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ABSTRACT OF THE DISSERTATION 

Population structure and mating dynamics in the social amoeba Dictyostelium discoideum 

by 

Tracy Edwards Douglas 

Doctor of Philosophy in Evolution, Ecology and Population Biology 

Washington University in St. Louis, 2016 

Professors Joan E. Strassmann and David C. Queller, Chairpersons 

 

Successfully investigating the evolution and maintenance of sex and mating systems can 

often have as much to do with choosing the right study system as it has to do with asking the 

right questions.  Dictyostelium discoideum has long been the focus of researchers interested in 

understanding a number of biological processes, such as motility, chemotaxis and development.  

More recently, attentions have shifted to include questions about the evolution of social and 

sexual interactions both within and between species.  The D. discoideum life cycles, both asexual 

and sexual, are uniquely social, each requiring a costly sacrificial act.  This offers an ideal 

system for exploring questions about kin recognition, conflict, and the evolution of 

multicellularity, as well as the evolution of differential sexual investment and mating types. 

This dissertation focused on understanding the phylogenetic and geographical 

relationships between clones in D. discoideum and identifying the social and selective pressures 

that shape its mating system.  I introduce this mating system in Chapter 1.  In Chapter 2, I 

investigated genetic variation and population structure in D. discoideum to identify possible 
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factors that could affect interactions between clones.  I used DNA sequence data and 

phylogenetic techniques to show that though D. discoideum clones form a monophyletic group, 

there is evidence of genetic differentiation among locations (FST = 0.242, P = 0.011), suggesting 

geographic or other barriers limit gene flow between populations.  In chapter 3, I again looked 

for population structure, this time concentrating on gamete size and sex ratio, to understand 

selective pressures maintaining multiple mating types in D. discoideum.  Evidence suggests that 

both balancing selection and drift are likely acting on the D. discoideum mating system.  I found 

no differences in gamete size across the three mating types and also no genetic differentiation 

across three wild populations at the mating type locus.  However, I found that mating type 

frequency varied across these populations, likely due to drift.   

Chapter 4 focused on understanding the social dynamics of mating in D. discoideum.  

During macrocyst formation, two cells of complementary mating types fuse to form a zygote.  

This zygote then consumes hundreds of surrounding amoebae, likely clones of the original two 

cells, for use as protection and food.  I varied the frequencies at which two clones of differing 

mating types interacted to investigate the possibility that one mating type cheats another by 

differentially contributing to the cannibalized cells.  Contrary to previous claims that mating type 

I induces mating type II, coercing it to contribute disproportionately more of these cannibalized 

cells during macrocyst production, I found that these cells are likely contributed relative to their 

frequency in the population, regardless of mating type.  However, I did find evidence for 

differential contribution to macrocyst production between some pairs of clones, suggesting that 

cheating can happen between partners during sex, but is rare and clone-specific. 

Overall, these studies looked for evidence of underlying population structure in D. 

discoideum that could impact our understanding of social and sexual interactions in this species.  
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I also applied questions about the maintenance of sex usually only asked in two-sex systems to 

the unique social sexual interactions within D. discoideum in order to expand the understanding 

of how mating systems evolve and are maintained in nature.  I developed and used new tools and 

techniques for observing the processes important to understanding this unique system and 

identified genetic and social factors that could impact how individuals interact during both the 

asexual and sexual life cycles.  
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CHAPTER 1 

 

INTRODUCTION TO THE DISSERTATION   
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Background 

Sexual reproduction is a term usually reserved for genetic recombination of the gametes 

of two parents through meiosis.  Understanding the costs and benefits of sexual reproduction is 

one of the great questions of biology.  Most eukaryotic species are facultatively sexual, a term 

describing the behavior of primarily asexual organisms that undergo occasional rounds of sex 

(Hurst & Peck 1996; Dacks & Roger 1999; Xu 2004; Lahr et al. 2011).  Examples of this include 

the early protistan group oxymonads, the algal species Chlamydomonas reinhardtii, the 

myxogastrid plasmodial slime mold Pyhsarum polycephalum, and the fission yeast 

Schizosaccharomyces pombe (Collins 1975; Dacks & Roger 1999; Egel & Penny 2008; Lahr 

2011).  In facultatively sexual organisms, sexual reproduction is often a strategy for responding 

to unfavorable environmental or fitness cues (Poole et al. 2003; Hadany & Otto 2007; Horandl 

2009; D’Souza & Michiels 2010).  During the sexual stage, many organisms form hardy dormant 

structures that are more likely to survive environmental stresses like harsh winters or periods of 

low nutrient supply (Egel & Penny 2007; Hörandl 2009). Other species undergo sex at higher 

rates when they begin to starve, as seen in Chlamydomonas reinhardtii (Harris 1989; Hadany & 

Otto 2007). Grishkan et al. (2003) found that soil microfungi increased sexuality when exposed 

to severe drought and high salinity, suggesting that this increase in recombination promoted 

genotypic adaptation by increasing genetic variability.  Hadany & Otto (2007) modeled an allele 

that induces sex in less fit individuals and found that this fitness-associated sex created an 

evolutionary stable system in which the fittest individuals remained asexual while the rest 

participated in sexual reproduction.  Species demonstrating both sexual and asexual reproduction 

tend to gain many of the benefits from sexual reproduction, while avoiding much of the cost.   
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Most research on sex assumes two sexes with equal investment in them, but more sexes 

appear in some organisms.  Fisher’s principle explains that negative frequency dependent 

selection, in which the rare sex has higher mating potential, favors a sex ratio of 1:1 in most 

sexual species (Fisher 1930).  However, much of what we know about sex ratios comes from 

analyses of two-sex systems.  We have known from theory, that selection can favor the evolution 

of multiple sexes and that we should expect even sex ratios among them (Iwasa & Sasaki 1987).  

Only recently, though, have researchers really begun to explore the many natural systems that 

exhibit more diverse sexual strategies than the frequently observed male-female system.  Mating 

systems can be found in many different forms, ranging from the mostly asexual bdelloid rotifer 

to species like the fungus Schizophyllum commune, which displays over 20,000 different mating 

types (Kothe 1996; Welch and Meselson 2000; Clark and Haskins 2010; Billiard et al. 2011, 

2012).  Theories predict various factors that can influence the number of sexes, or mating types.  

The most well-known theory for the evolution of more than two mating types comes from Iwasa 

and Sasaki (1987).  They predicted that a new mating type that arises in the population should be 

favored by selection because it can mate with a larger proportion of the population.  This 

negative frequency-dependent selection theory assumes both that there is a cost to not finding a 

mate and that all mating types are inter-compatible.  Many other theories focus on the 

maintenance of two mating types, describing factors such as cytoplasmic conflict and the 

evolution of anisogamy as possible limitations to increases in mating type number (reviewed in 

Billiard et al. 2011).  Although there is a clear interest in the literature as to the evolution of 

mating types, very few studies, if any, have addressed the question of sex ratios in natural 

systems displaying more than two mating types.  Lacking also are studies on the evolution of 
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anisogamy in systems with multiple mating types.  How are these mating types maintained?  

How, if at all, do their roles differ during reproduction? 

 

Study System 

I propose that the social amoeba Dictyostelium discoideum is particularly good for 

exploring questions about sexual reproduction and mating systems.  While most studies of these 

single-celled eukaryotic amoebae focus on the asexual fruiting body cycle, the sexual cycle and 

macrocyst formation offer a unique system for studying the maintenance of a sexual stage.  

Dictyostelids are soil-dwelling eukaryotes that, for much of their life cycle, live as a solitary 

individuals feeding on bacteria and dividing mitotically until food resources are consumed and 

amoebae begin to starve. At this stage, amoebae can continue down one of two pathways, the 

asexual social cycle or the sexual cycle, both initiated by the onset of starvation. Like many 

microbial eukaryotes, Dictyostelids are facultatively sexual.  Sex has been observed throughout 

the phylogeny of the social amoebas (Dictyostelia) and is considered ancestral, with any asexual 

species having secondarily lost the trait (Erdos et al. 1973a, b, 1975; Clark et al. 1973; Francis 

1975; Chang and Raper 1981; Kawakami and Hagiwara 1999; Schaap 2006).   

In this sexual cycle (illustrated in Figure 1.1), two cells of opposite mating types fuse to 

form a reproductive zygote, or giant cell (Saga et al. 1983).  This giant cell then releases large 

amounts of cAMP, the same signal released in the asexual fruiting body cycle, to attract 

surrounding amoebae (Abe et al. 1984). In response to this signal, hundreds of amoebae 

aggregate and adhere to the giant cell, forming a dense clump.  At the completion of aggregation, 

the peripheral cells produce a thick, cellulose wall called the primary wall or fibrillar sheath that 

surrounds the entire mass, now called a precyst (Blaskovics & Raper 1957).  This wall is similar 
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to the slime sheath that is formed around the multicellular slug in the fruiting body life cycle.  

After the primary wall formation, the giant cell begins to engulf the surrounding peripheral 

amoebae, surrounding them with vacuoles and converting them to endocytes (Filosa & Dengler 

1972).  During this time, a second cellulose wall, this time produced by the giant cell, forms 

around the endocyte-filled giant cell (Blaskovics and Raper 1957; Filosa and Dengler 1972; 

Erdos et al. 1973).  As the now macrocyst matures, the endocytes are completely degenerated, 

the giant cell shrinks and darkens, and a two-layered tertiary wall is produced (Filosa and 

Dengler 1972; Erdos et al. 1973).  This inner membrane is similar to the walls of the spores 

found in the fruiting body sorus.  After a period of dormancy, during which time meiosis should 

occur, the cyst begins to swell, splitting the tertiary wall into two separated parts (Erdos et al. 

1973; Nickerson & Raper 1973).  The multinucleate giant cell splits into uninucleate fragments 

called pro-amoebae that continue to divide to form smaller myxamoebae.  After the secondary 

wall and outer layer of the tertiary wall break away from the inner layer, hundreds of 

myxamoebae break through the remaining tertiary wall, ready to begin their solitary lifestyle. 

As discussed previously, reproductive zygotes, or giant cells, are produced by the fusion 

of two cells of opposite mating types.  Though macrocyst production has been identified 

throughout the Dictyostelium phylogeny, the identification of mating types has revealed a variety 

of primarily single-locus systems.  There are three mating types in D. discoideum.  These three 

types (Type I, II, and III) are self-incompatible, but can mate with any of the other two self-

incompatible types (Erdos et al. 1973; Clark et al. 1973).  This type of heterothallic mating is the 

most common in social amoeba.  Previous studies have identified similar heterothallic mating in 

the species D. purpureum, D. giganteum, D. rosarium, D. monochasioides, Polysphondylium 

violaceum, P. pallidum and P. pseudo-candidum.  The number of mating types ranges from two 
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to four, with two being the most common (Clark et al. 1973; Francis 1975; Erdos et al. 1975; 

Chang & Raper 1981; Kawakami & Hagiwara 1999).  Recently, the three self-incompatible D. 

discoideum mating types were sequenced, identifying three versions of a single genetic locus 

(Bloomfield et al. 2010).  This study revealed that type I and III mating loci have completely 

different sequences, including a mat-A class gene in type I and a mat-S class gene in type II.  The 

type II locus, on the other hand, is a homologous composition of the two and contains both gene 

classes.  Successful macrocyst formation between two of these three cell types requires the 

presence of a mat-A class gene in one and a mat-S class gene in the other, revealing much about 

the mechanisms for compatibility between these three heterothallic cell types.   

Though macrocyst formation has never been observed directly in nature, many factors 

have been observed in the laboratory that either favor or inhibit their formation.  The three 

inhibitors most commonly discussed in macrocyst formation protocols are the presence of 

phosphate, light, and dry conditions (Clark et al. 1973; Erdos et al. 1973; Wallace & Raper 1979; 

Francis & Eisenberg 1993).  The simplest and most successful protocols remove these three 

factors by growing clones on a specialized nutrient agar (0.1% lactose, 0.1% peptone, 1.5% agar) 

in an excess of a phosphate-free salt solution (0.06% NaCl, 0.075% KCl, 0.03% CaCl2) and 

incubating in the dark (Bonner, 1947; Blaskovics & Raper 1957).  There are also a few other 

known chemical inhibitors, as well as promoters, of macrocyst formation.  Activated charcoal 

interferes with a variety of diffusible hormones required for macrocyst development (Weinkauff 

& Filosa 1965; Filosa 1979).  Chloroquine and ammonia also prevent macrocyst formation, 

specifically preventing the production of reproductive zygotes by inhibiting cell fusion (Rivera & 

O’Day 1987; Fang et al. 1992).  Ethylene is well-known for inducing the formation of 

macrocysts in conditions favoring fruiting body production (Amagai 1984; Amagai 1992), while 
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calcium can increase macrocyst production by enhancing giant cell formation (Chagla et al. 

1980).  Aside from the environmental conditions that affect macrocyst formation, the giant cell 

itself plays a huge part in the production of a mature macrocyst.  This reproductive zygote 

produces an auto-inhibitor that prevents zygote giant cell formation by other cells, ensuring a 

remaining population of cells for use as food (O’Day et al. 1981).  The zygote also produces a 

significant amount of cyclic AMP, a known chemoattractant, acting as a powerful aggregation 

center (Abe et al. 1984).  Along with the factors that affect macrocyst formation, previous studies 

have also focused on attempts to induce germination using techniques such as temperature shock 

and manual breakage.  Though many of the attempted techniques had little or no effect on 

germination, the most successful technique for increasing the rate of germination was allowing 

the macrocysts to age for months, suggesting that macrocyst formation truly is a dormant stage 

that evolved to survive through a lengthy harsh season such as winter (Nickerson & Raper 

1973b). 

 

Dissertation Overview 

My dissertation research has focused primarily on more thoroughly characterizing the 

sexual cycle of D. discoideum, as well as identifying any underlying population structure that 

could affect its social behavior, both in the asexual and sexual cycles.  In Chapter 1, I address the 

possibility that hidden genetic differentiation or even cryptic species may confound our 

understanding of social and sexual interactions in D. discoideum.  I analyze ribosomal nuclear 

and mitochondrial DNA sequence data using molecular ecology techniques to address the 

following questions:  Is D. discoideum a monophyletic group?  Is there evidence of genetic 

subpopulations or even species?  Does this genetic differentiation indicate geographic isolation 
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or some other type of barrier to gene flow?  In Chapter 2, I identify the selective pressures 

maintaining a low number of mating types in D. discoideum.  As discussed earlier, D. 

discoideum has three self-incompatible mating types.  This is more than two, as are commonly 

seen in many taxa, but far fewer than the hundreds or thousands that are predicted in early theory 

on mating type numbers (Iwasa & Sasaki, 1987; Hurst, 1996).  In order to further understand 

what forces drive these low numbers, I address the following questions:  Do D. discoideum 

gametes of each mating type differ in size?  What are the relative roles of balancing selection and 

drift on maintaining mating type frequencies in natural populations? 

In Chapter 3, I will focus on a historical claim that macrocyst production can be induced 

in one mating type by another.  Sex is unique in Dictyostelids in that it has both the sexual 

dynamic involving the fusion of two cells to form a diploid zygote that can develop and hatch, 

releasing hundreds of potentially recombinant offspring and the social dynamic (a possible form 

of parental investment) involving the cannibalization of hundreds of potentially related 

individuals for use as both nutrients and protection.  Contributing disproportionately fewer of 

these sacrificed cells would correspond with a reproductive advantage for the uncooperative 

genotype contributing to the zygote but not to the surrounding body.  This is likely the 

underlying mechanism behind previous reports that claimed that a Type I D. discoideum clone 

induced macrocyst production in a Type II clone (O’Day and Lewis, 1975; MacHac and Bonner, 

1975).  Since these experiments were performed on a single pair of clones, it is unknown 

whether this pattern is representative of interactions between all Type I and Type II D. 

discoideum clones or simply an isolated association.  It is also unknown whether Type III 

interacts with either Type I or Type II clones in a similar manner.  By varying the frequency of 

each mating type in pairwise mating experiments, I address the following questions:  Is there 
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unfair investment in macrocyst production?  If so, is this unfairness dictated by a mating 

hierarchy such that contribution to reproduction differs depending on which mating type is 

dominant in a pairing? 
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Figure 1.1.  Dictyostelium discoideum sexual life cycle.  Adapted from illustration 

created by David Brown & Joan E. Strassmann, CC Creative Commons Attribution - Share Alike 

3.0.
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Abstract 

The social amoeba Dictyostelium discoideum is a commonly used model organism for the 

study of social evolution, multicellularity, and cell biology.  But the boundaries and structure of 

the species have not been explored.  The lack of morphological traits to distinguish D. 

discoideum makes even knowing whether a given clone is D. discoideum a challenge.  We 

address this with a phylogeny of a widespread collection of clones from a range of locations and 

including clones identified previously as potential cryptic species.  We sequenced portions of 

nuclear ribosomal DNA and mitochondrial DNA, analyzing approximately 5500 and 2500 base 

pairs from the two regions respectively.  We compared these sequences to known reference 

sequences for both D. discoideum and other closely related Dictyostelium species to create 

Bayesian and neighbor-joining phylogenetic trees representing the evolutionary relationships 

among the clones.  We identified 51 unique D. discoideum concatenated sequences based on the 

combined mitochondrial and ribosomal sequence data.  We also identified four unique D. 

citrinum concatenated sequences, three of which were previously classified as D. discoideum 

clones.  Our analysis of the data revealed that all D. discoideum clones form a monophyletic 

group, but there are several well-supported subclades and pronounced genetic differentiation 

among locations (FST = 0.242, P = 0.011), suggesting the presence of geographic or other barriers 

between populations.  Our results reveal the need for further investigation into potential tropical 

cryptic species.   
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Introduction 

Microbes have become increasingly useful study systems for sociality, and have been 

found to exhibit surprisingly complex social behaviors (Crespi 2001; Strassmann et al. 2000; 

West et al. 2006, Strassmann & Queller 2011).  As research on sociality in microorganisms 

flourishes, however, there is still a limited understanding of population structure in social 

microorganisms.  The debate continues as to whether free-living microbes are limited by 

dispersal or if they are everywhere, having no population structure (Finlay 2002; Whitaker et al. 

2003; Whitfield 2005; Winsett and Stephenson 2008).  Extensive and accurate understanding of 

the evolutionary relationships among interacting individuals of the same species is necessary for 

forming conclusions about their social interactions.  High relatedness is a key element in 

promoting kin selection, maintaining cooperation, and controlling cheating (Fletcher & Michener 

1987; Gilbert et al. 2007; Hamilton 1964).  A thorough understanding of genetic variation and 

population structure in social microorganisms is still lacking for most species. 

 Dictyostelium discoideum is the most commonly studied species of social amoeba, a 

eukaryotic member of the Amoebozoa with both a single-cell stage and a multicellular stage 

(Raper 1984; Kessin 2001; Strassmann and Queller in press).  It has long been used as a model 

system for studies of cell-cell signaling, chemotaxis, cytokinesis, motility, phagocytosis, and 

development (Ashworth and Dee 1975; Bonner 1967, 2008; Chisholm et al. 2006; Eichinger et 

al. 1999; Kessin 2001; Loomis 1986).  Dictyostelium discoideum clones were originally 

identified based on morphological features that differed from other known dictyostelids (Raper 

1935).  The presence of a cellular basal disk, stalkless migration, and other morphological and 

developmental traits continue to be used as identifying features for D. discoideum clones (Raper 

1984). 
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The multicellular life stage of D. discoideum offers a unique opportunity to study the 

dynamics of social evolution, such as the evolution of cheating and cheating prevention (Buss 

1982; Buttery et al. 2009; Ennis et al. 2000; Hudson et al. 2002; Strassmann et al. 2000; 

Travisano and Velicer 2004; Strassmann and Queller 2011).  Since the multicellular body forms 

from aggregation, genetically different clones could exploit others and gain a reproductive 

advantage by preferentially contributing to spore production, and little is known of how these 

interactions relate to the evolutionary relationships within the species (Pál et al. 2000; 

Strassmann et al. 2000).  A recent study focusing solely on within-species D. discoideum 

interactions revealed a link between genetic distance and kin recognition (Ostrowski et al. 2008).  

Within the species, clones were more likely to co-aggregate with genetically similar clones 

(based on 12 polymorphic microsatellite loci) than with more dissimilar clones.  A recent study 

reported the role of gene pair lagC1 and lagB1 (also referred to as tgrC1 and tgrB1 respectively) 

in Dictyostelium kin recognition (Benabentos et al. 2009).  These studies emphasize the 

importance of molecular mechanisms in sociality.  Understanding the genetic structure of the 

organism and possible factors that could affect its behavior is a key factor in performing 

successful studies in this important model organism.  These studies provide further evidence for 

the need to clarify the species status of D. discoideum clones.  Since individual clones can be 

frozen and used repeatedly in multiple studies, it is important to be able to separate within- and 

between-species interactions.   

In experiments using only D. discoideum as the model, cheating could be attributed to the 

presence of two distinct species in a mix if it turns out that one clone is actually a different, 

closely related species.  In D. discoideum, wild clones readily mix to form chimeras in which 

some clones form a disproportionate number of spores when mixed with others (Buttery et al. 
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2009; Foster et al. 2002; Strassmann et al. 2000).  Evidence from recent work also indicates that, 

at least in a laboratory setting, these chimeras are also readily formed between different species 

of social amoeba in which one party overwhelmingly dominates (Jack et al. 2008).  These 

chimeras indicate that Dictyostelium cells potentially recognize and discriminate against other 

species, while still interacting with them.  The recent dictyostelid phylogeny (Schaap et al. 2006) 

revealed the misidentification of a putative Dictyostelium discoideum clone (V34) showing it to 

be a close relative D. citrinum.  Previous studies also suggest the existence of several genetically 

distinct biological species within D. discoideum (Briscoe et al. 1987; Evans et al. 1988).  Four 

clones (AC4, WS526, WS584 and ZA3A) were mentioned in both studies as being different 

from others.  Briscoe et al. (1987) based their findings on mating-type classification (i.e. asexual 

or homothallic as opposed to sexual), as well as on allozyme electrophoresis and a monoclonal 

antibody.  Evans et al. (1988) also noted unusual mating characteristics in the four clones but 

based their findings mainly on the hybridization (or lack thereof) of DNA probes specific for 

DNA sequences cloned from a known D. discoideum type strain. 

In this project, we included these asexual and homothallic clones of uncertain species 

identification, as well as known sexual clones from a third study, focusing on the sexual cycle of 

two D. discoideum clones (A2Cyc
r
 (IR1) and WS205) (Francis 1998).  We also included several 

D. citrinum clones as the sister species to D. discoideum, and used D. purpureum as the 

outgroup.  We used the sequenced D. discoideum genome (Ogawa et al. 2000; Eichinger et al. 

2005) as a start for sequencing informative regions of 93 Dictyostelium clones to address the 

following questions: Do clones identified as D. discoideum represent a single, monophyletic 

group?  Is the species composed of multiple, genetically distinct subpopulations or even species?  

Is there evidence of population genetic structure by location?  We use methods similar to other 



20 

 

studies that have revealed probable cryptic species in D. purpureum (Mehdiabadi et al. 2009), 

and revealed the absence of cryptic species in a collection of D. giganteum clones (Mehdiabadi 

et al. 2010). 

 

Materials and Methods 

Clones 

We analyzed 92 clones, collected by us and others from 11 North American states, and 

Mexico, Costa Rica, Guatemala, and Japan (Figure 2.1, Table A1.1).  These clones consisted of 

89 D. discoideum clones, two D. citrinum clones representing the sister group and, as the 

outgroup, one D. purpureum clone.  Included in the 92 clones were four clones (AC4, ZA3A, 

WS526, WS584) whose identity as D. discoideum was considered to be questionable (Briscoe et 

al. 1987; Evans et al. 1988).  We acquired data from GenBank for the D. discoideum sequence, 

one D. citrinum sequence and the D. purpureum sequence.  We grew the 89 other clones from 

pure frozen stocks (i.e. fruiting bodies developed from a single spore prior to freezing) on SM/5 

agar plates (Sussman 1987, p. 26) in association with Klebsiella aerogenes bacteria. 

 

DNA Sequencing 

We extracted DNA from spores using a Chelex/Proteinase K extraction protocol.  We 

amplified a non-coding region of the mitochondrial genome (mtDNA) and regions of the nuclear 

ribosomal DNA (rDNA) by polymerase chain reaction (PCR) using the following protocol (step 

1: 2 minutes at 94ºC; step 2: 30 seconds at 94ºC; step 3: 30 seconds starting at 65ºC and 

decreasing 1º per cycle; step 4: 1 minute at 72ºC; step 5: 15 cycles to step 2; step 6: 30 seconds at 

94ºC; step 7: 30 seconds at 50ºC; step 8: 1 minute at 72ºC; step 9: 25 times to step 6; step 10: 6 
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minutes at 72ºC) with the following primers (see Table A1.2).  We cleaned the PCR product with 

USB (Cleveland, OH) ExoSAP-IT and then sequenced using PE Applied Biosystems (Foster 

City, CA) Big Dye 3.1 chemistry and a 3100 genetic analyzer.  We analyzed approximately 5500 

base pairs of the nucleotide sequence of nuclear 17S, 5.8S, 26S and 5S rDNA regions and 

approximately 2500 base pairs of the nucleotide sequence of mtDNA (ATPase, LSU intron, and 

cytochrome oxidase genes).  We aligned the sequences using the programs Lasergene SeqMan v. 

7.0.0 and BioEdit Sequence Alignment Editor v. 7.0.5.2.  Sequences have been deposited in 

GenBank [Accession numbers JF930786-JF931129]. 

 

Data Analysis 

We used comparative DNA sequence data to estimate gene trees/phylogenies and to 

measure genetic differentiation among populations.  We used both Bayesian and distance 

(neighbor joining) methods for phylogenetic reconstruction.  Our phylogenetic analyses focused 

on three different datasets: 1) all unique haplotypes obtained from the concatenated mtDNA 

sequences, 2) all unique rDNA haplotypes, and 3) all unique combined sequences obtained from 

concatenating mtDNA and rDNA sequences from each clone.  For the Bayesian analyses, we 

used MrBayes v. 3.1 (Huelsenbeck & Ronquist 2001) to estimate a phylogeny for each dataset 

based on the GTR+Γ model of molecular evolution.  This model was selected separately for the 

mitochondrial and ribosomal datasets using jModelTest version 0.1.1 (Posada 2008).  In 

addition, six high-frequency, polymorphic indels in the mtDNA data were scored as standard 

presence/absence characters and were included in the analysis with weighting equal to the 

nucleotide polymorphisms.  For each analysis, four Metropolis-coupled Markov chains were run 

for 250,000 burn-in generations followed by 1.75 × 10
6
 generations of data collection.  
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Neighbor-joining phylogenies were estimated for each dataset using the proportion (p) distance 

model in MEGA4 (Tamura et al. 2007) with gaps and missing data excluded in pairwise 

comparisons.  Bootstrap values were based on 1000 replicates.   

To test for population genetic differentiation, we calculated FST values separately for the 

mtDNA and the rDNA data using the analysis of molecular variance approach (Excoffier et al. 

1992) implemented in Arlequin 2.0 (Schneider et al. 2000).  We also calculated pairwise FST 

values for populations with sample sizes greater than 7.   For the pairwise comparisons, we 

combined the Mexican and Costa Rican populations.  We included these in only the ribosomal 

pairwise FST calculation because the total sample size was still less than 7 for the mitochondrial 

data.  These analyses were based on all sites with less than 5% missing/gap data. Seven clones 

(concatenated sequence numbers 4, 5, 7, 29, 30, 38 and 41) were excluded from the 

mitochondrial FST calculation due to missing data.  ZA3A (concatenated sequence number 6) 

was excluded from both FST analyses because we did not know where it came from.  We 

estimated P-values empirically by permuting sequences among populations 1000 times.  We also 

calculated the pairwise distances between the phylogenetic groups in this study and compared 

these values to the pairwise distances between known species of Group 4 Dictyostelids, which 

includes all three species used in this study, using published sequence from Schaap et al. (2006).  

We compared only sequence data from the 17S region due to the availability of published data. 

We used the software program MEGA4 (Tamura et al. 2007) to estimate pairwise genetic 

distances between clones using the p-distance algorithm.  Gaps and missing data were eliminated 

in pairwise sequence comparisons. 

To test for the presence of potential cryptic species, we used the generalized mixed Yule-

coalescent model (GMYC) developed by Pons et al. (2006).  This model uses likelihood based 
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methods to identify shifts from between-species to within-species branching events.  To 

implement this model, we estimated an ultrametric tree for each dataset using Beast v.1.5.4 

(Drummond & Rambaut 2007) based on the GTR+Γ model of molecular evolution.  All 

parameters were set to default values.  The maximum clade credibility (MCC) tree was 

calculated for each tree using TreeAnnotator v.1.5.4.  We used code provided by T.G. 

Barraclough in conjunction with R v.2.11.1 and functions from the APE library to run the model.  

Results were then compared to the results from both the Bayesian and Neighbor-joining 

phylogenetic analyses. 

 

Results 

Estimated Gene Trees/Phylogenies 

Mitochondrial DNA Data.  We identified 40 unique D. discoideum haplotypes from the 

mitochondrial sequence data (Table A1.1).  We produced a phylogenetic tree from Bayesian 

analysis of the 40 haplotypes that was generally not well resolved (Figure 2.2a).  When 

compared with neighbor-joining analysis of the haplotypes (Figure 2.2a), the Bayesian and 

neighbor-joining trees were similarly unresolved.  The results of the GMYC analysis were not 

supported by the results of either phylogenetic analysis.  GMYC analyses indicated that the 

mtDNA haplotypes disc 4, disc 7, and disc 18 were genetically distinct entities and the rest of the 

D. discoideum haplotypes were included in the same genetic cluster.  Neither phylogenetic 

analyses differentiated D. discoideum from D. citrinum.  In the Bayesian tree, the three D. 

citrinum clones group together, though not significantly, with the mtDNA haplotype disc 5 

falling outside of them.  In the neighbor-joining tree, two of the D. citrinum accessions group 

together with disc 4, again not significantly, with the third D. citrinum clone falling outside of 
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them.  We were unable to obtain adequate mitochondrial sequence data using our sequencing 

primers from the D. citrinum clone (V34), so this haplotype was not included in the 

mitochondrial analysis.  Three D. discoideum (CF3B, QS94, and QS108; Table A1.1) were not 

included due to a lack of adequate sequence data. 

 

Ribosomal DNA Data.  We identified 28 unique D. discoideum haplotypes from the 

ribosomal sequence data (Table A1.1). Ten of the 28 D. discoideum haplotypes were observed 

multiple times, often from multiple locations.  We produced a phylogenetic tree through 

Bayesian analysis of the unique haplotypes (Figure 2.2b).  The D. discoideum haplotypes formed 

a monophyletic group with a posterior probability of 1.0.  The four D. citrinum clones were 

grouped with a posterior probability of 0.99 with D. purpureum as the outgroup.  The results 

from the neighbor-joining analysis were similar to those from the Bayesian analysis.  The 

phylogenetic trees from both analyses had similar topologies and nodal support.  One noticeable 

difference was the placement of rDNA haplotypes disc 1, 2, and 3.  Both analyses grouped the 

three haplotypes with strong support, however the neighbor-joining phylogenetic tree placed the 

group more basally than did the Bayesian analysis, making it basal to the large grouping of 

mainly US clones like most of the rest of the Mexican and Costa Rican clones.  The results from 

the GMYC analyses were supported by both phylogenetic analyses.  GMYC analyses showed 

seven genetically distinct clusters and/or entities.  The rDNA haplotypes disc 1, 2, and 3 were 

grouped as a single cluster, disc 4, 5, 6, 7, and 8 were each genetically distinct entities and the 

rest of the D. discoideum haplotypes were grouped together as a single cluster. 
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Combined Mitochondrial and Ribosomal DNA Data.  Overall, we identified 50 unique D. 

discoideum concatenated sequences based on the combined sequence data (Table A1.1).  We 

also identified 4 D. citrinum concatenated sequences, including two that had previously been 

classified as D. discoideum (WS584 and WS526, concatenated sequences citr 1 and citr 2 

respectively).  We collected more than one clone of 13 of the 51 D. discoideum concatenated 

sequences, sometimes from a range of different geographic locations.  We produced a Bayesian 

phylogenetic tree from the D. discoideum and D. citrinum concatenated sequences using the data 

from the D. purpureum as the outgroup (Figure 2.3).  The four D. citrinum concatenated 

sequences formed a monophyletic group with a posterior probability of 1.0.  The remaining D. 

discoideum concatenated sequences also formed a monophyletic group.  They were divided into 

several well-supported basal clusters and a mostly unresolved larger grouping. The large 

grouping contained all of the U.S. clones plus one from Mexico and the one from Japan.  Though 

it was mostly unresolved, there was evidence of some well-supported subgroupings.  The 

Bayesian phylogeny shared a similar topology and nodal support to the tree produced from 

neighbor-joining analysis of the 50 unique concatenated sequences (Figure 2.3).  As in the 

ribosomal tree, the placement of the grouping of concatenated sequence numbers 1-3 varied 

between trees. In the combined analysis, the group was placed more basally by the Bayesian 

analysis than in the neighbor-joining tree.  The neighbor-joining analysis also indicated strong 

support for a grouping of concatenated sequences 10-12, 18 and 37 as well as for 6, 7 and 46.  

The neighbor-joining analysis showed less support for the grouping of concatenated sequences 4, 

5 and 8, although both trees placed these three clones as the most basal of the D. discoideum 

clones.  The results of the GMYC analyses were supported by both phylogenetic analyses and 
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suggested the presence of 10 unique clusters and/or entities within D. discoideum (Figure 2.1, 

Figure 2.3).  There were two genetically distinct clusters within the larger, mostly U.S. grouping 

and each of the more basal Mexican and Costa Rican clones represented a genetically distinct 

entity.   

 

Genetic Differentiation Among Populations 

The mitochondrial data indicated no significant pattern of differentiation among 

populations (FST = 0.099, P = 0.111).  The pairwise FST comparisons for the mitochondrial data 

also did not indicate strong population structure by location.  However, the pairwise FST 

comparisons involving the North Carolina population were all significant (Table 2.1).  For the 

ribosomal data, there was significant genetic differentiation among populations (FST = 0.263, P = 

0.003).  The pairwise FST comparisons for the ribosomal data, which included the added 

combined Mexico/Costa Rica population, were also all significant, indicating restricted 

movement of haplotypes between populations on a continental scale (Table 2.1). 

We calculated the pairwise distances for the 17S ribosomal sequences between nearest-

neighbor Group 4 Dictyostelid species and found values ranging from 0.001 to 0.037 (data not 

shown).  We then looked at the distances between phylogenetic groups in our study.  Distances 

between D. discoideum clones and D. citrinum clones (0.008 - 0.011) fell into the middle of the 

range above. Within D. discoideum, pairwise distances between the large mainly U.S. group and 

the basal entities from Mexico and Central America averaged 0.002.   Distances among those 

basal entities averaged 0.004.  These are within the range of some recognized Group-4 

Dictyostelid species pairs (D. brefeldianum G121 – D. mucoroides S28B 0.001; D. capitatum 
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91HO50 - D. pseudobrefeldianum 91HO8 0.003; D. sphaerocephalum GR11- D. mucoroides 

G81 0.002; D. brunneum WS700 – D. giganteum WS589 0.004). 

 

Discussion  

In this study, we found evidence of differentiation of populations based on location and 

well-supported subgroups within the named species D. discoideum, indicating support for 

previous suggestions of cryptic species.  We also show that some care needs to be exercised with 

morphological assessments of species identity, although identification by this means is usually 

accurate.  Based on the approximately 2500 base pairs of mitochondrial DNA and 5500 base 

pairs of ribosomal DNA, as well as previous work, three isolates previously described as D. 

discoideum were reclassified as D. citrinum.  After this change, data from this study show that 

isolates currently described as D. discoideum are genetically distinct from the closely related 

species D. citrinum, forming a monophyletic group. 

We found significant genetic differentiation among populations based on the ribosomal 

DNA data.  This suggests that D. discoideum clones are more highly related to their neighbors 

than to clones from more distantly located populations, in this case from other U.S. states or 

countries.  This may be a result of geographic barriers and other limitations on interactions 

between populations.  The popular view on microbial biogeography is that free-living microbial 

eukaryotes are not limited by dispersal due to their extremely large populations and small size 

(Fenchel and Finlay 2004; Finlay 2002).  Some species of microorganisms, however, have been 

found to exhibit patterns of restricted geographic distributions similar to those observed in larger 

organisms, indicating a need for further investigation into the population structure and 

geographic distribution of known microbial morphospecies (Foissner 2006, 2008; Smith and 
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Wilkinson 2007).  Recent studies have suggested that this isolation by distance can cause 

microbial genetic differentiation (Kim et al. 2004; Vos and Velicer 2008; Whitaker et al. 2003).  

The observed population structure in this study is consistent with some isolation by distance.  

The ribosomal DNA FST value reveals that 26% of genetic differentiation can be attributed to 

between-population differences, indicating what Wright would call “very great genetic 

differentiation” (Wright 1978). 

Dictyostelium discoideum is found in regions separated by large geographic barriers, 

including distance, rivers, and mountain ranges.  However, isolates from the United States, one 

isolate from Mexico and the only isolate from Japan, as observed in this study, were found to be 

genetically similar, indicating that the geographic barriers isolating populations are not absolute.  

Multiple vectors for dispersal may contribute to the widely observed genotypes in addition to 

explaining the population structure indicated by the significant FST value.  Dictyostelium 

discoideum is well-adapted for dispersal through the production of spores.  Short-range dispersal 

is most commonly achieved when spores are carried by water or consumed or carried by soil 

invertebrates (Huss 1989; O’Dell 1979).  The formation of the slug is also beneficial for local 

dispersal of cells (Kuzdzal-Fick et al. 2007).  These short-range methods of dispersal are limited, 

however, and can therefore explain the observed population structure by location.  Many 

microbes achieve wider dispersal by getting picked up and carried by air.  Dictyostelium sori are 

usually too heavy to be carried by air.  Aerial dispersal is therefore an improbable means of 

dispersal for D. discoideum (Cavender 1973), and this may largely explain the observed 

population structure.  More distant travel can be facilitated by larger organisms that carry D. 

discoideum spores externally on wet fur or feathers or internally after ingestion of a substrate on 

which fruiting bodies are attached (Suthers 1985).   
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Based only on the prediction that D. discoideum individuals are limited by dispersal, the 

isolate from Japan should have been the most diverged from the rest of the species.  However, 

this was not the case.  Though more Japanese isolates would be needed to get a clearer 

understanding of the evolutionary relationships of isolates from that population and populations 

from other locations, from the data in this study, differentiation of populations within North 

America were more supported by the Bayesian tree.  Of the eight sequenced clones from Mexico 

and Costa Rica, only one was observed, along with all of the U.S. clones, within the large 

undifferentiated clade of D. discoideum.  The rest were all found in well-supported basal groups 

that included only one other clone collected from an unknown location.  One hypothesis for this 

is that the clones analyzed from Mexico and Costa Rica that fell into the well-supported basal 

groups were actually one or more cryptic species genetically distinct from both D. discoideum 

and the closely related D. citrinum. 

Observations of the raw sequence data revealed relatively large variation within and 

between the Mexican and Costa Rican populations in DNA segments that were observed to be 

highly conserved in the other D. discoideum concatenated sequences (data not shown).  

Comparisons of the percentage of divergence between the Mexican and Costa Rican clones and 

the rest of the D. discoideum clones also revealed more variation within and between the 

Mexican and Costa Rican populations, as evidenced by the longer branch lengths between these 

clones (Figure 2.3).  This further supports the theory that cryptic species may be present.  It also 

emphasizes the need to further sample these regions of Mexico and Costa Rica, as the addition of 

more individuals might better explain the evolutionary relationships in these regions, either by 

filling in the gaps or further defining cryptic species. 
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Sexual incompatibility between groups, if present, could also provide further evidence for 

cryptic species, however using current methods for testing mating compatibility may prove 

unreliable.  Though most research is concentrated solely on the asexual stage that all 

Dictyostelium clones share, the less commonly observed sexual stage contains both sexual self-

incompatible and homothallic, or self-compatible types (Erdos et al. 1973).  The sexual stage of 

D. discoideum is less common in nature than the asexual stage, and is often difficult to recreate 

in a laboratory setting, however genetic exchange does occur (Francis 1998; Wallace and Raper 

1979).  Preliminary data suggest that macrocysts form both within and between the identified 

clusters, however viability has yet to be tested, and therefore these results neither confirm nor 

disprove the existence of cryptic species (unpublished data).   

The presence of homothallic clones also complicates these results.  Two of the Mexican 

and Costa Rican clones (AC4 and ZA3A, concatenated sequences disc 4 and disc 6 respectively) 

were previously labeled as possible unknown species in previous studies (Briscoe et al. 1987; 

Evans et al. 1988, Table A1.1).  Both Briscoe and Evans noted that clones AC4 and ZA3A 

expressed the self-compatible mating type.  Based on preliminary data, the homothallic mating 

type was unique to AC4 and ZA3A and, as of yet, was not found in any of the other clones in 

this study (unpublished data).  Though these results may not reflect what occurs in nature, the 

data imply that homothallism may be a trait unique to the Mexican and Costa Rican clones that 

was lost in the larger D. discoideum clade.  This trait also makes identifying cryptic species 

based on mating incompatibility difficult, as current methods do not differentiate between selfing 

and interactions with other clones. 

We know from previous work that in D. discoideum, genetically similar clones are more 

likely to group together in an aggregate than more genetically dissimilar clones (Ostrowski et al. 
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2008).  We also observed, in this study, phylogenetic clustering of genetically similar D. 

discoideum clones by location and uncovered well-supported phylogenetic subgroups within the 

species.  Interestingly, patterns similar to these have been found in another dictyostelid species.  

Mehdiabadi et al. (2009) found three distinct phylogenetic groups within the species D. 

purpureum and that interactions, both in the sexual stage and in the aggregation stage, were more 

likely to occur between clones from within each group than between.  These findings suggest 

that morphological species identification is not enough to answer questions about kin selection, 

altruism, and other questions about social evolution.  Although D. discoideum is an important 

and useful tool for studying biological phenomena, researchers should be wary of clones 

identified as D. discoideum based wholly on phenotype due to the possible existence of cryptic 

species.  Further investigation into the Mexican and Costa Rican clones is needed to support our 

hypothesis that some or all of these clones should be renamed as a species separate from D. 

discoideum.  It is plausible, however, that the named species D. discoideum consists of one or 

more cryptic species. 
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Table 2.1.  Pairwise Fst values between populations of Dictyostelium discoideum with sample 

sizes greater than 7 individuals.  Asterisks (*) indicate significant pairwise comparisons with 

single asterisks indicating a significant value of p<0.05 and double asterisks indicating p<0.001. 

 MA NC TX VA MX/CR 

Ribosomal DNA      

Massachusetts (MA) -     

North Carolina (NC) 0.319** -    

Texas (TX) 0.500** 0.211* -   

Virginia (VA) 0.315** 0.131* 0.116* -  

Mexico/Costa Rica (MX/CR) 0.243** 0.285** 0.256** 0.433** - 

Mitochondrial DNA      

Massachusetts (MA) -     

North Carolina (NC) 0.327** -    

Texas (TX) 0.005 0.112* -   

Virginia (VA) -0.011 0.197* -0.031 -  
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Figure 2.1.  Geographic locations of Dictyostelium discoideum clones used in this study.  

Reference strains are not included.  Also not pictured are one D. discoideum clone from Japan 

and one from an unknown location.  Locations of possible taxonomic groups are identified by 

colored circles.  In locations where more than one possible taxonomic group was present, 

proportions of each are represented. 
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Figure 2.2.  Bayesian phylogenetic trees created from (a) mitochondrial and (b) ribosomal DNA 

sequence data, with Bayesian posterior probablilities and cooresponding neighbor-joining 

bootstrap values.  Each terminal branch represents a haplotype. Taxon names correspond to 

combined mitochondrial and ribosomal DNA concatenated sequences.  Branch lengths are not 

drawn to scale.  Symbols represent locations of origin for each clone represented by the 

concatenated sequence. 
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Figure 2.3.  Bayesian phylogenetic tree created from combined mitochondrial and ribosomal 

DNA sequence data, with Bayesian posterior probabilities and cooresponding neighbor-joining 

bootstrap values.  Taxa represent concatenated sequences.  Bar indicates distance in terms of 

substitutions per site.  Symbols represent locations of origin for each clone represented by the 

concatenated sequence.  Numbered brackets and lines coorespond with genetic clusters and 

entities determined by GMYC analyses.  
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Abstract 

Theory indicates that numbers of mating types should tend towards infinity or remain at two.  

The social amoeba, Dictyostelium discoideum, however, has three mating types.  It is therefore a 

mystery how this species has broken the threshold of two mating types, but has not increased 

towards a much higher number.  Frequency dependent selection on rare types in combination 

with isogamy, a form of reproduction involving gametes similar in size, could explain the 

evolution of multiple mating types in this system.  Other factors, such as drift, may be preventing 

the evolution of more than three.  We first looked for evidence of isogamy by measuring gamete 

size associated with each type.  We found no evidence of size dissimilarities between gametes.  

We then looked for evidence of balancing selection, by examining mating type distributions in 

natural populations and comparing genetic differentiation at the mating type locus to that at more 

neutral loci.  We found that mating type frequency varied among the three populations we 

examined, with only one of the three showing an even sex ratio, which does not support 

balancing selection.  However, we found more population structure at neutral loci than the 

mating type locus, suggesting that the three mating types are indeed maintained at intermediate 

frequencies by balancing selection.  Overall, the data are consistent with balancing selection 

acting on D. discoideum mating types, but with a sufficiently weak rare sex advantage to allow 

for drift, a potential explanation for why these amoebae have only three mating types. 
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Introduction 

Research on the evolution and maintenance of sex and sex ratios in eukaryotes has 

historically focused heavily on those systems exhibiting two distinct mating types, one male and 

one female.  But more than two mating types occur in some species.  Recently, researchers have 

begun to explore the many natural systems that exhibit more diverse sexual strategies.  In nature, 

the observed numbers of mating types in systems that have evolved past two can range from low 

numbers like those seen in many ciliates (3-15 mating types; Collins & Gorovsky, 2005; Phadke 

& Zufall, 2009), and the acellular slime mold Physarum polycephalum (≥13 mating types; 

Collins & Tang, 1977) to hundreds or even thousands of mating types like those seen in many 

fungal species (Kothe, 1996; Billiard et al., 2011; 2012).  The fungus Schizophyllum commune is 

the most commonly recognized example of a high number of mating types due to its tetrapolar 

mating type system, with over 20,000 allele combinations currently estimated (Raper, 1966; 

Kothe, 1996).  Variation in mating systems is also common in plants, where self-incompatibility 

alleles can range from fewer than 10 to an estimated 200 (Lawrence, 2000; Castric & Vekemans, 

2004; Busch et al., 2014). 

 With all this diversity, it is important to understand how differing numbers of mating 

types can evolve and be maintained in natural systems.  Theory predicts that the number of 

mating types should tend towards infinity or remain at two (Iwasa & Sasaki, 1987).  In their 

model suggesting large numbers of mating types, Iwasa and Sasaki propose that a new mating 

type that arises in the population should be favored by selection because it can mate with a larger 

proportion of the population.  This negative frequency-dependent selection theory assumes both 

that there is a cost to not finding a mate and that all mating types are inter-compatible.  Plant 

theory for numbers of self-incompatibility alleles also centers on negative frequency-dependent 
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selection for explaining how new alleles arise in populations and why we see so many (Wright, 

1939).  Iwasa and Sasaki (1987) also constructed a model for why only two mating types might 

remain.  In this model, individuals or gametes can wait, without cost, for a suitable mate, and 

populations tend to lose all but two mating types most likely due to drift.  More recent theory 

focuses on explaining more actively why we often only see two mating types (reviewed in 

Billiard et al., 2011).  The evolution of anisogamy, cytoplasmic conflict leading to uniparental 

organellar inheritance, and high selfing rates that reduce the cost of finding a mate are just a few 

of the hypothesized constraints on the evolution of more than two mating types. 

Dictyostelium discoideum shows evidence of intermediate numbers of mating types.  

These social amoebae and other members of the Dictyosteliidae produce a sexual structure called 

a macrocyst, the diploid fusion product of two haploid cells of different mating types (Blaskovics 

& Raper, 1957; Filosa & Dengler, 1972; Erdos et al., 1973a,b; O’Day, 1979; O’Day & Durston, 

1979; Saga & Yanagisawa, 1983; O’Day & Keszei, 2012; Bloomfield, 2013).  Dictyostelia 

exhibit a variety of mating strategies with evidence of homothallic, or self-compatible species, as 

well as systems of 2, 3 and 4 mating types (Erdos et al., 1973a, 1975; Clark et al., 1973; Francis, 

1975; Cavender et al., 1981, 2005; Chang & Raper, 1981; Kawakami & Hagiwara, 1999).  The 

most commonly studied of these, D. discoideum, has three self-incompatible mating types 

determined by a single locus with three alleles, which cannot mate with themselves but can mate 

with either of the other two types (Erdos et al., 1973a; Clark et al., 1973; Bloomfield et al., 

2010).  We know that sex is common in nature from evidence of rapid decay in linkage 

disequilibrium with distance along the chromosome and recombinant genotypes in wild 

populations (Flowers et al., 2010).  However, direct evidence from hatching macrocysts in the 

lab has been challenging to obtain.  Though much of the process has been documented, many 
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aspects of the D. discoideum mating system are still yet to be understood.  One such missing 

element is a clearer understanding of how the number and distribution of its mating types fit in 

with the theory that explains mating type evolution in the rest of the eukaryotes.  What keeps D. 

discoideum at three? 

The possible selective pressures maintaining low numbers of mating types in microbial 

eukaryotes are likely to vary across lineages, as indicated in ciliates (Phadke & Zufall, 2009).  

However, even in ciliates, the forces driving patterns of mating type numbers and their 

distributions remain unclear.  Overall, this field is vastly understudied across microbial 

eukaryotes.  Since this question has never been addressed in Dictyostelium, we investigated how 

three mating types are maintained in D. discoideum, considering two common characteristics of 

mating systems, anisogamy and negative frequency-dependent selection at the mating type locus.  

First, physical differences between gametes, most notably size differences, have been associated 

with the evolution and maintenance of two-sex systems (Randerson & Hurst, 2001; Bulmer & 

Parker, 2002).  This type of reproduction, labeled anisogamy, can result from disruptive selection 

favoring increases in both the size and number of gametes.  Once this happens, it removes the 

frequency-dependent advantages of a rare sex, as gametes are no longer universally compatible.  

Small gametes only mate with large gametes and vice versa.  While anisogamy is common in 

multicellular organisms, the opposite, isogamy, is more often found in unicellular organisms 

where vegetative structures are less complex and increased gamete size yields less of a 

reproductive fitness gain (Parker et al., 1972; Knowlton, 1974; Bell, 1978).  Size differences 

between D. discoideum gametes could suggest differentiation and/or specialization of mating 

types that would make intermediate mating types unfavorable and limit the evolution of more 

mating types. 
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Second, we focused on two manifestations of negative frequency-dependent selection at 

the mating type locus.  First, mate availability is extremely important for reproduction and can be 

a limiting factor.  Similar to the theory predicting the evolution of an infinite number of mating 

types (Iwasa & Sasaki, 1987), equal sex ratios are predicted to be caused and maintained by a 

frequency-dependent selection favoring the rarer sex (Fisher, 1930; Wright, 1939).  Deviations, 

though rare, can be caused by a variety of factors such as local mate competition, mate 

attractiveness, maternal condition and environmental dynamics (Hamilton, 1967; Charnov, 1982; 

West, 2009).  Evenness is expected to persist even in systems with multiple mating types (Orias 

& Rohlf, 1964; Iwasa & Sasaki, 1987).  It is not known if all three of the D. discoideum mating 

types persist in all natural populations or if they do, at what frequencies.  Skewed mating type 

distributions could indicate differential pressures on sex allocation suggesting that larger 

numbers of some mating types may result from other sources of selection or drift. 

Second, unlike neutral alleles, genes responsible for sex determination or mating 

compatibility are generally under balancing selection.  Evidence for this is fairly ubiquitous in 

sexual species, most notably in self-incompatibility alleles in plants (Vekemans & Slatkin, 1994) 

and mating compatibility genes in fungi (May et al., 1999).  Balancing selection contributes to 

both allelic diversification and the maintenance of ancient alleles.  Allelic diversification, as 

proposed by models for the evolution of high numbers of sex determination alleles in which rare 

types are favored in the population, has been discussed previously (Wright, 1939; Iwasa & 

Sasaki, 1987).  But, balancing selection also tends to maintain alleles for mating compatibility in 

a population over long periods of evolutionary time (reviewed in Delph & Kelly, 2014).  In D. 

discoideum, we know from the very divergent sequences of the alleles at the mating type locus, 

that the mating types have been diverging in the species for a very long time (Bloomfield et al. 
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2010).  This suggests that balancing selection is acting on the mating types.  It is unknown if the 

distributions of mating type alleles found in each population also show evidence of balancing 

selection. 

Here, we investigated two questions:  Do D. discoideum gametes of each mating type 

differ in size?  What are the relative roles of balancing selection and drift on maintaining mating 

type frequencies in natural populations?  To answer these questions, we identified the mating 

types of 170 individual clones from three well-sampled natural populations and measured the 

gamete sizes from a representative subset of two of these populations.  We show evidence of 

isogamy, not anisogamy, and evidence that while balancing selection appears to be maintaining 

the frequencies of the three mating types when compared to more neutral markers, sex allocation 

varies across populations. 

 

Materials and Methods 

Study Populations 

To look at mating type distributions, we identified the mating types of Dictyostelium 

discoideum clones from frozen stocks originally isolated from soil samples.  We analyzed 170 

clones, collected from four geographic locations: 87 near the Mountain Lake Biological Station 

in Virginia (Fortunato et al., 2003), 47 from the Houston Arboretum in Houston, Texas and 36 

from two locations in North Carolina (Table A2.1).  We analyzed a subset of the 170 clones, 

focusing only on the Virginia and Texas populations, to measure gamete size.  Before all 

analyses, we grew the clones from clonal frozen stocks on nutrient agar plates with the bacterial 

food source Klebsiella pneumoniae. 
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In choosing our clones, we accounted for the possibility of oversampling issues affecting 

our results.  Many more isolates were collected from the populations we focused on here than 

were used in this study.  We used information on soil sample, mating type and microsatellite 

allele markers to make sure our list of clones was comprised of independent samples.  Isolates 

from different soil samples were assumed to be independent samples but duplicate isolates from 

a single soil sample were excluded whenever they showed the same mating type and the same 

genotypes at five microsatellite loci. 

Gamete Size Measurement 

To measure gamete size, we sampled multiple clones from each of the three self-

incompatible mating types from two populations.  Because two haploid cells fuse to form the 

reproductive zygote during the sexual cycle of D. discoideum, we measured the size of cells 

prepared in the absence of a compatible mating partner but in conditions conducive for sexual 

fusion, to get at their size right before fusion.  These fusion-competent cells are considered at this 

point to be gametes (Saga et al., 1983; O’Day et al., 1987; Urushihara & Muramoto, 2006).  

Specifically, we plated 2x10
5
 spores on LP agar plates (0.1% lactose, 0.1% peptone, 1.5% agar) 

in an excess of Bonner’s salt solution (SS: 0.06% NaCl, 0.03% CaCl2, 0.075% KCl) with K. 

pneumoniae and incubated the plates in the dark for 3 days at 22° C.  We then collected the 

resulting dark-grown cells and measured the cell diameters using a Nexcelom Cellometer Auto 

1000 (Lawrence, MA).  We used the default settings with the exception of a cell size minimum 

set to 5 um and a maximum set to 15 um.  In each population, we measured 160 cell diameters 

from each of four to six clones per mating type. 

For comparison, we also measured the size of cells grown in conditions conducive for 

fruiting body conditions in order to get at vegetative cell sizes when clones are not preparing for 
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sexual fusion.  We plated 2x10
5
 spores on SM/5 agar plates with K. pneumoniae and allowed the 

plates to grow on a bench for ~36 hours.  We collected pre-aggregate vegetative cells in buffer 

and used the same methods as previous for measuring cell diameters. 

Mating Type Identification and Microsatellite Analysis 

We developed mating type specific primers (see Table A2.2) based on the published 

mating type gene sequences identified by Bloomfield et al. (2010).  Each mating type expresses a 

unique set of genes (Type I: matA; Type II: matC, matB, matD; Type III: matS, matT), allowing 

for the development of a gene presence/absence assay for mating type identification.  We 

repeated techniques described in Douglas et al. (2011) for DNA extraction, amplification and 

sequencing.  We extracted DNA from spores using a Chelex/Proteinase K protocol and 

amplified, by polymerase chain reaction (PCR), regions of the mating type genes using the 

primers we developed.  We ran the PCR product on a 1% agarose gel to identify 

presence/absence of bands as an indication of mating type.  To verify the use of this method to 

identify mating types, we also checked the accuracy of approximately 15% of our results using 

either Sanger sequencing and/or mating compatibility tests.  We used methods similar to those 

available on dictyBase for the compatibility tests 

(http://dictybase.org/techniques/media/mating_types.html, Basu et al., 2013).  We plated spores 

from two D. discoideum clones together in an excess of SS buffer on LP agar plates with K. 

pneumoniae and incubated the plates in the dark for at least one week.  Presence of macrocysts at 

this point indicated mating compatibility.  Based on these assessments, we found our methods to 

be an excellent technique for identifying the presence of mating type genes.   

To look for balancing selection on the three mating types, we compared FST at the mating 

type locus to that at more neutral microsatellite loci.  Lower FST at the mating type locus would 
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mean that its alleles were maintained at more even frequencies across populations than the 

neutral loci, and thus represent evidence for balancing selection on that locus.  We acquired data 

for microsatellite allele sizes at 5 select loci for 168 D. discoideum clones from populations in 

Virginia (104 clones), Texas (40 clones) and North Carolina (24 clones) from Smith (2004; 

Table A2.1).  Of those 168 clones, 139 overlapped with the clones we looked at in this study. 

Statistical Analyses 

Gamete Size: Unless otherwise indicated, all statistical analyses were performed using R 

software (version 3.2.3.) (R Core Team, 2015).  We implemented a Welch’s two sample t-test to 

compare the diameters of gametes to vegetative cells.  To analyze the relationships between cell 

diameter measurements and both geographic origin and mating type, we fitted separate linear 

mixed-effects models to the gametic and vegetative datasets using the “lme” function from the R 

package “nlme” (Pinheiro et al., 2014).  We treated geographic origin and mating type as fixed 

effects and clone identity as the random effect.  Based on AIC and BIC scores, this model fit the 

data better than a model including the interaction effects of geographic origin and mating type.  

We used Type III tests to estimate the significance of the fixed effects.  Though our data 

appeared to have a normal distribution based on the kurtosis and skewness, they failed the 

Shapiro-Wilk test of normality.  Because of this, and because our errors were also not normally 

distributed, we implemented techniques based on Anderson & ter Braak (2003) where we 

applied permutation tests to the residuals under a reduced model.  We used R code written for 

Noh & Henry (2015) that permuted residuals from fitting a model of only the effect not being 

tested.  For example, the permutation test for mating type resampled residuals of a model that 

included only population origin as the fixed effect.  The permuted p-values we report reflect the 
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proportion of times the F-value of the resampled data were larger or equal to the F-value of the 

real data.   

Mating Type Frequency: To analyze the evenness of the frequencies of mating types 

within populations, we performed chi-squared goodness-of-fit tests using R software.  We 

corrected for multiple comparisons by implementing the Benjamini-Hochberg procedure for 

controlling false discovery rates (Benjamini & Hochberg, 1995).  The reported significant results 

remained significant after this correction.  We examined the standardized residuals from 

statistically significant tests to identify the mating types that were more or less prevalent than 

expected. 

Population Differentiation: We compared the differences between populations both in 

mating type frequencies and microsatellite allele frequencies by calculating estimates of FST 

using FSTAT version 2.9.3 (Goudet, 2001) and Hedrick’s G’ST (Hedrick, 2005) using the R 

package “diveRsity” (Keenan, et al., 2013).  The latter is a standardized measure of genetic 

differentiation that can account for the high mutation rates and diversity of microsatellites, 

addressing the underestimation of genetic structure observed using only FST (Meirmans & 

Hedrick, 2011).  Estimates of FST range from 0.0 to 1.0, but when there are large numbers of 

alleles at a locus, a value of 1.0 can never be reached even with complete differentiation.  This is 

due to within-population diversity.  Hedrick’s G’ST corrects for this by dividing the 

differentiation estimate by the maximum value it could take given the numbers of populations 

and alleles. 

 

Results 

Gamete sizes do not differ by mating type, but Texas gametes are smaller 
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We measured a total of 4640 gamete cells, representing 14 clones from Virginia (5 Type 

I, 4 Type II, 5 Type III) and 15 clones from Texas (6 Type I, 4 Type II, 5 Type III).  We also 

measured 4800 vegetative cells, representing 15 clones from Virginia (5 Type I, 5 Type II, 5 

Type III) and 15 clones from Texas (6 Type I, 4 Type II, 5 Type III).  We did not detect evidence 

of cell size differences between mating types in either cell type (gamete: F2,25 = 0.38, Pperm = 

0.68; vegetative: F2,26 = 0.43, Pperm = 0.64; Fig. 3.1A-3.1B).  Overall, we found that gametes 

were significantly larger than vegetative cells (mean 9.99 and 9.32 microns, respectively; t45 = 

5.33, p < 0.0001; Fig. 3.1C).  Gametes from Virginia, averaged 10.23 microns and were 

significantly larger than gametes from Texas at an average of 9.77 microns (F1,25 = 4.78, Pperm = 

0.01; Fig. 3.1D).  We did not see this geographic difference between vegetative cells (Virginia = 

mean 9.37 microns, Texas = mean 9.24 microns; F1,26 = 0.43, Pperm = 0.64).   

Frequencies of mating types are unequal and vary between locations 

We identified the mating types of individual clones collected at well-sampled populations 

from four distinct geographic regions.  In total, we identified 77 Type I, 39 Type II and 55 Type 

III individuals (Fig. 3.2, Table A2.1).  Overall, the distribution of mating types differed from the 

balancing selection expectation of equal frequencies (χ
2
 = 12.8, df = 2, p = 0.01).  Examining the 

standardized residuals from the chi-square test revealed that this departure is due to the 

identification of significantly more than expected Type I individuals and significantly fewer than 

expected Type II individuals (Table A2.3).  Within individual populations, we found a range of 

distributions.  In the population near Mountain Lake Biological Station, Virginia, we found an 

even distribution of mating types (34 Type I, 25 Type II, 28 Type III; χ
2
 = 1.45, df = 2, p = 0.48).   

The population in Houston, Texas significantly differed from an even distribution, with 

significantly fewer observed Type II individuals (22 Type I, 8 Type II, 18 Type III; χ
2
 = 6.5, df = 
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2, p = 0.04).  Due to low sample numbers, we combined two populations in North Carolina.  We 

identified 10 Type I, 3 Type II, and 2 Type III individuals in Linville Falls, NC and 11 Type I, 3 

Type II, and 7 Type III individuals in Little Butts Gap, NC.  Overall, we again found an uneven 

distribution of mating types when we combined these two populations, with significantly more 

than expected Type I individuals but significantly fewer than expected Type II individuals (χ
2
 = 

10.5, df = 2, p = 0.005).   

Balancing selection maintains mating type distributions across populations 

When we compared the three geographic populations to each other, we found no 

significant genetic differentiation in mating type frequency by geographic location (FST = 0.01,  

G’ST =0.05; Table 3.1).  We found substantially higher levels of genetic differentiation at the 

microsatellite loci (Mean: FST = 0.10, G’ST = 0.55, Range: FST = 0.10-0.13, G’ST = 0.32-0.77).  

Both the FST and G’ST estimates for the mating type locus fell well below all the respective 95% 

confidence intervals for the microsatellite loci, suggesting strong evidence for balancing 

selection. 

 

Discussion 

 Here we give the first empirical evidence for isogamy in D. discoideum.  Individuals of 

each of the three mating types expressed in D. discoideum produce gametes that are 

indistinguishable in size.  Because D. discoideum has evolved multiple mating types and lives 

primarily in a unicellular form, we were not surprised to find a lack of evidence for mating type-

specific gamete size differences.  Unicellular species are commonly isogamous, with gametes 

that are usually undifferentiated in form and sex-determination mechanisms that are regulated 

only at the molecular level by a mating type locus (Billiard et al., 2011; Bachtrog et al., 2014).  



55 

 

This observation may be due to the relatively short incubation time in unicellular organisms 

between fertilization and maturation of a zygote compared to the ultimately much larger 

multicellular organisms, such that there is less of a fitness advantage for increased zygote size 

and therefore no disruptive selection on gamete size (Knowlton, 1974).  In anisogamous 

organisms, where there is a pull between increasing the number of gametes and increasing the 

size of the gametes in order to produce more and larger zygotes, two mating types result, one 

small but abundant, one large but limited.  In this case, any intermediate type is likely to be 

disfavored.  Since gametes in D. discoideum are identical in size, there would be no intermediate 

type and new types could have the selective advantage described by Iwasa and Sasaki (1987).  

This is consistent with the fact that we see more than two mating types in D. discoideum.   

We also found evidence for balancing selection acting on the frequencies of the mating 

types when we compared population genetic differentiation at the mating type locus to that at 

presumably neutral microsatellite loci.  Mating types and other self-incompatibility or self-

recognition genes tend to evolve under balancing selection (reviewed in Fijarczyk & Babik, 

2015).  In D. discoideum, we observed no evidence of population structure at the mating type 

locus (FST = 0.01) but evidence of moderate genetic differentiation at the neutral microsatellite 

loci (FST = 0.10), with the estimate at the mating type locus falling well below the 95% 

confidence interval for the microsatellite loci.  Though this in itself is strong evidence for 

balancing selection at the mating type locus, we expected the FST values for the microsatellite 

loci could be underestimated due to the tendency of microsatellites to have high mutation rates 

and diversity (Balloux et al., 2000).  Because of this, we used an alternative method to further 

estimate genetic differentiation at these markers that addresses this problem.  We calculated 

estimates for Hedrick’s G’ST, a measure specifically designed to correct the underestimation of 
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microsatellite data, for both the microsatellite loci and the mating type locus.  The new estimate 

still showed about a ten-fold increase in population differentiation at the microsatellite loci 

compared to the mating type locus (Microsatellite: G’ST = 0.55; Mating: G’ST = 0.05), further 

strong evidence that mating types are maintained by balancing selection. 

But, according to theory, isogamy and balancing selection allow for the evolution of an 

infinite number of mating types, not just for the transition from 2 to 3 that we see in D. 

discoideum.  Though balancing selection may maintain the overall diversity of mating types 

across populations, we also see evidence of drift acting on individual populations, suggesting 

that the advantage of rare mating types may be weak.  Microbial eukaryotes with multiple mating 

types are expected to reach a stable equilibrium where all mating types are equal in a population.  

The few known examples come from ciliates, where equal frequencies of multiple mating types 

have been observed empirically and predicted theoretically (Orias & Rolf, 1964; Doerder et al., 

1995).  These equal frequencies are also common for self-incompatibility alleles in plants 

(reviewed in Castric & Vekemans, 2004).  However, in D. discoideum, the overall frequencies of 

the three mating types were not equal, with fewer observed Type II individuals.  Between 

locations, the frequencies of the three mating types also differed, with only one of the three 

populations, Virginia, showing equal frequencies of the three sexes.  Differences in mating type 

frequencies between populations most likely reflect drift in the face of weak selection.  Though 

less common, this pattern of drift is not unusual to mating type systems, having also been 

observed at self-incompatibility loci in plants (Campbell & Lawrence, 1981; Kato & Mukai, 

2004).  Thus the data are consistent with balancing selection but with a common sex 

disadvantage that is so weak that it is unable to maintain allele frequencies that are even or 
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uniform across populations.  Such a weak rare sex advantage might also explain why the number 

of sexes has remained low. 

Conclusions and Implications for Future Research 

  Since relatively little is known about macrocysts in D. discoideum compared to the more 

commonly studied fruiting body, the intent of this study was to further characterize aspects of the 

sexual cycle that could shed light on how low numbers of mating types are maintained.  In doing 

so, we found evidence of isogamy and balancing selection, both conducive for the evolution of 

multiple mating types.  However, we also found evidence for drift acting on the mating types that 

could explain why we only see three mating types.  Returning to the original models proposed by 

Iwasa and Sasaki (1987), in which a common sex disadvantage promotes the evolution of many 

mating types but drift can reduce that number to just two, we suspect that the missing piece to 

this puzzle may be a more thorough understanding of the cost of mating (or not) in D. 

discoideum.  These models predict a very large number of mating types to evolve if common 

mating types suffer a fitness cost for not having as many potential mating partners, but only two 

if they do not.  We know that mating in D. discoideum is a potentially costly event in itself.  

Though not addressed here, macrocyst formation is a uniquely social process that differs from 

the sexual cycles in other organisms.  Upon formation, hundreds of amoebae are attracted to and 

then cannibalized by the diploid zygote, a potentially altruistic act.  Understanding the social 

contract involved in sex and macrocyst formation in D. discoideum and the costs of not 

participating could further our understanding of how the mating system is maintained. 
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Table 3.1.  FST and G’ST values show differentiation in mating type frequencies and 

microsatellite allele frequencies between populations of Dictyostelium discoideum.  We included 

the 95% confidence intervals for each of the overall microsatellite loci differentiation estimates.  

Locus FST G’ST # of alleles 

Microsatellite Loci    

Dict5 0.097 0.592 15 

Dict13 0.128 0.770 17 

Dict19 0.104 0.315 7 

Dict23 0.086 0.672 22 

Dict25 0.097 0.668 21 

Average 0.103 0.548 16.4 

95% CI 0.091-0.116 0.475-0.609  

Mating Type Locus    

Mat 0.009 0.051 3 
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Figure 3.1.  Gametes are larger in Virginia, but are the same across mating types.  Plots show 

cell diameter for A) gametes of each mating type, B) vegetative cells of each mating type, C) 

vegetative cells compared to gametes, and D) gamete cells divided by geographic population.  

Asterisk represents statistical significance.  N represents number of clones from which 160 cell 

diameters were measured. 
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Figure 3.2.  Mating type proportions vary by population.  The pie charts show the distributions 

of mating types within each of the four geographic populations, with the large pie for North 

Carolina representing the combined totals from the two populations represented individually by 

the smaller pies.  Stars indicate approximate locations of sampling sites. 
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Abstract 

Unequal investment by different sexes in their progeny is common, including differential 

investment in the zygote or differential care of the young.  The social amoeba Dictyostelium 

discoideum has a sexual stage in which isogamous cells of two of the three mating types fuse to 

form a zygote which then attracts hundreds of other cells to the macrocyst.  The latter cells are 

cannibalized and so make no genetic contribution to reproduction.  Previous literature suggests 

that this sacrifice may be induced in cells of one mating type by cells of another, resulting in a 

higher than expected production of macrocysts when the inducing type is rare and a reproductive 

advantage for this social cheat.  We tested this hypothesis in 8 field-collected trios of clones of 

each of the three D. discoideum mating types by measuring macrocyst production at different 

pairwise frequencies.  We found evidence that supported differential contribution in only two 

clone pairs, so this pattern is rare and clone-specific.  In general, we found that each of the 

mating types contributes cells relative to their proportion in the population.  We also found a 

significant quadratic relationship between partner frequency and macrocyst production, 

suggesting that when one clone is rare, macrocyst production is limited by partner availability.  

We were also unable to replicate previous findings that macrocyst production could be induced 

in the absence of a compatible mating partner.  Overall, mating type-specific differential 

investment during sex is unlikely in microbial eukaryotes like D. discoideum. 
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Introduction 

Understanding differences in investment during reproduction has been crucial to 

understanding the evolution of sex and sexual roles in eukaryotes (Trivers 1972).  At the gametic 

level, the most commonly recognized example of dramatic differences in investment is the sperm 

and the egg, evolved primarily due to tradeoffs between gamete number and gamete size (Parker 

et al. 1972; Birkhead et al. 2008; Claw and Swanson 2012).  Nutrient provisioning to the zygote 

also commonly differs between parents.  In many species, nutrients are provided to the embryo 

maternally, either directly, for example through a placenta, or indirectly through the production 

of a nutrient-rich yolk (Callard and Ho 1987; Guraya 1989; Valle 1993).  Differences in post-

zygotic investment, or parental care, have also evolved in a variety of ways in eukaryotes due to 

disruptive selection on the sexes (Clutton-Brock 1991).   

However, in microbial eukaryotes, differences in parental investment are likely to be rare.  

Sexual roles in microbes tend to show no signs of disruptive selection.  Species frequently 

express more than two mating types and gametes are generally identical in form and mass 

(Parker et al. 1972).    Still, evidence for dissimilarities between microbial mating types suggests 

that investment can vary even in these species.  Differential investment, in the form of 

differential inheritance, is found in the plasmodial slime mold Physarum polycephalum.  This 

species exhibits hierarchical mitochondrial inheritance based on the mating type alleles of the 

parents (Moriyama and Kawano 2003).  In the Volvocines, increased gamete differentiation 

evolved with increasing vegetative complexity (Knowlton 1974; Bell 1978).  Unicellular genera 

like Chlamydomonas are isogamous, reproducing through the fusion of gametes identical in size.  

Alternatively, colony-forming genera like Volvox produce two types of sexual gametes that differ 

in size and structure.  
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 The cellular slime mold Dictyostelium discoideum offers an exciting system for 

investigating the potential for differential contribution during reproduction in a microbial system.  

This unicellular eukaryote shares many of the traits of species that show no evidence for 

disruptive selection.  In D. discoideum, there are three self-incompatible mating types that are 

identical in size and distinguishable only by a unique set of genes at a single genetic locus 

(Bloomfield et al. 2010; Douglas et al. 2016).  However, the product of a single mating, termed a 

macrocyst, is formed through a uniquely social process in which the nutrients required for the 

reproductive success of the zygote come from cannibalized cells that could be contributed by 

either parent.  Initially, two cells of differing mating types fuse to form a diploid zygote, called a 

giant cell (Saga et al. 1983). This giant cell attracts surrounding amoebae by secreting large 

quantities of the chemoattractant, cyclic adenosine monophosphate (cAMP) (O’Day 1979; Abe 

et al. 1984).  As many of these attracted peripheral cells begin to get consumed by the giant cell 

through phagocytosis, the rest seal their fate by producing a cellulose wall that permanently joins 

them with the giant cell in a structure called a precyst (Blaskovics and Raper 1957; Filosa and 

Dengler 1972; Erdos et al. 1973a).  As two more cellulose walls get formed around what will 

become a mature macrocyst, the rest of the peripheral cells are also cannibalized through 

phagocytosis by the giant cell.  

Since, under conditions conducive for sex, hundreds of D. discoideum amoebae get 

phagocytized for each new zygote, we can ask questions about conflict between partners at this 

stage.  Analogous to yolk production, the peripheral cells contribute materially, but not 

genetically, to the success of haploid sexual offspring that hatch out from the macrocyst (Okada 

et al. 1986; Filosa and Dengler 1972; Nickerson and Raper 1973).  However, unique to D. 

discoideum and other dictyostelids, this contribution is a form of cellular sacrifice or altruism, 
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which is familiar in another context in Dictyostelium.  For decades, D. discoideum has been a 

model organism for social evolution because, in the asexual social cycle, starved amoebae 

aggregate, attracted again to cAMP, to form a fruiting body that is composed of a spherical ball 

of spore cells held up by a stalk of dead cells (Kessin 2001; Strassmann and Queller 2011).  

Because there is such a large cost to participating in both macrocyst and fruiting body formation, 

clones can be exploited, or cheated, by contributing disproportionately to the respective 

sacrificed cells in either process.   

 While a number of examples of cheating to fruiting body formation have been observed 

in D. discoideum (described in Strassmann and Queller 2011), differential contribution to 

macrocyst production has been observed between only one pair of clones, NC4 and V12 (O’Day 

and Lewis 1975; MacHac and Bonner 1975; Lewis and O’Day 1977; Bozzone and Bonner 

1982).  In these studies, V12, a Type II clone, invested disproportionately more to macrocyst 

formation by contributing most or all of the phagocytized peripheral cells.  This behavior was 

thought to be induced in V12 by a diffusible pheromone that was produced by cells of the Type I 

clone NC4 and could affect V12 even in the absence of NC4 cells.  This phenomenon was not 

limited to D. discoideum, with other species also showing signs of inducible macrocyst 

production (Lewis and O’Day 1976; Lewis and O’Day 1979).  However, subsequent studies 

have called into question the claim by these early studies that the diffusible pheromone could 

induce macrocyst formation in the physical absence of a sexually compatible mate as they were 

unable to replicate the original findings (Erdos et al. 1973b; Wallace 1977; Bozzone and Bonner 

1982).  These original studies were also limited to single representatives of mating types, so the 

generality of their findings to other D. discoideum clones is unknown.  There could be 

dominance effects between clones that average out between mating types as a whole.  Regardless 
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of the potential flaws of the early studies, the suggestion that mating types play separate roles in 

macrocyst production still remains a part of the current understanding of how D. discoideum and 

other Dictyostelium cells of different mating types interact (reviewed in O’Day and Keszei 2012 

and Bloomfield 2013).   

This study investigates this potential for unequal investment in macrocyst production by 

each of the three mating types in D. discoideum.  We also test whether induction of one mating 

type by another might be an underlying mechanism.  We propose that the process most likely to 

be influenced or cheated during macrocyst production is how many phagocytized peripheral cells 

a given clone contributes.  Since it is difficult to measure who contributes because the cells get 

cannibalized, we will instead compare macrocyst production at varying partner frequencies.  We 

tested for expected consequences in terms of macrocyst numbers based on three hypotheses for 

how peripheral cells are contributed (illustrated in Fig. 4.1): (1) that peripheral cells are 

contributed in proportion to the frequency of each partner, (2) that they are contributed equally 

and (3) that one partner potentially cheats another by contributing disproportionately fewer than 

its fair share.  Also, because D. discoideum has more than two mating types and no Type III 

clones have ever been evaluated for levels of investment during macrocyst production, we 

assessed whether a mating hierarchy exists such that contribution to reproduction differs 

depending on which mating type is dominant in a pairing. 

   

Materials and Methods 

Clones 

We tested pairwise macrocyst production among trios of D. discoideum clones each from 

the same population.  We tested 24 clones in total (8 clones each of the three mating types), from 
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three geographic populations: 3 trios from Houston, TX (29° 46’ N, 95° 27’ W), 3 trios from 

Little Butts Gap trail in North Carolina (35°46’ N, 82°20’ W), and 2 trios from near Mt. Lake 

Biological Station, VA (37°21’ N, 80° 31’ W) (Table A3.1).  The mating types of each of the 

clones used in this study were either previously identified or identified using the techniques from 

Douglas et al. (2016).  We only selected clones that were compatible (i.e. produced macrocysts) 

with each of the other two clones in a given trio.  During the selection process, we encountered 

pairs of clones that together produced no macrocysts even though they exhibited different mating 

types at the mating type locus (Table A3.2-A3.4).   

We also tested our ability to measure differential macrocyst production by comparing 

macrocyst production between clones NC4 and V12, the focal pair in the literature on macrocyst 

induction in D. discoideum (O’Day and Lewis 1975; MacHac and Bonner 1975; Keith E. Lewis 

and O’Day 1977; Bozzone and Bonner 1982).  We obtained these clones from the Dicty Stock 

Center (http://dictybase.org/StockCenter/StockCenter.html; Fey et al. 2013).  Because a number 

of strains labeled as either NC4 or V12 have been deposited over the years, we selected five 

unique pairs to test for differential macrocyst production after initially checking for compatibility 

(Table A3.1, A3.5).  We also chose to test our methods on D. discoideum clones WS205 and IR1 

because we previously observed macrocyst production when WS205 was rare and IR1 was 

common, but not the reverse, suggesting WS205 may induce macrocyst production in IR1 

(unpublished data).  WS205 is a Type I wild clone and IR1 is a Type II axenic mutant (free of 

bacteria) of parental strain WS582 that still contains all Type II mating type genes.  These clones 

were also obtained from the Dicty Stock Center.  Clones were grown from frozen stock on 

nutrient agar plates using Klebsiella pneumoniae, also from the stock center, as the bacterial food 

source.   
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Assay to measure differential macrocyst production 

The relative contributions of two mating types to the macrocyst are difficult to assess 

directly.  However, measuring macrocyst production at varying partner frequencies has been 

shown to be an excellent indicator of differential contribution (Bozzone and Bonner 1982).  To 

test that our methods could identify differential macrocyst production, an indication of 

differential contribution to peripheral cells similar to the type described in previous literature, we 

compared macrocyst production between D. discoideum clones NC4 & V12 and also between 

WS205 & IR1, at seven starting population frequencies (100:0, 99:1, 90:10, 50:50, 10:90 and 

1:99, 0:100).  We performed two replicates.  To investigate differential macrocyst production in 

wild D. discoideum clones, we compared pairwise macrocyst production among eight trios of D. 

discoideum clones, each containing one representative of each mating type.  The same seven 

starting population frequencies were tested as in the paired experiment, but each clone was tested 

separately against the two other clones in the trio. We performed one replicate for each trio of 

clones. 

We performed all of our experiments in 24-well plates with 1 mL of equal parts Lactose-Peptone 

agar (LP: 0.1% lactose, 0.1% peptone, 1.5% agar) and Bonner’s salt solution (SS: 0.06% NaCl, 

0.03% CaCl2, 0.075% KCl).  To each well, we added a total of 5 x 10
3
 D. discoideum with 10 µL 

of OD 2.0 A600 K. pneumoniae as food.  We sealed each plate with black electrical tape to 

maintain humidity inside and then stored them in a dark incubator at 22°C for one week to 

ensure the completion of all macrocyst production.  We then counted the number of macrocysts 

in each well using an inverted microscope. 
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Diffusion chambers 

To test for induced macrocyst production without physical contact between the cells or 

the ensuing sexual reproduction, we set up diffusion chambers modeled after the experiment 

described by Lewis and O’Day (1977).  The purpose of these chambers is to grow clones 

separately, but still allow for the exchange of volatile compounds (illustrated in Fig. 4.2).  We 

conducted these experiments on the pairs of clones used to test our methods for identifying 

differential macrocyst production (NC4 & V12 and WS205 & IR1).  We also tested one trio 

from the larger experiment (V315B1, V331B1 and V341C2).  We placed three small 30 x 10 mm 

Petri plates in one 100 x 15 mm Petri plate.  We filled the small plates with 6 mL of equal parts 

LP agar and SS buffer and added 2.5 x 10
4
 Dictyostelium spores with K. pneumoniae as food.  

For each pair of clones tested, A and B, we added spores to the three small plates in the 

following five combinations: (1) two clone A and one B, (2) two clone B and one A, (3) three 

clone A, (4) three clone B, and (5) one clone A, one clone B and one with both clones to verify 

that macrocysts can be made in our conditions.  We sealed the lid of the large plate with black 

electrical tape and stored them in a dark incubator at 22°C for at least one week.  We then 

checked for the presence of macrocysts using an inverted microscope. 

 

Statistical analyses 

Statistical analyses were performed using R software (version 3.2.2.) (R Core Team, 

2015).  We applied separate linear mixed-effects models to the data from crosses between the 

five strains each of NC4 and V12 and between WS205 and IR1 using R package “nlme” 

(Pinheiro, et al. 2016).  We looked at how the initial percent of the predicted inducer affected 

macrocyst production.  We treated percent inducer as the fixed effect and strain pair (for NC4 x 
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V12) or block (for WS205 x IR1) as the random effect.  We compared models that included only 

the linear term for percent inducer to models that also included the quadratic term and chose the 

former based on AIC and BIC scores.  We used Type III tests to estimate the significance of the 

fixed effect.  Due to non-normality, we square root transformed the data, which then passed the 

Shapiro-Wilk test of normality.   

We applied similar methods to analyze macrocyst production between the trios of wild 

clones.  We again applied linear mixed-effects modeling to analyze how macrocyst production is 

affected by the frequency of a given partner (Type I in Type I x Type II, Type I in Type I x Type 

III, and Type II in Type II x Type III).  We treated frequency as a fixed effect and the identity of 

the clones in a given pairing as a random effect.  We also included the quadratic term for 

frequency.  Based on AIC and BIC scores, this model fit the data better than a model that also 

included geographic population or the model that only assessed a linear effect of frequency.  We 

cube root transformed the data to normalize it.  Linear or quadratic best-fit regression curves 

were calculated in R based on the model that best fit the data.  Linear and quadratic functions for 

macrocyst production between individual clone pairs were compared using an analysis of 

variance test.  Bonferroni correction was used to adjust for multiple comparisons.  We report the 

corrected p-values. 

 

Results 

Measuring macrocyst production at differing ratios of mating types can be used as an 

indirect way to identify contributions to the cannibalized peripheral cells.  In these experiments, 

we varied pairwise population composition to examine predictions of different hypotheses on 

numbers of macrocysts produced.  Fig. 4.3 shows how we would expect macrocyst production to 
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vary by population composition based on three hypotheses for how each mating type contributes 

to the cannibalized peripheral cells and will be used for comparison with the actual results.  In 

Fig. 4.3A we show the prediction for proportional fairness, in which each mating type 

contributes a number of cells to be consumed by the zygote that is directly proportional to the 

number of cells of that mating type in the population.  In this scenario, our null hypothesis, there 

is potentially no limitation on macrocysts since cells are sacrificed at rates relative to their own 

frequency and thus, maximum macrocyst production is possible across all ratios.  In Fig. 4.3B, 

we show the prediction for absolute fairness, in which each mating type contributes an equal 

number of peripheral cells.  Since the rarer mating type will be depleted first, in this first 

alternative hypothesis, macrocyst production is then proportional to the number of cells of the 

rarer type, with very few macrocysts being produced when one type is rare (10%) and even 

fewer when one type is very rare (1%).   Unfairness, or cheating, our second alternative 

hypothesis, is shown in Fig. 4.3C, in which the greatest number of macrocysts are produced 

when mating partner X is very rare but the fewest number of macrocysts are produced when its 

partner is very rare.  This figure most closely resembles the proposed differential contribution to 

peripheral cells from the literature.  Partner X would gain a reproductive advantage by 

contributing disproportionately less to the cannibalized peripheral cells. 

 

Physical contact is required for macrocyst production 

When plated alone, NC4, V12, WS205 and IR1 each were unable to produce macrocysts, 

consistent with their classification as self-incompatible strains.  From the diffusion chambers, we 

found no evidence of induced macrocyst production without the possibility of sexual cell fusion.  

We set up four diffusion chambers each with the following combinations: two NC4 and one V12, 
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two V12 and one NC4, and one NC4, one V12 and one with both NC4 and V12.  We set up two 

diffusion chambers each with the following combinations: three NC4 and three V12.  While 

macrocysts were produced in all four of the small plates inoculated with both NC4 and V12 

clones, no other cultures produced macrocysts.  We did the same experiment with WS205 and 

IR1 and again found that macrocysts were produced in the small plates inoculated with both 

WS205 and IR1, but not in any other plates. 

 

In clones we collected from wild populations, partners contribute to reproduction relative to 

their own frequency, regardless of mating type  

All 24 wild clones showed no evidence of macrocyst production when plated alone, but 

produced macrocysts at all other pairwise population frequencies (Fig. 4.4).  We found a 

significant quadratic relationship between the initial frequency of a given partner and macrocyst 

production in each of the three mating type pairings (Type I x Type II: F2,30=9.84, p<0.0001; 

Type I x Type III: F2,30=14.28, p<0.0001; Type II x Type III: F2,30=8.80, p=0.001).  Though 

evidence of a significant quadratic effect fits our first alternative hypothesis in which peripheral 

cells are contributed exactly evenly, the shallowness of the curve fits our null hypothesis in 

which peripheral cells are contributed relative to their frequency in the population.   

 

Disproportionate contribution to macrocyst production is rare, but clone-specific 

When paired with their respective partners, macrocysts were produced at all population 

frequencies of NC4 and V12 and WS205 and IR1, respectively.  Both between NC4 and V12 and 

between WS205 and IR1, we found a significant linear relationship between macrocyst 

production and the initial frequency of NC4 or WS205, respectively (NC4xV12: F1,19=29.40, 
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p<0.0001; WS205xIR1: F1,7=414.98, p<0.0001, Fig. 4.5).  However, the best-fit regression curve 

indicated that the direction of the effect differed between the two pairings, with increased 

frequency of the Type I clone correlating with increased macrocyst production in one pair but a 

decreased macrocyst production in the other.  We found that an increased frequency of NC4 had 

a significant positive linear effect on macrocyst production, while increasing the frequency of 

WS205 had a significant negative linear effect on macrocyst production.  These results most 

closely resemble our hypothesis that one mating type cheats another during macrocyst 

production (Fig. 4.3C) but they go in opposite directions with respect to mating type.   

Because we found clone-specific linear relationships in crosses between NC4 and V12 

and WS205 and IR1, respectively, we also calculated best-fit linear regressions for each of the 

wild clone pairings (Fig. A3.1).  We found significant linear relationships between only two 

Type I x Type III North Carolina pairs (Type I NC60.2 x Type III NC75.2: p=0.05; Type I 

NC105.1 x Type III NC61.1: p=0.007).  The rest showed no significant linear or quadratic 

relationships, similar to what we would have expected if contribution to macrocyst production 

followed our null hypothesis (Fig. 4.3A). 

 

Discussion 

Dictyostelium discoideum offers an unusual and interesting model for investigating 

differential investment during reproduction.  Like many other systems, nutrients to the 

reproductive zygote are provided by the parents, although the mechanism in Dictyostelium is 

unique.  Differential contribution to these nutrients is common in nature, with primarily maternal 

investment dominating.  Until now, however, it was unclear in D. discoideum if nutritional 

contribution to the zygote was uniparental or biparental.  In this study, we show not only that 



81 

 

sexual investment in D. discoideum is biparental, but also that it is dependent on the frequency of 

a given partner in the population rather than its mating type.  

Evidence suggesting that one partner disproportionately contributed to macrocyst 

production by providing more of the cannibalized peripheral cells was introduced by O’Day and 

Lewis (1975) and independently verified with the same clone pair in the same year by MacHac 

and Bonner (1975).  Since then, the possibility of differential macrocyst induction by D. 

discoideum mating types has persisted in the literature.  Nonetheless, because these prior studies 

primarily focused on a single pair of clones, representing only two of the three D. discoideum 

mating types, we expanded our investigation to include not only all three mating types, but also 

multiple representatives of each of these three mating types.  We tested eight independent sets of 

wild D. discoideum clones, each containing representatives of all three mating types, and found 

no evidence for an ability by any of the mating types to induce macrocyst production in others 

(Fig. 4.4).  Instead, we found an overall quadratic relationship between frequency of partner and 

macrocyst production where more macrocysts were produced when both partners were equal and 

fewer at the more uneven frequencies.  A quadratic effect suggests that these findings are similar 

to what we predicted in Fig. 3B, in which we hypothesized that if each partner contributes the 

same number of sacrificed peripheral cells during the formation of macrocysts, macrocyst 

production will be limited by the number of cells of the rarer type.  However, the shallowness of 

the curve suggests that we cannot rule out our null hypothesis (Fig. 4.3A), in which the number 

of cells each mating type contributes to macrocyst production is directly proportional to the 

number of cells of each mating type in the population.  This is further supported by looking at 

the relationship between partner frequency and macrocyst production at the level of the 

individual clone pair.  In 22 of the 24 pairings, we found nonsignificant relationships between 
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frequency of partner and macrocyst production, with the other two showing linear relationships.  

Since there were no individual pair quadratic effects, even though there are collective ones, the 

power must be fairly low for the individual effects, quadratic or linear, a pattern most similar to 

our prediction in Fig. 4.3B. 

Though the individual experiments provide some support for our null hypothesis, we 

cannot dismiss the significant quadratic effect at the mating type level.  We predict that this 

effect is likely due to population structure, such that when compatible mating types no longer 

come in contact, zygote production ceases.  Though spores were mixed initially, once amoebae 

hatched from these spores and subsequently divided as they consumed the provided bacteria, 

patches of identical individuals are likely to occur.  Evidence for this type of structured growth in 

D. discoideum has been shown in asexual development (Buttery et al. 2012; smith et al. 2016).  

In the beginning of our experiments, when the density of cells was at its highest, cells of 

differing mating types were more likely to come into contact.  Once many of the cells committed 

to taking part in macrocyst production and overall cell densities became lower, partner 

accessibility may become a limiting factor.  This may be why we found fewer macrocysts at the 

more unequal frequencies than at 50:50.  Cells of the high frequency type would often be 

surrounded by their own clones and would be unable to produce further macrocysts, even though 

compatible mating partners were likely still present in the population. 

In our experiments, macrocyst production never fully exhausted the available cell 

population regardless of partner ratios.  In every pairing that produced macrocysts, we observed 

free living amoebae that seemingly avoided or were excluded from participating in the sexual 

process.  In addition to possible effects of population structure, avoiding aggregation could be a 

strategy to avoid contributing to the peripheral cells if another option is possible.  In the asexual 
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life cycle, non-aggregating cells that do not participate in fruiting body formation can colonize 

remaining nutrients in the environment (Dubravcic et al. 2014; Tarnita et al. 2015).  This 

observation was important for our understanding of altruism in D. discoideum, as clones that 

were labeled “losers” for producing relatively fewer spores when mixed with other genotypes, 

could in reality be following an alternative strategy of producing more non-aggregating cells.  In 

our experiments, non-aggregating cells had no advantage over aggregating cells as the 

subsequent lab environment was unsuitable for continued growth.  In nature, however, nutrients 

can reestablish and failure to participate in macrocyst formation may not be an evolutionary dead 

end.   

Evidence that cells are likely to be phagocytized relative to their frequency in the 

population, rather than their mating type identity, provides further insight into how the zygote 

giant cell feeds.  As described earlier, mating in D. discoideum begins with the production of the 

giant cell, a fusion product of two cells that differ in mating type.  This giant cell then produces 

large quantities of the chemoattractant, cAMP, attracting surrounding cells.  In D. discoideum, 

giant cells have been shown to preferentially phagocytize cells of their own species over cells 

from other slime mold species (Lewis and O’Day 1986).  However, it was unclear if they 

preferentially consume some D. discoideum cells more than others.  In wild clones, this does not 

appear to be the case.  Instead, our results suggest that the giant cell acts as more of an 

opportunistic feeder, consuming whatever conspecific amoebae are attracted to it.  Since our 

pairwise mating design guaranteed that giant cells would be equally related to all of their 

potential “victims”, we cannot draw conclusions on whether giant cells attract unrelated D. 

discoideum cells more or less than cells identical to the two that fused originally. 
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Though we present here robust evidence against differential investment between the 

mating types among wild D. discoideum clones, we also showed that disproportionate 

contribution to macrocyst production can happen between two clones.  Significant linear 

relationships between four sets of clones, including the originally discussed NC4 and V12, 

suggest that though not universal, uneven investment may occur during the sexual cycle.  

Interestingly, the direction of unfairness that we found between Type I NC4 and Type II V12 is 

opposite of what was previously observed.  Instead of finding evidence that NC4 cheats V12, we 

found that when V12 was rare, more macrocysts were produced than when NC4 was rare.  This 

suggests that in our conditions, V12 gained the reproductive advantage.  This pattern was 

consistent across all five strains of this clone pair. This surprising find could indicate a hint of 

plasticity in the inducing trait.  That unknown, and therefore uncontrollable, environmental 

factors impact how clones interact during the sexual cycle.   

Our data clearly show that varying the availability of compatible partners impacts 

macrocyst production, but our understanding of sexual compatibility in D. discoideum remains 

incomplete.  Early studies proposed that disproportionate contribution to macrocyst production, 

comparable to what we observed in just a few clone pairs, was induced by a diffusible hormone 

that could even make otherwise self-incompatible clones undergo homothallic mating (Lewis 

and O’Day 1975; MacHac and Bonner 1975).  Since we were unable to induce macrocyst 

production in this way, we conclude that both clones are required to produce macrocysts, likely 

due to an inability to self.  This agrees with other studies that were also unable to recreate this 

induced selfing (Erdos et al. 1973b; Wallace 1977; Bozzone and Bonner 1982).  Required 

heterothallic mating supports our hypothesis that the linear patterns reflect cheating.  The cheater 

can gain a reproductive advantage if more macrocysts are produced when it is rare by 
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contributing the same number of cells as its partner to the reproductive zygote, but at a relatively 

lower cost by contributing disproportionately fewer cells to be cannibalized.   

 Overall, our findings contribute further evidence that mating type-specific differential 

investment during sex is unlikely in microbial eukaryotes.  Our results complement previous 

findings that reproduction in D. discoideum is isogamous, involving gametes identical in size and 

form (Douglas et al., 2016).  They also fit with the assumption that evolved differences between 

sexes are correlated with vegetative complexity (Knowlton 1974; Bell 1978).  Though D. 

discoideum aggregates into a multicellular structure during its social and sexual cycles, most of 

its life is spent as a unicellular amoeba.  In addition to being indistinguishable in appearance, the 

three D. discoideum sexes are also indistinguishable in their investment to nutrient provisioning 

during macrocyst production.  This differs from what would be expected if the peripheral cell 

contribution was more analogous to yolk production or other primarily maternal investments.  In 

general, the cost of mating (i.e. sacrificed peripheral cells) is distributed fairly between two 

mating partners in D. discoideum.  However, we also provide evidence for cheating between 

individual pairs.  This suggests that, though not dictated by mating type, social conflict similar to 

that described in asexual fruiting body formation is also a factor during macrocyst production.   
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Figure 4.1.  Alternative strategies for contributions to cannibalized peripheral cells in 

Dictyostelium discoideum. Shown are illustrations of populations of cells before macrocyst 

production followed by these same populations after macrocyst production.  At the center of 

each macrocyst is a zygote formed from the fusion of one gray cell and one white cell.  Here we 

only show scenarios where one partner is rare, represented by gray cells and the other is 

common, represented by white cells.  In A), peripheral cells are contributed by each partner 

relative to its frequency in the population.  In B), each partner contributes exactly the same 

number of peripheral cells as its mate in each macrocyst.  In C), one partner induces the other to 

contribute disproportionately more peripheral cells, while it contributes few to no peripheral 

cells.  In this case, the gray cells represent cells of a mating type that induces overcontribution of 

peripheral cells by its partner, while the white cells represent cells of a mating type that responds 

to this induction.   
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Figure 4.2.  An example of a diffusion chamber between NC4 and V12 with the combinations of 

clones to be tested and the expected outcomes for each combination.  Based on the literature, two 

chambers of NC4 should induce macrocyst production in V12.  
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Figure 4.3.  Predicted outcomes of different hypotheses.  Macrocyst production may reflect A) 

proportional contribution to peripheral cells such that a given partner contributes a number of 

cells relative to their frequency in the population (proportional fairness), B) equal contribution to 

peripheral cells such that each partner contributes the same number of cells (absolute fairness), 

or C) differential contribution to peripheral cells such that one partner contributes 

disproportionately fewer cells (cheating).  
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Figure 4.4.  Fewer macrocysts are formed when either mating type in a pairing is very rare.  

Symbols represent macrocyst production between individual clone pairs.  Lines represent best-fit 

regression curve for each mating type overall.  
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Figure 4.5.  Type I WS205 induces macrocyst production in Type II IR1, and Type II V12 

induces macrocyst production in Type I NC4.  Figure shows the number of macrocysts produced 

at five starting frequencies of either WS205 or NC4 (both mating type I) (1%, 10%, 50%, 90% 

and 99%) with the reciprocal frequency of IR1 or V12, respectively.  Symbols represent 

macrocyst production between the five strains of clone pair NC4 and V12 and the one strain of 

clone pair WS205 and IR1.  Best-fit regression line is solid for overall NC4 x V12 and dashed 

for WS205 x IR1. 
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CHAPTER 5 

 

CONCLUSIONS 
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 The goal of this dissertation was to examine the social and selective pressures influencing 

the evolution and maintenance of sex and mating types in the social amoeba Dictyostelium 

discoideum.  I first searched for hidden genetic population structure that could muddle our ability 

to interpret variation in social and sexual interactions.  I then characterized key aspects of the D. 

discoideum mating types to investigate selective pressures on gamete size and mating type 

number.  Finally, I looked for evidence of differential sexual investment in D. discoideum to 

explore the roles of each mating type during reproduction. 

 I used phylogeny building and other population genetics techniques to analyze variation 

in ribosomal and mitochondrial DNA sequences from a large collection of D. discoideum clones 

isolated from the wild.  I found that the majority of D. discoideum clones form a single, 

monophyletic group, reinforcing the usefulness of morphological characteristics as species 

identification markers.  However, I also found pronounced genetic differentiation between 

geographic populations and eight isolates that may represent one or more cryptic tropical species.  

This evidence for population structure among D. discoideum isolates contributes to the long-

standing debate of whether and to what extent population structure exists in microbial 

populations (Finlay 2002; Fenchel and Finlay 2004; Foissner 2006, 2008; Smith and Wilkinson 

2007).  It also strongly highlights the need to identify genetic variation between clones before 

investigating how they interact. 

High relatedness plays a key role in promoting and maintaining cooperation in nature, 

especially when the cost to cooperation is high, such as during fruiting body formation in D. 

discoideum (Fletcher & Michener 1987; Gilbert et al. 2007; Hamilton 1964).  It has been shown 

in D. discoideum that unrelated clones will mix to form chimeric multicellular structures, and in 

many cases, one clone benefits disproportionately more from these interactions (Strassmann et 
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al. 2000; Foster et al. 2002; Buttery et al. 2009; Jack et al. 2008).  However, genetic relatedness 

is a factor in how these unrelated clones will interact, with more closely related individuals more 

likely to interact (Ostrowski et al. 2008; Mehdiabadi et al. 2009).  Taking into account genetic 

relatedness and the now no-longer hidden population structure in D. discoideum is important to 

interpreting how and why social and sexual interactions evolve and are maintained. 

 I uncovered further evidence for population structure by geographic location when I 

investigated the evolution of mating types in D. discoideum and discovered unique mating type 

distributions at each of three wild populations.  Investigating these mating type frequencies and 

also gamete size, I also identified two different selective pressures acting on the mating types 

that resolve the discrepancy between theory on how mating type numbers evolve and how many 

mating types we actually see in D. discoideum.  Theory predicts that the number of mating types 

should tend towards infinity due to balancing selection, or remain at two due to alternative 

selective pressures, such as disruptive selection or drift (Iwasa and Sasaki 1987; Hurst 1996; 

Billiard et al. 2011).  The mating system in D. discoideum deviates from this theory with only 

three mating types, clearly more than two but fewer than many.  Prior to this study, it was known 

that these three mating types differed at the genetic level (Bloomfield et al. 2010), but physical 

differences between the gametes, an indication of differing selective pressures on mating types, 

were unknown.  I found that gametes did not differ in size between the three mating types, 

confirming my prediction that balancing selection acting on gametes may have allowed for the 

evolution of multiple mating types. 

 Investigating mating type distributions in wild populations also supported my prediction 

that balancing selection is acting on the mating types in D. discoideum.  I compared these 

distributions to the distributions of more neutral microsatellite markers to look at the levels and 
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types of selection acting on the mating types.  Overall, I found significant genetic differentiation 

at the microsatellite loci, reinforcing our current understanding of population structure in wild D. 

discoideum, but comparatively no evidence of differentiation at the mating type locus.  This 

evidence that mating types are maintained at more even frequencies than neutral alleles, paired 

with the previous evidence of gamete similarity, shows that balancing selection has likely 

allowed for the evolution of multiple mating types.  However, drift is also acting on these 

populations, based on the evidence discussed previously of mating type distribution variation 

across population, suggesting that the rare sex advantage experienced due to balancing selection 

is relatively weak.   

 Though gamete size and sex ratio are two commonly studied indicators of selective 

pressures acting on mating systems, differential investment is also a crucial factor in the 

evolution of sex and sexual roles.  I investigated D. discoideum for evidence of differential 

sexual investment by assessing the relative cost of sex for each partner during macrocyst 

formation.  Sex is costly in D. discoideum.  Upon formation, the diploid zygote attracts and 

cannibalizes hundreds of surrounding amoebae.  Previous literature suggests that this sacrifice is 

made disproportionately more by one partner than the other (O’Day and Lewis, 1975; MacHac 

and Bonner, 1975; Lewis and O’Day 1976; Lewis and O’Day 1979).  In D. discoideum, this 

unequal contribution was made by cells of V12 (a mating type II clone) when paired with cells of 

NC4 (a mating type I clone).  This information was used to conclude that Type I induces Type II. 

 Contrary to this conclusion however, I found that overall, there is no pattern of 

dominance at the mating type level.  Instead, peripheral cells appear to be sacrificed relative to 

their frequency in the population, regardless of mating type.  This fits with my previous findings 

that reproduction in D. discoideum is isogamous in reference to gamete size and form.  However, 
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contrary to what I expected, I did find significantly fewer macrocysts produced when partner 

frequency was uneven compared to 50:50.  We predict this is likely due to population structure 

that arises during vegetative growth such that patches of identical individuals occur (Buttery et 

al. 2012; smith et al. 2016).  When one type is rare, partner availability is likely limiting as cells 

surrounded by their clones do not form zygotes.  While at the mating type level, a clone’s 

contribution to macrocyst production is relative to its abundance, I did find clone-specific 

patterns similar to what was found between NC4 and V12.  This suggests that, though rare, 

disproportionate contribution to macrocyst production does occur in some contexts. 

 Overall, this dissertation further characterizes the sexual system of the social amoeba D. 

discoideum and provides important information on the phylogenetic and geographic relationships 

between clones.  This information is important for understanding how and why interactions 

between individuals vary.  Dictyostelium discoideum continues to be an important model 

organism for the study of social and sexual interactions.  We provide evidence that cheating is 

not limited to the asexual social cycle and that the sexual cycle offers an alternative system for 

studying questions about altruism and cooperation. 
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APPENDIX 1 

Supplementary tables for Chapter 1 
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Table A1.1. Dictyostelium discoideum and D. citrinum strains used in this study. Concatenated 

sequence numbers based on combined ribosomal and mitochondrial DNA sequence.  

Dictyostelium citrinum strains are designated by the term ‘citr’. 

Concatenated 
Sequence 

Haplotype 
Clone Name Location Isolated GPS Coordinates Collected By 

Ribosomal Mitochondrial 

1 A A CRII6C Costa Rica 
10°03’52” N, 
83°58’12” W

a
 

John Landolt 

2 B A OT3A Mexico 
19°12’51” N, 
98°06’38” W 

John Landolt 

3 C A QS43 
La Malintzi Park, 

Mexico 
19°12.850’ N, 
98°6.467’ W 

John Landolt 

4 D B AC4 Mexico N/A 
James 

Cavender 

5 E C S6B Costa Rica 
10°55’40” N, 85°28’ 

W 
John Landolt 

6 F D ZA3A Costa Rica N/A 
Steve 

Alexander 

7 G E QS42 
Monteverde, Costa 

Rica 
10°18' N, 84°26' W

a
 John Landolt 

8 H - CF3B Mexico 
19°49’41” N, 
97°12’05” W 

John Landolt 

9 I - QS94 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

10 J F QS114 Bloomington, IN 
39°13.227' N, 
86°21.534' W 

J Strassmann, 
D Queller 

10 J F QS117 Linden, TX 
33˚03.710' N, 
94˚16.414' W 

J Strassmann, 
D Queller 

10 J F QS36 
Land Btw Lakes, 

KY 
36°59.856’ N, 
88°13.132' W 

J Strassmann, 
D Queller 

11 K F QS1 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

11 K F QS95 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

12 L G 42A Virginia 
37°22’32” N, 
80°31’20” W 

John Landolt 

13 M H DCB5A N. Carolina 
35°28’32” N, 
83°25’38” W 

John Landolt 

14 M I GC1A Tennessee 
35°36’31” N, 83°48’ 

W 
John Landolt 

15 N J BM5A N. Carolina 
35°35’17” N, 
83°03’54” W 

John Landolt 

16 O K C5A Virginia 
37°22’32” N, 
80°31’20” W 

John Landolt 

17 P L IR1 Wisconsin 43°47’ N, 88°47’ W
a
 Rob Insall 

18 P M QS96 Mt.Greylock, MA 
42°38.200’ N, 
73°10.367’ W 

J Strassmann, 
D Queller 

18 P M QS97 Mt.Greylock, MA 
42°38.200’ N, 
73°10.367’ W 

J Strassmann, 
D Queller 

18 P M QS98 Mt.Greylock, MA 
42°38.200’ N, 
73°10.367’ W 

J Strassmann, 
D Queller 

18 P M QS118 Linden, TX 
33˚03.710' N, 
94˚16.414' W 

J Strassmann, 
D Queller 

18 P M QS99 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

18 P M QS12 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

19 P N DCB10C1 N. Carolina 
35°28’32” N, 
83°25’38” W 

John Landolt 

20 P I QS119 Houston, TX 29° 46’ N, 95° 27’ W 
J Strassmann, 

D Queller 
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21 P O QS120 Mt.Greylock, MA 
42°38.200’ N, 
73°10.367’ W 

J Strassmann, 
D Queller 

21 P O QS121 Mt.Greylock, MA 
42°38.200’ N, 
73°10.367’ W 

J Strassmann, 
D Queller 

22 Q P QS40 Mt.Greylock, MA 
42°38.200’ N, 
73°10.367’ W 

J Strassmann, 
D Queller 

22 Q P QS122 Mt.Greylock, MA 
42°38.200’ N, 
73°10.367’ W 

J Strassmann, 
D Queller 

22 Q P QS123 Mt.Greylock, MA 
42°38.200’ N, 
73°10.367’ W 

J Strassmann, 
D Queller 

22 Q P QS124 Mt.Greylock, MA 
42°38.200’ N, 
73°10.367’ W 

J Strassmann, 
D Queller 

23 R Q QS111 Bloomington, IN 
39°13.227' N, 
86°21.534' W 

J Strassmann, 
D Queller 

24 S R SA2 Tennessee 
35°44’26” N, 
83°13’11” W 

John Landolt 

25 T S QS47 St. Louis, MO 
38°46’08” N, 
90°11’7” W 

J Strassmann, 
D Queller 

25 T S QS113 Effingham, IL 
39°5.467’ N, 
88°34.833’ W 

J Strassmann, 
D Queller 

26 T T QS107 St. Louis, MO 
38°46’08” N, 
90°11’7” W 

J Strassmann, 
D Queller 

27 T U QS106 St. Louis, MO 
38°46’08” N, 
90°11’7” W 

J Strassmann, 
D Queller 

28 U V QS6 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

29 U W QS125 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

30 U X QS35 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

31 U Y QS14 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

32 V Z B10 Virginia 
37°22’32” N, 
80°31’20” W 

John Landolt 

33 V AA QS44 Mt. Fuji, Japan 35°25’ N, 138°41’ E 
J Strassmann, 

D Queller 

34 V Y QS127 Houston, TX 29° 46’ N, 95° 27’ W 
J Strassmann, 

D Queller 

34 V Y QS128 Houston, TX 29° 46’ N, 95° 27’ W 
J Strassmann, 

D Queller 

34 V Y NC28.1 
Little Butts Gap, 

NC 
35°46’ N, 82°20’ W 

J Strassmann, 
D Queller 

34 V Y NC39.1 
Little Butts Gap, 

NC 
35°46’ N, 82°20’ W 

J Strassmann, 
D Queller 

34 V Y QS116 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

34 V Y QS34 Bloomington, IN 
39°13.227' N, 
86°21.534' W 

J Strassmann, 
D Queller 

34 V Y QS131 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

34 V Y QS17 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

35 V BB QS132 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

35 V BB QS18 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

36 V CC QS81 Houston, TX 29° 46’ N, 95° 27’ W 
J Strassmann, 

D Queller 

36 V CC QS73 Houston, TX 29° 46’ N, 95° 27’ W 
J Strassmann, 

D Queller 

36 V CC QS31 Houston, TX 29° 46’ N, 95° 27’ W 
J Strassmann, 

D Queller 

36 V CC QS115 Bloomington, IN 
39˚13.227' N, 
86˚20.534' W 

J Strassmann, 
D Queller 

36 V CC QS32 Pasadena, TX 29°35’ N, 95°4’ W 
J Strassmann, 

D Queller 
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36 V CC QS33 Webster, TX 29°32’ N, 95° 9’ W J Strassmann, 
D Queller 

37 W DD QS9 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

38 X EE QS23 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

39 X FF QS11 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

40 X Y QS102 
Monteverde, Costa 

Rica 
10°18' N, 84°26' W

a
 

J Strassmann, 
D Queller 

40 X Y QS38 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

40 X Y QS2 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

40 X Y QS135 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

41 X GG QS15 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

42 X CC QS8 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

42 X CC QS136 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

43 X - QS108 Forest City, AK 
34˚50.146' N, 
91˚28.060' W 

J Strassmann, 
D Queller 

43 X HH QS21 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

43 X HH QS22 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

44 Y II WS205 Wisconsin 43°47’ N, 88°47’ W
a
 

Richard 
Kessin 

45 Z JJ NC85.2 
Little Butts Gap, 

NC 
35°46’ N, 82°20’ W 

J Strassmann, 
D Queller 

46 AA KK QS4 Mt. Lake, VA 37°21’ N, 80° 31’ W 
J Strassmann, 

D Queller 

47 AA LL QS137 Linville Falls, NC 
35°57.197 N, 
81°56.516 W 

J Strassmann, 
D Queller 

47 AA LL QS48 Linville Falls, NC 
35°57.197 N, 
81°56.516 W 

J Strassmann, 
D Queller 

47 AA LL NC63.2 
Little Butts Gap, 

NC 
35°46’ N, 82°20’ W 

J Strassmann, 
D Queller 

47 AA LL NC69.1 
Little Butts Gap, 

NC 
35°46’ N, 82°20’ W 

J Strassmann, 
D Queller 

47 AA LL NC98.1 
Little Butts Gap, 

NC 
35°46’ N, 82°20’ W 

J Strassmann, 
D Queller 

47 AA LL QS39 Indian Gap, TN 
35°36.606' N, 
83°26.821' W 

J Strassmann, 
D Queller 

48 AA MM NC47.2 
Little Butts Gap, 

NC 
35°46’ N, 82°20’ W 

J Strassmann, 
D Queller 

49 AA NN NC4 
Little Butts Gap, 

NC 
35°46.317’ N, 
82°20.533’ W 

Kenneth 
Raper 

50 BB - Disc X00601 unknown N/A N/A 

51 CC OO 
Disc NW 

001852778 
Little Butts Gap, 

NC 
35°46.317’ N, 
82°20.533’ W 

Kenneth 
Raper 

citr 1 - - WS584 Wisconsin 43°47’ N, 88°47’ W
a
 

Kenneth 
Raper 

citr 2 - - WS526 Wisconsin 43°47’ N, 88°47’ W
a
 

Kenneth 
Raper 

citr 3 - - V34 Virginia N/A 
J Strassmann, 

D Queller 

citr 4 - - 
Citr 

DQ340385 
unknown N/A N/A 

aGPS coordinates for this isolate approximated using Google Earth. 
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Table A1.2. PCR primer pairs for amplification of 8 kb DNA sequence data. 
 

Region Direction Primer Sequence (5’ to 3’ direction) 

17S Forward 

Reverse 

Forward 

Reverse 

GCTCGTAGTTGAAGTTTAAG 

AGATAATACAAGCTGAACTA 

CTAAGATATAGTAAGGATTG 

ATGATCCATCCGCAGGTTCA 

ITS-5.8S Forward 

Reverse 

Forward 

Reverse 

ACGGTAAAGTTAACGGATCG 

ACTCTCACCCAAGTATAACA 

AAACTGCGATAATTCACTTG 

CCGTCTTCACTCGCCGTTAC 

26S Forward 

Reverse 

Forward 

Reverse 

ATTACCCGCTGAACTTAAGC 

TCCGAAGATAACCTGTAGAC 

TCATCAAGAGTGCAAAATGG 

ACATCGCCAGTTCTGCTTAC 

IGS-5S Forward 

Reverse 

ATTCACAAAGTGTTGGATTG 

GCTTACTATGGACAAATGGC 

LSU intron Forward 

Reverse 

ACGGATAAAAGGTACGCTAG 

TAATTAATACACCAGTGATC 

COX-ATPase intergene Forward 

Reverse 

TGGATTTATGCCAATTAAAG 

TCCACTTACTTTTACTACTC 
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APPENDIX 2 

Supplementary tables for Chapter 2 
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Table A2.1.  Dictyostelium discoideum clones from the four populations used in this study (LF = 

Linville Falls [35°57.197’ N, 81°56.516’ W], LBG = Little Butts Gap [35°46’ N, 82°20’ W], H 

= Houston [29°46’ N, 95°27’ W], MLBS = Mountain Lake Biological Station [37°21’ N, 80°31’ 

W]) and their associated mating type genes and/or microsatellite allele sizes.  X’s denote 

confirmed presence of mating type genes.  To confirm types, we required evidence of at least one 

mating type gene associated with that type (Type 1: matA; Type 2: matB, matC, matD; Type 3: 

matS, matT).  Microsatellite allele sizes are from Smith (2004). 

   
Confirmed Mating Type Genes Microsatellite Allele Size (bp) 

Clone 
Name 

Population Type matA matB matC matD matS matT 
Dict
5 

Dict
13 

Dict
19 

Dict
23 

Dict
25 

NC21B1 
N. Carolina 
(LF) 

1 X 
     

234 187 158 182 226 

NC21C1C 
N. Carolina 
(LF) 

2 
 

X 
 

X 
  

- - - - - 

NC21D1 
N. Carolina 
(LF) 

1 X 
     

240 187 161 206 253 

NC21H1A 
N. Carolina 
(LF) 

3 
    

X X 240 160 176 185 205 

NC22J1 
N. Carolina 
(LF) 

1 X 
     

- - - - - 

NC26D1 
N. Carolina 
(LF) 

1 X 
     

234 187 158 182 226 

NC26L1 
N. Carolina 
(LF) 

1 X 
     

210 199 161 161 262 

NC28A1 
N. Carolina 
(LF) 

3 
     

X - - - - - 

NC28B1 
N. Carolina 
(LF) 

1 X 
     

234 187 158 182 226 

NC28C1 
N. Carolina 
(LF) 

1 X 
     

240 187 158 188 262 

NC28D1 
N. Carolina 
(LF) 

2 
 

X 
 

X 
  

237 187 173 188 220 

NC29B1 
N. Carolina 
(LF) 

1 X 
     

294 250 161 188 247 

NC29E1 
N. Carolina 
(LF) 

1 X 
     

252 265 161 188 247 

NC29R1 
N. Carolina 
(LF) 

1 X 
     

294 250 161 212 172 

NC32B1 
N. Carolina 
(LF) 

2 
 

X X X 
  

210 238 170 200 259 

NC105.1 
N. Carolina 
(LBG) 

3 
    

X X - - - - - 

NC28.1 
N. Carolina 
(LBG) 

1 X 
     

- - - - - 

NC34 
N. Carolina 
(LBG) 

2 
 

X X X 
  

- - - - - 

NC34.1 
N. Carolina 
(LBG) 

3 
    

X X - - - - - 

NC39.1 
N. Carolina 
(LBG) 

1 X 
     

- - - - - 

NC41.2 
N. Carolina 
(LBG) 

1 X 
     

- - - - - 

NC43.1 
N. Carolina 
(LBG) 

3 
    

X X - - - - - 

NC47.2 
N. Carolina 
(LBG) 

- 
      

237 187 158 197 223 

NC4B 
N. Carolina 
(LBG) 

3 
    

X X - - - - - 

NC4C 
N. Carolina 
(LBG) 

1 
 

X 
    

- - - - - 
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NC52.3 
N. Carolina 
(LBG) 

1 X 
     

- - - - - 

NC58.1 
N. Carolina 
(LBG) 

- 
      

210 160 173 182 244 

NC59.2 
N. Carolina 
(LBG) 

- 
      

237 160 173 161 256 

NC60.1 
N. Carolina 
(LBG) 

- 
      

237 160 173 182 244 

NC60.2 
N. Carolina 
(LBG) 

- 
      

210 184 173 182 205 

NC61.1 
N. Carolina 
(LBG) 

- 
      

240 160 161 239 220 

NC63.2 
N. Carolina 
(LBG) 

3 
    

X X 240 160 176 185 205 

NC66.2 
N. Carolina 
(LBG) 

- 
      

234 160 173 182 253 

NC67.2 
N. Carolina 
(LBG) 

- 
      

237 187 176 230 205 

NC69.1 
N. Carolina 
(LBG) 

- 
      

213 238 161 173 271 

NC70.1 
N. Carolina 
(LBG) 

2 
 

X X X 
  

- - - - - 

NC74.1 
N. Carolina 
(LBG) 

- 
      

231 187 173 194 223 

NC75.2 
N. Carolina 
(LBG) 

1 X 
     

240 160 161 239 220 

NC76.1A 
N. Carolina 
(LBG) 

1 X 
     

- - - - - 

NC76.1B 
N. Carolina 
(LBG) 

3 
    

X 
 

- - - - - 

NC78.2 
N. Carolina 
(LBG) 

1 X 
     

- - - - - 

NC80.1 
N. Carolina 
(LBG) 

1 X 
     

- - - - - 

NC85.1 
N. Carolina 
(LBG) 

2 
 

X X X 
  

- - - - - 

NC85.2 
N. Carolina 
(LBG) 

3 
    

X X - - - - - 

NC98.1 
N. Carolina 
(LBG) 

1 X 
     

- - - - - 

NC99.1 
N. Carolina 
(LBG) 

1 X 
     

- - - - - 

H10C Texas (H) 1 X 
     

- - - - - 

H15B Texas (H) 3 
    

X X - - - - - 

H3 Texas (H) 3 
    

X X - - - - - 

H3B Texas (H) 1 X 
     

- - - - - 

HD12C Texas (H) 1 X 
     

- - - - - 

HD13A1 Texas (H) 2 
 

X X X 
  

255 211 161 158 256 

HD1D1 Texas (H) 1 X 
     

255 211 161 158 256 

HD20B2b Texas (H) 3 
    

X X - - - - - 

HD24A Texas (H) 3 
    

X X - - - - - 

HD24B1 Texas (H) 2 
 

X X X 
  

228 205 176 227 184 

HD24C1 Texas (H) 2 
 

X X X 
  

234 208 182 167 172 

HD24D1 Texas (H) 1 X 
     

225 205 161 158 256 

HD25A1 Texas (H) 2 
 

X X X 
  

228 205 176 227 184 

HD2D1 Texas (H) 1 X 
     

255 211 161 158 256 

HD30A1 Texas (H) 3 
    

X X 282 181 161 230 250 

HD31B1 Texas (H) 1 X 
     

225 205 161 158 256 

HD31C1 Texas (H) 1 X 
     

255 211 161 158 256 

HD32C1 Texas (H) 2 
 

X X X 
  

234 208 182 167 172 

HD35D1 Texas (H) 1 X 
     

255 211 161 158 256 

HD37D1 Texas (H) 1 X 
     

255 211 161 158 256 

HD38A1 Texas (H) - 
      

255 208 161 158 256 
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HD38B1 Texas (H) 1 X 
     

282 181 161 230 250 

HD38C1 Texas (H) 2 
 

X X X 
  

234 166 161 161 253 

HD40D1 Texas (H) 1 X 
     

225 205 161 158 256 

HD41B1 Texas (H) 3 
    

X X 225 205 161 158 250 

HD41C1 Texas (H) 3 
    

X X 282 181 161 230 250 

HD42A1 Texas (H) 3 
    

X X 282 181 161 230 250 

HD43C1 Texas (H) 3 
    

X X 282 181 161 230 250 

HD44A1 Texas (H) 1 X 
     

282 181 161 230 250 

HD44B1 Texas (H) 3 
    

X X 282 181 161 230 250 

HD45A1 Texas (H) 1 X 
     

234 166 161 140 250 

HD45B1 Texas (H) 1 X 
     

225 205 161 158 256 

HD45C1 Texas (H) 2 
 

X 
    

228 205 176 - 184 

HD45D1 Texas (H) 3 
    

X X 234 187 161 197 220 

HD47B Texas (H) 1 X 
     

- - - - - 

HD48B1 Texas (H) 3 
    

X X 231 187 173 188 220 

HD48C1 Texas (H) 3 
    

X X - 181 161 230 250 

HD48D1 Texas (H) 1 X 
     

225 205 161 158 256 

HD49A1 Texas (H) 3 
    

X X 282 181 161 230 250 

HD49B1 Texas (H) 3 
    

X 
 

234 187 161 197 220 

HD49C1 Texas (H) 1 X 
     

255 211 161 158 256 

HD4A1 Texas (H) 1 X 
     

234 205 161 146 250 

HD4B1 Texas (H) 3 
    

X X 234 205 161 146 250 

HD50A1 Texas (H) 1 X 
     

225 205 161 158 256 

HD50C1 Texas (H) 3 
    

X X 234 166 158 185 175 

HD54C1 Texas (H) 1 X 
     

- - - - - 

HD5A1 Texas (H) 2 
 

X X X 
  

234 205 161 146 250 

HD5B1 Texas (H) 1 X 
     

234 205 161 146 250 

HD5C1 Texas (H) 3 
    

X X 234 205 161 146 250 

V301B1 
Virginia 
(MLBS) 

2 
 

X X X 
  

234 163 161 161 253 

V301B2 
Virginia 
(MLBS) 

2 
 

X X X 
  

234 163 161 152 253 

V303A1 
Virginia 
(MLBS) 

3 
    

X* X* 234 205 176 179 172 

V303A2a 
Virginia 
(MLBS) 

2 
 

X X X 
  

228 205 176 227 184 

V303A2b 
Virginia 
(MLBS) 

- 
      

228 166 158 227 184 

V303C1a 
Virginia 
(MLBS) 

3 
    

X X 234 205 176 185 172 

V303C1b 
Virginia 
(MLBS) 

- 
      

234 166 158 185 172 

V303D1 
Virginia 
(MLBS) 

1 X 
     

234 205 176 185 172 

V304A1 
Virginia 
(MLBS) 

1 
   

X* 
  

234 205 176 179 172 

V304A2b 
Virginia 
(MLBS) 

3 
    

X X 234 163 158 179 172 

V304B1 
Virginia 
(MLBS) 

1 X 
     

234 163 176 179 172 

V304B4 
Virginia 
(MLBS) 

- 
      

234 163 158 185 172 

V304C1a 
Virginia 
(MLBS) 

3 
    

X X 234 205 176 179 172 

V304C1b 
Virginia 
(MLBS) 

- 
      

234 166 176 179 172 

V304D1 
Virginia 
(MLBS) 

3 
    

X* X* 234 163 158 185 175 
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V305B1 
Virginia 
(MLBS) 

3 
     

X* 234 163 158 185 172 

V305B4 
Virginia 
(MLBS) 

3 
    

X X 234 163 161 158 256 

V306D1 
Virginia 
(MLBS) 

2 
 

X X X 
  

- - - - - 

V315B1 
Virginia 
(MLBS) 

1 X 
     

255 211 161 158 256 

V315D1 
Virginia 
(MLBS) 

1 X 
     

228 205 176 227 184 

V315D2 
Virginia 
(MLBS) 

2 
 

X X X 
  

228 205 176 227 184 

V316A1 
Virginia 
(MLBS) 

3 
    

X X 264 226 161 158 169 

V317A1 
Virginia 
(MLBS) 

2 
   

X* 
  

228 205 176 227 184 

V317D 
Virginia 
(MLBS) 

1 X 
     

228 205 176 227 184 

V318A1 
Virginia 
(MLBS) 

2 
  

X X 
  

228 205 176 227 184 

V319A 
Virginia 
(MLBS) 

3 
    

X X 264 205 161 158 172 

V319B1 
Virginia 
(MLBS) 

3 
    

X X 255 214 161 158 256 

V319B3 
Virginia 
(MLBS) 

3 
    

X X 234 163 158 185 175 

V319C1 
Virginia 
(MLBS) 

1 X 
     

234 163 161 161 253 

V319D2 
Virginia 
(MLBS) 

3 
    

X X 234 163 158 185 277 

V320C1 
Virginia 
(MLBS) 

2 
   

X 
  

234 163 161 161 253 

V321B1 
Virginia 
(MLBS) 

3 
     

X 234 208 158 167 172 

V321C1 
Virginia 
(MLBS) 

- 
      

234 166 161 161 253 

V321D1 
Virginia 
(MLBS) 

1 X 
     

225 205 161 158 259 

V322A1a 
Virginia 
(MLBS) 

1 X 
     

255 211 161 158 259 

V322A1b 
Virginia 
(MLBS) 

- 
      

255 166 161 158 175 

V322B1 
Virginia 
(MLBS) 

1 X 
     

225 205 161 158 259 

V322C3a 
Virginia 
(MLBS) 

1 X 
     

225 205 161 158 256 

V322C3b 
Virginia 
(MLBS) 

- 
      

225 205 161 158 172 

V322D1a 
Virginia 
(MLBS) 

- 
      

225 205 161 167 172 

V322D1b 
Virginia 
(MLBS) 

- 
      

234 205 182 167 172 

V323A1 
Virginia 
(MLBS) 

- 
      

234 166 161 140 250 

V323C1a 
Virginia 
(MLBS) 

3 
    

X X 255 214 161 158 217 

V323C1b 
Virginia 
(MLBS) 

- 
      

255 163 161 158 256 

V323D1 
Virginia 
(MLBS) 

1 X 
     

234 166 161 140 250 

V324B1 
Virginia 
(MLBS) 

1 X
†
 

     
234 163 161 140 217 

V324B3 
Virginia 
(MLBS) 

1 X* 
     

234 163 161 140 250 

V324D1 
Virginia 
(MLBS) 

1 X 
     

255 211 161 158 256 

V324D2 
Virginia 
(MLBS) 

- 
      

255 211 158 158 256 

V325A1a 
Virginia 
(MLBS) 

1 X 
     

255 211 161 158 256 

V325A1b 
Virginia 

(MLBS) 
- 

      
255 211 161 158 172 

V325B4 
Virginia 
(MLBS) 

3 
     

X 255 214 161 158 256 

V325D1 
Virginia 
(MLBS) 

2 
 

X X X 
  

234 208 182 167 172 

V326A1 
Virginia 
(MLBS) 

2 
 

X X X 
  

255 214 161 158 256 
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V326B1 
Virginia 
(MLBS) 

- 
      

255 208 161 158 256 

V326D1 
Virginia 
(MLBS) 

3 
    

X X 282 178 161 230 250 

V327A1 
Virginia 
(MLBS) 

2 
 

X X X 
  

234 205 182 167 172 

V327A2 
Virginia 
(MLBS) 

2 
 

X X X 
  

234 208 182 167 172 

V327B1 
Virginia 
(MLBS) 

3 
    

X X 234 163 158 191 172 

V327C1 
Virginia 
(MLBS) 

2 
 

X X 
   

255 211 161 158 256 

V327C2 
Virginia 
(MLBS) 

1 X 
     

234 208 182 167 172 

V327D1 
Virginia 
(MLBS) 

- 
      

234 208 182 167 172 

V327D2 
Virginia 
(MLBS) 

1 X 
     

255 211 158 158 256 

V329C1 
Virginia 
(MLBS) 

- 
      

264 163 158 158 232 

V330A 
Virginia 
(MLBS) 

3 
    

X 
 

228 205 176 227 184 

V330B1 
Virginia 
(MLBS) 

2 
 

X X X 
  

234 208 182 167 172 

V330B2 
Virginia 
(MLBS) 

2 
 

X X X 
  

228 205 176 227 184 

V330D2 
Virginia 
(MLBS) 

1 X*
†
 

     
279 205 176 140 178 

V331B1 
Virginia 
(MLBS) 

2 
 

X X X 
  

255 208 182 170 172 

V331C1 
Virginia 
(MLBS) 

1 X 
     

234 214 161 158 256 

V331C2 
Virginia 
(MLBS) 

1 X 
     

255 214 161 158 256 

V331D1 
Virginia 
(MLBS) 

2 
 

X X 
   

234 208 182 167 172 

V331D2 
Virginia 
(MLBS) 

3 
    

X X 255 214 161 158 256 

V335B1 
Virginia 
(MLBS) 

3 
    

X X 255 214 179 158 256 

V335C1 
Virginia 
(MLBS) 

1 X 
     

255 208 161 158 172 

V335D1 
Virginia 
(MLBS) 

- 
      

255 214 161 158 256 

V336B1 
Virginia 
(MLBS) 

2 
 

X*
†
 X*

†
 X*

†
 

  
228 205 176 227 184 

V336D1 
Virginia 
(MLBS) 

1 X 
     

228 205 176 227 184 

V337C1 
Virginia 
(MLBS) 

3 
    

X X 282 181 161 233 250 

V337D1 
Virginia 
(MLBS) 

1 X 
     

255 214 161 158 256 

V341A2 
Virginia 
(MLBS) 

1 X 
     

255 211 161 158 256 

V341C2 
Virginia 
(MLBS) 

3 
    

X X 288 205 161 158 250 

V341D1 
Virginia 
(MLBS) 

- 
      

234 205 176 140 178 

V342A2 
Virginia 
(MLBS) 

2 
 

X X X 
  

234 163 161 161 253 

V342B2 
Virginia 
(MLBS) 

1 X*
†
 

     
255 208 161 158 256 

V345D1 
Virginia 
(MLBS) 

1 X 
     

279 205 176 140 178 

V53A 
Virginia 
(MLBS) 

2 
 

X X X 
  

279 205 176 140 178 

V53B 
Virginia 
(MLBS) 

2 
 

X X X 
  

234 163 161 161 253 

V53D1 
Virginia 
(MLBS) 

1 X 
     

234 163 161 161 253 

V55A1 
Virginia 

(MLBS) 
2 

 
X X X 

  
228 205 176 227 184 

V55A2 
Virginia 
(MLBS) 

1 X 
     

228 205 176 227 250 

V55A5 
Virginia 
(MLBS) 

2 
  

X 
   

255 211 161 158 256 

V55C1 
Virginia 
(MLBS) 

- 
      

234 208 161 140 253 
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V55C2 
Virginia 
(MLBS) 

3 
    

X X 234 205 161 140 253 

V55D2 
Virginia 
(MLBS) 

3 
    

X X 255 214 161 158 256 

V56A1 
Virginia 
(MLBS) 

1 X 
     

255 211 161 158 256 

V56A2 
Virginia 
(MLBS) 

1 X*
†
 

     
264 163 176 212 178 

V56B2 
Virginia 
(MLBS) 

2 
 

X X X 
  

228 205 176 227 184 

V56C1 
Virginia 
(MLBS) 

3 
    

X X 234 205 161 146 250 

V64A 
Virginia 
(MLBS) 

3 
    

X X 255 214 161 158 256 

V64D1 
Virginia 
(MLBS) 

3 
    

X X 279 229 176 140 178 

V64D2 
Virginia 
(MLBS) 

1 X 
     

255 214 161 158 256 

V72A1 
Virginia 
(MLBS) 

3 
    

X X 234 208 161 233 250 

V77A 
Virginia 
(MLBS) 

1 X 
     

234 205 161 146 253 

V77B 
Virginia 
(MLBS) 

1 X 
     

225 205 161 158 256 

V78B 
Virginia 
(MLBS) 

2 
 

X X X 
  

264 163 158 212 229 

V78C 
Virginia 
(MLBS) 

1 X 
     

234 205 176 179 172 

 

Table A2.2.  PCR primer pairs for amplification of mating type genes.  Primer design based on 

the published DNA sequence data from Bloomfield et al. (2011). 

Mating 

Type 

Gene Direction Primer Sequence (5’ to 3’ direction) 

Type I matA Forward 

Reverse 

CACACTAAACATGGACCCAC 

CCCCTAAATCTTTACCAAGTCA 

Type II matC Forward 

Reverse 

GGGTACAAATATTACAGTGAG 

CCCCTTTAAAAATGTATTCATAT 

 matB Forward 

Reverse 

CCCCGAATAAACATTTTAATGA 

GCGAACTCAATTACTATGGG 

 matD 

(partial) 

Forward 

Reverse 

CCCATAGTAATTGAGTTCGC 

GGGCACTGTTATCTTGTTAAT 

Type III matS Forward 

Reverse 

CGATCAGTTGGAAAACATTAC 

GGATAGCCAAAAAACTAGTTT 

 matT 

(partial) 

Forward 

Reverse 

CGAAAACAGTCAAAAGTCAA 

CATTATATTGCATTTCAGTGG 
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Table A2.3.  Standardized chi-square residuals for each population.  Standardized residuals 

greater than 2 indicate significantly more individuals than expected of that mating type in the 

population and standardized residuals less than -2 indicate fewer than expected.  Asterisks denote 

significance. 

Population Standardized Residuals 

 Type 

I 

Type 

II 

Type 

III 

Texas 1.84 -2.45* 0.61 

North Carolina 3.18* -2.12* -1.06 

Virginia 1.14 -0.91 -0.23 

Overall 3.24* -2.92* -0.32 
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APPENDIX 3 

Supplementary tables and figures for Chapter 3 
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Table A3.1.  List of Dictyostelium discoideum clones used in the experiments to assay 

differential contribution to macrocyst production.  Dicty Stock Center identification numbers are 

in parentheses. 

  Clone Name Population Mating 

Type 

Experiment 

Group 

HD13B1 Texas 1 A 

HD45C1 Texas 2 A 

HD48B1 Texas 3 A 

HD35D1 Texas 1 B 

HD38C1 Texas 2 B 

HD45D1 Texas 3 B 

HD48D1 Texas 1 C 

HD32C1 Texas 2 C 

HD49B1 Texas 3 C 

17S 10.1 Virginia 1 D 

14S 6.1 Virginia 2 D 

19S 8.2 Virginia 3 D 

V315B1 Virginia 1 E 

V331B1 Virginia 2 E 

V341C2 Virginia 3 E 

NC59.2 North Carolina 1 F 

NC34.1 North Carolina 2 F 

NC63.2 North Carolina 3 F 

NC60.2 North Carolina 1 G 

NC66.2 North Carolina 2 G 

NC75.2 North Carolina 3 G 

NC105.1 North Carolina 1 H 

NC58.1 North Carolina 2 H 

NC61.1 North Carolina 3 H 

WS205 Wisconsin 1 I 

IR1 Wisconsin 2 I 

NC4 (DBS0302497)  North Carolina 1 N1 

NC4  (DBS0235761) North Carolina 1 N2 

NC4  (DBS0235763) North Carolina 1 N3 

NC4  (DBS0235759) North Carolina 1 N4 

NC4 (DBS0235762) North Carolina 1 N5 

V12 (DBS0302498) Virginia 2 V1 

V12 (DBS0235789) Virginia 2 V2 

V12 (DBS0235788) Virginia 2 V3 

V12 (DBS0235787) Virginia 2 V4 

V12 (DBS0235786) Virginia 2 V5 
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Table A3.2a. Test for mating compatibility (macrocyst production) between Houston, TX 

clones.  

    Mating Type II Mating Type III 

    HD5A1 HD13A1 HD48C1 HD50C1 HD41C1 

Ty
p

e
 I HD40D1 No No No Yes No 

HD49C1 No No No No No 

HD24D1 No No No No Yes 

Ty
p

e
 II

 

HD5A1 - - No No No 

HD13A1 - - No No No 
 

 

Table A3.2b. Test for mating compatibility (macrocyst production) between Texas clones. 

 

 

 

 

 

 

 

 

 

 

 

 

  

    Mating Type II Mating Type III 

    HD1D1 HD32C1 HD45C1 HD38C1 HD45D1 HD49B1 HD48B1 

Ty
p

e
 I 

HD45B1 No Yes Yes - Yes Yes Yes 

HD31B1 No Yes Yes - Yes Yes Yes 

HD48D1 No No No - No No Yes 

HD35D1 - - - Yes - - Yes 

Ty
p

e
 II

 HD1D1 - - - - Yes No No 

HD32C1 - - - - Yes Yes Yes 

HD45C1 - - - - Yes Yes No 

HD38C1 - - - - - - Yes 
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Table A3.3. Test for mating compatibility (macrocyst production) between Virginia clones. 

 

 

  

    Mating Type II Mating Type III 

    
V330
C 

V331B
1 

V327A
2 

V55B
1 

V331D
2 

V341C
2 

V335B
1 

V303C
1 

V319B
1 

Ty
p

e
 I 

V331C
1 Yes No Yes No Yes Yes Yes No No 

V335C
1 No No No No Yes Yes No No No 

V315B
1 No Yes Yes No No Yes Yes No No 

V317D
1 No No No No Yes Yes Yes No No 

Ty
p

e
 II

 

V330C - - - - Yes Yes No No No 

V331B
1 - - - - No Yes No No No 

V327A
2 - - - - Yes Yes No No No 

V55B1 - - - - No No No No No 
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Table A3.4a. Test for mating compatibility (macrocyst production) between North Carolina 

clones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A3.4b. Test for mating compatibility (macrocyst production) between North Carolina 

clones. 

 

 

 

 

 

 

 

 

 

 

  

    Mating Type II Mating Type III 

    NC32B1 NC28D1 NC34 NC85.2 NC34.1 

Ty
p

e
1

 

NC29E1 No No No No No 

NC26L1 No No No No No 

NC21D1 No No No No No 

NC98.1 No No No No No 

NC28E1 No Yes No No No 

NC22J1 No No No No No 

NC105.1 No No No No No 

Ty
p

e
 II

 NC32B1 - - - No No 

NC28D1 - - - Yes No 

NC34 - - - Yes No 

    Mating Type II Mating Type III 

    NC66.2 NC34.1 NC58.1 NC75.2 NC63.2 NC61.1 

Ty
p

e
 I NC60.2 Yes Yes Yes Yes Yes Yes 

NC59.2 Yes Yes Yes Yes Yes Yes 

NC105.1 Yes Yes Yes Yes Yes Yes 

Ty
p

e
 II

 

NC66.2       Yes Yes Yes 

NC34.1       Yes Yes Yes 

NC58.1       Yes Yes Yes 
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Table A3.5.  Test for mating compatibility (macrocyst production) between different clones of 

NC4 and V12 and their unique strain ID (beginning with “DBS”).   

    Mating Type II 

    V
1

2
 

D
B

S0
2

3
57

8
6

 

V
1

2
-M

2
 

D
B

S0
2

3
57

8
8

 

V
1

2
-H

 
D

B
S0

2
3

57
8

7
 

V
1

2
-M

2
 

D
B

S0
3

0
24

9
8

 

V
1

2
 

D
B

S0
2

3
57

8
5

 

V
1

2
 

D
B

S0
2

3
57

8
4

 

V
1

2
 

D
B

S0
2

3
57

8
9

 

M
at

in
g 

Ty
p

e 
I 

NC4 
DBS0302497 Yes Yes Yes Yes Yes No Yes 

NC4 
DBS0235760 No No No No No Yes No 

NC4 
DBS0235761 Yes Yes Yes Yes Yes No Yes 

NC4 
DBS0235764 Yes No No No No No No 

NC4 
DBS0235763 Yes Yes Yes Yes Yes No No 

NC4 
DBS0235759 Yes Yes Yes Yes No No Yes 

NC4 
DBS0304666 No No No No No Yes No 

NC4 
DBS0235762 Yes Yes Yes Yes Yes No Yes 
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Figure A3.1.  Differential investment to macrocyst production is rare.  Symbols represent 

macrocyst production between individual clone pairs.  Lines are best-fit regression curves for 

individual clone pairs.  Dashed lines show nonsignificant relationships, solid lines show 

significant relationships. 
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