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ABSTRACT OF THE THESIS 

Investigation of 89Zr-Siderophores as Molecular Imaging Agents for Positron Emission Tomography 

Imaging of Bacterial Infections 

by 

Nora Catharina Mary Goscinski 

Master of Arts in Chemistry 

Washington University in St. Louis, 2015 

Professor Suzanne E. Lapi, Chair 

 

Siderophores are small molecules synthesized by bacteria to harvest Fe3+ from their 

environment.  In infection scenarios, their production can increase infection virulence by increasing the 

ability of bacteria to obtain Fe3+ and therefore grow more rapidly.  The selective uptake of siderophores 

in vivo in multi-bacteria environments indicates that this class of molecules has a potential use as 

selective imaging agents.  In this work, DFO-NCS and a library of trihydroxamate siderophores were 

evaluated as vehicles to deliver 89Zr selectively to bacteria for Positron Emission Tomography (PET) 

imaging of bacterial infections. 

 

Productive work with radiometals involves thorough knowledge of the element’s chemistry as 

well as the sources and detrimental effects of any contaminating metal ions present with the radiometal 

in the reaction mixture.  As a case study to determine the factors likely to interfere with the 

complexation of any given radiometal, the quality control assay used to determine effective specific 

activity (ESA) of 64Cu was intensely examined.  The purpose of this study was to identify sources of 
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cold metal contaminants in the 64Cu production process and to identify which of those metals interfere 

with the binding of 64Cu to the TETA chelator.  The TETA titration method for determining 64Cu ESA 

has relative standard deviations of 27.6% and 40.3% for repeatability and reproducibility respectively 

and the chelator TETA is selective for picomolar amounts of Cu2+ in the presence of low millimolar 

concentrations of Zn2+ and Ni2+.  

 

When the 89Zr-DFO-NCS complex was tested against a panel of cell types, the uptake by human 

cells (SKBR3), Staphylococcus aureus cells, and Pseudomonas aeruginosa cells was significantly 

different (p<0.0001) and highest for S. aureus.  The Zr chemistry and bacterial uptake behavior of a 

library of trihydroxamate siderophores was then evaluated and compared to that of DFO-NCS.  The 

uptake of 89Zr-DFO-NCS and a siderophore library member (89Zr-V-129) were tested in a murine lung 

infection model (P. aeruginosa, PA M57-15) and the lung uptake of 89Zr-V-129 was found to be 

significantly higher in infected mice (p=0.012035) than in control mice. The uptake of 89Zr-DFO-NCS 

did not differ significantly between control and infected mice (p=0.831).  89Zr-siderophores have been 

shown to possess potential to be selective, specific PET tracers for imaging bacterial infections in vivo 

and their utility for infection imaging should be more thoroughly explored.     
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Chapter 1: Introduction to Radiochemistry  
While all chemists are familiar with the periodic table, which organizes the known elements by 

proton number and similarity of chemical behavior, nuclear and radiochemists have an additional 

reference available to them, the chart of the nuclides (figure 1-1, below).  The chart of the 

nuclides can be thought of as an extended periodic table, where each box represents a single 

nucleus rather than the average elemental mass presented in each box of the periodic table. 

Proton number is plotted in the y-direction, neutron number in the x-direction, and a third 

quantity (mass) can be imagined to be plotted along the z-axis.  The nucleus with lowest mass 

along an isobar (white arrow) is the most stable.   The valley of stability (black boxes) runs 

approximately through the center of the nuclides, but bends ‘south’ as neutron number increases. 

 

Figure 1: The Chart of the Nuclidesa 

 

   

                                                 
a https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html 
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1.1 Types of Radioactive Decay 

Unstable nuclei undergo radioactive decay when the daughter nucleus has a higher binding 

energy per nucleon than the parent nucleus [2].  Stated another way, a nucleus will undergo a 

particular mode of radioactive decay if the sum of the masses of particles after the decay is less 

than the initial mass of the unstable nucleus [2, 3].  However, nuclei may achieve this goal by a 

variety of routes.  The three main modes of radioactive decay are alpha, beta (β- ,β+, or electron 

capture) and gamma emission.  Although fission is a route by which certain unstable nuclei may 

reach stability, it will not be discussed in this work.   

1.1.1 Alpha Decay 
When a nucleus undergoes alpha decay, the parent nucleus ejects a helium nucleus (2 protons, 2 

neutrons), also known as an alpha particle [2].    

𝑃𝑜 →  𝐻𝑒 +  𝑃𝑏82
206

2
4

84
210             (1) 

The ejected α particle travels until it acquires 2 electrons and becomes an uncharged He atom.  

With a few key exceptions (such as 8Be), nuclei that decay via alpha particle emission tend to be 

rather massive (A≥208 [3]) and are found at the upper end of the chart of the nuclides (high-Z, 

high-A nuclei) (figure 1-1).   

1.1.2 Beta Decay 
Most nuclei decay via one of the three modes of beta particle emission [2, 4].  Typically, nuclei 

below the valley of stability decay via β- emission[2, 3].  In this decay mode, a neutron in the 

nucleus decays to a proton, an electron and an anti-neutrino: 

𝑌39
90 →  𝑍𝑟 + 𝛽− + 𝜈40

90               (2) 

  The daughter nucleus ejects the electron and anti-neutrino and these ejecta travel until the 

electron is moving slowly enough to be incorporated into an atomic electron cloud.  The anti-

neutrino interacts minimally with matter and travels great distances.     
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Nuclei above the valley of stability decay are proton-rich and therefore decay via β+ emission or 

electron capture.  In β+ emitting nuclei, a proton decays to a neutron, as well as a positron (β+, the 

anti-matter of the electron) and a neutrino [2, 3]: 

 

𝑍𝑟 →  𝑌39
89 + 𝛽+ + 𝜈40

89            (3) 

 

As in β- decay, the daughter nucleus ejects the leptons, in this case the positron and neutrino.  

However, once the β+ has lost sufficient energy to be captured, it is captured by an ordinary 

electron [3].  The captured β+ may form a neutral complex (known as Positronium, Ps) with the 

capturing electron, or may immediately undergo annihilation [2].  The Ps complex is very short-

lived and the β+ and e- soon annihilate one another, producing two γ photons (511 keV each) at 

~180⁰ relative to each otherb [2, 3].  These two coincident photons are the basis of the nuclear 

imaging technique Positron Emission Tomography (PET, see section 1.3.3) [2, 3, 5].  

 

A third mode of β decay, known as electron capture, occurs when the nucleus captures a low-

energy atomic electron, transforming a proton into a neutron [2, 3].  Nuclei undergoing electron 

capture decay lie above the line of stability, but lack sufficiently large Q values (mass difference 

between nuclei on an isobar) to undergo positron decay [2].    

                                                 
b The angle between annihilation photons is not always precisely 180 degrees but this work 

makes the assumption that any variation in this angle is too small to drastically alter any results 

obtained from the study of positron-emitting nuclides in vivo.   
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1.1.3  Gamma Decay  
Immediately after a nucleus decays by α or β emission, the daughter nucleus typically exists in a 

highly excited state [2, 3].  This excited daughter then relaxes to a lower-energy ground state via a 

variety of modes.  Electromagnetic radiation is released from the daughter nucleus as a result of 

this relaxation.  Such radiation originating from the nucleus is known as gamma (γ) radiation [2].  

While γ emission does not result in a new element, it does result in a more stable nucleus.  Often, 

the γ is emitted extremely close in time to the β decay event, but a few nuclides exist in which 

the emission of γ radiation by the excited daughter nucleus is delayed by minutes to hours [2].  

These long-lived excited daughters are known as metastable isomers of a nuclide [2] and can be 

isolated from the parent material for use in applications requiring photons, such as medical 

imaging.  A metastable isomer commonly used in medicine is 99mTc[4, 5], used in single photon 

emission computed tomography (SPECT)[4], which is produced according to the following 

(simplified) scheme: 

 

𝑀𝑜 →  𝛽− + 𝑇𝑐43
99𝑚 →  𝑇𝑐 + 𝛾 (140 𝑘𝑒𝑉)43

99
42
99         (4)c 

 

The 140 keV γ photons given off by the relaxation of 99mTc to 99Tc can be used to image disease 

within the body if attached to a suitable pharmaceutical [4, 5]. 

 

1.2 Production of Radioisotopes 
There are two main routes by which radioisotopes are produced for research and clinical 

applications.  Nuclei formed by neutron bombardment of the parent nucleus may be produced in 

                                                 
c 99Mo is typically produced by the fission of 235U in nuclear reactors.   
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nuclear reactors, while nuclides formed by proton bombardment of parent material may be 

produced using particle accelerators [2].   

1.2.1  Nuclear Reactors  
Nuclear reactors consist of rods of fissile uranium fuel (235U) immersed in a neutron-slowing 

medium such as water or graphite (see figure 1-2 for a schematic of a research reactor, below). 

 

Figure 1-2:  A typical “swimming pool” research reactor (a TRIGA IPR-R1) [6] 

The fuel is arranged in a manner allowing a self-sustaining chain fission reaction to occur in a 

controllable manner [2, 3, 5].  Samples of the target material are typically sealed in quartz vials [2] 

and immersed in the reactor where they are bombarded by the sea of thermalized (slow) neutrons 

[2].  The capture cross section of the target nucleus is maximized at low average energies of 

incident neutrons, so ‘slow’ neutrons are most likely to induce nuclear reactions and transmute 

the parent into a daughter nucleus.   

Because both parent and daughter have the same number of protons, the daughter is chemically 

identical to the parent material.  This can make isolation of the pure daughter nucleus difficult, as 
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the parent and daughter can only be separated by physical methods, rather than by chemical 

means.  Therefore, neutron irradiation in a nuclear reactor typically produces daughter nuclides 

with low specific activity (amount of radioactivity per unit mass) since large amounts of parent 

material remain with the daughter nuclide.   

However, there are some cases (such as the production of 111Ag from 110Pd [7, 8]) in which the 

daughter formed by neutron bombardment is short-lived and decays via to a longer-lived, 

chemically distinct grand-daughter nuclide, allowing isolation of the 111Ag with high specific 

activity.  Radionuclides produced via neutron irradiation in nuclear reactors tend to lie below the 

valley of stability.   

1.2.2 Accelerators 
Isotopes produced via bombardment of a parent nucleus with charged particles may be produced 

in particle accelerators [2, 3].  While linear accelerators may be used to irradiate target materials 

[2], in practice most radioisotopes for biomedical imaging studies are produced in cyclotrons, 

which are more space-efficient [5].  A typical cyclotron is shown in figure 1-3, below.   

 

Figure 1-3:  Cyclotron for production of radionuclidesd 

                                                 
d http://www.daviddarling.info/encyclopedia/C/cyclotron.html 
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An ion source produces charged particles for acceleration; while these may be either cations or 

anions, a given machine will only use one.  Under the influence of an electric field, the ions 

(typically H-) move from the ion source to the electromagnets of the machine, where their path is 

curved by a magnetic field.  When the ions reach the gap between the “dees” (charged plates 

between magnets), the electric field is reversed, accelerating the ions across the gap between 

dees [2, 5].  After this acceleration, the H- have a higher energy and traverse a path longer than 

their original route within the dee, until they reach the gap between dees again.  This process 

continues until the ions have achieved some maximum energy (dependent on the strength of the 

magnetic field and radius of the electrodes)[2, 4, 5].  When the H- cannot be accelerated any 

further, they are routed through a stripper foil (to remove electrons and convert H- to H+), after 

which they curve out of the dee structure.  The H+ then bombard  the target, reacting with nuclei 

and transmuting target nuclei into chemically distinct product nuclei[2].  Typically, this initial 

product nucleus is an extremely short-lived compound nucleus that evaporates at least one 

nucleon in order to achieve a more stable configuration of protons and neutrons[4].  It is this final 

product nucleus that is isolated from the target after irradiation.  Radionuclides of medical 

interest produced by this method include 18F, 64Cu, 89Zr, and 11C (Table 1-1) 

Table 1-1: Commonly used medical radionuclides and their production methods 

Radionuclide Production Reaction 

18F 𝑂8
18 (𝑝, 𝑛) 𝐹9

18   [9] 

11C 𝑁(𝑝, 𝛼) 𝐶6
11

7
14  [10] 

64Cu 𝑁𝑖(𝑝. 𝑛) 𝐶𝑢29
64

28
64  [11, 12] 

89Zr 𝑌(𝑝, 𝑛) 𝑍𝑟40
89

39
89  [13] 
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Radionuclides produced by charged particle irradiation typically lie above the valley of stability.  

They may decay by β+ or EC emission, depending on the parent nucleus irradiated.   

1.2.3  Comparison of Methods  
Target irradiations in accelerators and in reactors are complementary methods of radionuclide 

production.  As positron emission only occurs in nuclei above the line of stability, isotopes used 

in PET are produced on charged-particle accelerators[5].  However, nuclei below the line of 

stability are usually produced in nuclear reactors and these nuclides are often crucial for imaging 

and radiotherapy.  The most commonly used isotope in nuclear medicine (99mTc) is produced 

from a reactor-derived parent (99Mo).    

1.3  Molecular Imaging 
Molecular imaging can be defined as the study and application of molecules and machinery that 

permit non-invasive examination of biological processes in living organisms, rather than mere 

structural information[14].  While the most obvious application of molecular imaging is in the 

diagnosis and monitoring of disease, it can also be used to examine healthy biological systems.  

At its heart, molecular imaging is the quest to “see” specific chemical and biological processes 

and act on the information gleaned from said observation.   

1.3.1 Glossary 
To simplify the discussion, the following definitions will be used throughout this work: 

Tracer:  An entity, usually a molecule, that can be introduced to a living system and whose 

movement within that living system can be observed non-invasively.   

Beacon:  The part of the tracer responsible for the signal observed from outside the subject.  For 

example,  it may be a colored or fluorescent dye, a magnetically active metal ion or a radioactive 

atom.   
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Targeting moiety:  The part of the tracer that binds to a specific biological structure or causes the 

tracer as a whole to behave in a particular manner. 

1.3.2  The Tracer Principle 
While not true for all imaging modalities, many molecular imaging techniques rest on a 

statement known as “the tracer principle”.  In its simplest form, this principle states that 

molecules used to probe biological systems do not perturb the system under observation 

provided the tracer concentration is sufficiently low.  Furthermore, it assumes that molecules 

altered to be detectable through non-invasive methods (tracers) behave in a biologically identical 

manner to the unaltered molecules [2, 5].  This assumption is not strictly true, but in some imaging 

modalities, the difference between labeled and unlabeled tracer behavior is so small it can 

effectively be ignored[5].       

1.3.3  Positron Emission Tomography 
One of these methods is Positron Emission Tomography (PET).  PET relies on detection of the 

coincident 511 keV γ photons produced by the annihilation of a β+ with an ordinary electron[2].  

Tracers used for this imaging modality must therefore contain atoms which decay via β+ 

emission.  The operating principle of a typical PET scanner is shown below, in figure 1-4.  When 

two detectors in the ring detect an event simultaneously, the event is tagged as a coincidence 

event, and the tracer is assumed to lie along the line between the two detectors [2] (known as the 

line of response, LOR).  Detection of many LOR’s allows the exact location of the tracer within 

the system (typically a human patient) to be determined [5].   
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Figure 1-4: Positron Emission Tomography apparatus
e 

PET is a very sensitive technique [15].  The concentration of contrast agent in the body is usually 

10−12 mols/L or lower after injection [16, 17], so it does not measurably perturb the biological 

functions observed via PET.  Additionally, the beacon attached to the targeting moiety is 

extremely small (a single atom), so it is unlikely to alter the tracer’s pharmacokinetic behavior in 

vivo.  Because radioactivity is the signal monitored in PET, nearly background-free 

measurements are possible as essentially no positron-emitting nuclides are naturally present in 

the bodyf .  Background-free images are easier to interpret, since any signal present is from the 

administered tracer, rather than from an endogenous entity.  Finally, PET is a functional imaging 

modality, rather than an anatomical one.  Instead of showing what tissues and structures are 

present, PET scans present information about the chemical and biological state of the system 

imaged [5].  Thus, chemical pathways specific to the target can be probed and information about 

processes occurring in the system can be obtained.     

                                                 
e Source http://www.tnw.tudelft.nl/en/about-faculty/departments/radiation-science-technology/research/particle-

therapy/turning-the-physical-advantages-of-protons-into-true-clinical-benefits-with-in-beam-tof-pet/ 

 
f The exception is 40K, which has a β+ fraction of 1.0𝑥10−3 % and a half-life of 1.25𝑥109 years [17]. 
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1.3.4  Representative PET Isotopes 

The PET isotopes in most common clinical use are 18F and 11C [4].  These nuclides are commonly 

incorporated into the structure of small organic molecules such as glucose (making [18F]FDG).  

These tracers have short biological half-lives (due to their small size), and many have high-

abundance targets in vivo, making the relatively short-lived 18F and 11C ideal candidates for 

radiolabeling.   Both 11C [19] and 18F [20] emit low energy β+ particles with no γ emissions other 

than the annihilation photons, giving rise to clear PET images with minimal radiation dose to the 

patient.     

However, many imaging targets, e.g., cancer-specific receptors, are found in far lower abundance 

in the body than glucose transport proteins and require tracers with longer blood circulation 

times, such as monoclonal antibodies.  Tracers with long biological t1/2 require radiolabeling with 

longer-lived nuclides, so useful information may be extracted from imaging with these 

compounds [13].  Many of the longer-lived PET isotopes are radiometals.  Emerging radiometals 

include 64Cu[11, 12, 21-32] and 89Zr [13, 32-43], both of which have been used to label antibodies (and 

other tracer types) and image disease within the human body. 

1.3.5  Medical Uses of PET Tracers 
The most common clinical use of PET is to examine global glucose uptake in patients[46].  

Elevated glucose uptake is known to occur in diseased sites within a patient.  Hypermetabolic 

cells (which take up more glucose than their neighbors) may be inflamed, infected or cancerous 

(the Warburg effect) [47-49].  A PET scan with [18F]FDG will detect many of these pathologies[46].  

However, [18F]FDG cannot distinguish among the various conditions that underlie the increased 

glucose utilization of pathological cells[50].  There is a need to develop higher-specificity tracers 

that are taken up by narrow ranges of diseased cell types.   
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A novel use of PET that has been gaining attention in recent years is for imaging bacterial 

infections.  The dynamics of bacterial infections and possible imaging targets specific to this 

disease type will be discussed in further chapters of this work.   
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Chapter 2: Bacterial Infections  

2.1 Why Image Bacterial Infections? 
The current diagnostic paradigm for patients appearing to have bacterial infections is time-

consuming, requiring samples from the patient to be cultured for hours to weeks before enough 

bacteria are isolated to run destructive diagnostic tests [1].  The disease-causing bacteria are then 

usually identified through a combination of their growth requirements, dye uptake and enzymatic 

assays (such as whether the culture produces catalase)[1] (figure 2-1).  Because proper 

identification of the disease often takes a long time and bacterial infections tend to progress 

rapidly (e.g., Yersinia pestis infections are fatal in 3-5 days if left untreated [1]), more-rapid 

diagnostic techniques would allow physicians to identify what types of antimicrobial therapy 

would help a patient in a clinically-relevant timeframe. 

 

Figure 2-1:  Typical identification of an unknown bacterium from clinical sample (adapted from [51]) 
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The ability to image bacterial disease and identify the pathogen from imaging results would 

permit rapid, specific diagnosis of infection (as opposed to some other disorder causing illness) 

with a particular infectious agent.  Identifying the bacterium causing a patient’s disease would 

allow clinicians to administer narrow-spectrum antibiotics targeted at the pathogen, eliminating 

disease without also killing off “innocent bystanders” or potentially contributing to the rise of 

drug-resistant bacterial strains [1, 2].  Additionally, the ability to specifically image infections 

would allow long-term monitoring of infection progress and patient response to therapy, 

allowing clinicians to determine whether a treatment is truly curing a patient’s disease or merely 

alleviating its symptoms.   

2.2 The Role of Iron in Infection Dynamics 
In humans, the Fe3+ ion is used as a co-factor in a variety of proteins and enzymes [3-5].  The 

common biological use of iron is as an oxygen carrier in hemoglobin and myoglobin.  However, 

Fe is also used as a redox center by cytochrome proteins in the electron transport chain, which is 

responsible for most of a cell’s ATP production, as well as in the enzyme holo-aconitase in the 

TCA cycle [5, 6].  Fe is also involved in cellular signaling, via the NO signal transduction 

pathway[3].   

 

Bacteria likewise also require iron to carry out basic life processes, such as ATP synthesis.  The 

bacterial electron transport chain uses cytochrome proteins with iron redox centers [7] and certain 

anaerobic bacteria can use Fe3+ as a terminal electron acceptor [7].  Additionally, iron is used as a 

redox cofactor for processes such as nucleotide synthesis [7, 8].   
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Iron availability is a crucial determinant of bacterial virulence [4, 7, 9].  Bacterial cells need to 

obtain iron from their environment in order to grow and divide within the host, to form biofilms 

and to lyse host cells, among other activities associated with virulence [1, 7, 10].   

 

Because iron is so crucial to proper cellular function in both humans and bacterial cells, the 

human body has many systems to control the movement and use of iron [4, 9, 11].  Bacteria have 

evolved iron-harvesting systems that attempt to evade or outwit the host’s attempt to withhold 

iron from invading cells [4, 7, 10-12].  Consequently, the ability of a bacterium to obtain iron from 

its environment is crucial to the successful establishment of infection.   

2.3 Host Response to Infection 
The human host’s response to invasion by bacteria has two components.  The innate immune 

system controls the pathways that are constitutively “on”, while other portions are only activated 

in response to inflammation or infection-specific stimuli (such as the expression of particular 

cytokines, or pathogen-synthesized molecules) [1, 9].  A key strategy of both components of the 

immune response is to withhold iron from the infectious agent [4].   

2.3.1  Constitutive Iron Sequestration  

Iron in use in vivo is enclosed within many layers of biochemical structures [4, 6, 13].  For example, 

the Fe3+ used to carry O2 in the blood is not merely complexed by heme.  Heme groups nestle 

inside hemoglobin, and many units of hemoglobin are contained within each erythrocyte (red 

blood cell) [6, 13].   Therefore, many systems must fail before the Fe3+ ion is found in the blood.  

When erythrocytes die or are lysed, additional proteins are recruited to sequester the iron [4, 6, 10-

13].  Free hemoglobin is complexed by haptoglobin and the resulting complex is shuttled to the 

spleen for recycling [10, 14].  Likewise, if heme is found outside hemoglobin, a protein called 
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hemopexin complexes the Fe-porphyrin ring and shuttles it to the reticuloendothelial system for 

recycling [10-11].   

 

If Fe3+ manages to escape from heme, proteins circulating in the blood can bind the ion, reducing 

the concentration of free Fe3+ in the blood.  Some of these proteins are specifically designed to 

chelate and transport Fe3+, such as transferrin (Tf) [4, 6, 12, 13], while others such as albumin are 

general “workhorse” transport proteins capable of binding many entities [4, 6].  If the plasma 

proteins are unavailable for binding Fe3+, the free metal can be complexed by small molecules in 

the blood plasma such as citrate and free amino acids [4, 14].   

 

An additional word should be said regarding the role of transferrin.  Transferrin is a small (80 

kDa) glycoprotein ordinarily found in the blood and cerebrospinal fluid whose role is to chelate 

and transport Fe3+ to tissues where it is needed [3, 15].  It is internalized by endocytosis and 

releases Fe3+ in the low-pH endosome before being excreted for another round of Fe3+ transport 

[3].  Because the pH of the blood, CSF and interstitial fluid is approximately neutral (pH 7.4) [16], 

Fe3+ is unlikely to be released in an uncontrolled manner in healthy hosts.  These fluids are 

normally sterile.  However, fluids which can contact the air (such as tears, saliva, bile and breast 

milk) utilize a different iron transport protein.  These fluids tend to have a lower pH than blood 

[1] and also may encounter bacteria.  An iron transport protein that releases Fe3+ under acidic 

conditions would encourage bacterial growth in these fluids, so the protein lactoferrin (Lf) is 

used to bring iron to cells in contact with these fluids [4, 6, 9, 11, 13].  Lactoferrin does not release 

Fe3+ under acidic conditions and therefore can traffic Fe3+ to epithelial tissues without making 

the iron available to bacteria or fungi that may be present near these tissues [4, 9, 10, 12, 14].    
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2.3.2  Infection Response Pathways  

Should an infection establish itself in the body, the liver responds to inflammatory cytokines [9] 

by producing the peptide hormone hepcidin [4, 6, 9, 10, 12].  Hepcidin suppresses the production of 

ferroportin, a cation transport protein used to bring Fe3+ into the cytosol [4, 12].  Ferroportin 

production is particularly suppressed in cells lining the GI tract, reducing iron absorption from 

the diet [12].   

 

Bacteria tend to acidify tissues they infect (mainly to generate the proton gradient necessary for 

oxidative phosphorylation), so any Fe3+ in the area bound by transferrin (Tf) will be released to 

solution and thus made available to the pathogens.  Therefore, empty lactoferrin is trafficked to 

the infected or inflamed site to scavenge any free Fe3+ in the area [4, 10-13]. 

2.4 Bacterial Response to Iron Sequestration  
Bacteria have evolved many mechanisms to scavenge iron from their environment, whether that 

environment is a human host or a matrix such as soil.  These mechanisms include lysing 

erythrocytes to internalize and degrade hemoglobin [6, 10, 13], internalizing and degrading Fe-

transferrin and Fe-lactoferrin [4, 10, 11, 13], lowering the pH of their environment to promote Fe3+ 

dissociation from Tf [10, 12], and siderophore production [4, 6, 9-11, 13].  This last pathway is 

interesting from a chemical and molecular imaging perspective.     

2.4.1  The Siderophore Pathway  

Siderophores are small molecules synthesized and excreted by bacteria (and some fungi) to 

harvest Fe3+ from their environment [4, 6, 9-11, 13] (figure 2-2).  They bind Fe3+ with extremely high 

affinity (binding constants on the order of ~1050 [14, 17]) but bind Fe2+ poorly, if at all.   
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Figure 2-2: Representative siderophore structures: a) staphyloferrin A, b) pyochelin, c) DFO 

After complexing Fe3+, the Fe-siderophore complex diffuses in the blood or interstitial fluid until 

it encounters a bacterium expressing a particular surface receptor to which it can bind.  After 

binding to the surface receptor, the Fe3+ in the siderophore is internalized by a strain-specific 

mechanism.  Generalized schema for both Gram-positive and Gram-negative bacteria are shown 

in figure 2-3, below.   
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Figure 2-3:  Siderophore uptake mechanisms in Gram-positive (left) and Gram-negative (right) bacteria [4] 

In bacteria utilizing the siderophore pathway, the siderophores and receptors for the Fe-

siderophore complex are constitutively produced in small amounts [4, 6, 9-11, 13].  Lack of iron in 

their environment de-represses the Fur operon, which is responsible for siderophore and receptor 

production.  The bacterium then produces and secretes relatively large quantities of its 

siderophore(s) [4, 6, 9-11, 13].      

2.4.2  Previous Medical Uses of Siderophores  

Perhaps the most common use of siderophores is chelation therapy [4, 6, 12], in which 

siderophores’ affinity for Fe3+ is exploited to remove Fe3+ from the blood.  Patients with 

excessively high blood Fe3+ concentrations are given the apo-siderophore desferrioxamine (DFO; 

figure 2-4) intravenously.  The apo-DFO complexes any free Fe3+ in the blood and is excreted 

through the kidneys[18, 19] .  Patients benefitting from chelation therapy include people with 

hereditary iron-overload disorders (such as β-thalassemia) [4, 6] and transfusion dependent 
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patients [20].  Patients given chelation therapy have been shown to have lower infection loads than 

untreated patients, whose blood iron levels are higher [4, 6].   

 

Figure 2-4:  DFO-B, used in chelation therapy [17] 

Siderophores have the potential to be molecular imaging agents.  They bind specifically to their 

target (particular species of bacteria), they are selectively taken up even at tracer concentrations 

and they have the capacity to be modified to be tracked via non-invasive methods.  These aspects 

will be further explored in Chapter 3, in which the most effective way to convert siderophores 

into molecular imaging tracers is examined.   
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 Chapter 3: Siderophores as Molecular 

Imaging Agents  
When constructing a molecular imaging tracer, it is important to ensure the imaging beacon and 

targeting moiety are compatible.  In the case of PET tracers, one must consider the decay 

characteristics of the radionuclide, including half-life, β+ decay fraction, and the energy and type 

of other decay modes.  The chemical behavior of the radionuclide must be such that the tracer 

atom may be easily and stably incorporated into the tracer without significantly altering the in 

vivo behavior of the tracer [1].  In order to generate images of medical utility, the radionuclide 

must remain with the tracer until the tracer reaches its target, preferably until the intact tracer is 

cleared from the body [1].   

3.1 Isotopes to Consider 
Several radionuclides have characteristics that make them suitable candidates for radiolabeling 

siderophores.  They are all radiometals with chemistry similar to iron, enabling the siderophores 

to be radiolabeled via a simple complexation reaction.  Radiolabeling procedures of this type are 

simpler, require less technical expertise to perform and reduce radiation dose to personnel 

compared to the multi-step organic radiosynthetic techniques often used to incorporate 

radioactive atoms into a molecule’s backbone, such as in the radiosynthesis of [18F]FDG [2].  

Three radionuclides that could be fruitfully used to radiolabel siderophores are 52Fe, 68Ga and 

89Zr.   

3.1.1 52Fe  
   Because 52Fe (t1/2=8.3 h, avg Eβ+= 1.9 MeV [3]) is an isotope of iron, it should behave 

approximately identically to the natFe3+ that siderophores chelate so selectively[1].  Therefore, 

52Fe-siderophore complexes will theoretically be taken up in exactly the same manner and at 

essentially the same rate as the non-tracer natFe-siderophores.  However, because many proteins 



 

25 

 

in the human body also bind Fe3+ and several actually remove Fe3+ from Fe-siderophores (e.g., 

the lipocalins [4]), the presence of 52Fe at a site in the body might not necessarily indicate the 

presence of 52Fe-siderophores at that site.  The observed PET signal could be due to host proteins 

sequestering 52Fe transchelated from the injected tracer and therefore be of little clinical use, as 

the signal might not indicate localization of disease.  Additionally, this nuclide is produced via 

the 55Mn(p,4n)52Fe reaction [5, 6], which requires a large accelerator to accelerate protons to 

sufficient energy (~50 MeV) [6].  There are many competing reaction channels and the cross 

section for production of 52Fe is small.  For all these reasons, the use of 52Fe has not been 

pursued in this work.           

3.1.2 68Ga 
Access to 68Ga (t1/2= 68 min, avg Eβ+=0.846 MeV [7]) is much simpler than 52Fe, since 68Ge/68Ga 

generators are commercially available [8].  These generators typically consist of an ion exchange 

column to which the parent nuclide (68Ge) is nearly permanently bound [1, 9-11].  When the parent 

decays to the daughter, the daughter has a much lower affinity for the column material and can 

be eluted with a suitable solvent.  The eluted daughter can then be used for additional 

radiochemical procedures.[1].  Generators are simple to operate, but they are relatively costly as 

they must be wholly replaced when the parent material is depleted.   

 

In addition to greater availability, 68Ga has the advantage of having chemistry similar to that of 

Fe [12, 13].  Molecules that complex Fe3+ well (such as transferrin [8]) tend to complex Ga3+ readily, 

so the siderophore imaging literature has focused on68Ga-labeled siderophores[14-17].  Ga has been 

shown to have antimicrobial activity [12, 18, 19], so theoretically a 68Ga-siderophore tracer could be 

used to localize an infection as well as show exactly where a natGa-siderophore (which would 

specifically deliver cytotoxic doses of the metal to the infection site) would be taken up.   
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3.1.3  89Zr   
89Zr (t1/2=3.3 d, Avg Eβ+=0.9 MeV (22.7%) [20]) is an intriguing choice of radiometal for 

transforming siderophores into PET tracers.  While its chemistry is not as close to that of iron as 

68Ga, 89Zr does behave very similarly to iron [13] and therefore siderophores will likely complex 

89Zr readily.  Its half-life is much longer than the biological half-lives of small molecules, but it 

is likely to form very stable complexes, enabling the activity to be cleared from the body with the 

tracer, thereby lowering radiation dose to the patient.  It can be produced in high specific activity 

on ordinary biomedical cyclotrons [21], allowing for wider use of the nuclide than 52Fe.  However, 

it emits an additional γ ray (0.91 MeV, 99%)[20] with each decay besides the 511 keV positron 

peak, giving rise to dosimetry concerns for both patients and personnel.       

 

89Zr was chosen as an initial isotope for use in investigating siderophores as PET tracers, due to 

its availability, ease of production and novelty as a signal for siderophore imaging. 

3.1 Zirconium 
3.2.1  Chemistry  
Zirconium is a second row transition metal with a chemistry similar to that of iron.  Its most 

common oxidation state is Zr(IV) and it tends to form octavalent (or higher coordinate) 

complexes [13].  Zr4+ is a very hard acidic cation [8] and thus strongly complexes with hard base 

ligands, particularly those containing N- and O- donors [8, 13].  Many of these complexes, such as 

Zr-desferrioxamine (Zr-DFO), are kinetically inert to demetallation [22].   

The chemical literature for Zirconium focuses on the element’s coordination chemistry [23-25], 

metallurgy (Zr is used as an alloying agent in steel, as well as cladding for fuel in nuclear 

reactors) [1, 26-28], on zirconium-containing materials for medical devices [29-31], and on zirconium 
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complexes as components of chromatographic resin for separations of metal ions [32, 33], peptides 

[34], and small molecules [35]. 

3.2.2  Biological Role  
While the metallurgical and strictly inorganic characteristics of Zr have been heavily investigated 

(see above), its behavior in living systems has been poorly characterized.  The element has no 

known biological role [36, 37] and transport into any type of cell has never been shown.  The 

adsorption of free Zr to the surface of fungal spores [38], yeast spores [39] and Citrobacter [40] has 

been demonstrated and characterized in bulk.  This adsorption has been shown to depend on pH 

[41, 42].  However, there are no reports of transport of Zr into the cytosol of these potentially 

infectious cell types.  A search of several major databases (PubMed, Web of Science, Science 

Direct) found only one publication discussing Zr uptake by any sort of infection [43].    

3.2.2 Radiochemistry  
Since 89Zr decays via positron emission, its location in a system may be ascertained by Positron 

Emission Tomography (PET).  Its fairly low-energy positrons (Eβ=0.9 (22.7%) and 2.4 (0.2%) 

MeV [20]) allow high-resolution images to be obtained in vivo.   However, reports of PET 

imaging using 89Zr-based tracers have used very large molecular moieties, such as monoclonal 

antibodies or other large proteins [44].  These tracers are imported into the cell to which they bind.   

Because 89Zr is biologically inert, it must be attached to these tracers via a suitable bifunctional 

chelator.  The monoclonal antibodies used to target the HER2 receptor [44], Fibroblast activation 

protein (overexpressed in Rheumatoid arthritis patients) [45], Prostate-specific antigen [32] and 

other biological targets [44] do not chelate 89Zr4+ on their own.  The chelator most commonly used 

is 1-(4-Isothiocyanatophenyl)-3-[6,17-dihyroxy-7,10,18,21-tetraoxo-27- [N-

acetylhydroxylamino)-6,11,17,22-tetraazaheptaeicosane]thiourea (DFO-NCS), an activated 

derivative of desferrioxamine (DFO) [32].  DFO is a highly useful chelator: its Zr coordination 
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chemistry is well-characterized, it completes quantitatively (when in present above tracer 

concentrations) and the  Zr complex is relatively stable in vivo [32].  If DFO is modified by the 

addition of a benzyl isothiocyanate group, it can be easily conjugated to targeting moieties with 

free amine groups, such as lysines [32].    

3.3 Siderophore Library 

The 89Zr complexation efficiency and bacterial uptake behavior of a library of synthetic 

siderophores were examined.  These siderophores were derived from danoxamine (fig. 3-1), a 

natural product produced by Streptomyces violaceus (DSM 8286) [46, 47].  Danoxamine is the 

iron-binding portion of the salmycin antibiotics these bacteria secrete [47].  While it does not 

directly have anti-microbial activity, it ensures the specific uptake of salmycin antibiotics by 

particular microbes.   

Members of the library were previously synthesized by systematically modifying the 

succinyl terminus of danoxamine with a variety of functional groups and variously-sized spacers 

in order to probe the effect of pKa, stereochemistry, ligand identity and hydrogen bonding ability 

on the ability of danoxamine to coordinate and complex metal ions [46].   

The iron chemistry of the resulting library has already been thoroughly investigated [46, 48].  

However, the zirconium chemistry of these compounds and uptake behavior as Zr complexes is 

unknown.   

3.4 Scope of this Work 

This work investigates the possibility of using 89Zr-labeled siderophores as molecular imaging 

agents for infection identification, as well as examining the conditions under which optimal 

effective specific activity may be obtained for 64Cu.     



 

29 

 

Because work with radiometals often requires extreme attention to the presence of contaminating 

metal ions, Chapter 4 presents a thorough investigation of a complexation assay used to 

determine the effective specific activity of 64Cu and proposes concrete suggestions for obtaining 

precise, accurate and high ESA values when producing and using this radiometal.  Chapter 5 

explores the Zr chemistry of a library of danoxamine-derived siderophores and the specificity of 

their uptake by a variety of bacterial species.  Chapter 6 discusses the implications of these 

results and explores future directions this research could take.   
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Chapter 4: Sources of metal contamination 

and specific activity measurement variations  

in cyclotron produced 64Cu  
 

 

 

 

NB: This work is currently out for review at Applied Radiation and Isotopes as “Sources of metal contamination and 

specific activity measurement variations in cyclotron produced 64Cu” Nora C. Goscinski, Tara Mastren, Paul 

Eisenbeis, Efrem Mebrahtu, Suzanne E. Lapi. 

 

High effective specific activity (ESA) of 64Cu is important for high-efficiency radiolabeling with 

this radiometal, but the sources of metal contaminants that can interfere with radiolabeling are 

not fully known.  Additionally, accurate determination of this parameter is important for 

determining batch purity and the TETA titration, a common method for finding 64Cu ESA, has 

not been fully characterized.  The purpose of this study was twofold, firstly to identify sources of 

metal contaminants in the 64Cu production process and secondly to identify metals that interfere 

with the binding of 64Cu to the TETA chelator. Possible sources of contamination at all stages of 

the 64Cu production process were identified. The Cu2+-TETA complexation reaction was 

characterized for repeatability and interferences, and the interfering metal profiles of a variety of 

reaction vessels and reagents were quantified.  Our results indicate that the TETA titration 

method for determining 64Cu ESA has both relative standard deviations of 27.6% and 40.3% for 

repeatability and reproducibility respectively and the chelator TETA is selective for picomolar 

amounts of Cu2+ in the presence of low millimolar concentrations of Zn2+ and Ni2+.   
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4.1 Introduction 

4.1.1 64Cu Specific Activity and Sources of Contamination 

The positron-emitting metal 64Cu is emerging as an important radionuclide for Positron Emission 

Tomography (PET) and has been incorporated into radiopharmaceuticals for imaging a variety of 

targets such as hypoxia [1-3], amyloid-β plaques [4,5] and numerous targets on cancer cells [6-9].  

Producing this isotope in high specific activity is important for efficient radiolabeling and for the 

production of high specific activity radiopharmaceuticals for imaging of low abundance targets.  

Additionally, accurately determining the effective specific activity (ESA, radioactivity per µmol 

of competing metal ions) of 64Cu is necessary as the presence of other metals in 64Cu may 

decrease the radiochemical yield of a radiolabeling procedure.  However, in selecting a method 

for determining the ESA of a radiometal, it is important to consider the chemistry of the final 

radiolabeling procedure.  A quality control assay that is less selective than the chemistry to be 

performed will give a falsely-low ESA value for the radiometal, while a QC procedure that is far 

more selective could return a high ESA value that underestimates the effects of interfering 

species in the final radiolabeling reaction.  

 Cold metal contaminants may enter cyclotron-produced 64Cu at many points during the 

production process.  Reagents used to prepare the 64Ni target may contain non-Ni metal atoms.  

Trace amounts of dissolved metals in target cooling water could be deposited on the target 

backing and inadvertently mixed with 64Cu during target processing.  Additionally, the reagents 

and resin used for post-bombardment processing may not be metal-free, and incomplete 

separation of 64Cu and 64Ni may occur.  Trace amounts of cold metals could leach from the 

containers into which 64Cu is dispensed and stored.  The reagents and vessels used for the TETA 

titration itself may contain sufficient levels of extractable cold metals to interfere with 
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complexation of Cu by the chelator.  Finally, sample manipulation during target transfer, 

dispensing and the TETA titration requires exposure to potential airborne metals.  

4.1.2 ESA Determination 

There are many methods of determining ESA of 64Cu, including ion chromatography [10], liquid 

chromatography-mass spectrometry [11] and titration of Cu2+ with a selective chelator, most 

typically 1,4,8,11-tetraazacyclotetradecane-1,4,8, 11-tetraacetic acid (TETA) [10, 12, 13].  TETA is 

considered selective for Cu2+ because the binding constant (log K value) for Cu2+-TETA (log 

K=21.7) [14,15] is larger than the log K values for Ni2+-TETA (19.9) [14,15], or Zn2+-TETA (log 

K=16.4) [14,15].  (All log K values refer to the 𝑀 + 𝐿 ↔ 𝑀𝐿 equilibrium, where L is the 

completely deprotonated chelator.)  The TETA titration method is a popular method for 

determining 64Cu ESA, but the assay itself has never been fully characterized as a method.  

Additionally, while the effect of metal ions on the formation of other complexes, such as 68Ga-

DOTA [16-18], 68Ga-NOTA [17-18] and 68Ga-DTPA [18] has been thoroughly examined, no such 

analysis has been done for the formation of 64Cu-TETA in the presence of other metal ions.  

4.1.3  Sources of Error   

The goal of characterizing an assay is to determine the reliability of the results it returns.  Some 

of the aspects typically examined include the assay’s repeatability (precision when the same 

sample is analyzed multiple times by a single analyst), reproducibility (precision when the same 

sample is analyzed by different analysts), and robustness (precision and accuracy in the presence 

of chemical contaminants or slight variations in experimental conditions), including the method’s 

selectivity for the analyte in the presence of similar substances [19].   

Potential sources of error in the TETA titration method of determining  64Cu ESA include a 

chelator that is either more or less selective than the chelator used in radiolabeling, a protocol 
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that is inherently low-throughput and vulnerable to human error, and the presence of other metals 

in the reaction from a variety of sources.    

All of the above sources of metal contamination and error in the 64Cu-TETA complexation 

method were examined.  The TETA titration was independently performed by two analysts for 

17 batches of 64Cu.  The extractable metal content for a variety of vessel types and reagents was 

profiled and quantified.  The effects of Ni2+ and Zn2+ on Cu2+-TETA complexation were 

examined by spiking in the cold metals at a variety of concentrations and comparing the resulting 

ESA to the ESA of pure (as received) 64Cu.  Additionally, the repeatability and reproducibility of 

the TETA titration results were examined and the metal content of the materials used in 64Cu 

production and final 64Cu production batches were profiled and quantified by ion 

chromatography.   

4.2 Materials and Methods 

4.2.1 Materials 

All chemicals were trace-metal grade and used as received unless otherwise noted.  In-house 

milliQ water (18 MΩ-cm) was used to prepare solutions unless otherwise noted.  1,4,8,11-

tetraazacyclotetradecane-1,4,8, 11-tetraacetic acid (TETA) was purchased from Macrocyclics 

(Dallas, TX).   

Ammonium acetate, ammonium sulfate, methanol (reagent grade), TraceSelect Ultra water, 

TraceCERT atomic absorption spectroscopy standards (1000 mg/L Fe3+, Cu2+, Ni2+, Zn2+ ,Co2+ in 

nitric acid), and ethylenediaminetetraacetic acid (EDTA) were purchased from Sigma Aldrich 

(St. Louis, MO).  Glass-backed silica thin layer chromatography plates (silica gel 60 F-254) were 

purchased from EMD Millipore (Billerica, MA).  Nitric acid, 96-well plates (polystyrene), 
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screwcap microcentrifuge tubes (virgin polypropylene, polypropylene screwcap with O-ring), 

snaptop microcentrifuge tubes (high clarity polypropylene, DNase/RNase-free, pyrogen-free), 5 

mL Polyvials for ASDV autosampler with plain caps, and 15 and 50 mL conical centrifuge tubes 

(polypropylene, non-pyrogenic), were obtained from Fisher Scientific (Waltham, MA).  

Polystyrene 96-well plates were also purchased from Santa Cruz Biotechnology (Santa Cruz, 

CA).  Ethanol (absolute) was purchased from DeCon Labs (King of Prussia, PA).  Concentrated 

PDCA eluent (35 mM pyridine-2,6-dicarboxylic acid, 330 mM KOH, 28 mM K2SO4, 370 mM 

formic acid), solid 4-(2-pyridylazo)resorcinol (PAR), and PAR diluent (1.0 M 2-

dimethylaminoethanol, 0.50 M NH4OH, 0.30 M NaHCO3) were purchased from Dionex 

(Sunnyvale, CA) and diluted to working concentrations with milliQ water and PAR diluent, 

respectively.  5 mL (6 mL) Norm-Ject Luer-Lock syringes (polypropylene, pyrogen-free, sterile) 

were purchased from Henke-Sass-Wolf (Tuttlingen, Germany) and used as received for manual 

injections for ion chromatography.  Target cooling water was sampled from the CS-15 cyclotron 

and stored in polypropylene syringes before analysis.  64Cu (as 64CuCl2) was produced in-house 

using an automated module [21].  Concentrated sulfuric acid (99.9999% metals basis) and NH4OH 

(99.99% metals basis) were purchased from Alfa Aesar (Ward Hill, MA).     

4.2.2 Instrumentation 

A high performance liquid chromatography unit consisting of a Dionex ICS-3000 HPLC with a 1 

mL sample loop, a GP50 pump, an AD20 absorbance detector, an AS-DV autosampler and a 

column heater (Thermo Scientific) was used for ion chromatography analysis.  An IonPac CS5A 

analytical column was used with an IonPac CG5A guard column (Dionex) to separate metals 

extracted from vessels and reagents.  The post-column reagent PAR (0.06 g/L) was delivered 

using pressurized helium via a PC10 pneumatic controller (Dionex).  For manual injections, the 
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sample was injected onto the column using a 5 mL Norm-Ject syringe.  When the AS-DV 

autosampler was used to deliver sample to the column, EDTA- and acid-washed polyvials were 

used.  A CRC-25R dose calibrator (Capintec, Ramsey NJ) was used for all activity 

measurements.  TLC plates were analyzed for activity with a RadioTLC plate reader (Bioscan, 

Washington DC).  

4.2.3  Acid Washing  

Strict acid-washing protocols were followed to ensure that reaction and storage vessels had 

minimal extractable metal contents.  Unless otherwise noted, vessels for use in the TETA 

titration were acid washed as follows: complete immersion in 1:1 concentrated nitric acid: milliQ 

H2O for ≥4 hours followed by a rinse with absolute ethanol.  They were then dried overnight in 

an oven (37⁰C).  The acid-washed vessels were closed and stored in screw-top jars (subjected to 

the same acid-washing protocol) until use.  The polyvials used by the ASDV autosampler 

required a more rigorous metal-extraction procedure before use: the vials and caps were rinsed 

with milliQ H2O, soaked in 1 M EDTA (alkalinized with solid NaOH until all EDTA dissolved) 

for at least 48 hours and again rinsed with milliQ H2O before immersion in a 1:1 HNO3:H2O 

bath (described above) for a minimum of 48 hours.  The autosampler vials and caps were stored 

in the acid bath until use, when they were rinsed with milliQ H2O before being filled with 

sample.  In an attempt to reduce sample contamination, ion chromatography samples were 

prepared immediately before analysis.     

4.2.4  TETA Titration  

The TETA titration was performed as previously described[12, 13].  Briefly, 7.4 MBq (200 µCi, 20 

µL) 64Cu were added to a series of vials or wells in a 96-well plate containing 8 different 

concentrations of TETA (in 0.1 M NH4OAc buffer, pH 5.5) and enough 0.1 M NH4OAc to bring 
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the volume to 80 µL.  The solutions were placed on a shaking incubator and incubated for 60 

minutes at 80 ⁰C.  The percent 64Cu complexation was determined via radioTLC: 1 µL aliquots 

from each solution were spotted on TLC plates and developed in 1:1 MeOH: 10% NH4OAc (pH 

5.5).  Developed plates were placed on a RadioTLC plate reader for analysis.  For interference 

analysis, 40 µL Ni2+ or Zn2+ was added to the reaction before 64Cu; the volume of 0.1 M 

NH4OAc was reduced accordingly.    

4.2.5  Metal Profiles  

Samples were prepared by heating 0.1 M NH4OAc at 80 ⁰C for 1 hour (as per the TETA titration 

protocol) in a variety of reaction vessels.  The heated NH4OAc was then diluted (1:200) with 

milliQ water (for autosampler runs) or UltraTrace water (for manual injections).  The samples 

were separated and quantified as previously described [10].  Briefly, a 1 mL injection loop was 

used to load samples onto the analytical column, PDCA eluent was pumped through the column 

at 0.3 mL/minute and a post-column mixing loop was used to mix metals eluting from the 

column with 4-(2-pyridylazo)resorcinol, which complexed metal ions in effluent.  The 

concentration of the metal-PAR complex was monitored via UV at 530 nm.   

4.2.6 Analysis  

Data were analyzed using Prism (Graphpad, CA).  Selectivity coefficients were calculated using 

an arbitrary low number of mols of Cu (1𝑥10−12 mols) for comparison, as the concentration of 

Cu2+ ions in received 64Cu was typically below the detection limit of ion chromatography.  

4.3 Results 

4.3.1 Reproducibility and Repeatability 

For the 17 64Cu production batches tested, the difference between ESA values obtained by 

different analysts was significant (P=0.0196 for Analyst 1 vs Analyst 2).  ESA values determined 
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using TETA titration obtained by a single analyst for a single batch of 64Cu was variable and 

ranged from 0.9 % to 27.6%. (Analyst 2 error bars, figure 4-1).   
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Figure 4-1:  Effective specific activity of 64Cu as determined by complexation with TETA.  ESA’s before 7/17/13 

were determined using acid-washed polypropylene vials.  ESAs on or after 7/17/13 were determined using 

polystyrene 96 well plates. 

The ESA of 64Cu increases with batch size (R=0.390) and this effect is statistically significant.  

However, batch size does not seem to affect the precision of the TETA assay, as the correlation 

between batch size and the standard error of the mean is not statistically significant.  The 

variation in Cu-TETA complexation behavior (seen in the size of the standard error of the mean 

ESA) is likely inherent to the complexation reaction itself, because more-precise ESA values are 

not obtained for production batches with higher concentrations of 64Cu.   

4.3.2  Selectivity of TETA for Cu2+ 

To verify the selectivity of TETA for Cu2+ in the presence of large excesses of other divalent 

first-row transition metal ions, Zn2+ and Ni2+ were spiked into the TETA titration at a variety of 

concentrations, the effect on 64Cu ESA was determined, and the selectivity coefficients of TETA 

for Cu2+ in the presence of the contaminants were calculated.  A value of Kanalyte interferent between 
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+1 and -1 indicates that the method is more selective for the analyte than the interferent [19].  

When the interferences of Zn2+ and Ni2+
 with Cu2+-TETA complexation were examined, KCu, Zn 

was found to be 8.34𝑥10−4 while KCu. Ni was 4.62𝑥10−3, indicating that while TETA is highly 

selective for Cu2+,  Ni2+ is more likely to interfere with Cu2+ complexation than Zn2+.   

Ni2+ was spiked into the Cu-TETA complexation reaction to achieve final Ni2+ concentrations 

ranging from 1.7 to 204 µM (figure 4-2; for clarity, only the lowest spike concentrations are 

shown).  As expected, the presence of Ni2+ lowered the ESA of 64Cu.  When the difference in 

ESA caused by the spike was normalized to the unspiked 64Cu ESA, the interference increased 

linearly with Ni2+ concentration.  At spike concentrations below 2.25 µM, ESA variation can no 

longer be ascribed to the presence of spiked-in Ni2+, as the error bars for Ni2+-spiked and 

unspiked 64Cu ESA’s overlap below this concentration.   
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Figure 4-2:  Effect of Ni2+ spike on 64Cu ESA 

Zn2+ interference was determined by spiking Cu-TETA complexation reaction at a variety of 

concentrations, from 2.75 to 183.5 µM (figure 4-3).  The presence of Zn2+ lowered the ESA of 

64Cu at all but the lowest concentration tested (2.75 µM, figure 4-3).  At spike concentrations 

below 5.1 µM, the error bars for spiked and unspiked 64Cu-TETA complexation reactions 

overlap; therefore, Zn2+ is no longer the sole cause of ESA variation below 5.1 µM.   
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Figure 4-3:  Effect of Zn2+ spike on 64Cu ESA 

4.3.3  Sources of Interference: Metal content of vessels, reagents and 64Cu 

Labeling buffer (0.1 M NH4OAc) was heated in a variety of reaction vessels made of different 

types of plastic to determine extractable metal content.  The vessels were incubated as received 

and after acid-washing.  The metal content of the labeling buffer after incubation was determined 

via ion chromatography.  Unheated labeling buffer and other reagents were also analyzed.   

The labeling buffer was essentially metal free when prepared with milliQ water, with the 

exception of Zn2+, which is present at levels below those found in all reaction vessels (table 4-1).  

Polystyrene 96-well plates (as received) have the lowest extractable metal levels of all vessels 

tested.   

Acid-washing increased the Zn2+ content of molecular biology grade (DNase/RNase-free) 

snaptop tubes nearly 9x, despite the use of trace metal grade HNO3.  Trace metal grade HNO3 

was found to contain approximately 7 µM Zn2+ (table 4-1), suggesting that direct transfer of Zn2+ 

from the acid bath to tubes is unlikely.  It is possible the acid had time to loosen but not 

completely liberate Zn2+ from the polypropylene matrix.  However, acid washing appears to 

lower the levels of extractable Cu2+ and Zn2+ in polypropylene screwtop tubes, suggesting that 

different grades of polypropylene contain different concentrations of Zn2+.  
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Table 4-1:  Metal concentrations (µM) in TETA reaction mixture due to leaching from reaction vessel 

*’Premium’ vials were molecular biology grade. 

Quantification of the metal profiles of 64Cu production batches after decay found no significant 

correlation between total metal content and ESA (figure 4-4).  Additionally, cold metals were 

found to be present at millimolar concentrations (table 4-2) while the TETA titration indicates 

that Cu2+ is present at picomolar concentrations in CuOAc, so TETA is still highly selective for 

Cu2+.   
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Figure 4-4: Effect of total metal content on precision of 64Cu ESA 

Metal 0.1 M 
NH4OAc 
(pH 5.5) 

HNO3 96 well plate 
(as received) 

Screwtop vials 
(as received) 

Screwtop 
Vials (acid-

washed) 

‘premium’ Snaptop 
Vials* (as received) 

‘premium’ Snaptop 
Vials* (acid washed) 

Fe3+ < blank < 
blank 

< blank < blank < blank 
<blank <quant limit 

Cu2+ < blank 0.37 0.75 0.43 < blank 0.72 0.82 

Ni2+ < blank < 
blank 

< blank <blank < blank 
<blank <quant limit 

Zn2+ 0.38 7.20 0.55 68.35 11.37 7.31 67.91 

Co2+ Not 
detected 

<blank Not detected <blank < quant limit 
Not detected <quant limit 

[TETA] 
(well 5, 
~EC50) 

0.15 0.15 0.15 0.15 0.15 0.15 0.15 

Plastic 
Type 

--- -- Polystyrene Polypropylene Polypropylene High clarity 
Polypropylene 

High clarity 
Polypropylene 
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Table 4-2:  Metal profiles of selected 64Cu production batches 

 

4.3.4  Sources of interference:  Metal content of cyclotron target cooling 

water and separation reagents  

It has been noted [13] that target cooling water can be a source of cold metal contaminants in 

cyclotron-produced 64Cu.  Therefore, the metal content of cyclotron target cooling water was 

examined via ion chromatography over several 64Cu productions.  The total metal content of the 

target cooling water tracks with 64Cu ESA—higher ESA is seen for batches with high metal 

concentrations in the cooling water and a major drop in ESA is seen when metal content of 

cooling water drops (due to water change-out; figure 4-5).  However, the exact cause of this 

relationship remains undetermined.  

Metal 

(µM) 6/18/2013 6/26/2013 7/2/2013 7/9/2013 7/16/2013 7/23/2013 7/30/2013 

Fe3+  1085 -- -- -- -- -- -- 

Cu2+  -- -- -- -- 16 -- -- 

Ni2+  2096 2794 2488 5486 1874 11416 5435 

Zn2+  4023 8932 29214 -- 5231 5583 33344 

Co2+ -- -- -- -- -- -- -- 



 

45 

 

T
a

r
g

e
t 

C
o

o
li

n
g

 W
a

te
r
 (

C
S

-1
5

) 
M

e
ta

ls
 (

u
g

/L
)

E
S

A
 (m

C
i C

u
-6

4
/u

m
o

l m
e

ta
l)

6
/2

7
/1

3

7
/2

/1
3

7
/3

/1
3

7
/9

/1
3
 

7
/1

0
/1

3
 

7
/1

1
/1

3
  

7
/1

5
/1

3

7
/1

6
/1

3

7
/1

7
/1

3

7
/1

9
/1

3

7
/2

3
/1

3

7
/2

4
/1

3

7
/2

6
/1

3

7
/3

0
/1

3

0

5 0 0

1 0 0 0

1 5 0 0

0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

E S A  (m C i/u m o l m e ta l)

T o ta l M e ta l C o n te n t T a rg e t C o o lin g  W a te r  (C S -1 5 )  (u g /L )

W a te r re p la c e d

 

Figure 4-5:  Effect of CS-15 target cooling water metal content on 64Cu ESA 

 

The resin and acid solutions used in target processing were also analyzed for metal content via 

ion chromatography (table 4-3).  When treated with 6 M HCl, unused AG1-X8 anion exchange 

resin was found to have high levels of extractable Zn2+ (5604 μg/L) and Fe3+ (4136 μg/L), with 

smaller amounts of Cu2+ and Ni2+.  0.5 M HCl, used to elute purified 64Cu during target 

processing, had similarly high concentrations of Fe3+ and Zn2+.  However, after passage through 

a column of AG1-X8 resin, the 0.5 M HCl had no detectable Fe3+ and the Zn2+ content doubled 

to 10,959 μg/L.  The Ni content of the 0.5 M HCl increased from 744 μg/L to 1674 μg/L after 

passing through the resin, while the Cu2+ content remained fairly constant (1546 μg/L pre-, 1414 

μg/L post-column)  This suggests that AG1-X8 resin binds Zn2+ at high concentrations of HCl, 

but freely releases the metal when treated with 0.5 M HCl .  Thus, the resin used to separate 64Cu 

from the 64Ni target may be a major contributor to the cold metal contaminants found in 

cyclotron-produced 64Cu.   
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Table 4-3:  Metal profiles of reagents used in 64Cu separation 

Metal  (μg/L) 0.5 M HCl 6 M HCl passed 

through fresh resin Pre-column Post-column 

Fe3+ 3930 -- 4136 

Cu2+ 1546 1414 1546 

Ni2+ 744 1674 589 

Zn2+ 5943 10959 5604 

 

All the reagents used to prepare 64Ni targets contained Fe3+ (up to 2.87 mg/mL), while 

(NH4)2SO4 also contained Ni2+ (1.59 mg/mL) and NH4OH contained Cu2+ (2.04 mg/L).  Cobalt 

was not detected in any target processing reagents.   

4.4 Discussion 
When comparing ESA values for a single batch of 64Cu obtained by different analysts, the 

standard error of the mean ranged from 5.1% to 40.3% of the mean ESA, while the standard 

error for ESA values obtained by a single analyst ranged from 0.9% to 27.6% of the mean.  The 

repeatability and reproducibility of the assay appear to be batch dependent.  This may be due to 

the extremely low analyte concentration, as typical concentrations of 64Cu are in the picomolar 

range.  At such low concentrations, it may take a long time for the chelator and metal ion to form 

a complex and even tiny differences in reaction mixture composition or conditions can 

dramatically affect the kinetics of the complexation process.  Likely the thermodynamic product 

(64Cu2+-TETA) is formed after a long incubation at high temperature, but perhaps 60 minutes at 

80⁰C does not provide sufficient thermal energy to minimize the formation of kinetic products 

such as Ni2+-TETA or Zn2+-TETA.  Additionally, reaction pH may affect the affinity of a 
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chelator for various metal ions.  TETA was chosen for its high affinity for Cu2+ in its completely 

deprotonated form, but at pH 5.5, other, more-protonated forms of TETA may exist, each with its 

own set of stability constants.   

 

There is a positive correlation between 64Cu batch size and ESA of the 64Cu (R= 0.390).  A 

possible explanation for the increase in specific activity with increasing amounts of 64Cu 

produced is that the number of moles of cold interferents is essentially constant from batch to 

batch, since they are inherent to the production process.  Producing more activity would then 

lead to higher ESA values, since the number of 64Cu atoms increases compared to the constant 

number of interferent atoms.   

 

The Cu2+-TETA complexation reaction is perturbed by high concentrations of other metals in the 

reaction mixture.  The mean ESA of 64Cu spiked with contaminant metals is lower (2.3-69.7% 

lower) than the unspiked ESA for all production batches assayed.  The macrocycle TETA does 

complex Cu2+ with high selectivity, as indicated by complete complexation of 64Cu 

(approximately picomolar) by only picomoles of TETA in the presence of micromoles of cold 

Ni2+ and Zn2+, as well as by selectivity coefficient (for Cu2+) values much less than one.  

However, the vast excess of cold Ni2+ and Zn2+ ions in the reaction vessel likely leads to their 

complexation by TETA, giving rise to lower ESA values for 64Cu.   

 

Cold Ni2+ and Zn2+ in the 64Cu come from a number of sources.  Incomplete recovery of the 64Ni 

target material is likely a source of cold Ni2+ which is present as the main contaminant.  Cold 

Zn2+ found in AG1-X8 resin itself may co-elute with 64Cu during target processing.  
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Alternatively, the resin may concentrate cold Zn2+ from the target, plastics and solvents, then 

release it in the same fraction as 64Cu.  Additionally, many common plastic vessels contain 

significant amounts of extractable, interfering metal ions even after acid-washing.  Polystyrene 

was found to have the lowest amount of extractable metals, though polypropylene could also be 

nearly metal-free.  The initial TETA titration assay was performed in virgin polypropylene vials 

containing large quantities of extractable metals, and the ESA values obtained with these vials 

are consistently lower than those obtained in other vessels.  The use of polystyrene 96 well plates 

to run the TETA complexation reaction gave consistently higher ESA values for 64Cu than 

polypropylene vials and is inherently higher-throughput.   

 

In order to obtain more accurate ESA values for batches of 64Cu, we recommend running the 

TETA assay multiple times in parallel in polystyrene 96-well plates, using extremely high-purity 

metal-free reagents.  AG1-X8 resin used to separate 64Cu from 64Ni should be washed with 0.5 M 

HCl before use to remove cold metal ions.  If non-molecular-biology grade polypropylene is 

used to run the TETA assay or to store 64Cu, the vessels should be thoroughly soaked in trace-

metal grade acid to remove extractable metals from the plastic before use.  Careful manipulation 

of samples and vessels, with constant attention to the possibility of metal contamination, is also 

necessary to obtain high ESA and realistic ESA values and for subsequent high specific activity 

radiochemistry.   

4.5 Conclusion 
The Cu2+-TETA complexation assay has been characterized as a standard method.  It is 

perturbed by the presence of other first-row transition metal ions in the reaction mixture.  Ni2+ 

interferes with Cu-TETA complexation at spike concentrations below 2.25 µM, while Zn2+ 
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interferes with the assay at spike concentrations below 5.1 µM.  Sources of interfering metals 

include Ni2+ and other metal ions from the target, ion exchange resin used in target processing, 

and reaction vessel material with polystyrene and molecular biology grade polypropylene having 

the smallest amounts of extractable metal ions.  
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Chapter 5: 89Zr-siderophores as molecular 

imaging agents for bacterial infections  
 

Siderophores are small molecules synthesized by bacteria to harvest Fe3+ from their 

environment.  In infection scenarios, their production can increase infection virulence.  Their 

selective uptake in vivo in multi-bacteria environments indicates that this class of molecules has 

the potential to be selective imaging agents.  In this study, DFO-NCS and a library of 

trihydroxamate siderophores were evaluated as vehicles to deliver 89Zr selectively to bacteria for 

Positron Emission Tomography (PET) imaging of infections.  The uptake of 89Zr-DFO-NCS by 

human cells (SKBR3), Staphylococcus aureus, and Pseudomonas aeruginosa was significantly 

different (p<0.0001) and highest for S. aureus.  The Zr chemistry and bacterial uptake behavior 

of a library of trihydroxamate siderophores was evaluated and compared to that of DFO-NCS.  

Uptake of 89Zr-DFO-NCS and another siderophore library member (89Zr-V-129) were tested in a 

murine lung infection model (P. aeruginosa, PA M57-15) and 89Zr-V-129 was found to have 

significantly higher lung uptake in infected mice (p=0.0120) than in control mice. The uptake of 

89Zr-DFO-NCS did not differ significantly between control and infected mice (p=0.831).  89Zr-

siderophores have the potential to be selective, specific PET tracers for imaging bacterial 

infections in vivo and should be explored more thoroughly.     

5.1 Introduction 
 

Zirconium-89 is an emerging radiometal that has been successfully used to image a variety of 

diseases in vivo.  As discussed in section 3.2.1, 89Zr is biologically inert and must be attached to 
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molecular imaging tracers via a suitable bifunctional chelator.  The chelator most commonly 

used is 1-(4-Isothiocyanatophenyl)-3-[6,17-dihyroxy-7,10,18,21-tetraoxo-27- [N-

acetylhydroxylamino)-6,11,17,22-tetraazaheptaeicosane]thiourea (DFO-NCS), an activated 

derivative of desferrioxamine (DFO) [1].  DFO is a highly useful chelator: its Zr coordination 

chemistry is well-characterized ,the reaction completes quantitatively (when in excess) and the  

Zr complex is relatively stable in vivo [1].  If DFO is modified by the addition of a benzyl 

isothiocyanate group, it can be easily conjugated to targeting moieties with free amine groups, 

such as lysines [1].   

 

However, 89Zr-DFO alone has the potential to target certain diseases, such as bacterial infections, 

as a small-molecule complex.  One area of current interest in the infection imaging community is 

the development of siderophore-based PET tracers.   

 

Because siderophores chelate Fe3+ so avidly, they can be radiolabeled with radiometals whose 

chemistry resembles that of Fe3+.  In fact, DFO is a siderophore, originally produced by 

Streptomyces pilosus [2, 3] and used clinically to lower the blood concentration of Fe3+ in patients 

with hereditary iron-overload disorders (such as β-thalassemia) [4, 5] and transfusion dependent 

patients [6] in addition to its use as a 89Zr chelator.   While the literature has previously focused 

on68Ga-labeled siderophores [7-10], 89Zr could also be used to transform a siderophore into an 

infection-targeted PET tracer.  While its chemistry is not as close to that of iron as 68Ga, 89Zr 

does behave very similarly to iron [11] and therefore siderophores with similar structures to DFO 

will likely complex 89Zr readily.  These 89Zr-siderophore complexes are likely to be quite 

kinetically stable, enabling the activity to be cleared from the body with the tracer, thereby 
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lowering patient radiation dose.  89Zr can be produced in high specific activity on a biomedical 

cyclotron equipped with a solid target station [12], allowing for widespread use.  Despite the many 

advantages 89Zr has to offer the PET chemist, it has been neglected in the arena of infection 

imaging.  A search of several major databases (PubMed, Web of Science, Science Direct) found 

only one publication discussing Zr uptake by any sort of infection [13].   

 

We present herein the first report of using 89Zr to image bacterial infections.  89Zr-DFO-NCS was 

characterized as a tracer for bacterial infections.  The 89Zr chemistry of a library of siderophores 

based upon DFO was explored (see figure 5-1 for selected structures): the complexation 

efficiency and stability towards demetallation of the 89Zr-siderophore complexes was examined 

and the complexes’ uptake by a panel of Gram-positive and Gram-negative bacteria was 

determined.  Finally, the efficacy of 89Zr-siderophores as tracers for imaging bacterial infections 

in vivo was tested by examining the uptake of 89Zr-DFO-NCS and the 89Zr complex of one 

siderophore (V-129) by Pseudomonas aeruginosa (PA M57-15) in a murine lung infection 

model. 
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Figure 5-1: Selected chelators used in this study 

  

5.2  Materials and Methods 

5.2.1  Materials 
All chemicals were reagent grade unless otherwise noted.  In-house milliQ water (18 MΩ) was 

used to prepare solutions unless otherwise noted.  1-(4-Isothiocyanatophenyl)-3-[6,17-dihyroxy-

7,10,18,21-tetraoxo-27-[N-acetylhydroxylamino)-6,11,17,22-tetraazaheptaeicosane]thiourea 

(DFO-NCS) was purchased from Macrocyclics, Inc (Dallas, TX).  HCl and NaOH were 

purchased from Fisher Scientific (Waltham, MA).  S. aureus (ATCC 11632) was provided by Dr. 

Tim Wencewicz (Washington University, St. Louis), while Pseudomonas aeruginosa cultures 

were provided by Dr. Steven Brody (Washington University, St. Louis).  SKBR3 cells were 

obtained from ATCC.  An incubator, culture tubes, inoculation loops and petri dishes were 

obtained from Fisher Scientific (Waltham, MA).  Agar was purchased from Lambda Biotech 
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(Ballwin, MO).  LB (Miller) powdered media, diethylenetriaminepentaacetic acid (DTPA), 

Deferoxamine mesylate (DFO), and 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 

(HEPES) were obtained from Sigma Aldrich (St. Louis, MO).  Mannitol salt agar (MSA) was 

obtained from VWR International (Radnor, PA).  70% ethanol was prepared using 200 proof 

ethanol (in-house) and milliQ (18 MΩ-cm) H2O.  89Zr was produced in-house using an 

automated module [12] and was received as 89Zr-oxalate.   

5.2.2  89Zr Radiochemistry 
89Zr was neutralized in HEPES buffer (0.5 M, pH 7.1) and pH adjusted to 6.8-7.1 with NaOH 

and/or HCl.  Solid DFO-NCS was dissolved in DMSO (4-7 mg/mL) and diluted to 0.1 mg/mL in 

HEPES.  DFO-NCS and neutralized 89Zr were mixed to obtain an M:L ratio of 1:5, then 

incubated on a shaker (Eppendorf thermomixer, Fisher Scientific) at 37 ⁰C for 60 minutes.  The 

extent of 89Zr chelation was determined by TLC.  Briefly, 5 μL 50 mM DTPA (in milliQ H2O) 

were added to an aliquot of the 89Zr-DFO-NCS complexation mixture and incubated at 37 ⁰C 5 

minutes further before spotting on chromatography paper (CHR, Whatman, Pittsburgh, PA).  The 

strips were developed in 50 mM DTPA and analyzed for activity with a RadioTLC plate reader 

(Bioscan, Washington DC).  Likewise, siderophore library members were dissolved in water (1-2 

mg/mL), then diluted in HEPES buffer (0.5 M, pH 7.1) to a working concentration of 0.1 

mg/mL.  The siderophore working solution and neutralized 89Zr were then mixed (M:L ~1:5) and 

incubated on a shaker at 37 ⁰C.  For bacterial uptake studies, the siderophores were allowed to 

complex with 89Zr for 60 minutes.  For stability studies, aliquots were removed at various times 

and spotted on chromatography paper as above.  The TLC strips were developed and visualized 

as above. 
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5.2.3 Biological Assays 
Staphylococcus aureus and Pseudomonas aeruginosa were grown in a stationary incubator (37 

⁰C) for 18-24 hours in LB (Miller) broth.  500 μL aliquots of the cultures were incubated at 37 

⁰C with neutralized 89Zr or 89Zr-DFO-NCS (5 minutes, unless otherwise noted).  The cells were 

then centrifuged and washed twice with saline (0.9% NaCl) to remove non-specifically bound 

89Zr.  Pellet activity was then quantified with a dose calibrator (CRC-25R, Capintec, Ramsey 

NJ).  The incubation time, cell concentration, 89Zr/89Zr-DFO-NCS dose and concentration of 

Fe3+-depleting compounds in the media were all varied.  Internalization was determined by 

sonicating cell pellets (resuspended in sterile saline) for 5 minutes, followed by centrifugation.  

The activity present in cytosol (supernatant) and membrane (pellet) fractions was then measured.     

5.2.4 In vivo Studies 
A clinical isolate of P. aeruginosa designated PA M57-15 (1X105 CFU/30ul) was intra-trachealy 

instilled into mice (CD-1 white male, 6-8 weeks of age) one hour prior to imaging.   20 µg 

siderophore (V-129 or DFO-NCS) were incubated with 1 mCi 89Zr in HEPES (0.5 M, pH 7.1) at 

37°C for 1 hour, then diluted in saline. 70 – 90 µCi of the radiotracer was then injected into mice 

intratracheally instilled either with PA M57-15 bacteria in PBS or PBS only (negative control).  

Dynamic imaging was done for 0 – 40 min, followed by static imaging at 3 h post-injection.  At 

18 hours post-delivery of PA M57-15, the mice were euthanized for biodistribution studies. 

5.3  Results and Discussion 

5.3.1  89Zr-DFO as baseline siderophore: in vitro studies 
In order to determine whether chelation affects 89Zr uptake by bacterial cells, cultures of S. 

aureus were treated with free 89Zr (neutralized, but not otherwise manipulated) and with 89Zr-

DFO-NCS (90-130 μCi/tube).  After 5 minutes’ incubation at 37⁰, the cultures were centrifuged 

and the activity present in each wash fraction, as well as the initial supernatant and final pellet, 
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was quantified.  The vast majority of 89Zr remained in the media in both cases, but when chelated 

with DFO-NCS, up to 24.2% of 89Zr was found associated with S. aureus cells (figure 5-2a).  

(Note that the percentages of free 89Zr do not add up to 100%.  The difference was retained by 

pipet tips.)  Promisingly, unchelated 89Zr did not bind to or enter the bacterial cells at all.  

Because ‘free’ 89Zr is not taken up by bacterial cells, any 89Zr uptake observed in vivo will be 

from an intact 89Zr-siderophore, rather than a ‘lost’ ion of 89Zr.   

 

 

Figure 5-2: a) Effect of chelation on binding of 89Zr to S. aureus cells; b) selectivity of 89Zr-DFO-NCS uptake by 

mammalian cells, Gram-Positive bacteria (S. aureus) and Gram-negative bacteria (P. aeruginosa); and c) time-

dependence of 89Zr and 89Zr-DFO-NCS uptake by Gram-positive and Gram-negative bacteria 

 

The selectivity of 89Zr-DFO-NCS uptake was investigated by incubating model Gram-positive 

(S. aureus) and Gram-negative (P. aeruginosa) bacteria, as well as human cells (SKBR3), with 

89Zr-DFO-NCS as above.  S. aureus bound the highest fraction of 89Zr-DFO-NCS (58.8 ±6.9%), 

with P. aeruginosa binding significantly less (28.0±15.3%) and the mammalian cells binding 



 

58 

 

nearly none (3.0±0.7%) of the applied complex (figure 5-2b).  The extreme disparity between the 

fraction of 89Zr-DFO-NCS bound by bacterial cells and mammalian cells indicates that the 

complex may have the ability to selectively bind to/be taken up by bacterial cells in the presence 

of mammalian cells, such as in the context of an infection.  It also raises the possibility that 89Zr-

DFO-NCS may be a tracer well-suited to imaging bacterial infections in vivo, as there would be 

very little off-target (non-infection) uptake.  Additionally, the twofold higher uptake (p=0.0335) 

of 89Zr-DFO-NCS by S. aureus than by P. aeruginosa indicates that the complex is selectively 

taken up by Gram-positive bacteria.  This selectivity suggests the possibility of developing more-

targeted tracers (based on DFO-NCS) for identification of bacterial infections.    

 

To examine the effect of incubation length on 89Zr-DFO-NCS uptake by the two types of 

bacteria, cultures of both S. aureus and P. aeruginosa were treated with 5-10 μCi 89Zr 

(neutralized oxalate complex) or 89Zr-DFO-NCS and incubated at 37⁰C (stationary) for 

approximately 30 hours.  While no uptake of free radiometal by either strain of bacteria was seen 

at 60 minutes, by 28 hours post-labeling both S. aureus and P. aeruginosa showed slight uptake 

of free 89Zr (S. aureus: 1.7±1.3%, P. aeruginosa 7.7±6.0%).  As expected, uptake of 89Zr-DFO-

NCS was much higher than that of the free radiometal at both 90 minutes and 29 hours (figure 5-

2c).  Interestingly, at 90 minutes, P. aeruginosa had much higher cell-associated activity 

(16.1±14.4% vs 6.2±6.1% for S. aureus), whereas after 29 hours, S. aureus once more bound the 

majority of the complex.  Because very short (5-10 min) and very long (29 h) incubation periods 

result in higher selectivity of 89Zr-DFO-NCS for S. aureus than intermediate time points, the 

temporal aspect of bacterial uptake experiments with this complex should be carefully planned.   
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When the uptake behaviors of unfunctionalized DFO and DFO-NCS were compared, only the 

activated chelator was taken up (figure 5-3), while uptake of unfunctionalized DFO was 

negligible.  While this could indicate that DFO-NCS binds covalently to free amine groups on 

cellular surfaces, the specificity of its uptake suggests that the story is more complex.  When the 

uptake of 64Cu-NOTA-NCS by the panel of bacteria was examined, all of the strains tested took 

up a negligible amount of the NOTA-NCS complex.  Because 64Cu-NOTA-NCS is essentially 

not taken up while 89Zr-DFO-NCS is avidly taken up, the role of NCS in siderophore uptake is 

likely more complex than simply serving to covalently anchor the siderophore complex to the 

outer bacterial membrane.   

 

 

Figure 5-3: Effect of p-Bn-SCN group on uptake of 89Zr-DFO by S. aureus, P aeruginosa and E coli. 

 

5.3.2  Behavior of Siderophore Library 
Of the siderophores examined, only 89Zr-III-116, 89Zr-IV-27, 89Zr-V-144, 89Zr-V-129 and 89Zr-

V-143 were taken up by any of the bacteria tested (figure 5-4a-b).  While 89Zr-DFO-NCS was 

taken up to varying extents by all bacteria tested (figure 5-4a), 89Zr-V-144 was only taken up by 

Fe3+-deprived S. aureus (p<0.0001), indicating that 89Zr-V-144 may select for Gram-positive 

organisms under infection-like conditions (figure 5-4b). Iron-starved E. coli took up over 10x 
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more 89Zr-V-143 than Fe3+-deprived S. aureus (p=0.00057), indicating that 89Zr-V-143 may 

select for Gram-negative organisms.  89Zr-siderophore uptake is specific to bacterial type, growth 

conditions and the siderophore itself, indicating that finding a siderophore avidly taken up by a 

given bacterium may require testing a large library of compounds.   

 

 

 

 

 

 

 

 

 
Figure 5-4: Uptake of 89Zr-siderophore complexes by Gram-positive and Gram-negative bacteria grown under a) 

iron-replete conditions, b) iron-deficient conditions. 

 

5.3.3 In vivo Studies  

When 89Zr-DFO-NCS and 89Zr-V-129 were administered to mice with P. aeruginosa lung 

infections, different clearance routes were observed for 89Zr-V-129 and 89Zr-DFO-NCS.  89Zr-

DFO-NCS cleared through the kidneys as expected [14, 15] , while the 89Zr-V-129 complex 

undergoing hepatobiliary clearance (figure 5-5c).  When the lung uptake of infected and control 

(uninfected) mice was examined, the uptake of 89Zr-V-129 was significantly higher (p=0.012) in 

infected mice at early timepoints (12.5-32.5 minutes; figure 5-5a).  For 89Zr-DFO-NCS, the 

difference in lung uptake between infected and control mice was not significant (p=0.83; figure 

5-5b).  At the extended timepoint of the biodistribution study (>17 h post-injection), the lung 

uptake of neither tracer was significantly different between infected and healthy mice (figure 5-
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5d).  However, the difference in lung uptake seen 12.5-32.5 minutes post-injection for 89Zr-V-

129 is promising and shows that 89Zr-siderophores could be used as tracers for infection imaging.  

Structural optimization is likely required to find a siderophore/bacteria combination with 

enhanced uptake differences in vivo.  Further studies are warranted to determine the optimal 

siderophore structures for PET imaging of various types of infections.   

 

Figure 5-5: : a) time-activity curve for 89Zr-V-129 in vivo; b) time-activity curve for 89Zr-DFO-NCS in vivo; c) in 

vivo uptake of 89Zr-DFO-NCS and 89Zr-V-129 (static scan, 3 hr post-injection); d) biodistribution of 89Zr-DFO-NCS 

and 89Zr-V-129 in mice (sacrificed 17 h post-injection) 

 

5.4  Conclusion 
The complex 89Zr-DFO-NCS has been validated as a radiotracer for bacteria.  The complex is 

selective for Gram-positive bacteria, but can be taken up slightly by the Gram-negative 

Pseudomonas aeruginosa.  Siderophores based on DFO are also selectively taken up by bacterial 

cells in vitro and in vivo and therefore have the potential to be novel PET tracers when chelating 

89Zr.   
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5.6  Supplementary Information 

 

Figure 5-6: a) effect of varying cell (S. aureus and P. aeruginosa) concentration on uptake of 10 μCi 89Zr-DFO -

NCS; b) effect of varying 89Zr-DFO-NCS dose on tracer uptake by S. aureus and P. aeruginosa 

 

Neat cultures of S. aureus and P. aeruginosa were spiked with 0 to 30 μCi 89Zr-DFO-NCS in 

order to study the effect of dose on tracer fraction bound.  The highest fraction of 89Zr-DFO-NCS 

was found to stick when 5-10 μCi were administered to 500 μL culture.  However, the total 

amount of activity bound to each cell pellet was so small in this range that internalization studies 

could not be performed with a dose calibrator.  Consequently, 20 μCi/500 μL culture was 

selected as the standard dose.   
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Chapter 6: Concluding Remarks 

 

Radionuclides have the potential to reveal reams of information about living systems, 

information that cannot be easily obtained via other techniques.  In particular, nuclei that emit 

positrons can be incorporated into molecules in order to track the movement of the molecule 

within a living system via PET imaging.  Radiometals have the potential to probe systems which 

move too slowly for the shorter-lived organic radioisotopes (18F, 11C) as well as systems in which 

the movement of a particular metal is of interest.  However, before a radiometal-radiotracer 

combination can be fruitfully used to investigate biological questions, the radiochemistry of the 

nuclide itself as well as the radiotracer as a whole must be thoroughly understood.   

6.1 Efficacy of TETA Titration at Determining Effective 

Specific Activity of 64Cu 
The Cu2+-TETA complexation assay has been characterized as a standard method.  It is 

perturbed by the presence of other first-row transition metal ions in the reaction mixture.  Ni2+ 

interferes with Cu-TETA complexation at spike concentrations below 2.25 µM, while Zn2+ 

interferes with the assay at spike concentrations below 5.1 µM.  Sources of interfering metals 

include Ni2+ and other metal ions from the target, ion exchange resin used in target processing, 

and reaction vessel material with polystyrene and molecular biology grade polypropylene having 

the smallest amounts of extractable metal ions.   

 

Thoroughly understanding the intimate details of assays used to determine effective specific 

activity of radiometals and other radionuclides is necessary for these materials to be used 
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rationally.  While the TETA titration assay is a useful tool for rapid determination of the quality 

of a 64Cu batch, it is conducted on tracer-concentration material and therefore the presence of 

contaminants several orders of concentration above the analyte will perturb the assay.  However, 

these contaminants will also affect the radiolabeling chemistry performed by the final user of the 

64Cu.  Therefore, care should be taken to eliminate or minimize the presence of contaminating 

metal ions in production reagents and materials, storage vessels and containers for radiolabeling 

when working with radiometals, particularly 64Cu.   

6.2 Viability of 89Zr-siderophores as Tracers for PET 

Imaging of Bacterial Infections 
DFO-NCS, a well-established chelator for 89Zr, has been characterized as a targeting moiety in 

itself when complexing 89Zr.  89Zr-desferrixoamine and other 89Zr-radiolabled trihydroxamate 

siderophore chelators have been shown to target bacterial cells in vitro.  While their activity 

towards bacteria when complexed with Fe3+ is well-characterized, these compounds retain their 

affinity for bacteria when complexed with 89Zr4+.  Compounds in a small library of siderophores 

were examined for stability of 89Zr chelation and affinity for various Gram-positive and Gram-

negative bacteria.  Uptake specificity of these compounds varied: 89Zr-DFO-NCS was taken up 

to varying extents by all bacteria tested, while some 89Zr-siderophore complexes were not taken 

up by any of the strains, by only a fraction of the species or only when the bacteria were deprived 

of Fe3+.  The variations in uptake behavior indicate that 89Zr-siderophores have the potential to 

be tracers that specifically identify living bacterial cells.  

 

In vivo studies validated in vitro results. 89Zr-siderophores can be selectively taken up by 

bacterial infection in vivo and tracer uptake is not seen in uninfected animals.  While the results 
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are not dramatic, tracer uptake in the area of infection (lung) was significantly higher in infected 

than in control mice.  However, this increased uptake was only true for one of the two tracers 

tested, indicating that a given strain of bacteria will potentially only take up certain 89Zr-

siderophores.  Additional investigations in this area could lead to the identification of tracer-

bacterial pairs giving clinicians a powerful tool to confirm diagnoses, monitor infection 

dynamics and determine appropriate courses of treatment for individual patients. 

6.3 Future Directions 
89Zr-siderophores could be used in the future as radiotracers to image bacterial infections in vivo 

via PET.  However, these tracers must be thoroughly investigated in order to find the optimal 

tracer to use for a given infection type before human imaging studies can begin.  In the course of 

this future investigation, methods will need to be validated, models confirmed and results 

verified.  The development of 89Zr-siderophores as PET tracers for bacterial infections promises 

to be an interesting and fruitful endeavor with implications for personalized medicine.   

For the correct tracer/ pathogen combination to be fruitfully used to investigate biological 

questions, the radiochemistry of the nuclide itself as well as the radiotracer as a whole must be 

thoroughly understood.   
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