (psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t )ρs,t(p
sc∗
ss,t(π̄

sc∗
s,t ))ψs,t(γ

sc∗
ss,t(π̄

sc∗
s,t ))

> (psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π

sc∗
s,t )) + πsc∗

s,t )ρs,t(p
sc∗
ss,t(π

sc∗
s,t ))ψs,t(γ

sc∗
ss,t(π

sc∗
s,t ))

= Πsc
i,t(γ

sc∗
ss,t(π

sc∗
s,t ), p

sc∗
ss,t(π

sc∗
s,t )|πsc∗

s,t )

= Πsc∗
s,t (π

sc∗
s,t ).

If psc∗s,t (π̄
sc∗
s,t ) = psc∗s,t (π

sc∗
s,t ) and γ

sc∗
s,t (π̄

sc∗
s,t ) > γsc∗s,t (π

sc∗
s,t ), Lemma 23 yields that

∂γ1,t log(Π
sc
1,t(p

sc∗
ss,t(π̄

sc∗
s,t ), γ

sc∗
ss,t(π̄

sc∗
s,t )|π̄sc∗

s,t )) ≥ ∂γ1,t log(Π
sc
1,t(p

sc∗
ss,t(π

sc∗
s,t ), γ

sc∗
ss,t(π

sc∗
s,t )|πsc∗

s,t )), i.e.,

∂γ1,t logψs,t(γ
sc∗
ss,t(π̄

sc∗
s,t ))−

ν′s,t(γ
sc∗
s,t (π̄

sc∗
s,t ))

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t

≥∂γ1,t logψs,t(γ
sc∗
ss,t(π

sc∗
s,t ))−

ν′s,t(γ
sc∗
s,t (π

sc∗
s,t ))

psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π

sc∗
s,t )) + πsc∗

s,t

.

(B.15)

By (3.4) and Newton-Leibniz formula, we have

∂γ1,t logψs,t(γ
sc∗
ss,t(π̄

sc∗
s,t ))− ∂γ1,t logψs,t(γ

sc∗
ss,t(π

sc∗
s,t ))

=

∫ 1

s=0

[
N∑
j=1

(γsc∗s,t (π̄
sc∗
s,t )− γsc∗s,t (π

sc∗
s,t ))

∂2 logψs,t(sγ
sc∗
ss,t(π̄

sc∗
s,t ) + (1− s)γsc∗ss,t(π

sc∗
s,t ))

∂γ1,t∂γj,t
] ds < 0.

Hence, (B.15) implies that

−
ν′s,t(γ

sc∗
s,t (π̄

sc∗
s,t ))

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γsc∗s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t

> −
ν′s,t(γ

sc∗
s,t (π

sc∗
s,t ))

psc∗s,t ((π
sc∗
s,t ))− δsws,t−1 − νs,t(γsc∗s,t (π

sc∗
s,t )) + πsc∗

s,t

.

(B.16)

Since νs,t(·) is convexly increasing, ν′s,t(γ
sc∗
s,t (π̄

sc∗
s,t )) ≥ ν′s,t(γ

sc∗
s,t (π

sc∗
s,t )). Hence, (B.16) implies that

psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t > psc∗s,t ((π
sc∗
s,t ))− δsws,t−1 − νs,t(γ

sc∗
s,t (π

sc∗
s,t )) + πsc∗

s,t .

Therefore,

Πsc∗
s,t (π̄

sc∗
s,t ) = Πsc

i,t(γ
sc∗
ss,t(π̄

sc∗
s,t ), p

sc∗
ss,t(π̄

sc∗
s,t )|π̄sc∗

s,t )

= (psc∗s,t (π̄
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π̄

sc∗
s,t )) + π̄sc∗

s,t )ρs,t(p
sc∗
ss,t(π̄

sc∗
s,t ))ψs,t(γ

sc∗
ss,t(π̄

sc∗
s,t ))

> (psc∗s,t (π
sc∗
s,t )− δsws,t−1 − νs,t(γ

sc∗
s,t (π

sc∗
s,t )) + πsc∗

s,t )ρs,t(p
sc∗
ss,t(π

sc∗
s,t ))ψs,t(γ

sc∗
ss,t(π

sc∗
s,t ))

= Πsc
i,t(γ

sc∗
ss,t(π

sc∗
s,t ), p

sc∗
ss,t(π

sc∗
s,t )|πsc∗

s,t )

= Πsc∗
s,t (π

sc∗
s,t ).

232



Thus, we have shown that, if π̄sc∗
s,t > πsc∗

s,t , Π
sc∗
s,t (π̄

sc∗
s,t ) > Πsc∗

s,t (π
sc∗
s,t ) and, hence, by Theorem 3.4.2(a),

βsc
s,t(π̄

sc∗
s,t ) > βsc

s,t(π
sc∗
s,t ). The continuity of βsc

s,t in π
sc∗
s,t follows directly from the continuous differentiability

of Πsc
i,t(γt, pt|πsc∗

s,t ) in (γt, pt, π
sc∗
s,t ) and the continuity of (γsc∗ss,t, p

sc∗
ss,t) in π

sc∗
s,t . This completes the proof of

part (d).

Part (e). By part (c), it suffices to show that, πsc∗
s,t is continuously increasing in βcs

s,t−1. The

monotonicity follows from the assumption, whereas the continuity follows directly from part (a) and

that the compound function is continuous if each individual function is continuous. This completes the

proof of part (e).

Part (f). By the proof of part (e), πsc∗
s,t is continuously increasing in βcs

s,t−1. By part (d), βsc
s,t is

continuously increasing in βsc
s,t−1. Q.E.D.

Proof of Theorem 3.4.4: Part (a). Because βsc
i,t−1 ≥ β̃sc

i,t−1 = 0 for each i and t, Theorem 3.4.3(a)

implies that ysc∗i,t ≥ ỹsc∗i,t for all i and t. Thus,

zsc∗i,t = E[(ysc∗i,t )
+ ∧ ξi,t] ≥ E[(ỹsc∗i,t )

+ ∧ ξi,t] = zsc∗i,t , for all i and t.

Moreover, since β̃sc
i,t−1 = 0, π̃sc

i,t(yt) = (δiwi,t−1 − wi,t)yi,t − Li,t(yi,t). Moreover, if yi,t ≤ 0, π̃sc
i,t(yt) is

strictly increasing in yi,t. Hence, π̃
sc∗
i,t = max{(δiwi,t−1 − wi,t)yi,t − Li,t(yi,t) : yi,t ≥ 0}. Thus,

πsc∗
i,t =max{(δiwi,t−1 − wi,t)yi,t − Li,t(yi,t) + δiβ

sc
i,t−1(κii,t(E[yi,t ∧ ξi,t])−

∑
j ̸=i

κij,t(E[y∗j,t ∧ ξj,t])) : yi,t ≥ 0}

≥max{(δiwi,t−1 − wi,t)yi,t − Li,t(yi,t) + δiβ
sc
i,t−1(κii,t(0)−

∑
j ̸=i

κij,t(1)) : yi,t ≥ 0}

≥max{(δiwi,t−1 − wi,t)yi,t − Li,t(yi,t) : yi,t ≥ 0}

=π̃sc∗
i,t ,

where the first inequality follows from that κii,t(·) is increasing in yi,t and κij,t(·) is increasing in yj,t,

and the second from that αi,t(·) ≥ 0 for all i, t, and zt. This proves part (a).

Part (b-i). Part (a) suggests that πsc∗
s,t ≥ π̃sc∗

s,t for all t. Thus, by Theorem 3.4.3(c), γsc∗s,t ≥ γ̃sc∗s,t

for all t. By Theorem 3.4.2(b), γsc∗i,t (It,Λt) = γsc∗s,t ≥ γ̃sc∗s,t = γ̃sc∗i,t (It,Λt) for all t and (It,Λt) ∈ S. This

proves part (b-i).

Part (b-ii). Part (a) suggests that πsc∗
s,t ≥ π̃sc∗

s,t for all t. Thus, by Theorem 3.4.3(c), psc∗s,t ≤ p̃sc∗s,t

for all t. By Theorem 3.4.2(b), psc∗i,t (It,Λt) = psc∗s,t ≤ p̃sc∗s,t = p̃sc∗i,t (It,Λt) for all t and (It,Λt) ∈ S. This

proves part (b-ii).

Part (b-iii). By Proposition 3.4.3(d), xsc∗i,t (It,Λt) = ysc∗s,t ρs,t(p
sc∗
ss,t)ψs,t(γ

sc∗
ss,t)Λi,t and x̃

sc∗
i,t (It,Λt) =

ỹsc∗s,t ρs,t(p̃
sc∗
ss,t)ψs,t(γ̃

sc∗
ss,t)Λi,t. Part (a) implies that ysc∗s,t ≥ ỹsc∗s,t . Since, by parts (b-i) and (b-ii), psc∗s,t ≤ p̃sc∗s,t

and γsc∗s,t ≥ γ̃sc∗s,t , the monotonicity condition (3.17) yields that ρs,t(p
sc∗
ss,t) ≥ ρs,t(p̃

sc∗
ss,t), and ψs,t(γ

sc∗
ss,t) ≥

ψs,t(γ̃
sc∗
ss,t). Therefore, for each (It,Λt) ∈ S,

xsc∗i,t (It,Λt) = ysc∗s,t ρs,t(p
sc∗
ss,t)ψs,t(γ

sc∗
ss,t)Λi,t ≥ ỹsc∗s,t ρs,t(p̃

sc∗
ss,t)ψs,t(γ̃

sc∗
ss,t)Λi,t = x̃sc∗i,t (It,Λt).

This completes the proof of part (b-iii). Q.E.D.
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Proof of Theorem 3.4.5: Part (a). We show part (a) by backward induction. More specifically,

we show that if α̂s,t(zt) ≥ αs,t(zt) for all zt and β̂sc
s,t−1 ≥ βsc

s,t−1, (i) π̂
sc∗
s,t ≥ πsc∗

s,t , (ii) γ̂
sc∗
s,t ≥ γsc∗s,t , (iii)

γ̂sc∗i,t (It,Λt) ≥ γsc∗s,t (It,Λt) for each i and (It,Λt) ∈ S, (iv) p̂sc∗s,t ≤ psc∗s,t , (v) p̂
sc∗
i,t (It,Λt) ≤ psc∗i,t (It,Λt) for

each i and (It,Λt) ∈ S, and (vi) β̂sc
s,t ≥ βsc

s,t. Since β̂
sc
s,0 = βsc

s,0 = 0, the initial condition is satisfied.

Since α̂s,t(zt) ≥ αs,t(zt) for all zt,

κ̂sa,t(yi,t)− (N − 1)κ̂0sb,t ≥ κsa,t(yi,t)− (N − 1)κ0sb,t ≥ 0, for all yi,t ≥ 0.

Therefore,

π̂sc∗
s,t = max{(δsws,t−1 − ws,t)yi,t − Ls,t(yi,t) + δsβ̂

sc
s,t−1(κ̂sa,t(E[yi,t ∧ ξi,t])− (N − 1)κ̂0sb,t) : yi,t ≥ 0}

≥ max{(δsws,t−1 − ws,t)yi,t − Ls,t(yi,t) + δsβ
sc
s,t−1(κsa,t(E[yi,t ∧ ξi,t])− (N − 1)κ0sb,t) : yi,t ≥ 0}

= πsc∗
s,t .

Since π̂sc∗
s,t ≥ πsc∗

s,t , Theorem 3.4.3(c) implies that γ̂sc∗s,t ≥ γsc∗s,t and p̂sc∗s,t ≤ psc∗s,t . Thus, γ̂sc∗i,t (It,Λt) =

γ̂sc∗s,t ≥ γsc∗s,t = γsc∗i,t (It,Λt) for each i and all (It,Λt) ∈ S. Analogously, p̂sc∗i,t (It,Λt) = p̂sc∗s,t ≤ psc∗s,t =

psc∗i,t (It,Λt) for each i and all (It,Λt) ∈ S. By Theorem 3.4.3(d), π̂sc∗
s,t ≥ πsc∗

s,t implies that β̂sc
s,t ≥ βsc

s,t.

This completes the induction and, thus, the proof of part (a).

Part (b). By part (a), it suffices to show that, if α̂s,t(zt) ≥ αs,t(zt) for all zt, κ̂
′
sa,t(zi,t) ≥ κ′sa,t(zi,t)

for all zi,t, and β̂
sc
s,t−1 ≥ βsc

s,t−1, we have (i) ŷsc∗s,t ≥ ysc∗s,t and (ii) x̂sc∗i,t (It,Λt) ≥ xsc∗i,t (It,Λt) for each i and

(It,Λt) ∈ S.

First, we show that ŷsc∗s,t ≥ ysc∗s,t . If, to the contrary, ŷsc∗s,t < ysc∗s,t , Lemma 23 yields that

∂yi,t [(δsws,t−1 − ws,t)ŷ
sc∗
s,t − Ls,t(ŷ

sc∗
s,t ) + δsβ̂

sc
s,t−1(κ̂sa,t(E[ŷsc∗s,t ∧ ξi,t])− (N − 1)κ̂0sb,t)]

≤ ∂yi,t [(δsws,t−1 − ws,t)y
sc∗
s,t − Ls,t(y

sc∗
s,t ) + δsβ

sc
s,t−1(κsa,t(E[ysc∗s,t ∧ ξi,t])− (N − 1)κ0sb,t)],

i.e.,

(δsws,t−1 − ws,t)− L′
s,t(ŷ

sc∗
s,t ) + δsβ̂

sc
s,t−1F̄s,t(ŷ

sc∗
s,t )κ̂

′
sa,t(E[ŷsc∗s,t ∧ ξi,t])

≤ (δsws,t−1 − ws,t)− L′
s,t(y

sc∗
s,t ) + δsβ

sc
s,t−1F̄s,t(y

sc∗
s,t )κ

′
sa,t(E[ysc∗s,t ∧ ξi,t]). (B.17)

Since −Ls,t(·) is strictly concave in yi,t and ŷ
sc∗
s,t < ysc∗s,t , (B.17) implies that

δsβ̂
sc
s,t−1F̄s,t(ŷ

sc∗
s,t )κ̂

′
sa,t(E[ŷsc∗s,t ∧ ξi,t]) < δsβ

sc
s,t−1F̄s,t(y

sc∗
s,t )κ

′
sa,t(E[ysc∗s,t ∧ ξi,t]). (B.18)

However, since κ̂′sa,t(zi,t) ≥ κ′sa,t(zi,t) for all zi,t and ŷsc∗s,t < ysc∗s,t , we have κ̂′sa,t(E[ŷsc∗s,t ∧ ξi,t]) ≥

κ′sa,t(E[ysc∗s,t ∧ ξi,t]) and F̄s,t(ŷ
sc∗
s,t ) ≥ F̄s,t(y

sc∗
s,t ). Because β̂

sc
s,t−1 ≥ βsc

s,t−1,

δsβ̂
sc
s,t−1F̄s,t(ŷ

sc∗
s,t )κ̂

′
sa,t(E[ŷsc∗s,t ∧ ξi,t]) ≥ δsβ

sc
s,t−1F̄s,t(y

sc∗
s,t )κ

′
sa,t(E[ysc∗s,t ∧ ξi,t]),

which contradicts (B.18). The inequality ŷsc∗s,t ≥ ysc∗s,t then follows immediately.

Now we show that x̂sc∗i,t (It,Λt) ≥ xsc∗i,t (It,Λt) for each i and (It,Λt) ∈ S. By Proposition 3.4.3(d),

x̂sc∗i,t (It,Λt) = ŷsc∗s,t ρs,t(p̂
sc∗
ss,t)ψs,t(γ̂

sc∗
ss,t)Λi,t and x

sc∗
i,t (It,Λt) = ysc∗s,t ρs,t(p

sc∗
ss,t)ψs,t(γ

sc∗
ss,t)Λi,t. We have shown
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that ŷsc∗s,t ≥ ysc∗s,t . Since (3.17) holds for period t, ρs,t(p̂
sc∗
ss,t) ≥ ρs,t(p

sc∗
ss,t), and ψs,t(γ̂

sc∗
ss,t) ≥ ψs,t(γ

sc∗
ss,t).

Therefore, for each i and (It,Λt) ∈ S,

x̂sc∗i,t (It,Λt) = ŷsc∗s,t ρs,t(p̂
sc∗
ss,t)ψs,t(γ̂

sc∗
ss,t)Λi,t ≥ ysc∗s,t ρs,t(p

sc∗
ss,t)ψs,t(γ

sc∗
ss,t)Λi,t = xsc∗i,t (It,Λt).

This completes the proof of part (b). Q.E.D.

Proof of Theorem 3.4.6: We show parts (a)-(b) together by backward induction. More specifi-

cally, we show that if βsc
s,t−1 ≥ βsc

s,t−2, (i) y
sc∗
s,t ≥ ysc∗s,t−1, (ii) γ

sc∗
s,t ≥ γsc∗s,t−1, (iii) γ

sc∗
i,t (I,Λ) ≥ γsc∗i,t−1(I,Λ)

for each i and (I,Λ) ∈ S, (iv) psc∗s,t ≤ psc∗s,t−1, (v) p
sc∗
i,t (I,Λ) ≤ psc∗i,t−1(I,Λ) for each i and (I,Λ) ∈ S, (vi)

xsc∗i,t (I,Λ) ≥ xsc∗i,t−1(I,Λ) for each i and (I,Λ) ∈ S, and (vii) βsc
s,t ≥ βsc

s,t−1. Since, by Proposition 3.4.3(a),

βsc
s,1 ≥ βsc

s,0 = 0. Thus, the initial condition is satisfied.

Since the model is stationary, by Theorem 3.4.3(a), βsc
s,t−1 ≥ βsc

s,t−2 suggests that ysc∗s,t ≥ ysc∗s,t−1.

Analogously, Theorem 3.4.3(e) yields that γsc∗s,t ≥ γsc∗s,t−1 and psc∗s,t ≤ psc∗s,t−1. Hence, γsc∗i,t (I,Λ) = γsc∗s,t ≥

γsc∗s,t−1 = γsc∗i,t−1(I,Λ) and psc∗i,t (I,Λ) = psc∗s,t ≤ psc∗s,t−1 = psc∗i,t−1(I,Λ) for each i and (I,Λ) ∈ S. Be-

cause the monotonicity condition (3.17) holds, we have ρs,t(p
sc∗
ss,t) ≥ ρs,t−1(p

sc∗
ss,t−1), and ψs,t(γ

sc∗
ss,t) ≥

ψs,t−1(γ
sc∗
ss,t−1). Therefore, for each i and (I,Λ) ∈ S,

xsc∗i,t (I,Λ) = ysc∗s,t ρs,t(p
sc∗
ss,t)ψs,t(γ

sc∗
ss,t)Λi ≥ ysc∗s,t−1ρs,t−1(p

sc∗
ss,t−1)ψs,t−1(γ

sc∗
ss,t−1)Λi = xsc∗i,t−1(I,Λ).

Finally, βsc
s,t ≥ βsc

s,t−1 follows immediately from Theorem 3.4.3(f) and βsc
s,t−1 ≥ βsc

s,t−2. This completes

the induction and, thus, the proof of Theorem 3.4.6. Q.E.D.

Before presenting the proofs of the results in the PF model, we give the following lemma that is used

throughout the rest of our proofs.

Lemma 24 Let At be an N × N matrix with entries defined by Aii,t = 2θii,t and Aij,t = −θij,t where

i ̸= j. The following statements hold:

(a) At is invertible. Moreover, (A−1
t )ij ≥ 0 for all 1 ≤ i, j ≤ N .

(b) 1
2 ≤ θii,t(A

−1
t )ii < 1.

(c) 1
2 ≤

∑N
j=1 θjj,t(A

−1
t )ij < 1.

Proof: Part (a) follows from Lemma 2(a) in [24] and Part (b) follows from Lemma 2(c) in [24].

Part (c). Let I be the N ×N identity matrix, Bt be the N ×N matrix with

(Bt)ij =

0 if i = j,

θij,t
θii,t

if i ̸= j;

and Ct be the N ×N diagonal matrix with

(Ct)ij =

2θii,t if i = j,

0 if i ̸= j.
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Because θii,t >
∑

j ̸=i θij,t, Bt is a substochastic matrix.

Observe that, At = Ct(I− 1
2Bt) and, hence, A

−1
t = (I− 1

2Bt)
−1C−1

t . Let θt = (θ11,t, θ22,t · · · , θNN,t)
′

be the N−dimensinal vector. Thus,
∑N

j=1 θjj,t(A
−1
t )ij = (A−1

t θt)i. Moreover,

A−1
t θt = (I − 1

2
Bt)

−1C−1
t θt = (I − 1

2
Bt)

−1(C−1
t θt) =

1

2
(I − 1

2
Bt)

−1,

where the last equality follows from C−1
t θt =

1
2I. Therefore,

N∑
j=1

θjj,t(A
−1
t )ij =

1

2

N∑
j=1

[(I − 1

2
Bt)

−1]ij =
1

2

N∑
j=1

[I +
+∞∑
l=1

(
1

2

)l

(Bt)
l]ij ,

where the second equality follows from the fact that I − 1
2Bt is a diagonal dominant matrix. Thus, for

all i,
∑N

j=1 θjj,t(A
−1
t )ij ≥ 1

2

∑N
j=1 Iij =

1
2 . On the other hand, for all i,

1

2

N∑
j=1

[I +
+∞∑
l=1

(
1

2

)l

(Bt)
l]ij =

1

2

N∑
j=1

[
+∞∑
l=0

(
1

2

)l

(Bt)
l]ij =

1

2

+∞∑
l=0

[

(
1

2

)l N∑
j=1

(Bt)
l
ij ] <

1

2

+∞∑
l=0

(
1

2

)l

= 1,

where the inequality follows from that Bt is a sub-stochastic matrix. This completes the proof of part

(c). Q.E.D.

Proof of Theorems 3.5.1-3.5.2 and Propositions 3.5.1-3.5.3: We show Theorem 3.5.1, Propo-

sition 3.5.1, Proposition 3.5.2, Proposition 3.5.3, and Theorem 3.5.2 together by backward induction.

More specifically, we show that, if Vi,t−1(It−1,Λt−1|σpf∗
t−1) = wi,t−1Ii,t−1+β

pf
i,t−1Λi,t−1 for all i, (a) Propo-

sition 3.5.1 holds for period t, (b) Proposition 3.5.2 holds for period t, (c) Proposition 3.5.3 holds for

period t, (d) there exists a Markov strategy profile {(γpf∗i,t (·, ·), ppf∗i,t (·, ·, ·), xpf∗i,t (·, ·, ·)) : 1 ≤ i ≤ N}, which

forms an equilibrium in the subgame of period t, (e) if νi,t(γi,t) = γi,t for all i and γi,t, the equilibrium

in the subgame of period t, {(γpf∗i,t (·, ·), ppf∗i,t (·, ·, ·), xpf∗i,t (·, ·, ·)) : 1 ≤ i ≤ N}, is unique, and (f) there

exists a positive vector βpf
t = (βpf

1,t, β
pf
2,t, · · · , β

pf
N,t), such that Vi,t(It,Λt|σpf∗

t ) = wi,tIi,t + βpf
i,tΛi,t for all

i. Because Vi,0(I0,Λ0) = wi,0Ii,0 for all i, the initial condition is satisfied.

First, we observe that Proposition 3.5.1 follows directly from the same argument as the proof of

Proposition 3.4.1. We now show Proposition 3.5.2 holds in period t. Because ∂2pi,t
Πpf,2

i,t (pt|γt) = −2θii,t <

0, Πpf,2
i,t (·, p−i,t|γt) is strictly concave in pi,t for any given p−i,t. Hence, by Theorem 1.2 in [79], Gpf,2

t

has a pure strategy Nash equilibrium ppf∗t (γt). Since, for each i and t, p
i,t

is sufficiently low whereas

p̄i,t is sufficiently high so that they will not affect the equilibrium behaviors of all firms, ppf∗t (γt) can be

characterized by first-order conditions ∂pi,tΠ
pf,2
i,t (ppf∗t (γt)|γt) = 0 for each i, i.e.,

− θii,t(p
pf∗
i,t (γt)− δiwi,t−1 − νi,t(γi,t) + πpf∗

i,t (γt)) + ρi,t(p
pf∗
t (γt))

=− 2θii,tp
pf∗
i,t (γt) +

∑
j ̸=i

θij,tp
pf∗
j,t (γt) + fi,t(γt) = 0, for all i.

(B.19)

In terms of the matrix language, we have Atp
pf∗
t (γt) = ft(γt). By Lemma 24(a), At is invertible and, thus,

ppf∗t (γt) is uniquely determined by ppf∗t (γt) = A−1
t ft(γt). To show that ppf∗i,t (γt) =

∑
j(A

−1
t )ijfj,t(γt) is

continuously increasing in γj,t, we observe that

∂ppf∗i,t (γt)

∂γj,t
= (A−1

t )ijθjj,tν
′
j,t(γj,t).
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Since, by Lemma 24(a), (A−1
t )ij ≥ 0 for all i and j, we have ∂γj,tp

pf∗
i,t (γt) ≥ 0 and, thus, ppf∗i,t (γt) is

continuously increasing in γj,t for each j.

Now, we compute Πpf∗,2
i,t (γt).

Πpf∗,2
i,t (γt) = ρi,t(p

pf∗
t (γt))(p

pf∗
i,t (γt)− δiwi,t−1 − νi,t(γi,t) + πpf∗

i,t )

= (ϕi,t − θii,tp
pf∗
i,t (γt) +

∑
j ̸=i

θij,tp
pf∗
j,t (γt))(p

pf∗
i,t (γt)− δiwi,t−1 − νi,t(γi,t) + πpf∗

i,t )

= (θii,tp
pf∗
i,t (γt)− fi,t(γt) + ϕi,t)(p

pf∗
i,t (γt)− δiwi,t−1 − νi,t(γi,t) + πpf∗

i,t )

= θii,t(p
pf∗
i,t (γt)− δiwi,t−1 − νi,t(γi,t) + πpf∗

i,t )2,

where the third equality follows from (B.19) and the last from fi,t(γt) = ϕi,t + θii,t(δiwi,t−1 + νi,t(γi,t)−

πpf∗
i,t ). The above computation also implies that ρi,t(p

pf∗
t (γt)) = θii,t(p

pf∗
i,t (γt)−δiwi,t−1−νi,t(γi,t)+πpf∗

i,t ).

We now show that Πpf∗,2
i,t (γt) > 0. Note that Πpf∗,2

i,t (γt) =
1

θii,t
[ρi,t(p

pf∗
t (γt))]

2 > 0, where the inequality

follows from the assumption that ρi,t(·) > 0 for all pt. This completes the proof of Proposition 3.5.2.

Next, we show Proposition 3.5.3. Since Πpf∗,2
i,t (γt) > 0 for all γt, Π

pf,1
i,t (γt) = Πpf∗,2

i,t (γt)ψi,t(γt) > 0

and, hence, log(Πpf,1
i,t (·)) is well defined. Therefore,

log(Πpf,1
i,t (γt)) = log(θii,t) + 2 log(ppf∗i,t (γt)− δiwi,t−1 − νi,t(γi,t) + πpf∗

i,t ) + log(ψi,t(γt)). (B.20)

Since

ppf∗j,t (γt) =
N∑
l=1

(A−1
t )jlfl,t(γt) =

N∑
l=1

[(A−1
t )jl(ϕl,t + θll,t(δlwl,t−1 + νl,t(γl,t)− πpf∗

l,t ))], for all j,

by direct computation,

∂2 log(Πpf,1
i,t (γt))

∂γi,t∂γj,t
=

2(1− θii,t(A
−1
t )ii)θjj,t(A

−1
t )ijν

′
i,t(γi,t)ν

′
j,t(γj,t)

(ppf∗i,t (γt)− δiwi,t−1 − νi,t(γi,t) + πpf∗
i,t )2

+
∂2 log(ψi,t(γt))

∂γi,t∂γj,t
, for all j ̸= i.

(B.21)

By Lemma 24(a,b), 1− θii,t(A
−1
t )ii > 0 and (A−1

t )ij ≥ 0. Thus, the first term of (B.21) is non-negative.

Because ψi,t(·) satisfies (3.3),

∂2 log(Πpf,1
i,t (γt))

∂γi,t∂γj,t
≥ ∂2 log(ψi,t(γt))

∂γi,t∂γj,t
≥ 0, for all j ̸= i.

and, thus, Gpf,1
t is a log-supermodular game. The feasible action set of player i, [0, γ̄i,t], is a compact

subset of R. Therefore, by Theorem 2 in [194], the pure strategy Nash equilibria of Gpf,1
t is a nonempty

complete sublattice of RN

We now show that if νi,t(γi,t) = γi,t, the Nash equilibrium of Gpf,1
t is unique. We first show that

∂2 log(Πpf,1
i,t (γt))

∂γ2i,t
< 0, and |

∂2 log(Πpf,1
i,t (γt))

∂γ2i,t
| >

∑
j ̸=i

∂2 log(Πpf,1
i,t (γt))

∂γi,t∂γj,t
, for all i and γt. (B.22)

Since νl,t(γl,t) = γl,t for all l (i.e., ν
′
l,t(·) ≡ 1 for all l), direct computation yields that

∂2 log(Πpf,1
i,t (γt))

∂γ2i,t
=
∂2 log(ψi,t(γt))

∂γ2i,t
− 2(1− θii,t(A

−1
t )ii)

2

(ppf∗i,t (γt)− δiwi,t−1 − νi,t(γi,t) + πpf∗
i,t )2

.
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Inequality (3.3) implies that ∂2γi,t
log(ψi,t(γt)) < 0 and, thus, ∂2γi,t

log(Πpf,1
i,t (γt)) < 0. Moreover,

|
∂2 log(Πpf,1

i,t (γt))

∂γ2i,t
| = |∂

2 log(ψi,t(γt))

∂γ2i,t
|+ 2(1− θii,t(A

−1
t )ii)

2

(ppf∗i,t (γt)− δiwi,t−1 − νi,t(γi,t) + πpf∗
i,t )2

and ∑
j ̸=i

∂2 log(Πpf,1
i,t (γt))

∂γi,t∂γj,t
=
∑
j ̸=i

∂2 log(ψi,t(γt))

∂γi,t∂γj,t
+
∑
j ̸=i

2(1− θii,t(A
−1
t )ii)θjj,t(A

−1
t )ij

(ppf∗i,t (γt)− δiwi,t−1 − νi,t(γi,t) + πpf∗
i,t )2

.

Inequality (3.3) implies that

|∂
2 log(ψi,t(γt))

∂γ2i,t
| >

∑
j ̸=i

∂2 log(ψi,t(γt))

∂γi,t∂γj,t
.

Lemma 24(b) implies that 1− θii,t(A
−1
t )ii > 0. Moreover, Lemma 24(c) suggests that 1− (A−1

t )iiθii,t >∑
j ̸=i(A

−1
t )ijθjj,t and, hence,

2(1− θii,t(A
−1
t )ii)

2

(ppf∗i,t (γt)− δiwi,t−1 − νi,t(γi,t) + πpf∗
i,t )2

>
∑
j ̸=i

2(1− θii,t(A
−1
t )ii)θjj,t(A

−1
t )ij

(ppf∗i,t (γt)− δiwi,t−1 − νi,t(γi,t) + πpf∗
i,t )2

.

Therefore, inequality (B.22) holds for all γt.

Because Gpf,1
t is a log-supermodular game, by Theorem 5 in [124], if there are two distinct pure

strategy Nash equilibria γ̂pf∗t ̸= γpf∗t , we must have γ̂pf∗i,t ≥ γpf∗i,t for each i, with the inequality being

strict for some i. Without loss of generality, we assume that γ̂pf∗1,t > γpf∗1,t and γ̂pf∗1,t − γpf∗1,t ≥ γ̂pf∗i,t − γpf∗i,t

for each i. Lemma 23 yields that

∂ log(Πpf,1
1,t (γ̂pf∗t ))

∂γ1,t
≥
∂ log(Πpf,1

1,t (γpf∗t ))

∂γ1,t
(B.23)

Since ∂γ1,t∂γi,t log(Π
pf,1
1,t (γt)) is Lebesgue integrable for all i ̸= 1 and γt, Newton-Leibniz formula implies

that

∂ log(Πpf,1
1,t (γ̂pf∗t ))

∂γ1,t
−
∂ log(Πpf,1

1,t (γpf∗t ))

∂γ1,t
=

∫ 1

s=0

N∑
j=1

(γ̂pf∗j,t − γpf∗j,t )
∂2 log(Πpf,1

1,t ((1− s)γpf∗t + sγ̂pf∗t ))

∂γ1,t∂γj,t
ds

≤
∫ 1

s=0

N∑
j=1

(γ̂pf∗1,t − γpf∗1,t )
∂2 log(Πpf,1

1,t ((1− s)γpf∗t + sγ̂pf∗t ))

∂γ1,t∂γj,t
ds

<0,

where the first inequality follows from γ̂pf∗1,t − γpf∗1,t ≥ γ̂pf∗i,t − γpf∗i,t for all i, and the second from (B.22),

and γ̂pf∗1,t − γpf∗1,t > 0. This contradicts (B.23). Thus, Gpf,1
t has a unique pure strategy Nash equilibrium

γpf∗t .

We now show that the unique pure strategy Nash equilibrium γpf∗t can be characterized by the

system of first-order conditions (3.26). First, (B.22) implies that log(Πpf,1
i,t (·, γ−i,t)) is strictly concave

in γi,t for any i and any fixed γ−i,t. Hence, γpf∗t must satisfy the system of first-order conditions,

i.e., for each i, ∂γi,t log(Π
pf,1
i,t (γpf∗t )) ≤ 0 if γpf∗i,t = 0; ∂γi,t log(Π

pf,1
i,t (γpf∗t )) = 0 if γpf∗i,t ∈ (0, γ̄i,t); and

∂γi,t log(Π
pf,1
i,t (γpf∗t )) ≥ 0 if γpf∗i,t = γ̄i,t. Differentiate (B.20), and we have

∂γi,t log(Π
pf,1
i,t (γt)) =

∂γi,tψi,t(γt)

ψi,t(γt)
−

2(1− θii,t(A
−1
t )ii)ν

′
i,t(γi,t)

ppf∗i,t (γt)− δiwi,t−1 − νi,t(γi,t) + πpf∗
i,t

.
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Thus, γpf∗t satisfies the system of first-order conditions (3.26). Since, by Proposition 3.5.2(c), Πpf∗,2
i,t (γpf∗t ) >

0 and ψi,t(γ
pf∗
t ) > 0, we have Πpf∗,1

i,t = Πpf∗,2
i,t (γpf∗t )ψi,t(γ

pf∗
t ) > 0 for all i. This completes the proof of

Proposition 3.5.3.

Next, we show that {(γpf∗i,t , p
pf∗
i,t (γt),Λi,ty

pf∗
i,t ρi,t(p

pf∗
t (γt))ψi,t(γt)) : 1 ≤ i ≤ N} is an equilibrium

in the subgame of period t. By Proposition 3.5.1, ypf∗i,t > 0, Λi,ty
pf∗
i,t ρi,t(p

pf∗
t (γt))ψi,t(γt) > 0 for all i.

Therefore, regardless of the starting inventory level in period t, Ii,t, firm i could adjust its inventory

to xpf∗i,t (It,Λt, γt) = Λi,ty
pf∗
i,t ρi,t(p

pf∗
t (γt))ψi,t(γt). Thus, {(γpf∗i,t , p

pf∗
i,t (γt),Λi,ty

pf∗
i,t ρi,t(p

pf∗
t (γt))ψi,t(γt)) :

1 ≤ i ≤ N} forms an equilibrium in the subgame of period t. In particular, this equilibrium is the unique

one, if νi,t(γi,t) = γi,t for all i.

Finally, we show that there exists a positive vector βpf
t = (βpf

1,t, β
pf
2,t, · · · , β

pf
N,t), such that

Vi,t(It,Λt|σpf∗
t ) = wi,tIi,t + βpf

i,tΛi,t. By (3.22), we have that

Vi,t(It,Λt|σpf∗
t ) =Ji,t(γ

pf∗
i,t , p

pf∗
i,t (γpf∗t ),Λi,ty

pf∗
i,t ρi,t(p

pf∗
t (γpf∗t ))ψi,t(γ

pf∗
t ), It,Λt|σpf∗

t−1)

=wi,tIi,t + (σiβ
pf
i,t−1µi,t +Πpf∗,1

i,t )Λi,t.

Since βpf
i,t−1 > 0, βpf

i,t = δiβ
pf
i,t−1µi,t + Πpf∗,1

i,t > 0. This completes the induction and, thus, the proof of

Theorem 3.5.1, Proposition 3.5.1, Proposition 3.5.2, Proposition 3.5.3, and Theorem 3.5.2. Q.E.D.

Proof of Proposition 3.5.4: By Theorems 3.5.1-3.5.2, and Propositions 3.5.1-3.5.3, it suffices to show

that, if there exists a constant βpf
s,t−1 ≥ 0, such that Vi,t−1(It−1,Λt−1|σpf∗

t−1) = ws,tIi,t−1 + βpf
s,t−1Λi,t−1

for all i, we have: (a) the unique Nash equilibrium in Gpf,3
t is symmetric, i.e., ypf∗i,t = ypf∗j,t for all

i, j; (b) the unique Nash equilibrium in Gpf,2
t (γt) is symmetric if γi,t = γj,t for all i and j, (c), the

unique Nash equilibrium in Gpf,1
t , γpf∗t is symmetric, and (d) there exists a constant βpf

s,t > 0, such that

Vi,t(It,Λt|σpf∗
s,t ) = ws,tIi,t + βpf

s,tΛi,t for all i. Since Vi,0(It,Λt) = wi,0Ii,0 for all i, the initial condition is

satisfied with βpf
s,0 = 0.

First, we observe that ypf∗i,t = ypf∗j,t and πpf∗
i,t = πpf∗

j,t for all i and j follow directly from the same proof

of Proposition 3.4.3. Thus, we omit their proofs for brevity, and denote ypf∗s,t := ypf∗i,t and πpf∗
s,t = πpf∗

i,t

for each firm i in Gpf,3
t .

Next, we show that if γi,t = γj,t for all i and j, p
pf∗
i,t (γt) = ppf∗j,t (γt). Direct computation yields that,

for the symmetric PF model,
∑N

j=1(A
−1
t )ij is independent of i. Thus, if the value of γj,t is independent

of j,

ppf∗i,t (γt) =
N∑
j=1

(A−1
t )ijfj,t(γt) =

N∑
j=1

[(A−1
t )ij(ϕs,t + θsa,t(δsws,t−1 + νs,t(γj,t)− πpf∗

s,t ))]

=(ϕs,t + θsa,t(δsws,t−1 + νs,t(γj,t)− πpf∗
s,t ))

N∑
j=1

(A−1
t )ij ,

(B.24)

which is independent of firm i, which we denote as ppf∗s,t (γt).

Note that the objective functions of Gpf,1
t ,

{Πpf,1
i,t (γt) = θsa,t(p

pf∗
i,t (γt)− δsws,t−1 − νs,t(γi,t) + πpf∗

s,t )ψs,t(γt) : 1 ≤ i ≤ N}
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are symmetric. Thus, if there exists an asymmetric Nash equilibrium γpf∗t , there exists another Nash

equilibrium γpf∗
t

̸= γpf∗t , where γpf∗
t

is a permutation of γpf∗t . This contradicts the uniqueness of the

Nash equilibrium in Gpf,1
t . Thus, the unique Nash equilibrium in Gpf,1

t is symmetric, which we denote

as γpf∗ss,t = (γpf∗s,t , γ
pf∗
s,t , · · · , γ

pf∗
s,t ). Hence,

Πpf∗,1
i,t = Πpf,1

i,t (γpf∗ss,t) = Πpf,1
j,t (γpf∗ss,t) = Πpf∗,1

j,t > 0.

Thus, we denote the payoff of each firm i in Gpf,1
t as Πpf∗,1

s,t . By Theorem 3.5.2(a),

βpf
i,t = δsβ

pf
s,t−1µs,t +Πpf∗,1

i,t = δsβ
pf
s,t−1µs,t +Πpf∗,1

j,t = βpf
j,t > 0.

Thus, we denote the PF market size coefficient of each firm i as βpf
s,t. This completes the induction and,

thus, the proof of Proposition 3.5.4. Q.E.D.

Proof of Theorem 3.5.3: Parts (a)-(b). The proof of parts (a)-(b) follows from the same argu-

ment as that of Theorem 3.4.3(a)-(b) and is, hence, omitted.

Part (c). Because

ppf∗i,t (γt) =
N∑
j=1

(A−1
t )ijfj,t(γt) =

N∑
j=1

[(A−1
t )ij(ϕj,t + θjj,t(δjwj,t−1 + νj,t(γj,t)− πpf∗

j,t ))],

we have

∂πpf∗
j,t
ppf∗i,t (γt) = −θjj,t(A−1

t )ij ≤ 0,

where the inequality follows from Lemma 24(a). Thus, ppf∗i,t (γt) is continuously decreasing in πpf∗
j,t for

each j. Part (c) follows.

Part (d). We denote the objective function of each firm i in Gpf,1
s,t as Πpf,1

i,t (·|πpf∗
s,t ) to capture

its dependence on πpf∗
s,t . The unique symmetric pure strategy Nash equilibrium in Gpf,1

s,t is denoted as

γpf∗ss,t(π
pf∗
s,t ) to capture the dependence of the equilibrium on πpf∗

s,t , where

γpf∗ss,t(π
pf∗
s,t ) = (γpf∗s,t (πpf∗

s,t ), γpf∗s,t (πpf∗
s,t ), · · · , γpf∗s,t (πpf∗

s,t )). We first show that, if π̄pf∗
s,t > πpf∗

s,t , γpf∗s,t (π̄pf∗
s,t ) ≥

γpf∗s,t (πpf∗
s,t ).

If, to the contrary, γpf∗s,t (π̄pf∗
s,t ) < γpf∗s,t (πpf∗

s,t ), Lemma 23 yields that ∂γ1,t log(Π
pf,1
1,t (γpf∗s,t (π̄pf∗

s,t )|π̄pf∗
s,t )) ≤

∂γ1,t log(Π
pf,1
1,t (γpf∗s,t (πpf∗

s,t )|πpf∗
s,t )), i.e.,

∂γ1,t log(ψs,t(γ
pf∗
s,t (π̄pf∗

s,t ))−
2(1− θsa,t(A

−1
t )ii)ν

′
s,t(γ

pf∗
s,t (π̄pf∗

s,t ))

ppf∗s,t (γpf∗ss,t(π̄
pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (π̄pf∗

s,t )) + π̄pf∗
s,t

≤ ∂γ1,t log(ψs,t(γ
pf∗
s,t (πpf∗

s,t ))−
2(1− θsa,t(A

−1
t )ii)ν

′
s,t(γ

pf∗
s,t (πpf∗

s,t ))

ppf∗s,t (γpf∗ss,t(π
pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (πpf∗

s,t )) + πpf∗
s,t

.

Note that

[ppf∗s,t (γpf∗ss,t(π̄
pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (π̄pf∗

s,t )) + π̄pf∗
s,t ]− [ppf∗s,t (γpf∗ss,t(π

pf∗
s,t ))− δsws,t−1

− νs,t(γ
pf∗
s,t (πpf∗

s,t )) + πpf∗
s,t ]

=(1−
N∑
j=1

(A−1
t )1jθsa,t)(νs,t(γ

pf∗
s,t (πpf∗

s,t ))− νs,t(γ
pf∗
s,t (π̄pf∗

s,t ))) + (1−
N∑
j=1

(A−1
t )1jθsa,t)(π̄

pf∗
s,t − πpf∗

s,t )

>0

(B.25)
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where the inequality follows from Lemma 24(c). Thus,

ppf∗s,t (γpf∗ss,t(π̄
pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (π̄pf∗

s,t )) + π̄pf∗
s,t

>ppf∗s,t (γpf∗ss,t(π
pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (πpf∗

s,t )) + πpf∗
s,t > 0.

Lemma 24(b) implies that 1− θsa,t(A
−1
t )ii > 0. Hence,

−
2(1− θsa,t(A

−1
t )ii)ν

′
s,t(γ

pf∗
s,t (π̄pf∗

s,t ))

ppf∗s,t (γpf∗ss,t(π̄
pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (π̄pf∗

s,t )) + π̄pf∗
s,t

≥−
2(1− θsa,t(A

−1
t )ii)ν

′
s,t(γ

pf∗
s,t (πpf∗

s,t ))

ppf∗s,t (γpf∗ss,t(π
pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (πpf∗

s,t )) + πpf∗
s,t

.

Thus, we have

∂γ1,t log(ψs,t(γ
pf∗
s,t (π̄pf∗

s,t )) ≤ ∂γ1,t log(ψs,t(γ
pf∗
s,t (πpf∗

s,t )). (B.26)

By (3.3) and Newton-Leibniz formula,

∂γ1,t log(ψ1,t(γ
pf∗
s,t (πpf∗

s,t )))− ∂γ1,t log(ψ1,t(γ
pf∗
s,t (π̄pf∗

s,t )))

=

∫ 1

s=0

N∑
j=1

(γpf∗s,t (πpf∗
s,t )− γpf∗s,t (π̄pf∗

s,t ))[
∂2 log(ψs,t(sγ

pf∗
s,t (πpf∗

s,t ) + (1− s)γpf∗s,t (π̄pf∗
s,t )))

∂γ1,t∂γj,t
] ds

< 0,

which contradicts (B.26). Therefore, γpf∗s,t (πpf∗
s,t ) is increasing in πpf∗

s,t . The continuity of γpf∗s,t (πpf∗
s,t ) in

πpf∗
s,t follows directly from that Πpf,1

i,t (γt|πpf∗
s,t ) is twice continuously differentiable in (γt, π

pf∗
s,t ) and the

implicit function theorem.

Next we show that if (3.17) holds, βpf
s,t(π

pf∗
s,t ) is increasing in πpf∗

s,t . By Theorem 3.5.2(a), it suffices to

show that Πpf∗,1
s,t (πpf∗

s,t ) := Πpf∗,1
s,t (γpf∗ss,t(π

pf∗
s,t )|πpf∗

s,t ) is increasing in πpf∗
s,t . Assume that π̄pf∗

s,t > πpf∗
s,t . Since

we have just shown γpf∗s,t (π̄pf∗
s,t ) ≥ γpf∗s,t (πpf∗

s,t ), (3.17) implies that ψs,t(γ
pf∗
ss,t(π̄

pf∗
s,t )) ≥ ψs,t(γ

pf∗
ss,t(π

pf∗
s,t )).

If γpf∗s,t (π̄pf∗
s,t ) = γpf∗s,t (πpf∗

s,t ),

ppf∗s,t (γpf∗ss,t(π̄
pf∗
s,t ))−δsws,t−1−νs,t(γpf∗s,t (π̄pf∗

s,t ))+π̄pf∗
s,t > ppf∗s,t (γpf∗ss,t(π

pf∗
s,t ))−δsws,t−1−νs,t(γpf∗s,t (πpf∗

s,t ))+πpf∗
s,t ,

and, hence,

Πpf∗,1
s,t (π̄pf∗

s,t ) = θsa,t(p
pf∗
s,t (γpf∗ss,t(π̄

pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (π̄pf∗

s,t )) + π̄pf∗
s,t )2ψs,t(γ

pf∗
ss,t(π̄

pf∗
s,t ))

> θsa,t(p
pf∗
s,t (γpf∗ss,t(π

pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (πpf∗

s,t )) + πpf∗
s,t )2ψs,t(γ

pf∗
ss,t(π

pf∗
s,t ))

= Πpf∗,1
s,t (πpf∗

s,t ).

If γpf∗ss,t(π̄
pf∗
s,t ) > γpf∗ss,t(π

pf∗
s,t ), Lemma 23 implies that

∂γ1,t log(Π
pf,1
1,t (γpf∗s,t (π̄pf∗

s,t )|π̄pf∗
s,t )) ≥ ∂γ1,t log(Π

pf,1
1,t (γpf∗s,t (πpf∗

s,t )|πpf∗
s,t )), i.e.,

∂γ1,t
log(ψs,t(γ

pf∗
s,t (π̄pf∗

s,t ))−
2(1− θsa,t(A

−1
t )ii)ν

′
s,t(γ

pf∗
s,t (π̄pf∗

s,t ))

ppf∗s,t (γpf∗ss,t(π̄
pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (π̄pf∗

s,t )) + π̄pf∗
s,t

≥ ∂γ1,t log(ψs,t(γ
pf∗
s,t (πpf∗

s,t ))−
2(1− θsa,t(A

−1
t )ii)ν

′
s,t(γ

pf∗
s,t (πpf∗

s,t ))

ppf∗s,t (γpf∗ss,t(π
pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (πpf∗

s,t )) + πpf∗
s,t

.
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By (3.3) and Newton-Leibniz formula,

∂γ1,t log(ψ1,t(γ
pf∗
s,t (π̄pf∗

s,t )))− ∂γ1,t log(ψ1,t(γ
pf∗
s,t (πpf∗

s,t )))

=

∫ 1

s=0

N∑
j=1

(γpf∗s,t (π̄pf∗
s,t )− γpf∗s,t (πpf∗

s,t ))[
∂2 log(ψs,t((1− s)γpf∗s,t (πpf∗

s,t ) + sγpf∗s,t (π̄pf∗
s,t )))

∂γ1,t∂γj,t
] ds

< 0,

Hence,

−
2(1− θsa,t(A

−1
t )ii)ν

′
s,t(γ

pf∗
s,t (π̄pf∗

s,t ))

ppf∗s,t (γpf∗ss,t(π̄
pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (π̄pf∗

s,t )) + π̄pf∗
s,t

>−
2(1− θsa,t(A

−1
t )ii)ν

′
s,t(γ

pf∗
s,t (πpf∗

s,t ))

ppf∗s,t (γpf∗ss,t(π
pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (πpf∗

s,t )) + πpf∗
s,t

.

Because, by Lemma 24(b) and the convexity of νs,t(·), 1 − θsa,t(A
−1
t )ii > 0 and ν′s,t(γ

pf∗
s,t (π̄pf∗

s,t )) ≥

ν′s,t(γ
pf∗
s,t (πpf∗

s,t )), we have

ppf∗s,t (γpf∗ss,t(π̄
pf∗
s,t ))−δsws,t−νs,t(γpf∗s,t (π̄pf∗

s,t ))+π̄pf∗
s,t > ppf∗s,t (γpf∗ss,t(π

pf∗
s,t ))−δsws,t−1−νs,t(γpf∗s,t (πpf∗

s,t ))+πpf∗
s,t .

Therefore,

Πpf∗,1
s,t (π̄pf∗

s,t ) = θsa,t(p
pf∗
s,t (γpf∗ss,t(π̄

pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (π̄pf∗

s,t )) + π̄pf∗
s,t )2ψs,t(γ

pf∗
ss,t(π̄

pf∗
s,t ))

> θsa,t(p
pf∗
s,t (γpf∗ss,t(π

pf∗
s,t ))− δsws,t−1 − νs,t(γ

pf∗
s,t (πpf∗

s,t )) + πpf∗
s,t )2ψs,t(γ

pf∗
ss,t(π

pf∗
s,t ))

= Πpf∗,1
s,t (πpf∗

s,t ).

We have, thus, shown that βpf
s,t(π

pf∗
s,t ) is increasing in πpf∗

s,t . The continuity of βpf
s,t(π

pf∗
s,t ) in πpf∗

s,t follows

directly from that of γpf∗s,t (πpf∗
s,t ) and that Πpf,1

i,t (γt|πpf∗
s,t ) is continuous in (γt, π

pf∗
s,t ). This concludes the

proof of part (d).

Part (e). By part (d), we have that γpf∗s,t is continuously increasing in πpf∗
s,t and, thus, βpf

s,t−1. By

part (c), we have that ppf∗i,t (γt) is continuously decreasing in πpf∗
s,t and, thus, βpf

s,t−1. Moreover, if (3.17)

holds, part (d) yields that βpf
s,t is continuously increasing in πpf∗

s,t and, thus, βpf
s,t−1 as well. This completes

the proof of part (e). Q.E.D.

Proof of Theorem 3.5.4: Part (a). Part (a) follows from the same argument as the proof of Theorem

3.4.4(a) and is, hence, omitted.

Part (b). By part (a), πpf∗
i,t ≥ π̃pf∗

i,t for each i. Hence, Theorem 3.5.3(c) yields that ppf∗i,t (γt) ≤

p̃pf∗i,t (γt) for each firm i and each γt.

When the PF model is symmetric,
∑N

j=1 θjj,t(A
−1
t )ij is independent of i. Direct computation yields

that

p̃pf∗i,t (γt)− ppf∗i,t (γt) = (
N∑
j=1

θjj,t(A
−1
t )ij)(π

pf∗
s,t − π̃pf∗

s,t ) ≥ 0, for all γt,

which is independent of i. Thus, (3.17) and Newton-Leibniz formula imply that

ρs,t(p̃
pf∗
t (γt))− ρs,t(p

pf∗
t (γt)) =

∫ 1

s=0

N∑
i=1

(p̃pf∗i,t (γt)− ppf∗i,t (γt))
∂ρs,t((1− s)ppf∗t (γt) + sp̃pf∗t (γt))

∂pi,t
ds ≤ 0.
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Hence, ρs,t(p
pf∗
t (γt)) ≥ ρs,t(p̃

pf∗
t (γt)). Since ypf∗s,t ≥ ỹpf∗s,t , Theorem 3.5.2(b) implies that, for any

(It,Λt) ∈ S and γt ∈ [0, γ̄s,t]
N ,

xpf∗i,t (It,Λt, γt) = ypf∗s,t ρs,t(p
pf∗
t (γt))ψs,t(γt) ≥ ỹpf∗s,t ρs,t(p̃

pf∗
t (γt))ψs,t(γt) = x̃pf∗i,t (It,Λt, γt).

This completes the proof of part (b).

Part (c). Because πpf∗
s,t ≥ π̃pf∗

s,t , Theorem 3.5.3(d) yields that γpf∗s,t ≥ γ̃pf∗s,t and, hence, γpf∗i,t (It,Λt) =

γpf∗s,t ≥ γ̃pf∗s,t = γ̃pf∗s,t (It,Λt) for each i and (It,Λt) ∈ S. This completes the proof of part (c). Q.E.D.

Proof of Theorem 3.5.5: Part (a). We show part (a) by backward induction. More specifically,

we show that if α̂s,t(zt) ≥ αs,t(zt) for all zt and β̂
pf
s,t−1 ≥ βpf

s,t−1, (i) π̂
pf∗
s,t ≥ πpf∗

s,t , (ii) p̂pf∗s,t (γt) ≤ ppf∗s,t (γt),

(iii) p̂pf∗i,t (It,Λt, γt) ≤ ppf∗i,t (It,Λt, γt) for each i, (It,Λt) ∈ S, and γt ∈ [0, γ̄s,t]
N , (iv) γ̂pf∗s,t ≥ γpf∗s,t , (v)

γ̂pf∗i,t (It,Λt) ≥ γpf∗s,t (It,Λt) for each i and (It,Λt) ∈ S, and (vi) β̂pf
s,t ≥ βpf

s,t. Since β̂pf
s,0 = βpf

s,0 = 0, the

initial condition is satisfied.

The same argument as the proof of Theorem 3.4.5(a) implies that π̂pf∗
s,t ≥ πpf∗

s,t . Hence, Theorem

3.5.3(c) implies that p̂pf∗i,t (γt) ≤ ppf∗i,t (γt) for all i and γt. Thus, p̂pf∗i,t (It,Λt, γt) = p̂pf∗i,t (γt) ≤ ppf∗i,t (γt) =

ppf∗i,t (It,Λt, γt) for each i, (It,Λt) ∈ S, and γt ∈ [0, γ̄s,t]
N . Analogously, Theorem 3.5.3(d) implies that

γ̂pf∗s,t ≥ γpf∗s,t . Hence, γ̂pf∗i,t (It,Λt) = γ̂pf∗s,t ≥ γpf∗s,t = γpf∗i,t (It,Λt) for each i and all (It,Λt) ∈ S. By

Theorem 3.5.3(d), under inequality (3.17), π̂pf∗
s,t ≥ πpf∗

s,t implies that β̂pf
s,t ≥ βpf

s,t. This completes the

induction and, thus, the proof of part (a).

Part (b). By part (a), it suffices to show that, if α̂s,t(zt) ≥ αs,t(zt) for all zt, κ̂
′
sa,t(zi,t) ≥ κ′sa,t(zi,t)

for all zi,t, and β̂
pf
s,t−1 ≥ βpf

s,t−1, we have (i) ŷ
pf∗
s,t ≥ ypf∗s,t and (ii) x̂pf∗i,t (It,Λt, γt) ≥ xpf∗i,t (It,Λt, γt) for each

i, (It,Λt) ∈ S, and γt ∈ [0, γ̄s,t]
N .

The same argument as the proof of Theorem 3.4.5(b) suggests that ŷpf∗s,t ≥ ypf∗s,t . We now show that

x̂pf∗i,t (It,Λt, γt) ≥ xpf∗i,t (It,Λt, γt) for each i, (It,Λt) ∈ S, and γt ∈ [0, γ̄s,t]
N . Because the PF model is

symmetric,
∑N

j=1 θjj,t(A
−1
t )ij is independent of i. Direct computation yields that

ppf∗i,t (γt)− p̂pf∗i,t (γt) = (
N∑
j=1

θjj,t(A
−1
t )ij)(π̂

pf∗
s,t − πpf∗

s,t ) ≥ 0, for all γt,

which is independent of i. Thus, (3.17) and Newton-Leibniz formula implies that

ρs,t(p
pf∗
t (γt))− ρs,t(p̂

pf∗
t (γt)) =

∫ 1

s=0

N∑
i=1

(ppf∗i,t (γt)− p̂pf∗i,t (γt))
∂ρs,t((1− s)p̂pf∗t (γt) + sppf∗t (γt))

∂pi,t
ds ≤ 0.

Hence, ρs,t(p̂
pf∗
t (γt)) ≥ ρs,t(p

pf∗
t (γt)) for all γt. Since ŷpf∗s,t ≥ ypf∗s,t , Theorem 3.5.2(b) implies that, for

any (It,Λt) ∈ S and γt ∈ [0, γ̄s,t]
N ,

x̂pf∗i,t (It,Λt, γt) = ŷpf∗s,t ρs,t(p̂
pf∗
t (γt))ψs,t(γt) ≥ ypf∗s,t ρs,t(p

pf∗
t (γt))ψs,t(γt) = xpf∗i,t (It,Λt, γt).

This completes the proof of part (b). Q.E.D.

Proof of Theorem 3.5.6: We show parts (a)-(b) together by backward induction. More specifi-

cally, we show that if βpf
s,t−1 ≥ βpf

s,t−2, (i) y
pf∗
s,t ≥ ypf∗s,t−1, (ii) p

pf∗
i,t (γ) ≤ ppf∗i,t−1(γ) for all γ ∈ [0, γ̄s,t]

N ,
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(iii) ppf∗i,t (I,Λ, γ) ≤ ppf∗i,t−1(I,Λ, γ) for each i, (I,Λ) ∈ S, and γ ∈ [0, γ̄s,t]
N , (iv) γpf∗s,t ≥ γpf∗s,t−1, (v)

γpf∗i,t (I,Λ) ≥ γpf∗i,t−1(I,Λ) for each i and (I,Λ) ∈ S, (vi) xpf∗i,t (I,Λ, γ) ≥ xpf∗i,t−1(I,Λ, γ) for each i, (I,Λ) ∈ S,

and γ ∈ [0, γ̄s,t]
N , and (vii) βpf

s,t ≥ βpf
s,t−1. Since, by Theorem 3.5.2(a), βpf

s,1 ≥ βpf
s,0 = 0. Thus, the initial

condition is satisfied.

Since the model is stationary, by Theorem 3.5.3(a), βpf
s,t−1 ≥ βpf

s,t−2 suggests that ypf∗s,t ≥ ypf∗s,t−1.

Since πpf∗
s,t is increasing in βpf

s,t−1, β
pf
s,t−1 ≥ βpf

s,t−2 implies that πpf∗
s,t ≥ πpf∗

s,t−1. Theorem 3.5.3(c) yields

that ppf∗s,t (γ) ≤ ppf∗s,t−1(γ) for all γ ∈ [0, γ̄s,t]
N . Theorem 3.5.3(e) implies that γpf∗s,t ≥ γpf∗s,t−1. Hence,

ppf∗i,t (I,Λ, γ) = ppf∗i,t (γ) ≤ ppf∗i,t−1(γ) = ppf∗i,t−1(I,Λ, γ) for each i, (I,Λ) ∈ S, and γ ∈ [0, γ̄s,t]
N , and

γpf∗i,t (I,Λ) = γpf∗s,t ≥ γpf∗s,t−1 = γpf∗i,t−1(I,Λ) for each i and (I,Λ) ∈ S. We now show that xpf∗i,t (I,Λ, γ) ≥

xpf∗i,t−1(I,Λ, γ) for each i, (I,Λ) ∈ S, and γ ∈ [0, γ̄]N . Because the PF model is symmetric,
∑N

j=1 θjj,t(A
−1)ij

is independent of i. Direct computation yields that

ppf∗i,t−1(γ)− ppf∗i,t (γ) = (
N∑
j=1

θjj(A
−1)ij)(π

pf∗
s,t − πpf∗

s,t−1) ≥ 0, for all γ,

which is independent of i. Thus, (3.17) and Newton-Leibniz formula implies that

ρs(p
pf∗
t−1(γ))− ρs(p

pf∗
t (γ)) =

∫ 1

s=0

N∑
i=1

(ppf∗i,t−1(γ)− ppf∗i,t (γ))
∂ρs((1− s)ppf∗t (γ) + sppf∗t−1(γ))

∂pi
ds ≤ 0.

Hence, ρs(p
pf∗
t (γ)) ≥ ρs(p

pf∗
t−1(γ)) for all γ. Since ypf∗s,t ≥ ypf∗s,t−1, Theorem 3.5.2(b) implies that, for any

(I,Λ) ∈ S and γ ∈ [0, γ̄s,t]
N ,

xpf∗i,t (I,Λ, γ) = ypf∗s,t ρs(p
pf∗
t (γ))ψs(γt) ≥ ypf∗s,t−1ρs(p

pf∗
t−1(γt))ψs,t(γt) = xpf∗i,t−1(I,Λ, γ).

Finally, we show that βpf
s,t ≥ βpf

s,t−1. Since the model is stationary and πpf∗
s,t ≥ πpf∗

s,t−1, β
pf
s,t ≥ βpf

s,t−1

follows from Theorem 3.5.3(d) immediately. This completes the induction and, thus, the proof of Theo-

rem 3.5.6. Q.E.D.

Proof of Theorem 3.6.1: Part (a). Because βpf
s,t−1 ≥ βsc

s,t−1, π
pf∗
s,t ≥ πsc∗

s,t . The same argument

as the proof of Theorem 3.4.3(a) implies that ypf∗s,t ≥ ysc∗s,t .

We now show that, if πpf∗
s,t ≥ πsc∗

s,t , γ
pf∗
s,t ≥ γsc∗s,t . Proposition 3.5.2 implies that ppf∗t (γpf∗ss,t) =

A−1
t ft(γ

pf∗
ss,t). By Proposition 3.4.2, the equilibrium sales prices, psc∗ss,t, satisfy the system of first-order

equations (3.15). Equivalently, psc∗ss,t = A−1
t ft(γ

sc∗
ss,t).

We assume, to the contrary, that γpf∗s,t < γsc∗s,t . Lemma 23 implies that ∂γ1,t
log(Πpf,1

1,t (γpf∗ss,t)) ≤

∂γ1,t log(Π
sc
1,t(γ

sc∗
ss,t, p

sc∗
ss,t)), i.e.,

−
2(1− θsa,t(A

−1
t )11)ν

′
s,t(γ

pf∗
s,t )∑N

j=1(A
−1
t )1j [ϕsa,t + θsa,t(δsws,t−1 + νs,t(γ

pf∗
s,t )− πpf∗

s,t )]− δsws,t−1 − νs,t(γ
pf∗
s,t ) + πpf∗

s,t

+ ∂γ1,t log(ψs,t(γ
pf∗
ss,t))

≤−
ν′s,t(γ

sc∗
s,t )∑N

j=1(A
−1
t )1j [ϕsa,t + θsa,t(δsws,t−1 + νs,t(γsc∗s,t )− πsc∗

s,t )]− δsws,t−1 − νs,t(γsc∗s,t ) + πsc∗
s,t

+ ∂γ1,t log(ψs,t(γ
sc∗
ss,t)).

(B.27)
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Inequality (3.3) and the Newton-Leibniz formula imply that

∂γ1,t log(ψs,t(γ
sc∗
ss,t))− ∂γ1,t log(ψs,t(γ

pf∗
ss,t)) =

∫ 1

s=0

N∑
j=1

(γsc∗s,t − γpf∗s,t )[
∂2 log(ψs,t((1− s)γpf∗s,t + sγsc∗s,t ))

∂γ1,t∂γj,t
] ds

< 0.

By (B.27),

−
2(1− θsa,t(A

−1
t )11)ν

′
s,t(γ

pf∗
s,t )∑N

j=1(A
−1
t )1j [ϕsa,t + θsa,t(δsws,t−1 + νs,t(γ

pf∗
s,t )− πpf∗

s,t )]− δsws,t−1 − νs,t(γ
pf∗
s,t ) + πpf∗

s,t

<−
ν′s,t(γ

sc∗
s,t )∑N

j=1(A
−1
t )1j [ϕsa,t + θsa,t(δsws,t−1 + νs,t(γsc∗s,t )− πsc∗

s,t )]− δsws,t−1 − νs,t(γsc∗s,t ) + πsc∗
s,t

.

Lemma 24(b) suggests that 0 ≤ 2(1− θsa,t(A
−1
t )11)ν

′
s,t(γ

pf∗
s,t ) ≤ ν′s,t(γ

sc∗
s,t ). Hence,

N∑
j=1

(A−1
t )1j [ϕsa,t + θsa,t(δsws,t−1 + νs,t(γ

pf∗
s,t )− πpf∗

s,t )]− δsws,t−1 − νs,t(γ
pf∗
s,t ) + πpf∗

s,t

<

N∑
j=1

(A−1
t )1j [ϕsa,t + θsa,t(δsws,t−1 + νs,t(γ

sc∗
s,t )− πsc∗

s,t )]− δsws,t−1 − νs,t(γ
sc∗
s,t ) + πsc∗

s,t .

(B.28)

Since πpf∗
s,t ≥ πsc∗

s,t and νs,t(γ
pf∗
s,t ) ≤ νs,t(γ

sc∗
s,t ), π

pf∗
s,t − νs,t(γ

pf∗
s,t ) ≥ πsc∗

s,t − νs,t(γ
sc∗
s,t ). Lemma 24(c)

implies that 1−
∑N

j=1(A
−1
t )1jθsa,t > 0. Therefore,

N∑
j=1

(A−1
t )1j [ϕsa,t + θsa,t(δsws,t−1 + νs,t(γ

pf∗
s,t )− πpf∗

s,t )]− δsws,t−1 − νs,t(γ
pf∗
s,t ) + πpf∗

s,t

=
N∑
j=1

(A−1
t )1j(ϕsa,t + θsa,tδsws,t−1)− δsws,t−1 + (1−

N∑
j=1

(A−1
t )1jθsa,t)(π

pf∗
s,t − νs,t(γ

pf∗
s,t ))

≥
N∑
j=1

(A−1
t )1j(ϕsa,t + θsa,tδsws,t−1)− δsws,t−1 + (1−

N∑
j=1

(A−1
t )1jθsa,t)(π

sc∗
s,t − νs,t(γ

sc∗
s,t ))

=

N∑
j=1

(A−1
t )1j [ϕsa,t + θsa,t(δsws,t−1 + νs,t(γ

sc∗
s,t )− πsc∗

s,t )]− δsws,t−1 − νs,t(γ
sc∗
s,t ) + πsc∗

s,t ,

which contradicts the inequality (B.28). Therefore, γpf∗s,t ≥ γsc∗s,t . This completes the proof of part (a).

Part (b). We first show, by backward induction, that, if θsb,t = 0 for each t, βpf
s,t ≥ βsc

s,t for each t.

Since βpf
s,0 = βsc

s,0 = 0, the initial condition is satisfied. Now we prove that if βpf
s,t−1 ≥ βsc

s,t−1 and θsb,t = 0,

we have βpf
s,t ≥ βsc

s,t.

First, we observe that if θsb,t = 0, (A−1
t )11θsa,t = 1

2 and, thus, 2(1 − θsa,t(A
−1
t )11) = 1. Part (a)

shows that γpf∗s,t ≥ γsc∗s,t . If γ
pf∗
s,t = γsc∗s,t ,

Πpf∗,1
s,t =θsa,t((A

−1
t ft(γ

pf∗
ss,t))i − δsws,t−1 − νs,t(γ

pf∗
s,t ) + πpf∗

s,t )2ψs,t(γ
pf∗
ss,t)

≥θsa,t((A−1
t ft(γ

sc∗
ss,t))i − δsws,t−1 − νs,t(γ

sc∗
s,t ) + πsc∗

s,t )
2ψs,t(γ

sc∗
ss,t)

=Πsc∗
s,t ,

where the inequality follows from πpf∗
s,t ≥ πsc∗

s,t .
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If γpf∗s,t > γsc∗s,t , Lemma 23 implies that ∂γ1,t log(Π
pf,1
1,t (γpf∗ss,t)) ≥ ∂γ1,t log(Π

sc
1,t(γ

sc∗
ss,t, p

sc∗
ss,t)), i.e.,

−
2(1− θsa,t(A

−1
t )11)ν

′
s,t(γ

pf∗
s,t )

(A−1
t ft(γ

pf∗
ss,t))1 − δsws,t−1 − νs,t(γ

pf∗
s,t ) + πpf∗

s,t

+ ∂γ1,t log(ψs,t(γ
pf∗
ss,t))

≥−
ν′s,t(γ

sc∗
s,t )

(A−1
t ft(γsc∗ss,t))1 − δsws,t−1 − νs,t(γsc∗s,t ) + πsc∗

s,t

+ ∂γ1,t log(ψs,t(γ
sc∗
ss,t)).

(B.29)

Inequality (3.3) and the Newton-Leibniz formula imply that

∂γ1,t log(ψs,t(γ
pf∗
ss,t))− ∂γ1,t log(ψs,t(γ

sc∗
ss,t)) =

∫ 1

s=0

N∑
j=1

(γpf∗s,t − γsc∗s,t )[
∂2 log(ψs,t((1− s)γsc∗s,t + sγpf∗s,t ))

∂γ1,t∂γj,t
] ds < 0.

By (B.29), we have

−
2(1− θsa,t(A

−1
t )11)ν

′
s,t(γ

pf∗
s,t )

(A−1
t ft(γ

pf∗
ss,t))1 − δsws,t−1 − νs,t(γ

pf∗
s,t ) + πpf∗

s,t

> −
ν′s,t(γ

sc∗
s,t )

(A−1
t ft(γsc∗ss,t))1 − δsws,t−1 − νs,t(γsc∗s,t ) + πsc∗

s,t

.

Because 2(1− θsa,t(A
−1
t )11) = 1 and γpf∗s,t > γsc∗s,t , 2(1− θsa,t(A

−1
t )11)ν

′
s,t(γ

pf∗
s,t ) ≥ ν′s,t(γ

sc∗
s,t ). Therefore,

(A−1
t ft(γ

pf∗
ss,t))1 − δsws,t−1 − νs,t(γ

pf∗
s,t ) + πpf∗

s,t > (A−1
t ft(γ

sc∗
ss,t))1 − δsws,t−1 − νs,t(γ

sc∗
s,t ) + πsc∗

s,t > 0.

By inequality (3.17), γpf∗s,t > γsc∗s,t implies that ψs,t(γ
pf∗
ss,t) > ψs,t(γ

sc∗
ss,t). Thus, we have

Πpf∗,1
s,t =θsa,t((A

−1
t ft(γ

pf∗
ss,t))1 − δsws,t−1 − νs,t(γ

pf∗
s,t ) + πpf∗

s,t )2ψs,t(γ
pf∗
ss,t)

>θsa,t((A
−1
t ft(γ

sc∗
ss,t))1 − δsws,t−1 − νs,t(γ

sc∗
s,t ) + πsc∗

s,t )
2ψs,t(γ

sc∗
ss,t)

=Πsc∗
s,t .

We have thus shown that if βpf
s,t−1 ≥ βsc

s,t−1, Π
pf∗,1
s,t ≥ Πsc∗

s,t . By Theorem 3.4.2(a) and Theorem

3.5.2(a),

βpf
s,t = δsβ

pf
s,t−1µs,t +Πpf∗,1

s,t ≥ δsβ
sc
s,t−1µs,t +Πsc∗

s,t = βsc
s,t.

This completes the induction and, by part (a), the proof of part (b) for the case θsb,t = 0.

For any fixed θsa,t, both β
pf
s,t and β

sc
s,t are continuous in θsb,t. Thus, for each period t, there exists a

ϵt ≥ 0, such that, if θsb,t ≤ ϵtθsa,t, β
pf
s,t ≥ βsc

s,t. It remains to show that ϵt ≤ 1
N−1 . This inequality follows

from the diagonal dominance condition that θsa,t > (N − 1)θsb,t. This completes the proof of part (b).

Q.E.D.

B.2 Sufficient Conditions for the Monotonicity of πsc∗
s,t [πpf∗

s,t ] in βsc
s,t−1 [βpf

s,t−1]

In this section, we give some sufficient conditions under which πsc∗
s,t [πpf∗

s,t ] is increasing in βsc
s,t−1

[βpf
s,t−1]. Observe that, if t = 1, βsc

s,t−1 = βpf
s,t−1 = 0. So we only consider the case t ≥ 2.

We define the N−player noncooperative game, Gs,t, as the symmetric game with each player i’s

payoff function given by

πi,t(yt) = (δsws,t−1 − ws,t)yi,t − Ls,t(yi,t) + δsβ(κsa,t(E[y+i,t ∧ ξi,t])−
∑
j ̸=i

κsb,t(E[y+j,t ∧ ξj,t])),

and feasible set given by R+. Hence, Gsc,2
s,t [Gpf,3

s,t ] can be viewed as Gs,t with β = βsc
s,t−1 [β = βpf

s,t−1]. By

Propositions 3.4.3 and 3.5.4, Gs,t has a unique symmetric pure strategy Nash equilibrium. Thus, we use
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y∗s,t(β) and π∗
s,t(β) to denote the equilibrium strategy and payoff of each player in the game Gs,t with

parameter β.

Let y∗s,t(β;λ, 1) and π∗
s,t(β;λ, 1) (λ > 0) be the equilibrium strategy and payoff of each firm in

Gs,t(λ, 1), where Gs,t(λ, 1) is identical to Gs,t except that αs,t(zt) is replaced with κsa,t(zi,t)− 1
λ (
∑

j ̸=i κsb,t(zj,t))

in the objective function πi,t(·), i.e.,

πi,t(yt) = (δsws,t−1 − ws,t)yi,t − Ls,t(yi,t) + δsβ(κsa,t(E[y+i,t ∧ ξi,t])−
1

λ
(
∑
j ̸=i

κsb,t(E[y+j,t ∧ ξj,t]))).

Analogously, let y∗s,t(β;λ, 2) and π
∗
s,t(β;λ, 2) (λ ≥ 0) be the equilibrium strategy and payoff of each firm

in Gs,t(λ, 2), where Gs,t(λ, 2) is identical to Gs,t except that with αs,t(zt) is replaced with αs,t(zt) + λ in

the objective function πi,t(·), i.e.,

πi,t(yt) = (δsws,t−1 − ws,t)yi,t − Ls,t(yi,t) + δsβ(κsa,t(E[y+i,t ∧ ξi,t])−
∑
j ̸=i

κsb,t(E[y+j,t ∧ ξj,t]) + λ).

Finally, let y∗s,t(β;λ, 3) and π∗
s,t(β;λ, 3) (λ > 0) be the equilibrium strategy and payoff of each firm

in Gs,t(λ, 3), where Gs,t(λ, 3) is identical to Gs,t except that αs,t(zt) is replaced with λαs,t(zt) in the

objective function πs,t(·), i.e.,

πi,t(yt) = (δsws,t−1 − ws,t)yi,t − Ls,t(yi,t) + δsβλ(κsa,t(E[y+i,t ∧ ξi,t])−
∑
j ̸=i

κsb,t(E[y+j,t ∧ ξj,t])).

In some of our analysis below, we assume that αs,t(·) satisfies the monotonicity condition similar to

(3.17),
N∑
i=1

∂αs,t(zt)

∂zi,t
> 0. (B.30)

i.e., a uniform increase in the current expected fill rates gives rise to a higher expected market size of

each firm in the next period.

First, we give a lower bound for the value of βsc
s,t−1 and βpf

s,t−1. By Theorem 3.4.2(a) and Theorem

3.5.2(a), βsc
s,t−1 ≥ β

s,t−1
and βpf

s,t−1 ≥ β
s,t−1

, where

β
s,t−1

:= Πs,1

t−1∏
τ=1

(δsµs,τ ),

with Πs,1 := min{Πsc∗
s,1 ,Π

pf∗,1
s,1 } > 0. Thus, we assume in this section that β ≥ β

s,t−1
> 0.

Let the density of ξs,t be defined as qs,t(·) = F ′
s,t(·) and its failure rate defined as rs,t(·) :=

qs,t(·)/F̄s,t(·). We have the following lemma on the Lipschitz continuity of y∗s,t(β) and y∗s,t(β;λ, i)

(i = 1, 2, 3).

Lemma 25 If κsa,t(·) is twice continuously differentiable and the failure rate of ξs,t is bounded from

below by rs,t > 0 on its support, there exists a constant Ks,t > 0, independent of λ, i, and β, such that

|y∗s,t(β̂)− y∗s,t(β)| ≤ Ks,t|β̂−β| and |y∗s,t(β̂;λ, i)− y∗s,t(β;λ, i)| ≤ Ks,t|β̂−β| for all λ > 0, i = 1, 2, 3, and

β̂, β ≥ 0.
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Proof: Since κsa,t(·) is twice continuously differentiable, by the implicit function theorem, y∗s,t(β)

and y∗s,t(β;λ, i) (i = 1, 2, 3) are continuously differentiable in β with the derivatives given by:

∂y∗s,t(β)

∂β
=
∂y∗s,t(β;λ, 1)

∂β
=
∂y∗s,t(β;λ, 2)

∂β

=
δsF̄s,t(y

∗
s,t(β))κ

′
sa,t(E[y∗s,t(β) ∧ ξs,t])

L′′(y∗s,t(β)) + δsβqs,t(y∗s,t(β))κ
′
sa,t(E[y∗s,t(β) ∧ ξs,t])− δsβF̄ 2

s,t(y
∗
s,t(β))κ

′′
sa,t(E[y∗s,t(β) ∧ ξs,t])

,

and

∂y∗s,t(β;λ, 3)

∂β

=
λδsF̄s,t(y

∗
s,t(β))κ

′
sa,t(E[y∗s,t(β) ∧ ξs,t])

L′′(y∗s,t(β)) + λδsβqs,t(y∗s,t(β))κ
′
sa,t(E[y∗s,t(β) ∧ ξs,t])− λδsβF̄ 2

s,t(y
∗
s,t(β))κ

′′
sa,t(E[y∗s,t(β) ∧ ξs,t])

.

Observe that

δsF̄s,t(y
∗
s,t(β))κ

′
sa,t(E[y∗s,t(β) ∧ ξs,t])

L′′(y∗s,t(β)) + δsβqs,t(y∗s,t(β))κ
′
sa,t(E[y∗s,t(β) ∧ ξs,t])− δsβF̄ 2

s,t(y
∗
s,t(β))κ

′′
sa,t(E[y∗s,t(β) ∧ ξs,t])

≤
δsF̄s,t(y

∗
s,t(β))κ

′
sa,t(E[y∗s,t(β) ∧ ξs,t])

δsβqs,t(y∗s,t(β))κ
′
sa,t(E[y∗s,t(β) ∧ ξs,t])

≤ 1

β
s,t−1

rs,t(y∗s,t(β))
≤ 1

β
s,t−1

rs,t
,

where the first inequality follows from the convexity of Ls,t(·) and the concavity of κsa,t(·), the second

from κ′sa,t(·) ≥ 0, and the last from rs,t(·) ≥ rs,t. Analogously, we have

λδsF̄s,t(y
∗
s,t(β))κ

′
sa,t(E[y∗s,t(β) ∧ ξs,t])

L′′(y∗s,t(β)) + λδsβqs,t(y∗s,t(β))κ
′
sa,t(E[y∗s,t(β) ∧ ξs,t])− λδsβF̄ 2

s,t(y
∗
s,t(β))κ

′′
sa,t(E[y∗s,t(β) ∧ ξs,t])

≤
λδsF̄s,t(y

∗
s,t(β))κ

′
sa,t(E[y∗s,t(β) ∧ ξs,t])

λδsβqs,t(y∗s,t(β))κ
′
sa,t(E[y∗s,t(β) ∧ ξs,t])

≤ 1

β
s,t−1

rs,t(y∗s,t(β))
≤ 1

β
s,t−1

rs,t
.

By the mean value theorem,

|y∗s,t(β̂)− y∗s,t(β)| = |β̂ − β||
∂y∗s,t(β̃)

∂β
| ≤ Ks,t|β̂ − β|,

where β̃ is a real number that lies between β and β̂, and Ks,t :=
1

β
s,t−1

rs,t
. The inequality |y∗s,t(β̂;λ, i)−

y∗s,t(β;λ, i)| ≤ Ks,t|β̂ − β| for all λ > 0 and i = 1, 2, 3 follows from exactly the same argument. Q.E.D.

We remark that the assumption that the failure rate rs,t(·) is uniformly bounded away from 0 is not

a restrictive assumption, and can be satisfied by, e.g., all the distributions that satisfy (i) the increasing

failure rate property, and (ii) the density qs,t(·) being positive on the lower bound of its support. The

same argument as the proof of Theorem 3.4.3(a) and Theorem 3.5.3(a) imply that, for all β̂ > β,

y∗s,t(β̂) ≥ y∗s,t(β) and y
∗
s,t(β̂;λ, i) ≥ y∗s,t(β;λ, i) (i = 1, 2, 3). We now characterize sufficient conditions for

π∗
s,t(β) and π

∗
s,t(β;λ, i) (i = 1, 2, 3) to be increasing in β.

Lemma 26 The following statements hold:

(a) If κsb,t(·) ≡ κ0sb,t for some constant κ0sb,t, π
∗
s,t(β) is increasing in β.

(b) Assume that αs,t(·) > 0 for all zt and that the conditions of Lemma 25 hold, we have:

(i) If κsb,t(·) is Lipschitz continuous, there exists an M1
s,t < +∞, such that for all λ ≥ M1

s,t,

π∗
s,t(β;λ, 1) is increasing in β.
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(ii) If the monotonicity condition (B.30) holds, there exists an M2
s,t < +∞, such that for all

λ ≥M2
s,t, π

∗
s,t(β;λ, 2) is increasing in β.

(iii) If the monotonicity condition (B.30) holds, there exists an M3
s,t < +∞, such that for all

λ ≥M3
s,t, π

∗
s,t(β;λ, 3) is increasing in β.

Proof: Part (a). Observe that, δsβκsa,t(E[y+i,t ∧ ξi,t]) is increasing in β for any yi,t. Therefore,

π∗
s,t(β) = max{(δsws,t−1 − ws,t)yi,t − Ls,t(yi,t) + δsβκsa,t(E[y+i,t ∧ ξi,t])− (N − 1)κ0sb,t : yi,t ≥ 0}

is increasing in β. This completes the proof of part (a).

Part (b-i). Let β̂ > β, and kt < +∞ be the Lipschitz constant for κsb,t(·). Since αs,t(·) is a

continuous function on a compact support, αs,t(·) > 0 for all zt implies that αs,t(·) ≥ αs,t > 0 for some

constant αs,t. We define

ζi,t(yi,t) := (δsws,t−1 − ws,t)yi,t − Ls,t(yi,t) + δsβκsa,t(E[yi,t ∧ ξi,t]).

By the envelope theorem,

∂ζi,t(y
∗
s,t(β;λ, 1))

∂β
= δsκsa,t(E[y∗s,t(β;λ, 1) ∧ ξi,t]) ≥ δsαs,t > 0,

where the first inequality follows from κsa,t(zi,t) ≥ αs,t(zt) ≥ αs,t. By the mean value theorem and

β̂ > β,

ζi,t(y
∗
s,t(β̂;λ, 1))− ζi,t(y

∗
s,t(β;λ, 1)) ≥ δsαs,t(β̂ − β). (B.31)

At the same time, since αs,τ (·), ρs,τ (·), and ψs,τ (·) are all uniformly bounded from above for τ ≤ t− 1,

βsc
s,t−1 and βpf

s,t−1 have a uniform upper bound, which we denote as β̄s,t−1 < +∞. On the other hand,

δs
λ
(N − 1)[β̂κsb,t(E[y∗s,t(β̂;λ, 1) ∧ ξs,t])− βκsb,t(E[y∗s,t(β;λ, 1) ∧ ξs,t])]

=
δs
λ
(N − 1)[β̂κsb,t(E[y∗s,t(β̂;λ, 1) ∧ ξs,t])− β̂κsb,t(E[y∗s,t(β;λ, 1) ∧ ξs,t])

+ β̂κsb,t(E[y∗s,t(β;λ, 1) ∧ ξs,t])− βκsb,t(E[y∗s,t(β;λ, 1) ∧ ξs,t])]

≤δs
λ
(N − 1)[β̄s,t−1kt(y

∗
s,t(β̂;λ, 1)− y∗s,t(β;λ, 1)) + (β̂ − β)κ̄sb,t]

≤δs
λ
(N − 1)(β̄s,t−1ktKs,t + κ̄sb,t)(β̂ − β),

(B.32)

where the first inequality follows from the Lipschitz continuity of κsb,t(·), y∗s,t(β̂;λ, 1) ≥ y∗s,t(β;λ, 1), and

E[y∗s,t(β̂;λ, 1) ∧ ξs,t] − E[y∗s,t(β;λ, 1) ∧ ξs,t] ≤ y∗s,t(β̂;λ, 1) − y∗s,t(β;λ, 1), with κ̄sb,t := max{κsb,t(zi,t) :

zi,t ∈ [0, 1]} < +∞, and the second from Lemma 25. Define

M1
s,t :=

(N − 1)(β̄s,t−1ktKs,t + κ̄sb,t)

αs,t

< +∞.

If λ ≥M1
s,t,

π∗
s,t(β̂;λ, 1)− π∗

s,t(β;λ, 1) = ζi,t(y
∗
s,t(β̂;λ, 1))− ζi,t(y

∗
s,t(β;λ, 1))

− (N − 1)δs
λ

[β̂κsb,t(y
∗
s,t(β̂;λ, 1))− βκsb,t(y

∗
s,t(β;λ, 1))]

≥ (δsαs,t −
δs
λ
(N − 1)(β̄s,t−1ktKs,t + κ̄sb,t))(β̂ − β)

≥ (δsαs,t − δsαs,t)(β̂ − β)

= 0,
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where the first inequality follows from (B.31) and (B.32), and the second from λ ≥M1
s,t. This establishes

part (b-i).

Part (b-ii). Let Hs,t(yi,t) := (δsws,t−1 − ws,t)yi,t − Ls,t(yi,t). Since

δsws,t−1 − ws,t − hs,t ≤ H ′
s,t(yi,t) ≤ bs,t + δsws,t−1 − ws,t,

Hs,t(·) is Lipschitz continuous with the Lipschitz constant equal to lt := max{|δsws,t−1−ws,t−hs,t|, |bs,t+

δsws,t−1 − ws,t|} < +∞. Thus,

Hs,t(y
∗
s,t(β;λ, 2))−Hs,t(y

∗
s,t(β̂;λ, 2)) ≤ lt(y

∗
s,t(β̂;λ, 2)− y∗s,t(β;λ, 2)) ≤ ltKs,t(β̂ − β), (B.33)

where the second inequality follows from Lemma 25 and y∗s,t(β̂;λ, 2) ≥ y∗s,t(β;λ, 2). On the other hand,

δsβ̂(κsa,t(E[y∗s,t(β̂;λ, 2) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β̂;λ, 2) ∧ ξs,t]) + λ)

− δsβ(κsa,t(E[y∗s,t(β;λ, 2) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β;λ, 2) ∧ ξs,t]) + λ)

≥δsβ̂(κsa,t(E[y∗s,t(β̂;λ, 2) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β̂;λ, 2) ∧ ξs,t]) + λ)

− δsβ(κsa,t(E[y∗s,t(β̂;λ, 2) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β̂;λ, 2) ∧ ξs,t]) + λ)

≥δsλ(β̂ − β) + δsαs,t(β̂ − β)

=δs(λ+ αs,t)(β̂ − β),

(B.34)

where the first inequality follows from (B.30) and the second from the definition of αs,t. Define

M2
s,t :=

ltKs,t

δs
− αs,t < +∞.

If λ ≥M2
s,t,

π∗
s,t(β̂;λ, 2)− π∗

s,t(β;λ, 2) = δsβ̂(κsa,t(E[y∗s,t(β̂;λ, 2) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β̂;λ, 2) ∧ ξs,t]) + λ)

−δsβ(κsa,t(E[y∗s,t(β;λ, 2) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β;λ, 2) ∧ ξs,t]) + λ)

−(Hs,t(y
∗
s,t(β;λ, 2))−Hs,t(y

∗
s,t(β̂;λ, 2)))

≥ (δsλ+ δsαs,t − ltKs,t)(β̂ − β)

≥ (ltKs,t − δsαs,t + δsαs,t − ltKs,t)(β̂ − β)

= 0,

where the first inequality follows from (B.33) and (B.34), and the second from λ ≥M2
s,t. This establishes

part (b-ii).

Part (b-iii). As shown in part (b-ii), Hs,t(·) is a Lipschitz function with the Lipschitz constant lt.

Thus,

Hs,t(y
∗
s,t(β;λ, 3))−Hs,t(y

∗
s,t(β̂;λ, 3)) ≤ lt(y

∗
s,t(β̂;λ, 3)− y∗s,t(β;λ, 3)) ≤ ltKs,t(β̂ − β), (B.35)

where the second inequality follows from Lemma 25 and y∗s,t(β̂;λ, 3) ≥ y∗s,t(β;λ, 3). The monotonicity

condition (B.30) and y∗s,t(β̂;λ, 3) ≥ y∗s,t(β;λ, 3) implies that

κsa,t(E[y∗s,t(β̂;λ, 3) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β̂;λ, 3) ∧ ξs,t])

≥ κsa,t(E[y∗s,t(β;λ, 3) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β;λ, 3) ∧ ξs,t]).
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Therefore,

δsβ̂λ(κsa,t(E[y∗s,t(β̂;λ, 3) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β̂;λ, 3) ∧ ξs,t]))

− δsβλ(κsa,t(E[y∗s,t(β;λ, 3) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β;λ, 3) ∧ ξs,t]))

≥δsβ̂λ(κsa,t(E[y∗s,t(β̂;λ, 3) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β̂;λ, 3) ∧ ξs,t]))

− δsβλ(κsa,t(E[y∗s,t(β̂;λ, 3) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β̂;λ, 3) ∧ ξs,t]))

≥δsλ(κsa,t(E[y∗s,t(β̂;λ, 3) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β̂;λ, 3) ∧ ξs,t]))(β̂ − β)

≥δsλαs,t(β̂ − β),

(B.36)

where the last inequality follows from the definition of αs,t. Define

M3
s,t :=

ltKs,t

δsαs,t

< +∞.

If λ ≥M3
s,t,

π∗
s,t(β̂;λ, 3)− π∗

s,t(β;λ, 3) = δsβ̂λ(κsa,t(E[y∗s,t(β̂;λ, 3) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β̂;λ, 3) ∧ ξs,t]))

−δsβλ(κsa,t(E[y∗s,t(β;λ, 3) ∧ ξs,t])− (N − 1)κsb,t(E[y∗s,t(β;λ, 3) ∧ ξs,t]))

−(Hs,t(y
∗
s,t(β;λ, 3))−Hs,t(y

∗
s,t(β̂;λ, 3)))

≥ (δsλαs,t − ltKs,t)(β̂ − β)

≥ (ltKs,t − ltKs,t)(β̂ − β)

= 0,

where the first inequality follows from (B.35) and (B.36), and the second from λ ≥M3
s,t. This establishes

part (b-iii). Q.E.D.

Lemma 26 has several economical interpretations. Parts (a) and (b-i) imply that, if the adverse effect

of a firm’s competitors’ service level upon its future market size is not strong, πsc∗
s,t [πpf∗

s,t ] is increasing in

βsc
s,t−1 [βpf

s,t−1]. Part (b-ii) implies that if the network effect is sufficiently strong, πsc∗
s,t [πpf∗

s,t ] is increasing

in βsc
s,t−1 [βpf

s,t−1]. Finally, part (b-iii) implies that if the both the service effect and the network effect

are sufficiently strong, πsc∗
s,t [πpf∗

s,t ] is increasing in βsc
s,t−1 [βpf

s,t−1].
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C. Appendix for Chapter 4

C.1 Equilibrium Definitions

We now give the definitions of the RE equilibria in the four scenarios considered in this paper: (a)

the base model with strategic customers, (b) the base model with myopic customers, (c) the NTR model

with strategic customers, and (d) the NTR model with myopic customers. Let A(Q1) := E[X∧Q1]/E[X]

(Q1 ≥ 0) be the availability function given the first-period production quantity Q1 (see [160]).

Definition C.1.1 (Base model with strategic customers.) An RE equilibrium in the base model

with strategic customers consists of (p∗1, Q
∗
1, ξ

∗
r , r

∗, a∗, pn∗2 , pr∗2 ) satisfying

(a) p∗1 = r∗; Q∗
1 = argmaxQ1≥0Πf (Q1) where Πf (·) is given in Lemma 8;

(b) ξ∗r = µ+ δE[(k + α)V − pr∗2 ]+ − δE[(1 + α)V − pn∗2 ]+;

(c) r∗ = ξ∗r ;

(d) a∗ = A(Q∗
1); (p

n∗
2 , pr∗2 )

d
= (pn∗2 , pr∗2 ).

Definition C.1.2 (Base model with myopic customers.) An RE equilibrium in the base model

with myopic customers consists of (p̃∗1, Q̃
∗
1, ξ̃

∗
r , r̃

∗) satisfying

(a) p̃∗1 = r̃∗; Q̃∗
1 = argmaxQ1≥0Π̃f (Q1) where Π̃f (·) is given in Lemma 8;

(b) ξ̃∗r = µ;

(c) r̃∗ = ξ̃∗r .

Definition C.1.3 (NTR model with strategic customers.) An RE equilibrium in the NTR model

with strategic customers consists of (pu∗1 , Qu∗
1 , ξu∗r , ru∗, au∗, pu∗2 ) satisfying

(a) pu∗1 = ru∗; Qu∗
1 = argmaxQ1≥0Π

u
f (Q1), where Πu

f (·) is given in Lemma 8;

(b) ξu∗r = µ+ δE[(k + α)V − pu∗2 ]+ − δE[(1 + α)V − pu∗2 ]+;

(c) ru∗ = ξu∗r ;

(d) au∗ = A(Qu∗
1 ); pu∗2

d
= pu2 ((X−Qu∗

1 )+, X∧Qu∗
1 ), where pu2 (·, ·) is characterized in Theorem 4.4.2(a).

Definition C.1.4 (NTR model with myopic customers.) An RE equilibrium in the NTR model

with myopic customers consists of (p̃u∗1 , Q̃u∗
1 , ξ̃u∗r , r̃u∗) satisfying

(a) p̃u∗1 = r̃u∗; Q̃u∗
1 = argmaxQ1≥0Π̃

u
f (Q1) where Π̃u

f (·) is given in Lemma 8;

(b) ξ̃u∗r = µ;

(c) r̃u∗ = ξ̃u∗r .
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In Definitions C.1.1-C.1.4, conditions (a) and (b) follow from that the decisions are optimal given

the rational beliefs, and conditions (c) and (d) follow from that the rational beliefs are consistent with

actual outcomes.

C.2 Proofs of Statements

We use h′1(·) to denote the derivative operator of a single variable function h1(·), ∂xh2(·) to de-

note the partial derivative operator of a multi-variable function, h2(·), with respect to variable x,

and 1{·} to denote the indicator function. For any multivariate continuously differentiable function

h2(x1, x2, · · · , xn) and x′ := (x′1, x
′
2, · · · , x′n) in h2(·)’s domain, ∀i, we use ∂xih2(x

′
1, x

′
2, · · · , x′n) to de-

note ∂xih2(x1, x2, · · · , xn)|x=x′ .

Proof of Lemma 7: Part (a). Given (pn2 , p
r
2) (p

r
2 ≤ pn2 ), a new customer will make a purchase if and

only if (1+α)V ≥ pn2 , whereas a repeat customer will make a purchase if and only if (k+α)V ≥ pr2. Thus,

the ex ante probability that a new customer will purchase the second-generation product is Ḡ
(

pn
2

1+α

)
,

whereas the probability that a repeat customer will join the trade-in program is Ḡ
(

pr
2

k+α

)
. Therefore,

conditioned on the realized market size (Xn
2 , X

r
2 ), the expected profit of the firm in period 2 is given by:

Π2(p
n
2 , p

r
2|Xn

2 , X
r
2 ) :=X

n
2 (p

n
2 − c2)Ḡ

(
pn2

1 + α

)
+Xr

2 (p
r
2 − c2 + r2)Ḡ

(
pr2

k + α

)
=Xn

2 v
n
2 (p

n
2 ) +Xr

2v
r
2(p

r
2),

(C.1)

where vn2 (p
n
2 ) := (pn2 − c2)Ḡ(

pn
2

1+α ) and vr2(p
r
2) := (pr2 − c2 + r2)Ḡ(

pr
2

k+α ). We now show that vn2 (·) is

quasiconcave in pn2 , and v
r
2(·) is quasiconcave in pr2. Note that

∂pn
2
vn2 (p

n
2 ) = −

(
pn2 − c2
1 + α

)
g

(
pn2

1 + α

)
+ Ḡ

(
pn2

1 + α

)
and

∂pr
2
vr2(p

r
2) = −

(
pr2 − c2 + r2

k + α

)
g

(
pr2

k + α

)
+ Ḡ

(
pr2

k + α

)
.

Because g(v)/Ḡ(v) is continuously increasing in v, g(
pn
2

1+α )/Ḡ(
pn
2

1+α ) is continuously increasing in pn2 and

g(
pr
2

k+α )/Ḡ(
pr
2

k+α ) is continuously increasing in pr2. Hence, ∂pn
2
vn2 (p

n
2 ) = 0 has a unique solution pn∗2 and

∂pr
2
vr2(p

r
2) = 0 has a unique solution pr∗2 , where vn2 (·) [vr2(·)] is strictly increasing on [0, pn∗2 ) [[0, pr∗2 )] and

strictly decreasing on (pn∗2 ,+∞) [(pr∗2 ,+∞)]. Therefore, for any realized (Xn
2 , X

r
2 ), X

n
2 v

n
2 (·) is quasicon-

cave in pn2 , andX
r
2v

r
2(·) is quasiconcave in pr2. Thus, for any realized (Xn

2 , X
r
2 ), (p

n
2 (X

n
2 , X

r
2 ), p

r
2(X

n
2 , X

r
2 )) =

(pn∗2 , pr∗2 ) maximizes Π2(·, ·|Xn
2 , X

r
2 ).

It remains to show that pn∗2 > pr∗2 if and only if k < 1 or r2 > 0. Note that pn∗2 satisfies

(
pn∗2 − c2
1 + α

) g
(

pn∗
2

1+α

)
Ḡ
(

pn∗
2

1+α

) = 1, (C.2)

and pr∗2 satisfies (
pr∗2 − c2 + r2

k + α

) g
(

pr∗
2

k+α

)
Ḡ
(

pr∗
2

k+α

) = 1. (C.3)
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If k < 1 or r2 > 0,
pn∗
2 −c2+r2

k+α >
pn∗
2 −c2
1+α , and the increasing failure rate condition implies that

g
(

pn∗
2

k+α

)
/Ḡ
(

pn∗
2

k+α

)
≥ g

(
pn∗
2

1+α

)
/Ḡ
(

pn∗
2

1+α

)
. Thus,

(
pn∗2 − c2 + r2

k + α

) g
(

pn∗
2

k+α

)
Ḡ
(

pn∗
2

k+α

) > (pn∗2 − c2
1 + α

) g
(

pn∗
2

1+α

)
Ḡ
(

pn∗
2

1+α

) = 1,

and, hence, ∂pr
2
vr2(p

n∗
2 ) < 0. Since vr2(·) is quasiconcave, pr∗2 < pn∗2 . On the other hand, if k = 1 and

r2 = 0, vn2 (·) ≡ vr2(·) and thus pn∗2 = pr∗2 . This completes the proof of Part (a).

Part (b). Because all new customers with willingness-to-pay (1+α)V greater than pn2 (X
n
2 , X

r
2 ) ≡ pn∗2

would make a purchase. Hence,

Qn
2 (X

n
2 , X

r
2 ) = E[Xn

2 1{(1+α)V≥pn∗
2 }|Xn

2 ] = Ḡ

(
pn∗2
1 + α

)
Xn

2 .

Analogously, all repeat customers with willingness-to-pay (k+α)V greater than pr2(X
n
2 , X

r
2 ) ≡ pr∗2 would

make a purchase. Hence,

Qr
2(X

n
2 , X

r
2 ) = E[Xr

21{(k+α)V≥pr∗
2 }|Xr

2 ] = Ḡ

(
pr∗2
k + α

)
Xr

2 .

This proves Part (b).

Part (c). Since π2(X
n
2 , X

r
2 ) := max{Π2(p

n
2 , p

r
2|Xn

2 , X
r
2 ) : 0 ≤ pr2 ≤ pn2}, it follows immediately that

π2(X
n
2 , X

r
2 ) = [max vn2 (p

n
2 )]X

n
2 + [max vr2(p

r
2)]X

r
2 .

To complete the proof, it remains to show that β∗
n = [max vn2 (p

n
2 )] > 0 and β∗

r = [max vr2(p
r
2)] > 0. By

equations (C.2) and (C.3), we have pn∗2 − c2 > 0, Ḡ
(

pn∗
2

1+α

)
> 0, pr∗2 − c2 + r2 > 0, and Ḡ

(
pr∗
2

k+α

)
> 0.

Hence, β∗
n = (pn∗2 − c2)Ḡ

(
pn∗
2

1+α

)
> 0 and β∗

r = (pr∗2 − c2 + r2)Ḡ
(

pr∗
2

k+α

)
> 0. This completes the proof of

Part (c). Q.E.D.

Proof of Theorem 4.3.1: Part (a). Since ξ∗r satisfies that Up = Uw, we have

a∗(E[V ] + δE[(k + α)V − pr∗2 ]+ − ξ∗r ) + (1− a∗)δE[(1 + α)V − pn∗2 ]+ = δE[(1 + α)V − pn∗2 ]+.

Direct algebraic manipulation yields that ξ∗r = µ+ δE[(k + α)V − pr∗2 ]+ − δE[(1 + α)V − pn∗2 ]+. Hence,

by Definition C.1.1 and Lemma 7(a),

p∗1 = r∗1 = ξ∗r = µ+ δE[(k + α)V − pr∗2 ]+ − δE[(1 + α)V − pn∗2 ]+

= µ+ δE[(k + α)V − pr∗2 ]+ − δE[(1 + α)V − pn∗2 ]+.

Hence,

Πf (Q1) = p∗1E(X ∧Q1)− c1Q1 + r1E(Q1 −X)+ + δE{π2(X − (X ∧Q1), X ∧Q1)}

= (p∗1 − r1)E(X ∧Q1)− (c1 − r1)Q1 + δE[β∗
n(X − (X ∧Q1)) + β∗

r (X ∧Q1)]

= (p∗1 + δ(β∗
r − β∗

n)− r1)E(X ∧Q1)− (c1 − r1)Q1 + δβ∗
nE(X)

= (m∗
1 − r1)E(X ∧Q1)− (c1 − r1)Q1 + δβ∗

nE(X),
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where the second equality follows from (Q1 − X)+ = Q1 − (X ∧ Q1), and the last from the identity

m∗
1 = µ + δE[(k + α)V − pr∗2 ]+ − δE[(1 + α)V − pn∗2 ]+ + δ(β∗

r − β∗
n). Therefore, Q∗

1 is the solution to

a newsvendor problem with marginal revenue m∗
1 − r1, marginal cost c1 − r1, and demand distribution

F (·). Hence, Q∗
1 = F̄−1( c1−r1

m∗
1−r1

) and Π∗
f = Πf (Q

∗
1) = (m∗

1 − r1)E(X ∧ Q∗
1) − (c1 − r1)Q

∗
1 + δβ∗

nE(X).

This proves Part (a).

Part (b). Since myopic customers will make a purchase if and only if p1 ≤ µ, p̃∗1 = ξ̃∗1 = µ. Hence,

Π̃f (Q1) = p̃∗1E(X ∧Q1)− c1Q1 + r1E(Q1 −X)+ + δE{π2(X − (X ∧Q1), X ∧Q1)}

= (p̃∗1 − r1)E(X ∧Q1)− (c1 − r1)Q1 + δE[β∗
n(X − (X ∧Q1)) + β∗

r (X ∧Q1)]

= (p̃∗1 + δ(β∗
r − β∗

n)− r1)E(X ∧Q1)− (c1 − r1)Q1 + δβ∗
nE(X)

= (m̃∗
1 − r1)E(X ∧Q1)− (c1 − r1)Q1 + δβ∗

nE(X),

where the second equality follows from (Q1 − X)+ = Q1 − (X ∧ Q1), and the last from the identity

m̃∗
1 = µ + δ(β∗

r − β∗
n). Therefore, Q̃∗

1 is the solution to a newsvendor problem with marginal rev-

enue m̃∗
1 − r1, marginal cost c1 − r1, and demand distribution F (·). Hence, Q̃∗

1 = F̄−1( c1−r1
m∗

1−r1
) and

Π̃∗
f = Π̃f (Q̃

∗
1) = (m∗

1 − r1)E(X ∧ Q̃∗
1)− (c1 − r1)Q̃

∗
1 + δβ∗

nE(X). This proves Part (b). Q.E.D.

Proof of Lemma 8: The expressions for Πf (·) and Π̃f (·) have already been given in the proof of

Theorem 4.3.1(a) and Theorem 4.3.1(b), respectively. We now compute Πu
f (Q1). Following the same

argument as the proof of Theorem 4.3.1(a), given the first-period production quantity Q1, the first-period

equilibrium price is

pu1 (Q1) =E[V ] + δ[E((k + α)V − pu∗2 )+ − E((1 + α)V − pu∗2 )+]

=µ+ δ[E((k + α)V − pu2 (X
n
2 , X

r
2 ))

+ − E((1 + α)V − pu2 (X
n
2 , X

r
2 ))

+],

where Xn
2 = (X −Q1)

+ and Xr
2 = X ∧Q1. Let π

u
2 (X

n
2 , X

r
2 ) := maxpu

2
Πu

2 (p
u
2 |Xn

2 , X
r
2 ). Hence,

πu
2 (X

n
2 , X

r
2 ) = max

pu
2≥0

{Xn
2 (p

u
2 − c2)Ḡ

(
pu2

1 + α

)
+Xr

2 (p
u
2 − c2)Ḡ(

pu2
k + α

)}

= Xn
2 (p

u
2 (X

n
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
+Xr

2 (p
u
2 (X

n
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

k + α

)
,

where Xn
2 = (X −Q1)

+ and Xr
2 = X ∧Q1. Therefore,

Πu
f (Q1) = pu1 (Q1)E(X ∧Q1)− c1Q1 + r1E(X −Q1)

+ + δE[πu
2 (X

n
2 , X

r
2 )]

= (pu1 (Q1)− r1)E(X ∧Q1)− (c1 − r1)Q1 + δE[(X −Q1)
+(pu2 (X

n
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
+(X ∧Q1)(p

u
2 (X

n
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

k + α

)
]

= (pu1 (Q1) + E[(pu2 (Xn
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

k + α

)
− (pu2 (X

n
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
]

−r1)E(X ∧Q1)− (c1 − r1)Q1 + δE[(pu2 (Xn
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
X]

= (mu
1 (Q1)− r1)E(X ∧Q1)− (c1 − r1)Q1 + δE[(pu2 (Xn

2 , X
r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
X],
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where

mu
1 (Q1) : = µ+ δ{E[(pu2 (Xn

2 , X
r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

k + α

)
] + E((k + α)V − pu2 (X

n
2 , X

r
2 ))

+

−E[(pu2 (Xn
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
]− E((1 + α)V − pu2 (X

n
2 , X

r
2 ))

+},

with Xn
2 = (X −Q1)

+ and Xr
2 = X ∧Q1.

Analogously, since p̃u∗1 = E[V ] = µ,

Π̃u
f (Q1) = p̃u∗1 E(X ∧Q1)− c1Q1 + r1E(X −Q1)

+ + δE[πu
2 (X

n
2 , X

r
2 )]

= (µ− r1)E(X ∧Q1)− (c1 − r1)Q1 + δE[(X −Q1)
+(pu2 (X

n
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
+(X ∧Q1)(p

u
2 (X

n
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

k + α

)
]

= (µ+ E[(pu2 (Xn
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

k + α

)
− (pu2 (X

n
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
]

−r1)E(X ∧Q1)− (c1 − r1)Q1 + δE[(pu2 (Xn
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
X]

= (m̃u
1 (Q1)− r1)E(X ∧Q1)− (c1 − r1)Q1 + δE[(pu2 (Xn

2 , X
r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
X],

where

m̃u
1 (Q1) : = µ+ δ{E[(pu2 (Xn

2 , X
r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

k + α

)
]− E[(pu2 (Xn

2 , X
r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
]},

with Xn
2 = (X −Q1)

+ and Xr
2 = X ∧Q1. Q.E.D.

Before giving the proof of Theorem 4.4.1, we first prove Theorem 4.4.2.

Proof of Theorem 4.4.2: Part (a). If the firm charges a single price pu2 in period 2, all new (repeat)

customers with willingness-to-pay (1 + α)V ((k + α)V ) greater than pu2 will make a purchase (join the

trade-in program). Hence, the second-period profit function of the firm Πu
2 (p

u
2 |Xn

2 , X
r
2 ) is given by

Πu
2 (p

u
2 |Xn

2 , X
r
2 ) = Xn

2 (p
u
2 − c2)Ḡ

(
pu2

1 + α

)
+Xr

2 (p
u
2 − c2)Ḡ

(
pu2

k + α

)
= Xn

2 v
n
2 (p

u
2 ) +Xr

2 v̂
r
2(p

u
2 ),

where v̂r2(p2) := (p2 − c2)Ḡ
(

p2

k+α

)
. Clearly, v̂r2(·) has a unique maximizer p̂r∗2 , where p̂r∗2 ≥ pr∗2 with the

inequality being strict if r2 > 0. Moreover, Πu
2 (p

u
2 |Xn

2 , X
r
2 ) = Π̂2(p

u
2 , p

u
2 |Xn

2 , X
r
2 ), where, by the proof

of Lemma 7(a), Π̂2(p
n
2 , p

r
2|Xn

2 , X
r
2 ) := Xn

2 v
n
2 (p

n
2 ) +Xr

2 v̂
r
2(p

r
2) is quasiconcave function of (pn2 , p

r
2). Thus,

the equilibrium second-period pricing strategy pu2 (X
n
2 , X

r
2 ) is the maximizer of the second-period profit

function, i.e., pu2 (X
n
2 , X

r
2 ) = argmaxpu

2≥0Π
u
2 (p

u
2 |Xn

2 , X
r
2 ). Note that since Π̂2(·, ·|Xn

2 , X
r
2 ) is quasiconcave

in (pn2 , p
r
2), Π

u
2 (p

u
2 |Xn

2 , X
r
2 ) = Π̂2(p

u
2 , p

u
2 |Xn

2 , X
r
2 ) is also quasiconcave in pu2 .

Observe that

∂pu
2
Πu

2 (p
u
2 |Xn

2 , X
r
2 ) = Xn

2

[
Ḡ
(

pu
2

1+α

)
−
(

pu
2−c2
1+α

)
g
(

pu
2

1+α

)]
+ Xr

2

[
Ḡ
(

pu
2

k+α

)
−
(

pu
2−c2
k+α

)
g
(

pu
2

k+α

)]
. Since

g(v)/Ḡ(v) is increasing in v, ∂pu
2
Πu

2 (p
u
2 |Xn

2 , X
r
2 ) < 0 if pu2 > pn∗2 , and ∂pu

2
Πu

2 (p
u
2 |Xn

2 , X
r
2 ) > 0 if pu2 < p̂r∗2 .

Thus,

pu2 (X
n
2 , X

r
2 ) ∈ [p̂r∗2 , p

n∗
2 ] ⊂ [pr∗2 , p

n∗
2 ] = [pr2(X

n
2 , X

r
2 ), p

n
2 (X

n
2 , X

r
2 )].
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If k < 1, by the proof of Lemma 7(a), p̂r∗2 < pn∗2 . Since Xn
2 , X

r
2 > 0,

∂pu
2
Πu

2 (p̂
r∗
2 |Xn

2 , X
r
2 ) = Xn

2

[
Ḡ
(

p̂r∗
2

1+α

)
−
(

p̂r∗
2 −c2
1+α

)
g
(

p̂r∗
2

1+α

)]
> 0 and

∂pu
2
Πu

2 (p
n∗
2 |Xn

2 , X
r
2 ) = Xr

2

[
Ḡ
(

pn∗
2

k+α

)
−
(

pn∗
2 −c2
k+α

)
g
(

pn∗
2

k+α

)]
< 0. Therefore, pr∗2 ≤ p̂r∗2 < pu2 (X

n
2 , X

r
2 ) <

pn∗2 for all Xn
2 , X

r
2 > 0.

When pu2 ∈ [p̂r∗2 , p
n∗
2 ], Ḡ(

pu
2

1+α ) − (
pu
2−c2
1+α )g(

pu
2

1+α ) ≥ 0 and Ḡ(
pu
2

k+α ) − (
pu
2−c2
k+α )g(

pu
2

k+α ) ≤ 0. Thus,

Πu
2 (p

u
2 |Xn

2 , X
r
2 ) is increasing in Xn

2 and decreasing in Xr
2 if pu2 ∈ [p̂r∗2 , p

n∗
2 ], i.e., Πu

2 (p
u
2 |Xn

2 , X
r
2 ) is su-

permodular in (pu2 , X
n
2 ) on the lattice [p̂r∗2 , p

n∗
2 ] × [0,+∞), and submodular in (pu2 , X

r
2 ) on the lattice

[p̂r∗2 , p
n∗
2 ]× [0,+∞). Therefore, pu2 (X

n
2 , X

r
2 ) is continuously increasing in Xn

2 and continuously decreasing

in Xr
2 . This proves Part (a).

Part (b). Note that pu∗1 = µ+ δ[E((k + α)V − pu∗2 )+ − E((1 + α)V − pu∗2 )+], where pu∗2
d
= pu2 ((X −

Qu∗
1 )+, X ∧Qu∗

1 ) ∈ [pr∗2 , p
n∗
2 ]. Therefore, δ[E((k+α)V −pu∗2 )+−E((k+α)V −pr∗2 )+] ≤ 0, δ[E((1+α)V −

pu∗2 )+ − E((1 + α)V − pn∗2 )+] ≥ 0, and thus

pu∗1 −p∗1 = δ[E((k+α)V −pu∗2 )+−E((k+α)V −pr∗2 )+]−δ[E((1+α)V −pu∗2 )+−E((1+α)V −pn∗2 )+] ≤ 0.

If pr∗2 < pn∗2 , at least one of the following two inequalities are strict: δ[E((k + α)V − pu∗2 )+ − E((k +

α)V − pr∗2 )+] ≤ 0 and δ[E((1 + α)V − pu∗2 )+ − E((1 + α)V − pn∗2 )+] ≥ 0. Hence, pu∗1 < p∗1 if pr∗2 < pn∗2 .

It’s straightforward to compute that, for any Q1 ≥ 0,

Πf (Q1)−Πu
f (Q1) =(p∗1 − pu1 (Q1))E(X ∧Q1) + δE[(β∗

n − vn2 (p
u
2 ((X −Q1)

+, X ∧Q1)))(X −Q1)
+

+ (β∗
r − v̂n2 (p

u
2 ((X −Q1)

+, X ∧Q1)))(X ∧Q1)],

where pu1 (Q1) = µ+δ[E((k+α)V −pu∗2 )+−E((1+α)V −pu∗2 )+] ≤ pu∗1 with pu∗2
d
= pu2 ((X−Q1)

+, X∧Q1).

Since β∗
n ≥ vn2 (p2) and β

∗
r ≥ vr2(p2) ≥ v̂r2(p2) for any p2 ≥ 0, Πf (Q1) ≥ Πu

f (Q1) for all Q1 ≥ 0, and thus

Π∗
f = maxQ1 Πf (Q1) ≥ maxQ1 Π

u
f (Q1) = Πu∗

f . If pr∗2 < pn∗2 , by the proof of part (a), p∗1 > pu1 (Q1) and,

hence, Πf (Q1) > Πu
f (Q1) for all Q1 > 0. Therefore, Π∗

f = Πf (Q
∗
1) ≥ Πf (Q

u∗
1 ) > Πu

f (Q
u∗
1 ) = Πu∗

f . This

proves part (b).

Part (c). p̃u∗1 = p̃∗1 = µ follows immediately from that µ is the willingness-to-pay of myopic

customers. Moreover, direct computation yields that, for any Q1 ≥ 0,

Π̃f (Q1)− Π̃u
f (Q1) =δE[(β∗

n − vn2 (p
u
2 ((X −Q1)

+, X ∧Q1)))(X −Q1)
+

+ (β∗
r − v̂n2 (p

u
2 ((X −Q1)

+, X ∧Q1)))(X ∧Q1)]

≥0,

where the inequality follows from the proof of part (b). If pr∗2 < pn∗2 , at least one of E[(β∗
n − vn2 (p

u
2 ((X −

Q1)
+, X ∧Q1)))(X −Q1)

+] and E[(β∗
r − v̂n2 (p

u
2 ((X −Q1)

+, X ∧Q1)))(X ∧Q1)] is positive for Q1 > 0.

Hence, the same argument as the proof of part (b) yields that Π̃∗
f > Π̃u∗

f if Q̃u∗
1 > 0. This proves part

(c). Q.E.D.

Proof of Theorem 4.4.1: Part (a). Since p∗1 − p̃∗1 = m∗
1 − m̃∗

1 = e∗, it follows immediately that

p∗1 > p̃∗1 and Q∗
1 = F̄−1( c1−r1

m∗
1−r1

) > F̄−1( c1−r1
m∗

1−r1
) = Q̃∗

1 if and only if e∗ > 0. Moreover, for any

Q1, Πf (Q1) − Π̃f (Q1) = e∗E(X ∧ Q1) > 0 if and only if e∗ > 0. Therefore, Π∗
f = maxΠf (Q1) >

max Π̃f (Q1) = Π̃∗
f if and only if e∗ > 0 and Q∗

1 > 0.
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Next, we show that e∗ > 0 if and only if r2 > r̄. Observe that vr2(p
r
2) is submodular in (pr2, r2), so

pr∗2 is decreasing in r2. Moreover, e∗ is decreasing in pr∗2 . Hence, e∗ is increasing in r2 and e∗ > 0 if and

only if r2 > r̄ for some r̄. We now show that r̄ ≥ 1−k
1+αc2. It suffices to show that if r2 = 1−k

1+αc2, e
∗ ≤ 0.

If r2 = 1−k
1+αc2, v

r
2(p

r
2) = (pr2 − k+α

1+α c2)Ḡ(
pr
2

k+α ). It’s straightforward to check that pr∗2 = k+α
1+αp

n∗
2 . Hence,

e∗ =E[(k + α)V − pr∗2 ]+ − E[(1 + α)V − pn∗2 ]+

=E[(k + α)V − k + α

1 + α
pn∗2 ]+ − E[(1 + α)V − pn∗2 ]+

=− 1− k

1 + α
E[(1 + α)V − pn∗2 ]+ ≤ 0.

This proves Part (a).

Part (b). Observe that,

pu∗1 − p̃u∗1 = δ[E((k + α)V − pu∗2 )+ − E((1 + α)V − pu∗2 )+],

where pu∗2
d
= pu2 ((X −Qu∗

1 )+, X ∧Qu∗
1 ). Since k ≤ 1, pu∗1 ≤ p̃u∗1 and the inequality is strict if k < 1. This

establishes part (b-i).

We now show part (b-ii). Direct computation yields that

m̃u
1 (Q1)−mu

1 (Q1) = E((1 + α)V − pu2 (X
n
2 , X

r
2 ))

+ − E((k + α)V − pu2 (X
n
2 , X

r
2 ))

+,

where Xn
2 = (X −Q1)

+ and Xr
2 = X ∧Q1. Since k < 1, we have E((1 + α)V − pu2 (X

n
2 , X

r
2 ))

+ − E((k +

α)V − pu2 (X
n
2 , X

r
2 ))

+ > 0.

Let Π(Q1, 1) = Π̃u
f (Q1) and Π(Q1, 0) = Πu

f (Q1),

Π(Q1, 1)−Π(Q1, 0) = Π̃u
f (Q1)−Πu

f (Q1) = (µ− pu1 (Q1))E(X ∧Q1)

= [E((1 + α)V − pu2 (X
n
2 , X

r
2 ))

+ − E((k + α)V − pu2 (X
n
2 , X

r
2 ))

+]E(X ∧Q1).

Since [E((1+α)V −p)+−E((k+α)V −p)+]′ = −P( p
1+α ≤ V ≤ p

k+α ) ≤ 0 and pu2 (X
n
2 , X

r
2 ) is decreasing in

Q1, Π(Q1, 1)−Π(Q1, 0) = (µ−pu1 (Q1))(X∧Q1) is increasing in Q1, and, hence, Π(·, ·) is a supermodular

function on the lattice [0,+∞) × {0, 1}. Thus, Q̃u∗
1 = argmaxQ1≥0Π(Q1, 1) ≥ argmaxQ1≥0Π(Q1, 0) =

Qu∗
1 . This proves part (b-ii).

Finally, since Π̃u
f (Q1) − Πu

f (Q1) = (µ − pu1 (Q1))(X ∧ Q1) ≥ 0 where the inequality is strict if

pr∗2 < pn∗2 . Hence, Π̃u∗
f = maxQ1≥0 Π̃

u
f (Q1) ≥ maxQ1≥0 Π

u
f (Q1) = Πu∗

f . Moreover, the same argument as

the proof of Theorem 4.4.2 (b-ii) implies that Π̃u∗
f > Πu∗

f if pr∗2 < pn∗2 . This establishes part (b). Q.E.D.

Proof of Theorem 4.4.3: Part (a). We first show that mu
1 (Q1) is decreasing in Q1. Observe

that mu
1 (Q1) = µ+ δ[Ur(Q1)− Un(Q1)], where

Ur(Q1) := E[(pu2 (Xn
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

k + α

)
] + E((k + α)V − pu2 (X

n
2 , X

r
2 ))

+,

and

Un(Q1) := E[(pu2 (Xn
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
] + E((1 + α)V − pu2 (X

n
2 , X

r
2 ))

+.

Let ur(p) := (p − c2)Ḡ(
p

k+α ) + E((k + α)V − p)+ = E[(k + α)V − c2]1{(k+α)V≥p} and un(p) := (p −

c2)Ḡ(
p

1+α ) + E((1 + α)V − p)+ = E[(1 + α)V − c2]1{(1+α)V≥p}. It’s clear that ur(·) and up(·) are
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continuously decreasing in p. Moreover, Ur(Q1) = E[ur(pu2 (Xn
2 , X

r
2 ))] and Un(Q1) = E[un(pu2 (Xn

2 , X
r
2 ))],

where Xn
2 = (X − Q1)

+ and Xr
2 = X ∧ Q1. Since pu2 (X

n
2 , X

r
2 ) is increasing in Xn

2 and decreasing in

Xr
2 , it is stochastically decreasing in Q1. Hence, it suffices to show that ur(p)− un(p) is increasing in p.

Observe that

ur(p)− un(p) = −[

∫ p/(k+α)

p/(1+α)

((1 + α)V − p)g(V ) dV +

∫ v̄

p/(k+α)

(1− k)V g(V ) dV ]

= −[

∫ v̄

p/(1+α)

((1 + α)V −max(p, (k + α)V ))g(V ) dV ],

which is continuously increasing in p. This establishes part (a-i).

We now show that mu
1 (Q1) < m∗

1 for all Q1. Observe that

mu
1 (Q1)−m∗

1 = E[ur(pu2 (Xn
2 , X

r
2 ))− ur(p

r∗
2 )]− E[un(pu2 (Xn

2 , X
r
2 ))− un(p

n∗
2 )].

Because pr∗2 ≤ pu2 (X
n
2 , X

r
2 ) ≤ pn∗2 , E[ur(pu2 (Xn

2 , X
r
2 ))−ur(pr∗2 )] ≤ 0 and E[un(pu2 (Xn

2 , X
r
2 ))−un(pn∗2 )] ≥ 0.

Hence, mu
1 (Q1) ≤ m∗

1. If k < 1, pr∗2 < pn∗2 , one of the inequalities E[ur(pu2 (Xn
2 , X

r
2 ))− ur(p

r∗
2 )] ≤ 0 and

E[un(pu2 (Xn
2 , X

r
2 )) − un(p

n∗
2 )] ≥ 0 must be strict. Therefore, mu

1 (Q1) < m∗
1 for all Q1 ≥ 0. This proves

part (a-ii).

Next, we show that Qu∗
1 ≤ Q∗

1. Observe that

Πu
f (Q1)−Πf (Q1) = (mu

1 (Q1)−m∗
1)(X ∧Q1) + δE[(pu2 (Xn

2 , X
r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
]− δβ∗

nE(X).

Let Π(Q1, 1) = Πf (Q1) and Π(Q1, 0) = Πu
f (Q1). Then,

Π(Q1, 1)−Π(Q1, 0) = (m∗
1 −mu

1 (Q1))(X ∧Q1) + δEX[β∗
n − (pu2 (X

n
2 , X

r
2 )− c2)Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
]

Note that for any realization of X, pu2 (X
n
2 , X

r
2 ) and thus (pu2 (X

n
2 , X

r
2 )− c2)Ḡ(

pu
2 (X

n
2 ,Xr

2 )
1+α ) is decreasing in

Q1. Therefore, by part (a-ii), Π(Q1, 1)−Π(Q1, 0) is increasing in Q1. Hence, Π(·, ·) is supermodular on

the lattice [0,+∞)×{0, 1}. Hence, Qu∗
1 = argmaxQ1≥0Π

u
f (Q1) ≤ argmaxQ1≥0Πf (Q1) = Q∗

1. If Q
u∗
1 > 0,

since m∗
1 > mu

1 (Q
u∗
1 ) Π′

f (Q
u∗
1 ) > ∂Q1Π

u
f (Q

u∗
1 ) = 0. Since Πf (·) is concave in Q1, Q

∗
1 > Qu∗

1 . This proves

part (a-iii).

Part (b). We first show that m̃u
1 (Q1) is increasing inQ1. Note that m̃u

1 (Q1) = µ+δE[v̂r2(pu2 (Xn
2 , X

r
2 ))−

vn2 (p
u
2 (X

n
2 , X

r
2 ))], where X

n
2 = (X − Q1)

+ and Xr
2 = X ∧ Q1. Because p̂r∗2 ≤ pu2 (X

n
2 , X

r
2 ) ≤ pn∗2 and

pu2 (X
n
2 , X

r
2 ) is increasing inX

n
2 and decreasing inXr

2 . Thus, v̂
r
2(p

u
2 (X

n
2 , X

r
2 )) is stochastically increasing in

Q1 and v
n
2 (p

u
2 (X

n
2 , X

r
2 )) is stochastically decreasing in Q1. Therefore, m̃

u
1 (Q1) = µ+δE[v̂r2(pu2 (Xn

2 , X
r
2 ))−

vn2 (p
u
2 (X

n
2 , X

r
2 ))] is increasing in Q1. This proves part (b-i).

We now show part (b-ii). Let β̂∗
r = maxp≥0 v̂

r
2(p). It’s clear that β∗

r − β̂∗
r is increasing in r2, with

β∗
r = β̂∗

r if r2 = 0. Moreover, since k < 1, β̂∗
n := vn2 (p̂

r∗
2 ) < β∗

n. Therefore, let r̄2 > 0 be the threshold

such that β∗
r − β̂∗

r = β∗
n − β̂∗

n. Hence, for all r2 < r̄2, β
∗
r − β̂∗

r < β∗
n − β̂∗

n. Moreover, by the monotone

convergence theorem,

lim
Q1→+∞

m̃u
1 (Q1) = µ+ δ[vr2(p̂

r∗
2 )− vn2 (p̂

r∗
2 )] = µ+ δ[β̂∗

r − β̂∗
n] > µ+ δ[β∗

r − β∗
n] = m̃∗

1.

Part (b-i) shows that m̃u
1 (Q1) is increasing in Q1. Hence, there exists a threshold Q̄(r2) such that

m̃u
1 (Q1) ≥ m̃∗

1 if and only if Q1 ≥ Q̄(r2). To show that Q̄(r2) is increasing in r2, we observe that m̃∗
1 is

increasing in r2. Hence, Q̄(r2) := min{Q1 : m̃u
1 (Q1) ≥ m̃∗

1} is increasing in r2. This proves part (b-ii).
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Part (b-iii). Without loss of generality, assume that Qu∗
1 > 0. Otherwise, the result holds trivially.

It’s clear that Qu∗
1 ↑ X̄ and Q∗

1 ↑ X̄ as c1 ↓ 0, where X̄ is the upper bound of the support of X. Hence,

there exists a threshold c̃(r2) > 0, dependent on r2, such that if c1 < c̃(r2), Q
u∗
1 , Q∗

1 > Q̄(r2). Let

π̂2(Q1) := δE[vn2 (pu2 (Xn
2 , X

r
2 ))X], where Xn

2 = (X − Q1)
+ and Xr

2 = X ∧ Q1. It’s clear that π̂2(·) is

differentiable and, by the chain rule

π̂′
2(Q1) = δE[∂pvn2 (pu2 (Xn

2 , X
r
2 ))(∂Xn

2
pu2 (X

n
2 , X

r
2 ) + ∂Xr

2
pu2 (X

n
2 , X

r
2 ))1{X≥Q1}X].

As Q1 → X̄, for any realization of X ≤ X̄, ∂Xn
2
pu2 (X

n
2 , X

r
2 ) and ∂Xr

2
pu2 (X

n
2 , X

r
2 ) converges to 0. Hence,

by the dominated convergence theorem, there exits a threshold Q̂ ∈ [Q̄(r2), X̄), such that π̂′
2(Q1) ∈

[−ϵP(X ≥ Q1), 0] for all Q1 ≥ Q̂, where ϵ := (m̃u
1 (Q̂) − m̃∗

1)/2 > 0. Let c̄1(r2) ∈ (0, c̃(r2)] be the

threshold such that, if c1 < c̄1(r1), we have Qu∗
1 , Q∗

1 > Q̂ ≥ Q̄(r2). Therefore,

Π̃′
f (Q

u∗
1 ) = (m̃∗

1 − r1)P(X ≥ Qu∗
1 )− (c1 − r1)

< (m̃u
1 (Q

u∗
1 )− r1)P(X ≥ Qu∗

1 )− ϵP(X ≥ Qu∗
1 )− (c1 − r1)

≤ (m̃u
1 (Q

u∗
1 )− r1)P(X ≥ Qu∗

1 ) + π̂′
2(Q

u∗
1 )− (c1 − r1)

≤ ∂Q1Π̃
u
f (Q

u∗
1 )

= 0,

where the first inequality follows from m̃u
1 (Q

u∗
1 ) − m̃∗

1 ≥ (m̃u
1 (Q̂) − m̃∗

1) = 2ϵ > ϵ, the second from

π̂′
2(Q

u∗
1 ) ∈ [−ϵP(X ≥ Qu∗

1 ), 0], and the last from the monotonicity that m̃u
1 (·) is increasing in Q1. Be-

cause Π̃f (·) is concave in Q1, Q̃
∗
1 = argmaxQ1

Π̃f (Q1) < Q̃u∗
1 follows immediately. This establishes part

(b-iii) and thus Theorem 4.4.3. Q.E.D.

Before presenting the proof Theorem 4.4.4, we give the following lemma that computes the equilib-

rium environmental impacts I∗e and Ĩ∗e .

Lemma 27 (a) With strategic customers, the total expected environmental impact of the RE equilib-

rium is I∗e = Ie(Q
∗
1), where

Ie(Q1) := (κ1 − ι1)Q1 + (ι1 + δ(κ2 − ι2)Ḡ

(
pr∗2
k + α

)
)E(Q1 ∧X) + δκ2Ḡ

(
pn∗2
1 + α

)
E(X −Q1)

+.

(b) With myopic customers, the total expected environmental impact of the RE equilibrium is Ĩ∗e =

Ie(Q̃
∗
1).

(c) The function Ie(·) is strictly increasing in Q1. Hence, I∗e ≥ Ĩ∗e if and only if Q∗
1 ≥ Q̃∗

1.
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Proof of Lemma 27: Parts (a) and (b). Direct computation yields that

I∗e =E{κ1Q∗
1 + δκ2(Q

n
2 (X

n∗
2 , Xr∗

2 ) +Qr
2(X

n∗
2 , Xr∗

2 ))− ι1(Q
∗
1 −X)+

− δι2Q
r
2(X

n∗
2 , Xr∗

2 )}

=E{κ1Q∗
1 + δκ2((X −Q∗

1)
+Ḡ

(
pn∗2
1 + α

)
+ (X ∧Q∗

1)Ḡ

(
pr∗2
k + α

)
)− ι1(Q

∗
1 −X)+

− δι2(X ∧Q∗
1)Ḡ

(
pr∗2
k + α

)
}

=(κ1 − ι1)Q
∗
1 + (ι1 + δ(κ2 − ι2)Ḡ

(
pr∗2
k + α

)
)E(X ∧Q∗

1) + δκ2Ḡ

(
pn∗2
1 + α

)
E(X −Q∗

1)
+

=Ie(Q
∗
1),

where the second inequality follows from Xn∗
2 = (X − Q∗

1)
+ and Xr∗

2 = X ∧ Q∗
1, the third from

(Q∗
1 −X)+ = Q∗

1 − (X ∧Q∗
1), and the last from the definition of the function Ie(·). Analogously,

Ĩ∗e =E{κ1Q̃∗
1 + δκ2(Q

n
2 (X̃

n∗
2 , X̃r∗

2 ) +Qr
2(X̃

n∗
2 , X̃r∗

2 ))− ι1(Q̃
∗
1 −X)+ − δι2Q

r
2(X̃

n∗
2 , X̃r∗

2 )}

=E{κ1Q̃∗
1 + δκ2((X − Q̃∗

1)
+Ḡ

(
pn∗2
1 + α

)
+ (X ∧ Q̃∗

1)Ḡ

(
pr∗2
k + α

)
)− ι1(Q̃

∗
1 −X)+

− δι2(X ∧ Q̃∗
1)Ḡ

(
pr∗2
k + α

)
}

=(κ1 − ι1)Q̃
∗
1 + (ι1 + δ(κ2 − ι2)Ḡ

(
pr∗2
k + α

)
)E(X ∧ Q̃∗

1) + δκ2Ḡ

(
pn∗2
1 + α

)
E(X − Q̃∗

1)
+

=Ie(Q̃
∗
1).

This completes the proof of Parts (a) and (b).

Part (c). To establish the monotonicity of Ie(·), observe that

I ′e(Q1) = κ1−ι1+(ι1+δ(κ2−ι2)Ḡ
(

pr∗
2

k+α

)
)P(X > Q1)−δκ2Ḡ

(
pn∗
2

1+α

)
P(X > Q1) > κ1−ι1−δκ2 > 0,

where the first inequality follows from Ḡ
(

pn∗
2

1+α

)
≤ 1 and P(X > Q1) ≤ 1, and the second from

the assumption that κ1 > ι1 + κ2. Hence, Ie(·) is strictly increasing in Q1. This proves Part (c).

Q.E.D.

Proof of Theorem 4.4.4: Part (a). First, we compute Iu∗e . Given the market sizes (Xn
2 , X

r
2 ), the

equilibrium total second-period production quantity, Qu
2 (X

n
2 , X

r
2 ), is given by

Qu
2 (X

n
2 , X

r
2 ) = Xn

2 Ḡ

(
pu2 (X

n
2 , X

r
2 )

1 + α

)
+Xr

2 Ḡ

(
pu2 (X

n
2 , X

r
2 )

k + α

)
.

Therefore,

Iu∗e = E{κ1Qu∗
1 − ι1(Q

u∗
1 −X)+ + δκ2Q

u
2 (X

n∗
2 , Xr∗

2 )}

= (κ1 − ι1)Q
u∗
1 + E{[ι1 + δκ2Ḡ

(
pu2 (X

n∗
2 , Xr∗

2 )

k + α

)
](Qu∗

1 ∧X)}

+δκ2E[Ḡ
(
pu2 (X

n∗
2 , Xr∗

2 )

1 + α

)
(X −Qu∗

1 )+],

where Xn∗
2 = (X −Qu∗

1 )+ and Xr∗
2 = X ∧Qu∗

1 . If Q∗
1 = 0, Qu∗

1 = 0 as well by Theorem 4.4.3(a). Hence,

I∗e = Iu∗e regardless of the value of ι2. In this case, part (a) trivially holds. On the other hand, if Q∗
1 > 0,
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I∗e is strictly linearly decreasing in ι2. Thus, let ῑ
u
2 := max{ι2 : I∗e ≥ Iu∗e }. We have I∗e ≥ Iu∗2 if and only

if ι2 ≤ ῑu2 . In particular, if ι2 = 0, Q∗
1 > Qu∗

1 implies that

(κ1 − ι1)Q
∗
1 + δκ2Ḡ

(
pn∗2
1 + α

)
E(X −Q∗

1)
+ > (κ1 − ι1)Q

u∗
1 + δκ2E[Ḡ

(
pu2 (X

n∗
2 , Xr∗

2 )

1 + α

)
(X −Qu∗

1 )+],

and

(ι1 + δ(κ2 − ι2)Ḡ

(
pr∗2
k + α

)
)E(X ∧Q∗

1) ≥ E[(ι1 + δκ2Ḡ

(
pu2 (X

n∗
2 , Xr∗

2 )

k + α

)
)(X −Qu∗

1 )].

Thus, ῑu2 > 0. This establishes part (a).

Part (b). As in the proof of part (a), we first compute Ĩu∗e :

Ĩu∗e = E{κ1Q̃u∗
1 − ι1(Q̃

u∗
1 −X)+ + δκ2Q

u
2 (X̃

n∗
2 , X̃r∗

2 )}

= (κ1 − ι1)Q̃
u∗
1 + E{[ι1 + δκ2Ḡ

(
pu2 (X̃

n∗
2 , X̃r∗

2 )

k + α

)
](Q̃u∗

1 ∧X)}

+δκ2E[Ḡ

(
pu2 (X̃

n∗
2 , X̃r∗

2 )

1 + α

)
(X − Q̃u∗

1 )+],

where X̃n∗
2 = (X − Q̃u∗

1 )+ and X̃r∗
2 = X ∧ Q̃u∗

1 . By Theorem 4.4.4(b), Q̃u∗
1 ≥ Q̃∗

1. Hence,

(κ1 − ι1)Q̃
∗
1 + δκ2Ḡ

(
pn∗2
1 + α

)
E(X − Q̃∗

1)
+ ≤ (κ1 − ι1)Q̃

u∗
1 + δκ2E[Ḡ

(
pu2 (X̃

n∗
2 , X̃r∗

2 )

1 + α

)
(X − Q̃u∗

1 )+].

Let ˜̄ιu2 := (Ḡ(
pr∗
2

k+α )− Ḡ(
pn∗
2

k+α ))κ2/Ḡ(
pr∗
2

k+α ) < κ2. If ι2 ≥ ˜̄ιu2 , since Q̃
u∗
1 ≥ Q̃∗

1,

E{[ι1 + δκ2Ḡ

(
pu2 (X̃

n∗
2 , X̃r∗

2 )

k + α

)
](Q̃u∗

1 ∧X)} ≥ E{[ι1 + δ(κ2 − ι2)Ḡ

(
pn∗2
k + α

)
](Q̃u∗

1 ∧X)}

≥ E{[ι1 + δ(κ2 − ι2)Ḡ

(
pn∗2
k + α

)
](Qu∗

1 ∧X)}.

Therefore, if ι2 ≥ ˜̄ιu2 ,

Ĩu∗e = (κ1 − ι1)Q̃
u∗
1 + E{[ι1 + δκ2Ḡ

(
pu2 (X̃

n∗
2 , X̃r∗

2 )

k + α

)
](Q̃u∗

1 ∧X)}

+δκ2E[Ḡ

(
pu2 (X̃

n∗
2 , X̃r∗

2 )

1 + α

)
(X − Q̃u∗

1 )+]

≥ (κ1 − ι1)Q̃
∗
1 + δκ2Ḡ

(
pn∗2
1 + α

)
E(X − Q̃∗

1)
+ + E{[ι1 + δ(κ2 − ι2)Ḡ

(
pn∗2
k + α

)
](Qu∗

1 ∧X)}

= Ĩ∗e ,

which proves part (b). Q.E.D.

Proof of Theorem 4.4.5: Part (a). We first compute the equilibrium total customer surplus in

the scenario of strategic customers, S∗
c . If a customer is a new customer in period 2, her expected total

surplus is δE((1 + α)V − pn∗2 )+ (since, by Lemma 7, pn2 (X
n
2 , X

r
2 ) = pn∗2 ). Hence, the expected surplus of

a strategic customer in the base model is given by:

a∗(µ− p∗1 + δE((k + α)V − pr∗2 )+) + (1− a∗)δE((1 + α)V − pn∗2 )+

=a∗(µ− µ+ δE((1 + α)V − pn∗2 )+ − δE((k + α)V − pr∗2 )+ + δE((k + α)V − pr∗2 )+)

+ (1− a∗)δE((1 + α)V − pn∗2 )+

=δE((1 + α)V − pn∗2 )+.
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Therefore, the equilibrium total customer surplus is given by S∗
c = E[δE((1+α)V − pn∗2 )+X] = δE[((1+

α)V − pn∗2 )+X].

We now compute the equilibrium total customer surplus in the scenario of myopic customers, S̃∗
c .

Since the customers are myopic, they get zero utility in period 1. Hence, in period 2, the expected surplus

of a new customer is δE((1 + α)V − pn∗2 )+, whereas that of a repeat customer is δE((k + α)V − pr∗2 )+.

Therefore, the total customer surplus is given by

S̃∗
c =E[δE((1 + α)V − pn∗2 )+(X − Q̃∗

1)
+] + E[δE((k + α)V − pr∗2 )+(X ∧ Q̃∗

1)]

=δE[((1 + α)V − pn∗2 )+(X − Q̃∗
1)

+] + δE[((k + α)V − pr∗2 )+(X ∧ Q̃∗
1)].

This proves part (a).

Part (b). We first compute Su∗
c . If a customer is a new customer in period 2, her expected total

surplus is δE((1 + α)V − pu∗2 )+. Hence, the expected surplus of a strategic customer in the NTR model

is given by:

au∗(µ− pu∗1 + δE((k + α)V − pu∗2 )+) + (1− au∗)δE((1 + α)V − pu∗2 )+

=au∗(µ− µ+ δE((1 + α)V − pu∗2 )+ − δE((k + α)V − pu∗2 )+ + δE((k + α)V − pu∗2 )+)

+ (1− au∗)δE((1 + α)V − pu∗2 )+

=δE((1 + α)V − pu∗2 )+.

Therefore, the equilibrium total customer surplus is given by Su∗
c = E[δE((1+α)V −pu∗2 )+X] = δE[((1+

α)V − pu∗2 )+X].

We now compute S̃u∗
c . Since the customers are myopic, they get zero utility in period 1. Hence,

in period 2, the expected surplus of a new customer is δE((1 + α)V − pu∗2 )+, whereas that of a repeat

customer is δE((k + α)V − pu∗2 )+. Therefore, the total customer surplus is given by

S̃u∗
c =E[δE((1 + α)V − pu∗2 )+(X − Q̃u∗

1 )+] + E[δE((k + α)V − pu∗2 )+(X ∧ Q̃u∗
1 )]

=δE[((1 + α)V − pu∗2 )+(X − Q̃u∗
1 )+] + δE[((k + α)V − pu∗2 )+(X ∧ Q̃u∗

1 )].

This proves part (b).

Part (c). Note that, by Theorem 4.4.2(a), pr∗2 ≤ pu∗2 ≤ pn∗2 with probability 1. It follows immedi-

ately that Su∗
c = δE[((1 + α)V − pu∗2 )+X] ≥ δE[((1 + α)V − pn∗2 )+X] = S∗

c . In particular, if k < 1 and

Qu∗
1 > 0, pu∗2 < pn∗2 with probability 1 and thus Su∗

c > S∗
c . This proves part (c). Q.E.D.

Proof of Lemma 9: Part (a). Let W2(p
n
2 , p

r
2|Xn

2 , X
r
2 ) be the expected social welfare in period 2

when the price for new customers is pn2 , and that for repeat customers is pr2. Since all new (repeat)

customers with valuation (1 + α)V ≥ pn2 ((k + α)V ≥ pr2) will make a purchase (trade the used prod-

ucts in), the firm profit equals (pn2 − c2)Ḡ(
pn
2

1+α )X
n
2 + (pr2 − c2 + r2)Ḡ(

pr
2

k+α )X
r
2 , the expected customer

surplus equals Xn
2 E((1 + α)V − pn2 )

+ + Xr
2E((k + α)V − pr2)

+, and the environmental impact equals

κ2X
n
2 Ḡ(

pn
2

1+α ) + (κ2 − ι2)X
r
2 Ḡ(

pr
2

k+α ). Therefore, W2(p
n
2 , p

r
2|Xn

2 , X
r
2 ) = Xn

2 wn(p
n
2 ) +Xr

2wr(p
r
2), where

wn(p
n
2 ) := (pn2 − c2 − κ2)Ḡ(

pn2
1 + α

) + E((1 + α)V − pn2 )
+ = E((1 + α)V − c2 − κ2)1{(1+α)V≥p2},

263



and

wr(p
r
2) := (pr2−c2+r2−κ2+ι2)Ḡ(

pr2
k + α

)+E((k+α)V −pr2)+ = E((k+α)V −c2+r2−κ2+ι2)1{(k+α)V≥pr
2}.

Thus, w′
n(p

n
2 ) =

pn
2 −c2−κ2

1+α g(
pn
2

1+α ) and w
′
r(p

r
2) =

pr
2−c2+r2−κ2+ι2

k+α g(
pr
2

k+α ). Thus, w
′
n(p

n
2 ) > 0 if pn2 < c2+κ2

and w′
n(p

n
2 ) < 0 if pn2 > c2 + κ2. Analogously, w′

r(p
r
2) > 0 if pr2 < c2 + κ2 − r2 − ι2 and w′

r(p
r
2) < 0 if

pr2 > c2 + κ2 − r2 − ι2. Hence, the unique maximizer of wn(·) is c2 + κ2, and the unique maximizer of

wr(·) is c2 + κ2 − r2 − ι2. Finally, it is straightforward to check that c2 + κ2 − r2 − ι2 ≤ c2 + κ2, with

the inequality being strict if and only if r2 > 0 or ι2 > 0. Therefore, pns,2(X
n
2 , X

r
2 ) ≡ pn∗s,2 = c2 + κ2 and

prs,2(X
n
2 , X

r
2 ) ≡ pr∗s,2 = c2 + κ2 − r2 − ι2 for any realized (Xn

2 , X
r
2 ). This proves part (a).

Part (b). Under the equilibrium prices (pn∗s,2, p
r∗
s,2), a new customer will make a purchase if and only

if her valuation (1 + α)V ≥ pn∗s,2, whereas a repeat customer will make a purchase (and join the trade-in

program) if and only if her valuation (k + α)V ≥ pr∗s,2. Therefore,

Qn
s,2(X

n
2 , X

r
2 ) = E[Xn

2 1{(1+α)V≥pn∗
s,2}|X

n
2 ] = Xn

2 Ḡ

(
pn∗s,2
1 + α

)
,

and

Qr
s,2(X

n
2 , X

r
2 ) = E[Xr

21{(k+α)V≥pr∗
s,2}|X

r
2 ] = Xr

2 Ḡ

(
pr∗s,2
k + α

)
,

which proves part (b).

Part (c). Plugging pn∗s,2 and pr∗s,2 into wn
2 (·) and wr

2(·), respectively, we have wn
2 (p

n∗
s,2) = E[(1+α)V −

pn∗s,2]
+ and wr

2(p
r∗
s,2) = E[(1 +α)V − pr∗s,2]

+. Therefore, w2(X
n
2 , X

r
2 ) = Xn

2 E[(1 +α)V − pn∗s,2]
+ +Xr

2E[(1 +

α)V − pr∗s,2]
+. This completes the proof of part (c). Q.E.D.

Proof of Lemma 10: Part (a). Let Ws(Q1) be the expected social welfare with first-period pro-

duction quantity Q1 under strategic customer behavior. Following the same argument as the proof of

Theorem 4.3.1(a), we have

p∗s,1 = µ+ δE[(k + α)V − pr∗s,2]
+ − δE[(1 + α)V − pn∗s,2]

+

= µ+ δE[(k + α)V − pr∗s,2]
+ − δE[(1 + α)V − pn∗s,2]

+

= µ+ δ(β∗
s,r − β∗

s,n)

= m∗
s,1,

which proves part (a-i).

We now compute Ws(Q1). By Lemma 9(c), w2(X
n
2 , X

r
2 ) = β∗

s,nX
n
2 + β∗

s,rX
r
2 , so

Ws(Q1) = p∗s,1E(X ∧Q1) + (µ− p∗s,1)(X ∧Q1)− (c1 + κ1)Q1 + (r1 + ι1)E(Q1 −X)+

+δE{w2(X − (X ∧Q1), X ∧Q1)}

= (µ− r1 − ι1)E(X ∧Q1)− (c1 − r1 + κ1 − ι1)Q1 + δE{β∗
s,n(X − (X ∧Q1)) + β∗

s,r(X ∧Q1)}

= (m∗
s,1 − r1 − ι1)E(X ∧Q1)− (c1 − r1 + κ1 − ι1)Q1 + δβ∗

s,nE(X).
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Therefore, Q∗
s,1 is the solution to a newsvendor problem with marginal revenue m∗

s,1 − r1 − ι1, marginal

cost c1+κ1−r1−ι1, and demand distribution F (·). Hence, Q∗
s,1 = F̄−1( c1+κ1−r1−ι1

m∗
s,1−r1−ι1

), and the equilibrium

social welfare is

W ∗
s =Ws(Q

∗
s,1) = (m∗

s,1 − r1 − ι1)E(X ∧Q∗
s,1)− (c1 − r1 + κ1 − ι1)Q1 + δβ∗

s,nE(X).

This proves part (a-ii,iii).

Part (b). Let W̃s(Q1) be the expected social welfare with myopic customers, if the first-period

production quantity is Q1. The willingness-to-pay of myopic customers is their expected valuation of the

first-generation product µ. Thus, p̃∗s,1 = µ. This proves part (b-i).

We now compute W̃s(Q1). By Lemma 9(c), w2(X
n
2 , X

r
2 ) = β∗

s,nX
n
2 + β∗

s,rX
r
2 , so

W̃s(Q1) = p̃∗s,1E(X ∧Q1) + (µ− p̃∗s,1)(X ∧Q1)− (c1 + κ1)Q1 + (r1 + ι1)E(Q1 −X)+

+δE{w2(X − (X ∧Q1), X ∧Q1)}

= (µ− r1 − ι1)E(X ∧Q1)− (c1 − r1 + κ1 − ι1)Q1 + δE{β∗
s,n(X − (X ∧Q1)) + β∗

s,r(X ∧Q1)}

= (m̃∗
s,1 − r1 − ι1)E(X ∧Q1)− (c− r1 + κ1 − ι1)Q1 + δβ∗

s,nE(X).

Therefore, Q̃∗
s,1 is the solution to a newsvendor problem with marginal revenue m̃∗

s,1 − r1 − ι1, marginal

cost c1+κ1−r1−ι1, and demand distribution F (·). Hence, Q̃∗
s,1 = F̄−1( c1+κ1−r1−ι1

m̃∗
s,1−r1−ι1

), and the equilibrium

social welfare is

W̃ ∗
s = W̃s(Q̃

∗
s,1) = (m̃∗

s,1 − r1 − ι1)E(X ∧ Q̃∗
s,1)− (c− r1 + κ1 − ι1)Q̃1 + δβ∗

s,nE(X).

This proves part (b-ii,iii).

Part (c). Since p∗s,1 − p̃∗s,1 = β∗
s,r − β∗

s,n = e∗s, p
∗
s,1 ≥ p̃∗s,1 if and only if e∗s ≥ 0. The equalities

Q∗
s,1 = Q̃∗

s,1 and W ∗
s = W̃ ∗

s follow from the fact that m∗
s,1 = m̃∗

s,1. This establishes part (c). Q.E.D.

Proof of Theorem 4.5.1: Part (a). With the unit subsidy rate sr for remanufactured products,

the expected per demand profit from repeat customers vr2(p
r
2) = (pr2 + sr + s2 − c2 + r2)Ḡ(

pr
2

k+α ). Since

∂pr
2
∂srv

r
2(p

r
2) = − 1

1+αg(
pr
2

1+α ) ≤ 0, vr2(p
r
2) is submodular in (pr2, sr). Hence, pr∗2 = argmaxpr

2≥0v
r
2(p

r
2)

is continuously decreasing in sr. This completes the proof of part (a-i). Because Qr
2(X

n
2 , X

r
2 ) =

Xr
2 Ḡ
(

pr∗
2

k+α

)
and pr∗2 is decreasing in sr, Q

r
2(X

n
2 , X

r
2 ) is increasing in sr, which proves part (a-ii).

Part (b). By Theorem 4.3.1(a), p∗1 = µ + δ[E((k + α)V − pr∗2 )+ − E((1 + α)V − pn∗2 )+], which is

decreasing in pr∗2 . Since pr∗2 is decreasing in sr, p
∗
1 is increasing in sr. With the unit subsidy rate sr for

remanufactured product,

Πf (Q1) = (p∗1 − r1 − sr)E(X ∧Q1)− (c1 − r1 − sr)Q1 + δβ∗
nE(X),

Hence, Q∗
1 = F̄−1

(
c1−r1−sr
p∗
1−r1−sr

)
. The critical fractile c1−r1−sr

p∗
1−r1−sr

is decreasing in p∗1 and sr. Therefore, Q
∗
1 is

increasing in sr. For each Q1, Πf (Q1) is increasing in sr. Thus, Π
∗
f = maxQ1≥0 Πf (Q1) is increasing in

sr. By Lemma 27(a), I∗e = Ie(Q
∗
1), which is increasing in Q∗

1. Thus, I∗e is increasing in sr as well. This

establishes part (b).
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Part (c). By Theorem 4.3.1(b), p̃∗1 = µ, which is independent of sr. With the unit subsidy rate sr

for remanufactured product,

Π̃f (Q1) = (p̃∗1 − r1 − sr)E(X ∧Q1)− (c1 − r1 − sr)Q1 + δβ∗
nE(X),

Hence, Q̃∗
1 = F̄−1

(
c1−r1−sr
p̃∗
1−r1−sr

)
. The critical fractile c1−r1−sr

p̃∗
1−r1−sr

is decreasing in sr. Therefore, Q̃∗
1 is in-

creasing in sr. For each Q1, Π̃f (Q1) is increasing in sr. Thus, Π̃∗
f = maxQ1≥0 Π̃f (Q1) is increasing in

sr. By Lemma 27(b), Ĩ∗e = Ĩe(Q
∗
1), which is increasing in Q̃∗

1. Thus, Ĩ∗e is increasing in sr as well. This

establishes part (c). Q.E.D.

Proof of Theorem 4.5.2: Part (a). If s∗2 is the solution to pn∗s,2 = argmaxpn
2≥0(p

n
2 + s2 − c2)Ḡ

(
pn
2

1+α

)
,

it is clear that the subsidy/tax scheme with s2 = s∗2 can induce the equilibrium price for new customers

pn∗s,2. We now show that s∗2 exists. Since vn2 (p
n
2 ) is quasiconcave in p

n
2 for any s2, the first-order condition

∂pn
2
vn2 (p

n
2 ) = 0 guarantees the optimal price for new customers. Moreover,

∂pn
2
vn2 (p

n∗
s,2) = Ḡ

(
pn∗s,2
1 + α

)
−
pn∗s,2 + s2 − c2

1 + α
g

(
pn∗s,2
1 + α

)
,

which is strictly decreasing in s2. Hence, there exists a unique s∗2, such that ∂pn
2
vn2 (p

n∗
s,2) = 0, thus

inducing the socially optimal equilibrium price for new customers pn∗s,2. This proves part (a-i).

If s∗r is the solution to pr∗s,2 = argmaxpr
2≥0(p

r
2 + s∗2 + sr − c2 + r2)Ḡ

(
pr
2

k+α

)
, the subsidy/tax scheme

with sr = s∗r can induce the equilibrium trade-in price for repeat customers pr∗s,2. We now show that

s∗r exists. Since vr2(p
r
2) is quasiconcave in pr2 for any (s2, sr), the first-order condition ∂pr

2
vr2(p

r
2) = 0

guarantees the optimal price for new customers. Moreover, if s2 = s∗2,

∂pr
2
vr2(p

r∗
s,2) = Ḡ

(
pr∗s,2
k + α

)
−
pr∗s,2 + s∗2 + sr − c2 + r2

k + α
g

(
pr∗s,2
k + α

)
,

which is strictly decreasing in sr. Hence, there exists a unique s∗r , such that ∂pr
2
vr2(p

r∗
s,2) = 0 if s2 = s∗2,

thus inducing the socially optimal equilibrium trade-in price for repeat customers pr∗s,2. This proves part

(a-ii).

Given the subsidy/tax scheme (s1, s
∗
2, s

∗
r), as shown above, the firm adopts the same second-period

pricing strategy as the social welfare maximizing one: (pn∗s,2, p
r∗
s,2). Hence, the first-period price should

also be the same as the one which is socially optimal and characterized by Lemma 10(a): p∗s,1 = µ +

δ[β∗
s,r − β∗

s,n]. Thus, the expected profit of the firm in period 1 is

Πs
f (Q1) = (p∗s,1 + s1 − r1)E(X ∧Q1)− (c1 − r1)Q1 + δE[(X −X ∧Q1)(p

n∗
s,2 + s∗2 − c2)Ḡ

(
pn∗s,2
1 + α

)
+(X ∧Q1)(p

r∗
s,2 + s∗2 + s∗r − c2 + r2)Ḡ

(
pr∗s,2
k + α

)
]

= (ms
1(s1)− r1)E(X ∧Q1)− (c1 − r1)Q1 + δ(pn∗s,2 + s∗2 − c2)Ḡ

(
pn∗s,2
1 + α

)
E(X),

where ms
1(s1) = s1+m∗

s,1 + δ[(κ2 + s∗2 + s∗r − ι2)Ḡ(
pr∗
s,2

k+α )− (κ2 + s∗2)Ḡ(
pn∗
s,2

1+α )]. Thus, Π
s
f (Q1) has a unique

optimizer F̄−1( c1−r1
ms

1(s1)−r1
). Moreover, as shown in Lemma 10, Q∗

s,1 = F̄−1(
c1+κ1−r1−ι1−s∗r

m∗
s,1−r1−s∗r

). Therefore,

if s∗1 is the unique solution to c1−r1
ms

1(s1)−r1
=

c1+κ1−r1−ι1−s∗r
m∗

s,1−r1−s∗r
, the optimal production quantity with the
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linear subsidy/tax scheme s∗g = (s∗1, s
∗
2, s

∗
r) is Q

∗
s,1, which is the socially optimal first-period production

quantity. This proves part (a-iii).

We now show that s∗2 is increasing in κ2. As shown in part (a-i), s∗2 satisfies

Ḡ
(

pn∗
s,2

1+α

)
− pn∗

s,2+s∗2−c2
1+α g

(
pn∗
s,2

1+α

)
= 0, i.e.,

s∗2 =
(1 + α)Ḡ

(
pn∗
s,2

1+α

)
g
(

pn∗
s,2

1+α

) − pn∗s,2 + c2 =
(1 + α)Ḡ

(
c2+κ2

1+α

)
g
(

c2+κ2

1+α

) − κ2.

Because g(v)/Ḡ(v) is increasing in v, s∗2 is strictly decreasing in κ2. Analogously, by part (a-ii), s∗r

satisfies Ḡ
(

pr∗
s,2

k+α

)
− pr∗

s,2+s∗2+sr−c2+r2
k+α g

(
pr∗
s,2

k+α

)
= 0, i.e.,

s∗r =
(k + α)Ḡ

(
pr∗
s,2

k+α

)
g
(

pr∗
s,2

k+α

) − pr∗s,2 − s∗2 + c2 − r2 =
(k + α)Ḡ

(
c2−r2+κ2−ι2

k+α

)
g
(

c2−r2+κ2−ι2
k+α

) − s∗2 − κ2 + ι2.

Because g(v)/Ḡ(v) is increasing in v, s∗r is strictly increasing in ι2.

By part (a-iii), s∗1 satisfies c1−r1
ms

1(s
∗
1)−r1

=
c1+κ1−r1−ι1−s∗r

m∗
s,1−r1−s∗r

, the left-hand-side of which is strictly de-

creasing in s∗1, whereas the right-hand-side of which is strictly increasing in κ1. Therefore, s
∗
1 is strictly

decreasing in κ1. This proves part (a-iv).

Define κ̄s2 as the solution to
(1+α)Ḡ( c2+κ2

1+α )
g( c2+κ2

1+α )
= κ2, ῑ

s
2 as the solution to

(k+α)Ḡ( c2−r2+κ2−ι2
k+α )

g( c2−r2+κ2−ι2
k+α )

− s∗2 −

κ2 + ι2 = 0, and κ̄s1 as the solution to c1−r1
ms

1(0)−r1
=

c1+κ1−r1−ι1−s∗r
m∗

s,1−r1−s∗r
. Since g(v)/Ḡ(v) is increasing in v,

κ̄s2, ῑ
s
2, and κ̄

s
1 are well-defined and unique. By the proof of part (a-iv), s∗2 is strictly decreasing in κ2, s

∗
r

is strictly increasing in ι2, and s
∗
1 is strictly decreasing in κ1. Therefore, s∗1 ≥ 0 if and only if κ1 ≤ κ̄s1,

s∗2 ≥ 0 if and only if κ2 ≤ κ̄s2, and s
∗
r ≥ 0 if and only if ι2 ≥ ῑs2. This proves part (a-v).

Part (b). By Lemma 9 and Lemma 10 (c), the social-welfare-maximizing equilibrium outcome is

the same with strategic customers and with myopic customers, except that p∗s,1 = m∗
s,1 and p̃∗s,1 = µ.

Therefore, exactly the same argument as the proof of part (a) proves part (b) as well. In particular,

since the second-period decisions should be independent of whether the customers are strategic or myopic,

s∗2 = s̃∗2 and s∗r = s̃∗r .

Part (c). Since m∗
s,1 = m̃∗

s,1, parts (a) and (b) imply that c1−r1
ms

1(s
∗
1)−r1

= c1−r1
m̃s

1(s̃
∗
1)−r1

. Thus, ms
1(s

∗
1) =

m̃s
1(s̃

∗
1) and, hence, s

∗
1+m

∗
s,1 = s̃∗1+µ, i.e., s

∗
1−s̃∗1 = µ−m∗

s,1 = −e∗s. Therefore, s∗1 ≥ s̃∗1 if and only if e∗s ≤

0. Moreover, since κ̄s1 satisfies c1−r1
ms

1(0)−r1
=

c1+κ̄s
1−r1−ι1−s∗r

m∗
s,1−r1−s∗r

and ˜̄κs1 satisfies c1−r1
m̃s

1(0)−r1
=

c1+˜̄κs
1−r1−ι1−s∗r

m̃∗
s,1−r1−s∗r

.

Because m∗
s,1 = m̃∗

s,1, κ̄
s
1 ≥ ˜̄κs1 if and only if ms

1(0) ≤ m̃s
1(0), i.e., e

∗
s ≤ 0. This proves part (c). Q.E.D.

Proof of Theorem 4.5.3: Part (a). We first compute C∗
g = Cg(s

∗
g) and C̃∗

g = C̃g(s̃
∗
g), observe

that

Cg(s
∗
g) =E{s∗1(X ∧Q∗

s,1) + s∗r(Q
∗
s,1 −X)+

+ δ[s∗2Q
n
s,2((X −Q∗

s,1)
+, X ∧Q∗

s,1) + (s∗r + s∗2)Q
r
s,2((X −Q∗

s,1)
+, X ∧Q∗

s,1)]},

and

C̃g(s̃
∗
g) =E{s̃∗1(X ∧ Q̃∗

s,1) + s̃∗r(Q̃
∗
s,1 −X)+

+ δ[s̃∗2Q̃
n
s,2((X − Q̃∗

s,1)
+, X ∧ Q̃∗

s,1) + (s∗r + s∗2)Q̃
r
s,2((X − Q̃∗

s,1)
+, X ∧ Q̃∗

s,1)]}.
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By Lemma 10(c) and Theorem 4.5.2(c), Q∗
s,1 = Q̃∗

s,1, s
∗
2 = s̃∗2, and s

∗
r = s̃∗r , it follows immediately that

Cg(s
∗
g)− C̃g(s̃

∗
g) = (s∗1 − s̃∗1)E(X ∧Q∗

s,1), which proves part (a).

Part (b). By part (a), C∗
g ≥ C̃∗

g if and only if s∗1 ≥ s̃∗1. By Theorem 4.5.2(c), s∗1 ≥ s̃∗1 if and only

if e∗s ≤ 0. Since e∗s = E((k + α)V − c2 − κ2 + r2 + ι2)
+ − E((1 + α)V − c2 − κ2)

+ is strictly increasing

in r2 + ι2. Hence, let V̄ := min{r2 + ι2 : e∗s ≥ 0}. It follows immediately that e∗s ≤ 0 if and only if

r2 + ι2 ≤ V̄2. We observe that E((k + α)V − c2 − κ2)
+ − E((1 + α)V − c2 − κ2)

+ < 0. Thus, V̄2 > 0.

This establishes part (b). Q.E.D.
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D. Appendix for Chapter 5

D.1 Proofs of Statements

We use ∂ to denote the derivative operator of a single variable function, ∂x to denote the partial

derivative operator of a multi-variable function with respect to variable x, and 1{·} to denote the indicator

function. The following lemma is used throughout our proof.

Lemma 28 Let Fi(z, Z) be a continuously differentiable and jointly concave function in (z, Z) for i =

1, 2, where z ∈ [z, z̄] (z and z̄ might be infinite) and Z ∈ Rn. For i = 1, 2, let

(zi, Zi) := argmax(z,Z)Fi(z, Z),

be the optimizers of Fi(·, ·). If z1 < z2, we have:

∂zF1(z1, Z1) ≤ ∂zF2(z2, Z2).

Proof: z1 < z2, so z ≤ z1 < z2 ≤ z̄. Hence, ∂zF1(z1, Z1)

= 0 if z1 > z,

≤ 0 if z1 = z;

and ∂zF2(z2, Z2)

= 0 if z2 < z̄,

≥ 0 if z2 = z̄.

i.e., ∂zF1(z1, Z1) ≤ 0 ≤ ∂zF2(z2, Z2). Q.E.D.

Proof of Lemma 11: Since p(·) and γ(·) are twice continuously differentiable, R(·, ·) is twice con-

tinuously differentiable, and jointly concave in (dt, I
a
t ) if and only if the Hessian of R(dt, I

a
t ) is neg-

ative semi-definite, i.e., ∂2dt
R(dt, I

a
t ) ≤ 0, and ∂2dt

R(dt, I
a
t )∂

2
Ia
t
R(dt, It) ≥ (∂dt∂Ia

t
R(dt, I

a
t ))

2, where

∂2dt
R(dt, I

a
t ) = p′′(dt)(dt + γ(Iat )) + 2p′(dt), ∂dt∂Ia

t
R(dt, I

a
t ) = p′(dt)γ

′(Iat ), and ∂
2
Ia
t
R(dt, I

a
t ) = (p(dt) −

b − α(c + rd))γ
′′(Iat ). It is easily verified that the Hessian of R(dt, I

a
t ) is negative semi-definite if and

only if (p′′(dt)(dt + γ(Iat )) + 2p′(dt))(p(dt)− b− α(c+ rd))γ
′′(Iat ) ≥ (p′(dt)γ

′(Iat ))
2. Q.E.D.

Proof of Lemma 12: For part (a), if γ′′(Iat ) = 0, the left hand side of (5.3) equals to 0. Since

the right hand side of (5.3) is greater than or equal to 0 and (p′(dt))
2 > 0, the (5.3) holds only if

γ′(Iat ) = 0. For the second half of part (a), it suffices to show that if γ′(I0) = 0, γ′(Iat ) = 0 for any

Iat ≤ I0. Since γ′′(Iat ) ≤ 0 for all Iat ≤ Ka, γ
′(Iat ) ≥ γ′(I0) = 0 for any Iat ≤ I0. On the other hand,

γ′(Iat ) ≤ 0 for all Iat ≤ Ka, so γ
′(Iat ) = 0 and, thus, γ′′(Iat ) = 0 for all Iat ≤ I0.

Part (b): By part (a), for any Iat such that γ′′(Iat ) = 0, γ′(Iat ) = 0. (γ′(Iat ))
2 ≤ −Mγ′′(Iat ) for any

0 < M < +∞. Now we suppose γ′′(Iat ) ̸= 0. Since p(·), p′(·) and p′′(·) are continuous functions defined

on a compact set [d, d̄] with p′(·) < 0 and γ(Ka) ≤ γ(Iat ) ≤ γ0, (p
′′(dt)(dt + γ(Iat )) + 2p′(dt))(p(dt)− b−

α(c+ rd))/(p
′(dt))

2 is uniformly bounded from below by a constant number, and we define this number

269



to be −M . Hence, by (5.3), (γ′(Iat ))
2 ≤ −Mγ′′(Iat ). Q.E.D.

Proof of Lemma 13:

Part (a). Observe that p̂′δ(·) ≡ p′(·) and p̂′′δ (·) ≡ p′′(·) for any δ > 0. Thus, let

m := max
dt∈[d,d̄],Ia

t ≤Ka

{ p̂
′′
δ (dt)(dt + γ(Iat )) + 2p̂′δ(dt)

(p̂′δ(dt))
2

} = max
dt∈[d,d̄],Ia

t ≤Ka

{p
′′(dt)(dt + γ(Iat )) + 2p′(dt)

(p′(dt))2
} < 0,

k := min
dt∈[d,d̄]

{p(dt)− b− α(c+ rd)} ≥ 0,

and

δ∗ := −M
m

− k < +∞.

Therefore, for any δ ≥ δ∗, dt ∈ [d, d̄], Iat ≤ Ka,

(p̂′′δ (dt)(dt + γ(Iat )) + 2p̂′δ(dt))(p̂δ(dt)− b− α(c+ rd))

(p̂′δ(dt))
2

γ′′(Iat )

=
p′′(dt)(dt + γ(Iat )) + 2p′(dt)

(p′(dt))2
(p(dt) + δ − b− α(c+ rd))γ

′′(Iat )

≥p
′′(dt)(dt + γ(Iat )) + 2p′(dt)

(p′(dt))2
(−M

m
− k + p(dt)− b− α(c+ rd))γ

′′(Iat )

≥p
′′(dt)(dt + γ(Iat )) + 2p′(dt)

(p′(dt))2
· (−M

m
)γ′′(Iat )

≥−Mγ′′(Iat )

≥(γ′(Iat ))
2,

where the first inequality follows from δ ≥ δ∗, the second from p(dt) − b − α(c + rd) ≥ k, the third

from the definition of m and the last from the assumption that −Mγ′′(Iat ) ≥ (γ′(Iat ))
2 for any Iat ≤ Ka.

Hence, by (5.3), for any δ ≥ δ∗, R̂δ(·, ·) is jointly concave on dt ∈ [d, d̄], Iat ≤ Ka.

Part (b). Observe that γ̂′ς(·) ≡ γ′(·) and γ̂′′ς (·) ≡ γ′′(·) for any ς > 0. Since p′′(dt) ̸= 0, let

n := max
dt∈[d,d̄]

{ (p(dt)− b− α(c+ rd))p
′′(dt)

(p′(dt))2
} < 0, l := min

dt∈[d,d̄],Ia
t ≤Ka

{γ(Iat ) + dt +
2p′(dt)

p′′(dt)
} > 0,

and

ς∗ := −M
n

− l < +∞.

Therefore, for any ς ≥ ς∗, dt ∈ [d, d̄], Iat ≤ Ka,

(p′′(dt)(dt + γ̂ς(I
a
t )) + 2p′(dt))(p(dt)− b− α(c+ rd))

(p′(dt))2
γ̂′′ς (I

a
t )

=
(p(dt)− b− α(c+ rd))(p

′′(dt)(dt + γ(Iat ) + ς) + 2p′(dt))

(p′(dt))2
γ′′(Iat )

=
(p(dt)− b− α(c+ rd))p

′′(dt)

(p′(dt))2
(ς + γ(Iat ) + dt +

2p′(dt)

p′′(dt)
)γ′′(Iat )

≥ (p(dt)− b− α(c+ rd))p
′′(dt)

(p′(dt))2
(−M

n
− l + γ(Iat ) + dt +

2p′(dt)

p′′(dt)
)γ′′(Iat )

≥ (p(dt)− b− α(c+ rd))p
′′(dt)

(p′(dt))2
(−M

n
)γ′′(Iat )

≥−Mγ′′(Iat )

≥(γ′(Iat ))
2 = (γ̂′ς(I

a
t ))

2,
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where the first inequality follows from ς ≥ ς∗, the second from γ(Iat )+dt+
2p′(dt)
p′′(dt)

≥ l, the third from the

definition of n and the last from the assumption that −Mγ′′(Iat ) ≥ (γ′(Iat ))
2 for any Iat ≤ Ka. Hence,

by (5.3), for any ς ≥ ς∗, R̂ς(·, ·) is jointly concave on dt ∈ [d, d̄], Iat ≤ Ka. Q.E.D.

Proof of Lemma 14: We prove parts (a) - (b) together by backward induction.

We first show, by backward induction, that if Vt−1(I
a
t−1, It−1)−rdIat−1−cIt−1 is concavely decreasing

in both Iat−1 and It−1, both gt(x
a
t , xt, dt, I

a
t ) := E{Gt(x

a
t − δ(p(dt), I

a
t , ϵt), xt − δ(p(dt), I

a
t , ϵt))} and

Jt(x
a
t , xt, dt, I

a
t , It) are jointly concave, gt(·, ·, ·, Iat ) and Jt(·, ·, ·, Iat , It) are strictly concave for any fixed

Iat and It, and Vt(I
a
t , It) − rdI

a
t − cIt is jointly concave and decreasing in Iat and It. It is clear that

V0(I
a
0 , I0)− rdI

a
0 − cI0 = −rdIa0 − cI0 is jointly concave, and decreasing in Ia0 and I0. Hence, the initial

condition holds.

Assume that Vt−1(I
a
t−1, It−1)−rdIat−1−cIt−1 is concavely decreasing in both Iat−1 and It−1. Therefore,

Gt(x, y) is jointly concave and decreasing in x and y. For every realization of ϵt = (ϵat , ϵ
m
t ), we verify that

Gt(x
a
t − δ(p(dt), I

a
t , ϵt), xt − δ(p(dt), I

a
t , ϵt)) is jointly concave in (xat , xt, dt, I

a
t )as follows: let 0 ≤ λ ≤ 1,

xa∗ := λxa1 + (1− λ)xa2 , x∗ := λx1 + (1− λ)x2, d∗ := λd1 + (1− λ)d2 and Ia∗ := λIa1 + (1− λ)Ia2 , we have:

λGt(x
a
1 − (d1 + γ(I1))ϵ

m
t − ϵat , x1 − (d1 + γ(I1))ϵ

m
t − ϵat )

+ (1− λ)Gt(x
a
2 − (d2 + γ(I2))ϵ

m
t − ϵat , x2 − (d2 + γ(I2))ϵ

m
t − ϵat )

≤Gt(x
a
∗ − (d∗ + λγ(I1) + (1− λ)γ(I2))ϵ

m
t − ϵat , x∗ − (d∗ + λγ(I1) + (1− λ)γ(I2))ϵ

m
t − ϵat )

≤Gt(x
a
∗ − (d∗ + γ(I∗))ϵ

m
t − ϵat , x∗ − (d∗ + γ(I∗))ϵ

m
t − ϵat ),

where the first inequality follows from the joint concavity of Gt(·, ·), the second from the concavity of

γ(·), the monotonicity that Gt(·, ·) is decreasing in both of its arguments, and ϵmt ≥ 0. Since concavity is

preserved under expectation, gt(x
a
t , xt, dt, I

a
t ) = E{Gt(x

a
t − δ(p(dt), Iat , ϵt), xt− δ(p(dt), Iat , ϵt))} is jointly

concave in (xat , xt, dt, I
a
t ). Note that R(dt, I

a
t ) is jointly concave in (dt, I

a
t ), −θ(xt−It)− is jointly concave

in (xt, It), and −(rd+rw)(x
a
t −Iat )− is jointly concave in (xat , I

a
t ). Therefore, Jt(x

a
t , xt, dt, I

a
t , It) is jointly

concave in (xat , xt, dt, I
a
t , It). The strict concavity of gt(·, ·, ·, Iat ) follows directly from the continuous

distribution of Dt and that its support is an interval. Since gt(·, ·, ·, Iat ) is strictly concave and R(·, Iat )

is concave for any fixed Iat , Jt(·, ·, ·, Iat , It) is strictly jointly concave for any fixed Iat and It.

Concavity is preserved under maximization (see, e.g., Section 3.2.5 of [32]), so the joint concavity of

Vt(I
a
t , It) follows immediately from the joint concavity of Jt(·, ·, ·, ·, ·). We now verify that Vt(I

a
t , It) is

decreasing in both Iat and It. Observe that γ(Iat ), −(rd+rw)(x
a
t −Iat )−, and Gt(x

a
t −δ(p(dt), Iat , ϵt), xt−

δ(p(dt), I
a
t , ϵt)) are decreasing in Iat , and −θ(xt − It)

− is decreasing in It. Hence, Jt(x
a
t , xt, dt, I

a
t , It) is

decreasing in Iat and It for any fixed (xat , xt, dt). Assume Ia1 > Ia2 , we have F (Ia1 ) ⊂ F (Ia2 ). Hence, for

any It,

Vt(I
a
1 , It)− rdI

a
1 − cIt = max

(xa
t ,xt,dt)∈F (Ia

1 )
Jt(x

a
t , xt, dt, I

a
1 , It)

≤ max
(xa

t ,xt,dt)∈F (Ia
2 )
Jt(x

a
t , xt, dt, I

a
2 , It) = Vt(I

a
2 , It)− rdI

a
2 − cIt,
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where the inequality follows from the monotonicity that Jt(x
a
t , xt, dt, I

a
t , It) is decreasing in Iat , and

F (Ia1 ) ⊂ F (Ia2 ), thus verifying Vt(I
a
t , It) is decreasing in Iat . Analogously, if I1 > I2, for any I

a
t ,

Vt(I
a
t , I1)− rdI

a
t − cI1 = max

(xa
t ,xt,dt)∈F (Ia

t )
Jt(x

a
t , xt, dt, I

a
t , I1)

≤ max
(xa

t ,xt,dt)∈F (Ia
t )
Jt(x

a
t , xt, dt, I

a
t , I2) = Vt(I

a
t , I2)− rdI

a
t − cI2,

where the inequality follows from the monotonicity that Jt(x
a
t , xt, dt, I

a
t , It) is decreasing in It.

Second, we show, again by backward induction, that if Vt−1(·, ·) is continuously differentiable,

gt(·, ·, ·, ·) and Vt(·, ·) are continuously differentiable on the interior of their domains. For t = 0,

Vt(I
a
t , It) = 0 is clearly continuously differentiable. The initial condition holds.

Assume Vt−1(I
a
t−1, It−1) is continuously differentiable,

gt(x
a
t , xt, dt, It) =E{−(b+ ha)(x

a
t − (dt + γ(It))ϵ

m
t − ϵat )

+

+ α[Vt−1(x
a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )

− rd(x
a
t − (dt + γ(Iat ))ϵ

m
t − ϵat )− c(xt − (dt + γ(Iat ))ϵ

m
t − ϵat )]}.

Since ϵat and ϵmt are continuous, it is easy to compute the partial derivatives of gt(·, ·, ·, ·) as follows:

∂xa
t
gt(x

a
t , xt, dt, I

a
t ) =E{−(b+ ha)1{xa

t ≥(dt+γ(It))ϵmt +ϵat }

+ α∂Ia
t−1
Vt−1(x

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )} − αrd,

∂xtgt(x
a
t , xt, dt, I

a
t ) =E{α∂It−1Vt−1(x

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )} − αc,

∂dtgt(x
a
t , xt, dt, I

a
t ) =E{(b+ ha)ϵ

m
t 1{xa

t ≥(dt+γ(Ia
t ))ϵ

m
t +ϵat }

− αϵmt ∂Ia
t−1
Vt−1(x

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )

− αϵmt ∂It−1Vt−1(x
a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )}+ α(rd + c),

∂Ia
t
gt(x

a
t , xt, dt, I

a
t ) =E{(b+ ha)γ

′(Iat )ϵ
m
t 1{xa

t ≥(dt+γ(Ia
t ))ϵ

m
t +ϵat }

− αγ′(Iat )ϵ
m
t ∂Ia

t−1
Vt−1(x

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )

− αγ′(Iat )ϵ
m
t ∂It−1Vt−1(x

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )}

+ α(rd + c)γ′(Iat ),

(D.0)

where the exchangeability of differentiation and expectation is easily justified using the canonical argu-

ment (see, for example, Theorem A.5.1 of [63], the condition of which can be easily checked observing

the continuity of partial derivatives of Vt−1(·, ·), and that the distribution of Dt is continuous.). Since

at least one of ϵat and ϵmt follows a continuous distribution, ∂xa
t
gt(x

a
t , xt, dt, I

a
t ), ∂xtgt(x

a
t , xt, dt, I

a
t ),

∂dtgt(x
a
t , xt, dt, I

a
t ) and ∂Ia

t
gt(x

a
t , xt, dt, I

a
t ) are continuous. Therefore, gt(·, ·, ·, ·) is continuously differen-

tiable.

Since gt(·, ·, ·, Iat ) is strictly concave and continuously differentiable, Jt(·, ·, ·, Iat , It) is strictly con-

cave and continuously differentiable. Moreover, Jt(·, ·, ·, ·, ·) is continuously differentiable if xat ̸= Iat and

xt ̸= It, i.e., it is continuously differentiable almost everywhere. By envelope theorem, Vt(·, ·) is also

differentiable on the interior of the feasible set F (Iat ) for xa∗t (Iat , It) ̸= Iat and x∗t (I
a
t , It) ̸= It. For the
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case xa∗t (Iat , It) = Iat or x∗t (I
a
t , It) = It, we show the continuous differentiability of Vt(·, ·) in the proof of

Theorem 5.4.1. This completes the induction and, hence, the proof of Lemma 14. Q.E.D.

Proof of Theorem 5.4.1: Parts (a) - (d) and the differentiability of Vt(I
a
t , It). We first show

parts (a) - (d) and the continuous differentiability of Vt(I
a
t , It).

Observe that if xt > It (i.e., the firm orders),

∂xtJt(x
a
t , xt, d, I

a
t , It) = −ψ + ∂xtgt(x

a
t , xt, dt, I

a
t ) < 0.

Hence, if x∗t (I
a
t , It) > It, x

a∗
t (Iat , It) = x∗t (I

a
t , It) > It ≥ Iat and the optimal policy is given by Equation

(5.7). i.e., if xat (I
a
t ) > It, (x

a∗
t (Iat , It), x

∗
t (I

a
t , It), d

∗
t (I

a
t , It)) = (xat (I

a
t ), x

a
t (I

a
t ), dt(I

a
t )). This completes

the proof of part (b).

If xt < It (i.e., the firm disposes), −θ(xt − It)
− = θ(xt − It). Hence, the objective function

Jt(x
a
t , xt, dt, I

a
t , It) =− θIt +R(dt, I

a
t ) + (θ − ψ)xt − (rd + rw)(x

a
t − Iat )

− + ϕxat

+ E{Gt(x
a
t − δ(p(dt), I

a
t , ϵt), xt − δ(p(dt), I

a
t , ϵt)).

Hence, if x∗t (I
a
t , It) < It, the optimizer prescribed in Equation (5.9) is the optimal policy. i.e., if x̃t(I

a
t ) <

It, (x
a∗
t (Iat , It), x

∗
t (I

a
t , It), d

∗
t (I

a
t , It)) = (x̃at (I

a
t ), x̃t(I

a
t ), d̃t(I

a
t )). Part (c) follows.

Next we show that xat (I
a
t ) ≤ x̃t(I

a
t ). If x

a
t (I

a
t ) > x̃t(I

a
t ), suppose It ∈ (x̃t(I

a
t ), x

a
t (I

a
t )). We have that:Jt(x

a
t (I

a
t ), x

a
t (I

a
t ), dt(I

a
t ), I

a
t , It) > supxa

t ≤It,dt∈[d,d̄]{Jt(xat , It, dt, Iat , It)},

Jt(x̃
a
t (I

a
t ), x̃t(I

a
t ), d̃t(I

a
t ), I

a
t , It) > supxa

t ≤It,dt∈[d,d̄]{Jt(xat , It, dt, Iat , It)}.
(D.1)

By the concavity of Jt(·, ·, ·, Iat , It),

sup
xa
t ≤It,dt∈[d,d̄]

{Jt(xat , It, dt, Iat , It)} ≥ λJt(x
a
t (I

a
t ), x

a
t (I

a
t ), dt(I

a
t ), I

a
t , It)+(1−λ)Jt(x̃at (Iat ), x̃t(Iat ), d̃t(Iat ), Iat , It),

where λxat (I
a
t )+ (1−λ)x̃t(I

a
t ) = It. The above inequality contradicts inequality (D.1). Hence, xat (I

a
t ) ≤

x̃t(I
a
t ). Part (d) thus follows from part (b), part (c), xat (I

a
t ) ≤ x̃t(I

a
t ), and the concavity of Jt(·, ·, ·, Iat , It).

The second part of part (a) summarizes parts (b) - (d).

Since the proof of Lemma 14 already shows that Jt(·, ·, ·, ·, ·) is continuously differentiable, it suffices

to show that Vt(I
a
t , It) is continuously differentiable when xa∗t (Iat , It) = Iat or x∗t (I

a
t , It) = It, given that

Jt(·, ·, ·, ·, ·) is continuously differentiable. We only show that ∂ItVt(I
a
t , It) is continuous at the points

where x∗t (I
a
t , It) = It, because the continuity of ∂Ia

t
Vt(I

a
t , It) at the points where xa∗t (Iat , It) = Iat follows

from the same approach.

By the proof of Lemma 14, it suffices to check that the left and right partial derivatives, ∂ItVt(I
a
t , It−)

and ∂ItVt(I
a
t , It+), are equal when It = xat (I

a
t ) and It = x̃t(I

a
t ). For It = xat (I

a
t ), by the envelope

theorem,∂ItVt(I
a
t , x

a
t (I

a
t )−) = c

∂ItVt(I
a
t , x

a
t (I

a
t )+) = c+ β + ∂xa

t
g(xat (I

a
t ), x

a
t (I

a
t ), dt(I

a
t ), I

a
t ) + ∂xtg(x

a
t (I

a
t ), x

a
t (I

a
t ), dt(I

a
t ), I

a
t ).

The first order condition with respect to xat and xt implies that

β + ∂xa
t
g(xat (I

a
t ), x

a
t (I

a
t ), dt(I

a
t ), I

a
t ) + ∂xtg(x

a
t (I

a
t ), x

a
t (I

a
t ), dt(I

a
t ), I

a
t ) = 0.
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Therefore, ∂ItVt(I
a
t , x

a
t (I

a
t )−) = ∂ItVt(I

a
t , x

a
t (I

a
t )+). For It = x̃t(I

a
t ), by the envelop theorem,∂ItVt(I

a
t , x̃t(I

a
t )−) = c− θ

∂ItVt(I
a
t , x̃t(I

a
t )+) = c− ψ + ∂xtg(x̃

a
t (I

a
t ), x̃t(I

a
t ), d̃t(I

a
t ), I

a
t ).

The first order condition with respect to xt at It = x̃t(I
a
t ) implies that

∂xtg(x̃
a
t (I

a
t ), x̃t(I

a
t ), d̃t(I

a
t ), I

a
t ) + θ − ψ = 0.

Hence, ∂ItVt(I
a
t , x̃t(I

a
t )−) = ∂ItVt(I

a
t , x̃t(I

a
t )+) and the partial derivative ∂ItVt(I

a
t , It) is continuous.

Part (e): Let

Ja
t (x

a
t , dt, I

a
t ) := R(dt, I

a
t ) + βxat + gat (x

a
t , dt, I

a
t ),

where gat (x
a
t , dt, I

a
t ) = E[Ga

t (x
a
t − δ(p(dt), I

a
t , ϵt))], with G

a
t (x) = Ga

t (x, x).

We first show that xat (I
a
t ) is decreasing in Iat . Let γt := γ(Iat ) and yt := dt + γt. Then, we have

Ja
t (x

a
t , dt, I

a
t ) = Ĵa

t (x
a
t , yt, γt), where

Ĵa
t (x

a
t , yt, γt) = R∗(yt, γt) + βxat + E{Ga

t (x
a
t − ytϵ

m
t − ϵat )},

with R∗(yt, γt) := R(yt − γt, I
a
t ). We need the following lemma that establishes the supermodularity of

R∗(·, ·) and R(·, ·):

Lemma 29 (a) R∗(yt, γt) is strictly supermodular in (yt, γt), where yt − γt = dt ∈ [d, d̄] and yt ≥ 0.

In addition, R∗(yt, γt) is strictly concave in yt, for any fixed γt;

(b) R(dt, I
a
t ) is supermodular in (dt, I

a
t ), where dt ∈ [d, d̄] and Iat ≤ Ka. In addition, R(dt, I

a
t ) is

strictly concave in dt, for any fixed Iat .

Proof of Lemma 29: R∗(yt, γt) = (p(yt−γt)−b−α(c+rd))yt is twice continuously differentiable

when yt − γt = dt ∈ [d, d̄] and yt ≥ 0. To prove the supermodularity of R∗(·, ·), it suffices to show

that ∂yt∂γtR
∗(yt, γt) ≥ 0. Direct computation yields that: ∂yt∂γtR

∗(yt, γt) = −(p′′(yt − γt)yt +

p′(yt − γt)). Since p
′(·) < 0 and p′′(·) ≤ 0, −(p′′(yt − γt)yt + p′(yt − γt)) > 0. Hence, R∗(yt, γt) is

strictly supermodular. Moreover, ∂2yt
R∗(yt, γt) = p′′(yt − γt)yt + 2p′(yt − γt) < 0, since p′′(·) ≤ 0

and p′(·) < 0. Hence, R∗(yt, γt) is strictly concave in yt, for any fixed γt. This establishes part

(a).

R(·, ·) is twice continuously differentiable, ∂dt∂Ia
t
R(dt, I

a
t ) = p′(dt)γ

′(Iat ) ≥ 0. Hence, R(·, ·) is

supermodular. In addition, ∂2dt
R(dt, I

a
t ) = p′′(dt)(dt + γ(Iat )) + 2p′(dt) < 0, so R(dt, I

a
t ) is strictly

concave in dt for any fixed Iat .Q.E.D.

As shown in the proof of Lemma 14, Gt(·, ·) and, thus, Ga
t (·), is concave. Note that ϵmt ≥ 0, so,

for any realization of (ϵat , ϵ
m
t ), it is easily verified that Ga

t (xt − ytϵ
m
t − ϵat ) is supermodular in (xt, yt).

Hence, E{Ga
t (xt − ytϵ

m
t − ϵat )} is supermodular in (xt, yt), since supermodularity is preserved under

expectation. By Lemma 29, R∗(yt, γt) is supermodular and, thus, Ĵa
t (xt, yt, γt) is supermodular in
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(xt, yt, γt). Therefore, the optimal order-up-to level, xat (I
a
t ), and optimal expected demand yt(I

a
t ) :=

dt(I
a
t ) + γt are increasing in γt, and, since γ(·) is decreasing in Iat , decreasing in Iat .

We now proceed to show that the optimal expected price-induced demand dt(I
a
t ) is increasing in Iat .

Let Ia1 > Ia2 , x
a
1 := xat (I

a
1 ), x

a
2 := xat (I

a
2 ), d1 := dt(I

a
1 ), d2 := dt(I

a
2 ) y1 := d1+γ(I

a
1 ), and y2 := d2+γ(I

a
2 ).

We prove that d1 ≥ d2 by contradiction. Assume that d1 < d2. By Lemma 28, d1 < d2 implies that

∂dtJ
a
t (x

a
1 , d1, I

a
1 ) ≤ ∂dtJ

a
t (x

a
2 , d2, I

a
2 ).

∂dtR(d1, I
a
1 ) ≥ ∂dtR(d1, I

a
2 ) > ∂dtR(d2, I

a
2 ),

where the first inequality follows from the supermodularity of R(·, ·) and the second inequality follows

from the strict concavity of R(·, Iat ). Hence,

∂dt
gat (x

a
1 , d1, I

a
1 ) = ∂dt

Ja
t (x

a
1 , d1, I

a
1 )−∂dt

R(d1, I
a
1 ) < ∂dt

Ja
t (x

a
2 , d2, I

a
2 )−∂dt

R(d2, I
a
2 ) = ∂dt

gat (x
a
2 , d2, I

a
2 ).

(D.2)

Let

f(X) := −(b+ ha)1{X≥0} + α[∂Ia
t−1
Vt−1(X,X) + ∂It−1V

a
t−1(X,X)− rd − c] ≤ 0,

which is decreasing in X. We have:

∂xa
t
gat (x

a
i , di, I

a
i ) = E{f(xai − yiϵ

m
t − ϵat )} and ∂dtg

a
t (x

a
i , di, I

a
i ) = E{−ϵmt f(xai − yiϵ

m
t − ϵat )} for i = 1, 2.

Recall that we have proved xa2 ≥ xa1 and ya2 ≥ ya1 .

If xa1 = xa2 , x
a
1 − ya1ϵ

m
t − ϵat ≥ xa2 − ya2ϵ

m
t − ϵat for any realization of (ϵat , ϵ

m
t ). Hence,

∂xa
t
gat (x

a
1 , d1, I

a
1 ) = E{f(xa1 − y1ϵ

m
t − ϵat )} ≤ E{f(xa2 − y2ϵ

m
t − ϵat )} = ∂xa

t
gat (x

a
2 , d2, I

a
2 ),

where the inequality follows from that f(·) is decreasing.

If xa2 > xa1 , by Lemma 28, ∂xa
t
Ja
t (x

a
1 , d1, I

a
1 ) ≤ ∂xa

t
Ja
t (x

a
2 , d2, I

a
2 ) and, hence,

∂xa
t
gat (x

a
1 , d1, I

a
1 ) = ∂xa

t
Ja
t (x

a
1 , d1, I

a
1 )− β ≤ ∂xa

t
Ja
t (x

a
2 , d2, I

a
2 )− β = ∂xa

t
gat (x

a
2 , d2, I

a
2 ).

Note that there exists an ϵ∗t , such that xa1 − y1ϵ
m
t ≤ xa2 − y2ϵ

m
t if ϵmt ≤ ϵ∗t and xa1 − ya1ϵ

m
t > xa2 − ya2ϵ

m
t if

ϵmt > ϵ∗t (ϵ∗t may equal m or m.). Since f(·) is decreasing, f(xa1 − y1ϵ
m
t − ϵat )− f(xa2 − y2ϵ

m
t − ϵat ) ≥ 0 for

any ϵmt ∈ [m, ϵ∗t ] and any realization of ϵat . So

−ϵmt (f(xa1 − y1ϵ
m
t − ϵat )− f(xa2 − y2ϵ

m
t − ϵat )) ≥ −ϵ∗t (f(xa1 − y1ϵ

m
t − ϵat )− f(xa2 − y2ϵ

m
t − ϵat )), (D.3)

for any ϵmt ∈ [m, ϵ∗t ] and any realization of ϵat . Analogously, for ϵmt ∈ [ϵ∗t ,m], f(xa1 − y1ϵ
m
t − ϵat )− f(xa2 −

y2ϵ
m
t − ϵat ) ≤ 0, and (D.3) holds for ϵmt ∈ [ϵ∗t ,m] as well. Therefore, (D.3) holds for all ϵmt ∈ [m,m] and

any realization of ϵat .

Taking expectation, we have:

∂dtg
a
t (x

a
1 , d1, I

a
1 )− ∂dtg

a
t (x

a
2 , d2, I

a
2 ) = E{−ϵmt (f(xa1 − y1ϵ

m
t − ϵat )− f(xa2 − y2ϵ

m
t − ϵat ))}

≥ E{−ϵ∗t (f(xa1 − y1ϵ
m
t − ϵat )− f(xa2 − y2ϵ

m
t − ϵat ))}

= −ϵ∗t (∂xa
t
gat (x

a
1 , d1, I

a
1 )− ∂xa

t
gat (x

a
2 , d2, I

a
2 ))

≥ 0,

(D.4)
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where the last inequality follows from ∂xa
t
gat (x

a
1 , d1, I

a
1 ) ≤ ∂xa

t
gat (x

a
2 , d2, I

a
2 ). (D.4) contradicts (D.2) and,

hence, d1 ≥ d2, i.e., dt(I
a
t ) is increasing in Iat . The continuity of xat (I

a
t ) and dt(I

a
t ) follows directly from

that the objective function Ja
t (·, ·, Iat ) is strictly concave for any given Iat . The proof of part (e) follows.

Q.E.D.

Remark D.1.1 The supermodularity of R∗(yt, γt) implies that to better take advantage of the high

demand induced by low inventory level, the firm should adjust its price to a level such that the expected

demand will increase.

Proof of Theorem 5.4.2: If hw ≥ αc − s, θ − ψ = c − s − hw − (1 − α)c = αc − s − hw ≤ 0. Since

gt(x
a
t , xt, dt, I

a
t , It) is also decreasing in xt, Equation (5.9) implies that x̃t(I

a
t ) = x̃at (I

a
t ), for any t and

Iat , which proves part (a).

Observe that for any (xat , xt, dt, I
a
t , It),

∂xt
gt(x

a
t , xt, dt, I

a
t , It) ≥ −(

t∑
j=1

αj)hw ≥ −(
T∑

j=1

αj)hw, t = T, T − 1, · · · 1,

where the first inequality holds as an equality if x∗j (I
a
j , Ij) = Ij , for all j ≤ t−1. Hence, ∂xtgt(x

a
t , xt, dt, I

a
t , It)

is uniformly bounded from below by −(
∑T

j=1 α
j)hw, for any t. Thus, if θ − ψ = αc − hw − s ≥

(
∑T

j=1 α
j)hw, x̃t(I

a
t ) = +∞ for any t and Iat . Hence, s∗ = αc− (

∑T
j=0 α

j)hw. This proves part (b).

If infIa
t <Ka γ

′(Iat ) ≥ −M , for any (xat , xt, dt, I
a
t , It),

∂xa
t
gt(x

a
t , xt, dt, I

a
t , It) ≥ −M(

t∑
j=1

αj)(p̄+ ha) ≥ −M(

T∑
j=1

αj)(p̄+ ha), t = T, T − 1, · · · 1,

where p̄ is the maximum marginal revenue and ha is the maximum marginal holding cost. Hence,

∂xa
t
gt(x

a
t , xt, dt, I

a
t , It) is bounded from below by −M(

∑T
j=1 α

j)(p̄+ha), for any t. Thus, if rd+rw+ϕ ≥

M(
∑T

j=1 α
j)(p̄+ ha), x̃

a
t (I

a
t ) ≥ Iat , for any I

a
t ≤ Ka.

If infIa
t <Ka γ

′(Iat ) = −∞, limIa
t →Ka γ

′(Iat ) = −∞. Hence, for any xt, dt, and It,

lim
Ia
t →Ka

∂xa
t
gt(I

a
t , xt, dt, I

a
t , It) ≤ α(p− b− (1− α)(c+ rd)) lim

Ia
t →Ka

γ′(Iat ) = −∞.

Hence, for any rw, and any xt, dt and It,

∂xa
t
Jt(I

a
t −, xt, dt, Iat , It) = rd + rw + ϕ+ ∂xa

t
gt(I

a
t , xt, dt, I

a
t , It) → −∞, as Iat → Ka.

The above limit completes the proof of Part (c).

For notational simplicity, we denote

xa∗ := xa∗t (Iat−1, It−1), x
∗ := x∗t (I

a
t−1, It−1) and d

∗ := d∗t (I
a
t−1, It−1). Observe that

∂Ia
t−1
Vt−1(I

a
t−1, It−1) ≤ (p− b− α(c+ rd))γ

′(Iat−1) + ∂Ia
t−1
gt−1(x

a∗, x∗, d∗, Iat−1). (D.5)

By Equation (D.0),
∂xa

t−1
gt−1(x

a∗, x∗, d∗, Iat−1) = E{f1(ϵmt−1)},

∂xt−1gt−1(x
a∗, x∗, d∗, Iat−1) = E{f2(ϵmt−1)},

∂Ia
t−1
gt−1(x

a∗, x∗, d∗, Iat−1) = −γ′(Iat−1)E{ϵmt−1[f1(ϵ
m
t−1) + f2(ϵ

m
t−1)]},
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where
f1(ϵ

m
t−1) = Eϵat−1

{−(b+ ha)1{xa∗≥(dt+γ(It))ϵmt−1+ϵat−1}

+α∂Ia
t−2
Vt−2(x

a∗ − (d∗ + γ(Iat−1))ϵ
m
t−1 − ϵat−1, x

∗ − (d∗ + γ(Iat−1))ϵ
m
t−1 − ϵat−1)} − αrd

f2(ϵ
m
t−1) = Eϵat−1

{α∂It−2Vt−2(x
a∗ − (d∗ + γ(Iat−1))ϵ

m
t−1 − ϵat−1, x

∗ − (d∗ + γ(Iat−1))ϵ
m
t−1 − ϵat−1)} − αc.

The first order conditions with respect to xat−1 and xt−1 suggest that

E{f1(ϵmt−1) + f2(ϵ
m
t−1)} ≤ −(ϕ− ψ) = −β.

Since f1(·) ≤ 0 and f(·) ≤ 0, we have:

E{ϵmt−1[f1(ϵ
m
t−1) + f2(ϵ

m
t−1)]} ≤ E{m[f1(ϵ

m
t−1) + f2(ϵ

m
t−1)]} = mE{f1(ϵmt−1) + f2(ϵ

m
t−1)} ≤ −mβ.

Therefore, by inequality (D.5),

∂Ia
t−1
Vt−1(I

a
t−1, It) ≤ (p− b− α(c+ rd) +mβ)γ′(Iat−1). (D.6)

So for any dt ∈ [d, d̄] and any xt,

∂xa
t
gt(0, xt, dt, I

a
t ) ≤αE[∂Ia

t−1
Vt−1(−(dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )]

≤αE[(p− b− α(c+ rd) +mβ)γ′(−(dt + γ(It))ϵ
m
t − ϵat )]

≤α(p− b− α(c+ rd) +mβ)(1− ι)γ′(−D̄)

≤− (rd + rw + ϕ),

(D.7)

where the first inequality follows from equation (D.0), the second from (D.6), and the last from the

assumption that α(p − b − α(c + rd) +mβ)(1 − ι)γ′(−D̄) + (rd + rw + ϕ) ≤ 0. The third inequality of

(D.7) follows from the following inequality:

E[γ′(−Dt)] = EDt≥D̄[γ′(−Dt)] + EDt≤D̄[γ′(−Dt)] ≤ 0 + EDt≤D̄[γ′(−D̄)] ≤ (1− ι)γ′(−D̄),

where the first inequality follows from the concavity of γ(·) and the second inequality follows from the

definition of D̄. (D.7) implies that xa∗t (Iat , It) = 0 for all Iat ≤ Ka and all It, which completes the proof

of part (d). Q.E.D.

Before we proceed to prove the results in Section 5.5, we remark that Rs
t (dt, I

a
t ) shares the same prop-

erties as R(dt, I
a
t ). i.e., we have the following counterpart of Lemma 29 in the model without inventory

withholding:

Lemma 30 (a) Rs∗(yt, γt) is strictly supermodular in (yt, γt), where Rs∗(yt, γt) := Rs(yt − γt, I
a
t ),

yt − γt = dt ∈ [d, d̄] and yt ≥ 0. In addition, Rs∗(yt, γt) is strictly concave in yt, for any fixed γt;

(b) Rs(dt, I
a
t ) is supermodular in (dt, I

a
t ), where dt ∈ [d, d̄] and Iat ≤ Ka. In addition, Rs(dt, I

a
t ) is

strictly concave in dt, for any fixed Iat .

Proof of Lemma 30: The proof is identical to that of Lemma 29, and hence omitted. Q.E.D.
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Proof of Theorem 5.5.1: The proof is very similar to that of Lemma 14 and Theorem 5.4.1, so we

only sketch it.

For parts (a) - (c), the proof is exactly the same as that of Lemma 14, and hence omitted.

To show parts (d) - (f), we define the following unconstrained optimizers:

(xLt (I
a
t ), d

L
t (I

a
t )) := argmaxxa

t ≤Ka,dt∈[d,d̄]{Rs(dt, I
a
t ) + βsxat + E[Gs

t (x
a
t − δ(p(dt), I

a
t , ϵt))]},

and

(xHt (Iat ), d
H
t (Iat )) := argmaxxa

t ≤Ka,dt∈[d,d̄]{Rs(dt, I
a
t ) + (βs + θ)xat + E[Gs

t (x
a
t − δ(p(dt), I

a
t , ϵt))]}.

We need the following lemma:

Lemma 31 Let γt := γ(Iat ), Ψ(xat , yt, µ|γt) := Rs∗(yt, γt)+µx
a
t +E{Gs

t (x
a
t −ytϵmt −ϵat )} is supermodular

in (xat , yt, µ) for any given γt.

Proof of Lemma 31: Since Gs
t (·) is concave and ϵmt ≥ 0, E{Gs

t (x
a
t −ytϵmt − ϵat )} is supermodular

in (xat , yt). It’s also clear that µxat is strictly supermodular in (xat , µ). Therefore, Ψ(xat , yt, µ|γt) is

supermodular in (xat , yt, µ) for any given γt. Q.E.D.

Lemma 31 and its proof imply that xLt (I
a
t ) < xHt (Iat ) since β

s + θ > βs. Exactly the same argument

as in the proof of Theorem 5.4.1(e) implies that xLt (I
a
t ) and x

H
t (Iat ) are continuously decreasing in Iat and

dLt (I
a
t ) and dHt (Iat ) are continuously increasing in Iat . I

L
t := sup{Iat : Iat < xLt (I

a
t )} and IHt := inf{Iat :

Iat > xHt (Iat )}. It’s clear that ILt and IHt are the thresholds in part (d). Therefore,

xs∗t (Iat ) =


xLt (I

a
t ) if Iat < ILt ;

Iat if ILt ≤ Iat ≤ IHt ;

xHt (Iat ) if Iat > IHt .

It’s clear that xs∗t (Iat ) satisfies the statement in part (e). Therefore, we have

ds∗t (Iat ) =


dLt (I

a
t ) if Iat < ILt ;

argmaxdt∈[d,d̄]J
s
t (I

a
t , dt, I

a
t ) if ILt ≤ Iat ≤ IHt ;

dHt (Iat ) otherwise.

To prove part (f), it remains to show that ds∗t (Iat ) is increasing in Iat for ILt ≤ Iat ≤ IHt . Let

Us
t (dt, I

a
t ) := Js

t (I
a
t , dt, I

a
t ) and it is easily verified that Us

t (dt, I
a
t ) is supermodular in (dt, I

a
t ). Thus,

ds∗t (Iat ) is increasing in Iat , which completes the proof of Theorem 5.5.1. Q.E.D.

Proof of Theorem 5.5.2: We show both parts by backward induction.

For part (a), we use backward induction to recursively show this result. For t = 0, V s
0 (·) = V̂ s

0 (·) = 0

and, hence, ∂Ia
0
V s
0 (I

a
0 ) = ∂Ia

0
V̂ s
0 (I

a
0 ) for all I

a
0 . We show that: if ∂Ia

t−1
V s
t−1(I

a
t−1) ≤ ∂Ia

t−1
V̂ s
t−1(I

a
t−1) for all
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Iat−1 ≤ Ka, (a) I
L
t ≤ ÎLt , (b) I

H
t ≤ ÎHt , (c) xs∗t (Iat ) ≤ x̂s∗t (Iat ), (d) d

s∗
t (Iat ) ≥ d̂s∗t (Iat ) and (e) ∂Ia

t
V s
t (I

a
t ) ≤

∂Ia
t
V̂ s
t (I

a
t ) for all I

a
t ≤ Ka. To prove these inequalities, we define (x̂Lt (I

a
t ), d̂

L
t (I

a
t )) and (x̂Ht (Iat ), d̂

H
t (Iat ))

as the unconstrained optimizers in the model with demand D̂t, corresponding to (xLt (I
a
t ), d

L
t (I

a
t )) and

(xHt (Iat ), d
H
t (Iat )), respectively. Let yLt (I

a
t ) := dLt (I

a
t ) + γ(Iat ), ŷ

L
t (I

a
t ) := d̂Lt (I

a
t ) + γ̂(Iat ) = d̂Lt (I

a
t ) + γ0,

R̂s(dt, I
a
t ) := Rs(dt,−∞), and Ĝs

t (y) := −(ha+b)y
++α[V̂ s

t−1(y)−cy]. We define the objective functions

JL
t (x

a
t , dt, I

a
t ) := Rs(dt, I

a
t ) + βsxat + gst (x

a
t , dt, I

a
t ), Ĵ

L
t (x

a
t , dt, I

a
t ) := R̂s(dt, I

a
t ) + βsxat + ĝst (x

a
t , dt, I

a
t ),

where ĝst (x
a
t , dt, I

a
t ) := E{Ĝs

t (x
a
t − δ̂(p(dt), I

a
t , ϵt))}. Since ϵmt = 1 with probability 1, gst (x

a
t , dt, I

a
t ) =

Hs
t (x

a
t − dt − γ(Iat )) and ĝst (x

a
t , dt, I

a
t ) = Ĥs

t (x
a
t − dt − γ0), where Hs

t (X) := E{Gs
t (X − ϵat )} and

Ĥs
t (X) := E{Ĝs

t (X − ϵat )}.

First, we show that, if ∂Ia
t−1
V s
t−1(I

a
t−1) ≤ ∂Ia

t−1
V̂ s
t−1(I

a
t−1) for all Iat−1 ≤ Ka, x

L
t (I

a
t ) ≤ x̂Lt (I

a
t ),

dLt (I
a
t ) ≥ d̂Lt (I

a
t ), x

H
t (Iat ) ≤ x̂Ht (Iat ), and dHt (Iat ) ≥ d̂Ht (Iat ). Since ∂Ia

t−1
V s
t−1(I

a
t−1) ≤ ∂Ia

t−1
V̂ s
t−1(I

a
t−1),

∂XH
s
t (X) ≤ ∂XĤ

s
t (X) for any X. We only show that xLt (I

a
t ) ≤ x̂Lt (I

a
t ) and dLt (I

a
t ) ≥ d̂Lt (I

a
t ), while

xHt (Iat ) ≤ x̂Ht (Iat ) and d
H
t (Iat ) ≥ d̂Ht (Iat ) follow from the same argument.

We show by contradiction that xLt (I
a
t ) ≤ x̂Lt (I

a
t ) and d

L
t (I

a
t ) ≥ d̂Lt (I

a
t ). Note that, for the model with

inventory-independent demand (i.e., the firm faces D̂t), it is reduced to the classical joint pricing and

inventory management problem with stochastic demand introduced in Federgruen and Heching (1999).

Hence, x̂Lt (I
a
t ) and d̂

L
t (I

a
t ) are constants independent of Iat .

Assume that xLt (I
a
t ) > x̂Lt (I

a
t ). Lemma 28 yields that

∂xa
t
JL
t (x

L
t (I

a
t ), d

L
t (I

a
t ), I

a
t ) ≥ ∂xa

t
ĴL
t (x̂

L
t (I

a
t ), d̂

L
t (I

a
t ), I

a
t ). Hence,

∂XH
s
t (x

L
t (I

a
t )− yLt (I

a
t )) =∂xa

t
JL
t (x

L
t (I

a
t ), d

L
t (I

a
t ), I

a
t )− βs

≥∂xa
t
ĴL
t (x̂

L
t (I

a
t ), d̂

L
t (I

a
t ), I

a
t )− βs

=∂XĤ
s
t (x̂

L
t (I

a
t )− ŷLt (I

a
t )).

Since ∂XH
s
t (X) ≤ ∂XĤ

s
t (X) for any X and both of them are strictly decreasing, yLt (I

a
t ) > ŷLt (I

a
t ). Thus,

dLt (I
a
t ) = yLt (I

a
t )−γ(Iat ) > ŷLt (I

a
t )−γ0 = d̂Lt (I

a
t ). Invoking Lemma 28, we have ∂dtJ

L
t (x

L
t (I

a
t ), d

L
t (I

a
t ), I

a
t ) ≥

∂dt Ĵ
L
t (x̂

L
t (I

a
t ), d̂

L
t (I

a
t ), I

a
t ), and

∂dtR
s(dLt (I

a
t ), I

a
t ) =∂dtJ

L
t (x

L
t (I

a
t ), d

L
t (I

a
t ), I

a
t ) + ∂XH

s
t (x

L
t (I

a
t )− yLt (I

a
t ))

≥∂dt Ĵ
L
t (x̂

L
t (I

a
t ), d̂

L
t (I

a
t ), I

a
t ) + ∂XĤ

s
t (x̂

L
t (I

a
t )− ŷLt (I

a
t ))

=∂dtR̂
s(d̂Lt (I

a
t ), I

a
t )

Since ∂dtR
s(dt, I

a
t ) = ∂ytR

s∗(dt + γ(Iat ), γ(I
a
t )), ∂ytR

s∗(yLt (I
a
t ), γ(I

a
t )) ≥ ∂ytR

s∗(ŷLt (I
a
t ), γ0). However,

the strict concavity of Rs∗(·, γt) and the supermodularity of Rs∗(·, ·) yield that

∂ytR
s∗(yLt (I

a
t ), γ(I

a
t )) < ∂ytR

s∗(ŷLt (I
a
t ), γ(I

a
t )) ≤ ∂ytR

s∗(ŷLt (I
a
t ), γ0),

which leads to a contradiction. Therefore, we have xLt (I
a
t ) ≤ x̂Lt (I

a
t ).

Assume that dLt (I
a
t ) < d̂Lt (I

a
t ), so y

L
t (I

a
t ) = dLt (I

a
t ) + γ(Iat ) < d̂Lt (I

a
t ) + γ0 = ŷLt (I

a
t ). Lemma 28

yields that ∂dt
JL
t (x

L
t (I

a
t ), d

L
t (I

a
t ), I

a
t ) ≤ ∂dt

ĴL
t (x̂

L
t (I

a
t ), d̂

L
t (I

a
t ), I

a
t ). The strict concavity of Rs(·, Iat ) and

the supermodularity of Rs(·, ·) imply that

∂dtR
s(dLt (I

a
t ), I

a
t ) > ∂dtR

s(d̂Lt (I
a
t ), I

a
t ) ≥ ∂dtR

s(d̂Lt (I
a
t ),−∞) = ∂dtR̂

s(d̂Lt (I
a
t ), I

a
t ).
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Hence, we have:

∂XH
s
t (x

L
t (I

a
t )− yLt (I

a
t )) =∂dtR

s(dLt (I
a
t ), I

a
t )− ∂dtJ

L
t (x

L
t (I

a
t ), d

L
t (I

a
t ), I

a
t )

>∂dtR̂
s(d̂Lt (I

a
t ), I

a
t )− ∂dt Ĵ

L
t (x̂

L
t (I

a
t ), d̂

L
t (I

a
t ), I

a
t )

=∂XĤ
s
t (x̂

L
t (I

a
t )− ŷLt (I

a
t )).

The first order condition with respect to xat implies that ∂XH
s
t (x

L
t (I

a
t )− yLt (I

a
t )) = ∂XĤ

s
t (x̂

L
t (I

a
t )−

ŷLt (I
a
t )) = −βs, which leads to a contradiction. Hence, dLt (I

a
t ) ≥ d̂Lt (I

a
t ). We have thus proved that,

if ∂Ia
t−1
V s
t−1(I

a
t−1) ≤ ∂Ia

t−1
V̂ s
t−1(I

a
t−1) for all Iat−1 ≤ Ka, x

L
t (I

a
t ) ≤ x̂Lt (I

a
t ), d

L
t (I

a
t ) ≥ d̂Lt (I

a
t ), x

H
t (Iat ) ≤

x̂Ht (Iat ), and dHt (Iat ) ≥ d̂Ht (Iat ). I
L
t ≤ ÎLt and IHt ≤ ÎHt follow immediately from xLt (I

a
t ) ≤ x̂Lt (I

a
t ) and

xHt (Iat ) ≤ x̂Ht (Iat ).

Next, we show that ds∗t (Iat ) ≥ d̂s∗t (Iat ), for all I
a
t ≤ Ka. Since dLt (I

a
t ) ≥ d̂Lt (I

a
t ), d

s∗
t (Iat ) = dLt (I

a
t ) ≥

d̂Lt (I
a
t ), for all I

a
t ≤ ILt . If I

a
t ∈ [ILt , Î

L
t ],

ds∗t (Iat ) ≥ ds∗t (ILt ) = dLt (I
L
t ) ≥ d̂Lt (I

L
t ) = d̂Lt (I

a
t ),

where the first inequality follows from Theorem 5.5.1, the second from dLt (I
a
t ) ≥ d̂Lt (I

a
t ), and the last

equality from Federgruen and Heching (1999) Theorem 1. If Iat ∈ [ÎLt , I
H
t ] (it might be an empty set),

xs∗t (Iat ) = x̂s∗t (Iat ) = Iat . The supermodularity of Rs(dt, I
a
t ) implies that

∂dtR
s(d̂s∗t (Iat ), I

a
t ) ≥ ∂dtR

s(d̂s∗t (Iat ),−∞) = ∂dtR̂
s(d̂s∗t (Iat ), I

a
t ).

Since γ0 ≥ γ(Iat ), bothH
s
t (·) and Ĥs

t (·) are concave, and ∂XHs
t (X) ≤ ∂XĤ

s
t (X) for allX, so−∂XHs

t (I
a
t −

d̂s∗t (Iat )− γ(Iat )) ≥ −∂XĤs
t (I

a
t − d̂s∗t (Iat )− γ0). Hence,

∂dtJ
s
t (I

a
t , d̂

s∗
t (Iat ), I

a
t ) = ∂dtR

s(d̂s∗t (Iat ), I
a
t )− ∂XH

s
t (I

a
t − d̂s∗t (Iat )− γ(Iat ))

≥ ∂dtR̂
s(d̂s∗t (Iat ), I

a
t )− ∂XĤ

s
t (I

a
t − d̂s∗t (Iat )− γ0)

= ∂dt Ĵ
s
t (I

a
t , d̂

s∗
t (Iat ), I

a
t ),

i.e., ds∗t (Iat ) ≥ d̂s∗t (Iat ). If Iat ∈ [IHt , Î
H
t ], xs∗t (Iat ) ≤ x̂s∗t (Iat ) = Iat . The first order condition with

respect to xat implies that ∂XH
s
t (x

s∗
t (Iat )− ds∗t (It)− γ(Iat )) = −(βs + θ) ≤ ∂XĤ

s
t (I

a
t − d̂s∗t (Iat )− γ0). If

ds∗t (Iat ) < d̂s∗t (Iat ), Lemma 28 implies that ∂dtJ
s
t (x

s∗
t (Iat ), d

s∗
t (Iat ), I

a
t ) ≤ ∂dt Ĵ

s
t (I

a
t , d̂

s∗
t (Iat ), I

a
t ). Hence,

∂dtR
s(ds∗t (Iat ), I

a
t ) =∂dtJ

s
t (x

s∗
t (Iat ), d

s∗
t (Iat ), I

a
t ) + ∂XH

s
t (x

s∗
t (Iat )− ds∗t (It)− γ(Iat ))

≤∂dt
Ĵs
t (I

a
t , d̂

s∗
t (Iat ), I

a
t ) + ∂XĤ

s
t (I

a
t − d̂s∗t (Iat )− γ0)

=∂dtR̂
s(d̂s∗t (Iat ), I

a
t ).

(D.8)

The strict concavity of Rs(·, Iat ) and the supermodularity of Rs(·, ·) imply that

∂dtR
s(ds∗t (Iat ), I

a
t ) > ∂dtR

s(d̂s∗t (Iat ), I
a
t ) ≥ ∂dtR

s(d̂s∗t (Iat ),−∞) = ∂dtR̂
s(d̂s∗t (Iat ), I

a
t ),

which contradicts inequality (D.8). Hence, ds∗t (Iat ) ≥ d̂s∗t (Iat ). Finally, if Iat ≥ ÎHt , ds∗t (Iat ) = dHt (Iat ) ≥

d̂Ht (Iat ) = d̂s∗t (Iat ). We have completed the proof of ds∗t (Iat ) ≥ d̂s∗t (Iat ) for all I
a
t ≤ Ka.

To complete the induction, it suffices to show that if ∂Ia
t−1
V s
t−1(I

a
t−1) ≤ ∂Ia

t−1
V̂ s
t−1(I

a
t−1) for all I

a
t−1 ≤

Ka, ∂Ia
t
V s
t (I

a
t ) ≤ ∂Ia

t
V̂ s
t (I

a
t ), for all I

a
t ≤ Ka. Note that x̂d∗t (It) and d̂

s∗
t (Iat ) are constant if Iat ≤ ÎLt and
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It ≥ ÎHt , by Theorem 1 in Federgruen and Heching (1999). Hence, ∂Ia
t
V s
t (I

a
t ) ≤ ∂Ia

t
V̂ s
t (I

a
t ) for all I

a
t ≤ ÎLt

and Iat ≥ ÎHt , since ∂Ia
t
V s
t (I

a
t ) ≤ ∂Ia

t
V̂ s
t (I

a
t ) = c, if Iat ≤ ÎLt , and ∂Ia

t
V s
t (I

a
t ) ≤ ∂Ia

t
V̂ s
t (I

a
t ) = c− θ = s, if

Iat ≥ ÎHt . If ÎLt ≤ It ≤ ÎHt , there are two possible cases: ÎLt ≤ IHt ≤ ÎHt and IHt ≤ ÎLt ≤ ÎHt .

If IHt ≤ ÎLt , ∂Ia
t
V s
t (I

a
t ) ≤ ∂Ia

t
V̂ s
t (I

a
t ) for all Iat ≤ Ka follows immediately. Now assume that IHt ∈

[ÎLt , Î
H
t ]. If It ∈ [ÎLt , I

H
t ], xs∗t (Iat ) = x̂s∗t (Iat ) = Iat . Hence,∂I

a
t
V s
t (I

a
t ) = c+ βs + ∂Ia

t
Rs(ds∗t (Iat ), I

a
t ) + ∂XH

s
t (I

a
t − yst (I

a
t ))− γ′(Iat )∂XH

s
t (I

a
t − yst (I

a
t )),

∂Ia
t
V̂ s
t (I

a
t ) = c+ βs + ∂XĤ

s
t (I

a
t − ŷst (I

a
t )),

where yst (I
a
t ) = ds∗t (Iat )+ γ(Iat ) and ŷ

s
t (I

a
t ) = d̂s∗t (Iat )+ γ0. It suffices to show that ∂XH

s
t (I

a
t − yst (I

a
t )) ≤

∂XĤ
s
t (I

a
t − ŷst (I

a
t ). We use the following lemma to prove this inequality:

Lemma 32 Let y1 = argmaxyt
{Rs∗(yt, γ0) + Ĥs

t (I
a
t − yt)}, y2 = argmaxyt

{Rs∗(yt, γ0) +Hs
t (I

a
t − yt)}

and y3 = argmaxyt
{Rs∗(yt, γ(I

a
t )) + Hs

t (I
a
t − yt)}, for Iat ∈ [ÎLt , I

H
t ]. We have ∂XĤ

s
t (I

a
t − y1) ≥

∂XH
s
t (I

a
t − y2) ≥ ∂XH

s
t (I

a
t − y3).

Proof of Lemma 32: Since ∂XĤ
s
t (X) ≥ ∂XH

s
t (X),

∂ytR
s∗(y1, γ0) − ∂XH

s
t (I

a
t − y1) ≥ ∂ytR

s∗(y1, γ0) − ∂XĤ
s
t (I

a
t − y1), i.e., y1 ≤ y2. If y1 = y2,

∂XĤ
s
t (I

a
t − y1) ≥ ∂XH

s
t (I

a
t − y2) follows from ∂XĤ

s
t (X) ≥ ∂XH

s
t (X) for any X. If y1 < y2,

∂ytR
s∗(y1, γ0) > ∂ytR

s∗(y2, γ0) by the strict concavity of Rs∗(·, ·), and ∂ytR
s∗(y1, γ0)−∂XĤs

t (I
a
t −

y1) ≤ ∂ytR
s∗(y2, γ0)−∂XHs

t (I
a
t −y2) by Lemma 28. Hence, ∂XĤ

s
t (I

a
t −y1) > ∂XH

s
t (I

a
t −y2). For

the second inequality, the supermodularity of Rs∗(·, ·) yields that y2 ≥ y3 and, thus, ∂XH
s
t (I

a
t −

y2) ≥ ∂XH
s
t (I

a
t − y3). Q.E.D.

Invoking Lemma 32,

∂XH
s
t (I

a
t − yst (I

a
t )) = ∂XH

s
t (I

a
t − y3) ≤ ∂XĤ

s
t (I

a
t − y1) = ∂XĤ

s
t (I

a
t − ŷst (I

a
t )).

Hence, ∂Ia
t
V s
t (I

a
t ) ≤ ∂Ia

t
V̂ s
t (I

a
t ) for all I

a
t ∈ [ÎLt , I

H
t ]. If Iat ∈ [IHt , Î

H
t ],

∂Ia
t
V s
t (I

a
t ) ≤ c− θ = ∂Ia

t
V̂ s
t (Î

H
t ) ≤ ∂Ia

t
V̂ s
t (I

a
t ),

where the first inequality follows from the first order condition with respect to xat . This completes the

induction and the proof of part (a).

To prove part (b), it suffices to show that if ∂Ia
t−1
V s
t−1(I

a
t−1) ≤ ∂Ia

t−1
V̂ s
t−1(I

a
t−1) for all Iat−1 ≤ Ka,

(a) xLt (I
a
t ) ≤ x̂Lt (I

a
t ), (b) x

H
t (Iat ) ≤ x̂Ht (Iat ), and (c) ∂Ia

t
V s
t (I

a
t ) ≤ ∂Ia

t
V̂ s
t (I

a
t ), for all I

a
t ≤ Ka. For t = 0,

∂Ia
0
V s
0 (I

a
0 ) = ∂Ia

0
V̂ s
0 (I

a
0 ) = 0 for Ia0 ≤ Ka.

First, we show that xLt (I
a
t ) ≤ x̂Lt (I

a
t ), and the proof of xHt (Iat ) ≤ x̂Ht (Iat ) follows from the same

argument. If xLt (I
a
t ) > x̂Lt (I

a
t ), Lemma 28 yields that ∂xa

t
JL
t (x

L
t (I

a
t ), d0, I

a
t ) ≥ ∂xa

t
ĴL
t (x̂

L
t (I

a
t ), d0, I

a
t ).

Hence,

∂XH
s
t (x

L
t (I

a
t )−yLt (Iat )) = ∂xa

t
JL
t (x

L
t (I

a
t ), d0, I

a
t )−βs ≥ ∂xa

t
ĴL
t (x̂

L
t (I

a
t ), d0, I

a
t )−βs = ∂XĤ

s
t (x̂

L
t (I

a
t )−ŷLt (Iat )).
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Since ∂XH
s
t (X) ≤ ∂XĤ

s
t (X) for any X and both of them are strictly decreasing, yLt (I

a
t ) > ŷLt (I

a
t ).

However, yLt (I
a
t ) = d0 + γ(Iat ) ≤ d0 + γ̂(Iat ) = ŷLt (I

a
t ). This contradiction shows that xLt (I

a
t ) ≤ x̂Lt (I

a
t ).

xHt (Iat ) ≤ x̂Ht (Iat ) follows analogously.

To complete the proof, we need to show ∂Ia
t
V s
t (I

a
t ) ≤ ∂Ia

t
V̂ s
t (I

a
t ) for all Iat ≤ Ka. For the case

Iat ∈ [ÎLt , Î
H
t ], the proof is identical to that of part (a), and, hence, omitted. If Iat ≤ ILt ,∂I

a
t
V s
t (I

a
t ) = c+ (p0 − b− αc)γ′(Iat )− γ′(Iat )∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t )),

∂Ia
t
V̂ s
t (I

a
t ) = c+ (p0 − b− αc)γ̂′(Iat )− γ̂′(Iat )∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )).

Since xs∗t (Iat ) ≤ x̂s∗t (Iat ), there are two cases: (a) xs∗t (Iat ) = x̂s∗t (Iat ) and (b) xs∗t (Iat ) < x̂s∗t (Iat ).

If xs∗t (Iat ) = x̂s∗t (Iat ), x
s∗
t (Iat ) − yst (I

a
t ) ≥ x̂s∗t (Iat ) − ŷst (I

a
t ) and, hence, ∂XH

s
t (x

s∗
t (Iat ) − yst (I

a
t )) ≤

∂XĤ
s
t (x̂

s∗
t (Iat ) − ŷst (I

a
t )), since ∂XH

s
t (X) ≤ ∂XĤ

s
t (X) for any X. If xs∗t (Iat ) < x̂s∗t (Iat ), Lemma 28

yields that ∂xa
t
Js
t (x

s∗
t (Iat ), d0, I

a
t ) ≤ ∂xa

t
Ĵs
t (x̂

s∗
t (Iat ), d0, I

a
t ). Hence,

∂XH
s
t (x

s∗
t (Iat )−yst (Iat )) = ∂xa

t
Js
t (x

s∗
t (Iat ), d0, I

a
t )−βs ≤ ∂xa

t
Ĵs
t (x̂

s∗
t (Iat ), d0, I

a
t )−βs = ∂XĤ

s
t (x̂

s∗
t (Iat )−ŷst (Iat )).

We have thus showed that ∂XH
s
t (x

s∗
t (Iat )− yst (I

a
t )) ≤ ∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )) in both cases. Therefore,

∂Ia
t
V s
t (I

a
t ) =c+ γ′(Iat )(p0 − b− αc− ∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t )))

≤c+ γ̂′(Iat )(p0 − b− αc− ∂XĤ
s
t (x̂

s∗
t (Iat )− ŷst (I

a
t ))

=∂Ia
t
V̂ s
t (I

a
t ),

where the inequality follows from γ′(Iat ) ≤ γ̂′(Iat ) ≤ 0 and

p0 − b− αc− ∂XH
s
t (x

s∗
t (Iat )− yst (I

a
t )) ≥ p0 − b− αc− ∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )) > 0.

The proof of the case Iat ≥ ÎHt follows from the identical argument of the case Iat ≤ ILt , and is, hence,

omitted.

If Iat ∈ [ILt , Î
L
t ],∂I

a
t
V s
t (I

a
t ) = c+ βs + (p0 − b− αc)γ′(Iat ) + ∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t ))− γ′(Iat )∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t )),

∂Ia
t
V̂ s
t (I

a
t ) = c+ (p0 − b− αc)γ̂′(Iat )− γ̂′(Iat )∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )).

Note that ∂XH
s
t (x

s∗
t (Iat )− yst (I

a
t )) ≤ −βs = ∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )). Therefore,

∂Ia
t
V s
t (I

a
t ) =c+ βs + ∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t )) + γ′(Iat )(p0 − b− αc− ∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t )))

≤c+ γ̂′(Iat )(p0 − b− αc− ∂XĤ
s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )))

=∂Ia
t
V̂ s
t (I

a
t ),

(D.9)

where the inequality follows from γ′(Iat ) ≤ γ̂′(Iat ) ≤ 0, ∂XH
s
t (x

s∗
t (Iat )−yst (Iat )) ≤ ∂XĤ

s
t (x̂

s∗
t (Iat )−ŷst (Iat )),

and

p0 − b− αc− ∂XH
s
t (x

s∗
t (Iat )− yst (I

a
t )) ≥ p0 − b− αc− ∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )) > 0.

We have thus showed ∂Ia
t
V s
t (I

a
t ) ≤ ∂Ia

t
V̂ s
t (I

a
t ) for all Iat ≤ Ka, which completes the proof of part (b).

Q.E.D.
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Proof of Theorem 5.5.3: We employ backward induction to prove parts (a) - (d) together. We

define Hs
t (X) := Eϵat

{−(b + ha)(X − ϵat )
+ + α(V s

t−1(X) − cX)} and Ĥs
t (X) := Eϵat

{−(b + ha)(X −

ϵat )
+ + α(V̂ s

t−1(X) − cX)}, so that gst (x
a
t , dt, I

a
t ) := Hs

t (x
a
t − dt − γ(Iat )) and ĝst (x

a
t , dt, I

a
t ) := Ĥs

t (x
a
t −

dt − γ(Iat )). We define the objective functions JL
t (x

a
t , dt, I

a
t ) := Rs(dt, I

a
t ) + βsxat + gst (x

a
t , dt, I

a
t ),

ĴL
t (x

a
t , dt, I

a
t ) := R̂s(dt, I

a
t )+β

sxat +ĝ
s
t (x

a
t , dt, I

a
t ), J

H
t (xat , dt, I

a
t ) := Rs(dt, I

a
t )+(βs+θ)xat +g

s
t (x

a
t , dt, I

a
t ),

and ĴH
t (xat , dt, I

a
t ) := R̂s(dt, I

a
t )+(βs+ θ̂)xat + ĝ

s
t (x

a
t , dt, I

a
t ), where θ̂ = c− ŝ ≤ c−s = θ. Let γt := γ(Iat ),

yst (I
a
t ) := ds∗t (Iat ) + γt and ŷ

s
t (I

a
t ) := d̂s∗t (Iat ) + γt.

It suffices to show that if ∂Ia
t−1
V̂ s
t−1(I

a
t−1) ≥ ∂Ia

t−1
V s
t−1(I

a
t−1) for all Iat−1 ≤ Ka, (1) Î

L
t ≥ ILt , (2)

x̂s∗t (Iat ) ≥ xs∗t (Iat ) for all Iat ≤ ÎHt , (3) d̂s∗t (Iat ) ≤ ds∗t (Iat ), and (4) ∂Ia
t
V̂ s
t (I

a
t ) ≥ ∂Ia

t
V s
t (I

a
t ). Since

∂Ia
t−1
V̂ s
t−1(I

a
t−1) ≥ ∂Ia

t−1
V s
t−1(I

a
t−1), ∂XĤ

s
t (X) ≥ ∂XH

s
t (X). For t = 0, ∂Ia

0
V̂ s
0 (I

a
0 ) = ∂Ia

0
V s
0 (I

a
0 ) = 0, so

the initial condition is satisfied.

We first show that if ∂Ia
t−1
V̂ s
t−1(I

a
t−1) ≥ ∂Ia

t−1
V s
t−1(I

a
t−1), x̂

L
t (I

a
t ) ≥ xLt (I

a
t ), d̂

L
t (I

a
t ) ≤ dLt (I

a
t ), and

d̂Ht (Iat ) ≤ dHt (Iat ). x̂
L
t (I

a
t ) ≥ xLt (I

a
t ) and d̂

L
t (I

a
t ) ≤ dLt (I

a
t ) follows from the same argument as the proof

of Theorem 5.5.2. We show by contradiction that d̂Ht (Iat ) ≤ dHt (Iat ).

Assume that dHt (Iat ) < d̂Ht (Iat ), so y
H
t (Iat ) = dHt (Iat ) + γt < d̂Ht (Iat ) + γt = ŷHt (Iat ). Lemma 28 yields

that ∂dtJ
H
t (xHt (Iat ), d

H
t (Iat ), I

a
t ) ≤ ∂dt Ĵ

H
t (x̂Ht (Iat ), d̂

H
t (Iat ), I

a
t ). The strict concavity of Rs(·, Iat ) imply

that ∂dtR
s(dHt (Iat ), I

a
t ) > ∂dtR

s(d̂Ht (Iat ), I
a
t ). Hence, we have:

∂XH
s
t (x

H
t (Iat )− yHt (Iat )) =∂dtR

s(dHt (Iat ), I
a
t )− ∂dtJ

H
t (xHt (Iat ), d

H
t (Iat ), I

a
t )

>∂dtR̂
s(d̂Ht (Iat ), I

a
t )− ∂dt Ĵ

H
t (x̂Ht (Iat ), d̂

H
t (Iat ), I

a
t )

=∂XĤ
s
t (x̂

H
t (Iat )− ŷHt (Iat )).

The first order condition with respect to xat implies that

∂XH
s
t (x

H
t (Iat )− yHt (Iat )) = −(βs + θ) < −(βs + θ̂) = ∂XĤ

s
t (x̂

H
t (Iat )− ŷHt (Iat )),

which leads to a contradiction. Hence, dHt (Iat ) ≥ d̂Ht (Iat ). We have thus proved that, if ∂Ia
t−1
V̂ s
t−1(I

a
t−1) ≥

∂Ia
t−1
V s
t−1(I

a
t−1), x̂

L
t (I

a
t ) ≥ xLt (I

a
t ), d̂

L
t (I

a
t ) ≤ dLt (I

a
t ), and d̂

H
t (Iat ) ≤ dHt (Iat ).

Next, we show that d̂s∗t (Iat ) ≤ ds∗t (Iat ) for all Iat ≤ Ka. If Iat ≤ ILt or Iat ≥ max{IHt , ÎHt },

d̂s∗t (Iat ) ≤ ds∗t (Iat ) follows from d̂Lt (I
a
t ) ≤ dLt (I

a
t ) and d̂Ht (Iat ) ≤ dHt (Iat ). Now we assume that Iat ∈

[ILt ,max{IHt , ÎHt }]. If Iat ∈ [ILt , Î
L
t ], x

s∗
t (Iat ) = Iat ≤ x̂s∗t (Iat ). If d̂s∗t (Iat ) > ds∗t (Iat ), by Lemma 28,

∂dtJ
s
t (x

s∗
t (Iat ), d

s∗
t (Iat ), I

a
t ) ≤ ∂dt Ĵ

s
t (x̂

s∗
t (Iat ), d̂

s∗
t (Iat ), I

a
t ). The first order condition with respect to xat

implies that ∂XH
s
t (x

s∗
t (Iat )− yst (I

a
t )) ≤ −βs = ∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )). Therefore,

∂dtR
s(ds∗t (Iat ), I

a
t ) =∂dtJ

s
t (x

s∗
t (Iat ), d

s∗
t (Iat ), I

a
t ) + ∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t ))

≤∂dt Ĵ
s
t (x̂

s∗
t (Iat ), d̂

s∗
t (Iat ), I

a
t ) + ∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t ))

=∂dt
Rs(d̂s∗t (Iat ), I

a
t ).

However, d̂s∗t (Iat ) > ds∗t (Iat ) implies that ∂dtR
s(ds∗t (Iat ), I

a
t ) > ∂dtR

s(d̂s∗t (Iat ), I
a
t ). The contradiction

shows that if Iat ∈ [ILt , Î
L
t ], d̂

s∗
t (Iat ) ≤ ds∗t (Iat ).

If Iat ∈ [ÎLt , I
H
t ], xs∗t (Iat ) = Iat ≥ x̂s∗t (Iat ). If d̂

s∗
t (Iat ) > ds∗t (Iat ), Lemma 28 implies that

∂dtJ
s
t (x

s∗
t (Iat ), d

s∗
t (Iat ), I

a
t ) ≤ ∂dt Ĵ

s
t (x̂

s∗
t (Iat ), d̂

s∗
t (Iat ), I

a
t ). Since ∂XH

s
t (X) ≤ ∂XĤ

s
t (X) for any X and
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d̂s∗t (Iat ) > ds∗t (Iat ), ∂XH
s
t (x

s∗
t (Iat )− yst (I

a
t )) ≤ ∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )). We apply the same argument as

in the case Iat ∈ [ILt , Î
L
t ] and the contradiction shows that d̂s∗t (Iat ) ≤ ds∗t (Iat ) for all I

a
t ∈ [ÎLt , I

H
t ].

If Iat ∈ [IHt , Î
H
t ] (which might be an empty set), the first order condition with respect to xat implies

that

∂XH
s
t (x

s∗
t (Iat )− ys∗t (Iat )) = −(βs + θ) < −(βs + θ̂) ≤ ∂XĤ

s
t (x̂

s∗
t (Iat )− ŷs∗t (Iat )). (D.10)

If d̂s∗t (Iat ) > ds∗t (Iat ), Lemma 28 implies that ∂dt
Js
t (x

s∗
t (Iat ), d

s∗
t (Iat ), I

a
t ) ≥ ∂dt

Ĵs
t (x̂

s∗
t (Iat ), d̂

s∗
t (Iat ), I

a
t ).

The same argument as in the case Iat ∈ [ÎLt , I
H
t ] proves that d̂s∗t (Iat ) ≤ ds∗t (Iat ) for all Iat ∈ [IHt , Î

H
t ].

Hence, d̂s∗t (Iat ) ≤ ds∗t (Iat ) for all I
a
t ≤ Ka.

To complete the induction, we next show that if ∂Ia
t−1
V̂ s
t−1(I

a
t−1) ≥ ∂Ia

t−1
V s
t−1(I

a
t−1) for all I

a
t−1 ≤ Ka,

∂Ia
t
V̂ s
t (I

a
t ) ≥ ∂Ia

t
V s
t (I

a
t ) for all I

a
t ≤ Ka.

If Iat ≤ ILt , note that ∂dtJ
s
t (x

s∗
t (Iat ), d

s∗
t (Iat ), I

a
t ) = ∂dtR

s(ds∗t (Iat ), I
a
t )− ∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t )) and

∂dt Ĵ
d
t (x̂

s∗
t (Iat ), d̂

s∗
t (Iat ), I

a
t ) = ∂dtR

s(d̂s∗t (Iat ), I
a
t )− ∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )). By the first order condition

with respect to xat , ∂XH
s
t (x

s∗
t (Iat ) − yst (I

a
t )) = ∂XĤ

s
t (x̂

s∗
t (Iat ) − ŷst (I

a
t )) = −βs. A simple contradiction

argument leads to that ds∗t (Iat ) = d̂s∗t (Iat ), for I
a
t ≤ ILt . Therefore:∂I

a
t
V s
t (I

a
t ) = c+ (p(ds∗t (Iat ))− b− αc)γ′(Iat )− γ′(Iat )∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t ))

∂Ia
t
V̂ s
t (I

a
t ) = c+ (p(d̂s∗t (Iat ))− b− αc)γ′(Iat )− γ′(Iat )∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )).

Hence, ∂Ia
t
V̂ s
t (I

a
t ) = ∂Ia

t
V s
t (I

a
t ), for I

a
t ≤ ILt .

If Iat ∈ [ILt , Î
L
t ],∂I

a
t
V s
t (I

a
t ) = c+ (p(ds∗t (Iat ))− b− αc)γ′(Iat ) + βs + (1− γ′(Iat ))∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t ))

∂Ia
t
V̂ s
t (I

a
t ) = c+ (p(d̂s∗t (Iat ))− b− αc)γ′(Iat )− γ′(Iat )∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )).

Note that the first order condition with respect to xat implies that ∂XH
s
t (x

s∗
t (Iat ) − yst (I

a
t )) ≤ −βs =

∂XĤ
s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )). If d

s∗
t (Iat ) = d̂s∗t (Iat ),

∂Ia
t
V̂ s
t (I

a
t )− ∂Ia

t
V s
t (I

a
t )

=− γ′(Iat )(∂XĤ
s
t (x̂

s∗
t (Iat )− ŷst (I

a
t ))− ∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t ))) + βs + ∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )) ≥ 0.

If ds∗t (Iat ) > d̂s∗t (Iat ), Lemma 28 yields that ∂dtJ
s
t (x

s∗
t (Iat ), d

s∗
t (Iat ), I

a
t ) ≥ ∂dt Ĵ

s
t (x̂

s∗
t (Iat ), d̂

s∗
t (Iat ), I

a
t ), i.e.,

∂dtR
s(ds∗t (Iat ), I

a
t )− ∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t )) ≥ ∂dtR

s(d̂s∗t (Iat ), I
a
t )− ∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )). (D.11)

We have:

∂Ia
t
V̂ s
t (I

a
t )− ∂Ia

t
V s
t (I

a
t ) =[(p(d̂s∗t (Iat ))− p(ds∗t (Iat )))− (∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t ))

− ∂XH
s
t (x

s∗
t (Iat )− yst (I

a
t )))]γ

′(Iat )− (βs + ∂XH
s
t (x

s∗
t (Ia)− yst (I

a
t )))

≥[(p(d̂s∗t (Iat ))− p(ds∗t (Iat )))− (∂XĤ
s
t (x̂

s∗
t (Iat )− ŷst (I

a
t ))

− ∂XH
s
t (x

s∗
t (Iat )− yst (I

a
t )))]γ

′(Iat )

≥[(p(d̂s∗t (Iat ))− p(ds∗t (Iat )))− (∂dtR
s(d̂s∗t (Iat ), I

a
t )− ∂dtR

s(ds∗t (Iat ), I
a
t ))]γ

′(Iat )

=[p′(ds∗t (Iat ))y
s
t (I

a
t )− p′(d̂s∗t (Iat ))ŷ

s
t (I

a
t )]γ

′(Iat )

≥0,

(D.12)
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where the first inequality follows from ∂XH
s
t (x

s∗
t (Iat ) − yst (I

a
t )) + βs ≤ 0, the second inequality from

(D.11), and the last from the concavity of p(·) and ds∗t (Iat ) > d̂s∗t (Iat ).

If Iat ∈ [ÎLt , I
H
t ], xs∗t (Iat ) = Iat ≥ x̂s∗t (Iat ),∂I

a
t
V s
t (I

a
t ) = c+ (p(ds∗t (Iat ))− b− αc)γ′(Iat ) + βs + (1− γ′(Iat ))∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t ))

∂Ia
t
V̂ s
t (I

a
t ) = c+ (p(d̂s∗t (Iat ))− b− αc)γ′(Iat ) + βs + (1− γ′(Iat ))∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )).

If ds∗t (Iat ) = d̂s∗t (Iat ), ∂XĤ
s
t (x̂

s∗
t (Iat ) − ŷst (I

a
t )) ≥ ∂XH

s
t (x

s∗
t (Iat ) − yst (I

a
t )), and ∂Ia

t
V̂ s
t (I

a
t ) ≥ ∂Ia

t
V s
t (I

a
t ).

If ds∗t (Iat ) > d̂s∗t (Iat ), as in (D.12),

∂Ia
t
V̂ s
t (I

a
t )− ∂Ia

t
V s
t (I

a
t ) ≥[p′(ds∗t (Iat ))y

s
t (I

a
t )− p′(d̂s∗t (Iat ))ŷ

s
t (I

a
t )]γ

′(Iat )

+ (∂dtR
s(d̂s∗t (Iat ), I

a
t )− ∂dtR

s(ds∗t (Iat ), I
a
t ))

>0,

(D.13)

where the second inequality follows from ds∗t (Iat ) > d̂s∗t (Iat ).

If Iat ∈ [IHt , Î
H
t ] (which might be an empty set),∂I

a
t
V s
t (I

a
t ) = c+ (p(ds∗t (Iat ))− b− αc)γ′(Iat )− γ′(Iat )∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t ))− θ

∂Ia
t
V̂ s
t (I

a
t ) = c+ (p(d̂s∗t (Iat ))− b− αc)γ′(Iat ) + βs + (1− γ′(Iat ))∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )).

(D.10) implies that ∂XĤ
s
t (x̂

s∗
t (Iat )−ŷst (Iat )) > ∂XH

s
t (x

s∗
t (Iat )−yst (Iat )) and ∂XĤs

t (x̂
s∗
t (Iat )−ŷst (Iat ))+

βs + θ ≥ 0. The same argument as in the case Iat ∈ [ILt , Î
L
t ] implies that ∂Ia

t
V̂ s
t (I

a
t ) ≥ ∂Ia

t
V s
t (I

a
t ) for

Iat ∈ [IHt , Î
H
t ].

If Iat ≥ max{IHt , ÎHt },∂I
a
t
V s
t (I

a
t ) = c+ (p(ds∗t (Iat ))− b− αc)γ′(Iat )− γ′(Iat )∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t ))− θ

∂Ia
t
V̂ s
t (I

a
t ) = c+ (p(d̂s∗t (Iat ))− b− αc)γ′(Iat )− γ′(Iat )∂XĤ

s
t (x̂

s∗
t (Iat )− ŷst (I

a
t ))− θ̂.

Note that

∂XĤ
s
t (x̂

s∗
t (Iat )− ŷst (I

a
t )) = −(βs + θ̂) ≥ −(βs + θ) = ∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t )).

If ds∗t (Iat ) = d̂s∗t (Iat ),

V̂ s
t (I

a
t )− ∂Ia

t
V s
t (I

a
t ) = −γ′(Iat )(∂XĤs

t (x̂
s∗
t (Iat )− ŷst (I

a
t ))− ∂XH

s
t (x

s∗
t (Iat )− yst (I

a
t ))) + θ − θ̂ > 0.

If ds∗t (Iat ) > d̂s∗t (Iat ), the same argument as (D.12) implies that

V̂ s
t (I

a
t )− ∂Ia

t
V s
t (I

a
t ) ≥ [p′(ds∗t (Iat ))y

s
t (I

a
t )− p′(d̂s∗t (Iat ))ŷ

s
t (I

a
t )]γ

′(Iat ) + θ − θ̂ > 0.

We have thus showed that, if ∂Ia
t−1
V̂ s
t−1(I

a
t−1) ≥ ∂Ia

t−1
V s
t−1(I

a
t−1) for all Iat−1 ≤ Ka, ∂Ia

t
V̂ s
t (I

a
t ) ≥

∂Ia
t
V s
t (I

a
t ) for all I

a
t ≤ Ka, which completes the proof of Theorem 5.5.3. Q.E.D.

Proof of Theorem 5.5.4: We first show part (a). Observe that if hw ≥ ha and γ̂(Iat ) ≡ γ0 for

all Iat ≤ Ka, withholding positive inventory is dominated by displaying this part of inventory to cus-

tomers, because the holding cost at the customer-accessible storage is smaller than that at the warehouse,
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and there is no demand-suppressing effect of customer-accessible inventory. Therefore, the firm should

not withhold any inventory if hw ≥ ha and γ̂(Iat ) ≡ γ0 for all Iat ≤ Ka.

Next, we show part (b) by backward induction. Since it is optimal for the firm not to withhold

any inventory in the model with demand D̂t, this model is reduced to the one discussed in Section 5.5.1,

i.e., the model without inventory withholding. Let Kt(I
a
t ) := Vt(I

a
t , I

a
t ). It suffices to show that if

∂Ia
t−1
V̂ s
t−1(I

a
t−1) ≥ ∂Ia

t−1
Kt−1(I

a
t−1), for all Iat−1 ≤ Ka, (a) x

a
t (I

a
t ) ≤ x̂s∗t (Iat ), (b) dt(I

a
t ) ≥ d̂s∗t (Iat ), and

(c) ∂Ia
t
V̂ s
t (I

a
t ) ≥ ∂Ia

t
Kt(I

a
t ), for all I

a
t ≤ Ka. For t = 0, V̂ s

0 (I
a
0 ) = K0(I

a
0 ) = 0, so the initial condition is

satisfied.

If ∂Ia
t−1
V̂ s
t−1(I

a
t−1) ≥ ∂Ia

t−1
Kt(I

a
t−1) for I

a
t−1 ≤ Ka,

∂XĤ
s
t (X) ≥ ∂XLt(X,Y ) + ∂Y Lt(X,Y ) for X = Y,

where Ĥs
t (X) is defined in the proof of Theorem 5.5.2, and

Lt(X,Y ) := Eϵat
{−(ha + b)(X − ϵat )

+ + α[Vt−1(X − ϵat , Y − ϵat )− cY ]}.

Therefore, the same argument as in the proof of Theorem 5.5.2(a) shows that xat (I
a
t ) ≤ x̂s∗t (Iat ) and

dt(I
a
t ) ≥ d̂s∗t (Iat ).

To complete the induction, we show that if ∂Ia
t−1
V̂ s
t−1(I

a
t−1) ≥ ∂Ia

t−1
Kt−1(I

a
t−1) for all Iat−1 ≤ Ka,

∂Ia
t
V̂ s
t (I

a
t ) ≥ ∂Ia

t
Kt(I

a
t ), for I

a
t ≤ Ka. Since x

a
t (I

a
t ) ≤ x̂s∗t (Iat ), x

a
t (I

L
t ) ≤ xs∗t (ILt ) = ILt . If I

a
t ≤ ILt ,

∂Ia
t
Kt(I

a
t ) ≤ c+ (p− b− αc)γ′(Iat ) ≤ c = ∂Ia

t
V̂ s
t (I

a
t ).

For the case Iat ≥ ILt , the argument is very similar to that in the proof of Theorem 5.5.2, so we only

sketch it. The key step is to show that

∂XĤ
s
t (I

a
t − ŷst (I

a
t )) ≥ ∂XLt(x

a∗
t (Iat , I

a
t )− yt(I

a
t ), I

a
t − yt(I

a
t )) + ∂Y Lt(x

a∗
t (Iat , I

a
t )− yt(I

a
t ), I

a
t − yt(I

a
t )),

where ŷst (I
a
t ) is defined in the proof of Theorem 5.5.2 and yt(I

a
t ) := da∗t (Iat , I

a
t ) + γ(Iat ). To show the

above inequality, let y∗t (I
a
t ) be the optimal expected demand in the system with demand D̂t such that

the firm is forced to display xa∗t (Iat , I
a
t ) to customers and withhold Iat −xa∗t (Iat , I

a
t ) > 0 in the warehouse,

when the current customer-accessible inventory level is Iat > ILt . Let

L̂s
t (X,Y ) = Eϵat

{−(ha + b)(X − ϵat )
+ + α[V̂ s

t−1(Y − ϵat )− cY ]},

Following the same argument as the proof of Lemma 32, we have:

∂XĤ
s
t (I

a
t − ŷst (I

a
t )) ≥∂X L̂s

t (x
a∗
t (Iat , I

a
t )− y∗t (I

a
t ), I

a
t − y∗t (I

a
t )) + ∂Y L̂t(x

a∗
t (Iat , I

a
t )− y∗t (I

a
t ), I

a
t − y∗t (I

a
t ))

≥∂XLt(x
a∗
t (Iat , I

a
t )− yt(I

a
t ), I

a
t − yt(I

a
t )) + ∂Y Lt(x

a∗
t (Iat , I

a
t )− yt(I

a
t ), I

a
t − yt(I

a
t )).

(D.14)

Based on (D.14), the same argument as the proof of Theorem 5.5.2(a) yields that ∂Ia
t
V̂ s
t (I

a
t ) ≥ ∂Ia

t
Kt(I

a
t ),

for all Iat ≤ Ka. This completes the induction and the proof of Theorem 5.5.4(b). Q.E.D.

Proof of Theorem 5.5.5: We prove Theorem 5.5.5 by backward induction. Let Lt(X,Y ) := Eϵat
{Gt(X−

ϵat , Y − ϵat )} and Ht(X) := Lt(X,X), then gat (x
a
t , dt, I

a
t ) = Ht(x

a
t − dt − γ(Iat )). Let Kt(I

a
t ) = Vt(I

a
t , I

a
t ).
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It suffices to show that if ∂Ia
t−1
Kt−1(I

a
t−1) ≥ ∂Ia

t−1
V s
t−1(I

a
t−1), for any I

a
t−1 ≤ Ka, (a) x

a
t (I

a
t ) ≥ xs∗t (Iat ),

(b) d∗t (I
a
t , It) ≤ ds∗t (Iat ), and (c) ∂Ia

t
Kt(I

a
t ) ≥ ∂Ia

t
V s
t (I

a
t ), for any I

a
t ≤ Ka. For t = 0, V s

0 (I
a
0 ) = K0(I

a
0 ) =

0, so the initial condition is satisfied. Because ∂Ia
t−1
Kt−1(I

a
t−1) ≥ ∂Ia

t−1
V s
t−1(I

a
t−1), for any Iat−1 ≤ Ka,

∂XHt(X) ≥ ∂XH
s
t (X) for any X.

Following the same argument as the proof of Theorem 5.5.3, we have that if ∂XHt(X) ≥ ∂XH
s
t (X)

for any X, xat (I
a
t ) ≥ xLt (I

a
t ) and dt(I

a
t ) ≤ dLt (I

a
t ). Hence, ILt ≤ I∗t := sup{Iat : xat (I

a
t ) > Iat }. Therefore,

we have that

d∗t (I
a
t , It) = dt(I

a
t ) ≤ dLt (I

a
t ) ≤ ds∗t (Iat ), if I

a
t ≤ I∗t ,

where the last inequality follows from the supermodularity of Js
t (x

a
t , dt, I

a
t ) in (xat , dt) for any fixed Iat .

If It = Iat > I∗t , x
a∗
t (Iat , It) < x∗t (I

a
t , It) = xs∗t (Iat ) = Iat = It. Therefore,

ds∗t (Iat ) =argmaxdt∈[d,d̄]{R(dt, Iat ) +Hs
t (I

a
t − dt − γ(Iat ))} ≥ d̂t(I

a
t )

:=argmaxdt∈[d,d̄]{R(dt, Iat ) +Ht(I
a
t − dt − γ(Iat ))},

since

∂dtR(d̂t(I
a
t ), I

a
t )− ∂XH

s
t (I

a
t − d̂t(I

a
t )− γ(Iat )) ≥ ∂dtR(d̂t(I

a
t ), I

a
t )− ∂XHt(I

a
t − d̂t(I

a
t )− γ(Iat )),

where the inequality follows from ∂XHt(X) ≥ ∂XH
s
t (X) for all X. Similar argument yields that:

d∗t (I
a
t , It) = argmaxdt∈[d,d̄]{R(dt, Iat ) + Lt(x

a∗
t (Iat , It)− dt − γ(Iat ), I

a
t − dt − γ(Iat ))}

≤d̂t(Iat ) = argmaxdt∈[d,d̄]{R(dt, Iat ) + Lt(I
a
t − dt − γ(Iat ), I

a
t − dt − γ(Iat ))},

because Lt(·, Y ) is concave for any fixed Y . Hence, d∗t (I
a
t , It) ≤ d̂t(I

a
t ) ≤ ds∗t (Iat ) for any It = Iat ≥ I∗t .

To complete the induction, we need to show that if ∂Ia
t−1
Kt−1(I

a
t−1) ≥ ∂Ia

t−1
V s
t−1(I

a
t−1), for any

Iat−1 ≤ Ka, ∂Ia
t
Kt(I

a
t ) ≥ ∂Ia

t
V s
t (I

a
t ), for any Iat ≤ Ka. For Iat ≤ I∗t , x

a∗
t (Iat , It) = x∗t (I

a
t , It). Same

argument as in the proof of Theorem 5.5.3 implies that ∂Ia
t
Kt(I

a
t ) ≥ ∂Ia

t
V s
t (I

a
t ), if I

a
t ≤ I∗t .

If Iat > I∗t , the proof is based on the following lemma:

Lemma 33 Assume that Iat > I∗t . Let

V̂ s
t (I

a
t ) = cIat + max

dt∈[d,d̄]
{R(dt, Iat ) + βIat + Lt(I

a
t − dt − γ(Iat ), I

a
t − dt − γ(Iat ))}.

We have:

∂Ia
t
V s
t (I

a
t ) ≤ ∂Ia

t
V̂ s
t (I

a
t ) ≤ ∂Ia

t
Kt(I

a
t ). (D.15)

Proof of Lemma 33: The first inequality follows from the same argument as the proof of

Theorem 5.5.3. For the second inequality, observe that

∂Ia
t
V̂t(I

a
t ) =c+ β + (p(d̂t(I

a
t ))− b− αc)γ′(Iat )

+ (1− γ′(Iat ))∂XLt(I
a
t − d̂t(I

a
t )− γ(Iat ), I

a
t − d̂t(I

a
t )− γ(Iat ))

+ (1− γ′(Iat ))∂Y Lt(I
a
t − d̂t(I

a
t )− γ(Iat ), I

a
t − d̂t(I

a
t )− γ(Iat )),

and ∂Ia
t
Kt(I

a
t ) =c+ β + (p(d∗t (I

a
t , It))− b− αc)γ′(Iat )

+ (1− γ′(Iat ))∂XLt(x
a∗
t (Iat , It)− d∗t (I

a
t , It)− γ(Iat ), I

a
t − d∗t (I

a
t , It)− γ(Iat ))

+ (1− γ′(Iat ))∂Y Lt(x
a∗
t (Iat , It)− d∗t (I

a
t , It)− γ(Iat ), I

a
t − d∗t (I

a
t , It)− γ(Iat ))).
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Thus,

∂Ia
t
Kt(I

a
t )− ∂Ia

t
V̂t(I

a
t ) = (p(d∗t (I

a
t , It))− p(d̂t(I

a
t )))γ

′(Iat )

− γ′(Iat )[∂XLt(x
a∗
t (Iat , It)− d∗t (I

a
t , It)− γ(Iat ), I

a
t − d∗t (I

a
t , It)− γ(Iat ))

− ∂XLt(I
a
t − d̂t(I

a
t )− γ(Iat ), I

a
t − d̂t(I

a
t )− γ(Iat ))

+ ∂Y Lt(x
a∗
t (Iat , It)− d∗t (I

a
t , It)− γ(Iat ), I

a
t − d∗t (I

a
t , It)− γ(Iat ))

− ∂Y Lt(I
a
t − d̂t(I

a
t )− γ(Iat ), I

a
t − d̂t(I

a
t )− γ(Iat ))]

+ ∂XLt(x
a∗
t (Iat , It)− d∗t (I

a
t , It)− γ(Iat ), I

a
t − d∗t (I

a
t , It)− γ(Iat ))

− ∂XLt(I
a
t − d̂t(I

a
t )− γ(Iat ), I

a
t − d̂t(I

a
t )− γ(Iat ))

+ ∂Y Lt(x
a∗
t (Iat , It)− d∗t (I

a
t , It)− γ(Iat ), I

a
t − d∗t (I

a
t , It)− γ(Iat ))

− ∂Y Lt(I
a
t − d̂t(I

a
t )− γ(Iat ), I

a
t − d̂t(I

a
t )− γ(Iat )).

(D.16)

Based on the first order condition with respect to dt and Lemma 28, the same argument as

inequality (D.12) yields that ∂Ia
t
Kt(I

a
t )− ∂Ia

t
V̂t(I

a
t ) ≥ 0, and hence (D.15) holds. Q.E.D.

By Lemma 33, ∂Ia
t
Kt(I

a
t ) ≥ ∂Ia

t
V̂ s
t (I

a
t ) ≥ ∂Ia

t
V s
t (I

a
t ) for all I

a
t ≤ Ka. This completes the induction

in the proof of Theorem 5.5.5. Q.E.D.

Proof of Theorem 5.6.1: The proof, based on backward induction, is very similar to that of Lemma

14 and Theorem 5.4.1, so we only sketch it. In particular, the continuous differentiability of V r
t (I

a
t , It)

follows from the same argument as in the proof of Lemma 14 and is, hence, omitted. Note that

V r
0 (I

r
0 , I0) − cI0 − rdI

a
0 = −cI0 − rdI

a
0 is jointly concave, continuously differentiable, and decreasing

in both of its arguments.

If V r
t−1(I

a
t−1, It−1) − rdI

a
t−1 − cIt−1 is jointly concave and decreasing in Iat−1 and It−1, G

r
t (x, y) is

decreasing in both x and y. Hence, the same argument as in the proof of Lemma 14 shows that, for any

realization of (ϵat , ϵ
m
t ),

− (rd + rw)(y
a
t − Iat )

− + ϕyat +Gr
t (y

a
t −Dt, xt −Dt)

=− (rd + rw)(y
a
t − Iat )

− + ϕyat +Gr
t (y

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )

is jointly concave in (yat , xt, dt, I
a
t ). Concavity is preserved under maximization and expectation, so

EDt{ max
min{Dt,Ia

t }≤ya
t ≤min{Ka+Dt,xt}

{−(rd + rw)(y
a
t − Iat )

− + ϕyat +Gr
t (y

a
t −Dt, xt −Dt)}}

is jointly concave in (xt, dt, I
a
t ). Since R(dt, I

a
t ) + rd(dt + γ(Iat )) is jointly concave in (dt, I

a
t ), and

θ(xt − It)
− is jointly concave in (xt, It),

R(dt, I
a
t ) + rd(dt + γ(Iat ))− θ(xt − It)

− − ψxt

+ EDt{ max
min{Dt,Ia

t }≤ya
t ≤{Ka+Dt,xt}

{−(rd + rw)(y
a
t − Iat )

− + ϕyat +Gr
t (y

a
t −Dt, xt −Dt)}}

is jointly concave in (xt, dt, I
a
t ). Since concavity is preserved under maximization, V r

t (I
a
t , It) is jointly

concave in (Iat , It).
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Next, we show that V r
t (I

a
t , It)− rdI

a
t − cIt is decreasing in Iat and It. Since all of terms in

−(rd + rw)(y
a
t − Iat )

− + ϕyat +Gr
t (y

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat ) is decreasing in Iat ,

it is decreasing in Iat itself, if the constraints min{Iat , Dt} ≤ yat ≤ min{Ka +Dt, xt} is not binding.

If yat = Iat ,

− (rd + rw)(y
a
t − Iat )

− + ϕyat +Gr
t (y

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )

=ϕIat +Gr
t (I

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat ).

If ϕIat +Gr
t (I

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat ) is strictly increasing in Iat ,

−(rd+rw)(y
a
t −Iat )−+ϕyat +G

r
t (y

a
t −(dt+γ(I

a
t ))ϵ

m
t −ϵat , xt−(dt+γ(I

a
t ))ϵ

m
t −ϵat ) is strictly increasing in yat

in a small right-neighborhood of Iat : [I
a
t , I

a
t + ξ), for a small enough ξ > 0. Under this condition, yat = Iat

is not an optimizer. Hence,

−(rd + rw)(y
a
t − Iat )

− + ϕyat +Gr
t (y

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat ) is decreasing in Iat ,

if it is optimal to choose yat = Iat .

If yat = Dt,

− (rd + rw)(y
a
t − Iat )

− + ϕyat +Gr
t (y

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )

=− (rd + rw)((dt + γ(Iat ))ϵ
m
t + ϵat − Iat )

− + ϕ((dt + γ(Iat ))ϵ
m
t + ϵat ) +Gr

t (0, xt − (dt + γ(Iat ))ϵ
m
t − ϵat )

is decreasing Iat .

Analogously, if yat = Ka +Dt,

− (rd + rw)(y
a
t − Iat )

− + ϕyat +Gr
t (y

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )

=− (rd + rw)(Ka + (dt + γ(Iat ))ϵ
m
t + ϵat − Iat )

− + ϕ(Ka + (dt + γ(Iat ))ϵ
m
t + ϵat )

+Gr
t (Ka, xt − (dt + γ(Iat ))ϵ

m
t − ϵat )

is decreasing in Iat .

If yat = xt,

− (rd + rw)(y
a
t − Iat )

− + ϕyat +Gr
t (y

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )

=− (rd + rw)(xt − Iat )
− + ϕxt +Gr

t (xt − (dt + γ(Iat ))ϵ
m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )

is decreasing in Iat .

Hence,

max
min{Dt,Ia

t }≤ya
t ≤min{xt,Dt+Ka}

{−(rd + rw)(y
a
t − Iat )

− + ϕyat

+Gr
t (y

a
t − (dt + γ(Iat ))ϵ

m
t − ϵat , xt − (dt + γ(Iat ))ϵ

m
t − ϵat )}

is decreasing in Iat . Because, −θ(xt − It)
− is decreasing in It and F

r(Ia1 ) ⊂ F r(Ia2 ) for any I
a
1 ≥ Ia2 ,

V r
t (I

a
t , It)− rdI

a
t − cIt = max

(xt,dt)∈F r(Ia
t )
{R(dt, Iat ) + rd(dt + γ(Iat ))− θ(xt − It)

− − ψxt

+ EDt{ max
min{Dt,Ia

t }≤ya
t ≤min{xt,Ka+Dt}

{−(rd + rw)(y
a
t − Iat )

− + ϕyat

+Gr
t (y

a
t −Dt, xt −Dt)}}}
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is decreasing in Iat and It. This concludes the proof of part (a). Part (b) follows directly from the

concavity of V r
t−1(·, y) for any y and (5.12), while part (c) follows from the same argument as the proof

of Theorem 5.4.1. Q.E.D.
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E. Appendix for Chapter 6

E.1 Proofs of Statements

Proof of Lemma 17: We prove parts (a) - (c) together, using backward induction.

Since V0(·|θ0) ≡ 0 is concave and continuously differentiable in I0 for any θ0, it suffices to show

that if Vt−1(·|θt−1) is concave and continuously differentiable in It−1 for any θt−1, then, for any θt, (i)

Ψt(·|θt) is concave and continuously differentiable in z, (ii) Jt(·, ·, It|θt) is strictly jointly concave and

continuously differentiable in (dt, qt), and (iii) Vt(·|θt) is concave and continuously differentiable in It.

Since −H(·) and Vt−1(·|θt−1) are concave and concavity is preserved under expectation, by Equa-

tion (6.14), Ψt(z|θt) is concave in z for any θt. Since ϵt follows a continuous distribution, Ψt(z|θt) is

continuously differentiable in z.

By Assumption 6.4.1, (
∑

i∈N Λi
tR

i(dit)) is strictly jointly concave in dt. The strict convexity of

Cj(·|cjt ) for each j, implies that −
∑

j∈M Cj(qjt |c
j
t ) is strictly jointly concave in qt. Moreover, by the

concavity of Ψt(·|θt), for any realization of ςt, Ψt(It +
∑

j∈M qjt − (
∑

i∈N Λi
td

i
t)ςt|θt) is jointly concave in

(dt, qt, It). Therefore, by Equation (6.13),

Jt(dt, qt, It|θt) = (
∑
i∈N

Λi
tR

i(dit))−
∑
j∈M

Cj(qjt |c
j
t ) + Eςt{Ψt(It +

∑
j∈M

qjt − (
∑
i∈N

Λi
td

i
t)ςt|θt)}

is jointly concave in (dt, qt, It) and strictly jointly concave in (dt, qt). Since Ri(·) is continuously dif-

ferentiable in dit for any i, Cj(·|cjt ) is continuously differentiable in qjt for any j and cjt , and Ψt(·|θt) is

continuously differentiable in z for any θt, Jt(·, ·, It|θt) is continuously differentiable in (dt, qt) for any θt.

Since concavity is preserved under maximization, by Equation (6.11), Vt(·|θt) is concave in It for

any θt. The continuous differentiability of Vt(·|θt) follows from the envelope theorem and its derivative

is given by

∂ItVt(It|θt) = ∂ItEςt{Ψt(It +
∑
j∈M

qj∗t (It, θt)− (
∑
i∈N

Λi
td

i∗
t (It, θt))ςt|θt)}

= Eςt{∂zΨt(It +
∑
j∈M

qj∗t (It, θt)− (
∑
i∈N

Λi
td

i∗
t (It, θt))ςt|θt)}, (E.1)

where the first equality follows from the envelope theorem and the second from Theorem A.5.1 of [63]

and the continuous differentiability of Ψt(·|θt). Q.E.D.

Proof of Theorem 6.4.1: We prove part (b) first, part (c) second, and part (a) last.

Part (b). Let

Φt(y|θt) := max
dt∈[0,dmax]n

{(
∑
i∈N

Λi
tR

i(dit)) + Eςt{Ψt(y − (
∑
i∈N

Λi
td

i
t)ςt|θt)}. (E.2)
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It’s clear that Φt(·|θt) is concave and continuously differentiable in y, and

(q1∗t (It, θt), q
2∗
t (It, θt), · · · , qm∗

t (It, θt)) = argmaxqt≥0{−
∑
j∈M

Cj(qjt |c
j
t ) + Φt(It +

∑
j∈M

qjt |θt)}. (E.3)

Invoke Lemma 15 with p = m, q = 0, γ = −It, yj = qjt (1 ≤ j ≤ m), λj = 1 (1 ≤ j ≤ m),

fj(yj |γ) = −Cj(qjt |c
j
t ), h(y0|γ) = Φt(It+y0|θt), and Yj = [0,+∞) for all 1 ≤ j ≤ m. Since Φt(It+y0|θt)

is supermodular in (−It, y0), h(y0|γ) is supermodular in (y0, γ). Hence, Lemma 15 implies that qj∗t (It, θt)

is decreasing in It for any j and θt. The strict concavity of Jt(·, ·, It|θt) yields that qj∗t (It, θt) is continuous

in It for any j and θt. Hence, Iq,jt (θt) = min{It : qj∗t (It, θt) = 0}. If j ∈ M∗
t (Ît, θt), since q

j∗
t (It, θt)

is decreasing in It and Ît > It, q
j∗
t (It, θt) ≥ qj∗t (Ît, θt) > 0. Thus, j ∈ M∗

t (It, θt), and M∗
t (Ît, θt) ⊂

M∗
t (It, θt) follows immediately.

It remains to be shown that Iq,jt (θt) < +∞. First observe that Vt(It|θt) is uniformly bounded from

above by E[
∑t

s=1 α
t−s(

∑
j∈N Λj

s)|θt]R̄ < +∞, where R̄ := maxi∈N ,di
t∈[0,dmax]R

i(dit). Hence,

lim
z→+∞

∂zΨt(z|θt) ≤ − lim
z→+∞

H ′(z+) < 0.

By the envelope theorem, we have

lim
y→+∞

∂yΦt(y|θt) ≤ − lim
y→+∞

H ′(y+) < 0.

Thus, there exists a threshold ȳt < +∞ such that ∂yΦt(y|θt) < 0 for all y ≥ ȳt. Therefore, for any

j ∈ M,

−∂qjtC
j(qjt |c

j
t ) + ∂yΦt(It +

∑
j∈M

qjt |θt) < 0 for all It ≥ ȳt and qt ≥ 0.

Hence, qj∗t (It, θt) = 0 for all It ≥ ȳt and any j ∈ M. Thus, Iq,jt (θt) < +∞ for all θt and any j ∈ M.

Part (c). The continuity of x∗t (It, θt) follows from that of qj∗t (It, θt) for each j ∈ M. Assume,

to the contrary, that Ît > It and x∗t (Ît, θt) < x∗t (It, θt). Hence, there exists a j0 ∈ M, such that

qj0∗t (Ît, θt) < qj0∗t (It, θt). Without loss of generality, let j0 = 1. The strict convexity of C1(·|c1t ) implies

that ∂q1tC
1(q1∗t (It, θt)|c1t ) > ∂q1tC

1(q1∗t (Ît, θt)|c1t ). On the other hand, Lemma 16 yields that

−∂q1tC
1(q1∗t (It, θt)|c1t ) + ∂yΦt(x

∗
t (It, θt)|θt) ≥ −∂q1tC

1(q1∗t (Ît, θt)|c1t ) + ∂yΦt(x
∗
t (Ît, θt)|θt).

Therefore, ∂yΦt(x
∗
t (Ît, θt)|θt) < ∂yΦt(x

∗
t (It, θt)|θt), which contradicts the concavity of Φt(·|θt). Hence,

x∗t (It, θt) is continuously increasing in It.

Part (a). The continuity of di∗t (It, θt) follows from the concavity of Jt(·, ·, It|θt). For any given

Ît and It (Ît > It), assume, to the contrary, that d1∗t (It, θt) > d1∗t (Ît, θt). Thus, ∂d1
t
R1(d1∗t (It, θt)) <

∂d1
t
R1(d1∗t (Ît, θt)) by the strict concavity of R1(·). On the other hand, Lemma 16 yields that

∂d1
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt) ≥ ∂d1

t
Jt(d

∗
t (Ît, θt), q

∗
t (Ît, θt), It|θt). Thus,

Eςt{ςt∂yΨt(x
∗
t (It, θt)− (

∑
i∈N

Λi
td

i∗
t (It, θt))ςt|θt)} =∂d1

t
R1(d1∗t (It, θt))−

1

Λ1
t

∂d1
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

<∂d1
t
R1(d1∗t (Ît, θt))−

1

Λ1
t

∂d1
t
Jt(d

∗
t (Ît, θt), q

∗
t (Ît, θt), It|θt)

=Eςt{ςt∂yΨt(x
∗
t (Ît, θt)− (

∑
i∈N

Λi
td

i∗
t (Ît, θt))ςt|θt)}.

(E.4)
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For any l = 2, 3, · · · , n, further assume that dl∗t (It, θt) < dl∗t (Ît, θt). Hence, ∂dl
t
Rl(dl∗t (It, θt)) >

∂dl
t
Rl(dl∗t (Ît, θt)). On the other hand, Lemma 16 yields that

∂dl
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt) ≤ ∂dl

t
Jt(d

∗
t (Ît, θt), q

∗
t (Ît, θt), It|θt). Thus,

Eςt{ςt∂yΨt(x
∗
t (It, θt)− (

∑
i∈N

Λi
td

i∗
t (It, θt))ςt|θt)} =∂dl

t
Rl(dl∗t (It, θt))−

1

Λl
t

∂dl
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

>∂dl
t
Rl(dl∗t (Ît, θt))−

1

Λl
t

∂dl
t
Jt(d

∗
t (Ît, θt), q

∗
t (Ît, θt), It|θt)

=Eςt{ςt∂yΨt(x
∗
t (Ît, θt)− (

∑
i∈N

Λi
td

i∗
t (Ît, θt))ςt|θt)}.

(E.5)

Since (E.4) contradicts (E.5), dl∗t (It, θt) ≥ dl∗t (Ît, θt) for all l = 2, 3, · · · , n, if d1∗t (It, θt) > d1∗t (Ît, θt).

Hence, if d1∗t (It, θt) > d1∗t (Ît, θt), d
i∗
t (It, θt) ≥ di∗t (Ît, θt) for all i ∈ N . By part (c), x∗t (Ît, θt) ≥

x∗t (It, θt). Thus,

x∗t (Ît, θt)− (
∑
i∈N

Λi
td

i∗
t (Ît, θt))ςt ≥ x∗t (It, θt)− (

∑
i∈N

Λi
td

i∗
t (It, θt))ςt

for any realization of ςt. Thus, the concavity of Ψt(·|θt) implies that

ςt∂yΨt(x
∗
t (Ît, θt)− (

∑
i∈N

Λi
td

i∗
t (Ît, θt))ςt|θt) ≤ ςt∂yΨt(x

∗
t (It, θt)− (

∑
i∈N

Λi
td

i∗
t (It, θt))ςt|θt)

for any realization of ςt. By taking expectation on both sides, we have

Eςt{ςt∂yΨt(x
∗
t (Ît, θt)− (

∑
i∈N

Λi
td

i∗
t (Ît, θt))ςt|θt)} ≤ Eςt{ςt∂yΨt(x

∗
t (It, θt)− (

∑
i∈N

Λi
td

i∗
t (It, θt))ςt|θt)},

which contradicts (E.4). Therefore, d1∗t (It, θt) ≤ d1∗t (Ît, θt). The same argument implies that di∗t (It, θt) is

increasing in It for all i ∈ N . Hence, Id,it (θt) = max{It : di∗t (It, θt) = 0}. If i ∈ N ∗
t (It, θt), since d

i∗
t (It, θt)

is increasing in It and Ît > It, d
i∗
t (Ît, θt) ≥ di∗t (It, θt) > 0. Thus, i ∈ N ∗

t (Ît, θt), and N ∗
t (It, θt) ⊂

N ∗
t (Ît, θt) follows immediately.

To complete the proof, it remains to be shown that Id,it (θt) < +∞ for all i ∈ N . By the proof of

part (b), limz→+∞ ∂zΨt(z|θt) < 0. Moreover, observe that x∗t (It, θt) → +∞ as It → +∞. Thus, by the

monotone convergence theorem,

lim
It→+∞

Eςt{ςt∂yΨt(x
∗
t (It, θt)− (

∑
i∈N

Λi
td

i
t)ςt)} < 0 for any dt ∈ [0, dmax]

n.

Therefore,

∂di
t
Ri(0)− lim

It→+∞
Eςt{ςt∂yΨt(x

∗
t (It, θt)− (

∑
l∈N ,l ̸=i

Λl
td

l
t)ςt|θt)} > ∂di

t
Ri(0) = pimax > 0

for any i and d−i
t ∈ [0, dmax]

n−1, where d−i
t := (d1t , d

2
t , · · · , di−1

t , di+1
t , · · · , dnt ). Hence, for all i ∈ N ,

di∗t (It, θt) > 0 for sufficiently large It, i.e., I
d,i
t (θt) < +∞. Q.E.D.

Proof of Theorem 6.4.2:

Part (a). First, we show that if ∂di
t
Ri(z) ≥ ∂

dî
t
Rî(z) for all z ∈ [0, dmax], d

i∗
t (It, θt) ≥ dî∗t (It, θt) for

any (It, θt). Assume, to the contrary, that di∗t (It, θt) < dî∗t (It, θt). By the inequality ∂di
t
Ri(z) ≥ ∂

dî
t
Rî(z)
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for all z ∈ [0, dmax] and the strict concavity of Ri(·), ∂di
t
Ri(di∗t (It, θt)) > ∂

dî
t
Rî(dî∗t (It, θt)). On the other

hand, Lemma 16 yields that ∂di
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt) ≤ ∂

dî
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus,

Eςt{ςt∂yΨt(x
∗
t (It, θt)− (

∑
l∈N

Λl
td

l∗
t (It, θt))ςt|θt)} =∂di

t
Ri(di∗t (It, θt))−

1

Λi
t

∂di
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

>∂
dî
t
Rî(dî∗t (It, θt))−

1

Λî
t

∂
dî
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=Eςt{ςt∂yΨt(x
∗
t (It, θt)− (

∑
l∈N

Λl
td

l∗
t (It, θt))ςt|θt)},

which forms a contradiction. Thus, di∗t (It, θt) ≥ dî∗t (It, θt), and

Id,it (θt) = max{It : di∗t (It, θt) = 0} ≤ max{It : dî∗t (It, θt) = 0} = Id,̂it (θt).

For the second half of part (a), the inequality Id,1t (θt) ≤ Id,2t (θt) ≤ · · · ≤ Id,nt (θt) follows directly

from the first half. It remains to be shown that N ∗
t (It, θt) = {1, 2, · · · , i∗}, where i∗ = max{i : It >

Id,it (θt)}. Observe that It > Id,i
∗

t (θt) ≥ Id,i
∗−1

t (θt) ≥ · · · ≥ Id,1t (θt). Thus, by the definition of Id,it (θt),

{1, 2, · · · , i∗} ⊂ N ∗
t (It, θt). Moreover, by the definition of i∗, It ≤ Id,i

∗+1
t (θt) ≤ Id,i

∗+2
t (θt) ≤ · · · ≤

Id,nt (θt). Thus, i ̸∈ N ∗
t (It, θt) for all i ≥ i∗ + 1 and, hence, N ∗

t (It, θt) = {1, 2, · · · , i∗}.

Part (b). We first show that if ∂qjt
Cj(z|cjt ) ≥ ∂

qĵt
C ĵ(z|cĵt ) for any z ≥ 0, qj∗t (It, θt) ≤ qĵ∗t (It, θt)

for any (It, θt). Assume, to the contrary, that qj∗t (It, θt) > qĵ∗t (It, θt). The inequality ∂qjt
Cj(z|cjt ) ≥

∂
qĵt
C ĵ(z|cĵt ) for any z ≥ 0, together with the strict convexity of Cj(·|cjt ), implies that ∂qjt

Cj(qj∗t (It, θt)|cjt ) >

∂
qĵt
C ĵ(qĵ∗t (It, θt)|cĵt ). On the other hand, Lemma 16 implies that ∂qjt

Jt(d
∗
t (It, θt), q

∗
t (It, θt), It|θt) ≥

∂
qĵt
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus,

Eςt{∂yΨt(x
∗
t (It, θt)− (

∑
l∈N

Λl
td

l∗
t (It, θt))ςt|θt)} =∂qjt

Cj(qj∗t (It, θt)|cjt ) + ∂qjt
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

>∂
qĵt
C ĵ(qĵ∗t (It, θt)|cĵt ) + ∂

qĵt
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=Eςt{∂yΨt(x
∗
t (It, θt)− (

∑
l∈N

Λl
td

l∗
t (It, θt))ςt|θt)},

which forms a contradiction. Thus, qj∗t (It, θt) ≤ qĵ∗t (It, θt), and

Iq,jt (θt) = min{It : qj∗t (It, θt) = 0} ≤ min{It : qĵ∗t (It, θt) = 0} = Iq,ĵt (θt).

For the second half of part (b), the inequality Iq,1t (θt) ≤ Iq,2t (θt) ≤ · · · ≤ Iq,mt (θt) follows directly from the

first half. It remains to be shown thatM∗
t (It, θt) = {j∗, j∗+1, · · · ,m}, where j∗ = min{j : It < Iq,jt (θt)}.

Observe that It < Iq,j
∗

t (θt) ≤ Iq,j
∗+1

t (θt) ≤ · · · ≤ Iq,mt (θt). Thus, by the definition of Iq,jt (θt),

{j∗, j∗ + 1, · · · ,m} ⊂ M∗
t (It, θt). Moreover, by the definition of j∗, It ≥ Iq,j

∗−1
t (θt) ≥ Iq,j

∗−2
t (θt) ≥

· · · ≥ Iq,1t (θt). Thus, j ̸∈ M∗
t (It, θt) for all j ≤ j∗−1 and, hence, M∗

t (It, θt) = {j∗, j∗+1, · · · ,m}. Q.E.D.

Proof of Theorem 6.4.3: We show all parts together by backward induction. More specifically, we

prove that if ∂It−1Vt−1(It−1|θ̂t−1) ≥ ∂It−1Vt−1(It−1|θt−1) for all It−1 and Λ̂t−1 > Λt−1, then we have (i)

di∗t (It, θ̂t) ≤ di∗t (It, θt) for all i ∈ N , (ii) qj∗t (It, θ̂t) ≥ qj∗t (It, θt) for all j ∈ M, (iii) x∗t (It, θ̂t) ≥ x∗t (It, θt),

and (vi) ∂ItVt(It|θ̂t) ≥ ∂ItVt(It|θt) for all It and Λ̂t > Λt. Since ∂I0V0(I0|θ̂0) = ∂I0V0(I0|θ0) = 0 for all
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I0 and Λ̂0 > Λ0, the initial condition is satisfied. Since ∂It−1Vt−1(It−1|θ̂t−1) ≥ ∂It−1Vt−1(It−1|θt−1) and

ξΛ,i
t (Λ̂i

t) ≥s.d. ξ
Λ,i
t (Λi

t) for any i ∈ N , ∂zΨt(z|θ̂t) ≥ ∂zΨt(z|θt) for any z.

First, we show that di∗t (It, θ̂t) ≤ di∗t (It, θt) for all i ∈ N . Without loss of generality, we assume, to

the contrary, that d1∗t (It, θ̂t) > d1∗t (It, θt). The strict concavity of R1(·) implies that ∂d1
t
R1(d1∗t (It, θ̂t)) <

∂d1
t
R1(d1∗t (It, θt)). On the other hand, Lemma 16 yields that ∂d1

t
Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t) ≥ 0 ≥

∂d1
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt), i.e.,

∂d1
t
Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t)/Λ̂1

t ≥ 0 ≥ ∂d1
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)/Λ1

t . Thus,

∂zΨt(∆
∗
t (It, θ̂t)|θ̂t) =∂d1

t
R1(d1∗t (It, θ̂t))−

1

Λ̂1
t

∂d1
t
Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t)

<∂d1
t
R1(d1∗t (It, θt))−

1

Λ1
t

∂d1
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂zΨt(∆
∗
t (It, θt)|θt).

(E.6)

Since ∂zΨt(z|θ̂t) > ∂zΨt(z|θt) for all z and Ψt(·|θt) is concave in z, ∆∗
t (It, θ̂t) > ∆∗

t (It, θt), i.e.,

It+
∑
j∈M

qj∗t (It, θ̂t)−(
∑
i∈N

Λ̂i
td

i∗
t (It, θ̂t)) = ∆∗

t (It, θ̂t) > ∆∗
t (It, θt) = It+

∑
j∈M

qj∗t (It, θt)−(
∑
i∈N

Λi
td

i∗
t (It, θt)).

Since Λ̂t > Λt and d1∗t (It, θ̂t) > d1∗t (It, θt), either (a) di∗t (It, θ̂t) < di∗t (It, θt) for some 2 ≤ i ≤ n, or (b)

qj∗t (It, θ̂t) > qj∗t (It, θt) for some 1 ≤ j ≤ m.

In case (a), without loss of generality, we assume that d2∗t (It, θ̂t) < d2∗t (It, θt). Lemma 16 yields that

∂d2
t
Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t) ≤ 0 ≤ ∂d2

t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt), i.e.,

∂d2
t
Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t)/Λ̂2

t ≤ ∂d2
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)/Λ2

t . Thus, by (E.6),

∂d2
t
R2(d2∗t (It, θ̂t)) =

1

Λ̂2
t

∂d2
t
Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t) + ∂zΨt(∆

∗
t (It, θ̂t)|θ̂t)

<
1

Λ2
t

∂d2
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt) + ∂zΨt(∆

∗
t (It, θt)|θt)

=∂d2
t
R2(d2∗t (It, θt)),

which contradicts the strict concavity of R2(·). Hence, d2∗t (It, θ̂t) ≥ d2∗t (It, θt) under the condition

that d1∗t (It, θ̂t) > d1∗t (It, θt). It follows from the same argument that di∗t (It, θ̂t) ≥ di∗t (It, θt) for all

i = 2, 3, · · · , n, under the condition that d1∗t (It, θ̂t) > d1∗t (It, θt).

In case (b), without loss of generality, we assume that q1∗t (It, θ̂t) > q1∗t (It, θt). Lemma 16 yields that

∂q1t Jt(d
∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t) ≥ ∂q1t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus, by (E.6),

∂q1tC
1(q1∗t (It, θ̂t)|c1t ) =∂zΨt(∆

∗
t (It, θ̂t)|θ̂t)− ∂q1t Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t)

<∂zΨt(∆
∗
t (It, θt)|θt)− ∂q1t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂q1tC
1(q1∗t (It, θt)|c1t ),

which contradicts the strict convexity of C1(·|c1t ) in q1t . Hence, q1∗t (It, θ̂t) ≤ q1∗t (It, θt) under the condition

that d1∗t (It, θ̂t) > d1∗t (It, θt). It follows from the same argument that qj∗t (It, θ̂t) ≤ qj∗t (It, θt) for all

j = 1, 2, · · · ,m, under the condition that d1∗t (It, θ̂t) > d1∗t (It, θt). Combining cases (a) and (b), it follows

that the initial assumption d1∗t (It, θ̂t) > d1∗t (It, θt) is incorrect. Therefore, d1∗t (It, θ̂t) ≤ d1∗t (It, θt). The

same argument yields that di∗t (It, θ̂t) ≤ di∗t (It, θt) for any i = 1, 2, · · · , n. Hence, for each i ∈ N ,

Id,it (θ̂t) = max{It : di∗t (It, θ̂t) = 0} ≥ max{It : di∗t (It, θt) = 0} = Id,it (θt).
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For any i ∈ N ∗
t (It, θ̂t), d

i∗
t (It, θt) ≥ di∗t (It, θ̂t) > 0. Thus, i ∈ N ∗

t (It, θt), and N ∗
t (It, θ̂t) ⊂ N ∗

t (It, θt)

follows immediately.

Next, we show that qj∗t (It, θ̂t) ≥ qj∗t (It, θt) for all j ∈ M. We assume, to the contrary, that

q1∗t (It, θ̂t) < q1∗t (It, θt). The strict convexity of C1(·|c1t ) in q1t implies that ∂q1tC
1(q1∗t (It, θ̂t)|c1t ) <

∂q1tC
1(q1∗t (It, θt)|c1t ). On the other hand, Lemma 16 yields that

∂q1t Jt(d
∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t) ≤ ∂q1t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus,

∂zΨt(∆
∗
t (It, θ̂t)|θ̂t) =∂q1tC

1(q1∗t (It, θ̂t)|c1t ) + ∂q1t Jt(d
∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t)

<∂q1tC
1(q1∗t (It, θt)|c1t ) + ∂q1t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂zΨt(∆
∗
t (It, θt)|θt).

(E.7)

Since ∂zΨt(z|θ̂t) > ∂zΨt(z|θt) for all z and Ψt(·|θt) is concave in z, ∆∗
t (It, θ̂t) > ∆∗

t (It, θt), i.e.,

It+
∑
j∈M

qj∗t (It, θ̂t)−(
∑
i∈N

Λ̂i
td

i∗
t (It, θ̂t)) = ∆∗

t (It, θ̂t) > ∆∗
t (It, θt) = It+

∑
j∈M

qj∗t (It, θt)−(
∑
i∈N

Λi
td

i∗
t (It, θt)).

Since Λ̂t > Λt, and q
1∗
t (It, θ̂t) < q1∗t (It, θt), either (a) di∗t (It, θ̂t) < di∗t (It, θt) for some 1 ≤ i ≤ n, or (b)

qj∗t (It, θ̂t) > qj∗t (It, θt) for some 2 ≤ j ≤ m.

In case (a), without loss of generality, we assume that d1∗t (It, θ̂t) < d1∗t (It, θt). Lemma 16 yields that

∂d1
t
Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t) ≤ 0 ≤ ∂d1

t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt), i.e.,

∂d1
t
Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t)/Λ̂1

t ≤ ∂d1
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)/Λ1

t . Thus, by (E.7),

∂d1
t
R1(d1∗t (It, θ̂t)) =

1

Λ̂1
t

∂d1
t
Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t) + ∂zΨt(∆

∗
t (It, θ̂t)|θ̂t)

<
1

Λ1
t

∂d1
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt) + ∂zΨt(∆

∗
t (It, θt)|θt)

=∂d1
t
R1(d1∗t (It, θt)),

which contradicts the strict concavity of R1(·). Hence, d1∗t (It, θ̂t) ≥ d1∗t (It, θt) under the condition

that q1∗t (It, θ̂t) < q1∗t (It, θt). It follows from the same argument that di∗t (It, θ̂t) ≥ di∗t (It, θt) for all

i = 1, 2, · · · , n, under the condition that q1∗t (It, θ̂t) < q1∗t (It, θt). Thus, under this condition, d
i∗
t (It, θ̂t) =

di∗t (It, θt) for all i = 1, 2, · · · , n.

In case (b), without loss of generality, we assume that q2∗t (It, θ̂t) > q2∗t (It, θt). Lemma 16 yields that

∂q2t Jt(d
∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t) ≥ ∂q2t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus, by (E.7),

∂q2tC
2(q2∗t (It, θ̂t)|c2t ) =∂zΨt(∆

∗
t (It, θ̂t)|θ̂t)− ∂q2t Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t)

<∂zΨt(∆
∗
t (It, θt)|θt)− ∂q2t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂q2tC
2(q2∗t (It, θt)|c2t ),

which contradicts the strict convexity of C2(·|c2t ) in q2t . Hence, q2∗t (It, θ̂t) ≤ q2∗t (It, θt) under the condition

that q1∗t (It, θ̂t) < q1∗t (It, θt). It follows from the same argument that qj∗t (It, θ̂t) ≤ qj∗t (It, θt) for all

j = 2, · · · ,m, under the condition that q1∗t (It, θ̂t) < q1∗t (It, θt). Combining cases (a) and (b), it follows

that the initial assumption q1∗t (It, θ̂t) < q1∗t (It, θt) is incorrect. Therefore, q1∗t (It, θ̂t) ≥ q1∗t (It, θt). The

same argument yields that qj∗t (It, θ̂t) ≥ qj∗t (It, θt) for any j = 1, 2, · · · ,m. Hence, for each j ∈ M,

Iq,jt (θ̂t) = min{It : qj∗t (It, θ̂t) = 0} ≥ min{It : qj∗t (It, θt) = 0} = Iq,jt (θt).
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For any j ∈ M∗
t (It, θt), q

j∗
t (It, θ̂t) ≥ qj∗t (It, θt) > 0. Thus, j ∈ M∗

t (It, θ̂t), and M∗
t (It, θt) ⊂ M∗

t (It, θ̂t)

follows immediately.

Finally, to complete the induction, we show that ∂ItVt(It|θ̂t) ≥ ∂ItVt(It|θt). Recall that di∗t (It, θ̂t) ≤

di∗t (It, θt) for any i ∈ N . If d1∗t (It, θ̂t) < d1∗t (It, θt), the strict concavity of R1(·) implies that

∂d1
t
R1(d1∗t (It, θ̂t)) > ∂d1

t
R1(d1∗t (It, θt)). On the other hand, Lemma 16 yields that

∂d1
t
Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t) ≤ 0 ≤ ∂d1

t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt), i.e.,

∂d1
t
Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t)/Λ̂1

t ≤ ∂d1
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)/Λ1

t . Thus,

∂zΨt(∆
∗
t (It, θ̂t)|θ̂t) =∂d1

t
R1(d1∗t (It, θ̂t))−

1

Λ̂1
t

∂d1
t
Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t)

>∂d1
t
R1(d1∗t (It, θt))−

1

Λ1
t

∂d1
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂zΨt(∆
∗
t (It, θt)|θt).

By Equation (E.1),

∂ItVt(It|θ̂t) = ∂zΨt(∆
∗
t (It, θ̂t)|θ̂t) > ∂zΨt(∆

∗
t (It, θt)|θt) = ∂ItVt(It|θt).

The same argument implies that, if there exists an i ∈ N , such that di∗t (It, θ̂t) < di∗t (It, θt), we have

∂ItVt(It|θ̂t) > ∂ItVt(It|θt).

Recall that qj∗t (It, θ̂t) ≥ qj∗t (It, θt) for any j ∈ M. If q1∗t (It, θ̂t) > q1∗t (It, θt), the strict convexity of

C1(·|c1t ) in q1t implies that ∂q1tC
1(q1∗t (It, θ̂t)|c1t ) > ∂q1tC

1(q1∗t (It, θt)|c1t ). On the other hand, Lemma 16

yields that ∂q1t Jt(d
∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t) ≥ ∂q1t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus,

∂zΨt(∆
∗
t (It, θ̂t)|θ̂t) =∂q1tC

1(q1∗t (It, θ̂t)|c1t ) + ∂q1t Jt(d
∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t)

>∂q1tC
1(d1∗t (It, θt)|c1t ) + ∂q1t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂zΨt(∆
∗
t (It, θt)|θt).

By Equation (E.1),

∂ItVt(It|θ̂t) = ∂zΨt(∆
∗
t (It, θ̂t)|θ̂t) > ∂zΨt(∆

∗
t (It, θt)|θt) = ∂ItVt(It|θt).

The same argument implies that, if there exists a j ∈ M, such that qj∗t (It, θ̂t) < qj∗t (It, θt), we have

∂ItVt(It|θ̂t) > ∂ItVt(It|θt).

Now we assume that for any i ∈ N and j ∈ M, di∗t (It, θ̂t) = di∗t (It, θt) and qj∗t (It, θ̂t) = qj∗t (It, θt).

Since Λ̂t > Λt,

∆∗
t (It, θ̂t) = It+

∑
j∈M

qj∗t (It, θ̂t)−(
∑
i∈N

Λ̂i
td

i∗
t (It, θ̂t)) ≤ It+

∑
j∈M

qj∗t (It, θt)−(
∑
i∈N

Λi
td

i∗
t (It, θt)) = ∆∗

t (It, θt).

Since ∂zΨt(z|θ̂t) ≥ ∂zΨt(z|θt) for any z, it follows that ∂zΨt(∆
∗
t (It, θ̂t)|θ̂t) ≥ ∂zΨt(∆

∗
t (It, θt)|θt) by the

concavity of Ψt(·|θt) in z. Thus, by Equation (E.1),

∂ItVt(It|θ̂t) = ∂zΨt(∆
∗
t (It, θ̂t)|θ̂t) ≥ ∂zΨt(∆

∗
t (It, θt)|θt) = ∂ItVt(It|θt).

This completes the induction and, thus, the proof of Theorem 6.4.3. Q.E.D.
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Proof of Theorem 6.4.4: We show all parts together by backward induction. More specifically,

we prove that if ∂It−1Vt−1(It−1|θ̂t−1) ≥ ∂It−1Vt−1(It−1|θt−1) for all It−1 and ĉt−1 > ct−1, then we have

(i) di∗t (It, θ̂t) ≤ di∗t (It, θt) for all i ∈ N , (ii) qj∗t (It, θ̂t) ≥ qj∗t (It, θt) for all {j ∈ M : ĉjt = cjt}, and

(iii) ∂ItVt(It|θ̂t) ≥ ∂ItVt(It|θt) for all It and ĉt > ct. Since ∂I0V0(I0|θ̂0) = ∂I0V0(I0|θ0) = 0 for all I0

and ĉ0 > c0, the initial condition is satisfied. Since ∂It−1Vt−1(It−1|θ̂t−1) ≥ ∂It−1Vt−1(It−1|θt−1) and

ξc,jt (ĉjt ) ≥s.d. ξ
c,j
t (cjt ) for any j ∈ M, ∂zΨt(z|θ̂t) ≥ ∂zΨt(z|θt) for any z.

First, we show (i) and (ii). Without loss of generality, we assume that ĉjt > cjt for j = 1, 2, · · · ,m1

(1 ≤ m1 ≤ m) and ĉjt = cjt otherwise. Invoke Lemma 15 with p = n + m − m1, q = m1, Γ =

{0, 1}, yi = −dit (1 ≤ i ≤ n), yn+j = qm1+j
t (1 ≤ j ≤ m − m1), yn+m−m1+j = qjt (1 ≤ j ≤ m1),

λi = Λi
t (1 ≤ i ≤ n), λi = 1 (n + 1 ≤ i ≤ n + m), fi(yi) = Λi

tR
i(dit) (1 ≤ i ≤ n), fj+n(yj+n) =

−Cj+m1(qj+m1

t |cj+m1

t ) (1 ≤ j ≤ m−m1), gj+n+m−m1(yj+n+m−m1 |γ) =

−Cj(qjt |c
j
t ), if γ = 0,

−Cj(qjt |ĉ
j
t ), if γ = 1,

(1 ≤

j ≤ m1), h(y0|γ) =

Ψt(It + y0|θt), if γ = 0,

Ψt(It + y0|θ̂t), if γ = 1,

and Yi =

[−dmax, 0], if 1 ≤ i ≤ n,

[0,+∞), if n+ 1 ≤ i ≤ n+m.

Since

Cj(qjt |c
j
t ) is supermodular in (qjt , c

j
t ) for any 1 ≤ j ≤ m, and Ψt(It + y0|θt) is supermodular in (y0, c

j
t ),

gj+p(yj |γ) (1 ≤ j ≤ q) is submodular in (yj , γ), and h(y0|γ) is supermodular in (y0, γ). Lemma 15

implies that di∗t (It, θ̂t) ≤ di∗t (It, θt) for all i ∈ N , and qj∗t (It, θ̂t) ≥ qj∗t (It, θt) for all {j ∈ M : ĉjt = cjt}.

For any i ∈ N ∗
t (It, θ̂t), d

i∗
t (It, θt) ≥ di∗t (It, θ̂t) > 0. Thus, i ∈ N ∗

t (It, θt), and N ∗
t (It, θ̂t) ⊂ N ∗

t (It, θt)

follows immediately.

To complete the induction, we show that ∂ItVt(It|θ̂t) ≥ ∂ItVt(It|θt). If d1∗t (It, θ̂t) < d1∗t (It, θt), the

strict concavity of R1(·) implies that ∂d1
t
R1(d1∗t (It, θ̂t)) > ∂d1

t
R1(d1∗t (It, θt)). On the other hand, Lemma

16 yields that

∂d1
t
Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t) ≤ ∂d1

t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus,

∂zΨt(∆
∗
t (It, θ̂t)|θ̂t) =∂d1

t
R1(d1∗t (It, θ̂t))−

1

Λ1
t

∂d1
t
Jt(d

∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t)

>∂d1
t
R1(d1∗t (It, θt))−

1

Λ1
t

∂d1
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂zΨt(∆
∗
t (It, θt)|θt).

By Equation (E.1),

∂ItVt(It|θ̂t) = ∂zΨt(∆
∗
t (It, θ̂t)|θ̂t) > ∂zΨt(∆

∗
t (It, θt)|θt) = ∂ItVt(It|θt).

The same argument implies that, if there exists an i ∈ N , such that di∗t (It, θ̂t) < di∗t (It, θt), then we have

∂ItVt(It|θ̂t) > ∂ItVt(It|θt). Now we assume that for all i ∈ N , di∗t (It, θ̂t) = di∗t (It, θt).

If qj∗t (It, θ̂t) ≤ qj∗t (It, θt) for all j ∈ M,

∆∗
t (It, θ̂t) = It+

∑
j∈M

qj∗t (It, θ̂t)−(
∑
i∈N

Λi
td

i∗
t (It, θ̂t)) ≤ It+

∑
j∈M

qj∗t (It, θt)−(
∑
i∈N

Λi
td

i∗
t (It, θt)) = ∆∗

t (It, θt).

Since ∂zΨt(z|θ̂t) ≥ ∂zΨt(z|θt) for any z, the concavity of Ψt(·|θt) in z implies that ∂zΨt(∆
∗
t (It, θ̂t)|θ̂t) ≥

∂zΨt(∆
∗
t (It, θt)|θt). Thus,

∂ItVt(It|θ̂t) = ∂zΨt(∆
∗
t (It, θ̂t)|θ̂t) ≥ ∂zΨt(∆

∗
t (It, θt)|θt) = ∂ItVt(It|θt).
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In the remaining case, qj∗t (It, θ̂t) > qj∗t (It, θt) for some 1 ≤ j ≤ m, Without loss of generality, assume

that ql∗t (It, θ̂t) > ql∗t (It, θt). In this case, the supermodularity of Cl(·|·) in (qlt, c
l
t) and the strict convexity

of Cl(·|clt) in qlt imply that ∂qltC
l(ql∗t (It, θ̂t)|ĉlt) > ∂qltC

l(ql∗t (It, θt)|clt). On the other hand, Lemma 16

implies that ∂qltJt(d
∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t) ≥ ∂qltJt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus,

∂zΨt(∆
∗
t (It, θ̂t)|θ̂t) =∂qltC

1(ql∗t (It, θ̂t)|ĉlt) + ∂qltJt(d
∗
t (It, θ̂t), q

∗
t (It, θ̂t), It|θ̂t)

>∂qltC
l(ql∗t (It, θt)|clt) + ∂qltJt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂zΨt(∆
∗
t (It, θt)|θt).

Thus, by Equation (E.1),

∂ItVt(It|θ̂t) = ∂zΨt(∆
∗
t (It, θ̂t)|θ̂t) > ∂zΨt(∆

∗
t (It, θt)|θt) = ∂ItVt(It|θt).

This completes the induction and, thus, the proof of Theorem 6.4.4. Q.E.D.

Proof of Theorem 6.4.5: We show all parts together by backward induction. More specifically,

we prove that if ∂It−1
V̂t−1(It−1|θt−1) ≥ ∂It−1

Vt−1(It−1|θt−1) for all It−1, then we have (i) d̂i∗t (It, θt) ≤

di∗t (It, θt) for all i ∈ N , (ii) q̂j∗t (It, θt) ≥ qj∗t (It, θt) for all j ∈ M, (iii) x̂∗t (It, θt) ≥ x∗t (It, θt), (iv)

∆̂∗
t (It, θt) ≥ ∆∗

t (It, θt), and (v) ∂It V̂t(It|θt) ≥ ∂ItVt(It|θt) for all It. Note that ∂I0 V̂0(I0|θ0) = ∂I0V0(I0|θ0)

for all I0, so the initial condition is satisfied. Since ∂It−1 V̂t−1(It−1|θt−1) ≥ ∂It−1Vt−1(It−1|θt−1) and

ξ̂Λ,i
t (Λi

t) ≥s.d. ξ
Λ,i
t (Λi

t) for any i and Λt, by Theorem 6.4.3(a), ∂zΨ̂t(z|θt) ≥ ∂zΨt(z|θt) for any z.

First, we show that d̂i∗t (It, θt) ≤ di∗t (It, θt) for any i ∈ N and q̂j∗t (It, θt) ≥ qj∗t (It, θt) for any j ∈ M.

We apply Lemma 15 to prove these results. Let p = n +m, q = 0, Γ = {0, 1}, yi = −dit (1 ≤ i ≤ n),

yj+n = qjt (1 ≤ j ≤ m), λi = Λi
t (1 ≤ i ≤ n), λi = 1 (n + 1 ≤ i ≤ n + m), fi(yi) = Λi

tR
i(dit)

(1 ≤ i ≤ n), fj+n(yj+n) = −Cj(qjt |c
j
t ) (1 ≤ j ≤ m), h(y0|0) = Ψt(It+y0|θt), h(y0|1) = Ψ̂t(It+y0|θt), and

Yi =

[−dmax, 0], 1 ≤ i ≤ n,

[0,+∞), n+ 1 ≤ i ≤ n+m.

Since ∂zΨ̂t(z|θt) ≥ ∂zΨt(z|θt) for any z, h(y0|γ) is supermodular

in (y0, γ). Lemma 15 implies that d̂i∗t (It, θt) ≤ di∗t (It, θt) for any i ∈ N and q̂j∗t (It, θt) ≥ qj∗t (It, θt) for

any j ∈ M. For any i ∈ N̂ ∗
t (It, θt), d

i∗
t (It, θt) ≥ d̂i∗t (It, θt) > 0. Thus, i ∈ N ∗

t (It, θt), and N̂ ∗
t (It, θt) ⊂

N ∗
t (It, θt) follows immediately. For any j ∈ M∗

t (It, θt), q̂
j∗
t (It, θt) ≥ qj∗t (It, θt) > 0. Thus, j ∈ M̂∗

t (It, θt),

and M∗
t (It, θt) ⊂ M̂∗

t (It, θt) follows immediately.

Moreover,

x̂∗t (It, θt) = It +
∑
j∈M

q̂j∗t (It, θt) ≥ It +
∑
j∈M

qj∗t (It, θt) = x∗t (It, θt),

and

∆̂∗
t (It, θt) = x̂∗t (It, θt)− (

∑
l∈N

Λl
td̂

l∗
t (It, θt)) ≥ x∗t (It, θt)− (

∑
l∈N

Λl
td

l∗
t (It, θt)) = ∆∗

t (It, θt).

To complete the induction, we show that ∂It V̂t(It|θt) ≥ ∂ItVt(It|θt). Recall that d̂i∗t (It, θt) ≤

di∗t (It, θt) for any i ∈ N . If d̂1∗t (It, θt) < d1∗t (It, θt), the strict concavity of R1(·) implies that
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∂d1
t
R1(d̂1∗t (It, θt)) > ∂d1

t
R1(d1∗t (It, θt)). On the other hand, Lemma 16 yields that

∂d1
t
Ĵt(d̂

∗
t (It, θt), q̂

∗
t (It, θt), It|θt) ≤ ∂d1

t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus,

∂zΨ̂t(∆̂
∗
t (It, θt)|θt) =∂d1

t
R1(d̂1∗t (It, θt))−

1

Λ1
t

∂d1
t
Ĵt(d̂

∗
t (It, θt), q̂

∗
t (It, θt), It|θt)

>∂d1
t
R1(d1∗t (It, θt))−

1

Λ1
t

∂d1
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂zΨt(∆
∗
t (It, θt)|θt).

By Equation (E.1),

∂It V̂t(It|θt) = ∂zΨ̂t(∆
∗
t (It, θt)|θt) > ∂zΨt(∆

∗
t (It, θt)|θt) = ∂ItVt(It|θt).

The same argument implies that, if there exists an i ∈ N , such that d̂i∗t (It, θt) < di∗t (It, θt), we have

∂It V̂t(It|θt) > ∂ItVt(It|θt).

Recall that q̂j∗t (It, θt) ≥ qj∗t (It, θt) for any j ∈ M. If q̂1∗t (It, θt) > q1∗t (It, θt), the strict convexity of

C1(·|c1t ) in q1t implies that ∂q1tC
1(q̂1∗t (It, θt)|c1t ) > ∂q1tC

1(q1∗t (It, θt)|c1t ). On the other hand, Lemma 16

yields that ∂q1t Ĵt(d̂
∗
t (It, θt), q̂

∗
t (It, θt), It|θt) ≥ ∂q1t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus,

∂zΨ̂t(∆̂
∗
t (It, θt)|θt) =∂q1tC

1(q̂1∗t (It, θt)|c1t ) + ∂q1t Ĵt(d̂
∗
t (It, θt), q̂

∗
t (It, θt), It|θt)

>∂q1tC
1(d1∗t (It, θt)|c1t ) + ∂q1t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂zΨt(∆
∗
t (It, θt)|θt).

By Equation (E.1),

∂It V̂t(It|θt) = ∂zΨ̂t(∆̂
∗
t (It, θt)|θt) > ∂zΨt(∆

∗
t (It, θt)|θt) = ∂ItVt(It|θt).

The same argument implies that, if there exists a j ∈ M such that q̂j∗t (It, θt) > qj∗t (It, θt), we have

∂It V̂t(It|θt) > ∂ItVt(It|θt).

In the remaining case, d̂i∗t (It, θt) = di∗t (It, θt) and q̂
j∗
t (It, θt) = qj∗t (It, θt) for any i ∈ N and j ∈ M.

We have

∆̂∗
t (It, θt) = It+

∑
j∈M

q̂j∗t (It, θt)−(
∑
i∈N

Λi
td̂

i∗
t (It, θt)) = It+

∑
j∈M

qj∗t (It, θt)−(
∑
i∈N

Λi
td

i∗
t (It, θt)) = ∆∗

t (It, θt).

Since ∂zΨ̂t(z|θt) ≥ ∂zΨt(z|θt) for any z, ∂zΨ̂t(∆̂
∗
t (It, θt)|θt) ≥ ∂zΨt(∆

∗
t (It, θt)|θt). Thus, by Equation

(E.1),

∂It V̂t(It|θt) = ∂zΨ̂t(∆̂
∗
t (It, θt)|θt) ≥ ∂zΨt(∆

∗
t (It, θt)|θt) = ∂ItVt(It|θt).

This completes the induction and, thus, the proof of Theorem 6.4.5. Q.E.D.

Proof of Theorem 6.4.6: The proof of Theorem 6.4.6 follows from similar argument to that of Theorem

6.4.5, so we only sketch it.

We show all parts together by backward induction. More specifically, we prove that if

∂It−1 V̂t−1(It−1|θt−1) ≥ ∂It−1Vt−1(It−1|θt−1) for all It−1, then we have (i) d̂i∗t (It, θt) ≤ di∗t (It, θt) for all

i ∈ N , (ii) q̂j∗t (It, θt) ≥ qj∗t (It, θt) for all j ∈ M, (iii) x̂∗t (It, θt) ≥ x∗t (It, θt), (iv) ∆̂
∗
t (It, θt) ≥ ∆∗

t (It, θt),
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and (v) ∂It V̂t(It|θt) ≥ ∂ItVt(It|θt) for all It. Note that ∂I0 V̂0(I0|θ0) = ∂I0V0(I0|θ0) for all I0, so the

initial condition is satisfied. Since ∂It−1 V̂t−1(It−1|θt−1) ≥ ∂It−1Vt−1(It−1|θt−1) and ξ̂
c,j
t (cjt ) ≥s.d. ξ

c,j
t (cjt )

for any j and ct, by Theorem 6.4.4(a), ∂zΨ̂t(z|θt) ≥ ∂zΨt(z|θt) for any z.

First, we employ Lemma 15 to show that d̂i∗t (It, θt) ≤ di∗t (It, θt) for any i ∈ N and q̂j∗t (It, θt) ≥

qj∗t (It, θt) for any j ∈ M. Let p = n + m, q = 0, Γ = {0, 1}, yi = −dit (1 ≤ i ≤ n), yj+n = qjt

(1 ≤ j ≤ m), λi = Λi
t (1 ≤ i ≤ n), λi = 1 (n + 1 ≤ i ≤ n + m), fi(yi) = Λi

tR
i(dit) (1 ≤ i ≤

n), fj+n(yj+n) = −Cj(qjt |c
j
t ) (1 ≤ j ≤ m), h(y0|0) = Ψt(It + y0|θt), h(y0|1) = Ψ̂t(It + y0|θt), and

Yi =

[−dmax, 0], 1 ≤ i ≤ n,

[0,+∞), n+ 1 ≤ i ≤ n+m.

Invoking Lemma 15, we have that d̂i∗t (It, θt) ≤ di∗t (It, θt) for any

i ∈ N and q̂j∗t (It, θt) ≥ qj∗t (It, θt) for any j ∈ M. Îd,it (θt) ≥ Id,it (θt) and N̂ ∗
t (It, θt) ⊂ N ∗

t (It, θt) follow

immediately from d̂i∗t (It, θt) ≤ di∗t (It, θt) for any i ∈ N , whereas Îq,jt (θt) ≥ Iq,jt (θt) and M∗
t (It, θt) ⊂

M̂∗
t (It, θt) follow immediately from q̂j∗t (It, θt) ≥ qj∗t (It, θt) for any j ∈ M. x̂∗t (It, θt) ≥ x∗t (It, θt) and

∆̂∗
t (It, θt) ≥ ∆∗

t (It, θt) also follow directly.

To complete the induction, we show that ∂It V̂t(It|θt) ≥ ∂ItVt(It|θt). Following the same argument

as the proof of Theorem 6.4.5, we have that if there exists an i ∈ N , such that d̂i∗t (It, θt) < di∗t (It, θt),

or there exists a j ∈ M, such that q̂j∗t (It, θt) > qj∗t (It, θt), then ∂It V̂t(It|θt) = ∂zΨ̂t(∆̂
∗
t (It, θt)|θt) >

∂zΨt(∆
∗
t (It, θt)|θt) = ∂ItVt(It|θt).

In the remaining case, d̂i∗t (It, θt) = di∗t (It, θt) and q̂j∗t (It, θt) = qj∗t (It, θt) for any i ∈ N and

j ∈ M. Thus, ∆̂∗
t (It, θt) = ∆∗

t (It, θt). Since ∂zΨ̂t(z|θt) ≥ ∂zΨt(z|θt) for any z, ∂zΨ̂t(∆̂
∗
t (It, θt)|θt) ≥

∂zΨt(∆
∗
t (It, θt)|θt). Thus, by Equation (E.1), ∂It V̂t(It|θt) = ∂zΨ̂t(∆̂

∗
t (It, θt)|θt) ≥ ∂zΨt(∆

∗
t (It, θt)|θt) =

∂ItVt(It|θt). This completes the induction and, thus, the proof of Theorem 6.4.6. Q.E.D.

Proof of Theorem 6.4.7: We show all parts together by backward induction. More specifically,

we prove that if ∂It−1 V̂t−1(It−1|θt−1) ≥ ∂It−1Vt−1(It−1|θt−1) for all It−1, then we have (i) d̂i∗t (It, θt) ≤

di∗t (It, θt) for all i ∈ N , (ii) q̂j∗t (It, θt) ≥ qj∗t (It, θt) for all j ∈ M, (iii) x̂∗t (It, θt) ≥ x∗t (It, θt), and (iv)

∂It V̂t(It|θt) ≥ ∂ItVt(It|θt) for all It. Since ∂I0 V̂0(I0|θ0) = ∂I0V0(I0|θ0) for all I0, the initial condition is

satisfied. Since ∂It−1 V̂t−1(It−1|θt−1) ≥ ∂It−1Vt−1(It−1|θt−1), ∂zΨ̂t(z|θt) ≥ ∂zΨt(z|θt) for any z. Denote

N = {1, 2, · · · , n} and N̂ = {1, 2, · · · , n̂}, where n̂ > n.

First, we show that d̂i∗t (It, θt) ≤ di∗t (It, θt) for all i ∈ N . We assume, to the contrary, that d̂1∗t (It, θt) >

d1∗t (It, θt). The strict concavity of R1(·) implies that ∂d1
t
R1(d̂1∗t (It, θt)) < ∂d1

t
R1(d1∗t (It, θt)). On the other

hand, Lemma 16 yields that ∂d1
t
Ĵt(d̂

∗
t (It, θt), q̂

∗
t (It, θt), It|θt) ≥ ∂d1

t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus,

∂zΨ̂t(∆̂
∗
t (It, θt)|θt) =∂d1

t
R1(d̂1∗t (It, θt))−

1

Λ1
t

∂d1
t
Ĵt(d̂

∗
t (It, θt), q̂

∗
t (It, θt), It|θt)

<∂d1
t
R1(d1∗t (It, θt))−

1

Λ1
t

∂d1
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂zΨt(∆
∗
t (It, θt)|θt).

(E.8)

Since ∂zΨ̂t(z|θt) ≥ ∂zΨt(z|θt) for all z, ∆̂∗
t (It, θt) > ∆∗

t (It, θt), i.e.,

It+
∑
j∈M

q̂j∗t (It, θt)−(
∑
i∈N̂

Λi
td̂

i∗
t (It, θt)) = ∆̂∗

t (It, θt) > ∆∗
t (It, θt) = It+

∑
j∈M

qj∗t (It, θt)−(
∑
i∈N

Λi
td

i∗
t (It, θt)).
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Since N ⊂ N̂ and d̂1∗t (It, θt) > d1∗t (It, θt), either (a) d̂i∗t (It, θt) < di∗t (It, θt) for some i = 2, 3, · · · , n, or

(b) q̂j∗t (It, θt) > qj∗t (It, θt) for some j = 1, 2, · · · ,m.

In case (a), without loss of generality, we assume that d̂2∗t (It, θt) < d2∗t (It, θt). By Lemma 16, we

have ∂d2
t
Ĵt(d̂

∗
t (It, θt), q̂

∗
t (It, θt), It|θt) ≤ ∂d2

t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus, by (E.8),

∂d2
t
R2(d̂2∗t (It, θt)) =∂zΨ̂t(∆̂

∗
t (It, θt)|θt) +

1

Λ2
t

∂d2
t
Ĵt(d̂

∗
t (It, θt), q̂

∗
t (It, θt), It|θt)

<∂zΨt(∆
∗
t (It, θt)|θt) +

1

Λ2
t

∂d2
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂d2
t
R2(d2∗t (It, θt)),

which contradicts the strict concavity of R2(·). Hence, d̂2∗t (It, θt) ≥ d2∗t (It, θt) under the condition

that d̂1∗t (It, θt) > d1∗t (It, θt). It follows from the same argument that d̂i∗t (It, θt) ≥ di∗t (It, θt) for all

i = 2, 3, · · · , n, under the condition that d̂1∗t (It, θt) > d1∗t (It, θt).

In case (b), without loss of generality, we assume that q̂1∗t (It, θt) > q1∗t (It, θt). By Lemma 16, we

have ∂q1t Ĵt(d̂
∗
t (It, θt), q̂

∗
t (It, θt), It|θt) ≥ ∂q1t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus, by (E.8),

∂q1tC
1(q̂1∗t (It, θt)|c1t ) =∂zΨ̂t(∆̂

∗
t (It, θt)|θt)− ∂q1t Ĵt(d̂

∗
t (It, θt), q̂

∗
t (It, θt), It|θt)

<∂zΨt(∆
∗
t (It, θt)|θt)− ∂q1t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂q1tC
1(q1∗t (It, θt)|c1t ),

which contradicts the strict convexity of C1(·|c1t ) in q1t . Hence, q̂1∗t (It, θt) ≤ q1∗t (It, θt) under the condition

that d̂1∗t (It, θt) > d1∗t (It, θt). It follows from the same argument that q̂j∗t (It, θt) ≥ qj∗t (It, θt) for all

j = 1, 2, · · · ,m, under the condition that d̂1∗t (It, θt) > d1∗t (It, θt). Combining cases (a) and (b), it follows

that the initial assumption d̂1∗t (It, θt) > d1∗t (It, θt) is incorrect. Therefore, d̂1∗t (It, θt) ≤ d1∗t (It, θt). The

same argument yields that d̂i∗t (It, θt) ≤ di∗t (It, θt) for any i = 1, 2 · · · , n. Hence, for each i ∈ N ,

Îd,it (θt) = max{It : d̂i∗t (It, θt) = 0} ≥ max{It : di∗t (It, θt) = 0} = Id,it (θt).

If i ∈ (N̂ ∗
t (It, θt)∩N ), di∗t (It, θt) ≥ d̂i∗t (It, θt) > 0. Thus, i ∈ N ∗

t (It, θt), and (N̂ ∗
t (It, θt)∩N ) ⊂ N ∗

t (It, θt)

follows immediately.

Next, we show that q̂j∗t (It, θt) ≥ qj∗t (It, θt) for all j ∈ M. We assume, to the contrary, that

q̂1∗t (It, θt) < q1∗t (It, θt). The strict convexity of C1(·|c1t ) in q1t implies that ∂q1tC
1(q̂1∗t (It, θt)|c1t ) <

∂q1tC
1(q1∗t (It, θt)|c1t ). On the other hand, it follows from Lemma 16 that ∂q1t Ĵt(d̂

∗
t (It, θt), q̂

∗
t (It, θt), It|θt) ≤

∂q1t Jt(d
∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus,

∂zΨ̂t(∆̂
∗
t (It, θt)|θt) =∂q1tC

1(q̂1∗t (It, θt)|c1t ) + ∂q1t Ĵt(d̂
∗
t (It, θt), q̂

∗
t (It, θt), It|θt)

<∂q1tC
1(q1∗t (It, θt)|c1t ) + ∂q1t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂zΨt(∆
∗
t (It, θt)|θt).

(E.9)

Since ∂zΨ̂t(z|θt) ≥ ∂zΨt(z|θt) for each z and Ψt(·|θt) is concave in z, ∆̂∗
t (It, θt) > ∆∗

t (It, θt), i.e.,

It+
∑
j∈M

q̂j∗t (It, θt)−(
∑
i∈N̂

Λi
td̂

i∗
t (It, θt)) = ∆̂∗

t (It, θt) > ∆∗
t (It, θt) = It+

∑
j∈M

qj∗t (It, θt)−(
∑
i∈N

Λi
td

i∗
t (It, θt)).
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Since N ⊂ N̂ and q̂1∗t (It, θt) < q1∗t (It, θt), either (a) d̂i∗t (It, θt) < di∗t (It, θt) for some i = 1, 2, · · · , n, or

(b) q̂j∗t (It, θt) > qj∗t (It, θt) for some j = 2, 3, · · · ,m.

In case (a), without loss of generality, we assume that d̂1∗t (It, θt) < d1∗t (It, θt). By Lemma 16, we

have ∂d1
t
Ĵt(d̂

∗
t (It, θt), q̂

∗
t (It, θt), It|θt) ≤ ∂d1

t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus, by (E.9),

∂d1
t
R1(d̂1∗t (It, θt)) =∂zΨ̂t(∆̂

∗
t (It, θt)|θt) +

1

Λ1
t

∂d1
t
Ĵt(d̂

∗
t (It, θt), q̂

∗
t (It, θt), It|θt)

<∂zΨt(∆
∗
t (It, θt)|θt) +

1

Λ1
t

∂d1
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂d1
t
R1(d1∗t (It, θt)),

which contradicts the strict concavity of R1(·). Hence, d̂1∗t (It, θt) ≥ d1∗t (It, θt) under the condition

that q̂1∗t (It, θt) < q1∗t (It, θt). It follows from the same argument that d̂i∗t (It, θt) ≥ di∗t (It, θt) for all

i = 1, 2, · · · , n, under the condition that q̂1∗t (It, θt) < q1∗t (It, θt). Thus, under this condition, d̂
i∗
t (It, θt) =

di∗t (It, θt) for all i = 1, 2, · · · , n.

In case (b), without loss of generality, we assume that q̂2∗t (It, θt) > q2∗t (It, θt). By Lemma 16, we

have ∂q2t Ĵt(d̂
∗
t (It, θt), q̂

∗
t (It, θt), It|θt) ≥ ∂q2t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus, by (E.9),

∂q2tC
2(q̂2∗t (It, θt)|c2t ) =∂zΨ̂t(∆̂

∗
t (It, θt)|θt)− ∂q2t Ĵt(d̂

∗
t (It, θt), q̂

∗
t (It, θt), It|θt)

<∂zΨt(∆
∗
t (It, θt)|θt)− ∂q2t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂q2tC
2(q2∗t (It, θt)|c2t ),

which contradicts the strict convexity of C2(·|c2t ) in q2t . Hence, q̂2∗t (It, θt) ≤ q2∗t (It, θt) under the condition

that q̂1∗t (It, θt) > q1∗t (It, θt). It follows from the same argument that q̂j∗t (It, θt) ≥ qj∗t (It, θt) for all

j = 2, 3, · · · ,m, under the condition that q̂1∗t (It, θt) < q1∗t (It, θt). Combining cases (a) and (b), it follows

that the initial assumption q̂1∗t (It, θt) < q1∗t (It, θt) is incorrect. Therefore, q̂1∗t (It, θt) ≥ q1∗t (It, θt). The

same argument yields that q̂j∗t (It, θt) ≥ qj∗t (It, θt) for any j = 1, 2, · · · ,m. Hence, for each j ∈ M,

Îq,jt (θt) = min{It : q̂j∗t (It, θt) = 0} ≥ min{It : qj∗t (It, θt) = 0} = Iq,jt (θt).

If j ∈ M∗
t (It, θt), q̂

j∗
t (It, θt) ≥ qj∗t (It, θt) > 0. Thus, j ∈ M̂∗

t (It, θt), and M∗
t (It, θt) ⊂ M̂∗

t (It, θt) follows

immediately. In addition,

x̂∗t (It, θt) = It +
∑
j∈M

q̂j∗t (It, θt) ≥ It +
∑
j∈M

qj∗t (It, θt) = x∗t (It, θt).

Finally, to complete the induction, we show that ∂It V̂t(It|θt) ≥ ∂ItVt(It|θt). Recall that d̂i∗t (It, θt) ≤

di∗t (It, θt) for any i ∈ N . If d̂1∗t (It, θt) < d1∗t (It, θt), the strict concavity of R1(·) implies that

∂d1
t
R1(d̂1∗t (It, θt)) > ∂d1

t
R1(d1∗t (It, θt)). On the other hand, Lemma 16 implies that

∂d1
t
Ĵt(d̂

∗
t (It, θt), q̂

∗
t (It, θt), It|θt) ≤ ∂d1

t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus,

∂zΨ̂t(∆̂
∗
t (It, θt)|θt) =∂d1

t
R1(d̂1∗t (It, θt))−

1

Λ1
t

∂d1
t
Ĵt(d̂

∗
t (It, θt), q̂

∗
t (It, θt), It|θt)

>∂d1
t
R1(d1∗t (It, θt))−

1

Λ1
t

∂d1
t
Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂zΨt(∆
∗
t (It, θt)|θt).
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By Equation (E.1),

∂It V̂t(It|θt) = ∂zΨ̂t(∆̂
∗
t (It, θt)|θt) > ∂zΨt(∆

∗
t (It, θt)|θt) = ∂ItVt(It|θt).

The same argument implies that, if there exists an i ∈ N , such that d̂i∗t (It, θt) < di∗t (It, θt), we have

∂It V̂t(It|θt) > ∂ItVt(It|θt).

Recall that q̂j∗t (It, θt) ≥ qj∗t (It, θt) for any j ∈ M. If q̂1∗t (It, θt) > q1∗t (It, θt), the strict convexity

of C1(·|c1t ) in q1t implies that ∂q1tC
1(q̂1∗t (It, θt)|c1t ) > ∂q1tC

1(q1∗t (It, θt)|c1t ). On the other hand, it follows

from Lemma 16 that ∂q1t Ĵt(d̂
∗
t (It, θt), q̂

∗
t (It, θt), It|θt) ≥ ∂q1t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt). Thus,

∂zΨ̂t(∆̂
∗
t (It, θt)|θt) =∂q1tC

1(q̂1∗t (It, θt)|c1t ) + ∂q1t Ĵt(d̂
∗
t (It, θt), q̂

∗
t (It, θt), It|θt)

>∂q1tC
1(q1∗t (It, θt)|c1t ) + ∂q1t Jt(d

∗
t (It, θt), q

∗
t (It, θt), It|θt)

=∂zΨt(∆
∗
t (It, θt)|θt).

By Equation (E.1),

∂It V̂t(It|θt) = ∂zΨ̂t(∆̂
∗
t (It, θt)|θt) > ∂zΨt(∆

∗
t (It, θt)|θt) = ∂ItVt(It|θt).

The same argument implies that, if there exists a j ∈ M, such that q̂j∗t (It, θt) > qj∗t (It, θt), we have

∂It V̂t(It|θt) > ∂ItVt(It|θt).

In the remaining case, d̂i∗t (It, θt) = di∗t (It, θt) and q̂
j∗
t (It, θt) = qj∗t (It, θt) for any i ∈ N and j ∈ M.

Since n̂ > n (or equivalently, N ⊂ N̂ ),

∆̂∗
t (It, θt) = It+

∑
j∈M

q̂j∗t (It, θt)−(
∑
i∈N̂

Λi
td̂

i∗
t (It, θt)) ≤ It+

∑
j∈M

qj∗t (It, θt)−(
∑
i∈N

Λi
td

i∗
t (It, θt)) = ∆∗

t (It, θt).

Since ∂zΨ̂t(z|θt) ≥ ∂zΨt(z|θt) for each z, it follows that ∂zΨ̂t(∆̂
∗
t (It, θt)|θt) ≥ ∂zΨt(∆

∗
t (It, θt)|θt) by the

concavity of Ψt(·|θt) in z. Thus, by Equation (E.1),

∂It V̂t(It|θt) = ∂zΨ̂t(∆̂
∗
t (It, θt)|θt) ≥ ∂zΨt(∆

∗
t (It, θt)|θt) = ∂ItVt(It|θt).

This completes the induction and, thus, the proof of Theorem 6.4.7. Q.E.D.

Proof of Theorem 6.4.8: The proof of Theorem 6.4.8 follows from similar argument to that of Theorem

6.4.7, so we only sketch it.

We show all parts together by backward induction. More specifically, we prove that if

∂It−1 V̂t−1(It−1|θt−1) ≤ ∂It−1Vt−1(It−1|θt−1) for all It−1, then we have (i) d̂i∗t (It, θt) ≥ di∗t (It, θt) for all

i ∈ N , (ii) q̂j∗t (It, θt) ≤ qj∗t (It, θt) for all j ∈ M, and (iii) ∂It V̂t(It|θt) ≤ ∂ItVt(It|θt) for all It. Since

∂I0 V̂0(I0|θ0) = ∂I0V0(I0|θ0) = 0 for all I0, the initial condition is satisfied. Since ∂It−1 V̂t−1(It−1|θt−1) ≤

∂It−1Vt−1(It−1|θt−1), ∂zΨ̂t(z|θt) ≤ ∂zΨt(z|θt) for any z. Denote M = {1, 2, · · · ,m} and

M̂ = {1, 2, · · · , m̂}, where m̂ > m.

First, we show that d̂i∗t (It, θt) ≥ di∗t (It, θt) for all i ∈ N . We assume, to the contrary, that

d̂1∗t (It, θt) < d1∗t (It, θt). Following the same argument as that in the proof of Theorem 6.4.7, we have

∂zΨ̂t(∆̂
∗
t (It, θt)|θt) > ∂zΨt(∆

∗
t (It, θt)|θt), so ∆̂∗

t (It, θt) < ∆∗
t (It, θt), i.e.,

It+
∑
j∈M̂

q̂j∗t (It, θt)−(
∑
i∈N

Λi
td̂

i∗
t (It, θt)) = ∆̂∗

t (It, θt) < ∆∗
t (It, θt) = It+

∑
j∈M

qj∗t (It, θt)−(
∑
i∈N

Λi
td

i∗
t (It, θt)).
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Since M ⊂ M̂ and d̂1∗t (It, θt) < d1∗t (It, θt), either (a) d̂
i∗
t (It, θt) > di∗t (It, θt) for some i = 2, 3, · · · , n, or

(b) q̂j∗t (It, θt) < qj∗t (It, θt) for some j = 1, 2, · · · ,m. We follow the same argument as that in the proof

of Theorem 6.4.7 to reach a contradiction in either case (a) or case (b). Thus, d̂1∗t (It, θt) ≥ d1∗t (It, θt).

The same argument applies to show that d̂i∗t (It, θt) ≥ di∗t (It, θt) for any i = 1, 2 · · · , n. Îd,it (θt) ≤ Id,it (θt)

and N ∗
t (It, θt) ⊂ N̂ ∗

t (It, θt) follows immediately.

Next, we show that q̂j∗t (It, θt) ≤ qj∗t (It, θt) for all j ∈ M. We assume, to the contrary, that

q̂1∗t (It, θt) > q1∗t (It, θt). Following the same argument as that in the proof of Theorem 6.4.7, we have

∂zΨ̂t(∆̂
∗
t (It, θt)|θt) > ∂zΨt(∆

∗
t (It, θt)|θt), so ∆̂∗

t (It, θt) < ∆∗
t (It, θt), i.e.,

It+
∑
j∈M̂

q̂j∗t (It, θt)−(
∑
i∈N

Λi
td̂

i∗
t (It, θt)) = ∆̂∗

t (It, θt) < ∆∗
t (It, θt) = It+

∑
j∈M

qj∗t (It, θt)−(
∑
i∈N

Λi
td

i∗
t (It, θt)).

Since M ⊂ M̂ and q̂1∗t (It, θt) > q1∗t (It, θt), either (a) d̂
i∗
t (It, θt) > di∗t (It, θt) for some i = 1, 2, · · · , n, or

(b) q̂j∗t (It, θt) < qj∗t (It, θt) for some j = 2, 3, · · · ,m. We follow the same argument as that in the proof

of Theorem 6.4.7 to reach a contradiction in either case (a) or case (b). Thus, q̂1∗t (It, θt) ≤ q1∗t (It, θt).

The same argument applies to show that q̂j∗t (It, θt) ≤ qj∗t (It, θt) for any j = 1, 2 · · · ,m. Thus, Îq,jt (θt) ≤

Iq,jt (θt) for any j ∈ M. (M̂∗
t (It, θt) ∩M) ⊂ M∗

t (It, θt) follows immediately.

To complete the induction, we show that ∂It V̂t(It|θt) ≤ ∂ItVt(It|θt). Following the same argument as

that in the proof of Theorem 6.4.7, we have that if d̂i∗t (It, θt) > di∗t (It, θt) for some i ∈ N or q̂j∗t (It, θt) <

qj∗t (It, θt) for some j ∈ M, ∂It V̂t(It|θt) = ∂zΨ̂t(∆̂
∗
t (It, θt)|θt) < ∂zΨt(∆

∗
t (It, θt)|θt) = ∂ItVt(It|θt).

In the remaining case, d̂i∗t (It, θt) = di∗t (It, θt) and q̂
j∗
t (It, θt) = qj∗t (It, θt) for any i ∈ N and j ∈ M.

Since m̂ > m (or equivalently, M ⊂ M̂),

∆̂∗
t (It, θt) = It+

∑
j∈M̂

q̂j∗t (It, θt)−(
∑
i∈N

Λi
td̂

i∗
t (It, θt)) ≥ It+

∑
j∈M

qj∗t (It, θt)−(
∑
i∈N

Λi
td

i∗
t (It, θt)) = ∆∗

t (It, θt).

Since ∂zΨ̂t(z|θt) ≤ ∂zΨt(z|θt) for each z, it follows that ∂zΨ̂t(∆̂
∗
t (It, θt)|θt) ≤ ∂zΨt(∆

∗
t (It, θt)|θt)

by the concavity of Ψt(·|θt) in z. Thus, by Equation (E.1), ∂It V̂t(It|θt) = ∂zΨ̂t(∆̂
∗
t (It, θt)|θt) ≤

∂zΨt(∆
∗
t (It, θt)|θt) = ∂ItVt(It|θt). This completes the induction and, thus, the proof of Theorem 6.4.8.

Q.E.D.

Proof of Theorem 6.5.1:

Part (a). We consider an auxiliary game of N players Ĝ, in which the objective function of player i

is Π̂i(p|y, θ) = (pi − ci)(θi + f(Y )− bipi +
∑

j ̸=i βijpj)− Ci(yi), with decision variable pi ∈ [pmin
i , pmax

i ].

We first prove that Ĝ has a unique equilibrium given by A−1(a(Y, θ) + κ).

It is clear that, given any (y, θ), the objective function of player i in Ĝ, Π̂i(p|y, θ), is concave in pi.

Therefore, there exists an equilibrium in Ĝ.

We now show that the equilibrium in Ĝ, p̂∗(y, θ), is an interior vector in the feasible set. Since

pmax
i is sufficiently large so that it will not affect the equilibrium behavior, it remains to be shown that

p̂∗i (y, θ) > pmin
i for each i. Taking the first order derivative of the function Π̂i(p|y, θ) with respect to pi,

we have:

∂piΠ̂i(p|y, θ) = −bi(pi − ci) + θi + f(Y )− bipi +
∑
j ̸=i

βijpj .
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Evaluating the above derivative at pi = ci, we have:

∂piΠ̂i(p|y, θ)|pi=ci = [θi + f(Y )− bipi +
∑
j ̸=i

βijpj ]pi=ci .

Following the assumption that λi(p, y, θi) > 0 when pi = ci, we have ∂piΠ̂i(p|y, θ)|pi=ci = λi(p, y, θi)|pi=ci >

0 for any (p−i, y, θ), and, thus, p̂
∗
i (y, θ) > ci = pmin

i . Hence, p̂∗(y, θ) satisfies the first-order condition:

∂piΠ̂i(p̂
∗(y, θ)|y, θ) = −bi(p̂∗i (y, θ)− ci) + ai(Y, θ)− bip̂

∗
i (y, θ) +

∑
j ̸=i

βij p̂
∗
j (y, θ) = 0.

Equivalently,

Ap̂∗(y, θ) = a(Y, θ) + κ,

where the (N ×N)-matrix A and N -vectors a(Y, θ) and κ are defined in Section 6.5.1. Since A satisfies

the diagonal-dominance condition, A−1 exists. Hence,

p̂∗(y, θ) = A−1(a(Y, θ) + κ) (E.10)

is the unique equilibrium in Ĝ.

Note that p̂∗(y, θ) continues to be an equilibrium in the original second-stage price competition, as

long as it generates positive demand for each firm. If the firms select the price vector p̂∗(y, θ) in the

second-stage price competition, by (6.15), the associated demand for firm i is given by

λ̂∗i (y, θ) =(ai(Y, θ)− (Ap̂∗(y, θ))i + bip̂
∗
i (y, θ))

+

=bi(
ai(Y, θ)

bi
− (Ap̂∗(y, θ))i

bi
+ p̂∗i (y, θ))

+

=bi(
ai(Y, θ)

bi
− (AA−1(a(Y, θ) + κ))i

bi
+ p̂∗i (y, θ))

+

=bi(p̂
∗
i (y, θ)−

κi
bi
)+

=bi(p̂
∗
i (y, θ)− ci) > 0,

where the third equality follows from (E.10), and the last from κi = bici. Hence, p̂∗(y, θ) generates

positive demand for each firm and, thus, forms an equilibrium in the second-stage price competition.

It remains to be shown that the original second-stage price competition does not have other equilibria.

We assume, to the contrary, that there exists another equilibrium price vector p̄∗(y, θ), with the associated

equilibrium demand vector λ̄∗(y, θ). Since

∂piΠi([pi, p̄
∗
−i(y, θ)], y|θ)|pi=ci = λi([pi, p̄

∗
−i(y, θ)], y, θi)|pi=ci > 0,

p̄∗i (y, θ) > ci for all i. If λ̄∗i (y, θ) > 0 for all i, p̄∗(y, θ) must satisfy the first-order condition given by

(E.10), so p̄∗(y, θ) = p̂∗(y, θ). In the remaining case, λ̄∗i (y, θ) = 0 for some i. Without loss of generality,

we assume that λ̄∗1(y, θ) = 0. Since λ1([p
min
1 , p̄∗−1(y, θ)], y, θ) > 0, there exists a price p̄1 > pmin

1 = c1 such

that λ1([p̄1, p̄
∗
−1(y, θ)], y, θ) > 0. Hence,

Π1([p̄1, p̄
∗
−1(y, θ)], y|θ) = (p̄1 − c1)λ1([p̄1, p̄

∗
−1(y, θ)], y, θ)− C1(y1) > −C1(y1) = Π1(p̄

∗(y, θ), y|θ),
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which contradicts the assumption that p̄∗(y, θ) is an equilibrium. Therefore, given any (y, θ), p∗(y, θ) =

p̂∗(y, θ) = A−1(a(Y, θ) + κ) is the unique equilibrium in the second-stage price competition. Thus, for

any i, λ∗i (y, θ) = λ̂∗i (y, θ) = bi(p
∗
i (y, θ)− ci) > 0.

Part (b). By part (a), p∗i (y, θ) =
∑N

l=1(A
−1)il(θl + f(Y ) + κl). Therefore,

∂yjp
∗
i (y, θ) = ∂Y p

∗
i (y, θ) =

N∑
l=1

(A−1)ilf
′(Y ).

By Lemma 2 in [24], every entry of A−1 is nonnegative, so, together with the non-singularity of A−1 and

the strict monotonicity of f(·),
∑N

l=1(A
−1)ilf

′(Y ) > 0. Thus, ∂yjp
∗
i (y, θ) > 0 for any i and j, and p∗i (y, θ)

is strictly increasing in Y for each i. Hence, λ∗i (y, θ) = bi(p
∗
i (y, θ) − ci), which is strictly increasing in

p∗i (y, θ), is strictly increasing in Y and yj for any i and j. Q.E.D.

Proof of Theorem 6.5.2:

Part (a). By (6.17), we have that πi(y|θ) = bi(
∑N

l=1(A
−1)il(θl + f(Y ) + κl) − ci)

2 − Ci(yi). By

Theorem 6.5.1(a), p∗i (Y, θ) > ci for any Y . Let Y = 0, we have ψi := p∗i (0, θ) − ci =
∑N

l=1(A
−1)il(θl +

f0 + κl)− ci > 0. Therefore,

πi(y|θ) =bi(
N∑
l=1

(A−1)il(f(Y )− f0) + ψi)
2 − Ci(yi)

=bi(
N∑
l=1

(A−1)il)
2(f(Y )− f0)

2 + 2biψi(
N∑
l=1

(A−1)il)(f(Y )− f0) + bi(ψi)
2 − Ci(yi).

Since ψi > 0, f(·) is concavely increasing in Y , and Ci(·) is convexly increasing in yi, πi(y|θ) is

jointly concave in y under Assumption 6.5.1. Since f(·) is bounded from above by M , we have that

limyi→+∞ ∂yiπi(y|θ) < 0 for any θ. Hence, there exists an upper bound ymax < ∞, such that the equi-

librium of the first stage game is the same as that of a game with the same payoff functions, but the

feasible set is constrained to [0, ymax]N . Since, for any given θ, πi(y|θ) is concave in yi for any i, and

[0, ymax]N is compact, the first-stage game has an equilibrium y∗EF (θ) ∈ [0, ymax]N . For any equilibrium

y∗EF (θ), we denote Y ∗
EF (θ) :=

∑N
i=1 y

∗
EF,i(θ).

Now, we show that y∗EF (θ) is unique. Let Fi(Y |θ) := bi(
∑N

l=1(A
−1)il(θl + f(Y ) + κl)− ci)

2. Thus,

πi(y|θ) = Fi(Y |θ) − Ci(yi), where Y :=
∑N

i=1 yi. By our argument above, Fi(·|θ) is concave and

continuously differentiable in Y for any i and θ. Assume, to the contrary, that there exist two equilibria

ŷ∗EF (θ) and y∗EF (θ) (ŷ∗EF (θ) ̸= y∗EF (θ)). Without loss of generality, assume Ŷ ∗
EF (θ) ≥ Y ∗

EF (θ). Hence,

there exists an i such that ŷ∗EF,i(θ) > y∗EF,i(θ). Without loss of generality, we take i = 1. Lemma 16 yields

that ∂y1π1(y
∗
EF (θ)|θ) ≤ ∂y1π1(ŷ

∗
EF (θ)|θ). Since Ci(·) is strictly convex, C ′

1(ŷ
∗
EF,1(θ)) > C ′

1(y
∗
EF,1(θ)).

Thus,

∂Y F1(Ŷ
∗
EF (θ)|θ) = ∂y1π1(ŷ

∗
EF (θ)|θ)+C ′

1(ŷ
∗
EF,1(θ)) > ∂y1π1(y

∗
EF (θ)|θ)+C ′

1(y
∗
EF,1(θ)) = ∂Y F1(Y

∗
EF (θ)|θ),

which contradicts the concavity of Fi(·|θ). Hence, ŷ∗EF,1(θ) ≤ y∗EF,1(θ). The same argument shows

that, for each i, ŷ∗EF,i(θ) ≤ y∗EF,i(θ). Hence, Ŷ ∗
EF (θ) =

∑N
i ŷ∗EF,i(θ) ≤

∑N
i y∗EF,i(θ) = Y ∗

EF (θ), where

the equality holds only when ŷ∗EF,i(θ) = y∗EF,i(θ) for all i. Since Ŷ ∗
EF (θ) ≥ Y ∗

EF (θ) by assumption,
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Ŷ ∗
EF (θ) = Y ∗

EF (θ) and ŷ
∗
EF (θ) = y∗EF (θ), which contradicts the initial assumption that ŷ∗EF (θ) ̸= y∗EF (θ).

Therefore, the equilibrium in the first-stage effort level competition is unique.

Part (b). Part (b) follows immediately from part (a) and Theorem 6.5.1(a). Q.E.D.

Proof of Theorem 6.5.3:

Part (a). Since every entry of A−1 is nonnegative and A−1 is non-singular, ∂θj∂Y Fi(Y |θ) =

2bi(A
−1)ij(

∑N
l=1(A

−1)il)f
′(Y ) ≥ 0. Hence Fi(Y |θ) is supermodular in (Y, θj) for any 1 ≤ i, j ≤ N .

Assume that θ̂ > θ and Y ∗
EF (θ) > Y ∗

EF (θ̂). Hence, the concavity and supermodularity of Fi(·|θ) implies

that, for each 1 ≤ i ≤ N ,

∂Y Fi(Y
∗
EF (θ)|θ) ≤ ∂Y Fi(Y

∗
EF (θ̂)|θ̂). (E.11)

If y∗EF,1(θ) > y∗EF,1(θ̂), the strict convexity of C1(·) yields that C ′
1(y

∗
EF,1(θ)) > C ′

1(y
∗
EF,1(θ̂)). On the

other hand, Lemma 16 implies that ∂y1π1(y
∗
EF (θ)|θ) ≥ ∂y1π1(y

∗
EF (θ̂)|θ̂). Thus,

∂Y F1(Y
∗
EF (θ)|θ) = ∂y1π1(y

∗
EF (θ)|θ)+C ′

1(y
∗
EF,1(θ)) > ∂y1π1(y

∗
EF (θ̂)|θ̂)+C ′

1(y
∗
EF,1(θ̂)) = ∂Y F1(Y

∗
EF (θ̂)|θ̂),

which contradicts (E.11). Thus, under the condition Y ∗
EF (θ) > Y ∗

EF (θ̂), y
∗
EF,1(θ) ≤ y∗EF,1(θ̂). Similar

argument implies that, under the condition Y ∗
EF (θ) > Y ∗

EF (θ̂), y
∗
EF,i(θ) ≤ y∗EF,i(θ̂) for any i. Therefore,

if Y ∗
EF (θ) > Y ∗

EF (θ̂), Y
∗
EF (θ̂) =

∑N
i y∗EF,i(θ̂) ≥

∑N
i y∗EF,i(θ) = Y ∗

EF (θ), which forms a contradiction.

Thus, Y ∗
EF (θ) is increasing in θi for any i.

Part (b). Since every entry of A−1 is nonnegative, by part (a) and Theorem 6.5.1, p∗i (Y
∗
EF (θ), θ) =∑N

l=1(A
−1)il(θl+f(Y

∗
EF (θ))+κl) is increasing in θj for any i and j. Thus, λ

∗
EF,i(θ) = bi(p

∗
i (Y

∗
EF (θ), θ)−ci)

is increasing in p∗i (Y
∗
EF (θ), θ) and, hence, θj for any i and j. Q.E.D.

Proof of Theorem 6.5.4:

Part (a). We consider an auxiliary game of N players G̃, in which the objective function of player

i is Π̃i(p, y|θ) = (pi − ci)(θi + f(Y )− bipi +
∑

j ̸=i βijpj)−Ci(yi), with decision variable pi ∈ [pmin
i , pmax

i ]

and yi ≥ 0. We first prove that G̃ has a unique equilibrium characterized by the unique solution of the

system of equations (6.18) and (6.19). Note that (6.18) and (6.19) characterize the first-order condition:

for any i, ∂piΠ̃i = 0 and ∂yiΠ̃i

= 0, if yi > 0,

≤ 0, otherwise.

We first show that (6.18) and (6.19) have a unique solution on (pmin
1 , pmax

1 ) × (pmin
2 , pmax

2 ) × · · · ×

(pmin
N , pmax

N )× [0,+∞)N . Let Gi(Y |θ) := 1
2bi

∑N
l=1(A

−1)il
Fi(Y |θ) = 1

2
∑N

l=1(A
−1)il

(
∑N

l=1(A
−1)il(θl+f(Y )+

κl) − ci)
2 for any i. By the proof of Theorem 6.5.2, Gi(Y |θ) is concave and continuously differentiable

in Y for each i. Plugging (6.18) into (6.19), the left-hand-side of (6.19) becomes: ∂YGi(Y
∗
SC(θ)|θ) −

C ′
i(y

∗
SC,i(θ)), and (6.19) is reduced to:

∂YGi(Y
∗
SC(θ)|θ)− C ′

i(y
∗
SC,i(θ))

= 0, if y∗SC,i(θ) > 0,

≤ 0, otherwise,

for all i = 1, 2, · · · , N , (E.12)

308



where Y ∗
SC(θ) =

∑N
i=1 y

∗
SC,i(θ). We define an auxiliary system of equations on

(YSC(θ), ySC,1(θ), ySC,2(θ), · · · , ySC,N (θ)):

∂YGi(YSC(θ)|θ)− C ′
i(ySC,i(θ))

= 0, if ySC,i(θ) > 0,

≤ 0, otherwise,

for all i = 1, 2, · · · , N . (E.13)

Note that the difference between (E.12) and (E.13) is that the identity Y ∗
SC(θ) =

∑N
i=1 y

∗
SC,i(θ) [YSC(θ) =∑N

i=1 ySC,i(θ)] always holds [may not hold] in (E.12) [(E.13)]. Hence, for any solution of (E.13)

(YSC(θ), ySC,1(θ), ySC,2(θ), · · · , ySC,N (θ)), if it also satisfies the identity YSC(θ) =
∑N

i=1 ySC,i(θ), it is

also a solution to (E.12). Since Ci(·) is strictly convex in yi for any i, there exists a unique vector ySC(θ)

that satisfies (E.13) for any fixed YSC(θ). Thus, we use A : R+ → RN to denote the mapping from

YSC(θ) to ySC(θ), such that ySC(θ) = A(YSC(θ)) satisfies (E.13) for any given YSC(θ). Moreover, let

B : R+ → R denote the following function: B(YSC(θ)) =
∑N

i=1 ySC,i(θ), where ySC(θ) = A(YSC(θ)).

Now, we show that B(·) has a unique fixed point on R+. It follows from the concavity of Gi(·|θ) and

the strict convexity of Ci(·) that (A(YSC(θ)))i is continuously decreasing in YSC(θ) for any i. Hence,

B(YSC(θ)) is continuously decreasing in YSC(θ). By (E.13), (A(0))i ≥ 0 for each i. Thus, B(0) ≥ 0.

Let C(Y ) := B(Y ) − Y . Thus, C(·) is strictly decreasing on R+ with C(0) ≥ 0 and limY→+∞ C(Y ) ≤

limY→+∞(B(0) − Y ) = −∞. Therefore, C(·) has a unique root on R+. Hence, B(·) has a unique

fixed point on R+ and, thus, (E.12) has a unique solution y∗SC(θ). As shown by the proof of Theorem

6.5.1, given y∗SC(θ), there exists a unique p∗SC(θ) that satisfies (6.18), and p∗SC(θ) ∈ (pmin
1 , pmax

1 ) ×

(pmin
2 , pmax

2 )× · · · × (pmin
N , pmax

N ). Therefore, (6.18) and (6.19) has a unique solution (p∗SC(θ), y
∗
SC(θ)) on

(pmin
1 , pmax

1 )× (pmin
2 , pmax

2 )× · · · × (pmin
N , pmax

N )× [0,+∞)N .

We now show that the equilibrium in G̃, (p̃∗, ỹ∗), if exists, must have an interior price vector p̃∗ ∈

(pmin
1 , pmax

1 )× (pmin
2 , pmax

2 )× · · · × (pmin
N , pmax

N ). Since pmax
i is sufficiently large for any i, it remains to be

shown that p̃∗i > pmin
i = ci for all i. Assume, to the contrary, that p̃∗i = pmin

i = ci for some i. Without

loss of generality, we take i = 1. Since λ1([p
min
1 , p̃∗−1], ỹ

∗, θ) > 0, there exists a price p̃1 > pmin
1 = c1 such

that λ1([p̃1, p̃
∗
−1], ỹ

∗, θ) > 0. Hence,

Π1([p̃1, p̃
∗
−1], ỹ

∗, θ) = (p̃1 − c1)λ1([p̃1, p̃
∗
−1], ỹ

∗, θ)− C1(ỹ
∗
1) > −C1(ỹ

∗
1) = Π1(p̃

∗, ỹ∗, θ),

which contradicts the assumption that (p̃∗, ỹ∗) is an equilibrium. Therefore, the equilibrium in G̃, if

exists, must have an interior price vector, and by the KKT necessary condition, must satisfy the first-

order condition characterized by the system of equations (6.18) and (6.19).

It remains to be shown that the unique solution to (6.18) and (6.19), (p∗SC(θ), Y
∗
SC(θ)), is an equi-

librium in G̃. It suffices to prove that, for any i, given other firms’ decisions (p∗SC,−i(θ), y
∗
SC,−i(θ)),

(p∗SC,i(θ), y
∗
SC,i(θ)) maximizes

Π̃i(pi, yi|p∗SC,−i(θ), y
∗
SC,−i(θ), θ) := (pi − ci)(θi + f(yi +

∑
j ̸=i

y∗SC,j(θ))− bipi +
∑
j ̸=i

βijp
∗
SC,j(θ))− Ci(yi).
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Following the same argument as that in the characterization of (p∗SC(θ), y
∗
SC(θ)), we have (p

∗
SC,i(θ), y

∗
SC,i(θ))

is the unique vector that satisfies the first-order condition:

∂piΠ̃i(pi, yi|p∗SC,−i(θ), y
∗
SC,−i(θ), θ) = 0 (E.14)

∂yiΠ̃i(pi, yi|p∗SC,−i(θ), y
∗
SC,−i(θ), θ)

= 0, if y∗SC,i(θ) > 0,

≤ 0, otherwise.

(E.15)

Since Π̃i(pi, yi|p∗SC,−i(θ), y
∗
SC,−i(θ), θ) is a continuously differentiable function on a compact domain

[pmin
i , pmax

i ] × [0, ymax], where ymax is defined in the proof of Theorem 6.5.2, it has a maximizer char-

acterized by the first-order condition (E.14) and (E.15) for any given (p∗SC,−i(θ), y
∗
SC,−i(θ)). Therefore,

given (p∗SC,−i(θ), y
∗
SC,−i(θ)) , the unique solution to (E.14) and (E.15), (p∗SC,i(θ), y

∗
SC,i(θ)), is the unique

maximizer of Π̃i(pi, yi|p∗SC,−i(θ), y
∗
SC,−i(θ), θ) for any i. Therefore, the unique solution to (6.18) and

(6.19), (p∗SC(θ), y
∗
SC(θ)), is the unique equilibrium in G̃.

Note that (p∗SC(θ), y
∗
SC(θ)) continues to be an equilibrium in the original simultaneous competition,

as long as it generates positive demand for each firm. If the firms select the price vector p∗SC(θ) and the

effort vector y∗SC(θ) in the simultaneous competition, by (6.15) and (6.18), the associated demand for

firm i is given by λ̃∗i (θ) = (ai(Y
∗
SC(θ), θ)− (Ap∗SC(θ))i + bip

∗
SC,i(θ))

+ = bi(p
∗
SC,i(θ)− ci) > 0, where the

inequality follows from p∗SC,i(θ) > ci for any i. Hence, (p∗SC(θ), y
∗
SC(θ)) generates positive demand for

each firm and, thus, forms an equilibrium in the simultaneous competition.

It remains to be shown that the original simultaneous competition does not have other equilibria.

We assume, to the contrary, that there exists another equilibrium (p∗(θ), y∗(θ)), with the associated

equilibrium demand vector λ∗(θ). Since

∂piΠi([pi, p
∗
−i
(θ)], y∗(θ)|θ)|pi=ci = λi([pi, p

∗
−i
(θ)], y∗(θ), θi)|pi=ci > 0,

p∗
i
> ci for all i. If λ∗i (θ) > 0 for all i, (p∗(θ), y∗(θ)) must satisfy the first-order condition (6.18) and

(6.19), i.e., (p∗(θ), y∗(θ)) = (p∗SC(θ), y
∗
SC(θ)). In the remaining case, λ∗i (θ) = 0 for some i. Without

loss of generality, we assume that λ∗1(θ) = 0. Since λ1([p
min
1 , p∗−1

(θ)], y∗(θ), θ) > 0, there exists a price

p
1
> pmin

1 = c1 such that λ1([p1, p
∗
−1

(θ)], y∗(θ), θ) > 0. Hence,

Π1([p1, p
∗
−1

(θ)], y∗(θ)|θ) = (p
1
−c1)λ1([p1, p

∗
−1

(θ)], y∗(θ), θ)−C1(y
∗
1
(θ)) > −C1(y

∗
1
(θ)) = Π1(p

∗(θ), y∗(θ)|θ),

which contradicts that (p∗(θ), y∗(θ)) is an equilibrium in the simultaneous competition. Therefore, given

any θ, (p∗SC(θ), y
∗
SC(θ)), which is the unique solution of (6.18) and (6.19), is the unique equilibrium in

the simultaneous competition. Thus, for any i, λ∗SC,i(θ) = bi(p
∗
SC,i(θ)− ci) > 0.

Part (b). By (E.12), y∗SC(θ) is the unique equilibrium of an N -player game, in which the ith player

has the payoff function π̂i(y|θ) := Gi(Y |θ) − Ci(yi) and feasible set R+, where Y =
∑N

i=1 yi. By the

proof of Theorem 6.5.2(a) and Theorem 6.5.3(a), Fi(Y |θ), and hence Gi(Y |θ) = 1
2bi

∑N
l=1(A

−1)il
Fi(Y |θ),

are continuously differentiable and concave in Y and supermodular in (yi, θj) for any (i, j). Assume

θ̂ > θ and Y ∗
SC(θ) > Y ∗

SC(θ̂). Hence, the concavity and supermodularity of Gi(·|θ) imply that, for each

1 ≤ i ≤ N ,

∂YGi(Y
∗
SC(θ)|θ) ≤ ∂YGi(Y

∗
SC(θ̂)|θ̂). (E.16)
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If y∗SC,1(θ) > y∗SC,1(θ̂), the strict convexity of C1(·) yields that C ′
1(y

∗
SC,1(θ)) > C ′

1(y
∗
SC,1(θ̂)). On the

other hand, Lemma 16 implies that ∂y1 π̂1(y
∗
SC(θ)|θ) ≥ ∂y1 π̂1(y

∗
SC(θ̂)|θ̂). Thus,

∂YG1(Y
∗
SC(θ)|θ) = ∂y1 π̂1(y

∗
SC(θ)|θ)+C ′

1(y
∗
SC,1(θ)) > ∂y1 π̂1(y

∗
SC(θ̂)|θ̂)+C ′

1(y
∗
SC,1(θ̂)) = ∂YG1(Y

∗
SC(θ̂)|θ̂),

which contradicts (E.16). Thus, under the condition that Y ∗
SC(θ) > Y ∗

SC(θ̂), y
∗
SC,1(θ) ≤ y∗SC,1(θ̂). Sim-

ilar argument implies that, under the condition that Y ∗
SC(θ) > Y ∗

SC(θ̂), y
∗
SC,i(θ) ≤ y∗SC,i(θ̂) for any i.

Therefore, if Y ∗
SC(θ) > Y ∗

SC(θ̂), Y
∗
SC(θ̂) =

∑N
i y∗SC,i(θ̂) ≥

∑N
i y∗SC,i(θ) = Y ∗

SC(θ), which forms a con-

tradiction. Thus, Y ∗
SC(θ) is increasing in θi for any i. Since every entry of A−1 is nonnegative and

A−1 is non-singular, by (6.18), p∗SC,i(θ) =
∑N

l=1(A
−1)il(θl + f(Y ∗

SC(θ)) + κl) is increasing in θj for any

i and j. Thus, λ∗SC,i(θ) = bi(p
∗
SC,i(θ)−ci) is increasing in p∗SC,i(θ) and, hence, θj for any i and j. Q.E.D.

Proof of Theorem 6.5.5: We prove part (b) first, and parts (a) and (c) second.

Part (b). As shown in the proofs of Theorem 6.5.2 and Theorem 6.5.4, y∗EF (θ) is the equilibrium of

an N -player game with the concave objective function πi(y|θ) = Fi(Y |θ)−Ci(yi) and feasible set R+ for

player i, and y∗CS(θ) is the equilibrium of an N -player game with the concave objective function π̂i(y|θ) =

Gi(Y |θ)−Ci(yi) and feasible set R+ for player i. Note that ∂Y Fi(Y |θ) = 2bi(p
∗
i (Y, θ)−ci)∂Y p∗i (Y, θ) > 0,

where the inequality follows from Theorem 6.5.1. Recall that Fi(Y |θ) = 2bi
∑n

l=1(A
−1)ilGi(Y |θ). By

Lemma 2 in [24], 2bi
∑n

l=1(A
−1)il ≥ 2bi(A

−1)ii ≥ 1. Thus, ∂Y Fi(Y |θ) ≥ ∂YGi(Y |θ) ≥ 0 for each i and

θ. We assume, to the contrary, that Y ∗
SC(θ) > Y ∗

EF (θ). Hence, for each i,

∂Y Fi(Y
∗
EF (θ)|θ) ≥ ∂YGi(Y

∗
SC(θ)|θ). (E.17)

If y∗SC,1(θ) > y∗EF,1(θ), the strict convexity of C1(·) implies that C ′
1(y

∗
SC,1(θ)) > C ′

1(y
∗
EF,1(θ)). On the

other hand, Lemma 16 yields that ∂y1 π̂1(y
∗
SC(θ)|θ) ≥ ∂y1π1(y

∗
EF (θ)|θ). Thus,

∂YG1(Y
∗
SC(θ)|θ) = ∂y1 π̂1(y

∗
SC(θ)|θ)+C ′

1(y
∗
SC,i(θ)) > ∂y1π1(y

∗
EF (θ)|θ)+C ′

1(y
∗
EF,i(θ)) = ∂Y F1(Y

∗
EF (θ)|θ),

which contradicts (E.17). Thus, under the condition that Y ∗
SC(θ) > Y ∗

EF (θ), y
∗
SC,1(θ) ≤ y∗EF,1(θ).

Similar argument implies that, under the condition that Y ∗
SC(θ) > Y ∗

EF (θ), y
∗
SC,i(θ) ≤ y∗EF,i(θ) for any

i. Therefore, if Y ∗
SC(θ) > Y ∗

EF (θ), Y
∗
EF (θ) =

∑N
i y∗EF,i(θ) ≥

∑N
i y∗SC,i(θ) = Y ∗

SC(θ), which forms a

contradiction. Thus, Y ∗
SC(θ) ≤ Y ∗

EF (θ) for any θ.

Part (a). Since Y ∗
SC(θ) ≤ Y ∗

EF (θ) for any θ, by Theorems 6.5.1 and 6.5.4 and that every entry of

A−1 is nonnegative,

p∗EF,i(y
∗
EF (θ), θ) = (

N∑
l=1

(A−1)il)(θl + f(Y ∗
EF (θ)) + κl) ≥ (

N∑
l=1

(A−1)il)(θl + f(Y ∗
SC(θ)) + κl) = p∗SC,i(θ),

for any i and θ.

Part (c). Since p∗i (Y
∗
EF (θ), θ) ≥ p∗SC,i(θ), it follow immediately from Theorems 6.5.1 and 6.5.4 that

λ∗i (Y
∗
EF (θ), θ) = bi(p

∗
i (Y

∗
EF (θ), θ)− ci) ≥ bi(p

∗
SC,i(θ)− ci) = λ∗SC,i(θ),

for any i and θ. Q.E.D.
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E.2 Discussions on Stopping Condition (ii) of the Iterative Procedure

Lemma 15 is silent about how y∗i (γ) changes with γ for p + 1 ≤ i ≤ p + q in the convex program

(6.1). In this section, we first present in detail how our comparative statics method stops in Step (d)

without leading to a contradiction for y∗i (γ) (p+ 1 ≤ i ≤ p+ q). We then give an example to illustrate

that, in the convex program (6.1), y∗i (γ) (p+ 1 ≤ i ≤ p+ q) may not be monotone in γ.

E.2.1 Comparative Statics Analysis of y∗i (γ) (p+ 1 ≤ i ≤ p+ q)

We consider two (hypothetical and incorrect) scenarios: (a) y∗i (γ) is increasing in γ for all γ ∈ Γ and

some p+ 1 ≤ i ≤ p+ q; and (b) y∗i (γ) is decreasing in γ for all γ ∈ Γ and some p+ 1 ≤ i ≤ p+ q.

For scenario (a), we assume, to the contrary, that y∗i (γ̂) < y∗i (γ) for some γ̂ > γ. By Lemma 16,

∂yiF (y
∗(γ)|γ) ≥ ∂yiF (y

∗(γ̂)|γ̂), i.e., ∂yigi(y
∗
i (γ)|γ)+λi∂y0h(y

∗
0(γ)|γ) ≥ ∂yigi(y

∗
i (γ̂)|γ̂)+λi∂y0h(y

∗
0(γ̂)|γ̂).

Since gi(·|·) is strictly concave in yi and submodular in (yi, γ), it may be possible that (i) ∂yigi(y
∗
i (γ)|γ) ≥

∂yigi(y
∗
i (γ̂)|γ̂) or (ii) ∂yigi(y

∗
i (γ)|γ) < ∂yigi(y

∗
i (γ̂)|γ̂). In case (i), the argument stops because we cannot

obtain any monotone relationship between ∂y0h(y
∗
0(γ)|γ) and ∂y0h(y

∗
0(γ̂)|γ̂). Hence, no contradiction

can be reached for this scenario.

For scenario (b), we assume, to the contrary, that y∗i (γ̂) > y∗i (γ) for some γ̂ > γ. By Lemma 16,

∂yiF (y
∗(γ)|γ) ≤ ∂yiF (y

∗(γ̂)|γ̂), i.e., ∂yigi(y
∗
i (γ)|γ)+λi∂y0h(y

∗
0(γ)|γ) ≤ ∂yigi(y

∗
i (γ̂)|γ̂)+λi∂y0h(y

∗
0(γ̂)|γ̂).

Since gi(·|·) is submodular in (yi, γ) and strictly concave in yi, ∂yigi(y
∗
i (γ)|γ) > ∂yigi(y

∗
i (γ̂)|γ̂). Thus,

we have that ∂y0h(y
∗
0(γ)|γ) < ∂y0h(y

∗
0(γ̂)|γ̂). Since h(·|·) is supermodular in (y0, γ), we cannot obtain

any monotone relationship between y∗0(γ) and y∗0(γ̂). Hence, the argument stops and no contradiction

can be reached for this scenario.

Since the iterative procedure is stopped without reaching a contradiction, we suspect that, in the

convex program (6.1), y∗i (γ) (p+ 1 ≤ i ≤ p+ q) may not be monotone in γ, and construct the following

example.

Example E.2.1 In the convex program (6.1), let p = q = 1, λ1 = λ2 = 1, Γ = R, and Y1 = Y2 = R.

Let

f1(y1) = −(y1)
2; g2(y2|γ) =

−(y2)
2, if γ ≤ 0,

−(y2 + γ)2, otherwise;

and h(y0|γ) =

−(y0 − γ)2, if γ ≤ 0,

−(y0)
2, otherwise.

Clearly, f1(·), g2(·|·), and h(·|·) satisfy the conditions of (6.1). It’s easy to obtain that

(y∗1(γ), y
∗
2(γ)) =

(γ3 ,
γ
3 ), if γ ≤ 0,

(γ3 ,−
2γ
3 ), otherwise.

Therefore, in this example, y∗2(γ) is strictly increasing in γ for γ ≤ 0, and strictly decreasing in γ for

γ > 0.

Example E.2.1 implies that, in the convex optimization problem (6.1), y∗i (γ) (p+1 ≤ i ≤ p+ q) may

not be monotone in γ for generally specified {fi(·), gi(·|·), h(·|·)}1≤i≤p+q.
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