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ABSTRACT OF THE DISSERTATION 

Structural and Functional Analysis of the Reaction Center Complexes from the Photosynthetic 

Green Sulfur Bacteria  

by 

Guannan He 

Doctor of Philosophy in Chemistry 

Washington University in St. Louis, 2015 

Robert E. Blankenship, Chair 

 
 

The reaction center (RC) complex of the green sulfur bacterium Chlorobaculum tepidum is 

composed of the Fenna-Matthews-Olson (FMO) antenna protein and the reaction center core 

(RCC) complex. The RCC complex has four subunits: PscA, PscB, PscC, and PscD. The 

structure of the intact and functional FMO-RCC complex was studied by chemically cross-

linking the purified sample followed by biochemical and spectroscopic analysis. The interaction 

sites of the cross-linked complex were also studied using LC-MS/MS. A structural model is 

proposed based on those results. In addition, the RCC complexes were purified, both the PscA-

PscC complex from the Chlorobaculum tepidum and the PscA-PscB complex from 

Prosthecochloris aestuarii. The intact FMO-RCC complex and the RCC complexes were further 

studied comparatively by steady-state and time-resolved fluorescence and femtosecond time-

resolved transient absorption spectroscopies to elucidate the pathway of FMO-to-RCC inter-

protein energy transfer as well as RCC intra-protein energy and electron transfer.
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Chapter 1: Introduction to the Structure and 
Energy Transfer Mechanism of the Reaction 

Center Complexes from the Green Sulfur 
Bacteria 

 

Photosynthesis is a biological process that converts the light energy into stable chemical energy. 

The energy produced by photosynthesis provides the major food and fuel for the life on earth.1 

Photosynthetic species appeared billions of years ago and initially lived in an anaerobic 

environment. Oxygen-evolving photosynthesis didn’t appear until approximately 2.4 billion 

years ago.2 Phototrophic prokaryotes can be divided into six distinct major groups including the 

purple bacteria, the green sulfur bacteria, the green non-sulfur bacteria, the heliobacteria, the 

chloroacidobacteria and the cyanobacteria.1, 3, 4 All of them are anoxygenic phototrophic 

organisms except cyanobacteria. The chloroplasts of phototrophic eukaryotic organisms were 

derived via endosymbiosis of cyanobacteria.1  

1.1 Antenna complexes in the green sulfur bacteria 
 

Pigments are a critical component for photosynthesis because they not only absorb the light from 

the sun but also serve as energy converter when associated with protein complexes. Various 

groups of pigments are developed to absorb almost the entire solar spectrum. The major groups 

of pigments are (bacterio)chlolorophylls, bilins and carotenoids. Chlolorophylls and derivatives 

are porphyrin-based pigments. There are chlorophylls a-d and f, and the bacteriochlorophylls a-g, 

named based on the order of discovery.1 Chlorophyll a (Chl a) is found in all known 
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the FMO protein, the energy is transferred directly from the chlorosomes to the reaction center 

complex, which is a “Type II” reaction center.  FMO protein is associated with the “Type I” 

reaction center, which has iron-sulfur clusters to reduce ferredoxin protein.  

The BChls in the chlorosomes are self-assembled through pigment-pigment interactions to make 

large supermolecular structures that are enclosed by a lipid monolayer.5 Besides those BChls, 

carotenoids and quinones are also enclosed in the lipid monolayer. These cofactors play an 

important role in light absorption and photo-protection.6 There are over 11 proteins surrounding 

the self-assembled pigments on the lipid monolayer as characterized from Chlorobi, including 

CsmA, CsmB, CsmC, CsmD, CsmE, CsmF, CsmH, CsmI, CsmJ, CsmK, and CsmX.5, 7  CsmA is 

the only highly conserved component in all the chlorosome-containing bacteria. The CsmA 

protein is associated with BChl a and only locates on the bottom side of the chlorosomes. A 

repeating dimer unit of the CsmA-BChl a complex forms a two-dimensional paracrystalline 

structure that is called the baseplate.8-13 The long-range excitonic coupling in the chlorosomes 

allows rapid energy transfer to the baseplate with high quantum yield.5 In the green sulfur 

bacteria, the energy is transferred to the FMO protein through the baseplate.14 Cross-linking data 

using zero-length 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) suggests that the 

FMO protein directly interacts with the CsmA protein, facilitating energy transfer.15 
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kDa PscD protein. 27 The PscA protein carries the primary donor P840 (a special pair of BChl a), 

the primary electron acceptor A0 (Chl a 670), a possible secondary electron acceptor A1 

(menaquinone) and FeS-center X (Fx). 27-30 The PscA homodimer contains 16 BChls a revealing 

Qy bands between 780 and 840 nm, four Chl a molecules and two carotenoid molecules.31, 32 The 

four Chl a-molecules are esterified to 2, 6-phytadienol.29 The PscB protein binds two 4Fe4S-

centers called FA and FB as the terminal electron acceptors. The PscC protein, which mediates 

electron transfer from the menaquinol/cytochrome c oxidoreductase to P840, has three 

membrane-spanning regions at the N terminal end and a soluble domain that binds a single heme 

group at the C terminal end on the periplasmic side of the membrane.33 The PscD subunit of 

RCC shows some similarities in the amino acid sequences with PsaD in the PSI of plants and 

cyanobacteria.34 PscD is loosely bound to the RCC and is not essential for photosynthetic 

growth.34 In addition, the lack of the PscD subunit does not induce any serious defect in the 

kinetics of electron transfer reactions.34, 35  

The intact FMO-RCC complex and subunits of the RCC complex can be purified through 

detergent treatment of the photosynthetic membranes.27, 32, 36-39 The PscA-PscB complex was 

purified previously from the green sulfur bacterium Prosthecochloris aestuarii using a 

hydroxyapatite column after detergent treatment.27, 40, 41 The PscA-PscC complex was purified 

from Chlorobaculum tepidum and Chlorobium limicola.32, 38, 40, 42 Two biochemical preparations 

can be made of the Chlorobaculum tepidum reaction center consisting of FMO and RCC (FMO-

RCC) or a minimal complex containing only PscA and PscC. These two preparations have been 

commonly used for spectroscopic and biochemical analysis, but their use for successful 

structural studies has been limited.37, 42-45 Both complexes have been studied by scanning 

transmission electron microscopy (STEM). STEM predicts 1-2 FMO copies per RCC for FMO-
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core (RCC) complex through the chlorosome baseplate and the FMO protein.30-32, 47-52 The 

chlorosomes dominate the absorption spectrum of intact cells in the region of 720-750 nm. The 

FMO trimer contains 24 molecules of bacteriochlorophyll a (BChl a) with Qy absorption bands 

in the region of 790-830 nm.17, 21, 22 The reaction center of the green sulfur bacteria is a P840-

reaction center. Functional intact reaction center is composed of a 120 kDa FMO trimer, an 82 

kDa homodimer PscA protein, a 24 kDa PscB, a 23 kDa cytochrome c551 (PscC) protein and a 17 

kDa PscD protein.30, 41 The primary electron donor P840 (a special pair of BChl a with a Qy band 

appearing at cryogenic temperature at ~838 nm), the primary electron acceptor A0 (Chl a-

derivative), a secondary electron acceptor A1 (menaquinone) and iron-sulfur cluster Fx are all 

located in the PscA.28-30 The PscB contains iron-sulfur clusters FA and FB that are analogous to 

the terminal electron acceptors of the PsaC in Photosystem I (PSI).53 All the three iron-sulfur 

clusters are 4Fe-4S clusters.30 The PscD subunit is analogous to the PsaD in PSI.34 

The dynamics of excitation energy and electron transfer in the reaction center complex from the 

green sulfur bacteria have been studied for many years.27-29, 39-41, 44, 45, 48, 50, 51, 54-64 The electron 

transport chain and the time for each step are summarized in Figure 1.10.30 The redox potential 

of the P840 is found to be 240 mV.65, 66 The PscC subunit has three transmembrane complexes 

and a heme domain. There are two copies of PscC associated with each RCC.50 The redox 

potential of the cytochrome c is approximately 53 mV more negative than that of P840.62 The 

cytochrome c donates electrons to the P840+ with a time of 7 µs in whole cells and 100 µs in 

isolated reaction center complexes.30, 62 The time also depends on the viscosity of the medium.67 

The excited P840 reacts with A0 to form P840+A0
-. The step is called primary charge separation 

and the time is 10-30 ps.27, 40, 45, 48, 56, 62 The time of the charge recombination between P840+ and 

A0
- to the triplet state of P840 is about 20-35 ns and the decay of the triplet P840 is 90 µs.56, 68 
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to be 35% or lower based on the fluorescence analysis.51 The reason for the low efficiency is not 

clear.  

1.4 Thesis statement 
 

The crystal structure of the reaction center complex from the green sulfur bacteria is not 

available yet, and high resolution crystal structures are only available for FMO and the soluble 

heme-containing domain of PscC. The lack of the crystal structure of the intact reaction center 

complex leaves significant gaps in our understanding of the subunit organization. In addition, the 

energy transfer mechanism from FMO to RCC is not well understood. Studies on the kinetics of 

the energy/electron transfer in the RCC (PscA-PscC) complex are also relatively limited. To 

understand the spatial interaction between FMO and RCC, we studied the intact reaction center 

complex (FMO-RCC) by chemically cross-linking the purified sample and subsequent LC-

MS/MS. We proposed a structural model of the intact reaction center complex based on those 

results. Besides, we have made detailed comparisons of the reaction center complex of green 

sulfur bacteria both with (FMO-RCC complex) and without (RCC complex) the FMO antenna 

complex to elucidate an anticipated FMO-to-RCC inter-protein energy transfer as well as RCC 

intra-protein energy and electron transfer.  
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Chapter 2: Structural Analysis of the 
Homodimeric Reaction Center Complex 

from the Photosynthetic Green Sulfur 
Bacterium Chlorobaculum tepidum 

 

This chapter is based on a recent publication: 
He, G.; Zhang, H.; King, J. D.; Blankenship, R. E. Structural Analysis of the Homodimeric 
Reaction Center Complex from the Photosynthetic Green Sulfur Bacterium Chlorobaculum 
tepidum. Biochemistry 2014, 53, 4924-4930. 

Abstract 

The reaction center (RC) complex of the green sulfur bacterium Chlorobaculum tepidum is 

composed of the Fenna-Matthews-Olson (FMO) antenna protein and the reaction center core 

(RCC) complex. The RCC complex has four subunits: PscA, PscB, PscC, and PscD. We studied 

the FMO-RCC complex by chemically cross-linking the purified sample followed by 

biochemical and spectroscopic analysis. Blue-native gels showed that there were two types of 

FMO-RCC complexes, which are consistent with complexes with one copy of FMO per RCC 

and two FMO per RCC. SDS-PAGE analysis of the samples after cross-linking showed that all 

the five subunits of the RC can be linked by three different cross-linkers: Bissulfosuccinimidyl 

suberate (BS3), Disuccinimidyl suberate (DSS) and 3,3-Dithiobis-sulfosuccinimidyl propionate 

(DTSSP). The interaction sites of the cross-linked complex were also studied using LC-MS/MS. 

The results indicated that FMO, PscB, PscD and part of PscA are exposed on the cytoplasmic 

side of the membrane. PscD helps stabilize FMO to the reaction center and may facilitate the 

electron transfer from RC to ferredoxin (Fd). The soluble domain of the heme-containing 

cytochrome subunit PscC and part of the core subunit PscA are located on the periplasmic side of 
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the membrane. There is a close relationship between the periplasmic portions of PscA and PscC, 

which is needed for efficient electron transfer between PscC and P840. 

2.1 Introduction 

The photosynthetic apparatus of the anoxygenic photosynthetic green sulfur bacterium 

Chlorobaculum tepidum consists of the reaction center core (RCC) complex, the FMO antenna 

protein and chlorosome antenna complexes plus the menaquinol/cytochrome c oxidoreductase 

(cytochrome bc complex).1 The light energy collected by the chlorosome is transferred to the 

reaction center core (RCC) complex through the chlorosome baseplate and the FMO protein. 1 

The chlorosomes dominate the absorption spectrum of intact cells in the region of 720-750 nm. 

The FMO trimer contains 24 molecules of bacteriochlorophyll a (BChl a) with Qy absorption 

bands in the region of 790-830 nm.2-4 The RCC complex, which is embedded in the cytoplasmic 

membrane, contains 16 BChl a, 4 chlorophyll a (Chl a) and 2 carotenoids.1, 5, 6 The RCC 

complex in Chlorobaculum tepidum is an FeS-type (type I) reaction center with a homodimeric 

core structure formed by two 82 kDa PscA proteins. The other three gene products in the RCC 

are the 24 kDa PscB Fe-S protein, a 23 kDa cytochrome c551 (PscC) protein, and a 17 kDa PscD 

protein (Figure 2.1). 5 The PscA protein carries the primary donor P840 (a special pair of BChl 

a), the primary electron acceptor A0 (Chl a 670), a possible secondary electron acceptor A1 

(menaquinone) and FeS-center X (Fx). 1, 5, 7, 8 The PscB protein binds two 4Fe4S-centers called 

FA and FB as the terminal electron acceptors. The PscC protein, which mediates electron transfer 

from the menaquinol/cytochrome c oxidoreductase to P840, has three membrane-spanning 

regions at the N terminus and a soluble domain that binds a single heme group at the C terminal 

end on the periplasmic side of the membrane. 9 The PscD subunit of RCC shows some 
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14 The lack of FMO-RCC crystal structure and the low resolution nature of STEM limit our 

understanding of the subunit organization of the FMO-RCC complex. 

Structural mass spectrometry provides useful tools for characterizing protein organization.15-17 

Previously, our lab, working with the Michael Gross lab, revealed the orientation of FMO 

protein between the baseplate and the RCC.18, 19 We found, using glycine ethyl ester (GEE) 

labeling, that the side of FMO containing Bchl a #3 contacts the cytoplasmic membrane.19 

Additional cross-linking data using zero-length 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDC) suggests that the FMO protein directly interacts with the CsmA protein, which is located 

in the chlorosome baseplate.20 The combination of protein cross-linking and mass spectrometry 

in studies of native proteins and protein complexes has become a popular tool in structural mass 

spectrometry.21-25 Previous studies have demonstrated the application of protein cross-linking in 

studies of protein complexes in photosynthetic systems 26, 27  

In this chapter, we report the study of purified intact FMO-RCC complex by chemically cross-

linking the purified sample with three different cross-linkers: BS3, DSS and DTSSP. The 

interaction sites of the cross-linked reaction center were revealed by LC-MS/MS. The results 

indicate that FMO, PscB, PscD and part of PscA are exposed on the cytoplasmic side of the 

membrane. The close distance of the soluble heme domain of PscC and PscA facilitates the 

electron transfer between PscC and P840. 

2.2 Materials and methods 
2.2.1  FMO-RCC complex purification 

Green sulfur bacterium Chlorobaculum tepidum strain TLS was grown anaerobically at 45 °C for 

2 days. The cells were harvested by centrifugation at 8000 g for 15 min. The FMO-RCC 
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complex was purified by a method reported previously with minor modifications. 28 The cells 

were resuspended in 20 mM Tris-HCl buffer (pH = 8.0) and broken by sonication. The 

supernatant was collected after low-speed centrifugation and then ultracentrifuged at 150,000 g 

for 1 h to pellet the membranes. After washing in 20 mM Tris-HCl buffer containing 150 mM 

NaCl plus 1 mM EDTA, the pellet was resuspended in 20 mM Tris-HCl buffer to an OD810 of 6 

cm-1. 10% DDM was added to the suspension to a final concentration of 2% DDM and the 

mixture was left at 4 °C for 1.5 h in dark. The solution was loaded onto step sucrose density 

gradients from 10 to 50% sucrose and ultracentrifuged at 160,000 g for 13 h. The dark green 

band from the sucrose gradient was then loaded onto a DEAE-cellulose column of about 50 mL 

bed volume, which was equilibrated with 20 mM Tris-HCl buffer (pH = 8.0) and 0.05% DDM. 

The sample was eluted using a linear gradient from 0 to 1 M NaCl in the same buffer. Fractions 

containing both FMO and the RCC complex determined from the shoulder at 807 nm and 835 

nm were collected and concentrated for future use. 

2.2.2  Chemically cross-linked FMO-RCC complex 

The purified FMO-RCC complex as described above was washed with 20 mM phosphate buffer 

and cross-linked by BS3 (11.4 Å), DSS (11.4 Å) and DTSSP (12.0 Å). The mixture was 

incubated for 30 min at room temperature and then loaded onto the desalting column (Zeba™ 

Spin Desalting Columns, 7K MWCO, Thermo Fisher Scientific Inc). For BS3 and DSS, both 

isotopic (1:1 mixture of deuterated (d12) and non-deuterated (d0), Creative Molecules Inc) and 

non-isotopic linkers are used. SDS-PAGE and Blue-native (BN) gel were performed as described 

before.29, 30 
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 2.2.3  LC-MS/MS and Data Analysis 

The stained bands of SDS-PAGE were excised and digested with trypsin. The samples were 

analyzed by LC-MS/MS using both a Waters Synapt G2 Q-IM-TOF and a Thermo LTQ Orbitrap 

(Thermo-Scientific, San Jose, CA) as described in the published protocol. 31 The data from 

Waters Synapt G2 Q-IM-TOF were submitted to the ProteinLynx Global Server (V2.5, Waters 

Inc., Milford, MA) to identify the peptide sequence. The data for cross-linked peptide 

identification obtained from a Thermo LTQ Orbitrap were analyzed by xQuest. 31, 32 The cross-

linked peptides identified by xQuest were further manually validated. 

2.3 Results and discussion 

2.3.1  Purification and identification of FMO-RCC complex 

The purified FMO-RCC complex exhibits a BChl a absorption band at 809 nm with a slight 

shoulder at 835 nm, which is consistent with previous work, as shown in Figure 2.2A. 28 The Qx 

band of the BChl a at 600 nm and Qy band of Chl a at 670 nm are also observed. 12 Five bands 

on the SDS-PAGE at 60 kDa, 40 kDa, 30 kDa, 19 kDa and 16 kDa were identified to be PscA, 

FMO, PscB, PscC and PscD, respectively, by in-gel digestion and subsequent LC-MS/MS 

analysis (Figure 2.2B). 
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Figure 2.4 Chemical cross-linking of FMO-RCC complex by 10 mM different cross-linkers and 
identification of subunit interactions by LC-MS/MS: (A) DTSSP (cross-linked sample treated 
with (Lane 1) and without (Lane 2) reducing agent, markers (Lane 3) and non-crosslinked 
control sample (Lane 4); (B) BS3 (cross-linked sample treated with (Lane 3) and without (Lane 
4) reducing agent, Lane 5 is the sample cross-linked on ice and treated without reducing 
agent)and DSS (cross-linked sample treated with (Lane 7) and without (Lane 8) reducing agent), 
markers (Lane1 and Lane 6), non-crosslinked control sample (Lane 2); (C) The MS/MS 
spectrum of the inter-linked peptide between PscA and PscC induced by BS3. 

 

2.3.3  Structural analysis by chemical cross-linking and LC-MS/MS 

The results from LC-MS/MS were grouped into mono-linked peptides, intra-linked peptides and 

inter-linked peptides.24 The product-ion (MS/MS) spectrum in Figure 2.4C shows the inter-link 

between PscA and PscC by BS3. As the cross-linker targets solvent accessible lysine side chains, 

all those linked peptides should be located on the solvent accessible surfaces. The number of 
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~50% sequence of the peptide) are listed as likely cross-links to support our model. 79K of FMO 

in the middle of the FMO trimer is found to be linked with 107K of PscD and possibly 45K of 

PscA, 36K and 60K of PscB. Because FMO is cytoplasmic, PscB, PscD and 45K of PscA should 

also be cytoplasmic. As reported previously, 93K and 215K are located on the upper exterior loops 

near the chlorosome.19 Our results show that 215K of FMO is linked to 46K of PscD and 93K of 

FMO is likely to be linked to 30K of PscD. Therefore, the C and N terminal lysines of PscD bind 

to both the top and middle side of the FMO trimer allowing for the proper binding of FMO to the 

RCC complex. This result is consistent with previous report that in the PscD deletion strain, the 

ratio of BChl a/P840 in FMO-RCC is lower, suggesting that some of the FMO proteins were 

partially detached from the RCC without PscD.10  

Our results are also informative about electron transfer within the FMO-RCC complex on both 

the donor and acceptor sides. 111K of PscD is a conserved lysine residue thought to be similar to 

lysine 106 in PsaD from PSI, which is involved in the direct interaction of Fd with the iron-sulfur 

protein PsaC.10 Our results indicate that the 107K of PscD is linked to 79K of FMO whereas 36K 

and 60Kof PscB are probably linked to the same lysine of FMO. At the same time, 107K of PscD 

is linked to the conserved lysine 111K of PscD (Figure 2.10). Thus, those lysines should be fairly 

close, and it is very likely that the conserved lysine 111K of PscD is close to PscB to facilitate the 

electron transfer from RC to Fd, similar to the role of PsaD in PSI.10 
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Figure 2.8 The MS/MS spectra of the confirmed cross-linked peptides 
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Figure 2.9 The MS/MS spectrum of the likely cross-linked peptides 
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Figure 2.10 The MS/MS spectra of the intra-linked peptide between PscD K107 and K111 
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helices of PscA and PscC was constructed by ExPASy ProtScale (Figure 2.11). Mono-links can 

provide further structural information based on the hydropathy plot. As shown in Table 2.1, 9 

mono-links were found from the top to bottom sides of the FMO protein because it is a water-

soluble protein. Six mono-links from the soluble domain of PscC were found, and four of them 

are shown in the crystal structure.  
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Figure 2.11 Hydropathy plots of (A) PscA and (B) PscC (Red arrows: cytoplasmic membrane 

side; blue arrows: periplasmic membrane side) 
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Table 2.1 Summary of the mono-linked lysines 

Subunits Mono-linked lysine numbers 

FMO 56, 62, 81, 93, 151, 215, 247, 268, 319 

PscA 60, 132 (P), 188, 315(P), 338(P), 408, 414, 519  

PscB 160 

PscC 102 (P), 120 (P), 146 (P), 171 (P), 180 (P), 205 (P)

PscD 40, 46, 107, 111 

“P” indicates periplasmic side of the membrane 

 

Figure 2.7B shows a membrane topological model of PscA. As mentioned above, 45K of PscA 

was likely cross-linked to FMO. Mono-linked 60K of PscA was found, and there should not be 

any transmembrane helix between the two lysines based on the hydropathy plot; thus, residues 

45-60 of PscA should all be located on the cytoplasmic side of the membrane. In addition, 132K 

of PscA was cross-linked with the soluble domain of PscC on the periplasmic side. At the same 

time, 188K of PscA mono-link was observed and there should be one transmembrane helix 

between the two lysines based on the hydropathy plot. Thus, 188K of PscA should be located on 

the cytoplasmic domain. Residues 315-338 of PscA should be located on the periplasmic domain 

as they were both linked to the soluble domain of PscC. Mono-links of 408K and 414K indicate 

that residues 408-414 should all be located on the same side of the membrane. Meanwhile, 

residues 315-338 are in the periplasmic domain, and there is one transmembrane helix between 

those two domains based on the hydropathy plot. Thus, residue 408-414 should be on the 

cytoplasmic domain. As there are two transmembrane helices between 408K and the mono-linked 

519K of PscA, the latter lysine should also be on the cytoplasmic domain. Furthermore, based on 
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We propose a structural model of the FMO-RCC complex as shown in Figure 2.13. The crystal 

structure of FMO from PDB file 3ENI and PscC soluble domain from PDB file 3A9F were used. 

The inter-links between the FMO trimer and the PscD protein indicate that both are located on 

the cytoplasmic domain. Mono-links of PscA and the inter-links between PscA and the soluble 

domain of PscC showed that PscA is a membrane protein composed of transmembrane helices 

(probably 11) and the periplasmic domain is very close to the soluble domain of PscC. The likely 

cross-linking between PscA and FMO indicated that the FMO protein is close to the cytoplasmic 

domain of the PscA. The likely cross-linkings of PscB and FMO means that PscB is spatially 

close to the FMO trimer, and thus FMO, PscB and PscD should all reside on PscA. The STEM 

dark field images reported previously showed a knob protruding from the RCC. 12 Our results 

suggest that PscB and PscD should be the knob sitting on PscA. In addition, the iron-sulfur 

cluster binding domain of PscB should be water-accessible, and PscD should be close to the 

chlorosomal side of the FMO trimer.  
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PscC and P840. A structural model for the FMO-RCC complex is proposed consistent with these 

results. 
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Chapter 3: Dynamics of Energy and Electron 
Transfer in the FMO-Reaction Center Core 

Complex from the Phototrophic Green 
Sulfur Bacterium Chlorobaculum tepidum 

 

This chapter is based on a recent publication: 
He, G.; Niedzwiedzki, D. M.; Orf G. S.; Zhang, H.; Blankenship, R. E. Dynamics of Energy and 
Electron Transfer in the FMO-Reaction Center Core Complex from the Phototrophic Green 
Sulfur Bacterium Chlorobaculum tepidum. Journal of Physical Chemistry B 2015, 119, 8321-
8329. 

Abstract 

The reaction center core (RCC) complex and the RCC with associated Fenna-Matthews-Olson 

protein (FMO-RCC) complex from the green sulfur bacterium Chlorobaculum tepidum were 

studied comparatively by steady-state and time-resolved fluorescence (TRF) and femtosecond 

time-resolved transient absorption (TA) spectroscopies. The energy transfer efficiency from the 

FMO to the RCC complex was calculated to be ~40% based on the steady-state fluorescence.  

TRF showed that most of the FMO complexes (66%), regardless of the fact that they were 

physically attached to the RCC, were not able to transfer excitation energy to the reaction center. 

The TA spectra of the RCC complex showed a 30-38 ps lifetime component regardless of the 

excitation wavelengths, which is attributed to charge separation. Excitonic equilibration was 

shown in TA spectra of the RCC complex when excited into the BChl a Qx band at 590 nm and 

the Chl a Qy band at 670 nm, while excitation at 840 nm directly populated the low energy 

excited state and equilibration within the excitonic BChl a manifold was not observed.  The TA 

spectra for the FMO-RCC complex excited into the BChl a Qx band could be interpreted by a 
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combination of the excited FMO protein and RCC complex. The FMO-RCC complex showed an 

additional fast kinetic component compared with the FMO protein and the RCC complex, which 

may relate to FMO-to-RCC energy transfer. 

3.1 Introduction 

The reaction center complex of green sulfur bacteria is composed of the bacteriochlorophyll a 

(BChl a)-containing Fenna-Matthews-Olson (FMO) protein and the reaction center core complex 

(RCC). The water-soluble FMO protein was the first pigment-containing complex with its 

atomic structure determined via X-ray crystallography.1 The FMO protein is a homotrimer 

embracing 24 BChl a pigments. The closely interacting BChl a in FMO facilitate exciton 

coupling.2, 3 Due to excitonic interactions, the collective BChl a Qy absorption band appears 

between 790 and 830 nm.4-6 Energy transfer between individual pigments/excitons in the FMO 

protein reveals wave-like quantum coherence.7, 8 The RCC complex consists of four subunits: an 

82 kDa homodimer PscA protein, a 24 kDa PscB, a 23 kDa cytochrome c551 (PscC) protein and a 

17 kDa PscD protein.9, 10 The PscA homodimer contains 16 BChls a revealing Qy bands between 

780 and 840 nm, four Chl a molecules and two carotenoid molecules.11, 12 The four Chl a-

molecules are esterified to 2, 6-phytadienol.13 The primary electron donor P840 (a special pair of 

BChl a with a Qy band appearing at cryogenic temperature at ~838 nm), the primary electron 

acceptor A0 (Chl a-derivative), a secondary electron acceptor A1 (menaquinone) and iron-sulfur 

cluster Fx are all located in the PscA.9, 13, 14 The PscB contains iron-sulfur clusters FA and FB, 

which are analogous to the terminal electron acceptors of the PsaC in Photosystem I (PSI).15 The 

PscD subunit is analogous to the PsaD in PSI.16 The lack of either PscC or PscD in a purified 

RCC does not induce any serious defect in the kinetics of electron transfer reactions.16-19 Lack of 
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the PscB protein leads to fast recombination between the P840+ and initial electron acceptors.18, 

20 The structure model of the intact FMO-RCC complex is proposed in the previous chapter and 

it is shown in Figure 3.1A.21 

The intact FMO-RCC complex and subunits of the RCC complex can be purified through 

detergent treatment of the photosynthetic membranes.12, 19, 22-25 The PscA-PscB complex was 

purified previously from the green sulfur bacterium Prosthecochloris aestuarii using a 

hydroxyapatite column after detergent treatment.10, 18, 25 The PscA-PscC complex was purified 

from Chlorobaculum tepidum and Chlorobium limicola.12, 18, 24, 26 The structural model of the 

PscA-PscC complex is shown in Figure 3.1B. The dynamics of the excitation energy and 

electron transfer in the FMO-RCC complex and PscA-PscB complex have been studied for many 

years.18, 19, 27-31 Transient absorption (TA) studies performed in the sub-nanosecond time scale on 

the FMO-RCC complex showed similar spectral and dynamic features as isolated FMO complex 

excited at BChl a Qx or Qy bands (~590 and 790 nm, respectively).27, 30 The FMO-RCC complex 

excited at 840 nm revealed a ~30 ps lifetime component, which was assumed to be attributed to 

charge separation in the RCC complex, and the PscA-PscB complex reveals similar kinetic 

components.19, 27, 30 The excitation energy transfer efficiency from the FMO protein to the RCC 

complex was reported to be 35% or lower.27, 30, 31 Studies on the kinetics of the energy/electron 

transfer in the PscA-PscC complex have been relatively limited.18, 24 It was reported that the TA 

spectra of the PscA-PscC reveal two decay components with lifetimes in millisecond and second 

time scales (0.7 ms and 2 s, at room temperature). The faster component was presumably caused 

by a back reaction (recombination) of the P840+ with the reduced electron acceptor Fx, in 

agreement with the loss of the terminal electron acceptors, FA and FB.18 
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femtosecond time-resolved transient absorption spectroscopies to elucidate an anticipated FMO-

to-RCC inter-protein energy transfer as well as RCC intra-protein energy and electron transfer.  

3.2 Materials and methods 
3.2.1  Protein purification and basic spectroscopic characterization 

The FMO-RCC complex was purified from the green sulfur bacterium Chlorobaculum tepidum 

strain TLS as previously reported.21 The RCC complex was purified by similar method with 

some modifications. Instead of loading onto a DEAE-cellulose column, the dark green band 

obtained from the centrifugation in the sucrose gradient was treated with 0.4 M Na2CO3 

overnight and subsequently loaded onto a hydroxyapatite column of about 10 mL bed volume. 

The column was equilibrated with 5 mM potassium phosphate buffer (pH = 7.0) and 0.05% n-

dodecyl β-D-maltoside (DDM). The sample was eluted with a linear gradient from 5 mM to 1 M 

potassium phosphate buffer (pH = 7.0) with 0.05% DDM. Fractions containing the RCC were 

collected. The FMO protein was purified as described previously.1 Prior to spectroscopic 

experiments, sodium dithionite was added to 5 mM final concentration to all samples to keep 

them in a “reduced” state during measurements. Experiments at cryogenic temperature (77 K) 

were performed on samples diluted in 60% (v/v) glycerol/buffer mixture in either VNF-100, a 

liquid nitrogen cryostat from Janis (Janis Research Corp., Woburn, MA, USA) or in Optistat 

DN2, a liquid nitrogen cryostat from Oxford (Oxford Instruments, Oxfordshire, UK). The 

concentrations of the samples were adjusted to an absorbance of about 0.24 at 814 nm in a square 

1 cm cuvette. Steady-state absorption spectra were taken using a UV-1800 UV/Vis 

spectrophotometer from Shimadzu (Shimadzu North America, Columbia, MD, USA). Steady-

state fluorescence spectra were measured using a customized PTI fluorometer (Photon 

Technology International Inc., Birmingham, NJ, USA) as described in detail previously.32 For 
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fluorescence emission measurements, both the FMO-RCC and RCC complexes were excited at 

602 nm. 

3.2.2  Time-resolved absorption and fluorescence spectroscopies 

Transient absorption measurements were taken at 77 K using Helios, a TA spectrometer 

(UltrafastSystems LCC, Sarasota, FL, USA) coupled to a femtosecond laser system from 

Spectra-Physics described in detail previously.33 The energy of the pump beam was unified for 

all excitation wavelengths and samples to 100 nJ in a circular spot size of 1 mm diameter 

corresponding to photon intensity of 4 – 5 × 1013 photons cm-2 per pulse, unless stated otherwise. 

Previous studies done on the isolated FMO protein demonstrated that such laser intensity is low 

enough to substantially diminish excitation annihilation in the FMO exciton manifold.34 The 

time-resolved fluorescence (TRF) experiments of FMO-RCC were carried out using a 

Hamamatsu universal streak camera setup described in details previously.35 The full width at half 

maximum (FWHM) of the instrument response function (IRF) of the streak camera setup in the 

time window used for measurements is ~400 ps. The frequency of the excitation pulses produced 

by Inspire100, an ultrafast optical parametric oscillator (Spectra-Physics, CA, USA) pumped 

with 80 MHz ultrafast Mai-Tai, Ti:Sapphire laser (Spectra-Physics, CA, USA), was set at 1 MHz 

(1 μs between subsequent excitations) by a 3980 Pulse Selector from Spectra-Physics. The 

depolarized excitation beam set to 602 nm with power of ~30 μW was focused on the sample in 

a circular spot of ~1 mm diameter, corresponding to a photon intensity of ~1×1010 photons/cm2 

per pulse. The samples were adjusted to OD ~0.3 in the Qy band in a 1 cm cuvette, however, the 

excitation beam focus point was adjusted to be very close to the cuvette wall that was used to 

measure emission (at right angle) and this procedure assured that emission filtering by self-

absorption was practically negligible in all cases. 
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3.2.2  Spectroscopic datasets correction and analysis 

The TA datasets were corrected for temporal dispersion using Surface Xplorer Pro 2.0 software 

from UltrafastSystems by building a dispersion correction curve from a set of initial times of 

transient signals obtained from single wavelength fits of representative kinetics. Global analysis 

of the TA datasets was performed using a modified version of ASUfit 3.0, program kindly 

provided by Dr. Evaldas Katilius at Arizona State University. The full width at half maximum 

(FWHM) of a Gaussian-like temporal response function was assumed to be in 120 – 150 fs 

range. Global analysis of TA datasets were done according to irreversible sequential decay path 

of the excitation decay or electron transfer, procedure that gives so-called evolution-associated 

difference spectra (EADS).36 The fluorescence decay kinetics at specific wavelengths 

corresponding mostly to emission from the FMO protein were extracted from the TRF contours 

and fitted independently with an adequate sum of exponentially decaying components 

convoluted with the real IRF using DecayFit 1.3, fluorescence decay analysis software from 

FluorTools (www.fluortools.com). Global analysis of TRF was done according to parallel decay 

path that assumes that all kinetic components are populated simultaneously via excitation, decay 

independently and are convoluted by IRF. The results of this kind of fitting are commonly called 

decay associated spectra (DAS) 36 However, because in the literature the term DAS is generously 

used for fitting results of either TRF or TA, here it was modified to be FDAS (fluorescence 

decay associated spectra). 

3.2.3  LC-MS/MS and Data Analysis 

The stained bands of SDS-PAGE were excised and digested with trypsin by following a 

previously published protocol with minor changes.37 Tryptic peptides from each gel band were 

analyzed by LC-MS/MS. The LC-MS/MS analysis followed the protocol adapted from previous 
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work with minor changes.38 The samples were analyzed with LC-MS/MS using a Waters Synapt 

G2 Q-IM-TOF (Waters Inc., Milford, MA, USA) and Thermo LTQ Orbitrap (Thermo, San Jose, 

CA, USA). The data-dependent mode acquisition was used for the Orbitrap as previously 

described.39 The MSE mode acquisition was used in the LC-MS/MS experiment on the Synapt 

G2. Peptide ions were dissociated in the trap region by ramping the collision energy by gradually 

increasing voltage from 14 to 40 V. Tryptic digested sample was separated by reverse phase 

capillary column (0.075 mm × 150 mm), custom packed with C18 material (Magic C18, 5 um, 

200 Å, Michrom Bioresources, Inc., Auburn, CA, USA). The flow from LC separation was 

directed to the mass spectrometer by a nanospray source. The raw data from the Orbitrap was 

analyzed by MassMatrix and data from the Synapt G2 was submitted to the ProteinLynx Global 

Server (V2.5, Waters Inc., Milford, MA, USA) to identify the peptide sequence.40  

 

3.3 Results and discussion 

3.3.1  Purification and identification of the FMO-RCC and RCC complexes 

The steady-state absorption spectra of the FMO, FMO-RCC and RCC complexes recorded at 77 

K are shown in Figure 3.2. The spectra reveal absorption bands associated with electronic 

transitions of (B)Chl a bound into the protein manifolds: Qx band of BChl a at 602 nm (all 

samples), Qy band of Chl a at 668 nm (RCC and FMO-RCC) and collective Qy band of 

excitonically coupled BChls a appearing between 790 and 843 nm. Purity of the FMO-RCC 

complex was checked by taking an FMO-RCC minus RCC difference absorption spectrum as 

shown in Figure 3.3. It demonstrates a very good agreement with the absorption spectrum of 

separate FMO, thus the FMO-RCC sample is not compromised by any contaminations.  
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Figure 3.3 The FMO absorption spectrum and FMO-RCC minus RCC difference absorption 
spectrum, the spectra are normalized at 825 nm. 

 

Good purity of the FMO-RCC sample was confirmed by the SDS-PAGE. The results for FMO-

RCC and RCC complexes are shown Figure 3.4. Both complexes comprise a diffuse band 

ranging between 60 and 70 kDa that can be assigned to the PscA subunit. A second band around 

19 kDa corresponds to the PscC subunit.12, 24, 26 The FMO-RCC sample showed three additional 

bands at 16, 30 and 40 kDa which are identified to be PscD, PscB and FMO, respectively.22, 23 

The protein assignments were confirmed by in-gel digestion and subsequent mass spectrometry 

using LC-MS/MS (Figure 3.5). The RCC complex lacking FMO, PscB and PscD subunits was 

compared with the FMO-RCC complex.  
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Figure 3.5 Peptide sequence coverage map of (A) PscA and (B) PscC (purple: matched to a 
peptide; red: matched to a partial peptide; green: matched to a modified peptide; yellow: matched 
to a partial modified peptide) 

 

3.3.2  Steady-state and time-resolved fluorescence of FMO-RCC 

The steady-state fluorescence emission spectra obtained after excitation of the FMO-RCC and 

RCC-only complexes at the BChl a Qx band (602 nm) are given in Figure 3.6A. As shown, the 

emission spectrum of RCC can be fitted to that of the FMO-RCC complex and FMO-RCC – 

RCC difference spectrum can be obtained (blue). This spectrum mimics the emission spectrum 

of the pure FMO protein.34  It shows that when the FMO-RCC complex was excited at 602 nm, 

60% of the emission came from the RCC complex at 840 nm. An interesting aspect of these 

results is how much of the RCC emission is associated with direct excitation of BChl a in the 

RCC and how much actually originates from the FMO-RCC excitation energy transfer. As 

shown in Figure 3.7, the RCC complex showed much lower intensity of emission than the FMO-

RCC complex at 840 nm if the emission spectra of the samples are normalized based on the same 

absorptance level at the Chl a 670 band in 1-T spectra (Figure 3.8). Therefore, a significant 

amount of the fluorescence emission of the FMO-RCC complex at 840 nm is due to the energy 

transfer from the FMO to RCC complex instead of directly exciting the RCC complex. The 

energy transfer efficiency from the FMO protein to the RCC complex is calculated based on (FC-

AC)/(AFC-AC) as reported before.31 FC is the contribution of the RCC complex in the height at 

602 nm in the excitation spectrum of the FMO-RCC complex for emission at 840 nm (Figure 

3.9). As mentioned above, 60% of the emission at 840 nm came from the RCC complex, thus the 

contribution of the RCC complex will be calculated by the height of the band for the FMO-RCC 

complex at 602 nm in the excitation spectrum multiplied by 0.6. AC and AFC are the amplitudes 
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Two representative fluorescence decay kinetics of the FMO are given in Figure 3.6C. The red 

trace was recorded for separate FMO while the blue trace, extracted from the data presented in 

panel B, corresponds to fluorescence from FMO in the FMO-RCC complex. The choice of the 

820 nm emission wavelength guarantees that the contribution from fluorescence of the RCC 

complex is negligible (see Figure 3.6A). In order to mimic scattering (bump seen at ~1.6 ns time 

delay) and improve fitting quality, a fraction of the instrument response function (IRF) was 

added to the convoluted decay. Fluorescence decay of the FMO-only sample can be successfully 

fitted with a single exponential decay with lifetime of 2.3 ns. Fluorescence decay of the FMO-

RCC required two kinetic components with lifetimes (amplitudes) of: 0.6 ns (34%) and 2.5 ns 

(66%). Upon the assumption that FMO transfers excitation energy into RCC, as shown in steady-

state fluorescence spectrum, the appearance of two time components suggests that the FMO-

RCC sample is not homogeneous. Actually, a major part of the FMO complexes (66%), 

regardless of the fact that they are physically attached to the RCC, is not able to transfer 

excitation energy due to other unforeseen reasons (wrong orientation, etc.), which can be caused 

either by an intrinsic property in the native system or by the purification process. This issue 

could be a reason for the differences between the time-resolved and steady-state fluorescence 

spectra. Since the excitation laser beam in the TRF experiment was focused on the sample in a 

circular spot of ~1 mm diameter, there is no guarantee that the sample in such a localized area 

was frozen in the optimal protein configuration to ensure the maximum FMO-RCC energy 

transfer.  

The remaining 34% of the FMO pool has an effective fluorescence decay lifetime of 0.6 ns. This 

is the fraction of FMO that participates in the energy transfer and its efficiency (ΦEET) can be 

calculated according to equation 1: 
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EET(%) = (1 − ) × 100                                                   (1) 

where τeff = 0.6 ns – fluorescence decay lifetime of BChl a in the FMO if excitation energy 

transfer occurs, τint = 2.5 ns – intrinsic fluorescence decay lifetime of BChl a in the FMO only. 

The ΦEET of the interacting FMO fraction calculated according to Eq. 1 is 76%.  

Similar results (lifetimes) were also obtained if the entire TRF dataset was fitted globally. The 

fitting results called as FDAS – fluorescence decay associated spectra, are given in Figure 3.6D. 

This model assumes that spectral components are simultaneously populated by laser excitation 

and independently decay with calculated lifetimes. The model and fitting results (FDAS) are 

physically correct only if laser flash-induced species (FMO and RCC) are truly independent from 

each other (no energy transfer between them, etc.). However, because some fraction of the FMO 

population energetically interacts with the RCC, both species do not really decay independently 

and different kinetic model of excitation decay applies. Thus, the “FDASs” have no simple 

physical meaning and could be some blend of spectra of the individual components (FMO and 

RCC). The 2.6 ns FDAS seen in Figure 3.6D corresponds well in spectral shape and lifetime to 

the separate FMO protein. The faster FDAS, 0.73 ns component spectrally fits to the steady-state 

spectrum of FMO-RCC and can be interpreted as a collective time-resolved spectrum of the 

FMO-RCC complex. The lack of additional spectral/kinetic components in the data suggests that 

energy-transferring FMO and RCC show similar fluorescence decay lifetime. To further 

elucidate FMO-RCC energetic interactions femtosecond time-resolved absorption spectroscopy 

was performed on individual RCC as well as FMO-RCC complexes. 
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of sodium dithionite.42 In the laser-TA spectrometer setup that was used for our studies samples 

are excited every 2 ms (one of two laser flashes is blocked for baseline recording), a time that is 

quite adequate for completeness of cytochrome-to-P840+ electron transfer as well as for P840+ 

A0
- charge recombination. In addition, the energy of the pump beam we were using was as low 

as 100 nJ, corresponding to photon intensity of 4 – 5 × 1013 photons cm-2 per pulse, to avoid 

permanent bleach. Thus, we were able to use a high frequency excitation laser (1 kHz) without 

permanent bleach of the sample.  

Transient absorption spectra of the RCC excited into three representative absorption bands (590, 

670 and 840 nm) recorded in the near-infrared spectral range (NIR) and their global analysis 

results are shown in Figure 3.10.  
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excited state absorption (ESA) of all BChls in the RCC complex. Within 5 ps after excitation, a 

rapid spectral equilibration of the BChl a exciton manifold is observed. Bleaching of the higher 

energy excitonic band shifts from 819 to 821 nm and its amplitude partially diminishes. 

Simultaneously, bleaching of the low energy exciton develops until it reaches a minimum at ~5 

ps. The position of this band remains constant and after spectral equilibration, the ΔA821/ΔA837 

ratio remains essentially constant at ~0.55. Upon excitation into the Qy band of Chl a (Figure 

3.10B), an instantaneous development of bleaching of both abovementioned bands is observed. 

Initially bleaching of the higher energy excitonic band dominates in the TA spectra. As time 

evolves, and excitonic equilibration is completed, the TA spectra are essentially identical with 

those from excitation at 590 nm. Excitation at 840 nm (Figure 3.10C) directly populates the low 

energy exciton and equilibration within the excitonic BChl a manifold is not observed. The TA 

spectra do not reveal changes over time in their spectral envelope in the entire time delay 

window of the spectrometer. 

Global analysis gives more insight about energetic equilibration within the excitonic manifold as 

well provides some information about the initial steps of the charge separation process. In all 

cases, four kinetic components were required for satisfactory fits of the TA datasets (Figure 

3.10D-F). Better understanding of the individual EADS components can be achieved if those are 

discussed together with representative kinetic traces (Figure 3.10D-I). The first 1.1 ps – 3.4 ps 

EADS is associated with different processes in each of the TA datasets. Upon 590 nm excitation, 

the 817 and 835 nm kinetic traces (bleaching of excitonic bands) suggest that fast process is 

associated with rapid energy redistribution from higher energy exciton (817 nm) into the lower 

one (835 nm). It is clearly indicated in the 817 nm kinetics as a fast decay within the first 5 ps 

coupled with a simultaneous rise of the bleaching at 835 nm. Upon excitation at 670 nm, the 2.2 
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ps EADS is associated with a simultaneous rise of bleaching of both excitonic bands, suggesting 

that it is related to energy transfer from Chl a. Identical kinetic performances show that there is 

no specificity in how excitation energy is transferred from the Chl a. For 840 nm excitation, the 

3.4 ps EADS is spectrally identical with the following components and kinetic traces that have 

practically equal characteristics at both wavelengths indicate that it is likely associated with 

excitation annihilation. Lifetimes of the following EADS are essentially (with only small 

variations) the same for all three TA datasets. The 30-38 ps EADS component was previously 

assigned to the charge separation process when the oxidized primary electron donor P840+ is 

formed.19, 27, 28, 30, 43 The origin of the 700-740 ps EADS component is not clear, as such a kinetic 

component has not been previously observed in similar systems. However, the TRF results 

demonstrate that in the FMO-RCC complex, both FMO and RCC show a similar fluorescence 

decay lifetime of ~750 ps, matching very well to 700-740 ps component observed in the TA 

datasets. Thus, it can be proposed that the 700-740 ps component is associated with long-lived 

excitons that do not contribute to charge separation but are responsible for fluorescence 

emission. The steady-state fluorescence spectrum of the RCC (Figure 3.6A) is substantially 

extended toward longer wavelengths with respect to the absorption spectrum (Figure 3.2). It 

should also be noticed in the TA spectra that aside from differences in absorption, they also 

contain stimulated emission induced by the probe beam. Indeed, a closer look at the second and 

third EADS reveals that both profiles show NIR-extended “bleaching” that does not coincide 

with the long-wavelength tail of the steady-state absorption (Figure 3.2) and likely corresponds 

to the stimulated emission. However, this spectral feature is absent in the long-lived (last) EADS 

(noted as >5 ns). It is another indication that the 700-740 ps EAD is associated with long-lived 

BChl a excitons. Absence of stimulated emission in the spectral profile of the last EADS (noted 
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Figure 3.11A shows representative TA spectra in 640-700 nm spectral range. Initially, there is 

barely any bleaching of the Qy band of Chl a present, however, it develops promptly within 20 ps 

after excitation. Figure 3.11B demonstates two kinetic traces, associated with ESA of BChl a 

(680 nm) and at 667 nm that combines two transient signals, ESA of BChl a and bleaching of the 

Qy band of Chl a. The true temporal characteristics of bleaching of the Chl a Qy band can be 

reconstructed by subtracting the 680 nm kinetic trace with a scaling factor. The scaling assumed 

that promtly after time of excitation bleaching at 670 nm should be equal to zero (charge 

separation has not started yet). The resulting trace reveals the initial onset of bleaching of the Qy 

band of Chl a and is plotted as a dashed red line. The maximum of the Qy bleaching is reached at 

~35 ps and roughly 15% further reduction in the signal is observed between 35 and 150 ps. A 

modest reduction in the bleaching level of the Chl a Qy band observed in the abovementioned 

time range most probably represents energetic equlibration of the Chl a- anion. The decay of the 

Qy band of Chl a can be fitted to two time components: 55 ps and 750 ps. The ratio of the 

amplitute of 55 ps to that of 750 ps is 1:3.  The 750 ps time component may represent the 

recovery of the Chl a- anion by transferreing the electron to Fx. 

3.3.4  Transient Absorption Spectroscopy of the FMO-RCC complex 

The FMO-to-RCC energy transfer in the FMO-RCC complex was also addressed with 

application of time-resolved absorption. These studies are difficult to perform due to a few 

disadvantages. First and the most influential is that it impossible to find a wavelength that will 

selectively excite FMO but not RCC. Second, even at low intensities there is a chance of 

excitonic annihilation in the FMO exciton manifold, before an energy transfer occurs. In 

addition, the studied sample could be also inhomogeneous and contains a mixture of FMOs that 

are energetically coupled and uncoupled with RCC regardless of the fact that all are physically 
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attached, as it was demonstrated in the TRF studies. All of it makes kinetic analysis of the TA 

datasets of the FMO-RCC quite difficult and uncertain. However, some general conclusions can 

be drawn. Figure 3.12 shows results of TA of FMO-RCC complex upon excitation at 590 nm. A 

set of demonstrative TA spectra is given in Figure 3.12A. The spectra consist of multiple 

features and significantly differ in the overall shape from TA spectra of individual RCC (Figure 

3.10). The spectra significantly evolve over time and it is apparent that spectral species that 

dominate at early delay times decay within 1 ns time range after excitation. The TA spectra 

recorded at later delay times show substantial similarities with TA of separate RCC.  
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It is not surprising that at early delay times after excitation, TA spectra are simply a combination 

of individual TA spectra of FMO and RCC complexes, as it can be seen in Figure 3.12B. This 

figure shows FMO-RCC and RCC TA spectra recorded at 5 ps after excitation. The TA spectrum 

of RCC (green) was adjusted to match its contribution in the overall TA spectrum of the FMO-

RCC complex. The red trace is a result of subtraction of the adjusted RCC spectrum from TA 

spectrum of FMO-RCC. This profile is almost identical with the TA spectrum of separate FMO 

complexes taken at 10 ps after excitation (dotted blue) and differs only in minor details. It is 

evident that 590 nm excitation is not selective. It simultaneously excites FMO and RCC, which 

makes detailed kinetic analysis of FMO-to-RCC energy transfer practically impossible. Some 

information can be obtained from comparative examination of a few characteristic kinetic traces 

of FMO-RCC and separated FMO and RCC and global analysis. Kinetic traces extracted at 825 

nm, wavelength, which primarily contains signal associated with FMO extracted from the TA of 

the FMO-RCC, FMO and RCC are given in Figure 3.12C. The amplitudes are adjusted to match 

ratios of ΔA825 at 5 ps as in the FMO-RCC TA spectrum (Figure 3.12B). All kinetic traces were 

recorded with the same excitation conditions (0.1 μJ). There is apparently a substantial 

difference between FMO and FMO-RCC that cannot be explained just by taking account of the 

fraction of the signal related with the RCC and originating from a direct excitation of the core 

complex (black line). Therefore, the additional fast kinetic component (compare blue and red 

traces) in the recovery of the 825 nm excitonic band of the FMO in the FMO-RCC complex 

should be linked to FMO-to-RCC energy transfer. Previous studies of TA of separate FMO 

performed under identical condidtions demonstrated that the TA dataset can be fitted with four 

kinetic components with lifetimes of ~1 ps, 60 ps, 2 ns and infinite (triplet).34 As demonstrated in 

Figure 3.10 the TA in the RCC sample will multiexponentially decay with lifetime of ~1 ps, 35 
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ps, 740 ps and infinite (reduction). Therefore, it is possible that in the FMO-RCC sample some 

components will blend together due to similar temporal characteristics and will be 

indistinguishable from each other. Global analysis (Figure 3.12D) shows that it is indeed true. 

Five EADS were suitable for a satisfactory fit of the TA data. The EADSs with lifetimes of 1.3 

ps, 49 ps and “infinity” most likely comprise mixed kinetic components from RCC and FMO. 

The EADS with lifetime of 2 ns is clearly associated with the fraction of the FMO that is not 

energetically coupled to the RCC and intrinsically decays to the electronic ground state. The 740 

ps EADS (RCC) was not necessary, maybe due to the fact that it has very low amplitude and can 

be masked by the 2 ns-component. However, apparently another 290 ps EADS kinetic 

component shown for the FMO-RCC sample, which is absent in the isolated FMO, has spectral 

shape overwhelmingly dominated by FMO absorption bleaching. Ostensibly, this component 

may be linked to the FMO fraction that is energetically coupled with RCC and efficiently 

transfer energy. 

Figure 3.13 shows the TA spectra and EADS obtained for the FMO-RCC complex upon 

excitation of BChl Qx band at 610 nm, where the absorption of the RCC complex is also 

significantly less than the FMO complex as shown in Figure 3.2. Bleaching bands formed 

immediately at 805, 819, 829 and 838 nm. As is mentioned before, 829 nm band is the lowest 

exciton state for FMO, while the 838 nm band is ascribed to the RCC. 819 nm band reached the 

maximum bleaching around 1 ps, when 829 and 838 nm bands were still increasing. At 5 ps, 829 

nm became the dominant bleaching band, indicating most of the energy now was localized to the 

lowest exciton state of the FMO protein. The bleaching band at 838 nm keeps increasing until 5 

ps, indicating that some of the energy is transferred from the FMO protein to the BChl a-837 in 

the RCC complex. The band at 829 nm decays relatively slowly than the bands at 819 nm and 
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rapid excitonic equilibrium was seen when excited into the BChl a Qx band at 590 nm and the 

Chl a Qy band at 670 nm. Excitation into BChl a Qx band showed different kinetics between the 

FMO-RCC and RCC complex. The TA spectra for the FMO-RCC complex could be interpreted 

by a combination of the excited FMO protein and RCC complex. But additional fast kinetic 

component was seen for the FMO-RCC complex, which may be linked to the FMO fraction that 

is energetically coupled with RCC. 

 

 

 

 

 

 

 

 

 

 

 



83 
 

References 
 

(1) Li, Y. F.; Zhou, W. L.; Blankenship, R. E.; Allen, J. P. Crystal structure of the 
bacteriochlorophyll a protein from Chlorobium tepidum. Journal of Molecular Biology 1997,  
271, 456-471. 
(2) Freiberg, A.; Lin, S.; Timpmann, K.; Blankenship, R. E. Exciton dynamics in FMO 
bacteriochlorophyll protein at low temperatures. Journal of Physical Chemistry B 1997,  101, 
7211-7220. 
(3) Fidler, A. F.; Caram, J. R.; Hayes, D.; Engel, G. S. Towards a coherent picture of excitonic 
coherence in the Fenna-Matthews-Olson complex. Journal of Physics B-Atomic Molecular and 
Optical Physics 2012,  45. 
(4) Busch, M. S. A.; Mueh, F.; Madjet, M. E.-A.; Renger, T. The eighth bacteriochlorophyll 
completes the excitation energy funnel in the FMO protein. Journal of Physical Chemistry 
Letters 2011,  2, 93-98. 
(5) Wen, J.; Zhang, H.; Gross, M. L.; Blankenship, R. E. Native electrospray mass spectrometry 
reveals the nature and stoichiometry of pigments in the FMO photosynthetic antenna protein. 
Biochemistry 2011,  50, 3502-3511. 
(6) Tronrud, D. E.; Wen, J.; Gay, L.; Blankenship, R. E. The structural basis for the difference in 
absorbance spectra for the FMO antenna protein from various green sulfur bacteria. 
Photosynthesis Research 2009,  100, 79-87. 
(7) Engel, G. S.; Calhoun, T. R.; Read, E. L.; Ahn, T. K.; Mancal, T.; Cheng, Y. C.; Blankenship, 
R. E.; Fleming, G. R. Evidence for wavelike energy transfer through quantum coherence in 
photosynthetic systems. Nature 2007,  446, 782-786. 
(8) Panitchayangkoon, G.; Hayes, D.; Fransted, K. A.; Caram, J. R.; Harel, E.; Wen, J.; 
Blankenship, R. E.; Engel, G. S. Long-lived quantum coherence in photosynthetic complexes at 
physiological temperature. Proceedings of the National Academy of Sciences 2010,  107, 12766-
12770. 
(9) Hauska, G.; Schoedl, T.; Remigy, H.; Tsiotis, G. The reaction center of green sulfur bacteria. 
Biochimica Et Biophysica Acta-Bioenergetics 2001,  1507, 260-277. 
(10) Francke, C.; Permentier, H. P.; Franken, E. M.; Neerken, S.; Amesz, J. Isolation and 
properties of photochemically active reaction center complexes from the green sulfur bacterium 
Prosthecochloris aestuarii. Biochemistry 1997,  36, 14167-14172. 
(11) Remigy, H. W.; Hauska, G.; Muller, S. A.; Tsiotis, G. The reaction centre from green 
sulphur bacteria: progress towards structural elucidation. Photosynthesis Research 2002,  71, 91-
98. 
(12) Griesbeck, C.; Hager-Braun, C.; Rogl, H.; Hauska, G. Quantitation of P840 reaction center 
preparations from Chlorobium tepidum: chlorophylls and FMO-protein. Biochimica Et 
Biophysica Acta-Bioenergetics 1998,  1365, 285-293. 
(13) Kobayashi, M.; Oh-oka, H.; Akutsu, S.; Akiyama, M.; Tominaga, K.; Kise, H.; Nishida, F.; 
Watanabe, T.; Amesz, J.; Koizumi, M.; Ishida, N.; Kano, H. The primary electron acceptor of 
green sulfur bacteria, bacteriochlorophyll 663, is chlorophyll a esterified with Delta 2,6-
phytadienol. Photosynthesis Research 2000,  63, 269-280. 



84 
 

(14) Kjaer, B.; Frigaard, N. U.; Yang, F.; Zybailov, B.; Miller, M.; Golbeck, J. H.; Scheller, H. V. 
Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium 
vibrioforme functions as the electron acceptor A1. Biochemistry 1998,  37, 3237-3242. 
(15) Figueras, J. B.; Cox, R. P.; Hojrup, P.; Permentier, H. P.; Miller, M. Phylogeny of the PscB 
reaction center protein from green sulfur bacteria. Photosynthesis Research 2002,  71, 155-164. 
(16) Tsukatani, Y.; Miyamoto, R.; Itoh, S.; Oh-oka, H. Function of a PscD subunit in a 
homodimeric reaction center complex of the photosynthetic green sulfur bacterium Chlorobium 
tepidum studied by insertional gene inactivation - Regulation of energy transfer and ferredoxin-
mediated NADP+ reduction on the cytoplasmic side. Journal of Biological Chemistry 2004,  279, 
51122-51130. 
(17) Azai, C.; Kim, K.; Kondo, T.; Harada, J.; Itoh, S.; Oh-oka, H. A heterogeneous tag-
attachment to the homodimeric type 1 photosynthetic reaction center core protein in the green 
sulfur bacterium Chlorobaculum tepidum. Biochimica Et Biophysica Acta-Bioenergetics 2011,  
1807, 803-812. 
(18) Schmidt, K. A.; Neerken, S.; Permentier, H. P.; Hager-Braun, C.; Amesz, J. Electron 
transfer in reaction center core complexes from the green sulfur bacteria Prosthecochloris 
aestuarii and Chlorobium tepidum. Biochemistry 2000,  39, 7212-7220. 
(19) Neerken, S.; Schmidt, K. A.; Aartsma, T. J.; Amesz, J. Dynamics of energy conversion in 
reaction center core complexes of the green sulfur bacterium Prosthecochloris aestuarii at low 
temperature. Biochemistry 1999,  38, 13216-13222. 
(20) Miller, M.; Liu, X. M.; Snyder, S. W.; Thurnauer, M. C.; Biggins, J. Photosynthetic electron 
transfer reactions in the green sulfur bacterium Chlorobium vibrioforme - evidence for the 
functional involvement of iron-sulfur redox centers on the acceptor side of the reaction center. 
Biochemistry 1992,  31, 4354-4363. 
(21) He, G.; Zhang, H.; King, J. D.; Blankenship, R. E. Structural analysis of the homodimeric 
reaction center complex from the photosynthetic green sulfur bacterium Chlorobaculum tepidum. 
Biochemistry 2014,  53, 4924-4930. 
(22) Hagerbraun, C.; Xie, D. L.; Jarosch, U.; Herold, E.; Buttner, M.; Zimmermann, R.; 
Deutzmann, R.; Hauska, G.; Nelson, N. Stable photobleaching of P840 in chlorobium reaction-
center preparations - Presence of the 42-kDa bacteriochlorophyll a-protein and a 17-kDa 
polypeptide. Biochemistry 1995,  34, 9617-9624. 
(23) Remigy, H. W.; Stahlberg, H.; Fotiadis, D.; Muller, S. A.; Wolpensinger, B.; Engel, A.; 
Hauska, G.; Tsiotis, G. The reaction center complex from the green sulfur bacterium Chlorobium 
tepidum: A structural analysis by scanning transmission electron microscopy. Journal of 
Molecular Biology 1999,  290, 851-858. 
(24) Oh-oka, H.; Kakutani, S.; Kamei, S.; Matsubara, H.; Iwaki, M.; Itoh, S. Highly purified 
photosynthetic reaction-center (Psca/cytochrome c551)2 complex of the green sulfur bacterium 
Chlorobium Limicola. Biochemistry 1995,  34, 13091-13097. 
(25) Permentier, H. P.; Schmidt, K. A.; Kobayashi, M.; Akiyama, M.; Hager-Braun, C.; Neerken, 
S.; Miller, M.; Amesz, J. Composition and optical properties of reaction centre core complexes 
from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum. 
Photosynthesis Research 2000,  64, 27-39. 
(26) Tsiotis, G.; Hager-Braun, C.; Wolpensinger, B.; Engel, A.; Hauska, G. Structural analysis of 
the photosynthetic reaction center from the green sulfur bacterium Chlorobium tepidum. 
Biochimica Et Biophysica Acta-Bioenergetics 1997,  1322, 163-172. 



85 
 

(27) Oh-Oka, H.; Kamei, S.; Matsubara, H.; Lin, S.; van Noort, P. I.; Blankenship, R. E. 
Transient absorption spectroscopy of energy-transfer and trapping processes in the reaction 
center complex of Chlorobium tepidum. Journal of Physical Chemistry B 1998,  102, 8190-8195. 
(28) Neerken, S.; Ma, Y. Z.; Aschenbrucker, J.; Schmidt, K. A.; Nowak, F. R.; Permentier, H. P.; 
Aartsma, T. J.; Gillbro, T.; Amesz, J. Kinetics of absorbance and anisotropy upon excited state 
relaxation in the reaction center core complex of a green sulfur bacterium. Photosynthesis 
Research 2000,  65, 261-268. 
(29) Vassiliev, I. R.; Kjaer, B.; Schorner, G. L.; Scheller, H. V.; Golbeck, J. H. Photoinduced 
transient absorbance spectra of P840/P840+ and the FMO protein in reaction centers of 
Chlorobium vibrioforme. Biophysical Journal 2001,  81, 382-393. 
(30) Neerken, S.; Permentier, H. P.; Francke, C.; Aartsma, T. J.; Amesz, J. Excited states and 
trapping in reaction center complexes of the green sulfur bacterium Prosthecochloris aestuarii. 
Biochemistry 1998,  37, 10792-10797. 
(31) Francke, C.; Otte, S. C. M.; Miller, M.; Amesz, J.; Olson, J. M. Energy transfer from 
carotenoid and FMO-protein in subcellular preparations from green sulfur bacteria. 
Spectroscopic characterization of an FMO-reaction center core complex at low temperature. 
Photosynthesis Research 1996,  50, 71-77. 
(32) Orf, G. S.; Tank, M.; Vogl, K.; Niedzwiedzki, D. M.; Bryant, D. A.; Blankenship, R. E. 
Spectroscopic insights into the decreased efficiency of chlorosomes containing 
bacteriochlorophyll f. Biochimica et Biophysica Acta-Bioenergetics 2013,  1827, 493-501. 
(33) Niedzwiedzki, D. M.; Bina, D.; Picken, N.; Honkanen, S.; Blankenship, R. E.; Holten, D.; 
Cogdell, R. J. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) 
from the photosynthetic purple sulfur bacterium Allochromatium vinosum. Biochimica et 
Biophysica Acta-Bioenergetics 2012,  1817, 1576-1587. 
(34) Orf, G. S.; Niedzwiedzki, D. M.; Blankenship, R. E. Intensity dependence of the excited 
state lifetimes and triplet conversion yield in the Fenna-Matthews-Olson antenna protein. 
Journal of Physical Chemistry B 2014,  118, 2058-2069. 
(35) Niedzwiedzki, D. M.; Orf, G. S.; Tank, M.; Vogl, K.; Bryant, D. A.; Blankenship, R. E. 
Photophysical properties of the excited states of bacteriochlorophyll f in solvents and in 
chlorosomes. Journal of Physical Chemistry B 2014,  118, 2295-2305. 
(36) van Stokkum, I. H.; Larsen, D. S.; van Grondelle, R. Global and target analysis of time-
resolved spectra. Biochimica et Biophysica Acta-Bioenergetics 2004,  1657, 82-104. 
(37) Shevchenko, A.; Tomas, H.; Havlis, J.; Olsen, J. V.; Mann, M. In-gel digestion for mass 
spectrometric characterization of proteins and proteomes. Nature Protocols 2006,  1, 2856-2860. 
(38) Jiang, J.; Zhang, H.; Kang, Y. S.; Bina, D.; Lo, C. S.; Blankenship, R. E. Characterization of 
the Peridinin-chlorophyll a-protein complex in the dinoflagellate Symbiodinium. Biochimica Et 
Biophysica Acta-Bioenergetics 2012,  1817, 983-989. 
(39) Zhang, H.; Huang, R. Y. C.; Jalili, P. R.; Irungu, J. W.; Nicol, G. R.; Ray, K. B.; Rohrs, H. 
W.; Gross, M. L. Improved mass spectrometric characterization of protein glycosylation reveals 
unusual glycosylation of maize-derived bovine trypsin. Analytical Chemistry 2010,  82, 10095-
10101. 
(40) Xu, H.; Freitas, M. A. MassMatrix: A database search program for rapid characterization of 
proteins and peptides from tandem mass spectrometry data. Proteomics 2009,  9, 1548-1555. 
(41) Oh-oka, H.; Kamei, S.; Matsubara, H.; Iwaki, M.; Itoh, S. 2 molecules of cytochrome-c 
function as the electron-donors to P840 in the reaction-center complex isolated from a green 
sulfur bacterium, Chlorobium tepidum. FEBS Letter 1995,  365, 30-34. 



86 
 

(42) Kusumoto, N.; Setif, P.; Brettel, K.; Seo, D.; Sakurai, H. Electron transfer kinetics in 
purified reaction centers from the green sulfur bacterium Chlorobium tepidum studied by 
multiple-flash excitation. Biochemistry 1999,  38, 12124-12137. 
(43) Vulto, S. I. E.; Neerken, S.; Louwe, R. J. W.; de Baat, M. A.; Amesz, J.; Aartsma, T. J. 
Excited-state structure and dynamics in FMO antenna complexes from photosynthetic green 
sulfur bacteria. Journal of Physical Chemistry B 1998,  102, 10630-10635. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 
 

Chapter 4: Dynamics of Energy and Electron 
Transfer in the Reaction Center Core 

Complex from the Green Sulfur Bacterium 
Prosthecochloris aestuarii 

 

Abstract 

The PscA-PscB complex was purified from the green sulfur bacterium Prosthecochloris 

aestuarii. The complex is studied by femtosecond time-resolved transient absorption (TA) 

spectroscopy. The TA spectra of the PscA-PscB complex showed a 30 ps lifetime component 

regardless of the excitation wavelengths, which is attributed to charge separation. Excitonic 

equilibration was shown in TA spectra of the PscA-PscB complex when excited into the BChl a 

Qx band at 590 nm and the Chl a Qy band at 670 nm, while excitation at 840 nm directly 

populated the low energy excited state and equilibration within the excitonic BChl a manifold 

was not observed.  Comparing with the PscA-PscC complex in the previous chapter, 700 ps time 

component made relatively less contribution. 

4.1 Introduction 
 

The reaction center complex in the green sulfur bacteria is a type I reaction center, composed of 

the bacteriochlorophyll a (BChl a)-containing Fenna-Matthews-Olson (FMO) protein and the 

reaction center core complex (RCC). 1, 2 The RCC complex is composed of an 82 kDa 

homodimer PscA protein, a 24 kDa PscB, a 23 kDa cytochrome c551 (PscC) protein and a 17 kDa 

PscD protein.3, 4 16 BChls a revealing Qy bands between 780 and 840 nm, four Chl a molecules 
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including the primary electron acceptor A0, two carotenoid molecules, a possible secondary 

electron acceptor A1 (menaquinone) and an iron-sulfur cluster Fx, are all associated with the 

PscA homodimer. 3, 5-8  The PscB is a terminal electron acceptor, containing the iron-sulfur 

clusters FA and FB. 9 The function of the PscD subunit is unknown. Figure 4.1 shows the 

energy/electron transfer scheme in the reaction center complex. The energy is transferred from 

the FMO complex to the RCC complex. Energy transfer between individual pigments/excitons in 

the FMO protein reveals wave-like quantum coherence.1, 2 The excitation populates the low 

energy exciton BChl a 837 through fast equilibration within the excitonic BChl a manifold. The 

excitation is transferred eventually from BChl a 837 to the special pair P840, followed by charge 

separation when P840+A0
- is formed. The electron is then transferred to the Fx in the PscA 

subunit and eventually to the terminal electron acceptor FA and FB in the PscB subunit, which 

directs the electron to the ferredoxin protein.3, 10-12 
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complex when excited to the RCC. 10-12, 18-21 Transient absorption (TA) studies performed in the 

sub-nanosecond time scale on the intact reaction center complex and the PscA-PscB complex 

excited at 840 nm both revealed a ~30 ps lifetime component, which may be attributed to charge 

separation in the RCC complex.10, 11, 16, 19  

In this chaper, we describe the purification of the PscA-PscB complex from the green sulfur 

bacterium Prosthecochloris aestuarii. We also address the energy and electron transfer of the 

PscA-PscB complex by using the femtosecond time-resolved transient absorption spectroscopy.  

4.2 Materials and methods 
4.2.1  Protein purification and basic spectroscopic characterization 

The PscA-PscB complex was purified from the green sulfur bacterium Prosthecochloris 

aestuarii as previously reported with some modifications.22 The dark green band obtained from 

the centrifugation in the sucrose gradient was loaded onto a hydroxyapatite column of 

approximately 10 mL bed volume (Figure 4.2). The column was equilibrated with 5 mM 

potassium phosphate buffer (pH = 7.0) and 0.05% n-dodecyl β-D-maltoside (DDM). The sample 

was eluted with a linear gradient from 5 mM to 1 M potassium phosphate buffer (pH = 7.0) with 

0.05% (w/v) DDM. Fractions containing the RCC were collected. Before conducting 

spectroscopic experiments sodium dithionite was added to 5 mM final concentration to keep the 

complex in a “reduced” state during measurements. Experiments at cryogenic temperature (77 

K) were performed on samples diluted in 60% (v/v) glycerol/buffer mixture in either VNF-100, a 

liquid nitrogen cryostat from Janis (Janis Research Corp., Woburn, MA, USA. The 

concentrations of the sample were adjusted to an absorbance of approximately 0.2 at 814 nm in a 

square 1 cm cuvette. Steady-state absorption spectra were taken by using a UV-1800 UV/Vis 
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for all excitation wavelengths and samples to 100 nJ in a circular spot size of 1 mm diameter 

corresponding to photon intensity of 4 – 5 × 1013 photons cm-2 per pulse. 

4.2.4  Spectroscopic dataset correction and analysis 

The TA datasets ware corrected for temporal dispersion by using Surface Xplorer Pro 2.0 

software from UltrafastSystems by building a dispersion correction curve from a set of initial 

times of transient signals obtained from single wavelength fits of representative kinetics. Global 

analysis of the TA datasets was performed by using a modified version of ASUfit 3.0, program 

kindly provided by Dr. Evaldas Katilius at Arizona State University. Global analysis of TA 

datasets were done assuming an irreversible sequential decay path of the excitation decay or 

electron transfer, procedure that gives so-called evolution-associated difference spectra 

(EADS).28  

4.3 Results and discussion 

4.3.1  Purification and identification of the PscA-PscB complexes 

The steady-state absorption spectra of the PscA-PscB complex recorded at room temperature is 

shown in Figure 4.3. The purified PscA-PscB complex exhibits a BChl a absorption band at 814 

nm with a shoulder at 835 nm, which is consistent with previous work, as shown in Figure 

4.3A.4, 10, 16, 19 The Qx band of the BChl a at 600 nm and Qy band of Chl a at 670 nm are also 

observed. The steady-state absorption spectra of the PscA-PscB complex recorded at 77 K is 

shown in Figure 4.4. Comparing with the absorption spectra at room temperature, the Qx band of 

BChl a at 600 nm splits into two peaks at 594 nm and 608 nm, and the shoulder at 836 nm 

becomes more obvious. Two bands on the SDS-PAGE at 60 kDa and 30 kDa were identified to 
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4.4 Conclusion 

We purified the PscA-PscB complex from the green sulfur bacterium Prosthecochloris aestuarii 

and studied by TA spectroscopy. In the TA spectra, the PscA-PscB complex showed charge 

separation regardless of the excitation wavelengths and rapid excitonic equilibrium was seen 

when excited into the BChl a Qx band at 590 nm and the Chl a Qy band at 670 nm. The EADS 

showed four time components, which are 1-3 ps fast lifetime component, 30 ps, 700 ps and 

“infinite lifetime”. Comparing with the EADS of the PscA-PscC complex in the previous 

chapter, 700 ps time component made relatively less contribution for the PscA-PscB complex. 
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Chapter 5: Conclusions and Future 
Directions 

 

The intact reaction center complex of the green sulfur bacterium Chlorobaculum tepidum was 

purified. This complex is composed of the FMO antenna protein and the RCC complex. The 

spatial interaction between FMO and RCC was studied by chemically cross-linking the purified 

FMO-RCC sample followed by LC-MS/MS analysis. All the subunits of RC can be linked 

together by BS3, DSS and DTSSP. The results showed that the FMO and RCC complexes are 

closely associated. FMO, PscB, PscD and part of PscA are exposed on the cytoplasmic side of 

the membrane. The soluble domain of the heme-containing cytochrome subunit PscC and part of 

the core subunit PscA are located on the periplasmic side of the membrane. The PscD subunit is 

thought to stabilize FMO to RCC complex and facilitate the electron transfer from RCC to 

ferredoxin. The close distance of soluble domain of PscC and PscA explains the efficient 

electron transfer between PscC and P840. A structural model that is consistent with these results 

is proposed for the FMO-RCC complex. The question that remains is how many copies of FMO 

are associated with each RCC in the native state. Our result showed that there is 1-2 FMO 

associated with each RCC but it is uncertain whether the loss of one FMO is due to the detergent 

treatment. The in-vivo cross linking with hydrophobic chemical linkers in the whole cell might 

be an effective protocol to answer that question. Besides, it is also possible to crystallize the 

FMO-RCC complex and obtain the structure of the intact complex with our proposed orientation 

and location of each subunit.  

The RCC complex and the FMO-RCC complex from the green sulfur bacterium Chlorobaculum 

tepidum were purified and studied comparatively by steady-state fluorescence, TRF, and TA 
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spectroscopies. The energy transfer efficiency from the FMO to the RCC complex was 

calculated to be ~40% based on the steady-state fluorescence.  TRF showed that photons were 

absorbed by two fractions of FMO complexes, energetically uncoupled and coupled to the RCC. 

The first pool of the FMO (uncoupled) releases energy in fluorescence process with lifetime of 

2.6 ns that is typical for free FMO. The second pool of FMO transfers absorbed energy to the 

RCC complex with approximately 76% efficiency resulting in shortening of observed 

fluorescence lifetime to ~700 ps. The TA spectra show that the excitation that is passed to the 

RCC initially populates BChl a excited state that undergoes fast equilibration (1-3 ps) within the 

excitonic manifold. The excitation is transferred eventually to the special pair P840 or trapped in 

a long-lived exciton that decays with a lifetime of ~700 ps. Upon accepting excitation by P840 

an initial P840+A0
- charge separation step occurs with a time constant of ~35 ps. The TA spectra 

for the FMO-RCC complex could be interpreted by a combination of the excited FMO protein 

and RCC complex. But additional fast kinetic component was seen for the FMO-RCC complex 

that may be linked to the FMO fraction that is energetically coupled with RCC. 

In addition, the PscA-PscB complex was purified from the green sulfur bacteria Prosthecochloris 

aestuarii and studied by the TA spectroscopy. It showed a charge separation rate of ~30 ps 

independent of the excitation wavelengths. The EADS showed four time components; they are a 

1-3 ps fast lifetime component, a 30 ps, a 700 ps and an “infinite lifetime”, as similar to the 

PscA-PscC complex from Chlorobaculum tepidum. The 700 ps time component made relatively 

less contribution compared with the PscA-PscC complex. 

It is not clear why a fraction of the FMO is unable to transfer energy to RCC and releases energy 

in fluorescence process with lifetime of 2.6 ns, a time that is similar to that of free FMO, even 

though they are physically attached to the RCC. The energetically uncoupled FMO could be 
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caused either by an intrinsic property in the native system or by the purification process. One 

possible approach to answer this question is to study the energy transfer efficiency of the FMO-

RCC in either the whole cell or the membrane pellet without detergent treatment process. The 

use of detergent could be the major reason causing BChl a disorientation if there is any due to 

purification process. Because both the whole cell and the membrane pellet contain a significant 

amount of chlorosomes that will interfere with the signal from FMO-RCC complex, a BChl c-

less mutant of Chlorobaculum tepidum would be ideal for this study. 
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