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Chapter 1

Introduction

1.1 Overview of Model

During the past several decades, continuous-time models for the dynamics of asset returns

have been widely used in financial and economical literature. Volatility is one the main

components in these models. As a main measure of risk in market, volatility plays a pri-

mary role in the asset pricing formulas of several derivatives. It is therefore not surprising

that understanding volatilities and their dynamics has attracted much attention. With the

development of technology and information, larger amount of financial data sets is gradually

not hard to achieve any longer and, as a result, has increasingly been widely used in plenty

of econometric research. The availability of high-frequency intraday data of price returns

has provided new opportunities to empirically study the volatility process. Particularly,

the realized volatility measure, which provides an estimate of the integrated volatility, has

drawn much attention. Many other measures have been also introduced, such as range-based

volatility and power volatility (see e.g. Alizadeh et al. [1]). However, in many applications,

the recovery of the spot (or instantaneous) volatility is desirable, and interest has gradually

been moving to the study of spot volatility during the last few years. For example, one
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can achieve e�cient estimation of the integrated volatility by using the integration of the

preliminary spot volatility (see Jacod and Rosenbaum [17]).

Currently there are a number of methods to estimate spot volatility. Kernels estimation

(Kristensen [21]) is one of the most popular methods, while Fourier estimator of spot volatil-

ity introduced by Malliavin and Mancino [23] is of kernel type. More recent literature has also

explored the volatility estimation in the presence of jumps and microstructure noise (e.g.,

Johannes [20]), Ho↵mann et al [14], Ogawa and Sanfelici [13], Ait-Sahalia [32], Mykland and

Zhang [3] and many more).

This thesis studies a unifying class of estimators for the spot volatility of a univariate semi-

martingale proposed by Mancini et al [25], which, with appropriate adjustment, also allow

jumps and microstructure noise in the price process.

1.2 Microstructure Noise and Jumps

In contrast to low frequency (daily, weekly, or longer) financial datasets, high-frequency

datasets are identified by a large amount of intraday observations and contain so-called

market microstructure noise. Since high-frequency estimation heavily depends on an accurate

description of the stock price dynamics during a very short time, high-frequency data can

capture a variety of friction inherent in the trading process.

The computation of the realized volatility at first, which is a sum of squared intraday return,

is done under the premise that the prices are observed continuously and without measurement

error (e.g. Merton [26]). Unfortunately, the realized volatility su↵ers from a well-known bias
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problem, that becomes worse as the frequency of data increases. The source of this bias

problem is attributed to the the so-called market microstructure noise. Thus, there is a

trade-o↵ between bias and variance, when choosing the sampling frequency. Microstructure

noise has many sources. For example, bid-ask bounce e↵ect, order arrival latency, asymmetry

of information, and discreteness of price changes.

Besides microstructure noise, discontinuities or “jumps” are also believed to be a primary

component of financial asset prices. We should note that large jumps do not basically come to

markets regularly, but their arrivals tend to depend on market information. For example, the

advent of unanticipated news may have a great influence on the valuation of certain financial

assets. Since incorporating jumps related to market information can greatly influence the

accuracy of our model, identifying jumps is essential.

1.3 Background Knowledge

1.3.1 Brief Introduction to Stochastic Processes

A stochastic process is a collection of variable evolving with time, representing a process

of evaluation. More precisely, a stochastic process is a collection of random variables {X
t

}

indexed by time t. For a discrete time process, t takes values on an increasing countable

sequence. In contrast, for a continuous time process, t takes values in [0,1). For each t 2 T

fixed, we have a random variable ! ! X
t

(!), for ! 2 ⌦. On the other hand, if we fix ! 2 ⌦,

the function

3



t ! X
t

(!); t 2 T

can be regarded as the path of X
t

. Sometimes we can also consider the process as

(t,!) ! X(t,!)

which is a function of two variables mapping from T⇥⌦ intoRn. X(t,!) is jointly measurable

in (t,!).

We now introduce the most important class of continuous-time processes.

Definition 1.1 {W
t

}
t�0 is called a Brownian processes or Wiener processes, if the following

conditions are satisfied.

(1) Every increment W (t)�W (s) over an interval of length t-s is normally distributed with

mean 0 and variance t� s, that is

W (t)�W (s) ⇠ N(0, t� s)

(2) For every pair of disjoint of time intervals [t1, t2] and [t3, t4], with  t1  t2  t3  t4 ,

the increments W (t4)�W (t3) and W (t2)�W (t1) are independent.

(3) W (0) = 0
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(4) t ! W (t) is continuous for all t 2 [0,1).

Note that Property 2 tells us that, the value of W (s) gives no further knowledge of W (t)�

W (s) with t > s, Formally, if 0  t0  t1  t2  . . .  t
n

 t, then P (X
t

= y|X
t0 =

x0, Xt1 = x1, Xt2 = x2, ..., Xt

n

= x
n

) = P (X
t

= y|X
t

n

= x
n

) which is known as the Markov

property of Brownian Motion.

Brownian motion is continuous but nowhere di↵erentiable. Fix x 2 Rn, for y 2 Rn, the

function

p(t, x, y) = (2⇡t)�1/2exp(� |x� y|2

2t
) (1.1)

is the (transition) density of W
t+s

given that W
s

= x, where s, t � 0. We now introduce a

fundamental class of discrete time processes.

Definition 1.2 A Poisson process N is an integer-valued process such that

(1) N0 = 0;

(2) Independent increments: X
t1 � X

t0, ..., Xt

n

� X
t

n�1 are independent for any 0  t0 

· · ·  t
n

;

(3) N
t

�N
s

has Poisson distribution with parameter �(t� s), for any s < t;

(4) Its paths are càdlàg, that is, right-continuous with left-limits.

The parameter � is called the intensity of the process.
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Definition 1.3

(1) Let 0 < �  1. A function f : [0, T ] !R is called uniformly Hölder continuous with

exponent � > 0, if there exists a constant K, for all s, t 2 [0, T ], such that

|f(t)� f(s)|  K|t� s|�, (1.2)

(2) f is Hölder continuous with exponent � > 0 if for all s, t 2 [0, T ], f satisfies condition

(1.2) above, for some constant K.

The following results gives conditions for a process to admit a continuous version:

Theorem 1.1 (Kolmogorov’s continuity theorem) Suppose that the process X = {X
t

}
t�0

satisfies the following condition: For all T � 0 there exist positive constants ↵,�,D, such

that

E{|X
t

�X
s

|�}  D|t� s|1+↵; 0  s, t  T.

Then there exists a continuous version of X.

Take Brownian motion as an example. If W (·) is an n-dimensional Brownian motion. For

all integers m = 1, 2, ..., we have

E(|W (t)�W (s)|2m) = C|t� s|m,

thus the hypotheses of Kolmogorov’s theorem hold for � = 2m,↵ = m�1. The process W (·)

is thus Hölder continuous for exponents such that 0 < � < 1
2 .
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1.3.2 Stopping Time

A stopping time ⌧ and its corresponding �-algebra F
⌧

can be defined both for discrete time

process and continuous process.

Definition 1.4 Suppose a non-negative (probabally infinite) random variable ⌧ satisfies

{⌧  t} 2 F
t

,

for every t � 0, then ⌧ is an {F
t

}-stopping time. And we call F
⌧

stopped �-algebra if

F
⌧

= {A \ F ;A \ {⌧  t} 2 F
t

, t � 0}.

There are some important properties for stopping time that we need to know.

Preposition 1.1 1. F
⌧

is a �-algebra.

2. For a second stopping time, min{⌧, �} is F
⌧

-measureable.

3. Let {⌧
n

}
n�1 is a sequence of stopping time. If F

t

is right continuous, then inf
n

⌧
n

,

lim inf
n!1 ⌧

n

, and lim sup
n!1 ⌧

n

are F
t

-stopping times.

1.3.3 Itô Integral

First, consider a mathematical finance case. Let X(t) be the price of an asset at time t.

Denote the increment of price during a short period of time [t, t+4t) by 4X = X(t+4t)�
7



X(t) . Now consider the returns of this asset that is defined as 4X/X . Then we can model

it as

4X

X
= deterministic contribution + stochastic contribution. (1.3)

The deterministic contribution is attributed to the interest rate of non-risky activity, and

thus is define to be proportional to time t with a constant rate µ:

deterministic contribution = µ4t. (1.4)

As for the stochastic contribution, it can be assumed to be related to the variation of noise

and the variation of market (so-called volatility). Denote the variation of noise by 4W =

W (t+4t)�W (t) and enable it proportional to the market volatility �, then we have

stochastic contribution = �4W. (1.5)

Intuitively, it is natural to assume the noise follows a Gaussian distribution, that is, 4W ⇠

N(0,4t), which indicates that X is a Brownian motion. Combine the two formulas, and we

have
4X

X
= µ4t+ �4W (1.6)

As 4t ! 0, it is reasonable we rewrite the formula above in a di↵erential form as

dX(t) = µX(t)dt+ �X(t)dW (t) (1.7)

8



Since we have mentioned that Brownian motion is nowhere di↵erentiable, we switch to its

integral form

X(t) = X(0) + µ
Z

t

0
X(µ)dµ+ �

Z
t

0
X(u)dW

u

. (1.8)

The term
R
t

0 X(u)dW
u

is known as stochastic integral with respect to the Brownian motion.

Definition 1.5 Let B
t

(!) be an n-dimensional Brownian motion. Define Ft = F (n)
t to be

the �-algebra generated by random variables {B
i

(s)}1in,0st

. That is, F
t

is the smallest

�-algebra containing all sets of the form

{w;B
t1(!) 2 F1, ..., Bt

k

(!) 2 F
k

},

where t
j

 t and F
j

2 Rn are Borel sets, j  k = 1, 2, . . ..

F
t

can be understood as the history ofB up to time t. Broadly function h(!) is F
t

-measurable

if it can be written as the pointwise a.s. limit of sums of functions of the form

g1(Bt1)g2(Bt2) · · · gk(Bt

k

),

where g1, . . . , gk are continuous bounded functions with t
j

 t for j  k, and k = 1, 2, . . ..

That Function h is F
t

-measurable intuitively means that the value of h(!) is decided by the

values of B
s

(!) for s  t. Note that{F
t

} is increasing for all t, that is, F
s

⇢ F
t

for any s < t.

Definition 1.6 Let {N
t

}
t�0 be an increasing family of �-algebras of subsets of ⌦. The

process g(t,!) : [0,1)⇥ ⌦ ! Rn is called {N
t

}-adapted if the variable

w ! g(t,!)

9



is N
t

-measurable for each t � 0.

Lemma 1.1 (The Itô isometry) Suppose �(t,!) is F
t

-adapted and E
hR

T

S

�(t,!)2dt
i
< 1,

then

E
h⇣Z

T

S

�(t,!)dB
t

(!)
⌘2i

= E
hZ

T

S

�(t,!)2dt
i
, (1.9)

for any 0  s  t < 1.

1.4 Euler Method

Euler method is one of the most popular methods to simulate the solution of stochastic

di↵erential process. The Euler method approximates X by a continuous stochastic process

Y fulfilling the iteration that

Y
t

i+1 = Y
t

i

+ b(t
i

, Y
t

i

)(t
i+1 � t

i

) + �(t
i

, Y
t

i

)(W
t

i+1 �W
t

i

), (1.10)

where i = 0, 1, ..., N � 1 and with the same initial value X
t0 = Y

t0 . And we usually take the

time increment 4t = t
i+1 � t

i

is set to be constant. Furthermore, the process between any

two times t
i

and t
t+1 is considered to be linear interpolation, and is defined as

Y (t) = Y
t

i

+
t� t

i

t
i+1 � t

i

(Y
t

i+1 � Y
t

i

), t 2 [t
i

, t
i+1). (1.11)
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Chapter 2

Estimation Method

In this chapter we preview the method studied in this thesis, closely following the paper

Mancini et. al. [24], where the method was first proposed.

2.1 The Model

Suppose the logarithmic price X = {X
t

} is defined on a filtered probability space (⌦,F ,

(F
t

)0tT,

P ) and X is the solution of the following di↵erential equation

dX
t

= µ
t

dt+ �
t

dW
t

, (2.1)

where W = {W
t

}
t�0 is a standard Brownian motion defined on the filter probability space,

{µ
t

}
t�0 and {�

t

}
t�0 are adapted stochastic processes.The process {�

t

} is called the spot

volatility process, and {µ
t

} is the drift process.

The realized volatility is the most common popular method to gain the information of volatil-

ity, which concentrate on the quadratic variation of {X
t

}. The quadratic variation at time

t > 0 is defined as

11



[X]
t

= lim
4!0

nX

i=1

(X
t

i

�X
t

i�1)
2 (2.2)

where 0 = t0 < t1 < t2 < · · · < t
n

= t is any partition of [0, T ], with 4 := max
i=1,...,n |ti �

t
i�1|, (cf. Protter (2004 Thm II22)) . The alternative representation of quadratic variation

is the time integral of the variance process:

[X]
t

=
Z

t

0
�2
s

ds (2.3)

However, normally a full recovery is not available. We can use a high-frequency discrete

sample {X
t

}
i=1,...,n over the interval [0, T ] to estimate the quadratic variation. As shown

from (2.2), a natural finite-sample estimate of (2.3) is

d[X]
t

=
nX

i=1

I{t
i�1 < t}(4X

t

i�1)
2, (2.4)

where 4X
t

i�1 = X
t

i

�X
t

i�1 , i = 1, ..., n, which is called the realized quadratic variation of

X over the sample time t1  t2  ...  t
n

. On the other hand, the estimator above can be

viewed as the average of the quadratic variation weighted by the function I{t
i�1 < t}.

Now we consider a function with the following property:

(a)
R
�(x)dx = 1,

(b) �(x) = 0, except x = 0,

which is a weighted function giving all its mass to one point. Then, we can easily derive one

of its important properties,

12



Z 1

�1
�(x� a)�(x)dx = �(a), (2.5)

for a certain function �(x).The �(x) function is called Dirac delta function in mathematics.

Based on the property above, if we weighted the delta function on the quadratic variation, we

may achieve the information of volatility at any exact time. However, Dirac delta function

does not actually exist. But it can be generated by sequence of function {�
n

(x)}, with

lim
n!1

�
n

(x) = �(x), (2.6)

for x 2 R, which is delta sequence. Then, we can define the main estimator used in this

thesis:

�̂2
n,f

(t̄) =
nX

i=1

f
n

(t
i�1 � t̄)(4X

i

)2, (2.7)

where {f
n

(·)} is a delta sequence. Its definition and properties will be introduced in the next

section.

2.2 Assumptions

The first assumption is a type of local weak Hölder continuity conditions on t ! �2
t

.

Assumption 2.1 Supposed t̄ 2 [0, T ] and " > 0 are fixed, let B
"

(t̄) = [t̄ � ", t̄ + "], and

assuming that there exists a constant � > 0, then we assume that a sequence of stopping

times ⌧
m

" 1, and constant C(m)
t̄

such that for all m, for u 2 B
"

(t̄). We have

Emin{u,s}[|�u � �
s

|2]  C(m)
t̄

|u� s|�. (2.8)
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The next assumption gives conditions of the time of observation which partition [0, T ].

Assumption 2.2 Suppose there are n + 1 observations for the process X at time 0 =

t0 < t1 < · · · < t
n

= T , with T fixed. Set 4
i

= t
i

� t
i�1 and 4

n

= T

n

. Then we as-

sume max
i=1,...,n 4i

= O(4
n

) and the quadratic variation of time up to t  T , H(t) =

lim
n!1

P
t

i

t

H
n

(t), where

H
n

(t) =
1

4
n

X

t

i

t

(4
i

)2. (2.9)

We require that H is Lebesgue-almost everywhere di↵erentiable in [0, T ], with H 0 bounded

such that for some K � 0, and

|H 0(t
i

)� 4
i

4
n

|  K4
i

, (2.10)

for any t
i

in which H is di↵erentiable, i = 1, 2, ..., n

When the observations are equally spaced, we have 4
i

= 4
n

, H(t) = t, H 0(t) = 1, and (2.7)

is satisfied. If the observations are getting more concentrated around t, H 0(t) tends to be

smaller than 1. Conversely, if the observations are sparse around t, we have H 0(t) > 1. The

assumption max
i=1,...,n 4i

= O(4
n

) guarantees the partition does not vary asymptotically

to much with regarding to the equally spaced partition.

We now introduce what �-sequence is, which generalizes kernel functions.

Definition 2.1 {f
n

}
n2N is a sequence of functions with f

n

: D ! R, and D ✓ R a given

set and 0 2 D̊, is said to be a delta sequence when for all the processes {�
t

} satisfying

Assumption 2.1,
Z

T

0
f
n

(s� t̄)�2
s

ds = (�2)
?

t̄

+R(�2)
n

(t̄), (2.11)
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1

f
n

(0)

Z
T

0
f 2
n

(s� t̄)�2
s

ds = c
f

(�2)
?

t̄

+ o
p

(1), (2.12)

1

f 2
n

(0)

Z
T

0
f 4
n

(s� t̄)�2
s

ds = O
p

(f
n

(0)), (2.13)

Where R(�2)
n

(t̄) = o
p

(1) and

(�2)
?

t

= ( +
f

�2
t

+  �
f

�2
t

�)I{t2(0,T )} +  �
f

�2
T

I{t=T} +  +
f

�2
0I{t=0}. (2.14)

where
R
x<0 fn(x)dx !  �

f

and  +
f

= 1 �  �
f

. For symmetric delta sequences, we have

 +
f

=  �
f

= 1
2 .

D̊ above represents the interior of D. When estimating the value at boundaries (t̄ = 0 or

t̄ = T ), we would only weight for the delta sequence at the right and left of t̄.

For two sequences {A
n

} and {B
n

}, A
n

= O
p

(B
n

) means that there exists N such that for

all n > N , there exists a constant ⌘ > 0 satisfying that P (|A
n

| > ⌘|B
n

|) < ", for any " > 0.

As for the notation o
p

, if {B
n

} is a positive real sequence goes to zero as n ! 1, we can

say A
n

= o
p

(B
n

), if A

n

B

n

! 0 in probability.

In (1), note that (�2)
?

t

= �2
t̄

if �2
t

is continuous at t̄ 2 (0, T ). When estimating the value at

boundaries (t̄ = 0 or t̄ = T ), we would only weight for the delta sequence at the right and

left of t̄.

Condition 2.11 is very close to the normal definition of delta sequence, which has already

been introduced to estimate probability density since 1979 by G. Walter and J. Blum [9].

Condition 2.12 and 2.13 are used to guarantee the central limit theorem.

Additional conditions are stated below.
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Assumption 2.3 Suppose F = {f
n

, n 2 N} is a delta sequence converging to Dirac delta

function, we assume that f
n

(0) ! +1 and
R
D

f
n

(x)dx ! 1 as n ! 1, and further,

(i) sup
x2D |f

n

(x)|  Cf
n

(0) for some constant C.

(ii) f
n

satisfies Lipschitz condition in a neighborhood of 0 with a Lipschitz constant L
n

such

that L
n

q
4

n

/f
n

(0) ! 0; further either f
n

� 0 or 4�/2
n

P
i

|f
n

(t
i�1 � t̄)4

i

| ! 0.

(iii) There exists a constant M
"

> 0 that does not depend on n such that

sup
x2Bc

"

(0)
|f

n

(0)|  M
"

. (2.15)

To make the Definition 2.1 of delta sequence more straightforward and su�cient to verify

without mentioning the process of {�
t

}, the following proposition is introduced.

Preposition 2.1 Suppose f
n

is a sequence of nonnegative functions from D to R, with

D ⇢ R and 0 2 D̊. f
n

satisfying conditions (i)-(iii), and further, as n ! 1,

(iv)
Z

D

f
n

(x)dx ! 1, (2.16)

(v) there exists a sequence "
n

! 0 such that

Z
"

n

�"

n

f
n

(x)dx ! 1, (2.17)

16



(vi) there exists a real constant c
f

such that

Z

D

f 2
n

(x)

f
n

(0)
dx ! c

f

. (2.18)

Then {f
n

} is a delta function.

Example 1 (Kernels) Let K : R ! R be continuously di↵erentiable and {h
n

} be a positive

sequence with h
n

! 0. We define

f
n

(x) =
1

h
n

K(
x

h
n

). (2.19)

The sequence {h
n

} is usually called bandwidth. Then, f
n

(x) is a delta sequence. Since

we have f
n

(0) = 1
h

n

K(0), f
n

(0) can also be understood as the inverse of the bandwidth.

The kernel estimators was used to estimate spot volatility by Kristensen [21] and can

be used to generate a class of delta sequences.

In this case, we can reformulate Assumption 2.3:

Assumption 2.4

(1)
R+1
�1 K(x)dx = 1 and

R+1
�1 K2(x)dx = c2 (that is, c

f

= c2
K(0)).

(2) sup
x2R |K(x)|  CK(0).

(3) K is di↵erentiable almost everywhere and K 0 is bounded. Also, h
n

satisfies that

sup
x2R

|K 0(xh�1
n

)
q
4

n

/h3
n

| ! 0. (2.20)

17



(4) sup
x2Bc

"

(t̄) | 1
h

n

K( x

h

n

)|  M
"

, where M
"

is a constant that does not depend on n.

The following are classical examples,

(1) (Gaussian kernel) K(x) = 1p
2⇡
e�

x

2

2 , thus c2 =
1

2
p
⇡

and c
f

= 1p
2
.

(2) (Epanechnikov kernel) K(x) = 3
4(1� x2)I{|x|1}, thus c2 =

3
5 and c

f

= 4
5 .

(3) (Indicator kernel) K(x) = 1
2I{|x|1}, then c2 =

1
2 and c

f

= 1.

(4) (Double exponential kernel) K(x) = e

�|x|

2 , then c2 = 1, c
f

= 2.

Example 2 In Fourier analysis, trigonometric functions are often used to approximate the

delta Dirac function.

(1) (Dirichlet sequence) Let g
n

(x) = 1
2⇡DN

n

(x), x 2 [�⇡, ⇡], where

D
N

(x) :=
X

|h|N

eihx =
sin((N + 1

2)x

sinx

2

, (2.21)

and {N
n

} is a diverging sequence. Note that the Dirichlet sequence can be negative at

some points.

(2) (Fejér sequence) The delta sequence is given by f
n

(x) = 1
2⇡FN

n

(x) with domain (�⇡, ⇡),

where {F
N

} is the Fejér sequence

F
N

(x) :=
X

|sN |
(1� |s|

N + 1
)eisx =

1

N + 1
(
sin(N+1

2 x)

sinx

2

)2, (2.22)

and {N
n

} is a diverging sequence.

Now we can verify the properties of Fejér sequence and Dirichlet sequence for all N :

18



(a) 1
2⇡

R
⇡

�⇡

F
N

(x)dx = 1, 1
F

N

(0)

R
⇡

�⇡

F 2
N

(x)dx = 4⇡
3 ,

(b) 1
2⇡

R
⇡

�⇡

D
N

(x)dx = 1, D2
N

(x) = (2N + 1)F2N(x).

Thus, the integration of f
n

and g
n

is 1 and we havec
f

= 2
3 and c

g

= 1. Since when "  |x|  ⇡,

we have 1
sin(x) 

1
sin( "2 )

, it is easy to prove the conditions (iv) and (vi) in Proposition 2.1 for

f
n

. Furthermore, when " = "
n

! 0, we can obtain

Z

"

n|x|⇡

F
N

n

(x)dx  1

N
n

+ 1

1

sin2( "n2 )
2(⇡ � "

n

). (2.23)

When "2
n

N
n

! 1, (2.23) above converges to 0. Thus the Property 2.1 (v) is proved.

Therefore {f
n

} is a delta sequence

2.3 Asymptotic Theory

We have already introduced the estimator of volatility �̂2
n,f

(t̄) =
P

n

i=1 fn(ti�1� t̄)(4X
i

)2, for

t̄ 2 D in Section 2.1. The following result of Mancini et. al. [24] derives the asymptotic

distribution of the estimator �̂2
n,f

(t̄).

Theorem 2.1 Suppose Assumptions 2.1, 2.2, and 2.4 hold, as n ! 1, and f
n

(0) ! 1 in

a way that f
n

(0)4
n

! 0. Then any t̄ 2 [0, T ], we have

�̂2
n,f

(t̄)
p�! (�2)

?

t̄

, (2.24)
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where (�2)
?

t̄

is given in (2.14). Furthermore, if we have R(�2)
n

(t̄) = o
p

(
q
f
n

(0)4
n

), then we

can obtain
1

q
f
n

(0)4
n

(�̂2
n,f

� (�2)
?

t̄

) �! MN(0, 2c
f

(H 0�4)
?

t̄

), (2.25)

where the convergence is stable in law.

Above,MN(0, V ) represents a multivariate normal distribution with mean 0 and and stochas-

tic variance V . The stable convergence in law mentioned is one mode of convergence that was

introduced by Rényi (1963). It is stronger than the convergence in law, and its important

feature is that A
n

is any sequence of variables converging in probability to a limit A on the

filtered probability space (⌦,F , (F
t

)
t�0,P), whereas if another variables B

n

converge stably

in law to B, then the pair (A
n

, B
n

) converges to the pair (A,B) stably in law.

Brief Outline of the proof of theorem convergence in law: Without loss generality, we can

set µ
t

⌘ 0. We have

1
q
f
n

(0)4
n

(�̂2
n,f

� (�2)
?

t̄

)2 =
1

q
f
n

(0)4
n

✓
nX

i=1

f
n

(t
i�1 � t̄)4(X

i

)2 � (�2)
?

t̄

◆

=
1

q
f
n

(0)4
n

✓
nX

i=1

f
n

(t
i�1 � t̄)(4(X

i

)2 �
Z

t

i

t

i�1

�2(s)ds

+O
a.s.

(L
n

4
n

)�R(�2)
n

(t̄)
◆

=
nX

i=1

U
i

+O
a.s.

✓
L
n

vuut 4
n

f
n

(0)
� R(�2)

n

(t̄)
q
f
n

(0)4
n

◆
,

where, for i = 1, ..., n.

U
i

:= f
n

(t
i�1 � t̄)

q
f
n

(0)4
n

✓
(
Z

t

i

t

i�1

�
s

dW
s

)2 �
Z

t

i

t

i�1

�2
s

ds
◆
,
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Since we have assumed the L
n

q
4

n

/f
n

(0) ! 0 and R(�2)
n

(t̄) = o
p

(
q
f
n

(0)4
n

) in assumptions,

the last two terms above converge to zero in probability. Therefore it is su�cient to prove

the asymptotic theorem stable in law for
P

n

i=1 Ui

.

According to Theorem IX. 7.28 in Jacod J. and Shiryaev A. ([19]), it is enough to prove the

following conditions to achieve our goal:

(i)
nX

i=1

E
i�1[Ui

]
p�! 0, (ii)

nX

i=1

E
i�1[U

2
i

]
p�! V

t̄

,

(iii)
nX

i=1

E
i�1[U

4
i

]
p�! 0, (iv)

nX

i=1

E
i�1[Ui

4Z
i

]
p�! 0,

Where E
i�1[·] represents E[·|F

t

i�1 ]. To be clear, we just provide the proof the condition (i)

and (ii) here,

By Itô isometry, condition (i) is easily proved,

nX

i=1

E
i�1[Ui

] =
nX

i=1

f
n

(t
i�1 � t̄)

q
f
n

(0)4
n

E
i�1[(

Z
t

i

t

i�1

�
s

dW
s

)2 �
Z

t

i

t

i�1

�2
s

ds] = 0.

The proofs of conditions (ii), (iii) and (iv) are complicated and we do not show in this paper

(see Mancini et. al. [25]).

Remark: When the samples size is small, we can use the the estimator

ˆ̂�
2

n,f

(t̄) =

P
n

i=1 fn(ti�1 � t̄)(4X
i

)2
P

n

i=1 fn(ti�1 � t̄)4
i

. (2.26)

As n ! 1,
P

n

i=1 fn(ti�1 � t̄)4
i

! 1, thus we can immediately achieve the same result as in

Theorem 2.1. Furthermore, this estimator can also be used to remove some boundary e↵ect.
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For example, when using a symmetric kernel delta sequence to estimate �2
⌧

at ⌧ = T will

lead to E[�̂2
T

] = 1
2�

2
T

+ o(1) as h ! 0, which is called boundary or edge e↵ect.

2.4 Robustness to Microstructure Noise E↵ects

As we have introduce in the introduction part, bid-ask bounces, discreteness of price changes

and rounding, trades occurring on di↵erent markets or networks, and some other may cause

microstructure noise. Thus, it is important to deal the situation when microstructure noise

is present. To make the result simple, we consider logarithmic asset prices observed at

equispaced times t0, t1, ..., tn, and the microstructure noise is supposed to be additive and

independent and identically distributed (i.i.d). More concretely, we have

Assumption 2.5 Supposed that observations are equally spaced (4
i

= 4
n

). Let

X
t

i

= Y
t

i

+ "
i

, (2.27)

where X
t

i

is the observed logarithmic asset prices, Y
t

i

is the unobservable e�cient prices

satisfying the Assumption 2.1, and "
i

represents the microstructure noises component. As-

sume that the noise process {"
i

}
i=0,1,..,n is independent of Y and i.i.d., with E["

i

] = 0 and

E["8
i

] < +1. Set that V
"

= E["2
i

] and ⇤
"

= E["4
i

].

Lemma 2.1 Assume Assumption 2.4 and 2.5 hold. If R(�2)
n

(t̄) = o
p

(
q
4

n

f
n

(0)) and f
n

(0)4
n

!

1, we have
1

q
f
n

(0)4
n

⇣1
2
4

n

�̂2
n,f

(t̄)� V
"

⌘
d�! N

⇣
0,

1

2
c
f

(⇤
"

+ V 2
"

)
⌘
. (2.28)
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Then, we can easily derive that our original estimator has a microstructure-induced bias,

and

E[�̂2
n,f

(t̄)� �2(t̄)] =
2V

"

4
n

+ o
p

⇣ 1

4
n

⌘
, (2.29)

and a consistent estimate of the noise variance can be obtained as

bV
"

=
1

2
4

n

b�2
n,f

(t̄). (2.30)

Following the two-scale approach in Zhang et al. [32], in order to obtain a consistent spot

variance estimator with asymptotically normal distribution, we set

b�2,TS

n,n̄

(t̄) =
1

n̄

n�n̄+1X

i=1

f
n

(t
i�1 � t̄)

⇣
(X

t

i+n̄�1�Xi�1)
2 � (X

t

i

�X
t

i�1)
2
⌘
. (2.31)

Then we have the following asymptotic theorem.

Theorem 2.2 Suppose Assumption 2.4 and 3.1 hold, that, n̄f
n

(0)4
n

! 0 as n̄ ! 1, and

R(�2)
n

(t̄) = o
p

(1). Then we have

b�2,TS

n,n̄

(t̄)
p�! (�2)

?

t̄

. (2.32)

Furthermore, if we have R(�2)
n

(t̄) = o
p

⇣q
f
n

(0)4
n

n̄
⌘
and n̄ = c(4

n

)�
2
3 with c 2 R, then

1
q
f
n

(0)(4
n

)1/3

⇣
b�2,TS

n,n̄

(t̄)� (�2)
?

t̄

⌘
�! MN

⇣
0, 2c

f

(V 2
"

+ c(�4)
?

t̄

⌘
, (2.33)

where the convergence is stable in law.
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2.5 Robustness to Jumps

To learn about the stochastic features of irregular jump arrivals, it is crucial to develop a

robust test to detect jumps. This is our main assumption

Assumption 2.6 Assume process {X
t

} is adapted and defined on [0, T ]. Let

X
t

= Y
t

+ J
t

, (2.34)

where {Y
t

} satisfies Assumption 2.1 and dJ
t

= c
J

(t)dN
t

, where {N
t

} is a nonexplosive

Poisson counting process with adapted intensity {�
t

}, the jumps occur at times ⌧1, ..., ⌧N
t

,

and the sizes of jumps c
J

(⌧
j

) are i.i.d. and satisfy that P [c
J

(⌧
j

) = 0] = 0, for j = 1, ..., N
t

.

Following the non-parametric threshold estimation proposed in C. Mancini [24], we have our

threshold estimator

b̊�
2

n,f

(t̄) =
nX

i=1

f
n

(t
i�1 � t̄)(4X

i

)2I{(4X

i

)2✓

n

}, (2.35)

where {✓
n

} is a suitable sequence converging to 0 used to disentangle the discontinuous

variation induced by the jumps. If convergence of {✓
n

} to zero is much slower than the

modulus of continuity of the Brownian paths, then the disentangling is possible as stated by

the following theorem

Theorem 2.3 Let assumptions 2.2, 2.4, and 2.6 hold. If as n ! 1, f
n

(0) ! 1, ✓
n

! 0,

f
n

(0)4
n

! 0, and ✓
n

/(4
n

log( 1
4

n

)) ! 1, we have

b̊�
2

n,f

(t̄)
p�! (�2)

?

t̄

. (2.36)

24



If we further have R(�2)
n

(t̄) = o
p

⇣q
f
n

(0)4
n

⌘
, then we can gain

1
q
f
n

(0)4
n

⇣
b̊�
2

n,f

(t̄)� (�2)
?

t̄

⌘
�! MN

⇣
0, 2c

f

(H 0�4)
?

t̄

⌘
, (2.37)

and the convergence above is stable in law.
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Chapter 3

Simulation Experiments

The goal of this section is to compare di↵erent delta sequences. The bias of the estimator

in theorem 2.1 is decided both by the regularity of � and the choice of kernel. For a simple

example, if f
n

is an indicator function, the bias is O(f
n

(0)��/2), and since the variance

is O(f
n

(0)4
n

), the optimal form of f
n

(0) is proportional to (4
n

)�
1

1+� , and the estimator

convergence at the rate of n
1
4 .

We consider the following Heston model (Heston [12])

dX
t

= µ
t

dt+ �
t

dW1,t, (3.1)

d�2
t

= �(↵� �2
t

)dt+ 
�

�
t

dW2,t, (3.2)

where W1,t and W2,t are standard Brownian motions, and corr(dW1,t, dW2,t) = ⇢dt. Equation

3.1 describes the dynamics stock price at time t. Equation 3.2 is the process of the variance

following a square root process: ↵ is the long run mean variance, � stands for the speed of

mean reversion, and 
�

represents the parameter that determines the volatility of variance

process.

26



Choose T = 1/12 one month as time period. We set ⇢ = �0.315, µ = 0, � = 1.05,

↵ = 0.0945, 
�

= 0.095, X0 = log(100), and �2
0 = 0.25 (these parameters are based on

experiments in A. Stoep [29]). 1000 paths are generated with 5 minutes as step size, which

means n = 252 ⇤ 12 ⇤ 6.5/12 = 1638. The choice of f
n

(0) is crucial for the main theorem,

however, this thesis does not explore this part, and set f
n

(0) = 500 for all the delta sequences

used.

Based on Euler method, the paths can be generated as follows:

s
i+1,j = s

i,j

+ µs
i,j

4
n

+ s
i,j

�
i,j

q
4

n

Z
s

, s0,j = S(t0), (3.3)

�2
i+1,j = �2

i,j

+ �(↵� �2
i,j

)4
n

+ 
�

�
t

q
4

n

Z
�

, �2
0,j = �2(t0), (3.4)

for i = 0, ..., n, and j = 1, 2, ..., 1000, where Z
s

= Z1, Z�

= ⇢Z1 + (1 � ⇢2)
1
2Z2, with Z1 and

Z2 two independent variables satisfying normal distribution.

Six delta sequences are involved: double exponential, Dirichlet, Fejér, indicator, Epanech-

nikov, and Gaussian. For each delta sequence, 1000 paths are generated. Figure 3.1 shows

that at the time t̄ = 1/24 which is the mid point of time T , the distribution of relative root

errors of estimator in Theorem 2.1. Table 3.1 compares the MSE of di↵erent delta sequences,

which is defined as
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i
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(3.5)

As Figure 3.1 shows, double exponential kernel has the best property when estimating,

with the least variance. The other five sequences, however, do not appear to have great

di↵erences with each other. Further, the MSE of the six delta sequences during one month
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Figure 3.1: The Frequency of Relative Error for Six Delta Sequences

with 5 minutes returns vary from 2.5 to 6.0, and double exponential shows the optimal MSE

value.

Table 3.1: Simulated MSE for six delta sequences

Double Exponential Dirichlet Fejér Indicator Epanechnikov Gaussian

MSE 2.566 4.994 3.444 5.082 4.048 3.560
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Chapter 4

Application using real market data

4.1 Introduction to TAQ Database

The Trade and Quote (TAQ) database from WRDS (Wharton Research Data Services)

contains consolidated intraday transactions data for all securities listed on the American

Stock Exchange (AMEX), New York Stock Exchange (NYSE), Nasdaq National Market

System (NMS), SmallCap issues, as well as stocks trades on Arca.

There are two categories of data within the TAQ, which are quotations and transactions.

Since early 1990s, the NYSE has been firstly distributing its ultra high-frequency data sets.

In 1993, the trades, order, and quotes (TORQ) database, containing a three months sample

of data, was released (Hasbrouck, 1992).

Quote data includes information regarding the best trading conditions available on the ex-

change. Table 4.1 displays some sample records from the quote database with an explanation

of the various fields. However, the quote table does not contain any information of the quality

of the reported data. Trade data involves information regarding the orders executed on the

exchange. Table 4.2 displays few sample records from the trade database. Some information
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Table 4.1: Quote data from TAQ database

SYMBOL DATE TIME BID OFR BIDSIZ OFRSIZ MODE EX MMID

AAPL 20140102 8:00:00 1 0 1 0 12 Z
AAPL 20140102 8:00:00 1 0 2 0 12 Z
AAPL 20140102 8:00:00 1 0 1 0 12 C
AAPL 20140102 8:00:00 1 0 2 0 12 C
AAPL 20140102 8:00:00 556.2 556.9 1 1 12 K

in the database stands for the quality of the recorded ticks, according to which, wrong or

inaccurate ticks are able to be removed: e.g. the CORR field indicate the correction of a

tick, and that the field of COND is equal “Z” or “G” indicates a trade reported at a later

time.

Table 4.2: Trade data from TAQ database

SYMBOL DATE TIME PRICE SIZE G127 CORR COND EX

AAPL 20140102 4:00:00 561.02 9 0 0 @ P
AAPL 20140102 4:00:00 560.00 5 0 0 @ P
AAPL 20140102 4:00:00 558.19 86 0 0 @ P
AAPL 20140102 4:00:00 558.19 64 0 0 @ P
AAPL 20140102 4:00:00 557.00 5 0 0 @ P

Considering the large amount of data recorded in the TAQ database, we need to identify the

information we are interested in and abandon those wrong and unrelated data. As reported

by Falbenberry (2002), errors can be present both in automatic and semiautomatic trading

systems. As the velocity of transactions increases, the frequency of errors will increase in

reporting system. Therefore, the primary goal in data cleaning is to eliminate the erroneous

data, and it is also equally important to deal with outliers and those incompatible data with

normal trading market activity.

In this chapter, we apply the proposed theorem to analyze the high-frequency transaction

of AAPL in 2014.
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Figure 4.1: AAPL stock price on July 1, 2014

4.2 Data Preprocessing

In order to obtain a clean sample we need to identify and discard the records that are not

of interest using available information. The cleaning process is as follows.

Trades were kept if they were regular way trades, that is, trades that had no stated conditions

(COND=‘*’ or COND=‘ ’). And CORR indicating that the trade was “regular” or original

data which was latter corrected (CORR=0, 1, 2). Secondly, to reduce the e↵ect of outliers,

further filter was needed: the 99th percentile of these daily absolute di↵erences |4X| was

obtained. Then, if the di↵erence of a price from the prior price was more than twice the

99th percentile of that days absolute di↵erences and this di↵erence’s sign was reversed on

the following trade, this trade was eliminated. Figure 4.1 is the comparison of stock price

before and after cleaning. Left is the raw data of AAPL market price on July 1, 2014. Right

is market price after cleaning.
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Figure 4.2: Estimated spot volatility for AAPL averaged 128 trading dates using threshold
estimator (2.7) with double exponential kernel

Next we focus our attention on the second half year of 2014, from July 1, 2014 to December

31, 2014. Transactions are recorded during 128 trading days between 9:30am to 4:00pm and

are interpolated to a 5-minutes grid. 79 prices are recorded every trading day. However,

since prices typically are not recorded at equispaced but our model used relies on equispaced

returns, the previous tick aggregation method is used, which forces prices to be an equispaced

time grid by taking the last price realized before each grid point. Furthermore, in the case

that there are a lot of prices within the same second, the last price in the second is recorded.

During calculation, we set one day as time unit.
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4.3 Estimation

Firstly, the proposed original estimator (2.7) and threshold estimator (2.35) are used to

estimate spot volatility as applications. Double exponential kernel is chosen. Set 45 minutes

as bandwidth and one day as unit.

The threshold sequence used is chosen according to Jacod and Todorov [18], ✓
n

= 44!

n

p
BPV ,

where ! = 0.49, and BPV denotes the bi-power variation within one day, which is defined

as

BPV =
nX

j=2

|4X
j�1||4X

j

|. (4.1)

The process of estimation is executed day by day. Then, average all volatility estimations of

128 days by the same time of each day. Figure 4.3 is volatility {�
t

} estimated.

Furthermore, estimator (2.30) in the presence of noise is used and set n̄ = 18. However,

without detecting the jump, the figure of spot volatility performs badly and not accurate.

Then C �Tz test is used to identify the day that has a jump and then delete the day’s data

(see Corsia et. al. [6]). By setting the significant of jump detection at 99%, 16 days are

detected to have jumps. After excluding these days data, the estimation of spot volatility is

executed day by day and then average. The figure of spot volatility {�
t

} is shown in figure

4.4.
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Figure 4.3: Estimated spot volatility for AAPL averaged 128 trading dates using threshold
estimator (2.35) with double exponential kernel

4.4 Analysis

Comparing Figure 4.2 and Figure 4.3, we can see both of the two curves significantly decrease

during the first several hours after the market opening time till to the noon. Then the figure

of original estimator slightly increases. However, the figure of threshold estimator has a

great increase in the afternoon. Since most of the big jumps of the dataset are detected to

happen in the morning instead of randomly distributed, it will greatly a↵ect the shape of

volatility process estimated. But we can still observe the U-shape of volatility curves from

the two figures.

The curves of Figure 4.4 and 4.3 are very similar. Both of these two figures sharply decrease

from the open time of market to the time around noon reaching the lowest level. After noon,

the spot volatility began to increase till to the market close time with a little fluctuation.

34



Figure 4.4: Estimated spot volatility for AAPL in the presence of microstructure noise after
exclude 16 days which is detected to have jumps by using C � Tz test

This kind of U-shape curves can well describe the dynamics of volatility within a day, which

is described as volatility smiles.

On the other hand, Since we are using 5 minutes price return, microstructure noise does not

have great influence on volatility estimation. Microstructure is softened in this time grid.

Besides, as n̄ increase, the edge e↵ect increases greatly. When estimating the points that are

close to the end side, the estimator appeared to have great deviation.
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Chapter 5

Conclusion

This thesis studies and summaries the spot volatility estimation proposed by Mancini et.

al. [24], which unifies a class of spot volatility estimator constructed by delta sequences.

Two classes of delta sequences are mainly mentioned, kernel estimator as well as non-kernel

estimator (e.g. Dirichlet sequence). Then a full asymptotic theory is proposed under some

gentle assumptions and hypothesis. The extended situations with the presence of jump and

microstructure noise are also studied.

To compare di↵erent delta sequences, data are simulated by Heston Model using Euler

method with some restriction. The distributions of relative error of each estimator and the

averaged MSE are performed. The distribution of di↵erent delta sequences appeared to be

similar and close, among which, double exponential sequence tends to be a little better.

In the final part, the theory is applied to real market data. Because most of the big jumps

in the dataset are detected to happen during the morning, the shape of volatility using

original estimator without considering jumps and microstructure noise is greatly a↵ected.

The curve of intraday volatility greatly decreases in the morning and has a slight increase in

the afternoon. The threshold estimator and the estimator in the presence of microstructure

36



noise are also used to test the suitability of the method. Both of two estimators’ figures

appear in traditional U-shape intraday volatility pattern. Because of using 5 minutes price

return, microstructure noise does not show a great influence on volatility estimation.
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