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Behavioral and neural response to rewards and punishments has been the subject of a 

growing literature with particular interest within developmental, psychopathology, and 

individual difference domains. There is now mounting evidence suggesting that adolescents 

show heightened response to reward relative to adults, and that adolescents with Major 

Depressive Disorder (MDD), elevated depressive symptoms, or at high-risk for depression show 

reduced response to reward. However, it is unclear whether similar relations between response to 

incentives and development/psychopathology are observed during childhood. Here we examine 

behavioral, neural (functional magnetic resonance imaging - fMRI), and self-reported 

responsiveness to gain and loss of rewards within healthy children and young adults. We relate 

observed neural/behavioral incentive responsiveness to 1) developmental stage, 2) risk for 

depression, and 3) self-reported incentive sensitivity. First, studies investigating developmental 

stage indicated that responsiveness to gain and loss of reward feedback show differing relations 

with age. Specifically, while children show elevated behavioral and neural (dorsal/posterior 

insula) response to loss of reward relative to adults, response to reward was similar across age 

groups. Second, we observed similar levels of both gain approach and loss avoidance behavior 

between healthy children at relatively high and low-risk for MDD, based on a positive/negative 
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maternal history of MDD respectively. Third, across several studies both elevated gain approach 

and elevated loss avoidance behavior related to elevated self-reported incentive sensitivity as 

assessed via different questionnaire types (i.e. hedonic capacity, Behavioral Inhibition 

System/Behavioral Activation System, and anhedonic depressive scales). Interestingly, gain 

approach and loss avoidance behavior predicted unique variance in self-reported incentive 

sensitivity (BAS drive) and relations between incentive sensitivity and behavior did not differ 

based on age or depression risk status. Together these results highlight the importance of 

responsiveness to feedback signaling the loss of reward from both developmental and incentive 

sensitivity perspectives. Future work is needed to examine how gain and loss responsiveness 

during childhood prospectively predicts changes in incentive responsiveness over development 

and incidence of depression/changes in depressive symptoms. 



 

 1 

  

 

Chapter 1. 

Incentive Processing – Age And Individual Differences
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 Rewards (i.e. stimuli/states that encourage approach or positive affective responses) and 

punishments (i.e. stimuli/states that encourage avoidance or negative affective responses) are 

among the most potent sources of information in the environment. Incentives (i.e. rewards, 

punishments, and/or their removal which encourage action) influence a wide range of core 

cognitive and affective processes including memory, learning, decision-making, motivation, 

mood, cognitive control, attention, and perception (Geier & Luna 2012, Henriques et al 1994a, 

Kahneman 1979, Linke et al 2010, Maunsell 2004). Because rewards/punishments play such a 

primal and ubiquitous role in cognitive/affective function they have been subjects of inquiry 

within variety of disciplines/theoretical backgrounds. Recently there has been particular interest 

regarding how incentive processing (i.e. how reward/punishment information is translated into 

action) and incentive sensitivity (i.e. basic affective, behavioral, neural reactivity to incentive 

cues/contingencies) relate to 1) typical development, 2) psychopathology/risk for 

psychopathology, and 3) differences we observe between individuals. However, few studies have 

investigated such responses during childhood or how these lines of research intersect. 

 As discussed in greater detail below, studies investigating typical development have 

largely focused on how neural/behavioral responses to reward evolve from adolescence to 

adulthood. Further, in separate work, researchers investigating psychopathology have linked 

reduced reward responsiveness to depression (and risk for depression) in adolescence and 

adulthood. Given the adolescent focus of both literatures, it is unclear how responses to gains 

and losses differ between children and adults, or differ between healthy children at relatively 

high- and low-risk for depression. There is a critical gap in the literature where, despite the 

limited cross between typical developmental and psychopathology related studies, models of 

depression etiology and risk often include developmental components and rely on the underlying 
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assumption that the increasing incidence of depression (and other types of psychopathology) 

observed over adolescence is related, at least in part, to developmental processes (see (Forbes & 

Dahl 2005) for commentary). Before researchers can fully explore this hypothesis it is first 

important to investigate typical and atypical incentive responsiveness during childhood, when 

there is relatively low incidence of major depressive disorder (MDD) and the changes in 

incentive responding associated with adolescence have not yet begun. As such, the studies 

presented in this dissertation aim to investigate how neural/behavioral responses to gain/loss 

feedback differ between 1) children and adults, and 2) children at relatively high and low risk for 

developing depression. Understanding how neural/behavioral responses to incentives in healthy 

children relate to those in healthy adults would provide an important normative baseline for 

future work investigating how developmental trajectories of gain and loss responsiveness relate 

to depressive symptomology or may diverge based on risk for depression. Further, characterizing 

incentive responsiveness in high-risk populations prior to adolescence will provide preliminary 

evidence, along with the extant literature, regarding whether populations at relatively high-risk 

for MDD show altered incentive responsiveness across many developmental time points, or 

whether such group differences are specifically observed during/after adolescence.  

Only a handful of studies have investigated how reward responses relate to both 

individual differences and group differences in age or psychopathology. Studies that include 

individual difference analyses tend to do so within a given discipline. For example, age-

differences in neural response to reward have been related to behaviors associated with typical 

adolescence (i.e. risk taking or decision-making) (Galvan et al 2007, Paulsen et al 2011a) while 

differences in neural response to reward between adolescents at high- and low-risk for 

depression have been related to current or future depressive symptomology (Bress et al 2012, 
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Olino et al 2014). While these studies have begun to link developmental or psychopathology-

related changes in reward responding to behaviors of interest, few other studies have done so. 

Thus, while there is provocative evidence linking neural response to reward with both normative 

and abnormal behaviors during adolescence and adulthood, it is unclear whether similar relations 

between incentive-related behavior and self-reported symptomology/incentive sensitivity are 

observed across child and adult groups and across children at high and low-risk for depression. 

The studies presented in this dissertation investigate relations between self-reported incentive 

sensitivity/depressive symptomology and gain/loss behaviors and whether/how these relations 

may differ across age and depression-risk. Characterizing relations between incentive 

sensitivity/depressive symptomology in childhood and then investigating how such relations may 

differ based on depression risk first would provide a ‘normative’ developmental baseline for 

comparison with childhood pathology and secondly would potentially characterize new 

behavior/symptom correlates of risk in childhood. 

To provide a context for asking these questions, the sections below briefly review the 

literatures investigating 1) neural responses to rewards/punishments in healthy adults, 2) 

differences between children and adults in behavioral and neural responses to 

rewards/punishments, 3) relations between neural/behavioral responses to rewards/punishments 

and a variety of incentive sensitivity self-report measures in adults/adolescents, and 4) relations 

between depression/depression risk and responses to rewards/punishments in adults and youths.  

1.1 Neural Systems Involved In Incentive Processing 

The translation of incentive information from the environment into emotional experience 

and motivated behaviors is a complex phenomenon involving a cascade of discrete component 
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processes. At the most basic level, incentive responding includes three components; 1) hedonic 

response (i.e. experience of pleasure) to incentive outcomes or incentive ‘liking’, 2) motivation 

to approach/avoid the incentive or ‘wanting’ (also termed incentive salience), and 3) learning 

processes by which actions/cues are related to incentive outcomes based on previous experiences 

(Berridge et al 2009). Importantly, while these components are dissociable in certain contexts, 

they are not by definition orthogonal processes. For example, pharmacologic stimulation of the 

nucleus accumbens and ventral pallidum (functions of these regions are discussed in greater 

detail below) that increases ‘liking’ of sweet taste also increases consummatory behavior (i.e. 

increased ‘wanting’) in animals (Smith & Berridge 2005). Further, motivational/physiologic 

states, such as hunger/satiation or salt deprivation, can alter indexes of ‘liking’ of specific 

substances both in humans and other animals (Kringelbach et al 2003, Tindell et al 2006). 

Finally, despite being separable, ‘liking’ and ‘wanting’ can both influence and in turn are 

affected by learning processes (Berridge 2012, Berridge et al 2009).  

Understanding of these component processes and their relations has advanced with the 

emergence of studies regarding how brain regions individually and neural systems collectively 

respond to incentive information (see Figure 1.1 for summary of regions responsive to incentive 

information). A rich literature in animals and humans has established the role of the cortical-

basal ganglia circuit and the extended limbic system in reward and punishment processing (for 

reviews see (Haber 2011, Haber & Knutson 2010)) with particular emphasis on dopaminergic, 

serotonergic, and opioid signaling. At the core of these systems is the basal ganglia/striatum 

comprised of the caudate, putamen, globus pallidus, and nucleus accumbens. Resent meta-

analyses and functional connectivity studies have emphasized both dorsal/ventral and 

rostral/caudal functional distinctions within the striatum (Barnes et al 2010, Di Martino et al 
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2008, Draganski et al 2008, Greene et al 2014, Postuma & Dagher 2006).  

The dorsal striatum/basal ganglia (DS), comprised of the caudate body, dorsal/rostral 

putamen, and the dorsal pallidum, receives significant dopaminergic innervation and shows 

reciprocal functional/structural connections with a number of regions, including the dorsal 

prefrontal cortex (DPFC), which is thought to be involved in cognitive control, the anterior 

cingulate cortex (ACC) involved in error processing, as well as with motor cortex (Barnes et al 

2010, Di Martino et al 2008, Haber & Knutson 2010, Postuma & Dagher 2006). During simple 

gambling tasks the DS (particularly the caudate) shows differential responsivity to gain and loss 

outcomes, typically with greater activation following gain than loss outcomes (Delgado et al 

2000). However, DS responses are sensitive to a number of factors beyond outcome valence, 

including outcome magnitude (Delgado et al 2003, Delgado et al 2000), action contingency 

(Tricomi et al 2004), number of response options (Tricomi & Fiez 2012), and probability of 

outcome (Tricomi & Lempert 2015). Given patterns of connectivity, dopaminergic innervation, 

and the functional patterns discussed above, the rostral DS has been strongly implicated in goal-

directed action. Rostral components of the DS have also been implicated in actor/critic learning 

models where during instrumental conditioning the DS behaves as the theorized ‘actor’, relating 

actions to positive (i.e. rewarding) outcomes and thus increasing the selection of previously 

rewarded responses (O'Doherty et al 2004).  

More caudal portions of the DS (particularly the dorsal caudal putamen) however are less 

sensitive to action-outcome contingencies and are involved in habitual responding when the 

outcome has been devalued (Tricomi et al 2009). This perseverative/’habitual’ responding, even 

when the outcome of an action is no longer ‘liked’ (i.e. has been devalued) is a good example of 

the dissociation between the ‘liking’ an outcome and the incentive salience or ‘wanting’ of a 
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conditioned/instrumental cue. Such task findings are consistent with connectivity studies where 

the caudal DS shows strong connectivity with sensory and motor regions while more rostral 

regions show stronger connectivity with associative and cognitive control regions (e.g. antierior 

cingulate cortex (ACC) and dorsal/medial prefrontal cortex (PFC)) (Barnes et al 2010, Di 

Martino et al 2008, Postuma & Dagher 2006).  

The ventral striatum/basal ganglia (VS) is comprised of the caudate head, ventral 

components of the putamen/pallidum and nucleus accumbens. Although overly simplistic, opioid 

and GABAergic activity within the nucleus accumbens and ventral pallidum have been linked to 

‘liking’ responses. In contrast, dopaminergic signaling, particularly within the nucleus 

accumbens, has been implicated in learning/prediction error signaling (Berridge et al 2009, 

Haber 2011, Haber & Knutson 2010, Smith et al 2011). The ventral striatum shows strong 

connectivity with oribitofrontal and ventral medial prefrontal corticies (OFC/vmPFC), the 

amygdala/hippocampus, and dopaminergic midbrain (Barnes et al 2010, Di Martino et al 2008, 

Postuma & Dagher 2006). Like the dorsal striatum, VS shows greater activation to reward 

feedback than loss/punishment feedback (Liu et al 2011). However, unlike the DS, the VS tends 

to show either deactivation to loss outcomes, particularly when that outcome is worse than 

expected, or no activation (Delgado et al 2000, Knutson et al 2001a). Further, the VS 

corresponds to the ‘critic’, evaluating observed outcomes relative to what was expected, in 

actor/critic models (O'Doherty et al 2004) 

Other non-striatal limbic regions involved in incentive processing include the amygdala, 

hippocampus, and insular cortex. The amygdala’s role in fear/punishment learning has been 

studied extensively, however, its role in stimulus-reward learning has been recognized relatively 

recently (Baxter & Murray 2002). The amygdala receives input from a wide variety of regions, 
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including the OFC and sensory regions, and efferent projections from the amygdala terminate in 

the VS (primarily nucleus accumbens), OFC, and vmPFC, among other regions, making it a key 

site in the incentive-processing network (Baxter & Murray 2002, Haber & Knutson 2010). 

Specifically, the amygdala is involved in several types of reward learning, signals 

affective/incentive salience (‘wanting’) of cues/stimuli in the environment, and shows activation 

to both aversive and appetitive stimuli (O'Doherty et al 2001b). However, the amygdala is not 

consistently highlighted in human incentive processing studies using fMRI, possibly due to 

habituation effects or task differences, for example the amygdala does not consistently show 

activation during simple guessing tasks without anticipation/learning components (Delgado et al 

2003, Delgado et al 2000, Hommer et al 2003, Knutson et al 2001b, Smith et al 2009). Like the 

amygdala the hippocampus has efferent projections terminating specifically in the VS, however 

these projections are even more narrowly focused within the nucleus accumbens than those from 

the amygdala (Di Martino et al 2008, Friedman et al 2002, Haber & Knutson 2010). The 

hippocampus is most frequently discussed in the context of reward-related learning, however 

hippocampal activation is also reported in simple guessing tasks without learning components 

(Delgado et al 2000, May et al 2004).  

Like the amygdala, the insula historically has been implicated in responding to aversive 

outcomes and physical states. However, there is increasing evidence that the insula has a much 

more complex set of functions and that anterior regions in particular respond to salient 

stimuli/events regardless of valence. Recent meta-analyses highlight that while the anterior 

insula (AI) is responsive to positive and negative outcomes during both anticipation and receipt 

(Liu et al 2011), the ventral and anterior/dorsal AI are also more broadly involved in cognitive 

functions such as focal attention and task-level control (Nelson et al 2010). The AI is richly 
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interconnected with a number of regions within frontal, rostral cingulate, and parietal cortices as 

well as with other limbic regions (Cauda et al 2012, Cauda et al 2011, Cloutman et al 2012). 

More dorsal and posterior portions of the insula show positive connectivity with sensory/motor 

regions, mid/posterior cingulate cortex, and amygdala (Cauda et al 2012, Cauda et al 2011, 

Cloutman et al 2012, Deen et al 2011, Roy et al 2013). From a functional stand point the 

posterior insula (PI) does seem to selectively respond during anticipation of negative outcomes 

(Liu et al 2011). Given this negative focus it is understandable that few reward-processing 

studies discuss more posterior components of the insula.  

The ACC, particularly dorsal components, plays an important role in conflict monitoring 

and reward-related/affective decision-making (Bush et al 2002, Etkin et al 2011). Within 

incentive studies the dorsal ACC (dACC) has been implicated in responding during incentive 

anticipation, outcome, and evaluation and is most reliably activated during negative outcomes, 

when outcomes are lower than expected, or when shifts in behavior are required (Bush et al 2002, 

Liu et al 2011). The dACC has projections that terminate in both the dorsal and ventral striatum 

as well as functional connections with other cortical regions involved in cognitive control and 

error processing (Etkin et al 2011, Haber & Knutson 2010, Margulies et al 2007). The rostral 

anterior cingulate cortex (pregenual anterior cingulate cortex) shows greater activation to reward 

outcomes (Liu et al 2011) and shows stronger connectivity with limbic than cognitive control 

regions (Etkin et al 2011). 

The orbitofrontal (OFC) and ventromedial prefrontal cortex (vmPFC) have both been 

implicated in value representation and are essential for evaluating and comparing items/actions 

of different values during decision-making (Hare et al 2009, Hare et al 2008, Padoa-Schioppa & 

Assad 2008, Rangel & Hare 2010). Responses within vmPFC and medial OFC have been linked 
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to incentive ‘liking’ as responses decrease following satiation and correlate with preference and 

pleasantness ratings (Kuhn & Gallinat 2012, McClure et al 2004, O'Doherty et al 2000). Morel 

lateral portions of the OFC have been implicated in decision-making and integrating incentive 

information (Bechara et al 1998, Kringelbach 2005, Rogers et al 1999). Both the OFC and 

vmPFC have efferent projections to the striatum terminating primarily in the VS (Haber & 

Knutson 2010), and are further reciprocally connected to sensory and affective systems 

(including the amygdala) (Kringelbach 2005). As such, the OFC and vmPFC are ideally suited to 

integrate information regarding different types of incentives from all sensory systems, which 

then allows for representations of subjective value (relative ‘liking’) that then inform more 

complex decision-making/learning processes. 
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Figure 1.1: Reward/Punishment Processing Circuitry  
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1.2 Incentive Types And Processing Differences  

 Although the vast majority of incentive processing studies discussed above utilize 

secondary incentives (primarily money, although some developmental studies use points/token 

economies), a handful of adult fMRI studies have directly compared responses to secondary and 

primary incentives. Such studies, as well as a recent meta-analysis comparing primary and 

secondary fMRI studies, report responses to both types of incentives in largely overlapping 

regions including the ventral striatum, anterior insula, vmPFC, and ACC (Clithero et al 2011, 

Kim et al , Levy & Glimcher 2011, Sescousse et al 2013, Sescousse et al 2010, Simon et al 2014). 

However, there is also evidence of differential activity. Specifically when comparing response to 

erotic pictures (primary) versus monetary (secondary) feedback, more anterior components of the 

OFC respond maximally to secondary rewards while medial and more posterior OFC regions 

respond maximally to primary rewards (Sescousse et al 2010), a pattern highlighted in an earlier 

meta-analysis (Kringelbach & Rolls 2004). This study also found greater amygdala responses to 

primary than secondary rewards (Sescousse et al 2010). However, another factor to consider is 

that secondary rewards are not directly ‘consumed’ in the scanner, unlike erotic pictures that are 

immediately ‘consumed’. Instead a lump sum of money is delivered post scan, thus differences 

in the timing of ‘consumption’ could explain the OFC/amygdala differences reported by 

Sescousse and colleagues.  

Interestingly, a recent study has eliminated this confound by comparing 

anticipatory/receipt related responses during monetary and snack point trials (Simon et al 2014). 

In this study, lump sums of both incentives were received post scan and snack points could then 

be exchanged for ‘primary’ snack rewards. Again, responses were greater within more posterior 

portions of the OFC for primary (snack) rewards than monetary rewards. However, neither type 
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of reward elicited activation within the amygdala. Together these results suggest that differences 

in processing of primary and secondary rewards may in part relate to affective salience and 

immediacy of cues, particularly within the amygdala, but that anterior/posterior OFC differences 

relate to reward type independent of timing of reward ‘consumption’. Primary rewards may be 

particularly advantageous for investigating developmental questions as they relieve concerns 

regarding how age may interact with the processing of abstract incentives and that in adults 

primary and monetary incentives seem to generally elicit similar responses, with the exception of 

anterior versus posterior OFC, and potentially amygdala. 

1.3 Age And Reward/Gain Processing 

While the studies discussed above in the neural systems section have been conducted 

within adult primate (both human and non-human) populations, developmental neuroimaging 

studies suggest that child populations recruit similar neurocircuitry during incentive processing. 

Given this similarity, age differences in incentive-related behaviors likely relate to age 

differences in the magnitude or pattern of responses within these regions to gain/loss feedback, 

rather than the recruitment of distinct neural systems (Galvan et al 2006, Helfinstein et al 2013, 

Kappel et al 2013, Padmanabhan et al 2011, Paulsen et al 2011a, van Leijenhorst et al 2006). 

Differences in responses, both behavioral and neural, during incentive processing tasks observed 

between child and adult groups are discussed in detail below.  

Behavior 

There are few behavioral studies specifically focusing on age differences in reward 

sensitivity; however, there are several studies focusing on reward related decision making and 

learning in children and adults. Specifically, the Iowa Gambling Task (IGT) and other gambling 
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task variants, where value and probability of receiving gain and loss feedback are manipulated, 

have been employed in a number of studies. These studies consistently highlight that children are 

less likely to repeat the same choice or ‘stay’ after receiving gain feedback (i.e. ‘win-stay’) than 

adults (Aite et al 2012, Cassotti et al 2011, Crone & van der Molen 2004, van den Bos et al 2009, 

van Duijvenvoorde et al 2008). Children are also more risk seeking than adults, even when ‘safe’ 

and ‘risky’ bets are of equal value (Paulsen et al 2011b). While most of these studies emphasize 

that risk aversion develops into adulthood or that optimal choice behavior (i.e. win-stay) emerges 

over development, it is also possible that age differences in impulsivity or exploration partly 

mediate age effects.  

Looking at more global behavior on tasks like the IGT suggests that relative to adults, 

children have difficulty integrating incentive information over time to make adaptive choices 

(Cassotti et al 2011, Crone & van der Molen 2004). Further, these age effects are not related to 

working memory ability, intelligence, and inductive reasoning ability (Crone & van der Molen 

2004). However, in IGT and other similar tasks it is difficult to dissociate the influences of 

feedback type as well as frequency and amount given that either a gain or loss occurs for every 

choice and decks that are ‘disadvantageous’ can also have higher frequency of small gains (see 

(Cassotti et al 2014) for developmental commentary). Given this confound of feedback type 

frequency and amount, it is unclear whether impaired IGT performance in children truly reflects 

a difficulty integrating feedback over time to inform future behavior or whether children and 

adults are differentially sensitive to feedback amount versus frequency. 

fMRI 

Although interest in reward processing from a developmental perspective has increased 
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dramatically in the past decade, the vast majority of developmental fMRI studies focus on 

adolescence, and only rarely are distinct child groups included for comparison. For example, a 

recent comprehensive overview of the developmental reward fMRI literature by Richards and 

colleagues (2013) showed that only seven of the 20 fMRI studies reviewed included a distinct 

‘child’ group. Further, only one study had an upper age limit below 11 for the child group (i.e. 

most ‘child’ groups also included 11-13-year olds) and no studies including older children 

controlled for/investigated pubertal status. This literature is further limited as only two of the 

studies including a child group directly compared child and adult striatal BOLD responses to 

positive outcomes (Galvan et al 2006, Somerville et al 2011). The remaining studies either only 

tested for quadratic effects of age (i.e. only compared child and adolescent and then adult and 

adolescent responses), examined the difference between reward and punishment responses, or 

focused on cortical regions.  

 The few studies including explicit child groups tend to report similar ventral striatal 

responses to reward in child and adult groups (Galvan et al 2006, Somerville et al 2011). Other 

studies reporting quadratic effects of age with VS response peaking in adolescence also suggest 

similar striatal responses to monetary incentives in children and adults, but did not directly 

compare child and adult groups (Cohen et al 2010, Padmanabhan et al 2011, Van Leijenhorst et 

al 2010a). Studies investigating reward and negative feedback in more complex learning tasks 

report similar relations between dorsal striatal responses to reward versus negative feedback in 

children and adults (van den Bos et al 2009, van Duijvenvoorde et al 2008). Together these 

studies suggest that children and adults show similar striatal responses to feedback signaling 

monetary or point gain.  

 Interestingly, although no age differences have been observed within the striatum, studies 
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do report age effects within the dACC, lateral OFC, and DLPFC. Specifically, children tend to 

show enhanced responsiveness to reward within the dACC relative to adults (Padmanabhan et al 

2011, van Duijvenvoorde et al 2008). Some studies also report greater child responsiveness to 

reward/positive feedback within the lateral OFC/inferior frontal gyrus (Galvan et al 2006, 

Somerville et al 2011), DLPFC, and superior parietal cortex (van Duijvenvoorde et al 2008). 

However, the few studies that investigate effects of both task/behavior and age on BOLD 

response report that age differences in activation reflect age differences in behavior (IFG 

(Somerville et al 2011)) or further interact with task effects (DLPFC/superior parietal cortex (van 

den Bos et al 2009)). Thus, while children and adults likely show different responses to incentive 

feedback within frontal/parietal regions, it is unclear whether these effects are driven by age 

differences in reward responsiveness or whether they reflect age differences in task difficulty or 

cognitive load/processing (see (Church et al 2010) for commentary on this issue). 

1.4 Age And Loss/Punishment Processing 

Behavior 

Many of the behavioral studies discussed in the gain processing section above also utilize 

loss feedback. Like with gain, under typical task demands, children are more likely to choose a 

different response or ‘shift’ after receiving negative/loss feedback (i.e. ‘lose-shift’) (Aite et al 

2012, Cassotti et al 2011, Crone & van der Molen 2004, van den Bos et al 2009), however with 

more complex behavioral responses some studies report reduced shifting post loss in children 

(van Duijvenvoorde et al 2008). Interestingly, recent work has highlighted a confound within the 

traditional IGT where ‘advantageous’ options that are optimal in the long run (i.e. lead to the best 

overall result due to small sized losses and larger gains), actually have more frequent, if smaller, 
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losses than ‘disadvantageous’ options characterized by infrequent, large losses (see (Cassotti et 

al 2014) for review and commentary). As discussed above, previous IGT studies concluded that 

children’s failure to increasingly select the advantageous options related to an immature ability 

to integrate incentive information over time and apply that knowledge during decision-making. 

However, when using new payout schemes where loss frequency and amount are dissociable, 

children show elevated sensitivity to the frequency of loss feedback relative to adults (Aite et al 

2012, Cassotti et al 2014, Crone et al 2005). Thus, it seems that the ability to integrate loss 

frequency and amount improves with age. As such, children should show better performance 

than adults in avoiding frequent losses when the amount of that loss is not relevant for decision-

making. 

Interestingly, two recent studies investigating probabilistic and reversal learning indicate 

that children show faster learning rates for negative feedback than for gain/positive feedback, a 

pattern that reverses in adulthood (van den Bos et al 2012, van der Schaaf et al 2011). Behavior 

on both of these tasks has been shown in adults to be influenced by dopaminergic signaling, 

(Cools et al 2009, Frank & Hutchison 2009, Frank et al 2007, Robinson et al 2010) with elevated 

D2 receptor density/signaling specifically related to improved loss-avoidance behavior (Frank & 

Hutchison 2009). While there is relatively little primate work investigating changes in DA 

signaling from childhood to adulthood, the evidence does suggest that non-human primates show 

elevated DA receptor density during childhood relative to adulthood (for review see (Wahlstrom 

et al 2010)). There is also a large body of work conducted from the 1960s through the early 

1980s investigating feedback driven discrimination learning in child populations. This literature 

also suggests that children show faster learning rates from loss/negative feedback than from 

gain/positive feedback alone (for meta analysis and review see (Getsie et al 1985)). Collectively 
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these findings suggest that children are more behaviorally reactive to loss than adults and show 

more advantageous behavior when simple lose-shift strategies are optimal. 

fMRI 

 Several, but not all, of the incentive processing fMRI studies discussed above also 

included loss or negative feedback. The two studies investigating striatal response to negative 

feedback report similar patterns of activation within the caudate in children and adults (van den 

Bos et al 2009, van Duijvenvoorde et al 2008), but no studies, to our knowledge have focused on 

VS responses to loss/negative feedback in children and adults. The remaining fMRI studies 

employ other types of learning paradigms, mostly the IGT and other gambling task variants 

where feedback is complex, varying in amount and probability/risk. As such, it is not surprising 

that those studies exclusively focus on responses within the frontal and parietal cortices.  

 While several studies report age differences in response to loss/negative feedback within 

DLPFC, ACC, OFC, and/or superior parietal cortex, these findings are not consistent. For 

example, some studies report reduced response to negative feedback in children within the 

DLPFC and ACC (van den Bos et al 2009) and superior parietal cortex (van Duijvenvoorde et al 

2008), while others find no general age differences in DLPFC/ACC (Crone et al 2008, van 

Duijvenvoorde et al 2008) or parietal (van den Bos et al 2009) responses. Similarly, some studies 

report elevated lateral OFC response to loss in children (van Leijenhorst et al 2006), but others 

report no global age differences to loss in the OFC (Crone et al 2008). These contradictions 

likely stem, at least in part, from differences in task structure/demands given that these studies 

collectively suggest children have difficulty responding differentially to loss/negative feedback 

of varying information value or signaling different courses of action. For example, while adults, 
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and to some extent adolescents, show different levels of DLPFC and ACC response to different 

types of loss/negative feedback, children fail to show such distinctions (Crone et al 2008, van 

den Bos et al 2009).  

Overall results from fMRI studies dovetail nicely with those from the behavioral 

literature. Both methodologies suggest that although children are quite sensitive and reactive to 

loss/negative feedback relative to adults, they are less sensitive to nuances in that feedback (i.e. 

showing strong lose-shift behavior even when this response style is detrimental or showing 

undifferentiated DLPFC response to negative feedback types with different information value). 

Unfortunately there are very few studies investigating child and adult response to loss overall, 

and no developmental studies focusing on the hedonic/affective in-the-moment response to loss 

and no studies where simple avoidance (i.e. lose-shift) strategies are optimal. As such, it is 

difficult to determine why children show such a strong, automatic, response to loss feedback. It 

may be that loss feedback itself is so salient and aversive to children that they are less able to 

subsequently use cognitive mechanisms to either inhibit the prepotent response or to engage an 

alternate, approach response. Elevated salience may also bias memory processes such that 

negative feedback (regardless of amount) is ‘weighted’ more heavily when integrating sequences 

of past outcomes. Loss/negative feedback is also more complex in many incentive processing 

tasks, for example in the IGT negative feedback does not always indicate the need to select from 

an alternative deck of cards. This ambiguity can make processing loss/negative feedback more 

difficult, thus age differences may simply reflect cognitive maturation.  

The studies reviewed above have suggested that children and adults show similar striatal 

responsivity to loss (or gain) feedback, but there is also some evidence for age related differences 

in responses in cortical regions.  Thus, it is possible that age differences in responding to 
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incentive feedback reflect cognitive maturation. Further, all of the studies discussed throughout 

gain and loss sections have exclusively employed secondary incentives such as money or points. 

It is likely that processing/valuation of secondary incentives differs from childhood to adulthood. 

As such, primary incentives like candy or appetitive/aversive liquids may better for investigating 

age differences in hedonic/affective components of incentive processing. Another limitation to 

the cognitive interpretation is that activation within several regions beyond the striatum, such as 

the insula and amygdala/hippocampus (Anderson et al 2003, Camara et al 2008, Elliott et al 2000, 

Phelps & LeDoux 2005, Small et al 2003), which have been strongly implicated in affective 

components of incentive learning/processing, was not investigated in any of these studies. Thus, 

future work employing simple tasks and primary incentives is needed to more thoroughly 

investigate hedonic/affective responding to loss (and gain) within limbic regions across 

childhood and adulthood. 

In summary, the developmental literature suggests that children and adults recruit largely 

overlapping neurocircuitry during incentive processing and that striatal responses to reward are 

also similar. However, cortical responses to reward often differ dramatically between children 

and adults, particularly during more complex/cognitive incentive learning paradigms. There is 

little developmental neuroimaging work investigating response to loss in child and adult groups. 

The few studies that do investigate this question suggest that children are more responsive to 

negative than positive feedback, and that learning rates from negative feedback decrease from 

childhood to adulthood. However, children’s ability to effectively use negative feedback to drive 

adaptive behavior seems to depend on task complexity, as child groups have difficulty 

discriminating between types of negative feedback and are more sensitive to loss frequency than 

overall amounts of loss. Together these results suggest that more basic components of incentive 
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processing show different developmental trajectories depending upon outcome valence, with 

elevated responsiveness to loss in childhood compared to adulthood, but similar responsiveness 

to gain in childhood and adulthood. 

1.5 Major Depressive Disorder And Incentive Processing 

 Anhedonia, a lack of experienced pleasure, is a key component MDD (APA 2013) which 

has been linked to altered neural/behavioral responses to incentives in adults with MDD 

(discussed in detail below). Although there is growing evidence that adolescents with MDD and 

healthy adolescents at elevated risk for developing MDD show similarly altered 

behavioral/neural response to rewards, it is unclear whether similar MDD effects are observed 

for loss/punishment feedback or during childhood. Children as young as the preschool-age with 

depression show reduced joy and other features of melancholia/anhedonia (Luby et al 2004), 

however incidence of anhedonic symptoms in major depression increases from childhood to 

adolescence (Ryan et al 1987), coinciding with the adolescent typical increase in reward 

responding discussed above. As such, it is possible that while anhedonia (reduced pleasure) may 

be a feature of clinical major depression during childhood, risk for depression may not be 

strongly associated with reduced reward responding prior to adolescence. Given that no studies 

have investigated gain and loss-related behaviors in children at high and low-risk for MDD, it is 

unclear whether altered responding to incentives is in fact characteristic of MDD risk during this 

developmental stage. Relations between responsiveness to gain and loss/punishment and 

MDD/high-risk during adolescence and adulthood are discussed in detail below. 

Reward Responding in MDD and High Risk Pediatric Groups  

  Adolescent and adults with major depression regularly report elevated 
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depressive/anhedonic symptoms and reduced hedonic capacity (i.e. experienced pleasure). 

Behaviorally, depressed individuals show reduced reward-related biases (Henriques et al 1994b, 

Pechtel et al 2013b, Pizzagalli et al 2008b), are less willing to expend effort to obtain reward 

(Treadway et al 2012), and show impaired reward learning/decision-making (Forbes et al 2007, 

Herzallah et al 2010, Maddox et al 2012). Depressed adults and adolescents also show decreased 

ERP measures of reward sensitivity (Bress et al 2013b, Foti et al 2014) and reduced BOLD 

response to reward within the striatum, the ACC, and the insula (Forbes et al 2006, Forbes et al 

2009, Gradin et al 2011, Knutson et al 2008a, Kumar et al 2008, Pizzagalli et al 2009, Remijnse 

et al 2009, Robinson et al 2012, Smoski et al 2009, Zhang et al 2013). These results suggest that 

adolescents and adults with current MDD show similarly impaired reward responsiveness.    

Interestingly, in never-depressed adolescents reductions in neural markers of reward 

responsiveness prospectively predict future onset of MDD/increases in MDD symptoms over 

time (Bress et al 2013a, Morgan et al 2012, Telzer et al 2014). Thus, it seems that reduced neural 

response to reward is evident in ‘high-risk’ adolescents (based on symptom/diagnostic outcomes) 

prior to disease onset. Other studies have used a family history of MDD to characterize high-risk, 

as ~40% of the offspring of depressed mothers go on to develop MDD, a much higher rate than 

for the offspring of non-depressed mothers (Goodman & Gotlib 1999, Hammen et al 2008a, 

Hammen et al 2008b). Studies investigating maternally defined high-risk groups have largely 

been conducted within adolescent (highly female) populations and generally report reduced 

striatal response to reward/positive stimuli (Gotlib et al 2010, McCabe et al 2012, Monk et al 

2008, Olino et al 2014). However, it is unclear whether high-risk groups also show differences in 

reward-related behaviors and whether such differences are evident in childhood prior to the 

developmentally typical increase in reward responding associated with adolescence. 
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Punishment/Loss Responding in MDD and High Risk Pediatric Groups  

The MDD literature is much less consistent regarding whether individuals with MDD 

exhibit elevated or reduced responsiveness to loss/punishment feedback. This inconsistency may 

be related to the fact that different theories of emotion reactivity in MDD actually predict 

opposing effects of MDD on responses to negative stimuli. Specifically, the negative potentiation 

hypothesis and emotion context insensitivity hypothesis (ECI) (Rottenberg 2005, Rottenberg 

2007, Rottenberg et al 2005, Rottenberg et al 2002), predict potentiated and blunted reactivity to 

negative emotional stimuli respectively. As both hypotheses have behavioral and neuroimaging 

support it is not clear whether or under what circumstances MDD relates to potentiated response 

to negative feedback/loss (Bylsma et al 2008, Eshel & Roiser 2010, Knutson et al 2008b, 

McCabe et al 2009, Mueller et al 2015, Pagliaccio et al 2012, Santesso et al 2008b, Saxena et al 

Under Review, Steele et al 2007, Stoy et al 2012a).  

Only one study, has investigated responses to monetary loss within an adolescent group 

at high-risk for MDD (Gotlib et al 2010), and no studies have done so within currently depressed 

adolescent populations. Thus, it is unclear whether such groups are characterized by altered 

responsiveness to loss. However, several studies investigating responding to aversive stimuli (i.e. 

unpleasant taste, negative emotional faces) suggest that both depressed and high-risk 

child/adolescent groups show elevated responsiveness, particularly within the amygdala and 

lateral OFC, while experiencing negative stimuli (McCabe et al 2012, Monk et al 2008, 

Pagliaccio et al 2012). Children and adolescents with MDD or at high-risk may also show 

enhanced responsiveness to feedback signaling the loss of something appetitive, however, it is 

also possible that group differences are more evident when actively consuming/viewing a 

negative stimulus than during more abstract loss feedback.  
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1.6 Individual Differences And Incentive Processing 

 There is also great variability in behavioral and neural response to incentives across 

individuals beyond effects of age and psychopathology. Within the adult literature variability in 

neural/behavior responses to incentives is often related to self-reported incentive sensitivity. 

Such relations are particularly interesting as they may provide information regarding the basic 

mechanisms of incentive processing/sensitivity and as they may elucidate mechanisms of 

psychopathology/risk. As such, how individual differences in self-reported incentive sensitivity 

relate both to behavior and activation within reward-related neural systems has received much 

attention in the literature. 

Self-report measures of incentive sensitivity are typically designed to assess one of three 

related constructs, affective/hedonic response to incentives, motivation, or anhedonic/depressive 

symptoms. Pleasure scales, such as the Snaith-Hamilton Pleasure Scale (SHPS) (Snaith et al 

1995), Fawcett-Clark Pleasure Scale (FCPS) (Fawcett et al 1983), Children’s Pleasure Scale 

(CPS) (Kazdin 1989), and Chapman Physical/Social Anhedonia Scales (Chapman et al 1976), 

are designed to assess affective or hedonic responsivity to hypothetical positive events/stimuli. 

The Behavioral Inhibition System/Behavioral Activation System Scale (BIS/BAS) (Carver & 

White 1994) and Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) 

(Torrubia et al 2001) also assess affective response to reward, however, they have additional 

subscales that index affective response to punishment, and reward-related drive (motivation). 

Depressive symptom scales such as the Beck Depression Inventory (BDI – adults) and the Child 

Depression Inventory (CDI – child and parent about child versions) measure general depressive 

symptom severity, but can also be used to calculate melancholic/anhedonic depressive symptom 

subscales. Pleasure scales and depressive symptom scales (including anhedonic subscales) have 
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been used more frequently by studies investigating psychiatric or high-risk populations, however, 

these studies include healthy comparison groups and some studies also report relations between 

self-report and behavioral/fMRI data within each group separately. Conversely, the BIS/BAS 

scale has been widely used when investigating both typical incentive-related processes and 

differences between clinical and non-clinical populations.  

 Elevated self-reported hedonic capacity (via pleasure scales) has been linked to elevated 

behavioral and neural response to incentives. Healthy individuals with elevated hedonic capacity 

both rate affective responses to positive stimuli as being more positive and show elevated striatal 

response to those same stimuli (Dowd & Barch 2010). Importantly, individuals with elevated 

hedonic capacity not only report more positive affective responses to positive stimuli, they also 

report more negative affective responses to negative stimuli (Dowd & Barch 2010, Saxena et al 

Under Review). Studies investigating effects of hedonic capacity on behavior/learning rate 

similarly suggest blunted behavioral responsiveness to incentives (both gain and loss) with 

reduced hedonic capacity (Chase et al 2010, Steele et al 2007). Collectively, elevated hedonic 

capacity relates to enhanced behavioral and striatal responsivity to both positive and negative 

stimuli. 

 Within healthy populations individuals reporting elevated levels of reward 

responsiveness (BAS reward) and/or motivation (BAS drive) exhibit increased behavioral and 

neural responsiveness to incentive information. Specifically, individuals with elevated BAS 

report more positive affective responses to positive stimuli (Balconi et al 2009). Elevated BAS 

also relates to increased early attentional responses to appetitive pictures, assessed via EEG (N1 

component and BAS reward) (Gable & Harmon-Jones 2013), and enhanced priming effects of 

reward on spatial attention (BAS drive) (Hickey et al 2010) . Further, elevated BAS relates to 
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increased ventral striatal responses to pictures of appetizing food and monetary gains (Beaver et 

al 2006, Simon et al 2010). In more complex economic decision-making tasks, individuals with 

elevated BAS drive/reward responsiveness seek to maximize the frequency of reward events 

(Scheres & Sanfey 2006) and show better performance on the IGT  (Franken & Muris 2005). 

Interestingly there is also some evidence that individuals with elevated BAS drive also are more 

responsive to negative stimuli, specifically they show elevated response to disgusting pictures 

within the ventral striatum and OFC (Beaver et al 2006). Together this literature suggests that 

responsivity to incentives is generally elevated in individuals reporting elevated BAS 

(particularly BAS drive subscale) and this relation seems to span several different experimental 

modalities and components of incentive processing. 

 Elevated levels of general depressive and anhedonic depressive symptoms generally 

relate to reduced responding to incentive stimuli. Healthy individuals with elevated melancholic 

symptoms show less reward approach behavior in simple, implicit, probabilistic reward tasks 

(Huys et al 2013, Pizzagalli et al 2005) and healthy individuals with elevated depressive 

symptoms are less willing to expend effect to obtain reward (Treadway et al 2009). Further, 

elevated anhedonic/depressive symptoms have been related to reduced striatal response to 

monetary gains (Gradin et al 2011, Stoy et al 2012b, Wacker et al 2009) and medio-orbitofrontal 

cortex response to monetary gains (Wotruba et al 2014). Healthy adolescents with elevated self-

reported depressive symptoms also show reduced striatal response to gains (Forbes et al 2010) 

and EEG markers of reward responsiveness (Bress et al 2012). Collectively the individual 

difference literature clearly suggests that a number of different self-report measures relate to 

reduced affective, behavioral, and striatal responses to rewards in healthy individuals. There is 

little evidence that individual self-report measures relate to specific components of reward 
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processing, but that they rather index more global reward responsiveness.  

 Critically, no studies, to our knowledge, have related behavior/neural response to 

incentives to child self-reported incentive sensitivity within school-aged child populations. A 

handful of studies have related depressive symptoms/positive affect and neural response to 

reward, these studies have been conduced in adolescent or combined child/adolescent groups 

(Bress et al 2012, Forbes et al 2010, Olino et al 2014). Further, while there are a handful of child 

studies linking reward-related behavior to maternal reports of child incentive sensitivity (Blair et 

al 2004) and child self-reported incentive sensitivity to depressive/externalizing symptomology 

(Kazdin 1989, Muris et al 2005), these studies either focus on pre-school aged children or do not 

assess behavioral responses. As such, it is unclear how self reported incentive sensitivity relates 

to gain/loss-related behaviors in late childhood or whether children and adults show similar 

relations between self-reported and behavioral indexes of incentive sensitivity. 

1.7 Summary  

 The studies addressed here aim to investigate how neural/behavioral responses to 

gains/losses of child-friendly, candy incentives relate to differences in developmental stage, 

childhood risk for MDD, self-reported incentive sensitivity/depressive symptoms, and the 

interaction of these factors. Neuroimaging studies using primary incentives report largely similar 

patterns of activation as studies using monetary incentives, with differences noted within the 

amygdala and anterior versus posterior OFC. However, differences in timing of delivery of 

incentives may influence amygdala/OFC differences. Thus, chapter two investigates neural 

responses to candy gains/losses where net winnings are delivered post scan within a healthy 

young adult sample. There is little neuroimaging and behavioral work comparing adult and child 
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responsivity to both gain and loss feedback, and the few existing studies utilize 

complex/probabilistic tasks and monetary incentives. Collectively this literature suggests that 

children and adults show similar striatal and behavioral response to gain feedback, but that loss 

responsiveness may be enhanced in child populations. As such, chapter three uses a simple 

developmentally appropriate guessing game and candy incentives to investigate age differences 

in neural response to receipt of gain and loss feedback. Chapter four then investigates age 

differences in behavioral responses to gains and losses, using a probabilistic incentive learning 

task. 

The adolescent MDD-risk literature suggests that healthy offspring of depressed mothers 

show reduced striatal responses to reward feedback, but it is unclear whether pre-pubertal high-

risk groups also show reduced responsiveness to reward. Further, it is unclear whether high-risk 

groups would show enhanced responsiveness to loss feedback. To address these gaps in the 

literature, chapter five uses a probabilistic incentive task to investigate differences in gain 

approach/loss avoidance behavior between healthy children at high and low-risk for developing 

MDD. Chapter five also investigates whether relations between approach/avoidance behavior 

and individual differences in specific depressive symptom levels differ based on risk for MDD.  

Adult studies investigating individual differences in behavioral responses to 

positive/negative feedback/stimuli suggests that individuals reporting elevated hedonic capacity, 

incentive sensitivity, and/or reduced depressive/anhedonic symptoms show enhanced 

responsiveness to gain and to some extent loss feedback. However, such relations have not been 

tested in healthy child groups and it is unclear whether adults and children will show similar 

relations between incentive-related behaviors and self-report measures. Chapters four, five, and 

six will examine these questions using a probabilistic incentive task to investigate age 
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differences in gain approach and loss avoidance behaviors and self-report questionnaires that 

assess different incentive-sensitivity constructs. Specifically, chapter four investigates whether 

relations between approach/avoidance behavior and self-reported incentive sensitivity (BIS and 

BAS – drive/motivation) are similar in children and adults, chapter five investigates relations 

between approach/avoidance behavior and specific depressive symptoms, and chapter six 

investigates relations between approach/avoidance behavior and hedonic capacity/approach 

motivation in children.  
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Chapter 2. 

Candy And The Brain: Neural Response To Candy Gains And 

Losses 
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Abstract 

Incentive processing is a critical component of a host of cognitive processes, including 

attention, motivation, and learning. Neuroimaging studies have clarified the neural systems 

underlying processing of primary and secondary rewards in adults. However, current reward 

paradigms have hindered comparisons across these reward types as well as between age groups. 

To address methodological issues regarding the timing of incentive delivery (during scan vs. 

postscan) and the age-appropriateness of the incentive type, we utilized fMRI and a modified 

version of a card guessing game (CGG), in which candy pieces delivered postscan served as the 

reinforcer, to investigate neural responses to incentives. Healthy young adults 22–26 years of age 

won and lost large and small amounts of candy on the basis of their ability to guess the number 

on a mystery card. BOLD activity was compared following candy gain (large/small), loss 

(large/small), and neutral feedback. During candy gains, adults recruited regions typically 

involved in response to monetary and other rewards, such as the caudate, putamen, and 

orbitofrontal cortex. During losses, they displayed greater deactivation in the hippocampus than 

in response to neutral and gain feedback. Additionally, individual-difference analyses suggested 

a negative relation between reward sensitivity (assessed by the Behavioral Inhibition/Behavioral 

Activation Scales) and the difference between high-and low-magnitude losses in the caudate and 

lateral orbitofrontal cortex. Also within the striatum, greater punishment sensitivity was 

positively related to the difference in activity following high as compared to low gains. Overall, 

these results show strong overlap with those from previous monetary versions of the CGG and 

provide a baseline for future work with developmental populations.  
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2.1 Introduction 

How we react to, seek out, avoid, or anticipate rewarding and aversive stimuli in our 

environment influences a host of cognitive and behavioral processes essential to everyday life. 

Understanding the basic functional mechanics of how gains and losses are processed in healthy 

adults is a critical first step before investigating how these processes change over the course of 

typical development, or how abnormalities in these processes manifest in child and adult onset 

psychopathology (Barch & Dowd 2010, Bjork et al 2008, Forbes et al 2006, Gotlib et al 2010, 

Knutson et al 2008b). A rich literature has established the neurocircuitry involved in reward and 

punishment processing in animals and humans (Haber & Knutson 2010). The animal literature 

has focused on primary rewards (i.e., food and liquids), but the human neuroimaging literature 

has more frequently focused on secondary rewards (i.e., money) that have value based on their 

ability to procure other rewards. However, monetary rewards may be less appropriate for 

examining the development of reward processing in young children, who may not yet understand 

the value of such abstract rewards and the exchange rate between specific amounts of money and 

desired goods. As such, the goal of the present study was to validate the modification of a 

gambling task using candy that is appropriate for use across a wide age range, including very 

young children.  

Decades of work in animals and humans have established the roles of the striatum, 

orbitofrontal cortex (OFC), prefrontal cortex (PFC), and other regions of the limbic system in 

incentive processing (Haber & Knutson 2010). The majority of human studies investigating 

gain/loss processing have utilized secondary monetary rewards and have reported consistent 

patterns of activity during receipt of monetary gains versus loss or no-gain events (Delgado et al 

2003, Elliott et al 2003, Galvan et al 2005, Knutson et al 2001b, O'Doherty et al 2001a). 
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Specifically, regions of the dorsal and ventral striatum, along with medial portions of OFC, 

display greater functional responses to reward events than to loss and/or baseline, as well as 

greater responses to larger versus smaller rewards (Elliott et al 2003, Galvan et al 2005, Knutson 

et al 2001b, Knutson et al 2003, Knutson et al 2000, Santesso et al 2008a, Simon et al 2010). 

Moreover, patients with neuropsychiatric illnesses characterized in part by a lack of experienced 

pleasure, such as depression and schizophrenia, display reduced striatal activation during reward 

processing (Dowd & Barch 2012, Forbes et al 2006, Knutson et al 2008b). This relation between 

hedonic capacity and striatal reward response also extends to healthy populations in which, again, 

individuals with greater reward responsivity (measured by Behavioral Activation Scale [BAS] 

total score), reduced behavioral inhibition (Behavioral Inhibition Scale [BIS] total score), and 

fewer anhedonic symptoms (Chapman Anhedonia Scales) display greater striatal activity during 

reward events (Dowd & Barch 2012, Simon et al 2010).  

There is less consensus regarding regions that respond maximally to receipt of 

punishment/loss. Some studies have reported increased response to punishment/loss in regions 

such as the hippocampus, amygdala, and insula (Anderson et al 2003, Camara et al 2008, Elliott 

et al 2000, Phelps & LeDoux 2005, Small et al 2003). However, other studies have found 

increased responses in these regions to both punishment/loss and reward as compared to neutral 

events, possibly indicating encoding of salience rather than valence alone (Elliott et al 2000, 

Elliott et al 2003). The evidence is also mixed as to which regions of OFC and PFC respond 

maximally to losses; some studies have reported a lateral/medial punishment/reward distinction 

within the OFC, in which lateral regions showed increased response to punishment/loss events 

(Kringelbach et al 2004, O'Doherty et al 2001a, O'Doherty et al 2001b), while others have 
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reported greater response to reward in both lateral and medial PFC (Bjork et al 2004, Elliott et al 

2003, Kim et al 2006, O'Doherty et al 2001a, Sescousse et al 2010, Simon et al 2010).  

Monetary rewards are advantageous in many ways: They lend themselves to 

manipulation of amount without overwhelming concerns of satiation, are simple to deliver in a 

scanner via visual cue, and allow the participant to obtain any number of other goods that he or 

she desires with the money earned during the task. However, significant and systematic 

differences may exist in how monetary incentives are processed/valued across development. 

Specifically, monetary rewards may be less salient and may be more difficult to value for 

children, who have less life experience with money and less developed abstract 

reasoning/mathematical skills than do adults. Thus, the subjective value of a given amount of 

money likely changes from childhood through adolescence and into adulthood. Some innovative 

investigators have utilized token economies (systems in which points/tokens earned during the 

task are later exchanged for prizes) to reduce such developmental confounds (Geier & Luna 

2012). While this approach is clearly effective for adolescent populations, preschool and school-

aged children may have difficulty with such an abstract system of exchange. Token economies 

require the participant to understand the exchange rate between points and prizes (e.g., 15 points 

= 1 prize) and to associate a given trial’s outcome with the subjective value of a prize. Moreover, 

enough points to obtain another whole prize are not typically won/lost on each individual trial, 

meaning that a given trial’s derived value is equivalent only to a portion of a prize. This requires 

the child to maintain a representation of accumulated earnings across trials and to evaluate the 

current trial’s outcome in the context of a total sum. Given the complexity of such secondary 

paradigms and developmental differences in abstract reasoning ability, children’s 
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attention/motivational drive may be better captured when more immediate/tangible rewards (i.e., 

candy) are employed that can be directly represented on screen during the scan.  

Primary rewards offer an opportunity to investigate incentive processing without as many 

concerns regarding how age may interact with the processing of abstract incentives. Primary-

reward paradigms have utilized a host of incentives, including liquids (sweet, bitter, and/or salty 

solutions delivered in scanner), candy (delivered postscan), food odors (pleasant and unpleasant, 

delivered in scanner), and even erotic pictures (displayed in scanner), among others (Clithero et 

al 2011, Kim et al 2011, Kringelbach et al 2003, Levy & Glimcher 2011, O'Doherty et al 2001b, 

Sescousse et al 2010). Such studies in adults have yielded patterns of activation largely similar to 

those reported in monetary paradigms. Specifically, greater responses to the delivery of 

rewarding (e.g., juice, chocolate milk), as compared to neutral, solutions are found in regions 

such as the caudal OFC, medial OFC, basal ganglia, and anterior insula, where activity is related 

to the subjective pleasantness of the consumed liquid (Frank et al 2008, Kobayashi et al 2004, 

Kringelbach et al 2004, Kringelbach et al 2003, O'Doherty et al 2001b, O'Doherty et al 2002). 

Responses to “punishing” solutions such as saline and quinine also echo responses to monetary 

loss. Regions of lateral OFC, anterior cingulate cortex (ACC), hippocampus, amygdala (AMY), 

and insula (INS) display increased response to the delivery of punishing solutions. Again, results 

are also mixed regarding the medial/lateral OFC distinction for reward and punishment response 

when using primary rewards (Frank et al 2008, O'Doherty et al 2001b, O'Doherty et al 2002, 

Sescousse et al 2010, Zald et al 1998).  

 Also, a handful of studies have directly compared responses to primary and secondary 

rewards that help to generalize from the literature on monetary reward processing in adults to 

suggest the potential utility of using more primary rewards in young child populations (Chib et al 
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2009, Clithero et al 2011, Levy & Glimcher 2011, Sescousse et al 2010). Once again, similar 

patterns of responses are found in striatal and insular regions when primary and secondary 

rewards are employed. Of note is a potential dissociation within the OFC in terms of responses to 

these two types of rewards. A meta-analysis conducted by Kringelbach and Rolls (Kringelbach 

& Rolls 2004), including both primary-and secondary-reward studies, suggested a 

posterior/anterior distinction in OFC response to primary versus more abstract rewards, 

respectively. This posterior/anterior distinction has been further supported by work directly 

comparing primary (erotic pictures) and secondary (money) rewards (Sescousse et al 2010). 

However, some evidence has also supported the opposite pattern (Kim et al 2011).  

Although the literature reviewed above suggests that primary and secondary rewards 

modulate many of the same neural systems, a number of challenges are encountered when 

adapting primary-reward paradigms for use in developmental populations in ways that would 

allow for clear conceptual and/or empirical comparisons to the existing monetary reward 

literature. First, the logistical characteristics of the paradigms historically used to deliver the two 

incentive types have often differed. In secondary paradigms, a trial’s outcome is signaled via a 

visual cue indicating the size and valence (gain/loss) of the outcome—a lump sum of money to 

be delivered postscan. In primary paradigms, participants traditionally directly 

experience/consume the incentive in-scanner—that is, tasting a sweet liquid/smelling a pleasant 

odor. Second, the intrinsic properties of primary/secondary rewards often make comparisons 

problematic. This difference is most apparent in the punishment/loss domain, where directly 

consuming or experiencing something aversive (e.g., quinine/saline solution or unpleasant odor) 

may elicit different psychological and neural responses than does losing something appetitive 

(e.g., money or tokens). Other hindrances include difficulty in manipulating the magnitude of 



 

 37 

primary rewards (e.g., delivery of larger liquid rewards can be uncomfortable and potentially 

dangerous, especially in children) and satiation/habituation, in which the value of an incentive 

can decrease throughout the experiment.  

To address these challenges, we developed a modified version of the card guessing game 

(CGG), a task in which monetary gains/losses have traditionally been employed, and used fMRI 

to investigate how healthy adults respond to gains and losses of candy as a means of validating 

this paradigm before moving to its use in a developmental population (Delgado et al 2000). We 

felt that a paradigm in which primary rewards did not have to be consumed in-scanner would be 

most comparable to current secondary paradigms, would allow us to investigate responses to 

primary rewards without concerns regarding delivery timing, increased head motion, and 

choking hazards, and would be the simplest to implement from a logistical standpoint. Moreover, 

candy readily lends itself to developmental questions, children would not need to consume 

liquids in the scanner (a choking hazard associated with increased motion), and very young 

children might find it easier to comprehend differing amounts candy displayed on screen, as 

compared to differing amounts of money or points aggregated across trials and then later 

exchanged for prizes. As such, we believe that results from this paradigm will provide a baseline 

describing functional responses to candy rewards and losses in healthy young adults that can be 

used to inform future studies investigating these processes in developmental and other special 

populations, as well as directly comparing the responses to different reward types.  

 As our modification of the CGG uses a primary reward (candy) but delivers the reward 

out of the scanner, we hypothesized that our results would provide a bridge between the 

responses reported in studies using primary and secondary rewards. We expected to see reward-

and loss-related modulation of BOLD activity in regions of the striatum, amygdala, and OFC, as 
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reported in previous studies using the CGG and other secondary-reward paradigms (Cox et al 

2008, Delgado et al 2003, Delgado et al 2000, Delgado et al 2004, Forbes et al 2010, May et al 

2004, Tricomi et al 2006, Tricomi et al 2004). What was less clear was whether, within the OFC, 

we would see a more anterior or posterior pattern of activity, which the literature suggests might 

in part relate to the type of reward used (primary vs. abstract). Additionally, we expected that 

individuals with greater reward responsivity and hedonic tone would display greater striatal 

activity during reward feedback, replicating findings in the extant literature (Dowd & Barch 

2012, Simon et al 2010).  

2.2 Method 

Participants  

 A total of 21 young adults participated in this study. One participant was excluded from 

the analysis on the basis of a history of major depressive disorder (assessed via self-report on the 

Adult Behavior Check List; (Achenbach 2003)). The remaining 20 participants included ranged 

in age from 22 to 26 years (mean age = 23.95, SD = 1.353; eight males, 12 females). The 

participants were healthy and free of any major medical disorder, did not report a history of any 

mental disorder, had not taken psychotropic medications within the past two weeks, and were 

nonsmokers. They were recruited via posted advertisements at Washington University and were 

not given any instructions/restrictions regarding food or beverage consumption. All of the 

participants gave informed consent, and the Washington University in St. Louis Institutional 

Review Board approved the study.  

Procedure  

 The experiment was conducted over the course of two separate in-person sessions: a 

behavioral session, followed by a neuroimaging session. In the behavioral session, participants 
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completed several individual-difference questionnaires (see below) and a demographic form. 

Additionally, participants completed a behavioral probabilistic reward task based on those of 

Pizzagalli (Pizzagalli et al 2005) and Tripp and Alsop (Tripp & Alsop 1999) that is not addressed 

in these analyses. The participants then returned on a different day (within three weeks of the 

behavioral session) to complete the neuroimaging session. During this fMRI session, they 

completed the Beck Depression Inventory (BDI; (Beck et al 1996)), out-of-scanner practice for 

the neuroimaging task, and an in-scanner CGG based on Delgado et al. (Delgado et al 2000), 

followed by a post-scan questionnaire.  

Individual-Difference Measures  

Participants were administered the following individual-difference measures during the 

behavioral session: (1) the Behavioral Inhibition Scale and Behavioral Activation Scale 

(BIS/BAS; (Carver & White 1994)), (2) the Chapman Anhedonia Scales (CS; (Chapman et al 

1976)), and (3) the Snaith– Hamilton Pleasure Scale (SHPS; (Snaith et al 1995)). As the 

Chapman scales (both the physical and social components) were strongly correlated with the 

SHPS, a composite variable, hedonics (HED), was created by reverse-coding the physical and 

social components of the CS, computing z scores for the two reverse-coded CS scales and the 

SHPS, and then summing the three z scores, such that a higher HED value indicated that an 

individual was more hedonic. A subset of the participants also completed the Positive Affect and 

Negative Affect Scales (PANAS; (Watson et al 1988)), but these measures were not included in 

further analyses. Descriptive statistics and pairwise correlations between the individual-

difference measures can be found in Supplemental Tables S2.1–S2.2.  

Card Guessing Game  
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Participants were told that they would play a CGG in which they were to guess the 

number on a mystery card (represented by a “?”) to potentially win or lose candy, on the basis of 

whether or not that guess was correct. The type of candy incentive, M&Ms or Skittles, was 

determined by the participant’s preference, indicated during study enrollment (the visual 

feedback did not differ by candy types). The participants were told that potential card numbers 

ranged from 1 to 9 and that they should indicate whether they thought that the mystery card 

number was more or less than 5 by pressing one of two buttons with either the left or the right 

thumb. Participants were required to make their guess while the mystery card “?” was displayed 

onscreen (2,000 ms). If no response was made, the “?” was replaced by a fixation cross for the 

remaining duration of that missed trial. If a guess was made, feedback was displayed for 2,000 

ms immediately following the button press. Feedback included the actual number on the card, a 

message of “Great Job!” and a green up arrow for gain trails, a message of “Sorry” and a red 

down arrow for loss trials, and a picture of the number of candy pieces gained or lost (see Figure 

2.1).  

Participants could gain or lose both large and small amounts of candy on the basis of their 

guess and the number on the card. Participants received a high gain (four candies) if their guess 

was “above 5” and the number was 8 or 9, or if their guess was “below 5” and the number was 1 

or 2. They received a low gain (two candies) if their guess was “above 5” and the number was 6 

or 7, or if their guess was “below 5” and the number was 3 or 4. Conversely, participants 

received a high loss (two candies) if their guess was “above 5” and the number was 1 or 2, or if 

their guess was “below 5” and the number was 8 or 9. They received a low loss (one candy) if 

their guess was “above 5” and the number was 3 or 4, or if their guess was “below 5” and the 

number was 6 or 7. Finally, if the number 5 was displayed, no candy was gained or lost, and the 
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feedback on these neutral trials included the card number, “Next Trial” and two dash marks (see 

Figure 2.1). The computer program was designed so that if the trial was meant to be—for 

example—a high-gain trial, the program adapted the card number to the participant’s choice, to 

ensure the appropriate outcome for that trial type. On the basis of previous research, a 2:1 ratio 

of gain to loss amounts was used, such that participants added four and two pieces of candy to 

their total on high-and low-gain trials, respectively, and lost one and two pieces from their total 

on low-and high-loss trials, respectively. This ratio was used to prevent frustration with the task 

and to maintain engagement, as well as to ensure that the participants received candy at the end 

of the task (Tversky & Kahneman 1981). The participants were told that they would receive a 

lump sum of candy at the conclusion of the experiment reflecting the net amount of candy earned 

during the task.  
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Figure 2.1: Timing Of The Card Guessing Game  
 

Example of possible feedback types following a “more than 5” guess. Each trial lasted 4 s in total. 

The cue to make a guess (?) was displayed for up to 2 s. Feedback (including the number on the 

mystery card, an arrow denoting gain/loss or dashes for no gain/loss, and the amount of candy 

exchanged) was presented as soon as a guess was made and lasted for 2 s. A fixation cross was 

presented for any remaining portion of the 4 s. The inter-trial intervals (ITIs) lasted from 0 to 14 

s, with a random jitter in 2-s increments. If a guess was not made during the 2-s cue to make a 

guess, a fixation cross was presented for 2 s in place of the feedback.
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 To ensure that all participants understood the task, written instructions were presented on 

a computer using PsyScope software, followed by actual task practice, prior to entering the fMRI 

scanner (Cohen 1993). All trial types were experienced during the practice task, and participants 

were told that any candy earned during the practice would be added to their candy total. This 

served as a candy endowment to offset any initial losses during the in-scanner task.  

 In-scanner trials were presented in a fixed order with a rapid event-related design, using 

PsyScope software on a Macintosh computer for both stimulus presentation and data collection. 

The computer selected a card number on each trial following the participant’s guess, depending 

on the predetermined trial type. Determining the card number shown after the participant’s 

button press ensured that the guess, predetermined trial type (gain, loss, or neutral), and card 

numbers were always congruent and that there were no “correct/incorrect” guesses. This is the 

standard procedure with the CGG and ensures that all participants experience roughly the same 

events in the scanner (i.e., no one by chance gets a disproportionate amount of high-gain trials). 

The task was divided into six blocks, each lasting 5 min and containing eight potential instances 

(if the participant made a guess for all trials) of the five trial types—high/low gain/loss and 

neutral— delivered in a fixed pseudorandom order, such that each participant experienced the 

same order of events. On average, participants failed to make a response on four trials over the 

course of the entire scanning session. Each trial lasted 4,000 ms (see Figure 2.1), followed by an 

inter-trial interval (ITI) of 0–14,000 ms that was randomly jittered in 2,000-ms increments. All 

participants completed the six scan blocks, and no data were excluded due to excessive head 

movement (excessive motion was defined by a mean voxel-wise standard deviation, mode 1,000 

normalized, of greater than 15 for a given blood oxygenation level dependent [BOLD] run). 
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Participants were given $50 as compensation for their time along with 150 M&Ms/Skittles at the 

end of the scanning session, regardless of performance.  

fMRI Data Acquisition And Processing  

 Imaging data were collected using a 3-T TIM TRIO Siemens whole-body system and 

included a T1 (sagittal acquisition, TE = 3.16 ms, TR = 2,400 ms, FOV = 256 mm, flip angle = 

8°, one acquisition, 176 slices, 1x1x1 mm voxels) image and functional images collected with a 

12-channel head coil using a standard gradient-echo EPI sequence sensitive to BOLD contrast 

(T2*) (TR = 2,000 ms, TE = 27 ms, FOV = 384 mm, flip = 77°). During each functional run, 150 

whole-brain volumes were acquired, consisting of 36 contiguous axial images with isotropic 

voxels (4 mm3) acquired parallel to the anterior–posterior commissure plane. Two functional 

runs of 160 TRs (~11 min total) were acquired while participants rested with eyes closed.  

 The fMRI data were preprocessed using in-house Washington University software. Prior 

to preprocessing, the first four frames of each run were discarded to allow for signal stabilization. 

The data were then (1) reconstructed into images and normalized across runs by scaling the 

whole-brain signal intensity to a fixed value and removing the linear slope on a voxel-by-voxel 

basis to counteract any effects of drift (Bandettini et al 1993); (2) corrected for head motion 

using rigid-body rotation and translation correction algorithms (Friston 1994, Snyder 1996, 

Woods et al 1992); (3) registered to Talairach (Talairach & Tournoux 1988) space using a 12-

parameter linear (affine) transformation; and (4) smoothed with an 8-mm full-width-at-half-

maximum Gaussian filter.  

Estimates of functional activation during each of the five trial types (high/low gain/loss 

and neutral) were obtained by using a general linear model (GLM), also incorporating regressors 

for linear trend and baseline shift to estimate the hemodynamic response function for each trial 
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type. The task analyses used a GLM approach that did not assume a specific hemodynamic 

response shape. While it is possible that developmental effects could mostly be explained by 

differences in magnitudes of activation, it is also likely that development would interact with 

BOLD response over time. Thus, we felt that using an unassumed (FIR type) approach would 

provide the most information without imposing assumptions regarding the shape of the 

hemodynamic response that might bias future investigations. For each trial type, neural responses 

at ten time points (20 seconds) were estimated relative to baseline fixation, in order to provide 

adequate temporal resolution of the hemodynamic response. We felt that this approach provided 

the best balance between the cost of power and the benefit of a more complete picture of the 

hemodynamic response. The task was designed to focus on trial outcomes and did not allow for 

the dissociation of anticipation and receipt of feedback. Although time courses were estimated 

beginning with trial onset, participants were quick to make a response (the mean reaction time 

was 521.8 ms, standard deviation 91.4 ms), and thus feedback onset occurred well within the 

first time point on average for each participant. These estimates were then entered into group-

level analyses treating subjects as a random factor. We also computed an assumed response 

shape GLM for each participant for use in the individual-difference analyses, since this type of 

GLM provided us with a single beta estimate for each condition. This GLM included the same 

five trial types (and regressors for linear trends and baseline shifts across runs) and used the 

Boynton function (Boynton et al 1996).  

fMRI Data Analysis  

 To examine the influence of the valence (gain vs. loss) and magnitude (low vs. high) of 

feedback, we performed a voxelwise repeated measures analysis of variance (ANOVA) with 

three within-subjects factors: Outcome Valence (two levels: gain, loss), Outcome Magnitude 
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(two levels: high, low), and Time Point within trial (the ten frame estimates for each trial type, 

beginning at trial onset). We then followed up this analysis with an additional repeated measures 

ANOVA to identify regions where activation was related to salience (i.e., responses to gain/loss 

were similar and different from neutral) rather than the valence and/or magnitude of feedback. 

Because there was only one level of neutral feedback, neutral trials were not included in the first 

ANOVA. The second ANOVA included Time Point and Condition (gain [both high-and low-

gain trials], neutral, and loss [both high-and low-loss trials]) as within-subjects factors.  

 In the analyses described above, we focused on regions showing interactions with time 

point within trials, given our use of unassumed (FIR type) GLMs. When appropriate, post hoc 

ANOVAs were performed within all significant regions identified by the ANOVAs described 

above. For these post hoc analyses, the mean percent signal change across each region was 

extracted for each of the ten estimated time points. This was done for each applicable condition, 

and then post hoc ANOVAs were run comparing two trial types (e.g., gain vs. neutral) over the 

ten time points.  

 To focus our results, these two voxel-wise ANOVAs were conducted within an 

anatomically defined a priori mask developed by S. M. Beck and colleagues (Beck et al 2010). 

This mask (see Supplemental Figure S2.1) covered an a priori network of regions implicated in 

reward processing that were hand-drawn in Talairach space on the basis of anatomical landmarks 

and previously published functional coordinates, including the dorsal and ventral striatum, 

ventral tegmental area, substantia nigra, amygdala (AMY), orbitofrontal cortex (OFC), 

ventromedial prefrontal cortex (VMPFC), and insula (INS). ANOVA results within the a priori 

mask were corrected for multiple comparisons using a combined p-value/cluster-size threshold 

(p < .005 and 21 voxels) determined using AlphaSim simulations (smoothing = 2 voxels, 1,000 
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iterations, voxels in mask = 5,332) to provide a false-positive rate of p < .05 for the whole mask 

(Forman et al 1995, McAvoy et al 2001).  

 To reduce redundancy across the two ANOVA results, all significant regions identified in 

the first ANOVA were converted to a binary mask. This mask was then applied to the second 

ANOVA prior to thresholding. The remaining voxels were subjected to the same multiple-

comparison correction criteria (p < .005 and 21 voxels). Regions identified in each of the two 

ANOVAs were then partitioned such that peaks of activity were considered separate regions if 

they were more than 10 mm apart, as measured by a peak-splitting algorithm (Kerr et al 2004, 

Michelon et al 2003).  

 We also conducted exploratory voxel-wise whole-brain analyses, which were corrected 

for multiple corrections using a p-value/cluster-size threshold (p < .0013 and 17 voxels) 

determined by Monte Carlo simulations, in order to provide a whole-brain false-positive rate of p 

< .05, and partitioned such that peaks of activity were considered separate regions if they were 

more than 12 mm apart according to the same peak-splitting algorithm (Kerr et al 2004, 

Michelon et al 2003). Whole-brain results are reported and discussed in the Supplemental 

materials. We felt that the combination of threshold and cluster size provided a good balance 

between detecting small regions showing strong effects and larger regions with subtler task-

related activity differences.  

Individual-Difference Data Analysis  

 To identify regions where task activation was related to reward/punishment sensitivity 

and hedonic tone, individual-difference measures of reward sensitivity (BAS total score), loss 

sensitivity (BIS total score), and hedonics (HED) were each correlated separately with 

magnitude estimates from the assumed GLMs. Magnitude estimates used in the correlation 
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analyses included differences between each of the four individual trial types and neutral (e.g., 

HG–NU). Additionally, differences between the high and low trial types for both loss and gain 

(HL–LL and HG–LG) were included on an exploratory basis. Functional regions identified by 

the correlations within the mask were thresholded using a p-value/cluster-size threshold (p < .005 

and 26 voxels) in order to provide a false positive rate of p < .01. To identify potential 

multivariate outliers, Mahalanobis D2 scores were computed for each resultant region using the 

individual-difference measure and imaging contrast of interest as independent variables. No 

participant passed the p < .001 threshold required for multivariate outliers for any region. To 

further test the robustness of the reported effects, correlations were computed again within the 

regions identified in the voxel-wise correlations without participants whose multivariate outlier 

score was less than p <.05. All discussed correlations remained significant (p <.05) when these 

participants were removed from the analyses.  

2.3 Results  

 We started the analysis using an ANOVA with Valence (gain, loss), Magnitude (high, 

low), and Time Point (ten time points within-trial estimate; Time Point 1 corresponding to the 

onset of the button press cue) as within-subjects factors.  

Effects Of Valence  

 Regions identified as displaying a Valence x Time Point interaction within the reward 

mask included areas of the insula, lateral OFC, caudate, putamen, amygdala, and hippocampus 

(Table 2.1 and Figures 2.2-2.3). All of these regions other than the hippocampus showed greater 

activation during gain than loss trials. The hippocampus showed less deactivation for gain than 

for loss trials. Planned within-region post-hoc ANOVAs involving all trial types, including 

neutral trials that were not included in the original ANOVA, indicated that activity was greater in 
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gain than in neutral trials in the lateral OFC region, but that neutral trials did not differ 

significantly from loss trials. In addition, neutral trials elicited greater activity than did loss trials 

in dorsal putamen regions and the insula. However, neutral-trial activity did not differ 

significantly from gain or loss in the remaining regions (including ventral putamen, caudate, 

thalamus, amygdala, and hippocampus), as is shown in Table 2.1, Figure 2.3, and Supplemental 

Figures S2.2 and S2.3. This result was surprising, as graphs depicting time courses particularly 

for the caudate/putamen regions seemed to indicate a difference between neutral and either gain 

or loss peak activation in several of these regions.  
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Table 2.1: Valence X Time Point Interaction Regions  

 

    
Talairach 

Coordinates   

Region of Activation Laterality x y z Pattern 

Activation      

Lateral Orbitofrontal Cortex BA 47 R 42 26 -9 G>N=L 

Insula BA 13 R 35 -5 16 G=N>L 

Dorsal Putamen R 27 -13 10 G=N>L 

Dorsal Putamen R 24 5 9 G=N>L 

Dorsal Putamen L -26 -13 10 G=N>L 

Dorsal Putamen L -23 3 11 G=N>L 

Putamen/Caudate L -17 9 4 G>L 

Putamen/Caudate R 15 9 5 G>L 

Ventral Putamen L -23 -2 -3 G>L 

Ventral Putamen R 22 -1 -7 G>L 

Ventral Putamen R 30 -13 -4 G>L 

Thalamus L -8 -8 18 G>L 

Amygdala L -18 -5 -13 G>L 

Caudate Body L -15 7 17 G>L 

Caudate Body R 15 12 15 G>L 

Caudate Body L -6 3 6 G>L 

Deactivation      

Hippocampus L -26 -17 -11 L>G 

 

Note: These regions displayed a Valence x Time Point interaction within the a priori reward 

mask. Post hoc analyses detailed in the Methods section were performed on each region. Regions 

in which activation during neutral trials did not significantly differ from activity during either 

gain or loss trials are noted as showing either G > L or L > G patterns of activity. BA = 

Brodmann area; L = left; R = right; G = gain; N = neutral; L = loss  
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Figure 2.2: Valence By Time Point Interaction Rois – A priori Reward Mask 

 

ROIs identified as showing a significant valence by timepoint interaction within the a priori reward mask. 

Red = ROIs with greater activation during gain trials compared to loss trials 

Blue = ROI with greater deactivation during loss trials compared to gain trials 

 

 

Z = 15   Z = 9     Z = 3       Z = -6          Z = -9  Z = -15
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Figure 2.3: Valence X Time Point Interaction Timecourses 
 

Representative time courses of greater activation following gain feedback as compared to neutral 

and loss striatal regions displaying a rostral/caudal distinction in response to neutral feedback. 

Dorsal and ventral putamen regions display greater activation feedback. Caudate regions, as well 

as rostral putamen/caudate regions, show following gain and neutral feedback as compared to 

loss feedback. 
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 To further investigate the relation between neutral and gain/loss activation within the 

striatum, we performed exploratory post hoc paired t tests designed to specifically test for 

differences in peak activation between the neutral condition and the gain and loss conditions. 

Percentages of signal change for individual trial types (neutral, gain, loss) were averaged for 

Time Points 4 and 5 (the time points corresponding to the peak response across all regions 

included in these analyses) within each caudate and putamen region identified in the analyses 

described above (Valence x Magnitude ANOVA). Because of the exploratory nature of these 

post hoc tests, uncorrected p values are reported. Interestingly, the relation between neutral and 

gain/loss activation differed along the rostral–caudal axis of the striatum. Specifically, within the 

caudate and more rostral putamen/caudate regions, neutral-trial activity did not differ from loss 

activation, but did differ from gain. Within the caudal putamen regions, neutral-trial activity 

significantly differed from loss-trial activity, while it did not differ from gain-trial activity (p 

values are reported in Supplemental Table 2.3).  

Effects Of Magnitude And The Interaction Of Valence And Magnitude  

 No regions displayed a significant two-way interaction between magnitude and time 

point or a three-way interaction between valence, magnitude, and time point within the a priori 

anatomical mask.  

Effects Of Salience  

 The ANOVA above identified regions where activity differed depending on the valence 

of the trial outcome. However it is possible that some regions encode salience rather than the 

valence of feedback. In these regions, we would expect to see similar patterns of activity to 

feedback of different valences (gain/loss) that would differ significantly from the response to 

neutral feedback. To identify such regions, we conducted an additional voxel-wise ANOVA 
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within our a priori mask that included the neutral condition. Thus, this ANOVA used condition 

(gain, loss, or neutral) and time point as within-subjects factors. However, no significant regions 

unique to the Condition x Time Point interaction were found within the a priori reward mask.  

Individual-Difference Results  

 To evaluate whether individual differences in task-related activity were related to 

individual differences in reward/punishment sensitivity or hedonic tone, magnitude estimates for 

the difference between the trial types and neutral (e.g., HL–NU) and the difference between high 

and low trials within gain/loss (e.g., HG–LG) were correlated with BAS, BIS, and HED within 

the a priori reward mask. Only contrasts with significant correlations (p < .01, corrected for 

multiple comparisons using a combination of p value and cluster size [p < .005, n = 26]) are 

reported.  

Behavioral Activation System (BAS) Correlations  

 Interestingly, reward sensitivity (BAS total score) was most strongly correlated with loss-

related activity, and not with gain-related activity as hypothesized (Table 2.2B-D, Supplemental 

Figures S2.4–S2.6). Specifically, low-loss trial activity showed a positive correlation with BAS 

in a region of inferior frontal gyrus (49, 19, –1). A positive correlation was also found between 

BAS and the difference between low-loss and neutral-trial activity (LL–NU) within the right 

caudate and a portion of the right lateral OFC. The same lateral OFC and caudate regions 

displayed a negative correlation between BAS and the difference between high-and low-loss trial 

activity (HL– LL; Supplemental Figures S2.4–S2.6). Specifically, as BAS increased, so did the 

difference in activity between low-loss and neutral trials, and the difference in activity between 

high and low loss decreased with increasing BAS scores in these lateral OFC and caudate 

regions. 
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Table 2.2: BIS/BAS Correlation ROIs  

  Talairach Coordinates 

Region of Activation Laterality x y z 

A) HG-LG Positive Correlation with BIS     

Putamen R 23 2 8 

Claustrum R 38 -8 8 

Putamen L -19 1 12 

Caudate Body L -12 7 8 

Insula BA 13 R 39 -4 -3 

Insula BA 13 L -36 9 6 

B) LL-NU Positive Correlation with BAS      

Inferior Frontal Gyrus BA 47 R 46 19 -1 

Caudate Body R 11 7 13 

C) HL-LL Negative Correlation with BAS      

Putamen L -22 -3 9 

Caudate Body R 11 10 11 

Inferior Frontal Gyrus BA 47 R 50 18 -1 

Putamen L -29 1 -2 

Caudate Body L -14 3 17 

Putamen R 28 -12 9 

Claustrum R 35 -11 0 

Putamen L -33 -17 0 

Putamen R 24 1 6 

Superior Temporal Gyrus BA38 R 37 2 -9 

Insula BA13 L -34 -23 16 

Insula BA13 R 41 -3 7 

Lateral Globus Pallidus L -13 3 4 

Claustrum L -33 10 3 

Putamen R 21 1 -8 

Caudate Body L -18 11 12 

Claustrum R 33 8 8 

Inferior Frontal Gyrus BA 47 R 50 33 -2 

Putamen R 24 15 -5 

D) Overlap between HG-LG with BIS and HL-LL with BAS 

Insula** R 38 -7 2 

Putamen L -21 0 10 

Putamen R 23 0 7 

Caudate Body L -13 5 10 

Note: (A) Regions displaying a significant correlation between BAS and the difference between 

low-loss and neutral trial activity (LL–NU). (B) Regions displaying a significant correlation 

between BAS and the difference between high-loss and low-loss trial activity (HL–LL). (C) 

Regions displaying a significant correlation between BIS and the difference between high-gain 

and low-gain trial activity (HG–LG). (D) Regions showing a positive correlation between HG–

LG and BIS, along with a negative correlation between HL–LL and BAS.  

 

L = left; R = right; BA = Brodmann area; HG = high gain; LG = low gain; NU = neutral; HL = 

high loss; LL = low loss; BAS = BAS total score; BIS = BIS total score.  

** The correlation between HG–LG and BIS was non-significant when a within-region-of-

interest correlation was conducted excluding the participant with the lowest BIS score.  
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Behavioral Inhibition System (BIS) Correlations  

 Mirroring the BAS correlation results, punishment sensitivity (BIS) was most strongly 

associated with gain-trial activity, and no significant correlations were found with loss related 

activity (Supplemental Figures S2.4 and S2.6, Table 2.2A and D). Portions of the insula, caudate, 

and putamen displayed a positive correlation between BIS and the difference between high-and 

low-gain trial activity (HG–LG), indicating that individuals with increased punishment 

sensitivity show greater neural responses to high-gain than to low-gain trials, while those with 

between BAS and HL–LL and a positive correlation be-lower punishment sensitivity showed the 

opposite relation.  

 Several regions, including the left caudate and bilateral putamen, showed both a 

significant negative correlation between BIS and HG–LG. The BIS correlation did not remain 

significant within the insula region when a potential outlier was excluded (Supplemental Figure 

S2.6).  

Hedonics correlations  

No regions showing a significant correlation between the hedonics composite variable 

(HED) and any task conditions were found within the a priori reward mask.  

2.4 Discussion  

 The goals of this study were to develop a paradigm using primary rewards congruent with 

current secondary-reward paradigms, and then to establish baseline responses in healthy young 

adults for use in future investigations of gain/loss processing in developmental populations. To 

do this, we modified a version of the CGG, which previously had utilized monetary incentives, to 

employ small candy pieces (consumed out of scanner) as reinforcers. This modification allowed 
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us to modulate both incentive valence (gain, loss, neutral) and magnitude (high, low) similarly to 

previous monetary studies.  

Valence Effects  

 Consistent with the secondary-reward literature, we observed strong valence (gain vs. 

loss) effects in regions of the dorsal (caudate body/putamen) and ventral (ventral putamen) 

striatum, lateral OFC, insula, thalamus, hippocampus, and amygdala (Cox et al 2008, Delgado et 

al 2003, Delgado et al 2000, Delgado et al 2004, Elliott et al 2003, Estle et al 2007, Kim et al 

2011, Knutson et al 2001b, O'Doherty et al 2001b, Tricomi et al 2006, Tricomi et al 2004, 

Valentin & O'Doherty 2009, Zald et al 1998). All regions except the hippocampus displayed 

greater activation during gain feedback than during loss feedback, with bilateral putamen 

displaying the most extensive effects. Dorsal striatal activation, particularly the caudate, is the 

most consistently reported valence effect observed in studies using the CGG. Feedback-

modulated responses in this region are expected, given that the CGG requires a timely button-

press that the participant believes will impact the type of feedback that he or she receives (gain 

vs. loss) and the dorsal striatum’s involvement in the goal-directed action component of reward-

processing/decision-making (O'Doherty et al 2004, Tricomi et al 2004).  

 We also observed an interesting dissociation between responses to neutral feedback in the 

caudate body/rostral putamen and more caudal portions of the putamen. In caudate and rostral 

putamen regions, activation was similar to neutral and loss feedback, and less than activation to 

gain responses, while in more caudal putamen regions, neutral and gain responses were similar 

and greater than loss responses. This pattern of activity may indicate a reduced response during 

loss trails in the caudal putamen, as opposed to an increased response to gain/neutral feedback, 

and vice versa in more rostral regions. It is important to note that our analyses investigating these 
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effects were exploratory; however, this pattern of activation was remarkably consistent, both 

between hemispheres and within the given structures. Studies investigating functional 

dissociations within the striatum have traditionally focused on comparisons between the dorsal 

and ventral striatum, with less evidence for a rostral/caudal distinction in function (Joel et al 

2002, O'Doherty et al 2004). However, functional connectivity studies have reported distinct 

patterns of connectivity for the caudate and more caudal putamen, with the caudate displaying 

positive functional relations with frontal control regions (e.g., DLPFC and ACC), while the 

putamen displayed positive functional connections with cortical regions involved in movement 

(Barnes et al 2010, Di Martino et al 2008). How these patterns of connectivity relate to our 

findings is unclear, and future work will be needed to determine whether this result is replicable 

and how it relates to dissociations in function across basal ganglia subregions.  

 We also observed valence effects in the ventral putamen, as have been seen in previous 

CGG studies using monetary incentives (Delgado et al 2003, Delgado et al 2000, Delgado et al 

2004). We did not, however, observe valence effects in the nucleus accumbens. Other CGG 

studies have also shown ventral striatal activity in the ventral putamen/pallidum but not in the 

accumbens (Cox et al 2008, Delgado et al 2003, Delgado et al 2000, Delgado et al 2004, Forbes 

et al 2010, May et al 2004, Tricomi et al 2004). While the ventral striatum, including the ventral 

putamen, is involved in representation of incentive value, the nucleus accumbens may be 

maximally sensitive to anticipation/prediction of rewards or to when reward information can be 

used to alter behavior (Delgado et al 2005, Knutson et al 2001b, O'Doherty et al 2004, Tricomi et 

al 2004). Additionally, this is a very small region, and possibly there could have been significant 

between-subjects variability in accumbens morphology within our sample. Another explanation 
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of the absence of nucleus accumbens activity could be the pseudorandom structure of the CGG, 

which is ideal for isolating responses to task feedback independent of learning effects.  

 In addition to finding no valence effects in the accumbens, most adult studies using the 

CGG have not reported valence effects in the OFC, although a recent article with a larger sample 

(n = 28) reported valence effects in regions of medial OFC (Cox et al 2008, Delgado et al 2003, 

Delgado et al 2000, Delgado et al 2004, Forbes et al 2010, May et al 2004, Tricomi et al 2004, 

Wilbertz et al 2012). It is surprising that few adult CGG studies have reported OFC activation, 

considering the role of the OFC in incentive processing and given that studies with younger 

participants have reported both medial and lateral OFC valence effects (Forbes et al 2010, May 

et al 2004). Unlike other adult CGG studies, we found a significant effect of valence in the 

lateral OFC, such that activity to high-gain trials was greater than activity to either neutral or loss 

trials. May and colleagues also reported increased response to reward in lateral OFC, using a 

monetary version of the CGG in children and adolescents (May et al 2004). Reward-processing 

studies frequently report a lateral/medial OFC distinction in activity patterns, with greater 

response to punishment in lateral regions and greater response to reward in medial regions 

(Kringelbach 2005, Kringelbach & Rolls 2004). However, some studies have suggested that this 

lateral/medial relation may rely at least in part on whether the gain/loss feedback leads to 

behavioral change (Breiter et al 2001, Elliott et al 2003, Kringelbach 2005, Kringelbach & Rolls 

2004). As our task was specifically designed such that behavior could not be used to influence 

task feedback, it is not entirely clear why we (and May et al., 2004) found gain-related responses 

in lateral OFC, although this may reflect some more general property of value processing in 

response to gain (Elliott et al 2003, Kringelbach 2005, Kringelbach & Rolls 2004, O'Doherty et 

al 2001a).  
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 Also of interest is the posterior position of our lateral OFC region. As noted above, there 

is evidence in the literature that more abstract rewards, such as money, elicit activation in more 

anterior portions of OFC, while primary rewards elicit activation in more posterior portions of 

OFC (Kringelbach & Rolls 2004, Sescousse et al 2010). However, we did not have clear 

hypotheses regarding whether we would observe valence effects in posterior versus anterior OFC, 

given of our combination of elements from secondary-and primary-reward tasks (timing of 

reward delivery and reward type, respectively). Interestingly, studies using monetary CGGs have 

reported valence effects in anterior portions of the OFC, while in our candy version, valence 

effects were observed more posteriorly (Forbes et al 2010, May et al 2004). Thus, our results are 

generally consistent with an anterior–posterior gradient of secondary (abstract) to primary 

rewards in OFC responses. However, the OFC is a difficult region of the brain to image, and the 

signal within our sample was much stronger in posterior than in more anterior portions of the 

OFC. Thus, these OFC results should be interpreted as a positive finding regarding valence 

effects in posterior OFC, but not as a strong null finding regarding anterior OFC response to 

primary-like rewards, as their absence could reflect reduced signal quality.  

 Other regions identified as showing significant valence effects in our candy version of the 

CGG, including regions of the amygdala, hippocampus, thalamus, and insula, have mixed 

support from other monetary CGG studies. Regions of thalamus are constantly identified in CGG 

studies, but support is mixed as to whether the thalamus shows general responsivity to the task 

(e.g., main effect of time) or to valence-specific effects (Delgado et al 2003, Delgado et al 2000, 

Delgado et al 2004, Forbes et al 2010, May et al 2004, Tricomi et al 2006). Studies that have 

reported thalamic valence effects have shown greater activity to reward than to loss feedback, in 

line with our results (Delgado et al 2003, Tricomi et al 2006). We also observed greater 
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activation to gain than to loss trials in the amygdala. This result is consistent with a hypothesized 

role for the amygdala in processing affectively salient stimuli. However, surprisingly, previous 

CGG studies have not reported modulation of amygdala activity as a function of valence (Elliott 

et al 2003; Forbes et al 2010; Knutson et al 2001; Sescousse et al 2010). We observed greater 

deactivation in the hippocampus to loss than to gain events, but again, previous CGG studies 

have not shown hippocampal modulation. Insula regions have been identified in several CGG 

studies (e.g., Delgado et al 2000; Delgado et al 2004), but only one study reported significant 

valence effects (Tricomi et al 2006). In this prior study, the insula region displayed greater 

activation to loss than to reward, the opposite pattern of activity we report. However, our insula 

region (35, –5, 16) was located anterior and medial to the region identified by Tricomi et al. 

(2006). The majority of CGG studies have focused on effects of valence within the striatum, 

whereas we chose to focus on regions within a much larger a priori mask. It is possible that 

previous CGG studies failed to find valence effects in regions such as the amygdala and 

hippocampus simply because the effects fell outside of a priori regions of interest, and thus were 

subjected to a higher statistical threshold.  

Magnitude Effects  

 Other groups using the CGG have found interactions between valence and magnitude 

particularly within the caudate (Delgado et al 2003, Elliott et al 2000). Unlike these other studies, 

we did not find a significant interaction between feedback valence (gain, loss) and magnitude 

(high, low) within the dorsal striatum, although we did observe significant valence effects in the 

caudate. A possible explanation for this result could be that the difference between the high-and 

low-magnitude conditions was not large enough to elicit significantly different striatal responses 

between high and low trials, or that the effect size is small in this paradigm, and more trials 
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would be needed to detect such a relation. Importantly, particularly for future between-group 

developmental studies, it is possible that healthy young adults who receive monetary 

compensation for their time are not engaged sufficiently by winning or losing a few small 

candies to elicit parametric modulation of the BOLD response by outcome “value,” though it is 

possible that such differences in amounts of candy would be more salient in younger children.  

Individual-Difference Effects  

 We observed a relation between task-related activity in several striatal/insular regions and 

individual differences in reward and punishment sensitivity (BIS/BAS total scores) (Carver & 

White 1994), but failed to identify any regions showing task activity related to our hedonics 

composite score. Interestingly, BAS scores were related to loss rather than to gain responses. 

Specifically, bilateral regions of the caudate displayed a negative correlation between BAS and 

the difference in response to high-loss and low-loss feedback. This correlation was related to 

reduced response to low-loss feedback in individuals with lower BAS total scores. The right 

caudate region also displayed a positive correlation between BAS and the difference in responses 

to low-loss and neutral feedback. This correlation was related to both decreased response to low-

loss and increased response to neutral feedback in individuals with lower BAS scores. Similar 

correlations with BAS and task activity were found within a region of right lateral OFC that also 

displayed greater response to high-gain feedback than to low-gain, neutral, and loss feedback in 

the main analyses. Again, individuals with increased reward sensitivity showed reduced 

differences between different levels of loss.  

 Our individual-difference results are a bit counterintuitive, given evidence that reward 

sensitivity (BAS) is traditionally thought to relate to processing of appetitive stimuli, and 

punishment sensitivity (BIS) to relate to aversive processing. However, some evidence has 
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linked BAS with negative affect following significant events (Carver 2004). Our results suggest 

that individuals who are more sensitive to reward show reduced responses to low losses within 

the striatum, potentially suggesting a heightened sensitivity to minor losses. In contrast, they also 

suggest that individuals more sensitive to punishment show increased response to the best gain 

option and less response to the worst gain option, potentially suggesting more sensitivity to the 

relative “bad” versus “good” options within available gains. Given that most of the previous 

studies examining individual differences in punishment and reward sensitivity have used 

monetary rewards, it will be important to directly compare these individual relations for 

monetary versus more primary rewards in future studies.  

 Also of note are our null findings involving the composite hedonics variable HED. 

Although other studies have reported negative relations between striatal activation during reward 

and anhedonia in control samples, it is possible that we simply did not have enough power and/or 

that our nonclinical population did not have enough variance in hedonic tone to detect this 

relation (Dowd & Barch 2010, Dowd & Barch 2012).  

Limitations And Future Directions  

 Although we observed results that were largely consistent with those of other CGG 

studies, interpretation of results that differed from those of monetary studies would be 

strengthened by future within-subjects studies designed to directly compare responses to candy 

and monetary incentives. Because we were interested in designing a paradigm appropriate for 

use across a wide developmental spectrum, we chose to use small amounts of candy delivered 

postscan as an incentive. While we believe that this paradigm has promise for developmental 

applications, it is by no means the only option, and is not entirely free of potential developmental 

confounds. Studies utilizing and directly comparing responses to other incentive types (e.g., food 
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odors, liquid rewards, and even social rewards) and structures (e.g., token economies), while 

they are perhaps more difficult to implement for developmental questions, are certainly 

warranted to empirically evaluate which methods are best designed to address developmental 

incentive-processing questions.  

 We chose to focus our individual-difference analyses on self-report measures of 

reward/punishment sensitivity, but interesting individual differences within task behavior that we 

did not investigate may influence group-level task responses. For example, interesting individual 

differences are likely to exist in how the neutral condition is interpreted (positively, as 

successfully avoiding loss; negatively, as failing to obtain a gain; or maybe as a combination of 

the two, depending on what feedback has recently occurred). Also, although this task was 

explicitly designed to elicit responses to gain/loss that were independent of any ongoing learning, 

it is possible that some individuals did try to adjust their behavior in an organized attempt to 

obtain more gains. Studies with larger and more diverse samples would be better designed to 

investigate these questions.  

 Future studies will also be needed to determine the influence of the timing of reward 

delivery (in-scanner vs. postscan) on incentive processing. In-scanner ratings of hedonic and/or 

affective response to the different feedback types/amounts would also have strengthened our 

interpretations and ensured that participants were actively engaged in the task over the course of 

the entire experiment. Thus, our results are an important first step in establishing methods for 

delivering primary rewards in a manner congruent with traditional monetary studies, but 

validation in larger, more diverse samples will be needed for both our individual-difference and 

valence effects.  

Conclusions  
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 We aimed to create a modified version of the CGG that would both be appropriate for 

developmental populations and allow for more direct comparison with secondary-reward 

paradigms. As hypothesized, we observed differential activity to gain and loss feedback in the 

striatum, amygdala, and OFC. Unlike other monetary CGG studies, a posterior OFC region 

displayed valence-dependent activation in our task. This finding potentially supports an 

anterior/posterior distinction in OFC response to abstract/primary rewards, but poor anterior 

OFC signal quality could also explain these null results. Overall, our results show strong 

continuity with previous studies using both primary and secondary rewards, and provide an 

important baseline for use of this paradigm with child and other special populations.  
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2.5 Supplemental Information 

To investigate effects of valence and magnitude at the whole brain level we ran the same 

three voxel-wise ANOVAs discussed in the methods section: 1) ANOVA with valence (gain, 

loss), magnitude (high, low) and timepoint (10 timepoints within trial estimate) as within subject 

factors; 2) ANOVA with condition (gain, neutral, loss) and timepoint as within subject factors; 

and 3) ANOVA with high-condition (high gain, neutral, high loss) and timepoint as within 

subject factors. We corrected for multiple comparisons using a combined p-value/cluster size 

threshold (p<.0013 and 17 voxels) determined by Monte Carlo simulations to provide a whole-

brain false-positive rate of p<.05. The resulting activation maps were partitioned such that peaks 

of activity were considered separate ROIs if they were more than 12mm apart based on a peak-

splitting algorithm (Kerr et al 2004, Michelon et al 2003). Post hoc ANOVAs were performed 

within all significant ROIs from the condition and high-condition ANOVAs to identify the 

conditions that significantly differed from one another.   

Whole Brain Effects of Valence 

Whole brain analysis (Supplemental Table S2.4 and Figure S2.9) again revealed regions 

in the striatum, including the caudate, putamen, globus pallidus, insula and hippocmpus that 

showed valence by timepoint interactions indicating differential activity between gain and loss 

trials.  However, the whole brain analysis also identified regions in a number of additional areas 

in the brain showing these effects, including several ROIs in the frontal cortex and the parietal 

cortex, as well as the cerebellum. ROIs significant at the whole brain level (Supplemental Table 

2.4) displayed two main patterns of activity. Regions with higher activation to gain than loss 

trials included regions previously identified as involved in reward and error processing, 

including the putamen, caudate, globus pallidus, posterior cingulate gyrus, superior frontal gyrus, 
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medial frontal gyrus and amygdala, as well as regions involved in visual and motor processing 

such as cuneus, fusiform gyrus, inferior occipital gyrus, lingual gyrus, declive, and 

post/precentral gyri. ROIs displaying greater deactivation to loss compared to gain trials include 

regions of superior frontal gyrus, medial frontal gyrus, middle frontal gyrus, precuneus, 

post/precentral gyri, superior temporal gyrus, hippocampus, cingulate gyrus, middle temporal 

gyrus, paracentral lobule, pulvinar and the inferior parietal lobule.   

Whole Brain Effects of Magnitude 

Regions in the superior frontal cortex, occipital cortex, precentral gyrus and 

parahippocampal gyrus all displayed significant interactions between magnitude and timepoint 

within trial (see Supplemental Table 2.5). A number of regions in primary and secondary visual 

cortex, including portions of the cuneus, and inferior and middle occipital gyri all showed greater 

activity to the high magnitude outcomes compared to the low magnitude outcomes, potentially 

reflecting the greater visual stimulation or attention associated with the high magnitude 

conditions (i.e., more “candies” on the screen).  A similar pattern was present in the precentral 

gyrus.  However, a region of the parahippocampal gyrus showed deactivation, with a greater 

decrease from trial onset in the high versus low magnitude conditions. 

Whole Brain Interaction of Valence and Magnitude  

Regions in occipital cortex, temporal cortex, the cingulate and the cerebellum all 

displayed showed magnitude X valence X timepoint interactions (see Supplemental Table 2.6). 

For the Middle Occipital Gyrus, activity was greatest for high gain trials, and lowest for high loss 

trials with similar activity levels for the remaining trial types. In the declive, activity levels were 

greatest during high gain and low loss trials whereas low gain and high loss trial related activity 

were similar and lower. A region of the middle temporal gyrus displayed deactivation during all 
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trial types with greater deactivation during high loss and low gain trials. In the middle temporal 

gyrus deactivation was greatest for both high loss and low gain trials.  

Whole Brain Analyses Including Neutral Trials 

 Several regions showed patterns of activity where gain and loss trial activity was similar 

but differed from neutral. As shown in Supplemental Figure S2.8, regions in the middle temporal 

gyrus, lingual gyrus, precuneus, cuneus, supramarginal gyrus, superiror parietal lobule, 

postcentral gyrus, parahippocampal gyrus, cingulate gyrus, and inferior semi-lunar lobule all 

showed greater activation during neutral trials compared to gain and loss trials. Conversely, 

activity was greater during loss and gain trials compared to neutral trials in regions of the middle 

occipital gyrus, cingulate gyrus, precuneus, pyramus, culmen, middle occipital gyrys, fusiform 

gyrus, superior/inferior paretal lobules, declive, and superior/middle/inferior frontal gyri 

(Supplemental Table 2.7). Many of these regions are associated with visual processing and 

attentional control, and may reflect differences between the visual complexity of the gain/loss 

and neutral stimuli (Figure 2.1) as well as increased attention to gain and loss outcomes as 

compared to a neutral outcome.  

Several regions also displayed task related deactivation. Regions in the superior and 

middle temporal gyri and superior frontal gyrus showed greater deactivation during neutral trials 

compared to gain and loss trails whereas regions of the insula, precentral gyrus, superior parietal 

lobule, paracentral lobule, transverse temporal gyrus and middle/superior/transverse temporal 

gyri showed the greatest deactivation during gain and loss trials compared to neutral.  

Signal Quality 

 To determine the number of participants with quality signal within each voxel each 

participant’s anatomical average was thresholded such that all voxels with signal above 500 (an 
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admittedly somewhat arbitrary value) were assigned a value of one. Of note, qualitatively similar 

results were found when we used a higher signal value threshold of 750.  Thresholded 

anatomical averages from each participant (n=20) were summed resulting in a map 

(Supplemental Figure 2.10) depicting the number of participants with signal above 500 for each 

voxel. Signal was below 500 for half the sample in the medial and anterior OFC. It is not 

uncommon to experience signal dropout within the OFC.  Thus, it is important to highlight that 

null findings in these regions cannot be attributed solely to a lack of task effects as poor signal 

quality could also explain the lack of task related findings.
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Supplemental Table S2.1 

Descriptive Statistics for individual difference measures, movement parameters, and behavior 

 

  N Minimum Maximum Mean Std. Deviation 

Behavioral Activation Scale - total score 20 29 47 40.95 4.42 

Behavioral Inhibition Scale - total score 20 14 27 21.30 3.08 

Beck’s Depression Inventory - total score 19 0 12 2.26 2.94 

Snaith Hamilton Pleasure Scale - total score 20 9 28 20.05 5.22 

Chapman Social Anhedonia - total score 19 2 23 6.16 5.23 

Chapman Physical Anhedonia - total score 19 3 20 8.08 4.45 

Hedonics - composite score 19 -7.55 3.11 -0.33 2.85 

Movement RMS per frame 20 0.04217 0.21657 0.09719 0.04133 

Mean Voxelwise Standard Deviation 20 6.99827 12.67307 9.77789 1.58341 

Button Press Reaction Time (msec) – mean 

across all trials 
20 387.6 737.5 521.8 91.4 
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Supplemental Table S2.2 

Pairwise Correlations Between Individual Difference Measures 

 

  BIS BDI SHPS PA SA HED 

 1) Behavioral Activation Scale Total Sore 

(BAS) 

Pearson Correlation -.15 -.12 .27 -.21 -.43 .36 

 Sig. (2-tailed) .53 .62 .25 .39 .07 .13 

 N 20 19 20 19 19 19 

 2) Behavioral Inhibition Scale Total Score 

(BIS) 

Pearson Correlation   .227 -.083 -.105 .445 -.166 

 Sig. (2-tailed)   .350 .728 .670 .056 .496 

 N   19 20 19 19 19 

 3) Beck Depression Inventory Total Score 

(BDI) 

Pearson Correlation     -.062 -.088 .121 -.037 

 Sig. (2-tailed)     .800 .729 .633 .884 

 N     19 18 18 18 

 4) Snaith Hamilton Pleasure Scale Total 

Score (SHPS) 

Pearson Correlation       -.504* -.697** .867** 

 Sig. (2-tailed)       .028 .001 .000 

 N       19 19 19 

 5) Chapman Physical Anhedonia Score 

(PA) 

Pearson Correlation         .545* -.802** 

 Sig. (2-tailed)         .016 .000 

 N         19 19 

 6) Chapman Social Anhedonia Score (SA) Pearson Correlation           -.879** 

 Sig. (2-tailed)           .000 

 N           19 

 7) Hedonics - composite score (HED)              

 **p<0.01 (2-tailed) 

*p<0.05 (2-tailed) 
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Supplemental Table S2.3 

Basal Ganglia ROI Post-Hoc Paired Tests 

 

  Talairach Coordinates Paired t-test p-values 

Region of Activation  Laterality x y z G - N L - N HG - N HL - N 

Regions where N=G>L         

Dorsal Putamen R 27 -13 10 0.467 0.002 0.997 0.006 

Dorsal Putamen L -26 -13 10 0.986 0.001 0.519 0.006 

Ventral Putamen R 30 -13 -4 0.405 0.007 0.33 0.011 

Ventral Putamen L -23 -2 -3 0.4 0.011 0.076 0.016 

Ventral Putamen R 22 -1 -7 0.296 0.023 0.07 0.012 

Dorsal Putamen L -23 3 11 0.572 0.049 0.208 0.037 

Dorsal Putamen R 24 5 9 0.922 0.001 0.055 0.013 

Regions where N=L<G          

Putamen/Caudate L -17 9 4 0.042 0.305 0.017 0.317 

Putamen/Caudate R 15 9 5 0.02 0.987 0.002 0.749 

Caudate Body R 15 12 15 0.027 0.685 0.004 0.851 

Caudate Body L -15 7 17 0.053 0.596 0.009 0.496 

Caudate Body L -6 3 6 0.067 0.503 0.033 0.679 

 

Note: Post Hoc paired t-tests were performed within all basal ganglia ROIs identified as displaying significant valence x timepoint 

interaction. The mean activation at timepoints 4 and 5 for gain, loss, neutral, high gain, and high loss trials were used in four t-tests 

(gain – neutral, loss – neutral, high gain – neutral, high loss – neutral) to determine the relation between neutral and other trial type 

activity. 

 

In putamen regions neutral activity did not differ from gain but it did differ from loss. In caudate and caudate/putamen regions neutral 

activity did differ from gain but did not differ from loss. 

 

Yellow indicates regions where p<0.05 

Blue indicates regions where p<0.10 

L = Left; R = Right (in ‘Laterality’ Column) 

G = Gain; N = Neutral; L = Loss; HG = High Gain; HL = High Loss



 

 73 

Supplemental Table S2.4 

Valence x Time Point Interaction ROIs – Whole Brain 

 

   
Talairach 

Coordinates  

Region of Activation BA Laterality x y z Pattern 

Activation       

Precentral Gyrus 4 L -18 -26 71 G>N>L 

Postcentral Gyrus 3 L -32 -31 56 N>G>L 

Precentral Gyrus 4 R 25 -25 53 N>G>L 

Putamen  R 26 -20 10 G>N>L 

Postcentral Gyrus 3 L -42 -16 48 G=N>L 

Putamen  L -28 -19 9 G=N>L 

Cuneus 19 R 11 -92 31 G=N>L 

Putamen  R 29 -8 13 G=N>L 

Medial Frontal Gyrus 6 L -8 -10 47 G=N>L 

Precentral Gyrus 6 R 41 -8 50 G=N>L 

Parahippocampal Gyrus 30 R 22 -37 7 G=N>L 

Cingulate Gyrus 24 L -7 1 41 G=N>L 

Caudate  R 20 14 18 G=N>L 

Cuneus 18 L -10 -101 0 G>L=N 

Cuneus 18 R 14 -97 7 G>L=N 

Inferior Occipital Gyrus 17 L -12 -92 -8 G>L=N 

Inferior Occipital Gyrus 17 R 18 -89 -5 G>L=N 

Declive  L -20 -83 -15 G>L=N 

Lingual Gyrus 18 L 0 -89 -2 G>L=N 

Fusiform Gyrus 19 R 26 -83 -13 G>L=N 

Declive  L -56 -60 -19 G>L=N 

Declive  L -50 -73 -21 G>L=N 

Putamen  R 21 7 7 G>L 

Putamen  L -21 8 1 G>L 

Lateral Globus Pallidus  L -22 -4 -6 G>L 

Precentral Gyrus 6 L -44 -7 56 G>L 

Postcentral Gyrus 3 R 41 -25 60 G>L 

Amygdala  R 22 -5 -9 G>L 

Precentral Gyrus 6 L -56 -6 34 G>L 

Putamen  L -18 4 15 G>L 

Postcentral Gyrus 3 R 48 -18 52 G>L 

Cerebellar Tonsil  R 3 -55 -36 G>L 

Cuneus 19 L -9 -95 26 G>L 

Posterior Cingulate 23 R 3 -34 20 G>L 

Superior Frontal Gyrus 8 L -39 16 54 G>L 

Parahippocampal Gyrus 27 R 17 -30 -4 G>L 

Parahippocampal Gyrus 27 L -18 -35 0 G>L 

Postcentral Gyrus 3 L -54 -12 51 G>L 
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Deactivation       

Medial Frontal Gyrus 6 R 2 -21 51 L>N>G 

Superior Frontal Gyrus 8 L -22 33 49 L>G=N 

Postcentral Gyrus 3 R 25 -32 65 L>N>G 

Superior Frontal Gyrus 8 R 15 41 47 L>G=N 

Superior Frontal Gyrus 8 L -7 50 45 L>N>G 

Posterior Cingulate 29 L -4 -53 11 L>G=N 

Postcentral Gyrus 3 L -20 -32 60 L>N>G 

Superior Frontal Gyrus 6 L -5 34 53 L>G=N 

Hippocampus  R 32 -21 -14 L>G=N 

Pulvinar  L -12 -32 16 L>G=N 

Medial Frontal Gyrus 6 L -2 -19 71 L=N>G 

Superior Frontal Gyrus 6 L -14 22 63 L=N>G 

Paracentral Lobule 6 R 1 -31 72 L=N>G 

Superior Temporal Gyrus 42 R 63 -24 12 L>G>N 

Precuneus 7 L -7 -43 52 L>G>N 

Medial Frontal Gyrus 8 L -3 37 39 N>L>G 

Middle Frontal Gyrus 8 L -26 19 45 L>G 

Precuneus 31 L -12 -50 27 L>G 

Hippocampus  L -28 -20 -12 L>G 

Precuneus 31 R 2 -49 30 L>G 

Middle Temporal Gyrus 21 L -62 -5 -7 L>G 

Cingulate Gyrus 31 L -10 -31 37 L>G 

Precuneus 7 L -5 -62 35 L>G 

Deactivation then Activation       

Inferior Parietal Lobule 40 R 55 -60 39 L>G=N 

Precuneus 19 R 41 -78 41 L>G=N 

 

Note: Regions displaying an interaction of valence x timepoint significant at the whole brain level 

Post Hoc analyses detailed in Methods section were performed on each region. Regions in which 

activation during neutral trials did not significantly differ from activity during either gain or loss trials 

are noted as showing either R>L or L>R patterns of activity. 

BA = Broadmann Area 

L = Left; R = Right (in ‘Laterality’ Column) 

G = Gain; N = Neutral; L = Loss 
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Supplemental Table S2.5 

Magnitude x Timepoint Interaction ROIs – Whole Brain 

 

   Talairach Coordinates  

Region of Activation BA Laterality x y z Pattern 

Activation       

Inferior Occipital Gyrus 18 R 27 -85 -10 H>L 

Inferior Occipital Gyrus 18 R 37 -91 -6 H>L 

Middle Occipital Gyrus 18 R 24 -97 3 H>L 

Inferior Occipital Gyrus 18 L -25 -89 -10 H>L 

Deactivation       

Precentral Gyrus 6 L -62 -10 31 L>H 

Parahippocampal Gyrus 19 L -33 -45 -3 H>L 

 

Note: Regions displaying an interaction of magnitude x timepoint significant at the whole brain level 

BA = Broadmann Area 

L = Left; R = Right (in ‘Laterality’ Column) 

H = High; L = Low 
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Supplemental Table S2.6 

Valence x Magnitude x Time Point Interaction ROIs – Whole Brain 

 

   Talairach Coordinates 

Region of Activation BA Laterality x y z 

Activation      

Middle Occipital Gyrus 19 L -46 -60 -7 

Declive  R 26 -63 -13 

Deactivation      

Middle Temporal Gyrus 21 R 63 -5 -13 

 

Note: Regions displaying an interaction of valence x magnitude x timepoint significant at the whole 

brain level 

BA = Broadmann Area 

L = Left; R = Right 
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Supplemental Table S2.7 

Condition x Time Point Interaction ROIs – Whole Brain 

 

   Talairach Coordinates  

Region of Activation BA Laterality x y z Pattern 

Activation       

Lingual Gyrus 18 L -10 -72 -7 N>G=L 

Middle Temporal Gyrus 21 R 59 -54 -1 N>G=L 

Cuneus 19 R 10 -87 27 N>G=L 

Parahippocampal Gyrus 19 L -23 -53 -4 N>G=L 

Supramarginal Gyrus 40 R 52 -50 30 N>L=G 

Superior Parietal Lobule 7 R 17 -63 60 N>G=L 

Postcentral Gyrus 5 R 35 -43 57 N>G=L 

Precuneus 7 R 9 -81 45 N>G=L 

Precuneus 7 R 19 -71 45 N>G=L 

Middle Temporal Gyrus 22 R 56 -42 4 N>G=L 

Parahippocampal Gyrus 19 R 21 -44 -5 N>G=L 

Cuneus 19 L -9 -88 22 N>G=L 

Lingual Gyrus 18 R 12 -68 -2 N>G=L 

Inferior Semi-Lunar Lobule  L -38 -70 -45 N>G=L 

Cuneus 18 R 1 -97 12 N>G=L 

Inferior Semi-Lunar Lobule  L -11 -76 -42 N>L=G 

Middle Temporal Gyrus 39 R 51 -56 12 N>L=G 

Precuneus 7 L -17 -73 47 N>G=L 

Cuneus 19 L -6 -87 36 N>G=L 

Fusiform Gyrus 19 L -35 -77 -11 L=G>N 

Middle Occipital Gyrus 18 L -30 -89 -3 L=G>N 

Inferior Parietal Lobule 40 R 40 -50 46 L=G>N 

Culmen  L -32 -52 -16 L=G>N 

Fusiform Gyrus 19 R 33 -68 -10 L=G>N 

Fusiform Gyrus 18 L -23 -88 -18 L=G>N 

Inferior Parietal Lobule 40 R 48 -40 46 L=G>N 

Superior Parietal Lobule 7 R 36 -64 51 L=G>N 

Declive  R 32 -55 -13 L=G>N 

Middle Occipital Gyrus 18 L -28 -95 11 L=G>N 

Inferior Parietal Lobule 40 L -51 -54 41 L=G>N 

Middle Frontal Gyrus 8 R 35 31 39 G=L>N 

Cingulate Gyrus 23 R 2 -29 27 L=G>N 

Inferior Parietal Lobule 40 L -35 -48 38 L=G>N 

Superior Frontal Gyrus 8 R 38 17 51 L=G>N 

Inferior Frontal Gyrus 45 R 55 17 6 G=L>N 

Declive  L -26 -76 -22 L=G>N 

Middle Frontal Gyrus 6 R 30 7 47 G=L>N 

Cingulate Gyrus 31 R 11 -29 45 L=G>N 

Middle Frontal Gyrus 6 R 28 -1 58 G=L>N 

Pyramis  L -37 -80 -34 G=L>N 
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Right Cerebellum  R 1 -88 -27 G=L>N 

Deactivation       

Superior Temporal Gyrus 39 L -58 -59 24 N>L=G 

Superior Frontal Gyrus 6 R 19 19 61 N>G=L 

Middle Temporal Gyrus 39 L -58 -68 11 N>L=G 

Superior Frontal Gyrus 6 R 6 33 60 N>L=G 

Superior Parietal Lobule 7 L -25 -46 59 L=G>N 

Paracentral Lobule 5 R 4 -41 52 L=G>N 

Superior Temporal Gyrus 39 R 55 -63 27 L=G>N 

Insula 13 R 43 -9 1 L=G>N 

Middle Temporal Gyrus 39 R 44 -74 23 G=L>N 

Superior Temporal Gyrus 21 R 59 -10 -4 L=G>N 

Paracentral Lobule 31 R 1 -10 45 L=G>N 

Superior Frontal Gyrus 6 R 7 -5 66 L=G>N 

Medial Frontal Gyrus 4 R 18 -31 58 L=G>N 

Transverse Temporal 

Gyrus 41 R 48 -17 10 L=G>N 

Superior Frontal Gyrus 8 R 18 42 41 G=N>L 

 

Note: Regions displaying an interaction of condition and timepoint significant at the whole brain level 

BA = Broadmann Area 

L = Left; R = Right (in ‘Laterality’ Column) 

G = Gain; N = Neutral; L = Loss 
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Supplemental Figure S2.1 

A Priori Reward Mask  

A priori mask covering reward related regions including the striatum, regions of the medial temporal lobe (ie. amygdala, 

hippocampus), insula, orbital frontal cortex and dopaminergic midbrain. 

 

 

 

 

Z = 24   Z = 15       Z = 6  Z = 0

Z = -6   Z = -12     Z = -18        Z = -21
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Supplemental Figure S2.2 

Timecourses for Striatal Regions displaying Valence x Time Point Interaction  

Timecourses within representative striatal regions with a significant valence by timepoint 

interaction for A) for gain (average of high and low gain), neutral, and loss (average of high and 

low loss) trials and B) high gain, low gain, neutral, low loss, and high loss trials. 

In Doral Putamen regions activation to gain and neutral conditions does not differ and is greater 

than activation to loss conditions. In all other regions neutral does not significantly differ from 

either gain or loss. 
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Supplemental Figure S2.3 

Timecourses for Non-Striatal Regions displaying Valence x Time Point Interaction  

Timecourses within non-striatal regions with a significant valence by timepoint interaction for A) 

for gain (average of high and low gain), neutral, and loss (average of high and low loss) trials 

and B) high gain, low gain, neutral, low loss, and high loss trials. 
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Supplemental Figure S2.4 

BIS and BAS Correlation Map 

HL = High Loss, LL = Low Loss, LG = Low Gain, HG = High Gain 

BAS = BAS total score, measure of reward sensitivity from BIS/BAS Scale (behavioral activation/inhibition scale) 

BIS = BIS total score, measure of punishment sensitivity from BIS/BAS Scale (behavioral activation/inhibition scale) 
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 Regions showing a significant negative correlation between (HL-LL) and BAS

 Regions showing a significant positive correlation between (HG-LG) and BIS
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Supplemental Figure S2.5 

BAS Correlations with Lateral OFC and Caudate 

Regions identified as displaying significant correlations between BAS and both the difference in 

low loss (LL) and neutral (NU) trial activity, and the difference in high loss (HL) and low loss 

(LL) trial activity. A) Scatter plot depicting positive relation between BAS and LL-NU trial 

activity and negative relation between BAS and HL-LL trial activity in the right lateral OFC (46, 

20, -1); B) scatter plot depicting the positive relation between individual differences in BAS and 

and LL-NU trial activity and negative relation between BAS and HL-LL trial activity in the 

bilateral caudate (mean of left (-12, 5,13) and right (11, 7, 13) caudate activation). 

BAS = BAS total score, measure of reward sensitivity from BIS/BAS Scale - high/Low BAS 

determined by median split 
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Supplemental Figure S2.6 

BAS and BIS Correlation Overlap Regions 

All regions displayed significant correlations between both BAS and the difference in high loss 

(HL) and LL trial activity, and BIS and the difference in high gain (Zeff et al) and low gain (LG) 

trial activity. Scatter plots depict a negative relation between BAS and HL-LL trial activity and a 

positive relation between BIS and HG-LG trail activity. 

BAS = BAS total score, measure of reward sensitivity from BIS/BAS Scale (behavioral 

activation/inhibition scale) 

BIS = BIS total score, measure of punishment sensitivity from BIS/BAS Scale (behavioral 

activation/inhibition scale) 

High/Low BIS/BAS determined by median split 

**Correlation between High Gain – Low Gain and BIS is non-significant when a within ROI 

correlation is conducted excluding the participant with the lowest BIS score. 
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Supplemental Figure S2.7 

Valence X Time Point Interaction ROIs – Whole Brain Map 

ROIs identified as showing a significant valence by timepoint interaction corrected for multiple comparisons at the whole brain level. 

Red = ROIs with greater activation during gain trials compared to loss trials 

Blue = ROIs with greater deactivation during loss trials compared to gain trials 

 



 

 86 

 

 
 

Supplemental Figure S2.8 

Condition X Time Point Interaction – Whole Brain Map 

ROIs identified as showing a significant condition by timepoint interaction at the whole brain level. 

Red = ROIs with greater activation during gain and loss trials compared to neutral trials. 

Yellow = ROIs with greater activation during neutral trials compared to gain and loss trials. 

Blue = ROIs with greater deactivation during gain and loss trials compared to neutral trials. 

Green = ROIs with greater deactivation during neutral trials compared to gain and loss trials. 
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Supplemental Figure S2.9 

Main Effect of Time within a priori Reward Mask 

Z-score map of the main effect of Time ANOVA results for all trial types within the a priori reward mask. Scale = Z of 2-11  
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Supplemental Figure S2.10 

Adult Whole Brain Signal Quality Map 

Whole brain map depicting the number of participants with signal>500 within each voxel. Of note, medial and anterior aspects of the 

OFC were particularly impacted by poor signal quality across the sample. 
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Chapter 3. 

Kids, Candy, Brain And Behavior: Age Differences In Responses To 

Candy Gains And Losses 
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Abstract 

The development of reward-related neural systems, from adolescence through adulthood, has 

received much recent attention in the developmental neuroimaging literature. How- ever, few 

studies have investigated behavioral and neural responses to both gains and losses in pre-pubertal 

child populations. To address this gap in the literature, in the present study healthy children aged 

7–11 years and young-adults completed an fMRI card guessing game using candy pieces 

delivered post-scan as an incentive. Age differences in behavioral and neural responses to candy 

gains/losses were investigated. Adults and children displayed similar responses to gains, but 

robust age differences were observed following candy losses within the caudate, thalamus, insula, 

and hippocampus. Interestingly, when task behavior was included as a factor in post hoc 

mediation analyses, activation following loss within the caudate/thalamus related to task 

behavior and relations with age were no longer significant. Conversely, relations between 

response to loss and age within the hippocampus and insula remained significant even when 

controlling for behavior, with children showing heightened loss responses within the 

dorsal/posterior insula. These results suggest that both age and task behavior influence responses 

within the extended reward circuitry, and that children seem to be more sensitive than adults to 

loss feedback particularly within the dorsal/posterior insula.  
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3.1 Introduction 

The transition from childhood to adolescence marks the beginning of a developmental 

period characterized by age-typical increases in risk taking behavior (Steinberg 2008). Much 

recent work has focused on the typical development of neural systems involved in reward 

processing and how enhanced neural response to reward relates to increased risk taking in 

situations in which the risk may involve potential rewards (Galvan et al 2007, Galvan et al 2006). 

While this literature has largely focused on comparing adolescent and adult responses to 

monetary incentives (see (Galvan 2010, Geier & Luna 2009, Richards et al 2013) for recent 

reviews), risk-taking behaviors may be influenced by responses to both reward and negative 

outcomes and how potential gains and losses relate to risk taking may vary across age (Galvan et 

al 2007, Massar et al 2012). Further, the relative contributions of age-related differences in 

responses to positive versus negative outcomes to variation in risk-taking behavior may differ for 

transitions from childhood to adolescence and adolescence to adult-hood (Steinberg 2008). Thus, 

it is important to investigate neural responses to both gains and losses within school-aged 

children prior to the onset of puberty, to serve as a relative baseline for future studies 

investigating the neural correlates of developmental and individual differences in risk taking.  

To date only a handful of incentive processing studies have included distinct pre/early 

pubertal child groups and directly compared child and adult functional responses to incentive 

receipt (Galvan et al 2006, Padmanabhan et al 2011, van den Bos et al 2009, Van Leijenhorst et 

al 2010b). Further, few studies have investigated responses to receipt of incentives and loss of 

incentives, utilized non-monetary rewards, or employed specialized methods to address 

analytical and data quality issues that inherently accompany studies with multiple age groups 

(see (Church et al 2010) for commentary on age group comparison methods). As such, how 
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responses to gains and incentive losses differ between pre-pubertal child and adult populations is 

the focus of the current study.  

Children and adults engage largely overlapping neural systems when responding to the 

receipt of incentives, however, the magnitude or pattern of responses in these regions to 

positive/reward feedback often differs between age groups (Galvan et al 2006, Padmanabhan et 

al 2011, Paulsen et al 2011a, van Leijenhorst et al 2006). Specifically, both groups show similar 

striatal responses to gains/correct feedback, with age differences reported mostly in dorsal 

prefrontal (DLPFC), anterior cingulate (ACC), and orbitofrontal regions (OFC) (Crone et al 2008, 

Galvan et al 2006, Paulsen et al 2011a, van den Bos et al 2009, van Duijvenvoorde et al 2008, 

Van Leijenhorst et al 2010b). Studies comparing adult and child responses to negative 

incentives/incorrect feedback suggest that children show heightened responses to such feedback. 

In simple paradigms, older children show increased lateral OFC responses to loss (van 

Leijenhorst et al 2006), are slower to learn win-stay rules than lose-shift rules (Berman 1970), 

and show greater learning rates for negative versus positive feedback (van den Bos et al 2012). 

In more com-plex tasks children are less able to discriminate between different types of negative 

feedback (Crone et al 2008), are less able to use negative feedback to optimize behavior (Crone 

et al 2008, van Duijvenvoorde et al 2008), and are particularly sensitive to loss frequency during 

decision-making (Crone et al 2005).  

Together these findings have contributed to the general interpretation that while more 

basic hedonic responses are similar in children and adults, regulation of those responses/learning 

signals by regions involved in higher-order cognitive processes, such as the DLPFC and ACC, is 

inefficient or reduced in children com-pared to adults (Somerville & Casey 2010, Somerville et 

al 2010). Although cognitive control and regulation improve from childhood to adulthood, 
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several task design/analysis factors may be contributing to the relative cortical/cognitive versus 

subcortical/hedonic focus in the child versus adult literature. Firstly, the complex nature of these 

tasks may make them particularly sensitive to age differences in cognitive components of 

feedback processing, but less sensitive to age differences in emotional/hedonic components of 

feedback processing. Secondly, developmental incentive studies have primarily utilized 

secondary rewards, such as money or token economies, (see (Galvan & McGlennen 2013) for 

liquid incentives in adolescents and adults). While such rewards have many advantages, they 

may bias findings particularly with younger school-age/preschool children. Primary rewards, 

such as candy or sweet liquids, may be more motivating and better capture the attention of 

younger children with fewer cognitive demands. Thirdly, the relation between age differences in 

basic task behavior and age differences in incentive-related activation has been relatively 

underexplored in the developmental reward literature. This is important given that study 

examining the relation between age differences in activation and behavior report different 

patterns of ‘age differences’ in activation when behavior is and is not accounted for analytically 

(Brown et al 2005, Casey et al 1997, Church et al 2010, Schlaggar et al 2002).  

As less work has focused on potential differences between adults and children in more 

basic components of incentive processing and associated limbic/subcortical activation patterns, 

the goal of the current study was to investigate differences between pre-pubertal children and 

adults within these systems during both gain and loss of incentives. We chose to employ fMRI 

and a simple card guessing game (CGG) based on Delgado et al. (2000, 2004) where small candy 

pieces served as the incentive to address the concerns regarding cognitive/complex tasks and 

secondary incentives discussed above. In addition to traditional group analyses designed to 
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investigate age differences in activation, we employ analyses to evaluate relations between age 

differences in activation and age differences in task behavior.  

Given that the prior literature suggests adults and children show similar striatal responses 

to receipt of adult-centric secondary incentives, we expect to observe either similar or enhanced 

striatal responses to child-centric candy gains in children compared to adults. Although no prior 

neuroimaging studies comparing pre-pubertal children and adults have investigated responses to 

loss of incentives, based on the behavioral literature we predict that children will show enhanced 

neural responses to losses. As behavior has not been investigated in fMRI studies using the CGG, 

we do not have specific a priori hypotheses regarding how behavior may relate to activation, 

although if observed, we would expect such relations to be located within regions involved in 

goal-directed action, such as the striatum. 

3.2 Methods 

Participants 

Twenty-eight children enrolled in this study. One was excluded prior to neuroimaging 

due to diagnosis of a neurological disorder. The remaining 27 children participated in the 

neuroimaging component of the study, 22 of which completed the scanning protocol. Eighteen of 

the children who completed the scanning protocol pro-vided a sufficient amount of quality fMRI 

data (defined below) and are included in these analyses. Child participants were aged 7–11 years 

(mean age = 8.89, SD = 1.28; 8 males and 10 females). To assess pubertal status parents (either 

mother or father) completed a Pubertal Staging Questionnaire (Carskadon & Acebo 1993, 

Petersen et al 1988) twice, once as part of the phone screen and once on paper during the in-

person assessment. Occasionally one parent completed the phone screen and another completed 

the paper version. All children were pre-pubertal (Tanner Stage 1) based upon the phone screen. 
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However, 3 of the18 children included in these analyses were classified as Tanner Stage 2 based 

on parents’ written responses to the Pubertal Staging Questionnaire. Thus, we characterize our 

sample as pre/early pubertal.  

Eighteen healthy young adults from a previous study, aged 22–26 years (mean age = 

23.95, SD = 1.35), were matched to the child participants based on gen-der/ethnicity and are 

included in these analyses (Luking & Barch 2013). All adult and child participants were healthy 

and free of any major medical disorder and had not taken psychotropic medications within two 

weeks of the assessment/scan (parental or self-report). Parents of child participants did not report 

a history of any mental disorder either for the child or for anyone in the immediate family. Adult 

fMRI participants also did not report a history of any mental disorder.  

Participants were recruited through posted advertisements at Washington University. All 

adult participants gave written informed consent and all child participants gave written informed 

assent. The Washington University in St. Louis Institutional Review Board approved all study 

procedures. 

Procedure  

All participants completed two experimental sessions (behavioral and neuroimaging) and 

results of the neuroimaging task will be discussed in this article. To prepare for the neuroimaging 

session, child participants completed a practice MR scan during the behavioral session. On the 

day of scan both adult and child participants completed the same out-of-scanner practice for the 

neuroimaging task and an in-scanner card guessing game based on Delgado et al. (2000, 2004) 

followed by a Post-Scan Questionnaire where participants rated how they felt when candy was 

won/lost (no rating was obtained for neutral feedback). This rating used 5 faces that ranged from 

a large frown to a large smile (see Supplemental Figure S3.1). For analysis, the faces were 
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assigned values of −2 to 2 from the most negative through most positive, respectively. Data on 

this questionnaire were acquired from 14 children and 14 adults, as 4 adults and 4 children had 

already completed the study before this measure was added to the protocol. Adults and children 

were also administered individual difference questionnaires that are not the focus of the current 

report (see Supplemental Material). 

Card guessing game  

Participants were told they would play a card guessing game where they were to guess 

the number on a mystery card (represented by a “?”) and potentially win or lose candy based 

upon whether or not that guess was correct. Participants indicated whether they preferred to play 

for Skittles or M&Ms and were told that they would receive a lump sum of candy at the 

conclusion of the experiment reflecting the net amount of candy earned during the task. To 

ensure that all participants understood the task, written instructions were presented on a 

computer using PsyScope software (the instructions were also read aloud to all child 

participants) followed by actual task practice prior to entering the fMRI scanner (Cohen 1993). 

During practice, participants were told that potential mystery card numbers ranged from 1 to 9 

and to indicate if they thought the mystery card number was more or less than 5 via one of two 

button presses (either the left or right thumb). Participants were required to make an above/below 

five guess while the mystery card “?” was displayed on screen (2000 ms). If no guess was made 

after 2000 ms, the “?” was replaced by a fixation cross for the remaining 2000 ms of that trial. 

Feedback was displayed for 2000 ms immediately following a button press guess. Feedback 

included the selected card number, written feedback (‘Great Job!’, ‘Sorry’, or ‘Next Trial’), and 

a picture of the number of candy pieces gained or lost (see Figure 3.1). 
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In-scanner trials were presented in a fixed pseudo-random order with a rapid event-

related design using PsyScope software on a Macintosh computer for stimulus presentation and 

data collection (Cohen 1993). The computer selected a card number on each trial following the 

participant’s guess depending on the predetermined trial type. This is the standard procedure 

with the card guessing game and ensures that all participants experience roughly the same events 

in scanner (i.e., no one by chance gets a disproportionate amount of high gain trials). The task 

was divided into six blocks each lasting 5 min and containing 8 instances of each of the five trial 

types described below (if the participant made a response on all trials). Each trial lasted for 4000 

ms (see Figure 3.1) followed by an inter-trial interval (ITI) of 0–14000 ms that was randomly 

jittered in2000 ms increments.  

Participants gained and lost both large and small amounts of candy. On high gain trials 4 

candy pieces were earned and card numbers 8/9 or 1/2 were displayed following above or below 

5 guesses, respectively. On low gain (LG) trials 2 candies were earned and card numbers6/7 or 

3/4 were displayed following above/below 5 guesses. Conversely, on high loss (HL) trials 2 

candies were lost and card numbers 1/2 or 8/9 were displayed following above/below 5 guesses, 

respectively. On low loss (LL) trials 1 candy was lost and card numbers 3/4 or 6/7 were 

displayed following above/below 5 guesses. Neutral trials with no candy gain or loss occurred 

when the number 5card was displayed independent of the guess. We selected a 2:1 ratio of gain 

to loss amounts to prevent frustration with the task, to maintain engagement, and to ensure a net 

positive outcome (Tversky & Kahneman 1981). Adult participants received $50, child 

participants received $30, and parents received $40 as compensation. Children and adults 

received 150 M&Ms/Skittles at the end of scanning regardless of task performance. 
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Figure 3.1: Timing Of Card Guessing Game 

Example of feedback for a “more than 5 guess”. Each trial lasted 4-s in total with the cue to make guess (?) displayed for up to 2-s and 

feedback (including the number on the mystery card, arrow denoting win/loss or dashes for no win/loss, and amount of candy 

exchanged) presented as soon as a guess was made and lasted for 2-s. A fixation cross was presented for any remaining portion of the 

4-s. Inter-trial intervals (ITIs) lasted 0–14 s with random jitter in 2-s increments. If a guess was not made during the 2-s cue to make a 

guess, a fixation cross was presented for 2-s in place of feedback. 
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fMRI data acquisition and processing 

Imaging data were collected using a 3 T TIM TRIO Siemens whole body system and 

included a T1 [sagittal acquisition, TE = 3.16 ms, TR = 2400 ms, FOV = 256 mm, flip angle = 8◦, 

1 acquisition, 176 slices, 1 mm × 1 mm × 1 mm voxels] image and functional images collected 

with a12-channel head coil using an asymmetric spin-echo echo-planar sequence sensitive to 

BOLD contrast (T2*) (TR = 2000 ms, TE = 27 ms, FOV = 384 mm, flip angle = 77◦). During 

each functional run 150 whole-brain volumes were acquired consisting of 36 contiguous axial 

images with isotropic voxels (4 mm3) acquired parallel to the anterior–posterior commissure 

plane.  

The fMRI data were preprocessed using in-house Washington University software. Prior 

to preprocessing, the first4 frames of each run were discarded to allow for signal stabilization. 

The data were then: (1) reconstructed into images and normalized across runs by scaling whole-

brain signal intensity to a fixed value and removing the linear slope on a voxel-by-voxel basis to 

counteract effects of drift (Bandettini et al 1993); (2) corrected for head motion using rigid-body 

rotation and translation correction algorithms (Friston 1994, Woods et al 1992); (3) registered to 

a Talairach (Talairach & Tournoux 1988) space template atlas optimized for the children and 

adults in this study using a 12 parameter linear (affine) transformation; and (4) smoothed with a 8 

mm FWHM Gaussian filter.  

Estimates of functional activation during each of the five trial types (high/low gain/loss 

and neutral) were obtained by using a general linear model (GLM) incorporating regressors for 

linear trend and baseline shift. The GLM did not assume a specific hemodynamic response shape 

because of concerns regarding potential age differences in the shape or timing of this response. 

Instead, a finite impulse response (FIR) approach was used where the neural response at 10 time 



 

 100 

points/TRs (20 s total with TR = 2000 ms) were modeled for each trial relative to base-line 

fixation with time point 1 corresponding to the onset of the guessing cue “?”. These estimates 

were then entered into group levels analyses treating subjects as a randomfactor. 

Motion assessment and scrubbing, age group matching, and signal quality 

All six BOLD runs could not be included for several children due to excessive motion. 

We excluded runs with a mean voxel-wise standard deviation greater than 15. Four of the 22 

children who completed the full scanning protocol had less than 3 BOLD runs that passed this 

signal quality criterion and are not included in these analyses. All BOLD runs from adult 

participants passed this signal quality check. To address the difference in amount of useable data 

between age groups, we matched adult participants to child participants in the following ways. 

First, adults were each matched to individual children based upon gender and ethnicity. Next, for 

each adult, only the BOLD runs corresponding to those deemed usable from the paired child 

were used to create that adult’s GLM (see Supplemental Table S3.1). This process ensured that 

between age group comparisons were not biased by different amounts of data.  

We also applied previously validated head motion corrections, termed “motion 

scrubbing”, adapted for task fMRI (Power et al 2012). Any frame whose displacement relative to 

the previous frame was greater than 0.5 mm (sum across both rotational [pitch, roll, and yaw] 

and linear [x,y,z] aspects) was not included in the participant’s GLM (Pagliaccio et al 2013, 

Power et al 2012). A repeated measures ANOVA (two factors: Age Group [children, adults] and 

remaining trials [HG, LG, NU, LL, HL]) indicated that the number of trialsr emaining post 

motion scrubbing did not differ between age groups (main effect of Age Group; F1,34= 2.09; p = 

0.16)for any of the trial types (interaction; F4,34= 0.69; p = 0.60). See Supplemental Material 
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and Supplemental Figure S3.2 for assessment of signal dropout in OFC and methods for dealing 

with this problem. 

Behavioral data analysis 

While the fixed pseudo-random structure of the CGG is designed to elicit incentive-

related responses independent of overt behavioral strategy or learning, it is possible that some 

individuals behaved as if their choice behavior and task feedback were linked across trials and 

that this may have differed as a function of age. To explore this possibility, we quantified each 

individual’s choice behavior as a function of previous trial feedback. We then calculated the 

proportion of “stay” choices following each feedback type by dividing the number of times a 

participant repeated the same button press after a given feedback type (as compared to the prior 

trial) by the total number of trials of that feed-back type. Within each age group there was a wide 

range of ‘stay’ choices following different trial types (Supplemental Figure S3.3A).  

To determine whether: (1) stay/shift behavior, (2) reaction time, or (3) ratings of 

emotional experience during the CGG differed across groups, three ANOVAs were conducted, 

each with Age Group (child, adult) as the between-subjects factor. The first two ANOVAs also 

included Feedback Condition as a within-subject factor (gain [mean of high/low magnitudes], 

neutral, loss [mean of high/low magnitudes]), with either the proportion of “stay” choices or the 

mean reaction time in milliseconds following that trial type as the dependent measure. The third 

ANOVA included Feed-back Type (loss or gain) as a within-subject factor, with self-rated 

feeling as the dependent measure (feeling ratings were not obtained for neutral trials). Post hoc t-

tests and one-way ANOVAs were conducted to determine the nature of interactions where 

appropriate. 

fMRI data analysis 
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Effects of age on activation following gain/loss 

To identify regions where responses to feedback of a specific valence differed across time 

and with age, we con-ducted two voxelwise repeated measures ANOVAs (one using gain trials 

and one using loss trials) with one within-subject factor, Time Point within trial (the 10 frame 

estimates for each trial type), and one between-subjects factor, Age Group (children, adults). For 

brevity and to increase power, high and low magnitude trials of a given feedback type were 

combined in all analyses, as including magnitude as an additional factor yielded qualitatively 

similar results and no interactions of magnitude with Time Point were observed. Given our use 

of an FIR approach, a significant main effect of Time Point indicates differences in activity 

across time points within trial. As is standard when using an FIR approach, we focused on 

interactions with Time Point (e.g., Time Point × Age Group), as these indicate a significant 

difference in the hemodynamic response (a difference in peak amplitude or in shape/timing of 

response).  

To determine the source of any interactions with Time Point, we conducted post hoc t-

tests within regions identified by voxel-wise analyses. For each region and condition, the mean 

percent signal change was extracted for the timepoints corresponding to the peak response (mean 

of TRs 4and 5) and return to baseline (mean of TRs 7 and 8) and t-tests were conducted to 

characterize differences between groups at TRs 4/5 and 7/8. As these post hoc tests are primarily 

meant to be descriptive and are conducted within regions that were defined using a threshold that 

corrects for multiple comparisons, tests where p < 0.05 are considered meaningful and reported 

(see below for details of multiple comparison corrections). 

Effects of behavior and age on activation following gain/loss 
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Patterns of group effects on activation can vary greatly depending on whether behavior is 

included as a part of group analyses (Brown et al 2005, Casey et al 1997, Church et al 2010, 

Schlaggar et al 2002). Common methods for investigating the comparative effects of behavior 

and (age) group on activation include: (1) evaluating the relation between activation and 

behavior (controlling for age) within regions identified in initial age group contrasts (Casey et al 

1997) and (2) conducting a second set of between-group analyses using a subset of adults and 

children that are matched based on behavior as a follow-up to typical age-group analyses (Brown 

et al 2005, Schlaggar et al 2002). Although not without limitations, these approaches allow 

investigators to identify age differences in activation related to differences in more basic 

behavior (e.g., accuracy or reaction time) and those related to processing differences within the 

domain putatively manipulated by the task at hand (e.g., working memory or cognitive control). 

This is a critical distinction as not all group differences in activation observed, for example, 

during task switching or working memory tasks may reflect differences in how child and adult 

brains engage in task switching/working memory specifically, but rather they also might reflect 

maturation in general response speed/accuracy or propensity to engage in different cognitive 

strategies such as proactive or reactive cognitive control.  

To investigate relations between age, behavior, and activation we conducted post hoc 

mediation analyses within ROIs showing an interaction of Time Point and Age Group using 

Hayes’ “indirect” SPSS macro version 4.2 (Preacher & Hayes 2008). We were specifically 

interested in controlling for basic behavior such as reaction time and global proportion of stay 

choices, as these factors showed effects of age (discussed in Section 3). However, we were also 

were interested in potential relations between activation, age, and more complex behavioral pat-

terns such as strategy that may relate to how different groups interact with/perceive the CGG. As 
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such, mediation analyses test whether differences in ‘strategy’ (proportion of stay choices post 

High Gain feedback – proportion of stay choices post High Loss feedback) mediate age 

differences in peak/return to baseline activation while controlling for reaction time and global 

proportion of stay choices (see Supplemental Materials for details). We chose to focus on 

behavior following high gain/loss feedback in mediation analyses, as they were the best and 

worst possible out-comes. Further, this difference serves as a gross metric of win-stay/lose-shift 

behavior, a well-studied strategy commonly observed during decision-making under uncertainty 

(Evenden & Robbins 1983, Paulus et al 2001). 

Masking and corrections for multiple comparisons 

To focus our results, all voxel-wise analyses were masked to only include voxels within a 

set of a priori regions of interest. This mask (Supplemental Figure S3.4) was developed by Beck 

et al. (2010) based on a network of regions implicated in reward processing including the dorsal 

and ventral striatum, amygdala, ventromedial prefrontal cortex (VMPFC), and insula. Regions 

were hand-drawn in Talairach space on the basis of anatomical landmarks and previously 

published coordinates. Voxel-wise analyses were corrected for multiple comparisons using a 

combined p-value/cluster size threshold (p < 0.006 and 25 voxels) determined using AlphaSim 

simulations to provide a false positive rate of p < 0.01 for the entire a priori mask (Forman et al 

1995, McAvoy et al 2001). After thresholding, maps were then partitioned such that peaks of 

activity were considered separate ROIs if they were more than 10 mm apart based on a peak-

splitting algorithm (Kerr et al 2004, Michelon et al 2003) and contained at least 10 voxels post 

splitting.  

To reduce redundancy, an additional hierarchical masking process was used to ensure 

that a given ROI was discussed only in the context of one effect, rather than multiple effects. 
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Specifically, we masked maps of lower order effects (e.g., main effect of Time Point) by maps 

from higher order effects (e.g., Time Point × Age Group) prior to thresholding, so that a given 

region was only presented in the highest order interaction for which it was significant. This 

process resulted in non-overlapping maps for effects within a given ANOVA. 

3.3 Results 

Results from behavioral ANOVAs 

Stay/shift behavior ANOVA  

The proportion of “stay” choices significantly differed depending on the feedback type of 

the previous trial such that participants were more likely to repeat the same choice, or “stay”, 

following gain and neutral feedback than following loss feedback (Feedback Condition; F2,68= 

8,98;p < 0.001) (Supplemental Figure S3.3B). Across feedback types, adults were more likely to 

repeat the same choice compared to children (Age Group; F1,34= 12.75; p = 0.001) 

(Supplemental Figure S3.3C). Feedback Condition and Age Group did not significantly interact 

(p > 0.69). 

Reaction time ANOVA  

Reaction time (see Supplemental Table S3.2) significantly differed depending on the 

previous trial’s feedback type (Feedback Condition; F1,68= 3.99; p = 0.02) with slower RTs 

following gain than neutral feedback (t(35) = 3.12; p = 0.004)(see Supplemental Table 3.2). 

Overall children were slower than adults (Age Group; F1,34= 24.82; p < 0.001). Feedback 

Condition and Age Group did not significantly interact (p > 0.20). 

Post-Scan Questionnaire  

ANOVA Data from the Post-Scan Questionnaire are shown in Table S3. Participants felt 

differently after winning than losing candy (Feedback; F1,26= 149.53; p < 0.001). There was a 
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trend toward children feeling more positively overall (Age Group; F1,26= 3.23; p = 0.08). 

Feedback and Age Group did not significantly interact (p > 0.72). 

fMRI effects of age 

Time Point × Age Group ANOVAs  

Loss Trials: The ANOVA using loss trials identified several regions where Time Point 

interacted with Age Group. A portion of the right anterior insula showed greater responses in 

adults than children (Table 3.1 and Figure 3.2). Interestingly, several more dorsal/posterior insula 

regions also showed a Time Point × Age Group interaction. However, within these regions, 

children showed enhanced loss responses compared to adults without a strong post-stimulus 

undershoot. Within the caudate body and thalamus adults showed strong peak activation to loss 

feedback compared to children whose responses were much weaker. Finally, adults showed loss 

feedback related deactivation in the hippocampus/parahippocampal gyrus while children showed 

little activation in these regions.  
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Table 3.1: Regions Showing A Time Point × Age Group Interaction 

 

  Talairach Coordinates 
Cluster 

Size 
Laterality Region Name BA 

Activation Type Activity 

Pattern 

at TR 

4/5 

Activity 

Pattern 

at TR 

7/8   
X Y Z Adults Children 

LOSS - Time Point x 

Age Group ROIs -38 -13 -5 26 L Insula 13 A A C > A C > A 

  -33 -16 17 14 L Insula 13 A A C > A C > A 

  36 2 13 36 R Insula 13 A A C > A C > A 

  35 -23 17 25 R Posterior Insula 13 A A C > A C > A 

  -34 -27 13 12 L Posterior Insula 13 A A C > A C > A 

  37 16 6 29 R Anterior Insula 13 A A A > C -- 

  11 8 6 34 R Caudate Body 

 

A A A > C -- 

  -11 -5 13 37 L Thalamus VAN 

 

A A A > C -- 

  -24 -14 -13 32 L Hippocampus 

 

D -- A > C A > C 

  
20 -15 -14 30 R 

Parahippocampal 

Gyrus 
28 D A A > C C > A 

GAIN - Time Point x 

Age Group ROI 
35 18 7 26 R Anterior Insula 13 A A A > C -- 

 

Note: BA, Brodmann area; A, adults; C, children.  Cluster size is in voxels.  In activation type column: A, activation; D, 

deactivation; –, neither activation nor deactivation (activation type column); –, no significant differences in post hoc tests (activity 

pattern columns). 
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Figure 3.2: Regions Identified In The Time Point × Age Group ANOVA – Loss Trials 
 

Age group differences in the response to loss of reward feedback were observed within the insula, striatum, and 

hippocampus/parahippocampal gyrus. Children showed greater loss-related responses within the dorsal/posterior insula compared to 

adults. Within the anterior insula, striatum, and hippocampus/parahippocampal gyrus children showed little if any loss-related 

activation, unlike adults. Blue regions showed a Time Point × Age Group interaction. Orange regions showed a main effect of Time 

Point that did not interact with Age Group. Dashed lines represent adult responses to loss feedback. Solid lines represent child 

responses to loss feedback. 



 

 109 

Gain Trials: Children and adults showed similar levels of activation following gain 

feedback within the vast majority of the striatum/thalamus, insula, amygdala/hippocampus, and 

anterior cingulate (Supplemental Table S3.4 and Figure 3.3). Interestingly only one region, a 

portion of the right anterior insula similar to the one discussed above in the loss ANOVA, 

showed a Time Point × Age Group interaction during response to gain feed back and again adults 

showed greater activation than children (Table 3.1). 



 

 110 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Regions Identified In The Time Point × Age Group ANOVA – Gain Trials 

  

Children and adults showed similar responses to gain feedback within the vast majority of the insula, anterior cingulate, and striatum. 

Only a small portion of the right anterior insula showed an effect of age with children showing reduced response to gain feedback. 

Blue regions showed a Time Point × Age Group interaction. Orange regions showed a main effect of Time Point that did not interact 

with Age Group. Dashed lines represent adult responses to gain feedback. Solid lines represent child responses to gain feedback. 
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fMRI effects of behavior 

Mediation analyses 

‘Strategy’ did not significantly mediate the effect of Age Group on activation in any 

region and neither covariate (mean reaction time and general propensity to repeat the same 

choice) showed a significant relation with activation in any ROI (see Supplemental Table S3.5). 

However, Strategy did show a direct effect on activation within the caudate/thalamus and the 

relation between age group and activation was no longer significant in these regions after 

controlling for covariates and strategy. Within the caudate/thalamus staying more after high gain 

than high loss was associated both with lower peak activation and greater activation during the 

return to baseline (Supplemental Figure 3.6A). Conversely, the direct effect of age group 

remained significant within the dorsal insula and hippocampus even when controlling for 

behavior with children showing enhanced responses to loss within the insula (Supplemental 

Figure 3.6B) and lack of loss-related deactivation within the hippocampus even when controlling 

for behavior. 

3.4 Discussion 

This study’s goal was to directly compare pre/early pubertal children’s and young adult’s 

behavioral and neural responses to gain and loss of incentive feedback as a baseline for future 

developmental and individual difference studies. While children and adults recruited largely 

overlapping circuits when processing gain feedback, there were extensive age differences in the 

magnitude and shape of BOLD responses to loss within the insula, caudate/thalamus, and 

hippocampus/parahippocampal gyrus. However, when relations between age, behavioral, and 

BOLD responses were investigated concurrently, insular responses varied with age while striatal 

responses showed effects of behavior. This finding of increased insular responses to loss in 
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children along with previous work suggesting that in children risk-taking relates to anticipated 

negative outcomes, while in adults it relates to anticipated positive outcomes (Galvan et al 2007) 

suggests that future studies investigating risk taking in children should take care to include loss 

conditions in addition to gain. 

Age differences in response to candy losses 

As reviewed in the introduction, differences in cortical activation patterns and behavior 

reported in previous studies suggest that children may be more sensitive to incorrect/loss 

feedback during simple tasks, and that during more complex tasks they are less able to 

effectively use/ignore such feedback to optimize behavior (Crone et al 2008, van den Bos et al 

2012, van Duijvenvoorde et al 2008, van Leijenhorst et al 2006). All observed age differences in 

activation, with the exception of the anterior insula, were related to responses following loss of 

reward rather than receipt of reward. Within the dorsal/posterior insula children displayed greater 

peak responses to loss that did not subsequently dip below baseline. Relatively little is known 

about the function of the dorsal/posterior insula. However this region has strong connections 

with the more dorsal/posterior cingulate and motor cortex (Cauda et al 2011, Menon & Uddin 

2010). As such, heightened child responses to loss within the mid/posterior insula could be 

related to age differences in general behavior (i.e., reaction time or global switching) or in the 

propensity for loss/negative feedback to influence learning/choice behavior (Berman 1970, 

Cassotti et al 2011, Crone et al 2005, van den Bos et al 2012) (relations between loss responses 

and behavior are discussed further below). As discussed below, our analyses did not reveal an 

influence of behavior on insula responses in the current study. However, it is possible that the use 

of more complex learning tasks would reveal such effects.  
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Also, much of the difference between age groups within regions showing age differences 

in response to loss related to the post-stimulus BOLD undershoot. Relatively few studies, 

developmental or otherwise, have investigated the vascular or cognitive factors thought to 

influence this portion of the hemodynamic response (Chen & Pike 2009, Hua et al 2011). Further, 

although it seems that the hemodynamic response shape, including the BOLD under-shoot, 

undergoes changes between infancy and adulthood (Hua et al 2011), the full profile and the 

underlying cardiovascular mechanisms of these developmental changes is unknown (Harris et al 

2011). Understanding these changes is particularly important given the statistical assumption 

inherent in all age group analyses utilizing an assumed response shape, that the general shape of 

the hemodynamic response and its relation to neural activity is similar across ages.  

Within the right anterior insula adults showed greater activation following loss compared 

to children. A recent study by Galvan and McGlennen using aversive liquids found a similar age 

difference within the anterior insula where adolescents’ responses to loss were reduced com-

pared to adults’ (Galvan & McGlennen 2013). While Galvan and McGlennen interpreted this 

result to indicate that aversive outcomes are more affectively salient for adults than adolescents, 

we interpret our results as indicating a difference in general salience of cue/feedback between 

adults and children, as we observed similar age differences (i.e., reduced child responses) within 

this region following both gain and loss, as discussed in more detail below.  

Age differences in loss responses were also observed within the caudate/thalamus and 

hippocampus/parahippocampal gyrus with children showing very little response to loss relative 

to baseline in these regions. This pattern within the dorsal striatum and thalamus is somewhat 

surprising given how reliably the region is recruited during the CGG across age groups in 

previous studies, though these studies have focused on older populations (Delgado et al 2000, 
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Delgado et al 2004, Forbes et al 2010, May et al 2004). How responses in the caudate/thalamus 

related to behavior is discussed below. Within the hippocampus/parahippocampal gyrus adults 

showed strong loss-related deactivation while children showed little if any activation. Although 

the hippocampus has not received much focus in the developmental incentive literature, studies 

investigating stimulus-response learning do report similar age effects, which are not further 

related to complex behavior (Casey et al 2002, Thomas et al 2004). It is also important to note 

that the hippocampus undergoes complex structural maturation patterns across 

childhood/adolescence (Gogtay et al 2006) and how such structural changes may relate to age-

differences inactivation patterns is not well understood. 

Age differences in response to candy gains 

Studies with well-delineated child comparison groups investigating responses to 

gains/correct feedback have reported similar striatal responses in children and adults (Galvan et 

al 2006, van den Bos et al 2009, van Duijvenvoorde et al 2008). However, these studies used 

secondary incentives, which may be less engaging for children than adults, and thus might have 

masked evidence for increased responses to gains in children. If this is the case, given our use of 

child-friendly candy incentives, we would expect to observe enhanced child responses to gain 

within the striatum compared to adults. However, children and adults showed similar responses 

to candy gain feedback within the dorsal and ventral striatum as well as the vast majority of the 

insula and anterior cingulate suggesting that children do not show greater striatal response to 

gain compared to adults when secondary incentives are employed.  

Interestingly, the only region showing a significant effect of age group was a portion of 

the right anterior insula nearly identical to the anterior insula region identified in the loss 

ANOVA. Again this region showed reduced child responses to candy feedback. The anterior 
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insula is involved in attention and task control and, in adults, is strongly functionally connected 

with the salience network (Cauda et al 2011, Menon & Uddin 2010, Nelson et al 2010). There is 

also evidence supporting a decrease in sustained activation and an increase in transient activation 

from childhood through adulthood within the anterior insula/inferior frontal gyrus, particularly 

during tasks with low demand (Brahmbhatt et al 2010, Burgund et al 2006). As such, reduced 

insula activation in children could relate to age differences in transient attentional capture by the 

choice cue/winning, differences in general cognitive/neural properties supporting sustained 

versus transient activation patterns, or other general factors such as group normalization or 

movement, although we have taken care to minimize such group differences. However, in sum 

our results in regards to gain responses contribute to the growing literature suggesting that for the 

most part children and adults show similar sub-cortical responses to gain, even when child-

centric candy incentives are employed. 

Relations between task behavior and neural response to feedback 

Although instructions for the CGG indicated a link between the response on a given trial 

and that trial’s outcome, neither the instructions nor the fixed feedback order allowed for a link 

between responses and outcomes across trials. Despite those two factors, participants generally 

behaved as if outcomes and choices were in-fact linked across trials with choices varying based 

on the previous trial’s outcome. To investigate how behavior related to activation and whether 

differences in behavior mediated any of the abovementioned age differences in activation, 

mediation analyses were conducted within ROIs showing a Time Point × Age Group interaction. 

Although strategy (proportion of ‘stay’ choices post high gain versus high loss) did not mediate 

age differences observed within the caudate/thalamus, a significant direct effect of strategy on 

activation was observed. This relation held even with controlling for the general propensity to 
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‘stay’ and mean reaction time, and further, the effect of age group on activation was no longer 

significant. Within the mid/posterior insula, no effects of behavior on activation were observed, 

and the effect of age group remained significant, with children showing enhanced responses to 

loss relative to adults within the mid/posterior insula. These results suggest an effect of strategy 

on feedback-related responses within the caudate/thalamus, but also suggest that the age effects 

within the caudate/thalamus did not entirely reflect age variation in strategy. 

Limitations, conclusions, and future directions 

One issue with the use of candy incentives might be that adults did not find them 

particularly salient. However, adults displayed strong activation following both gains and losses 

within the reward circuitry and all striatal age differences were in the direction of increased adult 

responses to candy feedback. Future studies directly comparing responses to different incentive 

types across broader age ranges are needed to establish whether pat-terns of age differences in 

activation vary depending on incentive type. A second issue is that we were unable to investigate 

activation within the OFC and some of the ventral striatum, regions that have shown interesting 

developmental effects in previous studies, due to age differences in signal quality within these 

regions. As such, future studies are needed to investigate the source of these age differences in 

OFC and ventral striatal signal quality, as well as to examine age effects on responses to 

gains/losses within these regions using methods that provide better signal quality. A third issue is 

that many of our age differences were found in the magnitude of the BOLD return to baseline or 

undershoot, and we have relatively little understanding of what these might reflect at either the 

cognitive or neurobiological level. As such, further research is needed on factors that might 

influence these components of the BOLD results, such as the choice of baseline and/or how such 

differences may influence analyses using assumed response shapes. Fourthly, our definition of 
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“strategy”, the global difference in staying after high gain and high loss feedback for the entire 

task, was very broad. While this difference describes gross win-stay/lose-shift-like behavior, a 

well-studied type of strategy, it is not the only type of behavioral “strategy” in which participants 

may have engaged. Further, we do not yet understand the factors that drive individual differences 

in the use of such strategies or why they may differ with age. In addition, our strategy definition 

focused on the average response to high gain/loss trials across the entire task. However it is 

likely that how a given participant interacted with the task changed over time and future studies 

that examine the evolution within a session, and how this interacts with age, will be useful. 

Finally, future studies are warranted focusing specifically on potential relations between response 

to losses, in addition to gains, and risk taking behavior both at the individual difference level and 

across development.  

In conclusion, children seem to be more sensitive than adults to loss feedback. 

Specifically, extensive age differences following loss feedback were observed within the insula, 

even when controlling for behavior, while striatal activation was related to both age and behavior. 

Together these results highlight the importance of evaluating neural responses not only to gains 

but also to losses in child populations as differences between age groups varied following gain 

and loss feedback. Additionally, these results highlight the importance of controlling for 

behavior and age differences in task approach/experience even when the task is not designed to 

elicit overt behaviors. 
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3.5 Supplemental Material 

Individual Difference Measures   

Adults and children were administered a variety of individual difference questionnaires 

that are not the focus of the current report.  To assess depressive symptoms at time of scan, 

adults completed the Beck Depression Inventory, while child participants and parents completed 

the Child Depression Inventory (child and parent versions respectively) (Beck et al 1996, Kovacs 

1985). Children and adults were administered the child/adult versions of the Behavioral 

Inhibition/Behavioral Activation Scale (Carver & White 1994) and Positive Affect Negative 

Affect Scales (Watson et al 1988). Adults also completed the Chapman Anhedonia Scales 

(Chapman et al 1976); the Snaith Hamilton Pleasure Scale (Snaith et al 1995); and the Adult 

Behavior Checklist (Achenbach 1997). Parents completed the Adult Behavior Checklist, the 

Child Behavior Checklist, and the Tanner Pubertal Scale Questionnaire (Achenbach 1991, 

Achenbach 1997, Carskadon & Acebo 1993, Petersen et al 1988). Children also completed the 

Short Mood and Feelings Questionnaire (Angold et al 1995). 

Signal Quality Checks 

The Orbital Frontal Cortex (OFC) is notorious for signal dropout problems. Because 

signal quality issues may differ between the two age groups, we examined signal quality in each 

group independently and then used that information to constrain our analyses. Each participant’s 

anatomical average was thresholded such that all voxels with signal above 500 were assigned a 

value of one. Thresholded anatomical averages from each participant in the child (n=18) and 

adult (n=18) groups were summed resulting in two maps depicting the number of adult 

participants (Supplemental Figure S3.2A) and child participants (Supplemental Figure S3.2B) 

with signal above 500 for each voxel. Signal was particularly poor in the OFC within the child 
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group compared to the adult group (Supplemental Figure S3.2C). Thus, although the OFC is a 

critical component of reward processing circuitry, we felt that the asymmetry in data quality 

between the age groups would bias our analyses and masked all voxel-wise ANOVA analyses to 

only include voxels where at least 12 of the 18 participants in both the child and adult groups had 

sufficient signal quality (Supplemental Figures S3.2/S3.4). To further evaluate signal quality, we 

inspected timecourses for each individual within each ROI and any individual for whom % 

signal change at TR 1 was beyond 0.2% above/below zero was flagged as having poor signal 

quality. The repeated measures ANOVA that identified that region was then recalculated within 

that ROI excluding participants meeting the poor signal quality criterion. We only report regions 

where the interaction originally identifying that region remained significant (p<0.01) following 

exclusion for poor signal quality. This process ensured that outliers showing poor signal quality 

did not drive the interaction identifying a given ROI. 

AlphaSim Parameters 

AlphaSim simulations were conducted with smoothing of 2 voxels and 1,000 iterations. 

A false-positive rate of p < 0.01 was investigated. The a priori reward mask, where 2/3 of 

children and 2/3 of adults had sufficient signal quality, consists of 2844 voxels. 

Mediation Analyses 

To evaluate the extent to which the Time Point X Age Group interaction reported in the 

ANOVAs above was mediated by behavior, we conducted post-hoc mediation analyses within 

regions showing a significant interaction between Age Group and Time Point (Time Point X Age 

Group ANOVAs using gain/loss trials).  Specifically, we employed the “indirect” SPSS macro 

by Preacher and Hayes using activation (% signal change for gain trials [Gain ANOVA ROIs] or 

loss trials [Loss ANOVA ROIs]) at peak response (mean of time points 4/5) and return to 
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baseline (mean of time points 7/8) as dependent variables in two sets of simple mediation 

analyses (Preacher & Hayes 2008). For both analyses Age Group (dummy variable coded as 

adults=0, children=1) served as the independent variable. The difference in staying post HG and 

post HL feedback (referred to as “Strategy”) was included as a mediator. The proportion of “stay” 

choices across all feedback types/trials (referred to as “Stay”) and mean reaction time (msec) 

across all feedback types/trials (referred to as “Mean RT”) were included as covariates (see 

Supplemental Figure S3.5 for path diagram). This analysis structure allowed for quantification of 

Age Group’s effect on activation both directly (path c) as well as indirectly through the 

mediators (path c`). Further, the indirect effect can be broken down into the direct effect of Age 

Group on the mediator and the direct effect of the mediator on activation partialing out the effect 

of Age Group. For all regions 95% bias corrected confidence intervals (CIs) were investigated 

utilizing 5000 bootstrap samples.
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Supplemental Table S3.1 

Number of Child-Adult Pairs with 3, 4, 5 or 6 Usable BOLD Runs 

 

  3 BOLD Runs 4 BOLD Runs 5 BOLD Runs 6 BOLD Runs 

Child Adult Pairs with Given number of BOLD Runs 2 4 1 11 

Age Range of Child(ren) 8-9 7-10 8 7-11 

Mean Age (Standard Deviation) of Child(ren) 8.5 (.707) 8.33(1.53) 8 9.18(1.17) 
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Supplemental Table S3.2 

Reaction Times for Age Groups 

 

  Total N 

Reaction Time (msec) 

post Gain Feedback  

mean (st dev) 

Reaction Time (msec) 

post Neutral Feedback  

mean (st dev) 

Reaction Time (msec) 

post Loss Feedback  

mean (st dev) 

All Participants 36 640 (164) 621 (158) 631 (157) 

Child Age Group 18 741 (154) 715 (154) 738 (136) 

Adult Age Group 18 539 (101) 526 (92) 523 (87) 
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Supplemental Table S3.3 

Post Scan Questionnaire Ratings 

 

  N Minimum Maximum Mean 

Standard 

Deviation 

How did you feel when you lost candy?             

ADULTS 14 -2 0 -1.00 0.56 

CHILDREN 14 -2 1 -0.64 0.93 

How did you feel when you won 

candy?            

ADULTS 14 1 2 1.50 0.52 

CHILDREN 14 0 2 1.71 0.61 
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Supplemental Table S3.4 

Regions Showing a Main Effect of Time Point - From Gain/Loss Time Point X Age Group 

ANOVAs 

  

Talairach 

Coordinates Cluster 

Size 
Laterality Region Name BA 

Activation 

Type 
  X Y Z 

LOSS - Main 

Effect of Time 

Point ROIs 

1 37 19 42 R Anterior Cingulate 32 A 

-16 -19 21 12 L Caudate Body 

 

A 

-11 5 9 66 L Caudate Body 

 

A 

  -10 -8 18 33 L Caudate Body 

 

A 

  8 8 11 78 R Caudate Body 

 

A 

  -34 13 7 92 L Claustrum 

 

A 

  -32 -3 -5 31 L Claustrum 

 

A 

  29 15 14 15 R Claustrum 

 

A 

  35 11 5 42 R Claustrum 

 

A 

  38 -9 -3 45 R Claustrum 

 

A 

  -35 16 -7 58 L Inferior Frontal Gyrus 47 A 

  45 17 -2 31 R Inferior Frontal Gyrus 47 A 

  -43 -2 1 41 L Insula 13 A 

  -36 -20 8 48 L Insula 13 A 

  -34 -7 14 56 L Insula 13 A 

  31 20 3 42 R Insula 

 

A 

  38 -7 12 42 R Insula 13 A 

  42 5 0 35 R Insula 

 

A 

  -18 -6 11 24 L Lateral Globus Pallidus 

 

A 

  -16 -1 -7 16 L Lateral Globus Pallidus 

 

A 

  15 0 2 42 R Lateral Globus Pallidus 

 

A 

  -13 -12 -6 27 L Midbrain/Brainstem 

 

A 

  -6 -24 -14 41 L Midbrain/Brainstem 

 

A 

  8 -12 -6 17 R Midbrain/Brainstem 

 

A 

  9 -24 -12 39 R Midbrain/Brainstem 

 

A 

  -22 8 10 59 L Putamen 

 

A 

  -18 14 1 32 L Putamen 

 

A 

  21 -12 8 23 R Putamen 

 

A 

  22 10 4 90 R Putamen 

 

A 

  29 -23 -2 12 R Putamen 

 

A 

  39 2 -12 44 R Superior Temporal Gyrus 38 A 

  11 -9 17 49 R Thalamus 

 

A 

  14 -20 19 21 R Thalamus LPN 

 

A 

  37 -20 5 25 R Claustrum   D 

GAIN - Main 

Effect of Time 

Point ROIs 

-21 -2 -9 79 L Amygdala   A 

3 38 19 66 R Anterior Cingulate 32 A 

9 1 11 87 R Caudate Body   A 
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  13 -15 19 56 R Caudate Body   A 

  14 15 12 75 R Caudate Body   A 

  -14 -19 20 18 R Caudate Tail   A 

  29 21 5 20 R Claustrum   A 

  36 -2 13 89 R Claustrum 13 A 

  -6 -3 -12 18 L Hypothalamus   A 

  -41 17 -4 43 L Inferior Frontal Gyrus 47 A 

  -31 13 -11 58 L Inferior Frontal Gyrus 13 A 

  33 16 -15 59 R Inferior Frontal Gyrus 47 A 

  42 22 -1 32 R Inferior Frontal Gyrus 47 A 

  -43 -7 3 54 L Insula 13 A 

  -42 5 -4 39 L Insula 13 A 

  -35 -25 14 44 R Insula 13 A 

  -35 -5 14 58 R Insula 13 A 

  -31 12 11 73 L Insula 13 A 

  27 14 13 22 L Insula   A 

  35 -25 18 25 L Insula 13 A 

  39 9 5 81 R Insula 13 A 

  13 0 -1 28 R Medial Globus Pallidus   A 

  -5 -24 -13 40 L Midbrain/Brainstem   A 

  8 -23 -12 52 L Midbrain/Brainstem   A 

  -14 -10 -9 30 L Parahippocampal Gyrus 28 A 

  15 -8 -9 13 R Parahippocampal Gyrus 28 A 

  -30 -23 -2 36 L Putamen   A 

  -28 -13 -3 57 L Putamen   A 

  -26 -2 10 50 L Putamen   A 

  -22 -10 6 47 L Putamen   A 

  -19 8 7 169 L Putamen   A 

  20 1 -8 61 R Putamen   A 

  21 -3 8 76 R Putamen   A 

  24 10 2 68 L Putamen   A 

  29 -21 5 56 R Putamen   A 

  32 -12 -3 98 R Putamen   A 

  -33 3 -10 22 L Superior Temporal Gyrus 38 A 

  -11 -7 15 85 R Thalamus   A 

 

BA = Brodmann Area        A = Activation 

Cluster Size is in voxels    D = Deactivation 
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Supplemental Table S3.5 

Mediation Analyses within Time Point X Age Group ROIs 
  

Talairach 

Coordinates 

  Y = % change at Peak Response (mean TRs 4 and 5) 

    
Direct Effect of 

Strategy (path b)  

Direct Effect of Age 

Group (path c`)  

Indirect Effect of Age Group on Activation through Strategy 

(pathc) - Bootstrap Statistics 

  
X Y Z Region Name Coefficient P-value Coefficient P-value Data Boot Bias SE 

95 % CI     

Lower Limit 

95 % CI     

Upper Limit 

LOSS - Time 

Point x Age 

Group ROIs 

-38 -13 -5 Insula -0.06 0.223 0.05 0.129 -0.01 -0.01 0.00 0.01 -0.05 0.00 

-33 -16 17 Insula -0.06 0.229 0.06 0.077 -0.01 -0.01 0.00 0.01 -0.06 0.01 

36 2 13 Insula -0.04 0.477 0.10 0.006 -0.01 -0.01 0.00 0.01 -0.05 0.01 

35 -23 17 Posterior Insula -0.06 0.222 0.05 0.106 -0.01 -0.01 0.00 0.01 -0.05 0.01 

  -34 -27 13 Posterior Insula -0.05 0.271 0.05 0.108 -0.01 -0.01 0.00 0.01 -0.06 0.01 

  37 16 6 Anterior Insula 0.02 0.884 -0.12 0.245 0.00 0.01 0.01 0.04 -0.06 0.14 

  11 8 6 Caudate Body -0.13 0.041 -0.08 0.074 -0.02 -0.02 0.00 0.02 -0.08 0.01 

  -11 -5 13 Thalamus VAN -0.23 0.000 -0.07 0.074 -0.03 -0.04 0.00 0.03 -0.11 0.01 

  -24 -14 -13 Hippocampus 0.01 0.944 0.13 0.017 0.00 0.00 0.00 0.02 -0.03 0.05 

  20 -15 -14 

Parahippocampal 

Gyrus -0.04 0.592 0.08 0.097 -0.01 -0.01 0.00 0.02 -0.07 0.01 

GAIN - Time 

Point x Age 

Group ROI 35 18 7 Anterior Insula -0.07 0.672 -0.14 0.263 -0.01 0.00 0.01 0.05 -0.14 0.06 

  
Talairach 

Coordinates 

  Y = % change at Peak Response (mean TRs 7 and 8) 

    
Direct Effect of 

Strategy (path b) 

Direct Effect of Age 

Group (path c`)  

Indirect Effect of Age Group on Activation through Strategy 

(pathc) - Bootstrap Statistics 

  
X Y Z Region Name Coefficient P-value Coefficient P-value Data Boot Bias SE 

95 % CI     

Lower Limit 

95 % CI     

Upper Limit 

LOSS - Time 

Point x Age 

Group ROIs 

-38 -13 -5 Insula 0.03 0.513 0.05 0.079 0.00 0.00 0.00 0.01 0.00 0.04 

-33 -16 17 Insula -0.02 0.656 0.04 0.145 0.00 0.00 0.00 0.01 -0.03 0.01 

36 2 13 Insula 0.02 0.621 0.06 0.018 0.00 0.00 0.00 0.01 -0.01 0.04 

35 -23 17 Posterior Insula 0.00 0.908 0.05 0.062 0.00 0.00 0.00 0.01 -0.02 0.01 

  -34 -27 13 Posterior Insula -0.02 0.704 0.03 0.279 0.00 0.00 0.00 0.01 -0.03 0.01 

  37 16 6 Anterior Insula 0.15 0.076 0.00 0.954 0.02 0.03 0.00 0.03 -0.01 0.14 

  11 8 6 Caudate Body 0.11 0.082 -0.02 0.671 0.02 0.02 0.00 0.02 -0.01 0.11 

  -11 -5 13 Thalamus VAN 0.15 0.027 -0.02 0.619 0.02 0.03 0.00 0.03 -0.01 0.11 

  -24 -14 -13 Hippocampus 0.03 0.591 0.05 0.188 0.00 0.00 0.00 0.01 -0.01 0.04 

  20 -15 -14 

Parahippocampal 

Gyrus 0.06 0.308 0.07 0.109 0.01 0.01 0.00 0.01 -0.01 0.06 

GAIN - Time 

Point x Age 

Group ROI 35 18 7 Anterior Insula 0.10 0.505 -0.10 0.326 0.01 0.02 0.00 0.04 -0.02 0.21 
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Supplemental Figure S3.1 

Post-Scan Questionnaire Response Options 

Participants were instructed to “Circle the face that applies for each question”  

1) “How did you feel when you won candy?”  

2) “How did you feel when you lost candy?” 

For analysis face responses were coded as having values from -2 to 2 for the most negative to most positive respectively. Participants 

were not asked to rate feelings following neutral feedback. 

-2       -1       0             +1           +2
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Supplemental Figure S3.2 

Signal quality in adult and child age groups 

Maps represent the number of (A) adults and (B) children with sufficient signal quality (anatomical average > 500) for each voxel. (C) 

represents the difference between the adult signal quality map (A) and child signal quality map (B) such that positive values indicate 

greater signal quality in the adult age group and negative values indicate greater signal quality in the child age group. Children 

systematically showed reduced signal quality compared to adults within the orbitofrontal and ventral prefrontal cortices as well as in 

the ventral striatum. Interestingly, children had better signal quality than adults within the most posterior/ventral aspects of the 

occipital lobe and cerebellum.  

C) ADULT SIGNAL QUALITY MAP - CHILD SIGNAL QUALITY MAP

Z = 24     Z = 21     Z = 18     Z = 15     Z = 12      Z = 9       Z = 6       Z = 3        Z = 0       Z = -3       Z = -6       Z = -9      Z = -12     Z = -15     Z = -18

        -13  -10      -5         0         5        10      15  17

12               14               16               18
A) ADULT SIGNAL QUALITY MAP

Z = 24     Z = 21     Z = 18     Z = 15     Z = 12      Z = 9       Z = 6       Z = 3        Z = 0       Z = -3       Z = -6       Z = -9      Z = -12     Z = -15     Z = -18

N =

12               14               16               18
B) CHILD SIGNAL QUALITY MAP

Z = 24     Z = 21     Z = 18     Z = 15     Z = 12      Z = 9       Z = 6       Z = 3        Z = 0       Z = -3       Z = -6       Z = -9      Z = -12     Z = -15     Z = -18

N =
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Supplemental Figure S3.3 

Stay/Shift Choice Behavior Following all Feedback Types 

A) There was a wide range of guessing behavior within each age group. B) Stay versus shift behavioral choices differed based upon 

the type of feedback received on the previous trial. Overall participants were more likely to repeat the same behavioral choice 

following gain feedback compared to following loss feedback. C) Adults were more likely to repeat the same behavioral choice across 

all feedback types compared to children. Bars represent +/- one standard error of the mean. 
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Supplemental Figure S3.4 

A priori Reward Mask  

A priori Reward Mask including reward regions from (Beck et al 2010) masked to only include voxels where at least 2/3 of children 

and at least 2/3 of adults had sufficient signal quality. 

Z = 21  Z = 18   Z = 15    Z = 12       Z = 9        Z = 6         Z = 3

Z = 0   Z = -3   Z = -6    Z = -9     Z = -12      Z = -15      Z = -18
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Supplemental Figure S3.5 

Mediation analysis model 

Independent variable (X) = Age Group (children=1, adults=0)  

Mediator = Strategy (proportion of stay choices post High Gain – proportion of stay choices post 

High Loss)  

Covariate 1 (C1) = Stay (proportion of “stay” choices across all trials/feedback types) 

Covariate 2 (C2) = Mean RT (mean reaction time in msec across all trials/feedback types) 

Dependent Variable (Y) = % Signal Change at TRs 4/5 or 7/8  

Path “a” represents the direct effect of Age Group on Strategy and path “b” represents the direct 

effect of Strategy on Activation. Path c` indicates the direct effect of Age Group on Activation. 

Together the product of path a and path b represents the indirect effect of Age Group on 

Activation through Strategy. The total effect of Age Group on Activation, path c, is comprised of 

the direct (path c`) and indirect (path a * path b) effects of the independent variable on the 

dependent variable. 

Strategy

Staying after HG - Staying after HL

(Mediator - M)

Activation

% Signal Change at TRs 4/5 or 7/8

(Depentent Variable - Y)

Direct Effect of Age Group 

on Strategy = path  a

Direct Effect of Strategy 

on Activation = path  b

Direct Effect of Age Group 

on Activation = path  c'

Mediation Analysis Model

Age Group 
Children vs Adults

(Indepentent Variable - X)

Mean RT

Mean ReactionTime (msec) 

Across Trials

(Covariate C2)

Stay

Proportion of “Stay” Choices 

Across Trials

(Covariate C1)

Indirect Effect of Age Group on Activation through Strategy = path a * path b

Total Effect of Age Group on Activation : path c = c' + ab (Corrected for the effects of Covariates)
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Supplemental Figure S3.6 

Representative Loss Time Courses from Individual Participants 

Loss time courses from a representative adult (Participant A, dashed blue line) with little difference between the proportion of stay 

choices post High Gain (Zeff et al) and High Loss (HL), an adult (Participant B, dashed green line) with a large positive difference in 

staying post HG - HL, a child (Participant C, solid blue line) with little difference in staying post HG and HL, and a child (Participant 

D, solid green line) with a large positive difference in staying post HG - HL. Both the caudate and insula ROIs showed an interaction 

with Time Point (loss trials) and Age Group at the voxel-wise level. Mediation analyses showed a direct effect of ‘strategy’ on 

activation within the caudate with more WSLS-like participants (larger positive difference in staying post HG – post HL) showing 

reduced activation at TRs 4/5 (section A). Conversely, a direct effect of age group on activation within the insula was observed even 

when controlling for task behavior in mediation analyses. Specifically, children showed greater activation at TRs 4/5 than adults 

(section B). 
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Chapter 4. 

Do Losses Loom Larger For Children Than Adults?  Relations 

Between Age, Behavioral Activation/Inhibition, And Incentive-

Related Behaviors 
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Abstract 

 

The large impact of loss of reward on behavior has been well documented in adult populations. 

However, whether similarly elevated responsivity to loss relative to gain is observed in children 

and adults remains unclear. It is also unclear whether relations between incentive-related 

behavior and self-reported reward/punishment sensitivity are similar across different 

developmental stages. To investigate this, 7-10-year-old children (N=70) and young adults 

(N=70) completed the BIS/BAS Scale along with two probabilistic incentive tasks assessing gain 

approach and loss avoidance behavior. Gain approach behavior did not differ across age groups, 

however children exhibited significantly more loss avoidance than adults. Relations between 

self-report measures and behavior were similar across age groups. Participants reporting elevated 

motivation (BAS drive) showed both elevated gain approach and loss avoidance, where both 

types of behavior predicted unique variance in BAS drive. Results highlight the often-neglected 

role of loss responsivity in motivation, and during childhood.  
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4.1 Introduction 

 Losses and rewards are among the most potent sources of information guiding how we 

interact with our environment. Importantly, the pull of rewards and push of punishments differ 

both across people and across development. Yet, few studies have investigated how both gain 

and loss sensitivity relate to approach/avoidance behaviors and how this varies across the 

developmental spectrum. Understanding how incentive sensitivity and behavior relate within and 

across developmental stages has broad implications for public policy, parenting, education, and 

mental health, as evidence already links incentive sensitivity to a variety of domains including 

learning, risk for psychopathology, and risk taking within older age groups (Somerville & Casey 

2010, Somerville et al 2010, Spear 2011).  

The developmental behavioral/neuroimaging literature has focused primarily on response 

to reward feedback. This literature largely reports similar striatal responses to rewards in children 

and adults, with responses to reward feedback peaking in adolescence (Galvan et al 2006, Luking 

et al 2014, Richards et al 2013). However, the few studies investigating negative feedback 

suggest that responsivity to loss/punishment shows a different developmental trajectory. 

Specifically, adults show reduced neural response to loss/punishment feedback relative to both 

children (insula) and to adolescents (striatum and lateral orbitofrontal cortex) (Galvan & 

McGlennen 2013, Luking et al 2014, van Leijenhorst et al 2006). Further, children show faster 

learning rates from negative than positive feedback (a pattern which reverses in adulthood) (van 

den Bos et al 2012) and loss feedback may be better than reward for facilitating response 

inhibition in childhood (Barringer & Gholson 1979, Costantini & Hoving 1973, Geier & Luna 

2012, Getsie et al 1985). Together these results suggest that childhood may be a time of 

heightened response to loss feedback relative to adulthood as well as relative to reward. However, 

to our knowledge, no studies have compared behavioral responsivity to both gain and loss of 
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reward in childhood and adulthood. 

There are also important inter-individual differences in incentive responsivity that relate 

to mental health and functional outcomes. For example, individuals with elevated reward 

sensitivity are less likely to develop depression (Bress et al 2013a) and show better recovery if 

they do develop depression (McFarland et al 2006). However, elevated reward responsivity has 

also been linked to elevated substance use (Loxton & Dawe 2001), risk taking (Galvan et al 

2007), manic symptoms (Meyer et al 2001), and reduced cooperation (Skatova & Ferguson 

2011). Elevated responsivity to punishment/loss has been linked to anxiety and other mood 

disorders (Eshel & Roiser 2010, Johnson et al 2003, Muris et al 2005). However, elevated 

loss/punishment sensitivity can also be beneficial, relating to lower levels of risky behaviors and 

elevated group contributions during economic games (Galvan et al 2007, Skatova & Ferguson 

2011). Investigations of how individual differences in incentive sensitivity relate to behavior 

across developmental stages may be useful for informing risk trajectories given the importance 

of incentive sensitivity in risk for/protection from psychopathology, and emerging evidence of 

developmental differences in the relative importance of these motivations and responses. 

Carver and White’s1994 Behavioral Inhibition System and Behavioral Activation System 

(BIS/BAS) Scale has been useful for assessing individual differences in reward and punishment 

sensitivity. BIS/BAS subscales indexing punishment sensitivity (BIS), reward responsiveness 

(BAS reward), drive to obtain reward (BAS drive), and fun/sensation-seeking (BAS fun seeking) 

have been linked to a variety of psychiatric symptoms in children, adolescents, and adults 

(Colder & O'Connor 2004, Johnson et al 2003, Loxton & Dawe 2001). However, only recently 

has measurement invariance of the BIS/BAS from childhood through adulthood been tested and 

established (i.e. the same construct is being measured across ages) by removing specific 
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items/subscales from Carver and White’s original measure that show weak or inconsistent factor 

loadings/structure across developmental stages (Pagliaccio et al Under Review). Thus, modified 

BIS/BAS subscales can be calculated from the standardly administered BIS/BAS and are 

appropriate for studies including multiple developmental stages.   

To investigate relations between self-reported BIS/BAS and approach/avoidance 

behaviors across children and adults, participants completed the BIS/BAS and developmentally-

appropriate versions of the probabilistic reward task utilized extensively in adult populations by 

Diego Pizzagalli and others. Children and adults with elevated anhedonic depressive symptoms 

(Luking et al Under Review, Pizzagalli et al 2005) show reduced effects of reward on choice 

behavior during this task. A modified version of this task where punishment (loss of reward) 

feedback is received in conjunction with the standard reward paradigm, allows for separate 

investigation of loss avoidance and gain approach behaviors.  

Given the extant behavioral and neuroimaging literature reviewed above, we expected 

that children and adults would display similar levels of gain approach behavior, while children 

would display enhanced loss avoidance. Further, we expected that elevated self-reported 

behavioral activation (BAS) would relate to elevated gain approach behavior similarly across 

development but it was unclear whether or how BAS would relate to loss avoidance. Finally, we 

predicted that BIS would relate to loss avoidance rather than gain approach behavior. 

4.2 Method 

Participants 

Child (N=70) and young adult (N=70) pairs, matched on sex and ethnicity, were formed 

from four separate studies investigating gain and loss processing; no matched pairs were 

excluded. Sample sizes for each of the four studies were determined a priori based on estimates 
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of power and practicality concerns and in no case were sample sizes/stopping rules based on 

observed effects. Participants were predominately female (N=41 in each age group) and 

Caucasian (N=44 in each age group) and were recruited from the St. Louis metropolitan area. 

Children were 7-10 years old (M=8.5; SD=1.1) and pre-/early-pubertal based on parent report 

(Petersen et al 1988). Young adults were 18-29 years old (M=20.1; SD=2.1). Young adults and 

parents provided written consent and children provided written assent in accordance with the 

Washington University in St. Louis Institutional Review Board. 

Procedure and Probabilistic Incentive Learning Tasks (PILT)  

Participants completed two modified versions of the probabilistic reward task based on 

(Heerey et al 2008, Pizzagalli et al 2005), here termed PILT-Positive (PILT-P) and PILT-

Negative (PILT-N), to assess gain and loss responsivity respectively (Figure 4.1). Tasks were 

administered using E-prime (Schneider et al 2012). 
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Figure 4.1: Schematic Diagram Of The Progressive Incentive Learning Task 

(PILT) 

 

The PILT-Positive version where candy/money could be gained is depicted in blue. The PILT-

Negative version where candy/money could be lost is depicted in red. Stimuli were presented for 

75 msec for adults and 100 msec for children; other task parameters were the same for both age 

groups.
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On each trial, participants performed a perceptual discrimination and indicated whether a 

long or short stimulus was briefly presented. For the PILT-P, a portion of correct responses 

received gain feedback while, for the PILT-N, a portion of incorrect responses received loss 

feedback. Critically, for both tasks, one of the two responses (termed the RICH response) was 

scheduled to receive three times the amount of feedback as the alternative (LEAN) response. 

This asymmetry leads healthy, hedonic adults or children to preferentially select the RICH 

response across PILT-P task blocks (positive response bias) (Luking et al 2015, Luking et al 

Under Review, Pizzagalli et al 2008a, Pizzagalli et al 2005) and to preferentially avoid the RICH 

response across PILT-N task blocks (negative response bias) (Luking et al 2015, Luking et al 

Under Review). 

To make the task more developmentally appropriate, children received candy (M&Ms or 

Skittles) as incentive feedback while adults received monetary incentives. Children earned one 

candy piece for gain feedback in the PILT-P and lost one candy piece from a 70-piece 

endowment for loss feedback in the PILT-N. Adults won 5 cents for gain feedback in the PILT-P 

and lost 5 cents from a $7.00 endowment for loss feedback in the PILT-N. Children completed 

three blocks of 40 trials (120 total), while adults completed three 60-trial blocks; however, for 

adults, only the first 120 trials were included in the present analyses to match the children. Not 

all trials received incentive feedback; specifically, 36 correct/incorrect ‘RICH’ responses and 12 

correct/incorrect ‘LEAN’ responses were scheduled to receive gain/loss feedback for the PILT-

P/PILT-N, respectively. To increase difficulty and thus the number of incorrect responses in the 

PILT-N, a perceptual mask (row/column of pound signs; see Figure 4.1) was displayed following 

the nose/mouth stimulus and stimulus presentation time was decreased from 100 to 75 

milliseconds for adults. Despite this manipulation, accuracy was relatively high, meaning that the 
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full number of scheduled incorrect feedback instances did not occur for all participants. Thus, 

number of feedback instances for both the PILT-P and PILT-N were included as continuous 

predictors in all analyses. 

Nose and mouth stimuli (Figure 4.1) were counterbalanced across tasks for a given 

participant to minimize learning effects across tasks. The stimulus set used were also 

counterbalanced across subjects for three studies (one adult and two child) and fixed across 

subjects for the remaining adult study. Task order was also fixed for the two larger studies (one 

adult, one child). As such, the majority of participants (85%) completed the PILT-P first and 

nose stimuli were used during the PILT-P for a majority of adults (84%). The proportion of 

participants that completed the PILT-P first did not differ across age groups (Χ2(1, N = 140) = 

0.50, p = 0.478); however, the proportion of participants where nose stimuli were used in the 

PILT-P did differ across age groups (Χ2(1, N = 140) = 0.16.04, p < 0.001) . Mean 

discriminability and response bias (formulas below) for the PILT-P/N did not differ significantly 

based on PILT-P stimulus type or task order (effect of task order on PILT-N discriminability p = 

0.145, effect of stimulus type on response bias p = 0.215 for the PILT-N, remaining p > 0.250). 

Individual Difference Measures  

Children and young adults completed the child and adult version of the Behavioral 

Inhibition/Behavioral Activation Scale (BIS/BAS) respectively (Carver & White 1994, Muris et 

al 2005). Mean scores were calculated for the revised, age-invariant subscales (BAS drive, BAS 

reward, and BIS) (Pagliaccio et al Under Review). It is important to note that while the factor 

structure, item loadings, thresholds, and unique/residual variances of the revised BIS/BAS 

showed age invariance, mean differences in all BIS/BAS subscales were still observed across 

development by Pagliaccio et al., (2015). Possible subscale scores ranged from one to four with a 
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four indicating the greatest level for the given construct (see Supplemental Table S4.1 for 

subscale means/items). 

Data Processing 

 As in previous studies (Luking et al 2015, Luking et al Under Review, Pizzagalli et al 

2005), individual trials with reaction time (RT) either beyond 150-2500 msec or beyond +/- 3 

standard deviations from the participant’s mean RT were excluded, after which discriminability 

and response bias were calculated for each of the three blocks of 40 trials. Greater 

discriminability (log d) indicates improved ability to distinguish long from short stimuli. 

Response bias (log b) assesses behavioral responsivity to feedback. Positive values are typically 

observed during the PILT-P and indicate a greater propensity to select the more frequently 

rewarded (RICH) stimulus. Negative values are typically observed during the PILT-N and 

indicate a greater propensity to select the LEAN stimulus, i.e. to avoid the more frequently 

punished response. 

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (log 𝑑) = 
1

2
log (

𝑅𝐼𝐶𝐻𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝐸𝐴𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑅𝐼𝐶𝐻𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝐸𝐴𝑁𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
) 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐵𝑖𝑎𝑠 (log 𝑏) = 
1

2
log (

𝑅𝐼𝐶𝐻𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝐸𝐴𝑁𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑅𝐼𝐶𝐻𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝐸𝐴𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡
) 

 

Data Analysis 

 All analyses were conduced using SPSS 20.0.0. Analyses investigating response bias 

focused on mean or change in bias across the initial (block 1) and final (block 3) task blocks; 

analyses did not examine block 2 as is typical for studies using the PILT (Luking et al 2015, 

Luking et al Under Review, Pizzagalli et al 2005).  

Relations among individual difference measures and differences by age group 

Correlations between BIS, BASd, and BASr were conducted within each age group 
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(Supplemental Table S4.1). Independent samples t-tests were conducted to test for differences in 

BIS/BAS levels across age groups. As there was no strong evidence for differential/specific 

relations between BASd versus BASr and approach/avoidance behavior and given the strong 

intercorrelation (collinearity) between these subscales, subsequent analyses were conducted in 

parallel using either BASd or BASr. As qualitatively similar results were observed for the two 

sets of analyses, results with the BASd are presented in the main text and BASr analyses are 

displayed in Supplemental Materials available online. 

Effects of age group and individual differences on response bias 

Repeated measures ANOVAs were conducted to investigate how response bias differed 

across tasks, blocks, groups, BIS, and behavioral activation (one ANOVA included the BAS 

drive subscale [main text] and one included the BAS reward sensitivity subscale [supplement]). 

Task (PILT-P, PILT-N) and Block (first block – block 1, last block – block 3) served as the 

within-subject repeated measures; main effects of Task Type and Task Type by Block 

interactions were investigated. Age Group (children=0; adults=1) and PILT-P stimulus type 

(nose=0; mouth=1) served as between-subjects factors. BAS (drive or reward), BIS, number of 

PILT-P and PILT-N feedback events were included as continuous predictors. Given our 

hypotheses regarding age and behavioral inhibition/activation, we focus on main effects and 

interactions of these factors with Task Type and Task Type by Block.  

Post-hoc regressions (for the whole sample and split by age) were preformed to 

determine sources/directions of significant effects in the repeated measures ANOVA. In post-hoc 

regression analyses, mean response bias (block 1, block 3) for each task was used as a dependent 

measure to parse main effects and interactions with Task Type while response bias change (block 

3 – block 1) for each task was used to parse interactions of Task Type and Block. Age Group, 
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PILT-P stimulus type, BIS, BAS, and the number of feedback instances were included as 

predictors.  

Effects of age group on speed and accuracy following feedback 

Post-feedback slowing and decreases in accuracy are commonly observed where the degree of 

slowing tends to be largest following incorrect feedback and in some studies is proportional to an 

individual’s processing/sensitivity to that feedback (Notebaert et al 2009). To further test 

whether losses loom larger for children than adults on other metrics beyond response bias, we 

conducted two repeated measures ANOVAs to examine group differences in 1) reaction time and 

2) accuracy based on previous trial feedback (versus no feedback) and Task Type. Task (PILT-P, 

PILT-N) and Feedback (feedback, no feedback) served as within-subject repeated measures. For 

the PILT-P, the factor ‘Feedback’ included speed/accuracy averaged across trials following 

correct responses that received either gain feedback or no feedback while for the PILT-N the 

factor ‘Feedback’ included speed/accuracy averaged across trials following an incorrect response. 

Age Group and PILT-P Stimulus Type served as between-subjects factors. Post-hoc independent 

samples t-tests were conducted to determine the source and direction of significant interactions. 

A Bonferronni correction for multiple comparisons (0.05/4=0.0125) was used to determine 

significance for effects/interactions from the 4 main ANOVAs. 
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Figure 4.2: PILT-Positive And PILT-Negative Response Bias  
Response bias (log b) within each block of 40 trials during the PILT-Positive (blue) and PILT-

Negative (red) for adults and children. 
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4.3 Results 

Do Children and Adults Show Similar Levels of/Relations Between Behavioral Inhibition and 

Behavioral Activation?  

Both children and adults showed strong positive relations between BASd and BASr (all p 

≤ 0.001), neither of which significantly related to BIS (all p > 0.250). Further, adults reported 

significantly higher scores on all subscales relative to children (BIS and BASr p < 0.001; BASd 

p = 0.042). See Supplemental Table S4.1 for intercorrelations and BIS/BAS descriptive statistics 

by group. 

Do Losses Loom Larger For Children Than Adults?  

Results from the repeated measures ANOVA investigating relations between response 

bias and Age Group are shown in Table 4.1 and Supplemental Table S4.2, post hoc regressions 

are shown in Table 4.2 and Supplemental Table S4.3. Children and adults both developed 

response biases that significantly differed from zero, such that both groups learned to 

preferentially select the more frequently rewarded RICH response during the PILT-P and to 

avoid the more frequently punished RICH response during the PILT-N (Figure 4.2). However, 

both mean response bias and response bias change (difference between the last and first block) 

differed by Age Group (main effect of Age Group and interaction of Task Type, Block, and Age 

Group in Table 4.1 and Figure 4.3A). Specifically, relative to adults, children showed both 

elevated mean levels of loss avoidance (more negative response bias) as well as a greater shift in 

loss avoidance (more negative change in response bias from the first to last block) across the 

PILT-N (Table 4.2, Supplemental Table S4.3). However, no significant effects of age were 

observed for PILT-P mean bias or bias change (Table 4.2, Supplemental Table S4.3). Further, in 

the child group, PILT-N mean response bias was over twice that of the PILT-P (estimated 
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marginal means [standard error]; PILT-N = -0.43 [0.04], PILT-P = 0.19 [0.02]) while PILT-N 

and PILT-P mean response bias were of similar size for adults (estimated marginal means 

[standard error]; PILT-N = -0.30 [0.05], PILT-P = 0.23 [0.03]). Together these results suggest 

that children and adults show similar levels of gain approach behavior, but that children show 

enhanced loss avoidance relative to adults, i.e. losses loom larger for children than adults. 
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Table 4.1: Repeated Measures ANOVA Investigating Effects Of Age, Task 

Type, Block, BIS, And BAS On Response Bias 

 
Interaction Type and 

Factor/Predictor 

F-

Statistic 

Partial 

η2 
p-value 

Main Effects    

Task Type 0.27 0.002 0.608 

Age Group 13.32** 0.091 <0.001 

BAS Drive 6.24 0.045 0.014 

BIS 0.08 0.001 0.782 

Two-Way Interactions 

with Task Type 
   

Block 7.21* 0.051 0.008 

Age Group 2.26 0.017 0.135 

BAS Drive 2.90 0.021 0.091 

BIS <0.01 <0.001 0.986 

Three-Way Interactions 

with Task Type and 

Block 

   

Age Group 6.86* 0.049 0.010 

BAS Drive 8.82* 0.062 0.004 

BIS 1.18 0.009 0.280 

 

Note: BAS = Behavioral Activation Scale, BIS = Behavioral Inhibition Scale. See Table S2 in 

the Supplemental Material available online for full ANOVA results. *p<0.0125  **p≤0.001 
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Figure 4.3: Relations Between Age Group And Behavior  

Estimated marginal means from repeated measures ANOVAs investigating a) response bias, b) mean reaction time, and c) mean 

accuracy during the PILT-Positive (PILT-P) in blue and PILT-Negative (PILT-N) in red. Values are controlled for Stimulus Type and 

Feedback Amount are presented in all panels; panel A values are also controlled for BIS and BASd. Darker colors and open markers 

represent values for the adult group, brighter colors and solid markers represent child group values.  
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Table 4.2: Post Hoc Regressions Predicting Mean Response Bias And 

Response Bias Change For The PILT-Positive (PILT-P) And PILT-Negative 

(PILT-N)

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: PILT = Probabilistic Incentive Learning Task, Age Group = 0-Children vs. 1-Adults, BIS 

= Behavioral Inhibition Scale, BAS = Behavioral Activation Scale, b = unstandardized beta, β = 

standardized beta. Step 2 of Regression Models Reported in Supplemental Table S4.3 *p<0.0125  

**p≤0.001 

Dependent Variable and 

Predictors 
b β  

t-

statistic 

p-

value 

PILT-P Mean Response Bias     

Age Group 0.07 0.17 1.65 0.102 

BIS -0.01 -0.02 -0.18 0.860 

BAS Drive -0.02 -0.06 -0.73 0.466 

PILT-P Response Bias 

Change 
    

Age Group -0.03 -0.05 -0.46 0.644 

BIS -0.06 -0.13 -1.27 0.206 

BAS Drive 0.12 0.26 3.10* 0.002 

PILT-N Mean Response Bias     

Age Group 0.23 0.31 3.40* 0.001 

BIS -0.02 -0.03 -0.41 0.686 

BAS Drive -0.10 -0.20 -2.87* 0.005 

PILT-N Response Bias 

Change 
    

Age Group 0.28 0.37 3.37* 0.001 

BIS -0.01 -0.02 -0.19 0.849 

BAS Drive -0.08 -0.15 -1.82 0.071 
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Results from the repeated measures ANOVA investigating relations between RT or 

accuracy and Age Group are shown in Table 4.3 and Supplemental Table S4.4 and post hoc 

regressions are shown in Supplemental Table S4.5. Relative to adults, children were slower 

overall (main effect of age group) and age differences in RT further differed based on feedback 

(two-way interaction of Age Group with Feedback) (Figure 4.3B). The post-hoc regression 

showed that children were significantly slower to respond than adults post-feedback versus post-

no feedback (β = -0.27, t = -2.81, p = 0.006; Supplemental Table S4.5). The interaction of Age 

Group and Feedback also differed across Task Types (three-way interaction of Age Group, 

Feedback, and Task Type). Post-hoc regressions indicated that children showed exaggerated 

post-feedback slowing relative to adults following loss feedback (β = -0.31, t = -3.30, p = 0.001; 

Supplemental Table S4.5) but not following gain feedback (β = -0.03, t = -0.36, p = 0.720; 

Supplemental Table S4.5). 
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Table 4.3: Repeated Measures Anovas Investigating Effects Of Age, Task 

Type, And Previous Trial Feedback On Reaction Time And Accuracy 

 

Note: See Supplemental Table S4.4 for full ANOVA results. *p<0.0125  **p≤0.001 

Interaction Type and  

Factor/Predictor 

Reaction Time ANOVA Accuracy ANOVA 

F-Statistic Partial η2 p-value 
F-

Statistic 
Partial η2 

p-

value 

Main Effects       

Task Type 0.04 <0.001 0.852 11.25* 0.076 0.001 

Previous Trial 

Feedback 
2.20 0.017 0.140 1.60 0.011 0.208 

Age Group 141.90** 0.458 <0.001 4.71 0.024 0.032 

Two-Way Interactions 

with Task Type 
      

Previous Trial 

Feedback 
1.34 0.010 0.249 0.02 <0.001 0.889 

Age Group 0.23 0.003 0.630 15.99** 0.073 <0.001 

Two-Way Interaction 

with Previous Trial 

Feedback 

      

Age Group 7.92* 0.036 0.006 2.77 0.025 0.098 

Three-Way Interaction 

with Task Type and 

Previous Trial 

Feedback 

      

Age Group 7.96* 0.041 0.005 2.91 0.023 0.091 
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As intended by the post-stimulus perceptual mask, participants were generally less 

accurate during the PILT-N than the PILT-P (main effect of task Table 4.3 and Supplemental 

Table S4.4, Figure 34.C), allowing a necessary increase in incorrect responses that could receive 

loss feedback (see methods). Task Type also significantly interacted with Age Group; while 

children were significantly less accurate during the PILT-N than adults  (t (138) = -6.82, p < 

0.001, Cohen’s d = -1.15, r = -0.50), accuracy did not significantly differ for children and adults 

during the PILT-P (t (138) = -1.39, p = 0.166, Cohen’s d = -0.24, r = -0.12). 

Relative to adults during the PILT-N, children showed 1) both more negative response 

bias and more negative change in response bias, 2) greater slowing post loss feedback than no 

feedback, 4) greater decreases in general accuracy (Figure 4.3A-C).  No significant age 

differences were observed during the PILT-P for 1) mean response bias or change in response 

bias, 2) differences in RT following feedback versus no feedback, or 3) differences in accuracy. 

Do Individual Differences in Behavioral Inhibition/Activation Predict Incentive-Related 

Behaviors Across Age? 

We used repeated measures ANOVA (Table 4.1, Supplemental Tables S4.2 and S4.6) 

and post-hoc regressions (Table 4.2, Supplemental Tables S4.3 and S4.7) to test whether 

individual differences in BIS and BASd predicted behavioral responsivity to incentive feedback 

and whether this was similar across age groups. A significant main effect of BASd and a 

significant three-way interaction of BASd with Task Type and Block were observed across the 

full sample (Table 4.1, Supplemental Table S4.2) as well as within each age group individually 

(adults p =0.017, children p = 0.076; Supplemental Tables S4.6-4.7). In planned follow-up 

regression analyses, BAS drive was both a significant positive predictor of change in PILT-P 

response bias (β = 0.26, t = 3.10, p = 0.002) and a significant negative predictor of mean PILT-N 
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response bias (β = -0.20, t = -2.87, p = 0.005) indicating that individuals with elevated BASd 

show both greater increases in gain approach across the PILT-P and greater loss avoidance 

during the PILT-N (Table 4.2 and Supplemental Table S4.3, see Supplemental Table S4.7 for 

regressions within each age group; Figure 4.4). Importantly, the interaction of Age Group and 

BASd did not significantly predict response bias for either task (PILT-P change β = 0.46, t = 

1.21, p = 0.230; PILT-N mean bias β = -0.04, t = -0.14, p = 0.892; Supplemental Table S4.3).  

Further, the main effect and interactions with BIS were not significant (all p > 0.250; Tables 4.1-

4.2, Supplemental Table S4.3).  

Are Gain Approach and Loss Avoidance Behaviors Independent Predictors of BAS Drive? 

Given that both PILT-P bias change and PILT-N mean bias significantly related to BASd, 

we conducted an additional post-hoc regression to investigate whether bias during each task 

predicted independent or common variance in BASd. Specifically, age group, PILT-P bias 

change, and PILT-N mean bias were used to predict BASd. Residualized bias scores (controlling 

for stimulus type and feedback amount) were used as predictors of BASd given that stimulus 

type/feedback amount were significant predictors of bias in the previous analyses and that our 

post-hoc question focused on relations between bias and BASd. Regressions without age group 

were also conducted within each age group. 

 Interestingly, both PILT-N mean bias (β = -0.25, t = -3.09, p = 0.002, Supplemental 

Table S4.8) and PILT-P bias change (β = 0.24, t = 3.09, p = 0.003) were significant unique 

predictors of BASd when also controlling for Age Group (Supplemental Table S4.8). Moreover, 

similar results were observed within each age group separately (Supplemental Table S4.8) 

suggesting that relations between BASd and PILT-P and PILT-N do not reflect the same 

underlying process but instead reflect unique variance in BASd in both children and adults.  
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Figure 4.4: Relations Between BAS Drive And Response Bias 
Relations between self-reported BAS drive and response bias during the PILT-Positive (PILT-P 

– blue) and PILT-Negative (PILT-N – red) within each age group. Individual adult values are 

indicated by darker colors and open markers, individual child values are indicated by brighter 

colors and closed markers. PILT bias values represent standardized regression residuals 

controlling for Age Group, Stimulus Type, and Feedback Amount. 
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4.4 Discussion 

Despite a burgeoning literature regarding differences in reward-related behavior from 

adolescence to adulthood, little is known regarding how loss avoidance differs from childhood to 

adulthood. We report significantly elevated loss avoidance in children relative to adults, but no 

significant difference in gain approach between age groups. Across age groups, individuals 

reporting elevated levels of BASd showed enhanced behavioral responsivity to gain and loss 

feedback. Further, gain approach and loss avoidance predicted unique variance in BASd across 

age groups. 

In the past several decades, there has been a shift in parenting and education policy to 

focus on the benefits of positive feedback while punishment has been discouraged due to 

damaging effects on self-esteem and the parent-child relationship (Gershoff 2002). However, 

loss (of reward) as a consequence for unwanted behaviors (or failing to complete wanted 

behaviors) can be powerful for shaping child behavior without the damaging effects of more 

active forms of punishment. The current findings suggest that children are quite sensitive to loss 

feedback and make larger changes in behavior based on this feedback than adults, a pattern 

mirrored by studies investigating learning rates from positive and negative feedback (Barringer 

& Gholson 1979, Getsie et al 1985, van den Bos et al 2012). In fact, despite receiving less 

feedback during the PILT-N than the PILT-P, response bias driven by loss was approximately 

twice the size of response bias driven by gain in the child group. This suggests that losing 

something appetitive may be particularly motivating for school-aged children. Importantly, loss 

feedback appears to be effective in eliciting changes in specific behaviors, but not effective in 

improving speed and/or overall accuracy, as children showed reduced accuracy during the loss 

task and slower reaction times following loss feedback versus no feedback relative to adults.  
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These findings could have important implications for informing educational incentives for 

school-aged children.   

 Across age groups, participants reporting elevated BASd showed both greater gain 

approach behavior and greater loss avoidance and, importantly, each behavior predicted unique 

variance in BASd. The current findings along with the handful of studies linking elevated 

anhedonia (i.e. reduced experienced pleasure) and blunted responsivity to both positive and 

negative feedback/stimuli (Chase et al 2010, Dowd & Barch 2010, Luking et al 2015, Steele et al 

2007), suggest that reduced drive/hedonic capacity may be better conceptualized as a general 

deficit in responding to incentive feedback rather than a hypo-responsivity specific to reward. At 

first glance, this reconceptualization may seem counterintuitive given that questionnaires 

assessing motivation/hedonic capacity (including Carver & White’s BAS) and associated 

theories tend to focus on response to reward/positive events. However, in the current task 

elevated gain approach and loss avoidance both lead to similar outcomes, greater net winnings, 

and thus may both tap into approach motivation constructs. 

This reconceptualization has important implications not only theoretically, but also 

clinically. Motivational/hedonic deficits are experienced across a wide variety of psychiatric 

disorders and are highlighted in the NIMH’s RDoC initiative (Insel et al 2010). Given that gain 

approach and loss avoidance both predict unique variance in BASd, an interesting future 

direction will be to investigate whether altered gain approach and/or loss avoidance inform novel 

distinctions in domains of psychopathology associated with altered motivation/hedonic capacity. 

It is also interesting that loss avoidance in this task related significantly to motivation but not 

punishment sensitivity (BIS). It is possible that BIS would more strongly relate to PILT-N 

behavior if punishments, such as aversive tastes or mild shocks, were delivered instead of loss of 
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reward, as BIS questions assess responsivity to punishment/negative social outcomes. Future 

studies investigating punishment avoidance along with gain/loss approach/avoidance are needed 

to evaluate whether BASd specifically predicts behavioral shifts towards appetitive outcomes 

(irrespective of the valence of feedback driving that behavior) or predicts responsiveness to all 

outcomes, including punishment. 

Relations between self-reported BASd and approach/avoidance behavior are of further 

interest given that similar patterns were observed in both age groups, suggesting that 

mechanisms underlying such relations are likely conserved across age. Longitudinal studies are 

needed to explicitly test this hypothesis. It is also interesting that age differences in BIS/BAS did 

not explain the observed age differences in behavior. Specifically, elevated BASd was related to 

elevated loss avoidance in both children and adults.  However while adults displayed greater 

BASd relative to children, they also displayed reduced loss avoidance relative to children, thus it 

is unclear what factor(s) may mediate the observed age difference in loss avoidance. There is 

some evidence that developmental differences in striatal-prefrontal functional connectivity 

predicts differences in the relative influence of reward and negative feedback on learning from 

childhood to adulthood (van den Bos et al 2012). However, future behavioral/neuroimaging 

studies investigating loss avoidance and gain approach are needed to explore the mechanisms 

explaining the current age difference, given that responses to negative feedback and loss of 

reward are not necessarily equivalent.    

Limitations  

 In the current study, incentive feedback was tied to performance on a given trial, which 

allowed the number of feedback instances to differ, particularly with varying accuracy during the 

PILT-N. Children were generally less accurate than adults during the PILT-N and received more 
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loss feedback, which could have influenced age effects. However, as more loss feedback related 

to reduced loss avoidance within each group, and that age effects remained when controlling for 

feedback amounts, it is unlikely that children’s elevated loss avoidance is explained by larger 

loss feedback amounts. Another potential limitation is that children and adults received different 

incentives. Although we feel that this is a stronger approach than offering fixed monetary 

rewards, which is susceptible to age differences in incentive valuation, future studies using 

similar incentives are needed to replicate current findings. A final potential limitation is our use 

of self-reported BIS/BAS as self-report accuracy may differ across age. Importantly, 

measurement invariance from childhood through adulthood, i.e. whether the same construct is 

being measured across groups, has been tested and verified for the current BIS/BAS subscales. 

Further, similar relations between behavior and BIS/BAS self-report were observed in each age 

group. Thus, it is unlikely that issues with self-report in the child group substantially impacted 

the current results.  

Conclusions 

In sum, the current study highlights the often-neglected role of loss feedback from both a 

developmental and individual differences standpoint. Behavioral responsivity to loss feedback is 

elevated in children and in individuals with elevated BAS across developmental epochs. Thus, 

loss feedback may be a particularly useful motivator during childhood and may be an effective 

and potentially less damaging alternative to other punishments. Further, individuals reporting 

greater motivation (BAS drive) showed elevated loss avoidance and elevated gain approach 

behavior across age groups. This finding suggests a re-conceptualization of drive as comprised of 

behavioral/motivational sensitivity to both reward and loss feedback, rather than focusing only 

on positive feedback/outcomes. Future studies are needed to investigate the neural underpinnings 
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of both developmental differences in loss avoidance as well as the unique relations between gain 

and loss responsivity and drive. Additional investigation of this area is warranted to inform 

applications to parenting, education, and child development policy.  
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Supplemental Table S4.1 

BIS/BAS Intercorrelations and Descriptive Statistics by Age Group 

 

Scale 
Pearson’s r Mean (St Dev) 

T-statistic ADULTS CHILDREN ADULTS CHILDREN 

1) Behavioral Inhibition System Subscale 1 2 3 1 2 3 3.23 (0.51) 2.35 (0.72) 8.35** 

2) Behavioral Activation System - Drive 

Subscale 
0.05 

  
0.09 

 
  3.00 (0.59) 2.74 (0.84) 2.06† 

3) Behavioral Activation System - 

Reward Responsiveness Subscale 
0.03 0.41** 

 
0.14 0.52**   3.77 (0.30) 3.55 (0.45) 3.4** 

 

Note: Item response options range from 1-Not True to 4-Very True. Responses were averaged within a subscale such that a score of 4 

indicates the maximum level of that construct. T-statistics indicate the results of a group t-test comparing mean scores for adults vs. 

children. **p≤0.001 †p <0.05 

Behavioral Inhibition Scale Questions: I worry about making mistakes, Criticism or scolding hurts me quite a bit, I feel pretty worried 

or upset when I think or know somebody is angry at me, I feel worried when I think I have done poorly at something important 

Behavioral Activation - Drive Subscale Questions: When I want something I usually go all-out to get it, I go out of my way to get 

things I want, If I see a chance to get something I want I move on it right away 

Behavioral Activation - Reward Sensitivity Subscale Questions: When I get something I want, I feel excited and energized, When I’m 

doing well at something I love to keep at it, It would excite me to win a contest  
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Supplemental Table S4.2 

Repeated Measures ANOVA Investigating Effects of Age, Task Type, Block, BIS, and BAS on Response Bias 

Interaction Type and  

Factor/Predictor 

BAS Drive BAS Reward Responsiveness 

F-Statistic Partial η2 p-value F-Statistic Partial η2 p-value 

Main Effects       

Task Type 0.27 0.002 0.608 0.32 0.002 0.578 

Age Group 13.32** 0.091 <0.001 13.87** 0.094 <0.001 

BAS 6.24 0.045 0.014 4.53 0.033 0.035 

BIS 0.08 0.001 0.782 0.04 <0.001 0.848 

PILT-P Stimulus Type 7.07 0.050 0.090 7.83* 0.056 0.006 

Gain Feedback Amount 8.92* 0.063 0.003 11.60** 0.080 0.001 

Loss Feedback Amount 45.76** 0.256 <0.001 47.62** 0.264 <0.001 

Two-Way Interactions with Task 

Type 
      

Age Group 2.26 0.027 0.135 2.43 0.018 0.122 

BAS 2.90 0.021 0.091 1.88 0.014 0.172 

BIS <0.01 <0.001 0.986 <0.01 <0.001 0.975 

Block 7.21* 0.051 0.008 7.13 0.051 0.009 

PILT-P Stimulus Type 13.23** 0.090 <0.001 13.98** 0.095 <0.001 

Gain Feedback Amount 0.04 <0.001 0.843 0.01 <0.001 0.944 

Loss Feedback Amount 33.24** 0.200 <0.001 34.55** 0.206 <0.001 

Three-Way Interactions with Task 

Type and Block 
      

Age Group 6.858* 0.049 0.010 7.503* 0.053 0.007 

BAS 8.824* 0.062 0.004 6.952* 0.050 0.009 

BIS 1.176 0.009 0.280 1.399 0.010 0.239 

PILT-P Stimulus Type 0.022 <0.001 0.883 0.102 0.001 0.750 

Gain Feedback Amount 8.378* 0.059 0.004 11.456** 0.079 0.001 

Loss Feedback Amount 3.674 0.027 0.057 4.313 0.010 0.040 

Note: PILT-P = PILT-Positive, BAS = Behavioral Activation Scale (either Drive or Reward Responsiveness), BIS = Behavioral 

Inhibition Scale. *p≤0.0125  **p≤0.001
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Supplemental Table S4.3 

Post Hoc Regressions Predicting Mean Response Bias and Response Bias Change For the PILT-

Positive and PILT-Negative 

Predictor 

BAS Drive 

Step 1 Step 2 Step 3 

b β  t-stat p-val b β  t-stat p-val b β  t-stat p-val 

PILT-P Mean 

Bias 
            

Intercept -1.24  -2.56* 0.012 -1.11  -2.10† 0.038 -1.19  -2.18† 0.031 

Age Group 0.06 0.15 1.76 0.081 0.07 0.17 1.65 0.102 0.18 0.42 0.79 0.434 

PILT-P 

Stimulus Type 
-0.03 -0.07 -0.82 0.416 -0.04 -0.08 -0.90 0.371 -0.03 -0.07 -0.81 0.418 

Feedback 

Amount 
0.03 0.24 2.87* 0.005 0.03 0.23 2.65* 0.009 0.03 0.23 2.71* 0.008 

BIS   
  

  -0.01 -0.02 -0.18 0.860 -0.01 -0.03 -0.22 0.828 

BAS   
  

  -0.02 -0.06 -0.73 0.466 0.00 -0.01 -0.08 0.935 

BIS x Age G    
  

    
  

  0.01 0.06 0.14 0.891 

BAS x Age G   
  

    
  

  -0.04 -0.33 -0.86 0.391 

Model  R2=.11; Adj R2=.09; F=5.71; p=.001 R2=.12; Adj R2=.08; F=3.51; p=.005 
R2=.12; Adj R2=.07; F=2.59; 

p=.016 

PILT-P Bias 

Change 
            

Intercept 0.21  0.26 0.794 -0.23  -0.27 0.790 <-.01  <-.01 0.997 

Age Group -0.05 0.08 -0.86 0.390 -0.03 -0.05 -0.46 0.644 -0.34 -0.50 -0.92 0.357 

PILT-P 

Stimulus Type 
0.09 1.31 1.31 0.194 0.09 0.13 1.45 0.148 0.09 0.12 1.33 0.185 

Feedback 

Amount 
0.00 -0.02 -0.26 0.795 0.00 0.00 0.03 0.972 0.00 -0.01 -0.12 0.908 

BIS   
  

  -0.06 -0.13 -1.27 0.206 -0.06 -0.13 -1.07 0.286 

BAS   
  

  0.12 0.26 3.10* 0.002 0.09 0.19 1.80 0.075 

BIS x Age G   
  

    
  

  0.00 0.02 0.05 0.962 

BAS x Age G   
  

    
  

  0.10 0.46 1.21 0.230 

Model  R2=.03; Adj R2=.01; F=1.33; p=.267 R2=.10; Adj R2=.07; F=3.03; p=.013 R2=.11; Adj R2=.06; F=2.37; p=.026 

PILT-N Mean 

Bias 
            

Intercept -0.95  -11.60** <0.001 -0.62  -3.97** <0.001 -0.73  -4.20** <0.001 

Age Group 0.20 0.27 3.41** 0.001 0.23 0.31 3.40** 0.001 0.70 0.96 2.19† 0.030 

PILT-P 

Stimulus Type 
0.22 0.28 3.83** <0.001 0.21 0.26 3.62** <0.001 0.21 0.26 3.66** <0.001 

Feedback 

Amount 
0.02 0.58 7.64** <0.001 0.02 0.56 7.48** <0.001 0.02 0.54 7.23** <0.001 

BIS   
  

  -0.02 -0.03 -0.41 0.686 0.04 0.07 0.73 0.467 

BAS   
  

  -0.10 -0.20 -2.87* 0.005 -0.10 -0.19 -2.33† 0.021 

BIS x Age G   
  

    
  

  -0.15 -0.69 -1.83 0.070 

BAS x Age G   
  

    
  

  -0.01 -0.04 -0.14 0.892 

Model  R2=.36; Adj R2=.35; F=25.86; p<.001 R2=.40; Adj R2=.38; F=18.00; p<.001 R2=.42; Adj R2=.39; F=13.48; p<.001 

PILT-N Bias 

Change 
            

Intercept -0.35  -3.54** 0.001 -0.10  -0.51 0.613 0.07  0.31 0.757 

Age Group 0.26 0.35 3.65** <0.001 0.28 0.37 3.37** 0.001 -0.40 -0.53 -1.00 0.318 

PILT-P 

Stimulus Type 
0.08 0.10 1.12 0.266 0.07 0.08 0.95 0.342 0.06 0.08 0.90 0.371 

Feedback 

Amount 
0.01 0.13 1.49 0.140 0.00 0.12 1.30 0.195 0.01 0.14 1.53 0.127 

BIS   
  

  -0.01 -0.02 -0.19 0.849 -0.07 -0.14 -1.17 0.245 

BAS   
  

  -0.08 -0.15 -1.82 0.071 -0.09 -0.18 -1.78 0.077 

BIS x Age   
  

    
  

  0.18 0.80 1.74 0.084 

BAS x Age G   
  

    
  

  0.05 0.21 0.57 0.571 

Model  R2=.09; Adj R2=.07; F=4.45; p=.005 R2=.11; Adj R2=.08; F=3.39; p=.007 R2=.14; Adj R2=.09; F=2.94; p=.007 
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Predictor 

BAS Reward Responsiveness 

Step 1 Step 2 Step 3 

b β  t-stat p-val b β  t-stat p-val b β  t-stat p-val 

PILT-P Mean 

Bias 
            

Intercept -1.24  -2.56* 0.012 -1.10  -2.07† 0.040 -1.16  -2.12† 0.036 

Age Group 0.06 0.15 1.76 0.081 0.07 0.18 1.66 0.098 0.30 0.70 0.73 0.465 

PILT-P 

Stimulus Type 
-0.03 -0.07 -0.82 0.416 -0.03 -0.08 -0.86 0.392 -0.03 -0.07 -0.78 0.438 

Feedback 

Amount 
0.03 0.24 2.87* 0.005 0.03 0.24 2.79* 0.006 0.03 0.23 2.75* 0.007 

BIS   
  

  0.00 -0.01 -0.14 0.886 -0.01 -0.02 -0.19 0.848 

BAS   
  

  -0.03 -0.06 -0.68 0.497 -0.01 -0.02 -0.20 0.842 

BIS x Age G   
  

    
  

  0.01 0.05 0.10 0.921 

BAS x Age G   
  

    
  

  -0.06 -0.58 -0.64 0.523 

Model  R2=.11; Adj R2=.09; F=5.71; p=.001 R2=.12; Adj R2=.08; F=3.49; p=.005 R2=.12; Adj R2=.07; F=2.52; p=.018 

PILT-P Bias 

Change 
            

Intercept 0.21  0.26 0.794 0.09  0.10 0.920 0.09  0.10 0.922 

Age Group -0.05 -0.08 -0.86 0.390 -0.03 -0.04 -0.36 0.719 -0.01 -0.01 -0.01 0.990 

PILT-P 

Stimulus Type 
0.09 0.12 1.30 0.194 0.08 0.11 1.19 0.235 0.08 0.11 1.19 0.237 

Feedback 

Amount 
0.00 -0.02 -0.26 0.795 -0.01 -0.04 -0.43 0.670 -0.01 -0.04 -0.44 0.664 

BIS   
  

  -0.06 -0.13 -1.24 0.218 -0.06 -0.14 -1.10 0.272 

BAS   
  

  0.11 0.13 1.49 0.139 0.12 0.14 1.29 0.198 

BIS x Age G   
  

    
  

  0.02 0.08 0.17 0.863 

BAS x Age G   
  

    
  

  -0.02 -0.10 -0.11 0.912 

Model  R2=.03; Adj R2=.01; F=1.33; p=.267 R2=.05; Adj R2=.02; F=1.49; p=.197 R2=.05; Adj R2<.01; F=1.06; p=.396 

PILT-N Mean 

Bias 
            

Intercept -0.95  -11.60** <0.001 -0.40  -1.53** 0.128 -0.32  -1.07 0.286 

Age Group 0.20 0.27 3.41** 0.001 0.24 0.32 3.50** 0.001 0.12 0.17 0.21 0.830 

PILT-P 

Stimulus Type 
0.22 0.28 3.83** <0.001 0.21 0.27 3.69** <0.001 0.20 0.26 3.58** <0.001 

Feedback 

Amount 
0.02 0.58 7.64** <0.001 0.02 0.57 7.54** <0.001 0.02 0.56 7.45** <0.001 

BIS   
  

  -0.02 -0.03 -0.40** 0.692 0.04 0.09 0.83 0.409 

BAS   
  

  -0.14 -0.15 -2.13† 0.035 -0.20 -0.21 -2.50† 0.014 

BIS x Age G   
  

    
  

  -0.16 -0.74 -1.94 0.055 

BAS x Age G   
  

    
  

  0.16 0.82 1.12 0.266 

Model  R2=.36; Adj R2=.35; F=25.86; p<.001 R2=.39; Adj R2=..36; F=16.83; p<.001 R2=.41; Adj R2=.38; F=12.95; p<.001 

PILT-N Bias 

Change 
            

Intercept -0.35  -3.54** <0.001 0.31  0.97 0.334 0.25  0.67 0.505 

Age Group 0.18 0.25 2.95* 0.004 0.20 0.27 2.66* 0.009 0.37 0.50 0.56 0.576 

PILT-P 

Stimulus Type 
0.12 0.15 1.78 0.077 0.12 0.15 1.75 0.082 0.12 0.15 1.84 0.068 

Feedback 

Amount 
0.07 0.32 3.94** <0.001 0.07 0.32 4.01** <0.001 0.07 0.31 3.91** <0.001 

BIS   
  

  0.03 0.06 0.62 0.539 -0.02 -0.04 -0.35 0.724 

BAS   
  

  -0.19 -0.20 -2.46† 0.015 -0.13 -0.14 -1.45 0.149 

BIS x Age G   
  

    
  

  0.14 0.63 1.43 0.154 

BAS x Age G   
  

    
  

  -0.16 -0.81 -0.96 0.341 

Model  R2=.17; Adj R2=.15; F=9.24; p<.001 R2=.21; Adj R2=.18; F=6.958; p<.001 R2=.22; Adj R2=.18; F=5.40; p<.001 

Note: b = unstandardized beta, β = standardized beta, Adj, R2 = adjusted R2   †p<0.05  *p<0.0125  

**p≤0.001 
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Supplemental Table S4.4 

Repeated Measures ANOVAs Investigating Effects of Age, Task Type, and Previous Trial 

Feedback on Reaction Time and Accuracy 

Interaction Type and 

Factor/Predictor 

Reaction Time ANOVA Accuracy ANOVA 

F-Statistic Partial η2 p-value F-Statistic Partial η2 p-value 

Main Effects       

Task Type 0.04 <0.001 0.852 11.25** 0.077 0.001 

Previous Trial Feedback 2.20 0.016 0.140 1.60 0.012 0.208 

Age Group 141.90** 0.512 <0.001 4.71 0.034 0.032 

PILT-P Stimulus Type 3.18 0.023 0.077 0.80 0.006 0.374 

Gain Feedback Amount 1.07 0.008 0.303 50.38** 0.271 <0.001 

Loss Feedback Amount 0.28 0.002 0.597 47.32** 0.260 <0.001 

Two-Way Interactions with Task Type       

Previous Trial Feedback 1.34 0.010 0.249 0.02 <0.001 0.889 

Age Group 0.23 0.002 0.630 15.99** 0.106 <0.001 

PILT-P Stimulus 0.25 0.002 0.622 3.33 0.024 0.070 

Gain Feedback Amount 0.05 <0.001 0.819 11.22** 0.077 0.001 

Loss Feedback Amount 3.47 0.025 0.065 22.08** 0.141 <0.001 

Two-Way Interactions with Previous 

Trial Feedback 
 

 
  

 
 

Age Group 7.92* 0.055 0.006 2.77 0.020 0.098 

PILT-P Stimulus 2.83 0.021 0.095 0.24 0.002 0.626 

Gain Feedback Amount 1.41 0.010 0.237 1.16 0.009 0.283 

Loss Feedback Amount 2.44 0.018 0.121 0.12 0.001 0.731 

Three-Way Interactions with Task Type 

and Previous Trial Feedback 
 

 
  

 
 

Age Group 7.96* 0.056 0.005 2.91 0.021 0.091 

PILT-P Stimulus 1.46 0.011 0.229 0.01 <0.001 0.927 

Gain Feedback Amount 0.70 0.005 0.403 0.00 <0.001 0.962 

Loss Feedback Amount 7.48* 0.053 0.007 0.36 0.003 0.551 

 

Note: PILT-P = PILT-Positive *p<0.0125  **p≤0.001 



 

 166 

Supplemental Table S4.5 

Post Hoc Regressions Predicting Differences in Reaction Time Post Feedback versus No 

Feedback During the PILT-Positive, PILT-Negative, and Across Tasks 

 
Task Type and 

Predictor 
b β  t-statistic p-value 

PILT-Positive (PILT-P)     

Intercept 185.42   0.57 0.571 

Age Group -8.90 -0.03 -0.36 0.720 

PILT-P Stimulus Type -9.42 -0.03 -0.35 0.725 

Feedback Amount -3.25 -0.04 -0.47 0.642 

Model Statistics R2=0.01; Adj R2=-0.02; F=0.14; p=0.935 

PILT-Negative (PILT-N)     

Intercept 333.84   4.80** <0.001 

Age Group -161.82 -0.31 -3.30* 0.001 

PILT-P Stimulus Type -72.86 -0.13 -1.50 0.137 

Feedback Amount -5.89 -0.21 -2.34† 0.021 

Model Statistics R2=0.09; Adj R2=0.07; F=4.26; p=0.007 

Mean of PILT-P and PILT-N     

Intercept 561.10   1.66 0.100 

Age Group -76.31 -0.27 -2.81 0.006 

PILT-P Stimulus Type -45.54 -0.15 -1.68 0.095 

Gain Feedback Amount -8.44 -0.10 -1.19 0.237 

Loss Feedback Amount -2.18 -0.15 -1.56 0.121 

Model Statistics R2=0.07; Adj R2=0.05; F=2.66; p=0.036 

 

Note: b = unstandardized beta, β = standardized beta, Adj, R2 = adjusted R2  †p<0.05  *p<0.0125  

**p≤0.001 
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Supplemental Table S4.6 

Repeated Measures ANOVA Investigating Effects of Age, Task Type, Block, BIS, and BAS on Response Bias for Adult and Child Age 

Groups 

Interaction Type 

and  

Factor/ 

Predictor 

ADULTS CHILDREN 

BAS Drive BAS Reward Responsiveness BAS Drive BAS Reward Responsiveness 

F-Statistic Partial η2 p-value F-Statistic Partial η2 p-value F-Statistic Partial η2 p-value F-Statistic Partial η2 p-value 

Main Effects             

Task Type 0.01 <0.01 0.931 0.04 <0.01 0.843 0.70 0.01 0.405 0.66 0.01 0.419 

BAS 3.05 0.05 0.086 <0.01 <0.01 0.948 2.34 0.04 0.131 3.73 0.06 0.058 

BIS 2.95 0.04 0.091 3.06 0.05 0.085 0.42 0.01 0.517 0.72 0.01 0.399 

Stim Type 
0.42 0.01 0.520 0.66 0.01 0.420 11.02* 0.15 0.001 11.52* 0.15 0.001 

Gain FB  13.47** 0.17 <0.001 13.43* 0.17 0.001 2.73 0.04 0.103 4.42 0.06 0.039 

Loss FB  31.02** 0.33 <0.001 38.04** 0.37 <0.001 23.04** 0.26 <0.001 23.06** 0.26 <0.001 

Interactions 

with Task Type 
            

Block 0.02 <0.01 0.876 0.13 <0.01 0.717 13.84** 0.18 <0.001 15.12** 0.19 <0.001 

BAS 0.33 0.01 0.570 0.21 <0.01 0.648 2.12 0.03 0.151 3.99 0.06 0.050 

BIS 1.80 0.03 0.185 1.90 0.03 0.173 1.08 0.02 0.302 1.57 0.02 0.215 

Stim Type 
3.01 0.04 0.088 2.48 0.04 0.120 8.84* 0.12 0.004 9.21* 0.13 0.003 

Gain FB  0.12 <0.01 0.728 0.09 <0.01 0.770 0.02 <0.01 0.876 0.29 <0.01 0.593 

Loss FB  13.11* 0.17 0.001 16.16** 0.20 <0.001 17.53** 0.21 <0.001 17.56** 0.22 <0.001 

Interactions 

with Task Type 

and Block 

            

BAS 5.97 0.09 0.017 3.17 0.05 0.080 3.25 0.05 0.076 3.68 0.05 0.059 

BIS 1.54 0.02 0.219 1.38 0.02 0.245 0.15 <0.01 0.701 0.32 <0.01 0.573 

Stim Type 
0.97 0.01 0.329 0.87 0.01 0.355 2.24 0.03 0.139 2.48 0.04 0.120 

Gain FB  <0.01 <0.01 0.998 <0.01 <0.01 0.988 13.98** 0.18 <0.001 18.54** 0.22 <0.001 

Loss FB  0.22 <0.01 0.643 <0.01 <0.01 0.956 9.21 0.13 0.003 9.07 0.12 0.004 

Note: Stim Type = Stimulus Type during the PILT-P (0=nose, 1=mouth), FB = Feedback Amount, BAS = Behavioral Activation 

Scale (either Drive or Reward Responsiveness), BIS = Behavioral Inhibition Scale. *p<0.0125  **p≤0.001 



 

 168 

Supplemental Table S4.7 

Post Hoc Regressions Predicting Mean Response Bias and Response Bias Change For the PILT-Positive and PILT-Negative for Adult 

and Child Age Groups 

 
Dependent 

Variable and  

Predictor 

ADULTS CHILDREN 

BAS Drive BAS Reward Responsiveness BAS Drive BAS Reward Responsiveness 

b β  t-stat p-val b β  t-stat p-val b β  t-stat p-val b β  t-stat p-val 

PILT-P Mean 

Bias 
                

Intercept -2.16  -2.24† 0.029 -2.05  -2.01† 0.049 -0.65  -1.07 0.288 -0.68  -1.13 0.261 

PILT-P 

Stimulus Type 
-0.13 -0.20 -1.76†† 0.084 -0.12 -0.20 -1.69†† 0.095 0.02 0.05 0.40 0.692 0.02 0.05 0.42 0.676 

Feedback 

Amount 
0.05 0.31 2.74* 0.008 0.05 0.31 2.70* 0.009 0.02 0.18 1.42 0.159 0.02 0.19 1.50 0.138 

BIS 0.00 -0.01 -0.09 0.927 -0.01 -0.01 -0.12 0.903 -0.01 -0.03 -0.26 0.792 -0.01 -0.03 -0.26 0.795 

BAS -0.05 -0.12 -1.05 0.297 -0.06 -0.07 -0.66 0.513 0.00 -0.02 -0.16 0.874 0.00 -0.01 -0.05 0.956 

Model Statistics R2=.18; Adj R2=.13; F=3.52; p=.012 R2=.17; Adj R2=.12; F=3.32; p=.016 
R2=.04; Adj R2=-.02; F=0.67; 

p=.614 

R2=.04; Adj R2=-.02; F=0.67; 

p=.618 

PILT-P Bias 

Change 
                

Intercept -2.42  -1.49 0.142 -2.31  -1.29 0.203 1.05  1.14 0.258 1.21  1.34 0.185 

PILT-P 

Stimulus Type 
0.23 0.22 1.88†† 0.064 0.23 0.22 1.81†† 0.075 0.01 0.02 0.19 0.851 0.01 0.01 0.09 0.929 

Feedback 

Amount 
0.04 0.14 1.22 0.227 0.04 0.15 1.22 0.229 -0.02 -0.15 -1.22 0.228 -0.03 -0.20 -1.66 0.102 

BIS -0.04 -0.05 -0.45 0.656 -0.03 -0.04 -0.32 0.751 -0.07 -0.18 -1.52 0.133 -0.08 -0.20 -1.63 0.109 

BAS 0.18 0.29 2.49† 0.015 0.09 0.07 0.56 0.578 0.07 0.21 1.69†† 0.096 0.11 0.17 1.44 0.154 

Model Statistics R2=.15; Adj R2=.10; F=2.82; p=.032 R2=.07; Adj R2=.01; F=1.24; p=.303 R2=.10; Adj R2=.04; F=1.75; p=.149 
R2=.09; Adj R2=.03; F=1.55; 

p=.199 

PILT-N Mean 

Bias 
                

Intercept -0.15  -0.52 0.605 -0.49  -1.03 0.305 -0.76  -3.78** <0.001 -0.34  -1.02 0.311 

PILT-P 

Stimulus Type 
0.05 0.06 0.61 0.546 0.03 0.04 0.38 0.705 0.27 0.34 3.55** 0.001 0.27 0.34 3.56** 0.001 

Feedback 

Amount 
0.03 0.55 5.51** <0.001 0.03 0.61 6.11** 

<0.00

1 
0.02 0.50 5.19** <0.001 0.02 0.49 5.15** <0.001 

BIS -0.13 -0.19 -2.08† 0.042 -0.13 -0.20 -2.12† 0.038 0.04 0.08 0.81 0.419 0.05 0.09 0.95 0.348 

BAS -0.08 -0.15 -1.51 0.136 0.02 0.02 0.17 0.867 -0.09 -0.20 -2.05† 0.045 -0.19 -0.22 -2.26† 0.027 

Model Statistics R2=.46; Adj R2=.42; F=13.56; p<.001 R2=.44; Adj R2=.40; F=12.56; p<.001 
R2=.41; Adj R2=.38; F=11.44; 

p<.001 

R2=.42; Adj R2=.39; F=11.82; 

p<.001 
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PILT-N Bias 

Change 

Intercept -0.12  -0.31 0.761 0.82  1.36 0.180 -0.05  -0.20 0.843 0.11  0.27 0.785 

PILT-P 

Stimulus Type 
0.01 0.02 0.12 0.906 0.05 0.05 0.39 0.695 0.11 0.15 1.26 0.213 0.12 0.16 1.31 0.194 

Feedback 

Amount 
0.00 -0.03 -0.21 0.838 0.00 -0.05 -0.37 0.713 0.01 0.24 2.03† 0.047 0.01 0.23 1.99†† 0.051 

BIS 0.10 0.15 1.23 0.223 0.10 0.16 1.31 0.196 -0.07 -0.14 -1.17 0.246 -0.07 -0.14 -1.14 0.260 

BAS -0.06 -0.11 -0.86 0.394 -0.30 -0.26 -2.14† 0.037 -0.09 -0.19 -1.64 0.106 -0.11 -0.13 -1.11 0.269 

Model Statistics R2=.03; Adj R2=-.03; F=0.54; p=.705 R2=.09; Adj R2=.03; F=1.52; p=.207 R2=.14; Adj R2=.09; F=2.63; p=.042 
R2=.12; Adj R2=.07; F=2.23; 

p=0.76 

 

Note: b = unstandardized beta, β = standardized beta, Adj, R2 = adjusted R2   ††p<0.10  †p<0.05  *p<0.0125  **p≤0.001 
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Supplemental Table S4.8 

Regression predicting BAS Drive 

 

Predictors 

All Participants N=140 Adults N=70 Children N=70 

b β  
t-

statistic 
p-value b β  

t-

statistic 
p-value b β  

t-

statistic 

p-

value 

Intercept 2.71 
 

32.82** <0.001 3.03  44.74** <0.001 2.70  27.82** <0.001 

PILT-P Bias 

Change 
0.53 0.24 3.02* 0.003 0.45 0.29 2.55† 0.013 0.65 0.22 1.94†† 0.056 

PILT-N Mean Bias -0.60 -0.25 -3.09* 0.002 -0.53 -0.25 -2.20† 0.031 -0.65 -0.25 -2.16† 0.035 

Age Group 0.33 0.22 2.78* 0.006         

Model Statistics 
R2=.15; Adj R2=.13; F=8.16; 

p=<.001 

R2=.15; Adj R2=.12; F=5.86; 

p=.005 

R2=.12; Adj R2=.09; F=4.54; 

p=.014 

 

Note: Residuals used for Bias variables, controlling for stimulus type and feedback amount. b = unstandardized beta, β = standardized 

beta, Adj, R2 = adjusted R2.  ††p<0.10  †p<0.05  *p<0.0125  **p≤0.001 
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Chapter 5. 

Incentive Responsivity In Children: Relations With Depression 

Risk, Negative Mood, And Anhedonia 
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Abstract 

Objective: Reduced reward responsivity and altered response to loss (of reward) are observed in 

adults and adolescents at increased risk for Major Depressive Disorder (MDD) based on family 

history. However, it is unclear whether reduced behavioral responsivity to incentives is a lifelong 

marker of MDD risk, evident prior to the normative adolescent increase in incentive responding. 

Method: Healthy 7-10-year-old children of mothers with (high-risk; N=28) or without (low-risk; 

N=45) a history of depression performed two signal detection tasks to assess behavioral 

responsivity to gain and loss of rewards. Responsivity to gain/loss was operationalized as bias 

towards/away from responses that received more frequent reward/punishment feedback. 

Differences in responsivity relating to the child’s depression risk, general depressive symptoms 

(maternal-report), anhedonic symptoms, and negative mood symptoms were investigated via 

repeated measures ANOVA. 

Results: No significant differences in response bias toward gain or away from loss were observed 

between the risk groups. However, children with elevated anhedonic symptoms showed blunted 

responsivity to gain feedback whereas enhanced loss responsivity related to elevated negative 

mood and elevated general depressive symptoms. Elevated negative mood further related to 

reduced reward responsivity in high-risk children, but enhanced responsivity to gain in low-risk 

children. 

Conclusions: In childhood, individual differences in specific depressive symptoms are stronger 

predictors of gain approach and loss avoidance behaviors than maternal depressive history. 

Depressive symptoms characterized by low positive affect (anhedonia) most consistently related 

to gain responsivity while elevated depressed/negative mood most consistently related to loss 

responsivity. 
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5.1 Introduction 

 Behavioral/neural phenotypes associated with affective psychopathology risk have 

received much focus in recent years. Samples free of current pathology, but at increased risk for 

developing affective disorders given a positive family history (e.g. depression risk (Lieb et al 

2002)) provide unique opportunities to parse risk-related endophenotypes from effects of a 

disorder. Relatedly, there has also been increasing emphasis in the literature on relating specific 

domains of affective functioning, such as reward expectancy, learning, and loss reactivity, to 

specific symptoms/risk and to predicting clinical outcome (Insel et al 2010). The application of 

such approaches within adolescent and adult populations has yielded compelling results 

including reduced response to reward with elevated depression risk (Gotlib et al 2010, McCabe 

et al 2012, Olino et al 2014). However, few studies have investigated reward/punishment 

processing in healthy or at-risk school age children. Yet, it is particularly important to study 

incentive-related behavior in this age period as it precedes the normative developmental rise in 

reward responsivity and decrease in loss response associated with transitions into/out of 

adolescence (Galvan 2010, Galvan & McGlennen 2013). 

 Over the past decade, neuroimaging and behavioral studies have consistently reported 

reduced response to reward in adults and adolescents with MDD (for review see (Eshel & Roiser 

2010, Forbes 2011, Kerestes et al 2014)). Similarly, reduced reward response has been found in 

currently healthy adolescent samples at elevated risk for MDD based on a family history of 

depression (Gotlib et al 2010, McCabe et al 2012, Olino et al 2014). Beyond diagnostic 

categories, elevations in specific depressive symptoms such as anhedonia (lack of experienced 

pleasure) or melancholy have been linked to reduced responsivity/sensitivity to positive 

stimuli/outcomes in a variety of tasks/domains (Dowd & Barch 2010, Forbes et al 2010, 
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Pizzagalli et al 2005, Treadway et al 2009). While these lines of evidence clearly implicate 

reduced behavioral/neural response to reward not only in clinical depression but also in high risk 

states, no studies to our knowledge have evaluated whether behavioral response to reward is also 

reduced in school age children at high-risk for depression. This is an important developmental 

question as reward-related behaviors and neural systems undergo dramatic changes across 

development with peak reward responding observed during adolescence (for review see (Galvan 

2010, Richards et al 2013)).  

Of interest is whether the differences in responsivity to reward observed between high- 

and low-risk adolescents reflects alteration in the typical developmental process of enhanced 

sensitivity to reward specific to the adolescent period, or whether this phenomenon is evident 

more generally across development. At issue is whether the typical ‘adolescent peak’ in reward 

response is evident in low-risk populations, but attenuated in high-risk populations, thus making 

group differences in reward responding most evident during this normative ‘peak’. Alternatively, 

depression risk may be associated with reduced reward responsivity throughout the lifespan, 

even prior to adolescence. There is only limited cross-sectional evidence for either of these 

hypotheses (Goff et al 2013, Kujawa et al 2014), though these studies did not exclude for current 

pathology in their examination of risk. Thus, studies investigating reward responsivity in healthy 

but high-risk child populations are needed to test whether this finding is specific to puberty/post-

puberty or is observed across development, an issue that would inform the design of preventative 

interventions.  

Another important underexplored question is whether the reduced responsivity discussed 

above is specific to reward/positive stimuli or reflects a more general blunting of incentive 

responsivity independent of valence. There is evidence for blunted responses to both positive and 
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negative emotional stimuli in adult MDD (Bylsma et al 2008) and in adults (Chase et al 2010, 

Dowd & Barch 2010, Steele et al 2007, Stoy et al 2012a) and children (Luking et al 2015) with 

reduced hedonic capacity. However, there are also a number of studies reporting elevated 

responsivity to negative incentives in adult MDD (Kerestes et al 2014, Schiller et al 2013) and 

adolescent MDD risk (Gotlib et al 2010, McCabe et al 2012). No studies to our knowledge have 

investigated response to loss (of reward) independently of gain responsivity in adolescent MDD, 

i.e. not focusing on differences between gain and loss. However, several studies report elevated 

response to non-incentive negative stimuli in child/adolescent MDD and risk (Monk et al 2008, 

Pagliaccio et al 2012). This important question of whether depression risk in school age children 

is characterized by blunted responses to both reward and loss or whether the alteration is more 

specific to reward could also have important clinical/treatment implications.   

A family history of MDD confers increased risk; however only a fraction of those at 

high-risk (~40%) go on to develop MDD (Goodman & Gotlib 1999, Hammen et al 2008a, 

Hammen et al 2008b). Further, healthy children at high-risk for MDD often show elevated, 

subclinical levels of depressive symptoms, such as negative mood and anhedonia (Angold 1987).  

Thus, it is unclear whether differences between high/low-risk groups reflect elevated symptoms 

or risk-related mechanisms independent of current symptom severity. A recent study suggested 

that some neural differences in reward responsivity observed between high and low-risk 

adolescents were explained by symptom level (Olino et al 2014). As such, it is important to 

explore these symptoms in addition to risk status.    

In the current study, we used age-appropriate positive and negative incentive tasks that 

have been well studied in the adult literature (Pizzagalli et al 2008a, Pizzagalli et al 2005) along 

with dimensional measures of depressive, other internalizing, and externalizing disorder 
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symptoms to test several hypotheses within a sample of healthy 7-10-year-old children at high-

risk (maternal depressive episode history) or low-risk (no maternal psychopathology) for 

developing MDD. We hypothesized that high-risk children would show both reduced gain 

approach behavior and enhanced loss avoidance behavior relative to low-risk children. 

Additionally we hypothesized that children with elevated of anhedonia would show blunted gain 

approach and loss avoidance behavior, regardless of risk group status. 

5.2 Method 

Participants and Procedure 

  119 mothers with or without a history of depression and their 7-10-year-old children 

from the St. Louis, Missouri metropolitan area were enrolled in the study. Families were 

recruited via flyers/brochures distributed through schools and posted in the community as well as 

via the Research Participant Registry at Washington University School of Medicine. Prior to 

enrollment, mothers completed a phone screen to help determine eligibility. Children who were 

beyond 7-10 years, had begun menstruation (female), could not consume candy, were born prior 

to 35 weeks gestation, or were diagnosed previously with a psychiatric, learning, or other major 

medical disorder were excluded. 

Data presented here were collected during the first session of a multi-session protocol. On 

the day of assessment, mothers provided written informed consent and children provided written 

assent. Mothers then completed clinical interviews and questionnaires about themselves and their 

child in a separate room. Children completed a ‘tasty task’ (discussed below), two versions of a 

Probabilistic Incentive Learning Task (PILT), a clinical interview, and questionnaires. The 

Washington University in St. Louis Institutional Review Board approved all study procedures. 

Assessment of Psychopathology and Risk 
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Diagnostic Interviews 

Given our questions regarding risk for depression, analyses focus on the healthy offspring 

of women with/without a history of at least one depressive episode. To determine child 

psychiatric history, both child and mother completed the Kiddie-Structured Assessment for 

Affective Disorders-Present and Lifetime Version (KSADS) (Kaufman et al 1997) administered 

by masters level clinicians trained to reliability. Data from dyads where only one reporter 

completed the KSADS (n=5; 2 high-risk) were excluded. Based on combined reports (Bird et al 

1992), twelve children met criteria for externalizing or internalizing disorders and were excluded 

from analyses. Children with a disorder impacting ability to respond during the behavioral task 

(two tic, one general motor, one Cystic Fibrosis, one dyslexia) or whose mother used illicit drugs 

during pregnancy (maternal-report; n=3) were also excluded. 

 Depression risk was defined by maternal depressive episode history (past/present versus 

absent), established via the Structured Clinical Interview for DSM Disorders (SCID) (First 2007). 

Children of mothers without any lifetime psychiatric diagnosis were considered low-risk (n=45). 

Children of mothers who had experienced at least one depressive episode (n=28) were 

considered high-risk; 22 had recurrent depressive episodes. The remaining 24 mothers did not 

meet inclusion criteria for either group (see Supplemental Table 5.1 for diagnoses). 

Symptom Measures 

 Children and mothers completed a variety of self-report measures designed to assess 

depressive symptomology, affect, mood regulation, and sensitivity to rewards/punishments 

(Supplemental Table 5.2). Several dimensional measures of symptoms were of interest here. 

Specifically, maternal-report of child depressive symptoms was obtained from the Child 

Depression Inventory - Parent Version (CDI-P). Child self-report was also obtained from the 
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Child Depression Inventory - Child Version (CDI-C). We focus on the anhedonic and negative 

mood subscales from the CDI-C and utilize age/gender-normalized t-scores for all measures 

throughout analyses. Maternal-report of child anxiety and ADHD symptoms were obtained from 

the Child Behavior Checklist (CBCL anxiety and ADHD subscales). 

 Prior to each behavioral task, children performed a ‘tasty task’ where they rated their 

current affect, consumed two pieces of candy (children chose either M&Ms© or Skittles©), and 

then rated their affect, the sweetness of the candy, and their liking of the candy post-tasting. 

Liking rating options included extremely (n=72), a lot (n=55), moderately (n=2), a little (n=0), 

and not at all (n=0). Ratings of candy liking did not differ based on depression risk (p=0.80).  

Probabilistic Incentive Learning Task (PILT) 

Task Design and Data Processing 

To assess behavioral responsivity to feedback, we used versions of the probabilistic 

reward task developed by Pizzagalli et al (2005)  and Tripp & Alsop (1999) and previously 

modified for use in child populations (Luking et al 2015). Durring the PILT, participants perform 

a difficult two-choice discrimination (indicated whether a short or long mouth/nose was 

presented) which is followed by occasional feedback. In the PILT-Postivive version of the task 

(PILT-P), children receive either candy gain or no feedback, while in the PILT-Negative version 

(PILT-N), children receive either candy loss or no feedback (Figure 5.1A). Children gain one 

candy piece for every gain feedback instance and lose one candy from a 70-piece allotment for 

every loss feedback instance. Importantly, gain/loss feedback during the PILT-P/N only follows 

a portion of correct/incorrect responses, respectively. Feedback is also delivered unequally 

between the two responses such that one response receives approximately three times as much 

feedback as the alternative reponse (See supplement for more detailed discussion of task 
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structure).  

Behavioral responsivity to feedback is defined as the degree to which a participant 

preferentially selects/avoids the response receiving more frequent feedback (the RICH reponse, 

i.e. rich in feedback). This bias in responding (log b) is calculated via signal detection statistics 

across a block of trials. Given that the RICH and the alternative (LEAN) response should 

initially be selected with relatively equal frequency (bias near zero), general response bias and/or 

changes in response bias across a task reflects the influence of feedback on choice behavior and 

is used as the dependent measure in beahvioral analyses. 

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐵𝑖𝑎𝑠 (log 𝑏) = 
1

2
log (

𝑅𝐼𝐶𝐻𝑐𝑜𝑟𝑟𝑒𝑐𝑡∗𝐿𝐸𝐴𝑁𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑅𝐼𝐶𝐻𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡∗𝐿𝐸𝐴𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡
) 

During reward versions of this task, children and adults who are more responsive to 

feedback tend to increasingly approach the RICH reponse followed more frequently by gain 

feedback even at the expense of overall accuracy, indicated by positive values/change in 

response bias across the PILT-P (Luking et al 2015, Pizzagalli et al 2005). Conversely, during 

the punishment version, children who are more responsive to feeback tend to increasingly avoid 

the RICH reponse (Luking et al 2015). They instead prefentially select/approach the LEAN 

response that receives less loss feedback, again at the expense of overall accuracy, indicated by 

negative values/change in response bias across the PILT-N.  

Data Analysis 

 To characterize any differences in symptom levels between high and low risk groups we 

utilized independent sample t-tests. We also conducted correlations between child and parent 

reported depressive symptoms (child/parent CDI) and child-reported anhedonia and negative 

mood (CDI-C).  
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To characterize behavior on the PILTs, a repeated measures ANOVA was conducted to 

investigate how response bias changed as a function of Task Type (PILT-P, PILT-N) and Block 

(first, last).  An additional repeated measures ANOVA was conducted to describe effects of Task 

Type on mean discriminability (see supplement).  

 To test hypotheses regarding incentive responsivity, depression risk status, anhedonia, 

negative mood, and depressive symptoms, a repeated measures ANOVA was conducted with 

response bias as the dependent variable. Task Type (PILT-P, PILT-N) and Block (first, last) 

served as repeated measures, analyses focus on effects of Task Type and the interaction of Task 

Type and Block. Risk Group (high, low) and PILT-P stimulus type (mouth, nose) were included 

as between-subjects factors. Covariates of interest included general depressive symptoms (CDI-P 

total t-score), anhedonia (CDI-C subscale t-score), and negative mood (CDI-C subscale t-score); 

interactions between covariates of interest and Risk Group were also investigated. Anxiety and 

ADHD symptom levels (CBCL subscale t-scores) were also included as covariates to control for 

other symptomology though we did not have specific hypotheses regarding these measures. Post-

hoc regressions were conducted to determine the direction of significant effects within the full 

sample and within each risk group separately. For regressions involving the full sample, all 

between-subjects factors and covariates were entered as a first step followed by the interaction of 

Risk Group and covariates of interest in the second step; within group regressions included one 

step with Stimulus Type and covariates as predictors. 

5.3 Results 

Participant Characteristics and Individual Difference Measures 

 Descriptive statistics and symptom measure intercorrelations are displayed in Tables 5.1 

and 5.2. High- and low-risk groups were matched demographically, with no significant 
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differences in sex, ethnicity, age, pubertal development, or family income. Child self-report of 

general depressive symptoms, anhedonia, and negative mood did not significantly differ across 

risk groups (Table 5.1). Maternal-report of child ADHD symptoms also did not differ 

significantly across groups. However, high-risk mothers did report significantly higher levels of 

depressive symptoms and anxiety symptoms in their children relative to low-risk mothers, a 

pattern is consistent with prior literature (Gotlib et al 2010). As expected, and consistent with the 

extant literature, child-report and maternal-report of child depressive symptoms were not 

significantly related (Achenbach et al 1987). 
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Table 5.1: Demographic And Clinical Characteristics Of Healthy Children At 

Low- And High-Risk For Developing Depression 

Low Risk  

N = 42 

High Risk 

N = 27 
t/Χ2 

Gender (% male) a 53.3 53.6 0.98 

Age in years b 8.99 (1.12) 7.02 - 10.68 8.69 (1.21) 7.01 - 10.83 1.05 

Pubertal Development Scale b 1.53 (0.53) 1.54 (0.43) -0.13 

Ethnicity (% white) a 48.9 50.0 1.17 

Family Income b 12.02 (7.09) 1 - 21 11.18 (7.30) 1 - 21 0.49 

Child Depression Inventory - Child b    

Total T-score 49.02 (13.66) 37 - 83 53.70 (14.59) 37 - 77 -1.37 

Anhedonia Subscale T-Score 48.19 (10.45) 37 - 83 52.44 (10.59) 37 - 75 -1.67 

Negative Mood Subscale T-score 53.67 (15.49) 39 - 91 55.52 (15.92) 39 - 80 -0.49 

Child Depression Inventory - Parent b, c     

Total T-score 41.36 (5.54) 34 - 61 47.79 (8.12) 35 - 67 -3.69** 

Child Behavior Checklist b, c    

Anxiety Subscale T-score 51.35 (2.98) 50 - 63 55.75 (6.19) 50 - 70 -3.51** 

ADHD Subscale T-Score 52.44 (5.45) 50 - 78 54.93 (6.83) 50 - 75 -1.62 

    Note: Family Income Level coded in 21 increments of $5,000 starting with 1= $1-$5,000 and 

ending with 21 = >$100,000. a = n (and percentage) are reported along with chi-square statistic. b 

= mean (and standard deviation) range are reported along with t-statistic.  c = Equal variance 

assumption not met, thus the t-statistic was computed based on unequal variances.  ** p = 0.001 
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Table 5.2: Intercorrelations Amongst Symptom Measures 

 
1 2 3 4 5 

1) CDI-C Total T-score      

2) CDI-C Negative Mood Subscale T-

score 

0.96**     

3) CDI-C Anhedonia Subscale T-score 0.88** 0.76**    

4) CDI-P Total T-score 0.19 0.11 0.20#   

5) CBCL Anxiety Disorder Subscale T-

score 

0.12 0.09 0.09 0.41**  

6) CBCL ADHD Subscale T-score 0.20# 0.17 0.17 0.64** 0.36** 

      Note: CDI-C = Child Depression Inventory Child Self-Report, CDI-P = Child Depression 

Inventory Parent Report, CBCL = Child Behavior Checklist, ADHD = Attention Deficit 

Hyperactivity Disorder, ** p < 0.01, * p < 0.05, # p < 0.10 
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Behavioral Task Results 

 There were significant effects of Task Type and Block on response bias (Task Type 

effect, F(1,70) = 52.33, p < 0.001; Task Type x Block interaction, F(1,70) = 18.31, p < 0.001; 

Supplemental Table 5.4, Figure 5.1B). During the PILT-P, response bias was significantly 

greater than zero during all blocks (all p < 0.01), i.e. children learned to approach the more 

frequently rewarded response. However, bias did not significantly increase across the PILT-P 

blocks (Block effect; F(1,71) = 2.44, p = 0.123). During the PILT-N, response bias was 

significantly less than zero during all blocks (all p < 0.001), i.e. children learned to avoid the 

response more frequently paired with loss feedback. Response bias also became significantly 

more negative from the first to last block of the PILT-N (main effect of Block during PILT-N; 

F(1,71) = 16.80, p < 0.001). 
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Figure 5.1: Probabilistic Incentive Learning Task Diagram And Response Bias 
 

Note: A) Schematic diagrams of negative and positive Progressive Incentive Learning Task (PILT) versions. B) Response bias within 

each block of 40 trials for the PILT-Positive (blue) and PILT-Negative (red). C) Response bias during each block of the PILT-

Positive/Negative by Risk Group (Low-Risk = open circles/dotted lines; High-Risk = closed circles/solid lines)  
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Does Incentive Responsivity Relate to Risk Group Status? 

 Contrary to our predictions, no significant effects of risk group were observed on 

incentive responsivity (Risk Group effect, F(1,58) = 0.37, p = 0.547; Task Type x Risk Group 

interaction, F(1,58) = 0.01 p = 0.941; Task Type x Block x Risk Group interaction, F(1,58) = 

0.03, p = 0.870; Figure 5.1C).  

Relations between Incentive Responsivity and Symptom Levels 

 Response bias change across tasks differed based on child-reported anhedonic symptoms 

(F(1,58) = 5.34, p = 0.024), child-reported negative mood levels (F(1,58) = 4.19, p = 0.045), and 

maternal-report of child general depressive symptoms (F(1,58) = 6.08, p = 0.017) (Figure 5.2A). 

Further, the relation between response bias change across each task (PILT-P/PILT-N) and 

negative mood differed based on Risk Group (F(1,58) = 5.39, p = 0.024; Figure 5.2B, 

Supplemental Tables 5.7-5.9). Post-hoc hierarchical regression analyses were conducted to 

determine whether interactions reflected relations within the PILT-P, PILT-N, or both. No 

significant interactions with Task Type alone or effects/interactions of ADHD or anxiety 

symptoms were observed (Supplemental Table 5.6).
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Figure 5.2: Response Bias Change Relations With Anhedonia, Negative Mood, 

And General Depressive Symptom Levels 
 

Note: CDI-C = Child Depression Inventory – Child Self-Report, CDI-P = Child Depression 

Inventory – Parent Report, PILT-P = PILT-Positive (blue), PILT-N = PILT-Negative (red). A) 

Interactions of Task Type and Symptom Level (Anhedonia, Negative Mood, General Depressive 

Symptoms-CDIP). B) Partial regression plots depicting Negative Mood prediction of response 

bias change for each task type and risk group.
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PILT-Positive: Across risk groups, elevated anhedonic symptoms significantly related to 

reduced gain approach behavior (β = -0.38, t = -2.03, p = 0.046; Supplemental Table 5.5, Model 

1). Reduced gain approach behavior also related to elevated negative mood, but only amongst 

high-risk children (β = -0.59, t = -1.90, p = 0.072; Figure 5.2B). Low-risk children with elevated 

negative mood showed enhanced gain responsivity (β = 0.55, t = 2.43, p = 0.020; Figure 5.2B). 

Negative mood and general depressive symptoms did not significantly predict PILT-P bias 

change (all p > 0.25; Supplemental Table 5.7, Model 1). 

PILT-Negative: Across risk groups, both elevated negative mood symptoms (child-report 

CDI-C) and general depressive symptoms (maternal-report CDI-P) were significant and 

independent predictors of enhanced loss avoidance (negative mood β = -0.41, t = -2.29, p = 

0.026; CDI-P β = -0.33, t = -2.01, p = 0.049; Figure 5.2). Conversely, anhedonic symptoms were 

only a weak predictor of blunted loss avoidance (β = 0.31, t = 1.75, p = 0.085; Supplemental 

Table 5.5, Model 1).   

5.4 Discussion 

The aim of the current study was to investigate relations between behavioral responsivity 

to gain and loss feedback, MDD risk (based on maternal depressive history), and severity of 

specific depressive symptoms within healthy school age children. First, in contrast to adolescent 

neuroimaging findings, children’s behavioral responsivity to gain and loss feedback did not 

differ based on maternal depressive history. Second, reduced gain approach behavior was related 

to elevated anhedonic symptoms across risk groups and was related to elevated negative mood 

symptoms in high-risk children. Third, in low-risk children, enhanced gain approach behavior 

was related to elevated negative mood symptoms. Fourth, across risk groups, enhanced loss 
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avoidance behavior related to both elevated negative mood and elevated maternal-report of child 

general depressive symptoms. 

Depression Risk and Incentive-Related Behavior 

Contrary to our hypotheses, we did not find a significant effect of depression risk on 

either gain or loss responsivity. This was notable given evidence of reduced neural responsivity 

to gain/positive stimuli with elevated MDD risk in the adolescent literature.(Gotlib et al 2010, 

McCabe et al 2012, Monk et al 2008, Olino et al 2014) The first concern when interpreting this 

null results is power. With that said, the current high-risk sample includes 28 children while 

previous adolescent neuroimaging studies report significant group differences using high-risk 

samples roughly half our size (N=17 Monk et al (2008)(Monk et al 2008), N=14 Olino et al 

(2014)(Olino et al 2014), N=13 Gotlib et al (2010)(Gotlib et al 2010), N=14 Goff et al 

(2013)(Goff et al 2013)). Thus, we are better powered to detect between group differences of the 

size observed in the extant adolescent neuroimaging literature; yet, it is likely that differences in 

incentive responsivity between groups at high-/low-risk for MDD are simply small during 

childhood and increase during adolescence based on the normative developmental shift in reward 

motivation. For example, a cross-sectional study investigating extreme early life stress/neglect as 

a risk factor for MDD observed reduced ventral striatal responses to happy faces within high-risk 

adolescents (11-15 years), but not in the child group (5-10 years).(Goff et al 2013) Larger 

longitudinal studies that follow participants from early childhood through adolescence are 

needed to explicitly test this hypothesis.  

It is also important to note that the studies investigating depression risk discussed above 

focus on neural responsivity to incentives/positive stimuli rather than behavior. There is evidence 

suggesting that neural markers may either be more sensitive to group differences (larger effect 
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size) (Dawson 2008, Ibanez et al 2012, Manoach & Agam 2013) or predict future increases in 

symptoms.(Bress et al 2013a, Morgan et al 2013) It is also possible that healthy high-risk 

children are able to employ compensatory strategies eliminating differences in behavior (in low-

demand laboratory situations) despite potential differences in neural function. Future studies are 

needed to investigate whether incentive processing differences are (more) evident under stress or 

after mood induction or whether this finding represents an important developmental difference 

between school age children and adolescents.  

Factors Relating to Gain Approach Behavior 

As hypothesized, children who reported elevated anhedonic symptoms also showed 

reduced gain approach behavior. This result is conceptually consistent with previous PILT-P 

studies in non-clinical adult (Huys et al 2013, Pizzagalli et al 2005) and non-clinical low-risk 

child (Luking et al 2015) samples. This finding is also conceptually consistent with the 

adolescent neuroimaging literature where reduced striatal response to gain feedback relates to 

reduced daily experience of positive affect.(Forbes et al 2009)  Reduced gain approach behavior 

was also observed in high-risk children who reported elevated negative mood. This relation is 

not surprising given the extant literature pointing to reduced striatal response to positive 

feedback/stimuli with elevated depressive symptoms and positive attenuation theories of 

emotional reactivity in MDD.(Clark et al 1994, Forbes et al 2010, Forbes et al 2007, Olino et al 

2014) However, the opposite pattern of elevated gain approach behavior was observed in low-

risk children endorsing similar levels of elevated negative mood. This interesting and unexpected 

finding could suggest that low-risk children display an adaptive response to elevated negative 

mood by actively seeking out reward, in contrast to high-risk children who, with the same 

elevations in negative mood, show reward avoidance. Given that high- and low-risk groups 
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endorsed similar levels of negative mood symptoms, differences in behavioral relations cannot 

be interpreted as being based on negative mood severity. However, in addition to the 

interpretation above, other factor(s) not examined here, that may differ across groups, such as 

parenting style, dampening of positive affect, and the relation between levels of positive and 

negative mood, may mediate the group difference in this relation. As no other studies, to our 

knowledge, have compared relations between gain responsivity and negative mood symptoms in 

similar populations, future studies are needed to first replicate this group difference and then 

examine potential mediators.  

Factors Relating to Loss Avoidance Behavior 

Across risk groups, elevated loss avoidance related to both elevated child-reported 

negative mood and maternal-report of child depressive symptoms (CDI-P). These relations are 

consistent with negative potentiation theories of emotion reactivity in MDD, where current 

negative mood is thought to potentiate responsivity to negative stimuli.(Beck 1976, Scher et al 

2005) It is interesting that both negative mood and CDI-P related to reduced loss responsivity 

and explained unique variance in loss-related behavior given that the two reports are not 

significantly related in this study or the extant literature.(Achenbach et al 1987) This provides 

further support for using maternal and child reports as separate predictors of behavior, a strategy 

that some investigators have begun to use when investigating neural response to 

incentives/affective stimuli.(Bress et al 2012, Pagliaccio et al 2012) Future studies are needed to 

replicate this finding and to explore the mechanisms of these unique predictions.  

Given prior adult and child work relating elevated anhedonia/reduced hedonic capacity to 

blunted responsivity to both gain and loss feedback,(Chase et al 2010, Luking et al 2015, Steele 

et al 2007) we expected to observe reduced loss avoidance in children reporting elevated 
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anhedonic symptoms. While we did observe a negative relation between anhedonic symptoms 

and loss avoidance, it was only a trend level relation (p=0.085). However, given the extant 

literature supporting blunted reactivity with elevated anhedonia, and that the direction of the 

relation between loss responsivity and anhedonia is in the opposite direction of that with negative 

mood and CDI-P, we suggest that future studies utilize anhedonia and negative mood as separate 

predictors particularly of loss-related behavior. 

Limitations/Future Directions 

We focused on maternal history of psychopathology to define MDD risk. Although 

maternal MDD is among the most robust risk factors for MDD, there are other sources of risk 

that we did not investigate, such as trauma/stress and paternal psychopathology. Future studies 

defining ‘risk’ in different ways are needed to replicate the current null result of risk status and 

the significant dimensional relations between symptoms and behavior. The generalizability of the 

current results is also somewhat limited by our exclusion of children with any type of 

past/current pathology given that onset of disorders such as GAD and ADHD often predates 

MDD diagnosis and maternal MDD also confers increased risk for these disorders. Thus, 

although excluding such children is necessary for investigating true effects of ‘risk’ versus 

pathology, future studies are needed to determine whether MDD risk relates to incentive 

processing in children with different types of pathology.  

Conclusions 

Although MDD risk based on a maternal history of depression was not significantly 

related to either gain or loss responsivity in healthy school age children, individual differences in 

children’s subclinical depressive symptom severity did predict both types of behavior. The 

current results show continuity with the extant adult literature in that anhedonic symptoms 
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related to reduced reward responsivity and elevated negative mood symptoms related to elevated 

loss responsivity. This suggests that mechanisms subserving relations between specific 

depressive symptoms and incentive-related behaviors may be conserved across development. 

However, high- and low-risk children showed differing directions in the relation between 

negative mood and gain responsivity. If this finding reflects a true difference in behavior, 

maintaining elevated gain approach despite negative mood may indicate resilience and be a 

proactive target for intervention. This unexpected finding would be an important issue for future 

study.  In sum, our results support examining reports of specific depressive symptoms by 

different reporters as separate predictors of incentive-related behavior. Developmental 

differences in these relations between school age and adolescence may be important to inform 

risk trajectories or developmentally specific approaches.   
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5.5 Supplemental Information 

Probabilistic Incentive Learning Task (PILT) 

Task Design 

To assess behavioral responsivity to gain/loss feedback we used versions of the 

probabilistic reward task developed by (Heerey et al 2008); (Pizzagalli et al 2005); (Tripp & 

Alsop 1999)) and previously modified for use in child populations (Luking et al 2015). All 

children completed the PILT-P followed by the PILT-N and each task was comprised of three 

blocks of 40 trials. 

 During both tasks either a short or long mouth/nose is briefly presented (stimulus type 

counterbalanced across participants and differed for each task for a given child) (Figure 5.1A). 

Children then indicate via a button press which stimulus was shown. Stimuli are presented in a 

pseudorandom order (50% long trials, 50% short trials) and one of the two responses is 

preferentially incentivized such that during the PILT-P/N correctly/incorrectly selecting that 

response, designated the ‘RICH’ response, is scheduled to receive 3 times as much gain/loss 

feedback as the alternate, ‘LEAN’, response. Which of the two buttons corresponded to the 

‘RICH’ response and which buttons indicated the ‘short’ versus ‘long’ stimulus were 

counterbalanced across participants. During practice children were told that only some 

correct/incorrect responses would receive feedback during the PILT-P/N respectively and that a 

blank screen would follow remaining responses. Importantly, children were not informed that 

one response would receive more frequent feedback.  

To increase difficulty, and thus incorrect responses that could receive feedback, a 

perceptual mask (row/column of pound signs) replaced the nose/mouth stimulus during the 

PILT-N. However, the absolute number of gain/loss feedback instances and the exact rich to lean 
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feedback ratio did differ across participants during both PILTs as a function of accuracy (all p < 

0.001). While this is not uncommon for the PILT, particularly in children (Luking et al 2015), it 

is important to note that neither amount nor ratio of RICH:LEAN feedback events for either task 

significantly differed across risk groups (all p > 0.14) and the ratio of rich to lean feedback was 

not significantly related to any covariates of interest (all p > 0.13). 

Data Processing  

 As in previous studies, individual trials where reaction time (RT) did not fall within +/- 

three standard deviations of a participants’ mean RT or RT or did not fall between 2500 and 150 

msec were excluded (Luking et al 2015, Pizzagalli et al 2005). Performance and behavioral 

responsivity to incentive feedback were examined via discriminability (log d) and response bias 

statistics respectively. Log b/d were calculated as in previous PILT studies, using all trials in a 

block (40 here) and adding 0.5 to counts of the four event types (Pizzagalli et al 2005).  

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (log 𝑑) = 
1

2
log (

𝑅𝐼𝐶𝐻𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝐸𝐴𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑅𝐼𝐶𝐻𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝐸𝐴𝑁𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
) 

As expected given the addition of a perceptual mask to the PILT-N, discriminability was 

significantly lower in the PILT-N than PILT-P (main effect of Task Type; F(1,70) = 24.14, p < 

0.001; Supplemental Table 5.5). Discriminability did not differ significantly based on risk group 

(main effect of Risk Group, F(1,70) = 1.40, p = 0.240; interaction of Task Type and Risk Group, 

F(1,70) < 0.01, p = 0.968). 
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Supplemental Table S5.1 

Comorbid Diagnoses for High-Risk and Other-Risk Groups via Structured Clinical Interview for 

DSM Disorders (SCID) 

 

SCID - Past or Present 
High MDD-

Risk N = 28 

Other-Risk                       

N = 21 

MDD 7 -- 

Bipolar II 1 -- 

Bipolar I -- 3 

Anxiety -- 7 

Anxiety & MDD 10 -- 

MDD, Anxiety & Substance 6 -- 

Substance abuse/dependence -- 3 

Substance & MDD 4 
2 (use during 

pregnancy) 

Substance & Schizophrenia -- 1 

Substance, Schizophrenia, & Anxiety -- 1 

Never Disordered via SCID, but 

previous diagnosis/medication from 

other clinician 

-- 4 

 

Note: MDD = Major Depressive Disorder 
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Supplemental Table S5.2 

Individual Difference Questionnaires Administered but not Analyzed by Reporter/Subject  

 

CHILD SELF REPORT MOM ABOUT CHILD MOM SELF REPORT 

Positive and Negative Affective Scales - 

Child Version (Laurent et al 1999) 

Mood and Feelings Questionnaire 

(Angold et al 1995) 

Positive and Negative Affective Scales 

(Watson et al 1988) 

Behavioral Inhibition/Behavioral Activation 

Scales - Child Version (Muris et al 2005) 
Child Pleasure Scale (Kazdin 1989) 

Behavioral Inhibition/Behavioral Activation 

Scale (Carver & White 1994) 

Response To Positive Affect Scale (Feldman 

et al 2008) 

Emotion Regulation Checklist 

(Shields & Cicchetti 1997) 

Response To Positive Affect Scale (Feldman 

et al 2008) 

Child Pleasure Scale (Kazdin 1989) 
Child Sleep Habits Questionnaire 

(Owens et al 2000) 

Snaith Hamilton Pleasure Scale (Snaith et al 

1995) 

Children’s Emotion Management Scale 

(Zeman et al 2001) 
Life Events Checklist 

Beck's Depression Inventory (Beck et al 

1996) 

Mood and Feelings Questionnaire (Angold et 

al 1995) 
 

Ruminative Responses Scale (Treynor et al 

2003)  

Life Events Checklist  
Emotion Regulation Questionnaire (Garnefski 

& Kraaij 2007) 

Children's Response Styles Questionnaire 

(Abela et al 2007)   

Guilt Inventory (Jones et al 2000) 
  

Handedness Form  
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Supplemental Table S5.3 

Repeated Measures ANOVA investigating effects of Task Type, Block, and Stimulus Type on 

Response Bias 

 

 

 

 

 

 

 

 

 

 

 

 

Note: PILT-P = Probabilistic Incentive Learning Task - Positive 

 

 

   Interaction Type Factor/Covariate F-Statistic P-Value 

Main Effects 
Task Type 49.39 < 0.001 

PILT-P Stimulus Type 1.29 0.261 

Interactions with 

Task Type 

PILT-P Stimulus Type 0.80 0.376 

Block 17.62 < 0.001 

Interactions with 

Task Type and 

Block 

PILT-P Stimulus Type 1.64 0.205 
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Supplemental Table S5.4 

Repeated Measures ANOVA investigating effects of Task Type, Risk Group, and Stimulus Type 

on Mean Discriminability 

 

 

 

 

 

 

 

 

 

 

 

 

Note: PILT-P = Probabilistic Incentive Learning Task - Positive 

 

 

   Interaction Type Factor/Covariate F-Statistic P-Value 

Main Effects 

Task Type 22.54 < 0.001 

PILT-P Stimulus Type 5.62 0.021 

Risk Group 1.40 0.240 

Interactions with Task 

Type 

PILT-Positive Stimulus 

Type 
29.07 < 0.001 

Risk Group < 0.01 0.968 
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Supplemental Table S5.5 

Repeated Measures ANOVA investigating effects of Task Type, Block, Stimulus Type, Risk Group, 

and Symptom levels on response bias 

 

Interaction Type Factor/Covariate F-Statistic P-Value 

Main Effects 

Task Type 1.46 0.232 

Risk Group (0=Low-Risk, 1=High-Risk) 0.37 0.547 

PILT-P Stimulus Type 1.83 0.181 

CDIC Negative Mood 0.01 0.931 

CDIC Anhedonia 0.12 0.728 

CDIP General Depressive Symptoms 1.12 0.295 

CBCL Anxiety Problems 2.64 0.110 

CBCL ADHD Problems 0.02 0.897 

Two-Way Interactions 

with Risk Group 

CDIC Negative Mood 0.96 0.332 

CDIC Anhedonia 0.46 0.499 

CDIP General Depressive Symptoms 0.51 0.478 

Two-Way Interactions 

with Task Type 

Block 0.56 0.456 

Risk Group (0=Low-Risk, 1=High-Risk) 0.01 0.941 

PILT-P Stimulus Type 0.52 0.473 

CDIC Negative Mood 2.87 0.096 

CDIC Anhedonia 1.62 0.208 

CDIP General Depressive Symptoms 0.57 0.453 

CBCL Anxiety Problems 2.50 0.119 

CBCL ADHD Problems 0.10 0.756 

Three-Way Interactions 

with Task Type and 

Risk Group 

CDIC Negative Mood 0.78 0.381 

CDIC Anhedonia 0.62 0.435 

CDIP General Depressive Symptoms 0.02 0.883 

Three-Way Interactions 

with Task Type and 

Block 

Risk Group (0=Low-Risk, 1=High-Risk) 0.03 0.870 

PILT-P Stimulus Type 1.08 0.303 

CDIC Negative Mood 4.19 0.045 

CDIC Anhedonia 5.34 0.024 

CDIP General Depressive Symptoms 6.08 0.017 

CBCL Anxiety Problems 0.33 0.569 

CBCL ADHD Problems 1.53 0.221 

Four-Way Interactions 

with Task Type, Block, 

and Risk Group 

CDIC Negative Mood 5.39 0.024 

CDIC Anhedonia 3.57 0.064 

CDIP General Depressive Symptoms < 0.01 0.975 

 

Note: CDIC = Child Depression Inventory Child Self-Report, CDIP = Child Depression 

Inventory Parent Report, CBCL = Child Behavior Checklist, ADHD = Attention Deficit 

Hyperactivity Disorder, PILT-P = Probabilistic Incentive Learning Task - Positive. All symptom 

measures reflect age/gender-normalized t-scores. 
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Supplemental Table S5.6 

Post Hoc Regressions Response Bias Change (Block 3 – Block 1) for Each Task Type (Positive 

and Negative) 

 

 

Note: CDIC = Child Depression Inventory Child Self-Report, CDIP = Child Depression 

Inventory Parent Report, CBCL = Child Behavior Checklist, ADHD = Attention Deficit 

Hyperactivity Disorder, PILT-P = Probabilistic Incentive Learning Task - Positive All symptom 

measures reflect age/gender normalized t-scores. 

 

  
PILT-Positive PILT-Negative 

Model Predictors St. Beta T-score P-value St. Beta T-score P-value 

1 Model Fit Statistics R2=.14; Adj R2=.06; F=1.72; p=.131 R2=.21; Adj R2=.13; F=2.69; p=.022 

 

PILT-P Stimulus Type 0.08 0.69 0.493 0.25 2.19 0.032 

Risk Group (0=low; 

1=high) 
0.01 0.04 0.967 -0.02 -0.13 0.895 

CDIC Negative Mood 0.18 0.98 0.333 -0.41 -2.29 0.026 

CDIC Anhedonia -0.38 -2.03 0.046 0.31 1.75 0.085 

CDIP Total  0.19 1.15 0.254 -0.33 -2.01 0.049 

CBCL Anxiety 

Symptoms 
0.09 0.61 0.547 0.14 1.02 0.312 

CBCL ADHD 

Symptoms 
0.07 0.48 0.635 0.28 1.82 0.074 

2 Model Fit Statistics R2=.29; Adj R2=.18; F=2.67; p=.011 R2=.21; Adj R2=.09; F=1.74; p=.100 

 
PILT-P Stimulus Type 0.13 1.08 0.283 0.23 1.88 0.065 

Risk Group (0=low; 

1=high) 
0.19 0.22 0.827 0.33 0.34 0.734 

CDIC Negative Mood 0.67 2.99 0.004 -0.47 -2.01 0.050 

CDIC Anhedonia -0.80 -3.49 0.001 0.36 1.52 0.134 

CDIP Total  0.34 1.47 0.146 -0.26 -1.06 0.293 

CBCL Anxiety 

Symptoms 
0.07 0.55 0.585 0.14 1.02 0.313 

CBCL ADHD 

Symptoms 
0.06 0.37 0.714 0.26 1.65 0.104 

Risk Group x Negative 

Mood 
-2.19 -3.36 0.001 0.33 0.47 0.638 

Risk Group x 

Anhedonia 
2.50 2.78 0.007 -0.34 -0.36 0.722 

Risk Group x CDIP 

Total 
-0.56 -0.66 0.509 -0.36 -0.40 0.690 
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Supplemental Table S5.7 

Post Hoc Repeated Measures ANOVAs Investigating Effects of Task Type, Stimulus Type, and 

Symptom Levels on Response Bias Change (Block 3 – Block 1) Within Low and High-Risk 

Groups 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: CDIC = Child Depression Inventory Child Self-Report, CDIP = Child Depression 

Inventory Parent Report, CBCL = Child Behavior Checklist, ADHD = Attention Deficit 

Hyperactivity Disorder, PILT-P = Probabilistic Incentive Learning Task - Positive. All symptom 

measures reflect age/gender-normalized t-scores.

Risk 

Group 

Interaction 

Type 
Factor/Covariate F-Statistic P-Value 

L
o

w
-R

is
k

 G
ro

u
p

 

Main Effect 

PILT-P Stimulus Type 1.08 0.305 

CDIC Negative Mood 0.13 0.723 

CDIC Anhedonia 0.01 0.908 

CDIP Total 0.31 0.580 

CBCL Anxiety Symptoms 1.87 0.180 

CBCL ADHD Symptoms 1.96 0.171 

Interaction 

with Task 

Type 

PILT-P Stimulus Type 0.38 0.539 

CDIC Negative Mood 9.27 0.004 

CDIC Anhedonia 7.82 0.008 

CDIP Total 1.39 0.246 

CBCL Anxiety Symptoms 0.00 0.982 

CBCL ADHD Symptoms 0.60 0.443 

H
ig

h
-R

is
k

 G
ro

u
p

 

Main Effect 

PILT-P Stimulus Type 4.24 0.053 

CDIC Negative Mood 4.72 0.042 

CDIC Anhedonia 1.71 0.206 

CDIP Total 0.78 0.386 

CBCL Anxiety Symptoms 0.40 0.536 

CBCL ADHD Symptoms 1.17 0.293 

Interaction 

with Task 

Type 

PILT-P Stimulus Type 0.93 0.345 

CDIC Negative Mood 0.02 0.876 

CDIC Anhedonia 0.09 0.761 

CDIP Total 4.07 0.057 

CBCL Anxiety Symptoms 0.62 0.441 

CBCL ADHD Symptoms 0.48 0.498 
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Supplemental Table S5.8 

Post hoc Regressions Within Low and High-Risk Groups Predicting Response Bias Change 

(Block 3 – Block 1) for Each Task Type (Positive and Negative) 

 

 

Note: CDIC = Child Depression Inventory Child Self-Report, CDIP = Child Depression 

Inventory Parent Report, CBCL = Child Behavior Checklist, ADHD = Attention Deficit 

Hyperactivity Disorder, PILT-P = Probabilistic Incentive Learning Task - Positive. All symptom 

measures reflect age/gender normalized t-scores. 

 

    PILT-Positive Bias Change PILT-Negative Bias Change 

Risk 

Group 

Predictors St. Beta T-score P-value St. Beta T-score P-value 

Low-Risk Model Fit Statistics R2=.34; Adj R2=.23; F=3.08; p=.015 R2=.16; Adj R2=.02; F=1.11; p=.375 

 
PILT-P Stimulus Type 0.08 0.53 0.600 0.16 0.99 0.331 

CDIC Negative Mood 0.55 2.43 0.020 -0.48 -1.91 0.065 

CDIC Anhedonia -0.63 -2.70 0.010 0.39 1.48 0.148 

CDIP Total 0.11 0.50 0.618 -0.25 -1.00 0.325 

CBCL Anxiety 

Symptoms 
0.23 1.42 0.164 0.15 0.83 0.412 

CBCL ADHD 

Symptoms 
0.15 0.74 0.463 0.30 1.29 0.205 

High-Risk  Model Fit Statistics R2=.22; Adj R2=-.01; F=0.95; p=.483 R2=.36; Adj R2=.17; F=1.88; p=.135 

 
PILT-P Stimulus Type 0.18 0.87 0.396 0.35 1.89 0.073 

CDIC Negative Mood -0.59 -1.90 0.072 -0.35 -1.25 0.227 

CDIC Anhedonia 0.25 0.80 0.431 0.28 1.01 0.326 

CDIP Total 0.24 0.97 0.346 -0.41 -1.84 0.081 

CBCL Anxiety 

Symptoms 
-0.03 -0.14 0.887 0.18 0.89 0.383 

CBCL ADHD 

Symptoms 
0.08 0.30 0.767 0.27 1.11 0.280 



  

 204 

 

 

Chapter 6. 

Reduced Hedonic Capacity/Approach Motivation Relates to Blunted 

Responsivity to Gain and Loss Feedback in Children 
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Abstract 

Objective: Adolescents and adults with Major Depressive Disorder or elevated depressive 

symptoms show reduced reward responses and tend to show enhanced responses to negative 

stimuli. However, reward-related behaviors and adaptive responses to negative feedback undergo 

dramatic changes across puberty. Thus, key questions remain regarding how altered incentive 

processing relates to depressive and anhedonic symptoms in pre-pubertal child populations.  

Method: Twenty-four non-clinical pre-pubertal children aged 7-10 years (15 male; 16 Caucasian) 

completed two signal detection tasks that assessed behavioral responsivity to candy gain and loss 

feedback, respectively. These tasks were based on Pizzagalli’s probabilistic reward task where 

asymmetric feedback leads to greater bias towards the more frequently rewarded response in 

more hedonic or non-depressed adults. We further modified the task to create a version where 

incorrect responses could result in losses from an original allotment of candy. Children and 

parents/guardians also completed individual difference questionnaires to assess the child’s 

depressive symptoms, general affect, and hedonic capacity/approach motivation. Results: 

Regressions indicated a relation between hedonic capacity/approach motivation (child self 

report) and response bias in both gain and loss tasks. No significant relations were observed 

between depressive (child self report), internalizing (parent report), or externalizing symptoms 

(parent report) and bias in either the gain or loss task in this small sample. Conclusions: These 

results suggest that reduced hedonic capacity/approach motivation is associated with blunted 

responses to both gain and loss feedback in pre-pubertal children.  
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6.1 Introduction 

The relation between Major Depressive Disorder (MDD) and blunted response to reward 

has been consistently documented both in adult and adolescent MDD literatures (for recent 

reviews see Auerbach, Admon, & Pizzagalli, 2014; Bogdan, Nikolova, & Pizzagalli 2013; Eshel 

& Roiser, 2010; Forbes & Dahl, 2012; Treadway & Zald, 2011). Behavioral and neural 

responses to reward are similarly reduced in adults/adolescents without current clinically 

diagnosed depression, but with elevated depressive symptoms or at elevated risk for developing 

depression (Bress, Smith, Foti, Klein, & Hajcak, 2012; Kujawa, Proudfit, & Klein, 2014; 

McCabe, Woffindale, Harmer, & Cowen, 2012; Pizzagalli, Jahn, & O’Shea, 2005). Conversely, 

enhanced responses to incentive loss and negative affective stimuli have been reported in adults 

and adolescents with clinically diagnosed depression, elevated depressive symptoms, or elevated 

risk for developing MDD (Elliott, Sahakian, Herrod, Robbins, & Paykel, 1997; Gotlib et al., 

2010; Holmes & Pizzagalli, 2007; McCabe, Cowen, & Harmer, 2009; Monk et al., 2008; 

Santesso, Steele, Bogdan, Holmes, & Deveney, 2008b). However, reward-related behaviors, 

adaptive response to negative feedback, and incidence of mood pathology, undergo dramatic 

changes from childhood to adulthood (Crone, Zanolie, Van Leijenhorst, Westenberg, & 

Rombouts, 2008; Galvan, 2010; Geier & Luna, 2009; Kessler et al., 2005; Luking, Luby, & 

Barch., 2014; Richards, Plate, & Ernst, 2013; van den Bos, Cohen, Kahnt, & Crone, 2012; van 

Duijvenvoorde, Zanolie, Rombouts, Raijmakers, & Crone, 2008). Thus, key questions remain 

regarding how altered incentive processing relates specifically to self-reported hedonic capacity 

and other depressive symptoms within pre-pubertal child populations. 

Anhedonia, the lack of experienced pleasure, is a key symptom of MDD (APA, 2013). 

Findings of reduced responsivity to reward in adults with MDD and healthy adults with elevated 
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anhedonic/depressive symptoms are consistently observed across many task types and 

components of incentive processing (Dowd & Barch, 2010; Pizzagalli et al., 2009; Santesso et al., 

2008a; Schaefer, Putnam, Benca, & Davidson, 2006; Sloan, Strauss, Quirk, & Sajatovic, 1997; 

Treadway, Bossaler, Shelton, & Zald, 2012; Treadway, Buckholtz, Schwartzman, Lambert, & 

Zald, 2009). The probabilistic reward task developed by Tripp & Alsop (1999) and used 

extensively by D. A. Pizzagalli, and others, has proven to be a valuable tool for evaluating 

behavioral shifts driven by reward. In this task one of two responses receives reward feedback 

more frequently, this asymmetry typically induces bias towards the more frequently rewarded 

response. However, individuals with elevated anhedonic depressive symptoms (Pizzagalli et al., 

2005), current MDD (Pizzagalli, Iosifescu, Hallett, Ratner, & Fava, 2008b), and remitted 

depression (Pechtel, Dutra, Goetz, & Pizzagalli, 2013) show less of this response bias, indicating 

reduced behavioral responsivity to reward. Reduced response to reward is similarly well 

documented across experimental modalities in the adolescent MDD literature (for recent reviews 

see Auerbach et al., 2014; Forbes & Dahl, 2012). Adolescents with MDD or elevated depressive 

symptoms are less able to use reward contingencies to improve performance (via cognitive 

control) (Hardin, Schroth, Pine, & Ernst, 2007; Jazbec, McClure, Hardin, Pine, & Ernst, 2005), 

are less sensitive to incentive magnitude (Forbes, Shaw, & Dahl, 2007), and show reduced neural 

responsivity to reward feedback (Bress et al., 2012; Forbes et al., 2006; Forbes et al., 2010).  

Within negative affective domains the effects of MDD/depressive symptoms are more 

mixed. The negative potentiation theory of emotion reactivity in MDD suggests that reactivity to 

negative stimuli is enhanced as negative mood states prime cognitive and attention biases 

towards congruent stimuli (Beck, 1976; Scher, Ingram, & Segal, 2005). There is experimental 

evidence supporting this hypothesis both within the basic neuroscience literature and in patient 
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groups. For example, amygdala reactivity to negative stimuli is enhanced following induction of 

negative mood states (Berna et al., 2010; Wang, LaBar, & McCarthy, 2006), and MDD/high-risk 

groups, who experience greater negative mood relative to control/low-risk groups, tend to show 

enhanced behavioral/neural responsivity to negative pictures/feedback (Elliott et al., 1997; 

Foland-Ross et al., 2013; Gotlib et al., 2010; Hamilton & Gotlib, 2008; Holmes & Pizzagalli, 

2007; Kellough, Beevers, Ellis, & Wells, 2008; Ladouceur et al., 2005; McCabe et al., 2012; 

Monk et al., 2008; Santesso et al., 2012; Santesso et al., 2008b; Tucker, Luu, Frishkoff, Quiring, 

& Poulsen, 2003). However this effect is not universal and other theories, such as Emotion 

Context Insensitivity (ECI), hypothesize a general reduction in reactivity to both positive and 

negative stimuli in MDD (Rottenberg, Gross, & Gotlib, 2005; Rottenberg, 2007) A recent meta-

analysis of studies investigating emotional reactivity in MDD by Bylsma et al., 2008 reports 

significantly blunted reactivity to negative as well as positive stimuli in MDD across studies. 

Further support for ECI is provided by studies specifically investigating anhedonic symptoms 

within the incentive literature. These studies report blunted behavioral and neural responsivity to 

both positive and negative incentives in individuals with elevated anhedonia in patient and 

control groups (Chase et al., 2010; Dowd & Barch, 2010; Steele, Kumar, & Ebmeier, 2007, Stoy 

et al., 2012). As no studies, to our knowledge, have investigated how responsivity to loss of 

incentive relates to MDD or anhedonic symptoms specifically in children, it is unclear whether 

potentiated or blunted responses to loss/negative stimuli will be observed with elevated 

symptoms at these ages. 

Although relations between MDD and responsivity to affective stimuli/incentive 

feedback are strikingly similar in the adolescent and adult literatures, normative responses to 

positive and negative incentives change dramatically from childhood through adulthood. These 
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developmental changes may impact how depressive symptoms relate to gain and loss 

responsivity in pre-pubertal populations relative to adolescents and adults. From a typical 

developmental standpoint, adolescents show markedly elevated sensitivity to reward relative to 

both children and adults, who tend to show similar responses to reward (Galvan, Hare, Parra, 

Penn, & Voss, 2006; Luking et al., 2014; Paulsen, Carter, Platt, Huettel, & Brannon, 2011; 

Richards et al., 2013; van den Bos et al., 2012). Conversely, emerging evidence suggests that 

children are particularly reactive to loss/negative feedback relative to adults and adolescents 

(Luking et al., 2014; van den Bos et al., 2012; van Duijvenvoorde et al., 2008; van Leijenhorst, 

Crone, & Bunge, 2006). Thus, it seems especially important to investigate responding to both 

gains and losses in pre-pubertal populations, as loss may be a particularly powerful domain for 

detection of individual difference relations in this age group.  

It is also important to note that although we have chosen to focus on MDD/depressive 

symptoms to motivate the current study, altered responsivity to incentives, as well as anhedonia, 

play prominent roles in psychopathology beyond MDD. For example, behavior on the 

probabilistic reward task also relates to ADHD in children (Tripp & Alsop, 1999), bipolar 

disorder in adults (Pizzagalli, Goetz, Ostacher, Iosifescu, & Perlis, 2008a), and comorbid MDD 

and substance abuse in adolescents (Boger et al., 2014). Altered responsivity to incentives is also 

observed in schizophrenia (Dowd & Barch, 2012; Heerey, Bell-Warren, & Gold, 2008), 

disordered eating (Loxton & Dawe, 2001), oppositional defiant disorder (Humphreys & Lee, 

2011), and anxiety (Bress, Meyer, & Hajcak, 2013b; Johnson, Turner, & Iwata, 2003). Further, 

patterns of gain/loss sensitivity within diagnostic (risk) groups often differ depending on 

comorbid disorders (e.g. Humphreys & Lee, 2011; Kujawa et al., 2014). Given these relations, 

and that relative incidence of types of pathologies change over development (i.e. age of onset for 
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anxiety disorders is earlier than for MDD and incidence of anxiety disorders is greater than that 

of MDD, particularly in childhood (Kessler et al., 2005), we take care to control for both 

externalizing (indexing ADHD, oppositional defiant, and conduct disorder symptoms) and 

internalizing (indexing anxiety and depression) symptoms in our analyses although our 

hypotheses center on depressive symptoms.    

While gain and loss behaviors relate to depressive symptoms even within non-clinical 

populations from adolescence onward, how such behaviors relate to depressive symptoms and 

hedonic capacity during childhood remains an important open question. Thus, the current study 

aims to investigate such relations while controlling for other types of symptoms related to 

gain/loss processing (i.e. internalizing and externalizing). To assess gain responsivity, children 

completed a modified version of the probabilistic reward task used extensively in the adult 

depression literature (Pizzagalli et al., 2008b; Pizzagalli et al., 2005), where children earned 

candy following some correct responses. To assess loss responsivity a second modified version 

of the traditional task was completed, in which children lost candy from an original allotment 

following some incorrect responses. Although we operationalize gain responsivity and loss 

responsivity as the tendency of such feedback to influence behavior and investigate each 

separately, it is important to note that neural systems responsive to gain and loss and involved in 

approach/avoidance behaviors are not entirely unique (Delgado, Nystrom, Fissell, Noll, & Fiez, 

2000; Delgado, Stenger, & Fiez, 2004; Knutson, Westdorp, Kaiser, & Hommer, 2000). Thus, 

gain and loss responsivity are not necessarily orthogonal. However, as previous literature using 

the probabilistic reward task focuses on responsivity to gain, and different symptom types (e.g. 

internalizing versus externalizing) relate differentially to reward/punishment sensitivity, we form 

separate hypotheses for gain and loss responsivity. 
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The adult probabilistic reward task literature clearly points to reduced responsivity to 

gain feedback in individuals with MDD or elevated anhedonic depressive symptoms (Huys, 

Pizzagalli, Bogdan, & Dayan. 2013; Pizzagalli et al., 2008b; Pizzagalli et al., 2005). Thus, we 

hypothesize that reduced self-reported hedonic capacity or elevated depressive symptoms will 

relate to reduced behavioral responsivity to gain feedback in our child sample. Further, given 

evidence of blunted responsivity to negative stimuli with elevated anhedonic depressive 

symptoms or reduced hedonic capacity in adults, we expect lower self-reported HC/AM to 

similarly relate to lower loss responsivity in our pre-pubertal sample. The adult MDD literature 

has been inconsistent in regards to how general depressive symptoms relate to loss responsivity. 

Further, different conceptual models of negative stimuli processing in MDD make different 

predictions with ECI predicting blunted responsivity to negative stimuli/feedback and negative 

potentiation predicting enhanced responsivity to negative stimuli/feedback, with neither model 

having been examined in children. Therefore, it is unclear whether or how general depressive 

symptoms will relate to behavioral loss sensitivity. 

6.2 Method 

Participants 

Twenty-eight children along with a parent/guardian participated in this study. Two 

children were unable to understand and follow instructions for the behavioral tasks and two 

adults failed to complete reports on the child, thus four children are excluded from analyses.  The 

remaining 24 children were aged 7-10 years (mean 8.21, standard deviation 0.98) and were 

predominately male (n=15; 62.5%) and Caucasian (n=16; 66.7%). All children were pre-pubertal, 

established via parent/guardian Pubertal Staging Questionnaire reports (Carskadon & Acebo, 

1993; Petersen, Crockett, Richards, & Boxer, 1988). A history of diagnosed mental illness, either 
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for the child or immediate family members (adult report), and inability to consume sugar or 

dislike of sweet candies served as exclusion criteria. Despite a lack of reported pre-existing 

diagnoses (no clinical interviews were conducted), parent reports of internalizing/externalizing 

behaviors on the Child Behavior Checklist (CBCL) fell within the ‘borderline to clinical’ range 

for five children (Achenbach, 1991). Thus, we characterize the sample as ‘non-clinical’ rather 

than ‘healthy’.  

Participants were recruited from the St. Louis, Missouri metropolitan area via the 

research participant registry at Washington University in St. Louis.  Adults completed a phone 

screen to determine the children’s eligibility prior to enrolling in the study. Parents/guardians 

provided written informed consent and children provided written assent at the beginning of the 

in-person assessment. The Washington University in St. Louis Institutional Review Board 

approved all study procedures. 

Procedure 

On the study day adults provided consent and completed questionnaires in an adjacent 

room. Before beginning behavioral tasks, children tasted two candy pieces of their choice 

(M&M’s® or Skittles®) and rated how much they liked the candy. Two children reported liking 

the candy ‘moderately’, four reported ‘quite a bit’, and eighteen reported ‘extremely’ (response 

options also included ‘not at all’ and ‘a little’). Next, children completed two versions of a 

modified probabilistic incentive learning task (PILT) based on (Heerey et al., 2008; Pizzagalli et 

al., 2005; Tripp & Alsop, 1999), one where small candy pieces could be gained (PILT-Positive) 

(Figure 6.1A) and another where candy could be lost (PILT-Negative) (Figure 6.1B) from an 

original allotment (the order of PILT-P/PILT-N was counterbalanced across participants). 

Between the two PILTs children completed several individual difference questionnaires with the 
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assistance of the experimenter. Finally, children completed a post-test questionnaire where they 

rated affective responses to winning/losing candy. 

Individual Difference Measures  

Adults completed the Child Behavior Checklist (CBCL) (Achenbach, 1991), parent 

report version of the Child Depression Inventory (CDI-P) (Kovacs, 1985), and a demographics 

form. Children completed self-report forms designed to assess depressive symptoms [Child 

Depression Inventory (CDI-C) (Kovacs, 1985); Short Mood and Feelings Questionnaire (MFQ) 

(Angold et al., 1995)], general affect [child version of the Positive and Negative Affective Scale 

(PANAS-C) (Laurent et al., 1999)], and hedonic capacity or reward/punishment sensitivity 

[modified version of the Child Pleasure Scale (CPS) (Kazdin, 1989); child version of the 

Behavioral Inhibition/Behavioral Activation Scales (BIS/BAS-C) (Muris, Meesters, de Kanter, & 

Timmerman, 2005)]. See Table 6.1 for descriptive statistics. 

The PANAS-C has positive and negative affective subscales. The positive affect scale is 

comprised of 15 positive words (e.g. happy, interested, energetic). Children rate the extent to 

which they experience that emotion, responses range from 1 “very slightly or not at all” to 5 

“Extremely”, and responses are summed to create a total score. The positive affect scale shows 

good internal consistency (0.89) and construct validity in that it negatively relates to depressive 

symptom severity (Laurent et al., 1999). 

The CPS consists of 30 items such as “you are eating your favorite ice cream”, “Your 

teacher tells you and your parents what a terrific student you are”, “Your mother/father gives you 

a big hug” and the child rates how happy they would feel in that situation (1=not at all, 2=happy, 

3=very happy). CPS responses are summed to create a total score. The CPS shows adequate 

internal consistency ranging from 0.91 to 0.96 and criterion validity, i.e. children with diagnosed 
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MDD show significantly lower scores on the CPS than children not diagnosed with depression 

(Kazdin, 1989; Steele, Phipps, & Srivastava, 1999). 

The BAS component of the BIS/BAS consists of 13 items such as, “I get thrilled when 

good things happen to me”, “I get very excited when I would win a contest”, “When I see an 

opportunity to get something that I want, I go for it right away”. Responses range from 1 (very 

true for me) to 4 (very false for me), responses are reverse scored and summed to create a total 

score. Muris et al.’s BAS has shown adequate internal consistency (0.81) and criterion validity in 

children, relating to personality traits associated with elevated reward responding (Muris et al., 

2005). 

The CDI-C consists of 27 sets of items designed to assess different depressive symptoms. 

Responses on each item set are rated on a scale from 0 to 2 such that higher values indicate 

greater severity (e.g., 0=I have fun in many things, 1=I have fun in some things, 2=Nothing is 

fun at all). Items are summed to produce a total score; age and gender normed t-scored total 

scores are used in the current study. Internal consistencies have been reported from .71 to .94, 

test-retest reliability is very good ranging from .66 to .90, and shows strong construct validity in 

a number of studies (Kovacs, 1985; Saylor, Finch, Spirito, & Bennett, 1984; Sitarenios & 

Kovacs, 1999).  

The CBCL consists of 118 items describing behavioral problems such as, “Feels he/she 

has to be perfect”, “Nervous, high-strung, or tense”, “Sets fires”. The parent then rates on a 3-

point scale, from 0 (not at all true) to 2 (true or often), the extent to which each item was true for 

the child in the past 6 months. Items are summed to create Internalizing (Anxious=Depressed, 

Withdrawn, and Somatic Complaints) and Externalizing (Aggressive and Destructive) problems 

subscales; age and gender normed t-scored totals for each subscale are used in the current study. 
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Internalizing and Externalizing Problems Subscales show excellent internal consistency and test-

retest reliability, both >.90 for each subscales as well as strong construct validity (Achenbach & 

Rescorla, 1991; Nakamura, Ebesutani, Bernstein, & Chorpita, 2009).  

All measures were developed specifically for use in the respective population (either 

child or parent report) and have shown adequate internal consistency and validity. Specifically, 

within the current sample Cronbach’s Alpha (Table 6.1) was above or near the .7 rule-of-thumb 

cutoff which indicates adequate internal consistency.  

Given the conceptual relation between hedonic capacity (CPS), approach motivation 

(BAS), and positive affect (PANAS-P), strong intercorrelation amongst measures (CPS and BAS 

r(28) = 0.45, p = 0.017; CPS and PANAS-P r(27) = 0.48, p = 0.012; BAS and PANAS-P r(27) = 

0.54, p = 0.004), and the lack of an a priori hypothesis regarding a specific questionnaire/scale 

versus another, Z-scored total scores from the CPS, BAS, and PANAS-P were summed to create 

a composite score, hedonic capacity/approach motivation (HC/AM), where greater values 

indicate greater HC/AM.  
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Table 6.1: Descriptive Statistics For Individual Difference Measures 

 

Questionnaire Scale Range Mean 
Standard 

Deviation 

Cronbach’s 

Alpha 

Coefficient of 

Variation       

(median centered) 

Child Behavior Checklist 
Internalizing T-Score 34 – 64 48.79 8.71 0.77 20.5% 

Externalizing T-Score 33 – 64 48.75 8.87 0.83 20.2% 

Child Depression 

Inventory 
Child Report Total T-score 35 – 54 43.58 5.09 0.70 11.6% 

Positive and Negative 

Affect Scales 
Positive Affect Subscale 48 – 72 60.83 7.56 0.778 

12.5% 

Behavioral Inhibition/ 

Behavioral Activation 

Scales 

Behavioral Activation Scale 30 – 51 38.92 6.28 0.87 

17.2% 

Child Pleasure Scale Total Score 30 – 59 45.67 8.07 0.87 17.6% 

Hedonic Capacity/Approach Motivation Composite Score  -4 – 4 0.00 2.39   
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Probabilistic Incentive Learning Tasks 

We employed a modified version of the probabilistic reward task developed by Heerey et 

al. (2008), Pizzagalli et al. (2005), and Tripp & Alsop, (1999) termed the PILT-Positive (PILT-

P) to assess reward sensitivity (Figure 6.1A). To make the task more child-friendly we utilized 

small candy pieces rather than money as the incentive, and reduced the number of trials relative 

to previous studies. As in previous versions of this task, either a short or long nose/mouth is 

briefly presented within a cartoon face (stimuli are presented in a pseudorandom order- 50% long 

trials, 50% short trials). Participants then indicate which stimulus was presented via button press. 

During the PILT-P a portion of correct responses are followed by gain feedback indicating one 

candy piece was won. Remaining correct, and all incorrect, responses are followed by a blank 

screen. Importantly, this intermittent gain feedback is delivered asymmetrically such that one of 

the two responses (deemed the ‘RICH’ response) is scheduled to receive gain feedback three 

times more often than the alternative ‘LEAN’ response. Whether the ‘RICH’ response 

corresponded to the right or left button and whether that button indicated the short or long 

stimulus was counterbalanced across participants.  Participants were not informed that one 

response would selectively receive more feedback, however, they were aware that not all correct 

responses would receive gain feedback. 
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Figure 6.1: Probabilistic Incentive Learning Task (PILT)  
Schematics for (A) Positive and (B) Negative task versions 
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 To assess behavioral sensitivity to loss of reward we further modified the PILT to deliver 

loss feedback; the loss version of the task is termed PILT-Negative (PILT-N). A perceptual mask 

(row/column of pound signs) replaced the nose/mouth stimulus to decrease task accuracy (PILT-

P mean accuracy = 70.5%, sd = 8.2%; PILT-N mean accuracy = 55.3%, sd = 6.6%).  This was 

necessary in order to ensure a sufficient number of trials in which to provide loss feedback. All 

other task parameters remained the same, except now feedback followed a portion of incorrect 

responses, again in an asymmetric fashion, and feedback indicated that one candy piece would be 

lost from an original allotment of 70 candy pieces.  

 Before beginning each of the PILT tasks children performed 20 practice trials followed 

by three 40-trial task blocks. Within each task block 12 (in)correct ‘RICH’ responses and 4 

(in)correct ‘LEAN’ responses were selected to receive candy feedback (loss/gain respectively). 

Between each block the child and experimenter stood and stretched for approximately 30 

seconds.  

Data Processing  

 Individual trials were excluded from analysis either if reaction time (RT) did not fall 

within +/- three standard deviations of a participants’ mean RT or if RT did not fall between 

2500 and 150 msec (Pizzagalli et al., 2005). On average less than 5% of trials within a task were 

excluded for a given subject based on RT criteria. General task performance and responsivity to 

incentive feedback were examined via discriminability (log d) and response bias (log b) statistics 

respectively. Log b/d were calculated as in previous PILT studies, using all trials in a block (40 

here) and adding 0.5 to the number of each of the four event types (Pizzagalli et al., 2005). 

Greater values for log d indicate better discrimination between the short and long stimuli. More 

positive response bias values indicate a greater propensity to select the ‘RICH’ button response 
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whereas more negative values indicate a greater shift away from making the ‘RICH’ button 

response. 

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (log 𝑑) = 
1

2
log (

𝑅𝐼𝐶𝐻𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝐸𝐴𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑅𝐼𝐶𝐻𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝐸𝐴𝑁𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
) 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐵𝑖𝑎𝑠 (log 𝑏) = 
1

2
log (

𝑅𝐼𝐶𝐻𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝐸𝐴𝑁𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑅𝐼𝐶𝐻𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝐸𝐴𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡
) 

6.3 Results 

Response Bias in the PILT-P and PILT-N 

To determine whether response bias changed across the PILT-P/N, a repeated measures 

ANOVA was conducted for each task with Block (1, 2, 3) as the repeated measure and response 

bias was the dependent variable. One-sample t-tests were conducted to determine whether bias at 

the end of the task (Block 3) differed from zero for the PILT-P and PILT-N. 

For the PILT-P, bias in B3 differed from zero (t (1,23) = 3.01, p = 0.006) such that 

participants as a whole tended to select the rich response more frequently than the lean response. 

Further, response bias increased across the task as a function of block (F (2,23) = 3.21, p = 

0.049) (Figure 6.2).  For the PILT-N, bias in B3 significantly differed from zero (t (1,23) = -3.72, 

p = 0.001) such that participants as a whole selected the rich response, more frequently followed 

by loss feedback, less frequently than the lean response. Bias also became more negative across 

the task as a function of block F (2,23) = 4.54, p = 0.016 (Figure 6.2).  
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Table 6.2: Intercorrelations Amongst Predictors 

 

Measure 1 2 3 4 5 6 7 

1) CDI-C total t-score        

2) CBCL Internalizing Subscale  0.05 (.82)             

3) CBCL Externalizing Subscale  0.08 (.73) 0.64 (<.01)           

4) Hedonic Capacity/Approach 

Motivation 
0.14 (.51) 0.01 (.95) 0.06 (.77)         

5) PILT-P Response Bias in Block 3 0.07 (.76) 0.09 (.67) -0.22 (.30) 0.42 (.04)       

6) PILT-P Change in Response Bias: 

Block 3 - Block 1  
0.50 (.01) -0.02 (0.93) 0.06 (.78) 0.03 (.90) 0.08 (.70)     

7) PILT-N Response Bias in Block 3 0.22 (.31) -0.11 (.60) -0.39 (.06) -0.42 (.04) -0.24 (.26) 0.24 (.27)   

8) PILT-N Change in Response Bias: 

Block 3 - Block 1 
-0.07 (0.74) -0.17 (.42) -0.37 (.08) -0.61 (<.01) -0.19 (.38) 0.11 (.61) 0.68 (<.01) 

 

Note. Pairwise correlations between dependent variables and predictors in regression analyses; r (p-value). Measure abbreviations 

refer to; CDI-C (Child Depression Inventory – Child Version; total t-score reported), CBCL (Child Behavior Checklist; total t-scores 

reported); PILT-P (PILT-Positive), PILT-N (PILT-Negative). 
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Figure 6.2: PILT-Positive And PILT-Negative Response Bias   
Response bias across the PILT-Positive (white bars) and PILT-Negative (gray bars).  
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Relations between Task Order/Stimuli and Discriminability 

Univariate ANOVAs were conducted to determine whether mean discriminability during 

the PILT-P and PILT-N differed based on PILT-P order (first or second), PILT-P stimulus 

(mouth or nose), or the interaction of order and stimulus. Mean discriminability in the PILT-P 

and PILT-N did not vary as a function of either PILT-P order or stimulus type (all p > .17). 

Relations between Response Bias and Individual Difference Measures 

Four regressions were conducted to assess relations between response bias and task 

order/stimulus type, depressive symptoms (CDI-C t-score), internalizing symptoms (CBCL 

subscale t-score), externalizing symptoms (CBCL subscale t-score), and HC/AM. Internalizing 

and externalizing subscales were chosen because each indexes a number of symptoms (e.g. 

internalizing subscale assesses both anxious and depressive symptoms), balancing the need to 

control for symptoms that show relations with gain/loss responsivity with the need to maximize 

degrees of freedom. 

Dependent measures included response bias in block 3, and ‘bias change’ or the 

difference in block 3 and block 1 response bias (B3-B1), for both gain and loss tasks. A 

Bonferroni Correction (0.05/4 = 0.0125) was used to determine significance within regression 

analyses testing our hypotheses. 

Tests for multicollinearity indicated that a very low level of multicollinearity was present 

(VIF = 1.8 for Internalizing T-Score; VIF = 1.7 for Externalizing T-Score; VIF < 1.2 for all other 

variables). See Table 6.2 for bivariate correlations between all predictors and dependent 

variables. 

PILT-Positive 
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Task order, stimulus type, CDI-C t-score, Externalizing t-score, and Internalizing t-score, 

were all non-significant predictors in both PILT-P regressions (Table 6.3). HC/AM significantly 

positively predicted PILT-P bias during block 3 indicating that children with lower HC/AM 

show less bias towards the more frequently rewarded RICH response at the end of the PILT-P 

(Table 6.3, Figure 6.3). HC/AM was not a significant predictor of PILT-P bias change.  
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Table 6.3: Regressions Predicting Task Behavior 

 
Dependent 

Variable 

Predictors PILT-Positive PILT-Negative 

R2 Adj. R2 Std. Beta F/t statistic R2 Adj. R2 Std. Beta F/t statistic 

Response 

Bias  

(Block 3) 

Model Statistics 0.49 0.31   2.73 (p = 0.05) 0.47 0.28   2.47 (p = 0.07) 

Task Order     0.39 2.04     -0.04 -0.19 

PILT-P Stimulus     -0.16 -0.91     0.20 1.07 

CDI-C      0.10 0.55     0.27 1.49 

CBCL Internalizing      0.30 1.29     0.21 0.88 

CBCL Externalizing     -0.52 -2.289     -0.55 -2.35 

HC/AM     0.51* 2.81*     -0.42 -2.26 

Response 

Bias Change           

(B3-B1) 

Model Statistics 0.43 0.23   2.15 (p = 0.10) 0.49 0.30   2.67 (p = 0.05) 

Task Order     -0.38 -1.88     < 0.01 0.01 

PILT-P Stimulus     -0.23 -1.23     -0.01 -0.07 

CDI-C      0.49 2.56     0.04 0.23 

CBCL Internalizing      0.05 0.18     0.08 0.32 

CBCL Externalizing      0.13 0.53     -0.38 -1.66 

HC/AM     -0.15 -0.76     -0.59* -3.28* 

 

 

 

Note. Regression Analyses with task properties, depressive/internalizing/externalizing symptoms, and hedonic capacity/approach 

motivation (HC/AM) predicting PILT-Positive (PILT-P) and PILT-Negative response bias (in Block 3 and difference in response bias 

between Block 3 and Block 1 [B3-B1]). Predictor abbreviations refer to; CDI-C (Child Depression Inventory – Child Version), CBCL 

(Child Behavior Checklist). Std. Beta = Standardized Beta. Adj. R2 = Adjusted R squared. * p<.0125 
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Figure 6.3: Response Bias And Hedonic Capacity/Approach Motivation 
Partial regression plots of Hedonic Capacity/Approach Motivation (HC/AM) with response bias 

in Block 3 of PILT-Positive (white circles) and change in response bias across PILT-Negative 

(gray squares) controlling for PILT-P order/stimulus and depressive symptoms, internalizing 

symptoms, and externalizing symptoms. Results indicate greater responsivity to both gain and 

loss feedback in children with elevated HC/AM.  



 

 227 

PILT-Negative 

Again, task order, stimulus type, CDI-C t-score, Externalizing t-score, and Internalizing t-

score, were all non-significant predictors in both PILT-N regressions (Table 6.3). HC/AM 

significantly negatively predicted PILT-N bias change indicating that less hedonic children were 

less able to shift bias away from the more frequently punished RICH across the PILT-N (Table 

6.3; Figure 6.3). HC/AM was not a significant predictor of PILT-N block 3 bias.  

Qualitatively similar patterns of relations between behavior and predictors were observed 

for both the PILT-P and N when child’s sex and parent reports of child anxiety and depressive 

symptoms from the CBCL were included as separate predictors (in place of combined 

‘internalizing’ symptoms). 

HC/AM Post-hoc Analyses 

Given the relation observed between response bias and HC/AM, additional post-hoc 

correlations were run to determine whether HC/AM was related to amounts of feedback, ratio of 

rich to lean feedback, and mean discriminability during the two tasks. For both the PILT-P and 

PILT-N, HC/AM was not significantly related to amount of feedback (PILT-P r(22)=-.18, 

p=.386; PILT-N r(22)=-.06, p=.768), ratio of rich to lean feedback events (PILT-P r(22)=.12, 

p=.573; PILT-N r(22)=.22, p=.305), or mean discriminability (PILT-P r(22)=-.25, p=.235; PILT-

N r(22)=-.13, p=.546). Thus, relations between HC/AM and response bias were not likely driven 

by participants with high/low HC/AM experiencing differing amounts of feedback/ ratio of that 

feedback or showing differing ability to distinguish long/short stimuli. 

6.4 Discussion 

 This goal of this study was to examine how behavioral responsivity to gain and loss 

feedback relates to hedonic capacity/approach motivation and dimensional sub-clinical 
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depressive symptoms within a non-clinical pre-pubertal child sample. To do so we developed 

child-friendly gain and loss versions of a signal detection task that has been well studied in the 

adult literature. Like in adult studies, children in the current study learned to preferentially select 

the response paired more frequently with candy gain during the PILT-P (Pizzagalli et al., 2008b; 

Pizzagalli et al., 2005). In the PILT-N, children successfully learned to shift behavior away from 

the response more frequently followed by candy loss. Interestingly, the degree of these 

behavioral shifts related to hedonic capacity/approach motivation, such that less hedonic children 

showed blunted response bias in both the PILT-P and PILT-N. 

 The current finding of reduced responsivity to gains in children with lower hedonic 

capacity/approach motivation is conceptually consistent with the adult literature where during 

this task, individuals with depression or elevated anhedonic depressive symptoms show reduced 

reward responsivity (Huys et al., 2013; Pizzagalli et al., 2008a; Pizzagalli et al., 2008b; 

Pizzagalli et al., 2005). This result has several important clinical and developmental implications. 

First, the PILT-P seems to be a useful tool for assessing a child’s ability to adaptively respond to 

incentive feedback, mirroring the utility of monetary versions of the same task in adults. Second, 

non-clinical pre-pubertal child populations are able to report on levels of hedonic 

capacity/approach motivation in a way that meaningfully relates to behavior. Third, given the 

similarity between these findings in pre-pubertal children and those in adults, it is likely that the 

mechanisms subserving relations between individual differences in reward responsivity and 

hedonic capacity/approach motivation are similar across development, although longitudinal 

studies investigating the trajectory of such behavior/individual difference relations across 

development are needed. Finally, although other studies using combined child/adolescent groups 

have reported relations between general depressive symptoms and reduced neural responsivity to 
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rewards versus losses (Bress, Foti, Kotov, Klein, & Hajcak, 2013a; Bress et al., 2012), this is the 

first study, to our knowledge, in a non-clinical pre-pubertal sample demonstrating a relation 

between reduced response to reward and lower hedonic capacity/approach motivation 

specifically. 

 In the PILT-N children with lower hedonic capacity/approach motivation showed 

reduced shifts in behavior away from the more frequently punished response, i.e. reduced loss 

avoidance behavior. Overall this finding, in conjunction with results from the PILT-P, supports a 

pattern of blunted responsivity to valenced incentive feedback, positive or negative, in children 

with lower hedonic capacity. Although no adult studies using an individual differences approach 

have investigated responsivity to loss using similar signal detection tasks, adult neuroimaging 

studies also observe blunted responses to negative/positive stimuli with elevated levels of 

anhedonia (Chase et al., 2010; Dowd & Barch, 2010; Steele et al., 2007). This pattern is also 

reported in adolescents/children where elevated depressive symptoms or a maternal history of 

MDD (but not anxiety disorder) relate to reduced differentiation in neural responses to gain and 

loss feedback, a finding conceptually consistent with ‘blunted’ response to valenced feedback 

(Bress et al., 2012; Kujawa et al., 2014). Although our results indicating blunted loss 

responsivity are consistent with those of the adult anhedonia literature and child/adolescent 

depressive symptom/risk literature, studies comparing behavior in adult MDD groups to healthy 

controls during similar signal detection tasks with loss have either yielded null results or 

suggested enhanced responsivity in depressive groups (Henriques & Davidson, 2000; Henriques, 

Glowacki, & Davidson, 1994; Santesso et al., 2008b).  

Likely explanations for the mixed findings in the adult literature and differences from the 

current study include the use of individual difference versus clinical/control group comparisons 
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and heterogeneity within clinical groups. MDD is a heterogeneous disorder, patients can present 

with depressed mood or anhedonia, or both (APA, 2013), and MDD often co-occurs with other 

disorders (such as substance use and anxiety disorders) that have also been linked to disrupted 

incentive processing as discussed in the introduction.  Other studies investigating gain/loss 

sensitivity note qualitatively different patterns of responsivity across groups depending on these 

co-morbidities (Humphreys & Lee, 2011; Johnson et al., 2003; Kujawa et al., 2014). Given 

MDD’s heterogeneity and high rate of comorbidity, it is reasonable to hypothesize that the 

mixture of symptoms and comorbidities within a given clinical group differs across studies. As 

such, focusing on between group comparisons rather than relations to specific symptom 

dimensions (e.g., anhedonia versus depressed mood) likely contribute to the frequency of mixed 

findings in the MDD versus non-depressed literature.  

Our analytical approach enabled testing for relations between behavior and specific 

domains (e.g., hedonic capacity/approach motivation) while simultaneously assessing depression 

and other potentially relevant dimensions of behavior (e.g. internalizing and externalizing 

symptoms). This is a particularly useful approach if individual depressive and other symptoms 

(e.g. anhedonia, depressed mood, anxiety, ADHD, externalizing symptoms) show different 

directional effects on responsivity to loss of incentive such as elevated loss responses with 

greater depressed mood or anxiety, and blunted loss responses with increasing anhedonia or 

externalizing symptoms. In our non-clinical child sample this approach suggested a positive 

relation between hedonic capacity/approach motivation and loss responsivity, while significant 

effects of depressive, internalizing, and externalizing symptoms on response bias were not 

observed. However, it is possible that relations between PILT-P/N task behavior and depressive 

or externalizing symptoms, in addition to hedonic capacity/approach motivation, would be found 
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in a larger sample or in a clinical sample where hedonic capacity would likely relate to 

depressive symptoms. Although depressive symptoms and hedonic capacity are typically thought 

to negatively correlate, in the current sample, and other child studies with larger sample sizes 

(Kingsbury, Coplan, Weeks, & Rose-Krasnor, 2013; Muris et al., 2005), self-reported reward 

sensitivity and depressive symptoms were unrelated.  Future studies are needed to more fully test 

relations between child self-reported hedonic capacity and other depressive symptoms and 

whether each explains unique variance in behavioral responsivity to gain/loss. 

 Differences in development and incentive type between the current study and the adult 

literature may also contribute to somewhat discrepant results across age. While we utilize 

primary incentives (candy), the adult literature has exclusively employed monetary incentives 

that may be less affectively salient and thus tie more loosely to ‘hedonic’ responses in the case of 

loss, especially if participants are already being paid a base rate for their time/effort. Further, it is 

likely that loss of an incentive such as candy/money differs qualitatively from interpersonal loss, 

such as loss of friendship and other types of social loss that likely induce enhanced negative 

responses in depressed/risk populations. Also, children seem to be particularly sensitive to 

feedback signaling loss of reward as evidenced by both behavioral and neuroimaging studies 

(Crone, Bunge, Latenstein, & van der Molen, 2005; Crone et al., 2008; Luking et al., 2014; van 

den Bos et al., 2012). As such, there may be more variation in loss-related behavior within child 

populations, aiding detection of relations between symptom levels and loss-related behavior. 

Limitations and Future Directions 

As the main limitation of this study is the small sample size, larger future studies are 

needed to replicate and then extend these findings into clinical and risk populations. The ethnic 

breakdown of our sample reflects that of the greater St. Louis area and the sample did not include 
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significantly different percentages of males and females.  Nonetheless, the generalizability of 

findings should be assessed in samples that are non-white and with greater female representation. 

It will also be important for future studies to establish both the stability of behavior/individual 

difference relations across development and the test/re-test reliability of the PILT-P and PILT-N 

in this age group. Further, as loss feedback in the current study signals both an error and loss of 

something appetitive (candy), future studies capable of disentangling error and punishment/loss 

signals and relating the associated responses specifically with individual differences in hedonic 

capacity and other depressive symptoms are warranted. Our results highlight the relation 

between hedonic capacity and loss-avoidance behavior, in addition to gain-approach behavior. 

Future studies are needed to evaluate whether including hedonic capacity as a separate predictor 

(in addition to other depressive symptoms and internalizing/externalizing symptoms) can help 

rectify discrepant findings within the MDD literature regarding loss/negative affective domains.
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Conclusions And Future Directions
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The preceding chapters examined relations between gain/loss responsiveness and 

differences in 1) developmental stage, 2) self-reported incentive sensitivity, and 3) risk for MDD 

in healthy children, as well as interactions between incentive sensitivity and developmental 

stage/MDD risk. Importantly, we investigated these questions using tasks/methods where 

responsiveness to gain feedback and loss feedback were not interdependent and thus were 

dissociable. Overall we found that while children and adults showed similar striatal and 

behavioral response to gain feedback, children were more responsive to loss feedback than adults 

behaviorally and within the insula. Both elevated gain approach and loss avoidance behavior 

related to elevated incentive sensitivity assessed via a number of self-report measures, and gain 

approach and loss avoidance predicted unique variance in self-reported motivation. Importantly, 

relations between approach/avoidance behavior and self-report measures did not interact with 

developmental stage or level of MDD risk. Finally, while children at relatively high- and low-

risk for MDD showed similar levels of gain approach and loss avoidance behaviors, low-risk 

children with elevated self-reported negative mood showed elevated gain approach while high-

risk children with similar levels of negative mood showed reduced gain approach behavior. 

7.1 Age And Incentive Responsiveness: Summary And Implications 

 In chapter two we developed a candy version of the standard monetary Card Guessing 

Game (CGG), a task used extensively in the incentive processing literature (Delgado et al 2000, 

Delgado et al 2004, Forbes et al 2010). Results showed that regions in the striatum and limbic 

system shown to be sensitive to monetary incentives in the extant literature also respond 

differentially to candy gain and loss feedback within healthy young adults. Chapters three and 

four then investigated how neural and behavioral responsiveness to incentive feedback, 

respectively, differed in child and young adult groups. In both studies we found no significant 
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age differences in responses to gain feedback. Children and adults showed similar striatal 

response to candy gain feedback during the CGG and similar levels of gain approach behavior 

during the Probabilistic Incentive Learning Task utilizing positive feedback (PILT-P). These 

findings suggest that more basic components of reward processing do not show large differences 

between child and adult groups.  

Given the extant literature, this similarity between child and adult striatal response to gain 

seems at least somewhat independent of incentive type/delivery. Although no studies have 

directly compared neural responsiveness to primary and secondary incentives in child and adult 

populations, our striatal findings using candy (primary) incentives delivered post scan 

complement those obtained with positive facial expressions (primary - delivered during scan) 

(Somerville et al 2011), non-incentivized positive feedback (potentially secondary – delivered 

during scan) (van Duijvenvoorde et al 2008), money (secondary – delivered post scan) (Galvan 

et al 2006), and points (secondary – delivered/redeemed post scan) (van den Bos et al 2009). 

None of the studies discussed, including our own, were designed to separate responses to 

feedback receipt, thought to index ‘liking’, from anticipatory responses, thought to index 

‘wanting’. Instead all tasks focused on response to receipt of incentives. Recent evidence in 

adults and adolescents suggests that striatal responses during anticipation and receipt of 

incentives show different developmental trajectories (Hoogendam et al 2013). Thus, while it 

seems that children and adults respond similarly to receipt of reward/positive feedback, it is 

possible that differences in striatal responses would be observed during anticipation or other 

components of reward processing. 

It is also important to note that while studies generally report similar child and adult 

striatal responses to reward, most of these studies also report age differences in cortical 
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responses. As we restricted our neuroimaging analyses to the subcortex and insula, it is not clear 

whether we would have observed similar cortical age differences. However, our own results in 

chapter three, and those of other developmental studies, suggest that age differences in activation 

reported in the literature may be influenced by behavior (Church et al 2010, Somerville et al 

2011, van den Bos et al 2012). For example, in chapter three age effects within striatal regions 

were no longer significant after controlling for win-stay/lose-shift behavior. Given that 

surprisingly few studies in the developmental incentive literature have attempted to match child 

and adult groups on performance or otherwise account for age differences in task behavior, it is 

unclear the extent to which age differences in cortical response to rewards are explained by age 

differences in task behavior (see (Somerville et al 2011, van den Bos et al 2012) for 

developmental neuroimaging studies that do control for/investigate behavior). This issue is 

particularly relevant for more complex incentive learning/risk taking tasks, such as the IGT, 

where both behavior and cortical activation patterns vary dramatically with age. The relation we 

observe between striatal response to feedback in our simple guessing task and individual 

differences in basic win-stay/lose-shift behavior provides yet more evidence for the need to 

consider task behavior in developmental neuroimaging studies (see (Church et al 2010) for 

extended commentary). 

 The similarity in child and adult striatal response to gain feedback discussed above is also 

consistent with the lack of significant age differences in gain approach behavior on the PILT 

reported in chapter four, as striatal response to reward (fMRI and EEG methodologies) has been 

linked to PILT-P response bias (Bress & Hajcak 2013, Santesso et al 2008a). However, the null 

effect of age on gain-related response bias is somewhat at odds with the extant behavioral 

incentive literature. Specifically, other behavioral studies that examine learning rates from 
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positive versus negative feedback often highlight that children show reduced learning rates for 

reward information, or reduced effects of reward on expected value, relative to adults (van den 

Bos et al 2012, van der Schaaf et al 2011). Importantly though, these paradigms are more 

complex than the PILT, often requiring maintenance/integration of several response options with 

unique/changing probabilistic characteristics. Further, these tasks deliver either positive or 

negative feedback for every response, making it difficult to dissociate approach and avoidant 

behavior. Although additional studies are needed to directly test this hypothesis, given the 

current results it seems that age differences in learning rates from reward information most likely 

do not stem from differences in basic reward sensitivity, but may relate to more 

complex/cognitive components of reward processing. 

 Unlike the gain results discussed above, we observed significant age-related differences 

in both neural and behavioral responses to loss feedback. Specifically, children showed elevated 

responsiveness to loss within the dorsal/posterior insula, as well as elevated responsiveness to 

loss during the PILT-N. As no studies have investigated insular response to loss feedback in 

child and adult groups, it is difficult to integrate the insula finding with the extant developmental 

literature. However, in adults, the dorsal/posterior insula shows positive connectivity with 

sensory/motor regions, mid/posterior cingulate cortex, and amygdala (Cauda et al 2012, Cauda et 

al 2011, Cloutman et al 2012, Deen et al 2011, Roy et al 2013) facilitating its role in visceral and 

motor responses to negative stimuli (see (Mast 2013) for review), representing/evaluating 

negative internal states such as pain (Kurth et al 2010), and response to negative incentive 

outcomes (Liu et al 2011). Interestingly, a recent study investigating age-related changes in 

amygdala functional connectivity observed strong positive connectivity between the amygdala 

and dorsal/posterior insula during childhood, which weakened into adulthood (Gabard-Durnam 
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et al 2014). It is unclear how stronger positive functional coupling between the amygdala and 

posterior insula may influence responses to loss feedback within the insula. However, it is 

possible that this pattern indicates that the dorsal/posterior insula is more strongly integrated with 

neural systems involved in affective processing/responding; if so, BOLD responses within the 

dorsal/posterior insula may relate more strongly to affective responding during childhood than 

adulthood when responses may reflect integration between affective, motor, and sensory systems 

as suggested by adult studies of insula connectivity and function. Future studies are needed to 

examine whether age differences in amygdala-posterior insula connectivity mediate the elevated 

behavioral response to loss we observe in children relative to adults.  

Children also demonstrated greater behavioral responsiveness to loss feedback relative to 

adults. Specifically, children showed greater avoidance of responses paired with more frequent 

loss feedback than adults. Other studies have noted that children are particularly sensitive to the 

frequency of loss feedback, avoiding options with frequent feedback even at the expense of 

overall earnings (Aite et al 2012, Crone et al 2005), and show greater learning rates for negative 

feedback than adults (van den Bos et al 2012, van der Schaaf et al 2011). However, all of the 

extant studies provided both gain and loss/negative feedback within the same task, and gain or 

loss feedback followed all responses. The use of separate gain and loss tasks in chapter four 

allowed us to examine loss-related behaviors specifically, rather than a trade-off between gain 

and loss responsiveness.  Further, we were able to examine subsequent effects on RT and 

accuracy when incorrect responses did and did not receive loss feedback. These analyses 

highlighted that although children showed stronger avoidance behavior than adults, relative to 

adults they also showed greater reductions in overall accuracy during the PILT-N (versus PILT-

P) and showed the greatest slowing following loss feedback. Together these findings suggest that 
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loss feedback is better able to facilitate acquisition of response bias, i.e. enhanced avoidance of 

frequent punishment, in childhood relative to adulthood, but at the cost of both accuracy and 

speed. One potential explanation for these behavioral results may be that loss/negative feedback 

is simply more affectively salient for children than adults. While our data are not able to directly 

test this hypothesis and no studies have examined the neural underpinnings of differences in 

PILT-N behavior, such a hypothesis is consistent with the neuroimaging findings in chapter three 

where children showed elevated response to loss within the posterior insula. Future 

developmental studies are needed to examine whether age differences in insular activation 

mediate age differences in loss avoidance behavior on the PILT-N by combining the PILT-N and 

other fMRI paradigms. 

There are very few studies spanning child and adult ages in primates investigating 

changes in reward/punishment-related neurotransmitter systems over development. The few 

developmental studies that have been conducted focus on the dopaminergic (DA) system and 

tend to have small sample sizes and often offer conflicting results (see (Wahlstrom et al 2010) 

for review). Most relevant to the current results, there is some evidence that Dopamine Type 1 

(D1) and Dopamine Type 2 (D2) receptor expression show different relations with age. 

Specifically, one human study reported both elevated D1 (sometimes associated with “go” or 

reward learning) related mRNA/protein amounts in adults relative to children and elevated 

measures of D2 (sometimes associated with “no-go” or loss learning) receptors in children 

relative to adults (Rothmond et al 2012). However, there is also evidence that densities of both 

receptor types decline from childhood to adulthood or show no change over this age range (see 

(Wahlstrom et al 2010) for review). Further, there is limited evidence that dopamine levels 

increase, at least in PFC, from childhood through adulthood in non-human primates (Goldman-
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Rakic & Brown 1982, MacBrown & Goldman 1977). In human adults, D1 and D2 receptor 

function/prevalence have been linked to enhanced punishment and reward learning/behaviors 

respectively, effects that may also be mediated by DA synthesis (Cools et al 2009, Frank et al 

2009, Frank & Hutchison 2009, Frank et al 2007). Interestingly these somewhat dissociable 

relations to reward and punishment responsiveness have been explored in the same tasks that 

show changes in learning rates from reward/punishment from childhood to adulthood, i.e. the 

Frank Task and the Probabilistic Reversal Learning Task (van den Bos et al 2012, van der Schaaf 

et al 2011). Thus, if children do in fact show relatively elevated D2-like receptor density, and 

reduced DA synthesis compared to adults, it would be conceptually consistent with the elevated 

response to loss we observe. However, future studies exploring how DA system function relates 

to behavior over development are needed to directly test this hypothesis. Such studies should 

also consider other transmitter systems beyond DA and functional/structural connectivity within 

reward-related neurocircuitry as it is likely that other factors beyond DA also influence relations 

between age and loss avoidance behaviors.  

Changes in DA system function have been linked to the adolescent typical increases in 

risk taking and reward responding as discussed in the introduction (Wahlstrom et al 2010). By 

extension it is theorized that increases in DA availability, and associated behaviors, in part 

subserve the evolutionary role of adolescence, via encouraging exploration and separation from 

the family, which then allows for new experiences and sexual partnerships resulting in increased 

genetic diversity/health of offspring (see (Spear 2000) for commentary). Such evolutionary 

hypotheses are difficult to falsify and thus test, however, they can be useful thought experiments. 

Although entirely speculative, it is possible that the elevated response to loss, specifically 

prepotent avoidant ‘lose-shift’ responses, we observed may be an important feature of childhood 
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from an survival/evolutionary perspective. Childhood is a particularly vulnerable time in that 

while children experience increased independence and motor ability relative to 

infancy/toddlerhood, they do not have the life experience or cognitive skills to take informed 

risks. As such, it may be particularly important from a safety/survival perspective for children to 

learn rapidly, often in one trial, from punishment/negative feedback, and it may be less important 

for elevated reward responding to drive additional risk-taking. While it is not possible to evaluate 

the evolutionary ‘purpose’ of the elevated response to loss we observe during childhood, it is 

interesting to speculate regarding how this age difference may be beneficial from a 

developmental perspective. 

7.2 Depression Risk And Incentive Responsiveness: Summary And 

Implications 

 Chapter six examined gain approach and loss avoidance behaviors in healthy children at 

relatively high and low-risk for developing MDD. Although the PILT has not been examined in 

high-risk populations defined by maternal depressive history, adults and adolescents with MDD 

or adults with remitted MDD show reduced gain approach behavior (Boger et al 2014, Pechtel et 

al 2013a, Pizzagalli et al 2008a). As such we hypothesized that high-risk children would show 

reduced gain approach behavior on the PILT-P and might also show enhanced loss avoidance 

behavior on the PILT-N based on neuroimaging work in adult MDD and adolescent risk 

populations (Eshel & Roiser 2010, Gotlib et al 2010). However, contrary to our hypotheses high 

and low-risk children showed similar levels of both gain approach and loss avoidance behavior. 

High-risk groups typically report elevated depressive and anhedonic symptoms relative to 

healthy comparison groups, but it is unclear whether elevated symptom levels mediate group 

effects on gain approach behavior (see (Olino et al 2014) for commentary). The current null 
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result is not surprising if, as other studies investigating response to affective/incentive stimuli 

have suggested (Dowd & Barch 2010, Olino et al 2014), group differences in symptoms/hedonic 

capacity fully mediate group effects, given that our high and low-risk groups did not differ in 

self-reported anhedonic symptoms. However, it is also possible that effects of MDD risk on 

incentive responsiveness are small prior to puberty. To address this question, longitudinal studies 

are needed to directly compare effect sizes over development. However two studies investigating 

neural response to positive affective/incentive stimuli suggest that effects of MDD risk are small 

in childhood (Kujawa et al 2014) or are larger in adolescence than childhood (Goff et al 2013). 

Investigating how children with elevated MDD risk, elevated subclinical symptoms, and/or 

relatively reduced response to reward during childhood may deviate from the typical 

developmental trajectory of an increasing response to reward peaking in adolescence may shed 

light on the mechanisms contributing to the increase in incidence of MDD observed over 

adolescence. 

 Interestingly, despite exhibiting similar levels of approach/avoidance behavior and self-

reported negative mood (via Child Depression Inventory) at the group level, high- and low-risk 

children reporting elevated negative mood showed very different patterns of gain approach 

behavior in relation to self-reported mood. Specifically, high-risk children reporting elevated 

negative mood showed reduced gain approach behavior while low-risk children reporting 

similarly elevated negative mood actually showed enhanced gain approach behavior. This 

relation was not hypothesized as elevated depressive symptoms (including negative mood) are 

typically related to reduced reward responsiveness. However, given that elevated neural response 

to reward has been linked to resilience to depression (Bress et al 2013a), the positive relation 

between approach behavior and negative mood in low-risk children may serve as a protective 
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factor evident this group. Longitudinal studies are needed to test this hypothesis, but given the 

novelty of this finding replication is critical prior to initiating such prospective studies.  

Elevated negative mood also related to elevated loss avoidance behavior, and this relation 

did not differ based on MDD risk. It is important to note that although negative mood and 

anhedonia are both gateway symptoms of MDD (APA 2013), they show different relations with 

loss avoidance behavior across the studies discussed here. Specifically, reduced hedonic capacity 

or elevated anhedonia related to reduced loss avoidance in chapters four, five, and six while 

elevated negative mood related to elevated loss avoidance. The one other study, to our 

knowledge, that has included measures of anhedonic and negative mood symptoms as separate 

predictors of reactivity to negatively valenced stimuli, reports strikingly similar results to chapter 

six (Saxena et al Under Review). It should be noted that negative mood and anhedonia were not 

strongly positively related in chapter six or in Saxena et al. As such, future studies in clinical 

populations, where anhedonia and negative mood are typically strongly positively related, are 

needed to determine whether these relations are similarly dissociable at higher symptom levels. 

However, given the results of chapter six, and that in chapter five, PILT behavior did not 

significantly relate to CDI total scores (which combines negative mood and anhedonia subscales), 

future studies should consider examining these two core components of depressive 

symptomology as separate predictors particularly when investigating responsiveness to negative 

stimuli. 

7.3 Individual Differences in Incentive Responsiveness: Summary and 

Implications 

 Chapters four, five, and six investigated relations between gain and loss-related response 

bias and self-reported incentive sensitivity indexed via several different questionnaires. These 
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questionnaires have been designed to assess different conceptual constructs such as hedonic 

capacity, motivation, affect, and depressive symptomology. However, in both child and adult 

populations, self-reports on these measures are often strongly correlated. Interestingly, all of the 

incentive sensitivity questionnaires we assessed showed qualitatively similar relations to gain 

and loss behaviors. Specifically, individuals reporting elevated incentive sensitivity, i.e. elevated 

BAS drive, reduced anhedonic symptoms, or elevated hedonic capacity composite scores (BAS, 

child pleasure scale, and positive affect), showed both elevated gain approach and elevated loss 

avoidance behavior.  

Previous studies in non-depressed adults have linked elevated melancholic depressive 

symptoms (i.e. reduced incentive sensitivity) to reduced gain approach behavior on the PILT-P 

(Pizzagalli et al 2005). Similarly, the results of chapter six show that elevated self-reported 

anhedonia and reduced gain approach behavior predict reduced gain approach behavior in a 

healthy child population. However, no studies utilizing the PILT-P have related behavior to self-

report on other types of incentive sensitivity scales. The similarity in relations with behavior 

across the self-report measures is not necessarily surprising. However, it is not clear from the 

current studies whether each questionnaire is predicting common or unique variance in PILT-P 

behavior as chapter four, five, and six each focused on different incentive sensitivity measures. 

However, chapter four and five did include separate predictors of PILT behavior, chapter four 

included BIS and BAS (drive or reward responsiveness) as simultaneous predictors, and chapter 

five included psychopathology symptomology. In both of these chapters, behavior on the PILT 

specifically related to the incentive sensitivity measure of choice and was not significantly 

related to BIS or internalizing/externalizing symptomology. Together these results suggest that 

behavior on the PILT relates to incentive sensitivity specifically, rather than global 
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internalizing/externalizing symptoms or behavioral inhibition (BIS).  However, our results do not 

suggest that behavior relates to a specific component or incentive sensitivity construct as 

measured via self-report questionnaires. 

 No studies in the extant literature have utilized a version of the PILT delivering loss 

feedback following incorrect responses. Thus, it was unclear whether anhedonia (or other 

incentive sensitivity measures) would relate to PILT-N behavior. Across chapters four, five, and 

six individuals that reported reduced incentive sensitivity also showed reduced loss avoidance 

behavior, further highlighting the relation between incentive sensitivity and avoidance behavior. 

These findings are consistent with a growing literature in adults suggesting that individuals 

reporting reduced incentive sensitivity (i.e., elevated anhedonia assessed via pleasure scales) 

show blunted affective and behavioral responses to both positive and negative stimuli/feedback 

(Chase et al 2010, Dowd & Barch 2010, Saxena et al Under Review, Steele et al 2007). Studies 

reporting ‘blunted’ responding to both positive and negative stimuli typically interpret blunted 

responses to positive and negative stimuli as the effect of a single process, rather than the result 

of separable processes specific to ‘positive’ versus ‘negative’ blunting. However, while these 

studies relate affective reactivity to positive and negative stimuli to self-reported anhedonia, 

none of these studies, to our knowledge, have examined whether reactivity to positive and 

negative stimuli predict unique variance in self-reported anhedonia. Interestingly, results from 

chapter four suggested that gain approach and loss avoidance behavior do in fact predict unique 

variance in incentive sensitivity (here BAS drive or motivation) suggesting multiple processes 

contributing to incentive sensitivity (motivation). Thus, incentive sensitivity may reflect both 

responsiveness to gain, and responsiveness to the loss of rewards, with each of these two 

constructs contributing independent predictive variance. This result is even more intriguing given 
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that the questionnaires used in chapters four, five, and six exclusively index responsiveness to 

putatively positive events/outcomes and not ‘loss’ of appetitive outcomes. Further, the BIS 

subscale of the BIS/BAS, which indexes affective reactivity to negative events, did not 

significantly relate to PILT-N behavior. Future studies that also assess and relate self-reported 

affective reactivity to loss of appetitive stimuli and behavioral/neural responsivity to receipt of 

aversive ‘punishment’ stimuli (versus loss of appetitive stimuli), in addition to gain, are needed 

to replicate and extend these results. 

 It is also important to note that the relations between incentive sensitivity and PILT 

behavior discussed above did not differ based on developmental stage (chapter four) or risk for 

depression (chapter six). These findings suggest that the mechanism linking motivated behavior 

and self-reported incentive sensitivity may be conserved both across development and across risk 

for psychopathology. Similarly, studies investigating relations between hedonic capacity and 

affective/behavioral response to positive/negative stimuli within adult clinical and patient groups 

have also reported qualitatively similar relations between hedonic capacity and responses to 

positive/negative stimuli across group distinctions (Chase et al 2010, Dowd & Barch 2010, 

Steele et al 2007). However, longitudinal studies are certainly needed to explicitly test this 

relation as individuals age and high-risk offspring move through adolescence and adulthood. 

7.4 General Conclusions 

The current results highlight the importance of responsiveness to loss feedback, a 

component of incentive responding that has not been explored from developmental or 

psychopathology perspectives in the child literature. While the vast majority of the 

developmental incentive literature both in healthy and depressed/high-risk groups has focused on 

response to gain feedback or positive affective stimuli, the current results suggest that childhood 
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is a time of elevated neural and behavioral responsiveness to loss feedback. Further, we show 

evidence that individual differences in incentive sensitivity and depressive symptomology relate 

to behavioral responsiveness to losses as well as gains. This finding has significant implications 

not only for theories regarding psychopathology and development, but also incentive processing 

and motivation more generally. Specifically, new theories of anhedonia and motivation are 

needed which reflect drive to obtain positive outcomes, but also drive to avoid losing rewards 

that have already been obtained.  

Future work is needed to expand upon these findings, specifically investigating how 

responsiveness to both gain and loss in childhood may predict trajectories of incentive 

responding across adolescence. Longitudinal work is also needed to examine how relations 

between gain/loss responsiveness and risk for pathology may change across development. 

Together such studies could further inform whether treatments targeting incentive sensitivity 

during childhood may reduce risk for psychopathology by ‘normalizing’ the developmental 

trajectory of incentive sensitivity for a given individual. 
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