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CHAPTER 1IntrodutionOur goal is exploring and better understanding fatorizations of polyphase matries for�nite impulse response (FIR) �lters. In partiular, we fous on nearest neighbor fatoriza-tions disussed by Wikerhauser and Zhu [19℄ that allow for e�ient implementation of thedisrete wavelet transform (DWT) for the algorithms of Daubehies and Sweldens [8℄ andMallat [10℄. Nearest neighbor lifting is a spei� form of the general lifting sheme thatimproves the lifting algorithm by optimizing the number of e�ient memory aesses. Near-est neighbor lifting fatorizations are typially generated by implementing the Eulideanalgorithm for Laurent polynomials, whih introdues multiple hoies of fatorizations of apolyphase matrix assoiated with a �lter, and are the main fous of this work.1.1. Filters and the Eulidean AlgorithmA �lter h is a linear map h : ℓ2 → ℓ2 whih is haraterized ompletely by its impulseresponse, {hk∈Z}. We only onsider real-valued �nite impulse response (FIR) �lters whihorrespond to only �nitely many nonzero �lter oe�ients (also referred to as �taps�). Sinewe work primarily with the lifting algorithm and polyphase matries, it will be onvenientto represent a �lter by its z-transform, the Laurent polynomial with oe�ients equal to theimpulse response,
h (z) =

∑

k∈Z

hkz
−k.Definition 1. The support of a Laurent polynomial h (z) =∑k∈Z hkz

−k is
support (h (z)) = {k ∈ Z | m1 ≤ k ≤ m2} = [m1, m2] ,1



where
m1 = inf {k ∈ Z : hk 6= 0}

m2 = sup {k ∈ Z : hk 6= 0} .Definition 2. The degree of the Laurent polynomial h (z) =∑k∈Z hkz
−k is

|h| = m2 −m1,where support (h (z)) = [m1, m2] ⊆ Z.This de�nition di�ers from the notion of degree for traditional polynomials. For example,
|z2 + 3z| = 1. With this Laurent de�nition of degree, we are able to implement the Eulideanalgorithm on the ring of Laurent polynomials.Lemma 3. Let A (z) and B (z) be nonzero Laurent polynomials satisfying |A (z)| ≥

|B (z)|. Then there exists a quotient polynomial Q (z), and a remainder polynomial R (z)with degree stritly less than B (z) , satisfying
A (z) = B (z)Q (z) +R (z) .In ontrast to traditional polynomial division, there are hoies for whih terms to anelin Laurent polynomial division whih result in di�erent quotient and remainder polynomials.We fous on examples involving quotients of degree at most one, sine we wish to workprimarily with nearest neighbor fatorizations whih require this ondition.Example 4. Let A (z) = 9z + 12 + 6z−1 and B (z) = 3z + 2. Sine |A| = |B|+ 1, thereare three hoies for the �rst division in the Eulidean algorithm aording to whih terms of2



A (z) are eliminated. If the lowest two terms are eliminated, denoted {right− right}, then
A (z) = B (z)Q (z) +R (z)

(

9z + 12 + 6z−1
)

= (3z + 2)

(

3

2
+ 3z−1

)

+

(

9

2
z

)

.We hek the degree of the remainder is less than the divisor, |B (z)| = 1 > 0 = |R (z)|.Comparing the remainder with A (z), we see that indeed the two rightmost terms, thosewith the two lowest powers, have been eliminated. The other two hoies for the divisionare eliminating the highest and lowest power from A (z), denoted {sym}, and eliminatingthe two highest power terms, denoted {left− left},
(

9z + 12 + 6z−1
)

= (3z + 2)
(

3 + 3z−1
)

+ (−3) {sym}

(

9z + 12 + 6z−1
)

= (3z + 2)
(

3 + 2z−1
)

+
(

2z−1
)

{left− left} .Sine the degree of the remainder polynomial is redued at eah step, we an implementthe Eulidean algorithm on the ring of Laurent polynomials. The hoie of whih terms toeliminate at eah division, however, in�uenes the result.Definition 5. A division sheme is the sequene of hoies for the divisions at eah stepin the Eulidean algorithm for two Laurent polynomials.In general, the Eulidean algorithm is implemented on Laurent polynomials A,B sat-isfying |A| ≥ |B| ≥ 0 by de�ning a0 = A and b0 = B and performing the following for
k = 0, 1, 2, . . . :

ak+1 = bk

bk+1 = ak − qkbk.In the above equations qk is any of the possible quotients from division. The Eulideanalgorithm terminates when bk+1 = 0 by �nding a greatest ommon divisor (GCD) bk, of the3



starting Laurent polynomials, similar to the traditional polynomial ase, as shown by thefollowing lemma from [19℄.Lemma 6. Let n be the smallest positive integer for whih bn = 0. Then an ∈ gcd (A,B).The greatest ommon divisor for two Laurent polynomials is unique only up to multiplia-tion by a unit, whih, in the ring of Laurent polynomials, is any degree 0 polynomial (nonzeromonomial). The hoie of division sheme will be the key to ontrolling the fatorizationsresulting from the Eulidean algorithm in the lifting algorithm.1.2. Polynomial Remainder SequenesThe sequene of remainder polynomials generated by the Eulidean algorithm is alledthe polynomial remainder sequene or PRS. For traditional polynomials, there is only onePRS assoiated to two polynomials as there are no hoies in the Eulidean algorithm. Wenow extend the de�nition of polynomial remainder sequene to Laurent polynomials andde�ne the property of normality.Definition 7. A Laurent PRS for a given division sheme is the set of remainder Laurentpolynomials obtained by the Eulidean algorithm at eah step. For polynomials A and Bwe denote it PRS (A,B).Definition 8. A (Laurent) PRS is alled normal if the (Laurent) degree dereases byexatly 1 at eah step of the Eulidean algorithm. A (Laurent) PRS that is not normal isalled abnormal.Definition 9. A single division in the Eulidean algorithm is alled normal if the degreeof the remainder polynomial dereases by exatly one, otherwise it is alled abnormal.Sine the division algorithm redues the remainder degree by at least one, normalityharaterizes when the maximal number of steps in the Eulidean Algorithm are needed. The4



following is an example of a normal PRS for the polynomials A (x) = 2x4+7x3+8x2+5x+3and B (x) = 3x3 + 4x2 + 2x+ 5.Example 10. The Eulidean Algorithm for the polynomials A (x) = 2x4 + 7x3 + 8x2 +

5x+3 and B (x) = 3x3+4x2+2x+5 has only one division sheme as there are no hoies forthe divisions for traditional polynomials. If A and B are onsidered Laurent polynomials,then the division sheme orresponding to the Eulidean Algorithm for traditional polyno-mials is {left− left, left− left, . . . , left− left}, shown below. We begin by omputing thequotient q1 and remainder r1,
A (x) = q1B + r1 =

(

13

9
+

2x

3

)

B +

(

8x2

9
− 11x

9
− 38

9

)

.Thus, the �rst polynomial in the PRS is r1 = 8x2

9
− 11x

9
− 38

9
and we ontinue with theEulidean Algorithm to �nd q2 and r2,

B (x) = q2

(

8x2

9
− 11x

9
− 38

9

)

+ r2

=

(

27x

8
+

585

64

)(

8x2

9
− 11x

9
− 38

9

)

+

(

1395x

32
+

1755

64

)

.Thus, the seond polynomial in the PRS is r2 = 1395x
32

+ 1755
64

. The �nal step in theEulidean Algorithm yields the �nal polynomial in the PRS whih is neessarily the GCDof A and B,
(

8x2

9
− 11x

9
− 38

9

)

= q3

(

1395x

32
+

1755

64

)

+ r3

=

(

512x

15795
− 11840

123201

)(

1395x

32
+

1755

64

)

−
(

448

13689

)

.We onlude the �nal polynomial in the PRS is r3 = − 448
13689

, and
PRS (A,B) =

{

8x2

9
− 11x

9
− 38

9
,
1395x

32
+

1755

64
,− 448

13689

}

.5



Sine the degree of the polynomials of the PRS dereases by exatly one at eah step,the PRS is normal. 1.3. Disrete Wavelet Transforms and LiftingThe disrete wavelet transform (DWT) takes a signal u ∈ ℓ2 and applies the analysis�lters h̃, g̃ to deompose it into oe�ients of the wavelet basis. The signal passes throughthe low-pass h̃ and high-pass g̃ �lters and is then subsampled. The inverse transform (IDWT)reonstruts the signal by upsampling it and then applying the synthesis �lters, h (low-pass)and g (high-pass). We only onsider FIR �lters in this dissertation, hene h, g, h̃, g̃ have �nitesupport. A omplete desription of wavelet transforms an be found in [2, 3, 7, 12, 16℄.A ommonly desired property of �lters is the perfet reonstrution property that allowsthe original signal to be exatly reovered by the synthesis �lters after passing through theanalysis �lters.Definition 11. The perfet reonstrution property in our z-transform notation is then
h (z) h̃

(

z−1
)

+ g (z) g̃
(

z−1
)

= 2

h (z) h̃
(

−z−1
)

+ g (z) g̃
(

−z−1
)

= 0.The even and odd parts of a �lter, de�ned below, are useful in representing the DWTand IDWT.Definition 12. Let h (z) = ∑hkz
−k be a Laurent polynomial. Then the even part of

h is
he (z) =

∑

k

h2kz
−k,and the odd part of h is

ho (z) =
∑

k

h2k+1z
−k.

6



For synthesis �lters, we de�ne the polyphase matrix P (z),
P (z) =





he ge

ho go



and similarly for P̃ (z) using h̃ and g̃. The perfet reonstrution property an be rewrit-ten [8℄ as
P (z) P̃

(

z−1
)T

= Id.Sine the entries of P and P̃ are all Laurent polynomials, their determinants are Laurentpolynomials as well. Then,
det (P (z)) det

(

P̃
(

z−1
)T
)

= det (Id) = 1,whih an only our when the determinants of P and P̃ are degree 0 (monomials). Wean resale g to ensure det (P (z)) = 1. Suppose det (P (z)) = czm for some nonzero c, then,
det









he
ge
czm

ho
go
czm







 =
hego
czm

− hoge
czm

=
1

czm
det (P (z)) = 1.Definition 13. A pair of �lters h, g are alled omplementary if the assoiated polyphasematrix P satis�es det (P ) = 1.

Given an FIR �lter h, a omplementary �lter an be found if and only if he and ho areoprime [7, 19℄. We an apply the Eulidean algorithm to he and ho with any divisionsheme to obtain




he

ho



 = (−1)N
N−1
∏

k=0





qk 1

1 0









czm

0



 ,

7



where {qk} are the quotients and czm ∈ gcd (he, ho). The GCD is neessarily a monomialsine he and ho are oprime, and a omplementary �lter g is de�ned by




he ge

ho go



 = (−1)N
N−1
∏

k=0





qk 1

1 0









czm 0

0 1
czm



 .Given synthesis �lters h, g, a pair of analysis �lters an be found whih satisfy the perfetreonstrution property by de�ning h̃ and g̃ by
h̃e (z) = go

(

z−1
)

,

h̃o (z) = −ge
(

z−1
)

,

g̃e (z) = −ho

(

z−1
)

,

g̃o (z) = −he

(

z−1
)

.Thus, if an FIR �lter h has omprime even and odd parts he and ho, then we an always�nd g, h̃, g̃ with the perfet reonstrution property [5℄.The lifting sheme is a way to build �lters satisfying the perfet reonstrution property.The idea is to start with the lazy wavelet, whih only downsamples the signal, and thenmultiply by matries with unit determinant (lifting steps) to ensure the resulting �lters
h, g will be omplementary. The hoie of lifting steps leads to di�erent properties of theresulting multiresolution analysis, and an be used to build any FIR wavelet. The twofollowing theorems from [8℄ outline the lifting sheme.Theorem 14. (Lifting) Let h, g be omplementary �lters. Then any other �nite �lter
gnew omplementary to h is of the form:

gnew (z) = g (z) + h (z) s
(

z2
)

,8



where s (z) is a Laurent polynomial. Conversely, any �lter of this form is omplementaryto h.Theorem 15. (Dual Lifting) Let h, g be omplementary �lters. Then any other �nite�lter hnew omplementary to g is of the form:
hnew (z) = h (z) + g (z) t

(

z2
)

,where t (z) is a Laurent polynomial. Conversely, any �lter of this form is omplementaryto g.To build the desired FIR �lter, start with the Lazy wavelet and alternate lifting and duallifting steps, whih orrespond to multiplying the polyphase matrix by matries of the form




1 s (z)

0 1



 ,





1 0

t (z) 1



for lifting and dual lifting, respetively. Using the lifting sheme to onstrut wavelets withspeial properties is desribed in detail in [4, 17℄.1.4. Overview of ResultsWikerhauser and Zhu [19℄ showed that every �lter has a nearest neighbor fatorizationif additional matries are added when the Eulidean algorithm does not diretly produe anearest neighbor fatorization. In hapter 2, we show that for most popular �lters, these addi-tional matries are needed exatly when the PRS generated from he and ho is abnormal. Theonly andidates for a diret nearest neighbor fatorizations are from the {left, sym, . . . , sym}or {right, sym, . . . , sym} division shemes, depending on the �lter length, and exist whenthese PRS are normal. Uniqueness of diret nearest neighbor fatorizations for �lters withertain length restrition is shown, and an algorithm to ompute the fatorizations is given.The e�ets of an initial z-shift are haraterized and related to normality of the PRS.9



In hapter 3, the results about diret nearest neighbor fatorizations are applied toDaubehies �lters and the existene of a diret nearest neighbor fatorization is numeri-ally veri�ed for �lters with lengths up to 220. Asymptotis of Daubehies polynomial rootsfrom [14, 15℄ are used to prove limiting behavior of Daubehies �lter oe�ients, and arerelated to properties of Daubehies �lter fatorizations.In hapter 4, normality of PRS for traditional and Laurent polynomials is analyzed.Sturm sequenes are introdued, and normality of the �rst division is related to the zerosof a higher order derivative of the starting polynomial. For quarti polynomials, this givesa geometri representation of normality for the �rst division. An example is onstruted toshow that onvergene of the even and odd parts of a family of polynomials is not su�ient fornormality. Su�ient onditions for normality are given for a partiular family of polynomials.

10



CHAPTER 2Nearest Neighbor Fatorizations2.1. IntrodutionReall that the Eulidean algorithm for a given division sheme of he and ho for an FIR�lter h results in a fatorization of the polyphase matrix P , where the omplementary �lter
g an be de�ned using the lifting steps [8℄. Limiting the form of the lifting steps an result infewer distant memory aesses. This motivates the nearest neighbor fatorization de�nitionfrom [19℄, repeated here:Definition 16. Let P be the polyphase matrix of a �lter bank. A lifting fatorizationof P ,

P (z) =

N−1
∏

k=0





1 sk (z)

0 1









1 0

tk (z) 1









M 0

0 M−1



is alled nearest neighbor if it satis�es the following onditions,
sk (z) = αk + βkz

−1

tk (z) = γkz + δk,where αk, βk, γk, δk,M ∈ C.Wikerhauser and Zhu [19℄ showed that every FIR �lter has a nearest neighbor fator-ization if additional matries are added, often at the expense of the fatorization having ahigher ondition number. With these additional matries, every division sheme of an FIR�lter results in a nearest neighbor fatorization. We reall a lemma from [19℄ whih inludesthe de�nition of the ondition number of a matrix.11



Lemma 17. If P (z) is the polyphase matrix of a perfet reonstrution �lter pair, then
cond (P ) :=

sup
{

√

λmax (P ∗P ) : |z| = 1
}

inf
{

√

λmin (P ∗P ) : |z| = 1
}where λmin (M) and λmax (M) are eigenvalues of matrix M . Furthermore, if P =

P1 · · ·Pn, then
cond (P ) ≤ cond (P1) · · · cond (Pn) .

Example 18. Consider a polyphase matrix with the following lifting fatorization
P (z) =





1 z−3

0 1









1 0

2z 1









1 0

0 1



 .This fatorization is not nearest neighbor, but one an be found by deomposing the �rstmatrix using additional matries,
P (z) =





1 z−3

0 1









1 0

2z 1









1 0

0 1





=





z−1 0

0 z









1 z−1

0 1









z 0

0 z−1









1 0

2z 1









1 0

0 1





=





1 0

z 1









1 −z−1

0 1









1 0

−1 + z 1









1 1

0 1









1 0

−1 1









1 z−1

0 1









1 0

0 1









1 −z

0 1









1 0

z−1 1









1 1− z

0 1









1 0

−1 1









1 1

0 1









1 0

2z 1









1 0

0 1



 .

12



In this ase, we see that a single lifting step must be expanded into 12 matries to satisfythe nearest neighbor form. Furthermore, 11 of the 12 additional matries (all but the Idmatrix) inrease the ondition number of the fatorization.For the Daubehies-4 �lter with the {left, sym} division sheme, the Eulidean algorithmresults in a nearest neighbor fatorization diretly using the quotients as the lifting steps.Example 19. The Daubehies �lter with four oe�ients and shifted by z is
h (z) =

1 +
√
3

4
√
2

z +
3 +

√
3

4
√
2

+
3−

√
3

4
√
2

z−1 +
1−

√
3

4
√
2

z−2.The polyphase matrix fatorization with the {left, sym} division sheme is
P (z) =





1 0.57735

0 1









1 0

−0.43301 + 2.79904z 1









0.29886 0

0 3.34607



 ,whih results diretly in a nearest neighbor fatorization. Therefore, no additional matriesare needed.Definition 20. Given a �lter h and a division sheme with Eulidean algorithm quo-tients {qk} suh that




he

ho



 = (−1)N





N−1
∏

k=0





qk 1

1 0













M

0



 ,and {qk} satisfy the nearest neighbor onditions, then the fatorization is alled a diretnearest neighbor fatorization.Note the equation in the diret nearest neighbor fatorization de�nition an be writtenin nearest neighbor form using




q1 1

1 0



 =





0 1

1 0









1 0

q1 1



 =





1 q1

0 1









0 1

1 0



 .

13



For fatorizations with an even number of quotients from the Eulidean algorithm, thematries an be paired and the �ip matries anel for eah pair, resulting in the desirednearest neighbor form,




q1 1

1 0









q2 1

1 0



 =





1 q1

0 1









1 0

q2 1



 =





1 s1

0 1









1 0

t1 1



 .For fatorizations with an odd number of quotients from the Eulidean algorithm, thereis an additional matrix whih annot be paired and hene a �ip matrix remains. This anorreted for by starting the Eulidean algorithm with the roles of he and ho reversed. Then,




ho

he



 =





N
∏

k=1





qk 1

1 0













M

0









ho

he



 =





0 1

1 0









1 0

q1 1









N
∏

k=2





qk 1

1 0













M

0









0 1

1 0









ho

he



 =





1 0

q1 1









N−1

2
∏

k=1





1 qk+1

0 1









1 0

qk+2 1













M

0









he

ho



 =





1 0

q1 1









N−1

2
∏

k=1





1 q2k

0 1









1 0

q2k+1 1













M

0



 ,and the fatorization is nearest neighbor whenever the quotients satisfy the onditions ofthe nearest neighbor de�nition. Thus, whenever the {right, sym, . . . , sym} division shemeis given for a �lter with an odd number of quotients, assume the Eulidean algorithm hadinput polynomials of a0 = ho and b0 = he, unless otherwise stated.Wikerhauser and Zhu [19℄ showed that not all FIR �lters have a diret nearest neighborfatorization for any z-shift and division sheme, demonstrated by the split Haar �lter,
h =

1√
2

(

1 + z−9
)

.

14



This is easily seen, as there is only one division sheme for the split Haar �lter and itdoes not produe a diret nearest neighbor fatorization.2.2. E�ets of z-ShiftsSine the GCD in a nearest neighbor fatorization must be onstant, it an be useful tomultiply the z-transform of the �lter by an initial shift before fatoring into lifting steps.This orresponds to multiplying the z-transform of the �lter by some power of z, whihhas no e�et on the �lter oe�ients. We begin with two lemmas showing the e�ets ofmultiplying by even and odd powers of z.Lemma 21. Multiplying the z-transform of a �lter h by z2m, m ∈ Z, multiplies he and hoby zm.Proof. The z-transform of the shifted �lter is
hshift (z) = z2mh (z) =

(

z2m
)

∑

i

hiz
−i =

∑

i

hiz
2m−i.Thus, the even part of hshift (z) is

hshift,even (z) =
∑

i

h2iz
m−i = zm

∑

i

h2iz
−i = zmhe (z) .Similarly for the odd part of hshift (z)

hshift,odd (z) =
∑

i

h2i+1z
m−i = zm

∑

i

h2i+1z
−i = zmho (z) .

�Lemma 22. Multiplying the z-transform of a �lter h by z swithes he and ho, and multi-plies he by z.Proof. The z-transform of the shifted �lter is15



hshift (z) = zh (z) = z
∑

i

hiz
−i =

∑

i

hiz
1−i.Thus, the even part of hshift (z) is

hshift,even (z) =
∑

i

h2iz
1−i =

∑

i

h2i+1z
−i = ho (z) ,and the odd part of hshift (z) is

hshift,odd (z) =
∑

i

h2i+1z
1−i = z

∑

i

h2iz
−i = zhe (z) .

�

An arbitrary integer power shift of a �lter an be thought of as �rst an even power shift,and then a shift by z if the power is odd. Thus, multiplying a �lter by z2m+1 shifts theeven and odd parts of the �lter by zm aording to lemma 21, and then swaps the even andodd parts and multiplies the even part by z as spei�ed in lemma 22. In the ontext oflifting fatorizations, shifts by an even power of z allow us to adjust the GCD to be onstantwithout a�eting the lifting steps, as shown in the next lemma.Lemma 23. Given a �lter h fatored into lifting steps {qi} with GCD Mzj , the shifted�lter z−2jh has the same lifting steps {qi}, but with onstant GCD M .Proof. A �lter having lifting steps {qi} with a nonzero GCD Mzj implies




he (z)

ho (z)



 =





∏





qi 1

1 0













Mzj

0



 .
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Using lemma 21 with the shift z−2j , he (z) and ho (z) are multiplied by z−j , hene thelifting fatorization beomes




z−jhe (z)

z−jho (z)



 = z−j





he (z)

ho (z)





= z−j





∏





qi 1

1 0













Mzj

0



 =





∏





qi 1

1 0













M

0



 .

�This result allows us to reord only the oe�ients in the support of the remainderpolynomials generated during the Eulidean algorithm on Laurent polynomials when �ndingnearest neighbor fatorizations.2.3. Number of Diret Nearest Neighbor FatorizationsWe fous our attention on �lters that satisfy |he| = |ho|, as many popular wavelet �lterssatisfy this ondition, inluding Daubehies �lters whih are the main topi of the nexthapter.Remark 24. Let h be a �lter of length 2N whih satis�es |he| = |ho| = N −1 ≥ 1. Thenthere are at most 4 · 3N−2 division shemes with quotients of degree at most one.The remark is shown in [11℄, and results from 4 hoies for the �rst division dependingupon whih terms are aneled,
left, left− left, right, right− right,no hoies for the �nal division, and 3 hoies for the remaining N − 2 divisions,

left− left, right− right, sym.17



The {sym} element orresponds to aneling the two extreme terms. The sequene of re-mainder polynomials resulting from a given division sheme will play a key role in nearestneighbor fatorizations.Remark 25. Given two Laurent polynomials, it is possible to have normal and abnormalPRS orresponding to di�erent division shemes.For a given division sheme to produe a diret nearest neighbor fatorization, the quo-tients resulting from the Eulidean algorithmmust be in the nearest neighbor form, otherwiseadditional matries are required. We begin with a result about the �rst division for length
2N �lters whih satisfy |he| = |ho| = N − 1.Theorem 26. Given a �lter h of length 2N whih satis�es |he| = |ho| = N − 1 ≥ 1, anda division sheme resulting in a diret nearest neighbor fatorization, then the �rst elementof the division sheme is either {left} or {right}. This is equivalent to the �rst lifting step(quotient in the Eulidean algorithm) being a onstant.Proof. Let {ai}Ni=0 and {bi}Ni=0 be the polynomials in the Eulidean algorithm, startingwith a0 = he and b0 = ho, and let {qi}Ni=1 be the quotients. Sine the division sheme resultsin a diret nearest neighbor fatorization, the �rst lifting step is of the form q1 = c1z+ d1 or
q1 = c1z

−1 + d1. For the ase q1 = c1z+ d1, assume toward ontradition that, c1 6= 0, whihorresponds to having {right− right} as the �rst element of the division sheme. Usinglemma 23, assume he and ho have onstant lowest degree terms. Then
a0 =

N−1
∑

j=0

a0,jz
j

b0 =

N−1
∑

j=0

b0,jz
j

18



b1 = a0 − q1b0 =
N
∑

j=2

b1,jz
j .The (Laurent) degree of b1 has been redued by at least 1 as required for the Eulideanalgorithm. For the next step in the algorithm, the quotient must be of the form q2 = c2z

−1+d2for the fatorization to be diretly nearest neighbor. Then,
a1 = b0 =

N−1
∑

j=0

a1,jz
j

b2 = a1 − q2b1 =
N−1
∑

j=0

b0,jz
j −

(

c2z
−1 + d2

)

N
∑

j=2

b1,jz
j =

N
∑

j=0

b2,jz
j .We note that |b2| = N when d2 is nonzero, and |b2| = N − 1 when d2 = 0 sine theextreme terms annot anel. But then the degree of the remainder has not been reduedin this step sine |b1| = N − 1, a ontradition. A similar argument leads to a ontraditionfor the ase q1 = c1z

−1 + d1 with c1 6= 0. Thus, q1 must be onstant, whih orresponds tothe �rst element of the division sheme being {left} or {right}. �Thus, only two hoies of the possible four {left, left− left, right, right− right} for the�rst division an result in a diret nearest neighbor fatorization. The next theorem showsthat there is only one hoie for the remaining steps in the Eulidean algorithm that anresult in a diret nearest neighbor fatorization.Theorem 27. Given a length 2N �lter h whih satis�es |he| = |ho| = N − 1 ≥ 1, anda division sheme that results in a diret nearest neighbor fatorization, then the divisionsheme must be either {left, sym, . . . , sym} or {right, sym, . . . , sym}.Proof. The �rst element being {left} or {right} is a result of theorem 26. Let a0 = heand b0 = ho. Assume the �rst division is normal, and hene |a1| = |b1|+ 1. Without loss ofgenerality, suppose that the lowest power of a0 was eliminated, orresponding to {right} as19



the �rst element of the division sheme. Then, using lemma 23, assume a1 =
∑N−1

j=0 a1,jz
jand b1 =

∑N−1
j=1 b1,iz

j . There are then three possibilities for the division, eliminating thehighest two, lowest two, or highest and lowest terms from a1. The remainders orrespondingto the division hoies {left− left} , {right− right} , {sym} are
bL2 =

N−3
∑

j=0

b2,jz
j

bR2 =

N−1
∑

j=2

b2,jz
j

bsym2 =

N−2
∑

j=1

b2,jz
j ,respetively, with orresponding quotients of the form q2 = c2z

−1 + d2. Note that ∣∣bR2 ∣∣ =
∣

∣bL2
∣

∣ = |bsym2 | = N − 3. With any hoie, a2 =
∑N−1

j=1 a2,jz
j , and the orresponding q3 mustsatisfy |q3| = 1 in order to redue the remainder degree in the division. Sine the previousquotient was of the form q2 = c2z

−1 + d2, the next step must have the form
q3 = c3z + d3.The resulting b3 polynomials orresponding to the above b2 polynomials are:

bL3 = a2 − q3b
L
2 =

N−1
∑

j=1

a2,jz
j − (c3z + d3)

N−3
∑

j=0

b2,jz
j =

N−1
∑

j=0

b3,jz
j

bR3 = a2 − q3b
R
2 =

N
∑

j=1

a2,jz
j − (c3z + d3)

N−1
∑

j=2

b2,jz
j =

N
∑

j=1

b3,jz
j

bsym3 = a2 − q3b
sym
2 =

N−1
∑

j=1

a2,jz
j − (c3z + d3)

N−2
∑

j=1

b2,jz
j =

N−2
∑

j=2

b3,jz
j .The extreme terms of bR3 and bL3 annot be aneled by the subtration, whih an be seen byomparing the degrees of a2 and q3b2. Thus, ∣∣bR3 ∣∣ = ∣∣bL3 ∣∣ = N − 1 whih annot our sine20



that would imply the degree was not redued. Then, |bsym3 | ≤ N − 4, with equality exatlywhen the division is normal. Thus, the only possibility given a diret nearest neighborfatorization is for all elements in the division sheme after the �rst element to ome fromsymmetri division.Now suppose the �rst division is abnormal, then |b1| < |a1| − 1. The next step in theEulidean algorithm would require a quotient of degree more than 1 to redue the degree ofthe remainder su�iently, and hene would not result in a nearest neighbor fatorization. �Thus, out of the possible 4 · 3N−2 division shemes for a �lter satisfying |he| = |ho| =

N − 1, there are only two andidate division shemes whih an result in a nearest neighborfatorization. The next theorem redues the number of andidate division shemes for suh�lters to one.Theorem 28. Let h be a length 2N �lter whih satis�es |he| = |ho| = N − 1 ≥ 1with a diret nearest neighbor fatorization. Then for even N , the division sheme must be
{left, sym, . . . sym}. For odd N , the division sheme must be {right, sym, . . . sym}.Proof. Let h be as above and suppose N is even. Then theorem 27 shows the onlypossible division shemes resulting in a diret nearest neighbor fatorization are

{left, sym, . . . sym}and
{right, sym, . . . sym} .Suppose for ontradition the division sheme is
{right, sym, . . . sym} ,21



and let {qi} be the list of quotients from the Eulidean algorithm. Sine the fatoriza-tion is nearest neighbor, {qi} must ontain only degree one Laurent polynomials. Sine byassumption |he| = |ho| = N − 1, there are at most N quotients. Thus,




he

ho



 =





N
2
∏

k=1





1 q2k−1

0 1









1 0

q2k 1













M

0



 (2.3.1)whereM ∈ gcd (he, ho). To satisfy nearest neighbor form, q2 = c2z+d2, but from theorem 27,the {right, sym, . . . , sym} has a onstant q1 and q2 = c2z
−1 + d2. For q2 to be of the orretform, c2 = 0, hene q2 must be a onstant. But then the left hand side of equation (2.3.1)has polynomials of degree N−1 and the right hand side has degree at most N−2 sine everyother qi is at most degree one, a ontradition. The same argument holds for odd N . �Theorem 29. Let h be a length 2N �lter whih satis�es |he| = |ho| = N − 1 ≥ 1. Forodd N , the division sheme {right, sym, . . . , sym} having a normal polynomial remaindersequene PRS (ho, he) is equivalent to {right, sym, . . . , sym} resulting in a diret nearestneighbor fatorization. For even N , the division sheme {left, sym, . . . , sym} having anormal polynomial remainder sequene PRS (he, ho) is equivalent to {left, sym, . . . , sym}resulting in a diret nearest neighbor fatorization.Proof. (=⇒) Let the �lter be as above, N odd, and let {right, sym, . . . , sym} result ina normal PRS. Then sine N is odd, we begin the Eulidean algorithm with a0 = ho and

b0 = he. The �rst division anels the lowest power term of b0, and sine the division shemeis normal, there are no additional terms aneled. Then the �rst lifting step q1 is onstantand, up to a shift by z,
a1 = he =

N−1
∑

j=0

a1,jz
j

b1 =

N−1
∑

j=1

b1,jz
j .
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The extreme terms b1,1 and b1,N−1 must be nonzero for normality to hold, and the extremepowers are aligned for the highest powers and di�er by one for the lowest powers. Continuingwith {sym} division, whih again must be normal, then the next quotient, q2, must beexatly degree one. Comparing the degrees of a1 and b1, the quotient must be of the form
q2 = c2z

−1 + d2. The next step of the Eulidean algorithm results in
a2 =

N−1
∑

j=1

a2,jz
j

b2 = a1 − q2b1 =
N−2
∑

j=1

b2,jz
j .Sine the division is normal, b2 must have nonzero extreme terms, b2,1 and b2,N−2, and thequotients resulting from the division sheme thus far satisfy the nearest neighbor ondition.The next division is similar the previous {sym} step, but sine the left powers align, thequotient will be exatly degree one, but of the form q3 = c3z + d3z. The next step yields

a3 =

N−2
∑

j=1

a3,jz
j

b3 = a2 − q3b2 =

N−2
∑

j=2

b3,jz
j .The extreme terms b3,2 and b3,N−2 again must be nonzero sine the division is normal,and the highest powers are now aligned. The {sym} divisions will hene alternate quotientsin the neessary forms to satisfy the nearest neighbor ondition. This pattern an onlybe disrupted if an extreme term of the remainder is zero, whih annot our with theassumption of normality.The proof for {left, sym, . . . , sym} follows the same arguments as {right, sym, . . . , sym},with the only hange that the Eulidean algorithm starts with a0 = he and b0 = ho.
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(⇐=) Without loss of generality, assume the division sheme {left, sym, . . . , sym} isabnormal. Then for at least one division in the Eulidean algorithm, the degree of theremainder is redued by more than 1. Then the total number of steps, and hene liftingsteps, in the Eulidean algorithm is at most N − 2. Then




he (z)

ho (z)



 =





N−2
∏

i=1





qi 1

1 0













gcd (he, ho)

0



 ,but then the produt on the right hand side of the equation must have degree stritlyless than N − 1 sine |qi| ≤ 1. This is a ontradition as |he| = |ho| = N − 1 by assumption.Thus, no division in the division sheme an be abnormal. �

The onnetion of normal PRS and diret nearest neighbor fatorizations is promisingas abnormal PRS form a measure 0 set onsidering h =
∑N−1

j=0 hjz
j as (h0, h1, . . . , hN−1) ∈

RN. Unfortunately, there are few, if any, ways to hek normality of a PRS in generalwithout going through the entirety of the Eulidean algorithm and heking the degrees ofthe remainders. We will �nd families of polynomials in hapter 4 for whih normality anbe proven without omputing the entire PRS.These results show that with the restritions of diret nearest neighbor fatorizations oflength 2N �lters satisfying |he| = |ho| = N − 1 ≥ 1, uniqueness is ahieved exatly whenthe assoiated PRS is normal. In [1℄, Brislawn approahes the question of uniqueness in thelifting sheme with a group struture approah, very di�erent from our diret omputationapproah. Our approah results in a uniqueness theorem for a smaller lass of �lters, butallows us to �nd an algorithm to �nd the fatorizations whenever they exist.24



2.4. Algorithm for Nearest Neighbor FatorizationUsing the results from setion �2.3, we outline an algorithm for heking whether an arbi-trary �lter of length 2N satisfying |he| = |ho| = N−1 has a diret nearest neighbor fatoriza-tion. Due to lemma 23, we need only trak the oe�ients of the polynomials in the Eulideanalgorithm, and theorem 29 allows us only to hek for normality of the {left, sym, . . . , sym}or {right, sym, . . . , sym} division sheme (depending on whether N is even or odd), insteadof all 4 · 3N−2 possibilities. We outline the algorithm for the {left, sym, . . . , sym} divisionsheme for a �lter h =
∑0

j=−2N−1 hjz
j satisfying |he| = |ho| = N − 1. The algorithm forthe {right, sym, . . . , sym} division sheme works similarly, the only alteration is starting theEulidean algorithm with the roles of he and ho reversed.Step 1: Eliminate Constant Term of ho. We denote the oe�ients of he by he =

a0 = (c0, c1, ..., cN−1) and the oe�ients of ho by ho = b0 = (d0, d1, ..., dN−1). The �rst stepin the Eulidean Algorithm eliminates the highest order term from ho via the following:
q1 =

c0
d0

a1 = b0 = (d0, d1, ..., dN−1)

b1 = a0 − q1b0 = (c1 − q1d1, c2 − q1d2, ..., , cN−1 − q1dN−1) .If the extreme terms in b1 are 0, that is, the division is abnormal, then the algorithm ter-minates and there is no nearest neighbor fatorization for the {left, sym, . . . , sym} divisionsheme. If the extreme powers do not equal 0, then set the �rst lifting step as q1.Step 2: Symmetri Division. We proeed with the Eulidean algorithm using sym-metri division until the algorithm terminates after a total of N steps when bN = 0 and25



aN ∈ gcd (he, ho). At eah step, hek that the extreme powers of bi are nonzero, elsethe division sheme is abnormal and the algorithm terminates. We represent symmetridivision in oe�ient arrays with the following operations. For ai = {c0, . . . , cm+1} and
bi = {d0, . . . , dm} whih agree in the lowest power of z, symmetri division yields:

qi =
c0
d0

+
cm+1

dm
z−1 = si + tiz

−1

ai+1 = bi = (d0, d1, ..., dm)

bi+1 = (c1 − sid1 − tid0, c2 − sid2 − tid1, ..., cm − sidm − tidm−1) .If ai and bi agree in the highest power of z, ai+1 and bi+1 are the same, but the quotientbeomes
qi =

c0
d0

z +
cm+1

dm
= siz + ti.At eah step, set qi as the nearest neighbor lifting step.

Step 3: Determine z-Shift. If the Eulidean algorithm terminates and results in anormal PRS, then let M be the oe�ient of the GCD obtained from the last step of theEulidean algorithm. Then the GCD is
Mz⌊−N

2 ⌋ ∈ gcd (he, ho) .If the original �lter, h, had a di�erent z-shift, use lemma 23 to shift the �lter so
h =

∑0
j=−2N−1 hjz

j and then apply the lemma again to obtain the orret GCD via theappropriate z-shift. 26



Example 30. The Daubehies �lter with 8 oe�ients is
{0.23038, 0.71485, 0.63088,−0.027984,−0.18703, 0.030841, 0.032883,−0.010597} ,thus

he = {0.23038, 0.63088,−0.1870, 0.032883}

ho = {0.71485,−0.027984, 0.030841,−0.010597} .Step 1, left division, anels the highest order term of the �lter, whih orresponds to the�rst element of he. After the �rst division, the oe�ients of the remainder polynomial are
{0.63990,−0.19697, 0.03630} ,and the orresponding quotient (lifting step) is

q1 = 0.32228.Applying Step 2 (sym division) yields remainder polynomial oe�ients of
{0.37888,−0.06722}

{0.12115}

{0},and orresponding quotients of
q2 = −0.29195 + 1.1171z

q3 = 1.6889− 0.5400

z

q4 = −0.555 + 3.127z.
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The oe�ient of the GCD is the last nonzero remainder oe�ient, M = 0.12155.Computing the GCD using Step 3,
0.12155z⌊−N

2 ⌋ = 0.12155z⌊− 4

2⌋ = 0.12155z−2 ∈ gcd (he, ho) .Thus, the original �lter requires a z-shift of z2 to result in a onstant GCD and a diretnearest neighbor fatorization via {left, sym, sym, sym}.2.5. Matrix Representation of the Reonstrution AlgorithmGiven the lifting steps {qi} andM ∈ gcd (he, ho) of a �lter, we an reonstrut the original�lter using the following equation,
P (z) =

N/2
∏

i=1





qi 1

1 0









M 0

0 M−1



 .If in addition to the �lter, we want to reover all information in the assoiated Eulideanalgorithm used to generate the lifting steps, we an use the following theorem.Theorem 31. Suppose a given �lter of length 2N with |he| = |ho| = N − 1 has a nearestneighbor fatorization with lifting steps {qi} and M ∈ gcd (he, ho). Let A be any matrix, S bethe zero matrix with 1's along the superdiagonal, and G be the zero matrix with GN+1,1 = M ,eah with dimension (N + 1)× (N + 1). Then de�ne C as the diagonal matrix of oe�ientson the highest power of {qi}, with the �rst diagonal entry equal to 0
C =

























0 0 . . . 0

0 c1 0 0

0 0
. . . 0... cN−1

...
0 0 . . . 0 cN

























.
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Similarly, de�ne D with diagonal entries equaling the oe�ients of the lowest orderterms of {qi}.
D =

























0 0 · · · 0

0 d1 0 0

0 0
. . . 0... dN−1

...
0 0 · · · 0 dN

























.

Then N + 1 iterations of the following matrix equation will onverge to the matrix ofoe�ients obtained by the Eulidean algorithm produing the spei�ed lifting steps:
A = SCA+ ASDS + SSAS +G.Proof. The theorem is proved by writing the e�ets of the Eulidean algorithm on theremainder polynomials at eah step in terms of matrix operations. �2.6. Filters with No Diret Nearest Neighbor FatorizationsThe algorithm desribed in setion �2.4 an be used to generate �lters with no diretnearest neighbor fatorizations. In [19℄, the split Haar �lter,

h =
1√
2

(

1 + z−9
)

,was an example of a �lter with no diret nearest neighbor fatorization. Having multiplezeros in the support of the �lter is often enough to guarantee no diret nearest neighborfatorizations, although we give examples to show it is not a neessary ondition. We alsoshow that ommon properties of �lters suh as orthogonality and vanishing moments are notenough to guarantee the existene of a diret nearest neighbor fatorization. We begin by29



restating a lemma in [11℄ whih shows the even and odd parts of a �lter must have similardegrees or no diret nearest neighbor fatorization an exist.Lemma 32. Let h = {h0, h1, . . . , h2N−1} be a �lter suh that ||he| − |ho|| > 1, then h hasno diret nearest neighbor fatorizations.Proof. Let ao and bo be the starting polynomials in the Eulidean algorithm. Then forthe fatorization to be diretly nearest neighbor, eah quotient must have degree at mostone. Suppose |ao| > |bo| + 1, then the �rst division an anel at most two terms from ao,hene
b1 = a0 − q1b0

|b1| ≥ |ao| − 2 > |bo| − 1 ≥ |bo| .But then the degree of the remainder has not been redued, a ontradition. �Lemma 33. Let h = {h0, h1, . . . , h2N−1} be a �lter satisfying |he| = |ho| and
|support (he) ∩ support (ho)|+ 1 < |support (he)| ,then h has no diret nearest neighbor fatorizations.Proof. First, suppose N is even, and let a0 = he and b0 = ho be the starting polynomialsin the Eulidean algorithm. The �rst division must anel at least one term from a0 so the de-gree of b1 is stritly less than b0. The onditions |he| = |ho| and |support (he) ∩ support (ho)|+

1 < |support (he)| imply the extreme terms of a0 and b0 di�er by a monomial with traditionalpolynomial degree of at least two. Then,
b1 = a0 − q1b0,30



so the extreme terms of q1b0 and a0 must align, requiring q1 to ontain a term withtraditional polynomial degree of at least two, hene the fatorization annot be diretlynearest neighbor.The same argument holds for odd N and a0 = ho and b0 = he. �Although �lters with many zeros in the support often do not have a diret nearest neigh-bor fatorization, it is not su�ient to ensure no diret nearest neighbor fatorizations exist.Example 34. Consider the �lter
h = {36, 72, 72, 0, 48, 60, 60, 24} .Then, using the {left, sym, sym, sym} division sheme yields a diret nearest neighborfatorization. The oe�ient arrays of the PRS are

{72, 0, 60, 24}

{72, 18, 48}

{−54, 3}

{886} .This PRS is easily seen to be normal as the length of the remainder oe�ient arraydereases by exatly 1 at eah step.A ommon property of �lters is the perfet reonstrution property, whih is also notsu�ient to ensure a �lter has a diret nearest neighbor fatorization. A �lter having theperfet reonstrution property is equivalent to oprimality of he and ho [19℄. This propertyis not enough to guarantee a normal PRS, as shown in the following proposition.Proposition 35. There exists a �lter h suh that he and ho are oprime, but PRS (he, ho)is abnormal in the {left, sym, . . . , sym} division sheme.31



Proof. Let he = 9z3 + 5z2 + 4z + 2 and ho = 10z3 + 2z2 + 6z + 3. Then the
{right, sym, sym, sym} division sheme is abnormal, but he and ho are oprime as they haveno ommon roots. The polynomial remainder sequene is abnormal as the �rst remainder is

b1 =
7

3
z3 +

11

3
z2.Sine the degree of the remainder dereased by more than one (b0 = ho has degree 4, b1has degree 2), the division sheme results in an abnormal remainder sequene.However, this �lter has a normal remainder sequene for the {left, sym, . . . , sym} divi-sion sheme, whih demonstrates normality is dependent on division sheme. �Many �lters are designed to have orthogonality and vanishing moment onditions, andwe investigate the e�et of these properties on diret nearest neighbor fatorizations. ForFIR �lters, these properties an be translated to onditions involving the �lter oe�ients[7℄.Definition 36. Let h =

∑2N−1
i=0 hiz

i be the z-transform of an FIR �lter of length 2N .Then h is orthogonal if it satis�es the following double shift orthogonality equations,
2N−1
∑

i=0

hihi+2k = δk, k = 0, 1, 2, . . . , N − 1.A �lter with l vanishing moments an also be lassi�ed using equations only involvingthe �lter oe�ients.Definition 37. Let h =
∑2N−1

i=0 hiz
i be the z-transform of an FIR �lter of length 2N .Then h has l vanishing moments if it satis�es the following equations for k = 0, . . . , l

2N−1
∑

i=0

(−1)i ikhi = 0 k = 0, 1, 2, . . . , N − 1.

32



These properties are not su�ient to guarantee a diret nearest neighbor fatorization,even with no zeros in the support of the �lter, as demonstrated in the following proposition.Proposition 38. (Reluselet) There exist orthogonal �lters with at least one vanishingmoment and no zeros in the support with no diret nearest neighbor fatorizations.Proof. The �lter
{0.742661, −0.107110, 0.123776, 0.011555, 0.01, 0.06, −0.069335}is a length 8 orthogonal �lter with one vanishing moment and no diret nearest neigh-bor fatorizations. This �lter solves the following system of equations for orthogonalityand one vanishing moment, along with onditions to make both {left, sym, . . . , sym} and

{right, sym, . . . , sym} division shemes be abnormal.
7
∑

i=0

hi =
√
2

7
∑

i=0

hihi+2k = δk, k = 0, 1, 2, 3

h0 − h1 + h2 − h3 + h4 − h5 + h6 − h7 = 0

−
h1

(

h4 − h0h5

h1

)

h2 − h0h3

h1

−
h7

(

h2 − h0h3

h1

)

h6 − h0h7

h1

+ h3 = 0

−
h1

(

h4 − h5h6

h7

)

h0 − h1h6

h7

−
h7

(

h2 − h3h6

h7

)

h4 − h5h6

h7

+ h5 = 0.The taps h5 and h6 were spei�ed to ensure a real solution to the system of equations.The abnormality equations were generated by performing the nearest neighbor algorithm33



with arbitrary oe�ients, and �nding onditions suh that the degree of a remainder wasredued by more than 1 by setting extreme terms equal to 0. Sine at eah step, the twoextremal oe�ients being zero results in an abnormal division, there are many abnormalityequations that an be used whih result in di�erent �lters. �We all orthogonal �lters with at least one vanishing moment �Reluselets� if they haveno diret nearest neighbor fatorization. The system of equations used in the previoustheorem is losely related to the system of equations used to generate Daubehies �lters.The Daubehies system has a maximal number of vanishing moment equations (N for a 2Nlength �lter), whereas the Reluselet system has one vanishing moment ondition but twoabnormality equations are added. In general, we �nd that eah vanishing moment equationand abnormality equation redues the dimension of the solution set by one. This methodan be used to generate longer Reluselet �lters, although omputation time beomes anobstale around �lter length 12.
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CHAPTER 3Nearest Neighbor Fatorizations of Daubehies Filters3.1. IntrodutionIn [5, 7℄, Daubehies onstruts orthonormal, ompatly supported wavelets with themaximum number of vanishing moments. We give a modi�ed onstrution for Daubehies�lters. Our goal is to use the asymptoti behavior of Daubehies polynomial roots alongwith Vieta's formulas to explore asymptotis of the nearest neighbor lifting fatorizations.The algorithm desribed below generates a degree N (length 2N) Daubehies �lter, and isequivalent to the traditional onstrution presented in [5℄.
(1) Find the N − 1 roots {Yi}N−1 of the polynomial:

BN (y) =
N−1
∑

i=0

(

N − 1− i

i

)

yi−1.(2) Transform the roots {Yi}N−1 into 2N − 2 roots, {Zi}2N−2, using
Z + Z−1 = 2− 4Y.(3) From {Zi}2N−2, selet the N − 1 roots whih lie inside the unit irle, {ri}N−1

i=1 .(4) Form the polynomial H̃ (z) with N − 1 roots z = ri and N roots at z = −1.
H̃ (z) =

(

N−1
∏

i=1

(z − ri)

)

(z + 1)N =

2N−1
∑

i=0

h̃2N−1−iz
i

35



Figure 3.1.1. The transformed roots {ri}N−1
i=1 for N = 20 with the limitingurve |z + 1| =

√
2

(5) Sale the �lter so that ∑ |hi| = 2, by dividing H̃ (z) by the onstant
C = 2N− 1

2

N−1
∏

i=1

(1− ri) .Note that the resulting polynomial has the oe�ients indexed in reverse order, so thatthe �lter oe�ients math the order found in Daubehies' original onstrution:
H (z) =

H̃ (z)

C
=

(

∏N−1
i=1 (z − ri)

)

(z + 1)N

2N− 1

2

∏N−1
i=1 (1− ri)

=
2N−1
∑

i=0

h2N−1−iz
i.This onstrution has the advantage of not involving negative powers of z, thus allowingthe use of Vieta's formulas. In setion �3.4, we show C = 2N− 1

2

∏N−1
i=1 (1− ri) is stritlypositive, and thus results about signs of �lter oe�ients an typially be proven diretly bylooking at the unsaled �lter H̃ (z).We heavily use the results from Strang and Shen [14℄ with respet to the loations of thezeros {ri}N−1

i=1 . The authors showed these zeros ome in omplex onjugate pairs, lie stritlyin the right half plane, and onverge on the irle |z + 1| =
√
2 from the inside as N → ∞.36



3.2. Properties of Nearest Neighbor Lifting Step RootsWikerhauser and Zhu veri�ed that Daubehies �lters up to length 20 have a diret near-est neighbor fatorization [19℄. With the fatorization algorithm desribed in setion �2.4,there is only one possible division sheme that results in a diret nearest neighbor fator-ization. This allows for a more e�ient algorithm for verifying higher order �lters. Withthese onsiderations, we verify numerially that all Daubehies �lters up to length 220 haveexatly one diret nearest neighbor fatorizations.In ontrast to general Laurent polynomials, nearest neighbor fatorizations for Daubehies�lters demonstrate remarkably stable harateristis. For nearest neighbor fatorizations,the �rst lifting step is onstant, and the others have the forms q = cz + d or q = c + dz−1.Plotting the roots of these lifting steps for the {left, sym, . . . , sym} division sheme for var-ious degrees in �gure 3.2.1 demonstrates the stability of the relative size of the lifting stepoe�ients.Similar behavior is also found for Daubehies �lters with the {right, sym, . . . , sym} di-vision sheme. Various degrees are shown in �gure 3.2.2.Sine the lifting steps are degree one Laurent polynomials, the positivity of the liftingsteps roots orresponds to opposite signs of the lifting step oe�ients (ci and di). Thispattern has been observed up to N = 110 (length 220). All of the observed lifting step roots(N = 2 to N = 110) are bounded on (0, 1) for the {left, sym, . . . , sym} division sheme.The existene of these points is enough to show a normal PRS and hene a diret nearestneighbor fatorization exists for all N . Due to the preditability of this behavior, we makethe following onjetures.Conjeture 39. All Daubehies �lters of degree N > 2 have exatly one diret nearestneighbor fatorizations orresponding to the {left, sym, . . . , sym} and {right, sym, . . . , sym}division shemes for even and odd N , respetively.37



(a) N = 20

(b) N = 40

() N = 110Figure 3.2.1. Nearest Neighbor Roots for degree N Daubehies Filter with
{left, sym, . . . , sym} for (A) N = 20 (B) N = 40 (C) N = 11038



(a) N = 19

(b) N = 39

() N = 99Figure 3.2.2. Nearest Neighbor Roots for degree N Daubehies Filter with
{right, sym, . . . , sym} for (A) N = 19 (B) N = 39 (C) N = 9939



Numerial analysis of the lifting step roots for the {left, sym, . . . , sym} division shemesuggests asymptoti onvergene among the �rst 0.2N lifting steps for a �lter of length 2N .This is summarized in the following onjeture.Conjeture 40. Given a degree N Daubehies �lter, with N even, and the
{left, sym, . . . , sym}division sheme, the zeros of the lifting steps {Zi}0.2Ni=1 are bounded by 1, and the �rst 0.2Nlifting steps onverge to

Zi =
2i− 1

2i+ 1as N → ∞. 3.3. Bounds on Daubehies Filter Coe�ientsUsing the asymptotis of the Daubehies polynomial roots and their relationship to theDaubehies �lter oe�ients, we prove results involving the tails of the Daubehies �lters andproperties of their diret nearest neighbor fatorizations. We use a di�erent approah than in[15℄, where Strang and Shen give global asymptoti behavior of Daubehies �lter oe�ients.The estimates from [15℄ do not have the auray neessary to analyze individual oe�ientsand their relative sizes.Lemma 41. The saling oe�ient C = 2N− 1

2

∏N−1
i=1 (1− ri) used in the above onstru-tion of Daubehies �lters is stritly positive.Proof. The roots {ri}N−1

i=1 ome in omplex onjugate pairs along with a single realpositive root when N is even. Strang and Shen [14℄ proved the roots lie stritly in the righthalf plane and inside the irle |z + 1| =
√
2 and |ri| < 1 for all i. Let M = maxi (|ri|) < 1.40



Grouping the terms involving onjugate pairs for odd N and reindexing as needed gives:
N−1
∏

i=1

(1− ri) =

N−1

2
∏

i=1

(1− ri) (1− r̄i) =

N−1

2
∏

i=1

(

1− r2i
)

>

N−1

2
∏

i=1

(

1−M2
)

> 0.For even N , there is a single real positive root, rN−1, along with N
2
− 1 onjugate pairsof roots, so with reindexing we get:

N−1
∏

i=1

(1− ri) = rN−1





N
2
−1
∏

i=1

(1− ri) (1− r̄i)



 = rN−1





N
2
−1
∏

i=1

(

1− r2i
)





> rN−1





N
2
−1
∏

i=1

(

1−M2
)



 > 0.In either ase, the produt is stritly positive, hene C > 0. �Corollary 42. Given a degree N Daubehies �lter h = {h0, h1, . . . , h2N−1}, then
h0 =

(

2N− 1

2

N−1
∏

i=1

(1− ri)

)−1

= C−1 > 0.Proof. From the onstrution for Daubehies �lters, we see
H (z) =

H̃ (z)

C
=

(

∏N−1
i=1 (z − ri)

)

(z + 1)N

2N− 1

2

∏N−1
i=1 (1− ri)

=

2N−1
∑

i=0

h2N−1−iz
iMathing oe�ients in the above equation, we �nd h0 is the leading oe�ient. Thenumerator is a moni polynomial, hene:

h0 = C−1 =

(

2N− 1

2

N−1
∏

i=1

(1− ri)

)−1Using lemma 41, h0 = C−1 > 0. �41



Using results from Strang and Shen [14℄, we bound the relative growth of h0 and h1.
Lemma 43. Given a degree N > 1 Daubehies �lter h = {h0, h1, . . . , h2N−1}, then

0 < h0

(

−
√
2N + 2N +

√
2− 1

)

< h1 < Nh0.Proof. Using the formula in the onstrution desribed above,
H (z) =

H̃ (z)

C
=

(

∏N−1
i=1 (z − ri)

)

(z + 1)N

2N− 1

2

∏N−1
i=1 (1− ri)

=

2N−1
∑

i=0

h2N−1−iz
i.Using Vieta's formula for the h1 oe�ient

N−1
∑

i=1

ri +

N
∑

i=1

(−1) =

N−1
∑

i=1

ri −N = −h1

h0

h1 = −h0

(

N−1
∑

i=1

ri −N

)

.The roots {ri}N−1
i=1 ome in omplex onjugate pairs and possibly a single real positiveroot when N is even. Strang and Shen [14℄ showed

0 < Re (ri) <
√
2− 1for all i.Sine the sum of the roots must be real, the imaginary parts anel out, and the upperbound for h1 is:

h1 = −h0

(

N−1
∑

i=1

Re (ri)−N

)

< −h0 (0−N) = h0N.For the lower bound we use the positivity of the real part of the roots along with theprevious result h0 > 0. Again, the roots ome in onjugate pairs so only the real parts42



ontribute to the sum.
h1 = −h0

(

N−1
∑

i=1

ri −N

)

= −h0

((

N−1
∑

i=1

Re (ri)

)

−N

)

> −h0

(

(N − 1)
(√

2− 1
)

−N
)

= h0

(

−
√
2N + 2N +

√
2− 1

)

> 0.

�Corollary 44. Given a degree N > 2 Daubehies �lter h = {h0, h1, . . . , h2N−1}, then
0 < h0 < h1.Proof. The orollary is obvious using 0 < h0 and lemma 43,

0 < h0 < h0

(

−
√
2N + 2N +

√
2− 1

)

< h0 (0.6N + .5) < h0N < h1for all N > 1. �We prove the following lemma whih will be useful in upoming theorems.Lemma 45. Given a degree N Daubehies �lter h = {h0, h1, . . . , h2N−1}, h2N−1 is nonzero.For even N , h2N−1 < 0 and for odd N , h2N−1 > 0.Proof. Using the formula from the onstrution desribed above,
H (z) =

H̃ (z)

C
=

(

∏N−1
i=1 (z − ri)

)

(z + 1)N

2N− 1

2

∏N−1
i=1 (1− ri)

=

2N−1
∑

i=0

h2N−1−iz
i.Computing the onstant oe�ient, h2N−1

h2N−1 =

∏N−1
i=1 (−ri)

C
= (−1)N−1

∏N−1
i=1 ri
C

.From lemma 41, C is stritly positive, and {ri}N−1
i=1 are nonzero and stritly in the righthalf plane from [14℄, thus h2N−1 is nonzero. The sign hange for even and odd N is apparentfrom the (−1)N−1 term. �43



Corollary 46. Given a degree N ≥ 1 Daubehies �lter h = {h0, h1, . . . , h2N−1}, h2N−2is nonzero.Proof. For N = 1, h is the Haar �lter, and thus the orollary holds.For N > 1, we have shown in previous results that h0, h1, h2N−1 are nonzero. AllDaubehies �lters satisfy double shift orthogonality onditions, in partiular,
h0h2N−2 + h1h2N−1 = 0.Thus, it is lear h2N−2 =

−h1h2N−1

h0
must be nonzero. �Lemma 47. Given a degree N > 1 Daubehies �lter h = {h0, h1, . . . , h2N−1}, h2N−1

h2N−2
< 0.In partiular, h2N−1 and h2N−2 have di�erent signs.Proof. Sine the �lter satis�es double shift orthogonality, along with the previous re-sults showing h0, h1, h2N−2, h2N−1 are nonzero,

h2N−1

h2N−2
=

−h1

h0
< 0,using the results that h0, h1 > 0. Sine h2N−1 alternates sign as N inreases, so does

h2N−2. �3.4. Asymptotis of Daubehies Filter Coe�ientsThe asymptotis of the Daubehies polynomial roots from Theorem 5 in [14℄ allow us toobtain bounds on the Daubehies �lter oe�ients. Let {Yk} be the asymptoti estimatesfor the roots of BN (y), then:
Yk =

1−
√

1− exp
(

2πi k
N−1

)

2
, k = 0, ..., N − 2.44



Figure 3.4.1. The Daubehies roots (squares) along with the Strang asymp-totis (irles) for N = 20Using the transformation Z + Z−1 = 2 − 4Y to obtain asymptoti estimates Zk for the
N − 1 roots {ri}N−1,

Zk =

√

1− e
2iπk
N −

√

−e
2iπk
N , k = 1, ..., N − 1.A plot of the Daubehies polynomial roots and these asymptoti estimates is shown in�gure 3.4.1.We will use these regions to obtain asymptoti bounds for the �lter oe�ients sine the

Zk estimates annot be used diretly. Let j be a positive integer, △ be a small positive realvalue, and △j = 2 + (j − 1)△. Then denote the sets of asymptoti Daubehies polynomialroots in the upper half plane as
A△

j =

{

z

∣

∣

∣

∣

|z + 1| ≤
√
2 and arg

(

Z N
△j

)

≤ arg (z) ≤ arg

(

Z N
△j+1

)}

.45



Let
θ△j =

{

arg (zk)
∣

∣

∣
zk ∈ A△

j

)}

B△
j =

{

|zk|
∣

∣

∣
zk ∈ A△

j

)}

,then,
arg

(

Z N
△j

)

≤ min
(

θ△j

)

≤ max
(

θ△j

)

≤ arg

(

Z N
△j+1

)

∣

∣

∣

∣

Z N
△j

∣

∣

∣

∣

≤ min
(

B△
j

)

≤ max
(

B△
j

)

≤
∣

∣

∣

∣

Z N
△j+1

∣

∣

∣

∣

.

Lemma 48. Let {ri}N−1 and {Zi}N−1 be the Daubehies polynomial roots and assoiatedasymptoti estimates de�ned as above. Then, for any A△
j ,

1− o (1) <
#
{

ri ∈ A△
j

}

#
{

Zi ∈ A△
j

} < 1 + o (1) .Proof. Fix A△
j and ǫ > 0. In [14℄, Strang and Shen show the global error for the Ziapproximations to eah ri is O

(

N− 1

2

)

. Then, for some of the Zi ∈ A△
j , the assoiated rimay not be in the A△

j region. An example region is shown in �gure 3.4.2, with the shadedregion representing A△
j . The dashed region shows the possible loations of the ri, obtained bydrawing a irle around with Zi with radius O (N− 1

2

). Strang proved that the ri lie stritlyinside the irle |z + 1| =
√
2, hene we disregard the dashed region outside this irle.Denote the dashed region inside the irle |z + 1| =

√
2 by C ′ and de�ne C = C ′ − A△

j .Then C ontains every ri /∈ A△
j approximated by a Zi ∈ A△

j .The Zi are asymptotially evenly distributed along the limiting irle |z + 1| =
√
2, hene

#
{

Zi ∈ A△
j

}

→ N

△j
− N

△j+1
.46



Figure 3.4.2. A△
j region with error estimates shown

For a �xed N , there exist a onstants K suh that |ri − Zi| < KN− 1

2 for all i. De�nethe set
D =

{

Zi |Zi ∈ A△
j and

∣

∣

∣

∣

Zi − Z N
△j

∣

∣

∣

∣

> KN− 1

2 and

∣

∣

∣

∣

Zi − Z N
△j+1

∣

∣

∣

∣

> cN− 1

2

}

.Then every Zi ∈ D has an assoiated ri ∈ A△
j , and

# {Zi ∈ D} =
N

△j
− N

△j+1
− 2KN− 1

2 ≤ #
{

ri ∈ A△
j

}Thus,
#
{

ri ∈ A△
j

}

#
{

Zi ∈ A△
j

} ≥
N
△j

− N
△j+1

− 2KN− 1

2

N
△j

− N
△j+1

= 1− o (1) .Next, onsider the Zi lose to the endpoints of the A△
j region,

# {Zi ∈ C} ≤ 2cN− 1

2 .47



Hene,
#
{

ri ∈ A△
j

}

#
{

Zi ∈ A△
j

} ≤
#
{

Zi ∈ A△
j

}

+# {Zi ∈ C}

#
{

Zi ∈ A△
j

} ≤ 1 +
2KN− 1

2

N
△j

− N
△j+1

= 1 + o (1) .

�This lemma shows that the expeted number of Daubehies polynomial roots lie in eahasymptoti region for su�iently large N . For example, to �nd the perentage of Daubehiesroots as N → ∞ whih have π
2
> arg (ri) >

π
4
, use the formula for Zk with k = N

i
, and �ndthe i for whih arg

(

ZN
i

)

= π
4
,

arg
(

ZN
6

)

= arg

(√

1− e
2iπ
6 −

√

−e
2iπ
6

)

=
π

4
.Thus, for su�iently largeN , N−1

6
of the Daubehies roots {ri}N−1 have π

2
> arg (ri) >

π
4
.We are now able to obtain muh sharper bounds on the Daubehies polynomial roots.Lemma 49. Let {ri}N−1 be the roots of the N th Daubehies polynomial inside the unitirle. Then for su�iently large N ,

N−1
∑

i=1

ri < 0.36343N.Proof. We begin by rewriting the sum using the fat that the roots ome in omplexonjugate pairs with at most one real positive root when N is even. Assume that N is oddso there is no real root, and let M = N−1
2

. Order and index the roots in the upper half plane
{ri}M by 0 < arg (r1) < ... < arg (rM). Then,

N−1
∑

i=1

ri =

M
∑

i=1

(ri + r̄i) = 2

M
∑

i=1

Re (ri) .We use the asymptoti regions of the Daubehies polynomial roots to �nd an upper boundfor the sum. Summing over the M roots in the upper half plane orresponds asymptotially48



to summing over A△
j for j ≥ 1 and a �xed △ > 0,

M
∑

i=1

Re (ri) ≤
∞
∑

j=1

Re

(

Z N
△j

)

≤
L
∑

j=1

Re

(

Z N
△j

)

+
N

△L+1

Re

(

Z N
△L+1

)

.These inequalities use lemma 48 to ensure that no signi�ant portion of the ri fall outsideof the A△
j regions. The upper bound dereases as L inreases and △ dereases. Seleting

L = 106 and △ = 0.01,
N−1
∑

i=1

ri ≤ 2

[

L
∑

j=1

Re

(

Z N
△j

)

+
N

△L+1
Re

(

Z N
△L+1

)

]

< 0.36343N.For even N , the ontribution of the additional real ri is at most √2 − 1, whih doesn'thange the bound for su�iently large N . �The key bound in lemma 49 is,
M
∑

i=1

Re (ri) ≤
∞
∑

j=1

Re

(

Z N
△j

)

+ o (N)as N → ∞.The 3.4.3 shows the A△
j regions, with the A1

2 region shaded in gray. The real part of anypoint in the gray region is bounded above by Re
(

Z N
△2

).A similar strategy allows for us to de�ne a lower bound on the sum of the Daubehiespolynomial roots.Lemma 50. Let {ri}N−1 be the roots of the N th Daubehies polynomial inside the unitirle. Then for su�iently large N ,
0.35581N <

N−1
∑

i=1

ri.Proof. We begin as above by rewriting the sum using the fat that the roots ome inomplex onjugate pairs with at most one real positive root when N is even. Assume that49



Figure 3.4.3. Examples of Asymptoti Regions for Daubehies Polynomial Roots
N is odd so there is no real root, and let M = N−1

2
. Order and index the roots in the upperhalf plane {ri}M by 0 < arg (r1) < ... < arg (rM). Then,

N−1
∑

i=1

ri =

M
∑

i=1

(ri + r̄i) = 2

M
∑

i=1

Re (ri)Summing over the M roots in the upper half plane orresponds asymptotially to sum-ming over A△
j for j ≥ 1 and a �xed △ > 0,
M
∑

i=1

Re (ri) ≥
∞
∑

j=1

Re

(

Z N
△j+1

)

− o (N) ≥
L
∑

j=1

Re

(

Z N
△j+1

)

− o (N) ,as N → ∞.The lower bound inreases as L inreases and △ dereases. Seleting L = 106 and
△ = 0.01,

N−1
∑

i=1

ri ≥ 2
L
∑

j=1

Re

(

Z N
△j+1

)

> 0.35581N,for su�iently large N. 50



Figure 3.4.4. Atual values of ∑N−1
i=1 ri for values of N = 100, 120, . . . , 260along with asymptoti bounds from lemma 49 and lemma 50 (dashed lines).For even N , the additional real root ontributes at most √2− 1, and doesn't hange thebound for su�iently large N . �The behavior of the exat value of the summation along with the bounds given inlemma 49 and lemma 50 is shown in �gure 3.4.4. We obtain the value of ∑N−1

i=1 ri fromthe �lter oe�ients using Vieta's formula for the �rst oe�ient.
h1 = −h0

(

N−1
∑

i=1

ri −N

)

N−1
∑

i=1

ri = N − h1

h0We use a similar strategy to obtain asymptoti behavior of more ompliated symmetripolynomials of Daubehies polynomial roots.
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N 0.35581N
∑N−1

i=1 ri 0.36343N100 35.581 35.296 36.343120 42.697 42.536 43.612140 49.813 49.779 50.880160 56.930 57.026 58.149180 64.046 64.275 65.417200 71.162 71.526 72.686220 78.278 78.778 79.955240 85.384 86.032 87.223260 92.511 93.287 94.492Table 1. Sum of Daubehies polynomial roots and asymptoti bounds forlarge values of NLemma 51. Let {ri}N−1 be the roots of the N th Daubehies polynomial inside the unitirle. Then for su�iently large N ,
∑

1≤i1<i2≤N−1

ri1ri2 < 0.072753N2.Proof. The roots {ri}N−1 ome in omplex onjugate pairs, with the possibility of asingle real root. Assume that N is odd so there is no real root, and let M = N−1
2

. Orderand index the roots in the upper half plane {ri}M by 0 < arg (r1) < ... < arg (rM). The suman be rewritten as the sum of onjugate pairs:
∑

1≤i1<i2≤N−1

ri1ri2 =
∑

1≤i1<i2≤M

ri1ri2 + ri1 r̄i2 + r̄i1ri2 + r̄i1 r̄i2 +
M
∑

i1=1

ri1 r̄i1

= 2
∑

1≤i1<i2≤M

Re (ri1ri2) + 2
∑

1≤i1<i2≤M

Re (ri1 r̄i2) +
M
∑

i1=1

|ri1 |2 .The �nal summation is stritly positive and only ontributes O (N), so we need onlybound the other terms. Summing over {ri}M orresponds asymptotially to summing over
A△

j for j ≥ 1 and a �xed △ > 0. Bounding the �rst sum involving produts of roots, both52



of whih are in the upper half plane,
∑

1≤i1<i2≤M

Re (ri1ri2) ≤
∞
∑

j=1

(
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∣

∣
A△

j
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∣

∣
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)
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∣

∣

Z N
△j+1

∣

∣

∣

∣
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∣
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∣

∣

)
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∣
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∣

∣
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∣
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∣

∣

∣

e
i

(

arg

(

Z N
△j

)

+arg

(

Z N
△k

))


 . (3.4.1)The �rst summation orresponds to terms with both roots oming from the same A△
jregion. Sine for eah setion there are a total of ∣∣

∣
A△

j

∣

∣

∣
roots, and (|A△

j |
2

) total terms of thistype. Given ri1 , ri2 ∈ A△
j , we bound the real part of these terms by

Re (ri1ri2) ≤ Re





∣

∣

∣

∣

Z N
△j+1

∣

∣

∣

∣

2

e
2i arg

(

Z N
△j

)


 + o
(

N2
)

.This bound holds sine,
|ri1| ≤

∣

∣

∣

∣

Z N
△j+1

∣

∣

∣

∣

|ri2| ≤
∣

∣

∣

∣

Z N
△j+1

∣

∣

∣

∣

0 < arg

(

Z N
△j

)

≤ arg (ri1) <
π

2

0 < arg

(

Z N
△j

)

≤ arg (ri2) <
π

2
.The bound onsists of taking the extreme values for eah A△

j , rather than a global esti-mate on the asymptotis, allowing for a muh more aurate bound. The seond summationin equation (3.4.1) orresponds to terms involving two roots in the upper half plane, onefrom A△
j and the seond from A△

k , where k < j.
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To bound the remaining sum involving terms on opposite sides of the real axis, we use thesame approah as above, with a modi�ed bound for the real part. We again selet the largestpossible modulus and arguments resulting in the largest real part for the upper bound:
∑

1≤i1<i2≤M

Re (ri1 r̄i2) ≤
∞
∑
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∣
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))


 .The bound on the real part subtrats the arguments sine this gives a lower bound onthe real part of the produt.As L inreases and △ dereases, the lower bound inreases. Seleting L = 1000 and
△ = 0.2,

1

2

(
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1≤i1<i2≤N−1

ri1ri2

)

=
∑
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∑
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e
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<
1

2

(

0.072753N2
)

.The �nal summation is an upper bound on the tails of the in�nite sums, and inreasingthe L value greatly redues the ontribution of this term. If N is even, the additional realroot ontributes O (N) terms, so the result is unhanged for su�iently large N . �
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Corollary 52. Let {ri}N−1 be the roots of the N th Daubehies polynomial inside theunit irle. Then for su�iently large N ,
∑

1≤i1<i2≤N−1

ri1ri2 > 0.063902N2.Proof. We �nd bounds for
1

2

(

∑

1≤i1<i2≤N−1

ri1ri2

)

=
∑

1≤i1<i2≤M

Re (ri1ri2) +
∑

1≤i1<i2≤M

Re (ri1 r̄i2) (3.4.2)following the same analysis as lemma 51 with the following hanges to the bounds,
∑

1≤i1<i2≤M
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 .These bounds are very similar to lemma 51, with the opposite endpoints of the asymptotiregions seleted. In our notation, this orresponds to j → j + 1 and j + 1 → j. The keyobservation is
Re (ri1ri2) ≥ Re
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.This bound holds as,
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2
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0 < arg (ri2) ≤ arg

(

Z N
△j+1

)

<
π

2
.The alterations for the bound on the seond summation in equation (3.4.2) is
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 ,whih again swithes the j and j + 1 indies. As L inreases and △ dereases, the lowerbound inreases. Seleting L = 50 and △ = 1,
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>
1
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(

0.063902N2
)

.There is no need to bound the tails sine we are bounding from below, and the ase where
N is even does not hange the result for su�iently large N as it only adds O (N) terms tothe original summation. �

We ompute the value of ∑1≤i1<i2≤N−1 ri1ri2 for large N and ompare to the resultsfound in lemma 51 and 52. The value of ∑1≤i1<i2≤N−1 ri1ri2 an be found from the �lter56



Figure 3.4.5. Values of ∑1≤i1<i2≤N−1 ri1ri2 and asymptoti results fromlemma 51 and 52 (dashed lines).oe�ients using Vieta's formulas,
h2

h0
=

∑

1≤i1<i2≤2N−1

Ri1Ri2 =
∑

1≤i1<i2≤N−1

ri1ri2 −N

(

N−1
∑

i=1

ri

)

+

(

N

2

)

.Using Vieta's formula to rewrite the sum of roots,
h2

h0
=

∑

1≤i1<i2≤N−1

ri1ri2 −N

(

N − h1

h0

)

+

(

N

2

)

.Thus, we an express ∑1≤i1<i2≤N−1 ri1ri2 in terms of �lter oe�ients as
∑

1≤i1<i2≤N−1

ri1ri2 = N

(

N − h1

h0

)

−
(

N

2

)

− h2

h0
.The data for seleted values of N are shown in �gure 3.4.5 and table 2.In addition to giving asymptoti behavior of the �rst few Daubehies �lter oe�ients, wewill use these bounds to prove properties of nearest neighbor fatorizations for Daubehies57



N 0.063902N2
∑

1≤i1<i2≤N−1 ri1ri2 0.072752N220 25.5608 20.8040 29.100840 102.243 92.7918 116.40360 230.047 216.981 261.90780 408.973 393.589 465.613100 639.020 622.718 727.520120 920.189 904.429 1047.63140 1252.48 1238.76 1425.94160 1635.89 1625.74 1862.45180 2070.42 2065.40 2357.16200 2556.08 2557.74 2910.08220 3092.86 3102.79 3521.20240 3680.76 3700.54 4190.52Table 2. Values of∑1≤i1<i2≤N−1 ri1ri2 and asymptoti results from lemma 51and 52 for 20 ≤ N ≤ 240.�lters in setion �3.5. We estimate the asymptoti root behavior for the next symmetripolynomial, again providing an upper and lower bound.Lemma 53. Let {ri}N−1 be the roots of the N th Daubehies polynomial inside the unitirle. Then for su�iently large N ,
∑

1≤i1<i2<i3≤N−1

ri1ri2ri3 < 0.04223N3.Proof. We begin by rewriting the sum to take advantage of the root onjugate pairs.Without loss of generality, assume that N is odd and let M = N−1
2

so there is no singlereal root. Order and index the roots in the upper half plane {ri}M by 0 < arg (r1) < ... <

arg (rM), then
∑

1≤i1<i2<i3≤N−1

ri1ri2ri3

=

M
∑

i3=1

(ri3 + r̄i3)
∑

1≤i1<i2<i3

(ri1ri2 + ri1 r̄i2 + r̄i1ri2 + r̄i1 r̄i2) +

M
∑

i1=1

ri1 r̄i1

(

∑

i2 6=i1

ri2 + r̄i2

)

.
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The last summation only ontributes as O (N2) so we need only �nd bounds on the otherterms:
M
∑

i3=1

(ri3 + r̄i3)
∑

1≤i1<i2<i3
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∑
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4 |ri3 |2 = 8
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∑
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|ri3 |3 .Summing over {ri}M orresponds asymptotially to summing over A△
j for j ≥ 1 and a�xed △ > 0. Thus,
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.Speifying L and △ gives a bound on the symmetri polynomial. As L inreases and △dereases, the upper bound dereases. Seleting L = 106 and △ = 0.01,
∑

1≤i1<i2<i3≤N−1

ri1ri2ri3 ≤
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< 0.04223N3.As in previous results, if N is even, it only ontributes an additional O (N2) terms andhene does not hange the result. �The previous results allow us to prove basi fats about the asymptoti behavior ofDaubehies �lter oe�ients. The strategy is to use Vieta's formulas to obtain symmetripolynomials of Daubehies polynomial roots, and then deompose the sum into a form wherewe an use the previous results.Lemma 54. Given a degree N �lter (h0, . . . , h2N−1), h1 < h3 for su�iently large N .59



Proof. From lemma 43, h1 < h0N . Let {Ri}2N−1 be the set of Daubehies polynomialroots {ri}N−1 along with the N roots at z = −1. Then from Vieta's formula
h3 = h0 (−1)3

∑

1≤i1<i2<i3≤2N−1

Ri1Ri2Ri3 .This is the sum of all possible produts of 3 roots from {Ri}2N−1. Thus, we must show
N <

∑

1≤i1<i2<i3≤2N−1

−Ri1Ri2Ri3 .There are (2N−1
3

) total terms in the symmetri polynomial whih we lassify into fourtypes:1. (

N
2

)

(N − 1) terms with two roots at z = −1 and a single root from {ri}N−1 :
(−1) (−1) (ri)2. (

N−1
2

)

N terms with one root at z = −1 and two roots hosen from {ri}N−1 :
(−1) (ri) (rj)3. (N−1

3

) terms with three roots hosen from {ri}N−1 : (ri) (rj) (rk)4. (N
3

) terms with three roots at z = −1 : (−1)3 = −1The Daubehies polynomial roots {ri}N−1 ome in omplex onjugate pairs, possibly witha single real positive root, all of whih are stritly in the right half plane with Re (ri) <
√
2−1and inside the unit irle. Sine the Daubehies roots ome in omplex pairs, eah term anbe paired with its onjugate (of the same type), whih results in a real valued �lter oe�ient,as expeted. Using the previous results involving asymptoti bounds for eah of the �rstthree types of terms yields, for su�iently large N ,

∑

1≤i1<i2<i3≤2N−1

−Ri1Ri2Ri3

≥ (−0.36343N)

(

N

2

)

+
(

0.063902N2
)

N −
(

0.04223N3
)

+

(

N

3

)
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> 0.00662N3 > N.Using lemma 43, we onlude for su�iently large N ,
h3 = h0 (−1)3

∑

1≤i1<i2<i3≤2N−1

Ri1Ri2Ri3 > h0N > h1.Numerially verifying the lemma for values up to N = 110, we �nd the lemma holds for
7 ≤ N ≤ 110, and numerial results suggest the lemma holds for all N ≥ 7. �Corollary 55. Given a degree N �lter h = {h0, . . . , h2N−1}, h2 < h3 for su�ientlylarge N .Proof. Using Vieta's formulas for the �lter oe�ients and the previous results

h3 = h0 (−1)3
∑

1≤i1<i2<i3≤2N−1

Ri1Ri2Ri3 > h0

(

0.00662N3
)

.Bounding h2 using that all terms are omprised of omplex numbers on or inside the unitirle yields
h2 = h0

∑

1≤i1<i2≤2N−1

Ri1Ri2 ≤ h0

∑

1≤i1<i2≤2N−1

|Ri1Ri2 |

≤ h0

∑

1≤i1<i2≤2N−1

1 ≤ h0

(

2N − 1

2

)

= h0O
(

2N2
)

.

�We an generalize the bound from the proof of 55 in the following lemma.Lemma 56. Given a degree N �lter h = {h0, . . . , h2N−1}, |hi| ≤ h0

(

2N−1
i

).Proof. Using Vieta's formula along results from [14℄ that Daubehies polynomial rootsare inside the unit irle
|hi| = |h0|

∣

∣

∣

∣

∣

∑

1≤j1<...<ji≤2N−1

Rj1 . . . Rji

∣

∣

∣

∣

∣

≤ h0

∑

1≤j1<...<ji≤2N−1

|Rj1 . . . Rji|
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≤ h0

∑

1≤j1<...<ji≤2N−1

1 ≤ h0

(

2N − 1

i

)

.

�3.5. Asymptotis of Nearest Neighbor FatorizationsUsing the results of setion �3.4, we are able to prove results about the asymptotis ofdiret nearest neighbor fatorizations of Daubehies �lters.Theorem 57. Given a degree N Daubehies �lter h = {h0, . . . , h2N−1} with polyphasematrix fatored with the {left, sym, ..., sym} division sheme, the �rst division is normal forsu�iently large N .Proof. The �rst division being normal is equivalent to the extreme terms of the �rstremainder polynomial being nonzero,
h2N−2 −

h0h2N−1

h1
6= 0 (3.5.1)

h2 −
h0h3

h1

6= 0.By the previous lemma, h1 and h2N−2 are nonzero, hene equation (3.5.1) is equivalentto
h1h2N−2 6= h0h2N−1.By the previous lemma, h0, h1 > 0 and

h2N−1

h2N−2
< 0.Thus, the right and left hand sides have di�erent signs, so inequality must hold for the�rst normality ondition. 62



For the seond normality ondition,
h2 −

h0h3

h1
6= 0

h1h2 6= h0h3.Let {Ri}2N−1 be the set of Daubehies polynomial roots {ri}N−1 along with the N rootsat z = −1. Using Vieta's formulas,
h1h2 =

(

h0 (−1)

2N−1
∑

i=1

Ri

)(

h0

∑

1≤i1<i2≤2N−1

Ri1Ri2

)

h0h3 = (h0)

(

h0 (−1)
∑

1≤i1<i2<i3≤2N−1

Ri1Ri2Ri3

)

.Thus, it is enough to show
∑

1≤i1<i2<i3≤2N−1

−Ri1Ri2Ri3 <

(

2N−1
∑

i=1

−Ri

)(

∑

1≤i1<i2≤2N−1

Ri1Ri2

)

.Expanding eah of the symmetri polynomials into types of terms involving Ri and riand using bounds from previous results, for su�iently large N ,
−

2N−1
∑

i=1

Ri = −
N−1
∑

i=1

ri −
N
∑

i=1

(−1) = N −
N−1
∑

i=1

ri ≥ N − 0.36333N = 0.63666Nand
∑

1≤i1<i2≤2N−1

Ri1Ri2 =
∑

1≤i1<i2≤N−1

ri1ri2 −N

N−1
∑

i=1

ri +

(

N

2

)

(−1)2

≥
(

0.063902N2
)

− (0.36333N)N +

(

N

2

)

≥ 0.20057N2and
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∑

1≤i1<i2<i3≤2N−1

−Ri1Ri2Ri3

= −
∑

1≤i1<i2<i3≤N−1

ri1ri2ri3 +N
∑

1≤i1<i2≤N−1

ri1ri2 −
(

N

2

)N−1
∑

i=1

ri +

(

N

3

)

≤
(

−0.042234N3
)

+N
(

0.07276N2
)

−
(

N

2

)

(0.36333N) +

(

N

3

)

≤ 0.01553N3Thus, for su�iently large N
∑

1≤i1<i2<i3≤2N−1

−Ri1Ri2Ri3 ≤ 0.01553N3

<
(

0.20057N2
)

(0.63666N) ≤
(

2N−1
∑

i=1

−Ri

)(

∑

1≤i1<i2≤2N−1

Ri1Ri2

)

.Hene,
h1h2 6= h0h3.Thus, the seond normality ondition must be satis�ed for su�iently large N
h2 −

h0h3

h1
6= 0.The theorem was veri�ed numerially for 2 ≤ N ≤ 110, and numerial evidene suggeststhe theorem is true for all N ≥ 2. �Corollary 58. Given a degree N Daubehies �lter h = {h0, . . . , h2N−1} with polyphasematrix fatored with the {right, sym, ..., sym} division sheme, the �rst division is normalfor su�iently large N .Proof. Given a polyphase matrix with fatorization oming from the

{right, sym, ..., sym}64



division sheme, the starting polynomials of the Eulidean algorithm are ho and he. Thenthe normality onditions for the �rst division are
h3 −

h1h2

h0

6= 0and
h2N−1 −

h1h2N−2

h0

6= 0.Then sine h0 6= 0, these onditions are equivalent to
h0h3 6= h1h2and

h0h2N−1 6= h1h2N−2whih are exatly the onditions shown in theorem 57. �
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CHAPTER 4Normality of Polynomial Remainder Sequenes4.1. IntrodutionIn this hapter we fous on onditions for determining normality of PRS from the startingpolynomials, without having to ompute the entire PRS. We ontinue with the notation forLaurent PRS using a single starting Laurent polynomial and splitting it into its even andodd parts as inputs for the Eulidean algorithm. We keep this notation as a onveniene,and note that we an de�ne PRS for any two starting Laurent polynomials.In general, the problem of determining normality of a PRS from the starting polynomialsrequires omputing the entire PRS via the Eulidean algorithm. The PRS an fail to benormal if any extreme oe�ient of a remainder polynomial is 0, ausing the degree to godown by more than one in a given step. For a starting polynomial with N oe�ients, thisresults in O (N) terms whih must be nonzero for the PRS to be normal. If even a singleoe�ient an take an arbitrary value, it is often possible to make the PRS abnormal. Thisis the reasoning for the onjetures in the previous hapters as degree N Daubehies �ltershave a �nite solution set [18℄, and hene there are no additional degrees of freedom whih anbe used to make the PRS abnormal (in ontrast with Reluselets). When seeking normalityresults, it is often useful to redue the degrees of freedom in the oe�ients of the startingpolynomial. This is done in the next setion with Sturm sequenes, whih are PRS generatedfrom a polynomial and its derivative. For Sturm sequenes, traditional polynomials are usedrather than Laurent polynomials, reduing the degrees of freedom in the Eulidean algorithmsine there is only one division sheme.
66



4.2. Sturm SequenesSturm sequenes are ommonly used to �nd loations of roots of polynomials. The PRSis omputed for a polynomial and its derivative, and the sign hanges are found at variouspoints. Normality onditions are not related to this root �nding method, and are thus largelyignored. For a detailed desription of Sturm sequenes and Sturm's Theorem see [13℄.Definition 59. Let A be a square-free polynomial. The Sturm sequene for A is
PRS (A,A′) where A′ is the derivative of A.While the de�nition an be extended to Laurent polynomials, we only onsider Sturmsequenes involving traditional polynomials.Example 60. Let A (x) = x4 + 4x3 + 6x2 + 7x+ 2. Then the Sturm sequene for A is

PRS (A,A′) = PRS
(

x4 + 4x3 + 6x2 + 7x+ 2, 4x3 + 12x2 + 7
)

=

{

9x

4
+

1

4
,
4235

729

}

.The Sturm sequene is abnormal sine the degree dereases by two from A′ to the �rstelement of the PRS.As mentioned in setion �4.1, Sturm sequenes have fewer degrees of freedom than thegeneral two polynomial ase, and muh fewer than the general two Laurent polynomial PRSase. The goal is to �nd algebrai or analyti onditions on the starting polynomial whihrelate to normality. We begin with a few basi results.Lemma 61. Let A (x) =
∑n

i=0 aix
i be a polynomial of degree n ≥ 3 with real oe�ients.The �rst division of the Sturm sequene of A is abnormal if and only if

an−2 =
(an−1)

2 (n− 1)

2an · n
.
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Proof. Let A be de�ned as above. Then
A′ (x) =

n
∑

i=0

i · aixi−1Performing the �rst division of the Sturm sequene yields the leading oe�ient (LC) of theremainder
LC (r1) =

2

n
an−2 −

(n− 1) (an−1)
2

an
.The division in the �rst step is abnormal exatly when this leading oe�ient equals 0.Thus, we set the expression equal to zero and solve for an−2.

2

n
an−2 −

(n− 1) (an−1)
2

an
= 0

an−2 =
(an−1)

2 (n− 1)

2an · n
.

�Unsurprisingly, the normality of the Sturm sequene for a given step only involves asubset of the oe�ients on the higher powers of the polynomial. We an make this statementpreise by inspeting the Eulidean algorithm in the following lemma.Lemma 62. Let A (x) =
∑n

i=0 aix
i be a polynomial of degree n ≥ 3 with real oe�ients.Then the leading oe�ient of the jth Sturm sequene element, and hene normality at stepj, depends only on {an, an−1, . . . , an−2j}.This lemma shows that normality at a given step is tied to only a subset of the roots. Thisfurther demonstrates the di�ulty in determining normality from the starting polynomials.Every oe�ient plays a role in at least one division and hene even a single degree of freedomfor the oe�ients an often be manipulated to ause the PRS to be abnormal.The next result links the normality of the �rst division with the n − 2 derivative for adegree n polynomial. 68



Theorem 63. Let A (x) =
∑n

i=0 aix
i be a polynomial of degree n with real oe�ients.If A(n−2), the (n− 2)nd derivative of A, has a repeated root, then the Sturm sequene of Ais abnormal. If A(n−2) does not have a repeated root, then the �rst division of the Sturmsequene is normal.Proof. We �rst ompute the (n− 2)nd derivative of A,

A(n−2) (x) =
n!

2
anx

2 + (n− 1)!an−1x+ (n− 2)!an−2.Set this polynomial equal to 0 and solve for x,
n!

2
anx

2 + (n− 1)!an−1x+ (n− 2)!an−2 = 0

x =
−an−1 (n− 1)!±

√

(an−1)
2 (n− 1)!− 2anan−2 (n− 2)!n!

an!
.A(n−2) will have repeated roots exatly when the disriminant is 0. Setting the expressionequal to 0 and solving for an−2,

(an−1)
2 (n− 1)!− 2anan−2 (n− 2)!n! = 0

an−2 =
(an−1)

2 (n− 1)

2an · n
.Comparing with lemma 61, we �nd this is exatly the ondition for the �rst division tobe abnormal. �This theorem suggests muh more algebrai struture to the normality property of Sturmsequenes and PRS in general than is urrently known, a similar observation also made in[9℄. Only the �rst derivative is omputed for the Sturm sequene of a polynomial, so a69
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Figure 4.2.1. A (x) = x4 − 2x3 − 12x2 + 7x+ 7 with in�etion points shown.relationship to the roots of a muh higher order derivative is surprising. When deg (A) = 4,this theorem relates the graph of a polynomial with the normality of its Sturm sequene.Corollary 64. Let A be a polynomial with real variables and deg (A) = 4. If A has twodistint points of in�etion, then the �rst division of the Sturm sequene of A is normal.Proof. The proof follows diretly from theorem 63, noting that the (n− 2)nd derivativeof A in this ase is A′′, the seond derivative. Sine the roots of A are the in�etion pointsof A, the orollary follows. �Example 65. Using the orollary, we an now observe the graph of the following quartipolynomial and determine normality of the �rst division in the Sturm sequene.The in�etion points of the polynomial at x = −1, 2 are shown in �gure 4.2.1. Sine theyare distint, the �rst division of the Sturm sequene is normal.An exat ondition for normality in terms of the polynomial oe�ients an be found byperforming the Eulidean algorithm on general oe�ients.Corollary 66. The Sturm sequene for any quadrati polynomial, A (x) = a0 + a1x+

a2x
2 , is normal. 70



Proof. There is only one division in the Sturm sequene whih yields the GCD. Thenormality ondition is then
a0 −

a21
4a2

6= 0.For a2 6= 0, this is equivalent to the disriminant being nonzero, so A (x) = a0+a1x+a2x
2need only be square-free. Sine every Sturm sequene has a square-free polynomial as thestarting polynomial by de�nition, the orollary holds. �We an generalize the fat observation in the proof of orollary 66.Fat 67. Let A (x) be the polynomial input for a Sturm sequene. Then by de�nition,

A (x) is square-free and hene oprime with its derivative. Then gcd (A,A′) = c for somenonzero onstant c.To ompletely lassify normality for Sturm sequenes, perform the Eulidean algorithmon general oe�ients and extrat the leading oe�ients of eah element of the PRS. Sineevery leading oe�ient must be nonzero for the Sturm sequene to be normal, the produt ofthe leading oe�ients is a normality ondition, although performing the Eulidean algorithmon general oe�ients results in an exponential growth of expression lengths and omputationtime. 4.3. Abnormality Conditions and ExamplesAs previously mentioned, there are many degrees of freedom available to �nd examplesof abnormal PRS. The following example demonstrates that for a given Laurent polynomial
h, he and ho an be oprime, have interlaed and stritly monotoni oe�ients and stillresult in an abnormal PRS.Example 68. The Laurent polynomial

A (z) =
170

9
z8 + 17z7 + 16z6 + 15z5 + 14z4 + 13z3 + 12z2 + 11z71



with the {left, sym, . . . , sym} division sheme applied to he and ho is abnormal.Examples of abnormal PRS with even a single degree of freedom in one of the oe�ientsare easily onstruted by performing the division on the general oe�ients, and then settingan extreme oe�ient of a remainder polynomial equal to zero and solving. In some ases,however, the expressions for the extreme terms have no solution, whih leads to families ofpolynomials with no abnormal PRS for spei�ed division shemes.We investigate the plots leading to the onjetures in hapter 2, where the lifting steproots appear to be samples of a ontinuous limiting urve. While Daubehies �lter oe�ientsare not samples of a single ontinuous funtion, the even and odd parts are onverging.Coi�ets are another family of orthogonal wavelets, disovered by Daubehies in [6℄, andsimilar behavior is seen in the lifting step roots as shown in �gure 4.3.1. Just as in theDaubehies �lter ase, Coi�ets have onvergent even and odd parts. Unfortunately, thisonvergene is not enough to ensure a normal PRS, even for arbitrarily �ne samples, asdemonstrated with the following example.Example 69. We want to onstrut a Lipshitz ontinuous funtion F on [0, 1] suh thatany polynomial formed by taking oe�ients equal to samples of F at dyadi points resultsin an abnormal PRS for the {left, sym, . . . , sym} division sheme on the even and odd parts.Sine F will be Lipshitz ontinuous, the even and odd parts of the polynomial formed bysampling will onverge, demonstrating this is not a su�ient ondition for a normal PRS.Let
F

(

j

2i+1

)

= cijrepresent the value of the limiting funtion at dyadi level i and position j. The idea is tomanipulate the �rst sample at eah level so the PRS is abnormal, and interpolate the other72
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() Filter Length 48Figure 4.3.1. Nearest Neighbor Roots for Coi�et �lters of various lengthswith {left, sym, . . . , sym} division sheme73



samples. For the �rst level,
c11 =

1

4
, c12 =

1

2
, c13 =

3

4
, c14 = 1whih are samples of f (x) = x. Then for i, j > 1,

cij = ci−1

( j

2)
for even j

cij =
ci−1

( j−1

2 )
+ ci−1

( j+1

2 )

2
for odd jThen the �rst sample (j = 1) for levels i > 1 is de�ned by the following sequene,

ci1 =
ci−1
1

(

ci−2
1 + ci−1

1

)

2ci−2
1

c01 =
1

2

c11 =
1

4
.The �rst few values of the sequene are

ci1 =

{

1

2
,
1

4
,
3

16
,
21

128
,
315

2048
, . . .

}

.Then at eah level i > 1, the abnormality ondition
ci1c

i
4 − ci2c

i
3 = 0holds.The �rst few levels are given,

{

c2j
}8

j=1
=

{

3

16
,
1

4
,
3

8
,
1

2
,
5

8
,
3

4
,
7

8
, 1

}

{

c3j
}16

j=1
=

{

21

128
,
3

16
,
7

32
,
1

4
,
5

16
,
3

8
,
7

16
,
1

2
,
9

16
,
5

8
,
11

16
,
3

4
,
13

16
,
7

8
,
15

16
, 1

}
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De�ne F on [0, 1] to be the limit of the dyadi points as i → ∞.Lemma 70. The sequene
{

ci1
}∞

i=1in the onstrution of F in example 69 is monotonially dereasing and F (0) > 0.Proof. Reall from example 69,
c01 =

1

2

c11 =
1

4

ci1 =
ci−1
1

(

ci−2
1 + ci−1

1

)

2ci−2
1

.By indution, we see the sequene is monotonially dereasing as
ci1 =

ci−1
1

(

ci−2
1 + ci−1

1

)

2ci−2
1

= ci−1
1

(

ci−2
1 + ci−1

1

2ci−2
1

)

< ci−1
1 .From the onstrution it is lear

F (0) = lim
i→∞

ci1.This limit has a stritly positive value, as:
0 <

(

ci1 − ci−1
1

)2

2ci1c
i−1
1 <

(

ci−1
1

)2
+
(

ci1
)2

3ci1c
i−1
1 −

(

ci−1
1

)2
< ci1c

i−1
1 +

(

ci1
)2

3ci1c
i−1
1 − ci−1

1

2
<

ci1c
i−1
1 + (ci1)

2

2ci−1
1

2ci1 −
ci1 + ci−1

1

2
< ci+1

175



Figure 4.3.2. The points from right to left are c11, c
2
1, c

3
1, c

4
1 shown with theline through c11 and c21.The last inequality shows that ci+1

1 is stritly above the line through ci1 and ci−1
1 . Hene,

limi→∞ ci1 must lie above the y-interept of every line segment joining ci1 and ci−1
1 for any i.Sine the y-interept of the segment joining c11 and c21 is 1/8 as shown in �gure 4.3.2, thelimit is stritly positive.

�Lemma 71. The funtion F de�ned in example 69 is Lipshitz ontinuous.Proof. The onstrution interpolates every point exept the leftmost sample at eahlevel i. Thus, F is a ontinuous pieewise linear funtion on the interval
[

1

2i+1
, 1

]for i → ∞, where the sequene {ci1}
∞

i=1 are the endpoints of the linear segments. Usinglemma 70 shows this sequene is monotonially dereasing and onverges to a positive value,76



thus the slopes of eah linear segment are
{

ci1 − ci+1
1

}∞

i=1
,whih is a stritly dereasing sequene onverging to 0. Thus, for any x, y ∈ [0, 1]

|F (x)− F (y)| ≤ |x− y| ,hene F is Lipshitz ontinuous. �We now �nd a family of polynomials with normal PRS for the {left, sym, . . . , sym}and {right, sym, . . . , sym} division shemes. These polynomials are generated in a similarmanner as the previous example by sampling a given funtion to generate the oe�ients. Anononstant linear funtion sampled at equal intervals always has a normal PRS wheneverthe even and odd parts have full degree. We begin with some tehnial lemmas.Lemma 72. Let c, d ∈ R be nonzero onstants and let n be an integer with n > 1. Supposethe oe�ients of two Laurent polynomials are arithmeti progressions of the forms:
{c, 2c, . . . , nc}and

{d, 2d, . . . , (n− 1) d} .Then symmetri division on the above Laurent polynomials results in a remainder poly-nomial with oe�ients in an arithmeti progression of the form
{

− nc

n− 1
,− 2nc

n− 1
, . . . ,−(n− 2)nc

n− 1

}

.In addition, the symmetri division is normal.77



Proof. The proof is a straightforward omputation. Symmetri division is equivalentto the following operations on the oe�ient arrays,
{

2c− 2d

d
c− 1

n− 1
nc, 3c− 3d

d
c− 2

n− 1
nc, . . . , (n− 1) c− (n− 1) d

d
c− n− 2

n− 1
nc

}

=

{

nc

n− 1
,
2nc

n− 1
, . . . ,

(n− 2)nc

n− 1

}

.The division is normal sine c 6= 0 and n > 1 by assumption. �We now show that polynomials with oe�ients generated by sampling nononstant linearfuntions have normal PRS for the {left, sym, . . . , sym} and {right, sym, . . . , sym} divisionshemes.Theorem 73. Let P (x) be any Laurent polynomial with oe�ients of the form
{A,A+ k, A+ 2k, A+ 3k, . . . , A+ (2n− 1) k} ,where k 6= 0 and the even and odd parts of P (x) have degree n− 1. Then the
{left, sym, . . . , sym} and {right, sym, . . . , sym}division shemes starting with the even and odd parts of P (x) are normal.Proof. Using lemma 72 it is enough to show that two onseutive remainder polynomialshave oe�ients satisfying the onditions in lemma 72 for normality to hold. We start withthe {left, sym, . . . , sym} division sheme. The oe�ients of the starting polynomials are

{A,A+ 2k, A+ 4k, . . . , A+ (2n− 2) k}and
{A+ k, A+ 3k, A+ 5k, . . . , A+ (2n− 1) k} .78



Performing the {left} division results in a remainder with oe�ients
{

(A+ 2jk)− A

A+ k
(A + (2j + 1) k)

}n−1

j=1

{

2k2

A+ k
,

4k2

A+ k
, . . . ,

(2n− 2) k2

A+ k

}

.Note that k 6= 0 and sine the even and odd parts of A have degree n−1 by assumption,
A + k 6= 0, so the �rst division is normal. In addition, the remainder polynomial hasoe�ients in arithmeti progression of the form given in lemma 72.Continuing with symmetri division yields a remainder polynomial with oe�ients ofthe form







A+ (2j − 1) k − A+ k
(

2k2

A+k

)

(

2jk2

A + k

)

− A+ (2n− 1) k
(

(2n−2)k2

A+k

)

(

2 (j − 1) k2

A + k

)







n−1

j=2

=

{

− n

n− 1
(A+ k) ,− 2n

n− 1
(A+ k) , . . . ,−(n− 2)n

n− 1
(A+ k)

}

.Thus, the seond division is normal, and the oe�ients of the remainder polynomialare in arithmeti progression of the form given in lemma 72. Sine the rest of the divisionsare symmetri division and the inputs both have oe�ients in arithmeti progression, thetheorem holds.For the {right, sym, . . . , sym} division sheme, the same argument holds with the arraymanipulations assoiated with {right} division. �Corollary 74. Any two Laurent polynomials with oe�ients of the following formsare oprime,
{A,A+ 2k, A+ 4k, . . . , A+ (2n− 2) k}and

{A+ k, A+ 3k, A+ 5k, . . . , A+ (2n− 1) k} ,79



given that the extreme oe�ients for both polynomials are nonzero and n > 1.Proof. We need only observe that the extreme oe�ients for any of the remainderpolynomials in the Eulidean algorithm are nonzero as shown in theorem 73. Then the GCDis a monomial and hene the polynomials are oprime. �
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