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ABSTRACT OF THE DISSERTATION 

Transcriptional Regulation of the Endoplasmic Reticulum in  

Dedicated Secretory Cells 

by 

Benjamin D. Moore 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Cell Biology 

Washington University in St. Louis, 2015 

Professor Jason Mills, Chair 

Differentiating cells express subsets of genes to build the cellular machinery necessary to 

perform their specific function as they acquire their mature fate. These subsets of genes are 

regulated by networks of transcription factors as cells progress through their developmental 

program. In secretory tissue, highly-specialized cells establish an extensive secretory apparatus 

and scale up their cellular architecture to facilitate the production and secretion of large amounts 

of protein. Here, we identify a network of transcription factors required for the development of 

this cellular machinery in these cells, and develop new tools to elucidate the molecular networks 

that control the differentiation of secretory cell lineages.  

We show that the expression of Xbp1, a transcription factor responsible for establishing 

and maintaining the ER in gastric zymogenic (chief) cells (ZCs), is enhanced by HNF4α. HNF4α 

directly binds the Xbp1 promoter and is sufficient to enhance its expression in gastric epithelial 

cells. We observe that loss of HNF4α disrupts normal differentiation in the gastric epithelium, 
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and causes morphological changes similar to the loss of XBP1, suggesting it acts through Xbp1 

to maintain homeostasis in the mouse stomach.  

To facilitate the study of the molecular underpinnings of ZC differentiation, we sought to 

develop a technique to isolate pure ZC populations from the gastric mucosa. Using a microarray-

based screen, we identified ANPEP as a surface marker of mature ZCs that enabled us to sort 

homogenous ZC populations using flow cytometry. We found that ANPEP is rapidly lost as ZCs 

dedifferentiate in response to damage or disease in both mouse and human models, and our 

improved method allowed us to use flow cytometry to quantify these molecular changes to the 

ZC surface.  

We found that HNF4α is required for maintenance of the gastric epithelium, but it has 

also been well-established that HNF4α plays a pivotal role in pancreatic beta-cell function. 

Mutations in HNF4α cause a prevalent subset of inheritable diabetes, MODYI. However, the 

mechanism through which mutated HNF4α causes beta-cell dysfunction has not yet been 

established. Our data shows that HNF4α is required for expression of both Xbp1, and 

downstream targets of XBP1, and that loss of HNF4α leads to diminished ER morphology in 

mouse beta-cells. We show data suggesting that the loss of glucose-stimulated insulin secretion 

in MODYI may be due to impaired calcium signaling from the ER, and that restoring Xbp1 

expression is sufficient to rescue insulin secretion in HNF4α-null beta-cells.  

Taken together, the data presented below characterizes an important new transcriptional 

relationship in both the stomach and endocrine pancreas, and establishes new tools for the study 

of secretory cells. These results illustrate how the study of a basic transcriptional relationship can 

have broad implications in the development and treatment of prevalent human diseases. 



CHAPTER ONE 

Preface 
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Introduction 

Mature secretory cells require extensive cellular machinery to synthesize, process, and 

secrete large amounts of proteins. In contrast, the progenitor cells that give rise to professional 

secretory cells are relatively smaller and less complex. The establishment and maintenance of 

this robust secretory apparatus is coordinated at a molecular level by signaling networks that 

activate or repress transcription factors (TFs); which in turn sculpt the differentiation landscape 

of each cell by tightly controlling gene expression. The following will define the unique role of a 

novel transcriptional cascade required for the development of mature secretory cells, describe an 

exciting new tool to study these cells, and finally show the consequences of disrupting this 

regulatory pathway in human disease (Fig 1).  

The Secretory Pathway 

Professional secretory cells are highly-specialized to secrete incredible amounts of 

protein. The pancreatic beta cell, for instance, secretes over one million molecules of insulin per 

minute when stimulated by glucose.(Henquin and Meissner, 1984) Expression of genes encoding 

proteins that function in the secretory pathway are tightly regulated during specific stages of cell 

differentiation.(Coutinho et al., 2004; Dunne et al., 2002; Schotman et al., 2009) This leads to a 

substantial increase in subcellular resources i.e. organelles. For instance the Golgi apparatus 

increases in volume during secretory cell maturation, enabling it to process, sort, and package 

polypeptides more efficiently. (Guo and Linstedt, 2006; Jackson, 2009) Intuitively, intracellular 

stores of secretory vesicles are also significantly increased in terminally differentiated secretory 

cells.(Boquist, 1970; Caro and Palade, 1964) Arguably the most important feature of secretory 

cells is a vast, highly-developed endoplasmic reticulum (ER). Secretory and transmembrane 
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proteins are synthesized and undergo post-translational modifications in the ER.(Palade, 1956) 

To accommodate the increase in cargo load during differentiation, a transcriptional cascade 

propagates both an increase in size and a change in composition of the ER.(Farhan et al., 2008; 

Forster et al., 2006; Iwakoshi et al., 2003) The well-regulated development and maintenance of 

the ER in the mature secretory cell is paramount to both form and function.  

Maintenance of ER Homeostasis 

Formation of the vast ER network required by secretory cells is regulated both 

developmentally and acutely, in response to ER stress. Synthesis, processing, and transport from 

the ER to the Golgi apparatus is the rate limiting step in secretion for many proteins.  When the 

flux of nascent polypetides into the ER exceeds the capacity of the ER to fold, process, and 

transport protein to the Golgi, the acute- unfolded protein response (UPR) pathway is activated. 

The UPR increases the biosynthetic pathway and decreases the burden on the ER, maintaining 

homeostasis.(Selye, 1985) To increase the folding capacity of the ER, the UPR spurs an increase 

in the synthesis of molecular chaperones and foldases in the ER lumen,(Kozutsumi et al., 1988) 

and induces ER biogenesis, increasing the volume of the ER to dilute the increased unfolded 

cargo.(Cox et al., 1997; Dorner et al., 1989) The UPR also alleviates ER stress by decreasing the 

biosynthetic load, downregulating the transcription and translation of genes that encode secretory 

proteins (Harding et al., 1999) and removing misfolded proteins through ER-associated 

degradation (ERAD).(Travers et al., 2000) While this acute response to an increased cargo load 

is very well studied, the developmental regulation of the ER remains poorly understood.  
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XBP1 and the ER 

A principal component of the UPR pathway is the bZIP TF, X-box binding protein 1 

(XBP1, first identified in yeast as HAC1p). (Cox and Walter, 1996) Canonically, XBP1 activity 

is activated via a post-transcriptional splice event. Accumulation of unfolded/misfolded proteins 

activates the ER transmembrane endonuclease inositol requiring kinase 1 (IRE1).(Liu et al., 

2002) Activated IRE1 splices a small intron from Xbp1 mRNA, allowing translation of 

functional XBP1 protein (XBP1s) and subsequent translocation to the nucleus where it activates 

a large network of genes that encode proteins vital for ER biogenesis, protein folding, and 

formation of the cell’s secretory apparatus(Fig. 2). (Acosta-Alvear et al., 2007) While the 

regulation of XBP1 in acute ER stress conditions has been extensively studied, regulation and 

function of XBP1 in the development and maintenance of the ER is not well defined. The 

transcriptional regulation of Xbp1 may be as important to its role in secretory cell development 

as its activation by IRE1. Xbp1 expression is significantly elevated in secretory cells, and large 

pools of unspliced Xbp1 mRNA are required to restore homeostasis in chronic ER stress 

conditions, e.g. the large biosynthetic load of professional secretory proteins.(Ogawa and Mori, 

2004) Additionally, IRE1 is basally activated in dedicated secretory cells at levels comparable to 

acute ER stress in non-secretory cells (>40%).(Yang et al., 2010) When the presumably UPR-

activating biosynthetic load-stimulus is removed in Β-cells differentiating to plasma cells by 

disrupting expression of IgM, XBP1 is still activated, indicating that XBP1 activation is 

differentiation-dependent rather than UPR-dependent in secretory cells.(Bonnefous et al., 2009) 

Together, these data suggest that transcription of Xbp1 is the rate-limiting step in its activation 

during the differentiation of secretory cells.  
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Regulation of Secretory Cell Differentiation by XBP1 

XBP1 has been characterized as an important transcriptional regulator of the 

differentiation of dedicated secretory cells in the pancreas, stomach, and intestine.(Huh et al., 

2010; Kaser et al., 2008; Lee et al., 2005; Lee et al., 2011) As expected, because of its 

developmental regulation and its role in cell-differentiation, XBP1 has been shown to act in a 

developmental transcriptional cascade in secretory cells unrelated to ER function. XBP1 directly 

enhances the transcription of the TF Mist1 in secretory tissue.(Huh et al., 2010) MIST1 is a TF 

that regulates a subset of genes encoding proteins that scale up cellular machinery and 

architecture dedicated secretory cells.(Pin et al., 2001) Loss of Mist1 in gastric or pancreatic 

acinar cells leads to reduced cell and secretory granule size, altered subcellular organization, and 

disruption of the downstream secretory apparatus,(Jin and Mills, 2014; Ramsey et al., 2007; Zhu 

et al., 2004) however, MIST1 has no known role in ER function. The regulation of Mist1 by 

XBP1 shows that XBP1 is not only a main component of the UPR pathway, but also an 

important factor in the differentiation of professional secretory cells.  

Despite the significance of the transcriptional regulation of Xbp1 in the secretory cell, and 

the key role XBP1 plays in development, little is known about what regulates Xbp1 expression. 

In ER stress conditions, the TF ATF6 is activated and able to enhance Xbp1 expression, (Lee et 

al., 2002) and XBP1 can synergistically stimulate its own expression, (Ogawa and Mori, 2004) 

though this regulatory pathway is likely more important to the UPR, and not to developmental 

patterning. In plasma cells, the TF Blimp1 is required for XBP1 expression, and activation of this 

transcriptional cascade enlarges the ER and secretory apparatus.(Shaffer et al., 2004) Recently, 

the TF Hnf1a has been shown to enhance Xbp1 expression in pancreatic beta-cells.(Kirkpatrick 
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et al., 2011) Delineating the mechanism of Xbp1 regulation in secretory cells will lead to a better 

understanding of cell differentiation and homeostasis in both normal and pathological states.  

Secretory Cell Differentiation in the Gastric Epithelium 

Disruption of secretory cell development and homeostasis underlies many prevalent 

diseases and malignancies. Understanding the molecular pathways and signaling networks that 

guide normal secretory cell differentiation and how these pathways are altered in disease states 

will lead open new avenues to the treatment and prevention of myriad pathologies. In the 

following chapters, I characterize the developmental role of a novel transcriptional cascade, 

focusing on dedicated secretory cells in two distinct tissue; first the stomach, and finally the 

pancreas. The professional secretory cell in the gastric epithelium is the zymogenic (chief) cell 

(ZC).(Karam and Leblond, 1993) Damage or disease to the stomach leads to a rapid 

dedifferentiation event in ZCs, where these formally terminally differentiated secretory cells 

begin to re-express progenitor markers, disassemble their secretory machinery through 

autophagy, and re-enter the proliferative cycle.(Aikou et al., 2009; Nam et al., 2010; Nozaki et 

al., 2008) In environments of chronic stress in the gastric epithelium, this aberrant 

dedifferentiation leads to precancerous metaplasia.(Goldenring et al., 2010)  Defining the 

molecular pathways that orchestrate the differentiation and maintenance of normal ZCs is key to 

demarcating the factors that drive the formation of this metaplasia, and may uncover the key to 

slowing or reversing the progression to gastric cancer. 

Xbp1 is one of the few known transcriptional regulators of ZC development. Loss of 

Xbp1 in mouse adult gastric corpus epithelium leads to a collapse of the ZC architecture; the ER 

degrades from a tightly-packed, well organized network to a sparse, free structure, Mist1 
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(another TF important to ZC differentiation)(Ramsey et al., 2007) expression is no longer 

induced, and new ZCs fail to mature from precursor cells.(Huh et al., 2010) Because of the 

indispensable role of Xbp1 in ZC development, and the evidence discussed above demonstrating 

the importance of the transcriptional regulation of Xbp1, I sought to identify a TF that directly 

regulates Xbp1 expression. In “Chapter 1”, I provide evidence that hepatic nuclear factor 4-alpha 

(HNF4α) is a direct regulator of Xbp1, and characterize its role in the gastric epithelium. The 

novel transcriptional regulation of Xbp1 by HNF4α is the cornerstone of this thesis, and has 

many important implications in the field of secretory cell development.  

The Master Developmental Regulator, HNF4α 

The nuclear hormone receptor HNF4α is a master developmental regulator of several 

secretory tissues. Loss of Hnf4α results in embryonic lethality in mouse models, as it is required 

for proper gastrulation.(Chen et al., 1994) Tissue-specific knockouts of the Hnf4α gene have 

established its importance in the development and maintenance of many secretory tissues. 

HNF4α is required for both the development of the intestine,(Babeu et al., 2009; Garrison et al., 

2006) and maintenance of its secretory cell-homeostasis, architecture, and function.(Cattin et al., 

2009) Interestingly, human patients with inflammatory bowel (Crohn’s) disease have low levels 

of HNF4α expression, and loss of HNF4α has been used as a model of colitis in mice.(Ahn et al., 

2008; Darsigny et al., 2009) Similarly, tissue-specific knockouts have shown that HNF4α is a 

crucial component in the initial embryonic development and maintenance of the adult 

liver.(Battle et al., 2006; Hayhurst et al., 2001; Parviz et al., 2003) In the adult pancreatic beta-

cells, HNF4α is required for proper secretion of insulin in response to glucose.(Gupta et al., 

2005; Miura et al., 2006)  Correspondingly, mutations in HNF4α in human patients have been 

shown to cause a subset of diabetes called Mature-Onset Diabetes of the Young Type-1 (an 
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aspect of HNF4α biology that will be described at length below).(Yamagata et al., 1996) The 

fundamental role of HNF4α in these tissues and human disease has led to an incredible wealth of 

studies defining its structure,(Chandra et al., 2013) preferred binding sequences and 

partners,(Fang et al., 2012; Misawa et al., 2003) expression variants,(Drewes et al., 1996) and its 

regulatory interplay with other related transcription factors.(Odom et al., 2004) Despite these 

efforts, the molecular mechanisms through which HNF4α maintains secretory cell identity and 

function are not well understood. Additionally, despite the high level of Hnf4α expression in the 

gastric epithelium and its pivotal role in the maintenance of closely related secretory tissue e.g. 

the intestine and pancreas,(Dean et al., 2010) the function of HNF4α has never been explored in 

the stomach. In chapter 1, I present data suggesting that HNF4α acts through enhancing Xbp1 

expression to maintain secretory cell identity, and that HNF4α is required for the maintenance of 

the gastric epithelium.   

Gastric cancer is the third-leading cause of cancer-related mortalities worldwide.(Ferlay 

et al., 2015) However, the events that drive the progression from a healthy gastric epithelium, to 

precancerous metaplasia, and finally to the development of adenocarcinoma are not well 

understood.  A major obstacle to elucidating the molecular underpinnings of secretory cell 

development in the normal and metaplastic stomach is the difficulty of isolating individual cell 

populations from the epithelium. Like all secretory tissues, the stomach comprises a number of 

distinct cell lineages. Unlike other secretory tissues, however, the tools to isolate these lineages 

are cumbersome and underdeveloped. These difficulties are compounded by a lack of molecular 

markers with which to identify each cell type. In chapter 2, I describe a novel surface marker of 

fully differentiated ZCs in mouse and human stomach, and describe an improved method to 

isolate pure populations of ZCs from the gastric epithelium using this marker. This approach 
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allows not only efficient isolation of gastric ZCs, but also enables the characterization of 

molecular changes in response to damage or disease.  

Mature-Onset Diabetes of the Young Type-1 and the ER 

The transcriptional regulation of Xbp1 expression by HNF4α is likely important to the 

development of secretory cells in several tissues, perhaps most importantly in the endocrine 

pancreas. Polymorphisms in Hnf4α are the cause of MODYI, a subset of diabetes characterized 

by diminished glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. MODY 

accounts for 2-5% of total diabetes cases, though often it remains undiagnosed.(Porter et al., 

2006; Shields et al., 2010) The mechanism by which HNF4α dysfunction causes MODYI 

pathology is unclear. The data presented in chapter four suggests that the transcriptional 

activation of Xbp1 expression by HNF4α is necessary for beta-cell function. 

The pancreatic beta-cell is a finely-tuned secretory machine. Once stimulated with 

glucose, the beta-cell increases insulin synthesis 10-fold, accounting for 50% of the cell’s total 

protein synthesis.(Schuit et al., 1988) This biosynthetic load creates an incredible burden on the 

ER, and subsequently small aberrations in beta-cell ER function lead to dysfunction and 

apoptosis.(Eizirik et al., 2008; Gurzov et al., 2009) A rare genetic form of type I diabetes, 

Wolcott–Rallison syndrome, is caused by a loss of function mutation in a key protein (PERK) in 

the UPR signaling cascade. (Rubio-Cabezas et al., 2009) This disruption of PERK function 

causes a diminished UPR, and subsequently β-cell apoptosis. Wolfram syndrome, another rare 

genetic form of diabetes, is usually caused by mutations in the WFS1 gene. (Fonseca et al., 2010) 

The protein encoded by this gene is important for proper ER stress response, and the 

pathogenesis of Wolfram syndrome is most likely due to chronic, unmitigated ER stress that 
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leads to β-cell death. The pathology of type II diabetes is driven by peripheral insulin resistance, 

which provokes a sustained, increased synthesis and secretion of insulin in β-cells. This 

increased biosynthetic load in the ER of β-cells instigates prolonged ER stress, and likely leads 

to decreased β-cell function in patients genetically susceptible to ER stress. Interestingly, recent 

genomic studies have shown patients with point mutations in ER stress factors have an increased 

susceptibility to type-II diabetes.(Sandhu et al., 2007) Pathological ER stress induced by long-

term exposure to high glucose levels alters ER-calcium homeostasis, disrupting intracellular 

signaling and causing cell death.(Hara et al., 2014) Similiarly, genome-wide association studies 

have also linked polymorphisms in Hnf4α to increased susceptibility to type-II diabetes. Similar 

to MODYI mouse-models, beta-cell-specific knockouts of Xbp1 in adult mice are unable to 

secrete insulin in response to a glucose stimulus.(Lee et al., 2011)  Chapter four outlines the 

importance of the relationship between Xbp1 and HNF4α to beta-cell function, and outlines the 

first-clear molecular mechanism of MODYI pathology.  

Summary 

The transformation of a cell from a small multipotent progenitor to a large and complex 

professional secretory cell is meticulously orchestrated by a network of developmental 

regulators. Defining the signaling networks and factors that guide this differentiation is pivotal to 

understanding how these pathways are disrupted in disease, and to providing new therapeutic 

avenues for the many maladies associated with secretory cell dysfunction, from cancer to 

diabetes. Here, we identify one such signaling cascade, HNF4α →Xbp1, responsible for the 

development and homeostasis of secretory cells in multiple tissues. In this thesis, we: 
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1. Define HNF4α as a direct transcriptional regulator of Xbp1, required for

secretory cell homeostasis in the gastric epithelium.

2. Identify a novel surface marker of ZCs in the gastric epithelium, allowing

cell-lineage specific isolation and characterization in normal and diseased

stomachs.

3. Establish that HNF4α directly enhances Xbp1 expression in beta-cells, and

that this relationship is required for ER homeostasis, glucose-stimulated

insulin secretion, and intracellular signaling, defining the first clear molecular

mechanism for MODYI pathology.

11



References 

Acosta-Alvear, D., Zhou, Y., Blais, A., Tsikitis, M., Lents, N.H., Arias, C., Lennon, C.J., 
Kluger, Y., and Dynlacht, B.D. (2007). XBP1 controls diverse cell type- and condition-specific 
transcriptional regulatory networks. Molecular cell 27, 53-66. 
Ahn, S.H., Shah, Y.M., Inoue, J., Morimura, K., Kim, I., Yim, S., Lambert, G., Kurotani, 
R., Nagashima, K., Gonzalez, F.J., et al. (2008). Hepatocyte nuclear factor 4alpha in the 
intestinal epithelial cells protects against inflammatory bowel disease. Inflammatory bowel 
diseases 14, 908-920. 
Aikou, S., Fukushima, Y., Ogawa, M., Nozaki, K., Saito, T., Matsui, T., Goldenring, J.R., 
Kaminishi, M., and Nomura, S. (2009). Alterations in gastric mucosal lineages before or after 
acute oxyntic atrophy in gastrin receptor and H2 histamine receptor-deficient mice. Digestive 
diseases and sciences 54, 1625-1635. 
Babeu, J.P., Darsigny, M., Lussier, C.R., and Boudreau, F. (2009). Hepatocyte nuclear factor 
4alpha contributes to an intestinal epithelial phenotype in vitro and plays a partial role in mouse 
intestinal epithelium differentiation. American journal of physiology. Gastrointestinal and liver 
physiology 297, G124-134. 
Battle, M.A., Konopka, G., Parviz, F., Gaggl, A.L., Yang, C., Sladek, F.M., and Duncan, 
S.A. (2006). Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins 
during the epithelial transformation of the developing liver. Proceedings of the National 
Academy of Sciences of the United States of America 103, 8419-8424. 
Bonnefous, C., Payne, J.E., Roppe, J., Zhuang, H., Chen, X., Symons, K.T., Nguyen, P.M., 
Sablad, M., Rozenkrants, N., Zhang, Y., et al. (2009). Discovery of inducible nitric oxide 
synthase (iNOS) inhibitor development candidate KD7332, part 1: Identification of a novel, 
potent, and selective series of quinolinone iNOS dimerization inhibitors that are orally active in 
rodent pain models. Journal of medicinal chemistry 52, 3047-3062. 
Boquist, L. (1970). Cilia and vesicular particles in the endocrine pancreas of the Mongolian 
gerbil. The Journal of cell biology 45, 532-541. 
Caro, L.G., and Palade, G.E. (1964). Protein Synthesis, Storage, and Discharge in the 
Pancreatic Exocrine Cell. An Autoradiographic Study. The Journal of cell biology 20, 473-495. 
Cattin, A.L., Le Beyec, J., Barreau, F., Saint-Just, S., Houllier, A., Gonzalez, F.J., Robine, 
S., Pincon-Raymond, M., Cardot, P., Lacasa, M., et al. (2009). Hepatocyte nuclear factor 
4alpha, a key factor for homeostasis, cell architecture, and barrier function of the adult intestinal 
epithelium. Molecular and cellular biology 29, 6294-6308. 
Chandra, V., Huang, P., Potluri, N., Wu, D., Kim, Y., and Rastinejad, F. (2013). 
Multidomain integration in the structure of the HNF-4alpha nuclear receptor complex. Nature 
495, 394-398. 
Chen, W.S., Manova, K., Weinstein, D.C., Duncan, S.A., Plump, A.S., Prezioso, V.R., 
Bachvarova, R.F., and Darnell, J.E., Jr. (1994). Disruption of the HNF-4 gene, expressed in 
visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse 
embryos. Genes & development 8, 2466-2477. 
Coutinho, P., Parsons, M.J., Thomas, K.A., Hirst, E.M., Saude, L., Campos, I., Williams, 
P.H., and Stemple, D.L. (2004). Differential requirements for COPI transport during vertebrate 
early development. Developmental cell 7, 547-558. 

12



Cox, J.S., Chapman, R.E., and Walter, P. (1997). The unfolded protein response coordinates 
the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. 
Molecular biology of the cell 8, 1805-1814. 
Cox, J.S., and Walter, P. (1996). A novel mechanism for regulating activity of a transcription 
factor that controls the unfolded protein response. Cell 87, 391-404. 
Darsigny, M., Babeu, J.P., Dupuis, A.A., Furth, E.E., Seidman, E.G., Levy, E., Verdu, E.F., 
Gendron, F.P., and Boudreau, F. (2009). Loss of hepatocyte-nuclear-factor-4alpha affects 
colonic ion transport and causes chronic inflammation resembling inflammatory bowel disease in 
mice. PloS one 4, e7609. 
Dean, S., Tang, J.I., Seckl, J.R., and Nyirenda, M.J. (2010). Developmental and tissue-
specific regulation of hepatocyte nuclear factor 4-alpha (HNF4-alpha) isoforms in rodents. Gene 
expression 14, 337-344. 
Dorner, A.J., Wasley, L.C., and Kaufman, R.J. (1989). Increased synthesis of secreted 
proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster 
ovary cells. The Journal of biological chemistry 264, 20602-20607. 
Drewes, T., Senkel, S., Holewa, B., and Ryffel, G.U. (1996). Human hepatocyte nuclear factor 
4 isoforms are encoded by distinct and differentially expressed genes. Molecular and cellular 
biology 16, 925-931. 
Dunne, J.C., Kondylis, V., and Rabouille, C. (2002). Ecdysone triggers the expression of 
Golgi genes in Drosophila imaginal discs via broad-complex. Developmental biology 245, 172-
186. 
Eizirik, D.L., Cardozo, A.K., and Cnop, M. (2008). The role for endoplasmic reticulum stress 
in diabetes mellitus. Endocrine reviews 29, 42-61. 
Fang, B., Mane-Padros, D., Bolotin, E., Jiang, T., and Sladek, F.M. (2012). Identification of a 
binding motif specific to HNF4 by comparative analysis of multiple nuclear receptors. Nucleic 
acids research 40, 5343-5356. 
Farhan, H., Weiss, M., Tani, K., Kaufman, R.J., and Hauri, H.P. (2008). Adaptation of 
endoplasmic reticulum exit sites to acute and chronic increases in cargo load. The EMBO journal 
27, 2043-2054. 
Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., 
Forman, D., and Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods 
and major patterns in GLOBOCAN 2012. International journal of cancer. Journal international 
du cancer 136, E359-386. 
Fonseca, S.G., Ishigaki, S., Oslowski, C.M., Lu, S., Lipson, K.L., Ghosh, R., Hayashi, E., 
Ishihara, H., Oka, Y., Permutt, M.A., et al. (2010). Wolfram syndrome 1 gene negatively 
regulates ER stress signaling in rodent and human cells. The Journal of clinical investigation 
120, 744-755. 
Forster, R., Weiss, M., Zimmermann, T., Reynaud, E.G., Verissimo, F., Stephens, D.J., and 
Pepperkok, R. (2006). Secretory cargo regulates the turnover of COPII subunits at single ER 
exit sites. Current biology : CB 16, 173-179. 
Garrison, W.D., Battle, M.A., Yang, C., Kaestner, K.H., Sladek, F.M., and Duncan, S.A. 
(2006). Hepatocyte nuclear factor 4alpha is essential for embryonic development of the mouse 
colon. Gastroenterology 130, 1207-1220. 
Goldenring, J.R., Nam, K.T., Wang, T.C., Mills, J.C., and Wright, N.A. (2010). Spasmolytic 
polypeptide-expressing metaplasia and intestinal metaplasia: time for reevaluation of metaplasias 
and the origins of gastric cancer. Gastroenterology 138, 2207-2210, 2210 e2201. 

13



Guo, Y., and Linstedt, A.D. (2006). COPII-Golgi protein interactions regulate COPII coat 
assembly and Golgi size. The Journal of cell biology 174, 53-63. 
Gupta, R.K., Vatamaniuk, M.Z., Lee, C.S., Flaschen, R.C., Fulmer, J.T., Matschinsky, 
F.M., Duncan, S.A., and Kaestner, K.H. (2005). The MODY1 gene HNF-4alpha regulates 
selected genes involved in insulin secretion. The Journal of clinical investigation 115, 1006-
1015. 
Gurzov, E.N., Ortis, F., Cunha, D.A., Gosset, G., Li, M., Cardozo, A.K., and Eizirik, D.L. 
(2009). Signaling by IL-1beta+IFN-gamma and ER stress converge on DP5/Hrk activation: a 
novel mechanism for pancreatic beta-cell apoptosis. Cell death and differentiation 16, 1539-
1550. 
Hara, T., Mahadevan, J., Kanekura, K., Hara, M., Lu, S., and Urano, F. (2014). Calcium 
efflux from the endoplasmic reticulum leads to beta-cell death. Endocrinology 155, 758-768. 
Harding, H.P., Zhang, Y., and Ron, D. (1999). Protein translation and folding are coupled by 
an endoplasmic-reticulum-resident kinase. Nature 397, 271-274. 
Hayhurst, G.P., Lee, Y.H., Lambert, G., Ward, J.M., and Gonzalez, F.J. (2001). Hepatocyte 
nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene 
expression and lipid homeostasis. Molecular and cellular biology 21, 1393-1403. 
Henquin, J.C., and Meissner, H.P. (1984). Significance of ionic fluxes and changes in 
membrane potential for stimulus-secretion coupling in pancreatic B-cells. Experientia 40, 1043-
1052. 
Huh, W.J., Esen, E., Geahlen, J.H., Bredemeyer, A.J., Lee, A.H., Shi, G., Konieczny, S.F., 
Glimcher, L.H., and Mills, J.C. (2010). XBP1 controls maturation of gastric zymogenic cells 
by induction of MIST1 and expansion of the rough endoplasmic reticulum. Gastroenterology 
139, 2038-2049. 
Iwakoshi, N.N., Lee, A.H., Vallabhajosyula, P., Otipoby, K.L., Rajewsky, K., and 
Glimcher, L.H. (2003). Plasma cell differentiation and the unfolded protein response intersect at 
the transcription factor XBP-1. Nature immunology 4, 321-329. 
Jackson, C.L. (2009). Mechanisms of transport through the Golgi complex. Journal of cell 
science 122, 443-452. 
Jin, R.U., and Mills, J.C. (2014). RAB26 coordinates lysosome traffic and mitochondrial 
localization. Journal of cell science 127, 1018-1032. 
Karam, S.M., and Leblond, C.P. (1993). Dynamics of epithelial cells in the corpus of the 
mouse stomach. III. Inward migration of neck cells followed by progressive transformation into 
zymogenic cells. The Anatomical record 236, 297-313. 
Kaser, A., Lee, A.H., Franke, A., Glickman, J.N., Zeissig, S., Tilg, H., Nieuwenhuis, E.E., 
Higgins, D.E., Schreiber, S., Glimcher, L.H., et al. (2008). XBP1 links ER stress to intestinal 
inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743-
756. 
Kirkpatrick, C.L., Wiederkehr, A., Baquie, M., Akhmedov, D., Wang, H., Gauthier, B.R., 
Akerman, I., Ishihara, H., Ferrer, J., and Wollheim, C.B. (2011). Hepatic nuclear factor 
1alpha (HNF1alpha) dysfunction down-regulates X-box-binding protein 1 (XBP1) and sensitizes 
beta-cells to endoplasmic reticulum stress. The Journal of biological chemistry 286, 32300-
32312. 
Kozutsumi, Y., Segal, M., Normington, K., Gething, M.J., and Sambrook, J. (1988). The 
presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-
regulated proteins. Nature 332, 462-464. 

14



Lee, A.H., Chu, G.C., Iwakoshi, N.N., and Glimcher, L.H. (2005). XBP-1 is required for 
biogenesis of cellular secretory machinery of exocrine glands. The EMBO journal 24, 4368-
4380. 
Lee, A.H., Heidtman, K., Hotamisligil, G.S., and Glimcher, L.H. (2011). Dual and opposing 
roles of the unfolded protein response regulated by IRE1alpha and XBP1 in proinsulin 
processing and insulin secretion. Proceedings of the National Academy of Sciences of the United 
States of America 108, 8885-8890. 
Lee, K., Tirasophon, W., Shen, X., Michalak, M., Prywes, R., Okada, T., Yoshida, H., Mori, 
K., and Kaufman, R.J. (2002). IRE1-mediated unconventional mRNA splicing and S2P-
mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. 
Genes & development 16, 452-466. 
Liu, C.Y., Wong, H.N., Schauerte, J.A., and Kaufman, R.J. (2002). The protein 
kinase/endoribonuclease IRE1alpha that signals the unfolded protein response has a luminal N-
terminal ligand-independent dimerization domain. The Journal of biological chemistry 277, 
18346-18356. 
Misawa, K., Horiba, T., Arimura, N., Hirano, Y., Inoue, J., Emoto, N., Shimano, H., 
Shimizu, M., and Sato, R. (2003). Sterol regulatory element-binding protein-2 interacts with 
hepatocyte nuclear factor-4 to enhance sterol isomerase gene expression in hepatocytes. The 
Journal of biological chemistry 278, 36176-36182. 
Miura, A., Yamagata, K., Kakei, M., Hatakeyama, H., Takahashi, N., Fukui, K., Nammo, 
T., Yoneda, K., Inoue, Y., Sladek, F.M., et al. (2006). Hepatocyte nuclear factor-4alpha is 
essential for glucose-stimulated insulin secretion by pancreatic beta-cells. The Journal of 
biological chemistry 281, 5246-5257. 
Nam, K.T., Lee, H.J., Sousa, J.F., Weis, V.G., O'Neal, R.L., Finke, P.E., Romero-Gallo, J., 
Shi, G., Mills, J.C., Peek, R.M., Jr., et al. (2010). Mature chief cells are cryptic progenitors for 
metaplasia in the stomach. Gastroenterology 139, 2028-2037 e2029. 
Nozaki, K., Ogawa, M., Williams, J.A., Lafleur, B.J., Ng, V., Drapkin, R.I., Mills, J.C., 
Konieczny, S.F., Nomura, S., and Goldenring, J.R. (2008). A molecular signature of gastric 
metaplasia arising in response to acute parietal cell loss. Gastroenterology 134, 511-522. 
Odom, D.T., Zizlsperger, N., Gordon, D.B., Bell, G.W., Rinaldi, N.J., Murray, H.L., 
Volkert, T.L., Schreiber, J., Rolfe, P.A., Gifford, D.K., et al. (2004). Control of pancreas and 
liver gene expression by HNF transcription factors. Science 303, 1378-1381. 
Ogawa, N., and Mori, K. (2004). Autoregulation of the HAC1 gene is required for sustained 
activation of the yeast unfolded protein response. Genes to cells : devoted to molecular & 
cellular mechanisms 9, 95-104. 
Palade, G.E. (1956). The endoplasmic reticulum. The Journal of biophysical and biochemical 
cytology 2, 85-98. 
Pandol, S.J., Gorelick, F.S., and Lugea, A. (2011). Environmental and genetic stressors and the 
unfolded protein response in exocrine pancreatic function - a hypothesis. Frontiers in physiology 
2, 8. 
Parviz, F., Matullo, C., Garrison, W.D., Savatski, L., Adamson, J.W., Ning, G., Kaestner, 
K.H., Rossi, J.M., Zaret, K.S., and Duncan, S.A. (2003). Hepatocyte nuclear factor 4alpha 
controls the development of a hepatic epithelium and liver morphogenesis. Nature genetics 34, 
292-296. 

15



Pin, C.L., Rukstalis, J.M., Johnson, C., and Konieczny, S.F. (2001). The bHLH transcription 
factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. 
The Journal of cell biology 155, 519-530. 
Porter, J.R., Rangasami, J.J., Ellard, S., Gloyn, A.L., Shields, B.M., Edwards, J., Anderson, 
J.M., Shaw, N.J., Hattersley, A.T., Frayling, T.M., et al. (2006). Asian MODY: are we 
missing an important diagnosis? Diabetic medicine : a journal of the British Diabetic Association 
23, 1257-1260. 
Ramsey, V.G., Doherty, J.M., Chen, C.C., Stappenbeck, T.S., Konieczny, S.F., and Mills, 
J.C. (2007). The maturation of mucus-secreting gastric epithelial progenitors into digestive-
enzyme secreting zymogenic cells requires Mist1. Development 134, 211-222. 
Rubio-Cabezas, O., Patch, A.M., Minton, J.A., Flanagan, S.E., Edghill, E.L., Hussain, K., 
Balafrej, A., Deeb, A., Buchanan, C.R., Jefferson, I.G., et al. (2009). Wolcott-Rallison 
syndrome is the most common genetic cause of permanent neonatal diabetes in consanguineous 
families. The Journal of clinical endocrinology and metabolism 94, 4162-4170. 
Sandhu, M.S., Weedon, M.N., Fawcett, K.A., Wasson, J., Debenham, S.L., Daly, A., Lango, 
H., Frayling, T.M., Neumann, R.J., Sherva, R., et al. (2007). Common variants in WFS1 
confer risk of type 2 diabetes. Nature genetics 39, 951-953. 
Schotman, H., Karhinen, L., and Rabouille, C. (2009). Integrins mediate their unconventional, 
mechanical-stress-induced secretion via RhoA and PINCH in Drosophila. Journal of cell science 
122, 2662-2672. 
Schuit, F.C., In't Veld, P.A., and Pipeleers, D.G. (1988). Glucose stimulates proinsulin 
biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proceedings of the 
National Academy of Sciences of the United States of America 85, 3865-3869. 
Selye, H. (1985). The nature of stress. Basal facts 7, 3-11. 
Shaffer, A.L., Shapiro-Shelef, M., Iwakoshi, N.N., Lee, A.H., Qian, S.B., Zhao, H., Yu, X., 
Yang, L., Tan, B.K., Rosenwald, A., et al. (2004). XBP1, downstream of Blimp-1, expands the 
secretory apparatus and other organelles, and increases protein synthesis in plasma cell 
differentiation. Immunity 21, 81-93. 
Shields, B.M., Hicks, S., Shepherd, M.H., Colclough, K., Hattersley, A.T., and Ellard, S. 
(2010). Maturity-onset diabetes of the young (MODY): how many cases are we missing? 
Diabetologia 53, 2504-2508. 
Travers, K.J., Patil, C.K., Wodicka, L., Lockhart, D.J., Weissman, J.S., and Walter, P. 
(2000). Functional and genomic analyses reveal an essential coordination between the unfolded 
protein response and ER-associated degradation. Cell 101, 249-258. 
Yamagata, K., Furuta, H., Oda, N., Kaisaki, P.J., Menzel, S., Cox, N.J., Fajans, S.S., 
Signorini, S., Stoffel, M., and Bell, G.I. (1996). Mutations in the hepatocyte nuclear factor-
4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 384, 458-460. 
Yang, L., Xue, Z., He, Y., Sun, S., Chen, H., and Qi, L. (2010). A Phos-tag-based approach 
reveals the extent of physiological endoplasmic reticulum stress. PloS one 5, e11621. 
Zhu, L., Tran, T., Rukstalis, J.M., Sun, P., Damsz, B., and Konieczny, S.F. (2004). Inhibition 
of Mist1 homodimer formation induces pancreatic acinar-to-ductal metaplasia. Molecular and 
cellular biology 24, 2673-2681. 

16



Figure Legends 

Figure 1. Overview. The differentiation from a relatively simple progenitor cell to a large, 

complex professional secretory cell is orchestrated by transcriptional network that coordinate the 

establishment of secretory machinery, and remodel cellular architecture to facilitate production 

and secretion of large amounts of protein. We have A) identified one of these networks, 

HNF4α→Xbp1, and found it to be indispensable to normal differentiation in the gastric 

epithelium B) developed a new set of tools to isolate and better characterize secretory cells in the 

stomach, and C) identified the role of HNF4α→Xbp1 in beta-cell dysfunction during human 

disease.  

Figure 2. Regulation of Xbp1 in response to ER stress. In response to an increased secretory load, 

misfolded proteins accumulate in the ER lumen. This activates the UPR by causing 

phosphorylation and dimerization of IRE1, which in turn splices and activates XBP1. Once 

activated XBP1enters the nucleus and enhances expression of a genes that increase the secretory 

capacity of the ER and alleviate ER stress.  Adapted from (Pandol et al., 2011) 
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Abstract 

Little is known about the molecular pathways that orchestrate the differentiation of the 

gastric epithelium. Our lab has identified a transcriptional cascade, XBP1→Mist1, which 

regulates the development of gastric-enzyme secreting ZCs in the gastric unit. Here, we show 

that HNF4α acts upstream of Xbp1 in ZC development. Using an in silico screen of 

evolutionarily conserved regions of the Xbp1 promoter, we identified two potential HNF4α 

binding sites. Using chromatin immunoprecipitation, we show that HNF4α directly occupies the 

Xbp1 locus. We found that by overexpressing HNF4α in a gastric cancer cell line, Xbp1 

expression increased, suggesting that HNF4α is sufficient for Xbp1 expression. 

Immunofluorescent staining of HNF4α showed that it is expressed in gastric pit, isthmal 

progenitor, neck, and zymogenic cells, but not in parietal cells. Using a tamoxifen-inducible cre 

system, we show that loss of HNF4α in the adult stomach led to increased proliferation, reduced 

ZC size and ER formation, and aberrant differentiation. These data show that HNF4α is an 

important regulator of differentiation and a transcriptional enhancer of Xbp1 expression in the 

stomach.  
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Introduction 

The mammalian gastric epithelium is an organized network of cells which function to 

secrete mucus, acid, and digestive enzymes into the gastric lumen. These cells are located in 

repeating glandular invaginations called gastric units. Based on anatomy and cell function each 

unit can be divided into four distinct sections: the pit zone opens into the gastric lumen and 

contains mucus-secreting pit cells; the isthmus region houses stem cells and early progenitors; 

the neck zone contains both acid-secreting parietal cells (PC) and mucus-secreting neck cells; 

and the base zone contains digestive-enzyme secreting zymogenic cells (ZCs). (Fig. 1A) The 

differentiation of each lineage has been characterized by detailed morphological studies and 

analysis of gene expression patterns, which are conserved in each gastric unit (Karam,1993; 

Karam and Leblond, 1993a, b, c, d). The gastric unit is a uniquely well 

suited system to study transcriptional regulators of cell differentiation and morphology, because 

development of each cell type is tightly controlled along a well-defined spatiotemporal gradient. 

The molecular mechanisms that control these changes in expression and morphology are largely 

uncharacterized in the stomach. The best example of this process is the formation of ZCs, which 

arise from mucus neck cells. As ZCs differentiate from their progenitor neck cells, a cascade of 

transcription factors is activated that include XBP1 and MIST1.(Huh et al., 2010; Ramsey et al., 

2007) Elucidation of the factors that orchestrate epithelial differentiation will shed light on 

fundamental cellular processes, and give insight on how pathological conditions like metaplasia 

and gastric atrophy develop. Understanding these transcriptional regulators is essential to 

developing new ways to treat and prevent gastric cancer.  

Our lab has previously identified the transcription XBP1 as a regulator of the maturation 

of ZCs that occupy the base of the gastric unit.(Huh et al., 2010) XBP1 controls the 
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differentiation of ZCs by induction of the TF MIST1 and the expansion of the rough 

endoplasmic reticulum. When Xbp1 is conditionally deleted in mice using a tamoxifen/Cre-loxP 

system, Xbp1-null ZCs decrease in size, and MIST1 expression is lost; the gastric units resemble 

those of mice with pseudopyloric or spasmolytic polypeptide expressing metaplasia (SPEM), a 

well-established precursor to stomach cancer. To further explore the molecular networks that 

drive ZC differentiation, we sought to elucidate TFs that act upstream of XBP1 in the ZC 

signaling cascade. We found that Xbp1 expression is enhanced by the TF HNF4α, a master 

regulator of secretory tissue development.  

HNF4α is required for proper secretory cell differentiation and maintenance in many 

tissues with similarities to the stomach. In the adult intestinal epithelium, loss of HNF4α results 

in altered secretory cell architecture, aberrant cell differentiation, proliferation, and impaired 

barrier function.(Cattin et al., 2009) HNF4α is also required to maintain cell differentiation in the 

colon, and disruption of its expression leads to inflammation, proliferation, and cell 

dedifferentiation.(Darsigny et al., 2009) Similarly, loss of HNF4α in the adult mouse liver leads 

to altered cell differentiation, causing hepatocytes to dedifferentiate into progenitor-like cells, 

and disrupting lipid synthesis.(Hayhurst et al., 2001) Though HNF4α is known to be expressed at 

high levels in the stomach, and is alternatively spliced in early gastric carcinomas,(Dean et al., 

2010; Takano et al., 2009) nothing is known about its function or importance to gastric epithelial 

development and maintenance. Here, we show that HNF4α is required for the maintenance of the 

ZC lineage and normal differentiation in the gastric unit. 

24



Results 

HNF4α directly enhances Xbp1 expression. To identify potential regulators of 

Xbp1expression, we performed an in silico screen, scanning evolutionarily conserved regions of 

the Xbp1 promoter locus for known TF binding sites.(Ovcharenko et al., 2005) We identified two 

putative HNF4α binding sites upstream of the Xbp1 transcription start site. To determine whether 

HNF4α directly bound these sites, we performed chromatin immunoprecipitation. Cells from a 

gastric cancer cell line (AGS) were transiently transfected with an expression vector containing 

HNF4α. These cells were then crosslinked and immunoprecipitated with an HNF4α antibody or 

serum control. HNF4α occupied both predicted sites in the XBP1 promoter (Fig. 1A). The site 

located -1.6 kb from the transcription start site showed strong occupation of HNF4α as assayed 

with two different antibodies. The site -2.4 kb upstream showed weaker occupation, and the 

intronic control site showed no HNF4α occupation. To determine the function of HNF4α in XBP1 

regulation, we used isolated protein from AGS cells transiently transfected with two common 

splice variants of HNF4α and measured the expression of XBP1 by immunoblot. XBP1 

expression was dramatically increased in cells transfected with HNF4α compared to a GFP 

control plasmid (Fig. 1B,C), indicating that HNF4α is a direct transcriptional enhancer of XBP1.  

HNF4α is expressed in the isthmus, pit, neck, and zymogenic cells in the gastric corpus. 

Similar to the situation in other endoderm-derived secretory tissues, HNF4α has been shown to 

be highly expressed in the gastric epithelium.(Dean et al., 2010) However, the specific cell 

lineages that express HNF4α have not been determined. Understanding which cell types express 

HNF4α will give us a better understanding of the molecular mechanisms of HNF4α in the 

maintenance and development of the stomach. We used immunofluorescent microscopy on 

mouse stomach tissue to determine the pattern of HNF4α expression, and found that HNF4α was 

expressed highly in progenitor cells in 
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the isthmus and pit cells, and at lower levels in cells expressing the neck cell marker and ZC-

marking GIF (Fig. 2A,B). HNF4α was not, however, expressed in parietal cells.  

HNF4α is required for maintenance of the gastric epithelium. Because HNF4α was 

expressed highly in the stomach, we sought to determine its function by knocking out HNF4α 

expression in the adult mouse gastric epithelium. We generated a mouse model of acute loss of 

HNF4α by crossing the tamoxifen inducible CAGCreERT mice, previously shown by our group to 

be an efficient driver of cre recombination in the gastric epithelium,(Huh et al., 2010) to mice 

containing a floxed Hnf4α allele.(Hayhurst et al., 2001)  This model allowed us to induce loss of 

HNF4α via injection of low-dose(1mg/20g mouse) tamoxifen. Loss of HNF4α led to a ~4 fold 

increase in proliferation, measured by ki67 expression and Brdu staining (Fig. 3A,B). This 

increased proliferation did not, however, lead to an increase in unit length (data not shown) or 

overall area (Fig. 4A), as we had expected. The most striking phenotype was a dramatic change 

in ZC morphology. The base/ZC region was significantly diminished (Fig. 4B), and the ZCs in 

ΔHNF4α mouse stomachs were half the size of WT ZCs (Fig. 4C). Additionally the overall 

census of ZCs was ~25% lower in the HNF4α KO (Fig. 4D). These changes in unit morphology 

are evident when comparing WT and ΔHNF4α hematoxylin and eosin stained tissue from the 

gastric corpus (Fig. 5A). The dark-staining ZC region is noticeably collapsed (highlighted by 

white arrowheads, Fig. 5A) when HNF4α is lost. Interestingly, this collapse mimics loss of 

XBP1 observed in previous work (Fig. 5B, adapted from (Huh et al., 2010)). Because of the 

transcriptional relationship between Xbp1 and HNF4α, and the role of XBP1 in maintaining the 

ER, we expected loss of HNF4α to result in diminished ER in the gastric epithelium. 

Accordingly, the ER (as measured by expression of the ER-localized protein, Calregulin) was 

significantly reduced in size upon loss of HNF4α (Fig. 5C).  
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The ZC transitions from a proliferative progenitor cell, to a neck cell, and finally to its definitive 

form as the stomach’s professional secretory cell in the normal gastric epithelium. Because of its 

role in other tissues as a master regulator of secretory cell differentiation, and its regulation of 

Xbp1, an important player in ZC differentiation, we hypothesized that disrupting HNF4α in the 

stomach would result in aberrant differentiation in the gastric unit. As expected, we observed 

precursor neck cells in the base of the gastric unit in ΔHNF4α mice (white arrowhead, Fig. 6A), 

a phenomenon that is rarely observed in WT mice. Both the average distance of neck cells from 

the basal membrane (Fig. 6B) and the percentage of ZC-regions (which generally contain no 

neck-cells in WT mice, Fig. 6C) were significantly different upon loss of HNF4α, with almost a 

quarter of ΔHNF4α ZC regions exhibiting neck cell intrusion. These data indicate that HNF4α is 

required for the normal differentiation of the gastric epithelium.  
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Discussion 

We show here that HNF4α is expressed in pit, isthmal, neck, and zymogenic cells in the 

gastric corpus, and that it is required for normal differentiation. Additionally, HNF4α is a 

direct transcriptional regulator of Xbp1 expression, suggesting that upregulation of Xbp1 is one 

of the mechanisms through which HNF4α regulates ZC development. To our knowledge, this 

is the first time the role of HNF4α in the stomach has been described.  

Relatively few transcriptional regulators responsible for gastric epithelial development 

have been previously identified. Characterizing such factors and the signaling networks which 

they govern is key to understanding how to target maladies resulting from their dysregulation, 

e.g. cancer. The transcriptional enhancement of Xbp1 by HNF4α in the stomach is a potentially 

important finding for 3 reasons: 1) it adds an upstream component to the only well-defined 

signaling cascade that orchestrates ZC differentiation HNF4α→XBP1→MIST1, aberrations in 

which lead to metaplastic-like gastric mucosa, 2) it builds further upon and  the developing 

concept that tight regulation of Xbp1 expression is not just important for the unfolded protein 

response but is also pivotal to its role as a developmental coordinator of secretory cell 

differentiation, and 3) many of the effects of loss of HNF4α in other secretory tissues (i.e. liver-

dyslipidemia, intestine-secretory cell architecture, β-cell-secretory dysfunction) may be caused 

in part by this novel relationship. Future experiments further characterizing this signaling 

cascade, and the molecular mechanisms by which HNF4α orchestrates other aspects of the 

development and maintenance of the gastric epithelium have potential to uncover fundamental 

mechanisms of disease development in the stomach and other secretory tissues.  
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Methods 

Cell lines and Transient Transfection 

AGS cells (from ATCC, Manassas, VA) were grown in RPMI 1640 supplemented with 

10% fetal bovine serum, 0.9% glutamine, 0.4% HEPES, 1% Na pyruvate, 2.5% glucose, and 100 

ng/ml each of penicillin and streptomycin. For overexpression of myc-tagged HNF4α2 or 

HNF4α8, coding regions (obtained from addgene) were subcloned into a pcDNA3.1expression 

vector, and 5μg of each plasmid or the pmaxGFP(lonza) control plasmid were transiently 

transfected using TransIT-2020 (Mirus, Madison, WI). For siRNA we transfected MIN6 and 

INS-1 cells with 10nM HNF4α siRNA (silencer select Invitrogen) using Lipofectamine 2000 

according to the manufacturer’s protocol.  

Western Blot 

Cells for western blot analysis were lysed in RIPA buffer. Proteins were quantified by 

DC protein assay (Bio-Rad) and then separated on NuPAGE Bis-Tris gels (Invitrogen), 

transferred onto Amersham Hybond ECL nitrocellulose (GE Healthcare, Buckinghamshire, UK) 

membranes, and detected by Immobilon chemiluminescence (Millipore). Primary antibodies 

used were rabbit anti-XBP1(Santa Cruz), mouse anti-c-myc (dshb), and rabbit anti-α- and β-

tubulin (Cell Signaling). Secondary antibodies were horseradish-peroxidase-conjugated donkey 

anti-rabbit and anti-mouse Ig (Santa Cruz Biotechnology, Santa Cruz, CA). Quantifications of 

immunoblots were performed by scanning 16-bit images into ImageJ. Band intensities for XBP1 

and α/β tubulin were selected and calculated by using the ‘Analyze mean gray value’ 

measurement tool. Standardized values were calculated determining the ratio of XBP1 signal to 

α/β tubulin signal.  
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Chromatin Immunoprecipitation 

Chromatin immunoprecipitation (ChIP) was performed as described previously.(Im et al., 

2004) Approximately 106 AGS cells transiently transfected with  HNF4α expression vector as 

described above were used for this ChIP experiment. Ten microliters of anti-HNF4α (rabbit anti-

human MIST1) or whole rabbit serum (preimmune control) together with protein A/G plus 

agarose (Santa Cruz Biotechnology) was added to the homogenized tissue for 

immunoprecipitation. Quantitative real-time PCR (qRT-PCR) was performed to assess the 

quantity of genomic sequences immunoprecipitated by either preimmune control or HNF4α 

antiserum, as well as a 1:10 dilution of the cell extract prior to immunoprecipitation (input). Two 

predicted HNF4α binding sites8 were probed in addition to an intronic control region with no 

predicted HNF4α binding sites nearby.   

Mouse Studies 

All experiments involving animals were performed according to protocols approved by 

the Washington University School of Medicine Animal Studies Committee. Floxed Hnf4α, 

CAGGCreERTM transgenic mice were generated by crossing Hnf4αfloxed/floxed mice (a gift from 

Frank Gonzalez, NIH)(Hayhurst et al., 2001) with CAGGCreERTM;Hnf4αfloxed/+(Hayashi and 

McMahon, 2002) mice to allow systemic, tamoxifen-inducible knock out of HNF4α. 6-8 week 

old CAGGCreERTM;Hnf4αfloxed/floxed mice and CAGGCreERTM;Hnf4αfloxed/+ littermate controls 

were injected intraperitoneally with tamoxifen (1mg/20g body weight, 5 consecutive days) to 

induce cre-mediated Hnf4α deletion. Mice were sacrificed 4 weeks after first tamoxifen 

injection.  
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Immunofluorescence and Quantification 

Stomachs were prepared and stained as described previously.(Ramsey et al., 2007) 

Stomachs were inflated with 10% formalin fixative and suspended in fixative for 4 hours at room 

temp. Tissue was rinsed with 70% EtOH multiple times, arranged in 2% agar in tissue cassettes, 

and paraffin processed. Sections (5µm) were deparaffinized and rehydrated, and antigen retrieval 

was performed by boiling in Trilogy Buffer (Cell Marquee Corporation). Slides were blocked in 

1% BSA, 0.3% Triton X-100 in PBS, then incubated in primary followed by secondary 

antibodies and with fluorescently labeled lectin Griffonia simplicifolia-II (neck cell-specific GS-

II; 1:1,000; Invitrogen). Finally, slides were incubated for 5 min in 1µg/mL bisbenzimide 

(Invitrogen) prior to mounting in 1:1 PBS-glycerol. Primary antibodies used for immunostaining 

were: goat anti-Calregulin (1:200, Sigma), goat anti-human gastric intrinsic factor (GIF) 

(1:2,000; gift of Dr. David Alpers, Washington University), rabbit anti-HNF4α (1:100 Cell 

Signaling), goat anti-BrdU (1:2,000; gift of Dr. Jeff Gordon, Washington University), rabbit anti-

Ki67 (AbCam) and sheep anti-PGC (1:10,000; Abcam).  

For morphological analysis, sections were stained with hematoxylin and. Whole 

slides were scanned with Nanozoom microscope and every 5th unit was measured across each 

slide using Nanozoom Digital Pathology software (Hamamatsu). Samples were randomized, 

and the scorer was blinded to ensure unbiased quantification. 
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Figure Legends 

Figure 1. HNF4α directly enhances Xbp1 expression. A) Chromatin Immunoprecipitation from 

AGS cells transiently transfected with an HNF4α expression plasmid. Two different antibodies 

(α-HNF4α-1, α-HNF4α-1) both showed significant binding of HNF4α to two predicted sites in 

the Xbp1 promoter when compared to serum control. B,C) Western blot and band intensity 

quantification of protein isolated from AGS cells transiently transfected with one of two HNF4α 

expression plasmids or a GFP control plasmid shows XBP1 expression is enhanced by HNF4α.  

Figure 2. Expression of HNF4α in the gastric epithelium. A) HNF4α (green) is expressed in 

isthmal progenitor, pit, neck(purple), and zymogenic (red) cells of the mouse gastric corpus. B) 

Pit/isthmal region shows intense staining of nuclear HNF4α 

Figure 3. Loss of HNF4α leads to increased proliferation in the gastric epithelium. A) 

Proliferation marker Ki67 (green) in WT and ΔHNF4α mouse gastric corpus. B) Quantification 

of BrdU incorporation in WT and ΔHNF4α mouse stomachs  

Figure 4. Loss of HNF4α causes altered ZC morphology. A) Quantification of total area of the 

gastric unit. B) Quantification of the ZC-containing region at the base of the gastric unit, 

normalized to total unit area. C) Quantification of the total area/ZC obtained by dividing the area 

of the ZC region by the number of ZCs. D)Total number of ZCs/unit. All experiments represent 

Mean±SEM of three biological replicates.  
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Figure 5. Loss of HNF4α leads to diminished ER, resembling loss of XBP1. A)H&E staining of 

mouse gastric epithelium in WT and ΔHNF4α mice. White arrowheads highlight the ZC-

containing base region, which is noticeably collapsed in ΔHNF4α mice. B)  E staining of mouse 

gastric epithelium in WT and ΔXBP1 mice. Like HNF4α, the base region is noticeably collapsed 

upon loss of XBP1. C) Immunofluorescent stain of the ER marker, Calregulin (red), in ZCs of 

WT and ΔHNF4α mice. ΔHNF4α mice have significantly reduced ER.  

Figure 6. Neck cell intrusion in ΔHNF4α mice. A) Neck cells (green) in ΔHNF4α mice are 

inappropriately present in the ZC region (red) of the gastric unit. B) Quantification of the average 

distance from the base of the unit to the unit’s first neck cell. C) Quantification of the percentage 

of ZC regions containing neck cells.  
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CHAPTER THREE 

Identification of ANPEP as a Surface Marker 

for Isolation of Mature Gastric ZCs 
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Abstract 

Injury and inflammation in the gastric epithelium can cause disruption of the pathways 

that guide the differentiation of cell lineages, which in turn can cause persistent alterations in 

differentiation patterns, known as metaplasia. Metaplasias that occur in the stomach are 

associated with increased risk for cancer. Methods for isolating distinct gastric epithelial cell 

populations would facilitate dissection of the molecular and cellular pathways that guide normal 

and metaplastic differentiation. Here, we identify Alanyl Aminopeptidase (ANPEP; aka CD13) 

as a specific, surface marker of zymogenic chief cells (ZCs) in the gastric epithelium. We show 

that: 1) among gastric epithelial cells, ANPEP expression is confined to mature ZCs, and 2) its 

expression is lost en route to metaplasia in both mouse and human stomachs. With this new 

marker coupled with new techniques we introduce for dissociating gastric epithelial cells and 

overcoming their constitutive autofluorescence, we are able to reliably isolate pure populations 

of ZCs, and observe changes in ZC differentiation ex vivo in response to epithelial damage.  

Keywords: Aminopeptidase N/CD13, Zymogenic Chief Cell, Gastric Epithelium, Splasmolytic 
Polypeptide Expressing Metaplasia 
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Introduction 

The differentiation and maintenance of each lineage in the epithelium of the body of the 

mammalian stomach is orchestrated by signaling networks and molecular pathways. (Aikou et 

al., 2009; Bredemeyer et al., 2009; Leys et al., 2006)The 3 most abundant differentiated cell 

lineages are: the mucus-secreting pit cells near the luminal surface, the acid-secreting parietal 

cells located mostly in the middle (neck) portion of each gastric unit, and the digestive enzyme-

secreting zymogenic chief cells (ZCs) in the base of the unit. Each cell in the gastric epithelium 

is thought to derive from the same, undifferentiated population of stem cells and is replenished 

throughout adulthood.(Karam and Leblond, 1993b; Werbowetski-Ogilvie et al., 2011) The ZC 

has an unusual differentiation pattern, deriving from the stem cell by an intermediary form, the 

mucous neck cell, which migrates amongst parietal cells for ~ 2 weeks (in mice) towards the 

base before terminal differentiation into ZCs.(Bredemeyer et al., 2009; Karam and Leblond, 

1993a; Ramsey et al., 2007)  

Disruption of the molecular pathways regulating the differentiation of those cell lineages 

through damage or disease can cause a chronic, aberrant differentiation state known as 

metaplasia. In mice and humans, one of the most common such aberrations is associated with 

increased risk for progression to gastric cancer and is termed, splasmolytic peptide-expressing 

metaplasia (SPEM; named because the progenitor marker Spasmolytic Peptide, aka TFF2, 

becomes re-expressed in ZCs, as they reprogram into a metaplastic lineage).(Nozaki et al., 2008) 

SPEM in humans is associated with further potential aberrations in epithelial differentiation 

patterns, like intestinal metaplasia, as well as progression to gastric cancer. (Nam et al., 2010) 
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Metaplasia in the stomach, especially SPEM, is hypothesized to derive largely via the 

cellular reprogramming of ZCs from a post-mitotic, terminally differentiated cell back into a 

proliferative, regenerative state.(Goldenring et al., 2011; Mills and Sansom, 2015; Nozaki et al., 

2008) In certain injury/inflammatory states (in particular, in response to infection with the 

bacterium Helicobacter pylori), ZCs can reprogram, meaning, they reexpress markers of their 

precursor neck-cell phase and also re-enter the cell cycle to become proliferative.(Aikou et al., 

2009; Nam et al., 2010) The molecular pathways underlying ZC reprogramming may be similar 

to those that govern reprogramming of other cells in other tissues during injury/repair (e.g. 

pancreatic acinar cells in acinar-to-ductal metaplasia) and is currently an area of intensive 

research.(Mills and Sansom, 2015) Isolating pure populations of ZCs to analyze the pathways 

that lead to reprogramming would help us understand the molecular underpinnings of this newly 

recognized, fundamental cellular process. Here, we identify a surface marker of ZCs that allows 

the isolation of a pure population from the normal gastric epithelium, Alanyl Aminopeptidase 

(ANPEP).  

ANPEP is a membrane-associated protein involved in the metabolism of peptides by 

diverse cell types. ANPEP null mice have significantly impaired angiogenesis in pathological 

conditions,(Rangel et al., 2007) and ANPEP is required for endothelial cell 

adhesion/invasion.(Mina-Osorio et al., 2008; Petrovic et al., 2007) ANPEP is thought to function 

in the final digestion of peptides in the digestive tract, though its specific function in the gastric 

epithelium is unknown.(Kruse et al., 1988) Intestinal absorption of cholesterol is impaired when 

ANPEP is pharmacologically inhibited.(Kramer et al., 2005) In disease states, ANPEP 

expression in colonic tumors is associated with a poor prognosis for node-positive patients with 

colon cancer, and aberrant expression of ANPEP is a marker for multiple 
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leukemias/lymphomas.(Dalal et al., 2014; Saxena et al., 2010)  We show that ANPEP is 

expressed exclusively in mature ZCs in the gastric epithelium, exploit this to both isolate pure 

populations of ZCs, and document changes in the gastric epithelium in normal and metaplastic 

states.  

46



Materials and Methods 

Bioinformatic Analysis 

Affymetrix Mouse Gene 1.0ST microarrays were used to analyze gene expression in each 

cell lineage from RNA captured with LCM in previously performed experiments.(Capoccia et 

al., 2013; Huh et al., 2012; Ramsey et al., 2007) Affymetrix Mouse Genome 430 2.0 microarrays 

were used to analyze gene expression in stomachs from treated with tamoxifen or vehicle from 3 

pooled mice as described below. Chip quality control and gene specific ANOVA analysis were 

performed using Partek® Flow® software, version 3.0 Copyright ©; 2014 (Partek Inc., St. Louis, 

MO, USA). Zymogenic cell lineage-specific expression was determined by identifying genes 

that were significantly increased in ZCs (fold change >1.5) compared to other gastric epithelial 

cell lineages. To enrich for potential surface markers, ZC specific genes were filtered with Gene 

Ontology (GO) terms “membrane”,  “integral component  of membrane”, and “external side of 

plasma membrane”.  

Animals 

Experiments involving animals were conducted according to protocols approved by the 

Washington University School of Medicine Animal Studies Committee. Mice were maintained 

in a specific-pathogen-free barrier facility. Stomachs from Germline Mist–/– mice and wild-type 

C57BL/6 mice of both sexes (Jackson Laboratory), were used at 6 weeks age. Metaplasia was 

induced with daily intraperitoneal injection of Tamoxifen (5mg/20g body weight) dissolved in a 

vehicle of 10% ethanol and 90% sunflower seed oil (Sigma) as described previously. (Huh et al., 

2012) 
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H. Pylori growth and murine infection 

H. pylori growth conditions and murine infection. The WT cag+ H. pylori strain, PMSS1, 

was cultured on trypticase soy agar with 5% sheep blood agar plates (BD Biosciences). It was 

then cultured in Brucella broth (BB, BD Biosciences) supplemented with 10% FBS (Atlanta 

Biologicals) for 16 to 18 hours at 37°C with 5%CO2. Male C57BL/6 mice were purchased from 

Jackson Laboratories and housed in the Vanderbilt University Animal Care Facilities in a room 

with a 12-hour light-dark cycle at 21°C to 22°C. Mice were orogastrically challenged with either 

Brucella broth (BB), as an uninfected (UI) control (referred to here as "Mock infected"),or with 

the mouse-adapted wild-type cag + H. pylori strain PMSS1. Mice were euthanized at 4 and 8 

weeks post challenge and gastric tissue was harvested for immunohistochemistry as described 

below. 

Patient samples 

Examination of human gastric pathological tissue specimens was approved by the 

Institutional Review Board of Washington University School of Medicine, the Comité de 

Bioetica of Nicaragua for Universidad Nacional Autonoma De Nicaragua-Facultad De Ceincias 

Medicas Managua, and the Research Ethics Board Manager for Health Sciences at the University 

of Toronto. Serial sections (4–6 μm thick) obtained from paraffin-embedded tissue samples 

(H&E and alcian blue–periodic acid–Schiff stains) were reviewed by two pathologists with 

expertise in gastrointestinal diseases. Diagnoses and selection of specific regions of transition 

among normal stomach and SPEM stomach were performed by a third pathologist.  
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Immunofluorescence 

Stomachs were prepared and stained as described previously.(Ramsey et al., 2007) 

Stomachs were inflated with 10% formalin fixative and suspended in fixative for 4 hours at room 

temp. Tissue was rinsed with 70% EtOH multiple times, arranged in 2% agar in tissue cassettes, 

and paraffin processed. Sections (5µm) were deparaffinized and rehydrated, and antigen retrieval 

was performed by boiling in Trilogy Buffer (Cell Marquee Corporation). Slides were blocked in 

1% BSA, 0.3% Triton X-100 in PBS, then incubated in primary followed by secondary 

antibodies and with fluorescently labeled lectin Griffonia simplicifolia-II (neck cell-specific GS-

II; 1:1,000; Invitrogen). Finally, slides were incubated for 5 min in 1µg/mL bisbenzimide 

(Invitrogen) prior to mounting in 1:1 PBS-glycerol. Primary antibodies used for immunostaining 

were: mouse anti-CD13 (1:200, Sigma), goat anti-human gastric intrinsic factor (GIF) (1:2,000; 

gift of Dr. David Alpers, Washington University), and sheep anti-PGC (1:10,000; Abcam). 

Secondary antibodies were AlexaFluor (488, 594)-conjugated anti-mouse or anti-goat (1:500, 

Invitrogen) 

Single Cell Isolation 

Epithelial cells were isolated by methods modified from previously described 

work.(Zavros et al., 2000) Stomachs are removed and washed multiple times in PBS. 

Forestomach and antrum were excised, and corpus was sliced into ~1mm2 fragments. In some 

experiments, tissue was then placed in 50 µm Medicon (Beckman, a chamber designed for 

efficient cutting of tissue),   and mechanically dissociated with 2, 30 second pulses in a 

Medimachine (Beckman). Tissue was removed from the Medicon and incubated in 10mL HBSS 

with 5mM EDTA and 1mM DTT for one hour at 37° with vigorous shaking. Tissue was 
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subsequently passed through a 50 µm mesh filter (Partec). Sections of tissue too large to pass 

through the filter were placed in 10 mL RPMI 1640 with 5% BSA (Sigma) and 1.5 mg/mL 

Dispase II (Stem Cell Technologies) for 1.5 hours at 37° with vigorous shaking and then passed 

through 50 µm mesh again. The dissociated cells that passed through the 50 µm mesh at either 

stage were then pooled, washed twice with cold PBS, filtered through a 50 µm mesh filter once 

more, and stained for Flow cytometry analysis/sorting.  

Flow Cytometry Cell Sorting and Analysis 

Single cells from the epithelial isolation were counted and suspended in PBS with 1% 

BSA and 5mM EDTA at 1 x106 cells/mL. Cells were stained with epithelial cell adhesion 

molecule (EpCAM)-Alexa 647 (1:100, Cell signaling), and CD13-FITC (1:200, BD Pharmingen) 

(20 minutes, 4°C). EpCAM+ single cells from the ANPEP+ and ANPEP- fractions were sorted 

using a MoFlo FACS machine (Dako/Cytomation) or analyzed by FACScan (Becton, Dickinson 

and Company). Flow cytometry data were analyzed with FlowJo 7.6 software.  

Immunofluorescent characterization of Sorted Cells 

EpCAM+ single cells from the ANPEP+ and ANPEP- fractions were plated on slides for 

immunofluorescent staining as follows: 1 x105 cells were pipetted into a plastic chamber, and 

centrifuged onto a slide using a Cystospin Slide Centrifuge (Cytospin) for 3 minutes at 800 RPM 

as previously described.(Pollock et al., 2013) Cells deposited on the slide were fixed with 

methanol (-20°C, 10 minutes), rinsed in PBS, and stained as described above. The number of 

GIF-positive cells was then quantified by an observer blinded to experimental condition in the 

CD13+ and CD13- fractions of cells in 3 separate experiments.  
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qRT-PCR and Western Blot 

RNA was isolated using RNeasy (Qiagen) per the manufacturer’s protocol.  RNA was 

treated with DNase I (Invitrogen) and then reverse transcribed using the SuperScript III 

(Invitrogen) standard protocol (most cDNA syntheses started with 1 µg of total RNA). 

Measurements of cDNA levels were performed by qRT-PCR using a Stratagene (La Jolla, CA) 

MX3000P detection system. Absolute QPCR SYBR green mix (Thermo Scientific) fluorescence 

was used to quantify relative amplicon amounts of Gif, Atp4a, and 18s.   

Cells for western blot analysis were lysed in RIPA buffer. Proteins were quantified by 

DC protein assay (Bio-Rad) and then separated on NuPAGE Bis-Tris gels (Invitrogen), 

transferred onto Amersham Hybond ECL nitrocellulose (GE Healthcare, Buckinghamshire, UK) 

membranes, and detected by Immobilon chemiluminescence (Millipore). Primary antibodies 

used were rabbit anti-ANPEP (Sigma) and rabbit anti-α- and β-tubulin (Cell Signaling). 

Secondary antibodies were horseradish-peroxidase-conjugated donkey anti-rabbit IgG (Santa 

Cruz Biotechnology, Santa Cruz, CA).  

Graphing and Statistics 

Experiments were performed at least 3 times independently. Values represent mean ± 

standard deviation or standard error of mean as indicated. All statistics and graphs were 

determined using GraphPad Prism and visualized with Adobe Illustrator. Statistical analysis was 

by one- or two-tailed Student’s t test, depending on the hypothesis prior to commencing the 

experiment.  
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RESULTS 

ANPEP is a membrane-associated protein expressed in fully differentiated ZCs. 

Given that ZCs have previously been purified by differential centrifugation and not by specific 

markers in published reports, and given our aim to develop flow cytometric techniques to isolate 

them, we sought to identify a surface marker exclusively expressed in ZCs. We identified 

potential ZC-specific markers with a screen using previously obtained microarray data coupled 

with gene ontology analysis.(Capoccia et al., 2013) We compared RNA isolated from pit, 

parietal, neck, and zymogenic cells previously obtained using Laser-capture microdissection and 

measured gene expression changes among these cell populations (Fig. 1A). We first looked for 

targets enriched in zymogenic cells vs. other cell types. Then, we sorted for targets associated 

with the plasma membrane, determined by gene ontology terms (Fig. 1B). Using this method, we 

found a short list of targets potentially expressed on the surface of the ZC that would allow 

isolation via flow cytometry.  

The ZC in a normal stomach is a terminally differentiated, professional secretory cell 

residing in the base of the gastric unit. The ZC may act as a bellwether of damage or disease with 

the capacity to undergo SPEM (i.e., to reprogram to re-express progenitor markers and 

proliferate to repair damage to the gastric unit). To identify potential surface markers to enable 

the isolation of mature, fully-differentiated ZCs, we looked for those surface markers that were 

lost during SPEM induced by gastrotoxic doses of intraperitoneal tamoxifen. High dose 

tamoxifen causes rapid parietal cell death spurring ZC reprogramming to SPEM.(Huh et al., 

2012) We performed Affymetrix GeneChip microarrays of the body of the stomach 12h after 

injection of tamoxifen (5 mg/20 g mouse weight) or vehicle control. As expected, markers of 

terminally differentiated parietal cells were rapidly lost upon treatment with tamoxifen, 
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consistent with parietal cells beginning to die: e.g. ATPase, H+/K+ exchanging, alpha polypeptide 

(Atp4a). A feature of ZCs undergoing SPEM is that, even though they begin to re-express 

progenitor markers, they maintain expression of some ZC genes, while turning off expression of 

others. One gene whose expression is known to be rapidly extinguished is basic helix-loop-helix 

family member a15 (Mist1).(Lennerz et al., 2010) We used this GeneChip screen to determine 

which of the potential ZC surface markers followed the Mist1 pattern, indicating loss of 

expression in concert with ZC reprogramming.  The only ZC specific surface marker (predicted 

from the screen in Fig. 1B) that followed that pattern was Anpep (aka CD13, Fig 1C), whereas 

the other markers were not changed significantly or actually increased during SPEM. Western 

blot of the mouse corpus gastric epithelium showed that ANPEP protein lingered at the 12h time 

point after tamoxifen, but the loss of Anpep mRNA did eventually correlate with decreased 

protein also by 3 days of daily injections (Fig. 1D). Thus, ANPEP is a surface marker, specific to 

ZCs in the normal stomach and lost upon ZC reprogramming in metaplasia.   

ANPEP is expressed exclusively in mature zymogenic cells. To confirm that ANPEP 

expression is specific to ZCs, we used immunofluorescent staining in mouse and human 

stomachs. With confocal microscopy, we observe that ANPEP was expressed in ZCs but not in 

ZC-precursor cells (Fig. 2A-C). As neck cells move towards the base of the gastric epithelium, 

they transition into zymogenic cells, rapidly losing expression of neck cell markers like trefoil 

factor 2 (TFF2) and Griffonia simplicifolia II (GSII), and begin to express ZC markers eg. 

Pepsinogen (PGC) and Gastric intrinsic factor (GIF).(Karam and Leblond, 1993a; Ramsey et al., 

2007) ANPEP expression distinctly marks cells expressing mature ZC markers anddoes not 

overlap with cells expressing ZC-precursor neck cell markers (Fig. 2C). Thus, ANPEP 

specifically identifies mature ZCs in a pattern that indicates expression on both intracellular and 
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plasma membranes supporting the possibility that it might be used as a surface marker to isolate 

pure ZCs from the gastric epithelium.  

MIST1 is not required for ANPEP expression. MIST1 is a transcription factor 

responsible for scaling up the ZC secretory apparatus during terminal differentiation of these 

cells.(Mills and Taghert, 2012) Like ANPEP, in the stomach MIST1 is expressed exclusively in 

mature ZCs, and its expression is rapidly lost as ZCs scale down their secretory apparatus en 

route to SPEM.(Lennerz et al., 2010; Nam et al., 2010) Several of MIST1’s transcriptional 

targets that help establish and maintain the cellular machinery that governs ZC secretion of 

digestive enzymes have been identified.(Capoccia et al., 2013; Tian et al., 2010) To determine if 

Anpep expression might be dependent on MIST1, we analyzed Anpep expression in RNA 

isolated from ZCs, and their mucous neck cell precursors, laser-capture microdissected from 

wild-type (WT) and Mist1–/– stomach bodies.(Capoccia et al., 2013) As expected, Anpep 

expression increased ~10-fold in mature ZCs compared to mucous neck cell precursors; 

however, this increase occurred in both WT and Mist1–/– mice. Thus, Anpep expression in ZCs 

was clearly not dependent on MIST1 (Fig. 3A). Additionally, ANPEP was clearly expressed at 

substantial levels in Mist1–/– ZCs and not mucous neck cells, just as occurs in WT (Fig. 3B). 

Note the ZC (and therefore the ANPEP-expressing) regions are significantly smaller, as 

previously characterized in mice lacking Mist1.(Ramsey et al., 2007)  

ANPEP expression is lost in gastric disease. Recent studies have shown expression of 

ANPEP is altered during tumorigenesis.(Razvi et al., 2007; Wulfanger et al., 2012) For example, 

loss of ANPEP is an adverse prognostic factor in prostate cancer.(Sorensen et al., 2013) Because 
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of our data showing loss of ANPEP in ZCs upon induction of gastric metaplasia, we sought to 

determine if ANPEP expression was altered in other models of gastric disease. Infection by the 

bacterium, Helicobacter pylori (HP), can cause metaplasia in many people and thereby greatly 

increase risk for progression to gastric cancer.(Correa and Houghton, 2007) Indeed, the high-

dose tamoxifen protocol discussed earlier is a rapid, reversible model for the effects of HP 

infection.(Huh et al., 2012) In mice, HP causes, over the course of 2-3 months  parietal cell 

atrophy, and ZC reprogramming into SPEM.(Yoshizawa et al., 2007) In other words, in mice 

colonized by HP, ZCs re-express precursor neck cell markers and become proliferative. 

Eventually, HP infection causes hyperplasias and dysplasias.(Herrera and Parsonnet, 2009) We 

analyzed the base of gastric corpus units in 3 mice infected with a CagA+ strain of Helicobacter 

PMSS1 8 weeks after infection. As expected, infection caused parietal cell atrophy and SPEM in 

multiple regions throughout most of the corpus, by this timepoint (data not shown, but see 

(Capoccia et al., 2013; Khurana et al., 2013) for previous characterization of infections with this 

HP strain in these mice). Using immunofluorescent microscopy, we observed that mice 

colonized by HP labeled with both the neck cell marker GSII, and the ZC marker GIF in  gastric 

ZCs that had reprogrammed into a SPEM differentiation state (Fig. 4A). Only cells that had not 

yet reprogrammed at this timepoint (i.e., did not label with GSII) retained their ANPEP 

expression.  

To determine whether ANPEP expression was also lost in human gastric metaplasia, we 

looked at ANPEP expression in tissue sections from a database of tissues infected with HP that 

show regions of transition between normal and SPEM-type metaplasia that we have previously 

described (Capoccia et al., 2013; Khurana et al., 2013; Lennerz et al., 2010). (Fig. 4B) shows a 

representative region of transition to SPEM. As in completely normal human stomach, ZCs 
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labeled with antibodies against the ZC digestive enzyme pepsinogen (PGC) also labeled with 

antibodies against ANPEP (Fig. 4B). However, ZCs transitioning to SPEM, identified by 

labeling with both PGC and the mucous neck/precursor marker GSII, lose ANPEP expression 

(Fig. 4B). In glands showing complete SPEM, nearly every cell expresses both neck and 

zymogenic markers and has undetectable ANPEP. Even in units nearly completely transformed 

to SPEM, a rare PGC+/GSII- ZC (e.g, cell marked by arrow, Fig. 4B) will still be identifiable by 

its maintained expression of ANPEP. 

Disassociation of Gastric Epithelial Cells and Analysis by Flow Cytometry. Because 

of strong cell-cell junctions and the high mucus environment of the stomach, gastric epithelial 

cells are challenging to dissociate into single-cell populations for isolation by differential 

centrifugation or flow/magnet-based sorting. In the past, we have used laser-capture 

microdissection to isolate cells from tissue, which has been useful for isolating smaller numbers 

of cells to generate RNA that can be amplified for qRT-PCR or microarray analysis (e.g., Fig. 

1A,B). Laser-capture purification of cells is restricted to relatively small numbers of cells and is 

not the ideal technique for isolating pure populations of cell populations that are intermingled in 

tissues with complex organization like the gastric epithelium.(Bredemeyer et al., 2009) However, 

to isolate larger numbers of cells for biochemistry or for culture ex vivo in organoids, we 

experimented with multiple published protocols and with previous methods for dissociation used 

in our lab.(Mills et al., 2003; Mills et al., 2001; Zavros et al., 2000) We found that by 

mechanically disaggregating epithelial tissue before enzymatic digestion using a 

Medimachine,(Ottesen et al., 1996) we were able to reduce the fraction of cell aggregates and 

doublets ~5-fold when compared to tissue cut into small pieces with a razor blade before 

subsequent enzymatic digestion (Fig. 5A). Mechanical disaggreagation did not affect cell 
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viability as measured by Propidium Iodide incorporation (Fig 5B). We have also found that in 

addition to difficulty in achieving single cell dissociation, analysis of gastric epithelial cells with 

flow cytometry is complicated by high levels of autofluorescence of gastric epithelial cells. 

Dissociated single cells from normal mouse stomach fluoresce across the detectable spectrum in 

response to excitation at multiple wavelengths in the absence of any exogenous label. Indeed 

when light emitted from an unstained stomach is compared to that of an unstained spleen in (Fig 

5C), it is evident that any positive signal from staining with antibody-conjugated fluorophores 

could be potentially obscured by non-specific signal from unstained cells.  

When we sorted gastric epithelial cells based on their intrinsic autofluorescence and 

characterized them thereafter by lineage marker expression, we observed no consistent pattern in 

autofluorescence intensity relative to cell lineage or viability (not shown). We established a 

method that reliably detects true positive cells with specific staining by first analyzing emission 

of a gastric epithelial cell population in two close wavelengths on the same plot as shown (Fig 

5D). The autofluorescence in both channels is similar, causing a linear plot of ~x=y light 

emission in each channel. When these cells are stained with an antibody conjugated with a fluor 

that emits at one of the wavelengths, the additional signal is detectable, so positive cells can be 

identified as a population distinct from the autofluorescent cells on the diagonal of the plot.  By 

looking simultaneously at the detectors for APC (positive channel, stained with APC-conjugated 

EpCAM antibody) and APC-Cy7 (negative control channel, used to adjust for autofluroescence) 

in (Fig. 5D), we can see that a population of Epithelial Cell Adhesion Molecule (EPCAM) 

positive cells is distinguishable. This distinct population would not be readily observable by 

analyzing APC signal alone. Mechanical disaggregation and FACS analysis, carefully controlled 
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for autofluorescence, allowed for accurate and repeatable analysis of individual populations of 

gastric epithelial cells.  

ANPEP can be used to isolate mature ZCs from the gastric epithelium. We used the 

above method with ANPEP as a surface marker to isolate a purified population of zymogenic 

cells (Fig 6A). We dissociated, then stained gastric epithelial cells with an APC-Cy7 conjugated 

anti-ANPEP antibody. We found ~14% of EPCAM+ epithelial stomach cells were also ANPEP+, 

consistent with the fraction of gastric epithelial cells that are differentiated ZCs.(Mills et al., 

2003) Additionally, flow-sorted ANPEP positive cells expressed the ZC-specific marker GIF 

(Fig. 6B,C) but not the parietal cell-specific marker Atp4a, while the ANPEP negative fraction 

expressed Atp4a but not GIF (Fig. 6C).  We next induced SPEM using tamoxifen, which led, as 

expected, to a decreased fraction of ANPEP-positive epithelial cells, consistent with earlier 

findings in tissue (Fig. 6D).  
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Discussion 

Elucidation of the molecular mechanisms regulating normal homeostasis in the stomach 

as well as aberrant differentiation patterns like SPEM has been hindered by a limited toolkit for 

isolating and studying individual cell populations. There are few markers of mature gastric ZCs, 

and to our knowledge no ZC-specific surface marker has ever been characterized. Our data show 

that ANPEP is expressed exclusively in mature ZCs and that its expression is lost when they 

reprogram to SPEM-type metaplastic cells in both mice and humans. Here, we have also 

presented what has proven to be a useful for protocol for cell dissociation and flow cytometric 

sorting using ANPEP as a marker to purify ZCs. ANPEP-mediated isolation of ZCs can be used 

in “OMICS” studies in the future to determine, for example, ZC-specific gene expression, 

chromatin modifications, transcription factor binding sites under different conditions. 

Alternatively, we have shown that ZCs expressing specific promoters can serve as 

stem/progenitor cells ex vivo in organoid systems.(Stange et al., 2013) A method for isolating all 

ZCs that is not genetically based (i.e., not based on transgenic or knockin expression of inducible 

Cre recombinases) would be useful in determining the progenitor properties of ZCs in a parallel, 

complimentary manner.   

ANPEP is an integral membrane protein that hydrolyzes peptides in multiple tissues and 

has varying functions that depend on the cells and tissues where it is expressed. In the small 

intestine, ANPEP hydrolyzes peptides from proteins partially digested by gastric and pancreatic 

proteases;(Kruse et al., 1988) it is also required for normal cholesterol absorption. In endothelial 

cells, ANPEP is required for cell motility and adhesion, and disruption prevents endothelial cell 

invasion in matrigel assays.(Ghosh et al., 2014; Mina-Osorio et al., 2008; Petrovic et al., 2007) 

ANPEP null mice don’t manifest any observable phenotypes in normal conditions, but have 
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exhibit impaired angiogenesis in pathological settings.(Rangel et al., 2007) We used several 

small molecule inhibitors of CD13 function (Ezetimibide, Bestatin, Tosedostat, 

Circumin),(Kramer et al., 2005; Rich et al., 1984; Shim et al., 2003; Wickstrom et al., 2011) but 

found no observable phenotype in the normal gastric epithelium (data not shown). ANPEP 

expression correlates negatively with progression to prostate cancer and with aggressiveness of 

disease.(Sorensen et al., 2013) Expression of ANPEP is also known as myeloid antigen, because 

it is expressed in myeloid lineages of the bone marrow, and has been proposed to correlate with 

worse prognosis in lymphoblastic leukemias.(Craddock et al., 2013; Dalal et al., 2014; Shim et 

al., 2014)  Despite a large, and somewhat controversial literature on the topic, it is not clear there 

is functional significance for ANPEP expression in lymphoid leukemias; it may simply be a 

reflection of abnormal gene expression as a whole where genes normally restricted to the 

myeloid lineage are mis-expressed in lymphoid neoplasms.(Alfalah et al., 2006; Pasqualini et al., 

2000; Saxena et al., 2010) ANPEP expression has been shown to be increased in gastric cancers 

with poor prognosis, though we are unaware of previous reports on its expression in normal 

fundic-type mucosal cells like ZCs.(Carl-McGrath et al., 2004) Given that ANPEP is a known 

intestinal protein, and gastric cancers frequently have intestinal differentiation,(El-Zimaity et al., 

2002; Hattori, 1986) it is possible that ANPEP expression is correlated with progression from 

SPEM (thought to be the earliest lesion in gastric cancer tumorigenesis as it correlates with loss 

of parietal cells in the stage known as Atrophic Gastritis),(Nozaki et al., 2008) in which ANPEP 

is not expressed as we show in the current study, to later stage disease like intestinal metaplasia, 

dysplasia, and cancer where it returns.  

The role of ANPEP is in ZCs is not clear. Its rapid loss during SPEM in multiple mouse 

models and human tissue indicates that it may play a role in their secretory function, as one of 
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the first events in ZC reprogramming during injury is scaling down MIST1 and the secretory 

apparatus.(Lennerz et al., 2010) ANPEP expression is on the plasma membrane and also seems 

to be distributed around secretory granules in ZCs. It has been shown to help regulate 

phagocytosis,(Villasenor-Cardoso et al., 2013) be required for development of secretory tissue 

like mammary glands(Kolb et al., 2013) and for secretion of cytokines.(Kuhlmann et al., 2009) 

An interesting function of ANPEP seems to be to specifically degrade the cytokine like IL-8. 

(Kanayama et al., 1995; Mishima et al., 2002) Perhaps ZC ANPEP helps reduce IL-8 abundance 

under homeostatic conditions. More severe damage that can lead to reprogramming of ZCs and 

loss of ANPEP would allow increased abundance of this cytokine to the gastric epithelium.  

In summary, we have refined protocols  for the isolation, and analysis of gastric epithelial 

cells have identified the first surface marker of mature ZCs useful for flow cytometry, and have 

described the pattern of this protein ANPEP in normal and metaplastic gastric epithelium. The 

tools should allow for additional characterization of other isolated gastric epithelial cells with 

other markers and help us better understand the biology of the elaborate but highly plastic 

digestive-enzyme secreting cells of the stomach. 
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Figure Legends: 

Figure 1. ANPEP is expressed in mature gastric zymogenic cells. A) H&E stained gastric unit. 

Each circle represents a distinct cell lineage isolated for Microarray analysis. B) Heat map 

representing enrichment of surface markers of ZCs. Genes enriched in ZCs when compared to 

other cell populations were sorted by gene ontology terms for plasma membrane markers. 5 

potential candidates were identified. C) Change in candidate gene expression in response to 

tamoxifen-induced metaplasia, measured by microarray of RNA isolated from corpus portion of 

mouse stomach. MIST1 is known to be lost in metaplasia. ANPEP was the only candidate from 

panel B with decreased expression. D) Western blot of mouse stomach. ANPEP expression is 

lost when metaplasia is induced with tamoxifen, though loss of protein trails loss of mRNA 

expression in panel C 

Figure 2. ANPEP is expressed exclusively in zymogenic cells. A,B) Human and mouse gastric 

epithelium respectively stained with ANPEP (green), neck cell specific GSII (purple), and 

zymogenic cell specific PGC (red). In every mature zymogenic cell, PGC and ANPEP are 

expressed, but not GSII. C) Confocal image of ZC region of mouse gastric epithelium stained as 

described above. ANPEP expression is absent in cells that express GSII. Arrowhead marks a cell 

in transition between neck and ZC zones. ANPEP is not expressed where GSII epitope is 

maintained and marks only cells that express the ZC marker GIF (Gastric Intrinsic Factor, red). 

All scale bars represent 20μm 

Figure 3. MIST1 is not required for Anpep expression. A) Affymetrix GeneChips generated 

from lasercapture microdissected ZCs and their precursor mucous neck cells from wild-type and 
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Mist1 null mice. Mist1 and Anpep gene expression are enriched in the ZCs relative to neck cells. 

Anpep expression is not decreased when Mist1 is deleted. B) Immunofluorescent staining of wild 

type and MIST1 KO mouse stomach showing no loss of ANPEP protein in ZCs despite the 

absence of MIST1. Note loss of MIST1 does make ZCs smaller.  

Figure 4. ANPEP is lost during ZC metaplasia. A) ZCs in mouse stomachs infected with H. 

pylori undergo SPEM, evidenced by overlapping PGC and GSII expression in the base of units. 

SPEM cells that express both GSII and PGC do not express ANPEP (yellow arrowhead) B) 

Tissue from a patient infected with H. pylori in a region of transition between normal basal 

gastric gland architecture and SPEM-type metaplastic differentiation pattern, ANPEP is 

expressed only in mature ZCs; i.e., only in cells expressing the digestive enzyme PGC and not 

the SPEM/mucous neck cell marker GSII. Normal tissue, tissue transitioning to SPEM, and 

SPEM tissue is highlighted from left to right, respectively. Asterisk indicates a cell that expresses 

both neck and ZC markers (i.e. a SPEM cell), but not ANPEP, adjacent to a cell that expresses 

only ZC markers and has not lost ANPEP expression (i.e. a normal ZC). White arrowhead 

denotes the only cell in the SPEM unit that expresses only ZC markers and retains ANPEP 

expression. 

Figure 5. Optimization of FACS to sort and analyze gastric epithelium A) Doublet 

discrimination analysis of mouse gastric epithelium shows mechanical disaggreagation is 

necessary to achieve single cell isolation (Mean±SEM, n=3 biological replicates). B) Additional 

mechanical disaggreagation does not increase cell death in mouse gastric epithelial cells. 

(Mean±SEM, n=3 biological replicates). C.) Autofluorescent histograms of unstained spleen 
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(grey) and stomach (red) throughout detectable fluorescent spectrum. High levels of 

autofluorescence are present throughout the spectrum in gastric epithelial cells. D) EpCAM 

staining of single gastric cells. 

Figure 6. ANPEP can be used to isolate ZCs A) FACS plot of ANPEP stained gastric 

epithelium. EpCAM-positive cells were stained with an APC-Cy7 conjugated ANPEP antibody 

(x-axis) and plotted against autofluorescence in an unstained channel (APC) B) quantification of 

ZC marker positive cells in sorted fractions. ANPEP-positive mouse gastric epithelial cells were 

isolated using flow cytometry, and attached to a slide using cytospin. Cells were then stained for 

the ZC marker GIF, and quantified. (Mean±SEM, n=3 biological replicates) C) Semi-qPCR of 

ANPEP-positive and negative mouse gastric epithelial cell fractions for ZC (Gif) and parietal cell 

(Atp4a) specific genes. D) FACS quantification of ANPEP expression in EpCAM-positive 

gastric epithelial cells treated with vehicle or high-dose tamoxifen for 12 hours or 3 days to 

induce SPEM. (Mean±SEM, n=3 biological replicates) 
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Abstract 

The transcription factor, X-box Binding Protein-One (XBP1), controls the development 

and maintenance of the endoplasmic reticulum (ER) in multiple secretory cell lineages.  We 

show here that Hepatocyte Nuclear Factor 4-alpha (HNF4α) directly induces XBP1 expression. 

Mutations in HNF4α cause Mature-Onset Diabetes of the Young I (MODYI), a subset of 

diabetes characterized by diminished glucose-stimulated insulin secretion (GSIS). In mouse 

models, cell lines, and ex vivo islets, using dominant negative and human-disease-allele point 

mutants or knockout and knockdown models, we show that disruption of HNF4α caused 

decreased expression of XBP1 and reduced cellular ER networks. GSIS depends on ER Ca2+ 

signaling; we show that diminished XBP1 and/or HNF4α in β-cells led to impaired ER Ca2+ 

homeostasis. Restoring XBP1 expression in the absence of HNF4α was sufficient to completely 

rescue GSIS in β-cells. Our findings uncover a transcriptional relationship between HNF4α and 

Xbp1 with potentially broader implications about MODYI and the importance of transcription 

factor signaling in the regulation of secretion.  

Summary 

HNF4α transcriptionally regulates XBP1, and loss of HNF4α causes diminished 

pancreatic β cell insulin secretion that is rescued by XBP1. 
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Introduction 

Cells use transcription factors to regulate expression of gene cohorts that coordinate 

response to stress, determine specific developmental fates, and scale intracellular architecture 

during physiology and disease.(Huh et al., 2010; Mills and Taghert, 2012). It is well established 

that ER stress causes increased activity of the transcription factor x-box binding protein 1 

(XBP1) via IRE1 splicing of the XBP1 transcript.(Shen et al., 2001; Yoshida et al., 2001). 

However, XBP1 also establishes the subcellular machinery for synthesizing large quantities of 

protein during the normal development of professional secretory cells.(Huh et al., 2010; Lee et 

al., 2005). How XBP1 is induced during differentiation of secretory cells even in the absence of 

substantial ER stress is unclear, but an obvious mechanism is that XBP1 may also be 

transcriptionally regulated.  Hepatocyte Nuclear Factor 4-alpha (HNF4α) is a highly-conserved 

transcription factor responsible for orchestrating the early development and maintenance of 

multiple adult organs. As a master developmental regulator, HNF4α likely acts upstream of the 

factors that establish the extensive cellular machinery required in professional secretory cell 

lineages within those organs. Despite overlapping expression and function, no direct relationship 

between HNF4α and XBP1 has yet been described.  

HNF4α is vital for β-cell function, and indeed, human mutations in HNF4α cause 

Mature-Onset Diabetes of the Young 1 (MODYI), a subset of diabetes characterized by 

diminished glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells.(Yamagata et al., 

1996) While we know that β-cells require HNF4α to function, we understand little about the 

mechanistic/physiological role of HNF4α in these cells. Previous work showed that disrupting 

HNF4α expression in vivo in mouse islets resulted in diminished GSIS similar to that observed 

in MODY patients with HNF4α mutations. Loss of HNF4α also was observed to disrupt Ca2+ 
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signaling, though the mechanisms underlying those defects remain unclear. Decreased ER 

function is a plausible mechanism for the loss of function in MODYI β-cells, because: insulin 

secretion in β-cells is diminished if ER homeostasis is disturbed, (Cardozo et al., 2005; Hara et 

al., 2014) defects in ER-related proteins contribute to multiple diabetic phenotypes in 

humans,(Inoue et al., 1998) and HNF4α has been shown to be important for maintaining ER 

stress response.(Luebke-Wheeler et al., 2008) In addition, knocking down XBP1 specifically in 

β-cells also leads to significantly reduced GSIS.   Finally, disruption of calcium homeostasis in 

the ER leads to impaired GSIS, similar to the pathology observed in MODY1 islets.(Jacobo et 

al., 2009) 

Here we have identified how XBP1 expression is governed at the transcriptional level 

and establish HNF4α as a direct transcriptional regulator of its expression. This implicates 

HNF4α in the maintenance and establishment of secretory-cell ER networks. Accordingly, we 

report for the first time that both HNF4α and XBP1 are required to maintain ER calcium 

homeostasis and GSIS in β-cells. In addition, we show that restoration of XBP1 expression alone 

in islets lacking HNF4α is sufficient to rescue impaired GSIS. Thus, the results may provide new 

insight towards discerning why dysfunction in HNF4α causes the pathophysiological findings in 

MODYI patients.  
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Results 

Regulation of Xbp1 by HNF4α. To elucidate the potential transcriptional regulation of 

XBP1, we identified evolutionarily conserved binding sites in the human XBP1 promoter by 

aligning regions of synteny, then screening them with the Transfac transcription factor binding 

site database.(Ovcharenko et al., 2005)  Two regions with high conservation containing putative 

HNF4α binding sites, 1.4 and 2.6 kilobases upstream of the Xbp1 transcription start site, were 

identified using first the Transfac transcription factor binding library and then affirmed using a 

previously published algorithm developed to search for sites of high HNF4α binding 

affinity.(Bolotin et al., 2010) These putative binding sites were constitutively occupied by 

HNF4α in mouse pancreas, measured via chromatin immunoprecipitation (Fig. 1A). 

Overexpression and knockdown experiments in vitro showed HNF4α was both sufficient and 

necessary for normal Xbp1 expression in pancreatic β-cell derived-cell lines. Disrupting HNF4α 

either by siRNA knockdown (Fig. 1B,C) or by overexpressing a dominant-negative version of 

HNF4α (Fig. 1D,E) resulted in a 65-75% decrease in Xbp1 expression in INS-1 and MIN-6 cells. 

Conversely, overexpression of HNF4α via transient transfection caused a five-fold increase in 

Xbp1 expression (Fig. 1F).  To further substantiate this transcriptional relationship, we analyzed 

the effects of Hnf4α deletion on Xbp1 expression in other tissues by mining published microarray 

studies and by direct qRT-PCR analysis of adult and embryonic liver(Battle et al., 2006) as well 

as adult small intestine (Supplemental Fig. 1)(Bonzo et al., 2012; Cattin et al., 2009; Hayhurst et 

al., 2001). Again, the results showed a consistent trend toward correlation of Xbp1 expression 

decrease with loss of Hnf4α in multiple secretory tissues. 

Various single point mutations in the HNF4α locus have been identified in patients 

afflicted with MODYI. To better understand the impact of these mutations, we designed two 
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HNF4α expression vectors, each containing one of the most prevalent MODYI mutations.(Furuta 

et al., 1997; Lindner et al., 1997) Each of these mutations expressed both a fully functional 

homo-dimerization domain and DNA-binding domain but an altered or truncated ligand-binding 

domain (Supplemental Fig. 2A,B). Overexpression of each of these individual MODYI mutants 

in INS-1 cells resulted in a ~4-fold decrease in the expression of XBP1 (Supplemental Fig. 2C), 

suggesting that prevalent MODYI mutations decrease XBP1 expression in vitro.  

HNF4α is required for ER maintenance in vivo. The mechanisms whereby disruptions 

of HNF4α in MODYI cause β-cell dysfunction remain an area of open debate. As XBP1 is 

critical in scaling up and maintaining the ER of professional secretory cells, we hypothesized 

mutations in HNF4α may drive MODYI pathology via dysregulation of XBP1 and consequent 

ER dysfunction in the insulin-secreting β-cells. We also sought to study the relationship between 

HNF4α and XBP1 in vivo in mice with loss of Hnf4α induced in adulthood, mirroring the onset 

of MODYI. After global deletion of Hnf4α in adult mice, we observed significant loss (~60%) of 

Xbp1 expression in islets and of XBP1 transcriptional targets like Edem1 (Fig. 2A) when 

compared to littermate Hnf4αfloxed/+controls (referred to hereafter as “WT”) (Lee et al., 2003).  

Supporting previous findings, Insulin and Hnf1α mRNA levels were unaffected by loss of 

Hnf4α.(Gupta et al., 2005; Miura et al., 2006) In accordance with XBP1’s role in professional 

secretory cells of maintaining cell architecture and not as a predominantly ER-stress-response 

gene (Huh et al., 2010; Todd et al., 2009), decreased XBP1 in Hnf4αΔ/Δ mice did not cause 

increase in the unfolded-protein response genes Chop, Bip, or Atf4, nor a decrease in mRNA 

levels of the ER marking Calregulin (CRP55)  (Fig. 2B). However, loss of XBP1 following 

deletion of  Hnf4α did correlate with a nearly 7-fold reduction in ER network in β islet cells (Fig. 

82



2C,D, Supplemental Fig. 3A-D). Despite decreased ER in each cell, islet area was not changed in 

Hnf4αΔ/Δ pancreata (Fig. 2E), indicating that Hnf4α is not required to maintain islet number or 

size. Thus, loss of Hnf4α caused diminished ER network, a phenotype similar to that caused by 

deleting Xbp1 from existing adult secretory cells.(Huh et al., 2010; Lee et al., 2005) 

HNF4α and XBP1 are necessary to maintain ER calcium homeostasis. In previous 

reports, constitutive deletion of Hnf4α from islets early in development, as opposed to in the 

adult, caused impaired GSIS.(Gupta et al., 2005; Miura et al., 2006). The mechanism of 

decreased GSIS was hypothesized to result from dysregulated cytoplasmic Ca2+ signaling in 

response to glucose, but the molecular mechanism driving this impairment has remained unclear. 

Ca2+ signaling depends on the ATP-dependent closure of KATP channels, triggering membrane 

depolarization and opening voltage-gated Ca2+ channels(Ashcroft et al., 1984). Thus, one 

mechanism that could mediate how loss of Hnf4α could cause GSIS could be via disruption of 

those channels. However, qPCR analysis showed levels of the KATP channel subunits Sur1 

(Abbc8) and Kir6.2 (Kcnj11) in Hnf4αΔ/Δ islets were unchanged relative to littermate controls 

(Fig. 3A). The sulfonylurea Tolbutamide, which closes KATP channels leading to membrane 

depolarization, stimulated less insulin secretion in INS-1 cells expressing dnHNF4α than in 

normal INS-1 cells (Supplemental Fig. 4). The inhibition of Tolbutamide-stimulated insulin 

secretion caused by disrupted HNF4α was rescued by transduction of Xbp1, though transducing 

Xbp1 alone did not increase tolbutamide-stimulated insulin secretion (Supplemental Fig. 4). 

These data, along with previous work showing impaired insulin secretion even upon 

depolarization with KCl,(Gupta et al., 2005) suggest the defect in the glucose response pathway 
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due to disrupted HNF4α is distal to KATP channel dependent-membrane depolarization and 

depends on loss of XBP1.  

Though KATP channel expression was unchanged in Hnf4αΔ/Δ islets, expression of the 

putative XBP1 transcriptional target, Serca2b(Atp2a2), was significantly reduced. (Park et al., 

2010) SERCA2b is an ER Ca2+ pump, responsible for establishing and maintaining the large 

calcium gradient between the ER and cytoplasm.(Vangheluwe et al., 2005). , Intracellular stores 

of Ca2+ are critical for GSIS, because Ca2+ release from these stores triggers secretion of insulin 

granules. Accordingly, decreasing ER Ca2+ stores and/or flux has been shown to disrupt GSIS 

(Jacobo et al., 2009). Thus, in Hnf4αΔ/Δ mice, the decreased expression of a key molecular driver 

of the ER Ca2+ gradient suggested that disruption of ER Ca2+ stores may play a critical role in the 

GSIS abnormalities seen in the absence of normal HNF4α. We used an ER-specific FRET sensor 

to measure ER [Ca2+] in ΔHnf4α β-cells (Hara et al., 2014; Palmer et al., 2004). The D1ER 

cameleon construct encodes two fluorophores conjugated to a calmodulin molecule that is 

targeted specifically to the ER lumen with a KDEL sequence. When it binds Ca2+, the cameleon 

undergoes a conformational change that approximates the fluors to produce FRET activity 

quantitatively proportional to ER [Ca2+] (Fig. 3B). In accordance with the mechanism of lost 

GSIS in MODYI being disruption of XBP1-mediated ER Ca2+ stores, both knockdown of 

HNF4α and pharmacological inhibition of XBP1 activation in INS-1 cells resulted in decreased 

ER [Ca2+] (Fig. 3C).  Simultaneously knocking down HNF4α and pharmacologically inhibiting 

XBP1 did not augment the decreased ER [Ca2+]. Thus, it is likely that HNF4α and XBP1 work 

via the same pathway to maintain high ER [Ca2+] in adult β-cells. To further explore the 

requirement of HNF4α for proper Ca2+ signaling in β-cells, we observed changes in cytoplasmic 

Ca2+ levels in response to various stimuli in ΔHnf4α and normal INS-1 cells using Fura 2AM-
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based Ca2+ imaging. Expectedly, ΔHnf4α β-cells exhibited a diminished response to stimulation 

with 16.7mM glucose, as observed in other MODYI β-cell models (Fig. 3D, Supplemental Fig. 

5A). To identify the cause of this deficit in Ca2+ signaling, and further explore our previous 

results indicating HNF4α is required for ER Ca2+ homeostasis, we exposed these cells to 20mM 

Caffeine. Caffeine is an agonist of the ryanodine receptor that stimulates release of Ca2+ from 

stores in the ER and thus an increase in cytoplasmic [Ca2+].(Verkhratsky and Shmigol, 1996) 

Caffeine induced diminished cytoplasmic [Ca2+] increase in ΔHnf4α β-cells (Fig. 3E, 

Supplemental Fig. 5B), indicating that ER Ca2+ homeostasis is disrupted. In short, loss of ER 

Ca2+ in ΔHnf4α β-cells may underlie their impaired GSIS.  

XBP1 is sufficient to rescue insulin secretion in ΔHnf4α β-cells. We next sought to 

confirm the physiological relevance of the HNF4α→XBP1 relationship by determining if we 

could rescue aberrant GSIS in the absence of HNF4α simply by restoring XBP1. If XBP1 were 

decreased in the absence of HNF4α due to direct loss of transcriptional upregulation by HNF4α, 

as we hypothesized, then restoration specifically of unspliced XBP1 (XBP1u) should rescue 

GSIS, because XBP1u is the unmodified mRNA directly generated from transcription of the 

XBP1 gene. We used an in vitro model employing transgenic INS-1 cells containing a 

doxycycline inducible dominant negative-HNF4α (dnHNF4α ) (Wang et al., 2000). As with 

other methods we used to examine how loss of HNF4α activity affected insulin-secreting cells 

(e.g., Fig. 1D), doxycycline treatment to induce dnHNF4α caused both decreased XBP1 and loss 

of GSIS (Fig. 4A). This decreased GSIS was completely rescued by adenoviral transduction of 

Xbp1u. As discussed above, forced expression of Xbp1u was also sufficient to rescue impaired 

insulin secretion in response to sulfonylurea treatment in these dnHNF4α β-cells (Supplemental 
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Fig. 4). We repeated this study ex vivo, using Hnf4αΔ/Δ islets isolated 3 weeks following 

tamoxifen-induced Hnf4αΔ/Δ deletion. As expected, cultured islets had impaired GSIS due to 

HNF4α deficiency. Xbp1u restoration increased the direct XBP1 transcriptional targets Edem1 

and Serca2b (Fig. 4B) confirming that transduction of Xbp1u restored functional XBP1-mediated 

transcriptional activity to scale up expression of its normal transcriptional targets. Remarkably, 

restoring unspliced Xbp1 expression in these ex vivo cultured, HNF4α-deficient β-cells was also 

sufficient to completely rescue their GSIS, indicating that the impaired GSIS in the absence of 

HNF4α depends on transcriptional maintenance of XBP1 expression by HNF4α (Fig. 4C). 

Because of the direct transcriptional regulation of XBP1 by HNF4α and the lack of GSIS 

enhancement in WT β-cells transduced with Xbp1u, the ability of Xbp1u to rescue the phenotype 

caused by loss of HNF4α is likely because it corrects the diminished basal Xbp1 expression in 

ΔHNF4α β-cells.  

We also transduced spliced XBP1 (Xbp1s) in isolated ΔHNF4α mouse islets, bypassing 

the normal regulation of transcriptionally regulated Xbp1u by IRE1α splicing. Transduction of 

Xbp1s rescued the XBP1 targets, Edem1 and Serca2b (Supplemental Fig 6A) but resulted in 

GSIS roughly 50% lower than that in control WT islets (Supplemental Fig 6B). That result is 

consistent with previous reports that β-cell homeostasis is compromised by forced expression of 

spliced Xbp1 because cells must be able to dynamically regulate XBP1 levels via the endogenous 

IRE1 splicing mechanism (Allagnat et al., 2010).  Accordingly, Hnf4α Δ/Δ islets infected with 

Xbp1s exhibited GSIS rescue to the levels observed in WT islets infected with Xbp1s, suggesting 

that, while forced expression of XBP1s is detrimental to β-cell health, it is still able to 

compensate for GSIS defects in β-cellscaused by the absence of HNF4α. 

86



Discussion 

We report that Xbp1 is a direct transcriptional target of HNF4α in multiple secretory 

tissues. Given the importance of HNF4α mutations in diabetes, we have focused on the 

relationship between HNF4α and XBP1 specifically in insulin-secreting β-cells. Deletion of 

HNF4α in β-cells causes them to lose XBP1, which in turn causes dismantling of ER. HNF4α 

point mutants designed to match mutations that cause human MODYI also resulted in loss of 

XBP1 in vitro. Loss of either HNF4α or XBP1 leads to disrupted ER Ca2+, which in turn 

diminishes GSIS, a pathology that can be completely rescued by reestablishing normal XBP1 

levels (Fig 4D, Supplemental Fig. 4,6). Together, our results identify a new transcriptional 

relationship between evolutionarily-conserved genes, Xbp1 and Hnf4αΔ/Δ, involved in 

fundamental development and disease in multiple tissues.  

We also demonstrate specific cellular contexts during which Xbp1 expression is 

functionally regulated at the transcriptional level. XBP1 is induced in response to unfolded 

protein accumulation in the ER by splicing of its message via the endonuclease IRE1α, and the 

canonical view of how XBP1 abundance is modulated concern that mechanism. On the other 

hand, in multiple, long-lived professional secretory cells like antibody-secreting plasma cells and 

zymogenic chief cells, expression of the unspliced Xbp1 transcript also increases many fold.(Huh 

et al., 2010; Reimold et al., 2001)  Thus, there are likely transcriptional mechanisms that govern 

expression of Xbp1 as well, though these have largely not been elucidated. It is somewhat 

surprising that HNF4α, which is largely studied in developmental contexts as a master regulator 

of differentiation in endodermal organs, is required for continued maintenance of XBP1 in 

differentiated, adult cells. However, unbiased, comprehensive screens for genes whose 

expression depends on HNF4α have previously identified XBP1 as a potential target(14-17), and 
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chromatin immunoprecipitation followed by sequencing (ChIP-Seq) has also shown peaks 

indicating potential binding of HNF4α to the putative XBP1 promoter.(Boyd et al., 2009) Thus, 

though the results of the previous screens have not been validated and the direct relationship 

between HNF4α and XBP1 has apparently never been specifically studied, our results are not 

entirely unprecedented. Indeed, HNF4α has also been shown to regulate expression of ankyrin 

repeat and sterile α motif domain containing 4b (Anks4b), a protein that binds ER chaperones 

and augments the ER stress response, supporting our hypothesis that HNF4α is required for the 

establishment and maintenance of the ER.(Sato et al., 2012)  

ER Ca2+ homeostasis is important for myriad cellular processes and plays a pivotal role in 

intracellular Ca2+ signaling. Our data indicate that XBP1 and HNF4α are required for 

maintaining this homeostasis. The targets whose expression is dictated by XBP1/HNF4α and 

help maintain ER homeostasis are not clear, but one such candidate target may be SERCA2b. 

Transduction of XBP1u or XBP1s in β-cells increased expression of SERCA2b, the ER Ca2+ 

transporter, in isolated islets (Fig. 4B, Supplemental Fig. 6A), confirming previous studies 

performed in vivo in the liver.(Park et al., 2010)  Thus, our results indicate that knocking down 

HNF4α causes disruption of the expression of the Ca2+ pump responsible for establishing the 

high [Ca2+] in the ER, a functional decrease in ER [Ca2+], and finally, a diminished release of ER 

Ca2+ when cells are stimulated with caffeine (Fig. 3A,C,E). These data outline a potential 

mechanism wherein altered ER Ca2+ homeostasis from loss of HNF4α function disrupts Ca2+ 

signaling and insulin release in β-cells of patients with MODYI (model in Supplemental Fig. 7).  

There are no faithful animal models of MODYI. Some mutations in HNF4α in humans 

result in alleles though to cause diabetes via a dominant negative mechanism,(Furuta et al., 1997; 

Lindner et al., 1997) whereas others would be expected to act via haploinsufficiency.(Alam et 
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al., 1995; Thomas et al., 2001) Thus, it may be premature to reach any firm conclusions about 

MODYI mechanisms based on our results using known MODYI-inducing human 

polymorphisms and adult-onset knockout of Hnf4α in mice. However, if we are to speculate on 

the implications of our findings, we might suggest that they indicate consideration of a new angle 

on MODYI therapy. Currently, MODYI is responsive to treatment with sulfonylureas, though 

treatment often  eventually involves insulin therapy to manage hyperglycemia, presumably 

because β-cells eventually become dysfunctional or die (Pearson et al., 2005). Our results 

suggest that various therapies targeting ER homeostasis, a rapidly developing therapeutic avenue 

with several drugs at various stages of development, may augment or improve existing 

approaches to managing MODYI. 
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Materials & Methods 

Cell lines and Transient Transfection 

Min6 cells were routinely maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

containing 25 mM glucose, supplemented with 10% fetal calf serum, 2 mM L-glutamine, 25 mM 

Hepes, and 285 µM 2-mercaptoethanol, and penicillin and streptomycin. INS-1 832/13 cells 

were cultured in the RPMI 1640 containing 10% fetal bovine serum (FBS), penicillin and 

streptomycin, sodium pyruvate and β-mercaptoethanol. Human embryonic kidney (HEK)-293 

cells (ATCC) were cultured in DMEM containing 10% FBS and penicillin and streptomycin. 

INS-1 cells containing doxycycline inducible dnHNF4α were treated with 500ng/mL 

doxycycline to induce expression as previously described.(Wang et al., 2000) All cells were 

passaged at 90% confluency using trypsin-EDTA. For overexpression of myc-tagged HNF4α2 

coding regions (obtained from addgene) were subcloned into a pcDNA3.1expression vector, and 

5μg of each plasmid or the pmaxGFP(lonza) control plasmid were transiently transfected using 

TransIT-2020 (Mirus, Madison, WI). For mutation analysis, site-directed mutagenesis was 

performed using the HNF4α overexpression vector described above as an initial template. 

Mutations were introduced for each mutant using primers listed in (Supplemental Fig. 9). 

Constructs were verified to be correct by DNA sequencing. For siRNA we transfected MIN6 and 

INS-1 cells with 10nM HNF4α siRNA (silencer select Invitrogen) using Lipofectamine 2000 

according to the manufacturer’s protocol.  

in silico Identification of HNF4α binding sites in XBP1 promoter 

Areas of high conservation among multiple mammalian species (human, rhesus, mouse, 

rat, dog) 10kb upstream and downstream of the XBP1 transcription start site were identified 

using ECR browser (http://ecrbrowser.dcode.org/). These areas were then scanned with the 
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Transfac transcription factor binding database for known transcription factor binding site 

sequences. Two Hnf4α sequences were identified; one 1.2 kb upstream (hg19 chr22:29,198,941) 

of the Xbp1 transcription start site and one 2.4 kb upstream (hg19 chr22:29,197,731).  

qRT-PCR and Western Blot 

RNA was isolated using RNeasy (Qiagen) per the manufacturer’s protocol.  RNA was 

treated with DNase I (Invitrogen) and then reverse transcribed using the SuperScript III 

(Invitrogen) standard protocol (most cDNA syntheses started with 1 µg of total RNA). 

Measurements of cDNA levels were performed by qRT-PCR using a Stratagene (La Jolla, CA) 

MX3000P detection system. Absolute QPCR SYBR green mix (Thermo Scientific) fluorescence 

was used to quantify relative amplicon amounts of Primers listed in Supplemental Fig. 9.  

Cells for western blot analysis were lysed in RIPA buffer. Proteins were quantified by 

DC protein assay (Bio-Rad) and then separated on NuPAGE Bis-Tris gels (Invitrogen), 

transferred onto Amersham Hybond ECL nitrocellulose (GE Healthcare, Buckinghamshire, UK) 

membranes, and detected by Immobilon chemiluminescence (Millipore). Primary antibodies 

used were rabbit anti-XBP1(Santa Cruz), mouse anti-c-myc (dshb), and rabbit anti-α- and β-

tubulin (Cell Signaling). Secondary antibodies were horseradish-peroxidase-conjugated donkey 

anti-rabbit and anti-mouse Ig (Santa Cruz Biotechnology, Santa Cruz, CA). Quantifications of 

immunoblots were performed by scanning 16-bit images into ImageJ. Band intensities for XBP1 

and α/β tubulin were selected and calculated by using the ‘Analyze mean gray value’ 

measurement tool. Standardized values were calculated determining the ratio of XBP1 signal to 

α/β tubulin signal.  
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Chromatin Immunoprecipitation 

Chromatin immunoprecipitation (ChIP) was performed as described previously.(Im et al., 

2004) Approximately 100 mg of tissue from the pancreata of 5, 6-8 week old WT mice were 

homogenized and used for this ChIP experiment. Ten microliters of anti-HNF4α (rabbit anti-

human MIST1) or whole rabbit serum (preimmune control) together with protein A/G plus 

agarose (Santa Cruz Biotechnology, Santa Cruz, CA) was added to the homogenized tissue for 

immunoprecipitation. Quantitative real-time PCR (qRT-PCR) was performed (the sequences 

used and all other primer sequences are available in Supplemental Fig. 9) to assess the quantity 

of genomic sequences immunoprecipitated by either preimmune control or HNF4α antiserum, as 

well as a 1:10 dilution of the cell extract prior to immunoprecipitation (input). Two predicted 

HNF4α binding sites were probed in addition to an intronic control region with no predicted 

HNF4α binding sites nearby. Data are graphed as a percentage of precipitated DNA:total 

input(genomic DNA).  

Mouse Studies 

All experiments involving animals were performed according to protocols approved by 

the Washington University School of Medicine Animal Studies Committee. Floxed HNF4α, 

CAGGCreERTM transgenic mice were generated by crossing Hnf4αfloxed/floxed mice (a gift from 

Frank Gonzalez, NIH)(Hayhurst et al., 2001) with CAGGCreERTM;Hnf4αfloxed/+(Hayashi and 

McMahon, 2002) mice to allow systemic, tamoxifen-inducible knock out of HNF4α. 6-8 week 

old CAGGCreERTM;Hnf4αfloxed/floxed mice and CAGGCreERTM;Hnf4αfloxed/+ littermate controls 

were injected intraperitoneally with tamoxifen (5mg/20g body weight, 5 consecutive days) to 
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induce cre-mediated Hnf4α deletion. Mice were sacrificed 4 weeks after first tamoxifen 

injection. No mouse samples were excluded from analysis in this study.  

Beta-cell morphological characterization using Immunofluorescence 

Pancreata were prepared and stained as described previously.(Tian et al., 2010) Briefly, 

they were fixed with freshly prepared formalin and suspended in fixative for 24 hours at room 

temperature, followed by multiple rinses in 70% ethyl alcohol (EtOH), arrangement in 2% agar 

in a tissue cassette, and routine paraffin processing. Sections (5 μm) were deparaffinized and 

rehydrated, and then antigen retrieval was performed by boiling in 50 mM Tris-HCl, pH 9.0. 

Slides were blocked in 1% bovine serum albumin (BSA) and 0.3% Triton X-100 in phosphate-

buffered saline (PBS) and then incubated in goat anti-Calregulin (SantaCruz) followed by 

AlexaFluor594 antigoat. Fluorescence microscopy and imaging were performed using a Zeiss 

Axiovert 200 microscope with Axiocam MRM camera with Apotome.  

For morphological analysis, 3, 5 µm sections taken 100 µm apart were stained with 

hematoxylin and eosin to allow identification of islets. Whole slides were scanned with 

Nanozoom microscope and the cross-sectional area of islet/total pancreas tissue was measured 

across each slide using Nanozoom Digital Pathology software (Hamamatsu). Samples were 

randomized, and the scorer was blinded to ensure unbiased quantification. Values are expressed 

as %β-cell area. 

Immunofluorescent Quantification 

For quantification of ER in islets, the pancreata of HNF4α KO and littermate control 

heterozygous mice were fixed, mounted and stained as described above. 16-bit images captured 

in Zeiss Axiovision software were analyzed with ImageJ software as follows; Insulin positive 
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regions (Santa Cruz rabbit anti-insulin) were measured as regions of interest, and mean 

fluorescence intensity of the global ER marker Calregulin in each region was determined and 

then subtracted from the median fluorescent intensity of acinar cell regions in the same image to 

normalize fluorescence intensity on each slide. The mean fluorescent intensity was measured in 

every islet in a 5µm section (three mice/condition). Analysis of Calregulin fluorescence was 

restricted to the β-cell cytoplasm by excluding Hoechst-positive (nuclear) regions. After capture, 

each image was assigned a random number so that subsequent fluorescent quantification was 

blind relative to condition. Nuclear areas were identified by Hoescht staining, and pixels with an 

intensity of >30 gray value as determined by the “plot profile” tool in ImageJ were excluded 

from measurement. Hoescht-negative, cytoplasmic pixels were measured and normalized by 

subtracting the mean fluorescence of the surrounding acinar tissue.  

Endoplasmic Reticulum Calcium Fret measurement 

INS-1 832/13 cells stably expressing the D1ER calcium sensor(Hara et al., 2014; Palmer 

et al., 2004) were cultured as described above. Cells were transiently transfected with 10nM 

HNF4α siRNA or scrambled control siRNA to knockdown HNF4α expression. Cells were also 

treated with vehicle or 16µM 4-methyl umbelliferone 8-carbaldehyde (4µ8C) to inhibit XBP1 

splicing as previously described.(Cross et al., 2012) Five days post transfection/treatment, 100k 

cells were seeded in transparent bottom 96 well plates to achieve 70% confluency 6 hours pre-

measurement. Cells were washed twice in PBS and incubated in Krebs-Ringer buffer 

supplemented with 3mM glucose immediately before measurement. To establish maximum and 

minimum ER Ca2+ levels, at this time, cells were respectively treated with 10µM membrane-
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permeabalizing ionomycin and subsequently 10mM CaCl2 or 5mM EGTA. As an additional 

control for low ER Ca2+ Cells were treated with 1µM Thapsigargin to specifically diminish ER 

Ca2+. FRET ratio of the D1ER cameleon was measured using the Tecan Infinite M1000Pro 

microplate reader. Fluorophores were excited at 434 nm, and emission was quantified at 530nm 

(YFP) and 477nm (CFP). The ratios were measured across 4 fields/well, and the values were 

averaged from 4 wells per experimental condition. After FRET microplate measurement, RNA 

was isolated as described above and quantified by qPCR to measure Hnf4α and Xbp1 knockdown 

efficiency (Supplemental Fig. 8).  

Ratiometric calcium imaging and data analysis 

Studies were performed 24 hours after plating INS-1 823/13 cells at 50% confluency and 

carried out at 37°C with 5% CO2 in a perifusion chamber with a flowrate of 2mL/min. Cells 

were loaded with Fura-2AM by incubation at 37°C in Krebs-Ringer buffer supplemented with 

3mM glucose, 1µM Fura-2AM, and 0.1% Pluronic F-127 for 30 min, washed in HBSS, and 

incubated for another 30 min to allow for ester hydrolysis. After loading, cells were imaged on 

an inverted microscope (Till Photonics; Munich, Germany) equipped with a cooled CCD camera 

(Cooke, Auburn Hill, MI) using a ×20/0.45 Plan Fluor objective (Nikon). The fluorescence 

excitation (340 and 380 nm) was provided by a Polychrome V Monochromator (Till Photonics). 

After the matching background was subtracted, the image intensities from each pair of images, 

measured at 520nm, were divided by one another to yield ratio values for individual cells. [Ca2+]i 

in individual cells was estimated based on the formula: [Ca2+]i = KD × B × (R − Rmin)/(Rmax − 

R), where KD is the indicator's dissociation constant for Ca2+ (0.22 μM); R is ratio of 

fluorescence intensity at two different wavelengths (340/380 nm); Rmax and Rmin are the ratios 
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of Ca2+-free and Ca2+-bound Fura-2, respectively; and B is the ratio of the fluorescence intensity 

of the second excitation wavelength at zero and saturating Ca2+ concentrations. The calibration 

constants were determined as previously described,(Grynkiewicz et al., 1985) and the ratio 

values were plotted against time.  

Islet Isolation and Culture 

Pancreatic islets from CAGGCreERTM;Hnf4αfloxed/floxed mice and 

CAGGCreERTM;Hnf4αfloxed/+ littermate controls were isolated as previously described,(Li et al., 

2009) by pancreatic duct injection of 1000 U/mL of collagenase solution (sigma) followed by 

digestion at 37°C for 15 minutes with mild shaking. Islets were washed several times with 

Hanks' balanced salt solution, separated from acinar cells by straining through a 100 µm filter, 

viewed under a dissecting microscope, and handpicked for culture (yield = 200-300 

islets/mouse). Isolated Islets were maintained in RPMI1640 supplemented with 10% FBS and 

penicillin and streptomycin at 37° with 5% CO2. All islets were allowed to recover from 

isolation for 24h before analysis. Islets were isolated from mice in random order relative to 

condition.  

Adenoviral transduction 

Unspliced XBP1 adenovirus (Applied Biological Materials), LacZ Adenovirus (Applied 

Biological Materials), and spliced XBP1 (a gift from Laurie Glimcher),(Lee et al., 2008) were 

amplified in HEK293 cells, cultured as described above.  Infected cells were lysed by three 
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cycles of freezing and thawing and then centrifuged. Viral titer was determined by infecting 

HEK-293 cells with serially diluted viral stock and overlaying with agar and subsequently 

counting the resulting plaques. INS-1 cells containing dnHNF4α were treated with doxycycline 

or vehicle to induce expression of dnHNF4α as described above. Five days post-treatment, cells 

were infected with either XBP1u or LacZ adenovirus at a multiplicity of infection (MOI) of 100. 

Viral stock was replaced with complete medium after 2 hours of infection. Isolated murine islets 

were infected as described previously.(Muniappan and Ozcan, 2009) Briefly, 70 islets/condition 

were washed in cold PBS, pretreated with HBSS containing 2 mM EGTA at 37° with 5% CO2

for 15 min, then infected with adenovirus in serum-free RPMI 1640. Following a15 min 

incubation, complete medium was added to islet culture. Islets were infected for 24 hr before 

GSIS assay and harvesting RNA. Adenovirus was used in isolated islets at the following MOIs 

(Supplemental Fig. 8): LacZ MOI=50, XBP1u MOI=50, XBP1s MOI=10.  

Glucose-Stimulated Insulin Secretion Measurement 

For INS-1 GSIS assay, 2 days post-adenoviral infection cells were washed with PBS, 

then incubated for one hour in Krebs-Ringer Buffer containing 3mM glucose. After one hour, 

cells were washed with PBS, and basal insulin secretion was measured by incubating cells for 

one hour in Krebs-Ringer Buffer containing 3mM glucose. Media were sampled, then replaced 

with media containing 16.7 mM glucose, or 200µM Tolbutamide for one hour. Media were 

collected and analyzed for insulin content by ELISA using the Singulex Erenna platform by the 

Washington University Diabetes Research Center Immunoassay Core. Static GSIS was similarly 

measured in isolated islets as previously described.(Nolan and O'Dowd, 2009) 24h post 
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infection, fifty islets were placed in Krebs-Ringer Buffer containing 3mM glucose to measure 

basal insulin secretion, then stimulated with 16mM glucose. Insulin secretion was measured in 

each condition as described above.  

Graphing and statistic 

All graph values represent the mean of the sample, and error bars represent SEM where 

indicated. Significance was determined using student’s T-test or ANOVA with Dunnet’s 

comparison as indicated. Wherever possible, samples were randomized and measurements were 

blinded to prevent the introduction of experimental bias. Sample sizes were determined based on 

statistical significance and practicality.  
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Figure Legends 

Figure 1. HNF4α is a direct transcriptional regulator of XBP1 A) Immunoprecipitation of 

chromatin from 5 C57/B6 mouse pancreata with anti-HNF4α followed by qPCR (ChIP assay) 

showed significant occupancy at 2 predicted binding sites in the Xbp1 promoter (but not at a 

downstream intronic control site lacking a predicted HNF4α-binding motif) when compared to 

normal preimmune serum controls. B) MIN6 and C.) INS-1 cells were transfected with siRNA 

targeting Hnf4α or scrambled control siRNA and Hnf4α and Xbp1 mRNA was quantified by RT-

qPCR at 48 hours post transfection and normalized to 18S. (means±SEM of n=6 experiments 

depicted, statistical significance by one-tailed Student’s t test) D) INS-1 cells stably expressing a 

doxycycline-inducible Hnf4α construct that acts as a dominant negative were incubated in the 

presence or absence of doxycycline for 7 days (means±SEM of n=12 experiments depicted, 

statistical significance by one-tailed Student’s t test). E) Representative western blot following 

activation of doxycycline inducible myc-tagged DN-HNF4α  in INS-1 cells (label at right is at 

the level of the specific XBP1s protein). F) Transient transfection of INS-1 cells with an HNF4α 

expression vector or a GFP control plasmid and quantification of XBP1 mRNA 48 hours post 

transfection. (means±SEM of n=3 experiments depicted, statistical significance by one-tailed 

Student’s t test).  For all figures the following symbols mean: “***” - p<0.001; “**” - p<0.01; 

“*” – p <0.05.  

Figure 2. HNF4α is required for XBP1 expression in vivo.  Hnf4αfloxed/floxed mice under the 

control of a ubiquitously-expressed CAGGCreERT promoter were treated with tamoxifen to 

induce Hnf4α deletion. A) Pancreatic islets were isolated 28 days after beginning tamoxifen 
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treatment (see Methods) and their RNA harvested. Expression of Xbp1, Hnf4α and the 

downstream XBP1 target, Edem1, was assayed by qRT-PCR. B) Expression of other unfolded 

protein response pathway transcripts, Chop, Bip, and Atf4 were assayed as for (A). C) 

Immunofluorescent images of the ER marker Calregulin reveal altered ER structure in ΔHnf4α 

mouse islets. Scale bars=20µm. D) Mean fluorescent intensity (arbitrary units from 16-bit 

images) of non-nuclear, β-cell-specific Calregulin staining in mouse islets was determined after 

normalizing each tissue section to neighboring acinar Calregulin mean fluorescence (see 

Supplemental Fig. 3 and Methods for more details)  Data represent means±SEM from 3 

mice/condition, significance determined by one-tailed Student’s t-test.  E) Total β-cell area in the 

pancreas was quantified by anti-insulin immunofluorescence from sections by completely 

sectioning through whole tissue blocks of the entire embedded pancreata from ΔHnf4α and 

controls (means±SEM from 6 mice/condition, significance determined by one-tailed Student’s t-

test).   

Figure 3. HNF4α and XBP1 are required for ER Ca2+ Homeostasis. A) qRT-PCR performed 

on RNA harvested from ΔHnf4α islets as for Figure 2 for transcripts for the KATP channel genes 

KIR6.2 (Kcnj11)and SUR1 (Abcc8) and the ER Ca2+ pump SERCA2b (Atp2a2) (means±SEM 

from 6 mice/condition, significance determined by one-tailed Student’s t-test). B) Cartoon of the 

ER Ca2+ FRET Sensor D1ER. In low Ca2+ conditions, calmodulin is conformed in a manner that 

does not allow photon transfer between the 405nm excitable CFP and the unexcitable YFP 

fluorophore. In high Ca2+ conditions, the CFP domain emits at a frequency to excite YFP. 

Measuring the YFP(FRET):CFP ratio determines relative Ca2+ levels in the ER as opposed to 

other cellular compartments. C) FRET:CFP ratio in INS-1 D1ER cells was determine to quantify 
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relative ER  Ca2+ levels under the following conditions: five days after transfection of Hnf4α or 

scrambled siRNA; 5 days after incubation with vehicle or 4µ8c, an inhibitor of XBP1 activation; 

or combinations thereof. To determine maximal detectable Ca2+ levels, FRET:CFP was 

determined 1 hour following treatment with the Ca2+ ionophore  Ionomycin + CaCl2. The 

FRET/CFP of that condition was set to 1.0, and all other conditions were normalized to it. To 

determine the minimal detectable ER Ca2+ levels using this assay, cells were treated with 10µM 

Ionomycin + EGTA for 1 hours or 1 µM Thapsigargin. (means±SEM of n=6 experiments 

depicted, statistical significance by one-tailed Student’s t test). D) Cytoplasmic [Ca2+] of 

individual INS-1 cells 5 days after transfection of Hnf4α or scrambled siRNA determined by 

Fura-2AM emission levels in response to 16.7mM glucose. Plots are representative of (n>50 

cells;4 biological replicates; see other representative plots in Supplemental Fig. 5). E) 

Cytoplasmic [Ca2+] of individual INS-1 cells 5 days after transfection of Hnf4α or scrambled 

siRNA determined by Fura-2AM emission levels in response to 20mM caffeine, an agonist of 

the ryanodine receptor, added to induce release of ER Ca2+ stores. Plots are representative of 

(n>50 cells;4 biological replicates). 

Figure 4. XBP1 is Sufficient for GSIS in ΔHnf4α β-cells. A) Glucose-stimulated insulin 

secretion (GSIS) was determined by harvesting supernatant from wildtype INS-1 and 

doxycycline-inducible DN-HNF4α INS-1 cells following incubation for one hour under high 

(16mM) glucose conditions. Induction of dominant negative HNF4α abrogates GSIS (insulin 

secretion of ~1 means no induction relative to baseline insulin secretion with 3mM glucose). All 

cells were transduced by adenovirus carrying either unspliced Xbp1 or LacZ control vectors. 

Note that Xbp1 transduction rescues GSIS in DN-HNF4α cells (means±SEM of n=6 experiments 
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depicted, statistical significance by one-tailed Student’s t test), B) ΔHNF4α or heterozygote 

control islets were cultured for 24 hours after isolation and then transduced with either LacZ or 

Xbp1 vector-containing adenovirus. 24 hours later, RNA was harvested and qRT-PCR performed 

for transcripts from Hnf4α, Xbp1 and two downstream transcriptional targets of XBP1, Serca2b 

and Edem11 (data represent means±SEM from 3 individual islet isolations and transduction 

experiments). C) Normalized GSIS was determined as for panel (A) with transduction of either 

LacZ or Xbp1 vector-containing adenovirus into isolated islets. Note isolated islets from 

Hnf4αΔ/Δ mice exhibit a complete lack of GSIS. (data represent means±SEM from 3 individual 

islet isolations and transduction experiments) D) Model of MODYI pathology. XBP1 regulates 

transcription of multiple genes like SERCA2B that induce and maintain normal ER and ER 

Ca2+ function. Loss of HNF4α in patients with MODYI causes reduced XBP1 expression. 
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Supplemental Fig. 1. HNF4α is necessary for XBP1 in multiple tissues. A) Quantification of 

mRNA in ΔHNF4α KO embryonic (E18.5) liver tissue relative to wildtype littermates by qRT-

PCR.(Battle et al., 2006) (Significance was determined using student’s t-test; error bars represent 

SEM of 3 mice/condition). B-D) Mouse microarray data archived in the Gene Expression 

Omnibus (GEO)(Cattin et al., 2009; Hayhurst et al., 2001; Lee et al., 2003) show reduced XBP1 

expression upon loss of HNF4α in multiple tissues. Expression intensity values from redundant 

probes for Xbp1 in each normal and ΔHNF4α tissue were averaged together. Error bars represent 

standard deviation of each biological replicate.  

Supplemental Fig. 2 Transfection of Hnf4α containing mutations corresponding to those in 

characterized human MODYI patients decrease XBP1 expression in vitro A) Conserved 

domain analysis of HNF4α2 protein and location of mutations with respect to domains B) 

Structure of the HNF4α homodimer bound to DNA as characterized previously.(Chandra et al., 

2013) Note the location of MODYI mutations, after the homo-dimer/DNA binding domain and 

before the ligand binding domain, presumably allowing mutated HNF4α to function as a 

dominant-negative. C) Xbp1 mRNA expression levels in INS-1 cells transiently transfected with 

MODYI mutants and GFP cDNA as a control. Error bars represent standard deviation of 3 

biological replicates. Significance determined by ANOVA with Dunnet’s comparison. 

Supplemental Fig. 3 Diminished ER in ΔHNF4α mouse islets. A) Epifluorescent images of 

the pan-ER marker calregulin in mouse islets. ΔHNF4α islets exhibit significantly altered ER. B) 

Calregulin (red) and Hoescht (blue) stain of mouse islet. C) Pixel intensity along a line bisecting 
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each islet shows dramatically reduced calregulin signal in the non-nuclear areas of the islet. 

Integration of the Hoescht negative areas was used to determine the cytoplasmic intensity of 

calregulin staining in (Fig. 2D) 

Supplemental Fig. 4. Tolbutamide induced insulin secretion. Expression of a dominant 

negative form of HNF4α in INS-1 cells completely abrogates increased insulin secretion in 

response to tolbutamide exposure, suggesting the MODY1 secretion defect is distal to β-cell 

membrane depolarization in the GSIS signaling cascade. Infection with an adenovirus carrying 

Xbp1u expression vector is sufficient to rescue this GSIS defect. Dn-HNF4α INS-1 cells were 

treated with doxycycline as shown in (Fig. 4A) (means±SEM of n=3 biological replicates 

depicted, statistical significance by one-tailed Student’s t test)  

Supplemental Fig. 5. Cytoplasmic Ca2+ signaling in ΔHNF4α β-cells. A,B) Cytoplasmic 

[Ca2+] of INS-1 cells upon addition of 16.7mM Glucose or 20mM caffeine, respectively, 

determined by Fura-2 excitation ratios. Plots represent cytoplasmic [Ca2+] vs time of individual 

INS-1 cells, and are representative of (n>50) of each condition (4 biological replicates).  Bars at 

the top of each plot indicate duration of treatment. 

Supplemental Fig. 6. Rescue of GSIS in ΔHNF4α islets with spliced Xbp1. A) Disruption of 

Hnf4α expression reduces Xbp1 expression and the expression of downstream XBP1 targets in 

ΔHnf4α mouse islets compared to heterozygous control islets.  B) ΔHnf4α and heterozygote 
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control islets were isolated and treated as in (Fig. 4B) but infected with adenovirus harboring 

plasmid encoding a transcript for spliced XBP1 (XBP1s). XBP1s expression is sufficient to 

partially rescue GSIS in isolated ΔHNF4α islets, but GSIS (i.e. insulin release following 

switching of islets to 16 mM glucose) is diminished in both WT and ΔHnf4α islets compared to 

WT GSIS. LacZ vector-containing adenovirus was used as a control for transduction 

(means±SEM of n=3 experiments depicted, statistical significance by one-tailed Student’s t test) 

Supplemental Fig. 7. Model: HNF4α enhances XBP1 expression leading to robust ER and 

proper insulin secretion in normal conditions. Loss of HNF4α leads to reduced XBP1 expression, 

diminished ER calcium levels, and impaired insulin secretion in response to glucose.  

Supplemental Fig. 8. A) Titration of optimal MOI of control, unspliced, or spliced XBP1 

adenovirus in isolated WT mouse islets shows efficient transfer of XBP1. Islets were isolated 

and cultured as described in methods, then treated with indicated levels of adenovirus before 

quantifying Xbp1 expression by qPCR B) qPCR analysis of D1ER INS-1 cells used in (Fig. 3C). 

Transient transfection of HNF4α siRNA efficiently knocked down expression of both Hnf4α and 

Xbp1. Pharmacological inhibition of post-transcriptional Xbp1 activation with the IRE1α 

inhibitor, 4µ8C had no effect on overall Xbp1 levels.  

Supplemental Fig. 9 Oligonucleotides used 
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Primer Forward Sequence Reverse Sequence
ChIP -1.2 kb Hnf4-alpha site GCCCCAAGGAGACATACAGA GGGGGATAAGTTCAGCTCCT
ChIP -2.4 kb Hnf4-alpha site AAGGGCGGATGAAAAGAGTT TTGGCAATTGGAAATTATGC
ChIP intronic control site GGCGAGTGGTACCTCACTGT AAATGGTGGCAGCCTAGATG
Mouse Hnf4  CTGAAGGTGCCAACCTCAAT CCACACATTGTCGGCTAAAC
Mouse Xbp1 GAACCAGGAGTTAAGAACACG AGGCAACAGTGTCAGAGTCC
Rat Hnf4  CAAGAGGATTGCCAACATCA GAGCAGCACATCCTTGAACA
Rat Xbp1 CACAGACTGCGCGAGATAGA CCAAGCGTGTCCTTAACTCC
Mouse Edem1 CTACCTGCGAAGAGGCCG GTTCATGAGCTGCCCACTGA
Mouse A 4 GGGTTCTGTCTTCCACTCCA AAGCAGCAGAGTCAGGCTTTC
Mouse Chop CCACCACACCTGAAAGCAGAA AGGTGAAAGGCAGGGACTCA
Mouse Insulin TGGCTTCTTCTACACACCCAT CTCCAGTGCCAAGGTCTGAA
Mouse Calregulin AAGTTCTACGGTGACGAGGAG GTCGATGTTCTGCTCATGTTTC
Mouse Hnf1 ACCCATGGCGCGTGGCAAAG CACCTGTGGGCTCTTCAATC
Mouse Kir6.2 CTGGCCATCCTCATTCTCAT TTGGAGTCGATGACGTGGTA
Mouse Sur1 TCAGCAGCACATTCCGTATC GGGCCAGGAACAGAAGTACA

Moore Supplemental Figure 9

R154X HNF4  
R127W HNF4  

GAGGTCCTGTCCTGACAGATCACCTC GAGGTGATCTGTCAGGACAGGACCTC

GAATGAGCGGGACTGGATCAGCACTC GAGTGCTGATCCAGTCCCGCTCATTC
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CHAPTER FIVE 

Conclusions and Future Directions 
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HNF4α is required for Normal Cell-Differentiation in the Adult Mouse Gastric Epithelium 

In Chapter Two, we show that HNF4α is required for the development and maintenance 

of the gastric epithelium. We screened for enhancers of Xbp1 expression and found that HNF4α 

binds the Xbp1 locus and enhances its expression. We show that HNF4α is expressed in the stem 

cell and progenitor zone, pit cells, neck cells, but not in parietal cells in the gastric unit. Loss of 

HNF4α results in increased proliferation and abnormal ZC differentiation in the gastric corpus. 

Despite this increased proliferation in ΔHNF4α stomachs, total gastric unit size was unchanged. 

We provide evidence that this loss of ZC architecture is likely due to lack of Xbp1 expression.  

This is the first characterization of HNF4α in the normal stomach, and adds to our understanding 

of the transcriptional network that orchestrates secretory cell development in the gastric 

epithelium.(Nam et al., 2010)  

The gastric unit differentiates in a highly-conserved, spatiotemporal manner.(Karam et 

al., 1997)  Other dedicated secretory organs don’t turn over constitutively and are arranged in 

more complex, three-dimensional structures, complicating analysis of changing differentiation 

patterns.  In contrast, slight aberrations in gastric unit can be quantified using simple 

histological approaches. This makes it the ideal system to study the molecular mechanics of 

secretory cell development. In chapter two we illustrate this powerful approach by describing 

new functions of HNF4α in differentiating and maintaining secretory cell lineages.   

Future directions: 

 We show that HNF4α is a transcriptional enhancer of Xbp1 in the stomach, and that 

knockout models of both TFs have similar morphological defects. Future studies should establish 

whether this transcriptional relationship is directly required for ZC differentiation. First, 
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I propose measuring levels of XBP1 and downstream TF MIST1 in the gastric corpus using 

western blot. This will establish whether HNF4α is required for Xbp1 expression, or whether 

loss of HNF4α is causing ZC defects through a separate XBP1-independent mechanism. To 

further test this, I would propose rescuing XBP1 in ZCs via ectopic expression, as previously 

described in the liver.(Lee et al., 2005)If the defects in ZC differentiation are rescued, it will be 

clear that HNF4α acts through enhancing Xbp1 expression in ZCs.  

Chapter two shows that HNF4α is necessary for normal gastric epithelial differentiation. 

While our data suggests it acts through Xbp1 to regulate ZC differentiation, the cause of the 

increased proliferation in ΔHNF4α mice is unclear. To elucidate potential drivers of this 

proliferation, I propose gene expression analysis using RNA-seq to identify differences between 

stomachs from WT and ΔHNF4α mice. This would allow analysis of signaling pathways that are 

altered upon loss of HNF4α, and determination of the role of HNF4α in isthmal progenitor cells, 

where its expression is strong. Additionally, to determine if HNF4α coordinates the 

differentiation of ZCs by upstream patterning in progenitor cells, or directly, in the ZC, I 

propose crossing MIST1creERT mice,(Shi et al., 2009) with HNF4αfloxed/floxed mice.(Hayhurst et al., 

2001) If ZC differentiation is disrupted, it is likely due to a cell-autonomous loss of HNF4α, 

rather than an upstream event.  

Finally, an important next step is to understand the role of HNF4α in the 

damaged/diseased gastric epithelium. I propose to measure changes in the expression of HNF4α 

in WT mice in response to damage i.e. high-dose tamoxifen, Helicobacter pylori infection. 

Because loss of HNF4α stimulates proliferation, I expect that HNF4α expression would be 

decreased in response to damage, to allow enhanced proliferation and recovery. I further propose 

histological analysis of WT and HNF4α-null mouse stomachs upon damage, and their 
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subsequent recovery. If ΔHNF4α mice are more prone to severe metaplasia, it would mean that 

HNF4α is required to protect the epithelium. Observing the recovery from damage will also 

increase our understanding in the role of HNF4α in patterning the differentiation of specific cell 

lineages in the gastric unit. These proposed experiments will explore the molecular mechanisms 

of HNF4α in the regulation of gastric secretory cell development.  

Identification of ANPEP as a Surface Marker for Isolation of Mature Gastric ZCs 

In Chapter Three, we identify the first surface marker of mature ZCs in the gastric 

epithelium, ANPEP. Our data shows that neither neck cells neither transitioning to ZCs, nor 

dedifferentiated ZCs express ANPEP in human and mouse models. Importantly, by exploiting 

these properties of ANPEP expression and improving on single cell isolation/FACS sorting 

techniques, we are able to isolate pure populations of mature ZCs from normal mouse stomachs. 

This is a significant improvement upon the current more expensive and time consuming genetic 

manipulation and lineage tracing methods. Using flow cytometry to directly quantify molecular 

changes in the gastric epithelium using cell-surface markers is a powerful tool to characterize 

cellular changes in response to damage or disease. We observed a loss of ANPEP+ epithelial cells 

in response to induction of SPEM, mirroring that observed in RNA expression, protein 

expression, and human immunofluorescence. Using this method, we were able to quantify 

changes in a population of progenitor cells known to proliferate in response to injury.(Khurana et 

al., 2013) CD44 expression in the gastric epithelium is significantly increased upon induction of 

SPEM. This observation is quantifiable by FACS, and, allows for isolation of this cell population 

for further analysis. Accordingly, we were able to isolate this population and analyze its gene 

expression profile using microarray analysis (Fig. 1A) We found that the isolated cells were 

highly enriched in CD44 mRNA, but contained significantly less markers of mature cell lineages 
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(Muc5AC-Pit, Atp4a-Parietal, Pgc/Gif-ZC, Tff2-Neck – Fig. 1B). This illustrates how powerful 

and versatile our improved method is in the analysis of molecular changes in the stomach, and 

enables future studies to characterize unique molecular pathways activated in specific cell 

lineages, and changes in these pathways in damage/disease.  

Future directions: 

The identification of ANPEP as a marker of mature ZCs that’s lost in response to 

damage or disease invites further exploration as to its function in ZC biology. In other tissues, 

ANPEP acts as a mediator of cell-extrinsic signaling and cell migration.(Ghosh et al., 2014; 

Nam et al., 2010; Villasenor-Cardoso et al., 2013) In mouse knockout models, ANPEP is 

required for angiogenesis in hypoxic conditions, but no observable phenotype was found 

elsewhere.(Nam et al., 2010; Rangel et al., 2007) However, the stomach was not analyzed. 

Observing any disruptions in the spatiotemporally conserved differentiation of the gastric unit 

would be instrumental in characterizing the role of ANPEP in ZCs. In preliminary experiments, 

none of the four known inhibitors of ANPEP (Ezetimibide, Bestatin, Tosedostat, Circumin) had 

any morphological effect on the gastric epithelium (data not shown).  

The sorting of ZCs using ANPEP is a proof of principle for how FACS can be applied to 

the characterization of the gastric epithelium. Other gastric epithelial cell lineages can be easily 

isolated and characterized using our improved method. Acid secreting parietal cells, for instance, 

may be sorted using the known surface marker encoded by the Atp4a gene. This technology 

complements recent advances in gastric organoid culture, which may allow the culture and 

characterization of organoids derived not from an entire unit, but rather from a single cell 

population.(Stange et al., 2013) I propose to study the effects of known pharmacological 
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methods of inducing metaplasia, e.g. Tamoxifen, DMP-777, on cultured distinct cell lineages to 

better understand the fundamental drivers of the formation of SPEM.  

The gastric unit is thought to be replenished from a single, multipotent progenitor stem 

cell due to radiolabeling and genetic lineage tracing studies. (Bjerknes and Cheng, 2002; 

Thompson et al., 1990) This cell was first identified in 1966 as a small, undifferentiated cell with 

open chromatin and without granules in the isthmus of the gastric unit. (Corpron, 1966) No 

specific markers have been identified for this cell, preventing the study of the signaling pathways 

that govern gastric stem cell homeostasis in maintenance of the normal epithelium or that drive 

injury response pathways in damaged tissue. I propose exploiting the inherent qualities of stem 

cells in conjunction with our improved cell isolation technique to isolate, and characterize gastric 

stem cells. Fluorescent in situ hybridization,(Hultdin et al., 1998) detection of fluorescent 

hTERT (Ali et al., 2000), or identification by side population(Goodell et al., 1996) may mark the 

progenitor cell population, and allow isolation for RNA analysis using RNA-seq or gene 

expression microarrays. Alternatively, using flow cytometry to sort out and characterize 

individual cells that proliferate in response to damage, like CD44+ cells (Fig 1A), will allow us to 

better understand the gastric epithelium’s damage response pathways, and may uncover potential 

markers of stem, or at least early progenitor, cells in the normal epithelium. These proposed 

experiments will leverage this powerful new approach to better defining the molecular 

underpinnings of the gastric secretory cell.  
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Transcriptional Regulation of Xbp1 by HNF4α is Vital to Beta-Cell Function 

In Chapter four, we established that HNF4α directly binds the Xbp1 promoter locus, and 

is both necessary and sufficient for Xbp1 expression in pancreatic beta-cells. We recreated three 

of the most common HNF4α mutations responsible for MODYI in human patients, and upon 

overexpression found ~4 fold reduction in Xbp1 expression in vitro. in vivo, loss of Hnf4α leads 

to loss of Xbp1, loss of downstream targets of Xbp1, and failure to maintain the extensive ER 

network required for insulin secretion. Interestingly, we found that loss of Hnf4α led to a 

reduction of Serca2b expression. We report that both Hnf4α and XBP1 are required to maintain 

calcium homeostasis in the ER. To the best of our knowledge no one has ever linked XBP1 

activity to ER calcium, despite its important role in ER maintenance. Disruption of Hnf4α 

caused impaired cytoplasmic calcium signaling in response to both glucose, and caffeine, which 

specifically targets the ryanodine receptor to flood the cytoplasm with calcium stored in the ER. 

We hypothesize that loss of HNF4α in beta-cells leads to impaired ER calcium homeostasis, 

disrupting intracellular calcium signaling in response to glucose. As previously reported, loss of 

HNF4α completely ablated GSIS in isolated mouse islets. Rescuing Xbp1 expression was able to 

completely restore GSIS in these islets, indicating that loss of Xbp1 expression due to HNF4α 

dysfunction may be a driving factor in MODYI pathology.  

It’s important to note that, congruent with our hypothesis in Chapter One, restoring 

unspliced Xbp1 expression was sufficient to rescue both downstream transcriptional targets of 

Xbp1 (Edem, Serca2b), and the dysfunctional GSIS in MODYI islets. This suggests that in beta-

cells, the transcriptional regulation of Xbp1 expression is likely the major factor in the regulation 

of its function, and activation of XBP1 by IRE1 is likely not the rate-limiting step in XBP1 

activity. Expressing constitutively activated XBP1 in islets, effectively bypassing IRE1, resulted 
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in reduced GSIS as previously reported.(Allagnat et al., 2010) These data indicate that in our 

XBP1u  rescue experiment, overexpression of Xbp1 is likely rescuing the deficient Xbp1 levels 

caused by HNF4α disruption, and not promoting off-target, compensatory effects.   

MODYI is currently treated with sulfonylureas, selective inhibitors of the KATP channel 

in beta-cells.(Thanabalasingham and Owen, 2011) Gupta et. al. found that in beta-cell specific 

HNF4α knockout mice, expression of the components of this KATP channel were reduced, and 

provided evidence that this was because they are direct transcriptional targets of HNF4α.(Gupta 

et al., 2005) Shortly thereafter, however, Miura et. al. showed that levels of both subunits 

remained unchanged upon loss of HNF4α in a nearly identical system.(Miura et al., 2006) Our 

data confirms these latter results. It would be paradoxical for a reduction in KATP channels to 

cause impaired GSIS, as fewer KATP channels would result in a more easily depolarized 

membrane and subsequent calcium signaling to release insulin.(Cartier et al., 2001) In fact, 

increased KATP channel activity is a well-studied mouse-model of diabetes. (Koster et al., 2000) 

We hypothesize that the mechanism of GSIS impairment in MODYI is the disruption of ER 

calcium homeostasis leading to impaired intracellular calcium signaling in response to an 

increase in glucose concentration.  

Many type 2 diabetes patients, initially responsive to treatment with sulfonylureas, 

require insulin replacement therapy as their disease progresses.(Swinnen et al., 2009) Excessive 

and prolonged stimulation of insulin biosynthesis leads to beta-cell failure and death due to 

chronic ER stress.(Cnop et al., 2005; Prentki and Nolan, 2006)  Similarly, while MODYI 

patients are responsive to sulfonylureas, many eventually require insulin therapy.(Pearson et al., 

2005) Therapeutic agents that directly target the beta-cell ER are an area of intense research, and 

may improve existing approaches to managing MODYI.(Vetere et al., 2014) 
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Future Directions: 

In Chapter four, we show that HNF4α is required to maintain Xbp1 expression in islets, 

and that this leads to a disruption of ER morphology and intracellular signaling. The next 

important step, is to characterize the effect of Xbp1 loss on other members of the UPR network, 

and the function of the ER. The UPR is an intricately regulated signaling network that regulates 

the size and efficiency of the ER in response to increased misfolded protein accumulation and 

various other cell-stress stimuli.(Schroder and Kaufman, 2005) Inhibiting different proteins in 

this signaling network can result in deleterious or enhanced beta-cell function. (Wang and 

Kaufman, 2012) For instance, deleting XBP1 ablates GSIS and impairs insulin processing,(Lee 

et al., 2011) while deleting another key TF in the UPR, CHOP, inhibits beta-cell apoptosis and 

enhances function in mouse models of diabetes.(Song et al., 2008) Because the IRE1-XBP1 arm 

of the UPR is canonically thought to be responsible for response to long-term or chronic ER 

stress, it is important to characterize the effect of its loss on the more acute arms of the UPR. 

Preliminarily, we found that levels of Chop, Atf4, and Bip were unaffected by deletion of Hnf4α. 

However, future directions should further characterize the state of activation of each arm of the 

UPR. Measuring IRE1α and PERK phosphorylation, and ATF6 cleavage in ΔHNF4α islets 

would be an ideal way to elucidate whether beta-cells activate the UPR to compensate for loss of 

Xbp1. Because disrupted ER calcium homeostasis often leads to an accumulation of misfolded 

proteins,(Fu et al., 2011) it is likely that ΔHNF4α beta-cells do have an active UPR, although 

our preliminary studies don’t show any increase in apoptosis in these islets (data not shown).   

While other MODYI mouse models disrupt Hnf4α expression from the early pancreatic 

development stage, our model disrupts Hnf4α acutely in adult mice. This more accurately reflects 

the juvenile onset of MODYI. Our model also uses a ubiquitous CAGCreert driver to knock out 
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HNF4α, mirroring the systemic mutation of HNF4α in MODYI patients. We assayed GSIS in 

this model ex vivo in isolated islets to allow adenoviral transduction of gene expression, and to 

control for non-beta-cell-specific effects of loss of HNF4α. However, mutations in HNF4α are 

also associated with dyslipidemia, renal defects, and other maladies.(Hamilton et al., 2014; 

Weissglas-Volkov et al., 2006) To determine whether the GSIS defect in MODYI is islet 

specific, I propose to induce islet death in WT mice with Streptozotocin, then transplant islets 

from our MODYI mouse to the kidney capsule of the WT mouse. GSIS could then be measured 

and compared between transplanted WT and MODYI islets. Additionally, WT islets could be 

transplanted into the kidney capsule of ΔHNF4α mice, to see if systemic disruption of Hnf4α has 

any non-islet-specific effect on glucose-tolerance or insulin secretion.  

Calcium homeostasis in the ER is known to be important multiple human diseases e.g. 

diabetes, neurodegenerative disorders, cancer.(Sammels et al., 2010) Inflammation models have 

shown that activation of XBP1 leads to expansion of ER calcium stores in bronchial secretory 

cells.(Martino et al., 2009) Our data indicates that XBP1 activity is required for ER calcium 

homeostasis, a predictable, but a novel clue into how XBP1 functions the development and 

maintenance of the ER. Further studies should endeavor to define the molecular mechanism of 

this regulation. Previous work has shown that overexpression of Xbp1 in the liver leads to an 

increase in expression of the main ER calcium pump, Serca2b.(Park et al., 2010) Our data 

shows that loss of Xbp1 due to loss of HNF4α reduces Serca2b expression 2-fold, and that 

restoring Xbp1 is sufficient to rescue this expression. Future experiments should characterize 

whether XBP1 is a direct regulator of Serca2b, or whether this observation is a non-specific 

effect of XBP1 activation. Modulation of ER calcium  is a particularly attractive therapeutic 

target in many human pathologies. To define the role of ER calcium in our MODYI model, 
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ΔHNF4α islets should be treated with pharmacological agents to modulate ER calcium levels. 

Depleting ER calcium stores by inhibiting SERCA2b with thapsigargin reduces GSIS, similar to 

our MODYI model.(Vangheluwe et al., 2005)   ER calcium release is mainly mediated by the 

ryanodine receptors.(Berridge et al., 2003)  Modulators of these receptors such as small 

molecules derived from 1,4-benzothiazepines restore intracellular calcium stores and have been 

used therapeutically in mouse models to treat cardiac arrhythmias attributed to depleted ER 

calcium.(Lehnart and Marks, 2007; Lehnart et al., 2006) I propose treatment of our MODYI 

islets with these modulators of the ryanodine receptor to bolster ER calcium stores and observing 

their effect on GSIS and cytoplasmic calcium signaling. If these small molecules are able to 

rescue the beta-cell defects caused by loss of HNF4α, they may represent a new avenue of 

treatment for MODYI patients.  

In addition to modulating ER calcium as a strategy to alleviate MODYI beta-cell 

dysfunction, I propose further study of the ability of these cells to handle ER stress, and the 

functionality of the ER itself. Preliminary data shows that insulin mRNA levels were 

unchanged in ΔHNF4α islets, but further work is needed to characterize the folding and 

processing of insulin. In MODYI patients, basal insulin secretion is unaffected, and in mouse 

models of MODYI islet insulin content is unchanged.(Gupta et al., 2005; Miura et al., 2006) 

Measuring the levels of insulin/proinsulin in WT and ΔHNF4α islets in our system would 

determine whether the major beta-cell secretory protein is being properly synthesized/processed, 

or whether abnormal insulin production contributes to the impaired glucose response. Small 

molecule chaperones, such as 4-PBA and TUDCA, have been used to alleviate the negative 

effects of ER stress in mouse models of diabetes,(Ozcan et al., 2006) obesity,(Basseri et al., 

2009) and Alzheimer’s disease.(Ricobaraza et al., 2009) They function by assisting proper 

protein folding 
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and processing, reversing the adverse effects of ER stress caused by accumulated misfolded 

proteins. Increasing ER capacity pharmacologically could partially rescue the diminished ER 

caused by lack of Xbp1, and may ameliorate impaired MODYI GSIS.  

The work in Chapter Four exploits genetic tools to characterize the role of HNF4α in 

Xbp1 regulation. The next step forward is to translate these findings into human MODYI 

models. The functional targets of HNF4α are thought to be highly-conserved between mouse 

and human,(Boj et al., 2009) and disrupting HNF4α in mouse islets mirrors the pathology of 

human MODYI patients, therefore we predict that our mechanistic findings will apply to human 

MODYI. The best system to test human MODYI would be in isolated islets from MODYI 

patients. However, the low diagnoses rates of MODYI make this approach unfeasible. I propose 

generating MODYI beta-cells from induced pluripotent stem cells. Well established methods 

(Hua et al., 2013; Stepniewski et al., 2015) could be combined with the recent advances in 

genome editing using the CRISPR-Cas system,(Musunuru, 2013) could be used to create beta-

cells expressing HNF4α containing the most prevalent MODYI mutations, as we did in vitro in 

beta-cell cancer cell lines. ER development, Xbp1 levels, GSIS, and calcium signaling should 

all be characterized to determine whether our model mirrors human MODYI. This system could 

also be used to screen for pharmaceutical compounds with potential to restore GSIS in humans. 

In sum, these experiments will define the role of HNF4α in beta-cells, both in humans and 

mouse models, and may identify new strategies to treat beta-cell dysfunction in MODYI 

patients.  
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Final Remarks 

The goal of this dissertation was to understand the molecular processes that guide the 

differentiation of a cell from a simple, proliferative-progenitor cell, to a highly-complex, 

dedicated secretory cell.  This led me to uncover a novel transcriptional relationship with an 

important role in the gastric epithelium, and likely many other secretory tissues. This effort to 

better understand these professional secretory cells led to the development of new tools to isolate 

them from heterogeneous populations, which will open the doors to future work that will 

characterize their molecular underpinnings. Finally, uncovering this signaling cascade in the 

stomach, led to the answer of the decades-old question of what causes beta-cell dysfunction in 

MODYI, a finding which will hopefully open new avenues to the treatment and prevention of 

this prevalent human disease.  
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Figure 1. Isolation of CD44-positive cells from the gastric epithelium. A) Comparison of 
unstained and stained, EpCAM-positive CD44 cells, plotted vs. autofluorescence. B) Gene 
expression enrichment analysis of markers of mature gastric epithelial cell lineages from CD44+, 
EpCAM+ cells isolated from (A) compared to CD44ˉ, EpCAM+ cells. 
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