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ABSTRACT OF THE DISSERTATION 

Kinematic Modeling of The Determinants of Diastolic Function 
by 

Leonid Shmuylovich 
Doctor of Philosophy in Physics 

Washington University in St. Louis, 2015 
Professor Sándor J. Kovács, Chair 

 
 Multiple modalities are routinely used in clinical cardiology to determine cardiovascular 

function, and many of the indexes derived from these modalities are causally interconnected. A 

correlative approach to cardiovascular function however, where indexes are correlated to disease 

presence and progression, fails to fully capitalize on the information content of the indexes.  

Causal quantitative modeling of cardiovascular physiology on the other hand offers a 

predictive rather than accommodative approach to cardiovascular function determination. In this 

work we apply a kinematic modeling approach to understanding diastolic function. We discuss 

novel insights related to the physiological determinants of diastolic function, and define novel 

causal indexes of diastolic function that go beyond the limitations of current established clinical 

indexes. Diastolic function is typically characterized by physiologists and cardiologists as being 

determined by the interplay between chamber stiffness, chamber relaxation/viscoelasticity, and 

chamber filling volume or load. In this work we provide kinematic modeling based analysis of 

each of these clinical diastolic function determinants. 

Considering the kinematic elastic (stiffness) components of filling, we argue for the 

universality of diastolic suction and define a novel in-vivo equilibrium volume. Application of 

this novel equilibrium volume in the clinical setting results in a novel approach to determination 

of global chamber stiffness. 
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Considering the viscoelastic components of filling, we demonstrate the limitations 

associated with ignoring viscoelastic effects, an assumption often made in the clinical setting. 

We extend the viscoelastic component of filling into the invasive hemodynamic domain, and 

demonstrate the causal link between invasively recorded LV pressure and noninvasively 

recorded transmitral flow by describing a method for extracting flow contours from pressure 

signals alone.  

Finally, in considering load, we solve the problem of load dependence in diastolic 

function analysis. Indeed all traditional clinical indexes of diastolic function are load dependent, 

and therefore are imperfect indexes of intrinsic diastolic function.  Applying kinematic modeling, 

we derive a load independent index of diastolic function. Validation involves showing that the 

index is indeed load-independent and can differentiate between control and diastolic dysfunction 

states. We apply this novel analysis to derive surrogates for filling pressure, and generalize the 

kinematic modeling approach to the analysis of isovolumic relaxation.  

To aid widespread adoption of the load independent index, we derive and validate 

simplified expressions for model-based physiological parameters of diastolic function.  

Our goal is to provide a causal approach to cardiovascular function analysis based on 

how things move, to explain prior phenomenological observations of others under a single causal 

paradigm, to discover ‘new physiology’, facilitate the discovery of more robust indexes of 

cardiovascular function, and provide a means for widespread adoption of the kinematic modeling 

approach suitable for the general clinical setting.  



 

 1 

 

 

 

 

 

 

 

CHAPTER 1 

BACKGROUND 
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1.1 Introduction 

 Theoretical physics-based modeling of cardiovascular function is not the primary approach 

taken by the general cardiovascular research community. Instead, basic cardiovascular research 

is driven by sophisticated molecular biology or tissue/muscle characterization experiments (83), 

and clinical cardiology is driven by carefully controlled clinical experiments and trials (93). 

These well established approaches have resulted in numerous novel insights into the molecular 

components of cardiovascular function and disease, and have led to successful therapeutic 

approaches that improve patient outcomes.  

 In clinical cardiology in particular, however, there seems to be an endless supply of clinical 

indexes that clinicians must measure and follow in order to diagnose and treat cardiovascular 

disease (52). These extend beyond the clinic, because they are often used by basic science 

researchers to validate the impact of a particular knockout gene or other molecular intervention. 

As new imaging modalities or measurement techniques are developed, new indexes are 

suggested and validated against clinical parameters of interest, and the already large list of 

possible clinical indexes grows further.   

 While there is no limit in principle to the number of useful clinical indexes related to 

cardiovascular function, the large number that currently exists in the clinical and research setting 

is a clear symptom of the correlative nature of the majority of current cardiovascular research. 

The complexity of the cardiovascular system and of clinical medicine leads one to a correlative 

approach because a causal approach seems impossible given the number of seemingly 

independent variables that one must consider. However, because of the large number of 

variables, a correlative approach is likely to be extremely sensitive to interdependence of 

variables. Indeed, without a causal framework, it is impossible to understand how various 
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clinical indexes relate to each other or to the underlying physiological determinants of 

cardiovascular function. A correlative approach also makes prediction of physiological responses 

difficult, and gives little confidence in the general applicability of particular clinical indexes to 

novel physiologic or pathophysiologic settings.  

 Thus, while it is not a widespread approach in the field, theoretical modeling through 

causality is critical in the cardiovascular research community. A causal framework has the 

potential to unify seemingly unrelated cardiovascular function indexes and naturally provides 

mechanistic insight into the physiological determinants of clinical indexes. In our lab over past 3 

decades we have taken a causal approach to cardiovascular physiology in general, and diastolic 

function in particular. In this thesis we discuss several examples that demonstrate the power of a 

quantitative causal approach to cardiovascular physiology. Before we can discuss these 

examples, however, it is prudent to review cardiovascular physiology at both the cellular and 

organ level, and to discuss general approaches to quantitatively modeling cardiovascular 

physiology.  

 

1.2 Basic Cardiovascular Organ Level Physiology 

1.2.1 Dual Function of the Cardiovascular System 

 The purpose of the cardiovascular system is to deliver oxygen to the cells of the body. This 

is achieved by pumping oxygen rich blood to a branching network of blood vessels that end in 

small diameter (10 µm) capillaries that are in close proximity to every cell in the body. Across 

the capillary membrane cells exchange carbon dioxide, a waste product from internal energy 

production, for oxygen, a key fuel for new energy production. Thus the blood is depleted of 

oxygen and rich with carbon dioxide beyond the capillaries. This blood is replenished with 
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Figure 1.1 A schematic of the cardiovascular system, demonstrating the primary roles 

of the left and right heart, and the critical sites of gas exchange. Oxygenated blood 

from the left heart is pumped to the tissues, where it is taken up by the cells in 

exchange for carbon dioxide. The venous system brings the oxygen poor blood to the 

right heart, where it is subsequently pumped into the lungs. Here carbon dioxide is 

exchanged for oxygen, and the resulting oxygen rich blood is sucked back into the left 

heart to be pumped to the tissues again.  
 

oxygen when it returns to the lungs, where oxygen in the lungs and carbon dioxide in the blood 

exchange across a capillary membrane. The newly oxygen rich blood is then once again pumped 

back to the cells of the body. (9, 26)  

 Thus the cardiovascular system contains two parallel pumps, one that pumps oxygen rich 

blood from the lungs to the periphery, and one that pumps the resulting oxygen poor blood back 

to the lungs. Indeed the heart is divided into two large chambers; the left side accepts blood from 

the lungs and pumps blood to the periphery, while the right side accepts oxygen poor blood from 

the periphery and pumps blood back to the lungs. 
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1.2.2 Right and Left Heart Anatomy 

 The human heart consists multiple chambers surrounded by a thin layer of lubricant and 

fixed pericardial sac. The right side of the heart consists of two sub-chambers: an atrium that 

accepts oxygen poor blood from the periphery by way of two large veins (the inferior and 

superior vena cava), and a ventricle that ejects blood into the lungs by way of the pulmonary 

valve. The atrium and ventricle are separated by a valve that acts as a rectifier and in the absence 

of pathology allows only atrial to ventricular flow. The left side of the heart similarly consists of 

an atrium and a ventricle separated by a one-way valve called the bicuspid valve. The atrium 

accepts blood from the lungs through 4 pulmonary veins and the ventricle ejects blood to the 

periphery through the aorta, the largest artery in the body. It is helpful to visualize this general 

anatomy through a simplified cylindrical model of both chambers (Figure 1.2). This model will 

Figure 1.2. Schematic showing right and left heart inflow and outflow tracts. Both 

sides of the heart have a thin walled chamber called the atrium that accepts blood 

from outside of the heart. The atrium passively and actively delivers blood to the 

ventricle across a one-way valve (tricuspid or mitral), and the ventricle ejects blood 

out of the heart. 
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be useful in future discussion as well.  

 Though Figure 1.2 is a schematic representation of the heart, it captures some of the 

essential anatomical differences between chambers. These anatomical differences are best 

understood in the context of the physiological role of each chamber. The average human heart 

beats 60 times per minute, delivering nearly 5 L of blood in that interval. Both the left and right 

heart have a similar size of approximately 400 mL (7). It is not surprising that the size of both 

sides of the heart is similar, because in a steady-state sense, both hearts fill with and eject the 

same blood volume. An imbalance in volume between left and right sides would result in 

accumulation of fluid volume in either the peripheral or pulmonary vasculature with deleterious 

effects on health.  

 While the overall size is similar, the left side and right side eject blood into systems with 

dramatically different resistance to flow. Indeed the left ventricle ejects blood into a vascular 

system at a very high pressure in order to overcome the high resistance encountered in the 

various branches of the arterial system, primarily occurring at the level of the arterioles. For this 

reason the left ventricle is the chamber with the thickest muscle wall and most vigorous 

contraction. The right ventricle, on the other hand, ejects blood to the pulmonary vasculature at a 

pressure nearly an order of magnitude lower than the systemic side, and therefore the wall of the 

right ventricle is significantly thinner than the left ventricular wall. In contrast to the ventricles, 

both atria are thin walled because they are primarily conduits for fluid volume (8).  

 

1.2.3 Cardiac Cell Structure and Function 

Large Scale Cellular Organization 

 Ventricular tissue consists of ventricular cells embedded in a sponge-like meshwork of 
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extracellular matrix, composed primarily of collagen and elastin fibers (67). Cells that make up 

the heart also include include fibroblasts, which are primarily supportive cells that create and 

maintain the extracellular matrix, pacemaker and specialized conduction cells, which are 

responsible for setting and distributing the electrical rhythm of the heart (76), and contractile 

cells, which are the muscle cells responsible for contraction and relaxation of the chamber. 

Cardiac muscle cells consist of many repeating contractile elements called sarcomeres. The 

membranes of cardiac muscle cells have repeating invaginations called T-Tubules that aid in the 

delivery of calcium to the contractile machinery. T-tubules are all interconnected through 

transverse tubules which are the sarcoplasmic reticulum. The sarcoplasmic reticulum contains 

specific protein channels that are responsible for release and sequestration of calcium during the 

cardiac cycle. Every sarcomere has one T-tubule and sarcoplasmic reticulum, and this 

architecture ensures robust distribution of calcium to the contractile elements (53). 

 

Contractile Machinery 

 Each sarcomere contains overlapping thin filaments, composed of actin and tropomyosin 

woven together helically, and thick filaments, composed primarily of the protein myosin. When 

viewed along their long axis, the filaments are arranged hexagonally, with the thin filaments 

arranged along the vertices of a hexagon and the thick myosin filaments arranged along the 

middle of the hexagon. One sarcomere is defined by two Z-disks, and attached to each Z-disk are 

thin filaments that span nearly half the sarcomere. The thick filament on the other hand is 

centered between Z-disks, connected to the thin filaments through molecular cross bridges, and 

anchored to the Z-disk through the giant protein titin (Figure 1.3) (24). 

 The molecular details of sarcomere contraction are complex (15, 78). The cross-bridge 
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Figure 1.3. A multi-scale view of heart anatomy and histology. Muscle tissue consists of bundles of 

muscle fibers, and each fiber is a muscle cell. Muscle cells have membrane invaginations called T-

tubules (blue) which are interconnected by transverse sarcoplasmic reticulum (green). Each cell 

contains multiple sarcomeres with contractile machinery composed of thin (actin ) and thick (myosin) 

filaments. The sarcomere is defined by Z-discs, the longitudinal space between thin filaments is the H-

band, and the thick filaments define the A-band. See text for details. 

theory states that when calcium, coming from the T-Tubules and sarcoplasmic reticulum binds a 

troponin-tropomyosin complex, it induces a conformational change in tropomyosin that exposes 

a myosin binding site on actin.   

 This results in a binding of an ATP-bound myosin cross-bridge head (part of the thick 

filament) to actin (part of the thin filament). When myosin is bound to actin in this fashion, 

myosin has ATPase activity and therefore hydrolyzes the ATP bound to it. ATP hydrolysis 

releases energy and causes a conformation change in the myosin head that pulls the thin filament 

horizontally towards the thick filament, thereby producing contraction. Thus if myosin cross-

bridge heads were reversed relative to Z-disks, sarcomeres would be pushed apart upon each 

‘contraction’. Release of the myosin head from actin requires both removal of calcium from the 

troponin-tropomyosin complex, as well as binding of ATP to the ADP-bound myosin cross-



 

 9 

bridge head. Removal of calcium occurs through re-sequestration of calcium into the 

sarcoplasmic reticulum by the action of ATP dependent calcium pumps. Thus without ATP, 

thick and thin filaments remain bound and muscle tension can not be released, and this provides 

a mechanisms for rigor mortis. ATP mediated release of actin-myosin binding reduces muscle 

tension but does not relengthen the sarcomere, and the mechanism for sarcomere relengthening 

in the absence of external tension or load, and by extension chamber recoil, has been an active 

area of research for many years.  

 

Cellular Elastic Recoil 

 Skeletal muscles, such as biceps, have opposing muscles, such as triceps, whose 

contraction has the mechanical effect of relengthening the opposing muscle. Cardiac muscle, 

however, does not have an opposing muscle group tasked with expanding the cardiac chamber, 

and therefore the cyclical recoil of the ventricular chamber following contraction is at first 

puzzling. Early experimental studies predicted that cellular elastic elements must be responsible 

for sarcomere relengthening (44) The role of titin as a series elastic element that drives 

sarcomere relengthening and ventricle recoil was only recently appreciated, however (23-25, 29, 

30). In 1996 Helmes demonstrated that titin behaves as a linear bidirectional spring, producing 

an intracellular restoring force as it is stretched or compressed (30). Sarcomere contraction forces 

the titin protein into an entropically unfavored orientation and has the effect of loading the titin 

spring with elastic potential energy that is released in accordance with a linear force vs. length 

relation upon relaxation of the systolic cramp.  The linear bidirectional nature of sarcomere 

recoil was anticipated decades prior to its discovery and a linear, bi-directional spring is the 
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mechanistic basis for a kinematic model of diastolic suction generating chamber recoil that we 

discuss in section 1.5 below.  

 

1.2.4 Electrical Activation of Cardiovascular Chambers 

 The release of calcium from the sarcoplasmic reticulum and subsequent activation of 

contractile machinery requires electrical depolarization of the cardiac myocyte. The network of 

cardiac myocytes in the heart represent an excitable medium, because they are electrically 

interconnected through protein channels (called gap junctions) and therefore depolarization 

spreads quickly from cell to cell. All cardiac cells contain leaky ion channels that predispose 

them to periodic spontaneous depolarization. The cells with the shortest period of spontaneous 

depolarization, the pacemaker cells are located in the sinoatrial node on the right atrium, set the 

rhythm for all cardiac cells. Pacemaker cells are predisposed to depolarize at a 2 Hz frequency, 

though under normal physiologic conditions they are inhibited by parasympathetic innervation 

and depolarize at a slower 1 Hz frequency. Thus electrical activation of the heart begins at the 

sinoatrial node on the right atrium and spreads as a wave across the right and left atrium (17). 

The electrical depolarization travels quickly along a conduction system made up of specialized 

nerve cells that is designed to ensure efficient contraction of atrial and ventricular tissue (Figure 

1.4). Atrial contraction adds volume to the ventricle before ventricular ejection and stretches 

sarcomeres an additional 5-10% relative to their resting length, and therefore ventricular 

contraction must ideally occur after atrial contraction. Thus the conduction system that carries 

the electrical depolarization from the sinoatrial node to the atrioventricular His bundle and right 

and left septal branches includes a time delay between atrium and ventricle to ensure that atrial 

mechanical contraction and atrioventricular flow is complete before ventricular contraction 
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Figure 1.4 Electrical activation in the heart follows a specific pathway and timing, 

and this results in a reproducible surface electrode signal that is measured by the 

electrocardiogram (ECG). The PQRST peaks of the ECG represent specific electrical 

activation and deactivation events. See text for details. 

occurs. This built-in time delay is insured by the atrioventricular node, a part of the conduction 

system that is located on the right atrium toward the atrioventricular junction. Past the 

atrioventricular node, the depolarization wave splits along the left and right bundles of the 

conduction system, and then Purkinje fibers come off the bundles and deliver the depolarization 

wave to the endocardial (inner wall) ventricular tissue. Cell to cell depolarization by gap 

junctions and differences in action potential duration from endocardium to epicardium (outside 

wall) result in contraction from endocardium to epicardium followed by repolarization from 

epicardium to endocardium. 
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 While cardiac cells have a variety of depolarization profiles and properties based on their 

location in the chamber, the global electrical behavior of the heart can be appreciated through the 

electrocardiogram (ECG), where electrical leads are connected to the body in an orientation that 

is roughly along the primary direction of chamber depolarization. Thus as the positive 

depolarization wave approaches the positive ECG lead, a positive deflection is observed. While a 

variety of ECG patterns are routinely observed in the clinical setting, the general pattern 

consistent with normal electrical activation is shown in Figure 1.4. The atrial depolarization is 

seen on the ECG as the positive P-wave deflection. The QRS complex that follows is the 

ventricular depolarization and contraction, and the delay between P-wave and QRS complex 

arises from the atrioventricular delay discussed above. An atrioventricular block results in a 

prolongation of the P-R interval and the hemodynamic consequences of that delay are described 

in Chapter 3. Following ventricular depolarization and contraction, which is well approximated 

on the surface ECG by the QT interval,, the tissue must relax and repolarize so as to 

accommodate filling of the chamber before the next ejection. This repolarization is the positive 

T-wave deflection on the ECG signal, and the sign of the T-wave is notable. The only way for a 

negative repolarization wave to cause a positive deflection on the ECG is for the negative wave 

to move away from the positive ECG electrode. This suggests that while depolarization occurs 

from endocardium to epicardium, repolarization occurs from epicardium to endocardium. Thus 

epicardial and endocardial cardiac cells must have dramatically different action potential 

durations, and this is a finding that has been validated by direct experimental recordings (68).   
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Figure 1.5 Schematic representation of left ventricular pressure and volume during the cardiac cycle. 

The red outflow tract is the aorta, and the blue inflow tracts are the pulmonary veins, as in Figure 1.2. P 

stands for pressure, and font size indicates relative magnitude of pressure. For example, during ejection, 

the highest pressure inside the left ventricle. The lower pressure in the aorta allows for aortic outflow, 

whereas the lower pressure in the atrium causes mitral valve closure. See text for details. 

1.2.5 Pressure and Volume Variation During Cardiac Cycle  

 The heart cycle consists of systolic contraction/ejection and diastolic relaxation/filling. 

We may follow the timeline of electrical activation, beginning with the P-wave, to track 

pressures and volumes throughout the heart (Figure 1.5) (26). The P-wave indicates atrial 

depolarization and contraction (atrial systole), and contraction of atrial chambers increases atrial 

pressure above corresponding ventricular pressures. The resulting pressure gradient accelerates 

blood flow forward across mitral (bicuspid) and tricuspid valves and increases ventricular 

volume. Increasing ventricular volume distends the chamber and leads to a rise in ventricular 

pressure. A reversal of the atrioventricular pressure gradient decelerates ventricular inflow and 

may result in mitral regurgitation, for example, in the setting of atrioventricular delay (1). Under 

normal conditions the R-wave ventricular contraction (start of ventricular systole) rapidly 
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increases ventricular pressure and closes the mitral (or tricuspid) valves. While ventricular 

pressure is below outflow (aortic and pulmonary artery) pressures, the contraction and resulting 

pressure rise is isovolumic. Once ventricular pressure exceeds outflow pressure the aortic (or  

pulmonary) valve opens and the pressure gradient between ventricle and outflow tract accelerates 

blood out of  the ventricle. Ventricular relaxation reduces chamber tension and results in a drop 

in ventricular pressure and a reversal in the ventricle to outflow pressure gradient. The reversed 

pressure gradient decelerates the out-flowing blood, and eventually the dropping ventricular 

pressure falls below outflow pressure and the outflow valves (aortic or pulmonary) close, 

marking the start of diastole. The pressure continues to fall as the ventricle relaxes its systolic 

cramp and recoils under the action of stored elastic energy, but the chamber remains isovolumic 

until the falling pressure drops below atrial pressure. Once ventricular pressure falls below atrial 

pressure the mitral (or tricuspid) valve opens and the atrioventricular pressure gradient 

accelerates blood into the ventricular chamber, marking the start of early diastolic filling.  

 Unlike the case of late diastolic filling following atrial contraction, the ventricle 

continues to recoil in early diastole, simultaneously dropping in pressure while increasing in 

volume (dP/dV<0). Thus the ventricle sucks in blood during early diastole, and we discuss 

ventricular suction at length in Chapter 3. Eventually ventricular pressure reaches a minimum 

and begins to rise, and the atrioventricular gradient subsequently reverses. Reversal of the 

gradient leads to deceleration of atrioventricular flow, and eventually flow stops, marking the 

end of early diastolic filling. Depending on heart rate, a diastatic interval follows where pressure 

and volume are constant follows, and the end of diastasis is marked by the next P-wave and atrial 

systolic contraction.  

Constant Volume Attribute of the Heart 
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 Figure 1.5 schematically demonstrates an important principle of cardiac physiology: the 

nearly constant volume nature of the contents of the pericardial sack during the cardiac cycle (7). 

Previous work has demonstrated that the pericardial sack ejection fraction is at most 5%, and this 

finding also applies to both sides of the heart individually. This intriguing finding is the result of 

the simultaneous reciprocation of volume between atrium and ventricle. When the ventricle 

ejects the atrioventricular annular plane moves down, like a piston, and sucks in additional 

volume to the atrium from the pulmonary vasculature or venous system. The ventricular apex 

and epicardial radius remains fairly constant, and the wall thickness increases while the 

endocardial radius decreases. As ventricular filling proceeds, the atrioventricular annulus moves 

away from the apex, the ventricular wall thins, endocardial radius increases, and atrial volume 

falls. Thus a simplified model of the ventricle, where l is the distance along the long axis from 

valve annulus to ventricular apex, r is the endocardial radius, and R is the epicardial radius, has 

the following constraints: 

 

Vm = !l R
2
! r

2( ) V = !lr
2

dVm

dt
= 0

dR

dt
= 0

 Equation 1.1 

, where Vm is the volume of ventricular muscle. This simple model captures the essential 

connection between longitudinal and radial volume accommodation. Applying it to the case of 

the left ventricle, transmitral velocity in this model is simply: 

  
v=

1

!r
2

dV

dt
=
2lr !r+ !lr2( )

r
2

= 2l
!r

r
+ !l   Equation 1.2 

Furthermore, the time derivative of l is simply the annular mitral tissue velocity. Thus the 

equation above demonstrates that a deep connection exists between transmitral flow, endocardial 

radial expansion, and longitudinal tissue motion. Because total volume is conserved, we know 



 

 16 

that the volume coming across the mitral valve must be balanced by the volume swept out by the 

epicardial radius: 
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  Equation 1.3 

This is identical to the expression that we find if the expand dVm/dt=0 from Equation 1.1. Thus 

we have an expression that relates longitudinal and radial strain rate through epicardial and 

endocardial radii. In addition, this expression limits the longitudinal tissue velocity to be 

identical in sign to the sign of radial velocity. In other words, longitudinal lengthening is 

predicted to occur only with endocardial expansion and vice versa (64). In practice, however, 

longitudinal shortening is often seen in the late stages of early filling while radial expansion 

continues. This finding demonstrates that the dR/dt constraint, while a reasonable first 

approximation, does not fully apply in practice. The deviation of dR/dt from 0 is part of the 5% 

deviation from the constant volume property of the heart.  

 

1.3 Techniques for Assessing Function 

A variety of clinical techniques exist for assessing cardiovascular function, and the 

primary methods applied in this thesis are described in detail in Chapter 2. First, however, we 

provide a brief overview of the typical methods applied in the clinical setting, and recast the 

cardiac cycle described above in the context of the commonly employed clinical methods for 

assessing cardiovascular function. 

 

1.3.1 Cardiac Catheterization- Pressure Volume Analysis 
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 Cardiac catheterization has become a routine procedure in the diagnosis and management 

of heart disease, especially in the treatment of coronary artery disease (36, 89). Typically, fluid 

filled catheters are inserted into the femoral artery through a valve sheath and guided in a 

retrograde fashion under fluoroscopic control until the desired location is reached. At the aortic 

valve the catheter may be positioned near the origin of the coronary arteries, and contrast may be 

injected in order to assess coronary artery patency. Advancing the catheter across the aortic valve 

allows for ventricular pressures to be recorded, and injecting contrast into the ventricle and 

tracking the silhouette of the contrast filled chamber over time (ventriculography) allows one to 

determine ventricular volumes throughout systole and diastole. In addition to fluid filled 

catheters, high fidelity Millar catheters with multiple piezoelectric pressure transducers may be 

used to obtain high quality pressure signals at both aortic and ventricular levels (Figure 1.6). In 

this thesis invasive pressures are all obtained from Millar catheters, and the data acquisition 

procedure is detailed in Chapter 2. Conventional analysis and indexes derived from invasive 

pressures are discussed in section 1.4 below.  

 

1.3.2 Echocardiography 

 In  addition to the bedside physical examination of the heart, echocardiography is the 

preferred noninvasive method for cardiovascular function assessment (2). Numerous applications 

of echocardiography exist in clinical practice. All applications rely fundamentally on using an 

ultrasonic piezoelectric transducer to send an ultrasonic pulse into tissue and receive and process 

the reflected signal (21). Structures further from the source of the ultrasonic pulse require more 

time for the scattered signal to return, and therefore a plot of echo amplitude vs time represents a 

plot of echo amplitude vs depth of ultrasonic penetration. Peaks in the amplitude vs time signal 
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represent structures that reflect the ultrasonic pulse. Because the ultrasonic signal is expected to 

attenuate, the amplitude must be corrected by a depth dependent gain before it can be converted 

to a grayscale. In this fashion cardiac structure may be visualized along the line of the ultrasonic 

pulse. The earliest clinical application of echocardiographic imaging, M-Mode imaging, 

consisted of measuring and displaying cardiac structures along one ultrasonic pulse line over 

time. Technological advances allowed echocardiographers to send and receive multiple 

ultrasonic pulses in a variety of beam shapes, thereby allowing for live 2D and 3D imaging 

during the echocardiographic exam. In addition, technological advances allowed for the 

introduction of Doppler echocardiography, where the frequency shift of the scattered ultrasonic 

pulse may be analyzed to yield velocity information by the Doppler equation. Typically 2D 

imaging is used to orient the Doppler pulse location, and subsequently a Doppler pulse is aimed 

along a line of interest and a sample volume at a specific depth (time interval) is selected for 

Doppler analysis. Finally the reflected signal is processed, velocities measured at the sample 

volume are plotted versus time. Blood velocity at the mitral valve, aortic value, and at the 

pulmonary veins may be measured using Doppler echo, and with appropriate filtering, tissue 

velocity at the mitral annular may be also assessed. Velocity data acquired by Doppler 

echocardiography is routinely used in various Chapters of this thesis, and the specific 

methodology by which Doppler echocardiography data is acquired is presented in Chapter 2. 

Additional echocardiographic applications exist (85), including strain and strain rate imaging, 

tissue characterization by ultrasonic backscatter measurement (49), and color M-mode imaging 

(90). While these are important clinically relevant techniques they were not applied in the main 

work of this thesis and therefore are not discussed in detail.  
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Figure 1.6 A schematic of the left ventricle, showing simultaneous Doppler echocardiography 

derived velocities (3, 4, 5, 6) and catheter measured pressures (1, 2). In practice only one of the 

Doppler velocities can be measured at one time. See text for details.  
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It is instructive to consider all of the pressures and flows that can be assessed through a 

combination of routine cardiac catheterization and Doppler echocardiography. Figure 1.6 shows 

representative transmitral flow, aortic flow, pulmonary flow, Doppler tissue velocity, and Millar 

pressure and ECG data synchronized schematically in the figure. Atrial pressure, though not 

routinely measured clinically, is shown as well for demonstrative purposes.  

 Each of the velocity contours has characteristic patterns associated with the various 

events of the cardiac cycle. The aortic outflow velocity [6] shows a negative velocity contour 

(flow away from the transducer) following the ventricular contraction and the R-wave peak. 

Notice that the ventricular pressure exceeds aortic pressure during the acceleration of the aortic 

velocity contour. This pressure gradient is reversed, however, during the deceleration of the 

aortic contour. The pulmonary vein velocities [5] have 3 characteristic waves that play an 

important role in volume flow, and the first one is a positive contour called the S-wave that 

occurs during ventricular systole, simultaneously with the aortic outflow velocity. This flow 

represents filling of the atrium as the ventricular volume decreases during ejection, and clearly 

demonstrates the principle of conservation of volume. Notice that a positive velocity wave is also 

seen in the tissue Doppler velocity signal [4]  during systole, and this represents the systolic 

motion of the annulus towards the ventricular apex (also toward the ultrasonic transducer). Once 

ventricular relaxation reduces ventricular pressure below aortic pressure, the aortic valve closes 

and the ventricle remains in an isovolumic state until the decaying ventricular pressure falls 

below atrial pressure. As soon as there is an atrioventricular pressure gradient, the transmitral 

velocity signal [1], which in systole shows no flow, shows the early E-wave velocity contour 

(14). The time-integral of the E-wave, multiplied by an effective mitral valve leaflet cross 

sectional area, represents early diastolic filling volume (6). Because ventricular pressure 
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continues to drop as E-wave related filling volume increases, the mechanism for each filling 

must be mechanical, ventricular suction, and this point is discussed in greater detail in Chapter 3. 

Two velocity waves occur simultaneously with the E-wave, the D-wave in the pulmonary vein 

velocity signal, and the E’-wave in the tissue Doppler velocity signal. The D-wave demonstrates 

that pulmonary vein flow brings in volume to the atrium as the atrium loses volume to the 

ventricle. Thus ventricular suction brings in volume from the lungs, and the atrium can be 

thought of as a conduit during early diastole (8). The negative E’-wave represents longitudinal 

lengthening during early diastole, which is a necessary consequence of longitudinal volume 

accommodation and conservation of ventricular tissue and chamber volume. The positive E’’-

wave contour seen in Figure 1.6 provides a fascinating example of longitudinal oscillation of the 

chamber and the slight associated deviation from the precise constant volume property of the 

chamber (65). The E’’-wave occurs during E-wave and D-wave filling, thus during volumetric 

chamber expansion. A positive E’’-wave indicates longitudinal shortening, however, and 

therefore epicardial radial expansion must be occurring during the E’’-wave. (this is a 

quadrupole mode of oscillation for the cylinder)  

Recent work has also demonstrated that the D-wave volume in part accounts for 

epicardial radial expansion and the 5% deviation from the constant volume state of the heart 

(66). E-wave deceleration is driven in part by the reversal in atrioventricular pressure gradient, 

and following the end of the E-wave, a diastatic interval with no pressure change and no or low 

flow commences. Diastasis ends with the P-wave and atrial contraction. Atrial contraction results 

in a positive atrioventricular pressure gradient that accelerates the late diastolic filling transmitral 

A-wave. There is no valve between the pulmonary veins and atrium, and therefore atrial 

contraction also results in retrograde flow that can be seen in the pulmonary vein velocity signal 
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as the Ar velocity wave. It follows that if the LV chamber presents a high resistance (i.e. 

increased LV stiffness) to atrial systole and the associated transmitral flow, a greater pulmonary 

vein peak Ar velocity (87) is observed. In addition the duration of the Ar wave is longer than the 

duration of the transmitral Doppler A-wave. Because atrial systole ‘pulls up’ on the mitral 

annulus, most of the A-wave volume is accommodated longitudinally, and therefore one 

observes the A’-wave simultaneous with the transmitral A-wave. Continued ventricular filling 

from the A-wave increases ventricular pressure and once the atrioventricular pressure gradient 

reverses, the A-wave decelerates. The A-wave ends abruptly with R-wave driven ventricular 

contraction and pressure rapid pressure rise and closure of the mitral valve. Isovolumic 

contraction follows and the cardiac cycle repeats. Figure 1.6 provides a useful method for 

understanding normal systolic and diastolic physiology. Many indexes are routinely derived from 

these velocity and pressure signals in the clinical setting, and these indexes are used to diagnose 

and manage a variety of cardiovascular diseases. 

 

1.4 Conventional Left Ventricular Function Indexes 

 A heart that is an ineffective pump is said to exhibit systolic dysfunction. Over time 

systolic dysfunction may transition to systolic heart failure, where the heart fails to deliver 

sufficient cardiac output to fully oxygenate  the cells of the body. A heart that can not effectively 

fill, on the other hand, is said to exhibit diastolic dysfunction. Diastolic dysfunction may 

progress to diastolic heart failure, where residual fluid essentially inflates the pulmonary 

vasculature, eventually leaking into the alveoli and causing pulmonary edema (94, 95). A variety 

of tools are used in the clinical and research setting to diagnose and treat systolic and diastolic 

dysfunction, and we discuss several examples relevant to this thesis below.  
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1.4.1 Pressure Volume Loop Analysis 

 Plotting ventricular pressure versus volume over multiple cardiac cycles provides novel 

insights into cardiovascular function, and many clinical indexes are derived from or based upon 

pressure volume analysis (36). Volume and pressure may be measured simultaneously with 

specialized catheters that contain both pressure transducers (as discussed above) and specialized 

electrodes for measuring conductance. Electrodes along the catheter create an electric field, and 

the resulting voltage change (and by Ohm’s law conductance of the chamber) is measured by 

receiving electrodes on the catheter. Because conductance and volume to a first approximation 

have been shown to be linearly related (3), the measurement of conductance changes in the 

Figure 1.7. A) Normal pressure volume loop. IVC-isovolumic contraction; IVR- isovolumic relaxation; 

EDP- end diastolic pressure; EDP- end diastolic volume; ESP- end systolic pressure; ESV- end systolic 

volume. B) Changes in pressure volume loop with isolated changes in preload (green) or afterload (red). 

Despite changes in afterload or preload, the end-systolic points fall along a linear end-systolic pressure 

volume relation (ESPVR). The slope of the ESPVR changes with changes in contractility. The end 

diastolic pressure volume relation is generated by load varying end-diastolic coordinates, and the slope 

of the EDPVR represents chamber stiffness. See text for details. 
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chamber may be used to determine volume changes in real time. When pressure and volume are 

measured simultaneously through conductance catheters or through other methods, one typically 

observes the plot in Figure 1.7a.  

 The stages of the cardiac cycle may be mapped onto the pressure volume loop, with [1] 

corresponding to mitral valve opening and the start of early filling, [2] corresponding to diastasis, 

[3] corresponding to the end of diastolic filling, closure of the mitral valve, and start of 

isovolumic contraction, [4] corresponding to the opening of the aortic valve and the start of 

ventricular ejection, and finally [5] corresponding to the closing of the aortic valve and the start 

of isovolumic relaxation. The area inside the pressure volume loop defines the external work 

done by the ventricle. Recently we have demonstrated that the area under the diastolic filling 

portion alone is related diastolic recoil energy (See Appendix).  

The difference between end-diastolic and end-systolic volume [3]-[5] is the ventricular 

stroke volume and therefore the width of the pressure volume loop may be used to easily assess 

changes in ejected volume. The ratio of stroke volume to end diastolic volume defines the 

ventricular ejection fraction: 

 

EF =
ESV !EDV

EDV
=

SV

EDV
  Equation 1.4 

Ejection fractions below 50% are typically viewed as indicative of systolic dysfunction, and 

patients in severe systolic heart failure may have ejection fractions as low as 10%, requiring that 

their ventricles be dilated (62). Ejection fraction may be determined from conductance catheter 

volume measurements, but are routinely determined by contrast ventriculography or by 2D or 3D 

echocardiography.   

 

Preload and Afterload 
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The concepts of preload and afterload may be appreciated with the pressure volume loop 

as well. Preload and afterload are terms that apply more directly to muscle mechanics, where the 

preload is the initial stretch in an isolated muscle before a contraction occurs, and afterload is the 

load against which the muscle is contracting. Applying these terms to the chamber, we see that 

the stretch prior to the contraction can be determined from the end-diastolic point [3], and indeed 

end-diastolic pressure and volume are often used as surrogates for ventricular preload. The 

ventricle ejects into the aorta, and because aortic pressure is close to end-systolic pressure [5], 

end-systolic pressure is typically used to estimate ventricular afterload.  

Changes in preload and afterload lead to shifts in the shape and location of the pressure 

volume loop in the pressure volume plane (Figure 1.7B). Preload changes occur with respiratory 

variation, premature ventricular contractions, body position variation, and more invasive 

experimental perturbations, such as injection of additional volume during filling or occlusion of 

venous return and reduction of filling volume. Isolated decreases or increases in preload have the 

effect of shifting the end-diastolic volume and pressure down and to the left or up and to the 

right, while the end-systolic point remains constant. Increased preload activates both the length-

tension relationship of muscle, which accounts for increased force of contraction at greater 

sarcomere pre-stretch, and the force velocity curve, which accounts for greater speed of 

contraction with increased pre-stretch. Taken together, these mechanisms are the basis for the 

Frank Starling principle, which predicts greater force of ventricular contraction for increases in 

preload (16, 77). Thus as preload increases the maximum pressure generated by the ventricle and 

the stroke volume is expected to increase as well.  

Isolated changes in afterload have a different impact on the pressure volume loop. 

Increased muscle afterload has the effect of reducing the velocity of contraction, and because the 
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time for ejection is fairly conserved for a given heart rate, reduced velocity of contraction has the 

effect of reducing stroke volume. Decreased afterload has the opposite effect. Thus isolated 

increases in afterload move the end-systolic point [5] up and to the right while decreases in 

afterload move the end-systolic point down and to the left.  

 

End Systolic Pressure Volume Relation and Systolic Contractility 

Plotting multiple pressure volume loops from the same chamber under a variety of 

preload and afterload conditions reveals further physiological chamber properties. Suga showed 

that the end-systolic coordinates from load varying pressure volume loops in the physiologic 

range fall on a single line (80). This line defines the end-systolic pressure volume relation, and 

the slope of the line is called the maximum elastance, Emax. Maximum elastance at a fixed 

inotropic state represents a load independent index of cardiac muscle contractility, and increases 

in contractility (by sympathetic activation, for example), increase the slope of the end-systolic 

pressure volume relation and therefore alters the general location of load-varying pressure 

volume loops. Recently investigators have determined methods to estimate maximum elastance 

from only a single recorded or estimated pressure volume coordinate (69). It is interesting to note 

that maximum elastance is a load independent index derived by varying load and measuring a 

quantity that is conserved in the face of load variation. Chapter 8 through 11 in the thesis apply 

that general principle to diastolic function assessment.  

 

End Diastolic Pressure Volume Relation and Diastolic Chamber Compliance 

In principle any point on the pressure volume loop may be tracked across multiple beats, 

thereby defining normalized isochrones (13, 39). Historically the end-diastolic pressure volume 
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coordinate has been tracked across multiple beats to define the end diastolic pressure volume 

relation (36). The ratio of pressure to volume in an elastic chamber is similar to the ratio of force 

to displacement in a spring, and therefore the slope of the end-diastolic pressure volume relation 

defines an effective chamber stiffness (inverse of compliance). Both linear and exponential 

functions are used in practice to fit the end-diastolic pressure volume relation, and details and 

limitations of the relation are presented in more depth in Chapter 4.  

 

1.4.2 Phase Plane Analysis 

An additional tool for cardiovascular function analysis is the pressure phase plane, where 

the pressure derivative is plotted against pressure (Figure 1.8). Key landmarks of the cardiac 

cycle can be appreciated in the phase plane by mapping points from the pressure vs. time plot 

onto the phase plane (19). Analysis of the phase plane area has provided insights into the onset of 

diastole (12), and provides a useful means by which models of isovolumic relaxation can be 

assessed (see below). 

Figure 1.8. The pressure phase plane is a convenient tool for analysis of the pressure contour, and is 

generated by plotting the time derivative of pressure (dP/dt) vs pressure (P).  Peak positive dP/dt (1), 

peak pressure (2), peak negative dP/dt (3), and minimum pressure (4) define the 4 corners of the phase 

plane loop. The isovolumic pressure decay contour is highlighted in blue in both the pressure vs time 

and phase plane plot. Alternative models of isovolumic pressure decay are shown as fits to the 

isovolumic pressure decay contour in the phase plane. The curved fit (orange) is the logistic model of 

isovolumic pressure decay, whereas the straight curves (red, green) represent the floating asymptote and 

zero asymptote monoexponential models of isovolumic pressure decay, respectively.  
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Isovolumic Relaxation Analysis 

Multiple approaches have been pursued in the quantitation of isovolumic relaxation. The 

simplest approach was proposed by Weiss, who noticed that a plot of ln(P) vs P yielded a linear 

relationship during the isovolumic relaxation interval (84). Thus Weiss proposed the following 

equation for isovolumic pressure decay: 

 
P(t)= Poe

!
1

!
W

t

 Equation 1.5 

where -1/τW is the slope of the ln(P) vs P regression. Alternatively, one can derive τW as the 

negative inverse of the slope of the best fit line, with zero intercept, defined by points in the 

phase plane approximately 5 m/s after minimum dP/dt and 5 m/s before mitral valve opening. An 

alternative approach with non-zero pressure intercept was put forward by Raff et al [(59)]: 
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+ P"  Equation 1.6 

Once again, the phase plane may be used to determine the time constant for Equation 1.6, but 

now the intercept need not be set to zero. As is evident in Figure 1.8, the non-zero pressure 

intercept model predicts higher values for the isovolumic relaxation time constant τ  compared to 

the Weiss model. Both Equation 1.5 and 1.6 define straight line contours in the phase plane, and 

curved phase plane contours are routinely seen in the clinical setting. To overcome the 

limitations of Equation 1.5 and 1.6, Matsubara proposed the following nonlinear expression for 

isovolumic pressure decay based on a logistic equation: 
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where τL is the logistic time constant. In clinical practice both τL and τR are used to quantify 

isovolumic relaxation, though often normal and abnormal τ cutoffs in clinical studies are based 

on historical work that employed τW (50). In Chapter 11 we discuss an additional model of 

isovolumic pressure decay that was developed in our lab (11), and show how application of that 

model leads to a novel load independent index of isovolumic relaxation.  

 

1.4.3 Echocardiographic Analysis 

Analysis of invasively derived pressures and volumes represents the gold standard for 

systolic and diastolic function assessment. However, a noninvasive approach to diagnosis and 

management of cardiovascular disease is preferred, and echocardiography is the primary 

noninvasive methodology used in practice. While many echocardiography based indexes exist, 

the primary focus of the thesis is analysis of transmitral flow and therefore we limit the 

discussion below to conventional indexes derived from E and A-wave contours.  

 

Conventional Analysis of Transmitral Flow 

 Conventional analysis of E- and A-wave is based solely on E- and A-wave shapes, 

approximated for simplicity as triangles. Clinicians or sonographers simply select the start, peak, 

and end of each wave, thereby defining the acceleration time (AT, AAT), deceleration time (DT, 

ADT) and peak velocity (Epeak, Apeak), for each wave. Different clinical entities have been found 

to correlate with differences in triangle shapes, and while there are many clinical nuances, DF 

via E-waves is categorized into 4 patterns in order of worsening diastolic function: normal, 

delayed relaxation, pseudonormal, and constrictive-restrictive (2) (Figure 1.9). The hallmark of 

the delayed relaxation pattern is prolonged DT and E-wave velocity peak to A-wave velocity 
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Figure 1.9. Visual inspection of transmitral early rapid filling and late atrial filling (E- and A-waves) via 

Doppler echocardiography is the preferred method for assessing progressive diastolic dysfunction. 

Changes in diastolic function determinants leads to changes in E- and A-wave shape. These changes are 

quantitated by triangle approximations to the velocity contours. See text for details.  

 
peak (E/A ratio) reversal (from E/A>1 to E/A<1). The compensatory response to delayed 

relaxation is increased filling pressure and LVEDP, and this normalizes the E- and A-wave 

pattern to the pseudonormal pattern. While the pseudonormal pattern appears similar to the 

normal pattern, it may be unmasked clinically by load variation. Indeed preload reduction 

following a Valsalva maneuver turns a pseudonormal pattern into a delayed relaxation pattern. In 

general E- and A-waves, and all conventional indexes of diastolic function are known to be load 

dependent, and this poses a significant challenge for diagnosis of intrinsic diastolic dysfunction 

(10, 33, 34, 57, 58, 86). The effects of load variation on E-wave shape are discussed in greater 

detail in Chapter 8. 

  There is agreement that the different patterns reflect changes in diastolic function 

determinants, such as chamber stiffness, relaxation/viscoelasticity, and load (37) . However, 

clinical decisions are made based primarily on pattern recognition and experience, and the causal 

connection between determinants of diastolic function and E- and A-wave shape is not 
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appreciated or utilized in the clinical setting. In our laboratory we have put forward a causal 

kinematic model of diastolic filling that provides insight into the connections between 

determinants of diastolic function and, among other things, E- and A-wave shape. We describe 

the kinematic model below, and in the chapters of the thesis, demonstrate applications of this 

model to a variety of clinical and physiology problems. 

  

1.5 Kinematic Modeling of Diastolic Filling 

1.5.1 PDF Model 

 In the discussion above we described several physiological principles that govern diastolic 

filling, and any model of diastolic filling must be consistent with these physiological principles. 

Systolic contraction stores elastic strain energy both intracellularly and extracellularly, and this 

energy powers mechanical recoil and the ventricular suction process. Thus physiology requires 

that early filling be modeled as an unforced oscillator recoiling towards equilibrium. This elastic 

recoil must be opposed by 1) a lumped resistive force coming from not fully relaxed tissue and 

molecular interactions, and 2) blood and tissue inertia ( !!x ). An external driving force would be 

appropriate for modeling the atrial filling portion of diastole, where an external force, namely 

atrial contraction, drives filling. Thus, the E-wave is appropriately modeled by: 

  !!x+ c !x+ kx = 0  Equation 1.8 

where x is the displacement of an equivalent spring, and c and k are damping and spring 

constants normalized per unit mass (Figure 1.10) (41). Similarly the A-wave can be modeled by: 

       
!!xA + cA !xA + kAxA = Fo sin !At( )     Equation 1.9 

, where xA , cA, kA, and ωA are the A-wave equivalent oscillator displacement, damping constant, 

spring constant, and forcing frequency, and Fo is the forcing function amplitude. Details 
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regarding the A-wave model have been previously described (27).  and are not the focus of this 

thesis.  

 This modeling paradigm is motivated by motion (kinematics) and is referred to as the 

Parameterized Diastolic Filling (PDF) formalism. It is a lumped parameter, predictive rather than 

accommodative model (46), that characterizes transmitral flow in analogy to damped simple 

harmonic oscillator motion in terms of elastic, inertial and damping forces. The three 

(mathematically) independent model parameters: k (spring constant), c 

(relaxation/viscosity/damping constant), and xo (initial spring displacement), fully characterize 

the velocity of the simple harmonic oscillator (i.e. E-wave velocity contour). Because the 

equation of motion is linear, the parameters can be determined, for each beat, by solving the 

“inverse” problem, using the clinical E-wave contour as the beat-by-beat input, and the 

mathematically unique model parameters (xo, c and k) as the best-fit determined output (see 

Chapter 2.4.2) (28). 

 The initial conditions for the equation of motion are determined by diastolic physiology. 

First, there is no flow prior to mitral valve opening, therefore the oscillator recoils from rest 

(v(0)=0). Furthermore the spring displacement at t=0 must be non-zero x(0) = xo, in analogy to a 

spring that has been previously displaced beyond its equilibrium length. These initial conditions 

generate the ‘underdamped’ solution to Equation 1.8: 

  
v(t)=

kxo

!
e
!"t

sin !t( )  1.10 

, where   != k!"
2 , 

  

!=
c

2
. The overdamped solution is obtained by applying the 

transformation 
  
!= i" , where 

  
! = "2! k , to Equation 1.10. The critically damped solution is 

defined by the 
  
!= " = 0 limit of Equation 1.10.  
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 The undamped limit (c=0) of Equation 1.8 is notable because it was independently put 

forward, in slightly different form and based on a different mathematical derivation several years 

after the original PDF model was described (48). It models diastolic kinematics in terms of 

stiffness only:  

  !!x+ kx = 0  1.11 

and predicts a cosine fit to the deceleration portion of the E-wave. While this captures the 

physiology in some clinical limits, it does not account for the inflection point in the deceleration 

portion of the E-wave that is nearly always observed in the clinical setting. Further discussion 

comparing the undamped model with the full PDF model can be found in Chapter 5.  

 

Validation- Physiological Analogues 

 The PDF model predicted velocity (Eq. 1.10), and its ‘overdamped’ equivalent, provides an 

Figure 1.10. The PDF model accurately predicts clinically recorded early rapid filling transmitral flow 

velocity contours. Both underdamped and overdamped kinematic regimes are observed clinically. See 

text for details. 
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excellent fit to all clinically recorded Doppler E-wave contours (41, 42). The PDF parameters 

have physiologic analogues that have been experimentally validated in-vivo. For example, based 

on a large sample (n = 131), Lisauskas et al showed that average LV chamber stiffness 

(∆P/∆VAVG), obtained from simultaneous echocardiographic-hemodynamic invasive 

measurements of flow, pressure and volume, showed a strong linear correlation with the PDF 

model-derived elastic stiffness (k), extracted purely from the E-wave contour (47). Additionally, 

kxo, the peak-force that drives the oscillator, is the analog of the peak instantaneous 

atrioventricular pressure gradient generating transmitral flow (4); the slope of the kxo vs cEpeak 

relation obtained at variable loads, has recently been shown in normal control and diastolic 

dysfunction subjects to be a load-independent index of diastolic function (LIIDF) (74); 1/2kxo
2 
is 

the potential energy (ergs) available prior to valve opening (41); and xo is linearly related to the 

volumetric load, i.e. the VTI of the E-wave (41). Further mathematical details related to the PDF 

parameters and indexes derived from them are discussed in Chapter 2.   

 The PDF formalism has been tested and validated in control subjects and those with a 

wide range of cardiac pathologies and loads including, hypertension (43), heart failure (61), 

diabetes (63), and caloric restriction (51).  

 

1.5.2 The Physiologic Analogs of the PDF Parameters 

Spring Constant k 

 Contraction is muscle’s primary role, and therefore the mechanical recoil-based expansion 

of the chamber during diastole can at first be difficult to comprehend. Evidence of suction in 

isolated turtle hearts(38, 44) led early investigators to argue for the presence of restoring elastic 

forces driving diastolic recoil, but the source of those forces remained unclear for many years. 
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Only recently has a part of the answer emerged, though it is clear that our understanding of the 

source of elastic recoil will continue to expand. 

 In addition to the extracellular matrix (ECM) composed of primarily elastin and 

collagen(67), recent work (24) has shown that each myocyte has an intracellular source of recoil 

generated by the giant protein titin (see above). In remarkable agreement with the 1985 PDF 

model prediction that a linear, bidirectional spring is responsible for the shape of observed 

transmittal flow contours, Helmes (30) has demonstrated the bi-directional linear force vs. 

sarcomere length relationship for titin. Furthermore the existence of titin isoforms (of variable 

stiffness) (23) underscores the ability of k to vary depending on physiologic circumstance.  

 In addition to ECM and titin, recent work by Jobsis (35) has demonstrated the striking 

elastic properties of the visceral pericardium, thus adding a further chapter to the still developing 

story of the sources of ventricular elastic recoil. 

 

Damping Constant c   

Indeed viscoelasticity has been observed and measured in diastole through both organ 

level and molecular-based studies. For example, Templeton et al. (81) applied a sinusoidal 

volume variation to an isolated LV chamber and measured its viscoelastic response via the 

phase-delay of the resulting pressure response. Additionally, Rankin et al. found that in order to 

fit the diastatic stress-strain relationship, a viscoelastic, rather than purely elastic model is needed 

(60). Similar results have been reported by Hess et al. in humans (31), and other investigators 

have observed viscoelastic chamber properties in a variety of experimental settings (20, 40, 54, 

79, 96). 
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Viscous effects may be understood at the cellular level by considering the mechanisms of 

resistance to myocyte recoil. Delayed calcium reuptake or myofilament deactivation maybe a 

major factor in acting kinematically as a viscosity like term (18, 32, 79), especially during 

isovolumic relaxation (but possibly less so during filling). In addition, intrinsic viscous 

components of actin-myosin sliding affect chamber relaxation. For example, a binding between 

the proline-valine-glutamic acid-lysine (PEVK) rich region of titin and actin has been shown to 

function as a viscous component in-vitro (45, 88). Evidence suggests that cardiac myosin binding 

C (cMyB-C) also retards the motion of actin (70) and in pathological conditions, intermediate 

filaments such as microtubules potentially contributes to viscosity (55). Thus, multiple physical 

restraints, and molecular/physiological constraints are present to oppose and modulate recoil 

during the isovolumic phase. Although other mechanisms remain to be elucidated in the 

isovolumic relaxation process, formulating the kinematics using a lumped parameter and linear 

formulation will likely accommodate these yet to be discovered components. While there are 

likely multiple additional mechanisms contributing to myocyte and myocardial viscoelasticty, 

such as 3-d fiber architecture, it is clear that any viable kinematic model of filling must take 

viscous effects into account.  

 

1.5.3 Is The PDF Model Too Simple? 

The use of second order ordinary, linear differential equation to model the complex 

phenomena that govern ventricular filling dynamics is at first glance hard to justify. Indeed, 

many well-established models of ventricular filling dynamics often include nearly two dozen or 

more free parameters that specifically account for all of the variables of the system, including 

nonlinear tissue and system behavior (82). These models were devised to replicate standard, 
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physiologically measured parameters and relationships and usually followed an electric circuit 

analog of the physiology. In contrast, a key motivator for the PDF approach was inclusion of the 

physiology via a kinematics of filling paradigm, i.e., ventricular mechanical suction based filling, 

which other models did not consider. A potential concern was that the physiology, as modeled 

previously by others, is much too complex to be reasonably well approximated by a linear 

system. This concern has been addressed in detail in previous work, where the PDF model was 

subject to a crucial test: the predicted E-wave contours from the  PDF model was compared to 

the E-wave contours predicted by nonlinear-noninvertible models. It was determined that the 

PDF model generated a fit to the clinical E-wave contour that was numerically indistinguishable 

from the complex and non-linear models (56).  

An important advantage of the PDF model, is that it is uniquely invertible by using the 

clinically measured Doppler E-wave contour as input, whereas the nonlinear models are non-

invertible. Apparently, despite the simultaneous nonlinear viscoelastic and complex fluid 

dynamics elements that govern the components of filling, the summed, lumped kinematic 

consequence of these individually nonlinear processes is to generate motion that is amenable to 

linear approximation.  

 

1.5.4 General Clinical Connection to PDF Model  

 In agreement with the descriptive terms used in clinical practice, the PDF model accounts 

for the effects of stiffness (kx), relaxation (cv), and load (xo) on E-waves. Normal E-wave 

contours are well fit by solutions to Equation 1.8  falling in the underdamped kinematic regime 

where damping is low relative to stiffness:  

 

y=
c

2 k
<1 1.12 
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As one increases the relative value of the damping constant c while keeping stiffness k 

unchanged, the wave takes on the ‘delayed relaxation’ pattern seen clinically. Indeed the PDF 

model predicts a transition from low resistance ‘underdamped’ kinematics to high resistance 

‘overdamped’ kinematics once c exceeds 2√k. This is exactly what one encounters clinically in 

the ‘delayed relaxation’ pattern. Increasing k will abolish the ‘delayed relaxation’ pattern and 

eventually lead to a tall narrow E-wave, as encountered in the ‘constrictive-restrictive’ pattern, 

known to be associated with chambers having significantly elevated stiffness. 

 

1.6 Thesis Chapter Summaries 
 

In the preceding discussion we have provided an introduction to cardiovascular 

physiology and clinical assessment of cardiovascular function. We have described an approach 

to modeling diastolic function in particular, and in the chapters that follow we provide examples 

of the insights that may be gleaned from causally based quantitative analysis of cardiovascular 

function in general, and diastolic function in particular.  

Much of the work presented in this thesis utilizes physiological data from subjects 

undergoing simultaneous echocardiography and catheterization. In Chapter 2 we describe the 

experimental methodology for this data acquisition and the semi-automated methods that are 

employed to process the acquired data. In addition we provide detailed methodology for 

extracting PDF parameters from clinical data, and provide further mathematical analysis of the 

PDF model, including many of the mathematical insights that form the basis for much of the 

theoretical modeling that is presented in several of the Chapters.  

In Chapter 3 the physiology of suction is discussed in detail. Chapter 3 combines the 

work of 2 peer reviewed publications (71, 91)that argue for the universality of diastolic suction 
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as the driving mechanism for early filling, and by extension propose that diastasis must be the in-

vivo equilibrium volume. Both publications generated commentary and interest from the 

cardiovascular physiology/cardiology community, and some of the responses to that commentary 

are incorporated into Chapter 3 as well.  

 Chapter 4 consists of a publication currently under review that is a natural extension of 

the physiological arguments presented in Chapter 3 and extends the discussion surrounding the 

end diastolic pressure volume relationship above. Instead of measuring chamber stiffness using 

end-diastolic pressure volume coordinates, Chapter 4 argues for the use of diastatic pressure 

volume relation, and provides a specific clinical example where the choice of diastasis vs end-

diastole has significant consequences.  

 Chapters 5 through 7 include 2 peer reviewed publications (73, 92) and a submitted 

patent focused on the damping parameter c. Chapter 5 discusses the limitations of earlier models 

of E-wave deceleration time that ignored the impact of filling related viscous damping, and 

demonstrates clearly that E-wave deceleration time is determined jointly by stiffness and 

relaxation. In the past invasive clinical measures of relaxation were limited to the isovolumic 

relaxation time constant discussed above, which has only limited correlation to the damping 

parameter c and the more conventional E-wave delayed relaxation pattern. In Chapter 6, 

however, a novel invasive pressure based index, called the pressure recovery ratio (PRR), is 

derived that is the hemodynamic analogue of c and the associated delayed relaxation pattern 

observed on the E-wave. Finally in Chapter 7 PRR and other previously validated hemodynamic 

analogues of E-wave determinants are combined to yield an in-silico echocardiography method 

where LV pressure and ECG contour may be used to derive a simultaneous E-wave velocity 

contour. 
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 Chapters 8 and 9 are based on a patent and 2 peer reviewed publications (5, 74) focused 

on deriving and validating a PDF model based load independent index of diastolic function from 

load-dependent E-waves. Chapter 8 provides the derivation and describes initial validation 

studies as well as some theoretical implications of the load independent index of diastolic 

function, while Chapter 9 extends the range of load variation over which the novel index remains 

load independent.  

Chapter 10 provides an interesting extension of the load independent index analysis by 

deriving a novel noninvasive surrogate of left ventricular end diastolic pressure. By correlation 

with invasively determined end-diastolic pressure, this novel index is compared to the clinically 

established noninvasive surrogate for end diastolic pressure. The work in Chapter 10 has been 

described partially in abstracts and a manuscript is in preparation 

Chapter 11 is based on a published peer reviewed manuscript (75), a published 

conference proceeding paper (72), and a published conference abstract and details a 

generalization of the methods described in chapter 8-10 to invasive assessment of isovolumic 

relaxation. While conventional indexes of isovolumic relaxation also show beat by beat load 

variation, a load independent index based on a kinematic model of isovolumic pressure decay is 

shown to remain constant in the face of load variation and reflect intrinsic function.  

Finally Chapter 12 provides a unification of conventional clinical analysis and PDF 

analysis techniques, allowing for a remapping of many of the results in previous chapters and 

other publications from the lab using the established language and indexes familiar to clinical 

cardiologists.  
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Additional Contributions 

In addition to the main Chapters of this thesis, several collaborative contributions that 

have been published or are pending publication, including a hemodynamic surrogate for diastolic 

recoil energy, a kinematic expression for vortex formation time in early filling (22), and a causal 

connection between PDF parameters and parameters derived from the cyclic variation of 

ultrasonic backscatter, are described as abstracts in the Appendix.   
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2.1 Introduction to Methodology 

This Chapter is divided into both experimental and theoretical sections, and the 

experimental methodology is covered first. Nearly every chapter of the current work utilizes data 

from the Cardiovascular Biophysics Laboratory simultaneous echocardiography and 

catheterization database. This database is the largest of its kind in the world and has been 

enrolling subjects for several decades. In total contains simultaneous echo-cath data from over 

400 subjects. Through the years the amount of data and quality of data has evolved, with newer 

catheters with additional pressure channels, new echocardiographic imagers, and updated semi-

automated methodologies for rapid data analysis. However, the basic process for data acquisition 

and analysis has remained fairly consistent, and this process is described below. The latest 

version of this approach is summarized in the figure below, which may be used as a reference 

throughout the current chapter.  

 In addition to experimental techniques, there is a significant amount of theoretical 

background, specifically related to mathematical approximations and simplifications to capture 

the essential features of the in-vivo physiology and properties of the PDF model, that provide the 

Figure 2.1 General overview of data acquisition and analysis. See text for details.  
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basis for much of the analysis presented in the various chapters of the current work. The general 

simplifications and insights are presented below, but specifics are reserved for particular 

chapters.  

 

2.2 Simultaneous Catheterization and Echocardiography 

2.2.1 Subject Selection 

Subjects in the Cardiac Catheterization laboratory, referred by their personal physician 

for elective diagnostic cardiac catheterization to evaluate the possibility of coronary artery 

disease, are recruited to participate in the simultaneous catheterization and echocardiography 

study. All enrolled subjects must meet the following inclusionary criteria: (i) scheduled for 

elective diagnostic left-heart cardiac catheterization, in a fasting, non-sedated state,  (ii) judged to 

be clinically stable, and (iii) willing to participate by giving informed consent in accordance with 

a study protocol approved by the Washington University Medical Center Human Research 

Protection Office (HRPO).  Subject’s inclusion in the study further requires that the subject have 

no evidence of valvular disease or active ischemia. 

 

2.2.2 Echocardiography Prescreening 

 Prior to catheterization, subjects have a complete 2D/echo-Doppler screening study using 

an echocardiographic imaging system (Acuson, HP, or Philips ie33) with 2.5 MHz transducer. 

With the patient supine, both short-axis and long-axis views are obtained. Short axis views are 

obtained at the level of the mitral and aortic valves in order to visualize both valves. Additional 

short axis views are obtained at the mitral leaflet tip and mid-LV in order to estimate LV size. 

Continuous wave Doppler is used to record aortic outflow and mitral inflow from the apical view 
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for determination of isovolumic relaxation time using a sweep speed of 10 cm/sec. Pulmonary S- 

and D- waves and transmitral E- and A- waves are recorded in pulsed Doppler mode with sample 

volumes gated at the pulmonary veins and mitral leaflet tips respectively. For pulsed Doppler 

imaging the wall filter is set at 125 Hz or 250 Hz, the baseline is adjusted to take advantage of 

the full width of the display, and the velocity scale is adjusted to exploit the dynamic range of the 

output without aliasing. Medial and Lateral E’- and A’-waves are recorded in Tissue Doppler 

mode with sample volumes at the medial and lateral sides of the mitral annulus, respectively. In 

addition, Color M-Mode imaging is used to obtain diastolic early and late filling interventricular 

velocity maps. 

 If a poor echo window, bicuspid aortic valve or significant calcification or stenosis of the 

aortic valve is observed by echocardiography, then the routine cardiac catheterization study 

proceeds, but the subject is not enrolled in the simultaneous high-fidelity catheterization and 

echocardiography portion of the study. If the subject has an appropriate echocardiographic 

window and no aortic valve abnormalities then the simultaneous high-fidelity catheterization and 

echocardiography study proceeds.  

 

2.2.3 Catheterization Procedure 

 After appropriate sterile skin prep and drape of the patient, local anesthesia (1% 

xylocaine), is given and percutaneous right and left femoral arterial and venous (if a right heart 

cath is requested) access is obtained in preparation for the performance of catheterization, using 

a valved sheath (6-F, Arrow Inc, Reading, PA). If necessary, right heart catheterization is 

performed via the Seldinger technique using a 7.3 F Swan-Ganz balloon tipped or 6F or smaller 

diameter Cournand catheter (12). After arterial access and placement of a 64cm sheath (Arrow 



 

 58 

Inc, Reading, PA), a 6F micromanometer-tipped pigtail (triple pressure transducer) pressure-

volume, conductance catheter (Model 560-1, 560-5, SSD-1034 Millar Instruments, Houston, TX) 

is directed into the mid-LV in a retrograde fashion across the aortic valve under fluoroscopic 

control. The three pressure transducers are located such that the distal and middle transducers 

record LVP, and the proximal pressure transducer records simultaneous aortic root pressure. 

Prior to insertion, the manometer-tipped catheter is calibrated against "zero" by submersion just 

below the surface of NS bath, and again after insertion relative to hydrostatic "zero" using the 

lumen with respect to the mid-thoracic fluid filled transducer (HP). Each pressure channel is 

balanced using a transducer control unit (Model TC-510, Millar Instruments, Houston, TX). 

Pressures are fed to the Catheterization Laboratory amplifier (Quinton Diagnostics, Bothell, WA, 

General Electric, CT) at a sampling frequency of 200Hz or 240Hz. The LV pressure, the LV 

volume from the conductance catheter and one ECG channel are also simultaneously recorded on 

disk in digital format using our multichannel physiologic data acquisition system, consisting of a 

Pentium class computer, with 100 MB hard disk, 64 MB RAM and NB-M10-16H digitizing 

board. The sampling rates are controlled using Leycom Software (Leycom Sigma-5, 

CardioDynamics, Rijnsburg, The Netherlands). Distal pressure and one ECG channel are 

simultaneously input to the physiological ports of the Doppler imaging system for 

synchronization (HP, Acuson or Philips ie33). 

 

2.2.4 Simultaneous Echocardiography  

 Figure 2.2 provides a summary of the catheterization lab setup during simultaneous 

echocardiography-catheterization After completion of a complete 2D-echo Doppler study at the 

time of procedure initation, and after the catheter has been advanced into the LV, with the 
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subject supine, apical four-chamber views are obtained by the sonographer with the sample 

volume gated at 1.5 to 2.5 mm and directed between the tips of the mitral valve leaflets 

orthogonal to the MV plane. 

 To synchronize the hemodynamic and Doppler data, a fiducial marker in the form of a 

square wave signal is simultaneously fed from the catheter transducer control unit to both the 

echocardiographic imager and the PC.  Approximately 25 to 50 beats of continuous, 

simultaneous transmitral Doppler and LV pressure signals are recorded on the imager’s internal 

memory. In addition 10-15 cardiac cycles via DTI are recorded with the sample volume being 

located at lateral portion of the mitral annulus along with the simultaneous LV pressure signal.  

Images of individual beats are captured in DICOM format from the disk for offline analysis 

using custom image processing software. The entire case is also recorded onto VHS tape 

(Accuson and HP) or burned to DVD (ie33), and processed the resulting continuous data stream 

is processed offline.  

  

Figure 2.2. A schematic of the catheterization lab setup for simultaneous catheterization and 

echocardiography. The customized personal computer (PC) on the left accepts, displays, and stores 

multiple pressure signals and a conductance volume channel from the catheter. One pressure signal and 

a split ECG signal is fed to the echocardiographic imager (right) from the PC input for simultaneous 

display of ECG and pressure on the transmitral velocity display. See text for details.  
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Figure 2.3. A) A pressure vs time plot during a Valsalva maneuver, showing left ventricular (black) and 

aortic (blue) pressure, with ECG signal in red. Pressure rises dramatically as the subject is instructed to 

bear down during a breath hold. High intrathoracic pressure leads to reduced venous return and 

decreased preload. Release of strain leads to decrease in pressures and normalization of venous return. 

Finally pressures increase in response to the recovery in cardiac output. B) Similar plot to A), but 

focused on the pressure response to a premature ventricular contraction. Notice that the left ventricular 

pressure does not exceed the aortic pressure following the premature ventricular contraction. This 

indicates that no ejection occurs during the premature ventricular contraction. The beats following a 

premature ventricular contraction have increased preload due to the increased pre-stretch during the 

premature contraction.  

2.2.5 Load Variation During Catheterization 

 To assess load-dependence, a 10-second Valsalva maneuver is performed with 

simultaneous transmitral flow-LVP recording(5). Subjects are instructed to perform a breathhold 

and bear down so as to increase intrathoracic pressure and reduce ventricular preload. This 

physiological perturbation is easily observed as an increase in left ventricular pressure during the 

strain-phase followed by a steady decrease in mean left ventricular pressure during the recovery 

phase. See Figure 2.3a for further details.  

 Load-dependence is further assessed by analysis of the hemodynamic response following 

spontaneous or catheter-generated premature ventricular contractions (1). Non-ejecting 

premature ventricular contractions are often followed by more vigorous filling and contraction, 

and therefore the filling beats following a premature ventricular contractions represent natural 

physiological load perturbations. See Figure 2.3b for more detail. 
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2.2.6 Remainder of Catheterization  

 Ejection fraction is subsequently determined though ventriculography, performed using a 

6F bent, pigtail catheter (Cordis) using 33cc's of contrast injected at 11 cc's/sec. The image is 

calibrated for volume using a cm grid placed at the mid-axillary level and this subsequent image 

analysis of end-systolic and end-diastolic frames provides a fairly robust measure of end-systolic 

and end-diastolic volume. The remainder of the catheterization and coronary angiography 

proceeds in accordance with established clinical practices (12).. 

 

2.3 Semi-Automated Post Processing of Simultaneous Data 

2.3.1 Determining Landmarks in the Pressure, Pressure Derivative, and ECG signals 

Determination of Square Waves 

 Square waves are at least 1 second long step functions with an amplitude of 100 mmHg 

that are introduced into the pressure signal by the transducer control box for calibration and 

synchronization purposes. An automated script finds square waves by looking for extended 

minima in the pressure derivative signal that are flanked by extreme maxima and minima, and 

manual analysis is employed to confirm the start and stop of the automatically discovered square 

waves. If the square wave amplitudes or absolute values deviate from 0 mmHg and 100 mmHg 

then the entire pressure signal is shifted and scaled appropriately.  

 

Initial ECG Analysis 

The typical hemodynamic signal captured in the catheterization laboratory consists of 

simultaneous pressure and ECG signals, and several automated analysis steps are performed to 

make the data easier to work with. The first step in data analysis involves the determination of all 
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ECG R-wave peaks. A custom MATLAB code achieves this task by searching for local maxima 

in the DC filtered ECG signal over successive windows defined by the dominant period 

(determined by the frequency of the peak in the Fourier power spectrum) in the signal.  

Initial Pressure Analysis 

The sequence of R-wave peaks defines successive cardiac cycles. For each cycle, 

multiple analysis steps are performed. To be clear the later R-wave peak defines the beat in 

question, so the 2
nd

 R-wave beat in the data set defines the 1
st
 measured beat. Furthermore, to 

avoid errors that arise from respiratory modulation of the pressure signal, maxima and minima in 

the pressure signal are determined from data that has been appropriately filtered to remove low 

frequency respiratory signals (0.15 Hz and below). The maximum and minimum pressure 

between R-wave peaks define the maximum and minimum pressure for that beat, and similarly 

the maximum and minimum pressure derivatives between R-wave peaks define dP/dtMAX and 

dP/dtMIN respectively. Similar analysis of the aortic pressure signal between R-wave peaks yields 

maximum and minimum aortic pressure and pressure derivatives. The maximum pressure 

between the later R-wave peak and the minimum pressure defines the LVEDP for the beat in 

question. In most cases this is equal to the pressure at the R-wave peak, but in cases of 1
st
 degree 

AV block, left ventricular pressure reaches a maximum and then falls back toward diastatic 

pressure.  

 

Full ECG Analysis 

With the basic pressure and pressure derivative landmarks in place, further analysis of the 

ECG signal is performed. The QRST complex is analyzed by applying linear approximations to 

the upslope and downslope of the R-wave and determining crossover points with the baseline 
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zero voltage level of the DC filtered signal. The first minima preceding and following those 

crossover points define the Q and S waves respectively. The maximum in the absolute value of 

the ECG signal between the S wave and the time at which minimum pressure occurs defines the 

T-wave peak. Linear approximation of the T-wave upslope and downslope define the start and 

end of the T-wave respectively, and the maximum in the absolute value of the ECG signal 

between the end of the T-wave and the start of the following R-wave defines the P-wave peak. 

Linear approximation to the upslope and downslope of the P-wave finally defines the 

approximate start and end of the P-wave. Following automated analysis, manual analysis is 

performed to adjust any errors due to lack of P-wave or spurious ECG data. 

 

Full Pressure Analysis 

 The estimated mitral valve opening time tMVO is defined as the time between maximum 

and minimum pressure where the pressure is closest to LVEDP. The diastasis pressure is defined 

by the pressure at the P-wave peak, when the P-wave is present, and by the LVEDP otherwise. 

The start of diastasis is estimated by an iterative process. The midpoint between the time at the 

P-wave peak and minimum pressure is assumed to be the start of diastasis. A linear regressions 

of the pressures between the assumed start of diastasis and time of minimum pressure, as well as 

a linear regression of the pressures between the assumed start of diastasis and the time of P-wave 

peak are constructed. The intersection of these linear regressions defines the next guess of the 

start of diastasis, and this process is repeated until it converges on a single value or a set of 

repeated values. If the process converges on a loop of values then the average of those values 

defines the time at which diastasis starts.   
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2.3.2 Analysis of the Isovolumic Pressure Decay Contour 

Finally the isovolumic portion of the cardiac cycle is analyzed. First the inflection point 

in the pressure derivative is determined from the local minimum in the second pressure 

derivative between the time of maximum pressure and minimum pressure derivative. This in turn 

is used to define the isovolumic pressure decay contour, which is taken to be the pressure signal 

beginning at the determined inflection point in the pressure derivative and ending 5 msec before 

tMVO.  

 

Conventional Analysis 

Initially conventional analysis is applied to the isovolumic pressure decay contour. First, 

the original Weiss formulation to define τW is applied, by determining the negative reciprocal of 

the slope of the regression of ln(P) vs P over the isovolumic pressure decay contour (11). In 

addition, a more recent non-zero pressure asymptote model (10) of isovolumic relaxation time is 

applied to define τR. The simplest method for determining τR is to find the negative reciprocal of 

the slope of the linear regression defined by the isovolumic pressure decay plotted in the pressure 

phase plane (Figure 1.8). Finally the logistic time constant, τL, is extracted from the isovolumic 

pressure decay contour by applying a Levenberg Marquardt algorithm to find the τL value that 

minimizes the error in the pressure phase plane between the measured pressure decay contour 

and phase plane contour predicted by the following equation and it’s time derivative: 

 

P(t)=
2 P!"Po( )

1+ e

"
t

!
L

+ 2Po"P!   Equation 2.1 

where P∞ is the pressure asymptote and Po is the initial pressure (8).  
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Kinematic Model Based Analysis 

Once conventional analysis is complete, we analyze the isovolumic decay contour 

through a kinematic approach as well. Following previous work of Chung et al as (3)well as the 

methods described in Chapter 11, kinematic parameters of isovolumic relaxation, including τc 

and Ek, are extracted from the isovolumic pressure decay contour by applying a Levenberg-

Marquardt algorithm to find the kinematic parameters that minimize the error in the phase plane 

between the measured pressure decay contour and phase plane contour predicted by the 

underdamped or overdamped version of the following equation and its time derivative: 

  

P(t)= e

!t
!
c

2

!Po +
1

2
!cPo

"
sin "t( )+ Po cos "t( )

"

#

$
$
$
$
$

%

&

'
'
'
'
'

+ P(   Equation 2.2 

 where Po is the initial pressure assuming zero pressure asymptote, 
 
!Po  is the initial time 

derivative of pressure, and ω=
 
Ek !

!c( )2

4
. See Chapter 11 for further details.  

All of the preceding isovolumic pressure decay analysis is accomplished through 

automated MATLAB scripts.  

 

2.3.3 Preprocessing and Conventional Analysis of Simultaneous Echocardiography Data 

 Continuous transmitral flow data is captured synchronously with the Millar pressure data 

in the form of a video file. Alignment of the transmitral contours and Millar data is achieved by 

introducing a time offset in the video file that ensures that the start of the square wave in the 

pressure signal corresponds to the start of the square wave in the video. With this offset in place, 

the R-wave peak times are used to determine the corresponding frame number in the video file 
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(29.97 frames per second on DVD or 14.99 frames per second on VHS) where the R-wave for 

that beat occurs. Typically the frame that comes several frames beyond the R-wave is extracted 

to ensure no loss of A-wave signal. These frames are extracted programmatically from the video 

Figure 2.4. A screenshot of a custom MATLAB interface for efficient conventional clinical analysis 

of Doppler echocardiography transmitral velocity contours. A previously saved frame corresponding 

to the end of the diastolic interval is read in by the interface, and the user is provided multiple 

options. If available, the simultaneous pressure contour is displayed. The user must first set the scale 

of the image by determining the time and velocity sample rates (TSR and VSR). Then the R-R 

interval must be determined and the E-wave and A-wave start, peak, and end points must be selected. 

The resulting conventional transmitral contour parameters are saved for future use. If the pressure and 

simultaneous ECG signal is available and synchronized, then the R-R interval determination may be 

performed in a semi-automated fashion without full user input. The user determined start and end 

points are used to define bounds for cropping the image, and the cropped image is exported, with the 

TSR and VSR values saved in the name of the cropped image. The exported image may be read in by 

the model based image processing program described below for PDF model based analysis. 
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file based on the previously determined R-wave peaks. The resulting image stills are fed into a 

custom MATLAB interface that allows for conventional echocardiographic analysis as well as 

further post-processing (See Figure 2.4). 

 The custom MATLAB interface in Figure 2.4 shows synchronized simultaneous pressure 

and transmitral contour data. The transmitral data is in the form of a freeze frame corresponding 

the to R-wave peak following the atrial kick associated with that filling interval. This interface 

allows the user to set the time and velocity sample rates associated with the freeze frame image. 

Following that step the user may mark the R-wave limits of the image, as well as the peak, start, 

and end of the E-wave and A-wave, thereby simply implementing conventional triangle shape 

based analysis of transmitral flow. A similar MATLAB interface exists for processing E’- and 

A’-wave data, including any extra E’’ or E’’’ annular oscillations. All data is stored and written 

to a tab-delimited text file, and cropped E- and A-wave images (or E’- and A’- wave images) are 

exported and renamed in a form that is readily accessible by a custom LabView program 

designed to extract PDF parameters from E- and A-waves using a nonlinear least-squares 

Levenberg-Marquardt algorithm. In this manner each measured E-wave is analyzed by 

conventional clinical techniques and processed for PDF model based analysis. 

 

2.4 Model Based Image Processing 

2.4.1 User Selection of Wave Limits and Amplitude 

The cropped images output by the conventional analysis MATLAB interface described 

above, with time and velocity sample rates stored in the image file name, are imported into a 

custom PDF analysis LabView program (see Figure 2.5). Before the PDF parameters can be 
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Figure 2.5. A screenshot of a LabView interface for PDF model based image processing. Only E-wave 

analysis is shown for simplicity. First the user selects the maximum velocity envelope (MVE), and the 

start and end of the E-wave. A Levenberg-Marquardt algorithm iterates over parameter space until the 

mean square error (MSE) between model fit and user defined input data is minimized.  

determined, the user must manually set the maximum velocity envelope (MVE) and left and 

right bounds of the E-wave and A-wave. 

These user defined limits set the raw pixel data that is input into the Levenberg-

Marquardt algorithm, and different choices for these constraints lead to different algorithmically 

determined best-fit PDF parameters.  

 

Choice of Maximum Velocity Envelope 

When blood velocity is homogeneous across the sample volume, the envelope of the 

Doppler velocity contour is expected to be relatively thin. If on the other hand, blood velocity is 

heterogeneous across the sample volume, then the envelope will have significant thickness, 

thereby clearly defining a minimum velocity envelope, mean velocity envelope, and maximum 
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velocity envelope. Thus as sample volume velocity heterogeneity increases, the envelope 

thickness increases, with a lower and lower minimum velocity envelope but a fairly constant 

maximum velocity envelope. For this reason the maximum velocity envelope is deemed to be a 

more consistent and robust measure of transmitral blood flow velocity, and indeed conventional 

triangle based analysis draws a triangle relative to the maximum velocity envelope. Thus, in 

order to ensurethat the PDF model provides E-wave parameters consistent with the conventional 

analysis techniques, the maximum velocity envelope is applied to extract velocity data from the 

E- and A-wave images. It is important to note that care must be taken for image contrast and 

brightness to be fairly consistent so that the pixels extracted from the image correctly correspond 

to the measured maximum velocity envelope.  

 

Choice of E-wave Start And End 

 Only the data between the user selected start and end of the E-wave is used to generate 

the best-fit PDF parameters. While theoretically speaking only 3 points are needed to determine 

all PDF parameters exactly, the realities of noisy clinical data require that a large number of data 

points be included in the analysis, so as to average out the effects of noise and spurious data. 

Thus at first glance it would seem that the proper choice of E-wave start and end would be the 

velocity minima that precede and follow the E-wave peak, respectively.  However, there are 

some theoretical and experimental challenges to that approach, and they begin with the 

applicability of the PDF model at the start of the E-wave.  

The PDF model assumes that the force driving transmitral flow at the start of filling is 

instantaneously equal to kxo, and therefore the velocity is predicted to have a non-zero 

acceleration equal to kxo at t=0. Furthermore, this is the PDF model predicted maximum E-wave 



 

 70 

acceleration, and there is no predicted inflection point in the E-wave upslope for t>0 according to 

the PDF model. This is not in precise agreement with the physiology because at mitral valve 

opening the driving force, or atrioventricular pressure gradient, is intially zero. As filling 

commences the maximum AV pressure gradient is rapidly attained (in ms)  as ventricular 

pressure falls much faster than the simultaneous atrial pressure can drop. Rapidly the maximum 

acceleration is reached (E-wave upslope inflection point), and following that the acceleration 

proceeds to decline until it is zero again at the E-wave peak. This physiological finding has been 

demonstrated in numerous studies (4). Furthermore, direct inspection of the upslope of 

transmitral velocity contours recapitulates the established behavior of the atrioventricular 

pressure gradient. At mitral valve opening, the E-wave begins flat and concave up, goes through 

an inflection point in a few ms, usually before it reaches 25% of peak velocity, and becomes 

concave down as it approaches peak velocity. It is important to note that an accurate measure of 

the early E-wave upslope velocity may be challenging because of baseline velocity filters and 

artifact due to early filling leaflet 

motion. Because peak AV 

gradient develops very rapidly 

starting from zero, but the PDF 

model initiates motion with the 

maximum force (max AV 

gradient analog) at t=0, the PDF 

model is not physiologically 

consistent at the start of the E-

wave (Figure 2.6). Beyond the 

Figure 2.6. A closer look at the upslope and downslope of the E-

wave, showing limitations inherent in the PDF model of the E-wave 

velocity contour. The upslope of the E-wave is a smooth function 

that begins flat and rapidly increases (green), whereas the upslope 

of the PDF-model predicted contour begins with a non-zero slope. 

The downslope of the E-wave contains low velocity data that may 

not be physiological. Inclusion of this data may extend the E-wave 

deceleration tail significantly.  
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inflection point of the acceleration portion, the model accurately predicts the E-wave contour. 

Thus care must be taken to select E-wave data beyond the start of the E-wave. In general setting 

the left start at a time at or just beyond the inflection point at which the wave reaches 30-40% of 

the peak E-wave height ensures that the data is beyond the range of both extraneous valve noise 

and E-wave acceleration concave-up portion, and maximizes the amount of data included before 

the E-wave peak.  

 The choice of E-wave end must also be made with care. If there is absence of diastasis 

then the choice must be at a time less than or equal to the E-wave and A-wave intersection. 

When diastasis is present, however, the selection of E-wave end is not trivial. In some cases E-

wave deceleration shows a biphasic characteristic, and in those cases only the first phase of 

deceleration should be included. Most clinically measured E-wave waves are not biphasic, 

however, and therefore in principle one could select the E-wave minimum as the end of the data 

to be included in the best-fit algorithms. However, as the E-wave velocity falls to levels near the 

baseline, the signal and noise become indistinguishable, and any baseline filtering that is present 

begins to have a dramatic impact on the best-fit determined contour. The inclusion of extraneous 

data towards the end of the wave generates best-fit contours with long tails, biased towards the 

critically or overdamped kinematic regimes. This leads to an E-wave contour with a predicted 

DT that far exceeds the conventionally (triangle shape based) determined DT, and thereby makes 

the PDF model predicted fit inconsistent with conventional analysis techniques (Figure 2.6). 

While the PDF model provides mechanistic insight beyond conventional analysis, it is important 

for traditional E-wave shape-based indexes to be consistent with PDF model derived shape based 

indexes, and therefore the conventional triangle fit deceleration slope should be considered as 

one selects the proper E-wave end point to include in the best-fit algorithmic analysis. This is 
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achieved typically by selecting the E-wave end at a time where the E-wave velocity is 20-30% of 

the E-wave peak.  

 

Choice of A-wave Start And End 

 The choice of A-wave start and end follows the same rationale as the E-wave fitting 

portion. When diastasis is absent the A-wave start is the point at which E-wave and A-wave 

intersect. When diastasis is present, selecting a start point at the time where A-wave velocity is 

30% of the A-wave peak velocity is appropriate. The end point for A-wave fitting may be chosen 

at the lowest A-wave velocity preceding the ECG R-wave peak, and this is typically at an A-

wave velocity that is 20% of the A-wave peak velocity.  

 

Heart Rate Limitations 

 An important limitation arises in relation to setting the end of the E-wave and start of the 

A-wave when heart rate is elevated, diastasis is abolished, and E- and A-waves are partially 

merged. When heart rate is only modestly elevated (~ 80 BPM) the degree of E- and A-wave 

merging is not significant, and the end of the E-wave may be at a time when the velocity is 20% 

of the E-wave peak velocity. However, as heart rate increases the degree of merging increases as 

well, and at heart rates around 95 BPM, the E- and A-wave peaks become indistinguishable. As 

this transition occurs, less and less of the E-wave deceleration portion is visible before the E-

wave A-wave intersection, and therefore the amount of E-wave data that may be used as input to 

the fitting algorithm decreases with increased heart rate (Figure 2.7). In general an E-wave with 

½-2/3
rds 

of its deceleration portion visible can be accurately fit, even if the remaining 1/3 of the 

wave is merged with the A-wave. If on the other hand less than half of the deceleration portion is 
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unmerged, then the number of data points that can be input into the fitting algorithm is 

insufficient to generate a robust fit, and therefore subjects with significantly increased heart rate 

are not amenable to current PDF model analysis techniques. The heart rate at which diastasis is 

lost, and the E-wave start to A-wave end duration may be predicted and understood in kinematic 

terms, however (2). 

 

2.4.2. Levenberg Marquardt Fitting of Data 

Solving the Inverse Problem 

The user selected portions of the E-wave and A-wave contours are input into a 

Levenberg-Marquardt algorithm that iterates over E-wave (c, k, xo, to) and A-wave (Fo, w, to) 

parameter space until a minimum in the square error between model predicted E-wave and A-

wave velocities and input data is found. Velocity contour data outside of the user selected range 

does not impact the fitting algorithm or the determined mean square error between model fit and 

Figure 2.7. E-wave from different subjects, demonstrating the merging of E- and A- 

waves with increased heart rate. PDF fitting is possible when waves are partially 

merged, but not possible when merging is significant, as shown in the rightmost 

panel.  
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input data. Because the PDF model is linear and invertible, in principle there is only one point in 

parameter space that uniquely fits the input data. However, because the data always contains 

noise or error, in practice there may be a locus of points in parameter space that accurately fit the 

input data. Nevertheless, because the model is linear and invertible, we can be confident that the 

algorithm determined best-fit parameters are close to (in parameter space) the ideal noise-free 

unique solution. Thus the Levenberg Marquardt algorithm allows for the solution of the ‘inverse 

problem of diastolic function’ (6, 7) , whereby mechanistic physiological diastolic function 

parameters that determine the velocity contours are extracted from clinically measured E- and A-

waves. 

The algorithm is adapted from FORTRAN code outlined in Numerical Recipes [(9), and 

runs in both LabView and MATLAB. The general mathematical approach of the Levenberg 

Marquardt algorithm, which has been previously described (6, 7), combines steepest-descent and 

gradient based methods to efficiently iterate over parameter space and converge to a solution.  

 

Algorithm Determined Standard Deviations 

 The Levenberg Marquardt algorithm provides best-fit PDF parameters, as well as the 

standard deviation for the best-fit parameters. A noisy input data set that is not well fit by the 

PDF model, for example, may have significant standard deviations in c, k, and xo determined 

values. However, care must be taken to interpret the algorithm determined parameter standard 

deviations, because a critical aspect of the parameter standard deviation is the standard deviation 

of the input data. If the input data standard deviation is not known, then the algorithm determined 

parameter standard deviation values will not be accurate. This is an important limitation to 

consider when working with digitized image data as the input. The image data does not have any 
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clear indication of the velocity standard deviations, and therefore when working from digitized 

image data, one must assume a standard deviation value for input velocity. Using an average 

percentage value based on machine settings or parameters is a reasonable approach. In the ideal 

case, one would use the raw Doppler ultrasound velocity signal and standard deviation as input 

to the Levenberg Marquardt algorithm so as to ensure accurate determination of the best-fit 

parameter standard deviations.  

 

Manual Correction and Final Output Data 

 The best-fit determined parameters for both E-waves and A-waves may be applied to 

evaluate the PDF velocity contour expressions in order to generate and superimpose the model-

predicted velocity contours. This allows for a visual inspection of the model predicted contour 

relative to the input data, and if a significant deviation is observed then a manual correction may 

be applied. This may occur if the start and end points of the waves were incorrectly set, or if 

spurious pixels were included in the raw input data. Manual adjustment must be accompanied by 

a recalculation of the mean square error between model predicted contour and input data.  

 Once the final best-fit parameters are set, the best-fit determined parameters and any 

mathematically related indexes are stored and saved in a tab-delimited text file. This process is 

repeated for each measured wave and results in a set of PDF parameter values and indexes for 

any given subject.  

 

2.5 Mathematical Insights and Methods 
 

 As described in Chapter 1, the PDF model provides an accurate fit to a wide variety of 

clinically encountered E- and A-wave velocity contours, and the PDF model parameters have 
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physiological analogues that have been validated in numerous studies. In addition to providing 

an accurate fit to the E- and A-wave velocity contours, however, the PDF model parameters and 

indexes derived from algebraic manipulation of the PDF model parameters provide mechanistic 

insight into the physiology of diastole and by extension diastolic function. These mechanistic 

insights require a deeper understanding of the mathematical implications and properties of the 

PDF kinematic model, which we describe below. As described in Chapter 1, the governing 

differential equations for E-waves and A-waves respectively are: 

  !!x+ c !x+ kx = 0      Equation 2.3 

  
!!xA + cA !xA + kAxA = Fo sin !At( )    Equation 2.4 

 

2.5.1 Conventional Indexes of Underdamped Waves 

 Underdamped kinematics are encountered when stiffness effects dominate damping effects, 

and mathematically 4k>c
2
. It is useful to define a dimensionless parameter, 

 

y=
c

2 k
, whose 

relative magnitude determines the underdamped vs overdamped kinematic behavior. Thus 

underdamped kinematics correspond to 0≤y<1, and the velocity and displacement equations may 

be rewritten in terms of the velocity and displacement equations  (Equation. 1.10 and its integral) 

may be rewritten in terms of y, k, ! and xo : 

 
v(t)=

kxo

!
e
! y k( )t

sin !t( )     Equation 2.5 
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  Equation 2.6 

where 
 

! =
4k! c

2

2
= k 1! y

2 . 



 

 77 

 

E-wave Duration 

 The underdamped velocity contour is predicted to oscillate and therefore cross the x-axis. 

The time at which this occurs is given by the first non-zero root of  sin !t( ) , and therefore the 

duration of the E-wave, called Edur, is: 

 
t = Edur =

!

"
=

!

k
1! y

2( )
!
1

2     Equation 2.7 

It is clear that the E-wave duration is expected to increase without bound as the critically damped 

(y=1) kinematic regime is approached. While the velocity vanishes at the end of the E-wave, the 

oscillator displacement is nonzero, except in critically damped (y=1) limit: 

 
x(Edur )= xoe

!
! y

1!y
2

     Equation 2.8 

 

E-wave Acceleration Time 

 The E-wave acceleration time (AT) is the time from the start of the wave to the peak of the 

wave. This may be determined by finding the time at which the derivative of the velocity is zero. 

Alternatively, one can set the second derivative of displacement to zero in the governing 

differential equation, and solve for time: 

  0+ c !x AT( )+ kx(AT )= 0      Equation 2.9 

Canceling out like terms and rearranging we find: 

 

c

!
sin !AT( ) = cos !AT( )+

c

2!
sin !AT( )    Equation 2.10 

 

y

1! y
2

= cot !AT( )    Equation 2.11 
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Solving for AT we find: 

 

AT =
1

!
tan
!1 1! y2

y

"

#

$$$$$$
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'''''''
=
1

!
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1! y2
 Equation 2.12 

It is interesting to consider the y=0 and y=1 limits of the second term in the equation above: 
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1! y
2

=1    Equation 2.13 

Thus as the E-wave goes from undamped (y=0) to critically damped (y~1), AT varies as: 

 

!

2 k
! AT >

1

k
      Equation 2.14 

 

E-wave Deceleration Time 

 Deceleration time (DT) is the time between E-wave peak and E-wave end, and therefore 

can be determined from: 

 

DT = Edur !AT =
1

!
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  Equation 2.15 

 See Chapter 5 for further discussion related to E-wave deceleration time and its 

determinants.  

 

E-wave Peak 

 Evaluating Eq 2.5 at the peak time AT yields an expression for E-wave peak velocity 

(Epeak): 

 
Epeak =

kxo

!
e
!y k

1
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 Equation 2.16 
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Again, considering the limits y=0 and y=1, we have the following limits for the E-wave peak 

velocity between the undamped and critically damped regimes: 

 

xo k > Epeak > xo
k

e
= xo

c

2e
   Equation 2.17 

E-wave Area 

 The E-wave velocity time integral (VTI) is often calculated as the area of the triangle fit to 

the E-wave, and when multiplied by effective mitral valve area, provides an estimate of the E-

wave filling blood volume. The E-wave area is the difference in E-wave displacement between 

the end and start of the wave, and therefore, from Equation 6 is given as: 

 

VTIE = x(Edur )! x(0)= xo 1+ e
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! y
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 Equation 2.18 

Again, considering the undamped (y=0) and critically damped (y=1) limits, one obtains the 

following limits for E-wave area (VTIE): 

 
2xo !VTIE > xo       Equation 2.19 

These limits have been used in the previous work to define an index of filling efficiency, called 

the kinematic filling efficiency index (13), and several interesting applications of this efficiency 

index are described in Chapter 8 and 12. 

 

2.5.2 Additional Indexes of Underdamped E-waves 

E-wave Upslope and Downslope 

 The slope of the E-wave at the start is interesting to consider, because it provides an 

important distinction between actual physiology and approximations made by the PDF model. At 

the start and end of filling the velocity vanishes, and Equation 2.3 becomes: 
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  !!x =!kx       Equation 2.20 

Plugging in t=0, we can determine the E-wave upslope: 

 
EUpslope = kxo      Equation 2.21 

and plugging in t=Edur and applying Eq 2.5 we can determine the E-wave downslope: 

 

EDownslope =! kxoe

!
! y

1!y
2

   Equation 2.22 

Physiologically the E-wave initial upslope should be zero since the fluid accelerates from rest 

and the Av pressure gradiet is zero at MVO., The non-zero upslope predicted by Eq 2.21 

demonstrates a limitation of the PDF model at the start of filling, described above. 

 

E-wave Inflection Point 

 One primary difference between a triangle fit to the E-wave and the PDF model E-wave 

contour is the E-wave deceleration portion inflection point. The inflection point is routinely 

observed with clinical E-wave data but is disregarded when one approximates the wave as a 

triangle. The mathematics of the inflection point are surprisingly simple, and can be appreciated 

by finding the time at which the second derivative of velocity vanishes: 
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dt
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 Equation 2.23 

Applying the fact that 
 
! = k 1! y

2 , we find: 
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tan !tinf( ) = 2
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    Equation 2.24 

If we apply Eq 2.11 above, with the preceding equation we may visualize both acceleration time 

and inflection time graphically (Figure 2.8). 

 We can use Figure 2.8 to determine the relationship between the inflection time and 

acceleration time. First, let’s determine the sin and cosine of the angles in the figure: 

 
 
sin(!tinf )= 2y 1! y

2
, sin(!AT )= 1! y

2
, cos(!AT )= y  Equation 2.25 

Applying the sin(2x) trigonometric identity we find: 

 
 
sin(2!AT )= 2sin(!AT )cos(!AT )= sin(!tinf )   Equation 2.26 

And thus we have derived the remarkable result that the E-wave inflection point occurs at twice 

the acceleration time: 

 
tinf = 2AT       Equation 2.27 

This result is simple and powerful, and could be predicted by considering the c=y=0 un-damped 

case, where the inflection point occurs at first non-zero root of the symmetric E-wave. Further 

insight my be gained by determining the velocity at the inflection point: 

Figure 2.8. Visualization of the trigonometric identities in Equation 2.24 and Eqaution 

2.12. See text for details.  
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v(2AT )= 2y kxoe

!2
y cos

!1
y( )

1!y
2

= 2y
v
2
(AT )

kxo
  Equation 2.28 

In addition, there is a fascinating connection to the acceleration at the inflection point, which can 

be easily determined by differentiating Eq 2.3 and setting the velocity second derivative to zero: 

  

!v 2AT( ) =!
k

c
v(2AT )=!

k

2y
v(2AT )=!

1

xo
v
2
(AT )Equation 2.29 

Thus there is a deep connection between the peak E-wave velocity and the downslope at the E-

wave inflection point.  

 

E-wave Inflection and Deceleration Time 

 As described above, the inflection time is identical to the E-wave duration in the c=y=0 

Figure 2.9. 3 Underdamped E-waves with increasing damping, showing both exact deceleration time 

(DT), and inflection point determined deceleration time (DT’). In each case the inflection point is found 

by doubling the acceleration time (AT). A) An undamped (c=0) E-wave, where AT is equal to DT. In 

this case DT’ and DT are equal, because the inflection point occurs at the E-wave end. B) A slightly 

damped E-wave, with DT>AT, showing the close agreement between DT’ and DT. C) A nearly 

critically damped E-wave DT>>AT, showing the difference between DT’ and DT. 
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Figure 2.10 A plot of Equation 2.31 (red) and 

Equation 2.15 (blue) defined deceleration time 

(DT) vs y. Notice that the exact and approximate 

values for DT are in close agreement for y<<1. 

See text for details.  

case. This brings up an interesting connection between inflection point and deceleration time, 

because in the c=y=0 case, the base of the right triangle with hypotenuse defined between E-

wave peak and E-wave inflection point defines the deceleration time exactly (Figure 2.9). It is 

interesting to analyze the effectiveness of approximating the E-wave deceleration time with a 

triangle defined by the peak and inflection point. 

 Using similar triangles it is easy to show that: 

 

v(AT )! v 2AT( )
AT

=
v(AT )

DT '
    Equation 2.30 

where DT’ is the inflection point defined triangle deceleration time.  

Solving for DT’ we find: 

 

DT '=
AT

1!
v 2AT( )
v AT( )

=
1

k

cos
!1
(y)

1! y
2

1!2ye

!
y cos

!1
(y)

1!y
2

 Equation 2.31 

Plotting this and the exact expression for DT 

against y, (Eq 2.15) with a fixed k we find that 

DT’ is a suitable approximation for DT (Figure 

2.10).  

 

2.5.3 Conventional Indexes of Overdamped E-

waves 

 We can transform underdamped results to 

overdamped results with the substitution 

 
!! i" , where 
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! = c / 2( )2! k =

c

2
1! y

!2 . Thus, the E-wave overdamped velocity expression is: 
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  Equation 2.32  

where 
 

! =
c

2
. Similarly the expression for overdamped displacement is: 
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  Equation 2.33 

 

E-wave Acceleration Time 

 Making a similar substitution in the acceleration time expression above, we find the 

acceleration time for the over damped E-wave: 
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   Equation 2.34 

We may find an alternative expression for AT by taking the hyperbolic tangent of both sides of 

the equation above: 

 

!

"
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! e
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e
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   Equation 2.35 
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     Equation 2.36 
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E-wave Peak 

 Plugging in equation 2.36 into equation 2.32 we find the overdamped E-wave peak 

velocity: 

 

Epeak =
kxo
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2!  Equation 2.37 

 

E-wave Area and Upslope 

 The E-wave area in the overdamped  case is simple because the oscillator displacement and 

velocity reach zero only at infinite time. Thus, the total area is equal to the initial displacement, 

which is xo. In addition, the E-wave upslope is identical in the underdamped and overdamped 

cases.  

 

E-wave Inflection Point 

 The overdamped E-wave contour has an inflection point which may be determined using 

the methods outlined above. Because switching from underdamped to overdamped requires a 

substitution of frequency only, we expect the relationship between inflection time and 

acceleration time to hold. To derive the inflection time, we take the 2
nd

 derivative of Eq 2.32 and 

solve for the time where it vanishes: 
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  Equation 2.38 

It is useful to derive an identity related to tanh(x) here: 
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  Equation 2.39 

Thus: 
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Finally, this identity may be applied to equation 2.38 to yield: 
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 Equation 2.41 

 Thus, as expected, the time of the inflection point  in the deceleration portion of the E-

wave is twice the acceleration time for both the underdamped and overdamped E-wave. Finally 

we can determine the velocity at the inflection point by plugging in Eq 2.41 into the overdamped 

expression for velocity: 

 

v(2AT )= 2!xo
! + "

!!"

"

#
$$$

%

&
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"
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2y

kxo
v
2
(AT )  Equation 2.42 

Therefore the connection between inflection point velocity and peak velocity is consistent across 

different kinematic regimes.  
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E-wave Deceleration Time 

 The overdamped limit of the PDF model at first glance suggests that DT would be infinite, 

because the E-wave never vanishes beyond the peak. When one applies a triangular fit to the E-

wave, however, one draws a best fit line from the peak through the deceleration portion, even if 

the deceleration tail is prolonged. We can mathematically mimic this purely visual approach to 

fitting by connecting the peak and inflection point in the deceleration portion of the E-wave with 

a line, and determining the intersection of this line with the time axis. The time from the E-wave 

peak to the found intersection point is therefore the inflection-defined DT. It is interesting to note 

that this approximate approach is exact when c=0, as we show above, because the inflection 

point occurs when velocity vanishes. To ensure that this mathematical approximation is 

appropriate in the overdamped setting, Figure 2.11 provides results from numerical experiments 

with overdamped E-waves showing that the essential aspect ratio of the wave is well 

approximated by the line constructed from E-wave peak and inflection point.  

Figure 2.11. 3 overdamped E-waves with increasing y values, showing the inflection point defined 

deceleration time (DT’). Notice that the inflection point occurs at a time t=2AT, where AT is the 

acceleration time of the wave. Deceleration time is routinely determined in the clinical setting by a 

linear best fit approximation to the deceleration portion of the wave, but mathematical determination is 

challenging because the PDF model derived exact deceleration time for overdamped E-waves is 

infinite. The inflection point approximation serves as a reasonable method for mathematical 

determination of clinically defined E-wave deceleration time. See text for details.  
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 Thus, following the approach outlined above with underdamped waves, the overdamped E-

wave deceleration time may be determined from similar triangles: 

 

vover (AT )! vover 2AT( )
ATover

=
v(ATover )

DTover

   Equation 2.43 

where the ‘over’ subscript is intended to clarify that this expression is specific to overdamped E-

waves. Solving for overdamped DT we find: 
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 Equation 2.44 

This may be expanded with the help of Eq. 2.37 and 2.42 to obtain an expression for DT 

independent of xo: 
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  Equation 2.45 

And this may be expressed in terms of y by manipulating  ! : 
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   Equation 2.46 

Alternatively one can write the overdamped velocity approximation as: 

  
DTover =

1

k
f !( )  Equation 2.47 

, where 
  
!=1! y

!2 ,  
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E-wave Duration 

 The E-wave duration is the sum of acceleration time and deceleration time, and is therefore 

simply: 
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2.5.4 A-wave Indexes 

 In previous work it was shown that the critically damped resonant forcing regime ( 

 
4kA = cA

2
, kA =!

2 ) of Equation 2.4 provided an accurate fit to a wide variety of clinical A-

wave contours (6). The mathematical expression for this solution to Equation 2.4 is: 
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     Equation 2.50 

where Fo is the amplitude of the forcing function and !A is the resonant critical damping 

frequency.  

 

A-wave Duration 

We may solve for the time at which A-wave velocity is zero by setting Eq 2.50 to 0: 

 sin !AAdur( ) =!AAdure
!!

A
A

dur     Equation 2.51 

 Numerical solution shows that the first non-zero solution is:  

 
!AAdur = 2.9907      Equation 2.52 
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Thus, we have determined an expression for the A-wave duration in terms of the resonant critical 

damping frequency: 

 

Adur =
2.9907

!A

      Equation 2.53 

 

A-wave Acceleration Time 

To find the A-wave acceleration time, we must find the root of the derivative of Eq 2.50: 

 

dv(t)

dt
= 0=

Fo

2
cos !AAAT( )! e!! A

A
AT + AAT!Ae

!!
A
A

AT( )   Equation 2.54 

This yields: 

 cos !AAAT( ) = e
!!

A
A

AT 1!!AAAT( )    Equation 2.55 

Once again, numerical estimation must be applied to determine the first nonzero solution, and the 

A-wave acceleration time can therefore be written as: 

 

AAT =
1.69897

!A

      Equation 2.56 

It is curious to note that according to the model,  the ratio of A-wave acceleration and 

deceleration time is therefore independent of resonant damping frequency and constant for all A-

waves: 

 

AAT

Adur

= 0.568        Equation 2.57 

Furthermore, because the ratio in Eq 2.57 is above 0.5, we see that the PDF model predicts that 

A-wave contours are asymmetric, with greater acceleration time than deceleration time. This is 

what is observed clinically. E-waves on the other hand, as discussed above, have acceleration 

times that are less than or equal to E-wave deceleration time.  
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A-wave Deceleration Time 

 With the expressions for acceleration time and A-wave duration in place, determination of 

A-wave deceleration time becomes: 

 

ADT = Adur !AAT =
2.99074

!A

!
1.69897

!A

=
1.29177

!A

   Equation 2.58 

As with the acceleration time, the ratio of deceleration time to A-wave duration or A-wave 

acceleration time is therefore independent of resonant damping frequency: 

 

ADT

Adur

= 0.432
ADT

AAT

= 0.760     Equation 2.59 

 

A-wave Peak 

 Plugging the expression for A-wave acceleration time we find the expression for A-wave 

peak velocity in terms of forcing amplitude and frequency: 

 
Apeak = 0.20045Fo !AAT      Equation 2.60 

 

A-wave Area 

 Finally we can determine the A-wave area by integrating Equation 2.50 between t=0 and 

Adur: 

 

 

VTIA =
Fo

2!A

sin !At( )!!Ate
!!

A
t( )

0

A
dur

" =

VTIA =
Fo

2!
2
A

e
!!

A
t
!At +1( )! cos !At( )#

$%
&
'( 0

Adur

VTIA = 0.59459
Fo

!
2
A
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2.6 CONCLUSION 

The preceding analysis demonstrates the power of mathematical modeling and provides 

multiple insights into the determinants of diastolic function and E- and A-wave contour shape. 

These insights are applied throughout the following chapters to a number of important clinical 

problems.  
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 CHAPTER 3  

LEFT VENTRICULAR SUCTION AND EQUILIBRIUM VOLUME: 

VIEWPOINT AND CONTROVERSY  
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“Whatever role cardiac suction of venous blood may play in determining circulatory dynamics, 

no one can deny that mention of this term (diastolic suction) has proven a most effective method 

of raising blood pressure in several generations of cardiovascular physiologists”  

–GA Brecher 1958  

3.1 INTRODUCTION  

Recent articles (49, 51) illustrate the challenge in providing a self consistent definition of 

ventricular suction. Conceptually different definitions are treated equivalently despite the fact 

that they lead to disparate conclusions. We discuss various definitions of suction, their 

physiological implications, and propose a unifying concept based on an in-vivo definition that 

requires a new perspective on the meaning of diastolic equilibrium volume.  

 

3.2 ALTERNATE VIEW OF DIASTOLIC SUCTION 

3.2.1 Diastolic Suction From the Ventricular Perspective  

The experimental observation of diastolic suction or “vis a fronte” (a force acting from in 

front) dates back nearly 2 millennia to Galen, who concluded that the heart can fill itself (42). 

However, controversy regarding diastolic suction has persisted. Brecher noted (6) experimental 

evidence of diastolic suction by showing that excised beating animal hearts submerged in fluid 

draw fluid back into the ventricle after systole. Numerous investigators have described similar 

events (4, 11, 46-48, 51), but quantification of diastolic suction had to wait until the pioneering 

work of Louis Katz in 1930 (24).  
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Katz observed that in early diastole, turtle ventricular pressure (PLV) decreases 

simultaneously with increasing ventricular volume (VLV). This observation provided a 

conceptually simple and elegant quantitative definition of ventricular diastolic suction, namely, 

that diastolic suction is present when:  

dPLV/dVLV<0  Equation 3.1  

This definition is a ‘relative’ index, as it depends only on intraventricular pressure and volume 

changes, and therefore is independent of ‘absolute’ ventricular pressures or volumes. That 

dPLV/dVLV<0 after mitral valve opening is well established (11, 47) and depends on the 

endocardium mechanically recoiling faster than blood can fill the chamber. The observation of 

dPLV/dVLV<0  in early filling has even been demonstrated in zebrafish heart development (14).  

 

3.2.2 Diastolic Suction From the Atrio-Ventricular Perspective  

The dPLV/dVLV<0 definition depends only on ventricular measures and therefore 

represents a “ventricular perspective”. When going beyond the ‘ventricular perspective’, the 

source of filling must be handled with care, because the atrium rather than the atmosphere 

represents the source for filling, and flow requires generation of a pressure gradient. During 

early-rapid ventricular filling the atrium is a passive conduit and atrial pressure always decreases 

immediately after mitral valve opening. Thus LV pressure decreases below atrial pressure and 

inscribes the atrioventricular pressure gradient that accelerates flow into the chamber. Thus a 

consistent definition of diastolic suction that incorporates the atrium must recognize the role of 

atrioventricular gradients (2, 17, 25, 51). Since all ventricles generate atrioventricular gradients 

in early diastole it follows that all ventricles must operate as suction pumps in early diastole. An 
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atrioventricular pressure gradient is also observed during late atrial filling following atrial 

contraction, but the cause of that gradient is atrial activity, and the hemodynamic consequences 

differ from those observed in early filling. See section 3.5.1 for further discussion regarding the 

role of the atrium.   

 

3.2.3. Diastolic Suction From the Equilibrium Volume Perspective 

Early investigators speculated that elastic components must responsible for ventricular 

chamber recoil in early diastole, and that these components, when relaxed or balanced by other 

forces defined an equilbrium chamber volume. Before the contributors to ventricular elastic 

properties, such as titin, collagen, and visceral pericardium (16, 19, 22, 37) were appreciated, 

Brecher defined ventricular elastic equilibrium volume intuitively as the volume where the 

ventricle’s “transmural pressure is zero [ΔP=0] and no stress is applied on its structural 

elements.”(8). Based on this definition, Nikolic, Yellin and others used pioneering experimental 

techniques to measure equilbirium volume (30). They occluded the mitral valve at various filling 

volumes and determined the minimum pressure reached by canine ventricles in an open chest, 

open pericardial setting. The post-occlusion asymptotic pressures were the fully relaxed chamber 

pressures for the particular volume at which occlusion occurred. The lower the volume when the 

mitral valve is occluded, the stronger the suction force is, as shown by the more negative fully 

relaxed pressure. The asymptotic P-V points generated a nonlinear relationship that was fit 

logarithmically, and the x-intercept defined the volume at which ventricular pressure and 

atmospheric pressure was equal. The development of subatmospheric pressures was defined to 

be evidence of suction. Therefore by these criteria suction exists only when: 

PLV<Patmospheric  Equation 3.2 
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The critical volume at which the ventricle generates atmospheric filling pressures 

experimentally defined Vo (21, 30, 43), and ventricles with the end systolic volume (ESV) below 

Vo would be expected to generate subatmospheric pressures (30). This value was taken to be the 

Brecher defined [ΔP=0] equilibrium volume and supported the traditional view that suction only 

occurs when ventricular ESV< Vo. 

The experimental definition proposed by Nikolic is widely accepted (15, 35, 46), and 

other investigators have also measured equilibrium volume (27, 30, 43). In particular, the 

Patmospheric definition has been applied in the closed-chest, in-vivo setting, generating controversy 

regarding diastolic suction. Levine et al (27), defined diastolic suction by Equation 3.2 and 

concluded that intact closed-chest ventricles did not generate suction after bed-rest associated 

atrophy because their end-systolic volumes were higher than the equilibrium volume. Rankin et 

al (35), and others using closed-chest measurements (15, 46), concluded that in-vivo hearts, in 

general, do not exhibit diastolic suction. These conclusions are inconsistent with the work of 

Katz. Thus, while it is appropriate to consider the volume at which relaxed ventricular pressure is 

atmospheric in the open-chest setting, in the in-vivo closed-chest setting this choice may be less 

applicable. 

 

3.3 RESOLUTION OF CURRENT INCONSISTENCIES 

3.3.1 Difficulties with Suction Relative to the Atmosphere  

There are some difficulties with the application of the Patmospheric definition (Equation 3.2) 

to diastolic suction. To put these in context, we note that the absolute pressure (PLV<Patmospheric) 

condition is based on a presumed zero wall-stress, where transmural forces are balanced because 
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the transmural pressure gradient vanishes (4, 6, 30, 46). However, in the closed-chest setting, 

PLV=Patmospheric does not imply zero transmural pressure gradient, since pericardial pressure is 

usually not atmospheric (18). Furthermore, recent work by Omens and Fung, and Jöbsis (22, 31) 

shows that even when fully relaxed, the LV wall has residual stress. This presence of residual 

stresses negates Brecher’s implied connection between ΔP=0 and a state where ‘no stress is 

applied’ on ventricular elastic elements. Thus, the requirement that transmural pressures vanish 

(ΔP=0) need not be invoked in order to achieve equilibrium.  

It should be noted that suction requires only that the receiving chamber drop its pressure 

below the source pressure, and does not require negative transmural pressures. Brecher 

recognized this, saying plainly that “it was thought that only the occurrence of negative 

intraventricular transmural pressure could be taken as evidence for the existence of ventricular 

diastolic vis a fronte. A brief consideration of the physical forces will show that this conclusion 

is fallacious”(7). Indeed, consider a compressed turkey baster submerged in any depth of water; 

the baster always returns to its equilibrium position even though the pressure never falls below 

atmospheric.  The elastic recoil of the baster is analogous to the kinematics of the heart at low or 

high pressure environments, and the motion observed in excised hearts (3).  

 

3.3.2 Defining Equilibrium Volume Kinematically 

It is appropriate to define diastolic suction as Nikolic and others have, relative to an 

equilibrium volume, but this volume must reflect a mechanical equilibrium. Mechanical and 

kinematic equilibrium is achieved when all residual forces and stresses (including pressure in the 
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atrium, residual stress in the wall, etc.) are balanced, rather than only when the transmural forces 

or transmural pressure gradients are zero. This distinction is physiologically realistic, it is 

unambiguous, and its consequences (static vs. moving) are easily discernable. Thus we propose a 

physiologically intuitive, functional equilibrium: diastasis. 

 Veq≡Vdiastasis Equation 3.3  

When ventricular filling commences, the chamber expands (recoils) faster than it can fill, 

and aspirates blood from the atrium by rapidly decreasing chamber pressure with simultaneous 

volume expansion dP/dV<0 (14, 24). Wall recoil requires a net restoring force generated by the 

integrated action of loaded elastic elements seeking to return to their equilibrium dimension (3, 

12, 16, 19, 22). As ventricular filling (Doppler E-wave) continues, the elastic elements approach 

their equilibrium dimension and elastic forces decrease. Once diastasis is reached, there is no 

wall motion, no atrioventricular pressure gradient, no flow, and no change in volume or pressure. 

Thus at diastasis, all forces and strains must be balanced (they are not zero), and there is no net 

force or wall-motion. Hence, diastasis must be the in-vivo equilibrium volume, and every 

ventricle approaches diastasis by suction initiated filling. 

 

3.4 Physiological Implication of Diastasis as the Equilibrium Volume 

3.4.1 Revised View of Veq<ESV 

In analogy to the Nikolic et al determinations of equilibrium volume and suction, Equation 

3.3 implies the presence of diastolic suction only if the end-systolic volume (ESV) is below the 

diastasis volume (equilibrium volume). In general, ESV is always less than diastatic volume and 

thus, because dP/dV<0 as the ventricle enters mechanical diastole, our definition of equilibrium 
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volume being the diastatic volume is consistent with Katz’ definition of diastolic suction and is 

consistent with the conclusion that diastolic suction is present when ESV < equilibrium volume. 

In our view Equation 3.3 is the functional in-vivo closed-chest equilibrium volume, because it 

defines an easily discernible mechanical equilibrium, resolves (‘relative’ vs. ‘absolute’) 

inconsistencies between various definitions, and does not require a zero transmural pressure 

gradient.  

 

3.4.2 Connection to Chamber Elastic Components and Mechanism for Suction 

Recent experiments indicate that proteins such as titin, acting as a bi-directional, linear 

spring, together with extracellular matrix and microtubules, etc. play roles in generating elastic 

recoil (16, 33). Deactivation (crossbridge uncoupling) unmasks stored elastic strain energy and 

leads to decreased elastic wall-stress and ventricular chamber pressure (by LaPlace's law). 

Abnormal crossbridge deactivation has been associated with (clinically defined) delayed 

relaxation (23), and has been shown to prevent the recoil (release of stored strain) of myofibrils 

(33). 

Accepting diastasis as the equilibrium volume means that for all ventricles these elastic 

elements are displaced at end-systole, and it is the recoil of these elastic elements towards 

equilibrium that initiates filling with dP/dV<0 and drives the ventricle towards diastasis. Elastic 

recoil moves the wall so the chamber expands faster than it can fill (14, 24), powers torsion (12, 

39), and generates the negative atrio-ventricular pressure gradient that initiates the Doppler E-

wave (11, 13). Thus ventricular suction, including the intraventricular pressure gradient (11) 

must always be present as a result of the recoil of displaced elastic elements returning toward 

equilibrium. The degree of recoil can be observed hemodynamically (53) and has been shown to 
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relate to tissue relaxation properties (see Chapter 6). Furthermore, suction and its link to recoil 

towards equilibrium as a diastolic mechanism is included in the current American Society of 

Echocardiography standards (29).  

 

3.4.3 1
st
 Degree A-V Block as a Test Case 

If we assume Vo is equilibrium, a serious kinematic inconsistency arises in the case of 

Vo<ESV.  In this setting tissue elastic elements would remain displaced above their equilibrium 

position at end-systole, and would be expected to exert force opposing chamber enlargement at 

the start of filling. However, as the mitral valve opens and filling commences, there is always a 

net expansive force responsible for recoil of the ventricular tissue. An atrial ‘push’ cannot 

account for this force, because it would cause LV pressure to increase immediately upon mitral-

valve opening. Relaxation of the LV tissue by itself cannot account for this force either, because 

relaxation only relieves a compressive force, but does not generate motion. When elastic 

elements are displaced above equilibrium (Figure 3.1), it is not clear what provides the expansive 

force opposing the early-filling related compressive elastic forces. It is also unclear what 

mechanism prevents the ventricle from shrinking towards its equilibrium volume when diastasis 

is reached in the case of Vo<ESV.  

This inconsistency is avoided by rejecting Vo determined by ΔP=0 and accepting 

diastasis as the equilibrium volume. When ventricular volume exceeds diastastic volume, the 

chamber does oppose this volumetric enlargement with a net compressive force. This force can 

be appreciated in the presence of 1
st
 degree AV block, for example, where one observes late 

diastolic mitral regurgitation (1), and a decline in LVP towards equilibrium, despite ΔP≠0. 

(Figure 3.2) By accepting diastasis as the in-vivo equilibrium, late diastolic mitral regurgitation 
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Figure 3.1 PV-loop and the kinematics/energetics of 

filling. 

Schematic Pressure-Volume loop indicating (1) end 

systolic volume at mitral valve opening (2) minimum LV 

pressure, (3) diastasis, and (4) end-diastolic volume. 

Vertical dashed lines denote alternative locations of 

equilibrium volume, (Vo defined by ∆P=0), (Veq defined 

as volume at diastasis).  If Vo is the equilibrium volume 

and Vo<ESV, then elastic elements are displaced further 

from equilibrium as filling continues.  Idealized via an 

oscillator (pendulum, bottom left), the displacement of the 

pendulum away from vertical equilibrium represents the 

displacement of lumped ventricular elastic elements from 

ventricular equilibrium volume.  If diastasis is the 

equilibrium volume, then ESV is always less than Veq and 

the displaced elastic elements are unmasked by the 

relaxation process and passively return toward equilibrium 

as early filling progresses. (Idealized via a pendulum, 

bottom right). Atrial filling displaces elastic elements 

beyond equilibrium, and this stored elastic energy powers 

late diastolic mitral regurgitation if 1st degree AV block is 

present. Numeric labels of pendulum position correspond 

to PV loop labeling. 

is the predictable result of displaced elastic elements that recoil toward diastasis and return the 

ventricle toward its equilibrium volume. Because, we never observe a ventricle recoiling back 

from diastasis volume towards Vo, but do observe ventricles recoiling toward diastasis in 1
st
 

degree AV block, we conclude that the Vo<ESV definition for equilibrium is incompatible with 

the physiology.   

 

3.5 COMMON CRITICISMS OF EQUILIBRUM VOLUME AT DIASTASIS 

3.5.1 The Role of the Atrium 

Ventricular pressure falls as the chamber relaxes isovolumically, and this finding, along 

with the mitral valve occlusion studies by Nikolic (30) and others has been used to support the 

claim that pressure drops in early filling without substantial recoil or suction. Investigators 
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supporting this claim reason that atrial pressure is elevated from previous systolic events, and 

because pressure drops below atrial, it is the atrium that is the primary driver of early filling. 

 This view is held my many (32) and theoretically is plausible, but it is not consistent with 

physiological findings.  

 

Is the Atrium Required For Suction? 

Experiments have clearly demonstrated that the atrium is not necessary for filling to 

occur. Even when the atrium has been removed in its entirety (4) the LV fills by elastic recoil 

and diastolic suction. Bloom showed this beautifully by placing an excised rat heart in saline and 

observing it as it swam around, propelling itself during systole and drawing in fluid during 

diastole(4). Thus the energy source for early filling and diastolic suction can come completely 

Figure 3.2 Simultaneous left ventricular pressure, aortic pressure, and ECG for one cardiac cycle in a 

subject with first degree AV block. Notice the decay in pressure following the atrial contraction 

related pressure rise. Ventricular contraction increases pressure dramatically following the pressure 

late diastolic pressure decline. A similar pressure decline does not occur at diastasis. See text for 

details.  
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from ventricular activity without any atrial influence. While these results are not disputed, some 

investigators claim that in these isolated ventricle experiments the end-systolic volume is much 

lower than the volume encountered in-vivo, and therefore while the experiments show that the 

ventricle CAN suck, they claim that in normal steady state physiology, suction plays no role, and 

instead atrial pressure pushes blood in.  

 

Atrial Push and the Doppler A-wave 

To see the difference between an atrial push driving filling and a ventricular suction 

driving filling, one needs to look no further than the Doppler A-wave. After all, we see an 

atrioventricular gradient (LAP>LVP) generated exclusively from atrial systolic activity during 

the Doppler A-wave. In other words, atrial contraction is the cause of the pressure gradient that 

drives transmitral flow during late atrial filling. The ventricle expands slower than it can fill, and 

therefore BOTH ventricular pressure and volume increases. The rise in atrial pressure also 

generates transient retrograde flow into the pulmonary veins. These are key properties of an 

atrial push that must be accounted for in any scenario where the atrium is purported to be the 

driving force behind filling.   

Importantly, restoring forces cannot be ignored during atrial (non-suction) filling. As we 

discuss above, when the R-wave is delayed, as in 1
st
 degree AV block, late diastolic mitral 

regurgitation ensues and ventricular pressure falls back towards diastatic pressure. This pressure 

decline clearly demonstrates that passive chamber elastic elements were displaced above their 

equilibrium dimension during the A-wave, and because of delayed systole, take the opportunity 

to return toward equilibrium. This is a critical point, because it emphasizes the fact that in the 
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absence of suction, an atrial push must work against ventricular elastic elements stretched away 

from equilibrium. 

 

Can Atrial “Push” drive the Doppler E-wave? 

While it is possible for high left atrial pressure to contribute to early filling,, 

physiological observations rule out an atrial push as the sole E-wave generator. First, the 

observation that dP/dV<0 at the start of all E-waves demonstrates that the LV expands faster than 

it can fill, which is not what one sees during the atrial push of the Doppler A-wave. Second, the 

atrium is a conduit in early filling (5), as the LV aspirates blood from the lungs (Doppler 

pulmonary vein D-wave) while atrial pressure drops. Thus ventricular suction draws in blood 

through the atrium, and we do not see retrograde pulmonary vein flow in early filling.  

 

3.5.2 Can Sarcomere Deactivation Alone Drive Suction? 

The kinematic approach that we apply assumes that elastic elements are loaded and 

unloaded through mechanical tissue displacements. From that perspective, it is clear that the 

filling process must either load or unload ventricular elastic elements. Such a claim would be 

invalidated if it were possible for the ventricle to, as Yellin and Nikolic, “completely relax 

without relengthening” (41). However recent studies show strong coupling between cross-bridge 

deactivation/relaxation and elastic recoil/relengthening. Deactivation independently accounts for 

only 3-5% of maximal force (i.e pressure) decline after calcium activation, while the majority of 

force (pressure) decline occurs with sarcomere relengthening (45). This is in precise agreement 

with chamber mechanics, where, during and after calcium sequestration (20), elastic recoil 

(motion) is observed, manifesting as torsion during isovolumic relaxation (38). This conceptual 
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foundation motivated a model that accurately predicts isovolumic pressure decline by unifying 

recoil and deactivation (10).   

Indeed, it is the dynamic balance between stored elastic energy and cross-bridge 

deactivation that determines wall-stress and resulting decreasing chamber pressure (10, 20, 44). 

Deactivation alone cannot drop pressures fully. Only motion, i.e. the expansion of the ventricle 

faster than it can fill can generate the atrioventricular pressure gradient to initiate suction. 

Chamber expansion would not occur if relaxation (cross-bridge uncoupling) were not coupled 

with recoil and release of stored elastic energy. 

 

3.5.3 Diastasis Varies With Load, Depends on HR, and Is Not Always a Zero Flow State 

Diastatic volume varies in response to load variation, and the diastatic interval is lost in 

the setting high heart rate(9). Several investigators note this intrinsic variability of diastasis (41) 

and argue that diastasis volume can therefore not be the equilibrium volume. In contract, Vo 

defined by zero transmural pressure gradient is a constant that shows no beat by beat variability.  

 

Beat By Beat Variation of Diastatic Volume 

Variation in diastatic pressure and volume is due to load, atrial properties, and ventricular 

properties, but that does not negate the functional role of diastasis as the equilibrium volume. 

Ventricular and atrial tone, contractility, and load balance at diastasis, and are dynamic 

physiologic variables.  Thus, equilibrium volume must also be dynamic. In fact, quantifying 

diastatic pressure and volume variation provides fundamental chamber properties in the form of 

passive stiffness(52). 
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Cases Where Diastasis is Not Observed 

 The loss of diastatic interval when heart rate is sufficiently elevated makes the 

determination of diastatic volume difficult, but does not invalidate diastasis as the equilibrium 

volume. At higher heart rates the ventricle may pass through equilibrium without stopping before 

atrial filling, but the key point is that elastic elements returning toward equilbrium are driving 

early filling and suction. After all, an oscillator that is kicked with a driving force during its 

recoil from maximum displacement to equilibrium is still driven initially toward equilibrium by 

stored elastic energy. 

 In some setting ventricles may possess mid-diastolic flow, often seen in the transmitral 

profile as an L-wave. When L-waves are present, or in other cases where LV volume 

continuously changes, Vdiastasis is not achieved. However, these cases are exceptions to the rule, 

and most ventricles possess diastasis. Indeed intracavity flow exists during early diastole (34), 

but by diastasis there is no net volume change and intracavity swirling diminishes to minimal 

levels(Figure 2E, (40)). As we argue with the case of elevated heart rate, however, a 

ventricle that passes through diastasis still has filling driven by elastic elements returning toward 

equilibrium.  

 

3.5.4 Suction and its (Patho)physiologic Importance 

Yellin et al have suggested that a definition of diastolic suction based on dP/dV<0 has 

little “utilitarian value”, because it means that every ventricle initiates early rapid filling by being 

a suction pump (50). Yellin et al argues that the more traditional Vo approach has value, on the 

hand, precisely because it differentiates between ventricles that possess suction (those with 

ESV<Vo), and ventricles that don’t (those with ESV>Vo).  
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However, the “utilitarian value” of suction is enhanced by the recognition of its general 

applicability and quantification.  Indeed its physiological value is enhanced when one assesses its 

effectiveness on a continuum. For example, work by Yotti and a related editorial by Little 

suggests that diagnosing and quantifying suction via pressure gradients is important in 

understanding pathophysiology (28, 51). Dilated ventricles are poor suction pumps, aspirating a 

relatively small volume in early filling and compensating with atrial contraction and a resting 

tachycardia to maintain cardiac output. In this case restoring forces may be weak and early filling 

(suction) may be modest or poor, but diastasis remains the volume at which forces are balanced 

and equilibrium is achieved. Healthy ventricles on the other hand store (and release) greater 

amounts of elastic energy during systole (and diastole) and are therefore more effective suction 

pumps. Thus the importance of suction is revealed through mechanistic understanding of how it 

is modulated, how it determines the contour of the E-wave (25, 26) and how a lack of suction 

affects patients clinically and physiologically.  

 

3.6 CONCLUSIONS 

Prior conceptual and experimental results regarding diastolic suction and the equilibrium 

volume of the LV have been interpreted inconsistently. To resolve the inconsistencies generated 

by different (‘absolute’ vs. ‘relative’) definitions and different (closed-chest vs. open chest) 

preparations, we advocate dPLV/dVLV<0 as the necessary and sufficient condition for initiation of 

diastolic suction. This definition (ventricular recoil) follows not only from physiologic 

constraints but from kinematic considerations (the release of stored elastic strain). This definition 

naturally leads to the kinematics-based definition that the LV volume at diastasis must be the 
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functional, in-vivo equilibrium volume and diastolic suction is the primary mechanism by which 

the ventricle attains this equilbrium.  

This conclusion is just one of several insights gained by a kinematic perspective of diastole.  

Indeed a kinematic persepective consolidates a range of observations by providing consistency 

with and between experiments, from the myofiber to the ventricle, and from ventricular 

development to disease(10, 36, 41, 44, 51, 52).  
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CHAPTER 4. 

MEANINGFUL DIASTOLIC FUNCTION ASSESSMENT AND COMPARISON 

IS FACILITATED BY INCORPORATION OF CHAMBER PROPERTIES AT 

DIASTASIS, RATHER THAN AT END-DIASTOLE. 
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4.1 INTRODUCTION 
The growing ‘epidemic’ of heart failure with normal ejection fraction (2, 15) has cast a 

spotlight on diastolic function and its determinants. In particular, left ventricular chamber 

stiffness is one of the parameters by which diastolic function is conventionally assessed. While 

noninvasive estimates of chamber stiffness exist (11, 13), the gold standard remains analysis of 

invasively derived pressure-volume data.  

 One of the most important methods for characterizing passive chamber stiffness has been 

the end-diastolic pressure volume relation (EDPVR), defined by the locus of points inscribed by 

end-diastolic pressures and volumes at varying loads. The resulting EDPVR is an exponential, 

power law, or linear fit to those points over variable regimes (6). The slope, dP/dV, of the 

EDPVR has been interpreted as passive chamber stiffness. Recently a simplified ‘single-beat’ 

approach has been described where a single end-diastolic pressure and volume measurement is 

used to determine a generic, two parameter EDPVR of the form P=αVβ (7, 8). 

Considering the EDPVR in the setting of chronic atrial fibrillation (AF) raises a concern, 

however. Due to the lack of coordinated atrial contraction, end-diastole in (rate controlled) AF is 

the hemodynamic equivalent of diastasis, not end-diastole, in normal sinus rhythm (NSR). Thus 

comparing EDPVR between AF and NSR is equivalent to comparing chamber stiffness at 

diastasis to chamber stiffness at (post Doppler A-wave) end-diastole, and this may obscure actual 

stiffness differences. 

We hypothesize that measuring chamber stiffness at end-diastole, either through a single 

beat or multiple beat approach, confounds stiffness comparison between chronic AF and NSR 

groups. To test this hypothesis we measure and compare both the EDPVR and the diastatic 

pressure volume relation (D-PVR)(19) in AF and NSR groups, using both the single-beat and the 

traditional load-varying multiple-beat approach.  
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4.2 METHODS 

4.2.1 Subject Selection and Data Acquisition 

Thirty-two subjects were selected from the existing Cardiovascular Biophysics 

Laboratory database (See Chapter 2). All subjects were referred by their cardiologists for 

catheterization to rule out the presence of suspected coronary artery disease, and provided 

informed consent prior to the procedure in accordance with a protocol approved by the 

Washington University Human Research Protection Office (HRPO). 

Twenty-four subjects were in NSR, while 8 subjects had established history of chronic 

AF and were in AF during data acquisition. Average duration of AF was 6.4 ± 4.4 years. 

Selection criteria for the NSR group were: no active ischemia, normal valvular function, normal 

ejection fraction (LVEF ≥ 50%), no history of myocardial infarction, peripheral vascular disease, 

or bundle branch block, and clearly visible diastatic intervals following transmitral Doppler E-

waves. Selection criteria for the AF group were similar, with the exception of four AF subjects 

with LVEF<50%. No subjects were in heart failure, and all subjects were normotensive at the 

time of data acquisition. See Table 4.1 for further clinical descriptors. See Chapter 2 for a 

detailed description of the method by which simultaneous echocardiographic and high-fidelity 

pressure data is acquired. 
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4.2.2 Load Variation 

As previously described (19), physiological load variation was achieved in all 32 subjects 

through respiratory variation. In 14 out of 24 NSR subjects, additional physiologic load variation 

was achieved during the recovery phase of the Valsalva maneuver. In the remaining 10 NSR 

subjects, additional load variation was observed in the beats following either catheter generated 

or isolated spontaneous premature ventricular contractions (PVC).  

 

4.2.3 Data Analysis 

After ventriculography-based calibration of volume, LV pressures and volumes at both 

diastasis (PD, VD) and end diastole (PED, VED) were measured for 8-12 cardiac cycles with a 

custom LabView interface (National Instruments, Austin, TX). For AF subjects, only cardiac 

cycles with R-R intervals generating relatively constant diastatic pressures and volumes 

following early filling were included. See Figure 4.1 for representative simultaneous 

catheterization-echocardiography data in NSR and AF subjects. Timing of end-diastole was 

identified by ECG R-wave peaks. Diastasis was identified by ECG P-wave peaks for NSR 

subjects, and was measured at end-diastole for AF subjects.  

Table 4.1. Clinical descriptors for NSR and AF groups.  

Clinical Descriptors NSR Group AF Group Significance 

n 24 8 N.A. 

Age (y) 53 ± 12 62 ± 10  <0.05 

Gender (male/female) 14/10 7/1 N.A. 

Heart Rate (bpm) 67 ± 7 76 ± 11 <0.02 

Ejection Fraction (LVEF) (%) *
 

71 ± 21 51 ± 18 <0.00003 

Data are presented as mean ± standard deviation. LVEF=left ventricular ejection fraction. NSR, normal 

sinus rhythm. AF, atrial fibrillation. N.S. not significant. * LVEF determined by calibrated 

ventriculography. 
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The measured (PD, VD) and (PED, VED) values were used to construct pressure-volume 

relations both by single-beat and multiple beat approaches. PED and VED defined the EDPVR, 

while PD and VD values defined the diastatic pressure volume relation (D-PVR).  

 

Single Beat Estimates of Stiffness 

The single-beat method for pressure volume relation estimation has been previously 

detailed(7, 8). By applying empirical correlations that normalize for heart size, parameters α and 

β in the pressure volume relation P=αVβ may be calculated from a single measured pressure and 

volume (Pm, Vm). First V0=Vm•(0.6-0.0006•Pm) and P
*
= (Pm/27.278)

(-1/2.76)
 are calculated. If Pm < 

22mmHg, one determines V30=V0+P
*
•(Vm-V0), and then calculates β=log(Pm/30)/log(Vm/V30) and 

Figure 4.1. Comparing simultaneous pressure-volume and echocardiographic data between normal 

sinus rhythm (left) and chronic atrial fibrillation (right) subjects. Notice the absence of an A-wave in the 

atrial fibrillation subject. 
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α=30/V30
β. If Pm > 22mmHg, one determines V15=V0+0.8•P

*
•(Vm-V0), and then calculates 

β=log(Pm/15)/log(Vm/V15) and α=Pm/Vm
β. For AF subjects steady-state average PD, VD values 

(equivalent to PED, VED) were used to calculate single-beat estimated D-PVR parameters (αAF, 

βAF). For NSR subjects both average (PED, VED) and (PD, VD) values were used to find estimated 

EDPVR (αNSR-ED, βNSR-ED) and DPVR (αNSR-D, βNSR-D) parameters.  

 

Multiple Beat Estimates of Stiffness 

The VED, PED and VD, PD values were measured at physiologically varying load states, 

and therefore could be used, as was previously described(19), to construct an EDPVR, and D-

PVR respectively. Thus for each NSR subject the EDPVR was generated by finding the best fit 

linear regression defined by the 8-12 measured (VED, PED) locus of points in the P-V plane (see 

Figure 4.2). Previous work (19) showed that linear or exponential fits to the points yielded 

similar goodness of fit measurements (by mean square error), and therefore a linear function was 

used for simplicity. The D-PVR was similarly generated using (VD, PD), not (VED, PED) 

coordinates. For the AF subjects diastatic and end- diastolic values were identical, and therefore 

only a D-PVR was generated.  

For NSR subjects chamber stiffness was estimated both from the EDPVR and D-PVR 

slopes (dP/dVNSR-ED, dP/dVNSR-D respectively). Similarly, for AF subjects chamber stiffness was 

estimated from the DVPR slope (dP/dVAF).  
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Echocardiographic Analysis 

Approximately 5 (continuous) Doppler transmitral flow contours per subject were 

selected and analyzed by conventional triangle shape approximations (see Chapter 2), yielding 

peak E-wave velocity (Epeak), E-wave deceleration time (DT), and peak A-wave velocity (Apeak).  

In addition, E- and A-wave contours were fit via the parameterized diastolic filling 

formalism (see Chapter 2) to yield PDF c, k, and xo parameters. Thus in addition to conventional 

analysis, all E-waves for the AF and NSR groups were analyzed kinematically to yield 

noninvasive stiffness estimates (k-AF, k-NSR respectively).  

 

4.2.4 Statistical Analysis 

For each subject parameters were averaged for the measured beats. Within the NSR 

group PD, VD, dP/dVNSR-D and bNSR-D were compared to PED, VED, dP/dVNSR-ED, and bNSR-ED by 

Figure 4.2. An example of diastatic pressure-volume relationship (D-PVR) in NSR (panel A) and AF 

(panel B). Black line, D-PVR approximated by a straight line. Gray line, end-diastolic pressure-volume 

relationship (EDPVR) in NSR, approximated by a straight line. Note that the D-PVR and EDPVR in 

AF is defined by the same data in the P-V plane due to the lack of coordinated atrial contraction. The 

average diastatic and end-diastolic pressures and volumes define a single point which is used to 

calculate the single beat estimated chamber stiffness parameters. See text for details. 
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paired t-test. Comparisons of dP/dV, b, DT, k, and other relevant parameters between NSR and 

AF groups were carried out by Student’s t-test using MS-Excel (Microsoft, Redmond, WA).  

 

4.3 RESULTS 

4.3.1 Volume and Pressure Comparison 

As expected, NSR diastatic volumes and pressures were significantly smaller than 

corresponding NSR end-diastolic pressures and volumes (VD vs VED:  122±31ml vs 160±32ml  

p<10
-7

; PD: 13±3mmHg vs 19±5mmHg p<10
-10

). While diastatic (and therefore end-diastolic) 

pressures in the AF group were slightly smaller than end-diastolic pressures and volumes in the 

NSR group, pressures and volumes measured at diastasis in AF were similar to end-diastolic 

pressures and volumes in the NSR group (AF VD vs. NSR VED: 168 ± 43ml vs. 160 ± 32ml, 

p=0.54; AF PD vs. NSR PED: 18 ± 6 mmHg vs. 19 ± 5 mmHg, p=0.75). See Table 2 for 

additional hemodynamic details.  

 

4.3.2 Single Beat Parameters Comparison 

Four of the NSR subjects and 1 of the AF subjects had average PED>22 mmHg, and 

therefore for these subject the V15 method was applied in order to calculate single beat estimated 

EDPVR (for NSR subjects) and DVPR α and β parameters. The V30 method was applied for the 

remaining subjects. In the NSR group βED-NSR was significantly greater than βD-NSR (7.54±0.69 vs 

7.06±0.41 p<0.009). Between AF and NSR groups, βED-NSR was not significantly different from 

βD-AF (7.54±0.69 vs 7.82±1.01 p>0.38). However, when hemodynamic states were matched 

based on physiology, (diastasis in AF vs. diastasis in NSR), a βD-AF was found to be significantly 

higher than βD-NSR (7.82±1.01 vs 7.06±0.41 p<0.005).  
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4.3.3. Multiple Beat Comparison 

Consistent with previous findings (19), chamber stiffness measured in the NSR group by 

the slope of the EDPVR (dP/dVNSR-ED) was significantly greater than stiffness measured by the 

slope of the D-PVR (dP/dVNSR-D) in the same group (0.14 ± 0.09 mmHg/ml vs  0.09 ± 0.06 

mmHg/ml p<10
-5

). Between AF and NSR groups, comparing the hemodynamics based on the 

same physiology revealed that the slope of the D-PVR in AF subjects (dP/dVAF-D) was higher 

than dP/dVNSR-D (0.14 ± 0.10 mmHg/ml vs. 0.09 ± 0.06 mmHg/ml, p < 0.074). Similar to the 

Table 4.2. Invasive hemodynamic and noninvasive echocardiographic measurements 

in NSR and AF groups. 

 NSR Group AF Group p p NSRED vs NSRD 

Invasive Parameters:     

PED (mmHg) 19 ± 5 18 ± 6 0.76 p<0.0001
 

VED (ml) 160 ± 32 168 ± 43 0.54 p<0.0001 

PD 13 ± 3 18 ± 6 <0.01 - 

VD (ml) 122 ± 31 168 ± 43 <0.01 - 

dP/dVED (mmHg/ml) 0.14 ± 0.09 0.14 ± 0.10 0.96 p<0.0001 

dP/dVD (mmHg/ml) 0.09±0.06 0.14 ± 0.10 0.074 - 

βED 7.54±0.69 7.82±1.01 0.38 p<0.01 

βD 7.06±0.41 7.82±1.01 <0.01 - 

Echocardiographic Parameters     

Peak E-wave velocity (Epeak) 

(cm/s) 

78 ± 20 92 ± 37 0.16  

E-wave deceleration time 

(DT) (ms) 

203 ± 28 176 ± 20 <0.05  

E/A 1.1 ± 0.2 N.A. N.A.  

k (1/s
2
)  188.7 ± 30.9 245.6 ± 83.3 <0.01  

Data are presented as mean ± standard deviation.NSRED, end diastolic values for NSR group. 

NSRD, diastatic values for NSR group. PED, left ventricular end-diastolic pressure. VED, left 

ventricular end-diastolic volume. PD, left ventricular diastatic pressure. VD, left ventricular 

diastatic volume. Epeak, peak E-wave velocity. DT, E-wave deceleration time. E/A, ratio of 

Epeak and Apeak. k , kinematic model based E-wave derived chamber stiffness. NSR, normal 

sinus rhythm. AF, atrial fibrillation. 
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single beat finding, when hemodynamics are not matched the statistical significance between AF 

and NSR stiffness is lost (dP/dVAF-D vs dP/dVNSR-ED: (0.14 ± 0.10 mmHg/ml vs. 0.14 ± 0.09 

mmHg/ml, p > 0.95).  

 

4.3.4 Noninvasive Parameters 

Heart rate in the AF group was higher than the NSR group (76 ± 11 bpm vs. 67 ± 7, 

p<0.02). Echocardiographic E-wave deceleration time (DT) was significantly shorter in the AF 

group than NSR group (176 ± 20 msec vs. 203 ± 28msec, p<0.05). E- wave peak velocities 

(Epeak) in the AF and NSR groups were similar (0.92 ± 0.37 m/s vs. 0.78 ± 0.20 m/s, respectively, 

p=N.S.). The E-wave derived PDF stiffness parameter in AF was significantly higher than that in 

the NSR group (k-AF vs. k-NSR: 245 ± 83/s
2
 vs. 188 ± 31/s

2
, p<0.01).  

 

4.4 DISCUSSION 

In this work the value of matching the same phases of diastole for chamber stiffness 

comparison between NSR and AF groups was assessed. Traditional invasive measures of 

stiffness rely upon one or more end-diastolic P-V measurements. This is an appropriate choice 

for comparing chamber stiffness between groups when end-diastole is hemodynamically and 

physiologically equivalent between groups. In chambers with chronic AF, however, end-diastole 

and diastasis (when R-R intervals are sufficiently long) are physiologically and 

hemodynamically the same (same point on the P-V plane). This equivalence does not exist in 

NSR, and previous work (19) has shown that in the same NSR heart, the D-PVR and EDPVR are 

physiologically distinct relations, with significantly different slopes and therefore different 

values for chamber stiffness. The single-beat and multiple-beat analyses included in the current 
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study are concordant and show that in the same heart, stiffness at diastasis and end-diastole are 

physiologically distinct and distinguishable in NSR subjects.  

Because diastasis and end-diastole is equivalent in (rate controlled) AF, a comparison of 

EDPVR between AF and NSR is indistinguishable from a comparison between D-PVR in AF 

and EDPVR in NSR. Diastasis and end-diastole are not hemodynamically equivalent between 

AF and NSR subjects, however, and a resulting comparison would be expected to systematically 

overestimate NSR chamber stiffness relative to AF chamber stiffness. Indeed in the current 

work, AF chamber stiffness is found to be higher than NSR chamber stiffness, and the difference 

between groups becomes significant only when physiologically matched hemodynamic states 

(diastasis vs. diastasis) are compared. This finding provides strong evidence for the claim that 

proper comparison of AF and NSR chamber stiffness requires using diastasis as the fiducial 

hemodynamic/physiologic state in which analysis must be done.  

 

4.4.1 Equilibrium Volume 

 The implication that diastasis is the proper hemodynamic/physiologic state on the P-V 

loop when passive chamber stiffness should be measured is not surprising given a kinematic 

perspective of diastatic physiology. Elastic elements, displaced from their equilibrium dimension 

in systole, recoil toward their equilibrium diastatic position and power suction initiated early 

rapid filling. At diastasis there is no bulk tissue or fluid movements and the chamber is 

momentarily static; there is no atrioventricular pressure gradient, no net force, and no net flow. 

As discussed in Chapter 3, diastasis is therefore the in-vivo equilibrium chamber volume, and 

represents the most relaxed and passive in-vivo state of the ventricle. Displacement to a volume 

above equilibrium by atrial systole loads elastic elements and couples the contracted atrium in 
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series with a now stretched, non-equilibrium ventricle. Such a state is expected to be stiffer than 

the relaxed diastatic state, and indeed the results of this and previous work (19) confirm that 

prediction. Thus while the conventional standard is to use end-diastole as the fiducial marker for 

chamber stiffness, measuring chamber stiffness at the equilibrium (diastatic) volume is likely to 

provide a more accurate measure of actual passive chamber stiffness.  

 

4.4.2 Applying the Single Beat Method 

 In this work we applied a previously described (7, 8) single-beat approach for the 

pressure volume relation. Previously this single-beat method utilized end-diastolic pressures and 

volumes in order to generate the EDPVR. In this work we generalize the single-beat approach 

and use diastatic pressures and volumes as input values to the single-beat algorithm. This 

generalization may not seem appropriate, for several reasons. First, the assumptions of the 

single-beat method are based on a conserved EDPVR across species and disease states, and this 

assumption may not hold for the D-PVR. Second, the empiric correlations used in the single-beat 

method are based upon end-diastolic P-V values measured from ex-vivo hearts (3), and therefore 

the correlations may be different if one were to make the calibration measures at diastasis. There 

is an argument to be made, however, that P-V relations defined by consistent physiological states 

have conserved shapes when appropriately normalized. The P-V relation defined by end-systole 

(ESPVR), for example, has been shown to have a consistent normalized shape, and that has led 

investigators to suggest single-beat estimation algorithms for the ESPVR (16). In addition, it is 

important to consider the experimental set-up used by investigators to show that the normalized 

EDPVR shape was conserved and to determine appropriate empirical correlations. Specifically, 

the experimental set up consisted of ex-vivo hearts with atria surgically removed. With the 
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absence of an atrium, diastasis and end-diastole become identical hemodynamic states. Thus the 

EDPVRs that investigators measured in the ex-vivo setting are likely indistinguishable from D-

PVRs. Therefore the empirical correlations and results from the single-beat approach may 

actually be more applicable to end-diastole in AF or diastasis in NSR, precisely because of the 

absence of atrial contribution in the original experimental set up.   

 

4.4.3 Noninvasive Indexes 

In addition to invasive approaches, the stiffness of the LV chamber can also be estimated 

noninvasively. The PDF parameter k obtained from echocardiographic E- waves is 

mathematically (9) and experimentally related to the invasively measured average chamber 

stiffness during early rapid filling (10). E-wave deceleration time (DT) has also been correlated 

with stiffness (12), though that approach has limitations, as discussed in Chapter 5. 

Both the triangle based (DT) and PDF model based (k) noninvasive estimates of chamber 

stiffness showed significant difference between the AF and NSR groups, consistent with the 

invasive chamber stiffness findings between groups at diastasis. The significantly shorter DT in 

the AF group is not likely to be explained by the higher average HR of the AF group since it is 

known that in the presence of a diastatic interval, E-wave DT remains essentially unchanged 

when the HR increases (5). In addition, it is important to appreciate that E- wave DT is 

determined jointly by stiffness and relaxation (k and c) rather than stiffness alone (17), and 

therefore it is more accurate to consider the value of k when estimating chamber stiffness from 

E-wave contours.  

 

4.4.4 Chamber Stiffness in Sinus Rhythm and Atrial Fibrillation 
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 There are a limited number of studies that focus on comparing diastolic function between 

AF and NSR groups. One study by Pozzoli followed heart failure subjects over a period of 2 

years and compared diastolic function parameters between 18 subjects that developed chronic 

AF, and 34 control subjects that remained in NSR (14). While they found values of DT 

consistent with the current study, and a decrease in DT between AF and NSR subjects, the 

difference was not significant. However all of their subjects were in systolic heart failure 

(average EF=25%), and therefore may have already had significantly increased LV stiffness. In 

contrast, all NSR subjects in the current study had normal EF, and this may help explain the 

more significant DT difference observed in the current study. Furthermore, Pozzoli did not have 

simultaneous, invasively determined measures of chamber stiffness to support their 

echocardiographic DT based findings. 

 Invasive parameters were measured by Takagaki et al, in a study that compared 

myocardial compliance (the inverse of stiffness) in sheep before and after induction of atrial 

fibrillation (18). To our knowledge, this is the only other invasive study where chamber stiffness 

was compared between AF and NSR groups. Interestingly, Takagaki et al found no difference in 

invasively determined EDPVR parameters between AF and NSR sheep. However, as we show in 

the current work, a comparison of ‘end-diastole’ in AF with end-diastole in NSR is 

physiologically and hemodynamically inconsistent. End-diastole in (rate controlled) AF allows 

the chamber to achieve diastasis, and therefore a comparison of the D-PVR between AF and 

NSR sheep in the Takagaki et al study would have been more appropriate. By using end-diastole, 

Takagaki et al likely over-estimated the NSR chamber stiffness relative to AF, and therefore 

obscured any potential significant difference.  
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4.5 LIMITATIONS 

4.5.1 Measuring Volume 

The conductance catheter method of volume determination has known limitations related 

to noise, saturation and calibration that we have previously acknowledged (1, 4, 11, 19). In this 

study, the channels which provided physiologically consistent P-V loops were selected and 

averaged. However, since there was no significant drift of the volume signal during recording, 

any systematic offset related to calibration of the volume channels did not affect the result when 

the conductance volume was calibrated via ventriculography. If the two absolute measures (ESV, 

EDV) have slight systematic differences, resulting in a systematic volume calibration offset, the 

absolute values of the slopes could be innacurate. However, comparison of slopes between 

subjects and groups would remain valid, because such a systemic offset would affect all 

measurements equally. Indeed the absolute location of the D-PVR or EDPVR in the pressure-

volume axes does not affect the slope of the pressure volume relation.  

While the multiple beat D-PVR or EDPVR approach relies more on relative measures of 

pressures and volumes, the single beat method is sensitive to absolute measured volume. The 

steady state value for VED in NSR and VD in AF was calibrated to ventriculography determined 

EDV. Thus an equivalent method for determination of VD in NSR would have been determining 

a conductance catheter measured average ratio of VD to VED, and then multiplying 

ventriculography measured EDV by that scaling factor.  

 

4.5.2 Subjects as Their Own Controls  
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Ideally, to determine the effect of AF on chamber properties one would determine the 

stiffness in a chamber in NSR, then induce chronic AF, and determine the stiffness in the same 

chamber after an appropriate interval. Since this idealized scenario is unattainable in humans, we 

opted for the closest practical, in vivo method of investigating the consequences of AF on 

chamber stiffness by comparing the D-PVR determined stiffness in NSR vs. chronic AF groups. 

 

4.5.3 Load Variation Approach 

An average of 7 beats per subject in the NSR patients and 19 beats per suject in the AF 

patients were used to construct the D-PVR because in NSR patients, the load was varied 

primarily through respiration, PVC or Valsalva maneuver. For PVC and Valsalva the D-PVR 

was measured during the compensatory period. Although the amount of load variation after these 

maneuvers is modest, the P-V relationship constructed from an average of 7 beats in NSR is 

sufficient (19). In contrast to NSR, only respiratory variation was utilized in AF patients to 

construct D-PVR, so a greater number of cardiac cycles per subject was included in the analysis 

to generate the D-PVR. In previous work on D-PVR (19), we demonstrated that even though the 

heart may respond differently to Valsalva maneuver and PVC, the D-PVR and EDPVR 

measurements using the two load-varying methods do not differ significantly. Ideally one would 

prefer a single method consistently utilized in inducing the load change, however, that would 

limit the range of load variation. 

In P-V relationship determining physiology experiments, not only volumes are 

conventionally varied to generate P-V loop variation, but inotropic state may be varied by 

pharmacologic means via positive and negative inotropic stimulation. Our data obtained during 

the course of cardiac catheterization and the associated informed consent procedure did not allow 
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for interventions involving external (non-physiologic) inotropic agents. This limitation is 

obviated somewhat by the fact that the load variation was entirely physiologic and did not 

include the complexities of reflex mechanisms associated with pharmacologic interventions. 

However, this limitation underscores the importance of carrying out similar experiments in 

intact, closed-chest mammals, where pharmacologic interventions are the norm and the 

physiology of the diastatic P-V relationship can be further elucidated.  

 

4.5.4 HR Limitation 

D-PVR analysis requires the presence of a diastatic interval, and therefore requires 

moderate HR. In the setting of tachycardia, diastasis may not be reached before the ECG R-

wave, and thus D-PVR analysis is not possible. In the current study HR was moderate and every 

cardiac cycle selected for analysis had a clear flat diastatic pressure interval. In AF some cardiac 

cycles had short R-R intervals in which diastasis was not attained, and therefore, these cycles 

were not utilized for analysis. 

 

4.6 CONCLUSION 

Traditionally, passive LV chamber stiffness is determined invasively via the EDPVR. 

However, the EDPVR cannot be used to compare the chamber stiffness in AF with that in NSR 

because end-diastole is equivalent to diastasis in AF, but distinguishable from diastasis in NSR. 

Thus the EDPVR systematically overestimates chamber stiffness in NSR relative to AF. This can 

only be resolved by measuring chamber stiffness relative to diastasis, not end-diastole in both 

groups. Diastasis is the natural choice for passive chamber stiffness determination, because it is 
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the in-vivo equilibrium volume of the ventricle. Both single-beat estimation technique and 

multiple beat P-V approaches should be performed using diastatic hemodynamics.  
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 CHAPTER 5.  

STIFFNESS AND RELAXATION/VISCOELASTICITY JOINTLY 

DETERMINE DECELERATION TIME 
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5.1. INTRODUCTION 

5.1.1 One to One Stiffness to Deceleration Time Relation 

The instantaneous slope of the left ventricular (LV) pressure-volume relation dP/dV 

defines chamber stiffness and serves as one of the two main parameters (the other is relaxation) 

by which diastolic function (DF) is conventionally quantitated(14, 28, 34, 35). Because the 

instantaneous slope dP/dV varies throughout the cardiac cycle and increases with increasing end 

diastolic volume (EDV), many investigators(10, 22, 23, 25, 26, 32) estimate chamber stiffness by 

defining ratios of pressure differences to volume differences over relevant portions of filling. A 

convenient and common choice is to take the pressure and volume rise from minimum pressure 

to end diastolic pressure, thereby defining a lumped diastolic chamber stiffness called 

∆P/∆VAVG.  The determination of ΔPAVG/ΔVAVG via high-fidelity, micromanometric pressure 

recording defines the invasive ‘gold-standard’. Because ΔPAVG/ΔVAVG is a ‘relative’, rather than 

‘absolute’ index, the requirement to use invasive methodology for its determination is not 

absolute. Accordingly, non-invasive methods for estimation of LV stiffness have been proposed 

(9, 10, 19, 22, 23, 25, 29). Previous work by Little et al. has predicted and experimentally 

validated a strong inverse correlation between the E-wave deceleration time (DT) and the square 

of invasively determined LV hemodynamic operating stiffness ∆P/∆VAVG (23).  The basis for 

Little et al’s approach was an energy loss free model of wave-deceleration based on the 

following differential equation: 

  
!!v= KLV( )

2

v  Equation 5.1 

, where v is flow velocity, KLV is an effective chamber stiffness constant, and v(0)=Epeak (the 

model begins at the peak of the E-wave). The solution to Eq. 5.1 is a cosine function with 
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frequency KLV, and this is identical (within a phase shift) to the lossless oscillator (c=0 limit of 

the PDF model) in Chapter 1. Using this solution, Little showed that the chamber stiffness can be 

expressed trivially in terms of model parameters and multiplicative constants: 

KLV=

 

!P

!V AVG

=
!L

AMV

"

2DT

"

#
$$$

%

&
'''

2

   Equation 5.2 

, where  DT is the time from peak flow to zero velocity, ρ is the density of blood, L is the 

effective mitral plug-flow length, and AMV is the constant effective mitral valve area (MVA). 

This equation provides a simple connection between stiffness, an invasive measure, and the non-

invasively determined DT. Furthermore, starting with the lossless oscillator or simply inverting 

Eq 5.2, one can solve for DT in terms of chamber stiffness: 

 

DTk !
!

2 k
 Equation 5.3 

, where k can be either the Little et al defined stiffness constant or the PDF defined stiffness 

constant. Note that DTk is the deceleration time defined by a ‘stiffness only’ model of diastolic 

filling. 

Little et al validated the inverse of Eq. 5.2 in a study of 8 dogs undergoing catheterization 

and echocardiography. Little et al found a strong linear relationship between chamber stiffness 

predicted by DT and chamber stiffness measured from ∆P/∆VAVG. Further validation of Eq. 5.2, 

for humans undergoing open-heart surgery, and for humans undergoing catheterization, was 

achieved by Garcia et al (10) and Marino et al (25), respectively. Thus Eq 5.2 and its inverse 

represent a significant step forward in the noninvasive determination of traditionally invasively 

determined indexes. 

 

5.1.2 Challenging The One to One Stiffness and Deceleration Time Relation  
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While Eq. 5.3 is useful because of its simplicity and applicability, the one-to one relation 

between DT and chamber stiffness implied by Eq. 5.3 is fairly restrictive. This one-to-one 

relation implies that two LVs with E-waves having indistinguishable DTs should have 

indistinguishable left ventricular stiffness (ΔPAVG/ΔVAVG), assuming similar chamber volumes 

and that the constant lumped coefficient in Eq. 5.3 is the same for both. Therefore, subjects 

having similar MVA, blood density, and chamber volumes, and having indistinguishable DTs by 

Doppler echo but significantly different ΔPAVG/ΔVAVG by catheterization, would suggest that 

although Eq. 5.3 is an excellent correlate of chamber stiffness, it is incomplete.  

We motivate our work through a specific example (Figure 5.1) from two subjects, with 

similar end-diastolic volumes (EDV), undergoing elective diagnostic catheterization in whom 

simultaneous micromanometric LV pressure (Millar) and transmitral flow (E-waves) were 

recorded. For both subjects, catheterization determined stiffness ΔPAVG/ΔVAVG, as well as the 

Table 5.1 Comparison of hemodynamic 

stiffness and DT between two subjects 

 

 Subject 1 Subject 2 

DT, s 0.147 (0.01)* 0.146 (0.02) 

k, 1/s2 343 (36)† 276 (55) 

ΔPAVG/ΔVAVG, 

mmHg/cm3 

0.34 (0.07)‡ 0.22 (0.04) 

ΔPE/ΔVE, 

mmHg/cm3
 

0.27 (0.08)§ 0.19 (0.05) 

EDV, cm3 95 106 

 

Figure 5.1 E-waves of two subjects having indistinguishable DTs, but significantly different values for 

E-wave derived stiffness k and catheterization-derived stiffness ΔPAVG/ΔVAVG. Measured DTs of 10 

beats from subject 1 and 7 beats from subject 2 are indistinguishable. Measured k and ΔPAVG/ΔVAVG of 

9 beats from subject 1 and 7 beats from subject 2 are significantly different via ANOVA. Values in the 

table are means (SD). DT, deceleration time; k, E-wave derived stiffness; ∆PAVG/∆VAVG, 

catheterization-determined average chamber stiffness; ∆PE/∆VE, catheterization-determined early rapid 

filling stiffness; EDV, end-diastolic volume. P values determined by ANOVA *P = 0.93. †P=0.011. 

‡P=0.0015. §P=0.037. See text for details. 
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PDF model E-wave derived kinematic LV stiffness analog (19, 22) (k), were calculated for 

several consecutive beats (see Methods). Although the DTs in Figure 5.1 are indistinguishable, 

all the invasive and noninvasive stiffness indexes were significantly different between the two 

subjects.  

To resolve the ‘indistinguishable DT, but distinguishable measured stiffness 

(ΔPAVG/ΔVAVG)’ dilemma we investigated the functional relationship between DT and 

ΔPAVG/ΔVAVG. We employ the PDF formalism (see Chapters 1 and 2), to derive a general 

expression for chamber stiffness that depends on both measured DT and c, the PDF 

relaxation/viscosity parameter.  Because the general expression for DT is not solely stiffness (k) 

dependent, two subjects with indistinguishable DT need not have equivalent stiffness. We 

validate the model-predicted hypothesis that DT is determined jointly by chamber stiffness and 

chamber relaxation/ viscoelasticity through analysis of 400 E-waves recorded from 79 subjects 

undergoing simultaneous echocardiography-catheterization.  

 

5.2 METHODS 

5.2.1 Mathematical Derivation 

Model Comparison 

In the Little el al model of diastolic filling, inertial forces are opposed solely by elastic 

ventricular forces. This model is mathematically equivalent to the lossless simple harmonic 

oscillator described in Chapter 1, has the following equation of motion (per unit mass):  

0=+ kxx!!  Equation 5.4 
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where x is displacement (cm), k is stiffness per unit mass(g/s
2
), and x!!  is the second time 

derivative of displacement (cm/s
2
). 

In contrast, the PDF model accounts for the role of the LV as a mechanical suction pump 

in early diastole and predicts E-wave contours through a damped simple harmonic oscillator, 

having the following equation of motion: 

0=++ kxxcx !!!   Equation 5.5 

where c is the damping constant (g/s); x! is the velocity (cm/s); and x, k, and x!!  are defined as in 

Eq. 5.4.  Apart from the choice of initial conditions for the two models, the damping parameter c 

is the primary difference between the PDF formalism and the Little et al. model. Thus, in 

deriving a PDF formalism based equivalent to the period of oscillation vs. DT relation (Eq 5.3), 

we expect the PDF formalism derived formula to be a function of both stiffness (k) and 

relaxation/viscosity (c). 

 

Underdamped E-waves 

The general expression for DT in terms of PDF parameters was derived in Chapter 2, and 

we summarize the approach here. We begin with the underdamped form of the PDF derived E-

wave velocity contour. 

)sin()( te
kx

tv
to

!
!

"#
=   Equation 5.6 

with α = 

 

c

2
 and ω = 

2

4
2
ck !

. The duration of the wave, Edur, is the sum of the 

acceleration time (AT) and deceleration time (DT), and can be found when the sine term 

vanishes: 
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DT + AT =
!

"
 Equation 5.7 

Furthermore, one can find the time from start to peak of the wave (AT) by solving for the time at 

which acceleration vanishes: 

  

AT =
1

!
tan
!1 !

"

"

#
$$$
%

&
'''  Equation 5.8 

To simplify further analysis we can define a new variable 

 

y=
c

2 k
, and then combine Eq. 5.7 

and 5.8 to obtain a simplified expression for DT: 

  

DT =
1

k
!
!" cos

"1
y( )

1" y
2

#

$

%
%
%
%

&

'

(
(
(
(

 Equation 5.9 

 Equation 5.9 is complex and may be simplified by considering appropriate limits. 

Because this analysis is based on the underdamped regime of the PDF model, it is reasonable to 

expand Eq. 5.9 in the y<<1 limit. Taylor’s theorem allows a continuous function to be 

approximated around 0 as: 

 

g(x)= g(0)+ !g (0)(x)+
!!g (0)

2!
(x)
2

+ ...  Equation  5.10 

We focus on the bracketed expression in Eq. 5.9, and first note that: 

 

d

dy
!cos

!1
(y)( ) =

1

1! y
2

 Equation 5.11 

Thus if we define q= -cos
-1

(y), the bracketed expression in Eq. 5.9 becomes: 

  f = !q !+ q( )  Equation 5.12 

Now applying the product rule, we can quickly determine derivatives of f: 
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!f = !!q !+ q( )+ !q( )2

!!f = !!!q !+ q( )+ 3 !q !!q( )

!!!f = !!!!q !+ q( )+ 4 !q !!!q( )+ 3 !!q( )2
 Equation 5.13 

Furthermore, q(0)= -π/2, and higher even derivatives of q vanish at y=0. Thus, the derivatives in 

5.13 may be simplified at y=0: 

  

f (0)= q ' 0( )!
!

2

"

#
$$$
%

&
'''=
!

2
, (f 0( ) = (q 0( )( )2 =1

((f 0( ) = (((q 0( )!
!

2

"

#
$$$
%

&
'''=
!

2
, (((f 0( ) = 4 (q 0( ) (((q 0( )( ) = 4

 Equation 5.14 

Plugging in the values in Eq. 5.14 into 5.10 and 5.9, we obtain the following Taylor expansion 

around y=0 for DT: 

  

DT =
1

k
!
!

2
+ y+

!y
2

4
+
2y
3

3
+ ...

"

#

$
$
$

%

&

'
'
'

 Equation 5.16 

and if we take just the first two terms in the expansion and rewrite y in terms of c and k, we 

obtain a simplified expression for DT: 

  

DTk,c =
!

2 k
+

c

2k
 Equation 5.17 

where DTk,c is the DT predicted by a ‘stiffness and viscoelasticity’ model of filling. This 

equation is valid in the y<1 or c
2 

< 2•k limit. Note that DTk, the DT in Eq 5.3 derived from a 

stiffness only model of filling, is recovered from Eq 5.17 in the c=0 limit.  Eq. 5.17 can be 

inverted to have similar form as Eq. 5.2, thereby expressing stiffness as a function of DT and c: 

 

!P

!V AVG

" k =
1

8DT
2
# + #

2
+ 8DT $ c( )

2

 Equation 5.18 

We note that Eq. 5.2 is recovered in the c=0 limit. 
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Overdamped Waves 

When one encounters an E-wave whose contour corresponds to ‘overdamped’ kinematics 

(y>1 regime), DT is no longer clearly defined, because the end of the wave can not be easily 

determined. However, as described in Chapter 2, the effective deceleration time may be 

approximated from the base of the triangle defined by the E-wave peak and inflection point in 

the deceleration portion. The key to the derivation is that the inflection point occurs at twice the 

acceleration time, and therefore the slope of the deceleration line may be calculated and equated 

between the E-wave peak and the inflection point and E-wave peak and E-wave end. This results 

in the following relationship for overdamped deceleration time: 

 

 

DTover = AT !
v(AT )

v(AT )" v(2AT )

#

$
%%%

&

'
((((

 Equation 5.19 

, where AT and v(t) are given by Equations 2.32 and 2.36. Evaluating the velocities in Eq. 5.19 

and simplifying, one obtains the following expression for overdamped DT: 

  
DTover =

1

k
f !( )  Equation 5.20 

, where 
  
!=1! y

!2 , 

  

f (!)=
1!!( )"(!)

2 #e
"(!)

! 1!!
, and 

  

!(!)="
ln 1+ !( )" ln 1" !( )

2 !
. 

The overdamped limit corresponds to 
 
! > 0 limit, and therefore we can expand Eq. 5.22 

around 
 
! = 0 to obtain an expression for DT: 

  
DTover =

1

k
f 0( )+! ! "f 0( )+ ...( )  Equation 5.21 

To simplify Eq. 5.21, we need to find the derivative of 
  
!(!) : 

  

!" (!)=
1

2!

ln 1+ !( )# ln 1# !( )
2 !

#
1

1#!

$

%

&&&&&&

'

(

))))))
 Equation 5.22 
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Applying expansions of ln(1±
 
! ) and (

 
! -1)

-1
 at 

 
! =0 to Eq. 5.21 and 5.22 yields: 

 

!(0)="1, #! (0)="
1

3

$

%
&&&
'

(
)))  Equation 5.23 

We can find the derivative of f(
 
! ): 

  

!f (!)=

1"!( ) !# (!)"#(!)( ) 2 $e#(!)" 1"!( )" 2 $ !# (!)e#(!)+
1

2 1"!

%

&

''''

(

)

*****
#(!) 1"!( )( )

2 $e#(!)" 1"!( )
2

 Equation 5.24 

Armed with these expressions, we can evaluate f(
 
! ) and f’(

 
! ):  

 

f (0)=
e

e!2
, "f (0)=!

4e! e
2( )

6 2! e( )2
 Equation 5.25 

Plugging Eq. 5.25 into Eq. 5.21, we can express DTover in terms of c and k.  

 

DTover !
1

k

e

e"2
+ 1"

1

y
2

#

$
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&

'
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 Equation 5.26 

The kinematic dependence of DT on c and k in both overdamped and underdamped cases 

(Eq 5.9 and 5.20) can be visualized with isochrones in the c vs k plane (Figure 5.2).  

 

5.2.2 EXPERIMENTAL VALIDATION 

Inclusion Criteria 

 Seventy nine subjects were selected from an existing Cardiovascular Biophysics 

Laboratory database of simultaneous Doppler echocardiographic transmitral flow recordings and 

micromanometric catheter-derived LV pressures obtained during diagnostic cardiac 

catheterization (2, 22). Our methodology for simultaneous micromanometric LV pressure-
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Figure 5.2. The PDF model reveals how E-wave deceleration time (DT) is determined jointly by 

stiffness and relaxation. The model re-expresses DT in terms of PDF parameters (c, k) for both 

‘overdamped’ and ‘underdamped’ contours. Taylor series approximation simplifies expressions for 

DT. The right panel shows lines of constant DT in the c vs. k plane. Note that a constant value of DT 

can be generated by a range of c and k values. The y=1 curve separates overdamped (top) and 

underdamped (bottom) regimes. See text for details.  

transmitral flow acquisition has been previously described
 
(2, 22), and is reviewed in Chapter 2. 

All subjects underwent elective cardiac catheterization at the request of their referring physician. 

Prior to data acquisition and cardiac catheterization, all subjects provided signed, informed 

consent approved by Washington University Medical Center Human Studies Committee  (IRB). 

Selection criteria from the database required that subjects have normal sinus rhythm, normal 

valvular function, and clearly identifiable E- and A-waves. Subjects with significant merging 

between E- and A-waves were excluded. Nineteen of the seventy nine subjects had ejection 

fraction (EF) less than 55%, while thirty-five of the eight subjects had LVEDP ≥ 19 mmHg. 

Table 5.2 summarizes the demographic information for the group.  
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Doppler Analysis Methods: 

At least 5 under-damped E-waves were acquired and analyzed from each subject. DT was 

measured manually as defined by standard criteria (1) as the base of the triangle approximating 

the deceleration portion of the E-wave. In addition, for each beat, the parameterized diastolic 

filling (PDF) formalism was used to fit the E-wave contour (12, 17) and extract model-based 

stiffness (k) and damping (c) parameters (see Chapter 2 for details on triangle and PDF-model 

fitting). In total 400 E-waves were analyzed. 

As in prior work(22), diastolic volume differences (ΔV) were calculated by multiplying 

mitral valve area by the VTI over the relevant portion of the diastolic period. Effective (constant) 

mitral valve area was estimated by dividing the ventriculography determined (calibrated) stroke 

volume by the average total VTI (sum of E- and A-wave VTI).  

 

Calculation of Left Ventricular Hemodynamic Operating Stiffness 

Two subjects with similar EDV from the group (Fig. 5.1), exhibiting clear diastasis 

intervals between E- and A-waves, were chosen for a preliminary analysis. For each subject, DT 

Table 5.2. Subject Demographics 

Age, yr 55(10) 

Gender 57 M, 23 F 

Height, m 1.59(0.51)  

Weight, kg 83(33) 

EF 64(15) 

EDV, mL 183(65) 

LVEDP, mmHg 19 (6.5) 

DT, s 0.19(0.04) 

Values are mean(SD); n=79 subjects. 19 subjects showed evidence of systolic dysfunction (EF<55%). 35 

subjects showed evidence of diastolic dysfunction (LVEDP≥19mmHg). 
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and hemodynamic stiffness ΔPAVG/ΔVAVG were measured in 7-10 consecutive beats. In addition, 

E- waves were fit by the parameterized diastolic filling (PDF) formalism for each beat. Beats 

from each subject having indistinguishable DT were grouped together. To test whether subjects 

with indistinguishable DT had indistinguishable LV stiffness values, hemodynamically 

determined stiffness values (ΔPAVG/ΔVAVG, ΔPE/ΔVE as described below), as well as PDF model-

derived LV stiffness (k) were compared between beats having indistinguishable DT. In addition 

to comparing mean values between subjects for stiffness parameters and DT, all measured values 

(DT, hemodynamic stiffness, PDF stiffness) for each beat from subject 1 (9 beats analyzed) were 

compared to measured values for subject 2 (7 beats) by ANOVA analysis using Microsoft Excel 

(Microsoft Corp, Redmond, WA). 

The method for determining LV hemodynamic operating stiffness has been previously 

detailed (22). Briefly, early rapid filling stiffness (ΔPE/ΔVE), and average chamber stiffness 

(ΔPAVG/ΔVAVG) were calculated from ratios of LV pressure (LVP) changes and volume changes 

over appropriate time intervals. In accordance with the Little et al definition (23), average 

chamber stiffness was defined as the ratio of the change in pressure to the change in volume 

during the time interval from minimum LVP to LV end-diastolic pressure (LVEDP) 

(ΔPAVG/ΔVAVG=

 

P
EndDiastolic

! Pmin imum

V
EndDiastolic

!V
P(min imum )

). Early rapid-filling stiffness, the effective E-wave LV 

stiffness, was defined as the ratio of the change in pressure to the change in volume during the 

time interval from minimum LVP to diastasis LVP  (ΔPE/ΔVE=

 

P
Diastasis

! P
min imum

V
Diastasis

!V
P min imum

).  
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Comparative Analysis Between DTk and DTk,c 

Previous work by Lisauskas et al showed for a large sample size (n=131) that the E-wave 

derived kinematic stiffness k is strongly linearly correlated with catheterization determined 

ΔPAVG/ΔVAVG(22). Additional work by Kovács et al (19) has shown that k is equal to a constant 

multiple of the Little et al DT-determined stiffness for low c-valued E-waves. Thus, instead of 

calculating ΔPAVG/ΔVAVG (as we did for the preliminary work presented in Figure 1) for all 79 

subjects in the comparative analysis, we used PDF–derived k as a surrogate for invasively 

determined stiffness. To ensure the validity of this approximation we independently tested the 

correlation between PDF derived 

stiffness parameter k and 

catheterization determined 

ΔPAVG/ΔVAVG in a subgroup of 

our patients (n=20) using methods 

analogous to those presented in 

Lisauskas et al (22). In 

accordance with previous work by 

Lisauskas et al, a strong linear 

correlation (r
2
=0.59) between 

PDF derived parameter k and 

catheterization determined 

ΔPAVG/ΔVAVG was observed for 

the subgroup of subjects (Figure 5.3). 

Figure 5.3. Data for 64 beats from n=20 subjects. For each beat 

ΔPAVG/ΔVAVG was calculated using invasively derived high fidelity 

pressure and simultaneous transmitral flow derived volume change 

in a manner analogous to the methods presented in Lisauskas et al 

and by others. Least squares linear regression of kPDF to 

ΔPAVG/ΔVAVG yielded an r=0.76. This result provides additional 

support for using kPDF as a surrogate for ΔPAVG/ΔVAVG. 
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DTk,c and DTk values were computed for a total of 400 E-waves by substituting model 

based stiffness k and relaxation/viscosity c into equations 5.3 and 5.17. Clinically measured 

triangle-based DT was compared to the model-predicted DTk,c and DTk by least mean square 

(LMS) regression. Paired t-test analysis of the difference between measured and predicted DT 

values was performed using Microsoft Excel (Microsoft Corp, Redmond, WA). 

 

5.3 RESULTS 

For illustrative purposes representative E-waves from two subjects with indistinguishable 

DTs and similar MVA and chamber volumes, are presented in Figure 5.1. Invasively derived 

stiffness ΔPAVG/ΔVAVG, ΔPE/ΔVE, as well as PDF determined stiffness k were calculated for 7 

beats in subject 2 and 10 beats in subject 1. While DT values were indistinguishable between the 

two subjects (p=0.89), both invasively derived and kinematically derived stiffness values were 

Figure 5.4. Comparison of measured vs predicted values for DT by the ‘stiffness only, DTk’ and 

‘stiffness and viscoelasticity, DTk,c’ models in 79 subjects. Five E-waves per subject were analyzed and 

averaged to generate each patient’s data point. The DTk,c model incorporating both stiffness and 

relaxation/viscoelasticity attains a much stronger correlation coefficient (r
2
 = 0.84 vs 0.60) via least 

mean-square regression. See text for details. 
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significantly different by ANOVA (p<0.001).  

The predicted relationship between DT, k, and c was compared to the established 

(inverted) stiffness-only relationship of Little et al. Figure 5.4 plots the raw data of measured DT 

vs. model-predicted DTk,c using Eq. 5.17 and by Little’s model, Eq. 5.3. LMS regression yields: 

(DT=1.15DTk,c+0.01, r
2
=0.84) vs. (DT=1.48DTk+0.03, r

2
=0.60). The average difference between 

the measured DT and Little et al model predicted DT (DT - DTk) was 0.082(0.022) sec, while the 

average difference between measured DT and Kovács et al model predicted DT (DT - DTk,c) was 

0.036(0.031) sec. Paired t-test analysis of the difference between measured and predicted DT 

(DT - DTk,c vs DT - DTk) at a significance level of α=0.05, yields t=32, and p≈ 10
-47 

for a two-

tailed test.  

 

5.4 DISCUSSION  

5.4.1 Summary 

Average left ventricular (LV) chamber stiffness, ∆PAVG/∆VAVG, is an important diastolic 

function (DF) determinant. An E-wave based determination of ∆PAVG/∆VAVG by Little et al 

predicted that deceleration time (DT) determines stiffness according to ∆PAVG/∆VAVG = A/(DT)
2
. 

This implies that if the DTs of two LVs are indistinguishable, so is their stiffness. We observed 

that LVs having indistinguishable DTs may have markedly different values for ∆PAVG/∆VAVG 

determined by simultaneous echocardiography-catheterization. 

To solve the problem of why two subjects having indistinguishable DTs and chamber 

volume can have different catheterization determined values of chamber stiffness, we used the 

PDF formalism to derive the general expression between DT, ventricular stiffness, and 
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relaxation/viscoelasticity (Eq. 5.17). We compare clinically measured DT to the general 

expression for DT (DTk,c), containing both stiffness and relaxation components, and to the Little 

et al stiffness only expression for DT (DTk), in 79 subjects. The results demonstrate that DT is 

jointly determined by stiffness and relaxation, and suggest that accurate determination of 

chamber stiffness requires measuring both DT and chamber relaxation properties.  

 

5.4.2 Kinematic Model Comparison 

In 1995, Little independently posited that, starting from the E-wave peak, the 

deceleration portion can be modeled kinematically as an undamped oscillation (i.e. a cosine 

function) (23). Expressed differently, Little et al’s independent derivation, based on chamber 

stiffness as the mechanism which opposes inertia to decelerate the E-wave, is a special (c=0) 

limit of the solution to the suction-initiated transmitral flow problem, solved via the 1987 

proposed PDF formalism (18). It is reassuring that totally different and independent lines of 

physiologic argument, invoking different initial conditions, lead, via Newton’s Law, to 

essentially the same mathematical expression for the E-wave contour. 

There is, however a significant limitation to the stiffness only approach. While an 

undamped oscillator provides an excellent approximation to the deceleration portions of many E-

wave contours, for deceleration portions of E-waves exhibiting an inflection point or the 

‘delayed relaxation’ pattern, a cosine function has limited applicability. Indeed, a cosine (quarter 

wavelength, ‘concave-down’) can not fit an E-wave deceleration contour having an inflection 

point, (‘concave-down’ changing to ‘concave-up’). Thus the cosine model works best for 

ventricles where relaxation/viscoelastic effects are negligible relative to stiffness. Furthermore, 

the stiffness only approach predicts that ventricles with identical deceleration times will have 
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indistinguishable stiffness. This prediction is not consistent with experimental findings (Figure 

5.1), and resolution of this inconsistency requires additional parameters.  

 

5.4.3 Resolving the “Indistinguishable DT, Distinguishable stiffness dilemma” 

Equation 5.17 and 5.26 resolves the “same DT, different chamber stiffness dilemma” 

through the parameter c. In cases where viscous losses are small, the second term can be 

neglected and DT will have a one-to-one correspondence with chamber stiffness as Little et al 

predicted. However, in cases where viscous losses are significant, DT is determined by both 

stiffness (k) and viscoelasticity/relaxation effects (c). Thus two ventricles with identical DT may 

have different stiffness values if they also have different c values. This is clear by following lines 

of constant DT in Figure 5.2, where the exact expressions for DT are determined. The previous 

discussion makes clear that an additional damping parameter (c) mathematically resolves a 

limitation of the stiffness-only model. However, in order to be a valid approach, the 

incorporation of c must be grounded in basic physiology and experimental findings. Thus it is 

important to consider the experimental basis for chamber viscoelasticity.  

 

5.4.4 Experimental Evidence For Significance of Tissue Viscoelasticity 

 The simplest model for the material properties of the chamber assumes that the tissue is a 

linear elastic material. This approach lumps complex cellular and extracellular interactions into a 

single stiffness parameter that relates stress to strain (pressure differences to volume differences). 

Though some models treat tissue as purely elastic, many studies have shown that tissue is 

viscoelastic (8, 13, 16, 20, 30, 32, 36). The connection between a simple elastic model and a 

viscoelastic model for the LV is subtle, but was elucidated in the pioneering work of Templeton 
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et al (32). They dynamically filled canine ventricles with a sinusoidally varying volume and 

measured the resulting chamber pressures changes as well as the operating chamber stiffness.  

They found that the peak of the chamber pressure perturbation was offset (in time) from the peak 

of the driving volume perturbation, indicating the presence of viscous effects. Importantly, any 

offset introduced by the coupling of regional pressure gradients to regional ventricular dimension 

(6, 21, 26)  can not account for the observed offset, since volume changes were measured 

precisely from calibrated driving piston motion, and not from ventricular dimensions. To account 

for viscous effects, Templeton used a three component (stiffness, damping, and inertia) linear 

model for the pressure contour. Inversion of the model allowed determination of the elastic 

stiffness and the “viscous stiffness” for each ventricle from the pressure-volume data. Thus, 

Templeton showed that ventricular stiffness could be divided into elastic and viscous 

components, elastic components being those measured by instantaneous dP/dV measurements, 

and viscous components being measured by phase differences between hemodynamic pressures 

and volumes. Thus ventricular stiffness is best approximated by elastic dP/dV stiffness only if 

viscous effects are negligible.  

 Several studies, however, have shown viscous effects to be significant both in animal 

models and in humans, particularly in those with pathology. For example, Rankin et al found that 

a viscoelastic, rather than a purely elastic, model of the ventricle was required to fit observed 

stress strain data obtained in open chest dogs (30). Hess et al extended these results to humans, 

and showed that for patients with myocardial hypertrophy, a model that included both viscous 

and elastic parameters, provided a better fit to ventricular stress-strain relationships than a simple 

elastic model. Hess concluded that “it is important for the assessment of diastolic myocardial 

stiffness to evaluate the viscous influences during filling, because the simple elastic constants 
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reflect a composite of elastic and viscous forces and may be misleading, especially in patients 

with myocardial hypertrophy.” (13)
 

  

5.4.4 Clinical Utilization of Stiffness and Viscosity 

In current practice, Templeton’s elastic stiffness component (due to collagen, titin, and a 

myriad of other factors (15)) can be invasively measured from hemodynamics, and the “viscous 

stiffness” component is referred to as viscosity/relaxation effects. In fact, general consensus has 

developed that diastolic dysfunction is associated with pathophysiology related to stiffness and 

relaxation (15, 28, 34, 35).   

 Relaxation is intuitively appealing as a parameter that determines diastolic function and it 

is a term that has both clinical and physiologic interpretations. From a physiological perspective 

it includes viscoelastic effects, and involves processes related to the reuptake of Ca
2+

 after 

crossbridge-cycling and force generation, intracellular components including microtubules, and 

actin-titin interactions (15, 16, 20). Clinically, impaired relaxation can be characterized by two 

dominant phenomena. First, prolonged τ determined by (invasive) catheterization or prolonged 

IVRT determined by (noninvasive) echocardiography often indicates impaired Ca
2+

 handling and 

poor relaxation of the ventricle during isovolumic relaxation. 

Relaxation effects are also visible during filling, both in the velocity contour and in the 

pressure contour (see Chapter 6 for details regarding relaxation and the pressure contour). 

Relaxation/viscoelastic effects during filling declare themselves in the damped oscillatory 

features of the velocity contour, transforming a pure sine wave (no damping) shaped E-wave to 

an asymmetric E-wave with a prolonged deceleration time. Prolonged DT>220ms is one of the 
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hallmarks of the E-wave ‘delayed relaxation pattern’, and this finding has been associated with 

the progression of diastolic dysfunction (see Chapter 1). 

 

5.4.5 Unifying Abnormal Relaxation Indices Through One Parameter 

Through mathematical modeling and experimental validation, we have advocated the use 

of a lumped ‘damping’ parameter c to account for all viscous effects during filling, including 

both prolonged τ effects and viscous effects of the tissue and blood. Two studies, one animal and 

one human, found that damping factor c was significantly higher in E-waves acquired from 

diabetics compared to non-diabetic controls (7, 31). Higher c values implied that the diabetic 

hearts had dynamic force relationships during diastole that differ from diastolic force 

relationships found in normal controls, and these differing  relationships reliably generated 

distinguishable transmitral velocity profiles between the two groups. Furthermore, a recent study 

using simultaneous echo-cath data predicted and validated a significant linear correlation 

between the E-wave derived c and 1/τ, the invasively derived time constant of isovolumic 

relaxation (4).  

 

5.4.6. Stiffness Only vs Stiffness and Relaxation Models in a Clinical Context 

 The main difference between the two models presented in Figure 5.3 resides in the 

relative significance of relaxation/viscosity effects on filling. When relaxation/viscosity effects 

are small, then equations 5.3 and 5.17 predict the same value for DT, and the two models are 

virtually equivalent. Such a scenarios would correspond to a fairly symmetric E-wave. As 

relaxation effects become more pronounced, the symmetry of the E-wave is lost, and the DT 

grows. It is important to note, however, that in clinical situations where E-waves have a 
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“restrictive pattern” ie tall and narrow waves with short DT, the waves necessarily have high 

PDF k values, but that does not imply that c=0. Nevertheless, in such cases the value of c/2k in 

equation 5.17 is much smaller that π/(2√k), and the predicted DTk,c value is very close to the 

predicted DTk value. In other words, for patients with restrictive E-wave, using DT to estimate 

stiffness by Little et al’s equation will not introduce a significant error. However for patients 

with a “delayed relaxation” (long DT) E-wave, the parameter c is significant, and the ratio c/2k 

cannot be ignored. In this case the use of the Little et al equation to estimate stiffness from DT 

alone will underestimate LV stiffness significantly. 

 

5.4.7 Impact of Viscous Damping on Pressure Gradients  

An interesting kinematic consequence of the presence of relaxation/viscoelastic effects 

relates to the AV pressure gradient. If damping were absent, the elastic recoil of the ventricle 

would be completely converted to fluid motion, and the AV pressure gradient would vanish 

when blood acceleration is zero i.e. at the E-wave peak. However, if viscosity is present, zero 

AV-pressure gradient implies that the damping forces opposing flow equal the inertial force, and 

therefore the AV pressure gradient would be expected to vanish after the peak of the E-wave. 

This analysis is similar to the work of Templeton et al, because it predicts that viscous effects 

will introduce a phase shift between the pressure gradient and the resulting flow. Previous work 

utilizing frequency based (Fourier) analysis of in-vivo pressure-volume data has also 

characterized such a phase difference during the E-wave (33).  

To make this analysis more precise, we may apply the PDF model to the analysis of the 

pressure gradient. The analog pressure gradient according to the PDF model is the force per unit 

area, expressed as ΔP=kx(t). Thus, the AV pressure gradient vanishes when the displacement 
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x(t)=0. From Chapter 2, we know that in the underdamped (y<1) limit, the displacement of the 

oscillator as a function of time is: 
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We solve for the time when x=0: 
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Inverting Eq. 5.28 for time yields: 
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The following identities are useful in simplifying Eq. 5.29: 
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Applying 5.30 and 5.9 to 5.29 yield the following expression for the time at which displacement 

vanishes: 
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Thus, for underdamped waves, the pressure crossover point occurs at a time t=DT after the start 

of the E-wave. This predictions is of course only valid in the underdamped case, because x(t)=0 

only at t=∞ in the overdamped case! Furthermore, the PDF model requires that DT ≥ AT for all 

waves, and therefore Eq. 5.31 predicts that the atrioventricular crossover point always occurs on 
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(c=0 case) or after (c>0 case) the peak of the E-wave. This prediction has yet to be tested 

directly. 

 

5.5 LIMITATIONS   

5.5.1 Appropriateness of A Simplified Approach to Diastolic Function 

We acknowledge that ventricular diastolic properties are nonlinear, and nonlinear models 

of filling, as compared to linear models such as the Little et al model or the PDF model 

employed in the current study, have the advantage that they can more completely characterize 

the complex underlying physiology. However, the more complex models cannot be inverted and 

often are unable to generate a unique set of parameters that fit the clinical data. Therefore these 

models cannot be employed in the clinical setting (27). Furthermore, previous work in our lab 

has demonstrated that the PDF model generates a fit to the clinical E-wave contour that is 

numerically indistinguishable from well-established complex and non-linear models (27). In 

addition, experiments clearly show that the giant protein titin, which causes myocytes to ‘spring-

back’ and ‘push’ as they re-lengthen, while generally non-linear, behaves as a linear, 

bidirectional spring when evaluated in the usual working range of sarcomere lengths (11).  

While a more complex model is sure to yield further insights into the connection between 

transmitral flow parameters and individual ventricular properties, the simplified kinematic 

approach presented in the current Chapter elucidates fundamental physiologic components 

(stiffness/viscoelasticity) that determine filling, and provides an important next step (a higher 

order correction) to the initial pioneering work of Little et al (23). 
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5.5.2 Mathematical Interdependence of Parameters 

A potential limitation may be that k, c, and DT are all E-wave derived parameters. 

Therefore one may suspect that k and c are algebraically related, and therefore, one of the 

variables in Eq. 5.17 can be eliminated, resulting in a one-to-one correspondence between k and 

DT. While physiology constrains the range of observed values for c and k, we note that k and c 

are mathematically independent. Apart from the restriction that the wave-shape is underdamped 

(y<1), and that the parameters are non-negative, there is no explicitly known functional 

relationship between the two parameters. 

 

5.5.3 Appropriateness of k as a Surrogate for Invasive Stiffness 

While a highly linear relationship between stiffness parameter k and ΔPAVG/ΔVAVG has 

been demonstrated in a large sample n=131 by Lisauskas (22) and independently repeated for a 

smaller sample n=20 in the current work, one may surmise, from Figure 5.3, that a more 

appropriate comparison would be in equation 5.17 to utilize catheterization determined 

ΔPAVG/ΔVAVG in place of k.  However, our use of k as a surrogate for ΔPAVG/ΔVAVG would only 

be inappropriate if it resulted in a tautology, in the sense of not being able to differentiate one 

hypothesis from another. If viscoelasticity were not an important determinant of DT, and the E-

wave contour were purely the result of elastic and inertial forces, then all E-waves would have 

concave down deceleration portions and DT and LV stiffness would have a one-to-one 

correspondence. If resistive forces could be neglected for the entire E-wave, then all E-waves 

would be symmetric. In this case, the PDF c parameter would vanish, and the k parameter would 

be exactly equal to Litte et al’s KLV ~ 1/(DT
2
) (as demonstrated in Kovács et al.(19)). 

Furthermore, in such a scenario the panels of Figure 5.3 would yield indistinguishable plots for 
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DT vs. DTk and DT vs. DTk,c. In contrast, if viscoelastic/resistive forces play a discernible role in 

determining the E-wave contour, then we expect a better fit to the data in the DTk,c panel 

compared to the DTk panel, and this is what  Figure 5.3 shows. Indeed, the model fit to the data 

using k and c is significantly better (p=10
-42

) compared to use of k alone, as assessed by a paired 

t-test of the differences (see results). Thus using the stiffness parameter k rather than 

ΔPAVG/ΔVAVG for comparative analysis is both reasonable and appropriate.  

 

5.5.4 Defining Stiffness From the Average Pressure Volume Slope 

While there are numerous definitions for chamber stiffness, physiologists and clinicians 

routinely define ventricular stiffness as a ratio of pressure changes to volume changes. However, 

defining chamber stiffness as the slope of the pressure-volume loop introduces a variety of 

conceptual challenges, because the slope of the P-V loop during diastole varies. Indeed, at mitral 

valve opening, the instantaneous dP/dV slope is negative (indicating mechanical ventricular 

suction), and only after minimum pressure has been achieved, does the slope become positive. 

During isovolumic relaxation or contraction, dV=0, which implies a further conceptual hurdle, 

namely infinite chamber stiffness (5).  

To overcome these conceptual challenges, either a multiple beat or an average single beat 

approach is applied. In the multiple beat approach (see Chapter 4) a pressure volume relationship 

is constructed from end-diastolic or diastatic pressure volume coordinates over varying load. In 

the average single beat approach an average of the pressure volume slope, called the operating 

chamber stiffness and defined as ΔPAVG/ΔVAVG = (PEDP-Pmin)/ VEDV-VPmin), is used to estimate 

ventricular stiffness. Due to a lack of significant load variation in the subject hemodynamics, we 

utilized the operating chamber stiffness definition in the current work.  
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Another average pressure volume slope that was utilized in the current Chapter was 

∆PE/∆VE, the slope defined by pressure volume points at minimum pressure and the end of the 

E-wave. It is important to note that ∆PE/∆VE is calculated over a shorter duration (by about a 

factor of 2) than ∆PAVG/∆VAVG and as such, is more sensitive to exact temporal alignment of the 

pressure and echo waveform than ∆PAVG/∆VAVG. This sensitivity manifests in Figure 5.1 as a 

larger standard deviation present in the DPE/DVE values, and this contributes to the higher p 

value. However, the differences in invasive chamber stiffness between subjects in Figure 5.1 are 

significant regardless of which specific regime is chosen to calculate average operating chamber 

stiffness, and it is this significant difference that serves as the conceptual basis for the work 

presented in this Chapter. 

 

 

5.5.5 Inclusion of Low Ejection Fraction Subjects 

The subjects in the current Chapter were not chosen with the intent of determining the 

effects of particular disease states on deceleration time and it’s dependence on stiffness and 

relaxation. In fact, a heterogeneous group of subjects was chosen so as to demonstrate that the 

dependence of deceleration time on both stiffness and relaxation applies independent of systolic 

or diastolic dysfunction. It may be the case, however, that the inclusion of subjects with systolic 

dysfunction (ejection fraction <55%) is responsible for the dramatic differences observed in 

Figure 5.3. However, an sub analysis excluding lower EF patients does not change the results. If 

the 19 subjects with low EF are removed, the DT vs DTk,c regression becomes 

DT=1.18(DTk,c)+0.009, r
2
=0.80, while the DT vs DTk regression becomes DT=1.57(DTk)+0.02, 

r
2
=0.53. This analysis further bolsters the claim that the connection between DT, stiffness, and 

relaxation depends on underlying physical principles, and not on specific pathophysiology. 
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5.5.6 Mitral Valve Area and Atrial Properties 

Another minor limitation is the use of E and A-wave velocity time integrals and a 

constant mitral valve area multiplier for ΔV determination in ΔPAVG/ΔVAVG  and ΔPE/ΔVE in the 

place of conductance catheter data. Indeed, mitral valve area has been shown to vary during 

diastole (3), and conductance catheter volumes may avoid the error introduced in multiplying the 

VTI by a constant effective mitral valve area. However, use of constant effective MVA is 

inherent in the derivation of the expression by Little et al Eq. 5.2. Specifically, expressing ΔV as 

VTI•MVA  the mitral valve area cancels from Eq. 5.2 leaving only ΔP and VTI:  
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  Equation 5.32 

Finally, left atrial properties, particularly left atrial stiffness, may play a role in 

determining DT. While some studies suggest that DT is affected jointly by left ventricular and 

atrial stiffness, during the E-wave the atrium is a conduit and is passive. Indeed, a recent study 

by Marino et al(24) measured atrial stiffness during diastole in relation to ventricular stiffness 

and concluded that its role was minor and did not significantly affect DT.  

 

5.6 CONCLUSIONS  

Different LVs having the same duration of E-wave DT and similar chamber volume, can 

have different catheterization determined values for chamber stiffness (ΔPAVG/ΔVAVG ).  Model-

based analysis of E-waves provides unique values for chamber stiffness (k ∝ΔPAVG/ΔVAVG ) and 

chamber viscoelasticity (c). For E-waves which are very nearly symmetrically shaped (AT≅DT) 

about E-wave peak, DT and chamber stiffness are related according to DTk=π/(2√k). Once 
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asymmetry is present and AT≠DT, the E-wave deceleration portion manifests an inflection point 

and lengthens. The general expression for DT applicable to all E-waves depends on chamber 

stiffness but also requires inclusion of chamber relaxation/viscoelastic effects according to 

DTk,c=π/(2√k)+c/(2k) in the underdamped limit. 

We conclude that quantitative diastolic function assessment warrants consideration of 

viscoelastic effects in addition to those of stiffness, because E-wave DT is determined by both. 

This is a general finding for all ventricles, but is most significant for ventricles possessing 

relaxation abnormalities.   
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CHAPTER 6. 

THE E-WAVE DELAYED RELAXATION PATTERN TO LV PRESSURE 

CONTOUR RELATION: MODEL-BASED PREDICTION WITH IN-VIVO 

VALIDATION 
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6.1 INTRODUCTION 

6.1.1 Noninvasive Diastolic Function Parameters and Relaxation 

Echocardiography is the preferred method by which diastolic function is noninvasively 

assessed (17), and much effort has been devoted to the analysis of Doppler-echo determined 

transmitral flow velocity contours (E- and A-waves) (1). An established Doppler-echo hallmark 

of diastolic dysfunction is the ‘delayed relaxation’ pattern, which is characterized by an E-wave 

that simultaneously has a prolonged deceleration time (DT>220ms) and a lower peak velocity 

than the A-wave peak (E/A<1) (14). As we demonstrated in the Chapter 1 and Chapter 2, when 

one models the E-wave kinematically through the PDF damped simple harmonic oscillator 

model, the delayed relaxation pattern corresponds to an E-wave with increased damping 

parameter c.  

Because meaningful noninvasive invasive parameters must have invasive hemodynamic 

analogues, it is important to explore the hemodynamic analogues of noninvasive diastolic 

function parameters. The hemodynamic analogues of the PDF stiffness parameter k, which is 

also a determininant of the E-wave deceleration time, have already been explored in previous 

work (27) and were discussed in the previous chapter. The delayed relaxation pattern and the 

PDF parameter c, however, have not been fully explored from the hemodynamic perspective.  

 

6.1.2 Challenges With Current Hemodynamic Surrogates of Delayed Relaxation 

The connection between the delayed relaxation pattern and diastolic dysfunction has been 

supported by invasive catheterization studies that report that subjects with a delayed relaxation 

pattern tend to have a prolonged time-constant of isovolumic relaxation (τ)(2, 29). Similarly, 

previous work has demonstrated a modest inverse correlation between the PDF determined 
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damping constant c and 1/τ (5) suggesting that E-waves with elevated PDF c values have 

prolonged τ.  

However, τ is measured before mitral valve opening, when ventricular pressures are 

elevated and are rapidly changing. The delayed relaxation pattern and the effects of c, however, 

are observed during filling (E-wave), when pressures are much lower and are slowly changing. 

These fundamental physiologic differences provide a clue regarding the variable mechanistic and 

causal relation between τ and the delayed relaxation pattern. Indeed, well-matched subjects with 

E-waves having delayed relaxation patterns and elevated c values but normal τ can be often 

encountered (Figure 6.1).  

 

 Subject 1 Subject 2 

Analyzed Beats 9 17 

DT (ms) 169±34 236±17† 

E/A 1.4±0.1 0.8±0.1† 

τW (ms) 48±3 48±3 

τR (ms) 66±5 68±5 

EF (%) 63 75 

HR (bpm) 64±1 61±1† 

LVEDP(mmHg

) 
14±1 14±1 

PRR 0.52±0.04 0.25±0.05† 

PDF c (1/s) 18.3±1.3 21.7±2.0† 

E’ (cm/s) 15.6±1.7 16.4±1.0 

 
Figure 6.1 and Table 6.1. Simultaneous transmitral flow (Doppler echo) superimposed with LV pressure from two 

subjects with different E-wave shapes and pressure contours (one representative beat from each patient). Subject 1 

had a normal filling pattern while subject 2 had a delayed relaxation pattern. Despite the dramatic difference in E-

waves, the time constant of isovolumic relaxation is indistinguishable between the subjects. DT, deceleration time; 

E/A, E-wave to A-wave peak velocity ratio; τw, Weiss model defined isovolumic relaxation time constant; τR, Non-

zero pressure intercept defined isovolumic relaxation time constant; EF, ejection fraction; HR, heart rate; LVEDP, 

left ventricular end-diastolic pressure; PRR, pressure recovery ratio, E’- early filling tissue Doppler peak velocity; 

LVP, left ventricular pressure. †, p<0.001. All other results not significant. See Results for details.  
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Thus τ is not an accurate hemodynamic analogue of the delayed relaxation pattern or the 

PDF parameter c and therefore the search for a pressure contour based analogue of filling-related 

relaxation is warranted. One easily visualized filling-related feature of the pressure contour is the 

recovery of pressure from the minimum pressure to diastasis. We hypothesize that, in the setting 

of a normal mitral valve, normalizing this pressure rise to the difference between the minimum 

pressure and a fiducial filling pressure provides a novel and causal analogue of the delayed 

relaxation pattern. We call this dimensionless hemodynamic index the pressure recovery ratio 

(PRR), and validate our hypothesis by comparing the PRR between subjects with and without a 

delayed relaxation pattern. In addition, we apply mathematical methods to derive a causal 

connection between PRR and the E-wave PDF model based damping constant c, and validate the 

predicted correlation in subjects with and without a delayed relaxation pattern.  

 

6.2 METHODS 

6.2.1 Mathematical Derivation 

Applying Bernoulli’s Equation To Filling  

 To gain insight into the hemodynamic analogue of c, one needs to apply the PDF model to 

cardiovascular pressures. A natural starting point is the Bernoulli equation for non-steady flow:  

 

LAP = LVP+
1

2
!v2 + !

!v(s,t)

!t
ds

LA

LV

"
 Equation 6.1 

where we assume that blood flow velocity in the atrium is small compared with the blood flow 

velocity in the ventricle, and fluid viscous energy losses are negligible. The assumption that fluid 

viscous energy losses is warranted (12), but importantly does not eliminate tissue energy losses 
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from the model. Tissue energy losses will simply be reflected in the damping components of the 

velocity and acceleration terms.  

In Equation 6.1, ρ is the density of blood, v is the transmitral velocity and is a function of 

both location along the streamline and time, LAP is the left atrial pressure, and LVP is the left 

ventricular pressure. The integral is the acceleration term, and can be approximated as 

MI•(dv/dt), (41) where MI (constant) is the mitral inertiance. This approximation applied to 

Equation 6.1 yields: 

   

!P =
1

2
!v
2

+ MI " !v  Equation 6.2  

, where ΔP is LAP-LVP. 

 

Determining a PDF Model Consistent Expressions for Mitral Inertiance  

Both v(t) and
 
!v(t)  can be expressed in terms of the PDF parameters, but the value of MI 

at first glance seems to be a free parameter. This parameter can be set to a specific value 

consistent with the PDF model, however, when one considers the time at which ∆P=0. Both 

theoretical considerations and experimental findings (10) have shown that ∆P must be positive to 

drive initial suction mediated filling, and must be negative towards the end of filling in order to 

decelerate the blood and tissue. Because the net force associated with filling is equal to k•x(t) by 

the PDF model, and is physiologically proportional to ∆P, it is reasonable to define the ∆P=0 

crossover point as the time at which x(t)=0. In the previous Chapter we showed that x(DT)=0. 

Thus, we can plug t=DT into Equation 6.2, and because ∆P(DT) must vanish, we can find a 

simple expression for MI: 

   

MI =!
!v
2
(DT )

2 !v(DT )
 Equation 6.3  
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In the analysis that follows we will work out the under-damped case. From Chapter 2, we 

have the following expression for transmitral velocity: 

)sin()( te
kx

tv
to

!
!

"#
=   Equation 6.4 

with α = 

 

c

2
 and ω = 

2

4
2
ck !

. Taking the derivative of Eq. 6.4 yields the necessary 

acceleration equation:  

   
!v(t)= v(t) ! ! cot !t( )""( )  Equation 6.5 

Putting Eq. 6.5 together with Eq. 6.4 and Eq. 6.3 gives us a more complete expression for MI: 

  

MI =!
1

2
!

v(DT )

" cot "DT( )!#( )
 Equation 6.6  

In the Chapter 5 we found an expression for DT in terms of k and 

 

y=
c

2 k
. This equation may 

be applied to evaluate 
  cot !t( ) : 

  

cot !DT( ) = cot "! cos
!1

y( )( ) =
!cos cos

!1
y( )( )

1! cos
2
cos
!1

y( )( )
=!
#

!

 Equation 6.7 

Applying Eq. 6.7 to 6.6 provides a far simpler expression for MI: 

  
MI =

1

2
!v DT( )!

1

2"
 Equation 6.8 

Thus we have solved for the mitral intertiance factor MI and ensured that the Bernoulli equation 

is internally consistent with the assumptions of the PDF model.  

 

Determining and Applying a PDF Consistent Bernoulli Equation 

With Eq 6.8 and 6.2, we may write the pressure gradient at any given time t as: 
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 Equation 6.9 

We plot Eq 6.8 with representative values for  !  and  ! in Figure 6.2 below. Consistent with 

experimental findings (10) the ∆P plot is a damped oscillator with a pressure crossover at t = DT.  

The dependence of ∆P on c in Eq 6.9 is not apparent, though the effect of c can be readily 

appreciated by comparing the peak positive ∆P with the peak negative ∆P. Clearly larger values 

of c lead to relatively smaller values of peak negative ∆P (Figure 6.2). Thus, to focus our 

analysis on c and ∆P, it is useful to define a new parameter, the peak pressure-gradient ratio 

(PPGR): 

 

PPGR=

!PPeakNegativeGradient

!PPeakPositiveGradient

 Equation 6.10  

 

Figure 6.2: Left panel: Left ventricular pressure (LVP) contour between mitral valve opening and end 

diastole, with a schematic atrial pressure (LVP) signal superimposed. PMVO- pressure at mitral valve 

opening, PEDP- pressure at end diastole. Right panel: ∆P from equation 6.9 with different ω and α 

values. DT- deceleration time. ∆PPeak+- peak positive pressure gradient; ∆PPeak-- peak negative pressure 

gradient.  
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Simplification of PPGR   

To simplify, we note that the positive ∆P portion and negative ∆P portion of the graph are 

nearly symmetric, and therefore the peak positive ∆P occurs near a time 
 

t = DT +
1

2
AT , and the 

peak negative ∆P occurs near 
 

t =
1

2
DT . Numerical simulation with 180 randomly picked 

physiologic c and k values was performed to confirm this simplification. The result showed that 

the peak pressure gradient recovery ratio measured at these two estimated time points is a very 

good approximation to the value of the peak pressure gradient recovery ratio at the actual peaks 

of the gradients (see Figure 6.3).  

With this approximation, the peak pressure gradient recovery ratio becomes:  

  

PPGR!

"P
t=DT+1

2
AT

"P
t=1

2
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= e
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 Equation 6.11 

, where 

 

y =
c

2 k
. For the clinical data analyzed, underdamped E-waves had y values between 0.3 

and 1.0. Thus PPGR becomes a function of y, and a MATLAB numerical simulation was 

performed whereby the relationship of PPGR to y was visually assessed. Figure 6.3B shows the 

strong linear relationship between PPGR and y. Thus, the PPGR, is predicted to be linearly 

related to 

 

y =
c

2 k
. To assess the relationship between PPGR and c alone, we picked 180 random 

combinations of c and k and calculated the expression in Eq. 6.11.  Figure 6.3C shows the strong 

linear relationship between PPGR and c for these random (k, c) combinations.  
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Approximating PPGR in the y<<1 limit 

While the numerical approach provides insight into the relationship between PPGR and 

y, a more analytic approach may provide additional insight into the slope between PPGR and y. 

Equation 6.11 appears daunting at first and not amenable to further simplifciation, but progress 

can be made by defining the numerator as a separate function: 

 

f (y)=
1

1+ y
!

1+ 2y

y 2+ 2y
e

y cos
!1
y( )

2 1!y
2

 Equation 6.12  

Remarkably the denominator in Eq. 6.11 is simply f(-y)! Expanding f(y) around y=0 yields the 

following Taylor expansion: 

  

f (y)=!!
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  Equation 6.13  

With Eq. 6.13 we can continue the series expansion of PPGR around y=0: 

Figure 6.3. Results of numerical experiments demonstrating the linear relationship between 

theoretically calculated pressure gradient recovery ratio (PGRR) and c, derived from Bernoulli’s 

equation. A) Correlation between the simulated pressure gradient peak ratio and the numerically 

estimated pressure gradient peak ratio. B) Relationship between the numerically estimated peak 

pressure gradient ratio and

 

y =
c

2 k
. The linear Taylor expansion approximation is shown in blue. 

C) Relationship between the numerically estimated peak pressure gradient ratio and the E-wave derived 

relaxation/viscoelastic parameter c. See text for details. 
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, where  !  and 
 
!  are defined in Eq. 6.13. The blue line in Figure 6.3B above demonstrates the 

close agreement between a numerically determined PPGR by Eq. 6.11 and the linear 

approximation derived in Eq. 6.14. Thus both numerical and analytic techniques demonstrate the 

PPGR is linearly related to y, and because 

 

y=
c

2 k
, we can see that PPGR is predicted to be 

linearly related to c. Eq. 6.14 therefore provides the predicted connection between the 

noninvasively determined PDF parameter c and an invasively determined pressure-based index.  

 

6.2.2 Clinical Application of the Derivation: The Pressure Recovery Ratio 

A Clinical Surrogate for PPGR 

While the derivation above is focused on ratios of pressure gradients, in clinical practice, 

only LVP is routinely measured. Thus to apply Eq. 6.10 in the clinical setting, another 

approximation must be made. It is established that both LVP and LAP decrease and then recover 

during early filling (10), eventually both converging at the same diastatic pressure. In fact, the 

LAP and LVP contours are quite similar, with the LAP contour simply being offset in time 

relative to the LVP contour36. Thus, a symmetry argument may be applied to define a LVP based 

(LAP independent) equivalent to the PPGR. We call this the pressure recovery ratio (PRR), and 

define it as the ratio of pressure drop between mitral valve opening and minimum pressure to the 

pressure rise between minimum pressure and diastasis: 

 

PRR=
LVPDiastasis ! LVPMinimum

LVPMVO ! LVPMinimum

 Equation 6.15  
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Thus, in analogy to the PPGR and in accordance with mechanical suction-initiated 

kinematic filling and energy conservation, Equation 6.14 implies that PRR is the hemodynamic 

surrogate of the PDF parameter c. This suggests that in a purely elastic ventricle with negligible 

energy losses, the LVP contour will take the shape of an inverted symmetric wave (i.e. such as a 

sine wave) between mitral valve opening (MVO) and diastasis, thereby defining a PRR value of 1. 

A chamber with significant viscous energy losses or filling-related relaxation, however, will have a 

pressure contour that recovers from minimum pressure (PMIN) to a diastasis pressure (PDiastasis) 

that is well below PMVO, thereby defining a PRR value less than 1. 

 

Choice of Fiducial Pressure 

PMVO can be reliably estimated hemodynamically using simultaneous LVP and pulmonary 

artery occlusive or “wedge” pressure recording, but is rarely measured during routine diagnostic 

left heart cath/coronary angiography procedures. Therefore a fiducial filling related pressure that 

is analogous to PMVO must be utilized in order to allow for routine clinical application of the PRR. 

There are several fiducial pressures that one may choose, and for subjects in normal sinus rhythm 

(NSR) we choose the left ventricular end-diastolic pressure (LVEDP) to be a fiducial surrogate 

for PMVO. This choice is supported by studies showing that LVEDP is a reasonable 

approximation to PMVO in subjects with NSR and no significant pathophysiology (3, 18, 32, 33). 

Thus in the current study we calculated PRR for NSR subjects by the following equation: 

 

PRR =
P
Diastatic

! P
Min

LVEDP ! P
Min

 Equation 6.16 
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LVEDP can not be used as the fiducial pressure for PMVO in the setting of atrial fibrillation 

(AF). Instead, we selected LV pressure at minimum dP/dt (PdP/dtMin) as the fiducial early-rapid 

filling related pressure in the setting of AF. Thus PRR in AF subjects was defined as: 

MindtdP

MinDiastaticAF

PP

PP
PRR

Min

!

!
=

/

)(  Equation 6.17 

6.2.3 Experimental Validation of PRR 

Subjects 

Datasets from 40 subjects with NSR and 9 subjects with AF (total of 49 subjects) were 

selected from the Cardiovascular Biophysics Laboratory Database of simultaneous 

micromanometric catheter recorded left ventricular pressure (LVP) and echocardiographic data 

(26). The method of simultaneous echocardiographic transmitral flow and pressure-volume data 

recording was described in Chapter 2, and an example of simultaneous echocardiographic-

hemodynamic data is presented in Figure 6.1.  

All subjects provided informed consent prior to the procedure in accordance with a 

protocol approved by the Barnes-Jewish Hospital/Washington University Human Research 

Protection Office (HRPO). The criteria for data selection included: normal valvular function, no 

active ischemia, and no significant merging between echocardiographic E- and A- waves. None 

of the 49 subjects had previous myocardial infarction or peripheral vascular disease. Thirty nine 

out of 40 NSR subjects had normal ejection fraction (EF>55%) and 4 out of 9 AF subjects had 

an EF lower than 55%.  

Subjects in NSR were divided into 3 groups related to presence or absence of an 

echocardiographically determined delayed relaxation pattern. Group 1, the full delayed 

relaxation pattern group (DR), consisted of subjects with both an E/A<1 and a DT>220ms (15). 
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Group 2, the partially delayed relaxation group (PDR), consisted of subjects with either an 

E/A<1, or a DT>220ms. Group 3, the normal relaxation pattern group (NMLR) consisted of 

subjects with normal transmitral flow patterns (E/A>1 and DT<220ms) and with normal Doppler 

tissue E’ (>8 cm/s) or normal velocity of propagation (Vp>45cm/s) values. Table 6.2 presents 

demographic data for the NSR and AF subjects. Several hemodynamic indexes, including PRR, 

and several echocardiographic indexes were analyzed from multiple beats in each subject.  

 

Table 6. 2 
 DR PDR NMLR NSR AF 

Size of the group 9 15 16 40 9 

Age 65±7 60±9 52±8
*†††

 58±10 61±9 

Sex (m/f) 6/3 11/4 8/8 25/15 8/1 

Race (w/b) 7/2 12/3 12/4 31/9 7/2 

HR 61±8 60±7 63±8 62±7 84±22 

Systolic Blood Pressure (mmHg) 149±22 126±14
** 

135±30 135±24 130±15 

Diastolic Blood Pressure (mmHg) 74±7 70±9 76±16 74±12 80±10 

EF (%) 67±11 71±8 76±6
*
 72±9 51±19 

LVEDV (ml) 180±51 145±32 148±39 154±41 170±50 

PMin (mmHg) 11±3 8±2
*
 9±3 9±3 9±3 

PDiastasis (mmHg) 13±4 12±2 14±4 13±3 17±6 

LVEDP (mmHg) 20±6 19±3 19±4 19±4 17±6
‡
 

PRR 0.31±0.12 0.39±0.08
*
 0.48±0.08***†† 0.41±0.11 N.A. 

PDF parameter c (1/s) 21.3±2.5 19.2±1.9
*
 17.5±1.7***†† 19.0±2.4 17.6±3.4 

PDF parameter k (1/s
2
) 169±28 168±45 175±32 171±36 241.2±78.7 

Isovolumic relaxation time constant (τW) (ms) 53±5 52±7 51±6 52±6 56±6 

Isovolumic relaxation time constant (τR) (ms) 65±6 59±7 60±9 61±8 76±19 

IVRT (ms) 112±16 74±13
***

 72±13
***

 82±21 79±14 

E-wave acceleration time (AT) (ms) 98±9 97±16 91±11 95±13 95±17 

E-wave deceleration time (DT) (ms) 239±15 225±36 185±27
***††

 212±36 187±44 

E-wave duration (ms) 336±22 320±49 276±34
***††

 306±45 283±60 

E-wave peak (cm/s) 65.9±15.2 76.3±15.9 81.3±15.7
*
 76±16 90±35 

A-wave peak (cm/s) 73.2±12.0 71.8±11.2 68.8±14.6 71±13 N.A. 

E/A 0.9±0.1 1.1±0.2
*
 1.2±0.2

***
 1.1±0.2 N.A. 

E-wave VTI (cm) 11.0±2.2 12.3±3.7 11.3±2.7 12±3 13±7 

A-wave VTI (cm) 6.9±1.4 7.7±1.2 6.1±1.4
††

 7±1 N.A. 

VTIE/VTIA 1.6±0.2 1.6±0.3 1.9±0.3
*††

 1.7±0.3 N.A. 

Tissue Doppler E’ peak (cm/s) 13.2±3.9 15.1±3.6 14.3±3.9 14.1±3.9 N.A. 

Clinical descriptors and other physiologic measurements including invasive and noninvasive indexes in NSR and 

AF groups. Comparisons between three NSR groups (DR, PDR, and NMLR) are also included.*, significantly 

different (p<0.05) from delayed relaxation group. **, significantly different (p<0.01) from delayed relaxation 

group. ***, significantly different (p<0.001) from delayed relaxation group. 
†
, significantly different (p<0.05) 

from PDR group. 
††

, significantly different (p<0.01) from PDR group. 
†††

, significantly different (p<0.001) from 

PDR group. 
‡
, LVEDP=Pdiastasis in AF. PRR in AF group is calculated using Eq. 3.  DR, delayed relaxation 

pattern group. PDR, partial delayed relaxation pattern group. NMLR, normal relaxation group. NSR, normal 

sinus rhythm group including all patients in DR, PDR, and NMLR groups. AF, atrial fibrillation. VTI, velocity 

time integral. LVEF determined by ventriculography. Data are presented as mean ± standard deviation. 
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Hemodynamic Analysis 

Hemodynamic values and parameters (PMin, PdP/dtMin, PDiastasis, LVEDP, τ) were 

determined from the high-fidelity Millar LVP data for each beat. Diastatic pressure and LVEDP 

values were measured at the peaks of the P- and R- waves on the simultaneous ECG, 

respectively using a custom LABVIEW (National Instruments, Austin, TX) program. Isovolumic 

relaxation time constant (τ) was calculated from the isovolumic pressure decay contour for all 

measured beats in each patient according to two methods, a zero pressure asymptote method (τW, 

and a floating asymptote method (τR) (See Chapter 2) 

The PRR was calculated according to Equation 6.16 for each beat in each NSR subject, 

and according to Equation 6.17 for each beat in each AF subject.  

Because LVEDP may not be a strong correlate of PMVO in subjects with diastolic 

dysfunction, we determined the sensitivity of PRR to the particular choice of fiducial PMVO 

pressure. Instead of choosing LVEDP as the fiducial filling pressure, we considered 11 

additional choices of fiducial pressures. We considered 4 PRR definitions (PRR
1-4

) where the 

fiducial pressure was chosen 0ms, 10ms, 30 ms, and 60ms after PMax, respectively. In additional 

we considered 7 alternate PRR definitions (PRR
5-11

) where the fiducial pressure was chosen -

20ms, -10ms, -5ms, 0ms, 10ms, 20ms, and 30 ms after the minimum dP/dt, respectively. See 

Figure 6.4A for a pictorial representation of these alternative fiducial pressure values. PRR values 

defined by the 11 alternative fiducial pressure choices described above were calculated for all 

beats in all NSR subjects. We note that these alternative choices for the fiducial pressure were 

employed to serve only as a test of the dependence of PRR on the choice of initial diastolic 



 

 188 

Figure 6.4. A) Pressure tracing showing 12 different choices of fiducial pressures. B) Linear 

correlations between relaxation/viscoelasticity parameter c and PRR using different fiducial pressures. 

The letters next to the lines represent the fiducial pressures used to generate the lines. See text for 

details. 

fiducial pressure. Each alternative choice was compared to the preferred PRR defined by Equation 

6.16 in NSR, and Equation 6.17 in AF.  

 

Doppler E-wave Analysis 
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For each subject, an average of 9 cardiac cycles were analyzed (354 heart beats total for 

40 NSR subjects, 113 heart beats for 9 AF patients, total of 467 heart beats). Conventional, 

triangle approximations of E- and A-wave shapes provided peak E-wave velocity (Epeak), E-wave 

acceleration and deceleration times (AT and DT), E-wave duration and velocity-time integral 

(Edur and VTIE), peak A-wave velocity (Apeak), and A-wave velocity-time integral (VTIA). 

Furthermore the ratios of Epeak to Apeak (Epeak/Apeak) and VTIE to VTIA (VTIE/VTIA) were 

calculated for all beats. The isovolumic relaxation time (IVRT) was also measured. Doppler 

tissue imaging (DTI) lateral E’- and A’-waves was available in 39 out of 40 NSR patients. Flow 

propagation velocity (Vp) was determined according to conventional method (13) for the one 

subject without DTI E’- and A’-wave data.  

In addition, all E-waves were subjected to Parametrized Diastolic Filling (PDF) model-

based image processing (MBIP) to yield E-wave specific kinematic model parameters 

(relaxation/viscoelasticity parameter c, stiffness parameter k, initial load parameter xo) for each 

E-wave. See Chapter 2 for triangle based and PDF-model based fitting details.  

 

Comparison of Invasive and Noninvasive Relaxation Parameters 

All invasive and noninvasive parameters of interest (E/A, VTIE/VTIA, DT, PRR, c, τW, 

τR) were averaged for each of the 49 subjects and several comparisons were performed.  

First, values of interest were compared between Group 1 (DR), Group 2 (PDR), and 

Group 3 (NMLR) NSR subjects. Student’s t-tests were utilized to assess whether the PRR, 

defined by Eq. 6.16 or by one of the alternate fiducial pressures (PRR
1-11

), was significantly 

different between the three NSR groups. Similar analysis was performed for DT, E/A, τW, τR, and 

LVEDP.  
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Second, values of interest were compared in a continuous fashion through linear 

regressions. Linear regressions between c, DT, E/A, VTIE/VTIA, and PRR were performed. For 

each variable of interest, two types of linear regressions were calculated. First, linear regressions 

between each variable of interest and PRR for all 354 beats pooled from all NSR subjects were 

performed. Second, linear regression of the variables averaged over each of the 40 NSR subjects 

was also performed relative to a similarly averaged PRR value. Equivalent analysis was 

undertaken for the 9 subjects with AF.  

In addition, 11 separate linear regressions between c and the PRR
1-11

 values defined by 

each of the alternative fiducial pressure choices were performed. All statistical analyses utilized 

MS-Excel (Microsoft, Redmond, WA).   

 

6.3 RESULTS  

6.3.1 Comparisons of conventional and novel indexes between groups 

 In the delayed relaxation group (n=9), 3 (33%) subjects had normal τW values (τw< 50 

ms). In the PDR group (n=15), 9 (60%) subjects had normal τW values. In the NMLR group 

(n=16), 7 (44%) subjects had normal τW values. The τW values in the three groups did not differ 

from each other significantly (p=0.86 between delayed relaxation and PDR, p=0.64 between 

PDR and NMLR, p=0.52 between delayed relaxation and NMLR) by unpaired Student’s t-test. 

Similar to τW, τR was also statistically indistinguishable among the three groups (p=0.07 between 

delayed relaxation and PDR, p=0.75 between PDR and NMLR, p=0.20 between delayed 

relaxation and NMLR). Figure 6.1 shows two representative subjects, one from the delayed 

relaxation group and one from the NMLR group respectively, to illustrate the variable 

relationship between delayed relaxation pattern and τW. Although the two subjects had similar, 
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normal τW values, subject 1 had a normal filling pattern and subject 2 had a delayed relaxation 

pattern. Detailed data from these two subjects is given in Table 6.1. As shown in Table 6.2 and 

Figure 6.5, DT did not differentiate the delayed relaxation from the PDR group, but did 

differentiate the delayed relaxation and the PDR groups from the NMLR group (p<0.001, 

p<0.01, respectively). E-wave duration differentiated the delayed relaxation and PDR groups 

from the NMLR group (p<0.001, p<0.01, respectively), but not the delayed relaxation from the 

Figure 6.5. Comparison of pressure recovery ratio (PRR), E-wave damping parameter (c), deceleration 

time (DT) and τ among delayed relaxation (DR), partially delayed relaxation (PDR) and normal 

relaxation filling pattern (NMLR) groups. (A) pressure recovery ratio. (B) Parametrized diastolic filling 

(PDF) relaxation/viscoelastic parameter c. (C) time constant of isovolumic relaxation  

τ. (D) E-wave DT. Detailed comparisons are also provided in Table 6.2. See text for details.   
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PDR group. Epeak failed to differentiate both the delayed relaxation group from the PDR group 

and the PDR group from the NMLR group, but did differentiate the delayed relaxation from the 

NMLR group (p<0.05). Apeak was indistinguishable between groups. E/A, however, 

differentiated the delayed relaxation group from both the PDR group (p<0.05) and the NMLR 

group (p<0.001), but not the PDR group from the NMLR group. The PDF parameter c was 

significantly different between the three groups (p<0.05 between the delayed relaxation and PDR 

groups, p<0.01 between the PDR and NMLR groups, p<0.001 between the delayed relaxation 

and NMLR groups).  

 

6.3.2 Sinus Rhythm Group – PRR with LVEDP as Fiducial Pressure 

The clinical descriptors of the 40 NSR subjects and their hemodynamic and 

echocardiographic indexes are shown in Table 6.2.  

As predicted by the algebraic derivation above, PRR and c were found to be strongly 

linearly correlated ( 2.272.20 +!"= PRRc , R
2
=0.77) over all analyzed NSR beats (Figure 

6.6A). The individual regressions in all NSR subjects were similar (Figure 6.6 B) and collinear 

with the overall regression. The averaged PRR vs. c R
2
 across 40 NSR subjects was 0.82±0.13. 

When average values for each subject were compared, PRR and c maintained the expected strong 

linear correlation ( 0.277.19 +!"= PRRc , R
2
=0.79).  

PRR did not significantly correlate with typical conventional indexes of diastolic function 

such as E/A (R
2
=0.14), VTIE/VTIA (R

2
=0.11), and DT (R

2
=0.01) across all beats in NSR 

subjects. 
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Figure 6.6. A) Pressure recovery ratio (PRR) vs. the E-wave derived relaxation/viscoelasticity 

parameter c for all 40 normal sinus rhythm subjects (black circles, 354 heart beats) and nine atrial 

fibrillation (AF) patients (blue circles, 113 heart beats). B) Linear regressions between PRR and c in all 

40 NSR subjects. See text for details.  

Unlike average τW and τR values, average PRR values were significantly different 

between the delayed relaxation and PDR groups (p<0.05), the PDR and NMLR group (p<0.01), 

and delayed relaxation and NMLR groups (p<0.001) (shown in Table 6.1, and Figure 6.5).  

E’ velocities in 39 of the 40 NSR subjects were determined. E’ was similar in all three 

groups (13.2±3.9 cm/s in delayed relaxation group, 15.1±3.6cm/s in PDR group, and 

14.3±3.9cm/s in the NMLR group, p=0.25 between delayed relaxation and PDR, p=0.56 between 

PDR and NMLR, p=0.52 between delayed relaxation and NMLR). 

 PRR had very weak correlations with end systolic volume (ESV) (R
2
=0.10, p=0.43), end 

diastolic volume (EDV) (R
2
=0.06, p>0.05), systolic blood pressure (R

2
=0.03), and diastolic 

blood pressure (R
2
=0.01).  
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6.3.3 Sinus Rhythm- PRR Calculated Using Multiple Alternative Fiducial Pressures 

 For any particular choice of fiducial pressure, the associated PRR values (PRR
1-11

) 

remained moderately well correlated to the noninvasive relaxation parameter c across all beats 

(see Table 6.3). The PRR vs. c regressions, with different choices of fiducial pressure, are shown 

for one representative subject in Figure 6.4B.  

 Among the 11 PRR values defined by 11 different choices for fiducial pressures (PRR
1-

11
), 8 can differentiate the delayed relaxation group from the PDR group (p<0.05), and 10 can 

differentiate the delayed relaxation group from the NMLR group (p<0.05).  

If the pressure recovery from minimum pressure to diastatic pressure was not normalized 

relatively to any fiducial pressure, the correlation between the magnitude of this pressure 

difference and c was weaker (R
2
=0.29) than the observed correlation between PRR and c. Like 

the PRR, the un-normalized pressure difference between minimum and diastatic pressure can 

differentiate the delayed relaxation from the PDR group (p<0.01) and the delayed relaxation 

from the NMLR group (p<0.001). 

However, while the PRR was also 

found to be significantly different 

between PDR and NMLR groups 

(p<0.01), the un-normalized 

pressure difference between 

minimum and diastatic pressure was 

not able to significantly distinguish 

between the PDR and NMLR 

groups (p=0.45).  

Table 6.3. R
2
 values of the linear correlations between 

alternately defined PRR values and c across 363 NSR beats. 

PRR Value Fiducial Pressure R
2
 

PRR
1
 Pmax 0.50 

PRR
2
 10 ms after Pmax 0.50 

PRR
3
 30 ms after Pmax  0.48 

PRR
4
 60 ms after Pmax  0.39 

PRR
5
 20 ms before –dP/dtmax 0.48 

PRR
6
 10 ms before –dP/dtmax  0.48 

PRR
7
 5 ms before –dP/dtmax  0.46 

PRR
AF

, PRR
8
 -dP/dtmax 0.45 

PRR
9
 10ms after –dP/dtmax 0.41 

PRR
10

 20ms after –dP/dtmax 0.38 

PRR
11

 30ms after –dP/dtmax 0.31 

PRR LVEDP 0.77 

All PRR values are calculated for each beat according to Eq. 

6.15, with alternative values for fiducial pressure as indicated 

above. PRR, pressure recovery ratio; LVEDP, left ventricular 

end diastolic pressure; -dP/dtmax, maximum rate of pressure 

decay; Pmax, maximum pressure. 
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6.3.4 Results in the AF Group 

The clinical descriptors of the 9 AF subjects and their hemodynamic and 

echocardiographic indexes are shown in Table 1. Equation 3 defined PRR was strongly 

correlated (R
2
=0.83) with c for the 9 AF subjects (Figure 6.6A). 

 

6.4 DISCUSSION  

The connection between the E-wave delayed relaxation pattern and the LV pressure 

contour has not been fully characterized, although the physiologic details, including atrio-

ventricular hemodynamics for a normal E-wave have been experimentally elucidated (9). As we 

have shown, subjects with an echo-determined delayed relaxation pattern may have normal τw, 

and subjects with prolonged τw  may have normal E- and A-wave patterns and normal E’ 

velocities (Figure 6.1). The laws of fluid mechanics, however, require that the shapes of the E-

wave contour and the LV pressure contour be causally related (9). Thus in the current work, we 

derived and validated the PRR, a hemodynamic index defined after mitral valve opening that is 

causally related to the E-wave contour and therefore provides a hemodynamic measure of the 

echo-determined delayed relaxation pattern (Figure 6.7). 

 

6.4.1 Delayed and Prolonged Relaxation 

Effective diastolic function requires the ventricular myocardium to rapidly and uniformly 

relax from the previous systolic cramp. The relaxing tissue allows for the chamber to liberate its 

stored elastic recoil to spring back toward its diastatic (equilibrium) volume and aspirate blood 
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from the atrium (38, 45). Therefore, diastolic function and dysfunction involves stiffness and 

relaxation properties of the chamber. Measures of tissue relaxation are often derived from 

different aspects of the relaxation processes. A patient having prolonged relaxation during 

catheterization has a prolonged τ or duration of isovolumic pressure decay, whereas a patient 

with a ‘delayed relaxation’ pattern has a prolonged E-wave velocity contour. While both findings 

reflect the process of ventricular relaxation, isovolumic relaxation occurs primarily through 

calcium cycling and cross-bridge uncoupling (30, 44), whereas E-wave related relaxation is 

governed primarily by viscoelastic tissue properties (40). Indeed, the relaxation processes that 

dominate isovolumic relaxation are typically complete within 3 or 4 τ intervals (42). It therefore 

should not be surprising that in the current study, τ (floating or fixed asymptote) was not able to 

differentiate between the DR, PDR and NMLR groups. Indeed, while τ is a useful clinical index, 

it is important to consider that the delayed relaxation pattern provides clinical information that 

Figure 6.7. Schematic summary of the connection between the pressure contour (lower plot) defined 

pressure recovery ratio and noninvasively measured transmitral contour (upper plot) shape. A more 

symmetric E-wave contour (A) is associated with greater pressure recovery beyond minimum pressure, 

and a value of PRR closer to 1, while a delayed relaxation E-wave contour (B) is associated with poor 

pressure recovery and a value of PRR closer to 0. MVO- mitral valve opening; EDP- end diastolic 

pressure.  
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may be independent of τ. Indeed, as demonstrated by the PRR, the delayed relaxation pattern 

reflects, in a causal sense, the level of pressure recovery after PMin relative to the pressure drop 

after MVO. 

 

6.4.2 Previous Filling-related Indexes 

Others have proposed invasive indexes of viscoelasticity (relaxation) beyond the 

isovolumic interval. For example, Templeton et al. (40) applied a sinusoidal volume variation to 

an isolated chamber and measured its viscoelastic property by the phase-delay of the resulting 

pressure response. Other investigators have observed viscoelastic chamber properties in various 

experimental settings (11, 21, 22, 25, 35, 39, 47). Though these studies did not involve 

simultaneous echocardiography, one would expect that the invasive relaxation indexes that these 

studies propose would likely relate to the echo-determined delayed relaxation pattern. However, 

the clinical applicability of these studies is limited because few of them were carried out in 

closed-chest, in-vivo chambers under normal physiologic conditions using routine clinical data 

acquisition methods.  

 

6.4.3 The connection between c and PRR  

Fluid mechanics dictates that the PRR is related to energy loss and the relative efficiency 

of filling. We have shown in previous work that the E-wave transmitral velocity contour may be 

modeled causally as the result of lumped tissue recoil and resistance forces (23, 24). The energy 

loss in the model is accounted for by a damping parameter, called c. A ventricle with no energy 

loss during filling would have a symmetric E-wave with a c value of 0, whereas a ventricle with 

significant energy losses during filling would have a blunted E-wave with a prolonged 
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deceleration portion, and an elevated value of c. Therefore, c = 0 theoretically corresponds to 

PRR = 1, where the pressure recovery between minimum and diastasis equals the initial pressure 

drop between mitral valve opening and minimum pressure. While the strongest correlation 

between c and PRR predicts a c value of 7.1/s at a PRR value of 1 (R
2
=0.7), one observes a 

slightly weaker correlation (R
2
=0.75) if the regression is set to cross the PRR axis at PRR=1.  

It is interesting to compare the experimentally determined PRR vs. c correlation with the 

predicted correlation in Eq. 6.14. However, we must adjust the predicted relationship in Eq. 6.14 

in order to make the comparison. Recalling that PRR is defined as the clinical surrogate for 

PPGR due to the difficulty of determining atrial and ventricular pressures simultaneously, and 

that y=c/(2√k), we can rewrite Eq. 6.14 in terms of PRR and c: 

  
PRR!1"

!+ 4 2"6( )
4 k

c  Equation 6.18  

Among the 40 NSR subjects that we analyzed, the average PDF k value was 171±36 s
-1

, and thus 

the predicted relationship between PRR and c would be  PRR=!0.0535 "c+1 . As we can see in 

(Figure 6.8), this is remarkably close to the 

experimentally determined relationship.  

The results of Figure 6.6 and 6.8, 

where a strong linear relationship is observed 

between c and the PRR, support the 

conclusion that the PRR represents an 

invasive analog for the E-wave extracted 

damping parameter c. In other words, the 

PRR provides a measure of the relaxation 

Figure 6.8. Plot of PRR vs c for 40 subjects, 

showing both raw data (black circles) and the 

theoretically predicted relationship from Equation 

6.18. See text for details.  
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portion of the filling-related pressure contour, while c provides a measure of the relaxation 

portion of the E-wave.  

 

6.4.4 Clinical and Physiologic Significance of PRR 

The validation of the PRR as the only available invasive index of filling related relaxation 

sheds new light on how to characterize the relaxation properties of the chamber. The existence of 

a relaxation index that is not a strong correlate of τ suggests that there are different tissue 

relaxation mechanisms before and after MVO. A chamber may have adequate or inadequate 

isovolumic relaxation and adequate or inadequate pressure recovery, thus the observed range of 

relaxation abnormalities encountered requires additional information beyond a normal or 

abnormal τ. The demonstrated low correlation between τ and PRR further supports the 

conclusion that τ and PRR characterize variable mechanisms of relaxation. This is not surprising, 

because relaxation during the isovolumic interval (measured by τ) primarily reflects rates of 

calcium sequestration and crossbridge detachment in the face of stored elastic strain, whereas 

filling related relaxation (measured by PRR) is primarily determined by macroscopic chamber 

viscoelasticity in addition to the waning effects of calcium sequestration.  

Beyond the conceptual value and physiologic significance of the PRR, clinical utility 

resides in the catheterization laboratory, where the PRR, and therefore filling related chamber 

relaxation may be quickly estimated by visual inspection of pressure contours. While this 

information could be extracted from the E-wave contour (parameter c), it is not routine to have 

an echocardiographic machine available during catheterization, and therefore chamber relaxation 

properties during catheterization would be best estimated by a combination of τ and PRR. Our 
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work therefore suggests that to capture the full spectrum of relaxation related pathophysiology, 

isovolumic relaxation measures (τ) and filling related relaxation measures (PRR) are required. 

 

6.4.5 Load Dependence of PRR 

For each subject, we also included in our analysis beats following a premature ventricular 

contraction, as well as E-waves recorded at different phases of respiration in order to determine 

PRR in the setting of load variation. Since load variation results in E-wave shape variation (see 

Chapter 1 and Chapter 8), both c and PRR varied in response to load, but the c vs. PRR 

correlation remained unchanged (Figure 6.6B). Indeed, because the E-wave delayed relaxation 

pattern and pressure recovery was derived from basic physiologic principles, PRR should be 

applicable in a wide variety of pathophysiologic scenarios. The fact that PRR remained strongly 

correlated with c for the wide range of clinical E-wave shapes and clinical settings considered, 

supports the predicted robustness of the index and the generality of the method. Thus the PRR 

should be applicable in normal and pathophysiologic settings, with the proviso that load status 

must be considered when values of PRR are to be compared.  

 

6.4.6. PRR in Constrictive Restrictive Filling Pattern 

The analysis in the current study was limited to normal and delayed relaxation pattern E-

waves. However, PRR applicability is not limited to these E-wave patterns alone. To demonstrate 

this we analyze an additional NSR subject from the Cardiovascular Biophysics Laboratory 

database of simultaneous pressure and echocardiography exhibiting a constrictive restrictive (i.e 

short DT)  E-wave pattern. This patient had LVEF = 20%, E-wave deceleration time (DT) = 

134±10ms, E/A = 2.9±0.2, LVEDP = 29±3mmHg, τW = 72±4msec, τR = 121±12msec , and PRR 
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= 0.34±0.07. This lower PRR value is consistent with the high viscoelasticity and significant 

filling-related relaxation abnormalities that one would expect in a subject with constrictive 

restrictive filling patterns. Furthermore, in this patient for all (N=17) beats analyzed, PRR had a 

strong correlation with c ( 6.323.37 +!"= PRRc R
2
=0.85), and plotting this subject’s average 

PRR and c values on Figure 6.6 yields a point that is concordant with the observed correlation. 

This suggests that the PRR is a general index, applicable to a wide variety of E-wave filling 

patterns. Detailed study in a larger number of subjects with short DT (constrictive-restrictive) E-

wave patterns is required to fully characterize the utility of the PRR. Of particular interest is how 

PRR would change in subjects with restrictive E-wave patterns that manifest as impaired 

relaxation patterns in response to Valsalva maneuver.  

 

6.4.7. Independence of Fiducial Pressure 

 We found that PRR values defined by 11 other choices of fiducial pressures (PRR
1-11

) 

(Figure 6.4) still maintain reasonable correlations with the parameter c. The majority of PRR
1-11

 

value can differentiate between the delayed relaxation and PDR groups (8 out of 11), and 

between the delayed relaxation and NMLR groups (10 out of 11). These results demonstrated 

that regardless of the choice of fiducial pressure, the normalized pressure recovery concept 

represents the invasive analogue of the delayed relaxation pattern. While these results serve to 

validate the hypothesis that the critical component of filling related relaxation is the recovery of 

pressure from minimum to diastasis, it is important to note that the strongest correlation between 

PRR and c was obtained from PRR defined by Equation 6.16, where LVEDP serves as a 

surrogate for MVO. Therefore this is the only PRR definition that should be used for subjects in 
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NSR, and for simplicity, PRR defined by Equation 6.17 should be the exclusive PRR relationship 

used for subjects in AF.  

 

6.4.8. Importance of Normalization 

The normalization of pressure recovery relative to the pressure difference between 

minimum pressure and a fiducial pressure provides the strongest correlation with c and most 

robust differentiation between the three groups. However, the magnitude of pressure recovery 

(mmHg) alone had a reasonable correlation with c (R
2
=0.29) and can differentiate the delayed 

relaxation group from both the PDR group (p<0.01) and the NMLR group (p<0.001), though not 

the PDR group from the NMLR group (p=0.45). This result increases our confidence that the 

pressure recovery feature during early filling is causally related to the delayed relaxation pattern. 

However, PRR is superior to the unnormalized pressure recovery in terms of its ability to 

differentiate delayed relaxation pattern and its correlation with parameter c.  

 

6.4.9 Atrial Contribution to PRR  

Equation 6.16, which involves LVEDP, was used to calculate the PRR for all NSR 

subjects. Thus one may suspect that the PRR must primarily reflect atrial properties, because 

LVEDP is partly determined by atrial contraction. However, the analysis presented in Table 6.3, 

as well as the strong correlation between Equation 6.17 determined PRR and c (Figure 6.6) in AF 

subjects, indicates that atrial properties are unlikely to be causal determinants of PRR since other 

fiducial pressures during IVR can be chosen to calculate PRR. Furthermore, we present strong 

evidence that the PRR is primarily related to the relaxation/viscoelasticity parameter c, which 

quantitates the curvilinearity of the deceleration portion of the E-wave. Indeed PRR did not 
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correlate strongly with conventional DF indexes that involve the atrium, such as E/A or 

VTIE/VTIA (See Figure 6.9). The strong correlation between E-wave derived c and PRR, coupled 

with the lack of dependence on classic indexes that rely on atrial-systole related filling, 

reinforces the argument that the PRR is causally unrelated to atrial properties.  

 

 

6.5 LIMITATIONS   

6.5.1 Heterogeneity of the Subjects 

The 40 subjects included in this study had a mixture of normal (7 patients with 

LVEDP<19mmHg and τW<50msec) and abnormal (12 patients with LVEDP≥19mmHg, and 

τW≥50msec) diastolic function. The remaining subjects had normal pressures but abnormal 

relaxation (12 patients with LVEDP<19mmg and τW≥50) or elevated filling pressures with 

normal relaxation (9 patients with LVEDP≥19mmHg and τW<50). The heterogeneity of the 

Figure 6.9. Plot of E-wave peak to A-wave peak ratio (E/A) and E-wave velocity time integral to A-

wave velocity time integral ratio (VTIE/VTIA) vs pressure recovery ratio (PRR), demonstrating no 

correlation. This argues against PRR being strongly influenced by atrial properties. See text for details.  
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subjects is by design, and is intended to demonstrate the robustness and generality of the PRR. 

This is underscored by the fact that each patient individually showed a strong correlation 

between the PRR and the Doppler echocardiographically derived c parameter (average 

R
2
=0.82±0.13). The fact that PRR correlated with c in the wide range of subjects studied supports 

the predicted robustness of the index and the generality of the method. Thus, for subjects with a 

normal mitral valve, the PRR should be applicable in both normal and abnormal DF.  

 Future suitably controlled clinical studies with well-defined patient groups will provide 

further insight to the clinical utility of the PRR index. For example, normal ejection fraction 

diabetic subjects have worse diastolic function than normal ejection fraction controls as a result 

of increased viscous losses (37) during filling. Assessing such a group via PRR would provide 

additional insight regarding the effect of diabetes on diastolic function.  

 

6.5.2 Heart Rate Considerations 

The calculation of the PRR requires measurement of the pressure at diastasis. At heart 

rates above 80 beats per minute(6, 7), the E- and A-waves merge and the conventional diastatic 

interval is lost. Thus in the face of tachycardia, the precise determination of the diastatic pressure 

can not be achieved. For this reason calculation of PRR can not be reliably performed in the 

setting of tachycardia.  

 

6.5.3 Calculation of τ  

Both the Glantz floating asymptote and Weiss zero asymptote methods were utilized to 

calculate τ in the current study. Consistent with previous literature (43) our results showed that 

the τ value measured using the Glantz method is consistently higher than the value measured by 
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Weiss method. Thus a potential limitation of the different methods for τ determination relates to 

the cutoff chosen for normal vs abnormal τ. The established cutoff for normal τ has been reported 

as 50 ms in major clinical studies, including those referenced by the European Heart Journal 

working group on diastolic function (16, 36, 46). However in those studies the Weiss method 

was used to calculate τ, and therefore studies that use the Glanz method may bias normal 

relaxation subjects with Weiss τ values less than but near 50 ms into the abnormal group. To 

mitigate this potential bias we used the Weiss τ value for dichotomization of isovolumic 

relaxation function between subjects. Furthermore, though the absolute values of the Glant 

method τ are not used to dichotomize groups, the Glantz method τ remains statistically 

indistinguishable among the three groups (See Table 6.2).  

Both floating and fixed intercept methods rely on the monoexponential model of 

isovolumic pressure decay. Other models of isovolumic relaxation have been proposed, 

including a logistic model (28) and a kinematics-based model (8). While some investigators have 

demonstrated the benefits of the logistic model (20), recent work in our laboratory highlights one 

of the challenges inherent in applying the logistic model (8). When isovolumic pressure decay is 

plotted in the phase (dP/dt vs. P) plane, the isovolumic contour may appear straight or curved. 

The logistic model only fits those contours that are curved, while the monoexponential model 

only fits those that are straight. Thus the logistic model requires a subjective judgment of 

whether the IVR portion in the phase plane is sufficiently ‘linear’ vs. ‘curved’. Because the 

majority of phase plane contours from the subjects in the current study possessed linear phase 

plane IVR contours, application of a monoexponential IVR model for determination of τ was 

deemed more appropriate.  
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6.5.4 LVEDP as the PMVO Surrogate 

While the validity of the assumption that LVEDP approximates MVO pressure has been 

demonstrated (4, 19, 31, 34), this assumption has limitations, especially in patients with severe 

diastolic dysfunction. However, our analysis of 354 heart beats in 40 NSR subjects, all of whom 

had normal mitral valves, is likely to minimize any systematic difference between MVO pressure 

and LVEDP. Our choice of LVEDP should be viewed as a convenient reference fiducial 

pressure. Figure 6.4 and Table 6.3 demonstrate that when different reference fiducial pressures 

are chosen, the conceptual considerations and physical underpinnings regarding the decay of the 

pressure and its recovery relative to some fiducial value, remain the same. Thus, the systematic 

error that may be introduced by the choice of fiducial pressure is mitigated by the fact that the 

pressure recovery is a relative rather than an absolute index because it relies on pressure 

differences, and not absolute pressures. We also found that if the pressure recovery from 

minimum to diastasis is not normalized relative to any pressure drop, the correlation between the 

pressure recovery and parameter c was decreased. As a result, pressure drop and recovery jointly 

characterize the delayed relaxation pattern.  

The determination of LVEDP was achieved by determining the LVP at the ECG R-wave 

peak. However, in the setting of 1
st
 degree AV block with late diastolic mitral regurgitation, we 

determine LVEDP at the peak pressure between diastasis and the R-wave peak. 

 

6.5.5 Determination of Diastasis Pressure 

The numerator of the PRR requires the determination of the diastatic pressure. While 

robust determination of diastasis pressure would require simultaneous atrial and ventricular 

pressures, in the current study diastasis pressure was determined by taking the pressure at the 
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peak of ECG P-wave in NSR. We have shown previously that diastasis period is eliminated 

when the heart rate is typically above 80 beats/min (6, 7). All the NSR subjects included in this 

study had heart rates slow enough to assure that diastasis was present.  

Due to the lack of coordinated atrial contraction, diastasis and end-diastole have the same 

pressure in AF. In this group of patients, ‘diastatic’ pressure was measured at the peak of the 

ECG R-wave.  

 

6.5.6 Application of Bernoulli’s Equation 

In the derivation of the PRR dependence on c, we ignored the viscous term in Bernoulli’s 

equation. This simplification has been used by several investigators (12, 41). It is important to 

note that the PRR reflects the resistive effects of tissue and chamber relaxation, not fluid 

viscosity. For this reason it is appropriate to ignore the fluid viscous term in Bernoulli’s 

equation. Instead, by including the PDF model expression for velocity, we incorporate the effects 

of tissue viscosity into the equation. This is a novel approach to the Bernoulli equation, because 

while fluid energy losses are ignored, tissue energy losses are lumped in with the decreasing 

velocity. There are likely more insights, beyond the connection between PRR and c, to be 

gleaned from a deeper analysis of Eq. 6.9. 

 

6.6 CONCLUSIONS 

The Doppler E-wave delayed relaxation pattern is a hallmark of diastolic dysfunction. 

The time constant of isovolumic relaxation τ and the E-wave delayed relaxation pattern are not 

strongly causally related since they characterize relaxation during different diastolic time 

intervals. No hemodynamic measure of the E-wave delayed relaxation pattern has been 
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established. We demonstrate that unlike τ, the dimensionless pressure recovery ratio (PRR), 

defined by the ratio of pressure difference between minimum and diastatic LVP to the difference 

between MVO and minimum LVP, conveys early-rapid filling related chamber relaxation 

properties, and differentiates patients with delayed relaxation from patients NMLR E-wave 

contours. Thus PRR serves as the hemodynamic analogue of the E-wave delayed relaxation 

pattern. 

 Furthermore, the establishment and validation of the causal connection between PRR and 

the E-wave deceleration provides mechanistic insight into the chamber property-to-transmitral 

flow relation. Due to its simplicity, the PRR may be easily measured in the catheterization 

laboratory to assess filling-related chamber relaxation properties. Future work should undertake 

further robust clinical validation of the PRR in suitably selected pathophysiologic subsets. 
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CHAPTER 7. 

APPLICATION OF PRR: IN SILICO ECHOCARDIOGRAPHY 
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7.1. INTRODUCTION 

In the previous chapter we demonstrated derived a robust connection between PRR, an 

index derived from the invasively measured pressure contour, and the PDF parameter c, a 

parameter that is extracted from noninvasively measured early filling transmitral velocity 

contours. In previous work other connections have been validated between noninvasive PDF 

parameters and invasive hemodynamic parameters. Taken together these results may be used to 

derive the invasive contour from hemodynamic data alone, and we demonstrate that approach in 

the current chapter with a theoretical analysis and proof of concept using clinical data. We first 

briefly summarize the noninvasive and invasive data below. 

 

7.1.1 Summary of Doppler Echocardiography Transmitral Flow 

One of the most powerful tools readily available to clinical and research cardiologists is 

noninvasive Doppler echocardiography. Doppler echocardiography allows for the rapid 

measurement and visualization of the transmitral blood velocity contour. In conjunction with 

numerous clinical findings, cardiologists use features of a patient’s transmitral blood velocity 

contour to help diagnose and treat numerous cardiovascular disorders (see Chapter 1). Examples 

of typical transmitral blood flow velocity contours were discussed in Chapter 1 and are presented 

in Figure 7.1.  

 Figure 7.1B demonstrates a variety of E- and A- wave contour patterns. These patterns 

are used in practice for phenotypic characterization of cardiovascular physiology, especially 

diastolic pathophysiology. Current clinical methodology for analysis of E- and A-waves however 

is quite coarse grained; finer details of E- and A-wave features such as curvature are discarded 
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Figure 7.1. Summary of noninvasive Doppler echocardiography transmitral flow contours. A) 

Transmitral velocity measured by Doppler echocardiography with 3-lead ECG signal. Notice that the 

signal consists of 3 phases. The first positive wave is called the early filling velocity wave, or simply E-

wave. The second phase of the transmitral velocity profile is defined by the interval between the first 

and second velocity waves, and is called the diastasis interval. For filling beats occurring at high heart 

rates (>90 beats per min) the first and second velocity waves may merge together, thereby eliminating 

the diastasis interval. The third phase of the transmitral velocity profile consists of the second distinct 

positive velocity wave, and is called the atrial filling, or A-wave. B) Transmitral velocity contours vary 

in shape with changes in load and diastolic function. The middle panel shows highly merged E- and A-

waves, while the right panel demonstrates the “delayed-relaxation” pattern Clinicians routinely use the 

transmitral contour shape as part of the diagnosis and management of diastolic dysfunction. C) 

Transmitral contours are typically quantitated as triangles in the clinical setting, and triangle widths and 

heights are compared to clinically established standards in the diagnosis and management of diastolic 

dysfunction. The width of the E-wave is called Edur, and the peak height of the E-wave is called Epeak 

See Chapter 1 for further details.   

and simple triangular geometric approximations to the E- and A-wave shapes are instead 

employed (1).  

 

7. 1.2 Pressure Measurement By Catheterization 

 While echocardiography is widely employed in the evaluation of cardiac patients, 

invasive catheterization represents another widely employed tool available to cardiologists. In 

fact, the gold standard for determining diastolic function is the determination of the left 

ventricular end diastolic pressure (LVEDP) by means of left ventricular catheterization (7). 

Ventricular catheterization involves the introduction of a pressure recording catheter into a 

patient’s left ventricle (see Chapter 2). A typical real-time catheterization determined left 
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Figure 7.2. A typical real time left ventricular pressure (LVP) and simultaneous ECG signal seen in the 

catheterization lab during a procedure. The diastolic (filling) portion of the LVP contour is enlarged and 

several important indexes are shown for reference. The peak of the ECG P-wave corresponds to the 

beginning of atrial contraction mediated LV filling, or the Doppler A-wave. The peak of the R-wave, or 

by some conventions the start of the R-wave positive upward deflection, corresponds to the LV end 

diastolic pressure (LVEDP). The decreasing portion of the LVP contour is often fit to an exponential or 

logistic equation as a function of isovolumic time constants called τ and τL respectively. 

ventricular pressure profile is presented in Figure 7.2. Just as with the E- and A-waves, specific 

measures derived from the left ventricular pressure profile are used by cardiologists for diagnosis 

and treatment of cardiac disease including diastolic dysfunction (12).  

 Figure 7.2 indicates several of the clinically relevant measures derived from the left 

ventricular pressure profile. As discussed in previous Chapters, these measures include the end 

diastolic pressure (LVEDP) and the time constants of isovolumic relaxation, τ or τL. Taken 

together, Doppler echocardiography and left ventricular catheterization can provide a more 

complete assessment of a particular patient’s cardiac function and, in particular, the patient’s 

diastolic function.  
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7.1.3 Simultaneous Application of Clinical Modalities 

 Though simultaneous Doppler-echocardiography and left-ventricular catheterization is 

possible and forms the basis for the Cardiovascular Biophysics Database described in Chapter 2, 

it is rarely performed in clinical practice because of the desire to reduce catheterization time. 

However, the E-wave can provide additional information about diastolic function that is not 

available from catheterization alone. Thus, a method by which an E-wave could be estimated 

from a left ventricular pressure (LVP) profile alone in real time would be of great benefit. We 

call this method “In-Silico Echocardiography”, and we describe the mathematical details below.  

 

7.2. IN SILICO ECHOCARDIOGRAPHY THEORETICAL DERIVATIONS 

 Previous work in our laboratory has demonstrated that the E- and A-wave velocity 

contours can be modeled and accurately predicted by the physics of damped simple harmonic 

motion. The physical underpinnings (parameterized diastolic filling, or PDF model) and 

numerical methods (model based image processing or MBIP) needed to extract damped 

harmonic motion parameters from E- and A-wave were described in Chapter 2, and have been 

extensively published and validated (2, 4, 6, 8-10). Most patients have E-wave velocities that 

exhibit the underdamped regime of damped simple harmonic motion: 

 

v(t) =
kx

o

!
e
"
c

2
t

sin !t( )   Equation 7.1 
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Figure 7.3. A plot of Equation 1 vs. time for 

arbitrarily chosen k, c, and xo values in the 

underdamped regime. The width of the E-wave, 

or duration of the E-wave is called Edur and is 

related to the frequency of the E-wave ω. The 

peak velocity of the E-wave is called Epeak. The 

initial upslope the E-wave is numerically 

equivalent to the product of the parameters k and 

xo.  

where k is a spring constant, c is a damping constant, xo is a multiplicative initial spring 

displacement, and 

 

! = k "
c
2

4
. 

 Figure 7.3 provides a plot of Eq. 

7.1. As described in Chapter 2, the initial 

upslope, or mass normalized initial driving 

force, is numerically given by the product 

kxo. Furthermore, the width of the wave 

(Edur) is related to the frequency ω simply 

by π/ω. 

We notice that Equation (7.1) is 

fully determined if one can determine the 

quantities ω, kxo, and c. Thus, to estimate 

the E-wave from the LVP contour, we need to find methods by which kxo, ω, and c can be easily 

determined. In Figure 7.4 we present a general flowchart for the determination of E-wave 

contours from LVP contours. Previous and current work suggests that the E-wave parameters of 

interest (kxo, ω, c) can be determined if one can find the following hemodynamic parameters 

from the LVP contour and ECG : the LV end-diastolic time and pressure (tEDP PEDP ), the 

diastasis pressure (PDiastasis), the mitral valve opening time and pressure (tMVO, PMVO), the LV 

minimum pressure and time (tMin, PMin), and the E-wave end time or time at which diastasis 

begins (tDiastasisStart). In what follows, we discuss specific methods that can be automated by which 

the relevant hemodynamic parameters can be determined and used to generate kxo, ω, and c 

values for various physiological cases. Note that this analysis applies requires that subjects do 
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not have significantly elevated heart rates, and that subjects posses P-waves in their ECG signal. 

Thus, subjects in atrial fibrillation can not be analyzed using these methods.  

 

7.2.1 Estimation of c 

 To estimate the E-wave from the LVP contour, we first employ the PRR to determine the 

damping constant c of the E-wave. In Chapter 6, a strong linear relationship is presented between 

the PRR and the damping constant c. This regression allows for calculation of c given the PRR: 

 

c = !19.2 PRR( ) + 26.6   Equation 7.2 

Figure 7.4. A flowchart for generation of a simultaneous E-wave velocity contour given synchronized 

LVP and ECG data. If the heart rate (HR) is too high, then the E- and A-waves will be merged and it is 

not possible to generate an E-wave velocity contour. If the HR is within normal limits then one must 

consider whether the subject has a P-wave or not. If the P-wave is not present then one must abandon 

the analysis. The general method requires the estimation of kxo, ω, and c from specific hemodynamic 

variables, as described in the text. 
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As described in Chapter 6, the PRR can be easily and in a real-time fashion calculated from the 

LVP profile (11), and therefore the damping constant c may be simply calculated from Eq. 7.2.  

 

7.2.2 Estimation of kxo 

The next step in estimation of the E-wave involves the estimation of the initial E-wave 

upslope, kxo. Previous published work (2) has demonstrated a strong linear relationship between 

the echocardiographically determined kxo value and the (simultaneously) catheterization 

determined pressure difference between LVEDP and minimum LVP
5
. This regression provides 

an equation for determining kxo (in units of m/s
2
) from LVP profile measures alone: 

 

kx
o

= 0.407 P
EDP

! P
min( ) +15.40   Equation 7.3 

 

7.2.3 Estimation of ω 

The final step involves the calculation of the frequency ω. Because Edur=π/ω, the 

frequency can be easily calculated if we estimate the E-wave duration, Edur. There are several 

methods by which the duration of the E-wave may be approximated. The ideal method for Edur 

determination would consist of placing a pressure catheter in the atrium and ventricle. Figure 7.5 

gives representative hemodynamic pressure and flow data from such a procedure. As is evident 

from Figure 5, the E-wave start corresponds to the first atrioventricular pressure crossover, and 

the end of E-wave flow is causally coupled with the third equalization of atrial and ventricular 

pressures after mitral valve opening. The impracticality of obtaining atrial pressures in the cath 

lab were discussed briefly in Chapter 1, and therefore while the method embodied by Figure 7.5 

would be ideal, different methodology must be applied. 
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To aid in analysis we may employ previous results regarding the duration of diastole as a 

function of heart rate. Previous work by Chung et al. demonstrated a robust correlation (r
2
=0.98) 

between the mechanical duration of diastole (MDD) in ms and heart rate (HR) (3).  

 

MDD = !549 + 2.13HR +
61500

HR
  Equation 7.4 

The HR, in beats per minute can be determined by dividing 60 by the particular beat’s R-

peak to R-peak time interval (in seconds), and 

this value can be plugged into Equation 7.4 to 

determine the MDD. Finally if we take the time 

of the R-wave peak to be the particular beat’s 

end diastolic time, then we may determine the 

start of the E-wave and the mitral valve 

opening time by subtracting the MDD from the 

R-wave peak time. With this tool in hand we 

move on to describe the details of the method.  

An effective strategy for determination 

of Edur involves determining the E-wave start- 

and end-times, and simply taking the difference 

of these two time points.  

 

7.2.3 Step 1: Determine the E-wave start time 

Method 1: 

Two simple methods may be employed to determine the E-wave start-time. First, as 

discussed in Chapter 6, the pressure at mitral valve opening and E-wave start is nearly equivalent 

Figure 7.5. Schematic left ventricular pressure, 

left atrial pressure, Doppler E- and A-wave, and 

ECG data for one beat. Notice the E-wave ends, 

and diastasis begins, at the 2
nd

 atrio-ventricular 

pressure crossover after mitral valve opening. In 

addition, diastasis begins approximately when the 

flat portion of the LVP contour commences.  
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to the end-diastolic pressure.  Thus, the time of mitral valve opening and therefore start of the E-

wave can be taken to be the time at which the decreasing LVP profile is equal to the ensuing 

LVEDP.  

 

Method 2: 

A second possible method for determining the E-wave start time takes advantage of the 

strong correlation between MDD and HR presented in Equation 7.4. As discussed above, the E-

wave start time is then given by the MDD subtracted from the R-wave peak-determined or 

otherwise-determined LVEDP time. Once the start of the E-wave is determined, the only task 

remaining is the determination of the E-wave end-time.  

 

7.2.3 Step 2: Determining the E-wave End Time 

Method 1: 

 Cardiac cycles with RR intervals above 800 ms  (<90 beats per minute) typically have a 

clear diastasis interval separating E- and A-waves. Previous published work has demonstrated a 

strong correlation between HR and time duration of the diastasis interval. This relationship holds 

even for slightly merged E- and A-waves (heart rates between 100-120), where the diastasis time 

interval is negative. Thus, one can easily estimate the interval between E- and A-wave 

employing the relationship in Chung et al(3): 

 

!t
Diastasis

= 4.40 HR( ) + 65500
1

HR

" 

# 
$ 

% 

& 
' (1150   Equation 7.5 

where ∆tDiastasis is the duration of diastasis, defined by the time between E-wave end and A-wave 

start.  
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 Furthermore, the start of the A-wave occurs simultaneously with the ECG P-wave (see 

Figure 7.5). Current catheterization labs routinely employ automated ECG pattern detection 

algorithms to detect, among other things, P- and R-waves. Because the ECG signal and the LVP 

profile are synchronized in the catheterization lab, automated detection of and P- and R-waves 

allows for automated determination of A-wave start times, as well as diastasis pressures and 

LVEDP (as described in Chapter 2). 

 Thus, the E-wave end-time is calculated by traveling backwards in time on the pressure 

contour, that is, by determining the time of the P-wave peak and subtracting the diastasis interval 

time determined from Equation 7.5. Once we have the E-wave end-time, the E-wave duration is 

calculated as simply the difference between E-wave end-time and E-wave start time. Finally, 

with the Edur calculated, we can easily determine the frequency ω. Putting this together we have: 

 

! =
"

t
ECG P#wave

#$t
Diastasis( ) # tE#wave start

  Equation 7.6 

 

Method 2: 

Another possible estimate of the E-wave-end time can be made by considering the flat 

(i.e. diastatic) portion of the LVP profile. To be sure, the flat portion of the LVP profile does not 

necessarily represent the full diastatic interval, because diastasis requires the absence of a 

pressure gradient, and the atrioventricular pressure gradient crossover may not occur until after 

the LVP profile flattens out or may occur before some major flat regime begins. However, the 

use of multiple methods to estimate the E-wave end time is advantageous because it provides 

upper and lower limits to the resulting E-waves.  The simplest method for determining the start 

of the LVP flat interval is a basic thresholding procedure. With this method, the start of the LVP 

flat interval is the time at which the LVP recoils to a pressure within a 1-2mmHg, or some 
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Figure 7.6. In this figure the iterative approach for determining the start of the LVP contour is 

presented. Initially we take the LVP minimum pressure (PMIN), the P-wave LV pressure (PPwave), and the 

halfway point between those two points as initial markers. Best-fit lines are then created between the 

endpoints and the midpoint, and the intersection point of these lines is taken to be the next estimation of 

the start of the LVP flat portion. The process is completed once we converge upon a solution.  

suitable threshold, of the previously determined diastasis pressure (PDiastasis). See Chapter 2 for 

detailed discussion of the methods by which a diastasis pressure may be determined in an 

automated fashion. 

 

Method 3: 

Alternatively, one can determine the LVP flat interval start through an iterative approach. 

We create a first guess of the LVP flat interval start as the midpoint time between LV minimum 

pressure and P-wave peak. The iterative approach creates 1 least squares best fit line to the 

pressure contour between the minimum pressure and previous guess point, and a second least 

squares best fit line to the pressure contour between the previous guess point and the P-wave 

peak. The next guess for the time of the start of the LVP flat interval is then taken to be the 

intersection of the two best fit lines created in the previous step. This process is iterated until one 

converges on one point, or on a stable cycle of a set of points. If the convergence is toward a set 

of points, then the start of the LVP flat interval is taken to be the average of these points. This 

process is visually detailed in Figure 7.6.  
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The iterative approach is a more robust method than simply applying a threshold of 1-2 

mmHg relative to a determined diastasis pressure, because in certain cases the so called “flat 

LVP portion” may not be completely flat, and instead may show a gradual change of 1-5 mmHg 

with respiration. For example, a large inspiration during a diastasis interval will tend to slightly 

increase the LV pressures, thereby making the thresholding procedure less reliable, and the 

iterative approach more favorable. In addition, often clinical data may possess several small 

regions that appear to be flat, and therefore it is not obvious as to which flat region to pick. This 

is seen somewhat in the data presented in Figure 7.2, and in such cases the iterative approach to 

determining the end of the E-wave is preferred.  

 

7.3. In Silico Echocardiography Proof Of Principle 

 We will apply the methods described above to the LVP contour presented in Figure 7.2. 

In other words, we will estimate the E-wave associated with the hemodynamics presented in that 

beat. The data presented in Figure 7.2 was acquired during a specific simultaneous 

catheterization-echocardiography research study, and thus the simultaneous 

echocardiographically measured E-wave can be superimposed with the In Silico 

Echocardiography derived E-wave to assess how closely our estimate fits with the real data.  

 First using automated ECG pattern detection techniques which are widely available in the 

clinical setting, we determine the R-waves that flank the filling interval. The resulting RR 

interval is 930 ms, which gives a HR of 65 beats per minute. This is well within the regime of 

unmerged waves, so we proceed with the flow chart presented in Figure 7.4. 
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Next we determine various hemodynamic parameters, and much of the methods for this 

are discussed in Chapter 2. We notice that the particular beat contains a P-wave, and therefore 

we may proceed in our analysis.  

First we determine the end-diastolic pressure PEDP. Because there is no evidence of AV 

block, we take PEDP to be the pressure at the peak of the R-wave, which is 23.7 mmHg, or the 

pressure at the start of the R-wave, which is 20.3 mmHg. In the presence of AV block one would 

have to calculate the maximum pressure between the R-wave peak and the minimum pressure 

point to determine PEDP. By maintaining two estimates for PEDP we allow for the determination of 

lower and upper bounds for the resulting E-wave. Now we make the assumption that mitral valve 

opening pressure equals end- diastolic pressure, and therefore determine that the E-wave start 

time must be either at tEstart=6.624s, or tEstart=6.622s, depending on if we us the peak R-wave or 

start of R-wave determined PEDP pressure as a reference. Furthermore, we can use the determined 

HR and plug into Equation 7.6 to determine the MDD. We thus determine the MDD to be 542 

ms. Again, if we know that diastole ends at either the peak of the R-wave or the start of the R-

wave, then subtracting MDD we find that the E-wave start and mitral valve opening occurs at 

tEstart=6.564s or tEstart=6.594s respectively. Thus we have multiple estimates for the E-wave start 

time.  

Next we can easily determine the minimum pressure, because it is the minimum pressure 

found in the chosen R-R interval. We find that the minimum pressure is PMin=4.5 mmHg and that 

this minimum occurs at tMin=6.716s.  

Next we determine the diastasis pressure PDiastasis. We may take advantage of the presence 

of a P-wave, and through ECG detection algorithms we can determine the peak of the P-wave to 

be at tPwavePeak=7.031s, with a simultaneous LV pressure of PPwavePeak=16.3 mmHg. Because the 
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P-wave peak marks the beginning of A-wave flow, we may estimate the diastasis pressure as 

simply being the pressure at the P-wave peak, and thus a first estimate of PDiastasis is PDiastasis=16.3 

mmHg. Also we may back off the P-wave peak and only take the pressure at the start of the P-

wave, which is PDiastasis=14.4 mmHg. We can apply next the iterative approach detailed above for 

determination of E-wave end time. This method converges on tEend=6.851s, and a concurrent 

diastasis pressure of PDiastasis=12.5 mmHg. If we apply the iterative method with the P-wave start 

as a reference point instead of the P-wave peak then we converge on tEend=6.856s, and a 

PDiastasis=12.6 mmHg. The refined diastasis pressure is then the average of these values, and is 

therefore  PDiastasis=14.0 mmHg. Averaging over multiple values only serves to overdetermine 

and average out any systematic errors or biases associated with one particular method. It is not in 

general necessary to calculate so many approximations to the diastasis pressure, and in practice 

only one or two estimations may be necessary. Alternatively, one may simply calculate the 

∆tDiastasis as defined in Equation 7.5, and determine the start of diastasis by simply subtracting 

∆tDiastasis from the P-wave peak time. Plugging in for HR we find that ∆tDiastasis =149.12ms, and 

this yields tEend=6.882s. Then the diastasis pressure may be simply estimated as the average 

pressure between tEend and tPwavePeak. The average pressure between t=6.882s and t=7.031s is 15.0 

mmHg, and thus another estimate is PDiastasis =15.0 mmHg.  

With these calculations we can now determine c, kxo, and ω. First, we determine c. To do 

this we must calculate the PRR, which is described in more detail in Chapter 6. Using the value 

for PMin and the various estimates for PEDP and PDiastasis we obtain that PRR may be 0.49, 0.60, 

0.55, or 0.67, and, using Equation 3, we find that c is either 17.1 1/s, 15.1 1/s, 16.1 1/s, or 13.8 

1/s respectively. The average PRR is 0.58 and the average c is 15.5 1/s.  
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Next we determine the kxo value. Using the value for PMin and the possible values for 

PEDP we determine that the ΔP may be 19.3 mmHg or 15.8 mmHg. These pressure differences 

correspond, using Equation 7.3, to kxo values of 23.2 mN or 21.8 mN, with an average value of 

22.5 mN.   

Finally we determine the frequency ω. In determining the diastasis pressure we have 

already found estimates of tEend, and in the first few calculations we determined several estimates 

for tEstart. Taking the difference between the estimated E-wave end and start times results in 

possible values for Edur, and, by Equation 2, possible values for ω. Using only estimates for tEend 

that employ the P-wave peak, we find that Edur may be 0.258s, 0.26, 0.288s, or 0.318s. The 

corresponding ω values are 12.2 1/s, 12.1 1/s, 10.9 1/s or 9.9 1/s. 

With all of this in hand, we may create upper bounds, lower bounds, and average values 

for all the E-wave parameters of interest. The lower bound E-wave has ω=9.9 1/s, kxo=21.8 and 

Figure 7.7 The actual transmitral Doppler velocity contour measured simultaneously 

during catheterization for the beat presented in Figure 7.2 is shown here. Upper 

bound, lower bound, and average E-waves derived from the LVP profile alone are 

superimposed in green, red and yellow curves respectively. Notice the close 

agreement between predicted average E-wave (yellow curve), and the actual 

measured E-wave contour. See text for details. 
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c=14.3 1/s. The upper bound E-wave has ω=12.2 1/s, kxo=23.2 and c=16.7 1/s. Finally, the 

average E-wave has ω=11.18 1/s, kxo=22.5 and c=15.3 1/s.  

To display any of these E-waves we plug in the estimated ω, kxo, and c values into 

Equation 1. This leaves still the variable t in Equation 7.1. We simply take t to be between 0 and 

Edur, where Edur is given by the estimated ω value, and plot the resulting function with 

appropriate scale on the LVP contour or in a separate display.  

For comparison, the resulting upper bound, lower bound, and average E-wave estimated 

from the LVP contour alone is superimposed on the actual measured Doppler E-wave in Figure 

7.7. Notice that the average E-wave, colored in yellow, predicts the true E-wave contour 

extremely well. Furthermore the 

upper and lower bound E-wave 

effectively demarcate the location 

of the true E-wave, and track the 

deceleration portion curvature 

fairly well. Thus Figure 7.7 

demonstrates how closely an 

invasively derived E-wave 

analogue can predict the actual 

noninvasive Doppler E-wave.  

To independently assess 

the closeness of fit, a blinded observer applied the PDF formalism to the raw E-wave image from 

Figure 7.7, in order to derive a best-fit velocity contour . Figure 7.8 shows the best-fit velocity 

contour (5), derived by the blinded investigator (green), as well as the LVP-contour derived 

Figure 7.8 An independent assessment of the close agreement 

between the In Silico Echocardiography determined E-wave and 

measured Doppler E-wave. 
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average E-wave that we showed in Figure 7.7 (yellow). The two waves are virtually 

indistinguishable. Thus, “In Silico Echocardiography” gives the clinician the ability to see, in 

real-time, a very close analogue to the actual E-wave without ever having to separately order an 

echocardiographic study.  

 The results in this Chapter provide methodological details and demonstrate the potential 

of the In Silico Echocardiography method with a selected example. Further work extending these 

results to more subjects, including those with diastolic dysfunction is warranted.   
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CHAPTER 8. 

LOAD INDEPENDENT INDEX OF DIASTOLIC FUNCTION: DERIVATION 

AND IN VIVO VALIDATION 
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8.1 INTRODUCTION 

8.1.1 Previously Validated Load Independent Index of Systolic Function 

The analysis of pressure-volume data obtained from the in-vivo heart for the purpose of 

determining intrinsic pump function is complex because pressures and volumes are dependent on 

both intrinsic variables (such as contractility and muscle stiffness) and extrinsic variables (such 

as preload and afterload). By viewing cardiac function mechanically, as a system having time-

varying elastance, Suga and Sagawa successfully uncoupled these variables (29). They showed 

experimentally that the instantaneous pressure to volume ratio defines a time-varying elastance 

that attains the same maximum value at a fixed contractile state regardless of preload changes. 

This established Emax as an experimentally validated, load-independent index of systolic function 

(27). Additional conceptual validation of Emax as a load-independent index has been achieved 

using a kinematic, forced harmonic oscillator-based argument showing that the slope of the 

maximum force-displacement relationship (Emax analog) depends only on the intrinsic oscillator 

parameters rather than the initial (load) conditions (21). While Emax is a chamber property that is 

uncoupled from the effects of load on systolic function, no non-invasive load-independent 

attribute for diastole has been theoretically proposed and validated, or empirically observed in 

the course of experiment. 

 

8.1.2 The Load Independent Index of Diastolic Function Problem 

Doppler echocardiography is the preferred method for noninvasive diastolic function 

(DF) assessment. Doppler derived indexes have been used to characterize DF in numerous 

cardiac disorders including heart failure, myocardial infarction, hypertrophic cardiomyopathy, 

and hypertension (1)
 
. In current practice, most DF indexes are derived by visual inspection of 
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transmitral E- and A-waves. These shape-derived indexes include peak velocity of the E-wave 

(Epeak), duration of the E-wave (Edur), acceleration and deceleration times of the E-wave (AT and 

DT) and area under the E-wave (velocity-time integral VTI). Additional indexes include the peak 

velocity of the A wave (Apeak) and the ratio of the E and A peak velocities (E/A). Most clinically 

relevant Doppler derived DF indexes have proved to be load-dependent in animals and humans, 

both in health and in disease (3, 7, 9, 11, 13, 17, 22, 24, 25, 28, 30-32, 35, 38). Several newer 

load-independent indexes have been empirically suggested, from velocity of propagation (Vp), to 

annular velocities derived from Doppler tissue imaging (E’/A’, E’, E/E’), but there is no 

consensus as to whether these indexes are truly load independent (8, 12, 15, 19, 20, 23, 37). This 

established load-dependence confounds the clinical interpretation of diastolic function indexes, 

because load variation may modify an E-wave shape in a pathologic setting to resemble a normal 

E-wave, and therefore lead to an uncertain diagnosis. 

 

8.1.3 Approaching the Load Independent Index Problem with the PDF Model 

At first glance it appears that the PDF model should solve this problem naturally, because 

from a purely mathematical perspective, the PDF parameters c, k, are mathematically 

independent of the load parameter xo. In the context of physiology, however, this mathematical 

degree of freedom is constrained, because there is physiological coupling between stiffness, 

relaxation, and load. Indeed because k, c, and xo mathematically determine the shape of the E-

wave, it is not surprising that load-induced E-wave shape variation results in k, c, and xo 

variation. Even if load is varied, suction initiated filling governs the physiology and therefore the 

PDF model and the equation of motion apply. Therefore, in the face of load variation, the PDF 

model solution should continue to provide an accurate prediction for E-wave shape. This insight 
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suggests an approach to solving the ‘load independent index of diastolic function‘ (LIIDF) 

problem. Because the same kinematics apply to E-waves measured at different load, we 

hypothesize that a load independent index of diastolic function, M, may be derived from 

appropriate mathematical analysis of multiple E-waves acquired at different loads. To test the 

load independence of M, we altered load in healthy human volunteer subjects by changing tilt-

table position while recording transmitral flow. We investigated changes in traditional echo-

derived indexes, changes in PDF parameters, and the load dependence of M. To assess the ability 

of M to differentiate between control and diastolic dysfunction (DD) states, we analyzed 

preexisting data from patients undergoing simultaneous catheterization-echocardiography using 

micromanometric (Millar) catheters.  

 

8.2 METHODS 

8.2.1 Theory  

Theoretical Derivation 

 We begin with the underdamped form of E-wave velocity from Chapter 2:  

  
v(t)=

kxo

!
e

!
c

2
t

sin !t( )  Equation 8.1  

 To solve the LIIDF problem, we consider Equation 8.1 at two extremes. At the start of 

filling, velocity vanishes, and we have an expression for kxo the peak mass-normalized force 

driving flow: 

  
kx 0( ) =!!!x(0)" #" kxo = !!xo  Equation 8.2  

At the peak of inflow, the acceleration term vanishes, and we have an expression for cEpeak, the 

peak resistive force opposing flow: 



 

 239 

  
c !x(AT )=!kx AT( )" #" cEpeak = kx t peak( )  Equation 8.3  

This analysis demonstrates that for every E-wave fit by the PDF model, the peak resistive force 

that opposes flow (cEpeak), is equivalent to the spring force driving flow at time of E-wave peak. 

That is a tautological statement that is certainly load-independent, but it has little clinical value 

because it can not differentiate one subject from another.  

 To find a clinically useful LIIDF, we must apply physiological constraints to this analysis. 

Applying the expressions for x(t) and AT from Chapter 2 to Eq. 8.3, we find that: 

  

kx t peak( ) = kxo 2y !e
"!!t

peak
#

$
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&

'
( = kxo 2y !e
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 Equation 8.4 

Eq 8.4 suggests a connection between kx(tpeak) and kxo. Indeed, because E-waves reach peak 

velocity fairly quickly, it may be appropriate to approximate kx(tpeak) as a linear function of kxo:  

  
kx t peak( ) = µ ! kxo +!  Equation 8.5  

, where  µ and ! are constants. Together with Eq. 8.3, this suggests that kxo and cEpeak are linearly 

related according to the equation: 

 
kxo = M cEpeak( )+ B  Equation 8.6  

where M and B are constants, kxo is the mathematical analogue for the maximum AV gradient 

and cEpeak represents the resistive (viscoelastic) force opposing filling.  

Each E-wave fit by the PDF model has a kxo and cEpeak value, and therefore may be 

plotted as a point in the kxo vs cEpeak plane. As load varies, E-wave shape varies, and therefore 

the corresponding kxo vs cEpeak coordinate for the E-wave may change as well. However, the 

slope (M) defined by the collection of load varying E-wave kxo vs. cEpeak coordinates is predicted 

to remain constant. This is a prediction that is derived from load-independent assumptions, and is 
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therefore expected to hold in the face of load variation. Therefore the slope M, and intercept B, 

derived from analysis of the maximum driving force and the maximum force opposing blood 

flow, is predicted to be a LIIDF. If M and B can be shown to differentiate subjects with and 

without diastolic dysfunction, then they would be the only validated solutions to the LIIDF 

problem.  

 

Theoretical Analysis 

 Further insight may be gained by considering physiological limits in the kxo vs cEpeak 

plane. The mathematics are somewhat easier to appreciate if we determine the quotient of kxo 

and cEpeak from Equation 8.4: 

 

kxo

cEpeak
=
1

2y
!e

y cos
"1

y( )

1"y
2

 Equation 8.7  

, where as before, y=c/2√k. It is interesting to note from Eq. 8.7 that lines through the origin in 

the kxo vs cEpeak plane are lines of constant y. From a physiological perspective, it is clear that a 

ventricle must have the peak driving force exceed the peak resistive force if filling is to occur. 

Thus, the kxo=cEpeak line of unity represents a physiological barrier that can not be crossed. Thus 

E-wave kxo vs cEpeak coordinates can only exist above the line of unity in the kxo vs cEpeak plane. 

This physiological fact can be extracted mathematically by noticing that because y≥0, the 

minimum of Eq. 8.7 occurs when y=∞ and therefore kxo/cEpeak=1. The other extreme limit for 

Eq. 8.7 occurs when y=0 and therefore kxo/cEpeak =∞. This corresponds to the case where there 

are no resistive forces and c=0. There is one other interesting physiological limit that we can 

consider, and that is the case of critically damped E-waves. Critical damping occurs when y=1, 

and by Eq. 8.7 that yields a value of e/2~1.36 for kxo/cEpeak. Thus the line through the origin with 



 

 241 

Figure 8.1. Theoretical analysis of the peak 

driving force (kxo) to peak resistive force (cEpeak) 

plane, showing regimes of y, defined as c/(2√k). 

The kxo=cEpeak line corresponds to y=∞, and the 

kxo-axis corresponds to y=0. Underdamped E-

waves (2) are in the y<1 regime, whereas 

overdamped E-waves are in the y>1 regime. The 

cEpeak>kxo regime is not compatible with filling. 

See text for details.  

slope e/2 defines a transition between 

overdamped and underdamped E-waves. 

Overdamped E-wave have kxo vs cEpeak 

coordinates below the e/2 line, while 

underdamped E-waves have kxo vs cEpeak 

coordinates above the e/2 line (Figure 8.1).  

 

8.2.2 Experimental Validation 

Data Acquisition- Tilt Table Healthy 

Volunteers 

 Pulsed Doppler echocardiography was 

used to acquire continuous transmitral blood flow data from 16 subjects (9 male, 7 female, ages 

20-30) while subjects were positioned on a tilt-table (Trex Medical Corporation, Danbury, CT). 

Doppler data was acquired in the apical four-chamber views with the sample volume gated at 1.5 

to 2.5 mm and directed between the tips of the mitral valve leaflets orthogonal to the MV plane. 

The subjects were healthy medical and graduate students on no prescribed medications. None of 

the subjects had history of heart disease, coronary artery disease, hypertension, or diabetes. Prior 

to participation in the study, all subjects gave informed consent in accordance with the 

Washington University Human Research Protection Office guidelines.  

 Doppler data was obtained with a clinical echocardiographic imaging system (Acuson 

Sequia 256, Mountain View, CA) equipped with a 2MHz transducer. Heart rate was recorded 

simultaneously via ECG limb lead II and displayed on the E- and A-wave images. Blood 
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pressure was monitored via a digital blood pressure cuff (Medtronic LifePak 12, Minneapolis 

MN).  

 The data acquisition protocol consisted of initial (baseline) E- and A-wave recording with 

the subject supine and the tilt table in the horizontal position for 5 minutes such that the heart 

rate was in steady state.  Baseline blood pressure was also obtained. After 5 minutes in horizontal 

position, the table, including appropriate padding and straps to assure safety, was gradually tilted 

to a 90° head-down position. Since the heart/diaphragm shifted during tilt, the transducer was 

suitably reoriented to obtain transmitral flow. After resolution of heart rate transients, typically 

after several minutes, transmitral flow was recorded. After several minutes the tilt-table was 

returned to the horizontal position. Once heart rate and blood pressure returned to baseline levels, 

transmitral flow was again recorded.  After 5 minutes horizontally, the tilt table was moved to 

90° head-up position. The transducer was adjusted to account for the heart shift during tilt, and 

after heart rate and blood pressure transients resolved, transmitral flow was recorded. In 2 of the 

16 subjects the persistent increase in heart rate during head up tilt resulted in significant E- and 

A-wave merging. With significant merging the E-wave deceleration portion is lost, and thus it is 

not possible to reliably fit merged waves via the PDF formalism. Hence for these 2 subjects 

head-up E-waves were not analyzed, but the head-down and horizontal data were included in the 

overall analysis. After 5 minutes upright subjects were tilted to horizontal position and a 

concluding set of transmitral flow images were recorded. All data was recorded on VHS tape for 

off-line analysis using a custom editing station.  

Data Acquisition- Subjects Undergoing Simultaneous Catheterization and Echocardiography  

 In addition to acquiring data in healthy normal subjects via tilt-table, we acquired 

additional data in subjects with and without diastolic dysfunction undergoing diagnostic 



 

 243 

catheterization. This additional analysis used existing data from previous studies(2, 16)
 
utilizing 

the Cardiovascular Biophysics Laboratory database of simultaneous Doppler echocardiographic 

transmitral flow and micromanometric (Millar) catheter-derived left ventricular pressure (see 

Chapter 2 for a detailed description of existing Cardiovascular Biophysics Laboratory 

simultaneous Doppler flow and catheter derived pressure database). We note that the original 

intent of the Cardiovascular Biophysics Laboratory database was not explicit testing of load-

dependence.  However, because some subjects manifested significant beat-to-beat respiratory 

variation of end diastolic pressure and simultaneously recorded E-wave contours, the data were 

suitable for determination of the kxo to cEpeak relationship. We therefore selected subjects who 

had good quality E-waves as well as significant load variation (end diastolic pressure variation > 

10 mmHg) in response to the respiratory cycle. Selection criteria for inclusion in the diastolic 

dysfunction group required: normal sinus rhythm, no evidence of valvular disease, no active 

ischemia, normal ejection fraction(EF)>60%, and elevated end diastolic pressure (>19mmHg). 

Subjects in the control group had normal sinus rhythm, no valvular disease, no active ischemia, 

normal EF >60% and normal end diastolic pressure. Because subjects are referred for 

catheterization to establish the presence of coronary artery disease, variable degrees of coronary 

artery disease were present in both the control and diastolic dysfunction groups. However, no 

subject in either group had ongoing or active ischemia. Demographics are presented in Table 8.1.  

Data Analysis 

For each tilt table subject at each stage of tilt, 5 E- and A-wave contours were selected for 

analysis. A traditional triangle fit was applied to each wave and conventional Doppler-derived 

indexes (Epeak, AT, DT, Edur, Apeak, Adur, E/A) were determined. In addition, E- and A-wave 

contours were fit via the parameterized diastolic filling formalism to yield PDF c, k, and xo 
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Table 8.1. Demographics of simultaneous catheterization-

echocardiography subjects analyzed retrospectively 

 Control Diastolic Dysfunction 

n 5 6 

Age 44 ± 9 49 ± 13
 

Weight 156 ± 30 202 ± 48
 

Systolic LV Pressure 119 ± 8 147 ± 25*
 

Ejection Fraction 73 ± 8 68 ± 8
 

LVEDP 13 ± 4 26 ± 5†
 

Values are means (SD); n (no. of subjects) = 11. LV, left ventricular; 

LVEDP, LV end-diastolic pressure. *P< 0.05; †P < 0.001. P values 

were calculated by ANOVA.
 

 

parameters. Since directly 

measured and model calculated 

values of Epeak show nearly 

perfect agreement, Epeak was 

calculated directly from the model 

predicted contour for the E-wave. 

For each catheterization subject, 

25 consecutive E-waves and 

simultaneous left ventricular pressures were analyzed. For each subject, good quality E-waves 

were selected and analyzed using the model-based fitting procedure described above.  Left 

ventricular end-diastolic pressure was determined from the simultaneous left ventricular pressure 

data by reading off the pressure at the time of ECG R-wave peak. See Chapter 2 for detailed 

methods related to triangle fitting, PDF fitting, and determination of end diastolic pressure.  

 For each E-wave from each subject, the products k•xo and c•Epeak were calculated, and the 

resulting coordinates were plotted in the kxo vs cEpeak plane. For each subject, the collection of E-

wave kxo vs cEpeak coordinates defined a best fit linear regression, and the slope (M) and intercept 

(B) of the regression were calculated. M is the predicted dimensionless load independent index of 

diastolic function (Figure 8.2). The Pearson correlation coefficient for the kxo vs cEpeak regression 

was calculated for each subject and compared between subjects. The values of M and B were 

average and compared by ANOVA between groups (tilt-table group, normal control 

catheterization group, and diastolic dysfunction catheterization group). 

 All parameters, both conventional and model-based, were compared within each tilt-table 

subject between different load states. Percent change relative to supine values was calculated and 
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Figure 8.2. The determination of the load independent index of diastolic function (LIIDF), requires 

multiple E-waves with different shapes. In this case we demonstrate the method applied to 6 waves, 

though in practice more waves may be necessary. Each wave therefore determines one point in the kxo 

vs cEpeak plane, and we color code the waves and corresponding points above for clarity. The slope M of 

the resulting linear regression determined by the points in the kxo vs cEpeak plane a dimensionless load-

independent index of diastolic function. 

compared across subjects. All statistical analysis was carried out using MS-Excel (Microsoft, 

Redmond, WA). 

 

8.3 RESULTS 

8.3.1 Variation of E-wave shape with tilt table position 

 In agreement with earlier studies (7, 9, 14, 22, 24, 25, 30), both E- and A- wave shapes 

varied in response to changes in load generated by changes in tilt table position. Since the PDF 
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Table 8.2 Average values of Doppler indexes and 

PDF parameters in one typical tilt table subject 

at three different preload states 

 Head Up Horizontal Head Down 

Average Doppler indexes, one typical subject 

Epeak, m/s 0.50 ± 0.05 0.55 ± 0.05 0.70 ± 0.04 

AT, s 0.11 ± 0.01 0.10 ± 0.01 0.09 ± 0.01 

DT, s 0.16 ± 0.03 0.14 ± 0.02 0.13 ± 0.01 

Edur, s 0.27 ± 0.03 0.24 ± 0.03 0.22 ± 0.02 

Apeak, m/s 0.42 ± 0.04 0.36 ± 0.04 0.39 ± 0.04 

Adur, s 0.13 ± 0.01 0.13 ± 0.01 0.13 ± 0.01 

E/A 1.2 ± 0.1 1.5 ± 0.1 1.8 ± 0.2 

HR, beats/min 58 ± 7 49 ± 2 56 ± 6 

Average PDF parameter values, same typical subject 

c, • 10
3
 (1/s) 5.6 ± 3.9 11.3 ± 3.0 16.2 ± 5.7 

k, • 10
3
 (1/s

2
) 113 ± 24 198 ± 31 249 ± 21 

xo, m 0.06 ± 0.01 0.06 ± 0.00 0.08 ± 0.02 

    Values are means ± SD. Epeak, peak velocity of E-wave; 

AT, acceleration time; DT, deceleration time; Edur, 

duration of E-wave; Apeak, peak velocity of A-wave; Adur, 

duration of A-wave; E/A, ratio of E-wave to A-wave; HR, 

heart rate.  

parameters are determined from the contour of the waves, changes in load resulted in changes in 

the PDF parameters. Figure 8.3 shows 

representative Doppler waves from a 

subject in the head-up, supine and head-

down position. Table 8.2 summarizes the 

average values for both traditional 

Doppler indexes and PDF parameters 

under different load states i.e. tilt-table 

positions.  

Since subjects had a distribution 

of values for Doppler indexes and PDF 

parameter values in the horizontal tilt-

table position, determining an average 

over all subjects required reference to a 

common baseline. Supine (horizontal) 

was chosen as the baseline tilt table 

position and all values were calculated as 

percent change from horizontal. Table 8.3 

presents both PDF and traditional 

Doppler data as percent change from 

horizontal for both head-up and head-

down tilt.   

 

Table 8.3. Averaged, normalized percent 

increase or decrease relative to baseline 

(horizontal tilt table position) for all tilt table 

subjects 
 Head Up Head Down 

Doppler indexes, normalized percent change 

Epeak, m/s -24 ± 17
a 

+4 ± 14
b 

AT, s +10 ± 12
a 

-9 ± 13
a 

DT, s +3 ± 18
d 

-7 ± 17
a 

Edur, s +7 ± 10
a 

-7 ± 11
a 

Apeak, m/s -2 ± 20
a 

+6 ± 15
a 

Adur, s +0 ± 13
e 

-5 ± 10
a 

E/A -26 ± 20
a 

-5 ± 20
c 

HR (beats/min) +15 ± 9
a 

+8 ± 9
a 

PDF parameters, normalized percent change 

c · 10
3
, 1/s -33 ± 31

a 
+25 ± 48

 a 

k · 10
3
, 1/s

2
 -37 ± 16

 a 
+19 ± 28

 a 

xo, m -5 ± 26
 f 

+5 ± 26
 g 

   Values are means ± SD; n = 16. +, increase; -, decrease. 
a
P < 0.0001; 

b
P < 0.001; 

c
P < 0.01; 

d
P = 0.03; 

e
P = 0.09; 

f
P = 0.4; 

g
P = 0.07. All P values vs. baseline. 
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8.3.2 Determination of predicted load independence in tilt table subjects 

In accordance with the prediction (see Methods 8.2.1) that the maximum driving force 

must be linearly related to peak viscous (resistive) force, a linear regression via least mean 

square error of cEpeak to kxo was performed. Figure 8.3 demonstrates the kxo vs cEpeak regression 

Figure 8.3. A) E- and A-waves acquired from healthy subject at 3 different tilt-table 

positions (HU=head up, HD= head down). Notice the E-wave shapes change with 

load. B) Applying MBIP to the three images to find kxo and cEpeak yields a line with 

constant slope that defines the ventricle’s intrinsic diastolic function. 
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defined by the 3 E-waves in the figure. Figure 8.4A shows a representative maximum driving 

force (kxo) vs. peak resistive force (cEpeak) plot for another subject, showing all measured beats 

plotted in the kxo vs cEpeak plane. Head-up data from two subjects was not included, but their 

head-down and horizontal data fit the maximum driving force (kxo) vs. peak resistive force 

(cEpeak) regression with high r
2
. Among all subjects, the average slope of the maximum driving 

force (kxo) vs. peak resistive force (cEpeak) plot was 1.27 ± 0.09 and the average intercept was 

5.69 ± 1.70. The average r
2
 value for each subjects’ linear regression was r

2
=0.95. The combined 

data from all subjects plotted together yielded a linear regression with r
2
=0.98 (Figure 8.4B). 

 

8.3.3 The Effect of Diastolic Dysfunction on M  

 Using existing simultaneous cath-echo data, we analyzed the maximum driving force (kxo) 

vs peak resistive force (cEpeak) relationship in subjects with significant respiratory (LVEDP) 

Figure 8.4. A) Maximum driving force (kxo, peak AV gradient) vs. peak resistive force (cEpeak) for one 

subject at three different preload states. Note slope of best linear fit is independent of tilt-table position.  

B) Maximum driving force (kxo, peak AV gradient ) vs. peak resistive force (cEpeak) for all (n=16) 

subjects at different preload states. Reported values represent 5-beat average for kxo and cEpeak for each 

subject at each preload state. See text for details. 
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Table 8.4. Comparison of the slope (M), intercept (B), and LVEDP 

for all (n=27) subjects comprised of the tilt table group (n=16) and 

the catheterization-echocardiography group (n=11) 

 Catheterization-

Echocardiography 

Normal 

Catheterization- 

Echocardiography 

Diastolic Dysfunction Tilt Table Normals 

LVEDP, mmHg 13.69 ± 3.87
a
 26.47 ± 4.54

  

Slope M 1.17 ± 0.05
b
 0.98 ± 0.07

d 
1.27 ± 0.09

 

Intercept B 6.69 ± 0.91
c
 10.67 ± 3.35

e 
5.69 ± 1.70

 

r
2
 0.96 ± 0.02 0.90 ± 0.05

 
0.95 ± 0.04

 

   Values are means ± SD. Single paired ANOVA performed between all groups. 
a
P < 0.0001; 

b
P < 0.001 compared with diastolic dysfunction (DD), P = 0.02 

compared with tilt table; 
c
P = 0.03 compared with DD, P = 0.22 compared with 

tilt table; 
d
P < 0.00001 compared with tilt table; 

e
P < 0.001 compared with tilt 

table.  

variation. The results, including statistics, are summarized in Figure 8.5 and Table 8.4. The kxo 

vs cEpeak relation was highly linear for both normal (average r
2
=0.96±0.02) and diastolic 

dysfunction groups 

(average 

r
2
=0.90±0.05). The 

average slope for the 

normal group was 

M=1.17±0.05, and 

the average value for 

the diastolic 

dysfunction group was  M=0.98±0.07, p<0.001 by ANOVA. Additionally, the slope intercept of 

the normal cath-echo group was B=6.69±0.91, while the slope intercept of the diastolic 

dysfunction cath-echo group was B=10.67±3.35, p=0.03 by ANOVA. The difference in M 

Figure 8.5 A) The heavier lines denote average values, lighter lines above and below denote one 

standard deviation relative to the mean LVEDP. B) Regression slope (M) comparison between groups. 

The thick-line is the average value from the tilt-table study. Dotted lines are one standard-deviation 

relative to the mean value. C) Intercept (B) comparison between groups. The thick-line is average value 

from the tilt-table study. Dotted lines are one standard deviation relative to the mean intercept value. 

Nml- normal group. DD- diastolic dysfunction group. See text for details. 
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between the cath-echo diastolic dysfunction subjects and the healthy tilt-table subjects showed 

stronger statistical significance (p<0.00001) compared to the difference in M between the cath-

echo normal subjects and the healthy tilt-table subjects (p=0.02). The difference in intercept B is 

also statistically significant between diastolic dysfunction subjects and tilt-table subjects, 

p<0.0001. There was no statistically significant difference, however, between the intercept of the 

normal cath-echo subjects and the tilt-table subjects.  

 

8.4 DISCUSSION 

8.4.1 Summary of Initial Results 

 Maximum elastance is an experimentally validated, load-independent systolic function 

index stemming from the time-varying elastance paradigm that decoupled extrinsic load from 

(intrinsic) contractility. Although Doppler-echocardiography is the preferred method of diastolic 

function assessment, all echo-derived indexes are load-dependent and no invasive or non-

invasive load-independent index of filling exists. In this study, we used a kinematic filling 

paradigm (the Parameterized Diastolic Filling formalism) to predict and derive the load-

independent (dimensionless) index M, defined by the slope of the peak-driving force (kxo∝peak 

atrio-ventricular gradient) to maximum viscoelastic resistive force (cEpeak) relation. To validate 

load-independence, we analyzed E-waves recorded while load was varied via tilt-table (head up, 

horizontal, and head down) in 16 healthy volunteers.  The effect of diastolic dysfunction on M 

was assessed by analysis of preexisting simultaneous cath-echo data in 6 diastolic dysfunction 

vs. 5 control subjects. M was found to be independent of load variation in all subjects and 

capable of differentiating between normal subjects and subjects with diastolic dysfunction.  
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8.4.2 Doppler Echocardiography and Load Dependence 

A major challenge facing interpretation of echo-derived DF indexes is that the indexes in 

current clinical use (Epeak, AT, DT, E/A, VTI...) are load-dependent (3, 7, 9, 11, 13, 17, 24, 25, 

30-32, 34, 35, 38). Despite this uncertainty, it is often assumed that changes observed in the 

indexes represent changes in pathological processes. Studies have clearly established, however, 

that traditional transmitral flow-derived diastolic indexes are load-dependent and therefore 

changes in DF indexes could be due to load variability rather than due to pathology. 

  Using blood pressure cuffs to non-invasively reduce preload in 12 normal subjects, 

Triulzi et al. (34), for example, found Epeak, E/A, VTI, DT and AT to change significantly with 

preload, and concluded that preload reduction in normal subjects produces a “pattern that mimics 

changes in left ventricular diastolic dysfunction”. By altering preload with postural changes, 

Downes et al. (7) found that though E/A ratio changed, it did not change enough for normal 

values to migrate into the abnormal range and concluded that “simple changes in venous return 

do not ‘normalize’ an abnormal pattern, nor do they ‘abnormalize’ a normal pattern”. Kmetzo et 

al. (13) however, found that 80 degree head up tilt produced abnormal relaxation patterns in 22 

normal heart healthy volunteers.   

Newer load independent Doppler-derived indexes of DF have been proposed (Vp, E’, 

E/E’) but all have been shown to have load dependence. E’ has been noted to be load 

independent in patients with chronic ischemic syndrome (37), but has shown variability with 

changing preload in normal subjects (22, 23), in animals (12), and in patients undergoing 

hemodialysis (20). Vp has shown load independence and strong correlation to τ (time constant of 

isovolumic relaxation) in patients undergoing cardiac surgery (8) but proven to be load 
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dependent in normal volunteers (22). Even E/E’, which many studies find to be load independent 

(15, 20, 22), has proved in animal experiments to be preload dependent (12). 

 Despite studies that have shown diastolic function indexes to be load-dependent, no 

studies have derived diastolic indexes that compensate for load. Recent studies (10, 33) have 

shown however that intrinsic properties of the ventricle may correlate better with load-induced 

changes in the Doppler indexes rather than the Doppler indexes themselves. For example Tanabe 

et al. (33) found that the change in E/A ratio following a decrease in preload correlated strongly 

with an invasively derived intrinsic property of the ventricle.   

In contrast, Hasegawa et al. (10) observed peak volumetric flow to be linearly related to 

the peak AV pressure gradient (r
2
 = 0.94) in accordance with the Bernoulli relation relating 

pressure gradient to flow velocity. Although load was not explicitly altered, the observed change 

in peak AV gradient is consistent with a variable load. Interestingly, the slope of the observed 

relation is highly linear and is nearly indistinguishable between the control and HF groups. 

Though superficially similar in appearance, the relationship of kxo to cEpeak differs importantly 

from previous work by Hasegawa et al. (10) who compared peak volumetric flow to peak AV 

gradient ([mitral valve area]•Epeak vs. kxo using our terminology) at different loading conditions. 

First, unlike the slope of the Hasegawa et al. relationship, the slope of the peak AV gradient (kxo) 

to peak resistive force (cEpeak) relationship is dimensionless. Second and more importantly, the 

relation in the current study accounts for the resistive (viscoelastic) component of the filling 

process, whereas the Hasegawa et al. relation has no explicit term accounting for resistive forces. 

The maximum driving force (peak AV gradient kxo) to peak resistive force (cEpeak) relationship 

presented in this study can therefore be viewed as complementary to, but independent of, the 

prior work of Hasegawa et al. Finally, it is important to note that while the Hasegawa et al. 
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relation remains linear in the face of load variation, it also does not change in the setting of heart 

failure and therefore in our view reflects the applicability of the Bernoulli equation but does not 

serve as a useful load independent index of diastolic function. 

 

8.4.3 Applying the PDF model to the Load Independent Index Problem 

The PDF model helps elucidate the connection between the Hasegawa et al. relation 

between peak flow rate and peak pressure gradient (10) and the current study. In agreement with 

Hasegawa et al., a plot (not shown) of Epeak vs. kxo (the peak AV gradient equivalent) using our 

data also generates a linear relation. The slope has units of (s/kg); the linear regression relation is 

Epeak = 0.017(kxo) + 0.39 r
2
=0.78. The fact that an approximately linear relation is observed is 

predictable in part from the non-steady Bernoulli relation which relates pressure gradient to flow 

velocity. 

A stronger and more meaningful correlation is achieved by the maximum driving force 

(peak AV gradient kxo) vs. peak resistive force (cEpeak) relation which attains r
2
 = .98 as 

compared to the r
2
= 0.78 for the Epeak vs. peak AV gradient (kxo) relation. In addition to attaining 

a stronger correlation, the slope of the maximum driving force (peak AV gradient, kxo) vs. peak 

resistive force (cEpeak) relation is dimensionless. It complements the Hasegawa et al. observation 

by explicitly including the effect of damping.  A high value for cEpeak implies a large peak 

resistive force must be generated to achieve the observed flow. This higher resistive force 

indicates that conversion of  (maximum A-V gradient) potential energy into kinetic energy 

(flow) is less efficient. The PDF (viscoelastic) parameter c is important because it has been 

shown to be significantly different from normal in pathophysiologic states with delayed 

relaxation patterns such as diabetes(5, 26). A higher value of the parameter c in diabetic (human, 
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Figure 8.6. The left panel shows 9 E- and A- wave pairs from a subject with an end-diastolic pressure (EDP) of 35 mmHg 

(abnormal diastolic function). The right pane shows 7 E- and A- wave pairs from a subject with an EDP=12mmHg 

(normal diastolic function). For each E-wave a corresponding cEpeak and kxo value was determined and plotted on the kxo 

vs cEpeak plot, as described in figure 2. Thus the 9 E-waves with dotted borders defined 9 points, shown with dotted 

circles. Similarly the 7 E-waves with solid borders defined 7 points, shown with solid circles. The kxo vs cEpeak regression 

for 9 dotted points was M=0.95, B=19.0, r
2
=0.98, while the regression for the 7 solid points was M=1.15, B=5.10, 

r
2
=0.99. Notice both regressions are highly linear, but the subject with abnormal diastolic function has a lower slope and 

higher intercept compared to the normal subject.  

 

and rat) hearts implies that diabetic hearts, compared to normal hearts, are less efficient in being 

able to convert potential energy (pressure gradient) into kinetic (flow) energy. Therefore one 

would expect that unlike the Epeak vs. peak AV gradient (kxo) relationship, the maximum driving 

force (peak AV gradient kxo) vs. peak resistive force (cEpeak) relationship will have quantifiable 

differences between normal and abnormal LV function states.  

Indeed Figure 8.5 demonstrates compelling evidence that both slope M and intercept B, 

of the kxo vs cEpeak linear regression, change in LV diastolic dysfunction states. The diastolic 

dysfunction group had lower M values and higher B values compared to the normal cath-echo 

group and the healthy tilt-table group. The normal cath-echo group had the same B values as the 

healthy tilt-table group and slightly lower M values. This difference in M between the normal 
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cath-echo subjects and the tilt-table subjects may be due to the higher average age of the normal 

cath-echo subjects (44 yo) relative to the healthy tilt-table group (25 yo).  

These retrospective data, particularly because they were not acquired with the specific 

intent of determining load independence, strongly support the view that M and B can 

differentiate between normal and pathologic states. Recently we analyzed a series of transmitral 

contours from 2 additional subjects undergoing simultaneous catherization and 

echocardiography, as described in Chapter 2. The subjects had normal and abnormal diastolic 

function (EDP of 12 mmHg vs 35 mmHg respectively), and plotting measured E-waves for both 

subjects in the kxo vs cEpeak plane shows a clear difference in both M and B for the two subjects 

(See Figure 8.6). 

 

8.4.4 Analysis of the kxo vs. cEpeak relation: the role of randomness 

While the fact the cEpeak=kx(tpeak) for all E-wave may suggest that Eq. 8.6 is a tautology, 

that claim may be easily invalidated by analysis of randomly generated E-waves. While 

randomly generated E-waves have identical cEpeak and kx(tpeak) values, they do not in general fall 

on a single line in the kxo vs cEpeak plot . If our observations were a tautology, these E-waves 

would show a linear relationship between k, xo and c. The graph of maximum driving force (peak 

AV gradient kxo) vs. peak resistive force (cEpeak) using such random values (within the 

physiologic range) is shown in Figure 8.7. 

Figure 8.7 shows that not all values of k, xo and c generate a linear relationship between 

maximum driving force (peak AV gradient kxo) and peak resistive force (cEpeak).  Therefore the 

observed linear relation between maximum driving force (kxo) and peak resistive force (cEpeak) is 

not a general property of a damped spring model assembled from arbitrary components.   
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It should be noted that k, c, and xo are, from a mathematical standpoint, independent 

parameters. There is therefore no a-priori correlation between k, c, xo, or any combination of the 

parameters that can be predicted. These parameters become physiologically coupled, and their 

magnitudes are constrained, once they are fit to clinical data (the E-wave). Once determined by 

fitting to actual E-waves, several correlations can be seen, such as Epeak to kxo, k to cEpeak, and c 

to kxo. However, kxo to cEpeak is the strongest observed correlation, and is the only one with a 

dimensionless slope amenable to a simple physiological interpretation. 

 

 

Figure 8.7 A) Three typical model-generated E waves created by randomly picking values for xo, c, k, 

known to be in the physiologic range. B) Maximum driving force (kxo) vs. peak resistive force (cEpeak) 

for the three random E-waves shown in a). Note deterioration of r
2
. C) Increase in randomly generated 

E-wave sample size to n=10 indicates further, substantial deterioration (r
2
=0.01) of the observed, highly 

linear, maximum driving force (kxo, peak AV gradient) to peak resistive force (cEpeak) relationship. See 

text for details. 



 

 257 

8.4.5 Physiological Meaning and Application of the Load Independent Index 

 The previous analysis and results provide a useful framework for understanding the 

meaning of M and B. In the kxo vs cEpeak plane, each E-wave is represented as a point, and 

multiple E-waves define curves in the plane. Conceptually speaking, kxo is the analogue for the 

peak atrioventricular pressure gradient driving flow. Similarly, cEpeak quantifies the lumped 

maximum resistive force opposing flow. As load increases, greater force is required to drive 

filling, and kxo is expected to rise. Because of the linear relationship in Eq. 8.6, cEpeak is expected 

to rise as well. A ventricle with E-waves that define a kxo vs cEpeak regression with low slope M 

would have a fairly large increase in cEpeak for a given increase in kxo. A ventricle with a high 

value for M would on the other hand have a lower increase in cEpeak for a given increase in kxo 

(see Figure 8.8). Thus ventricles with high M values are expected to more efficiently 

accommodate increasing load because they have a comparably less significant rise in resistive 

forces as load and driving forces increase. This suggests that ventricles with high M values 

would be expected to have normal intrinsic diastolic function, whereas ventricles with low M 

values would be expected to have intrinsic diastolic dysfunction. Furthermore, ventricles with M 

values lower than 1 would have kxo vs cEpeak regression lines that intersect the kxo=cEpeak 

physiological barrier.  

 Ventricles constrained to a kxo vs cEpeak regression with low M would therefore have a limit 

placed on the amount of load variation that their ventricles could accommodate. Indeed the only 

method for accommodating more load would be to increase the intercept B, so as to have more 

room in the physiological region of the kxo vs cEpeak regression. This would also have the effect 

of shifting E-waves from the overdamped region into the underdamped region. Thus a theoretical 

analysis predicts that B may serve a compensatory role in diastolic dysfunction. Given that the 
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Figure 8.8. Theoretical kxo vs cEpeak relations for subjects with normal and abnormal diastolic function. 

As demonstrated in the results, diastolic dysfunction leads is associated with higher intercept and lower 

slope. The classic clinical progression of diastolic dysfunction, shown in the lower panel, can be 

visualized in the kxo vs cEpeak plane (right panel). See text for details.  

units of B are also those of kxo, it is not unreasonable to suspect that B may be a surrogate of 

average filling pressures. Indeed, in diastolic dysfunction subjects, elevated LVEDP is thought to 

be a compensatory mechanism that allows effective filling to continue in the face of relaxation or 

stiffness abnormalities.  

 This compensatory increase in LVEDP is also thought to cause a shift in E-wave pattern 

from delayed relaxation (over-damped) back to pseudonormal (under-damped) in subjects with 

progressive diastolic dysfunction. In the kxo vs cEpeak plane, this would be analogous to 

increasing the kxo coordinate so that an E-wave coordinate moves from the over-damped to the 

under-damped regime. Clinically the pseudonormal pattern is unmasked (it shifts back to delayed 
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relaxation) in response to preload reduction by Valsalva maneuver (18), and this would be 

equivalent to shifting an E-wave from the underdamped regime back down into the over-damped 

regime in the kxo vs cEpeak plane. The constrictive restrictive pattern does not have a clear over-

damped or under-damped pattern, but certainly would be associated with higher kxo and cEpeak 

values and would be a shift vertically and to the right from the pseudonormal E-wave. It is 

encouraging that predictions from the kxo vs cEpeak plane are consistent with known physiology 

and can be mapped onto the clinically established progression of diastolic dysfunction spectrum.  

 

8.5 LIMITATIONS 

A minor limitation is the absence of end-diastolic volume (EDV) data as a correlate of 

preload alteration at different stages of tilt. EDV could not be reliably calculated, because only a 

4-chamber view was archived. Transthoracic echocardiographic studies have shown that EDV 

calculated from 4-chamber views alone achieve only an r =0.61 correlation with true EDV (36).  

Though exact preload change with tilt alteration is not reported, many studies have altered 

preload using tilt table methodology(7, 9, 13, 22, 24, 25, 30, 37), and it is certain that preload is 

highest in head-down tilt and lowest in head-up tilt(6, 9). 

A second limitation is that the PDF formalism is most applicable to E-waves having both 

ascending and descending portions. E- and A-waves become difficult to separate and discern 

when the A-wave merges with the E-wave and covers more than 2/3 of the E-wave 

deceleration(4) which typically occurs at HR > 100bpm. Thus M values for subjects with high 

hearts rates (> 100 bpm) were not computed. In the current study, only 2 of 16 subjects during 

head-up tilt had limited E-wave deceleration portions. Hence head-up data from these two 

subjects were not fit by the PDF formalism.  
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Finally, in our tilt-table study, all data was acquired from heart healthy volunteers and so 

a detailed comparison of the maximum driving force (peak A-V gradient kxo) vs. peak resistive 

force (cEpeak) relation between normal and pathologic states cannot be made. We predict, and 

results from analysis of previously acquired data obtained for other purposes in a modest sample 

size show that the slope and intercept of the maximum driving force (peak AV gradient kxo) vs. 

peak resistive force (cEpeak) relation changes (decreases) in the setting of dysfunction. The full 

potential of the index resides in performance of follow-up echocardiographic studies, where each 

person is their own control, showing alteration of E-wave morphology in response to 

pharmacologic therapy. Whether observed E-wave changes are due to load, or due to intrinsic 

changes in the LV in response to therapy (LV remodeling), could be addressed via slope M and 

intercept B.  Because no prediction regarding the existence of any LIIF or its noninvasive 

validation in normal subjects has been previously achieved, the proposed approach is a 

reasonable first step. 

 

8.6 Additional Results 

8.6.1 Diastolic Reserve 

Introduction 

Because the left ventricle (LV) is a suction pump the kinematics of LV filling obey the 

laws of damped simple harmxonic oscillatory (SHO) motion. Thus echocardiographic early 

transmitral flow velocity contours (E-waves) manifest underdamped or overdamped patterns. As 

we show in the current Chapter, E-wave shape changes with changing load due to respiratory 

variation or body tilt angle. However, the transition from overdamped to underdamped filling 

pattern is difficult to predict in practice. The results of the current Chapter suggest that E-wave 
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shape variation is constrained by a constant kxo vs cEpeak regression, and further analysis of this 

regression is likely to yield insights regarding the transition of E-wave filling patterns from 

overdamped to underdamped regimes.  

 

Approach and Hypothesis 

In Figure 8.1 we demonstrate that the transition from underdamped to overdamped 

kinematic filling may be easily visualized in the kxo vs cEpeak plane, which we call for 

convenience the forces of filling plane, by a line through the origin with a slope of e/2. Thus, for 

any E-wave, one can determine a distance between the E-wave (cEpeak, kxo) coordinate and the 

e/2 line. Furthermore, because a set of E-wave determines a linear kxo vs cEpeak regression, one 

can determine the distance from the end of the linear regression to the e/2 overdamped to 

underdamped transition line. Thus, for subjects with only underdamped waves, we define 

diastolic reserve as the distance by which the kxo vs cEpeak line must be extended in order to enter 

Figure 8.9. The forces of filling plane for a subject with diastolic dysfunction (left) and for a subject 

with normal diastolic function (right). The length of the line with slope M, starting at the maximum 

point on the kxo vs. cEpeak plot, and ending on the critically damped border line (red), defines a subject’s 

diastolic reserve. 
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the overdamped regime. To test this approach, we use the E-waves measured from the 10 

catheterization subjects in the current study (5 diastolic dysfunction (DD) (LVEDP>19), 5 

controls). We calculate diastolic reserve and plot it in the forces of filling plane. 

 

Results 

Figure 8.9 shows example results from 2 subjects. Notice that a lower slope in the subject 

with diastolic dysfunction leads to a smaller 

distance between the kxo vs cEpeak regression 

and the overdamped/underdamped transition 

line. The results in Figure 8.10 were 

consistent across all subjects. Indeed subjects 

with diastolic dysfunction exhibited 

significantly less diastolic reserve (p<0.05) 

than controls (Figure 8.10). We conclude that 

the transition between underdamped and 

overdamped kinematics in response to load 

variation provides a physiologic limit from 

which diastolic reserve can be determined.  

 

8.6.2 Kinematic Filling Efficieny in the kxo vs cEpeak Plane 

Introduction 

In previous work (39) we have described a novel index of diastolic filling efficiency 

called the kinematic filling efficiency index (KFEI). KFEI is a dimensionless index defined by 

Figure 8.10. Subjects with diastolic dysfunction 

(DD) exhibited significantly decreased diastolic 

reserve (p<0.05) compared to normal controls 

(Nml). 
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the ratio of measured E-wave area to 

the idealized lossless E-wave area. 

KFEI varies between 1 (for 

undamped waves) and 0.5 (for 

critically or overdamped waves) 

(Figure 8.11). In one study (39) KFEI 

was calculated in diabetic and non-

diabetic subjects and found to 

differentiate between groups, even 

though conventional indexes like E-

wave deceleration time could not. KFEI has an intriguing connection to the forces of filling plane 

that can be appreciated by a more detailed mathematical analysis of the KFEI index.  

 

Theoretical Derivation 

 In Chapter 2 we derived a general expression for E-wave area : 
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 Equation 8.8  

, where y is defined as in Eq 8.7 above. We also noted that in the undamped limit (y=c=0), the E-

wave area was equal to 2xo. Thus, KFEI, the ratio of E-wave area to idealized undamped E-wave 

area is simply: 
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Figure 8.11. Comparison of KFEI between E-wave with low 

damping (left) and high damping (right). Green areas represent 

the equivalent E-wave assuming zero damping. KFEI is 

defined as the ratio of orange area to green area, and is 

expected to be lower in subjects with higher E-wave damping. 
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Thus, KFEI is a function of y, and can be inverted to yield the following expression: 

 

y=
ln 2KFEI!1( )

!
2 + ln2 2KFEI!1( )

 Equation 8.10  

Applying Equation 8.10 above, we may determine the ratio of kxo to cEpeak in terms of KFEI and 

plot the resulting expression in Figure 8.12: 
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 Thus the location on an E-wave 

in the kxo vs cEpeak plane determines the 

KFEI index exactly, and all E-waves 

along lines going through the origin in 

the kxo vs cEpeak plane have equal 

KFEI.  

 

Application to Previous Results 

In previous work diabetic and non-diabetic patients were compared using both the KFEI 

index and more conventional parameters like E-wave deceleration time. The results showed 

clearly that KFEI was significantly different between groups, even though deceleration time was 

not distinguishable. Given the connection between KFEI and the forces of filling plane, it is 

intriguing to visualize the KFEI results of the previous study in the context of Equation 8.11. In 

Figure 8.13 we show the average (cEpeak, kxo) coordinates for 15 diabetic (red) and 18 matched 

non-diabetic subjects (blue) in the forces of filling plane. Lines of constant KFEI are 

superimposed in the forces of filling plane using measured average KFEI values from diabetic 

Figure 8.12. Theoretical plot of kxo/cEpeak vs the 

kinematic filling efficiency index (KFEI). The critically 

damped E-wave has KFEI of 0.5 and kxo to cEpeak ratio of 

e/2, whereas the undamped E-wave has KFEI equal to 1 

and infinite kxo to cEpeak ratio.  
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and non-diabetic subjects. The difference in 

average KFEI can be clearly visualized in the 

forces of filling plane because the diabetic 

subjects fall along a constant KFEI line that is 

shallower than the constant KFEI line that non-

diabetic subjects follow. It is encouraging to see 

that multiple lines of inquiry lead to consistent 

and complimentary methods for assessment of 

diastolic function, and further inquiry towards 

the load dependence of KFEI is warranted.  

 

8.6 CONCLUSIONS 

It is known that changing tilt-table position alters load in a predictable manner and affects 

E-waves in a predictable way(3, 7, 9, 11, 13, 17, 24, 25, 28, 30-32, 34, 35, 38). Changes in load 

thereby affect the E-wave determined PDF parameters (k, xo, and c). The observed E-wave 

variation reflects the physiologic mechanisms that respond to changes in load. Because the slope 

M of the maximum driving force (peak AV gradient kxo) vs. peak resistive force (cEpeak) 

relationship remains constant in response to alteration of tilt-table induced load we conclude that 

M represents a load-independent index of filling in normal subjects. To determine if M 

differentiates between control and diastolic dysfunction states, we analyzed previously acquired 

cath-echo data. Results show M to be significantly lower in diastolic dysfunction states (6 

subjects with increased LVEDP and normal EF), compared to control states (5 subjects with 

normal LVEDP and normal EF). Taken together, these results suggest that analysis of transmitral 

Figure 8.13. Plot of diabetic (red) and nondiabetic 

(blue) subjects in the kxo vs cEpeak plane, showing 

lines of constant KFEI. In agreement with 

previous work, diabetic subjects have lower KFEI 

than non-diabetic subjects. See text for details.  
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flow in the kxo vs cEpeak plane may decouple changes in load from changes in intrinsic function, 

and allow for more robust clinical determination of diastolic dysfunction. In addition, there are 

numerous intriguing mathematical insight that may be appreciated from further analysis of 

kinematic filling in the kxo vs cEpeak plane. New indexes may be extracted from E-wave location 

in the plane, and previously determined indexes may be mapped onto the kxo vs cEpeak plane in 

novel and enlightening ways.  
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CHAPTER 9. 

LOAD INDEPENDENT INDEX OF DIASTOLIC FUNCTION: VALIDATION 

IN THE FACE OF EXTENDED LOAD VARIATION 
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9.1 INTRODUCTION 

Diastolic function is defined by dynamic interactions between load, ventricular stiffness 

and relaxation (9). While cardiac catheterization is the “gold-standard” for diastolic function 

assessment, echocardiography is preferred in the clinical and research setting.   

 Historically, geometric features of the echo-determined transmitral flow velocity contours 

during early rapid-filling and atrial systole (E- and A-waves) have been used to assess intrinsic 

diastolic function (stiffness and relaxation). Yet all echo-based indexes are known to depend on 

both intrinsic diastolic function and load (1, 3, 10, 12, 19-21, 23) and thus echo-based diastolic 

function indexes are all load-dependent.  

In the Chapter 1 we hypothesized that load can be decoupled from intrinsic diastolic 

function by analyzing a set of multiple E-waves acquired at varying loads (17). The proposed 

load-independent index of diastolic function , called M, was validated in both healthy volunteers 

subjected to tilt-table maneuvers and cardiac catheterization patients with significant respiratory 

variation. We found that M was load-independent, correlated with diastolic function, and 

provided patient specific constraints for possible E-wave shapes. 

 While these initial results are promising, application of M in a wide variety of 

pathophysiologic states is premature. Indeed, it may be the case that M, in analogy to all 

previously reported load independent indexes of diastolic function (7, 10, 11, 13-15, 22) is load-

independent over a narrow range but manifests load-dependence under a broader range of load 

variation.  

In this work we consider the physiologic response to premature ventricular contractions 

(PVC), and the effect of PVCs on M. It is known that the physiologic response to PVCs 

generates a broad range of E-wave shapes (6, 18, 24). We capitalize on this extended range of E-
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wave shapes and assess whether E-waves following a PVC generate a value for M that is 

consistent with the value for M generated by steady state beats. 

 

9.2 METHODS 

9.2.1 Patient Selection 

Fifteen subjects were selected from the existing Cardiovascular Biophysics Laboratory 

database (see Chapter 2) of simultaneous high-fidelity (Millar) left ventricular (LV) pressure, 

aortic root pressure, and Doppler echocardiographic recordings of transmitral flow (Table 9.1). 

Inclusion criteria for data set selection included the presence of at least one PVC (spontaneous or 

catheter induced) during data acquisition, normal sinus rhythm, no significant merging between 

E- and A- waves (defined as any transmitral profile where more than two-thirds of the E-wave is 

obscured), no evidence of valvular disease, no evidence of substantial coronary arteries 

Table 9.1. Demographics of simultaneous catheterization-echocardiography subjects analyzed 

retrospectively. 

Subject Age (y) Height Weight (lbs) LVEF (%) EDV (mL) LVEDP  (mm Hg) 

1 59 5'8" 192 55 255 35 (3) 

2 40 6'0" 220 62 167 17 (2) 

3 66 5'2" 135 80 139 23 (2) 

4 37 5'6" 138 84 120 18 (2) 

5 60 5'9" 170 80 160  21 (1) 

6 53 5'2" 156 81 173 18 (3) 

7 77 5'5" 192 65 125 22 (2) 

8 56 5'5" 220 82 167 26 (4) 

9 46 5'11" 242 85 146 11 (5) 

10 58 5'11" 185 63 127 21 (2) 

11 72 5'5" 135 76 68 31 (3) 

12 52 5'11" 275 75 161 19 (2) 

13 74 5'11" 196 75 146 14 (1) 

14 69 5'2" 178 62 165 15 (4) 

15 53 5'9" 135 74 160 15 (1) 

LVEF = ventriculographic left ventricular ejection fraction; EDV = end-diastolic volume; LVEDP = left 

ventricular end-diastolic pressure, values reported as means (SD) 
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narrowing (>50% stenosis) or active ischemia, no evidence of 1
st
 degree AV block on ECG  (PR 

interval >200 msec), and normal ejection fraction (EF)>50%.  

 

9.2.2 Simultaneous echocardiographic and high-fidelity pressure data acquisition 

See Chapter 2 for a detailed description of the method by which simultaneous 

echocardiographic and high-fidelity pressure data is acquired. Representative data for subjects 

analyzed in the present study is shown in Figure 9.1 and Table 9.2. The first two beats following 

PVCs represented ‘perturbed load’ beats and defined Group-1 and Group-2 beats respectively. 

Remaining beats represented ‘baseline’ beats and were placed into Group-3.  Furthermore the 2 

or 3 analyzable beats that directly follow each group-1 and -2 perturbed beat defined a subset of 

Group-3 and called the “matching beats”. 

 

9.2.3 Doppler E-wave Analysis and Hemodynamic Analysis 

For each subject, approximately 14-34 beats of transmitral flow data, including the PVC 

beat(s), were recorded and analyzed. Conventional triangle shape approximations of E- and A-

waves provided peak velocities (Epeak and Apeak), E-wave acceleration and deceleration times (AT 

and DT), and E-wave duration and velocity-time integral (Edur and EVTI). In addition, E-waves 

were subjected to parametrized diastolic filling (PDF) model-based image processing to yield E-

wave specific kinematic parameters c, k, and xo. These parameters reflect ventricular 

relaxation/viscoelasticity, stiffness, and initial load, respectively. Methods for determining PDF 

parameters and triangle parameters are presented in greater detail in Chapter 2.  
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 End-diastolic (LVEDP) and peak-systolic (LVPmax) pressures, aortic minimum and 

maximum (AoPmin and AoPmax) pressures, pulse pressure (PP = AoPmax,- AoPmin), and peak 

pressure derivative (+dP/dtmax) were measured for all beats (Figure 9.1). For 3 patients with no 

aortic pressure data, only LV measures were assessed.  

 

9.2.4 Statistical Analysis and Inter-Group Comparisons 

 The mean and standard deviation of all measured variables was determined for the 

Group-3 beats. In addition, the overall average Group-3 E-wave contour was determined by 

aligning (at t=0) and averaging (over Δt=0.5s) all steady-state PDF contours. Additionally, a 

Figure 9.1. Typical data showing six consecutive beats from one subject. Relevant parameters and definitions 

shown. Left ventricular pressure, aortic pressure, ECG tracing, and model-fit E- and A-waves were all 

temporally synchronized as detailed in methods. Note the ejecting premature ventricular contraction (PVC) 

before t = 2s. Group-1(first post-PVC beat), Group-2 (second post-PVC beat) and Group-3 (control beats)  are 

shown. The two Group-3 beats at t=5s and 6s represent “matching beats” for the preceding post-PVC beats. Pre-

PVC filling beats (crossed off), were not included in analysis. LVEDP = end diastolic pressure; LVPmax = 

maximum left ventricular pressure of fourth beat; AoPmax = maximum aortic pressure associated with the fourth 

beat; AoPmin = minimum aortic pressure associated with the fourth beat. See text for details. 
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mean square error (MSE) for a given E-wave was determined by calculating the square root of 

the residual between the E-wave of interest and the (aligned) Group-3 average E-wave.  

To account for steady-state physiological beat to beat variation, a modified z-score, zn-3, 

was defined relative to steady state for each variable of interest (i.e. Epeak, DT, etc) as: 

 

z
n!3

=
x
n
! x

3

"
3

 Equation 9.1  

, where  n=1 or 2 and xn, <x>3, and s3 is the value, Group-3 average, and standard 

deviation, respectively, for the variable of interest. For example, a DT z1-3 > 1 would imply that 

DT from a Group-1 beat exceeded the Group-3 mean in excess of 1 Group-3 standard deviation.  

Intersubject comparison of zn-3 values was achieved by determining zn-3
*
, which is defined 

as the average of all zn-3 positive magnitudes across all beats. For example, a subject having 2 

beats with Epeak z1-3 values of (-1) and (+2), would have an Epeak z1-3
*
 value of 1.5.  

Finally, (zn-3*)AVG, defined as the overall effective z-score, was calculated (for each 

variable of interest) by averaging the individual zn-3
*
 values across all subjects. For example, a 

DT (z1-3*)AVG > 2  would indicate that across all subjects, the average Group 1 DT value deviated 

from its respective Group 3 mean by more than  2 respective Group 3 deviations.  Microsoft 

Excel (Microsoft, Redmond WA) was utilized for all statistical analysis and calculations.  

 

9.2.5 Calculation of Load Independent Index of Filling (M) 

The method described in Chapter 8 was applied to plot and determine the kxo vs cEpeak 

regression with slope M and intercept B. For each subject, MSteadyState, BSteadyState, and r
2

SteadyState 

defined the slope, intercept, and r
2
 of the Group-3 (without “Matching Beats”) kxo vs. cEpeak 

regression. The kxo vs. cEpeak plot using all E-waves defined MAllBeats, BAllBeats, and r
2

AllBeats. The 

kxo vs. cEpeak plot generated from Group-1 -2 and associated “matching beats” as described 
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above defined MLoadPertrubed, BLoadPertrubed, and r
2

LoadPertrubed. Extended load-independence of M was 

tested in each patient by paired two-tailed t-tests between perturbed (MLoadPerturbed) and steady-

state (MSteadyState, MAllBeats) slopes. E-wave analysis and subsequent calculation of M was 

performed by two independent observers. 

 

9.3 RESULTS 

 On average, 17 Group-3, 2 Group-1 and 2 Group-2 beats were analyzed per subject. In 

some subjects unequal numbers of Group-1 and -2 beats were analyzed because of poor data. 

The ratio of load-perturbed group-1 and -2 beats to “matched beats” ranged from 1:3 for subjects 

with only 1 load-perturbed E-wave to 4:1 for subjects with multiple load-perturbed E-waves. See 

Table 9.2 for details.  

 

Table 9.2. Summary of M and r
2
 values for all subjects for load-perturbed, steady-state and all beats combined 

Sub. n1 n2 n3 nMatch E/A1 E/A2 E/A3 

**
MSteady

-State 

*
MAll

-Beats 

***
MLoad-

Perturbed 

r
2

Steady

-State 

r
2

All-

Beats 

r
2
 Load-

Perturbed 

1 1 1 25 4 0.9 0.82 1.01 1.01 1.05 1.22 0.98 0.95 0.98 

2 1 0 19 3 1.32 NA 1.14 1.02 1.02 1.09 0.98 0.97 0.96 

3 2 2 10 4 0.89 0.76 0.85 0.99 1.18 1.24 0.94 0.95 0.92 

4 1 0 23 3 1.52 NA 1.21 1.15 1.14 1.11 0.95 0.97 1.00 

5 1 1 15 3 0.89 1.10 1.02 0.88 0.93 0.86 0.98 0.95 0.93 

6 1 0 13 3 0.77 NA 1.26 1.10 1.11 1.20 1.00 0.99 0.94 

7 2 3 11 4 1.29 1.02 1.02 1.18 1.19 1.15 0.99 0.97 0.88 

8 2 1 13 4 1.21 1.07 1.08 1.05 1.07 1.15 0.98 0.93 0.85 

9 3 3 27 6 0.78 0.99 0.93 1.04 1.10 1.18 0.99 0.99 1.00 

10 2 2 14 6 1.13 1.20 1.00 1.21 1.10 0.91 0.98 0.93 0.85 

11 10 6 18 4 1.03 1.17 1.20 0.89 0.97 0.97 0.96 0.91 0.90 

12 2 2 16 4 1.14 1.35 1.20 1.09 1.16 1.18 0.99 0.99 0.99 

13 1 1 14 2 0.57 0.63 0.75 1.14 1.15 1.15 0.99 0.99 0.98 

14 3 2 20 2 1.36 0.80 0.75 1.16 1.13 1.16 0.95 0.97 0.98 

15 3 2 16 5 1.65 1.65 1.48 1.09 1.12 1.18 0.99 0.99 0.99 

NA = Not Available. Sub.- Subject 

n1, n2, n3 and nMatch are the number of beats in Groups-1, -2, -3 and “matching group” respectively. E/An is the 

Group-n Epeak/Apeak average ratio. See text for M and r
2
 naming conventions. 

*
MLoadPerturbed vs MAllBeats p=0.34.  

**
MLoadPerturbed vs MSteadyState p=0.18. 

***
 MSteadyState vs MAllBeats p=0.14 (all p-values reflect two-tailed paired t-test). 
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Figure 9.2 Representative Group-1, Group-2 and Group-3 

pulsed wave transmitral flow-velocity images from a single 

patient with a superimposed parametrized diastolic filling 

(PDF) model-predicted fit to each E-wave. All E-waves are 

acquired in the same individual, but E-wave shapes are 

strikingly different. See text for details. 

9.3.1 Comparison of E-wave shapes between Group-1 and Group-3 

Figure 9.2 shows representative beats from one subject with marked Group-1 and -2 E-

wave shape alterations relative to steady-state. 9 subjects had Group-1 beats with lower Epeak 

(Epeak z1-3 < 0) and higher DT values relative to averaged Group-3 values. The remaining 6 

subjects had beats with Epeak z1-3 > 0. Averaged over all 11 subjects, Epeak (z1-3*)AVG=2.38, DT    

(z1-3*)AVG=2.41, Epeak/Apeak (z1-3*)AVG=2.27, EVTI (z1-3*)AVG=2.13, and MSE (z1-3*)AVG=3.71. 

 

9.3.2 Comparison of E-wave shapes between Group-2 and Group-3 

 Among the 12 subjects with 

analyzable Group-2 beats, Epeak (z2-

3*)AVG =1.09,  DT (z2-3*)AVG=1.48, 

Epeak/Apeak (z2-3*)AVG=1.35, EVTI (z2-

3*)AVG=1.40, and MSE (z2-3*)AVG = 

2.31. Significant deviation from 

steady-state was seen for one 

subject presented in Figure 9.2, where Epeak (z2-3*)AVG = 1.72, DT (z2-3*)AVG = 2.02, Epeak/Apeak (z2-

3*)AVG = 1.97, and MSE (z2-3*)AVG=10.08. The remaining 11 subjects had modest PVC-related 

deviations in E-wave shape, though 4 of the subjects had significantly increased early filling 

volumes (EVTI (z2-3*)AVG > 2).  

 

9.3.3 InterGroup Hemodynamic Comparison  

 Coupling ratio, defined as the PVC coupling interval divided by a normal RR interval, 

varied among the subjects from 0.28 to 0.83. Surprisingly, post-PVC LVEDP showed no 
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significant deviation from steady-state: LVEDP (z1-3*)AVG=1.15 and LVEDP (z2-3*)AVG=0.91. 

The +dP/dtMax was elevated for Group-2 beats, with +dP/dtmax (z2-3*)AVG = 2.96. Finally, Group-2 

LVPmax showed significant deviation, with LVPmax (z2-3*)AVG = 3.06. 

 

9.3.4 Calculated Load Independent Index and Inter-Group Comparison 

Significant kxo deviation from steady-state was observed for 6 subjects (kxo (z
*

n-3)>2). 

The kxo vs. cEpeak relationship was strongly linear in all subjects (see Figure 9.3) with nearly all 

r
2
>0.9. The M and B interobserver variability was 8%. The  BLoadPerturbed value was nearly 

distinguishable from BAllBeats (p = 0.08) and distinguishable from BSteadyState (p = 0.03). The  

MLoadPerturbed value was indistinguishable from MAllBeats (p = 0.34) and MSteadyState (p = 0.18). 

MAllBeats was also indistinguishable from MSteadyState (p = 0.14). MAllBeats was indistinguishable 

from MSteadyState (p = 0.14). The r
2
 values remained above 0.85. See Table 9.2 for details. 

 

9.4 DISCUSSION 

 All noninvasive indexes of diastolic function are load dependent (4, 7, 8, 10-15, 19, 21-

23). Our solution to the load independent index of diastolic function problem, presented in 

Chapter 1, is based upon physical principles and causality, and is therefore promising. 

Nevertheless, it may be that M is a load independent index of diastolic function over only a 

narrow range of loads. To extend the range of load variation and study the global linearity of the 

kxo vs. cEpeak relation, we tested whether M remains constant in the face of post- PVC related 

load and E-wave shape variation.   
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9.4.1 Diastolic Function and Premature Ventricular Contractions 

 The effect of PVCs on relaxation has been extensively studied (5), and studies have 

demonstrated a prolonged time constant of relaxation (τ) in Group-1 beats compared to steady 

state (2, 5). Carroll et al. (2) compared Group-1 and Group-3 pressure-volume loops in 6 

Figure 9.3 Maximum driving force [kxo, peak atrioventricular (AV) gradient] vs. peak resistive force (cEpeak) for 4 

subjects. Raw Doppler images with superimposed PDF model fits to E-wave contours are shown for representative 

Group-1 , Group-2 and Group-3 beats in each panel. Despite significant E-wave contour variations in Groups-1 and -2 

relative to Group-3, kxo vs. cEpeak plots remain linear. Notice the range of kxo and cEpeak variation is increased in panels 
A and B above the variation seen in Group-3 beats alone. See text for details. 
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patients. They found that while Group-1 beats had prolonged t values, the diastolic portions of 

the pressure-volume loops (intrinsic diastolic function) remained unchanged. Thus while filling 

dynamics were altered after a PVC, intrinsic diastolic function was conserved.  

Consistent with Carroll’s observation, several investigators have found altered filling 

patterns for Group-1 beats relative to Group-3 steady-state beats (18, 24). In agreement with 

these studies, we observed significantly different E-wave shapes for Group-1 and -2 E-waves 

compared to Group-3 E-waves. While Stoddard et al (18) found that Group-1 Epeak values were 

significantly lower compared to steady-state values, we found this to be true for 6 of the subjects, 

while the remaining 5 subjects had significantly higher Group-1 Epeak values relative to steady 

state. The mechanisms responsible for the varied E-wave responses following a PVC are not yet 

fully characterized. However, regardless of whether the Group-1 Epeak value increased or 

decreased relative to steady-state, we consistently found that the degree of variation was 

significant relative to steady state, and this is all that we require in order to test the extended load 

and E-wave shape dependence of M. 

 

9.4.2 PVC effect on the Index M 

Since load-perturbed E-wave shapes varied, the location of the Group-1 and -2 beats on 

the kxo vs. cEpeak plot also varied. Figure 9.3A-D shows the kxo vs cEpeak relation for subject 11, 

9, 6 and 5, respectively. In Figure 9.3A we note that the slope M defined by the 15 Group-1 and -

2 beats is 0.97, virtually parallel to the line defined by just Group-3 beats (M=0.91). Notice that 

in both Figures 9.3A and 9.3B,  the kxo vs. cEpeak relation retains the same linear character as it is 

extended over a wider range of shape variation. Indeed we found that perturbed beats (including 

“matching beats”) visually extended the length of the kxo vs. cEpeak regression in 9 of the 15 
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subjects. In Figure 9.3C and 9.3D, the Group-1 E-waves are outliers relative to steady-state 

beats, but their kxo and cEpeak values in combination with kxo and cEpeak values from only 3 

matching beats generate a regression that is indistinguishable from the Group-3 regression. 

Indeed for all subjects the load-perturbed beats combined with a modest number of “matching 

beats” generated kxo vs. cEpeak regressions whose slopes were indistinguishable from the kxo vs. 

cEpeak regression slopes generated by steady-state alone and by all beats taken together. Thus 

although E-wave shapes change drastically in the beats that follow a PVC, the altered E-wave 

shapes generate a value for slope M that is consistent with the value generated by steady-state 

beats. Indeed, in all subjects, the slope of the specific kxo vs. cEpeak relation constrains the filling 

ventricle and is conserved in the face of drastic post-PVC E-wave shape alteration. 

 

9.4.3 Must All Measured Waves Be Collinear in the kxo vs cEpeak plane? 

 The results suggest that load variation by PVC results in E-waves that are still 

constrained by the same kxo vs cEpeak regression as other E-waves measured in the same subject. 

This may lead to the suspicion that all clinically measured E-waves must be collinear. While 

Chapter 8 showed clearly that randomly generated E-waves are not collinear, a striking example 

is provided in the current data. Subject 7 possesses a beat where the E- and A-waves are 

completely merged, thus appearing as one large velocity contour. When this merged wave is fit 

as an assumed E-wave, it generates kxo and cEpeak values that are appear as outliers relative to the 

Group-3 determined kxo vs. cEpeak regression (Figure 9.4). Thus, it is not guaranteed that any set 

of E-waves will be collinear in the kxo vs cEpeak plane. 
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9.4.4 The Connection between Relaxation, Restoring Forces, and M    

The plot of kxo vs cEpeak may be 

interpreted conceptually as a stiffness 

vs. relaxation (resistive effect) plot, and 

the slope M describes how effectively 

stiffness compensates for changes in 

relaxation. Thus the findings of Carroll 

et al. (2) where it was postulated that 

maintenance of DF following PVCs 

was achieved through enhanced 

restoring forces compensating for 

prolonged relaxation effects, can be 

understood in the context of the current 

study. If relaxation is prolonged 

following a PVC then the resulting E-

wave will have a higher cEpeak value. 

Because the E-wave is constrained to a specific kxo vs cEpeak relation, the elastic restoring forces, 

quantified by kxo, will in turn be elevated. Despite the fact that the E-wave will be visually 

different, the balance between the forces that determine the E-wave and define M will be 

conserved. 

 

 

 

Figure 9.4. Maximum driving force (kxo) vs. peak resistive 

force (cEpeak) for subject 7. Unmerged E-waves are 

represented by triangles. A filling wave consisting of 

completely merged E- and A-waves was fit as an “E-

wave” and the corresponding kxo vs cEpeak point is 

represented by the solid circle. Notice that the false E-

wave falls significantly off of the linear relation defined by 

the true E-waves. Overdamped and Underdamped regions 

are shaded light gray and dark gray respectively. 
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9.5 LIMITATIONS 

E-waves were analyzed off-line using digitized, frame-captured images. This makes 

automated edge detection algorithms and post processing less useful and could be viewed as a 

minor technical limitation to our study. Furthermore, subjects in the study were chosen 

retrospectively based on presence of PVC beats and high quality images amenable to analysis. 

Given the retrospective nature of the study, its aims, and the lack of specific clinical selection 

criteria, it may be inappropriate to compare clinical correlates with M values in these patients. 

While this represents a clear limitation, the purpose of the study is to investigate the robustness 

of M for the same subject when computed in the setting of varying loading conditions. 

The calculation of a load independent index of diastolic function requires E-waves with 

clearly discernible contours. In addition, significant merging of E- and A-waves, leading to a loss 

of more than two-thirds of the E-wave deceleration contour, makes PDF and subsequently load 

independent index of diastolic function analysis less robust. To avoid significant E- and A-wave 

merging, subjects with high heart rate (>90bpm) or prolonged PR intervals must be excluded 

from analysis. While the limitation of high heart rate may be overcome with pharmacologic 

agents, the results of the current study suggest an alternative approach. Because PVC’s are often 

followed by a compensatory pause, Group-1 beats tend to have clear diastatic intervals, even if 

the Group-3 beats have significant E- and A-wave merging. For example, in our work we 

encountered a subject with merged Group-3 beats that precluded standard load independent 

index of diastolic function computation. However, this subject had several Group-1 beats with 

clearly discernible diastatic intervals that yielded a highly linear kxo vs. cEpeak relationship (data 

not shown). Since the results of this study suggest that the load independent index of diastolic 

function is independent of PVC related perturbations, it may be clinically appropriate to 
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overcome the E- and A-wave merging limitation by utilizing unmerged post-PVC beats for load 

independent index of diastolic function calculation.   

 Calculation of the M requires the construction of a linear regression based on extracted 

parameters from multiple varying E-waves. For this reason, we were not able to effectively 

calculate the M in all subjects using Group-1 and Group-2 beats alone, and therefore we added a 

modest number of subsequent Group-3 beats in order to increase the number of points on the 

line. A possible limitation may be that the matching beats had a dominant effect in determining 

the MLoadPerturbed values. However, only 3 of the subjects had 3 matching beats combined with 

only 1 Group-1 beat and the remaining subjects had at most 3 matching beats for every 2 

perturbed beats. Thus, matching beats and perturbed beats had comparable weight in determining 

M. Furthermore, matching beats directly followed the Group-1 and -2 beats and the ventricle 

may not be fully back to steady state after only 2 filling beats following a PVC (16). Thus it may 

be appropriate to include some of the matching-beats in the ‘perturbed’ beat category, and at 

worst they represent a balanced, not dominant, effect relative to Group-1 and -2 beats.  

An additional limitation of the current study may be the limited range of LVEDP 

variation introduced with the inclusion of post-PVC beats. Possible explanations for this may be 

the effects of respiratory variation, variable intravascular volume status and variable inotropic 

state. Significant respiratory variation may mask the pressure response following PVC’s because 

the PVC may occur at end-inspiration.  and second,  z-scores defined by Eq. 1 are lower when 

the baseline variation is significant.   

It may seem that the ventricular response following PVCs was not dramatic enough to 

extend our confidence in the load-independence of M. It is important to stress that for Doppler-

echo data load-dependence refers to the observed changes in E-wave morphology in the face of 
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physiological variation. Thus, the key test of any E-wave derived load independent index of 

diastolic function is how the index changes in the face of changing E-wave morphology. All 

geometric E-wave shape-based indexes change dramatically with changing E-wave morphology, 

and indeed, we observed significant deviation from steady state for all geometrically based E-

wave indexes. Furthermore, 9 subjects possessed Group-1, -2 or “matching beats” that visually 

increased the range of the kxo vs cEpeak line. Thus we can be sure that whatever physiological 

mechanisms underlie the hemodynamic response following PVCs, these mechanisms are 

consistently responsible for dramatic E-wave shape changes, and therefore provide a serious 

challenge to any proposed load independent index of diastolic function.  

 

9.6 CONCLUSIONS  

In Chapter 8 we showed that changes in E-wave shape caused by respiration alone obey a 

linear driving-force to resistive-force (kxo vs. cEpeak) relation whose slope M is independent of 

load. In the current Chapter the load dependence of the kxo vs cEpeak regression was tested under 

a wider range of E-wave shapes and associated loads. We found that although E-wave shape can 

change markedly in post-PVC beats, the numerical value for the load-independent index M 

remains unchanged in a given subject. Indistinguishable values for M using different in-vivo, 

physiologic methods of load-variation in the same subjects (post-PVC and respiratory variation) 

underscores the robustness of M as a load independent index of diastolic function.  
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CHAPTER 10. 

THE LOAD INDEPENDENT INDEX AND END DIASTOLIC PRESSURE 

RELATION: THEORETICAL DERIVATION AND EXPERIMENTAL 

VALIDATION  
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10.1 INTRODUCTION 

While Doppler-echocardiography is the preferred method of non-invasive diastolic 

function (DF) assessment, the gold-standard is invasive left ventricular (LV) end diastolic 

pressure (EDP) determination. Chronically elevated EDP or acute elevatuion in response to 

physiologic load is a clinical sign of intrinsic diastolic dysfunction, often associated with 

increased chamber stiffness and volume overload (19-21). In current clinical practice E/E’, the 

ratio of pulsed Doppler derived peak transmitral blood flow velocity to Tissue Doppler derived 

peak annular tissue recoil velocity, is used as a noninvasive EDP correlate. While E/E’ has been 

validated as an EDP surrogate in selected patient groups with abnormal systolic function, the 

correlation between EDP and E/E’ in subjects with normal systolic function has been modest at 

best (10, 11, 18). All echo-derived indexes are known to be load-dependent, including E/E’ (10, 

14), and this may contribute to the weak correlation to EDP.  

Using a damped harmonic oscillatory kinematic model of early diastolic transmitral 

blood flow velocity contours (E-waves), we have solved the load independent index of diastolic 

function (LIIDF) problem (see Chapter 8). The load-independent linear relation can be 

mathematically extracted from a set of load varying E-waves by plotting the (model-derived) 

maximum force driving flow (kxo) vs the peak resistive force opposing flow (cEpeak), i.e. 

kxo=M(cEpeak)+B, M and B constants. The load independence of the slope M and it’s ability to 

differentiate between control and diastolic dysfunction groups has been described (17), but the 

proper interpretation and clinical utility of the intercept B has not been fully elucidated. 

We hypothesize that physiological and mathematical modeling allows derivation of an 

algebraic relation between the (noninvasive) intercept B of the kxo vs cEpeak relation (a relative 

index)  and invasively determined, average EDP (an absolute index). We validate the predicted 
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relationship between B and EDP in 46 subjects undergoing simultaneous echocardiography and 

high-fidelity catheterization, and compare the experimentally determine relationship to the E/E’ 

vs EDP relationship in the same subjects.  

 

10.2 METHODS 

10.2.1 Theoretical Derivation 

Kinematic Modeling of Diastolic Filling 

Suction initiated filling governs the physiology of diastole. Therefore, independent of 

load, the kinematics of filling and the equation of motion that determined the E-wave always 

applies. Hence all the E-wave velocity contours are well characterized by the PDF model, a 

damped simple harmonic oscillator with relaxation/damping constant c, stiffness k, and initial 

conditions v(0)=0, x(0)=xo (initial spring displacement) (see Chapter 1 and 2). In Chapter 8, we 

showed that a load-independent index of filling can be obtained through PDF model-based 

analysis of E-waves under varying loads as the slope M of the linear (model-derived) maximum 

force driving flow (kxo) vs peak resistive force (cEpeak) relation.  In previous work, and as 

outlined in Chapter 8, the slope M was found to differentiate between subjects with diastolic 

dysfunction and subjects with normal diastolic function. However, the intercept B was found to 

also be different between groups, with a higher intercept found among subjects with diastolic 

dysfunction. It is intriguing to consider, therefore, whether a causal connection between elevated 

B and elevated end-diastolic pressure (EDP), a gold standard marker for diastolic dysfunction, 

exists.  
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Mathematical Analysis of EDP 

 The end diastolic pressure can be 

calculated approximately by considering the 

pressure volume loop during diastole 

(Figure 10.1). While the pressure volume 

loop is curvilinear between minimum 

pressure and end-diastolic pressure, a linear 

approximation is routinely applied to define an 

average operating chamber stiffness, as 

described in Chapters 4 and 5. The average 

operating chamber stiffness is therefore 

given by: 

 

!P

!V AVG

=
PEDP "PMin

VEDP "VP
Min

  Equation 10.1 

where PEDP and VEDP are the pressures and volumes at end-diastole, and PMIN and VPMIN are the 

pressures and volumes at the time of minimum pressure (9). Eq. 10.1 may be solved for end 

diastolic pressure: 

 
PEDP = PMin + VEDP !VP

Min
( )"P

"V AVG

  Eq 10.2 

In order to derive a noninvasive surrogate for end diastolic pressure, we must incorporate 

noninvasive surrogates for each of the terms on the right side of Equation 10.2.  

 Previous work (9)  has predicted and demonstrated a linear correlation between average 

operating stiffness ∆P/∆VAVG and the PDF stiffness parameter k across 131 subjects with a large 

range of invasive and noninvasive measured stiffness values. Thus, Equation 10.2 may be 

Figure 10.1 The slope of thel ine in the pressure-

volume plane between minimum pressure and end 

diastolic pressure is routinely used to estimate 

chamber stiffness. End diastolic pressure can 

therefore be estimated from stiffness, minimum 

pressure, and change in volume (∆V) between 

minimum pressure and end-diastole. See text for 

details.  
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simplified to: 

 
PEDP = PMin + VEDP !VP

Min
( ) Ck+ D( )   Equation 10.3 

where C=7.1•10
-4

 (mmHg•s
2
)/cm

3
 and D=-0.042 (mmHg)/cm

3
 are constant values as described 

in previously published work (9)  

 The volume increase between minimum pressure and end-diastole may be calculated 

from E-wave and A-wave areas multiplied by a constant effective mitral valve area: 

  

VEDP !VP
Min

( ) = MVAi vE (t)dt +

P
min

E
dur

" vA(t)dt"
#

$

%%%%%%%

&

'

((((((((
 Equation 10.4 

Where vE and vA are the E-wave and A-wave velocities, and Edur is the E-wave duration. Note 

that the E-wave integral limit must begin at the time of minimum pressure, and not at the start of 

the E-wave. It is reasonable to assume that the peak of the E-wave and minimum in pressure 

occur simultaneously, and therefore, using expressions for velocity from Chapter 2, the E-wave 

integral may be simplified in terms of xo and y:  

 

vE (t)dt

AT

E
dur

! = xE Edur( )" xE AT( ) = xo e

"
! y

1"y2 "
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2

1" y2
e

"
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%%%%%%%%

&
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((((((((((

 Equation 10.5 

which is equal to xo in the y=0 (or c=0) limit.  

 Considering the undamped (c=0) case is interesting, especially given the results of 

Chapter 5, where we showed that pressure is predicted to recover completely to mitral valve 

opening pressure, which is approximately equivalent to end diastolic pressure, by the end of the 

E-wave. In other words, in the undamped limit, the A-wave is expected to play an insignificant 

role in filling. It is certainly the case that as damping increases and E-waves take on a delayed 

relaxation pattern, A-waves tend to become more prominent so as to conserve stroke volume. 
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Indeed this is why atrial fibrillation can be so dangerous in older individuals with delayed 

relaxation E-wave patterns, because the A-wave is so critical for maintenance of stroke volume 

when early filling is impaired. Thus in the theoretical undamped limit, the A-wave area is 

expected to be insignificant, and therefore , in the c=y=0 limit, Eq. 10.4 becomes: 

  
VEDP !VP

Min
( )

c=0
= MVAi xo( )

c=0
 Equation 10.6 

Plugging into Eq. 10.3 we find: 

  
PEDP = PMin + MVA Cikxo c=0

+ Dxo c=0( )   Equation 10.7 

The linearity of the kxo vs cEpeak regression, described in Chapter 8, suggests that a given subject 

is constrained to have E-wave filling contours consistent with the measured kxo vs cEpeak 

regression. Therefore intercept B of the regression is the predicted value of kxo in the c=0 limit. 

Thus, Equation 10.7 may be simplied as: 

  
PEDP = CiMVA( )iB+ PMin + MVAiDxo c=0( ) Equation 10.8 

While Equation 10.8 predicts a non-zero intercept, it demonstrates clearly that there is a linear 

relationship expected between end-diastolic pressure and kxo vs cEpeak regression intercept B. If 

minimum pressure is fairly consistent across subjects, and k is greater than D/C, then the nonzero 

intercept in Eq. 10.8 would be expected to be relatively constant, and the predicted linear 

relationship between end diastolic pressure and B would be expected to hold.  

 

10.2.2 Experimental Methodology 

Subject Demographics and Data Acquisition 

42 normal systolic function subjects (ejection fraction>50%), with significant load 

variation by respiration, were chosen from our preexisting simultaneous catheterization-echo 
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database. Selection criteria for inclusion included: normal sinus rhythm, no evidence of valvular 

disease, no active ischemia, and normal ejection fraction. Subject demographics for the 42 

subjects are presented in Table 10.1.  

See Chapter 2 for a description of the simultaneous echocardiography-catheterization 

data acquisition protocol. In each subject multiple beats of Pulsed Doppler transmitral flow, as 

well as Tissue Doppler flow are acquired with simultaneous high fidelity catheterization. Both 

septal and annular velocities are 

recorded, but only lateral velocities 

are recorded during the 

catheterization portion. 

 

Data Analysis 

For each subject, 8-15 E-waves were analyzed. A traditional triangle fit was applied to 

each wave and conventional Doppler-derived indexes (Epeak, AT, DT, Edur, Apeak, Adur, E/A) were 

determined (see section ## for discussion of conventional transmitral contour indexes).  In 

addition, E- and A-wave contours were fit via the parameterized diastolic filling formalism (see 

Chapter 2) to yield PDF c, k, and xo parameters. As described in Chapter 8, linear regression 

between kxo and cEpeak for each subject, yielded the slope M and intercept B.  

As described in Cahpter 2, left ventricular end-diastolic pressure was determined from 

the simultaneous left ventricular pressure data by reading off the pressure at the time of ECG R-

wave peak. 

Determination of the E/E’ ratio is challenging because simultaneous measurement of E-

wave and E’ waves is not possible with conventional echocardiography imagers, and therefore E 

  

Age (years) 56 ± 12 

End Diastolic Volume (mL) 135 ± 43 

Systolic LV Pressure (mmHg) 140 ± 37 

Ejection Fraction 72± 8 

Male vs Female 20 vs 22 

Data for 42 subjects showing mean ± standard deviation. 
 

 

Table 10.1 Subject demographics.  
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and E’-waves must be measured independently. Thus E-wave and E’-waves were matched 

according to heart rate, and the peak velocities of heart rate matched waves were subsequently 

used to determine an average E/E’ ratio in each subject.  

The correlations of EDP vs. B and EDP vs. Epeak/E’ were investigated by linear 

regression. Linear regressions were assessed by Pearson correlation coefficient. All statistical 

analysis was carried out using MS-Excel (Microsoft, Redmond, WA). 

 

10.3 RESULTS 

10.3.1 Load Independent Index and EDP 

As in Chapter 8, the linear regression between kxo and cEpeak was found to be strong for 

each individual subject (average r
2
=0.94). Across all subjects, M varied from 0.84 to 1.39, and B 

varied from 3.5 to 15.7.  The average catheterization determined end diastolic pressure (EDP) 

was 18 mmHg, and varied from 8 to 40 mmHg across all subjects. The average catheterization 

determined minimum pressure was 9 mmHg, and varied from 1 to 26 mmHg. The average M 

value for subjects with EDP<20 was 1.10±0.11, while the average M value for subjects with 

EDP≥20 was 1.03±0.11 (p=0.03 by 2-tailed t-test between groups). In accordance with the 

predicted algebraic relationship (Eq. 10.8), we observe a linear correlation between B and 

catheterization determined end diastolic pressure (r
2
=0.43) (Figure 10.2).  

 

10.3.2 Conventional E/E’ Ratio 

Transmitral and Tissue Doppler images were matched according to heart rate (RR 

interval) in each subject. A simple t-test of heart rates between matched beats showed no 

significant difference in matched beat heart rates (p=0.68). The resulting E/E’ ratio across 
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subjects varied between 2.5 and 11.1, with an average value of 5.6. Furthermore, invasively 

derived end diastolic pressure was linearly correlated (r
2
=0.14) to noninvasive E/E’ (Figure 

10.2).  

 

10.4 DISCUSSION 

10.4.1 Summary 

While noninvasive echocardiography is the preferred method by which diastolic function 

is assessed, invasively determined end-diastolic pressure remains a gold standard for clinical 

decision making and diagnosis of diastolic dysfunction. Noninvasive surrogates for end-diastolic 

pressure exist, but they have limited applicability, and their load dependence makes them 

unreliable as indexes of diastolic function. In Chapter 8 and published work we have described a 

novel load-independent index of diastolic function,  defined as the slope of a regression between 

peak driving forces and peak resistive forces of diastolic filling. In the current Chapter we derive 

Figure 10.2 .Comparison of the correlation between invasively determined end diastolic pressure 

(EDP), and two noninvasive surrogates of end diastolic pressure in 42 subjects with a variety of filling 

pressures. The left panel shows the correlation of EDP to B, the intercept of the load independent index 

of diastolic function relation, and the right panel shows the correlation of EDP to E/E’, the ratio of peak 

transmitral early filling velocity to peak early filling annular tissue velocity.  



 

 300 

a linear relationship between the intercept of the load independent index linear regression and 

invasively determined end-diastolic pressure. We validate this linear relationship and compare it 

to an established end diastolic pressure surrogate, calculated from the ratio of peak filling 

velocity to peak tissue recoil velocity.  

 

10.4.2 Current Application of E/E’ 

 In current clinical practice, the ratio of peak filling velocity to peak annular tissue recoil is 

routinely used to assess diastolic function. Peak annular tissue velocity has been shown to be 

blunted in subjects with impaired relaxation (10) and to be preload dependent in subjects with 

normal relaxation (3, 4, 6, 13). Subjects with impaired relaxation have a blunted E-wave pattern, 

and dividing peak E-wave height by peak annular tissue velocity is seen to ‘correct’ the effect of 

relaxation on the E-wave. Thus, the E/E’ ratio is expected to increase with progressive diastolic 

dysfunction, and because progressive diastolic dysfunction is associated with increased end-

diastolic pressure, the E/E’ ratio is expected to correlate with end-diastolic pressure. Indeed in 

subjects with poor systolic function, E/E’ has proven to be a useful end diastolic pressure 

surrogate (11). Early studies in subjects with normal diastolic function did not show as promising 

results, however (18). Studies have shown however that using septal vs lateral annular tissue 

velocities makes a significant impact on the resulting correlations with EDP, especially when 

septal and lateral velocities are significantly different. While some studies advocate the use of 

septal E’ velocities, studies in subjects with normal ejection fraction suggest that better results 

are obtained when lateral E’ velocities are utilized (16). According to American Society of 

Echocardiography recommendations, a septal E/E’ < 8 suggests normal end diastolic pressure 

while a septal E/E’ > 15 or lateral E/E’>12 suggests increased end diastolic pressure. The results 
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for E/E’ between 8 and 15 are unequivocal, and further echocardiographic measures must be 

obtained in order to approximate filling pressures [REF]. Thus an E/E’ between 8 and 15 (or 8 

and 12 for lateral E/E’) has limited clinical utility. This is particularly relevant to the current 

study because 8 of the 41 subjects had lateral  E/E’ values between 8 and 12. Interestingly, 

removing these subjects from the analysis does not improve the correlation between E/E’ and 

end diastolic pressure. 

 

10.4.3 Previous Modeling of E/E’ 

 Previous theoretical analysis by Lisuaskas et al predicted a linear correlation between 

E/E’ and LVEDP, and the theoretical basis for this predicted was the constant volume property 

of the 4 chamber and 2 chamber heart. (2). Previous work demonstrated that atrial and 

ventricular chamber volumes reciprocate during the heart cycle. Based on this physiological 

constraint, and applying the fact that tissue volume is conserved during the heart cycle, Lisauskas 

et al derived an expression between the ratio of peak blood flow velocity to peak annular tissue 

velocity and the ratio of peak valve to peak annular cross sectional area (8). Furthermore, 

arguing that the chamber behaves, to a first approximation, as an elastic chamber, they showed 

that cross sectional area would be expected to correlate with end diastolic pressure, and therefore 

predicted a linear relationship between end diastolic pressure and E/E’.  

 This prediction may also be appreciated by considering longitudinal vs radial modes of 

filling. The ventricle fills primarily by accommodating volume longitudinally, as seen by 

Doppler Tissue recoil velocities (15). A second mode of filling is radial filling by radial 

epicardial expansion. The existence of radial expansion is easiest to appreciate when one 

considers an oscillatory Doppler Tissue velocity waveform (see Chapter 2). The first oscillation 
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is the E’ wave, and this represents longitudinal expansion during E-wave filling. The 2
nd

 hump 

on the velocity contour, the E’’ wave, on the other hand represents longitudinal contraction, and 

this occurs during the E-wave deceleration portion. Increasing volume from continued E-wave 

filling coupled with longitudinal contraction can only occur in the presence of simultaneous 

radial expansion. The extent of radial expansion is limited however, because within 5% the 

outside dimension of the heart does not change due to a physical pericardial constraint. Thus 

filling by radial expansion represents a higher resistance path for diastolic recoil, and is 

associated with elevated filling pressures. Maintenance of stroke volume ensures that a 

significantly blunted E’ velocity, and therefore an increased E/E’ ratio, is associated with 

increased reliance on the radial mode of filling, and therefore a likely increase in end-diastolic 

pressure. Thus at the extreme limit of significantly elevated E/E’, the connection to increased 

end-diastolic pressure is reasonable from basic physiological properties and modeling. In the 

absence of blunted E’, however, constant volume pump considerations do not make a strong 

prediction regarding the dependence of E’ on LVEDP.  

 

10.4.5 Comparing B vs. EDP and E/E’ vs. EDP 

 As Figure 10.2 demonstrates, the intercept B of the regression across multiple beats 

between E-wave derived peak driving force and peak resistive force correlates linearly with end-

diastolic pressure, and has a stronger degree of correlation to end diastdolic pressure than E/E’. 

One contributor to this difference is likely that E/E’ is dimensionless, while B has units of force, 

or pressure per unit area. Thus from a dimensional analysis standpoint, it is not surprising that B 

is a more robust surrogate for end diastolic pressure than E/E’.  

Both E/E’ and B rely on data acquired from multiple beats. E/E’ requires separate 
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measurements of E-wave and E’-waves followed by matching beats and averaging, whereas B 

relies on measuring and analyzing multiple E-wave acquired at varying load states. In 

accordance with first principles, load variation is accompanied by end-diastolic pressure 

variation, because changing end-diastolic chamber dimension is coupled, by the chamber’s 

pressure volume relationship, to changes in end-diastolic pressure. Importantly, the EDP shown 

in Figure 10.2 is an average chamber end diastolic pressure, and therefore the impact of beat by 

beat load variation on EDP is minimal in the analysis. It is unclear if E/E’ or B can predict beat 

by beat load-related end-diastolic pressure variation, but the results of Figure 10.2 suggest that 

both are reasonable surrogates for the average operation chamber end-diastolic pressure.  

 

10.5 LIMITATIONS 

10.5.1 Heart Rate 

 A significant limitation of PDF analysis is the inability to effectively analyze E-wave 

contours when E- and A-wave merging is significant (see Chapter 1 and Chapter 2). Thus, 

subjects with high heart rate are not amenable to PDF analysis, and determination of M and B in 

these subjects is not possible without heart rate lowering interventions. Determination of E-wave 

peak and E’-wave peak, however, is possible in the setting of tachycardia, as long as the E wave 

is clearly visible and distinct from the A-wave (12). If the start of the A-wave occurs before the 

E-wave peak then the E-wave peak velocity will have an addition contribution from the atrial 

kick, and this may obscure the determination of E/E’. Thus, the determination of E/E’ is limited 

to heart rates where the P-wave occurs after the E-wave peak, but this is a far less stringent heart 

rate cutoff than the heart rate limitation inherent in PDF model analysis.  
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10.5.2 Simultaneous E and E’ Determination and Location of E’ Measurement 

 Ideally one would measure E and E’ peak in the same diastolic interval, but without 

simultaneous and non-interfering transducers, this is not possible. Instead, E- and E’-waves must 

be matched as closely as possible, and one natural approach is to match beats with similar R-R 

intervals. In this work we performed a t-test between E-wave and matched E’-wave R-R 

intervals to ensure that the heart rates were indistinguishable, but there are a variety of clinical 

factors beyond heart rate that may affect E or E’ velocities. Thus there is always some error in 

the determination of E/E’ due to the lack of simultaneity of E and E-wave image acquisition. In 

addition, studies have shown marked differences in E’ peak velocities at the septal vs lateral 

position, especially in the presence of regional dysfunction (16). In the current work lateral E’ 

velocities were used for E/E’ determination. None of the subjects in the current work had 

significant regional dysfunction, and recent studies have suggested better correlations between 

laterally defined E/E’ and end diastolic pressure, and therefore our choice of lateral E’ velocities 

was warranted. However, the regional variation in E’-wave velocity is a significant limitation to 

the E/E’ index and must be considered with care in practice. There is always some variability in 

E’ waveform recording depending on transducer positioning and operator skill. These issues are 

mitigate in this setting because of the experience of the sonographer. 

 

10.5.3 Issue of Minimum Pressure 

The derivation presented in the Methods assumes that minimum ventricular pressure is 

fairly constant across subjects, but in some clinical situations minimum pressure is known to be 

significantly elevated (7). Hypertensive episodes increase all diastolic filling pressures, including 

minimum pressure, and in the setting of diastolic dysfunction, this increase has been found to be 
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more significant. However, the derivation supporting the correlation between E/E’ and end 

diastolic pressure also relies on the consistency of minimum pressure across multiple subjects, 

and therefore deviations from this assumption will impact the efficacy of both E/E’ and B as end 

diastolic pressure surrogates. In the current study minimum pressure varied between 1 and 26 

across 41 subjects, with an average value of 9±4. Though the values at the extremes were 

significantly different than the average, the second highest minimum pressure was 15 mmHg, 

and only 4 subjects had minimum pressure below 5 mmHg. A more extensive analysis of 

minimum pressure measured in an additional 40 subjects from our simultaneous catheterization 

Figure 10.3. Comparison of noninvasive pressure surrogates E/E’ and B to a relative 

pressure measure (∆P), defined by the pressure difference between end diastole and 

minimum pressure, and to minimum pressure (Pmin). Notice that the correlation 

between B and ∆P is similar to the correlation between B and EDP shown in Figure 

10.2, whereas the correlation between ∆P and E/E’ is non-existent. The correlation 

between E/E’ and Pmin is modest, but stronger than the correlations between E/E’ and 

∆P or EDP. See text for details. 
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echocardiography database, including subjects with hypertension, similarly finds a minimum 

pressure variation between 4 and 18 with an average value of 10±3. Thus, while in a minority of 

cases minimum pressure may deviate significantly from a population average, in general the 

assumption of fairly constant minimum pressure is reasonable.  

 

Absolute vs Relative Measures and Minimum Pressure 

It is important to note that end-diastolic pressure is an absolute measure, because it is 

measured and calibrated relative to a nearly constant atmospheric pressure. Doppler velocity 

measures, like E-waves and A-waves are relative measures however, because they are the 

derivatives of absolute volume measures. Thus E/E’ and B are both relative indexes, while end 

diastolic pressure is absolute, and in general relative indexes can not accurately be surrogates for 

absolute measures. Indeed this is why the E/E’ and B derivations rely on the assumption of fairly 

constant minimum pressure.  

This may suggest that E/E’ and B are more robust surrogates for the pressure difference 

between minimum pressure and end diastolic pressure, but this is not the case (see Figure 10.3). 

In fact, E/E’ shows a stronger correlation to minimum pressure than to end diastolic pressure or 

the pressure difference between minimum and end diastole. B on the other hand shows a weaker 

correlation to minimum pressure than to end diastolic pressure. .  

Absolute physical constraints, like the constant volume parameters of the heart, can lead 

to correlations between relative and absolute indexes, especially in extreme cases as is evident in 

the relationship between high E/E’ and elevated EDP when longitudinal motion is impaired and 

radial expansion is the primary means for accommodating filling volume.  
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10.5.4 Issue of Constant Mitral Valve Area 

 In going from Equation 10.3 to 10.4, the assumption of constant mitral valve area was 

made. However, there are a variety of contributing factors to the variability of mitral valve area 

over time. Mitral valve leaflets open quickly in early diastole, but the cross sectional area at the 

leaflet tips decreases as E-wave deceleration occurs. The mitral valve leaflets connect to the 

mitral annulus, and during filling the annular cross sectional area increases as the slightly saddle 

shaped annular ring flattens with rise of the annulus and chamber distension. Indeed, previous 

work has demonstrated the time variation of mitral valve area (1), and therefore an exact 

determination of E-wave and A-wave stroke volume requires accurate incorporation of mitral 

valve area as a function of time. However the functional time dependence of mitral valve area is 

complex and not easily incorporated into routine clinical analysis. Recently we have applied the 

constant volume parameter of the heart to obtain a time varying expression for mitral valve area 

in a study of vortex formation in early diastole (5). However, for simplicity it is reasonable to 

assume a constant average effective mitral valve area. This value will not accurately reflect time-

varying stroke volume, but is sufficient for determination of total stroke volume. Furthermore, it 

is unlikely that any error introduced by this approximation will be greater than the errors 

associated with the other assumptions applied in the derivation above. 

 

10.6 CONCLUSIONS 

We conclude that LIIDF relation-derived B is a better noninvasive estimate of EDP than 

E/E’, particularly in subjects with normal systolic function (ejection fraction >50%). There are 

clear limitations, however, to the application of a relative index to the estimation of absolute 
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indexes. Further work extending the B vs EDP relation to additional clinical subgroups is 

necessary, including subjects with systolic dysfunction.  
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CHAPTER 11. 

LOAD INDEPENDENT INDEX OF ISOVOLUMIC PRESSURE DECAY: 

MODEL BASED DERIVATION WITH EXPERIMENTAL VALIDATION 
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11.1 INTRODUCTION 

Diastolic heart failure, characterized by signs and symptoms of heart failure in the face of 

normal ejection fraction, is an increasing clinical problem that is reaching epidemic proportions 

(15). Despite numerous advances in echocardiography-based noninvasive assessment of diastolic 

function, measurement of left-ventricular pressure (LVP) by invasive fluid filled or high-fidelity 

Millar catherization, remains the gold standard by which abnormalities in diastolic function are 

assessed. Diastolic function assessment includes analysis of the isovolumic pressure decay 

contour, as well as the LVP contour from mitral valve opening to end-diastole. A 

monoexponential or logistic model pressure decay rate constant (τ,  τL respectively), and the peak 

minimum derivative of pressure decay (P˙MIN) are traditionally used to characterize isovolumic 

physiology (14), and both parameters may be easily extracted by plotting pressure in the pressure 

phase plane P(t) vs. P˙(t) (see Chapter 1). Prolonged τ and blunted P˙MIN are interpreted 

clinically as signs of relaxation abnormalities and diastolic dysfunction.  

However, isovolumic pressure decay parameters such as τ and P˙MIN values have been 

found to be sensitive to both intrinsic relaxation properties, and extrinsic load (1, 3, 9, 11, 13, 21, 

22, 26-28, 33). Indeed, the load-dependence of τ is well established (1, 9, 11, 13, 26, 33). Thus 

prolonged τ and blunted P˙MIN may be due to load alteration alone, and not be reflective of 

intrinsic chamber properties. Therefore a load-independent index of isovolumic pressure decline 

that overcomes load-dependent limitations of τ would be advantageous.  

Recent work by Chung et al has demonstrated that isovolumic pressure decline is 

determined in a mathematically precise manner by the interplay of stiffness and 

damping/relaxation forces (5). The relative contribution of stiffness and relaxation to isovolumic 

pressure decline is characterized by a stiffness parameter Ek [1/s], and a damping or relaxation 
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parameter, τc [1/s
2
]. This approach to the isovolumic pressure decay contour is analogous to the 

kinematic PDF model of transmitral flow described in Chapter 1. These parameters may be 

extracted from in-vivo isovolumic pressure decay contours by inverting the governing 

differential equation and applying quantitative techniques. In addition, compared to the 

monoexponential (τ) and logistic (τL) models, the τc, Ek model-predicted pressures and pressure 

derivatives provide a superior fit to the isovolumic pressure decay contour. Though τ and τL are 

typically used to assess chamber relaxation (3, 14, 20, 21), Chung et al’s work predicts that 

relaxation (τc) and stiffness (Ek) effects jointly determine the physiology of isovolumic pressure 

decay. Furthermore, Chung et al showed that τ and τL could be algebraically determined from the 

ratio of τc and Ek (τ, τL ∝ τc/Ek). Thus stiffness and relaxation effects may be extracted from τ, or 

stiffness and relaxation may be recombined to yield a lumped isovolumic pressure decay decay 

constant (τ or τL). It is important to note, however, that τc and Ek may be combined in various 

algebraic ways to yield novel lumped isovolumic pressure decay parameters. 

While the Chung model successfully unifies the previously unrelated monoexponential 

and logistic models of isovolumic pressure decay in a parametric limit sense, τc and Ek  (just like 

τ and τL) are individually load-dependent. We hypothesize that certain algebraic combinations of 

τc and Ek provide a lumped isovolumic pressure decay parameter that is not subject to the load-

independence of τ, τL, τc, and Ek.  Guided by the load independent index of diastolic function 

presented in the Chapter 8, we derive a novel algebraic relation between τc and Ek that, unlike τ, 

τL, τc, Ek, and other indexes of isovolumic pressure decay, is independent of load.  

 

11.2 METHODS 
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11.2.1 Monoexponential and Logistic Models of Isovolumic Pressure Decay 

 The monoexponential model of isovolumic pressure decay, first proposed by Weiss (31), 

assumes that the time derivative of pressure decay is proportional to pressure. The governing 

differential equation for the monoexponential model is: 

 

!
dP

dt
+ (P " P

#
) = 0   Equation 11.1 

where τ is the monoexponential time-constant of isovolumic pressure decay, and P∞ is the 

pressure asymptote. In Weiss’s original formulation P∞ was assumed to be 0. A convenient 

method for determination of τ is to calculate the negative inverse of the slope of the isovolumic 

pressure decay contour in the pressure phase plane, where dP(t)/dt is plotted against P(t) (7, 26). 

 While the monoexponential model defines a straight line in the pressure phase plane, the 

logistic isovolumic pressure decay model generates a curve, and therefore has been used to 

accommodate nonlinear isovolumic pressure decay phase plane segments (18). The differential 

equation for the logistic model is  

 

P
2

P
A

+ !
L

dP

dt
+ (P " P

B
) = 0    Equation 11.2 

where τL is the logistic time-constant of isovolumic pressure decay, and the pressure asymptote 

is given by the sum PA+PB. No simple geometric method for determination of τL has been found. 

Instead, nonlinear fitting algorithms are required to extract τL from isovolumic pressure decay 

contours. 

 

11.2.2 Chung Model of Isovolumic Pressure Decay 
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 In recent work, Chung et al unified the empiric monoexponential and logistic isovolumic 

pressure decay models with a general model that completely characterizes the wide range of 

physiologically observed isovolumic pressure decay phase plane trajectories. Based on 

physiologic-kinematic arguments and published experimental results (3, 10, 16, 17, 20, 24, 27, 

30, 32), Chung et al(5) argued that isovolumic pressure decay is governed by the interplay of 

inertial, stiffness and relaxation forces. The relative values of these forces determine the resulting 

inertial force, and, by Newton’s law, cause small-scale tissue displacements (isovolumic torsion, 

chamber shape change) (27). Utilizing Laplace’s law to transform displacements to pressures, 

Chung et al proposed the following differential equation to account for isovolumic pressure 

decay: 
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#( ) = 0     Equation 11.3 

where τc is a relaxation parameter, Ek is a stiffness parameter, and P∞ is the pressure asymptote. 

This equation can be solved in the underdamped regime (4Ek>τc) for pressure or for the time 

derivative of pressure as: 
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where Po is the initial pressure assuming zero pressure asymptote, 
 
!Po  is the initial time 

derivative of pressure, and ω=

 

E
k
!

"
c( )
2

4
. The critically damped (4Ek= τc) and overdamped 

(4Ek<τc) solutions can be determined by evaluating equations 11.4 and 11.5 at ω=0 (critically 
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damped) or ω=iβ (overdamped) limits. The procedure for extracting Ek, and τc from an 

isovolumic pressure contour, the equivalent of solving the ‘inverse problem of isovolumic 

pressure decay’, is described below.  

 

11.2.3 Human, in-vivo Hemodynamic Data 

Twenty-five datasets were selected from the Cardiovascular Biophysics Laboratory 

Database of simultaneous micromanometric catheter recorded left ventricular pressure (LVP) 

and echocardiographic data. The criteria for data selection from the database included: normal 

sinus rhythm, normal valvular function and no wall motion abnormalities. The group was chosen 

to be clinically heterogeneous, so as to test the generality of our approach. Thus subjects with 

low ejection fraction, significantly elevated τ and τL, and/or significantly elevated EDP were also 

included. Patient demographics are presented in Table 11.1. See Chapter 2 for a detailed 

description of the method by which simultaneous echocardiographic and high-fidelity pressure 

data is acquired. 

 

11.2.4 Hemodynamic Analysis 

Hemodynamic data was analyzed using custom automated Matlab programs (Matlab 6.0; 

MathWorks, Natick, MA), as described in Chapter 2For each subject, the time derivatives of 

pressure, left ventricular end diastolic pressure (LVEDP), mitral valve opening (MVO) time, 

maximum and minimum pressure and pressure derivatives (PMAX, PMIN, dP/dtMIN, dP/dtMAX) and 

isovolumic pressure decay contour inflection point were determined by automated Matlab 

scripts. LVEDP was defined by the LV pressure at the ECG R-wave peak. MVO time was 
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determined as the time point where the decaying pressure contour is closest to the LVEDP of the 

subsequent filling beat (4, 12, 19, 22).  

 

Automated τ and τL fitting 

 The pressure phase plane was used to determine τ for each beat in each subject. The 

least-squares determined slope of the dP/dt vs. P plot over the interval between 5 ms after 

dP/dtMin, and 5 ms before the estimated MVO time is equal to -1/τ   (7, 14, 26). τL was 

determined for each beat according to the methods described by Matsubara et al (18), using a 

customized Levenberg-Marquardt algorithm (25). Automated Matlab scripts were used for both τ 

and τL determination.  

 

11.2.5. Automated Kinematic Model Parameter Extraction 

General Approach 

Kinematic Model parameters τc, Ek, Po, and P˙o, are extracted for each individual beat by 

applying a Levenberg-Marquardt (LM) Algorithm to the P˙(t) data defined by the extracted 

isovolumic pressure decays contour. The algorithm is described in detail elsewhere (25), but the 

salient features are described briefly below. The algorithm requires initial guesses for the 

kinematic parameters and the P˙(t) data over the isovolumic pressure decay contour.  

Initial Model Parameter Estimation 

Initial model parameters are determined by evaluating both Eq. 11.1 and the derivative of 

Eq. 11.1 at to, the time of the inflection point in P˙, and at the time of P˙MIN (tP˙MIN). 

At to, the derivative of Eq. 11.1 simplifies to: 
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Where P˙o and P˙˙(to) are the values of the first and second pressure derivatives at the 

start of the already determined isovolumic pressure decay contour.  

Similarly, at tP˙MIN , Eq. 11.1 simplifies to  
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Applying Eq. 11.6 and 11.7 provides an expression for P∞: 
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Applying Eq. 11.8 and Eq. 11. 2 at t=0 yields: 
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Note that P(to) is the pressure at the start of the automatically determined IVPD contour.  

Eq. 11.1 evaluated at t= to can be solved for Ek, in terms of Po, P˙o, τc/Ek, and P˙˙o. 

Applying Eq. 11.6 and Eq. 11.9, we may express Ek in terms of already measured parameters: 
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Finally, from 11.6 and 11.10 we solve for τc: 
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Beginning with the initial parameter guesses determined from P˙o and Eq. 11.9-11, the 

LM algorithm minimizes χ2
 by iterating through parameter space, where χ2 

is defined by 
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Figure 11.1 Comparison of ‘clean’ (left)  and ‘noisy’ 

(right) left ventricular pressure data acquired in one 

subject. See text for details. 

∑(∆P)/σ, with ∆P defined by the error between model predicted and measured P˙(t) along the 

isovolumic pressure decay contour, and σ defined as the error in measured P˙(t). Iteration ends 

when subsequent χ2
 values change by less than a predetermined threshold value. Upon 

completion, the root mean square error (RMSE) between model-predicted P˙(t) and measured 

P˙(t) is calculated using the LM-determined best fit kinematic parameters.   

 

Inclusion Criteria For Noisy Data 

The large size of the dataset for each subject, which always includes spurious (noisy) data 

due to ectopy, patient cough, motion, etc, justified an automated screening procedure to exclude 

nonphysiologic data. The advantages of such an approach making raw data analysis observer 

independent and hence more robust. We demonstrate the difference between ‘clean’ and of 

‘noisy’ data in Figure 11.1.  

The top panel of Figure 11.1 shows typical continuous LVP and AoP data from an 

individual subject. Two isovolumic 

pressure decay contours from separate 

beats are highlighted. For each 

isovolumic pressure decay contour both 

pressure (P) vs. time (t) and dP/dt vs. 

time is plotted. Notice that the P vs. t 

plot for both beats looks smooth, while 

the dP/dt vs. t plot for the red beat on 

the right is noisier than the dP/dt vs. t 

plot for the green beat on the left. 
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Indeed the root mean square error between the model fit to the dP/dt contour and the raw data is 

9.24 mmHg/s for the beat on the left, and 69.0 mmHg/s for the beat on the right. At the bottom of 

the figure the phase-plane plot, where dP/dt is plotted vs. P, is shown for both beats. The phase 

plane plot illustrates in a visually dramatic manner that the beat on the right has significantly 

more noise than the beat on the left.  

An automated approach for data selection was accomplished by determining the root 

mean square error (RMSE) between the model fit dP/dt and the raw dP/dt data for all beats for a 

given subject. As demonstrated in Figure 11.1, isovolumic pressure decay contours which are 

nonphysiologic and noisy generate high dP/dt RMSE values compared to acceptable physiologic 

dP/dt data. Accordingly, we discard beats having the largest 50
th

 percentile of RMSE values. 

This approach ensures that only physiologic (smooth) data are included in the final analysis, and 

provides the additional advantage of being automated, thereby minimizing observer bias in beat 

selection.  

 

11.2.6 The Load Independent Index of Isovolumic Pressure Decay 

Derivation of the Load Independent Index of Isovolumic Pressure Decay 

In Chapter 8 and previous work(29) we have derived and validated a load-independent 

index of diastolic function. Because the governing differential equations for early rapid filling 

and isovolumic pressure decay are similar, we approach the derivation of the load independent 

index of isovolumic pressure decay in a manner analogous to the load independent index of 

diastolic function derivation.  

While individual isovolumic pressure decay contours vary as a result of load 

perturbations, Eq. 11.3 remains valid, because the governing differential equation is obeyed 
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independent of load. We consider this equation at the time of minimum dP/dt. At this time the 

second derivative term vanishes, and Eq. 11.3 becomes: 
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Eq. 11.12 is a tautology, and is therefore true for any isovolumic pressure decay contour. Indeed, 

plots of τc(dP/dtMIN) vs. Ek (P(tdP/dtMIN)-P∞) for 

subjects from the current study are in close 

agreement with the line of unity (Figure 11.2).   

It is helpful here to consider the dP/dt 

vs. t contour. A plot of dP/dt vs. t defined by 

Eq. 11.5 would yield an inverted damped sine 

wave. Isovolumic relaxation typically ends 

near the inflection point of the dP/dt vs. t 

downslope, but the model may be extended to 

the point where dP/dtMIN crosses zero. This 

time point defines the Chung model-based 

maximum pressure value, and we therefore call 

this value P
*

MAX. The time at which P
*

MAX occurs can be found by solving for t in Eq. 11.5 when 

dP/dt=0:  
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Evaluating P(t) in Eq. 11.4 at the time found in Eq. 11.13 yields P
*

MAX.  

 Because the time between the model predicted maximum in pressure and the model 

Figure 11.2. Plot of the Chung model predicted 

tautology (Eq. 5.12) for all beats from all subjects 

in the current study.  Because the values of 

dP/dtMIN and P(tdP/dtMIN) are determined directly 

from clinical data, the proximity of the 

relationship to unity demonstrates the robustness 

of the Chung model of isovolumic pressure 

decay. 
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Figure 11.3 We plot the model-predicted pressure 

contour between the P
*

MAX and P(tdP/dtMIN) for 

subject 18 in the current study. Though the 

relationship is slightly curvilinear, the function 

over the interval is very well approximated 

linearly, as indicated by the linear r
2
 value being 

near 1.00. This result justifies the derivation 

presented in the text (See text for details) 

 

predicted pressure derivative minimum is short relative to the time scale of isovolumic pressure 

decay, the pressure decay from maximum is nearly linear (Figure 11.3).  

 The linear behavior observed in Figure 11.3 suggests that P
*

MAX may be linearly 

approximated as P(tdP/dtMIN): 

 
P(tdP /dt

MIN

)= ! ! PMAX
*( )+ "    Equation 11.14 

However, because any individual beat may have 

a different rate of pressure decay, the slope γ is 

not expected to be the same constant for all 

subjects and for all beats in a given subject. In 

fact, the effective slope of pressure decay from 

P
*

MAX can vary, and the value of γ is expected 

to be akin to an ensemble average over many 

beats. Indeed, across all subjects and all beats 

(2671 beats in total), a linear relationship 

between P(tdP/dtMIN) and P
*

MAX is observed 

(Figure 11.4). 

 Thus we may apply Eq. 11.14 in Eq. 11.6 

to obtain the final expression: 
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It is important to note that each individual isovolumic pressure decay contour has unique 

values for Ek·(P
*
MAX-P∞) and τc·(dP/dtMIN). Thus each isovolumic pressure decay contour defines 

a single point in the Ek·(P
*
MAX-P∞) vs. τc·(dP/dtMIN) plane, and a collection of isovolumic 
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Figure 11.4. Data from all subjects and all beats in current 

study. This plot validates the claim that relating P(tdP/dtMIN) 

to P
*

MAX  in a linear fashion is valid. Though the r
2
 value is 

high in the correlation shown above, the plot is consistent 

with the notion that γ has a distribution of values. See text 

for details. 

pressure decay contours define the 

regression implied by Equation 11.15. 

The linear relationship between 

Ek·(P
*
MAX-P∞) and τc·(dP/dtMIN) is 

predicted be load-independent because it 

is derived from equations and 

approximations that are general and load-

independent. Thus, while τc, Ek , P∞, 

P
*

MAX, and dP/dtMIN may change with 

load, the slope MLIIIVPD is predicted to 

remain constant in the face of load 

variation, and thus is the predicted load 

independent index of isovolumic pressure decay. 

 If all beats in a particular subject possessed a constant γ from Eq. 11.14, then MLIIIVPD=1/γ. 

However, the values for γ are distributed, and therefore vary enough to preclude one from 

calculating MLIIIVPD directly from γ. The value of 1/γ=1.35 does provide interesting insight 

however, because it provides an average estimate for MLIIIVPD. Interestingly, beats whose IVPD 

contours obey critically damped kinematics lie on a line with slope e/2=1.36 in the Ek·(P
*
MAX-P∞) 

vs. τc·(dP/dtMIN) plane. The critically damped regime represents a transition between 

overdamped (straight phase plane, τ-like isovolumic pressure decay) and underdamped (curved 

phase plane, τL-like isovolumic pressure decay) physiology, and therefore it is quite interesting 

that the average MLIIIVPD predicted from 1/γ is consistent with the critically damped regime. This 
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transition point is analogous to the transition between overdamped and underdamped E-wave 

kinematics derived in Chapter 8.  

 

Automated Determination of MLIIIVPD 

The load-independent index of isovolumic pressure decay, MLIIIVPD, is determined by analysis 

of a set of load-varying isovolumic pressure decay contours from one subject. In Figure 11.5 the 

steps for analyzing one IVPD contour to yield a single point in the plot of Ek·(P
*

MAX-P∞) vs. 

τc·(dP/dtMIN) are summarized. First, utilizing the methods presented above, the Chung 

Figure 11.5 Summary of the method by which an individual IVPD contour generates a point in the 

Ek·(P
*

MAX-P∞) vs. τc·(dP/dtMIN) plane. A) IVPD contour in the dP/dt vs. t plane. IVPD data is fit to 

Chung IVPD model (5) by the Levenberg-Marquardt algorithm generating τc, Ek, Po, and 
 
!Po . These 

values are used in Eq. 11.13 to determine tP*MAX , the time when model-predicted dP/dt =0. B) Data in 

the P vs. t plane, both LV pressure and aortic pressures are shown. P∞ is determined by minimizing the 

root mean square error between the Eq. 4 determined pressure and the raw data. The maximum model 

predicted pressure, occurring before aortic valve closure, is calculated by using tP*MAX in Eq. 4. C) With 

parameters determined, Ek·(P
*

MAX-P∞) and τc·(dP/dtMIN) are calculated. Each individual isovolumic 

pressure decay contour generates a single point at [τc·(dP/dtMIN), Ek·(P
*

MAX-P∞)] coordinate. D) Values 

plotted in the Ek·(P
*

MAX-P∞) vs. τc·(dP/dtMIN) plane. The steps in panels A-D are repeated for a set of 

isovolumic pressure decay contours for each subject, thus generating points in the Ek·(P
*

MAX-P∞) vs. 

τc·(dP/dtMIN) plane. See text for details. 
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Figure 11.6. The automated process by which 

hemodynamic data analysis is performed is shown . The 

gray area contains steps that are repeated for each heart 

cycle, defined by successive R-wave peaks. See text for 

details. 

 

isovolumic pressure decay model parameters are extracted from the isovolumic pressure decay 

contour of interest. This process yields unique τc, Ek , P∞, Po and 
 
!Po  parameter values for each 

beat. If the RMSE between model prediction and clinical data is within the appropriate threshold, 

then P
*

MAX is determined for the isovolumic pressure decay contour of interest via Eq. 11.3 by 

using the calculated tP
*

MAX in Eq. 11.4. Subsequently dP/dtMIN is determined directly from the 

data. Finally, the products Ek·(P
*

MAX-P∞) and τc·(dP/dtMIN) are calculated for each beat, and these 

values are plotted in the Ek·(P
*

MAX-P∞) vs. τc·(dP/dtMIN) plane. 

These steps are repeated for every isovolumic pressure decay contour for every subject, 

thus yielding a set of points in the plot of Ek·(P
*

MAX-P∞) vs. τc·(dP/dtMIN). In accordance with the 

predicted linear relationship in Eq. 11.15, a linear regression between all points in the Ek·(P
*

MAX-

P∞) vs. τc·(dP/dtMIN) plane yields the 

slope MLIIIVPD, intercept BLIIIVPD and 

Pearson correlation coefficient r
2
. As the 

isovolumic pressure decay contour shape 

varies from beat to beat, the location of 

the point inscribed in the Ek·(P
*

MAX-P∞) 

vs. τc·(dP/dtMIN) plane varies as well. 

However, Eq. 11.15 predicts that for a 

given subject all beats should fall on the 

same linear regression line, with constant 

slope MLIIIVPD. Thus the slope MLIIIVPD is 

the predicted load independent index of 
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isovolumic pressure decay. Figure 11.6 summarizes the entire automated process for 

hemodynamic analysis and MLIIIVPD determination.  

 

Validation of MLIIIVPD 

 For each of the 25 subjects in the current study, MLIIIVPD, BLIIIVPD and r
2
 were calculated 

as described above via a custom Matlab script. Load independence of MLIIIVPD was assessed by 

the proximity of r
2
 to 1. A low r

2
 value would imply that MLIIIVPD is load-dependent.    

To ensure that the value of MLIIIVPD reflects clinical and physiological information, 

individual MLIIIVPD and BLIIIVPD values for each subject were correlated with average EF, τ, τL, 

and dP/dtMIN values from each subject. 

Table 11.1. Subject Demographic 

Subject HR, beats/min EDP, mmHg EF, % Age, yr 

1 50 22 73 67 

2 75 36 20 55 

3 66 27 84 50 

4 89 22 55 59 

5 73 16 82 52 

6 60 26 62 64 

7 63 23 78 54 

8 77 39 75 64 

9 72 26 82 56 

10 99 19 83 47 

11 65 31 70 66 

12 70 24 52 57 

13 51 18 64 62 

14 66 18 79 60 

15 86 23 73 37 

16 67 21 65 72 

17 59 19 72 74 

18 57 21 80 60 

19 60 19 36 56 

20 80 16 84 38 

21 65 24 78 52 

22 63 32 70 55 

23 56 23 80 67 

24 60 17 80 62 

25 75 37 55 60 

Heart rate (HR), lef ventricular end-diastolic pressure (EDP), ejection 

fraction (EF), and age for the 25 subjects in the current study. 
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11.3 RESULTS 

11.3.1 Application of Chung Isovolumic Pressure Decay Model 

An average of 284 beats were fit to the Chung IVPD model for each subject. The average 

RMSE (before exclusion of any beats) between the model-fit and the dP/dt vs. t contour was 19 

mmHg/s (average 2% deviation between model and measured contour). Non-physiologic beats 

with high RMSE were excluded. Specifically, for each subject, beats with RMSE above the 

subject specific RMSE average value were excluded from further analysis, resulting in the 

Table 11.2. Hemodynamic Values 
 

Subject 
τ, ms τL, ms dP/dtMIN, mmHg/s PMAX, mmHg  

 
Mean (SD) Range 

Mean 

(SD) Range Mean (SD) Range 

Mean 

(SD) Range n 

1 57 (3) 15 45 (1) 7 -1501 (76) 452 149 (8) 51 58 

2 147 (22) 127 41 (5) 27 -774 (39) 262 115 (6) 27 179 

3 50 (4) 16 36 (3) 14 -1368 (97) 424 116 (10) 46 46 

4 66 (4) 17 35 (1) 6 -1675 (75) 388 169 (7) 39 72 

5 44 (3) 24 36 (1) 10 -1789 (86) 504 137 (7) 37 214 

6 79 (9) 37 28 (3) 13 -1503 (109) 727 163 (9) 51 57 

7 66 (35) 231 28 (6) 39 -1345 (230) 1072 125 (11) 61 46 

8 72 (11) 62 23 (3) 15 -1662 (332) 1225 209 (39) 155 63 

9 51 (7) 63 23 (2) 17 -1761 (169) 1179 170 (14) 98 121 

10 33 (4) 40 34 (2) 15 -1775 (174) 1138 119 (8) 45 137 

11 52 (7) 51 26 (2) 11 -1875 (240) 1335 181 (19) 98 54 

12 76 (6) 39 28 (2) 10 -1308 (61) 345 143 (6) 49 100 

13 58 (3) 19 30 (1) 7 -1749 (54) 386 168 (5) 49 115 

14 61 (4) 27 30 (1) 8 -1249 (61) 430 119 (6) 27 102 

15 67 (5) 42 29 (2) 16 -1167 (56) 480 110 (5) 23 183 

16 65 (8) 54 29 (3) 20 -1433 (128) 853 144 (10) 67 74 

17 72 (4) 21 26 (2) 12 -1416 (41) 275 143 (5) 24 96 

18 57 (3) 22 30 (2) 16 -1440 (62) 637 133 (6) 40 175 

19 113 (21) 113 28 (5) 26 -718 (25) 115 99 (2) 8 66 

20 59 (3) 16 22 (1) 6 -1622 (94) 608 144 (9) 46 86 

21 67 (16) 149 24 (4) 36 -1322 (197) 1152 130 (10) 68 131 

22 64 (10) 75 14 (3) 16 -1157 (109) 626 110 (11) 55 161 

23 65 (8) 36 22 (2) 12 -1768 (113) 788 175 (9) 77 94 

24 59 (7) 55 29 (2) 15 -1194 (156) 764 124 (10) 57 118 

25 114 (24) 179 27 (4)  26 -1188 (65) 675 156 (7) 57 122 

Values of mean (SD) and the range of variation between minimum and maximum values are reported 

across all subjects for time constant (τ), logistic model time constant (τL), minimum first derivative of 

pressure (dP/dtMIN), and measured maximum pressure (PMAX). The number of beats (n) analyzed in each 

subject is also presented. Large values for range are the result of inclusion of premature ventricular 

contractions and Valsalva beats.  
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analysis of an average of 107 beats per subject. Across all subjects the average values and 

standard deviation for τc, Ek, Po, 

 

« 
P 

o
, and P∞ were 89 1/s, 1500 1/s

2
, 105 mmHg, -1040 mmHg/s, 

and 1.70 mmHg respectively. The number of beats included in analysis, as well as the PMAX, 

dP/dtMIN, τ, and τL average values, standard deviations, and ranges for each subject are shown in 

Table 11.1. 

 

11.3.2 Physiological Variation in Isovolumic Pressure Decay Parameters 

 The isovolumic pressure decay contour in the pressure phase plane varied significantly 

with load, and therefore within any given subject, significant beat-to-beat variation was observed 

in τ, τL, PMAX, and dP/dtMIN. Significant variation was seen primarily in beats following PVCs or 

Valsalva maneuvers. Indeed, the large range of values presented in Table 11.2 reflect the 

significant hemodynamic variation between perturbed (PVC and Valsalva) and normal 

physiology. As reflected by the Table 11.2 standard deviations, steady-state hemodynamic 

variation was also significant in the subjects studied. 

 

11.3.3 Determination of Predicted Load Independence 

Despite the wide variation in τ, τL and dP/dtMIN within each subject, and in accordance 

with the prediction (Eq. 11.15), the linear least-squares regression between Ek·(P
*

MAX-P∞) and 

τc·(dP/dtMIN) yielded strong linear relationships for each subject. Figure 11.7 shows the 

Ek·(P
*

MAX-P∞) and τc·(dP/dtMIN) plot for subject 5. 
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Below the plot, the isovolumic pressure decay portion of the phase plane is shown for 

three individual beats acquired in the subject. The leftmost contour shows a post PVC beat 

having the highest τ value among all heart cycles. The middle contour is a beat with the median τ 

value, and the rightmost contour is the beat with minimum τ value. The red curve shows the 

Figure 11.7. The Ek·(P
*
MAX-P∞) vs. τc·(dP/dtMIN) plot for 74 beats in subject 5. Beats with highest, lowest and median τ 

values are detailed in the three lower panels, where the phase plane contour, as well as the linear τ fit (black) and 

Chung model (τc, Ek) fit (red) are shown. Note that each point in the top panel corresponds to one specific cardiac cycle, 

and the location of the beats shown in the bottom three panels are highlighted in the top plot with the circle, triangle 

and square labels. Despite a large degree of τ variation, the Ek·(P
*
MAX-P∞) vs. τc·(dP/dtMIN) relation remains highly 

linear (r
2
=0.993), with a constant MLIIIVPD value of 1.162. See text for details. 
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Chung isovolumic pressure decay model fit to the phase plane contour, while the black line 

shows the linear τ fit. Notice that each individual beat inscribes a particular point in the 

Ek·(P
*

MAX-P∞) vs. τc·(dP/dtMIN) plot, and 

these individual beats are co-linear with 

the rest of the 71 beats measured in this 

particular subject. Thus despite 

significant changes in τ between these 

three individual beats, the MLIIIVPD 

defined by these beats remains the same, 

and is consistent with the MLIIIVPD 

defined by all the analyzed beats in this 

subject.  

MLIIIVPD, BLIIIVPD and r
2
 values for 

each subject are presented in Table 11.3. 

All subjects showed highly linear 

Ek·(P
*

MAX-P∞) vs. τc·(dP/dtMIN) relations, 

with the average r
2
 value equal to 0.993. 

Across all subjects, MLIIIVPD varied 

between 1.06 and 1.169, and BLIIIVPD varied between 10620 mmHg/s and 45990 mmHg/s. As a 

further test of the consequences of the automated beat selection process, in 14 subjects whose 

data were ‘clean’ in the physiologic sense, utilizing all beats (including the excluded high RMSE 

beats) in the calculation of MLIIIVPD changed the value of MLIIIVPD by less than 5%. Thus, for 

physiologically ‘clean’ data the beat exclusion criteria has a minimal impact on MLIIIVPD. To 

Table 11.3. LIIIVPD Analysis 

Subject  MLIIIVPD BLIIIVPD, mmHg/s r
2
 n 

1 1.112 23008 0.994 58 

2 1.006 10621 0.998 179 

3 1.100 24294 0.993 46 

4 1.092 23131 0.996 72 

5 1.162 22959 0.989 214 

6 1.081 15546 0.997 57 

7 1.123 10635 0.998 46 

8 1.150 19613 0.988 63 

9 1.169 17183 0.990 121 

10 1.145 45994 0.970 137 

11 1.158 21095 0.993 54 

12 1.099 17791 0.987 100 

13 1.119 24760 0.997 115 

14 1.105 18147 0.997 102 

15 1.089 18902 0.996 183 

16 1.162 16872 0.993 74 

17 1.088 19447 0.997 96 

18 1.091 25004 0.996 175 

19 1.023 10699 0.994 66 

20 1.107 23948 0.990 86 

21 1.135 17261 0.990 131 

22 1.069 23358 0.993 161 

23 1.147 21339 0.989 94 

24 1.120 16683 0.997 118 

25 1.023 18559 0.994 122 

 The slopes, intercepts, and Pearson correlation 

coefficients, (MLIIIVPD, BLIIIVPD and r
2
) of each 

subjects’ Ek·(P
*

MAX-P∞) vs. τc·(dP/dtMIN) relation are 

presented, where Ek is stiffness, P∞ is pressure 

asymptote, and τc is relaxation. LIIIVPD, load-

independent index of isovolumic pressure decline; n, 

number of beats across which the linear regressions 

are performed. 
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assure consistency in the analysis, the same RMSE-based beat exclusion criteria were applied to 

all subjects.  

 

11.3.4 Clinical Correlations with MLIIIVPD 

MLIIIVPD values in each subject showed strong linear correlation with average EF 

(r
2
=0.52), τ (r

2
=0.65), τL (r

2
=0.50), and dP/dtMIN (r

2
=0.63) values from each subject. High 

MLIIIVPD values were associated with lower τ and τL values, higher values for EF and more 

negative dP/dtMIN values (see Figure 11.8). The intercept BLIIIVPD values from each subject did 

Figure 11.8. Correlation of MLIIIVPD with physiologic parameters. Each point in each 

panel represents one subject’s MLIIIVPD value and corresponding EF, τ, τL, or dP/dtMIN 

value. See text for details. 
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not show significant correlation to average EF (r
2
=0.22), τ (r

2
=0.38), τL (r

2
=0.55), or dP/dtMIN 

(r
2
=0.31) values. 

  

11.4 DISCUSSION 

The time course of isovolumic pressure decline has been shown to depend on both 

intrinsic ventricular parameters and extrinsic load effects (2, 3, 9, 11, 13, 20, 24, 26, 30, 31, 33), 

and therefore, despite some initial claims of load-independence, both τ and τL have proven to be 

load-dependent. Previously, isovolumic pressure decay was fit by assumed and disparate logistic 

(τL) and monoexponential (τ) functions that were not derived from kinematic considerations.  

Chung et al (5) proposed a novel kinematic model of isovolumic pressure decay, and 

demonstrated how overdamped and underdamped limits the mode corresponded with τ and τL 

generated fits to pressure data. However, the Chung model parameters Ek and τc are individually 

load-dependent, and therefore the parameters alone do not solve the ‘load independent index of 

isovolumic pressure decay’ problem. To solve this problem, we derive an algebraic expression 

that makes use of τc and Ek values from multiple beats in the same subject. We show that within 

the varying beat-to-beat pressure contours, a conserved (i.e. load-independent) relationship 

exists, namely the slope, of the Ek·(P
*

MAX-P∞) vs τc·(dP/dtMIN) relation, called MLIIIVPD. 

Furthermore, we demonstrate clinical relevance by determining correlations between MLIIIVPD 

and conventional parameters in a group of heterogenous subjects with varying degrees of systolic 

and diastolic dysfunction.  
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11.4.1. Known Load-Dependence of τ  and τL 

In the initial studies describing τ, investigators noted insignificant changes in τ associated 

with volume loading or HR variation, and concluded τ to be independent of systolic stress and 

end-systolic fiber length (8, 31). However, these initial studies were not performed in the intact 

heart, and later studies in both anesthetized and conscious dogs found τ to be significantly 

dependent on systolic load (9, 13, 26). In addition, τ was shown to be dependent on volume 

loading and end-diastolic pressure (26), pharmacologically generated increases in contractility 

and load (9, 13), and the timing of acute afterload perturbations (11). τL was suggested as an 

alternative to τ, and studies in human heart failure subjects, as well as in isolated canine hearts 

suggest that τL is less load-dependent than τ (21, 28). However application of τL may not be 

appropriate when the pressure phase plane trajectory is highly linear (5). Furthermore, a study in 

patients undergoing cardiac surgery found that load-variation due to leg lift significantly affected 

both τ and τL in a select group of patients (6). 

  

11.4.2 Physical Interpretation of MLIIIVPD 

 The Chung IVPD model utilizes a linear damped harmonic oscillator as the kinematic 

analogue for chamber behavior during isovolumic pressure decay (5). The rapid decay of wall 

stress and associated strain directly generates pressure decay through Laplace’s law, and 

therefore Eq. 11.3 is written in terms of pressure and pressure derivatives. However, if we 

consider isovolumic pressure decay kinematically and in terms of displacements, Eq. 11.3 

becomes a balance of inertial, resistive, and elastic forces. Isovolumic pressure decay is governed 

by an elastic, mechanical recoil component that drives down the pressure, as well as a 
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viscoelastic resistive component related to crossbridge uncoupling that modulates pressure 

decay. These elastic and resistive components of isovolumic pressure decay have peak forces 

associated with them and, because the Chung IVPD model is linear, increased elastic (recoil) 

forces will be accompanied by increased peak resistive (viscoelastic) forces. The load 

independent index of isovolumic pressure decay is the slope of the peak elastic force driving 

pressure decay vs. peak resistive force opposing pressure decay. Thus Eq. 11.15 predicts that for 

an individual subject, peak driving force and peak resistive force maintain a constant relation, 

with constant slope MLIIIVPD, in the face of load variation.  As load changes, the level of peak 

elastic force required to drive down the pressure during isovolumic relaxation also changes. A 

chamber where increased peak elastic 

(recoil) forces are accompanied by 

relatively large increases in peak 

resistive forces will have a low MLIIIVPD 

value, whereas increased elastic peak 

forces accompanied by relatively small 

increases in peak resistive forces will 

have a higher MLIIIVPD value. Thus 

MLIIIVPD is an index of isovolumic 

relaxation that is related to the 

efficiency with which the relaxing 

ventricle adapts to changes in load.  

Figure 11.9 provides a 

theoretical plot of the peak driving 

Figure 11.9. A theoretical plot of peak force driving 

pressure decay vs. peak force opposing pressure decay, 

using normalized units. As in Figure 11.5, individual beats 

from a particular subject will reside as points in the plot. 

The lower right corner of the plot is the non-physiologic 

regime, because then resistive forces exceed driving forces 

and pressure decay can not occur. Furthermore, notice that 

a subject with MLIIIVPD<1 has a limited regime over which 

load can vary, while subjects with MLIIIVPD>1 do not have 

such a constraint. See text for details. 
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force vs. peak resistive force. The area below the diagonal is theoretically restricted from 

occurring with normal physiology, because if peak resistive forces exceeded peak driving forces 

then pressure decay is prohibited. Figure 11.9 also demonstrates that a line with MLIIIVPD<1 

eventually crosses over to the non-physiological domain with extended load variation. Thus, 

when compared to subjects with MLIIIVPD>1, subjects with MLIIIVPD<1 will have less efficient 

relaxation-related beat-to-beat response to load variation, and possess a limited regime of 

allowed load variation compared to subjects with MLIIIVPD>1. In analogy to the analysis 

presented in Chapter 8, the line through the origin with a slope of e/2 represents a transition 

between overdamped and underdamped physiology. Isovolumic pressure decay contours with 

coordinates below the e/2 line would be expected to have ‘straight’ pressure phase plane 

contours amenable to an exponential model (τ)  approach, whereas pressure decay contours with 

coordinates above the e/2 line would be expected to have ‘curved’ pressure phase plane contours, 

between fit by a logistic model (τL) approach. 

 

11.4.3 Clinical Validation of MLIIIVPD 

 The physics based derivation presented in above, as well as the results presented in 

Figure 11.7 and Table 11.3 demonstrate the for each subject, MLIIIVPD remains constant in the 

face of load variation. In this manner, load-independence of MLIIIVPD is both derived and 

validated. However, to be clinically useful, MLIIIVPD must be related to real physiology, and must 

have the potential to differentiate between normal physiology and pathophysiology. To assess 

clinical validity, MLIIIVPD was compared to average values of accepted, conventional measures of 

isovolumic relaxation.  
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The results of Figure 11.8 must be interpreted with care. The current study consisted of 

subjects with a wide range in traditional isovolumic relaxation parameters: 33ms<τ<147 ms, 

14<τL<45 ms, -718mmHg/s<dP/dtMIN<-1875 mmHg/s. Thus, despite the fact that τ, τL, and 

dP/dtMIN are known to be load-dependent, it is unlikely that load effects alone account for the 

large range of variation observed among the subjects. It is therefore reasonable to conclude that 

in the current study subjects with longer τ, τL, and less negative values for dP/dtMIN, have 

relaxation-related dysfunction, whereas subjects with shorter τ, τL, and more negative dP/dtMIN, 

have characteristics of normal function. Thus the correlations in Figure 11.8 between MLIIIVPD 

and τ, τL, and dP/dtMIN demonstrate that the values of MLIIIVPD, though confined to a narrow 

range among the subjects studied, conveys clinical information.  

We note, however, that correlating conventional indexes of isovolumic relaxation and 

MLIIIVPD would have limited value if the subjects chosen were more homogeneous and possessed 

near normal average τ, τL, or dP/dtMIN values. Indeed τ, τL, and dP/dtMIN are load-dependent, and 

therefore modest variations in these parameters can be the result of load effects. By including 

subjects with widely different τ, τL, and dP/dtMIN values, we insure that the subjects have 

significant intrinsic relaxation-related differences among them. In this manner we minimize the 

effects of load in the particular subject group, and therefore can conclude that the trends 

observed in Figure 11.8 support our view that MLIIIVPD correlates with intrinsic relaxation-related 

function. Higher values of MLIIIVPD correlate with improved function (more negative dP/dtMIN, 

lower τ and τL), while lower values of MLIIIVPD correlate to dysfunction (more positive dP/dtMIN, 

prolonged τ and τL). 
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The correlation between MLIIIVPD and ejection fraction is interesting because 

conventionally ejection fraction is viewed not as an index of isovolumic relaxation, but instead 

as an index of global (systolic) function. However subjects with global dysfunction are likely to 

have relaxation abnormalities, and therefore is is not surprising that subjects with low ejection 

fraction’s also had lower MLIIIVPD values compared to subjects with normal ejection fraction. The 

correlation between ejection fraction and MLIIVPD , as well as the related correlations between 

MLIIIVPD and τ, τL and dP/dtMIN demonstrate that the variation in MLIIVPD among subjects was not 

random, but was clinically correlated to real differences in physiology.  

 

11.4.4 Connection to Previous Work 

The derivation of MLIIIVPD is similar to the previously validated load independent index of 

diastolic function (29) presented in Chapter 8. The key physiologic difference is that the current 

work deals with the physiology of isovolumic pressure decay rather than transmitral flow and 

early-rapid filling. Thus the relevant time scales, as well as initial conditions, are different 

between the current study and previous load independent index of diastolic function related 

work. However, because both isovolumic pressure decay and transmitral flow are governed by 

lumped forces that can be accurately modeled kinematically, a similar derivation can be 

exploited in determining a load-independent index of either isovolumic relaxation or transmitral 

flow. The fact that the same type of conceptual and mathematical modeling works when applied 

to different physiology problems underscores the multi-scale power of kinematic modeling. 

 

11.4.5 Automated Determination of MLIIIVPD 

 The initial results show that MLIIIVPD is indeed conserved in the face of load variation and 



 

 339 

is correlated to the intrinsic ability of the chamber to quickly and effectively relax the previous 

systolic cramp. Because of the broad impact that MLIIIVPD may have in the clinical setting, it is 

important to develop methods by which MLIIIVPD may be automatically calculated in real-time in 

the catheterization lab.  

 

The Challenge With Automation 

Because physiological data may contain cardiac cycles with unanticipated noise in the 

pressure signal, it is important for the automated methodology to detect inappropriately noisy 

isovolumic pressure decay contours so that they are not included in the MLIIIVPD analysis. The 

initial approach outlined in the Methods  discarded beats with RMSE to P˙(t) above the mean 

RMSE value. This however required a large number of beats, which may not be practical for real 

time clinical application. Thus a primary challenge in automated MLIIIVPD calculation is 

determining a proper RMSE cutoff for noisy vs. clean physiological data. Calculation of MLIIIVPD 

requires a certain number of distinct isovolumic pressure decay contours, and therefore requires 

acquiring data from multiple cardiac cycles in a particular subject. Any selection criteria for 

clean data will necessarily increase the number of cardiac cycles that need to be measured in 

order to determine the MLIIIVPD. Thus aggressive filtering would tend to increase the total time of 

data acquisition, and this is not ideal because of the invasive nature by which ventricular pressure 

is routinely measured. Less aggressive filtering however would lead to more significant errors in 

MLIIIVPD due to the inclusion of noisier and possibly non-physiologic isovolumic pressure decay 

contours. Thus to better characterize the appropriate RMSE cutoff, we perform an exploratory 

analysis in one of the 25 previously analyzed subjects. We apply 7 different RMSE cutoff values, 

and for each set of filtered beats, we calculate MLIIIVPD from n random beats, where n ranges 
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from 2 to the total number of filtered beats. 

 

Optimizing RMSE Filtering Cutoff 

Among the 340 beats analyzed in 

the subject of interest, RMSE varied 

between 10.6 mmHg/s and 66.3 mmHg/s, 

with the mean RMSE equal to 32.1 

mmHg/s. RMSE cutoff values of 16.0, 

21.4, 26.8, 32.1, 37.5, 42.9, and 48.3 were 

chosen. For each chosen RMSE cutoff 

value, n beats, where n varied from 2 to the 

total number of remaining beats, were 

chosen randomly and analyzed according to 

the Methods described above. Figure 11.10 

shows the MLIIIVPD and r
2
 values vs. 

number of beats analyzed n for the lowest 2 

RMSE values, as well as the mean RMSE 

value. Remaining RMSE cutoff values 

provided similar MLIIIVPD vs. n plots. Note 

that while the lower RMSE cutoff leaves 

far fewer total beats with which to generate 

MLIIIVPD, it appears that fewer beats are 

needed to generate the appropriate MLIIIVPD 

Figure 11.10. Applying the 25% (bottom) and 50% 

(middle) RMSE cutoff between minimum RMSE and 

mean RMSE, as well as the mean RMSE cutoff (top) 

leaves 11, 38, and 222 beats respectively. For each case the 

MLIIIVPD (black) and load independent index of isovolumic 

pressure decay relation r
2
 (red) defined by n random beats 

chosen from the remaining beats is shown. 
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value when those beats are chosen from among the lower RMSE group.  

 Figure 11.10 clearly demonstrates an important trade-off that must be considered in the 

design of an automated process for determination of MLIIIVPD in real time. The typical 

catheterization case has a limited number of cardiac cycles that can be measured, because arterial 

access time must be minimized, whereas the calculation of MLIIIVPD requires numerous beats to 

be analyzed, especially if the data is noisy. When only data with RMSE below the mean RMSE 

is included, as shown in the top panel of Figure 11.10, MLIIIVPD shows approximately 10% 

variation before the first 50 beats are analyzed. This variation decreases as more beats are 

analyzed, until a final value of 1.15 is reached. When a more stringent RMSE cutoff is applied, 

the MLIIIVPD variation remains until 30 beats are analyzed, but inclusion of all 40 beats results in 

a convergence on an MLIIIVPD value of 1.13. Finally, with the most stringent RMSE cutoff 

applied, only 11 beats are available and there is significant variation in MLIIIVPD, but the final 

value is also 1.13.  

 

A Running Average Approach  

These results suggest that analyzing low RMSE data is the ideal approach. However, 

given data with a normal distribution of RMSE values, finding enough beats with low RMSE 

values may be impossible given a limited number of measured cardiac cycles. Interestingly, an 

interesting property emerges from the top panel of Figure 11.10, where the mean RMSE was 

chosen as the cutoff. It is evident that MLIIIVPD shows a symmetry around the final MLIIIVPD value. 

Indeed, a running average of MLIIVPD in the top panel stabilizes between 1.14 and 1.15 within 9 

beats. For normally distributed data that would imply 18 measured cardiac cycles in total, which 

is a reasonable goal in the catheterization laboratory. Further work regarding the symmetry of 

MLIIIVPD vs. n and the appropriate averaging techniques to reduce the needed number of cardiac 
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cycles analyzed is warranted.  

 

11.5 LIMITATIONS 

11.5.1 Kinematic Model Limitations 

The lumped parameter, kinematic approach presented uses a linear differential equation 

with constant (i.e time-invariant) coefficients (Newton’s Law) Eq. 11.3 to model events that 

others have modeled using time-varying ventricular properties. Past work by Nudelman (23) has 

compared and shown superb agreement between a time-invariant linear kinematic model and 

time-varying nonlinear models of transmitral flow. Although the form of the differential equation 

for transmitral flow and isovolumic pressure decay is the same (Newton’s Law), numerical 

experiments comparing the kinematic model and models with time-varying coefficients for 

isovolumic pressure decay have not been carried out.  Additional validation of the constant 

coefficient, kinematic modeling utilized here would require that the averaged time-varying 

parameters agree with the constant coefficient lumped parameters. A potential limitation of the 

current work is the absence of experimental data to validate time-invariant analysis in this 

manner. However, the ability to solve the ‘inverse problem’ using in-vivo data as input and 

unique parameter values as output, and the close agreement between the in-vivo pressure data 

and the time-invariant, kinematic model predicted contours, supports the conclusions of the 

current study. 

 

11.5.2 Application of a Model Determined Maximum Pressure 

In the derivation of the load independent index of isovolumic pressure decay, the model-

based maximum pressure (P*MAX), determined by algebraically solving for the maximum value of 
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Eq. 11.4, was employed. It may seem inappropriate, however, to apply an isovolumic model to 

intervals before aortic valve closure. Indeed, P*MAX will not accurately reflect the actual PMAX 

value, because with intact physiology, the isovolumic condition is broken at PMAX. However, 

using P*MAX as a value in the idealized limit where the chamber is isovolumic does not violate any 

physical principles, or introduce any tautological conditions. In fact the use of P*MAX is 

analogous to the methods applied in the Doppler-echo derived load independent index of diastolic 

function (29) presented in Chapter 8. Furthermore, if one uses the actual PMAX value instead of 

P*MAX, so that the y-coordinate in the regression that defines MLIIIVPD becomes Ek·(PMAX-P∞) 

instead of Ek·(P
*
MAX-P∞), then the plots for each subject remain strongly linear, but the linear 

correlations between MLIIIVPD and τ (r2=0.44), τL (r2=0.41), dP/dtMIN (r2=0.46), and EF (r2= 

0.27) decrease relative to those seen in Figure 11.8. Because MLIIIVPD is derived to be an index of 

isovolumic relaxation, it is reasonable to only use parameters derived from isovolumic data. Thus 

the use of P*
MAX, the maximum pressure in the chamber assuming that the chamber remains 

isovolumic from the pressure maximum down to mitral valve opening, is preferred.  

 

11.5.3 Clinical Utility Beyond Conventional Isovolumic Pressure Decay Indexes  

A further limitation may be the concern that MLIIIVPD does not present information 

beyond what the average τ or τL value already provides, and therefore serves as merely a 

surrogate for τ. While this is reasonable, we note that MLIIIVPD, τ, and τL are all determined by τc 

and Ek. In other words, all three indexes are surrogates for how stiffness and relaxation combine 

to determine isovolumic pressure decay. Because all three indexes represent lumped parameters 
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of isovolumic pressure decay and are therefore measuring the same physiological event, it is 

reasonable to expect these parameters to correlate with each other and to vary between subjects 

with different physiology. However, while each index provides information regarding isovolumic 

pressure decay, MLIIIVPD is the only one that is derived with load-independence in mind, and is 

validated to be load-independent. 

 The strong correlations presented in Figure 11.8 may suggest that inversion of these 

correlations would allow one to extract MLIIIVPD for an individual subject by measuring τ, τL, or 

dP/dtMIN alone. Thus, it may appear that the load-independent MLIIIVPD index could be derived 

from load-dependent parameters. It is important to note however that Figure 11.8 consists of 

correlations among subjects with overt differences in τ, τL and dP/dtMIN. While a general trend is 

observed between MLIIIVPD and relaxation-related function, a direct causal link that is appropriate 

for extreme and moderate values of τ, τL, and dP/dtMIN cannot be determined from Figure 11.8. 

Thus inversion of the correlations in Figure 11.8 is not justified.  

 

11.5.4 Patient Heterogeneity 

Additionally the use of a non-homogeneous subject group may be seen as inappropriate 

because the significant physiological difference between the subjects may confound the results of 

the work. Had the Ek·(P
*
MAX-P∞) vs. τc·(dP/dtMIN) relation shown to be nonlinear in some subset 

of the subjects, then the non-homogeneous nature of the subject group could have been invoked 

to explain why MLIIIVPD is load-independent in some cases, but load-dependent in others. 

However, because all subjects showed a strongly conserved MLIIIVPD slope in the face of load 

variation, the non-homogeneous nature of the subject group serves to underscore the validity and 

general applicability of the method. 
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11.5.5 Range of MLIIIVPD Variation  

Although the number of beats analyzed is substantial (2669) the number of subjects is 

modest, and therefore no claims regarding the range of normal or abnormal values for MLIIIVPD 

are made. Although the range of variation of MLIIIVPD is narrow in the absolute numerical sense, 

these values correlated with the underlying physiology as evidenced by Figure 11.8. Though 

conventional indexes of isovolumic relaxation such as τ and τL may exhibit a larger numerical 

range of variation across subjects, much of it is due to load variation. It is therefore not 

surprising that a load-independent index exhibits a narrower numerical range of variation than 

load-dependent indexes such as τ and τL. Thus the ‘benefit’ of a load-independent index of 

isovolumic pressure decay carries with it the ‘cost’ of a numerically smaller range of variation.  

Future studies with carefully selected patient groups will be needed to establish clinical 

range for MLIIIVPD. In addition the variation of MLIIIVPD, in repeated studies where each subject 

serves as their own control, may provide an opportunity for phenotypic characterization that 

provides mechanistic insights regarding the effects of alternative (pharmacological, surgical, 

device based) therapeutic modalities.  

 

11.6 CONCLUSIONS 

We apply Chung’s isovolumic pressure decay model to determine (Ek and τc) the stiffness 

and relaxation components of isovolumic pressure decay respectively. Based on physical and 

physiologic principles, we derive a parameter that avoids the load-dependence of τ. The new 

index, MLIIIVPD, is shown to be load independent in subjects with significantly different clinical 

profiles. Furthermore, MLIIIVPD correlates with conventional isovolumic relaxation parameters. 

To ensure clinical utility, we demonstrate a detailed process by which MLIIIVPD is determined 
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from pressure and ECG data alone in a real-time automated fashion. Future work determining 

MLIIIVPD in clinical subsets having specific pathophysiology and defining proper guidelines 

regarding number of beats necessary for robust MLIIIVPD analysis is warranted. 

 

11.7 THEMATICALLY RELATED ABSTRACT 

In the work above, we have utilized a kinematic model of isovolumic pressure decay to 

derive a novel load independent index. We have further explored this kinematic model and 

present a method by which lumped τ behavior, as well as specific physiological mechanisms that 

determine τ, may be simultaneously assessed. This specific application of the kinematic model of 

isovolumic pressure decay was previously published as a conference abstract.  

Our method relies upon analysis of IVPD 

contours in the τc vs Ek plane. Individual IVPD 

contours provide unique (Ek,τc) values that may be 

plotted in the τc vs Ek plane. Straight lines through 

the origin define lines of constant τ, and the 

coordinates of any beat in the τc vs Ek plane reveals 

the relative contribution of stiffness or relaxation 

effects that determine τ for the given beat (Figure 

11.11). 

We apply the τc vs Ek plane to retrospective data from the 25 analyzed in the current 

Chapter. For each subject, an average of 107 IVPD contours were plotted in the TEP. In each 

subject the τc showed strong linear correlation to Ek (0.65<r
2
 <0.95). Across all subjects, the 

Figure 11.11. A decrease in τ from 100ms to 

40ms is shown to be mediated by purely 

relaxation (τc) or stiffness (Ek) effects.  
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slope of the τc vs Ek plot correlated strongly with average τ, τL, ejection fraction (EF), and 

dP/dtMIN (r
2
=0.94, 0.71, 0.74, and 0.57 respectively). Across all subjects, median τc vs Ek plane 

coordinates shifted toward decreased τ with higher EF. Interestingly, this shift was mediated 

primarily by increased stiffness (not relaxation) effects. We conclude that the τc vs Ek plane is a 

novel tool by which the operative mechanisms determining the physiology of isovolumic 

pressure decay may be more completely assessed. 
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CHAPTER 12. 

A CLINICALLY IMPLEMENTED GEOMETRIC APPROACH TO PDF 

MODEL ANALYSIS OF TRANSMITRAL CONTOURS 
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12.1 INTRODUCTION 

12.1.1 Kinematic Analysis in the Clinic: Opportunities and Challenges  

The preceding chapters have provided numerous examples of novel applications of 

kinematic modeling to clinically relevant questions pertaining to diastolic function. These 

chapters represent a portion of a larger body of work based on kinematic modeling, published 

over the past 2 decades, that have demonstrated the power and applicability of quantitative 

mechanistic modeling in general, and the Parameterized Diastolic Filling (PDF) formalism in 

particular. These results should be applicable to any clinical practice, because the algorithms and 

mathematical methods have been extensively described and validated. Incorporation of these 

algorithms into the internal software of echocardiographic imagers by equipment manufacturers 

is in principle a simple task, and therefore the possibility exists for clinicians to routinely apply 

PDF modeling techniques through pre-packaged semi-automated techniques. However, there are 

a variety of challenges to automation of PDF analysis, and the root cause of these challenges 

relates to the method by which data is selected and fit, and the conceptual difficulties associated 

with clinical interpretation of the PDF based results. Indeed the PDF methodology is fairly 

technical, and is most easily understood using the language of mathematics, engineering, and 

physics. Re-expressing the PDF model in terms of conventional clinical parameters would 

therefore be advantageous.  

 

12.1.2 Current Kinematic and Conventional Analysis  

The current established techniques for extracting kinematic PDF model parameters from 

acquired transmitral flow contours (E- and A- waves) requires multiple steps, as shown in 

Chapter 2. First, the transmitral image must be cropped, the scale must be entered, and the 
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maximum velocity envelope must be chosen. In addition, the start and end of the waves to be fit 

must be chosen. Once these parameters are set, a computer algorithm minimizes the error 

between the model predicted velocity and the maximum velocity envelope pixels defined by user 

specified criteria. If the resulting fit does not visually appear to be in line with the image, then 

the user may adjust the parameters of the model. While manual adjustment is rare with clean 

data, noisier data, where errant pixels (i.e. noise) are picked up by the fitting algorithm, often 

requires operator guided feedback.  

Thus the current methodology, though based on minimizing error between model 

prediction and experimental measurement, has several drawbacks. First, it requires teaching new 

steps for clinicians and sonographers to follow in order to generate the input to the fitting 

algorithm. In addition, it may be sensitive to what the user picks as the start and end of the data. 

Finally it does not provide an intuitive approach to adjusting the fit data manually. Thus even if 

the algorithms and methods were widespread, there is a nontrivial learning curve associated with 

PDF model analysis that should not be underestimated and that stands in the way of widespread 

application of the PDF model kinematic approach to quantitative diastolic function assessment.  

  In contrast, the current established methodology for conventional clinical analysis of E-

wave attributes requires clinicians/sonographers to only determine the peak of the E-wave, the 

start of the E-wave, and the end of the E-wave (Chapter 2). This approach defines the familiar 

acceleration time (AT), deceleration time (DT), and E-wave peak (Epeak) parameters. Such an 

approach is advantageous because it is simple to teach, trivial to implement, and fairly repeatable 

across multiple investigators. In addition, it is a widespread established method, and therefore 

there is a great deal of experience in the cardiology community with this approach. Thus any 

novel analysis techniques would be more likely to be adopted across the general cardiology 
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community if they utilized components of the established conventional triangle-fitting algorithm. 

Specifically, a method for extraction of kinematic PDF parameters that mirrored conventional 

triangle fitting would represent a significant step forward toward widespread dissemination and 

clinical application of the PDF model.  

 

12.2 METHODS 

12.2.1 Determination of PDF Parameters from AT,DT and Epeak: Underdamped Kinematic 

Regime 

E-wave Analysis 

The triangle fit to the E-wave defines 3 points: the start, peak, and end of E-wave. 

Because there are only 3 parameters in the E-wave velocity expression, these 3 points should in 

principle be enough to uniquely determine the associated E-wave contour. To determine the 

exact mapping from geometrically determined AT, DT, and Epeak values to PDF model c, k, and 

xo values, we begin with the underdamped PDF model expression for velocity from Chapter 2: 

 

v(t)=
kxo

!
e

!
c

2
t

sin(!t)  Equation 12.1 

where c, k, and xo are the damping, stiffness, and initial displacement of the equivalent harmonic 

oscillator whose velocity matches the E-wave velocity, and !  is the frequency of the oscillator, 

given by 
 
! = k

2
! c / 2( )2 . As shown in detail in Chapter 2, solving for the acceleration and 

deceleration time of this wave, and introducing the parameter 
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, one finds: 
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1
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  Equation 12.3 

Rearranging these equations one can cancel out the √k: 

 
AT = cos
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y( )
(AT + DT )

!
  Equation 12.4 

and solving for y yields: 

 

y= cos !
AT

AT + DT
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&&&   Equation 12.5 

This demonstrates that y is determined uniquely by AT and DT, and, more specifically, 

by the relative asymmetry of the wave. As expected, when AT=DT and the E-wave is symmetric, 

y=0 and we have an undamped wave.  As relative damping to stiffness increases and y 

approaches 1, the E-wave asymmetry grows.  

Expanding the E-wave frequency in terms of k and y, we find: 

 

! = k 1! y
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"
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  Equation 12.6 

This may be rearranged, with the help of Equation 12.5 to solve for k in terms of AT and DT:  
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Finally the definition of y may be used to express c in terms of y and k, and therefore we may 

determine an expression for c in terms of AT and DT: 

 

c= 2y k =
2!

(AT + DT )
cot !

AT

AT + DT

!
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$

%
&&&  Equation 12.8 

Thus the c and k parameters of the kinematic PDF model can be extracted purely from the 

triangle AT and DT parameters, independent of the peak height of the E-wave. It is intriguing to 

consider that E-wave asymmetry alone defines PDF c and k parameters.   
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 We may determine the remaining PDF parameter, xo, by applying the final triangle-fit 

parameter, Epeak. In Chapter 2 we showed that according to the PDF model, the peak velocity is: 

 
v(AT )= Epeak = kxoe
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y cos
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  Equation 12.9 

Thus xo can be determined in terms of Epeak, y, and k: 

 
xo =

Epeak
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  Equation 12.10 

Finally with Equation 12.7 and 12.5, xo may be expressed as: 

 
xo = Epeak
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Taken together, Equation 12.7, 12.8, and 12.11 define a one to one mapping from 

conventionally determined triangle parameters and underdamped PDF parameters. Thus we have 

successfully re-expressed the more mathematically complex PDF parameters in terms of well-

established clinical parameters. It is self evident that the accuracy of xo, c and k determined from 

AT, DT and Epeak depends on the accuracy with whichthe triangle based parameters are 

determined. Nuances of the PDF model can be mapped onto nuances of E-wave AT vs DT 

asymmetry, and thus a new more clinically minded language may be applied to all PDF 

modeling based results. 

These equations indicate that PDF parameters c and k are purely functions of AT and DT, 

whereas xo is a function of Epeak, AT, and DT. However, xo/Epeak is a function of AT and DT 

alone, and therefore the dependence of c, k, and xo/Epeak on AT and DT may be visualized 

graphically if one holds AT+DT constant (Figure 12.1). Figure 12.1 also demonstrates the 

dependence of PDF parameters on AT/(AT+DT), thus explicitly showing the interdependence 
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between PDF parameters and E-wave asymmetry. As expected the symmetric E-wave, given by 

AT/(AT+DT)= ½ is consistent with undamped kinematics (c=0).  

 

A-wave Analysis 

Figure 12.1. Plots of c, k and xo vs AT and AT/(AT+DT) for fixed (AT+DT) values of 0.20s, 0.25s, 

0.30s, and 0.35s. The maximum value for AT is ½(AT+DT), because values beyond that imply a 

negative damping constant.  
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 This analysis is not limited to the E-wave, and indeed the A-wave geometric connection 

to PDF parameters is even simpler that the preceding E-wave analysis. From Chapter 2, the A-

wave velocity contour may be expressed by the following equation: 

 

v(t)=
Fo
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      Equation 2.12 

As we show in Chapter 2, the duration of the wave is a function of the frequency, and therefore 

we may determine the frequency from the duration of the wave: 

 

!A =
2.9907

Adur

   Equation 2.13 

Alternatively the frequency may be determined if A-wave AT or DT are measured: 

 

!A =
1.69897

AAT

=
1.29177

ADT

  Equation 2.14 

The only other A-wave parameter that needs to be determined is Fo, and applying the expression 

in Chapter 2 for the peak amplitude of the A-wave, we obtain: 

 

Fo = 4.9888
Apeak

AAT
  Equation 2.15 

Thus measurement of Apeak and Adur or A-wave acceleration or deceleration time exactly defines 

the A-wave PDF parameters.  

 

12.2.2 Determination of PDF Parameters from AT,DT and Epeak : Overdamped Kinematic 

Regime 

E-wave Analysis 

Following the approach above, we begin with the overdamped version of E-wave velocity, 

described in Chapter 2: 
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v(t)=
kxo

!
e
!"t

sinh(!t)  Equation 12.16 

where 
 
! = "2! k2  and 

 

! =
c

2
. As discussed in Chapter 2, the E-wave acceleration time and 

peak height may be found exactly for the overdamped E-wave: 

 

ATover =!
1

y k
"  Equation 2.17 

 
Epeak = kxoe

!  Equation 2.18 

where 
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Because the deceleration time is not finite for the overdamped E-wave, an approximation to 

deceleration time must be made. As discussed in Chapter 2, the natural approximation is to 

define a line between the E-wave peak and inflection point in the deceleration portion, and 

extend that line to the velocity baseline. The horizontal distance between E-wave peak and point 

where the constructed line intersects the baseline defines an effective E-wave deceleration time, 

and this can be mathematically expressed as: 

 

DTover =
1

k

!

"
###

$

%
&&&&

'

2y
2
e
' ( y

  Equation 12.19 

Thus the ratio of overdamped acceleration time to deceleration time is: 

 

ATover

DTover
=1!2ye

"   Equation 12.20 

 Plotting Equation 12.20 against y for y>1 reveals that, as expected, the function is 

monotonically decreasing with increasing y (Figure 12.2). While Equation 12.20 does not have a 

simple analytic inverse, one can numerically invert the function and determine a unique value of 
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Figure 12.2. Plot of the ratio of acceleration time 

(AT) to deceleration time (DT) vs the damping to 

stiffness ratio y. Inversion of this plot allows for 

determination of y from AT/DT ratio. See text for 

details.   

y from a measured AT/DT ratio.   

 Once y is determined, individual c and k parameters may be determined from Equations 

12.17 above. Solving equation 12.17 for k  yields: 

 

k =
1

ATover

!

y

"

#
$$$$

%

&

''''

2

 Equation 12.21 

 Once k is determined c is found from the basic definition of y:  

 

c= y !2 k =
2

ATover
"  Equation 12.22 

Isolating xo in equation 12..18 above yields an expression for xo in terms of Epeak and  ! : 

 

xo =
1

k
e
!"

Epeak = Epeak #ATover
y

"e
"

 Equation 12.23 

With Equations 12.21-23, PDF parameters 

c, k, and xo can be uniquely determined from 

measured AT, DT and Epeak values. As in the 

case of underdamped waves, AT and DT alone 

determine c, k, and xo/Epeak. Thus we have 

determined expressions for PDF parameters in 

terms of measured triangle parameters. In the 

underdamped regime the expressions are exact, 

whereas in the overdamped regime the 

expressions are approximations because of the 

approximations that must be made in relation to overdamped deceleration time. What is not clear 

from initial inspection, however, is how one determines which regime of filling applies. Thus 
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Figure 12.3 A plot of AT/DT vs y extended to both  the 

underdamped (dark gray) and overdamped (light gray) regimes. The 

yellow curve applies the exact DT expression (Eq 12.3), while the 

blue and red curves use the inflection based DT’ expression (12.28). 

The intersection between the yellow and blue curve suggests a 

transition point for the underdamped to overdamped fitting 

algorithm. See text for details.  

further analysis is required to understand the transition between the underdamped and 

overdamped kinematic filling regimes.  

 

12.2.3 Underdamped to Overdamped Transition  

 In the overdamped analysis above, we plotted the ratio of AT to DT against y and found 

that the ratio decreased monotically with increasing y (Figure 12.2). The plot was limited, 

however the to overdamped regime, and it is interesting to consider extending the plot into the 

underdamped kinematic regime (0≤ y<1). In Figure 12.3 we extend the plot using both the exact 

AT/DT ratio, found from Equation 12.3 and 12.2, as well as the ratio of exact AT to inflection 

point defined DT’, determined 

from Equation 12.2 and Eq 2.31. 

Recall that in Chapter 2 we 

showed that the inflection point 

defined DT’ was a close 

approximation to the exact DT for 

underdamped waves, with 

equality occurring at the 

undamped c=0 limit.  

Figure 12.3 reveals a 

serious limitation of the exact DT 

equation in the underdamped case 

as y approaches 1. Just as in the 

case of overdamped waves, the 
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y=1 wave is critically damped and attains 0 velocity at infinite time. Thus the predicted exact 

deceleration time approaches infinity as underdamped waves approach the critical damping 

regime, and therefore application of the exact deceleration time expression in nearly critically 

damped cases will lead to overestimation of deceleration time compared to the best fit linear 

deceleration times determined in the clinic (Figure 12.4). Thus for waves near the critical 

damping regime a more appropriate deceleration time is the one that is also defined in the 

overdamped case, as the base of the triangle whose hypotenuse is collinear with the E-wave peak 

and inflection point.  

 Indeed we see in Figure 12.3 that the exact AT/DT expression in the underdamped case 

drops precipitously as y approaches 1, while the AT/DT’, defined using the inflection point based 

DT, continuously transitions to the overdamped case as y approaches and exceeds 1.  

Figure 12.4. Theoretical E-waves with increasing y, showing both exact deceleration time (DT) and 

inflection point defined deceleration time (DT’). When y>1 the wave is overdamped and exact DT is 

not defined. When y is low, as in the y=0.25 example, the inflection point derived DT and exact DT are 

similar in value. As y approaches 1, as in the y=0.9 example in the middle, the exact DT grows 

significantly. In the clinical setting, however, the best first deceleration line is used to define 

deceleration time, and therefore as y approaches 1, the exact deceleration time is likely to overestimate 

the visual best fit triangle based DT. The inflection point DT, however, provides a reasonable estimate 

of the visual best fit triangle. See text for details.  
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Figure 12.3 provides valuable insights into the transition between underdamped and 

overdamped kinematic regimes. It is natural to conclude that an important transition occurs at the 

point in the underdamped regime where the two AT/DT expressions are equal and cross over. 

This crossover can be numerically determined and occurs approximately at y=0.65042. Below 

this y value both the exact and inflection-point based DT are close in value, and significantly 

beyond this y-value the two DT expressions diverge. Plugging in this value to the expressions for 

AT/DT, we find that it corresponds to DT/AT=2.64. Thus, when the deceleration time of an E-

wave exceed the 2.64 times the acceleration time, then the exact expression for deceleration time 

will be expected to inappropriately reflect the visually determined clinical deceleration time. 

However, the wave is still expected to be in the underdamped regime.  

To determine the point where the wave is in the overdamped regime, we must consider value 

of AT/DT at y=1. This provides a natural transition from underdamped to overdamped 

physiology from E-wave asymmetry alone, and may be determined easily by plugged y=1 into 

Eq 12.20 above: 

 

ATover

DTover

=1!2e" 1( )
 Equation 12.24 

To make progress, we must evaluate at 1: 
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expanding around z=0: 

 
!(1)="

1

2
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z#0
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(
)))="1  Equation 12.26 

Thus at the critical damping limit (y=1), we have: 
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ATover

DTover

=
e!2

e
= 0.264  Equation 12.27 

Thus, when deceleration time exceeds 3.78 times the acceleration time, we expect the E-

wave to follow overdamped rather than underdamped kinematics. This analysis suggests that we 

must extend our equations in the underdamped regime to include both the exact DT case 

(consistent with the underdamped equation for c, k, and xo in terms of AT, DT, and Epeak 

above), as well as the inflection point based DT. As we show in Chapter 2, the inflection point 

based expression for DT in the underdamped regime is: 

 

DT =
AT

1!
v 2AT( )
v AT( )

=
1

k

cos
!1
(y)

1! y
2

1!2ye

!
y cos

!1
(y)

1!y
2

 Equation 12.28 

Thus, applying Eq 12.2 from above, the ratio of AT to DT’ in the underdamped regime is  

 

AT

DT
=1!2ye

!
y cos

!1
(y)

1!y
2

 Equation 12.29 

Just as in the overdamped case above, this equation may be numerically inverted to yield a 

value for y given AT and DT values. Once y is determined, it may be plugged back into the exact 

expression for AT to find k, and then y and k yield c. Finally plugging those values into the 

expression for xo provides an expression for xo in terms of AT, DT, and Epeak. This analysis only 

applies in the regime where 2.64<DT/AT<3.78, where the kinematics are underdamped but 

approaching critical damping.  

 

12.2.2 Implementation of Triangle Based Fitting 
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Taken together the equations and insight above suggest a novel and simplified approach 

to model based image analysis for PDF parameter extraction from transmitral velocity contours. 

A summary of the novel methodology is provided in Figure 12.5 below. 

Figure 12.5 demonstrates the approach for both E-wave and A-wave fitting using 

conventional clinically determined triangles. The methodology is far simpler than current inverse 

solution methods for PDF parameter extraction. With this conventional based analysis, given an 

acquired E-wave, a user needs to first determine the velocity and time scale for the E-wave 

image. Next the peak point must be chosen, thereby defining Epeak. Once the peak is chosen the 

cursor may be positioned along the deceleration portion of the wave to set the deceleration time 

Figure 12.5. Summary of the methodology for extracting PDF parameters from triangle based analysis 

alone. Top panel summarizes E-wave fitting approach, which requires determination of 3 triangle 

points. Bottom pane summarizes A-wave fitting approach, which requires only the end and peak points 

of the triangle. See text for details.  
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(DT). Lastly the acceleration time must be set, and to aid in the fitting process the PDF model-

predicted curvilinear fit to the E-wave may be superimposed in real-time as the investigator 

adjusts the start cursor position before setting the AT. The superimposed fit is dynamically 

generated using the set Epeak and DT values and the changing AT value. If DT/AT>3.78 then the 

overdamped equations are used to extract k, c, and xo. (Equations 12.21-23) If DT/AT<2.64 then 

the exact underdamped equation are applied (Equations 12.7-8, 12.10). If 2.64<DT/AT<3.78 

then the underdamped equations are applied but the DT is expressed in terms of the inflection 

point velocity, rather than in terms of the exact DT expression (Equations12.2.9).  Once the user 

is satisfied with the alignment of the superimposed fit and the  E-wave image, they can set the 

start point and in so doing save the triangle AT, DT, and Epeak parameters, as well as the derived 

PDF c, k, and xo parameters.  

The method for fitting the A-wave is similar and slightly simpler, because it only requires 

two points instead of 3. The user must define the end of the A-wave first, and then adjust the 

cursor to set the A-wave peak. As the cursor moves it defines specific A-wave peak velocities 

and A-wave deceleration times. These values may be plugged into Equations 12.14 and 12.15 to 

yield A-wave PDF parameters Fo and ω. These values may be plugged into the A-wave velocity 

equation to yield a superimposed A-wave velocity contour, and the user simply must find the 

peak cursor position that results in the best alignment between superimposed A-wave contour 

and measured A-wave.  

 

12.2.2 Initial Methodological Validation 

The theoretical derivations presented above are promising in that they bridge the gap 

between correlative conventional clinical analysis and more mathematically complex but causal 
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kinematic modeling. However, the robustness of the novel simplified fitting approach must be 

checked against the more complex gold-standard inverse solution method for PDF parameter 

extraction presented in Chapter 2. 

To achieve this, we perform two preliminary validation studies focused on fitting the E-

wave contour by the geometric method. First, we re-evaluate already analyzed underdamped 

transmitral contours from the existing Cardiovascular Simultaneous Catheterization 

Echocardiography database for which PDF parameters have already been determined using the 

more complex methods described in Chapter 2, and for which triangle parameters have already 

been determined as well by conventional analysis. We use the determined triangle parameters 

(AT, DT, Epeak) to derive the PDF parameters according to the equations above, and compare 

these values to the already determined PDF parameters. Only underdamped waves were chosen 

for this analysis because of the small number of historical overdamped waves, and because of 

inconsistencies in the historical fitting of overdamped waves by triangles.  

Second, 46 sample transmitral flow contours, picked from the existing Cardiovascular 

Simultaneous Catheterization Echocardiography, were reanalyzed using the novel methodology 

described above. This methodology was implemented using a custom written MATLAB 

graphical user interface. Two varieties of the geometric approach described above were 

implemented: one version requires the user to set the acceleration time first (AT-first method), 

while the other requires the user to set the deceleration time first (DT-first method). 

In both methods the user begins by clicking on the peak of the E-wave velocity contour. 

In the AT-first method the user then selects the start of the wave, thereby defining the 

acceleration time. The cursor is then positioned along the deceleration portion of the wave, and 

because the cursor position defines the end of the wave and therefore the deceleration time of the 
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wave, the PDF parameters may be calculated in real time (from AT, Epeak, and DT as described 

above), and the model predicted velocity contour may be superimposed as the cursor position is 

changed. Once the user is satisfied with the agreement between the E-wave contour and the 

superimposed PDF velocity contour, they may click and lock in the value of deceleration time. 

The DT-first method is similar, with the exception that the second click defines the end of the 

wave, and motion of the cursor occurs along the acceleration portion of the wave. Thus in the 

AT-first method one is adjusting the end of the wave until a superimposed model fit agrees 

closely with the E-wave contour, whereas in the DT-first method one is adjusting the start of the 

wave until a superimposed model fit agrees with the input contour. Investigators with extensive 

experience in PDF analysis and conventional triangle analysis were chosen to fit the sample E-

waves using the AT-first method, DT first method, and traditional model-based image processing 

approach described in Chapter 2, which will be referred to as the inverse solution method.  

For each investigator agreement between the different methods of PDF analysis was 

determined by comparing c, k, and xo values for the same E-waves across multiple fitting 

approaches. Conventional triangle parameters (AT, DT, Epeak) and lumped PDF indexes, such as 

kxo, cEpeak, 1/2kxo
2
, and KFEI were compared in a similar manner. Conventional triangle 

parameters were measured directly by the geometric approaches but had to be mathematically 

derived (using the methods described in Chapter 2) from the inverse solution derived PDF 

parameters.  

The mean square error between the image extracted velocity contour and the inverse 

solution method as well as the geometric method predicted contour was also calculated and 

compared for each investigator. The mean square error for the PDF model is calculated from the 

portion of the E-wave that is selected by the user, and therefore a portion of the start and end of 
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the wave may not be included in the mean square error calculation. To mitigate for the variability 

in user determined E-wave start and end points, standardized E-wave start and end points (35% 

of peak velocity for start and 25% of peak velocity for end) were found. Using the standardized 

E-wave start and end points, standardized mean square error was determined between all E-wave 

contour model-based estimates and image extracted velocity contour. 

In addition agreement across investigators was assessed by comparison of PDF 

parameters and lumped PDF indexes for a given wave and given fitting approach across different 

subjects. All statistical analysis was carried out using MS-Excel (Microsoft, Redmond, WA). 

 

12.3 RESULTS 

2.3.1 Historical Data 

AT, DT, and Epeak values from 1412 underdamped E-wave were plugged into Equations 

12.7-8, 12.10 to yield c, k, and xo values which were compared to c, k, and xo values extracted 

from the same waves using the inverse solution method. In addition the triangle parameters 

calculated from the inverse solution method fit contour were compared to the  triangle 

parameters for the same waves measured by conventional analysis (See Figure 12.6). While peak 

velocity showed strong agreement across all waves, deceleration time and acceleration time 

showed only modest correlation. The PDF parameters c and k, which are functions of only AT 

and DT, similarly showed only modest correlation between geometrically predicted values and 

inverse solution determined values.  

To test the sensitivity of the geometric approach on acceleration time, the 500 waves with 

closest agreement between PDF contour predicted acceleration time and geometric method 

measured acceleration time were chosen for a sub-analysis (Figure 12.7). Though the agreement 

between inverse solution PDF contour predicted deceleration time and geometric method 
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measured deceleration time remained weak, the correlation between inverse solution determined 

c and k and geometric method calculated c and k parameters improved significantly.  

 

12.3.2 Comparison of PDF and Triangle Parameters 

 Each investigator independently fit each of the 46 waves using the more complex inverse 

solution method, as well as the simplified AT-first and DT-first methods. Figure 12.8 shows 

representative data for one of the E-wave velocity contours analyzed by multiple investigators.  

 

Results For Individual Investigators 

Figure 12.9 shows the agreement between the inverse solution derived PDF parameters 

and the geometric approach derived PDF parameters for one of the investigators. In each panel 

Figure 12.6. Comparison of inverse solution determined parameters to geometric method determined 

parameters from previously analyzed E-wave data. The units for AT and DT are seconds. The units for 

Epeak are m/s. The units for c are (1/s), for k are (1/s
2
), and for xo are (m). Note the weak correlation 

between inverse solution based acceleration time and triangle measured acceleration time.  
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Figure 12.7. Comparison of inverse solution determined parameters to geometric method determined 

parameters from previously analyzed E-wave data, filtered for close agreement between triangle 

determined and PDF-model determined acceleration time (AT). The units for AT and DT are seconds. 

The units for Epeak are m/s. The units for c are (1/s), for k are (1/s
2
), and for xo are (m). Note the more 

accurate agreement between geometric method and gold-standard inverse solution determined c and k  

values compared to Figure 12.6. See text for details.  

the y-coordinate shows the inverse solution method derived parameter, while the x-coordinate 

shows the geometric method derived parameter.  

Blue dots indicate values derived from the AT-first method and red squares indicate 

values derived from the DT-first method. The average values from the two methods are shown as 

green triangles. The figure shows strong agreement between the inverse solution method and the 

geometric method, with the strongest correlation found from the average of the AT-first and DT-

first methods. Table 12.1 provides r
2
 values between inverse solution derived PDF parameters 

and geometric approach derived parameters for each investigator.  

Along the bottom row, Figure 12.9 demonstrates the correlation between triangle 
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parameters defined by the inverse solution 

derived PDF parameters (y-axis), and the 

directly measured triangle parameters by the 

AT-first and DT-first geometric methods. 

While strong agreement is seen for Epeak and 

AT, DT values show week agreement 

between methods. Table 12.1 provides the r
2
 

values between inverse solution derived 

triangle parameters and directly measured 

triangle parameters for each investigator.  

For each investigator the mean square 

error between model-predicted fit and input 

velocity data was lowest when the inverse 

solution method was applied. The mean 

square error based on standardized E-wave 

start and end was consistently higher than 

mean square error based on user defined 

wave start and end. Mean square errors were similar across different fitting methods for 

investigator 1 but showed more variation for investigators 2 and 3. See Table 12.2 for details.  

 

Interobserver Variability 

 Figure 12.10 provides a summary of the interobserver variability for PDF parameters 

extracted for E-wave contours by multiple methods. Data shaded in blue shows a comparison of 

inverse solution extracted parameters between investigators, and data shaded in red shows a 

Table 12.1 Correlation coefficient (r
2
) between 

inverse solution determined and geometric 

method determined PDF and triangle parameters.  

  r
2
  

c 1 2 3 

AT-first 0.83 0.62 0.77 

DT-first 0.85 0.68 0.62 

AT-DT average 0.89 0.71 0.74 

k    

AT-first 0.7 0.6 0.7 

DT-first 0.8 0.7 0.5 

AT-DT average 0.87 0.71 0.69 

xo    

AT-first 0.95 0.87 0.94 

DT-first 0.96 0.9 0.9 

AT    

AT-first 0.7 0.55 0.74 

DT-first 0.78 0.53 0.72 

AT-DT average 0.82 0.59 0.76 

DT    

AT-first 0.15 0.28 0.25 

DT-first 0.15 0.19 0.16 

AT-DT average 0.16 0.27 0.23 

Epeak    

AT-first 0.99 0.98 0.97 

DT-first 0.99 0.98 0.97 

AT-DT average 0.99 0.98 0.97 

AT-DT average 0.96 0.92 0.94 

 c- PDF model damping parameter; k- PDF model 

stiffness parameter; xo- PDF model initial 

displacement; AT- Triangle E-wave acceleration 

time; DT- Triangle E-wave deceleration time; 

Epeak- E-wave peak velocity. Correlations are 

shown for investigators 1, 2, and 3. 
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comparison of averaged geometric method parameters between investigators. Interobserver 

variability, defined as the difference between investigator determined parameters normalized to 

the average of the same parameters, is shown in Table 12.3 for both PDF and triangle 

parameters. The interobserver variability was highest, when AT-first derived parameters were 

compared between investigators. Interobserver variability was similar when determined from 

Figure 12.8. Multiple fitting approaches applied to the same E-wave. In each panel the fits from 

independent investigators are superimposed (white, green, and yellow curves), the top panels show the 

PDF model contour while the lower panels show the equivalent triangle fit to the wave. For the inverse 

solution approach the triangle is calculated from the model fit, while for the AT-first, DT-first, and AT-

DT average approach the triangle parameters are measured directly. Note closer agreement between 

investigators in the DT-first and AT-DT first panels, compared to the AT-first panel. See text for 

details.  
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inverse solution derived 

parameters or from the average 

of the AT first and DT-first 

geometric methods.  

 

12.3.3 Comparison of PDF 

Lumped Indexes 

Figure 12.11 shows the 

agreement between inverse 

solution derived PDF lumped indexes and equivalent geometric approach derived lumped PDF 

indexes for one of the investigators, and Table 12.4 provides the r
2
 values for all investigators. In 

Table 12.2 Mean Square Error To Input Velocity Contour For Each 

Investigator 

 1 2 3 

User Set Wave Start and End 

Inverse Solution MSE   0.001 ± 0.001 0.004 ± 0.008 0.004 ± 0.007 

AT-first MSE 0.006 ± 0.007 0.012 ± 0.012 0.024 ± 0.050 

DT-first MSE 0.008 ± 0.016 0.008 ± 0.010 0.031 ± 0.082 

AT-DT average MSE 0.004 ± 0.003 0.008 ± 0.010 0.025 ± 0.065 

Standardized Wave Start and End 

Inverse Solution MSE 0.002 ± 0.004 0.008 ± 0.018 0.004 ± 0.006 

AT-first MSE 0.007 ± 0.009 0.021 ± 0.035 0.008 ± 0.009 

DT-first MSE 0.009 ± 0.009 0.035 ± 0.023 0.009 ± 0.011 

AT-DT average MSE 0.009 ± 0.009 0.023 ± 0.027 0.011 ± 0.009 

MSE- Mean square error; AT- acceleration time; DT-deceleration time. MSE 

determined from both user defined E-wave limits and standardized E-wave 
limits. MSE values are shown for investigators 1, 2, and 3. 

Table 12.3 Interobserver variability for PDF model parameters and conventional 

triangle parameters measured by multiple approaches 

PDF Parameters Conventional Triangle Parameters 

 1 to 2 1 to 3 2 to 3  1 to 2 1 to 3 2 to 3 

c    AT    

Inverse Solution 21% 21% 33% Inverse Solution 11% 9% 16% 

AT-First 51% 39% 77% AT-First 13% 24% 31% 

DT-First 20% 32% 24% DT-First 12% 16% 12% 

AT-DT Average 24% 22% 29% AT-DT Average 10% 13% 16% 

k    DT    

Inverse Solution 17% 11% 19% Inverse Solution 14% 11% 12% 

AT-First 14% 35% 30% AT-First 23% 11% 21% 

DT-First 16% 21% 17% DT-First 7% 13% 12% 

AT-DT Average 10% 19% 18% AT-DT Average 12% 9% 8% 

xo    Epeak    

Inverse Solution 12% 11% 11% Inverse Solution 4% 3% 3% 

AT-First 26% 12% 23% AT-First 3% 2% 4% 

DT-First 9% 11% 10% DT-First 3% 3% 4% 

AT-DT Average 15% 8% 11% AT-DT Average 2% 2% 4% 

c- PDF model damping parameter; k- PDF model stiffness parameter; xo- PDF model 

initial displacement; AT- Triangle E-wave acceleration time; DT- Triangle E-wave 

deceleration time; Epeak- E-wave peak velocity. Interobserver variability is calculated in 

pairs between all 3 investigators.  
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each panel the y-coordinate shows the inverse solution method derived parameter, while the x-

coordinate shows the geometric method derived parameter. Stronger agreement is seen in each 

subject for lumped PDF indexes, compared to the correlations presented for individual PDF 

parameters.  

 

Interobserver Variability 

Interobserver variability for PDF lumped indexes, defined as above, is shown in Table 

12.5. Similar to findings for individual PDF parameters, the interobserver variability was highest 

when AT-first derived parameters were compared between investigators. 

 

Figure 12.9. Top row demonstrates the correlation between the inverse solution derived PDF parameters 

and the simplified geometric approach derived parameters. The bottom row demonstrates the 

correlation between the E-wave triangles defined by each method. E-wave triangle parameters are 

directly measured by the geometric approaches (x-coordinate) and mathematically calculated in the 

inverse solution approach (y-coordinate) Data in blue is determined by the AT-first method, data in red 

is determined by the DT-first method, and data in green is the average of the AT-first and DT-first 

methods See text for details.   
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12.4 DISCUSSION 

 Nearly all PDF model-based studies rely on 

extraction of PDF kinematic model parameters from 

clinically measured transmitral flow contours. The 

currently accepted methodology for PDF parameter 

extraction requires familiarity with the model and 

mathematical methods and differs significantly from 

conventional analysis techniques. However, a deep 

mathematical connection exists between 

conventional analysis techniques, which fit E-wave 

contours with triangles, and the more mathematically 

complex methods for PDF parameter extraction. We 

capitalize on this mathematical connection in the 

current work and define a novel method by which 

PDF parameters may be extracted from triangle 

approximations alone. We test the mathematical 

validity of the method using 1412 preexisting E-

waves. We implement the novel methodology 

programmatically and validate the robustness of the 

method by analysis of 46 representative E-waves. 

Each E-wave is analyzed by 3 independent 

investigators using both the novel methodology and 

gold standard inverse solution based methodology, 

Table 12.5 Interobserver variability for PDF 

model lumped indexes. 

 1 to 2 1 to 3 2 to 3 

kxo    

Inverse Solution 15% 15% 23% 

AT-First 25% 32% 50% 

DT-First 16% 23% 17% 

AT-DT Average 16% 18% 24% 

cEpeak    

Inverse Solution 20% 22% 33% 

AT-First 53% 41% 80% 

DT-First 21% 32% 23% 

AT-DT Average 25% 24% 33% 

y    

Inverse Solution 16% 18% 26% 

AT-First 50% 25% 65% 

DT-First 15% 24% 19% 

AT-DT Average 22% 15% 23% 

y- damping to stiffness ratio; kxo- peak force 

driving E-wave filling; cEpeak- peak dorce 

opposing E-wave filling. AT- Triangle E-wave 

acceleration time; DT- Triangle E-wave 

deceleration time; Epeak- E-wave peak velocity. 

Interobserver variability is calculated in pairs 

between all 3 investigators.  

Table 12.4 Correlation coefficient (r
2
) between 

inverse solution determined and geometric 

method determined PDF lumped indexes. 

  r
2
  

y 1 2 3 

AT-first 0.85 0.61 0.81 

DT-first 0.87 0.66 0.68 

AT-DT average 0.9 0.69 0.79 

kxo    

AT-first 0.93 0.84 0.9 

DT-first 0.93 0.88 0.83 

AT-DT average 0.91 0.89 0.88 

cEpeak    

AT-first 0.92 0.8 0.89 

DT-first 0.9 0.87 0.81 

AT-DT average 0.92 0.87 0.87 

y- damping to stiffness ratio; kxo- peak force 

driving E-wave filling; cEpeak- peak dorce 

opposing E-wave filling. Correlations are shown 

for investigators 1, 2, and 3.  
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and parameters and indexes derived by different methods are compared. The novel methodology 

demonstrates close agreement to the gold standard approach and is reproducible across multiple 

investigators.  

 

12.4.1 Sensitivity of Novel Methodology to Choice of AT and DT 

The mathematical analysis presented in Figure 12.1 suggests that the PDF parameters are 

more sensitive to changes in acceleration time than deceleration time, and the results in Figure 

12.7 further support that view. Importantly, Figure 12.7 demonstrates that errors in deceleration 

time do not significantly impact the ability of the geometric method to determine PDF 

parameters accurately. 

The sensitivity of the method to acceleration time is likely related to a fundamental 

Figure 12.10. Comparison between individual investigators of PDF parameters values, measured by 

inverse solution and geometric methods. See text for details.  
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limitation of the PDF model at the start of the E-wave. As described in greater detail in Chapter 

2, the PDF model assumes that the atrioventricular pressure gradient driving flow begins at a 

maximum value and decays as filling progresses. This implies that the E-wave begins with a 

non-zero slope and has no inflection point during the acceleration portion. Clinical data shows, 

however, that the atrioventricular pressure gradient is zero at MVO and grows within a few ms to 

its maximum before decaying. Furthermore, in the absence of valve noise, one may routinely 

observe an inflection point in the E-wave acceleration portion. The inflection point in the E-wave 

has the effect of extending the visual start of the E-wave to a time earlier than the time predicted 

by the PDF model. Indeed the correlation between PDF model calculated acceleration time and 

geometrically measured acceleration time in Figure 12.6 is below the line of identity, suggesting 

that the PDF model systematically underestimates the geometrically determined E-wave 

acceleration time.  

 The sensitivity of the geometric method to acceleration time provides insight into the 

strengths and weaknesses of the AT-first and DT-first methods described above. Both methods 

Figure 12.11. Top row demonstrates the correlation between the inverse solution derived 

PDF lumped indexes and the simplified geometric approach derived lumped indexes 

measured by investigator 1. Data in blue is determined by the AT-first method, data in red 

is determined by the DT-first method, and data in green is the average of the AT-first and 

DT-first methods. See text for details.  
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correctly begin with the user selecting the E-wave peak velocity, which, as the results 

demonstrate, investigators choose with high accuracy.  

Next the user must set either the start of the wave (AT-first method) or the end of the 

wave (DT-first method), and understanding which choice is best requires a deeper understanding 

of the last step in the geometric fitting process. In the last step, the user must finish the fit by 

moving a cursor in order to set the remaining unknown parameter. However, the dynamic 

position of the cursor at any time defines the last unknown parameters, and with all parameters 

set, the PDF parameters are known and the resulting E-wave velocity contour is determined 

exactly. Thus, during the last step a superimposed velocity contour can be displayed in real time, 

consistent with the user defined cursor position. Therefore the user has a guide, like a French 

curve, that appears over the raw E-wave as they set the final point. This makes setting the final 

point much easier and more reproducible. Because the choice of acceleration is the most critical 

to the accuracy and reproducibility of the method, determining the acceleration time last with the 

aid of the superpimposed velocity contour (as is the case in the DT-first method) represents the 

optimal method for geometrically estimating the PDF parameters. Indeed the interobserver 

variability was significantly lower when the DT-first method was applied than when the AT-first 

method was applied (Table 12.3 and 12.5).  

Interestingly an average of the AT-first and DT-first method also provided an advantage 

to the AT-first method, and in some cases provided the best strongest agreement with the inverse 

solution method determined parameters. This approach would require measuring each E-wave 

twice, and therefore is not ideal, but warrants further consideration.  

 

12.4.2 Mathematical Recasting of Previous Results 
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 Recasting the PDF parameters in terms of triangle parameters allows one to determine 

novel geometric expressions for lumped PDF parameters that have in the past shown clinical and 

physiological utility. In the analysis below we focus on the underdamped case which can be 

solved exactly.  

One of these lumped parameters, y, was already discussed in the derivation above. The 

index y is defined by the ratio of c and 2√k, and therefore represents a dimensionless, relative 

damping to stiffness ratio that defines the kinematic filling regime. The geometric expansion for 

y in the underdamped limit is: 

 

y=
c

2 k
= cos !
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AT + DT

!

"
###

$

%
&&&  Equation 2.30 

which once again demonstrates the deep connection between E-wave asymmetry and balance 

between damping and stiffness effects.  

 

Geometrically Recasting kxo and cEpeak 

 kxo has been shown in previous work to be a noninvasive surrogate for the peak 

atrioventricular pressure gradient. Furthermore, in conjunction with the peak force opposing 

diastolic filling, cEpeak, kxo was used in Chapters 8-10 to define a load independent index of 

diastolic function. Applying Equations 12.7 and 12.10 above, kxo may be written in terms of 

Epeak, AT, and DT: 
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cEpeak may be similarly written as: 

 

cEpeak = Epeak
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and the ratio of kxo and cEpeak, which defines the slope of the line defined by the cEpeak, kxo 

coordinate of any E-wave and the origin, is then a function of AT and DT alone: 
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Thus the load independent index of diastolic function may be derived from AT, DT, and Epeak 

values alone, and the location of any E-wave in the kxo vs cEpeak plane may be understood in 

terms of E-wave asymmetry.  

 

Geometrically Recasting ½kxo
2
 

 The potential energy of the oscillator is defined by ½kxo
2
, and as discussed in the 

Appendix, ½kxo
2
 is the noninvasive analogue of the PV loop diastolic recoil energy. The 

geometric expression for ½kxo
2
 is particularly simple: 
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Thus one can easily appreciates that when the E-wave is symmetric, the initial potential energy 

and maximum kinetic energy are equal, as expected. As the wave becomes asymmetric, the 

initial potential energy becomes greater than the maximum kinetic energy, indicating energy 

loss.  

 

Geometrically Recasting VTI and KFEI 

 A particularly interesting application is determination of E-wave contour area. The area is 

routinely approximated as the triangular area defined by a base of (AT+DT) and height of Epeak, 

but applying the equations above and from Chapter 2, one can express the E-wave velocity time 
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integral (VTI) as: 
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(Equation 2.35) 

This is a fairly complex expression, though it can be greatly simplified by normalizing it to the 

VTI defined by the symmetric E-wave. This provides a simple expression for the kinematic 

filling efficiency index described in Chapter 2 and Chapter 8: 

 

KFEI =
1+ e

!! cot !
AT

AT+DT

"

#
$$$

%

&
'''

2
  Equation 2.36 

In previous work KFEI has successfully differentiated between normal LVEF diabetics and 

matched non-diabetic controls, even when traditional E-wave parameters failed to do so. 

However, in that work the more complex inverse solution method was employed in order to 

calculate KFEI, and therefore application of KFEI in the clinical setting would have posed a 

challenge. The simpler expression above is in terms of conventional E-wave parameters, and 

therefore it is intriguing to consider if application of this simplified expression for KFEI to the 

previous diabetic and non-diabetic E-waves would yield the same results.  

We tested this by reanalyzing the data from the previous study, where 5-10 E-waves were 

analyzed in 34 patients with normal systolic function (16 diabetic and 18 well matched non-

diabetic controls). Conventional E-wave parameters, as well as the model based filling 

efficiency, and filling efficiency defined by AT and DT values, were calculated for each 

measured beat and compared between groups.  

In agreement with the previously published results, end-diastolic volumes and pressures, 

E/A ratio, and E-wave DTs were indistinguishable between groups. While conventional E-wave 
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parameters failed to differentiate between diabetic and nondiabetic groups (p>0.1), the simplified 

filling efficiency in Equation 12.36, defined by E-wave AT and DT values alone, was 

significantly different between groups (p<0.003). Thus while DT alone failed to differentiate 

subjects, proper mathematical incorporation of AT and DT into a causally based kinematic index 

successfully differentiated between groups.   

 

12.5 LIMITATIONS 

 The primary advantage of the inverse solution method for PDF parameter extraction is 

that it minimizes the error between model predicted fit and input data, thereby producing a 

unique, best fit set of parameters. In addition, the standard deviation of the parameters may in 

principle be determined, as long as the error in the input data is known. The geometric approach 

described in the current chapter is not based on a minimization procedure however, and relies on 

the user finding a close fit ‘by eye’ between model-predicted contour and input. This approach 

therefore may not yield best-fit parameters or error estimates for the parameters.  

While this seems like a significant limitation from a theoretical perspective, the results of 

the current study demonstrate that the ‘by eye’ approach results in parameters that agree strongly 

with parameters determined through mathematical error minimization. Furthermore the 

minimization approach is limited by image quality, user selection of appropriate grayscale cutoff 

for maximum velocity envelope, and user selection of start and end points of the wave. While the 

minimization algorithm provides a best fit to the input data, a great deal of user input goes into 

choosing the input data, and therefore user bias can never be completely eliminated.  

Furthermore, alternative methods of analysis must provide consistent measures of the same 

event, and therefore the PDF model contour must be consistent with the geometrically defined E-
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wave. While the PDF model captures curvature of the wave, something that the triangle 

approximates with straight lines, the width and relative asymmetry of the wave must be 

consistent between methods. Historically conventional analysis and inverse solution based PDF 

analysis have not provided identical estimates of E-wave width and asymmetry (Figure 12.6 

lower panel). The geometric approach, on the other hand, by design ensures consistency between 

conventional triangle shape and PDF contour derived triangle shape. Thus while the geometric 

approach does not provide best-fit parameters, it provides the advantage of being simple to 

implement and consistent with established clinical parameters and methods.  

 Furthermore if one has access to the raw E-wave velocity data, one could perform a 

minimization algorithm where error between predicted wave and input data is minimized while 

varying AT, DT or both AT and DT after Epeak is set either manually or in an automated fashion.  

 

12.6 CONCLUSIONS  

The results of this Chapter demonstrate the validity of a novel approach to PDF model parameter 

determination that makes use of the conventional triangle approximation to E-wave shape and 

uses AT, DTand Epeak as inputs. Furthermore, maximum robustness is achieved when the process 

is implemented by using the DT and Epeak components first.  Although the method is inherently 

achieved  ‘by-eye’, results compare favorably with inverse mathematical approaches where 

measurments of goodness of fit are available. Implementation of this approach in a graphical 

user interface on an echocardiographic platform will allow any clinician to quickly apply the 

PDF method, and to easily determine the indexes described throughout the thesis, including the 

load independent index of diastolic function, from their own data sets, using methods nearly 

identical to the methods that they routinely apply in the clinic or laboratory. Initial results 



 

 386 

indicate that this methodology will be widely applicable and easily reproducible by any 

investigator independent of their mathematical sophistication.  Further work applying and 

validating these novel methods using data from previously published PDF studies, thereby 

mapping decades of PDF model related research onto the established vocabulary of clinical 

echocardiography, is warranted.  

 In this thesis as a whole we have demonstrated the power of kinematic modeling. We 

have added novel insights and discovered new clinical indexes related to the fundamental 

determinants of diastolic function. We have shown definitively that the ventricle is a suction 

pump, and as such attains equilibrium at diastasis. We extended this result beyond the theoretical 

insight to a practical application in the case of atrial fibrillation and the determination of 

stiffness. We have provided extensive novel insights into viscoelasticity, the other instrinsic 

determinant of diastolic function, and we have resolved a long-standing issues in the field related 

to the confounding effect of load. All of these results may be more easily shared with the 

cardiology community given the work of the current chapter, and future effort will be focused 

toward that end.  
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ABSTRACTS SHOWING ADDITIONAL CONTRIBUTIONS 



 

 388 

1. Derivation of the fluid mechanics to left ventricular early, rapid filling relation, 

with in-vivo validation 

Erina Ghosh, Leonid Shmuylovich, Sándor J. Kovács 

  

During early rapid filling, (Doppler E-wave) blood aspirated by the left ventricle (LV) generates 

an asymmetric toroidal vortex whose development has been quantified using vortex formation 

time (VFT), a dimensionless index defined by the length to diameter ratio of the aspirated 

(equivalent cylindrical) fluid column. Since LV wall-motion (kinematics) generates the 

atrioventricular (AV) pressure gradient resulting in the E-wave and its associated vortex 

formation, we hypothesized that the causal relation between VFT and diastolic function (DF), 

parametrized by stiffness, relaxation, and load, can be elucidated via kinematic modeling. 

 Gharib et al approximated Doppler E-wave shape as a triangle and calculated VFTGharib as 

triangle (E-wave) area (cm) divided by peak mitral orifice diameter (cm). We used a validated, 

kinematic model of filling for the E-wave to calculate VFTkinematic as curvilinear E-wave area 

divided by peak effective (M-mode derived) orifice diameter. The derived fluid mechanics to left 

ventricular early, rapid filling relation predicts VFT to be a function of the peak E-wave to peak 

mitral annular tissue velocity (E’) ratio as (E/E’)
3/2

.  

Validation utilized 262 cardiac cycles of simultaneous echocardiographic-high fidelity 

hemodynamic data from 12 subjects. VFTGharib and VFTkinematic were calculated for each subject 

and were strongly correlated (R
2
=0.66). In accordance with prediction the VFTkinematic to (E/E')

3/2
 

relationship was validated (R
2 
= 0.63). 

        We conclude that VFTkinematic is a DF index computable from E-and E'-waves in terms of 

lumped stiffness, relaxation and load parameters. Validation of the fluid mechanics to chamber 

kinematics relation unites previously unassociated DF assessment methods and elucidates the 

mechanistic basis of the strong correlation between VFT and (E/E')
3/2

. 
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2. The Thermodynamics of Diastole: Kinematic Modeling based Derivation of the P-

V Loop to Transmitral Flow Energy Relation, with In-Vivo Validation 
Sina Mossahebi, Leonid Shmuylovich, Sándor Kovács 

 

Pressure-volume (P-V) loop based analysis facilitates thermodynamic assessment of LV function 

in terms of work, and energy. Typically these quantities are calculated for a cardiac cycle using 

the entire P-V loop, though thermodynamic analysis may be applied to selected phases of the 

cardiac cycle, specifically, diastole. Diastolic function is routinely quantified non-invasively by 

analysis of Doppler echocardiographic E-wave contours. The first law of thermodynamics 

requires that energy E computed from the Doppler E-wave (EE-wave) and the same portion of the 

P-V loop (EPV-E-wave) should be correlated. No previous studies have calculated these energies or 

experimentally tested their predicted relationship for validation. To test the hypothesis that E PV-E-

wave and E E-wave are equivalent we employed a validated kinematic model of filling to derive the 

expression for EE-wave in terms of chamber stiffness ( ), relaxation/viscoelasticity ( ) and load 

( ). For validation, simultaneous invasive (Millar) P-V data and non-invasive echocadiographic 

data from 11 subjects (185 total cardiac cycles) with normal diastolic function were analyzed. 

Kinematic modeling based EE-wave for each E-wave was computed and compared to E PV-E-wave 

calculated from simultaneous P-V data. Linear regression yielded: E PV-E-wave =    EE-wave+   

( ), where , and . 

We conclude that kinematic modeling based analysis of the energy for suction initiated 

early rapid filling is an accurate measure of the energetics of filling provided by simultaneous   

P-V data.  



 

 390 

3. Diastolic function to cyclic variation of myocardial backscatter relation: influence 

of parametrized diastolic filling formalism determined chamber properties 

Christopher W. Lloyd, Leonid Shmuylovich, Mark R. Holland, James G. Miller, and Sándor J. 

Kovács 

 

Myocardial tissue characterization represents an extension of currently available 

echocardiographic imaging.  The systematic variation of backscattered energy during the cardiac 

cycle (the “cyclic variation” of backscatter) has been employed to characterize cardiac function 

in a wide range of investigations.   However, the mechanisms responsible for observed cyclic 

variation remain incompletely understood.  As a step toward determining the features of cardiac 

structure and function that are responsible for the observed cyclic variation, the present study 

makes use of a kinematic approach of diastolic function quantitation to identify diastolic function 

determinants that influence the magnitude and timing of cyclic variation.  Echocardiographic 

measurements of 32 subjects provided data for determination of the cyclic variation of 

backscatter to diastolic function relation characterized in terms of E-wave determined, kinematic 

model-based parameters of chamber stiffness, viscosity/relaxation, and load.  The normalized 

time delay of cyclic variation was found to be related to the relative viscoelasticity of the 

chamber and predictive of the kinematic filling dynamics as determined using the parametrized 

diastolic filling formalism.   
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