
Washington University in St. Louis
Washington University Open Scholarship

Arts & Sciences Electronic Theses and Dissertations Arts & Sciences

Winter 12-15-2017

Roles of Peroxisomes and Peroxisome-Derived
Products in Controlling Plant Growth and Stress
Responses
Elizabeth May Frick
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds

Part of the Agriculture Commons, and the Plant Sciences Commons

This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted
for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For
more information, please contact digital@wumail.wustl.edu.

Recommended Citation
Frick, Elizabeth May, "Roles of Peroxisomes and Peroxisome-Derived Products in Controlling Plant Growth and Stress Responses"
(2017). Arts & Sciences Electronic Theses and Dissertations. 1199.
https://openscholarship.wustl.edu/art_sci_etds/1199

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/102?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds/1199?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1199&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 

 

 

WASHINGTON UNIVERSITY IN ST. LOUIS 

Division of Biology and Biomedical Sciences 

Plant Biology 

 

Dissertation Examination Committee: 

Lucia Strader, Chair  

Arpita Bose 

Elizabeth Haswell  

Joseph Jez 

Dmitri Nusinow 

Bethany Zolman 

 

 

 

Roles of Peroxisomes and Peroxisome-Derived Products in Controlling Plant Growth and Stress 

Responses  

by 

Elizabeth M. Frick 

 

A dissertation presented to  

The Graduate School  

of Washington University in 

partial fulfillment of the 

requirements for the degree 

of Doctor of Philosophy 

 

December 2017 

St. Louis, Missouri 



 

 

 

 

 

 

 

 

 

 

 

 

© 2017, Elizabeth Frick



ii 

 

Table of Contents 

List of Figures ................................................................................................................................ iv 

List of Tables ................................................................................................................................. vi 

Acknowledgments......................................................................................................................... vii 

Abstract of the Dissertation ........................................................................................................... ix 

Chapter 1: Peroxisome Roles in Growth, Development, and Stress Responses ............................. 1 

1.1 Peroxisomes are required for normal plant growth and development ............................. 1 

1.1.1 Peroxisome functions ............................................................................................................ 1 

1.1.2 Peroxisomes in plant development........................................................................................ 2 

1.1.3 Insights from other peroxisome-deficient mutants ............................................................... 4 

1.1.4 Peroxisome division .............................................................................................................. 6 

1.2  Peroxisome Responses to Stress ...................................................................................... 8 

1.3  Questions Addressed in Thesis ........................................................................................ 9 

Chapter 2: MPK17 is a Novel Regulator of Peroxisome Number ................................................ 12 

2.1 MPK17 negatively regulates peroxisome number ......................................................... 12 

2.2 MPK17 acts through PMD1 ........................................................................................... 15 

2.3 MPK17 and PMD1 regulate peroxisome division under NaCl stress ............................ 17 

2.4 MPK17 and PMD1 proliferate peroxisomes normally to other stresses ........................ 20 

2.4.1  mpk17-1 and pmd1-1 respond normally to cadmium stress ............................................... 20 

2.4.3  mpk17-1 and pmd1-1 are not impaired in ROS responses.................................................. 23 

2.5 PMD1 binds actin ........................................................................................................... 25 

2.6 Discussion ...................................................................................................................... 28 

2.6 Materials and Methods ................................................................................................... 31 

Chapter 3: Roles for IBA-derived auxin in plant development .................................................... 39 

3.1 IBA conversion and transport mechanisms ......................................................................... 40 

3.2 IBA-derived auxin drives aspects of root development ...................................................... 45 

3.3 IBA-derived auxin drives aspects of shoot development .................................................... 48 

3.4 Open Questions ................................................................................................................... 49 

4.1 IBA resistance screens in Arabidopsis ........................................................................... 54 



iii 

 

4.1.1 IBA resistance as peroxisomal function marker ................................................................. 56 

4.1.2 IBA roles in stress responses .............................................................................................. 56 

4.2 IBA screen results .......................................................................................................... 57 

4.2.1 IR3 is a dominant, gain of function mutant......................................................................... 59 

4.2.2 IR17 is an IBA-resistant mutant with transporter mutant-like phenotypes ......................... 61 

4.2.3 Other IR mutants ................................................................................................................. 65 

4.3 Discussion and Future Directions .................................................................................. 67 

4.4 Materials and Methods ................................................................................................... 69 

4.4.1 Generating mutant screening populations in S. lycopersicum ............................................ 69 

4.4.2 Screening mutagenized S. lycopersicum for IBA resistance .............................................. 70 

4.4.3 Auxin Assays ...................................................................................................................... 70 

Chapter 5: Double Root is a Recessive, Low-penetrance Meristem Mutant in Solanum 

lycopersicum ................................................................................................................................. 71 

5.1 Double Root phenotypes ................................................................................................ 72 

5.1.1 DR1 and DR3 are low penetrance mutations ...................................................................... 72 

5.1.2 Inheritance and Complementation Groups .......................................................................... 76 

5.2 Whole Genome Sequencing of DR1 .............................................................................. 77 

5.2.1 Whole genome sequencing results ...................................................................................... 78 

5.2.2 SNP verification .................................................................................................................. 79 

5.3 Discussion and Future Directions .................................................................................. 79 

5.4 Materials and Methods ................................................................................................... 80 

Chapter 6: Conclusions and Future Directions ............................................................................. 82 

6.1 New Methods of Regulating Peroxisomes in Arabidopsis............................................. 82 

6.2 Peroxisome-derived Products in S. lycopersicum .......................................................... 84 

6.4 Future Directions ............................................................................................................ 85 

Appendix ....................................................................................................................................... 91 

References ................................................................................................................................... 109 

 

  



iv 

 

List of Figures 

Figure 1:  Schematic of peroxisome matrix protein import.……………………………………....2 

Figure 2: Peroxisomes in auxin homeostasis……………………………………………..............4 

Figure 3: Model of mature plant peroxisome division………………………………...………….7 

Figure 4: Many Arabidopsis MAP kinases display auxin hypersensitivity ………………………13 

Figure 5: mpk17-1 phenotypes …………………………………….. …………………...…….…14 

Figure 6: mpk17 mutant phenotypes are suppressed by loss of PMD1…………………...……….16 

Figure 7: mpk17-1 and pmd1-1 fail to proliferate peroxisomes in response to NaCl treatment…...18 

Figure 8: Neither mpk17-1 nor pmd1-1 display detectable tolerance to NaCl ……………………19 

Figure 9: Peroxisomes under cadmium stress …………………………………….. …….………21 

Figure 10: Peroxisomes in mpk17-1 and pmd1-1 respond normally to sudden light exposure .......22 

Figure 11: mpk17-1 responds to ROS-generating chemical clofibrate…………………………....23 

Figure 12: Neither mpk17-1 nor pmd1-1 display differences compared to wild   

       type in the amount of H2O2……………………………………………………...…...25 

Figure 13: PMD1 is an actin-binding protein ……...…………….. …………………...…………26 

Figure 14: Proposed model of NaCl-regulated peroxisome division mediated through  

        PMD1…………………………………….. ………………………………...………29 

Figure 15: Model of IBA and IAA transport.……………………………………………………..42 

Figure 16: Expression of IBA conversion enzymes……………………………………..………..52 

Figure 17: IR3 is a dominant mutant resistant to both active auxin and auxin precursors.………..59 

Figure 18: IR17 is an IBA-resistant, recessive mutant …………………………………….. ……61 

Figure 19: IR17 is resistant to auxin transport inhibitors …………...………………………….…62 

Figure 20: SNP distribution among S. lycopersicum chromosomes in IR17.………………….... 63 

Figure 21: IR5 and IR12 are resistant to long-chain auxins ………………………..…..……….. 65  



v 

 

Figure 22: IR5 and IR12 display wild type sensitivity to all tested artificial auxins and auxin 

transport disruptors. ……………………………………………………………..…..………….. 66  

Figure 23: IR5 has fertility-related defects ………………………..…..………………………… 67 

Figure 24: DR Mutant Isolation ………………………..…..…………………………………… 72 

Figure 25: DR3 M3 Phenotypes ………………………..…..…………………………………… 73 

Figure 26: DR1/DR3 complementation testing ………………………..…..…………………… 76 

 

  



vi 

 

List of Tables 

Table 1: PEX proteins discovered in loss-of-function studies in Arabidopsis and their 

functions…………….…………….…………….…………….……………………………….....5 

Table 2: Summary of IR Mutant Hormone Responsiveness ……………………..…………………..58 

Table 3: Mutations in IR17 in genes with GO terms containing “transporter.……………... 62-64 

Table 4: Mutant frequency in DR1 and DR3 M4 lines.. …………….…………….….............74-76 

Table 5: Genes from DRI whole genome sequencing with SNP changes consistent with EMS 

mutagenesis …………….………………………………………………………………………..78 

Table 6: Additional wild type and DR line sequencing …………….………………………...…..79 

Table S1: List of all correct bacterial cultures made during the thesis 

research……………………………………………,,,,…………………………………….91-107 

Table S2: List of seed lines used in thesis research in publications and for ongoing projects 

…………………………..………….………………………...……………………………108 

 

 

  



vii 

 

Acknowledgments 

The work described in this dissertation was funded by the United States Department of 

Agriculture- National Institute for Food and Agriculture Fellowship Program (2016-67011-

25096 to Elizabeth Frick), the National Institutes of Health (1R01GM112898 to Lucia Strader), 

and the National Science Foundation (IOS-1453750 to Lucia Strader).  

We also gratefully acknowledge Dr. Hagai Yasuor and Dr. Kamil Tyagi from the Agricultural 

Research Organization in Gilat, Israel, who provided some of the data shown in Chapter 4.  

Elizabeth Frick 

Washington University in St. Louis 

December 2017 

 

  



viii 

 

 

 

 

 

 

 

 

 

Dedicated to my parents, Dr. Theodore Frick and Mrs. Lisa Faller Frick 

  



ix 

 

Abstract of the Dissertation 

Roles of peroxisomes and peroxisome-derived products in controlling plant growth and stress 

responses  
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Elizabeth Frick 
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The peroxisome is a vital organelle conserved through the entire eukaryotic lineage.  In all 

examined species, peroxisomes are responsible for such essential processes as fatty acid beta-

oxidation and metabolism of reactive oxygen species (ROS). In plants, peroxisomes have taken 

on additional specialized roles, such as production of some plant hormones and vitamins. In this 

work, I have uncovered novel factors regulating peroxisome number in model species 

Arabidopsis thaliana, and novel mechanisms governing how peroxisomes respond to salt stress. I 

discovered a role for Arabidopsis MAP KINASE17 (MPK17) as a negative regulator of 

peroxisome division that acts in the salt-stress response pathway of peroxisome division. 

Additionally, I uncovered a novel role for the known peroxisome division factor PEROXISOME 

AND MITOCHONDRIAL DIVISION FACTOR 1 (PMD1) as another regulator of salt-induced 

peroxisome division and as the first known plant peroxisome division factor to bind to actin. A 

forward genetics approach was undertaken to attempt to isolate peroxisome-deficient mutants in 



x 

 

the genetically tractable crop species Solanum lycopersicum, screening mutagenized tomato 

seeds on the auxin precursor indole-3-butyric acid (IBA). Although no peroxisome mutants were 

isolated by this method, several mutants impaired in various other aspects of auxin homeostasis 

were isolated and used to make new discoveries regarding the contributions of IBA to vegetative 

and reproductive tomato development. 
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Chapter 1: Peroxisome Roles in Growth, 

Development, and Stress Responses 

1.1 Peroxisomes are required for normal plant growth and 

development 

1.1.1 Peroxisome functions 

Peroxisomes are small conserved organelles that carry out a variety of critical functions. 

Specific biochemical functions are conferred by the matrix proteins and enzymes, which are 

contained within a single cell membrane. In all eukaryotes, peroxisomes perform fatty acid beta-

oxidation and metabolism of reactive oxygen species (ROS) (reviewed in Islinger et al., 2012a). 

In humans, peroxisome functioning is so crucial that defects in peroxisome biogenesis lead to a 

wide range of disorders with symptoms including retinal dystrophy, liver cysts, bone stippling, 

hypotonia, seizures and other defects (Steinberg et al., 1993). Infants with the most severe form, 

Zellweger syndrome, rarely survive past their first year of life (Steinberg et al., 1993). In plants, 

peroxisomes have acquired a number of additional, specialized roles beyond those conserved 

through all eukaryotes. Plant-specific functions include synthesis of biotin, branched chain 

amino acids, vitamins, and processing some hormone precursors into their active forms 

(reviewed in Islinger et al., 2012a). Before peroxisomes can perform any synthesis or catabolism 

reactions, they must be specialized through the import of matrix proteins. Matrix proteins are 

synthesized in the cytosol with a peroxisome targeting sequence (PTS), which allows the cargo 

receptors to bind (Hu et al., 2012, Fig. 1). After docking to peroxisome membrane proteins, 

cargo is imported into the peroxisome matrix, and the receptors recycled to perform additional 

rounds of import (Hu et al., 2012). 
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 Failure to perform any of these steps leads to peroxisome malfunction, the severity of which 

is amply demonstrated by defects in plant development many peroxisome-deficient mutants 

exhibit, as described below.    

1.1.2 Peroxisomes in plant development 

The most dramatic examples that peroxisomes are critical for early plant survival come 

from the many embryo-lethal peroxisome mutants. Null mutants of PEX2, PEX10, or PEX12 a 

are all embryo lethal (Hu et al., 2002, Sparkes et al., 2003, Fan et al., 2005). All three of these 

PEXs encode zinc RING-finger proteins required for matrix protein import due to their role in 

receptor recycling (Prestele et al., 2010). The importance of proper import of matrix proteins into 

maturing peroxisomes is further supported by the severe defects exhibited by the pex5-10 

(Zolman et al., 2005) and pex7-2 (Ramón and Bartel, 2010) single mutants, which encode the 

receptors that import PTS2 cargo, and the sharp fertility decrease in pex5-1 pex7-1 double 

mutant offspring (Woodward and Bartel, 2005a). The acx3 acx4 double mutant, defective in 

early steps of fatty acid beta-oxidation, are also embryo lethal (Rylott et al., 2003). Another 

 
Figure 1: Schematic of peroxisome matrix protein import.  
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embryo-lethal double mutant is pex19a pex19b, which encode the chaperone protein that guides 

peroxisome membrane proteins through the cytosol (McDonnell et al., 2016). Loss of PEX16, 

which is required for both peroxisome and oil body formation (Lin et al., 2004), is also embryo 

lethal (Lin et al., 1999). Many pex mutations that are not embryo lethal still cannot germinate 

without an exogenous sucrose source, because peroxisomes are the site of lipid breakdown and 

thus energy prior to photosynthesis (Zolman et al., 2000). Beyond the clear importance of PEX 

gene products in early seedling development, defects from decreased peroxisomal function are 

also apparent later in the plant lifecycle.  

Peroxisomes are also required later in the lifecycle of Arabidopsis. Mutants lacking 

PEX13, APEM9, or PEX16 cannot form viable male and female gametophytes (Boisson-Dernier 

et al., 2008), (Li et al., 2014), a defect that can be partially rescued by application of plant 

hormone jasmonic acid (JA) (Li et al., 2014), which is processed inside peroxisomes into its 

active form (Islinger et al., 2012b). Pea leaves undergoing senescence displayed increase 

peroxisome activity and number (Pastori and Del Rio, 1997), and transcripts of numerous Pex11 

isoforms are upregulated during the transition to senescence in Arabidopsis (Orth et al., 2007). 

These phenotypes, although with those displayed in early embryo and seedling development, 

demonstrate that peroxisomes are required at all stages of the plant lifecycle.  

The many ways that disrupting peroxisome function aborts plant development makes the 

essential role of peroxisomes obvious. Beyond these lethal mutants, other peroxin mutants with 

less severe phenotypes have been instrumental to understanding how peroxisomes function, not 

just their importance.  
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1.1.3 Insights from other peroxisome-deficient mutants 

Many peroxisome biogenesis mutants identified in plants were isolated in screens for 

indole-3-butyric acid (IBA) resistance 

(Zolman et al., 2000). IBA is both a 

precursor and storage form of the 

active from of auxin, indole-3-acetic 

acid (IAA), and undergoes conversion 

into IAA inside the peroxisome 

through a process similar to fatty acid 

beta oxidation ((Zolman and Bartel, 

2004), Fig. 2).  

Some of the best characterized 

peroxisome-associated proteins 

isolated from these IBA resistance 

screens are also PEX proteins, and are 

involved in all aspects of peroxisome 

biology (Table 1). 

 

 

 

 

 
Figure 2: Peroxisomes in auxin homeostasis. IBA is 

transported into plant cells (brown) through an unknown 

transporter, then into peroxisomes (green) through 

CTS/PXA1/PED3. Inside the peroxisome, IBA is converted 

into IAA, which stimulates numerous responses. Inability to 

convert IBA into IAA through alterations to peroxisome 

number, matrix proteins, or import efficiency causes IBA 

resistance, but does not affect ability to respond to IAA. 
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PEX Function Reference 

PEX1 Peroxisome protein import, 

required for biogenesis 

(Nito et al., 2007) 

PEX4 Receptor recycling (Zolman et al., 2005) 

PEX5 Receptor responsible for 

transporting PTS1 and 2-

containing cargo 

(Ramón and Bartel, 2010) 

PEX6 Receptor recycling (Zolman and Bartel, 2004) 

PEX7 Receptor responsible for 

transporting PTS1 and 2-

containing cargo 

(Ramón and Bartel, 2010) 

PEX11s Peroxisome division (Orth et al., 2007) 

PEX13 Member of docking complex 

responsible for importing 

PTS1 and 2-containing cargo 

into peroxisome 

(Monroe-Augustus et al., 

2011) 

PEX14 Member of docking complex 

responsible for importing 

PTS1 and 2-containing cargo 

into peroxisome 

(Monroe-Augustus et al., 

2011) 

PEX22 Matrix protein import (Zolman et al., 2005) 
Table 1: List of PEX proteins discovered in loss-of-function studies in Arabidopsis and their functions. 

 PEX4, PEX11, PEX22 are required for peroxisome biogenesis or division (reviewed in Hu et al. 

2012). PEX5 (Ramón and Bartel, 2010), PEX7 (Ramón and Bartel, 2010), PEX13 (Monroe-

Augustus et al., 2011), and PEX14 (Monroe-Augustus et al., 2011) are peroxisome receptors 

responsible for transporting in proteins containing a peroxisome targeting sequence 1 or 2 (PTS1, 

PTS2). PEX4 (Zolman et al., 2005) and PEX6 (Zolman and Bartel, 2004)recycle the peroxisome 

receptors. Beyond these universally required PEXs, plants can further control peroxisome 

activity by specializing peroxisome contents. In peas leaves treated with cadmium, peroxisomal 

glyoxylate cycle enzymes increase in abundance and activity (Sandalio et al., 2001). When 

Arabidopsis is starved, expression of thiolase is upregulated, but other glyoxylate cycle enzymes 

remain unchanged (Charlton et al., 2005a). Under non-stressed development, peroxisomes in 
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young seedlings express genes required for lipid breakdown, then decrease or shut off expression 

of these genes as the plant ages and needs less energy from lipid stores (Charlton et al., 2005a).  

Beyond changing the contents of peroxisomes, plants can also alter peroxisome activity by 

regulating the amount and timing of peroxisome divisions. Peroxisome division is one of the 

most important ways plants increase their peroxisome numbers, and hence is tightly controlled.  

1.1.4 Peroxisome division 

Peroxisomes arise via two different pathways: through de novo biogenesis from the 

endoplasmic reticulum (ER) and by growth and division of mature peroxisomes (Agrawal et al., 

2016). Both pathways exist in all examined species to date, but the predominant method varies 

by organism. For example, yeast cells only undergo de novo biogenesis from the ER if no mature 

peroxisomes are available to undergo division (Motley and Hettema, 2007), whereas mammalian 

cells preferentially undergo de novo synthesis even when mature peroxisomes are present (Kim 

et al., 2006). In plants, numerous lines of evidence demonstrate that peroxisomes are derived 

from the ER, although the exact mechanism remains unclear. Several peroxisomal membrane 

proteins, including PEX16, PEX10, and APX are found in both the ER and peroxisomes in 

Arabidopsis (Karnik and Trelease, 2005; Karnik and Trelease, 2007; Lisenbee et al., 2003). In 

contrast, the process of mature peroxisome division in Arabidopsis is much better understood. 
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Mature peroxisome division requires three distinct steps; growth and elongation, constriction, 

and fission (Schrader, 2006).  

The Pex11 family of proteins may be master regulators of peroxisome division, working at 

all three steps in combination with additional factors. Peroxisome elongation in yeast, mammals, 

and plants is dependent on Pex11 proteins (Abe and Fujiki, 1998; Li and Gould, 2002; Lingard 

and Trelease, 2006). Yeast and mammalian Pex11 proteins are also involved in peroxisome 

fission through interaction with dynamin-like proteins, and also participate in constriction 

(Williams et al., 2015; Yoshida et al., 2015). Whether other, undiscovered protein factors also 

participate in constriction is currently unknown. In Arabidopsis thaliana, peroxisome elongation 

is dependent on Pex11 (Koch et al., 2010; Lingard and Trelease, 2006; Orth et al., 2007), and 

fission is dependent on members of the DYNAMIN RELATED PROTEIN (DRP) and 

FISSION1 (FIS1) protein families (Mano et al., 2004; Zhang and Hu, 2008). A role for 

constriction with the Arabidopsis Pex11 family  has not yet been shown, nor are there any other 

constriction-related proteins known (reviewed in Kaur and Hu, 2009). At least one plant-specific 

division factor, PEROXISOME AND MITOCHONDRIAL DIVISION FACTOR1 (PMD1), also 

participates in plant peroxisome division in a DRP/FIS-independent manner (Aung and Hu, 

2011). The mechanism of PMD1 action on peroxisomes has not yet been elucidated. Clearly, our 

 
Figure 3. Model of mature plant peroxisome division. Peroxisomes are represented in green, which protein 

factors participating in each step listed above the arrows. Mutants whose disruption or overexpression 

alters peroxisome phenotypes are indicated in italics in peroxisomes resembling their mutant phenotype. 
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understanding of the machinery, timing, and roles of peroxisome division factors remains 

incomplete.  

1.2  Peroxisome Responses to Stress 

Peroxisomes in Arabidopsis proliferate in response to a variety of both biotic and abiotic 

stresses, including salt (Fahy et al., 2017; Mitsuya et al., 2010), pathogens (Koh et al., 2005), 

high light (Desai and Hu, 2008), cadmium (Rodriguez-Serrano et al., 2016; Rodriguez-Serrano et 

al., 2009), and general ROS stress (Lopez-Huertas et al., 2000). However, multiple lines of 

evidence suggest that stress induction of peroxisome proliferation is differentially triggered by 

each stress. First, plants do not upregulate peroxisome biogenesis gene expression uniformly in 

response to all of the stresses which result in increased peroxisome division. PEX1 transcripts 

increase in response to light, pathogen, and salt stresses, but remains unchanged in response to 

osmotic stress (Charlton et al., 2005a). In contrast, PEX10 transcripts increase in response to 

both salt stress and to osmotic stress (Charlton et al., 2005b). Second, while the number of 

peroxisomes is reported to increase in response to all the above stresses, the larger peroxisome 

populations do not behave the same way after division. Pathogen attack not only increases the 

number of peroxisomes but also reorients peroxisomes to the site of pathogen attack (Koh et al., 

2005; Lipka et al., 2005).  Under high light stress, plants proliferate peroxisomes and also extend 

peroxules from these peroxisomes, which associate with mitochondria (Delfosse et al., 2015). 

Peroxules also form under cadmium stress (Rodriguez-Serrano et al., 2016), but haven’t been 

reported under high salt conditions or pathogen attacks. Together, these data suggest plants can 

distinguish among these stresses and trigger different peroxisome responses for each of them. 
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Beyond the “how” of stress-induced peroxisome division, questions about the “why” also 

remain.   

An adaptive benefit from peroxisome proliferation remains elusive for most stresses, with the 

exception of pathogen attack, during which peroxisomes directly produce anti-fungal compounds 

(Lipka et al., 2005). Additionally, the rice PEX5 peroxisome receptor is an active anti-fungal 

protein (Lee et al., 2007).  Direct benefit to the plant from increasing peroxisome division during 

salt stress is less readily apparent. Artificially increasing peroxisome number by overexpressing 

peroxisome division factors fails to appreciably increase abiotic stress tolerance in Arabidopsis 

(Koh et al., 2005; Mitsuya et al., 2010). Conversely, salt hypersensitive fry1-6 and sos1 mutants 

fail to proliferate peroxisomes in response to NaCl stress (Fahy et al., 2017). Notably, it has not 

been shown that overexpressing peroxisome division factors in otherwise salt-hypersensitive 

backgrounds can rescue the salt hypersensitivity. Before altering peroxisome number could be 

considered as a means to alter abiotic tolerance, it is crucial to understand why and how plants 

are undertaking this stress response.   

1.3  Questions Addressed in Thesis 

 Because many aspects of plant peroxisome biology are poorly understood, I have 

investigated a few in particular during my thesis research. As described Chapter 1.1.4, we do not 

yet fully understand what protein factors are acting in all steps of peroxisome division. As 

evidenced by the recent discovery of PMD1, and the absence of division factors acting primarily 

at the step of constriction, we likely do not yet know the full complement of division factors in 

plants, nor do we understand the mechanism of action for each known division factors that result 

in aberrant morphology in these division factors’ absence. This thesis identified a novel regulator 
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of peroxisome division and discovered mechanistic details about the known division factor 

PMD1.  

 Second, the importance of peroxisome division to plant stress responses has not been 

determined. As explained in Chapter 1.1.2 and 1.1.4, the process of dividing mature 

peroxisomes, importing the correct matrix components, and monitoring the quality of these 

organelles requires dozens of protein factors and significant investment of plant resources. In 

short, increasing peroxisome number is energetically non-trivial, yet for most stresses during 

which division increases, no benefit to the plant resulting from increased peroxisomes can be 

observed. If the increase in peroxisome number is truly unnecessary for stress response and 

survival, discovering the signaling cascade used by Arabidopsis and/or other species that leads to 

peroxisome division could allow us to alter the peroxisome-specific response and decrease or 

increase it, whichever would result in better energy use efficiency and increased stress survival. 

This thesis identified two new protein factors required for salt-responsive division, and part of 

their mechanism of action, and confirmed existing reports that plants suffer no negative effects to 

whole under salt stress when this pathway is disrupted.  

 Last, nearly all of our understanding of plant peroxisomes and peroxisome metabolic 

contributions comes from studies in the model species Arabidopsis thaliana. Its small size, early 

dependence on lipid metabolism, and ease of genetic manipulation have been powerful research 

tools. However, out of the top ten produce crops in the United States, only soybean is an oilseed 

(Walls, 2017), meaning we cannot necessarily extrapolate all peroxisome functions from 

Arabidopsis to most agronomically important crops, especially our understanding of peroxisome 

roles in early embryogenesis and development.  This thesis generated a screening population 
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suitable for forward genetics in S. lycopersicum, and successfully employed a screening method 

to identify novel auxin-resistant mutants in tomato.  

 In this thesis, the impact of peroxisomes and peroxisome-produced products were 

explored in both the model organism Arabidopsis thaliana, as well as the genetically tractable 

crop Solanum lycopersicum. In Arabidopsis, MAP KINASE17 (MPK17) was identified as a 

novel participant in peroxisome division, and new roles for the known peroxisome division 

factor PEROXISOME AND MITOCHONDRIAL DIVISION FACTOR1 (PMD1) were 

identified. The involvement of both MPK17 and PMD1 in stress-responsive peroxisome division 

was also explored. In S. lycopersicum, an IBA-resistance screening approach was employed to 

expand the collection and characterization of auxin-resistant mutants, especially ones involved in 

fruit production. This screen led to the identification and preliminary characterization of four 

novel auxin resistant mutants, greatly expanding the resources available for studying 

peroxisome-dependent processes such as IBA-to-IAA conversion in non-model organisms.  
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Chapter 2: MPK17 is a Novel Regulator of 

Peroxisome Number 
This work has been accepted for publication in Plant Physiology as  

“Kinase MPK17 and the peroxisome division factor PMD1 influence salt-induced peroxisome 

proliferation.” 

Elizabeth M. Frick and Lucia C. Strader 

Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA 

2.1 MPK17 negatively regulates peroxisome number 
MPK17 was first identified in a preliminary screen for altered auxin sensitivity in all the 

T-DNA insertion lines in Arabidopsis MAP kinases. Analysis of MPK auxin resistance was 

undertaken after the identification of auxin-resistant mutant ibr5 as a dual-specificity protein 

phosphatase predicted to target MAP kinases (Monroe-Augustus et al., 2003). Many T-DNA 

single insertion lines in Arabidopsis MAP kinases display auxin hypersensitivity (Fig. 4). 

Because mpk17 showed a strong degree of hypersensitivity, it was selected for further 

characterization of its auxin responsiveness.  
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An insertional allele defective in MPK17 (At2g01450; Fig. 5A) displayed increased 

sensitivity to IBA in root elongation assays (Fig. 5, B and C) and lateral root induction assays 

(Fig. 5D).  I named this allele mpk17-1 (SALK_020801). Expressing MPK17 behind its native 

upstream regulatory region in the mpk17-1 mutant rescued the IBA hypersensitivity phenotype 

(Fig. 5C), confirming that the lesion in MPK17 caused the observed IBA hypersensitivity.  

mpk17-1 carries a T-DNA insertion in between the fourth and fifth exons of the MPK17 gene 

and displays nearly undetectable MPK17 transcript accumulation (Fig. 5, A and E), suggesting 

that mpk17-1 is likely a null mutant.   

Converse to its IBA hypersensitivity, mpk17-1 displays wild type sensitivity to the short-

chain synthetic auxin 2-4-dichlorophenoxyacetic acid (2,4-D) in root elongation assays (Fig. 5B) 

and the short-chain synthetic auxin NAA in lateral root induction assays (Fig. 5D).  Because this 

pattern of differential sensitivity to short-chain versus long-chain auxins is characteristic of 

mutants with peroxisome defects (Hayashi et al. 1998, Zolman et al. 2000), we examined the 

peroxisomes in wild type and mpk17-1 backgrounds using the 35S:GFP-PTS1 reporter (Zolman 

 
Figure 4: Many Arabidopsis MAP kinases display auxin hypersensitivity. 

Representative plants grown on mock plates or PN supplemented with 

indicated auxin. Wild type grown on high concentrations of auxin displays 

shorter roots and smaller cotyledons than on mock. The mpk mutants have 

significantly shorter roots and smaller cotyledons on auxin than wild type, 

indicative of auxin hypersensitivity.  
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and Bartel 2004).  We found that mpk17-1 displayed more peroxisomes than wild type (Fig. 5, F, 

G, and H). In addition, we observed that more peroxisomes in mpk17-1 were more likely to be 

clustered together than those from wild type (Fig. 5F).  Because mpk17 displays hypersensitivity 

to the protoauxins IBA and 2,4-DB (Fig. 5B), which require functional peroxisomes for 

conversion to active auxins (Zolman et al. 2000), it seems likely that these additional 

peroxisomes are functional. 

 

 

 
Figure 5: mpk17-1 phenotypes. mpk17-1 is hypersensitive to long-chain auxin precursor IBA in root 

elongation (A) and displays wild-type sensitivity to short-chain auxin 2,4-D (B) in root elongation assay 

and lateral root formation (C). Significance was tested by ANOVA, * indicates p<0.05. D) mpk17-1 has 

decreased transcript of MPK17, while rescue lines driving MPK17 behind its native promoter show 

restored MPK17 transcription. E) mpk17-1 displays increased peroxisome numbers compared to wild 

type. Plants expressing a GFP-PTS1 peroxisome marker were grown for 4 days on unsupplemented 

media, then stained with propidium iodine (magenta) and imaged by confocal. Scale bars= 20 µm 
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2.2 MPK17 acts through PMD1 

Overexpressing the peroxisome division factor PEROXISOME AND MITOCHONDRIAL 

DIVISION FACTOR1 PMD1 results in increased peroxisome numbers, with many of these 

peroxisomes present in clusters (Aung and Hu, 2011).  Because this peroxisome phenotype was 

similar to our observations of mpk17-1 (Fig. 5F), we examined whether MPK17 acted through 

this peroxisome division factor.  Although pmd1-1 does not display resistance to the auxin 

precursor IBA (Fig. 6A,B) (Aung and Hu, 2011), we found that pmd1-1 suppressed the IBA 

hypersensitivity displayed by mpk17-1; the mpk17-1 pmd1-1 double mutant displayed wild-type 

sensitivity to the auxin precursor IBA in root elongation (Fig. 6A) and lateral root induction (Fig. 
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6B) assays.  Additionally, pmd1-1 suppressed the increased peroxisome numbers found in 

mpk17-1 (Fig. 6C). 

 

In addition to regulating 

peroxisome proliferation, PMD1 

regulates mitochondria 

proliferation (Aung and Hu, 

2011).  Therefore, if MPK17 acts 

upstream of PMD1, we expect 

the mpk17-1 mutant to display 

increased mitochondria numbers, 

in addition to the observed 

increase in peroxisome numbers. 

We therefore crossed mpk17-1 to 

the mitochondria reporter line 

COX4-YFP (Aung and Hu, 

2011; Nelson et al., 2007) and 

found that mpk17-1 displays 

increased mitochondrial numbers 

compared to wild type (Fig. 6, D 

and E).  Because PMD1 and 

MPK17 appear to act in both 

peroxisome and mitochondria 

 
Figure 6: mpk17 mutant phenotypes are suppressed by loss of PMD1.  

A, Normalized primary root lengths of 8-day old Wt (Col-0), pmd1-1, 

mpk17-1, and mpk17-1 pmd1-1 grown on media supplemented with 

ethanol (mock) or 8 µM IBA (*=p ≤ 0.05, ANOVA). B, Emerged 

lateral roots of Wt (Col-0), pmd1-1, mpk17-1, and mpk17-1 pmd1-1 

were counted four days after transfer of 4-day-old seedlings to medium 

supplemented with indicated hormones. Error bars indicate standard 

error of the mean.  C, Fluorescence images of Wt, mpk17-1, pmd1-1, 

and mpk17-1 pmd1-1 seedling roots stained with BODIPY.  Scale bar 

= 25 µm.  D, Confocal images of Wt and mpk17-carrying the COX4-

YFP (Aung and Hu 2011, Nelson et al. 2007) mitochondrial marker. 

Scale bar = 20 µm. E, Mean number (± SE) of mitochondria in Wt and 

mpk17-1 COX4-YFP lines. mpk17-1 displays significantly more 

mitochondria than wild type (* = p ≤ 0.05, two-tailed unpaired t-test).  
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division and because pmd1-1 suppresses mpk17-1, it is possible that MPK17 and PMD1 act in 

the same pathway to regulate the proliferation of these organelles, with PMD1 acting 

downstream of MPK17.  However, we do not yet know the phosphorylation targets of MPK17 or 

any signaling or transcriptional machinery upstream of PMD1, and therefore cannot directly link 

MPK17 to PMD1. Thus, it remains a possibility that these proteins act in independent pathways 

that affect these processes.  

2.3 MPK17 and PMD1 regulate peroxisome division under 

NaCl stress 
Because peroxisomes divide in response to a variety of stressful conditions (Charlton et al., 

2005b; Desai and Hu, 2008; Koh et al., 2005; Lipka et al., 2005; Mitsuya et al., 2010), and 

because both mpk17-1 (Fig. 2G) and pmd1-1 (Aung and Hu, 2011) display clearly aberrant 

peroxisome division, we examined stress-induced peroxisome proliferation in mpk17-1 and 

pmd1-1. If MPK17 and PMD1 are not involved in peroxisome division upon salt stress, we 

would expect the same increase in peroxisome number in the mutants as wild type when salt-

stressed. If both MPK17 and PMD1 increase peroxisome division during salt stress, we would 

expect to see no difference in peroxisome number between the mutants grown in the presence or 

absence of salt. Neither mutant proliferates peroxisomes in response to NaCl stress (Fig. 7, A and 

D). This is consistent with both MPK17 and PMD1 acting in a salt-responsive peroxisome 

division pathway. Indeed, although mpk17-1 has significantly more peroxisomes than wild type 

when grown on unsupplemented media, mpk17-1 has fewer peroxisomes than wild type when 

grown on media supplemented with NaCl (Fig. 7B). Further, expression of wild type MPK17 

under its native promoter in the mpk17-1 background restores peroxisome proliferation on NaCl 

(Fig. 7D). In addition, PMD1 transcript trends towards a mild elevation in both the mpk17 
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mutant and in response to NaCl in wild type, although these differences are not statistically 

significant (Fig. 7C). The tested KCl and mannitol concentrations failed to stimulate peroxisome 

proliferation in wild type (Fig. 7D), despite the high KCl affecting seedling physiology, 

suggesting that peroxisome proliferation in response to NaCl is not caused by osmotic changes 

and is specific to Na+ ions.  

 
Figure 7: mpk17-1 and pmd1-1 fail to proliferate peroxisomes in response to NaCl treatment.  A, Seedlings carrying 

the GFP-PTS1 peroxisome marker (Zolman and Bartel, 2004) were grown on unsupplemented media for 3 days, then 

transferred to indicated treatments overnight prior to counterstaining with propidium iodide and imaging by confocal 

microscopy.  GFP-PTS1 signal has been false-colored green and propidium iodide signal has been false-colored red. 

B, Mean number (± SE) of peroxisomes in Wt (Col-0), mpk17-1, and pmd1-1 when grown in the absence 

(unsupplemented) or presence of 150 mM NaCl. mpk17-1 displays significantly more peroxisomes (* indicates p ≤ 

0.05, two-tailed unpaired t-test) than wild type on unsupplemented media, but significantly fewer peroxisomes than 

wild type when treated with NaCl. pmd1-1 is statistically indistinguishable from wild type on unsupplemented media, 

and displays significantly fewer peroxisomes than wild type when treated with NaCl (p < 0.05, two-tailed unpaired t-

test). C, Mean relative PMD1 transcript accumulation in 7-day-old Wild type (Wt) and mpk17-1 grown under 

continuous white light at 22 C on unsupplemented media or media supplemented with 150 mM NaCl, determined by 

qPCR. D, Seedlings of Wt (Col-0), mpk17-1, pmd1-1, and two independent mpk17 rescue lines were grown for 3 days 

on unsupplemented media, then transferred to indicated treatments overnight. Seedlings were stained with BODIPY to 

visualize peroxisomes (Landrum et al., 2010) and imaged by confocal microscopy. Scale bar = 25 µm. 
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I then investigated whether the inability to proliferate peroxisomes in response to NaCl 

without MPK17 or PMD1 affects the whole plant tolerance to NaCl. I examined the sensitivity of 

mpk17-1 and pmd1-1 to NaCl using multiple salt tolerance assays, including examination of 

germination in the presence of salt (Fig. 8A), seedling root elongation inhibition by salt (Fig. 

8B), and final adult plant height in response to salt watering (Fig. 8C).   

 
Figure 8: Neither mpk17-1 nor pmd1-1 display detectable 

tolerance to NaCl.  A, Percent seed germination of Wt (Col-0), 

mpk17-1, and pmd1-1 when grown on unsupplemented PNS 

media or PNS supplemented with 150 mM NaCl. B, Mean 

primary root lengths (± SE; n ≥ 10) of Wt (Col-0), mpk17-1, 

and pmd1-1 seedlings when grown on PNS media 

supplemented with the indicated concentration of NaCl. C, 

Mean (± SE; n ≥ 5) final relative adult plant height of Wt (Col-

0), mpk17-1, and pmd1-1 when watered with the indicated 

concentration of NaCl during growth. 
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These assays cover a range of NaCl stress conditions, from a short-term acute stress in root 

elongation to low-level, persistent stress over the majority of the plant’s lifespan, through 

continuous watering with NaCl from 3 weeks old until senescence. We were unable to detect any 

consistent, significant differences between wild type, mpk17-1, or pmd1-1 in any of these assays; 

however, it may be possible that peroxisome proliferation confers an advantage under salt stress 

under non-lab conditions.  

2.4 MPK17 and PMD1 proliferate peroxisomes normally to 

other stresses  

As detailed in Chapter 1.2, NaCl is far from the only stress to induce peroxisome-

division. To determine if MPK17 and PMD1 acted to induce peroxisome division specifically for 

NaCl stress, or whether MPK17 and PMD1 increase peroxisome division after any general 

stress, the ability of mpk17-1 and pmd1-1 to proliferate peroxisomes on a variety of other stresses 

was tested. In all tested stresses, mpk17-1 and pmd1-1 are indistinguishable from wild type, 

showing that MPK17 and PMD1 are acting in an NaCl-specific response pathway.  

2.4.1  mpk17-1 and pmd1-1 respond normally to cadmium stress 

Peroxisomes are reported to divide rapidly when grown on high levels of cadmium 

(Rodríguez-Serrano et al., 2016). To test whether peroxisomes in mpk17-1 and pmd1-1 are 

capable of dividing in response to heavy metals, seedlings were exposed to a short term CdCl2 

stress, then imaged. Wild type did not display a statistically significant increase in peroxisome 

division (Fig. 9A), contrary to published reports which reported a 3-fold increase in peroxisome 

number after three hours (Rodriguez-Serrano et al., 2016). Under short term treatment, both 

mpk17-1 and pmd1-1 also formed peroxules as both seen during these experiments and 
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previously described in wild type under cadmium stress (Figure 9C, (Rodriguez-Serrano et al., 

2016). 

 

 

 
Figure 9: Peroxisomes under cadmium stress A) Peroxisomes in wild type do 

not increase significantly under short term cadmium stress. B) mpk17-1 and 

pmd1-1 respond normally to growth on cadmium by forming peroxules, 

marked with white arrowheads. Scale bars= 5 µm 
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2.4.2  mpk17-1 and pmd1-1 respond normally to high light 

Sudden light exposure has also been reported to induce peroxisome division (Orth et al., 

2007), likely by increasing transcription of Pex11b (Desai and Hu, 2008). To determine whether 

the PMD1 division factor might also be acting in this pathway, I examined the ability of 

peroxisomes in mpk17-1 and pmd1-1 to respond to sudden light exposure. Findings in wild type 

support those previously reported, that sudden light exposure of dark-grown seedlings will 

rapidly and transiently increase peroxisome number (Fig. 10; Orth et al., 2007; Desai and Hu, 

2008). Peroxisomes in dark-grown mpk17-1 and pmd1-1 hypocotyls behave the same as wild 

type, showing a statistically significant increase in peroxisome number within 4 hours of light 

exposure, with peroxisome numbers decreasing back towards initial dark grown levels after 8 

hours of light exposure (Fig. 10).  

 
Figure 10: Peroxisomes in mpk17-1  and pmd1-1 respond normally to sudden light exposure. A) Number of 

peroxisomes in dark grown hypocotyls after indicated length of light exposure. * indicates p value < 0.05. B) 

Representative images of the set used to quantify peroxisome number.  
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2.4.3  mpk17-1 and pmd1-1 are not impaired in ROS responses 

One hypothesis to explain stress induced peroxisome division in Arabidopsis is that all the 

division-inducing stresses also increase intracellular ROS, so the division is a result of increased 

ROS, not from the stress itself. Peroxisomes break down many species of ROS, so a quick 

increase in peroxisome number could be necessary to remove ROS after the stress signal has 

been perceived, but before ROS can damage cellular components. If this hypothesis is true, 

mutants that do not respond divide peroxisomes during stress should have increased ROS during 

the stress. Additionally, any mutant that does not display peroxisome division in response to one 

stress would be expected to have altered responses to all division-inducing stresses, including 

chemicals known to increase intracellular ROS. As shown in Chapter 2.4.1-2.4.3, mpk17-1 and 

pmd1-1 respond normally to cadmium and light stress, and only fail to divide peroxisomes in 

response in NaCl stress. mpk17-1 was also evaluated on ROS-producing chemical clofibrate, 

which increases peroxisome division in mammalian cells (Hess et al., 1965). mpk17-1 is capable 

of responding to clofibrate and proliferates peroxisomes like wild type, strongly suggesting that 

ROS signaling is not impaired (Fig. 11). 

 
Figure 11: mpk17-1 responds to ROS-generating chemical clofibrate. 
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To assess whether the decrease in peroxisome numbers in mpk17-1 and pmd1-1 on NaCl 

resulted in abnormal levels of ROS species, 3,3-diaminobenzidine (DAB) staining was used to 

qualitatively compare the amount of ROS in wild type, mpk17-1, and pmd1-1. DAB is 

monomeric until exposure to H2O2, at which point it polymerizes and can be visualized as a dark 

aggregate in cleared plant tissue (Hans Thordal-Christensen; Ziguo Zhang; Yangdou Wei, 1997). 

All genotypes were examined after growth on regular PN media or media supplemented with 150 

mM NaCl. Neither mpk17-1 nor pmd1-1 display obvious alterations in the amount of H2O2 on 

either condition when compared to wild type (Fig. 12).  
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2.5 PMD1 binds actin  

To further elucidate the function of the recently discovered PMD1 protein, I used the online 

protein structure prediction program Phyre2 to model secondary protein structure (Kelley et al. 

2015). Phyre2 created a homology model of PMD1 (Fig. 13A) and predicted the PMD1 protein 

structure to have similarity to the heavy chains of dynein and myosin proteins. The PMD1 model 

suggests that, similar to dynein and myosin, the N-terminal portion of PMD1 (from residues 1-

303) possess a heavy chain comprised of the coil-coil protein structure (Fig. 13A).  However, 

unlike dynein and myosin, PMD1 is not predicted to have a region conferring ATPase activity 

 
Figure 12: Neither mpk17-1  nor pmd1-1 display an obvious differences when compared to wild type in the amount 

of H2O2 produced under normal growth conditions or salt stress.  
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(Fig. 13A), and therefore is unlikely to facilitate movement in the absence of motor proteins.  

This Phyre2-generated model suggests the possibility that PMD1 roles in peroxisome biogenesis 

might rely on the plant cytoskeleton. 

The cytoskeleton consists of microtubules and actin filaments.  Peroxisomes travel along the 

cytoskeleton, but which cytoskeleton varies by kingdom. In animals, peroxisomes travel along 

the microtubule cytoskeleton (Rapp et al., 1996; Schrader et al., 1996; Wiemer et al., 1997) In 

 
Figure 13: PMD1 is an actin-binding protein. A) Phyre2.0 predicted structure of PMD1 resembles 

dynein and myosin heavy chain proteins. The top portion has high similarity the coil-coil portion of a 

heavy chain, and the bottom domain is highly similar to the actin binding domain, but without a 

catalytic domain. B) Peroxisomes in the mpk17-1 background move in a linear fashion more than 

peroxisomes in Col or pmd1-1. Additionally, fewer peroxisomes were immobile in mpk17-1 than in 

Col or pmd1-1. 4 day old roots were imaged in the maturation zone on the Leica LSM at a rate of 13 

frames/sec, for 29 seconds, then peroxisomes were tracked and primary type of movement was logged 

for each peroxisome. At least 5 individuals of each genotype were imaged, with 3 images per 

individual, totaling more than 400 peroxisomes per genotype. An ANOVA was done on each 

movement type, and showed that mpk17-1 displays significantly more linear peroxisome movement 

than either wild type or pmd1-1, and a significantly smaller percentage of immobile peroxisomes (p < 

0.05) C) PMD1 binds to actin. An actin cosedimentation assay was performed with His-tagged PMD1 

protein. Full-strength His-PMD1 and a one-half dilution of PMD1 were both used, and both showed 

depletion from the supernatant after spinning with polymerized F-actin, indicating actin binding and 

sequestration into the pellet. 
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plants and yeast, peroxisome travel along the actin cytoskeleton (Hoepfner et al., 2001; Mathur 

et al., 2002). DRP peroxisome division factors interact with actin-associated proteins in yeast 

(Yu and Cai, 2004). However, direct interaction of a plant peroxisome division factor with actin 

filaments has not been reported.  

The PMD1 homology model is consistent with the possibility that PMD1 interacts with either 

microtubules or actin.  Because peroxisomes travel along the actin cytoskeleton in plants 

(Mathur et al., 2002) and PMD1 localizes to peroxisomes (Aung and Hu, 2011), we tested 

whether PMD1 could directly interact with the actin cytoskeleton using an actin-cosedimentation 

assay with heterologously-expressed His-PMD11-303 protein and purified G-actin (Schafer et al., 

1998).  In this assay, proteins are incubated in the presence of G-actin and polymerization of G-

actin to F-actin is induced.  Afterwards, the reaction is subjected to high-speed centrifugation and 

proteins that bind F-actin are depleted from the supernatant as the polymerized F-actin pellets to 

the bottom of the tube.  Proteins remaining in the supernatant are separated by SDS-PAGE and 

immunoblot analysis used to examine protein levels.  His-PMD11-303 protein is depleted from the 

supernatant in this assay (Fig. 13B), indicating that PMD1 can directly bind actin in vitro.   

Because PMD1 associates with actin (Fig. 13B), along which peroxisomes move (Mathur et 

al., 2002), we examined in planta peroxisome movement in the pmd1-1 and mpk17-1 mutants. In 

wild type, peroxisomes display various movement types when examined over a 30-second 

period.  Approximately half the peroxisomes in wild type exhibit Brownian movement, 

approximately 20% are immobile, and approximately 30% display linear movement (Fig. 13C).  

Although peroxisomes in pmd1-1 display a slight decrease in linear movement, this difference is 

not statistically significant (p=0.10; Fig. 13C).  However, a significantly smaller percentage of 

peroxisomes in mpk17-1 were immobile compared to either wild type or pmd1-1 (Fig. 13C), and 
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a significantly higher percentage of peroxisomes in mpk17-1 moved in a linear fashion (Fig. 

13C). These results suggest increased peroxisome movement along actin filaments in mpk17-1, 

despite the increased clustering of peroxisomes observed in this mutant (Fig. 5).  These data are 

consistent with the possibility that PMD1 directly tethers peroxisomes to actin; however, because 

PMD1 lacks a region conferring ATPase activity, it is unlikely to act as a motor and provide the 

energy for peroxisome movement along the actin filament.   

2.6 Discussion 

Based on the phenotype of mpk17-1 as IBA hypersensitivity with increased peroxisome 

numbers, and the known role of PMD1 increasing peroxisome division (Aung and Hu 2011), we 

suggest a genetic model in which MPK17 inhibits PMD1, a factor promoting peroxisome 

division (Fig. 14).  Because pmd1-1 suppresses the mpk17-1 increased peroxisome number 

phenotype, PMD1 acts downstream of MPK17 (Fig. 7). We do not yet know the phosphorylation 

targets of MPK17.  We were unable to detect an interaction between MPK17 and PMD1 using a 

yeast two-hybrid assay, consistent with the possibility that PMD1 is not a direct target of putative 

MPK17 kinase activity.  Therefore, there are likely additional components missing from this 

model. Additionally, we cannot exclude the possibility that MPK17 inhibits peroxisome 

biogenesis generally, not only division through one specific factor. Further work will need to be 

done to determine precisely how broad or narrow an effect MPK17 has on peroxisome division.   
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In this work, we have demonstrated a novel function for Arabidopsis MPK17 that affects 

peroxisome and mitochondrial division. These effects by MPK17 depend on PMD1, a 

peroxisome and mitochondrial division factor.  Although Arabidopsis MPK17 is essentially 

uncharacterized compared to its well-understood relatives MPK3 and MPK6 (reviewed in 

Mishra et al., 2006), studies on MPK17 homologs from other plants suggest it plays roles in 

stress response. For example, cotton GhMPK17  salinity stress tolerance and ABA treatment, and 

overexpression of GhMPK17 in Arabidopsis led to increased tolerance of both salinity and ABA 

(Zhang et al., 2014). Similarly, in Setaria italica, SiMPK17 transcript is upregulated in response 

to dehydration stress (Lata et al., 2010). Transcript of the maize homolog, ZmMPK17, increases 

upon cold, ROS, or osmotic stresses and during treatments with abscisic acid, salicylic acid, 

 
Figure 14: Proposed model of NaCl-regulated peroxisome 

division mediated through PMD1. Under low-NaCl 

conditions, MPK17 actively represses transcription and 

activity of PMD1. Under high NaCl conditions, MPK17 is 

inactivated and transcription of PMD1 increases, leading to 

increased numbers of peroxisomes and increased connections 

between peroxisomes and the actin cytoskeleton. 
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jasmonic acid, and ethylene (Pan et al., 2012).  Further, the two closest rice MPK17 homologs, 

OsMPK13 and OsMPK14, are induced upon inoculation with a rice fungal pathogen (Reyna and 

Yang, 2006).  Clearly, MPK17 and its homologs respond to stress transcriptionally and, at least 

in some cases, mediates tolerance to various stress conditions.    

Disruption of either MPK17 or PMD1 results in decreased salt-induced peroxisome 

proliferation, thus both MPK17 and PMD1 are necessary for this dynamic salt response. Because 

the peroxisome numbers in non salt-stressed mpk17-1 are not as high as wild type grown on 

NaCl, division through the actions of MPK17 andPMD1 cannot be the sole  salt-responsive 

peroxisome division pathway(s). The ability to divide peroxisomes in response to NaCl does not 

substantially impact survival or growth of these mutants under high-NaCl conditions (Fig. 4), 

which suggests that peroxisome proliferation may not enhance the fitness of NaCl- stressed 

plants. This result contrasts with recent results by Fahy et al. (2017), who observed that the salt-

hypersensitive mutants fry1 and sos1 did not proliferate peroxisomes in response to NaCl, and 

have very poor survival on high NaCl. Both mpk17 and pmd1 display the same nonproliferation 

molecular phenotype, but no whole plant NaCl phenotype. It remains unclear whether 

peroxisome proliferation in response to NaCl may provide salt tolerance to the plant under 

specific conditions, or whether peroxisome proliferation is a side effect caused by regulation of a 

different pathway.  

In this study, we also discovered a novel function for PMD1 as an actin-binding protein (Fig. 

13B). PMD1 may act as a mechanical input to the peroxisome (and mitochondrial) division 

process, an idea that is supported by the peroxisome clustering phenotype seen in PMD1 

overexpression lines (Aung and Hu, 2011). The increased fraction of mpk17-1 peroxisomes 

moving in a linear versus Brownian pattern is also consistent with the hypothesis that 
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connections between PMD1 and the actin cytoskeleton contribute to peroxisome distribution in 

planta, as mpk17-1 contains more PMD1, and mpk17-1 peroxisomes show an increased ability to 

move around the cell than in wild type or pmd1-1.  Peroxisomes in cells treated with latrunculin 

B still undergo Brownian movement (Mathur et al., 2002), further supporting the hypothesis by 

Aung and Hu (2011) that PMD1 might act in peroxisome distribution within the plant cell. 

Recently, the distribution, not just the number, of peroxisomes was shown to be vital for proper 

cell division in mice skin cells (Asare et al., 2017). Knocking down Pex11b retained peroxisome 

attachment to the microtubule cytoskeleton, but peroxisomes were mislocalized. This 

mislocalization led to improper positioning of the peroxisomes during cell division and mitotic 

delay, as well as aberrant angles of the mitotic plane of division (Asare et al., 2017). Other 

findings suggest the ability of plants to traffic actin-dependent contents is important for ordinary 

growth and development, not just organelle distribution during stress. The speed of myosins was 

shown to directly affect plant size, with expression of a faster myosin leading to larger plant size, 

and slower myosin causing smaller plant size (Tominaga et al., 2013). These data further support 

a role for localization, not just number, in peroxisome function.  

These findings illuminate the importance of the actin cytoskeleton in peroxisome division. 

Future research to determine whether additional peroxisome or mitochondrial division factors 

associate with actin will be of interest and may provide molecular insight into how actin affects 

peroxisome division.  Many questions remain about how, why, and when plants regulate 

peroxisome numbers and what adaptive function peroxisome proliferation may provide to plants.  

2.6 Materials and Methods 

Growth Conditions and Phenotypic Assays 
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Arabidopsis thaliana mutants were all in the Columbia-0 (Col-0) background, which was 

used as the wild type in all assays.  Seeds were surface sterilized (Last and Fink, 1988) and 

stratified overnight at 4 C prior to plating on plant nutrient (PN) medium (Haughn and 

Somerville, 1986) supplemented with 0.5% w/v sucrose and solidified with 0.6% agar, unless 

otherwise noted.  Seedlings were grown at 22 C under continuous illumination. 

To examine auxin-responsive root elongation, seeds were plated on media supplemented with 

ethanol (mock), or the indicated concentrations of indole-3-acetic acid (Sigma, St. Louis, MO), 

indole-3-butyric acid (Sigma, St. Louis, MO), 2,4-dichlorophenoxyacetic acid (Sigma, St. Louis, 

MO), or 2,4-dichlorophenoxybutyric acid (Sigma, St. Louis, MO).  All hormone stocks were 

dissolved in 100% ethanol.  Plates were incubated at 22 C under yellow-filtered light to prevent 

indole backbone degradation (Stasinopoulos and Hangarter, 1990).  After 8 days of growth, 

seedlings were removed from the agar and root length measured.   

To examine auxin-responsive lateral root formation, seeds were plated on unsupplemented 

media and grown under continuous white light for 4 days prior to transfer to media supplemented 

with ethanol (Mock) or the indicated auxin.  Seedlings were grown for an additional 4 days 

under continuous yellow light. Emerged lateral roots were counted under a dissecting scope and 

root length measured to determine the number of lateral roots formed per mm root length. 

To examine inhibition of root elongation on salt, seeds were plated on unsupplemented media 

and grown under continuous white light for 4 days prior to transfer to plates supplemented with 

the indicated concentration of NaCl, KCl, or mannitol and solidified with 0.7% agar. Upon 

transferring, root tips were aligned and marked. Plates were then placed vertically under 

continuous white light and grown for an additional 4 days before imaging and measurement of 

post-transfer growth using ImageJ.  
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To examine seedling bleaching caused by salt, seeds were plated on sterile Whatman filter 

paper set on top of unsupplemented media and grown under continuous white light for 4 days. 

Filter papers with seedlings were then transferred to plates supplemented with the indicated 

concentration of NaCl and grown under continuous white light for an additional 7 days. After 7 

days and 14 days, the number of green seedlings (seedlings with at least 1 green cotyledon) and 

bleached (colorless) were counted.  

To examine adult plant growth response to salt watering, seedlings were grown for one week 

on unsupplemented media, then transferred to individual 9x9cm pots containing soil. Ten 

individuals of each genotype were used for each treatment. Plants were grown at 21ºC, 50% 

humidity under continuous light in a growth chamber and were top-watered uniformly for one 

week with distilled water prior to daily top-watering with 25 mLs of distilled water 

supplemented with the indicated amount of NaCl. Plant mortality was logged daily. Plant height 

was measured after 2 weeks of watering treatment, when plants were beginning to senesce.  

 

Vector Construction and Transformation 

To create mpk17-1 rescue lines, the 2 kB region upstream of MPK17 and the full-length 

MPK17 gene were amplified using Pfx Platinum (Life Technologies) polymerase using MPK17-

16 and MPK17-withstop primers listed in Supplemental Table 1. This region was subcloned into 

pENTR-DTOPO (Life Technologies), then cloned into pMDC123 (Curtis and Grossniklaus, 

2003) using LR Clonase II (Life Technologies) to create MPK17promoter:MPK17. 

MPK17promoter:MPK17 was then transformed into GV3101 Agrobacterium tumefaciens strain, 

which were used for floral dip transformation (Clough and Bent, 1998) of mpk17-1 plants.   
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To create the construct for PMD1 protein expression, the portion of PMD1 cDNA (U83915) 

encoding PMD1 from amino acids 1-303 and thus lacking the predicted PMD1 transmembrane 

domain was PCR amplified using PMD1-NdeI (5´-CATATGGCGGATGTTGAAGATC-3´) and 

PMD1-XhoI 5´-(CTCGAGCTAAGCAGCTCCAACTGATCC-3´) and the resultant product 

cloned into pCR4 (Life Technologies).  PMD11-303 was then released using restriction enzymes 

NdeI and XhoI and subcloned into the protein expression vector pET28A (Novagen) to create 

pET28-PMD11-303.  

 

Genetic Analyses 

Plants were genotyped by PCR using the primer pairs in Supplemental Table 1. Col-0 

carrying the GFP-PTS1 reporter (Zolman and Bartel 2004) was crossed to mpk17-1 and pmd1-1 

and resultant F2 seedlings genotyped to obtain mpk17-1 GFP-PTS1 and pmd1-1 GFP-PTS1. Col-

0 and pmd1-1 carrying the COX4-YFP mitochondrial reporter (Aung and Hu, 2011; Nelson et 

al., 2007) were crossed to mpk17-1 and resultant F2 seedlings genotyped to obtain mpk17-1 

COX4-YFP. Fluorescent reporter lines were genotyped with a combination of PCR and by the 

presence of the fluorescent reporter.  

To obtain mpk17 rescue lines, mpk17-1 mutants were transformed using the floral dip method 

(Clough and Bent, 1998).  mpk17-1 seedlings carrying the MPK17promoter:MPK17 transgene 

were selected for Basta (phosphinothricin; Gold Biotechnology) resistance in the T1 generation 

and lines homozygous for the transgene were selected in subsequent generations. Non-

segregating T3 lines were genotyped for both the mpk17-1 TDNA insertion and presence of wild 

type MPK17 from the transgene. Later generations were genotyped by both PCR and Basta 

plating.  
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Imaging and Peroxisome Quantification 

To determine the effects of salt treatment and cytoskeleton inhibitors on peroxisome 

numbers, three-day-old seedlings were transferred to plant growth media supplemented with 150 

mM NaCl, 2 µM latrunculin with and without 150 mM NaCl, and 20 µM oryzalin with and 

without 150 mM NaCl. Plants were grown on salt and cytoskeleton inhibitors overnight at 22°C 

under continuous white light, then incubated in propidium iodide (Invitrogen) and imaged by 

confocal, using identical settings for each image.   Peroxisomes were quantified in ImageJ by 

selecting the root area, then using “Find Maxima” with appropriate parameters (thresholding 

between 6-10, dark background mode).  

To determine peroxisome numbers and movement, 7-day-old seedlings were mounted on 

microscope slides in liquid plant media containing 0.1% agar; slides had a ToughTag™ 

positioned on either end of the coverslip to provide a cushion between the slide and coverslip. 

Seedlings were imaged at a rate of 13 frames/sec for 29 seconds on a Leica DM6 B upright 

fluorescence scope equipped with a Leica DFC 3000 G camera. For each genotype, at least 9 

different individuals were imaged, with 3 images/root in the maturation zone taken. Videos were 

analyzed using ImageJ. The movement type for each peroxisome was categorized as either 

Linear (indicates rapid, mostly unidirectional movement through the cell), Brownian (refers to 

back-and-forth movement of a peroxisome), or “Immobile” (the peroxisome exhibited no 

movement during the 29 seconds recording).  

To image and quantify peroxisomes for light-induced proliferation, seeds were grown on 

plant growth media for 24 hours in white light, then wrapped in foil and grown in darkness for 

another three days. Plates were then unwrapped and exposed to white light for the indicated 

amounts of time before imaging on a Leica DM6 B upright fluorescence scope equipped with a 
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Leica DFC 3000 G camera. Unwrapping of plates was staggered to account for imaging time 

between genotypes. Peroxisomes were quantified in ImageJ by selecting the root area, then using 

“Find Maxima” with appropriate parameters (thresholding between 5-9, dark background mode).  

To determine the effects of cadmium on peroxisome numbers, four-day-old seedlings were 

transferred to plant growth media supplemented with water, 200 µM CdCl2, or 400 µM CdCl2 for 

2 and 6 hours. Roots were imaged on a Leica DM6 B upright fluorescence scope equipped with a 

Leica DFC 3000 G camera. Peroxisomes were quantified in ImageJ by selecting the root area, 

then using “Find Maxima” with appropriate parameters (thresholding between 6-10, dark 

background mode).  

To image and quantify mitochondria, four-day-old seedlings carrying the COX4-YFP were 

counterstained with propidium iodide and imaged by confocal with a Zeiss LSM510 using 

identical settings for each image. Images were analyzed in ImageJ using the “Find Maxima” tool 

as described for peroxisomes above.  

Protein Expression and Purification 

PMD11-303 was expressed in Escherichia coli (DE3) Rosetta cells (Invitrogen) as an N-

terminal His-tagged protein. Bacterial cultures were grown at 37 °C to an A600nm = ∼0.5. Protein 

expression was induced with a final concentration of 1 mM isopropyl β-D-1-

thiogalactopyranoside, then grown for and additional 18 h at 18 °C. Bacterial cells were pelleted 

and resuspended in lysis buffer [50 mM Tris pH 8.0, 20 mM imidazole, 500 mM NaCl, 10% 

(vol/vol) glycerol, 1% Tween-20]. Resuspended cells were lysed by sonication, and cell debris 

was pelleted by centrifugation. The soluble cell lysate was passed over a Ni2+-nitrilotriacetic acid 

(NTA) chromatography column. The column was washed with wash buffer [50 mM Tris pH 8.0, 
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20 mM imidazole, 500 mM NaCl, 10% (vol/vol) glycerol] and bound protein eluted with elution 

buffer [50 mM Tris pH 8.0, 250 mM imidazole, 500 mM NaCl, 10% (vol/vol) glycerol]. 

Actin cosedimentation assay 

The actin cosedimention assay was performed with purified His-PMD11-303 and G-actin, 

which was a kind gift from the lab of John Cooper (Washington University in St. Louis).  Prior 

to the assay, the 10 µM G-actin and His-PMD11-303 were independently centrifuged at 200,000xg 

at 4 ºC for 20 minutes to remove any protein complexes. One X and half X concentrations of 

His-PMD11-303 were incubated with G-actin, 20X KMEI polymerization buffer [0.2 M imidazole 

pH 7.0, 1 M KCl, 20 mM MgCl2, 20 mM EGTA,1 mM NaN3] and G-actin buffer with ATP [2 

mM Tris-Cl pH 8.0, 0.1 mM CaCl2, 1 mM NaN3, 0.2 mM Na-ATP, 0.5 mM DTT]. Samples 

were rocked at room temperature for one hour. A 50 µL aliquot was removed from each sample 

prior to centrifugation to create the “pre-spin” sample.  The remaining sample was then moved to 

a tube containing 50 µL of 20% sucrose in G-actin buffer [2.0 mM Tris-Cl pH 8.0, 0.1 mM 

CaCl2, 1 mM NaN3] and centrifuged at 100,000xg at 4ºC for 30 minutes. After centrifugation, a 

50 µL aliquot from the post-spin supernatant was removed from each sample to new tubes to 

create the “post-spin” samples.  Each sample was mixed with an equal volume of Nu-PAGE 

sample buffer [141 mM Tris, 2% LDS, 0.51 mM EDTA, 10% glycerol, 0.175 mM phenol red, 

0.22 mM Coomassie blue] and boiled for 5 minutes prior to separation by electrophoresis 

through a 10% Bis-Tris Plus gel (Invitrogen).  After separation, proteins were transferred to a 

nitrocellulose membrane. The membrane was blocked in 8% milk diluted in 1X TBS-T [20 mM 

Tris, pH 7.5, 150 mM NaCl, 1% Tween] for one hour, then incubated with a 1:200 dilution of α-

His (Santa Cruz) in blocking buffer at 4ºC overnight. The membrane was washed three times 

with 1X TBS-T for 5 minutes per wash prior to a 4 hours incubation with 1:5000 goat α-rabbit 
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HRP-conjugated antibody dilution (Santa Cruz).  After incubation with secondary antibody, the 

membrane was washed 3 times with 1X TBS-T for 5 minutes per wash.  The membrane was 

immersed in WesternBright ECL HRP (Bioexpress) substrate and imaged using a Biorad 

ChemiDoc.   
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The term auxin is derived from the Greek word “auxein”, which means “to grow”.  Because 

auxin is a potent regulator of cell division, cell expansion, and cell differentiation (reviewed in 

Enders and Strader, 2015), it is involved in nearly every aspect of plant development.  Therefore, 

regulation of auxin levels and response is critical for normal plant form and function.  Plants use 

a number of cellular mechanisms to regulate auxin levels and response, including transport, de 

novo biosynthesis, and management of inputs from various auxin precursors and storage forms 

(reviewed in Korasick et al., 2013). 

The predominant active auxin, IAA, is transported long distances through plants via the 

combined action of distinct families of transporters (reviewed in Zažímalová et al., 2010).  The 

AUX1/LAX family of transporters act as IAA uptake carriers, whereas members of the ABCB 

and PIN family of transporters facilitate IAA efflux. Together, these transporters facilitate long 

distance, directional transport of IAA through the plant to regulate numerous aspects of plant 

development.   

The main auxin biosynthesis pathway uses the TRYPTOPHAN AMINOTRANSFERASE 

OF ARABIDOPSIS1 (TAA1) and YUCCA family of enzymes (reviewed in Zhao, 2012).  In this 

pathway, tryptophan is converted to indole-3-pyruvic acid (IPyA) through the activity of the 
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TAA1 family of aminotransferase enzymes.  The YUCCA family of flavin monooxygenase-like 

enzymes then converts IPyA to IAA.  Conversion of IPyA to IAA is the rate-limiting step in this 

process; ovexpression of YUCCA family members results in elevated auxin levels.  Further, 

tissue-specific expression of various YUCCA family members allows for de novo auxin 

biosynthesis to drive specific aspects of plant development (reviewed in Zhao, 2010).  

In addition to biosynthesis of IAA via the IPyA pathway, the pool of active auxin can be 

modulated by inputs from additional storage forms and precursors, such as IAA conjugates and 

indole-3-butyric acid (IBA).  These auxin inputs can drive distinct aspects of plant development 

(reviewed in Korasick et al., 2013).  In this review, we focus on specific roles for IBA-derived 

auxin in plant development. 

3.1 IBA conversion and transport mechanisms 

For decades, IBA was described as a “synthetic auxin” that elicited auxin-like effects such as 

root initiation, stem bending, and leaf epinasty (Zimmerman and Wilcoxon, 1935).  Indeed, IBA 

is the active ingredient in plant propagation medias, such as Rootone®, used to induce 

adventitious rooting in stem cuttings.  Later studies have demonstrated that IBA is an 

endogenous compound in a variety of examined plant species (reviewed in Korasick et al., 

2013).   

The side chain in the 3 position on the indole ring of IBA has four carbons, as opposed to the 

two carbon side-chain of IAA; this lengthened side chain results in a molecule that is likely 

unable to adopt a conformation for binding into the TIR1-Aux/IAA co-receptor pocket (Uzunova 

et al., 2016).  Indeed, surface Plasmon resonance analysis suggests that IBA has no measured 
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binding activity (Uzunova et al., 2016), consistent with the genetic evidence that IBA activity is 

through its conversion to IAA (reviewed in Strader and Bartel, 2011). 

IBA is likely converted to IAA in a process similar to fatty-acid -oxidation.  Many plants 

convert IBA into IAA (reviewed in Epstein and Ludwig-Müller, 1993), including Arabidopsis 

(Strader et al., 2010), hazelnut (Kreiser et al., 2016), and elm (Kreiser et al., 2016).  In 

Arabidopsis, this process is peroxisome-dependent (Strader et al., 2010) and multiple mutants 

defective in peroxisome biogenesis and peroxisomal enzymes have been identified for IBA 

resistance while retaining sensitivity to the active auxin IAA (reviewed in Hu et al., 2012).  The 

PEROXISOMAL TRANSPORTER1/COMATOSE/ABCD1 (PXA1/CTS/ABCD1) transporter is 

likely to move IBA into the peroxisome for metabolism into active auxin (reviewed in 

Michniewicz et al., 2014; Strader and Bartel, 2011).  Whereas some peroxisomal enzymes, such 

as the PED1 3-ketoacyl-CoA thiolase, likely act in both fatty acid (Hayashi et al., 1998) and IBA 

-oxidation (Zolman et al., 2000), other peroxisome enzymes appear to be specific to IBA -

oxidation.  Specifically, the predicted short-chain dehydrogenase/reductase INDOLE-3-

BUTYRIC ACID RESPONSE1 (IBR1) (Zolman et al., 2008), the acyl-CoA 

dehydrogenase/oxidase-like IBR3 (Zolman et al., 2007), the predicted enoyl-CoA hydratase 

IBR10 (Zolman et al., 2008), and the predicted enoyl-CoA hydratase ENOYL-COA 

HYDRATASE2 (ECH2) (Strader et al., 2011) are enzymes that may act solely in the conversion 

of the auxin precursor IBA to active IAA.   
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Similar to mechanisms regulating IAA levels (reviewed in Korasick et al., 2013; Zažímalová 

et al., 2010), mechanisms to regulate IBA levels include formation of IBA conjugates and IBA 

transport (Fig. 15).  IBA exists in both amide- and ester-linked amide forms (reviewed in Bajguz 

and Piotrowska, 2009; Ludwig-Müller, 2011; Woodward and Bartel, 2005b).  Beyond some 

members of the GH3 amino acid synthetase family which are able to conjugate amino acids to 

IBA as well as to IAA (Staswick et al., 2005), IBA-specific amino acid conjugating enzymes 

have not yet been reported. The hydrolases TaIAR3 from wheat(Campanella et al., 2004), 

BrIAR3 (Savić et al., 2009), and BrILL2 from Brassica rapa (Savić et al., 2009) display higher 

affinity for IBA-amino acid conjugates than for IAA-amino acid conjugates, consistent with the 

possibility that IBA may be stored in amino-acid conjugate form for storage.  Additionally, IBA 

is likely to be stored as conjugates to sugar.  The enzymes UGT74E2 (Tognetti et al., 2010) and 

UGT75D1 (Zhang et al., 2016) promote the formation of IBA-glucose; overexpression of either 

UGT74E2 (Tognetti et al., 2010) or UGT75D1 (Zhang et al., 2016) results in elevated IBA-

 
Figure 15: Model of IBA and IAA transport.  
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glucose levels.  Identification and characterization of enzymes involved in IBA conjugate 

synthesis and hydrolysis will be important for understanding roles of these potential storage 

forms in auxin homeostasis. For example, after identifying GH3.1, GH3.2, GH3.5, and GH3.17 

and IAA amido synthetases conjugated amino acids to IAA, the knockout lines could be 

examined and used to show the importance of IAA-amino acid conjugates in regulating IAA 

homeostasis in planta (Staswick et al., 2005). Similarly, identification of ILR1, IAR3, ILL1, and 

ILL2 as IAA hydrolases was instrumental in understanding how IAA conjugates are cleaved and 

contribute to the free IAA pool in planta (LeClere et al., 2002). Identification of the IBA-specific 

synthetases and hydrolases will similarly inform our understanding of how plants regulate their 

pools of free IBA.  

Auxin distribution throughout the body of the plant is mediated by the cellular auxin 

transport to achieve the long-distance movement of IAA.  Similarly, IBA and/or IBA conjugates 

are thought to move long distances through the plant (reviewed in Michniewicz et al., 2014; 

Strader and Bartel, 2011).  Tracking of radiolabel in plants treated with [3H]IBA allowed for the 

acropetal and basipetal movement of signal in Cleopatra mandarin midrib sections (Epstein and 

Sagee, 1992), and in various Arabidopsis tissues (Ludwig-Müller et al., 1995b; Rashotte et al., 

2003).  However, these studies are complicated by IBA metabolism to IAA and to conjugates.  

Later studies determined that most of the radioactive transported material was not the original 

[3H]IBA, but rather  [3H]IAA derived from [3H]IBA (Růžička et al., 2010), or [13C1]IAA, Ester-

[13C1]IBA conjugates, or Amide-[13C1]IBA conjugates derived from [13C1]IBA (Liu et al., 

2012a). These studies are consistent with IBA conjugates being the major form of transported 

IBA.  However, IBA uptake is a saturable process (Ludwig-Müller et al., 1995b; Rashotte et al., 

2003), which suggests that IBA uptake into plant cells is carrier-mediated.  Further, examined 
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transporters of IAA, including AUX1, PIN2, PIN7, ABCB1, and ABCB19, do not appear to 

facilitate the transport of IBA (reviewed in Michniewicz et al., 2014), suggesting that other 

carriers act in the transport of IBA.   

Several IBA transporters have been identified, although there likely are additional carriers 

(reviewed in Michniewicz et al., 2014; Strader and Bartel, 2011).  IBA efflux is promoted by 

ATP-BINDING CASSETTE G36 / PLEIOTROPIC DRUG RESISTANCE 8 / PENETRATION 

3 (ABCG36/PDR8/PEN3) (Strader and Bartel, 2009), ABCG37/PDR9/PIS1 (Růžička et al., 

2010; Strader et al., 2008), and possibly by additional members of the PDR subclade of the 

ABCG family (Michniewicz et al., 2014). Mutants defective in ABCG29 (Michniewicz et al., 

2014), ABCG33 (Michniewicz et al., 2014), ABCG36 (Strader and Bartel, 2009), or ABCG37 

(Růžička et al., 2010; Strader et al., 2008) display increased sensitivity to the auxin precursor 

IBA and retain wild type sensitivity to the active auxin IAA.  Consistent with the IBA 

hypersensitivity displayed, root tips excised from mutants defective in either ABCG36 (Strader 

and Bartel, 2009) or ABCG37 (Růžička et al., 2010; Strader et al., 2008) hyperaccumulate 

[3H]IBA, but not [3H]IAA. The IBA hypersensitivity combined with the hyperaccumulation of 

[3H]IBA in these mutants is consistent with roles for ABCG36 and ABCG37 in effluxing IBA 

from the root. Although ABCG36 and ABCG37 appear to transport the auxin precursor IBA, but 

not active IAA, they likely transport additional substrates, as is common for members of the 

PLEIOTROPIC DRUG RESISTANCE family of transporters.  In particular, ABCG37 likely 

transports the synthetic auxin 2,4-dichlorophenoxy acetic acid (2,4-D) (Ito and Gray, 2006; 

Růžička et al., 2010; Strader et al., 2008), the synthetic auxin precursor 2,4-dichlorophenoxy 

butyric acid (2,4-DB) (Růžička et al., 2010; Strader et al., 2008), 1-N-naphthylphthalamic 

acid  NPA (Ito and Gray, 2006), the auxin breakdown product oxIAA-Hex (Peer et al., 2013), 
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and non-auxinic phenolic coumarin compounds (Fourcroy et al., 2014).  Further, ABCG36 likely 

transports the synthetic auxin precursor 2,4-DB (Strader and Bartel, 2009), oxIAA-Hex (Peer et 

al., 2013), cadmium / cadmium conjugates (Kim et al., 2007), coumarin (Fourcroy et al., 2014), 

and a precursor to 4-O-β-D-glucosyl-indol-3-yl formamide (Lu et al., 2015).  Clearly, these 

transporters have roles outside of their regulation of cellular IBA levels. 

Analysis of mutants with altered IBA-to-IAA conversion, altered management of storage 

forms, and altered transport have revealed roles for IBA-derived auxin in multiple specific 

developmental processes. 

3.2 IBA-derived auxin drives aspects of root development 

IBA-derived auxin has strong roles in various aspects of root development, including 

regulation of root apical meristem size, root hair elongation, lateral root development, and 

formation of adventitious roots.  Mutations disrupting IBA metabolism and chemicals that affect 

IBA metabolism result in multiple root phenotypes, revealing specific roles for IBA-derived 

auxin in these processes. 

The root apical meristem is a collection of undifferentiated cells at the root tip region that 

display indeterminate growth.  The balanced cell division and differentiation in this tissue gives 

rise to new root tissue, while maintaining a small group of cells that undergo occasional cell 

division, called the quiescent center.  Maintaining proper auxin levels and establishment of an 

auxin gradient in these tissues is essential to establish root patterning and meristem formation 

(reviewed in Iyer-Pascuzzi and Benfey, 2009).  The ech2 ibr10 double mutant, defective in -

oxidation enzymes required for IBA-to-IAA conversion, displays decreased DR5-GUS activity in 

root tips.  Further the ech2 ibr1 ibr3 ibr10 quadruple mutant, defective in multiple IBA 
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conversion enzymes, has reduced free IAA levels in the root tip and displays a reduced meristem 

size (Strader et al., 2011), consistent with IBA conversion to IAA acting as a major input into the 

auxin pool in this tissue. 

Root hairs are long tubular outgrowths protruding from the epidermal cell layer of roots that 

aid in nutrient and water acquisition by increasing root surface area.  Auxin affects the 

positioning of the root hair outgrowth site and promotes root hair elongation (reviewed in 

Honkanen and Dolan, 2016).  Multiple lines of evidence suggest that IBA-derived auxin 

promotes root hair expansion.  First, mutants defective in the ABCG36 or ABCG37 transporters, 

which likely act to efflux IBA out of the root, display longer root hairs (Růžička et al., 2010; 

Strader and Bartel, 2009).  Further, blocking IBA-to-IAA conversion suppresses the long-root-

hair phenotype observed in abcg36 mutants (Strader et al., 2010), suggesting that elevated IBA-

derived IAA levels in the abcg36 mutant cause the elongated root hair phenotype. In addition, 

mutants defective in IBA conversion enzymes display root hairs that can be rescued with 

exogenous auxin (Strader et al., 2010; Strader et al., 2011), consistent with the possibility that 

blocking IBA conversion can result in decreased auxin levels in root epidermal cells.  

Lateral roots are post-embryonic organs originating from the primary root.  The number and 

positioning of lateral roots is critical to establish the ideal root system for adaptation to local 

environments (reviewed in Rellán-Álvarez et al., 2016). Auxin drives both lateral root initiation 

and lateral root emergence (reviewed in Laskowski and Ten Tusscher, 2017).  Mutants defective 

in IBA conversion enzymes display greatly decreased production of lateral roots (Strader et al., 

2011).  Further, treatment of seedlings with the compound naxillin results in increased lateral 

root production with limited effects on primary root elongation (De Rybel et al., 2012).  Naxillin 

activity requires an intact IBA-to-IAA conversion pathway (De Rybel et al., 2012), consistent 
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with the possibility that naxillin promotes IBA conversion to active IAA.  Furthermore, IBA-to-

IAA conversion occurs in the lateral root cap and contributes to the priming of lateral root 

prebranch sites by setting up the amplitude and frequency of auxin oscillations through the root 

(De Rybel et al., 2012; Xuan et al., 2015). These oscillations are necessary to establish the lateral 

root prebranch sites (Xuan et al., 2015), pointing to an important role for IBA-derived auxin in 

driving lateral root development. 

Adventitious roots are similar to lateral roots in many regards, but are defined by their 

origination from aerial tissues, such as stems or leaves. Adventitious root formation is often a 

part of adaptive responses to stress and shares both common and distinct regulatory mechanisms 

to lateral root formation (reviewed in Bellini et al., 2014). Zimmerman and Wilcoxin first 

reported that IBA could stimulate adventitious rooting in cuttings of several species in 1935 

(reviewed in Preece, 2003).  Throughout the 1930s, IBA arose as the compound of choice for 

horticulturalists to induce adventitious roots on stem cuttings for plant propagation and is the 

active ingredient in many modern rooting compounds, such as Rootone or Hormodin.  In 

Arabidopsis, IBA promotion of adventitious rooting requires its conversion to IAA; the ech2 

ibr10 mutant, defective in IBA-to-IAA conversion enzymes, fails to produce adventitious roots 

in response to IBA (Veloccia et al., 2016).  Indeed, cuttings from elm cultivars displaying higher 

levels of IBA-to-IAA conversion also display relatively high rates of adventitious rooting in 

response to rooting compounds (Kreiser et al., 2016), suggesting that IBA conversion may be 

critical for plant propagation in certain species. 
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3.3 IBA-derived auxin drives aspects of shoot development 

In addition to its varied roles in root development, IBA-derived auxin plays distinct roles in 

shoot development, with particular roles in cotyledon expansion and apical hook formation. 

Altering IBA homeostasis or IBA conversion to IAA has striking effects on cotyledon 

expansion.  For example, mutants defective in the ABCG36 transporter displays larger 

cotyledons than wild type (Strader and Bartel, 2009), consistent with its role in IBA efflux and 

suggesting that auxin levels are elevated in the cotyledons of this mutant.  Combining the abcg36 

mutation with mutations in IBA conversion enzymes suppresses this large cotyledon phenotype 

(Strader et al., 2010), suggesting that IBA-derived IAA, rather than IBA itself, drives the 

increased cotyledon expansion observed in the abcg36 mutant.  Further, a strong genetic block in 

IBA-to-IAA conversion results in dramatically reduced cotyledon expansion, concomitant with 

decreased cotyledon epidermal cell size (Strader et al., 2011).  Likewise, overexpression of the 

IBA glycosylating enzyme UGT75D1 results in decreased cotyledon size (Zhang et al., 2016), 

consistent with decreased contributions to the auxin pool in these overexpression lines.  IBA-

derived auxin also appears to play a role in compensated cell enlargement (CCE), a phenomenon 

that allows for increased cell expansion to occur when cell numbers are limited to achieve a 

“normal” organ size in plants.  Mutants defective in ECH2, an enzyme required for IBA-to-IAA 

conversion, are defective in CCE in cotyledons (Katano et al., 2016), suggesting that IBA-

derived auxin is important for driving cotyledon cell expansion not only during normal 

development, but also under conditions where cell numbers are limiting. 

Auxin is a critical driver of pavement cell lobing (reviewed in Pan et al., 2015).  Auxin-

driven intercalary growth results in lobes and indentations among neighboring cotyledon and leaf 



49 

 

epidermal cells.  The ech2 ibr1 ibr3 ibr10 mutant, defective in IBA-to-IAA conversion, displays 

a strong defect in pavement cell lobing, in addition to decreased cotyledon size (Strader et al., 

2011), consistent with IBA-derived auxin contributing to the lobing process.  Additionally, 

overexpressing the IBA glycosylating enzyme UGT75D1 results in small cotyledon pavement 

cells (Fakhry et al., 2016) that appear to display decreased lobing. Further research will be 

required to understand how IBA-to-IAA conversion is regulated to affect pavement cell lobing. 

Contributions to the auxin pool by IBA in shoot tissues is not limited to the cotyledons.  In 

addition, IBA-derived auxin affects apical hook formation and maintenance (Strader et al., 

2011), shoot branching (Tognetti et al., 2010), and vegetative stress responses (Tognetti et al., 

2010; Zhang et al., 2016).  The strong effects of IBA-derived auxin on multiple aspects of plant 

growth and development suggest that IBA is an important contributor to the auxin pool. 

Considering developmental roles of IBA in both aerial and root tissue over the plant 

lifecycle, a unifying theme is that IBA acting as an auxin reserve within the plant. Conversion of 

this auxin reserve pool is crucial for a variety of important developmental events, as enumerated 

above, but these processes may not represent the totality of IBA-dependent development.  

Though we understand the importance of IBA-to-IAA conversion in many facets of 

development, other questions about IBA’s role are sure to further refine our understanding of this 

important auxin. These open questions in IBA biology are expanded upon in the next section.  

3.4 Open Questions  

Difficulties in detecting IBA.  The auxin precursor IBA has been identified as an 

endogenous compound in numerous plant species, including various monocots and dicots 

(reviewed in Korasick et al., 2013).  However, many labs have reported difficulty identifying 



50 

 

IBA, including a report that questioned its presence when it was undetected by GC mass 

spectrometry in samples from Arabidopsis, Populus, and wheat (Novák et al., 2012).  Further, 

IBA concentrations are often reported to be at lower levels than IAA concentrations (Liu et al., 

2012b; Ludwig-Müller et al., 1997; Ludwig-Müller et al., 1993; Sutter and Cohen, 1992) and 

detection of IBA in maize kernels varies by variety examined (Epstein et al., 1989; Ludwig-

Müller et al., 1997; Ludwig-Müller et al., 1993).  However, IBA has been detected in 

Arabidopsis by mass spectrometry (Liu et al., 2012b; Ludwig-Müller et al., 1993; Strader et al., 

2010).  Further, mutants defective in enzymes required for IBA-to-IAA conversion display 

developmental phenotypes consistent with an auxin deficiency and decreased levels of free IAA 

(Strader et al., 2011), consistent with endogenous IBA contributing to the auxin pool.  These 

differences in detection of IBA in different labs and in different samples may reflect biological 

differences in IBA accumulation under different growth conditions.    

Missing IBA transporters.  IBA and IAA appear to use independent transport systems 

(reviewed in Michniewicz et al., 2014; Strader and Bartel, 2011).  Thus far, only a two IBA 

carriers have been reported, ABCG36 (Strader and Bartel, 2009) and ABCG37 (Růžička et al., 

2010; Strader et al., 2008).  The arm2 mutant in rice displays decreased IBA uptake and response 

and unaltered IAA uptake or response (Chhun et al., 2005), suggesting this mutant is defective in 

an IBA uptake carrier.  Likewise, the rib1 mutant in Arabidopsis displays IBA resistance and 

response and unaltered IAA uptake or response (Poupart et al., 2005; Poupart and Waddell, 

2000), suggesting this mutant is also defective in an IBA uptake carrier.  Because IBA uptake is 

a saturable process (Ludwig-Müller et al., 1995b; Rashotte et al., 2003), IBA uptake is likely a 

carrier-mediated process.  Perhaps identification of the defective gene in arm2 or rib1 could 

provide insight into the molecular basis of IBA uptake.  Identification of additional IBA carriers 
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will be instrumental in understanding regulation of IBA homeostasis and contributions to the 

auxin pool. 

Regulation of IBA-derived IAA in the auxin pool.  Because IBA-derived auxin plays critical 

roles in plant development, mechanisms likely exist to regulate IBA contributions to the auxin 

pool.  Mechanisms to regulate these contributions could include regulated transport, formation 

and release from conjugates, and transcriptional control of IBA conversion enzymes.  Evidence 

already suggests that regulation of IBA contributions to the auxin pool is important for stress 

responses.  For example, overexpression of UGT74E2 results in elevated IBA-glucose levels, 

increased tolerance to drought and salt stress, and increased shoot branching (Tognetti et al., 

2010).  Similarly, overexpression of UGT75D1 results in increased tolerance to osmotic stress 

(Zhang et al., 2016).  Additionally, eFP Browser-annotated (Schmid et al., 2005; Winter et al., 

2007) expression of genes encoding the IBA conversion enzymes ECH2, IBR1, IBR3, and 

IBR10, although seemingly unaffected by treatment with various hormones (Fig. 16a), are 

upregulated by several biotic (Fig. 16b) and abiotic (Fig. 16c,d) stresses, consistent with the 
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possibility that IBA-to-IAA conversion plays roles in stress response.  Future research will be 

needed to elucidate those conditions in which IBA contributions to the auxin pool affect growth 

and stress responses, as well as the regulatory mechanisms that allow these contributions. 

IBA activity outside of conversion to IAA.  In the earliest studies of auxinic compounds in 

rooting and propagation assays, IBA was reported to be more effective than IAA (reviewed in 

Preece, 2003), causing speculation that IBA itself can act as a signaling molecule (reviewed in 

Ludwig-Müller, 2000).  In addition, IBA is more effective than IAA at inducing crown roots in 

maize (Martínez-de la Cruz et al., 2015).  The lrt1 mutant in rice displays decreased lateral 

rooting and decreased gravitropism.  Application of IAA rescues the lateral root phenotypes of 

lrt1, but not agravitropic growth, whereas IBA application rescues both the lateral root and 

gravitropism phenotypes (Chhun et al., 2003), consistent with the possibility that IBA plays 

some roles that IAA cannot. Additionally, some stress conditions caused increased accumulation 

of IBA, but no detectable increase in IAA (Ludwig-Müller et al., 1995c).  Further, arbuscular 

 
Figure 16: Expression of IBA conversion enzymes. A) Expression does not change under hormone 

treatment. B) Expression of IBA conversion enzymes increases under biotic stress and C,D) abiotic stress. 
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mycorrhizal fungi inoculation of maize roots results in elevated IBA, but not IAA levels 

(Ludwig-Müller et al., 1997).  These conditions under which IBA levels are elevated, combined 

with the potency of IBA in rooting assays, provide some measure of support for roles in which 

IBA, rather than IBA-derived IAA, might act as a signaling molecule.  However, genetic data in 

Arabidopsis suggest that IBA has no discernable activity outside of its conversion to IAA 

(Strader et al., 2010; Strader et al., 2011; Zolman et al., 2008; Zolman et al., 2007; Zolman et al., 

2000). Potential explanations for the effectiveness of IBA in promoting rooting include the 

stability of IBA against degradation (Nordström et al., 1991) and effects of nitric oxide produced 

during the IBA-to-IAA conversion process (Schlicht et al., 2013), which contribute to lateral root 

formation.  Although data in Arabidopsis are consistent with IBA activity caused by IBA-derived 

IAA, it remains a formal possibility that IBA could act as a signaling molecule.  

IBA Synthesis.  We do not currently know the molecular mechanism of IBA synthesis.  IBA 

synthesis from IAA has been demonstrated in microsomal membrane preparations from maize 

(Ludwig-Müller et al., 1995a) or Arabidopsis (Ludwig-Müller, 2007) seedlings when provided 

with acetyl-CoA and ATP.  Identifying the enzymes required for IBA synthesis will be an 

important step in understanding IBA biosynthesis. Further, generating mutants defective in IBA 

synthesis will allow for experiments to understand roles for IBA-derived auxin, and perhaps IBA 

itself, in plant development.  
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Chapter 4: IBA Resistance Screening in 

Solanum lycopersicum 
Portions of this chapter were contributed by Dr. Hagai Yasuor and Dr. Kamal Tyagi from the 

Agricultural Research Organization in Gilat, Israel. All data from collaborators in marked as 

such in text and figures.  

While the advent of cheap and easy sequencing technologies paired with powerful 

bioinformatics tools has recently increased the utility of reverse genetics, the importance of 

forward genetic approaches in elucidating signaling pathways cannot be overstated. Plant genetic 

screens have historically been mostly utilized in Arabidopsis due to its small stature, compact 

genome size, and availability of genetic manipulation tools. However, the ever-decreasing price 

of sequencing and the advent of cheap genome editing technologies makes forward genetics 

screens feasible in larger, more agriculturally-relevant species as well. In this chapter, I report 

the rationale, design, and results of a forward genetics screen for IBA resistance in Solanum 

lycopersicum.   

4.1 IBA resistance screens in Arabidopsis 

Levels of active auxin, IAA, are tightly regulated within plants through a variety of 

mechanisms including synthesis, degradation, and conjugation to amino acids (Korasick et al., 

2013). Synthesis occurs through multiple pathways in planta. The best-understood biosynthetic 

pathways derive from tryptophan and use indole-3-acetonitrile, indole-3-pyruvic acid (IPA), 

indole-3-acetaldehyde, and indoleacetamide as direct precursors to IAA (Korasick et al., 2013). 

In Arabidopsis, the IPA-to-IAA pathway is a major contributor to the free auxin pool, evidenced 

by decreased IAA levels in mutants unable to convert IPA to IAA and defects in floral 

development, gravitropism, hypocotyl elongation, and other classic auxin responses (Stepanova 
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et al., 2008; Tao et al., 2008; Mashiguchi et al., 2011; Yamada et al., 2009). The clear auxin 

deficient phenotypes in mutants that cannot convert IPA to IAA demonstrates that plants cannot 

always compensate for the loss of one IAA synthesis pathways by increasing flux through 

another. A similar response, but with different auxin deficient phenotypes, is observed when the 

ability to convert IBA to IAA is lost.  

IBA is converted to IAA in a process similar to fatty acid beta oxidation within the 

peroxisome (see Chapter 1). Some of the catalytic enzymes function exclusively in IBA-to-IAA 

conversion, while others act on both IBA and fatty acid beta oxidation. Currently, the only 

enzyme known to act on both fatty acids and IBA is PED1 (Hayashi et al., 1998).  Because IBA-

to-IAA conversion takes place in the peroxisome and shares some steps with lipid breakdown, 

loss of IBA responsiveness can be caused by disruption of multiple biological processes.  

Forward genetics screens in Arabidopsis for resistance to IBA have led to the discovery 

of mutants in four distinct classes: peroxisomal mutants (Zolman, 2002; Zolman and Bartel, 

2004; Zolman et al., 2008; Zolman et al., 2005; Zolman et al., 2000), IBA-to-IAA conversion 

mutants (Zolman et al., 2007; Strader et al., 2011; Zolman et al., 2008), general auxin-resistant 

mutants (Monroe-Augustus et al., 2003), and IBA transporter mutants (Strader et al., 2008). 

These mutants have, in turn, informed researchers about the importance of all these processes. 

For example, it is difficult to track labeled auxin radioisotopes in planta, because auxin is 

catabolized or metabolized into different forms and conjugates (see Chapter 3.1). Therefore, the 

ech2 and ibr10 mutants, which disrupt IBA-to-IAA conversion, were instrumental to our 

understanding that many seedling auxin responses require IBA-derived-IAA, including lateral 

root formation, cell expansion, root hair and hypocotyl elongation, and smaller root meristems 

(Strader et al., 2010). In tomato, loss-of-function mutants only exist for general auxin resistance 
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in the form of RNAi lines against some ARF and AUX/IAA signaling components (Bassa et al., 

2012; de Jong et al., 2009; Hao et al., 2015; Wang et al., 2005), and genes involved in IAA 

transport (Al-Hammadi et al., 2003; Ivanchenko et al., 2015; Mounet et al., 2012). Point 

mutations only exists for the general auxin perception mutants polycot, diageotropica, and entire 

(Al-Hammadi et al., 2003; Ivanchenko et al., 2015; Zhang et al., 2007). Currently, there are no 

point mutations known to affect tomato peroxisomes, IBA-specific transporters, or IBA-to-IAA 

conversion, so a tomato IBA-resistance screen has potential to isolate many mutants in 

unexplored biological processes.  

4.1.1 IBA resistance as peroxisomal function marker 

One common marker of peroxisomal function is sensitivity to IBA. Because IBA is 

converted to IAA in the peroxisome(Strader et al., 2010), and because IBA does not appear to act 

as an independent signaling molecule outside of its contribution to the IAA pool in a cell 

(Zolman et al., 2000; Zolman et al., 2007; Zolman et al., 2008; Strader et al., 2010; Strader and 

Bartel, 2011), changes in IBA sensitivity in Arabidopsis can be caused by increased or decreased 

peroxisomal biogenesis and function. These mutant screens and subsequent pex mutant 

identification are described in detail in Chapter 1.1.3.  

4.1.2 IBA roles in stress responses 

Beyond the clear developmental importance of IBA-derived-IAA, demonstrated by 

severe developmental problems in Arabidopsis seedlings that cannot convert IBA into IAA 

(Strader et al., 2010), numerous pieces of evidence suggest a central role for IBA-derived-IAA in 

plant stress responses as well. Overexpression of an IBA-glucose conjugating enzyme in 

Arabidopsis leads to increase salt tolerance, shoot branching, and drought tolerance (Tognetti et 
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al., 2010). Maize increases expression of IBA synthetase in response to drought and abscisic acid 

(ABA) treatment (Ludwig-Müller et al., 1995c), and maize seedlings that increase IBA levels in 

response to NaCl stress survived that stress better than seedlings with no IBA change (Zörb et 

al., 2013). However, the conditions in which IBA contributions to the auxin pool affect growth 

and stress responses, as well as the regulatory mechanisms that allow conversion of IBA into 

IAA are not yet understood. It also remains an open question whether IBA is capable of acting as 

a separate signaling molecule outside of conversion into IAA, although genetic data from 

Arabidopsis does not suggest another signaling mechanism for IBA (Strader and Bartel, 2011; 

Strader et al., 2010; Zolman et al., 2008; Zolman et al., 2007; Zolman et al., 2000). In both cases, 

the ability to study stress responses and auxin content in mutants that can no longer process IBA 

into IAA, or transport IBA through the plant, will greatly inform our understanding of the role of 

IBA in non-Arabidopsis species. For example, IBA-derived IAA is well-established in 

Arabidopsis as necessary for lateral root formation (Strader et al., 2011; De Rybel et al., 2012). 

Lateral root number, angle, and density are the major determinants of adult plants’ ability to 

explore the soil and uptake nutrients, and change in response to drought, macronutrient 

depletion, and micronutrient depletion (Lynch, 2011). Plants may utilize IBA-to-IAA conversion 

under water or nutrient stress to stimulate lateral root development and enhance soil exploration.  

4.2 IBA screen results 

Based on the known importance of IBA in auxin homeostasis to Arabidopsis, its utility as 

an easy marker of peroxisomal function, evidence of IBA involvement in stress responses, and 

the paucity of IBA-specific mutants in S. lycopersicum, I undertook a forward genetics screen for 

IBA resistant mutants, hoping to find mutants in some or all of the classes listed in Chapter 4.1. 
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M2 generation seeds from EMS-mutagenized S. lycopersicum cultivar M82 were screened for 

long primary roots on media supplemented with 600 µM IBA, then recovered on 

unsupplemented media prior to transplantation to soil, at which point they were named and 

numbered as IBA-resistant1-19. Of 19 isolated mutants, 8 survived to the flowering stage. 

Progeny of half of the surviving plants did not retest as IBA resistant, progeny from 3 retested as 

IBA resistant, and one individual, IR3, made all parthenocarpic fruit, a common auxin resistant 

phenotype in tomato (de Jong et al., 2009), and thus progeny could not be retested in the M3 

generation (Table 2).  

 Auxin responsiveness compared to wild type M82 

Mutant IBA IAA NAA 2,4-DB 2,4-D TIBA Picloram NPA 

IR3 Resistant Resistant No 

difference 

  Resistant Resistant No 

difference 

IR5 Resistant Sensitive No 

difference 

 No 

difference 

  No 

difference 

IR12 Resistant No 

difference 

No 

difference 

Resistant No 

difference 

Sensitive Sensitive No 

difference 

IR17 Resistant No 

difference 

No 

difference 

  Resistant Sensitive Resistant 

Table 2: Summary of IR Mutant Hormone Responsiveness. “Resistant” indicates significantly longer roots than 

wild type when grown on the indicated hormone, “no difference” indicates statistically indistinguishable root 

elongation compared to wild type, and “sensitive” indicates significantly shorter roots than wild type. Fields left 

blank indicate that IR mutant/hormone combination has not yet been tested. 
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4.2.1 IR3 is a dominant, gain of function mutant 

 Although IR3 was parthenocarpic as an M2 plant, its pollen was viable and IR3 was used 

as male in a backcross to wild type M82. IR3 was also used as the female parent in crosses with 

wild type pollen multiple times, but was unable to successfully fertilize and form seeds from 

these crosses. F1 plants resultant from these crosses were allowed to self fertilize and made 

normal-sized fruit with viable seeds. These F2 seeds were retested for IBA resistance and display 

strong resistance to IBA in about 75% of tested F2 seedlings, a segregation ratio consistent with a 

dominant mutation in IR3 causing resistance to IBA. To confirm this inheritance pattern, F1 

seeds for crosses between IR3 and wild type, as well as IR3 and other IR mutants were measured 

on both IBA and IAA. In all cases, F1 generations of crosses with the IR3 mutant display auxin 

resistance, confirming that IR3 is a dominant mutant resistant to both active auxin and auxin 

precursors (Fig. 17). 

  In Arabidopsis, mutations in domain II of AUX/IAA proteins increase protein stability 

(Liscum and Reed, 2002) because they cannot be marked for degradation, and never release 

transcriptional activators of auxin signaling, the ARF proteins. Inability to mark the AUX/IAA 

  
Figure 17: IR3 is a dominant mutant resistant to both active auxin and auxin precursors. A) Backcrossed IR3 F1 

seeds look identical to IR3 lines homozygous for the lesion(s) causative of IBA resistance. All IR3 lines retain some 

sensitivity to auxin. B) Crosses between IR3 and recessive IR mutations, such as IR12 shown here, display identical 

auxin resistance as the IR3 parental line.   
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proteins for degradation therefore results in a dominant auxin resistance phenotype. (Fukaki et 

al., 2002; Tiwari et al., 2001). Additionally, other tomato aux/iaa mutants display parthenocarpy 

(Wang et al., 2005), consistent with the original M2 phenotypes observed in IR3.  Based on a 

similarity in segregation pattern, auxin resistance, and phenotypes between IR3 and known 

aux/iaa mutants in tomato and Arabidopsis, the instability region of domain II in all twenty-five 

annotated tomato AUX/IAA genes were sequenced from IR3. None of these contained any unique 

SNPs consistent with EMS mutagenesis (data not shown). 

 Although the causative mutation in IR3 is not yet known, these preliminary results 

suggest that an IBA resistance screening strategy in tomato is an effective way to isolate general 

auxin-resistant mutants, not only those affected in IBA-specific pathways. Other IR mutants 

demonstrate the efficacy of this screening approach in isolating IBA-resistant mutants in the 

other expected classes as well.  
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4.2.2 IR17 is an IBA-resistant mutant with transporter mutant-like 

phenotypes 
 The strongest resistance to IBA is exhibited by IR17. The M2 plant was isolated as a 

long-root individual when grown on 600 µM IBA, then transferred to soil and backcrossed to 

wild type. IR17 contains a recessive mutation that confers resistance specifically to long-chain 

auxins, and is not resistant to short chain active auxins (Fig. 18A, B). In addition to these 

seedling phenotypes, IR17 displays earlier flower time (not pictured) and larger fruit size 

compared to wild type when grown under outdoor, desert conditions (Fig. 18C). This early 

flowering time was not observed in greenhouse conditions (Fig 18D).  

As discussed in Chapter 3.4, IBA appears to be transported by a different set of 

transporters than those that carry IAA. In Arabidopsis, only two IBA transporters are currently 

 
Figure 18: IR17 is an IBA-resistant, recessive mutant. A) IR17 is strongly resistant to IBA, and sensitive to 

IAA. B) Backcrossed IR17 was crossed with IR12 for complementation testing. The F1 seedlings are 

indistinguishable from wild type in their auxin sensitivity, indicating that IR17 and IR12 are both recessive 

mutations. C) Fruit weight of biggest fruit from each plant of M82 and different mutants. 8 different fruit were 

picked from 8 different plants of M82 and IR mutants. M82 lab indicates the Israeli lab strain of M82, while 

M82 US is the line from which mutagenized populations were derived. Data in C were provided by Dr. Kamal 

Tyagi from the Yasuor Lab. D) Flowering time of 10 individuals of wt and 12 IR17 individuals age-matched 

and grown in a greenhouse with average daily temperatures of 26-29°C. 
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known, ABCG36 and ABCG37 (Strader and Bartel, 2009; Růžička et al., 2010). I examined the 

response of IR17 to artificial auxins which can facilitate the interaction between TIR1 and 

AUX/IAA proteins, including 1-naphthaleneacetic acid (NAA) (Kepinski and Leyser, 2005) and 

picloram (Calderón-Villalobos et al., 2012). IR17 is sensitive to both NAA and picloram (Fig. 

19A,C), as expected, because IR17 is also sensitive to the active auxin IAA (Fig. 18A). 

However, when grown on the artificial auxins 2,3,5-triiodobenzoic acid (TIBA) and N-1-

naphthylphthalamic acid (NPA), IR17 displays resistance (Fig. 19B,C,D). TIBA and NPA are 

both auxin transport inhibitors (Thomson et al., 1973); (Cande and Ray, 1976); (Delbarre et al., 

1996), and loss-of-function mutants in the IBA transport mutant pdr9 is hypersensitive to the 

effects of TIBA and NPA (Strader et al., 2008). Because of the hormone resistance and fruit 

 
Figure 19: IR17 is resistant to auxin transport inhibitors. A) IR17 displays normal sensitivity to 

diffusible auxin analog NAA. B) IR17 displays resistance to polar auxin transport inhibitor NPA. C)  

IR17 is sensitive to picloram, an active auxin analog, and resistant to TIBA, an auxin efflux inhibitor. 

D) Representative images of wt and IR17 individuals grown on indicated concentrations of NPA. 
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phenotypes of IR17, this line was selected for a whole genome sequencing approach to 

determine causative mutations.  

 IR17 was backcrossed to wild type M82 as an M2 plant, then F1 plants were allowed to 

self fertilize. F2 seedlings were screened on 300 µM IBA, of which approximately 25% show 

resistance, consistent with a recessive mutation. Eleven IBA-resistant F2 seedlings were allowed 

to recover on unsupplemented media, transplanted to soil, and allowed to self-fertilize. F3 

progeny was screened for IBA resistance, and eight lines selected as germplasm for whole 

genome sequencing. Sequencing shows that IR17 has more than 850 genes with one or more 

SNPs indicative of EMS mutagenesis (Fig. 20). Because of the large number of mutations, a 

sequencing-assisted mapping approach was next employed to narrow down the list of candidate 

mutations (Table 3). Mapping showed that the IBA resistance locus was not linked to 

chromosomes 1, 8, or 9, nor the upper arms of chromosomes 4 or 7.  

Genes with IR17 Unique SNPs Gene Description Sanger Sequencing Results 

Solyc05g009440 Heavy metal transport/detoxification protein  

Solyc05g009500 Peptide transporter  silent mutation 

Solyc05g009920 Anion-transporting ATPase  

 
Figure 20: SNP distribution among S. lycopersicum chromosomes in IR17.  
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Solyc05g018510 ABC transporter G family member 32 silent mutation 

Solyc05g023970 Transport membrane protein    

Solyc05g050350 Cyclic nucleotide gated channel  

Solyc05g050380 Cyclic nucleotide-gated ion channel 1  

Solyc05g051920 Major facilitator superfamily transporter silent mutation 

Solyc05g052830 Proline transporter 2   

Table 3: Mutations in IR17 in genes with GO terms containing “transporter”.  

 Preliminary results from the IR17 mutant suggest that an IBA resistance screening 

strategy in tomato is an effective way to isolate mutants in IBA transport, and that mutations in 

IBA transport affect adult tomato plant auxin-related phenotypes. In addition to the strong IBA 

resistance resulting from both the likely transport mutation in IR17 and the general auxin 

resistance conferred by the lesion(s) in IR3, other mutants with weaker auxin resistance 

phenotypes were also isolated from this screen. 
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4.2.3 Other IR mutants   

 Two other mutants, IR5 and IR12, were also isolated in the IBA resistance screen. Both 

mutants are IBA-specific and display at least wild type sensitivity to active auxins (Fig. 21) and 

to auxin transport inhibitor NPA (Fig. 22A). IR12 is sensitive to the artificial active auxins NAA 

and picloram and to auxin transport inhibitor TIBA (Fig. 22B,C). Because IBA resistance in both 

of these mutants was lower than resistance displayed by IR17 and IR3, and because neither IR5 

nor IR12 displayed noticeable adult plant phenotypes as M2 plants, these mutants were not 

prepared for whole genome sequencing.  

 
Figure 21: IR5 and IR12 are resistant to long-chain auxins. A) IR5 M3 seeds were retested for IBA resistance. IR5 is 

significantly more resistant to IBA than wild type (p<0.05) in a root elongation assay B) IR12 M5 and backcrossed 

IR12 seeds were retested on IBA. Both the original IR12 and backcrossed lines had significantly longer roots than 

wild type (p<0.05). C) Neither IR5 nor IR12 display resistance to natural or artificial short chain active auxins. Both 

mutants were tested in the M3 generation in a root elongation assay. IR5 roots grew significantly shorter than wild 

type, and IR12 did not display a statistically significant difference compared to wild type (p<0.05) 
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Both were sent to collaborators in Yasuor lab, who reported no additional flowering or fruit 

phenotypes for IR12 (personal communication, Dr. Hagai Yasuor and Dr. Kamal Tyagi). 

However, they did find a striking fertility loss in IR5, with less than 2-5 seeds per fruit (Fig. 

23A). Wild type typically contains 20-40 seeds per fruit. Loss of fertilization is likely a result of 

decreased pollen viability, with both IR5 and a backcrossed IR5 line showing a significant 

decrease in pollen viability (Fig. 23B,C).  

 

 
Figure 22: IR5 and IR12 display wild type sensitivity to all tested artificial auxins and auxin transport disruptors. A) Neither IR5 

nor IR12 display significant differences compared to wild type when grown on auxin transport inhibitor NPA. B) IR12 does not 

display significant differences (p<0.05) compared to wild type on diffusible artificial auxin NAA C) IR12 does not display 

significant differences (p<0.05) compared to wild type on artificial active auxin picloram or auxin transport inhibitor TIBA. 
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Interestingly, this low fertility phenotype was not observed in St. Louis-grown plants. One 

explanation could be the temperature difference in growing conditions, as the St. Louis plants 

were grown in a temperature-controlled greenhouse with average daily temperatures of 26-29°, 

while the plants in Israel were grown in net houses with daytime temperatures between 30 and 

40°C (Hagai Yasuor, personal communication).    

4.3 Discussion and Future Directions 
 Lack of stable, loss-of-function point mutations in non-model species has limited the 

study of auxin responses in agriculturally relevant species. Here, I present initial 

characterizations of four auxin-resistant mutants. These characterizations are consistent with 

 
Figure 23: IR5 has fertility-related defects. A) IR5 fruit is the same 

weight and size as wild type, but sets fewer seeds. B) Pollen is IR5 and 

backcrossed line C is less viable than wild type. Wt-Israel is S. 

lycopersicum cv. M82 which has been grown for several generations at 

the Agricultural Research Center in Negev, Israel. Wt-US is the same 

cultivar, but grown for many generations in the United States at 

Washington University in St. Louis. C) Pollen viability shown through 

representative images of Alexander stained pollen from each genotype. 

1507 are backcrossed lines of IR5. Aborted pollen grains are stained 

light blue, viable pollen grains are stained dark magenta. All data was 

collected and analyzed by Dr. Kamal Tyagi from the Yasuor Lab. 
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lesions in IR3 causing general auxin resistance, lesions in IR17 affecting an IBA transporter, and 

lesions in IR5 and IR12 causing resistance only to long-chain auxin precursors. However, much 

remains to be learned about these plants. Collaborators in the Iyer-Pascuzzi lab at Purdue 

University are currently investigating how auxin signaling affects the success of the tomato 

pathogen Ralstonia solanacearum, and are using these IR mutants to learn how loss of auxin 

responsiveness affects pathogen success in its native host. Work in the Yasuor lab continues on 

IR3, IR5, and IR17 to understand how auxin resistance affects floral morphology, pollen 

viability, and fruit production. Determining the basis of IBA resistance in IR17 will be 

particularly interesting, as yield is increased without sacrificing growing time or hardiness. In 

addition, these mutants could be used to provide additional insight into how hormones influence 

symbiotic relationships as well as pathogenic ones. Arabidopsis is one of the few land plants that 

does not associate with arbuscular mycorrhizal fungi (AMF) (Cameron et al., 2013), so there 

have been limited genetic resources available to study how perturbations in auxin and auxin 

precursors levels affects AMF associations. Interestingly, the Arabidopsis  IBA effluxers 

ABCG36 and ABCG37 localize to the outer membrane of root tips, suggesting that IBA is 

effluxed into the soil (Strader et al., 2008); (Strader and Bartel, 2009). AMF associations with 

tomato roots decreases with increasing auxin resistance, and increases with increasing auxin 

sensitivity (Hanlon and Coenen, 2011),(Etemadi et al., 2014). Future work on determining 

whether auxin resistance in IR17 is due to a mutation in an IBA transporter, as its resistance to 

transport inhibitors suggests, and the localization of that transporter could provide valuable 

insight into IBA flux in tomato roots and their nearby soil environment.  

 Work is also ongoing looking at auxin-responsive transcription in each of these auxin-

resistant mutants.  All have been crossed to a DR5:Venus transcriptional reporter (Ben-Gera et 
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al., 2012) and will be examined in the presence and absence of auxin to determine the auxin-

responsive transcriptional activation in these mutants. It will be particularly interesting to see 

whether auxin responsiveness during flower and early fruit development is altered in IR17, as 

auxin is well known to affect fruit development (de Jong et al., 2009; (Wang et al., 2005), 

although other auxin-resistant mutants have diminished seed and fruit set and IR17 has increased 

yield.  

 Together, these new IR mutants provide a valuable resource to understand how 

perturbations at different points within auxin homeostasis affect development, and particularly 

fruit development. Additionally, the method shows that seedling-stage auxin resistance screens 

can isolate mutants with fruiting defects. The ability to screen at two weeks instead of two 

months could accelerate the discovery and characterization of auxin-related fruiting mutants.  

4.4 Materials and Methods 

4.4.1 Generating mutant screening populations in S. lycopersicum  

Approximately 1200 S. lycopersicum cv. M82 seeds were mutagenized with 0.5% 

ethylmethylsulfonate (EMS) for 12 hours, then neutralized with an equal volume of 1M NaOH. 

After 3 washes in sterile water, mutagenized seeds were pipetted onto moistened paper towels in 

Phytatrays (Sigma) and allowed to grow for about two weeks. Approximately 1000 seedlings 

were then transplanted into MetroMix soil and placed in a greenhouse with an 16 hours light/8 

hours dark cycle in early May of 2015. Seedlings were allowed to grow for about one month, 

then hardened off by a combination of top watering and increasing outdoor exposure for until 

late June of 2015. After hardening off, seedlings were transplanted to field space owned and 

maintained by the University of Missouri-Columbia in Columbia, MO. Approximately 800 
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seedlings were transplanted in late June of 2015, divided into 5 rows, which were designated as 

separate pools. Seeds were harvested twice: once in early August, and again in mid September of 

2015. Seeds from all plants bearing fruit were collected. Not all plants bore fruit. Seeds from the 

M1 fruits were harvested between August and December of 2015.  

4.4.2 Screening mutagenized S. lycopersicum for IBA resistance 

M2 seeds were surface-sterilized with 20% bleach (Last and Fink, 1988)and plated on PN 

(Haughn and Somerville, 1986) supplemented with 600 µM IBA (Sigma) in DMSO (Sigma). 

Seedlings were placed under yellow-filtered light in a Percival incubator (22°C, 16 hours light 

and 8 hours dark) for 1-2 weeks, then visually inspected for long-root individuals. Long root 

individuals were then sterile-transferred to PN plates with no added hormones and allowed to 

recover for 2-7 days before transplanting into MetroMix soil. Seedlings were initially grown in 

9x9cm pots and moved to 5 gallon pots when they outgrew the 9x9cm pots. All named mutants 

which survived to flowering and fruit set stage were crossed with wild type M82. All mutants 

that made viable seed were retested on 600 µM IBA and an equal amount of DMSO to confirm 

IBA resistance.   

4.4.3 Auxin Assays 

 M2 seeds were surface-sterilized with 20% bleach (Last and Fink, 1988) and plated on PN 

(Haughn and Somerville, 1986) supplemented with indicated hormone concentrations (Sigma) in 

DMSO (Sigma). Seedlings were placed under yellow-filtered light in a Percival incubator (22°C, 

16 hours light and 8 hours dark) for 12-14 days, then root length was measured.  
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Chapter 5: Double Root is a Recessive, Low-

penetrance Meristem Mutant in Solanum 

lycopersicum 
 Plants retain enormous developmental plasticity throughout their life cycle, critical to 

their ability to constantly adapt to environmental alterations which they cannot escape. Plants 

continuously generate new aerial tissue from two different meristems: the shoot apical meristem, 

and floral meristems (reviewed in Basile et al. 2017). Together, these meristems generate all 

visible plant organs past the embryonic cotyledon or cotyledons (reviewed in Basile et al. 2017). 

The process of meristem formation and maintenance is well-known to be dependent on the 

proper balance between the hormones auxin and cytokinin, and alterations in either endogenous 

or exogenous levels of these hormones can lead to altered meristematic activity and striking 

defects in plant growth patterning, such as altered organ number, spacing, or size (reviewed in 

Tognetti et al, 2017). Based on some of these phenotypes characteristic of disrupted meristem 

function, several mutants that appeared to be meristem mutants in S. lycopersicum were isolated 

during the IBA resistance screen described above.  The following chapter describes their 

isolation and characterization.   
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5.1 Double Root phenotypes 
During selection of long root individual in IBA screening, three seedlings were found that 

made two primary roots instead of the typical single root (Fig. 24A). All three were from the 

same pool of mutagenized seeds. These seedlings were named Double root1-3 and transplanted 

to soil. Of the three, DR1 and DR3 made flowers, fruit, and seeds. DR2 produced a single true 

leaf, but not other adult organs, and died in soil (Fig. 24B).  

5.1.1 DR1 and DR3 are low penetrance mutations 

 M3 seeds harvested from DR1 and DR3 were plated on plant nutrient plates to observe 

whether the double root phenotype was inheritable. At first, all M3 seedlings appeared to be wild 

 
Figure 24: DR Mutant Isolation. A) Representative images of tomato 

mutant displaying the double root phenotype. Plant is DR3 M3 generation, 

and had grown on PN plate for 2 weeks at time of photographing. B) DR2 

M2 final development stage. Plant was over two months old at time of 

photographing.  
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type. However, upon closer examination of individuals, I found that a small percentage 

recapitulate the double root phenotype, as well as displaying numerous other defects never 

observed in wild type at low frequency (Fig. 24A, 25). Both plants displaying these aberrant 

phenotypes and individuals phenotypically indistinguishable from wild type seedlings were 

moved to soil, and the M4 progeny was counted to determine the penetrance of this mutation. All 

M4 progeny except those from DR3 F displayed some mutations at low rates ranging from <1% 

to 6.3% (Table 4).  

 

Figure 25: DR M3 henotypes. M3 individuals display a 

variety of defects including the original double root 

phenotype, at a low frequency.  Above, sibling 

seedlings of DR3, grown on the same plate for ~2 

weeks. The far left seedling displays a headless 

phenotype in which the seedling makes no cotyledons, 

middle plant displays the original parental mutation of 

double root, and the far right seedling is representative 

of the majority of DR1 and DR3 seedlings and displays 

no obvious phenotypic differences compared to wild 

type .  
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Genotype and 

Generation 
Phenotype 

Number of 

Individuals 

Percent of 

Individuals 

Percent of 

Mutant 

Seedlings 

Parent Plant 

Phenotype 

M82, no gen normal 148 96.10 0 normal 

 lobed 6 3.90   

 Total seedlings 154    

DR1 A M4 normal 368 97.61 1.59   

 

very small and 

pale green 6 1.59   

 lobed 3 0.80   

 Total seedlings 377    

DR1 B M4 normal 277 93.90 4.75   

 lobed 4 1.36   

 

root off of a 

cotyledon  1 0.34   

 

small and pale 

green 8 2.71   

 headless 5 1.69   

 Total seedlings 295    

DR3 A M4 normal 576 97.46 0.04 normal 

 lobed 14 2.37   

 double root 1 0.04   

 Total seedlings 591    

DR3 B M4 normal 101 94.39 0.93 normal 

 lobed 5 4.67   

 

small and pale 

green 1 0.93   

 Total seedlings 107    

DR3 C M4 normal 129 90.85 6.34 normal 

 lobed 4 2.82   

 tricot 1 0.70   

 double root 1 0.70   

 headless 6 4.23   

 monocot 1 0.70   

 Total seedlings 142    

DR3 D M4 normal 134 89.93 4.70 normal 

 lobed 8 5.37   

 tricot 3 2.01   

 single cotlydeon 1 0.67   

 

Unequal sized 

cotyledons 1 0.67  

 

small and pale 

green 1 0.67  

 headless 1 0.67   

 Total seedlings 149    
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DR3 E M4 normal 117 92.86 3.17 normal 

 lobed 5 3.97   

 tricot 1 0.79   

 four cotyledons 1 0.79   

 rootless 2 1.59  

 Total seedlings 4    

DR3 F M4 normal 233   0.00 normal 

 Total seedlings 233    

DR3 G M4 normal 198 88.79 3.15   

 lobed 18 8.07   

 

small and pale 

green 3 1.35   

 root off cotyledon 1 0.45   

 monocot 1 0.45   

 headless 2 0.90   

 Total seedlings 223    

DR 3 H M4 normal 292 92.41 2.53 tricot 

 lobed 16 5.06   

 

small and pale 

green 5 1.58   

 

short root and 

small cotyledons 1 0.32   

 headless 2 0.63   

 Total seedlings 316    

DR3 J M4 normal 136 97.84 0.72 

2 shoots and a root 

from a cotyledon 

 lobed 2 1.44   

 tricot 1 0.72   

 Total seedlings 139    

      

DR3 K M4 normal 411 94.92 1.16 tricot 

 lobed 17 3.93   

 headless 1 0.23   

 tricot 1 0.23   

 

small and pale 

green 1 0.23   

 

root growing off 

cotyledon 1 0.23   

 monocot 1 0.23   

 Total seedlings 433    

      

DR3 M M4 normal 203 97.13   normal 

 lobed 3 1.44 1.44  

 headless 2 0.96   
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small and pale 

green 1 0.48   

 Total seedlings 209    

Table 4: Mutant frequency in DR1 and DR3 M4 lines.  

5.1.2 Inheritance and Complementation Groups 

 Because DR1 and DR3 are low penetrance mutations, many separate backcrosses to wild 

type M82 were performed in order to examine inheritance. Of thirty-eight F1 individuals, none 

displayed any aberrant phenotypes, suggesting the lesion causing DR1 and DR3 is recessive. The 

recessive nature of the lesion(s) in DR1 and DR3 makes complementation testing by crossing 

possible.   

Because DR1 and DR3 were isolated from the same mutant pool and displayed the same 

phenotype, I expected they were siblings and contained the same lesion. If DR1 and DR3 were 

siblings, plants would be expected to display aberrant phenotypes at similar ratios to DR1 and 

 
Figure 26: DR1/DR3 complementation testing. F1 individual of DR1/DR3 cross displays aberrant phenotype 

consistent with parental mutations. Table on the left shows the prevalence of mutant phenotypes, which are 

pictured on the right. All pictured plants were 2 weeks old.  



77 

 

DR3 parental lines in the F1 generation, as they would be homozygous at the mutant allele. If 

DR1 and DR3 contain lesions in two different genes, the F1 plants would not show any aberrant 

phenotypes, because they would be heterozygous at both loci. To determine whether DR1 and 

DR3 contained the same lesion causing the double root phenotype, multiple DR1 and DR3 

crosses were undertaken, and the phenotypes of all the F1 progeny tallied (Fig. 26). Because F1 

individuals display a clearly aberrant morphology never observed in wild type seedlings, DR1 

and DR3 likely contain the same causative lesion (Fig. 26).  

The low penetrance of the mutant phenotypes in DR1 and DR3 complicates interpretation 

of results in determining both inheritance and complementation. Ideally, around 200 F1 seedlings 

of both backcrossed DR1 and DR3 would need to be examined and display no aberrant 

phenotypes for certainty about the inheritance of both lesions. However, the data are consistent 

with recessive inheritance, and the isolation of these mutants is likewise consistent with sibling 

plants which contain the same lesion.  

5.2 Whole Genome Sequencing of DR1 

 Both DR1 and DR3 were backcrossed to wild type M82 plants as M2 individuals. 

Because the mutant phenotype was low penetrance and recessive, seven F1 individuals from 

backcrossed DR1 and six F1 individuals from backcrossed DR3 were transplanted to soil. All 

appeared wild type. Because mutant phenotypes were low penetrance, I expected around 5% of 

one-quarter of the F2 progeny to display any mutant phenotype, so I screened for mutants in the 

F3 generation. To screen for the DR1/3 mutation, more than one hundred F3 seeds of each line 

were plated on PN and allowed to grow for two to three weeks, at which time any mutant 

phenotypes were clearly observable. Because DR1 and DR3 mutants and backcrossed F3 lines 
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displayed many variations in mutant phenotypes, only plants displaying the original M2 

phenotype, double primary root, were selected as germplasm for whole genome sequencing. 

Based on the results in 5.1.1 showing that DR1 and DR3 were in the same complementation 

group, and the happenstance that DR1 backcrossed F3 lines had a larger percentage of double 

root individuals than F3 lines deriving from DR3, whole genome sequencing was performed on 

DR1 germplasm only. Genomic DNA was prepared from all double root F3 adult plants and sent 

for whole genome sequencing through the Genome Technology Access Center (GTAC) at 

Washington University in St. Louis. GTAC returned data on all exonic mutations.   

5.2.1 Whole genome sequencing results 

Whole genome sequencing determined that eight mutations in exonic regions indicative of EMS 

mutagenesis were present in DR1 and absent in wild type (Table 4).  

Mutated Gene GO Annotation Described Function 

Solyc01g008471 Histone-lysine N-

methyltransferase SUVR5 

Arabidopsis homolog reported to recruit chromatin 

modifying-enzymes for gene silencing. suvr5 mutant 

also reported to be late flowering (Li Jikun, Master’s 

Thesis for University of Singapore, unpublished, 

2013) 

Solyc01g008550 phenylacetaldehyde reductase 2, 

par2 

 

Catalyzes conversion of 2-phenylacetaldehyde into 

2-phenylethanol, no mutant phenotype for par2 

described in tomato (Tieman et al., 2007) 

Solyc01g074040 Beta-glucosidase 01  

Solyc02g065085 2,3-bisphosphoglycerate-

dependent phosphoglycerate 

mutase 

 

Solyc04g017800 Unknown Protein  

Solyc04g017950 Unknown Protein  

Solyc04g039670 ATP-citrate lyase A-2 Knocking down homologous gene in Arabidopsis 

yields range of aberrant phenotypes including 

smaller plants, sterile plants, plants with no roots, 

dark green plants (Fatland et al., 2005) 

 

Solyc04g039760 Ycf2  Essential nuclear-encoded chloroplast protein of 

undetermined function (Bryant et al., 2011) 

Solyc06g050455 No gene annotated  

Table 5: Genes from DRI whole genome sequencing with SNP changes consistent with EMS mutagenesis.  
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5.2.2 SNP verification 

To confirm whether SNPs listed in Table 5 could be the cause of the aberrant phenotypes 

seen in both DR1 and DR3 lines, I amplified the regions containing SNPs from wild type 

germplasm not used for whole genome sequencing, and from DR3 backcrossed F4 lines 

displaying the double root mutant phenotype. Regions containing putative SNPs were Sanger 

sequenced (Genewiz) to confirm whole genome sequencing results and ensure these SNPs were 

not present in wild type (Table 6).  

Gene Sanger Sequencing SNP Verification  

Solyc01g008471  

Solyc01g008550 SNPs did not correlate with mutant phenotypes in all 

DR1 and DR3 lines 

Solyc01g074040 WGS called the SNPs wrong; not present in any DR1 

or DR3 lines 

Solyc02g065085 Wild type has same SNPs and DR1 and DR3 

Solyc04g017800  

Solyc04g017950  

Solyc04g039670 Wild type has same SNPs and DR1 and DR3 

Solyc04g039760 Wild type has same SNPs and DR1 and DR3 

Solyc06g050455  

Table 6: Additional sequencing of other wild type germplasm and DR3 lines eliminated many mutations suggested 

by WGS to be causative.  

Additionally, given the phenotypic, inheritance, and penetrance similarity between the DR 

mutants and mutations in the Arabidopsis TOPLESS genes (Szemenyei et al., 2008), I also 

sequenced the entirety of TOPLESS3, the most highly expressed TOPLESS gene in S. 

lycopersicum. TPL3 had no unique mutations in DR1 or DR3, and no other TPL genes had 

unique mutations in whole genome sequencing (data not shown).  

5.3 Discussion and Future Directions 

 In this work, I describe a novel meristem mutant isolated in tomato. Although there are a 

number of tomato loss-of-function mutations affecting meristem development, including 
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defective embryos and meristem (dem) (Keddie et al., 1998) , goblet (gob) (Brand et al., 2007),  

clausa (clau) (Avivi et al., 2000), expelled shoot1&2 (exp1/2) (Brand et al., 2007), short 

pedicle1&2 (spl1/2) (Brand et al., 2007), multidrop (mud) (Brand et al., 2007), and trifoliate (tf) 

(Naz et al., 2013), none are low penetrance phenotypes and are all recessive, Mendelian 

inheritance.  Thus, these siblings likely encode a novel component of meristematic fate or 

patterning in tomato. Future work should continue verifying whether SNPs identified by WGS 

are truly unique to DR1/3, and which may be causative for the altered phenotypes. Even if the 

whole genome sequencing approach ultimately proves unsuccessful in identifying a causative 

mutation, more work should be done to determine whether DR1/3 affects meristem size, 

patterning, or maintenance. Determining size and maintenance can be accomplished with 

scanning electron microscopy or by crossing these plants with a reporter highly expressed in 

tomato meristems, such as DR5:Venus {Ben-Gera, 2012 #2874}. Patterning would be best 

examined through in situ hybridization probing expression of genes with localized meristem 

expression, such as the KNOX genes  (Janssen et al., 1998).  

5.4 Materials and Methods 

Isolation and characterization of DR Mutants 

DR1-3 were found during IBA resistance screen (see Chapter 4). All three seedlings came from 

the same pool, and appear to be siblings based on complementation testing. After the initial 

isolation on the IBA plate, the M3 and beyond generations were tracked by plating at least 100 

seeds on PN plates and grown for two to three weeks. Between two and three weeks, each 

seedling was visually inspected for deviations from wild type morphology. Starting with the M4 

seedlings, only mutant seedlings were carried forward to the next generation.   
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Seedling Selection for WGS 

 DR1 and DR3 M2 plants were backcrossed to wild type M82. All F1 seeds were plated on 

unsupplemented media and inspected for any deviations from the wild type phenotype, which 

none displayed. F2 seedlings were not scored for phenotype, but instead moved directly to soil. 

F3 seedlings were scored, and mutants displaying double root phenotypes from individual F3 

lines  moved to soil for tissue collection. Genomic DNA was prepared as described in (Thole and 

Strader, 2015).  
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Chapter 6: Conclusions and Future 

Directions 

6.1 New Methods of Regulating Peroxisomes in Arabidopsis 

In this thesis, I demonstrate a novel function for Arabidopsis MPK17 in regulating 

peroxisome and mitochondrial division. Regulation by MPK17 depends on PMD1, a peroxisome 

and mitochondrial division factor.  Although Arabidopsis MPK17 is less-studied than its well-

documented relatives MPK3 and MPK6 (reviewed in Mishra et al., 2006), studies on MPK17 

homologs from other plants suggest it plays roles in stress response. For example, expression of 

cotton GhMPK17 is upregulated during NaCl, mannitol, and ABA treatment, and overexpression 

of GhMPK17 in Arabidopsis led to increased tolerance of both salinity and ABA (Zhang et al., 

2014). Similarly, in Setaria italica, SiMPK17 transcript is upregulated in response to dehydration 

stress (Lata et al., 2010). Transcript of the maize homolog, ZmMPK17, increases upon cold, 

ROS, or osmotic stresses and during treatments with abscisic acid, salicylic acid, jasmonic acid, 

and ethylene (Pan et al., 2012).  Further, the two closest rice MPK17 homologs, OsMPK13 and 

OsMPK14, are induced upon inoculation with a rice fungal pathogen (Reyna and Yang, 2006).  

Clearly, MPK17 and its homologs respond to stress transcriptionally and, at least in some cases, 

mediates tolerance to various stress conditions.    

Disruption of either MPK17 or PMD1 results in decreased salt-induced peroxisome 

proliferation, thus both MPK17 and PMD1 are necessary for this dynamic salt response. Because 

the peroxisome numbers in non salt-stressed mpk17-1 are not as high as wild type grown on 

NaCl, the MPK17-PMD1 proliferation pathway cannot be the only salt-responsive pathway 

regulating peroxisome proliferation on NaCl. Losing the ability to divide peroxisomes in 
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response to NaCl does not substantially impact survival or growth of these mutants under high-

NaCl conditions (Fig. 8, Chapter 2), which suggests that peroxisome proliferation may not 

enhance the fitness of NaCl- stressed plants. This result contrasts with recent results by Fahy et 

al. (2017), who observed that the salt-hypersensitive mutants fry1 and sos1 did not proliferate 

peroxisomes in response to NaCl, and have very poor survival on high NaCl. Both mpk17 and 

pmd1 display the same nonproliferation molecular phenotype, but no whole plant NaCl 

phenotype. It remains unclear whether peroxisome proliferation in response to NaCl may provide 

salt tolerance to the plant under specific conditions, or whether peroxisome proliferation is a side 

effect caused by regulation of a different pathway.  

In this thesis, I have also discovered a novel function for PMD1 as an actin-binding protein 

(Fig. 13B, Chapter 2). PMD1 may act as a mechanical input to the peroxisome (and 

mitochondrial) division process, an idea that is supported by the peroxisome clustering 

phenotype seen in PMD1 overexpression lines (Aung and Hu, 2011). The increased fraction of 

mpk17-1 peroxisomes moving in a linear versus Brownian pattern is also consistent with the 

hypothesis that connections between PMD1 and the actin cytoskeleton contribute to peroxisome 

distribution in planta, as PMD1 appears to be genetically downstream of MPK17 and repressed 

by MPK17, and mpk17-1 peroxisomes show an increased ability to move around the cell than in 

wild type or pmd1-1 (Fig. 13, Chapter 2).  Peroxisomes in cells treated with latrunculin B still 

undergo Brownian movement (Mathur et al., 2002), further supporting the hypothesis by Aung 

and Hu (2011) that PMD1 might act in peroxisome distribution within the plant cell. Recently, 

the distribution, not just the number, of peroxisomes was shown to be vital for proper cell 

division in mice skin cells (Asare et al., 2017). Knocking down Pex11b retained peroxisome 

attachment to the microtubule cytoskeleton, but peroxisomes were mislocalized. This 
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mislocalization led to improper positioning of the peroxisomes during cell division and mitotic 

delay, as well as aberrant angles of the mitotic plane of division (Asare et al., 2017). Other 

findings suggest the ability of plants to traffic actin-dependent contents is important for ordinary 

growth and development, not just organelle distribution during stress. The speed of myosins was 

shown to directly affect plant size, with expression of a faster myosin leading to larger plant size, 

and slower myosin causing smaller plant size (Tominaga et al., 2013). The findings, along with 

the data presented in this thesis, further support a role for localization, not just number, in 

peroxisome function.  

6.2 Peroxisome-derived Products in S. lycopersicum 

One of the most developmentally important processes that takes place in plant 

peroxisomes is the conversion of IBA into the active hormone IAA. Disruption of this process 

leads to profound defects in seedling development ((Strader et al., 2011), Chapter 3).  

Discovering the importance of IBA-derived-IAA in Arabidopsis, and the dependence of this 

process on functioning peroxisomes, would have been difficult without the collection of mutants 

isolated through many IBA-resistance screens (Zolman, 2002); (Zolman et al., 2000). Insights 

from these screens have advanced our understanding of both peroxisome biology and auxin 

homeostasis in Arabidopsis, but have not yet been widely translated into organisms with other 

lifecycle stages and stress responses which Arabidopsis does not experiences. Most obviously, 

Arabidopsis does not form fleshy fruits, a process which is highly dependent on auxin regulation 

in non-climacteric fruits ((Given et al., 1988); (Davies et al., 1997; Jones et al., 2002); (Epstein et 

al., 2001). The successful isolation of IR mutants with adult fruit and flower phenotypes by a 

seedling forward genetic screen demonstrates that this screening method is an efficient way to 
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isolate and study tomato mutants with altered auxin homeostasis. Additionally, this forward 

genetics screen isolated mutants generally defective in auxin responses, mutants with an apparent 

IBA transport defect, and mutants with IBA-specific response defects. This demonstrates that 

this method is robust at uncovering a wide range of interesting mutations. Similar screens in 

Arabidopsis uncovered mutants in four classes: peroxisomal mutants (Zolman, 2002); (Zolman 

and Bartel, 2004); (Zolman et al., 2008); (Zolman et al., 2005; Zolman et al., 2000), IBA-to-IAA 

conversion mutants (Zolman et al., 2007), general auxin-resistant mutants (Monroe-Augustus et 

al., 2003), and IBA transporter mutants (Strader et al., 2008). So far, the S. lycopersicum screen 

seems an efficient way to isolate mutants in three of those four classes. Only peroxisomal 

mutants were not discovered by this screening method, which is far from saturation. Future work 

will determine whether seedling IBA resistance is also a hallmark of tomato pex mutants as it is 

for most Arabidopsis pex mutants. Even without isolating any apparent pex mutants, the new IR 

mutants provide many avenues for future study.  

6.4 Future Directions 

These findings expand the importance of the actin cytoskeleton in not just peroxisome 

distribution, but in division as well. Lack of an actin cytoskeleton abolishes the ability of 

peroxisomes divide, even under stressful conditions that ordinarily enhance division. However, 

they do not resolve the question of what adaptive effect this peroxisome proliferation on salt 

might confer to plants, or whether upregulating division is a side effect of other salt-induced 

cellular responses. It will also be interesting to see whether other peroxisome division factors 

associate with actin, or if PMD1 is noncanonical in this function. In summary, many questions 

about how, why, and when plants regulate peroxisome numbers remain.  
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6.5.1 Peroxisome stress responses and interactions with the cytoskeleton 

The utility and adaptive benefit of peroxisome proliferation in response to stress in plants 

remains a mystery. Neither artificially increasing peroxisome number by Pex11 overexpression, 

decreasing division by gene knockout in pmd1-1, nor maintaining higher baseline numbers of 

peroxisomes as in mpk17-1 impairs or enhances the ability of a plant to tolerate or survive salt 

stress. To demonstrate true protective effects of increased peroxisome number against salinity 

stress, a division factor like Pex11 should be overexpressed in mutants like fry1-6 and sos1. 

These mutants do not proliferate peroxisomes on NaCl and are salt hypersensitive due to loss of 

a stress-responsive signaling component (FRY1, (Xiong et al., 2001), and a proton/Na+ antiporter 

(SOS1, (Shi et al., 2000), neither of which appear to be related to peroxisome number. If 

artificially increasing peroxisome number in mutants with peroxisome-independent causes of 

hypersensitivity could increase salt tolerance, it would be strong evidence for a protective effect 

of peroxisomes.  While the protective benefits of peroxisome division are still unclear, this thesis 

supports a model in which different signaling pathways are used to respond to a variety of 

division-inducing stresses, as evidenced by the normal responses of mpk17-1 and pmd1-1 to 

respond to a variety of stresses other than NaCl (Chapter 2.4).  Going forward, placing MPK17 

into a signaling cascade more extensive than MKK9/10 will likely shed light on how the salt-

responsive pathway and peroxisome division pathways are interrelated. Similarly, determining 

whether PMD1 interacts with any myosins known to transport peroxisomes in plants may refine 

our understanding of its functions as both a peroxisome division factor and actin-binding protein, 

and provide new insight to how the cytoskeleton affects division.  
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6.5.2 New auxin-resistant tomato mutants  

 Arabidopsis is also an oilseed plant in which germination is highly dependent on the 

ability to mobilize lipid stores. Lipid mobilization requires fatty acid beta-oxidation within the 

peroxisome (see Chapter 1.1.2). It is unknown whether non-oilseed plants are equally dependent 

on peroxisomes for these earliest stages of development. From a basic biology perspective, if 

early seedling development in non-oilseeds is not entirely dependent on functioning 

peroxisomes, pex mutants which are embryo lethal in Arabidopsis may not be lethal in non-

oilseeds and could provide a better avenue to study the function of certain PEX proteins than 

Arabidopsis does. From an applied biology perspective, only one of the major crops grown in the 

United States (soybean) is an oilseed (Walls, 2017), so findings from an oilseed model organism 

may not translate to the majority of our agronomically important plant species.  This was a pilot 

study, and the screen is far from saturated, so the lack of any tomato pex mutants should not yet 

be interpreted as evidence that IBA resistance screening is not effective for isolating peroxisome 

mutants in non-oilseed plants. However, if IBA resistance is not a marker of decreased 

peroxisome function in tomato, the screen has already yielded several interesting mutants.  

With the isolation of IR3, IR5, IR12, and IR17, the number of auxin-resistant point 

mutants has more than doubled. Previously, only three auxin point mutants, diageotropica (Oh et 

al., 2006), entire (Zhang et al., 2007), and polycotyledon (Al-Hammadi et al., 2003) have been 

described. We have already received interest from several lab groups about using these lines to 

study various auxin-dependent pathways. As described in Chapter 4, the Yasuor lab is currently 

characterizing flower and fruit phenotypes in IR3, IR5, and IR17. In addition, the Iyer-Pascuzzi 

lab is using all four IR mutants to examine how altered auxin responsiveness affects 
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pathogenesis of Ralstonia solanacearum. Another direction worth exploring is the ability of 

these mutants to form associations with arbuscular mycorrhizal fungi, a process which is 

dependent on auxin signaling in tomatoes (Hanlon and Coenen, 2011). These broader 

exploratory studies benefit from having four mutants will varied degrees of auxin sensitivity, so 

that auxin sensitivity and response to the stimuli can be place on a spectrum. More specific 

follow-ups for each mutant could also elucidate the genetic reason for differences in auxin 

sensitivity between the IR mutants.  

Most pressing will be determining whether IR17 is truly an IBA transport mutant. Before 

knowing the causative lesion, transport assays with radiolabeled auxin could determine whether 

transport of IBA differs between wild type and IR17 (Al-Hammadi et al., 2003; Strader and 

Bartel, 2011). Continued genotyping of possible causative lesions in genes encoding transporters, 

combined with the creation of rescue lines and additional mutant alleles will be needed to 

definitively say whether IR17 is an auxin transport mutant. 

IR3 is a dominant, gain of function mutant resistant to most auxins. These phenotypes are 

highly suggestive of mutations in the instability region of an AUX/IAA protein; yet sequencing 

determined that all the AUX/IAAs are unaffected in IR3. A second backcross to wild type M82 

has already been made, and selection of IAA-resistant lines should yield enough lines for whole 

genome sequencing.  Work is also continuing in the Yasuor lab to determine whether the 

parthenocarpic phenotype only observed in St. Louis once, in the IR3 M2, is separable or linked 

to the auxin resistance of IR3. Although phenotypes of IR3 strongly suggested an AUX/IAA 

mutant, this does not appear to be the case, indicating that IR3 could be a novel regulator of 

auxin signaling, or that mutant phenotypes for known auxin response elements differ in tomato 
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compared to what is observed in Arabidopsis. Thus, the isolation of IR3 demonstrates the 

continued utility of forward genetic screens to discover novel regulators of even well-studied 

processes. This stands in contrast to the insight gleaned from mpk17, in which the auxin 

resistance phenotypes suggested a peroxisome mutant, which does appear to be the primary 

defect in mpk17-1 (see Chapter 2). Comparison to characterized mutants provides a good starting 

point, but cannot be expected to correctly identify all lesion sites, particularly in species like 

tomato which have much smaller mutant collections than Arabidopsis.  

Both IR5 and IR12 display weaker IBA resistance compared to either IR3 or IR17 (Figs. 

15,16, and 19). Weaker resistance presents a challenge when selecting a good population for 

whole genome sequencing. If small fruit and low seed set phenotypes observed in Israel could be 

replicated through high heat in St. Louis, or remain consistent under various growth conditions in 

Israel, this could provide a way to select a population for sequencing. Finding and verifying the 

causative mutation would be particularly helpful for comparison with IR17. Both IR5 and IR17 

are auxin-resistant mutants, yet display opposite fruit phenotypes. IR17 makes larger fruit with 

more seeds, IR5 makes smaller fruit with fewer seeds. Determining how disrupting different 

aspects of auxin biology leads opposite developmental outcomes will be vital to our 

understanding of how auxin biology can be modified to enhance plant yield without 

compromising hardiness.   

 In the future, work on peroxisome responses to salt stress should focus on determining 

whether increasing peroxisome number confers any adaptive benefits during salt stress. Mutants 

in peroxisome-independent parts of NaCl response, such as sos1, could be transformed with an 

inducible Pex11b gene. Increased peroxisome division could then be induced concurrently with 

salt stress to see if increasing peroxisome number can mitigate the effects of NaCl stress to a 
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hypersensitive mutant. The discovery in this thesis that PMD1 is an actin-binding protein raises 

several questions about the interaction between peroxisome division and the cytoskeleton. First, 

is PMD1 the only division factor that directly associates with actin? If division factors like 

Pex11b, DRP3a, and FIS1a can be heterologously expressed, actin cosedimentation assays might 

determine if PMD1 is unique among plant division factors, or whether direct association with 

actin is common. Another question pertaining to the cytoskeleton is whether PMD1 interacts 

with some or all of the four myosins that transport peroxisomes (Peremyslov et al., 2010). 

Answering these will enhance our understanding of how the cytoskeleton influences peroxisome 

division.   
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Appendix  

Glycerol 

Number 

Plasmid Host Resistance Name Date Comments 

1809 pFL61: Athaliana 

library pool 

 Amp EMF 10/17/2012 T-1, from Bartel lab. 

Unsure of host 

1810 pFL61: Athaliana 

library pool 

 Amp EMF 10/17/2012 T-2, from Bartel lab. 

Unsure of host 

1811 pFL61: Athaliana 

library pool 

 Amp EMF 10/17/2012 T-3, from Bartel lab. 

Unsure of host 

1812 pFL61: Athaliana 

library pool 

 Amp EMF 10/17/2012 T-4, from Bartel lab. 

Unsure of host 

1813 pFL61: Athaliana 

library pool 

 Amp EMF 10/17/2012 T-5, from Bartel lab. 

Unsure of host 

1814 pFL61: Athaliana 

library pool 

 Amp EMF 10/17/2012 T-6, from Bartel lab. 

Unsure of host 

1815 pFL61: Athaliana 

library pool 

 Amp EMF 10/17/2012 T-7, from Bartel lab. 

Unsure of host 

1816 pFL61: Athaliana 

library pool 

 Amp EMF 10/17/2012 T-8, from Bartel lab. 

Unsure of host 

1833 At5g41890 cDNA 

in pCR4 

Top10 kan EMF 10/28/2012 not yet sequenced colony 

6 

1834 At5g41890 cDNA 

in pCR4 

Top10 kan EMF 10/28/2012 not yet sequenced colony 

7 

1835 At5g41890 cDNA 

in pCR4 

Top10 kan EMF 10/28/2012 not yet sequenced colony 

13 
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1836 At5g41890 cDNA 

in pCR4 

Top10 kan EMF 10/28/2012  

2179 pCR4:CRF6 NEB5a kan EMF 5/21/2013  

2180 pCR4:GL2 NEB5a kan EMF 5/21/2013  

2230 pZL1:118N2 DH10B amp EMF 6/12/2013 bacterial host containing 

Arabidopsis EST of Pex1, 

from ABRC 

2231 pZL1:192D14 DH10B amp EMF 6/12/2013 bacterial host containing 

Arabidopsis EST of 

UBQ10, from ABRC 

2232 pUNI51:U09878 PIR1 kan EMF 6/12/2013 bacterial host containing 

Arabidopsis cDNA of 

DRP3A, from ABRC 

2233 pUNI51:U83915 PIR1 kan EMF 6/12/2013 bacterial host containing 

Arabidopsis cDNA of 

PMD1, from ABRC 

2234 pUNI51:U13324 PIR1 kan EMF 6/12/2013 bacterial host containing 

Arabidopsis cDNA of 

FIS1A, from ABRC 

2235 pUNI51:U15712 PIR1 kan EMF 6/12/2013 bacterial host containing 

Arabidopsis cDNA of 

Pex11b, from ABRC 

2339 pADH1:GW DB3.1 kan EMF 8/17/2013 colony #4, sequenced and 

correct 

2,457. promCOBL1:GW DB3.1 kan EMF 9/6/2013 colony #2- sequenced and 

correct 
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2457 pCOBL1:GW DB3.1 kan EMF 9/6/2013 colony #2- sequenced and 

correct 

2,458. promCOBL1:GW DB3.1 kan EMF 9/6/2013 colony #3- sequenced and 

correct 

2,478. pDEST-GBKT  kan EMF 9/10/2013 yeast expression vector 

from Bonnie Bartel 

2,479. pDEST-GADT7  AMP EMF 9/10/2013 yeast expression vector 

from Bonnie Bartel 

2,480. promUBQ10-GW DB3.1 kan EMF 9/12/2013 colony 7, sequenced and 

correct  

2,491. pBI770-MPK17  Neb5a amp EMF 9/17/2013 colony 1, sequenced and 

correct 

2,492. pBI770-MPK17  NEB5a amp EMF 9/17/2013 colony 11, sequenced and 

correct 

2,527. GL2-GW DB3.1 kan EMF 10.2.13 colony number 2, 

sequenced and correct. 

Glycerol #2527-2589 are 

all promoters of indicated 

genes 

2,528. LBD16-GW DB3.1 kan EMF 10.3.13 colony number 8, 

sequenced and correct 

2,548. SCR-GW DB3.1 kan EMF 10/28/2013 colony 10, sequenced and 

correct on 10/24  

2,565. CAB1-GW DB3.1 kan EMF 11/5/2013 colony 15, sequenced and 

correct 

2,574. AGL42-GW DB3.1 kan EMF 11/14/2013 colony 23, sequenced and 

correct 
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2,589. CFR6-GW DB3.1 kan EMF 11/15/2013 colony 10, sequenced and 

correct on 11/13 

2,629. pENTR-

At2g23450-A2 

NEB5a kan EMF 12/2/2013 first half of At2g23540 

cDNA, colony 2 

2,630. pENTR-

At2g23450-A10 

NEB5a kan EMF 12/2/2013 first half of At2g23540 

cDNA, colony 10 

3,095. pMDC32-MPK17 

T178D 

Top10 kan EMF 7/1/2014 colony 1, sequenced and 

correct on 7/1/2014. 

Untagged plant 

expression vector for 

transformation into pmd1-

1 background plants 

3,096. pMDC43-MPK17 

T178D 

Top10 kan EMF 7/1/2014 colony 1, sequenced and 

correct on 7/1/2014. YFP 

tagged plant expression 

vector for transformation 

into pmd1-1 background 

plants 

3,108. pEXP7-GW DB3.1 kan EMF 7/7/2014 colony 1, sequenced and 

correct on 7/3/14. This is 

the EXP7 promoter 

region.  

3,117. pMDC32-MPK17 

T178D 

GV3101 kan gent EMF 7/9/2014 phosphomimic MPK17 

cDNA for hygromycin 

resistant transformation 

into plants. from E.coli 

colony #1 (gly #3095)  
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3,118. pMDC43-MPK17 

T178D 

GV3101 kan gent EMF 7/9/2014 phosphomimic MPK17 

cDNA for hygromycin 

resistant transformation 

into plants. from E.coli 

colony #1 (gly #3096)  

3,166. pUBQ10: MPK17 NEB5a kan EMF 8/8/2014 colony 7, not yet 

sequenced 

3,167. pUBQ10: YFP-

MPK17 

NEB5a kan EMF 8/8/2014 colony 1 

3,168. pUBQ10: 

MPK17DDD 

NEB5a kan EMF 8/8/2014 colony 1, Sequenced and 

correct on 8/12/14 

3,169. pUBQ10: YFP-

MPK17DDD 

NEB5a kan EMF 8/8/2014 colony 1, sequenced and 

correct on 8/12/14 

3,172. pUBQ10: YFP-

MPK17 

GV3101 kan gent EMF 8/13/2014 wild type cDNA, colony 

1, from DNA in glycerol 

#3167. used for dipping 

3,173. pUBQ10: YFP-

MPK17 

GV3101 kan gent EMF 8/13/2014 wild type cDNA, colony 

2, from DNA in glycerol 

#3167 

3,174. pUBQ10: 

MPK17DDD 

GV3101 kan gent EMF 8/13/2014 phosphomimic cDNA, 

colony 1, from DNA in 

glycerol #3168. Used for 

dipping 

3,175. pUBQ10: 

MPK17DDD 

GV3101 kan gent EMF 8/13/2014 phosphomimic cDNA, 

colony 2, from DNA in 

glycerol #3168 
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3,176. pUBQ10: YFP-

MPK17DDD 

GV3,101 kan gent EMF 8/13/2014 phosphomimic cDNA 

with YFP tag, colony1, 

from DNA in glycerol 

#3169. Used for dipping 

3,177. pUBQ10: YFP- 

MPK17DDD 

GV3,101 kan gent EMF 8/13/2014 phosphomimic cDNA 

with YFP tag, colony 2, 

from DNA in glycerol 

#3169 

3,189. pENTR-MIR390 

b/c 

DB3.1 kan EMF 8/14/2014 From Jim Carrington's 

lab, for amiRNA 

construction 

3,190. pMDC32-MIR390 

b/c 

DB3.1 kan EMF 8/14/2014 amiRNA plant expression 

vector from Alberto 

Carbonell in Jim 

Carrington's lab. 

Sequenced and correct 

3,191. pMDC123-MIR90 

b/c 

DB3.1 kan EMF 8/14/2014 amiRNA plant expression 

vector from Alberto 

Carbonell in Jim 

Carrington's lab. 

Sequenced and correct 

3,217. pENTR-MPK17 

T178A Y180A 

NEB5 spec EMF 8/22/2014 cDNA, colony 4, 

sequenced and correct 

(had ADA) on 8/22 

3,218. pENTR-MPK17 

T178A Y180A 

NEB5 spec EMF 8/22/2014 cDNA, colony 44, 

sequenced and correct 

(had ADA) on 8/22 
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3,231. UBQ10-MPK17 

T178A Y180A 

NEB5a kan EMF 8/29/2014 cDNA, colony 1, 

sequenced and correct on 

8/29 

3,232. UBQ10-YFP-

MPK17 T178A 

Y180A  

NEB5a kan EMF 8/29/2014 cDNA, colony 1, 

sequenced and correct at 

8/29/14 

3,233. Bluescript-RIA1 

cDNA 

NEB5a amp EMF 8/29/2014 colony 1, sequenced and 

correct on 8/29/14, with 

NdeI and NotI sites for 

pET28a cloning 

3,241. UBQ10-MPK17 

T178A Y180A 

GV3101 kan gent EMF 9/4/2014 colony 1, DNA from 

#3231, used for dipping 

3,242. UBQ10-MPK17 

T178A Y180A 

GV3,101 kan gent EMF 9/4/2014 colony 2, DNA from 

#3231 

3,243. UBQ10-YFP-

MPK17 T178A 

Y180A  

GV3101 kan gent EMF 9/4/2014 colony 1, DNA from 

#3232, used for dipping 

3,244. UBQ10-YFP-

MPK17 T178A 

Y180A 

GV3,101 kan gent EMF 9/4/2014 colony 1, DNA from 

#3232 

3,252. pMDC32-

Mir390a-

amiMPK17 

GV3101 kan gent EMF 9/5/2014 colony 1, used for 

dipping, DNA  sequenced 

and correct on 8/11/14  

3,253. pBI770-MPK17 

T178AY 180A 

NEB5a amp EMF 9/8/2014 colony 13, sequenced and 

correct 9/8/14 

3,254. pBI770-MPK17 

T178AY 180A 

NEB5a amp EMF 9/8/2014 colony 14, sequenced and 

correct on 9/8/14 
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3,264. pET28a-RIA1 

cDNA 

NEB5a kan EMF 9/25/2014 colony 28, not yet 

sequenced 

3,265. pET28a-RIA1 

cDNA 

NEB5a kan EMF 9/25/2014 colony 31, not yet 

sequenced 

3,266. pET28a-RIA1 

cDNA 

NEB5a kan EMF 9/25/2014 colony 32, not yet 

sequenced 

3,267. U60912 TOP10 kan EMF 9/26/2014 MKK9 cDNA in pUNI 

vector, from ABRC. 

sequenced and correct, 

contains stop 

3,268. DQ652874 TOP10 kan EMF 9/26/2014 MKK10 cDNA in 

pDONR221, sequenced 

and correct but no stop 

codon 

3,269. pET28a:RIA1 Rosetta kan EMF 10/1/2014 colony 1 

3,270. pET28a:RIA1 Rosetta kan EMF 10/1/2014 colony 2 

3,271. pET28a:RIA1 Rosetta kan EMF 10/1/2014 colony 3 

3288 pCR4-MKK9 

cDNA 

NEB5a kan EMF 10/8/2014 colony 12, with RE sites 

for cloning into 

pBI770,sequenced and 

correct on 10/16 

3289 pCR4-MKK9 

cDNA 

NEB5a kan EMF 10/8/2014 colony 14, with RE sites 

for cloning into pBI770, 

sequenced and correct on 

10/16 

3356 pCR4-MKK10 

cDNA 

NEB5a kan EMF 10/17/2014 colony 7, sequneced and 

correct 10/17/14 
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3357 pCR4-MKK10 

cDNA 

NEB5a kan EMF 10/17/2014 colony 14, sequenced and 

correct 10/17/14 

3358 pCR4-MKK10 

cDNA 

NEB5a kan EMF 10/17/2014 colony 16, sequenced and 

correct 10/17 

3362 pBI771-MKK9  NEB5a amp EMF 10/20/2014 colony 4, sequenced and 

correct 10/21/14 

3363 pBI771-MKK9 NEB5a amp EMF 10/20/2014 colony 9, not sequenced 

3368 pBI770-MKK10 NEB5a amp EMF 10/21/2014 colony 2, sequenced and 

correct on 10/22 

3369 pBI770-MKK10 NEB5a amp EMF 10/21/2014 colony 6, sequenced and 

not correct! Don't use! 

3370 pBI770-MPK17 

T178AY180A 

YPB2 -L EMF 10/22/2014 colony 13C, confirmed by 

Western to express 

protein, used in Y2H 

screen and directed Y2H 

with MKK9 

3383 pCR4-MPK17 

T178A Y180A 

NEB5a kan EMF 10/31/2014 colony 7, sequencing and 

correct 10/31 

3400 pBI771-MPK17 

T178A Y180A 

NEB5a amp EMF 11/11/2004 colony 6, sequenced and 

correct on 11/10/14 

3405 pENTR-MPK17 NEB5a kan EMF 11/21/2014 colony 11, with stop 

codon for Co-IP cloning. 

sequenced and correct 

11/20/14 

3406 pENTR-MPK17 

T178A Y180A 

NEB5a kan EMF 11/21/2014 colony 7, with stop codon 

and phosphodead 

mutation for Co-IP 
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cloning. sequenced and 

correct 11/20/14 

3407 pENTR-MPK17 

T178A Y180A no 

stop 

NEB5a kan EMF 11/21/2014 colony 2, with mutated 

stop codon and 

phosphodead for Co-IP 

cloning. sequenced and 

correct 11/20/14 

3411 pBI771 NEB5a amp EMF 12/3/2014 original glycerol was 

growing poorly for me 

3441 pBI771-MKK10  TOP10 amp EMF 12/9/2014 colony 13, sequenced and 

correct on 12/10/14 

3442 pBI771-MKK10 TOP10 amp EMF 12/9/2014 colony 14, sequenced and 

correct on 12/10/14 

3495 pBI770:MPK17 / 

empty pBI771 

YPB2 -L-W EMF 1/22/2015 wild type MPK17 cDNA 

3496 pBI770:MPK17 / 

pBI117:MKK9 

YPB2 -L-W EMF 1/22/2015 wild type MPK17 cDNA 

and MKK9 cDNA 

3497 pBI770:MPK17 / 

pBI117:MKK10 

YPB2 -L-W EMF 1/22/2015 wild type MPK17 cDNA 

and MKK10 cDNA 

3554 pUNI51-PMD1 PIR1 kan EMF 2/27/2015 PMD1 cDNA from 

ABRC 

3560 pCR4-MPK17 

NdeI/XhoI 

TOP10 kan EMF 3/13/2015 colony 4, sequenced and 

correct on 3/16. Contains 

sites for pET28 cloning 

3561 pCR4-MPK17 

NdeI/XhoI 

TOP10 kan EMF 3/13/2015 colony 6,sequenced and 

correct on 3/16. Contains 

sites for pET28 cloning 
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3570 pCR4-PMD1 

SalI/NotI 

TOP10 kan EMF 3/19/2015 colony 5, sequenced and 

correct on 3/18 

3604 pBI770-PMD1 NEB5 amp EMF 4/10/2015 colony 2, lacks the TM 

domain and unordered 

region, not yet sequenced 

3605 pBI770-PMD1 NEB5 amp EMF 4/10/2015 colony 9, lacks the TM 

domain and unordered 

region, not yet sequenced 

3623 pDEST24 DB3.1 amp EMF 5/6/2015 Gateway destination 

vector for GST-tagged 

protein expression from 

Invitrogen 

3628 pBI770-PMD1 NEB5a amp EMF 5/15/2015 colony 7, sequenced and 

correct 5/13/15 

3632 pDEST24-MPK17 NEB5a amp EMF 5/19/2015 colony 3, wild type 

MPK17 cDNA in GST 

protein expression vector. 

Sequenced on 5/15/15 

3633 pDEST24-MPK17 

DDD 

NEB5a amp EMF 5/20/2015 colony 2, constituitively 

active MPK17 cDNA in 

GST protein expression 

vector. Sequenced on 

5/15/15 

3634 pDEST24-MPK17 

ADA 

NEB5a amp EMF 5/21/2015 colony 3, phosphodead 

MPK17 cDNA in GST 

protein expression vector. 

Sequenced on 5/15/15 
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3667 pCR4-PMD1  TOP10 kan EMF 6/12/2015 colony 5, with NdeI and 

XhoI sites, sequenced and 

correct 6/12 

3668 pCR4-PMD1 TOP10 kan EMF 6/12/2015 colony 20, with NdeI and 

XhoI sites, sequenced and 

correct 6/13 

3672 pEG100-YFP-

PTS1 

TOP10 kan EMF 6/15/2015 colony 6, sequenced and 

correct on 6/12/15 

3673 pEG100-YFP-

PTS1 

TOP10 kan EMF 6/16/2015 colony 17, sequenced and 

correct on 6/12/15 

3692 pEG100:YFP-

PTS1 

GV3101 kan gent EMF 6/22/2015 DNA from colony 6, 

correct 

3693 pEG100:YFP-

PTS1 

GV3101 kan gent EMF 6/22/2015 DNA from colony 17, 

correct 

3720 pET28a-PMD1 Top10 kan EMF 7/6/2015 colony 3, sequenced and 

correct on 7/2/15 

3721 pET28a-PMD1 TOP10 kan EMF 7/6/2015 colony 7, sequenced and 

correct on 7/2/15 

3722 pET28a-PMD1 rosetta kan emf 7/6/2015 DNA from glycerol 3720, 

colony A 

3723 pET28a-PMD1 rosetta kan emf 7/6/2015 DNA from glycerol 3720, 

colony B 

3724 pET28a-PMD1 rosetta kan emf 7/6/2015 DNA from glycerol 3721, 

colony A 

3725 pET28a-PMD1 rosetta kan emf 7/6/2015 DNA from glycerol 3721, 

colony B 

3735 pDEST24-MPK17  Rosetta amp EMF 7/9/2015 colony 3A 
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3736 pDEST24-MPK17 Rosetta amp EMF 7/9/2015 colony 3B 

3737 pDEST24-MPK17 

DDD 

Rosetta amp EMF 7/9/2015 colony 2A 

3738 pDEST24-MPK17 

DDD 

Rosetta amp EMF 7/9/2015 colony 2B 

3739 pDEST24-MPK17 

ADA 

Rosetta amp EMF 7/9/2015 colony 5A 

3740 pDEST24-MPK17 

ADA 

Rosetta amp EMF 7/9/2015 colony 5B 

3871 pCR4:MPK17 

SalIgg#1 

 Kan EMF 8/6/2015 colony 1 

3872 pCR4:MPK17 

SalIgg#12 

 Kan EMF 8/6/2015 colony 12 

3887 pCR4-MPK17 

DDD  

NEB5a kan EMF 8/11/2015 colony 6, sequenced and 

correct on 8/10/15. With 

SalIgg for pGEX cloning 

3916 pCR4-PMD1 

salIgg 

NEB5a kan EMF 8/19/2015 colony 5, sequenced and 

correct 8/18/15. With RE 

sites for pGEX4T1 

cloning 

3921 pGEX4T1-MPK17 NEB5a amp EMF 8/23/2015 colony 22, sequenced and 

in frame  

3929 pGEX4T1-MPK17 Rosetta amp EMF 8/27/2015 DNA from glycerol 3921 

3940 pCR4-MPK17 

ADA 

Neb5a kan EMF 9/3/2015 colony 10, with SalI and 

NotI sites for pGEX 

cloning, sequenced and 

correct 9/2/15 
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3941 pEG100-

At3g51560 

Neb5a kan EMF 9/3/2015 colony 2, sequenced and 

correct 9/4/15 

3942 pEG100-

At3g51561 

Neb5a kan EMF 9/3/2015 colony 11, sequenced and 

correct 9/4/15 

3943 pGEX4T1-MPK17 

DDD 

Neb5a amp EMF 9/4/2015 colony 24, not yet 

sequenced 

3966 pGEX4T1-PMD1 top10 amp EMF 9/23/2015 colony 8, sequenced and 

in frame 9/18/15 

3967 pGEX4T1-PMD1 top11 amp EMF 9/23/2015 colony 21, sequenced and 

in frame 9/18/15 

3971 pENTR-MPK17 

gene+prom 

Top10 kam EMF 9/29/2015 colony 3, sequenced and 

correct on 9/25/15 

4014 pMDC123:MPK17 

gene and promoter 

NEB5A kan EMF 10/9/2015 colony 15, sequenced and 

correct 10/9 

4015 pMDC123:MPK17 

gene and promoter 

NEB5A kan EMF 10/9/2015 colony 16, sequenced and 

correct 10/9 

4016 pMDC123:MPK17 

gene and promoter 

GV3101 kan, gent EMF 10/14/2015 colony 15A, DNA from 

glycerol 4014, used for 

dipping 

4017 pMDC123:MPK17 

gene and promoter 

GV3101 kan, gent EMF 10/14/2015 colony 16A, DNA from 

glycerol 4015 

4024 pENTR-PMD1 NEB5A kan EMF 10/27/2015 colony 3, sequenced and 

correct 10/27. Contains 

transmembrane domain 

for a plant overexpression 

line 
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4030 UBQ10-YFP-

PMD1 

NEB5A kan EMF 11/5/2015 colony 2, sequenced and 

correct on 11/3/15 

4031 pEG104-PMD1 NEB5A kan EMF 11/5/2015 colony 1, sequenced and 

correct 11/5/15 

4032 pEG104-PMD1 NEB5A kan EMF 11/6/2015 colony 3, sequenced and 

correct 11/5/16 

4036 pEG104-PMD1 GV3101 kan gent EMF 11/10/2015 colony 1A, DNA from 

#4031, used for dipping 

4037 pEG104-PMD1 GV3101 kan gent EMF 11/10/2015 colony 3A, DNA from 

#4032  

4038 UBQ10-YFP-

PMD1 

GV301 kan gent EMF 11/10/2015 colony 2A, DNA from 

#4030, used for dipping 

4120 LucTrap3 DB3.1 kan EMF 3/8/2016 Gateway-compatible EV 

for driving Luciferase 

expression. From Claus 

Schwechheimer,not yet 

sequenced 

4121 LucTrap  NEB5a kan EMF 3/8/2016 promoterless empty 

vector for driving 

luciferase expression 

behind your promoter of 

choice. From Claus 

Schwechheimer, not yet 

sequenced 

4136 pEG100-YFP-

PTS1 

NEB5a kan EMF 4/19/2016 colony 7, sequenced and 

correct  
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4137 pEG100-YFP-

PTS1 

GV3101 kan gent emf 4/19/2016 from glycerol 4136 

4144 U50007  kan EMF 4/22/2016 MYA2 cDNA from 

ABRC. single colony 

streaked out from stab. 

Does not contain the 

entire MYA2 region, do 

not use 

4173 pOO2-TOB1 

D457A 

NEB5a amp EMF 6/17/2016 colony 2, sequenced and 

correct  

4184 promTOB1-CFP-

TOB1 EEAA 

NEB5a kan EMF 7/27/2016 colony 2 sequenced and 

correct 

4185 promTOB1-CFP-

TOB1 EEAA 

NEB5a kan EMF 7/27/2016 colony 21 sequenced and 

correct 

4186 promTOB1-CFP-

TOB1 D453A 

NEB5a kan EMF 7/27/2016 colony 18, sequenced and 

correct 

4187 promTOB1-CFP-

TOB1 D453A 

NEB5a kan EMF 7/27/2016 colony 22, sequenced and 

correct 

4188 promTOB1-CFP-

TOB1-P473L 

NEB5a KAN EMF 7/27/2016 colony 8, sequenced and 

correct 

4189 promTOB1-CFP-

TOB1-P473L 

NEB5a KAN EMF 7/27/2016 colony 10, sequenced and 

correct 

4440 pCambia2301 DH5 kan EMF 1/5/2017 from University of 

Missouri Columbia plant 

transformation center 
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4441 pCR4-YFP-PTS1 

AhdI/BstEII 

NEB5a kan EMF 1/13/2017 colony 12, sequenced and 

correct, for pCAMBIA 

cloning 

4466 pCAMBIA-YFP-

PTS1 

NEB5a kan EMF 1/24/2017 colony 7, not yet 

sequenced 

4467 pCAMBIA-YFP-

PTS1 

NEB5a kan EMF 1/24/2017 colony 15, not yet 

sequenced 

4506 pCR4-YFP-PTS1 

AhdI/BstEII 

NEB5a kan EMF 2/21/2017 colony 2, sequenced and 

correct 

4507 pCR4-YFP-PTS1 

AhdI/BstEII 

NEB5a kan EMF 2/21/2017 colony 3, sequenced and 

correct 

4508 pCAMBIA-YFP-

PTS1 

NEB5a kan EMF 2/21/2017 from glycerol 4506, 

colony 9, not yet 

sequenced 

4509 pCAMBIA-YFP-

PTS1 

NEB5a kan EMF 2/21/2017 from glycerol 4507, 

colony 9, not yet 

sequenced 

4510 pCAMBIA-YFP-

PTS1 

NEB5a kan EMF 2/21/2017 from glycerol 4507, 

colony 10, not yet 

sequenced 

4511 pCAMBIA-YFP-

PTS1 

NEB5a kan EMF 2/21/2017 from glycerol 4507, 

colony 12, not yet 

sequenced 

Table S1: List of all correct bacterial cultures made during the thesis research.  
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Seed 

Stock 

Number 

Genotype Ecotype Inheritance Gene Source Encodes 

       

652 mpk17-1 GFP-PTS1 Col    x1045, F2 #21, 

homozygous line 

657 x1508 F1  M82  IR12  first generation 

backcrossed IR12 

(female) 

658 x1510 F1 M82  IR3  first generation 

backcrossed IR3 

(fertility defect, no IR3 

M3 seed) 

659 IR5 M3 M82  IR5  M3 seed of IBA-

resistant IR5 isolate 

660 IR12 M3 M82  IR12  M3 seed of IBA-

resistant IR12 isolate 

661 IR17 M3 M82  IR17  M3 seed of IBA-

resistant IR17 isolate 

662 DR3 M3 M82 recessive/low 

penetrance 

DR3   M3 seed of 

doubleroot3, see notes 

from spring 2016 for 

phenotypes 

663 DR1 M3 M82 recessive/low 

penetrance 

DR1  M3 of doubleroot1, see 

notes from spring 2016 

for phenotypes 

664 wild type M82 M82    wild type parent of 

X1506-X1511 

665 x1514 F1 M82 recessive DR3  F1 seed of backcrossed 

DR3 

911 mpk17-1 

promoterMPK17:MPK17 

T5-6A bulk 

Col recessive   untagged wild type 

MPK17 gene driven by 

native promoter in the 

mpk17-1 background 

912 mpk17-1 

promoterMPK17:MPK17 

T5-20B bulk 

Col recessive   untagged wild type 

MPK17 gene driven by 

native promoter in the 

mpk17-1 background 

Table S2: List of seed lines used in thesis research in publications and for ongoing projects. All seed lines used in 

manuscripts or for ongoing projects were cleaned and stored at 4°.  
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