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CHAPTER 1

Introduction

Our goal is exploring and better understanding factorizations of polyphase matrices for
finite impulse response (FIR) filters. In particular, we focus on nearest neighbor factoriza-
tions discussed by Wickerhauser and Zhu [19] that allow for efficient implementation of the
discrete wavelet transform (DWT) for the algorithms of Daubechies and Sweldens [8] and
Mallat [10]|. Nearest neighbor lifting is a specific form of the general lifting scheme that
improves the lifting algorithm by optimizing the number of efficient memory accesses. Near-
est neighbor lifting factorizations are typically generated by implementing the Euclidean
algorithm for Laurent polynomials, which introduces multiple choices of factorizations of a

polyphase matrix associated with a filter, and are the main focus of this work.

1.1. Filters and the Euclidean Algorithm

A filter h is a linear map h : ¢> — (2 which is characterized completely by its impulse
response, {hiez}. We only consider real-valued finite impulse response (FIR) filters which
correspond to only finitely many nonzero filter coefficients (also referred to as “taps”). Since
we work primarily with the lifting algorithm and polyphase matrices, it will be convenient
to represent a filter by its z-transform, the Laurent polynomial with coefficients equal to the

impulse response,

h(z) = Z hyz ",

DEFINITION 1. The support of a Laurent polynomial h () = >, ., bz~ is

support (h (2)) ={k € Z | mi < k < mg} = [my,ms],



where

my = inf{k € Z: hy # 0}

mg =sup{k € Z: h; #0}.
DEFINITION 2. The degree of the Laurent polynomial i (2) = >, ., hxz " is
|h| = mg —my,
where support (h(z)) = [mq, ms] C Z.

This definition differs from the notion of degree for traditional polynomials. For example,
|22 4+ 32| = 1. With this Laurent definition of degree, we are able to implement the Euclidean

algorithm on the ring of Laurent polynomials.

LEMMA 3. Let A(z) and B(z) be nonzero Laurent polynomials satisfying |A(z)| >
|B(z)|. Then there exists a quotient polynomial Q (z), and a remainder polynomial R (z)

with degree strictly less than B (z), satisfying
A(z)=B(2)Q(2)+ R(2).

In contrast to traditional polynomial division, there are choices for which terms to cancel
in Laurent polynomial division which result in different quotient and remainder polynomials.
We focus on examples involving quotients of degree at most one, since we wish to work

primarily with nearest neighbor factorizations which require this condition.

EXAMPLE 4. Let A(2) =92+ 12+ 627" and B (z) = 3z + 2. Since |A| = |B| + 1, there

are three choices for the first division in the Euclidean algorithm according to which terms of



A (z) are eliminated. If the lowest two terms are eliminated, denoted {right — right}, then
A(z) = B(2)Q(2) + R(2)

3 9
(92 +12+627") = (32 +2) (5 + 3z—1> + (52) :

We check the degree of the remainder is less than the divisor, |B(z)| =1 > 0= |R(2)|.
Comparing the remainder with A (z), we see that indeed the two rightmost terms, those
with the two lowest powers, have been eliminated. The other two choices for the division
are eliminating the highest and lowest power from A (z), denoted {sym}, and eliminating

the two highest power terms, denoted {left — left},
(92+124627") = (32+2) (3+327") +(=3) {sym}

(92+124+627") = (32+2) 3+227") + (227") {left —left}.

Since the degree of the remainder polynomial is reduced at each step, we can implement
the Euclidean algorithm on the ring of Laurent polynomials. The choice of which terms to

eliminate at each division, however, influences the result.

DEFINITION 5. A division scheme is the sequence of choices for the divisions at each step

in the Euclidean algorithm for two Laurent polynomials.

In general, the Euclidean algorithm is implemented on Laurent polynomials A, B sat-
isfying |A| > |B| > 0 by defining ay = A and by = B and performing the following for
E=0,1,2,...:

A1 = by
bry1 = ar, — qrby.

In the above equations ¢ is any of the possible quotients from division. The Euclidean

algorithm terminates when b, = 0 by finding a greatest common divisor (GCD) by, of the



starting Laurent polynomials, similar to the traditional polynomial case, as shown by the

following lemma from [19].
LEMMA 6. Let n be the smallest positive integer for which b, = 0. Then a, € ged (A, B).

The greatest common divisor for two Laurent polynomials is unique only up to multiplica-
tion by a unit, which, in the ring of Laurent polynomials, is any degree 0 polynomial (nonzero
monomial). The choice of division scheme will be the key to controlling the factorizations

resulting from the Euclidean algorithm in the lifting algorithm.

1.2. Polynomial Remainder Sequences

The sequence of remainder polynomials generated by the Euclidean algorithm is called
the polynomial remainder sequence or PRS. For traditional polynomials, there is only one
PRS associated to two polynomials as there are no choices in the Euclidean algorithm. We
now extend the definition of polynomial remainder sequence to Laurent polynomials and

define the property of normality.

DEFINITION 7. A Laurent PRS for a given division scheme is the set of remainder Laurent
polynomials obtained by the Euclidean algorithm at each step. For polynomials A and B
we denote it PRS (A, B).

DEFINITION 8. A (Laurent) PRS is called normal if the (Laurent) degree decreases by
exactly 1 at each step of the Euclidean algorithm. A (Laurent) PRS that is not normal is

called abnormal.

DEFINITION 9. A single division in the Euclidean algorithm is called normal if the degree

of the remainder polynomial decreases by exactly one, otherwise it is called abnormal.

Since the division algorithm reduces the remainder degree by at least one, normality

characterizes when the maximal number of steps in the Euclidean Algorithm are needed. The



following is an example of a normal PRS for the polynomials A (z) = 22+ 723+ 82% + 5z +3
and B (z) = 32® + 42% + 2z + 5.

EXAMPLE 10. The Euclidean Algorithm for the polynomials A (z) = 2z + 723 + 82 +
5z+3 and B (z) = 323+ 42?4+ 2x+5 has only one division scheme as there are no choices for
the divisions for traditional polynomials. If A and B are considered Laurent polynomials,
then the division scheme corresponding to the Euclidean Algorithm for traditional polyno-
mials is {left — left,left — left,... left — left}, shown below. We begin by computing the

quotient ¢; and remainder 7y,

13 2 8z% 11 38

9 3 9 9 9
Thus, the first polynomial in the PRS is r; = % — HTx — % and we continue with the

Euclidean Algorithm to find ¢» and 7o,

8x? 1lx 38
Bw)=a (7—7—6)”2

_ (Fx 585 (8% w38 (139 1755
IR 64 9 9 9 32 64 )

Thus, the second polynomial in the PRS is ry = 13??% + 12—25. The final step in the

Euclidean Algorithm yields the final polynomial in the PRS which is necessarily the GCD
of A and B,

(8:[;2 1z 38) (1395x 1755)
—— =) = + +7y

32 64
_ (212z 11840 1395z L 1755\ ([ 448
~ \15795 123201 32 64 13689 )

448
13689

We conclude the final polynomial in the PRS is r3 = and

)= 8z 1lz 38 1395x+ 1755 448
9 9 97 32 64 ~ 13689



Since the degree of the polynomials of the PRS decreases by exactly one at each step,
the PRS is normal.

1.3. Discrete Wavelet Transforms and Lifting

The discrete wavelet transform (DWT) takes a signal v € ¢? and applies the analysis
filters iL, g to decompose it into coefficients of the wavelet basis. The signal passes through
the low-pass h and high-pass g filters and is then subsampled. The inverse transform (IDWT)
reconstructs the signal by upsampling it and then applying the synthesis filters, h (low-pass)
and g (high-pass). We only consider FIR filters in this dissertation, hence h, g, h, g have finite
support. A complete description of wavelet transforms can be found in [2, 3, 7, 12, 16].

A commonly desired property of filters is the perfect reconstruction property that allows
the original signal to be exactly recovered by the synthesis filters after passing through the

analysis filters.

DEFINITION 11. The perfect reconstruction property in our z-transform notation is then
hiz)h () +g(2)g(z") =2

h(z)h (=) +g(x)g(—=") =0.

The even and odd parts of a filter, defined below, are useful in representing the DW'T
and IDWT.

DEFINITION 12. Let h(2) = > hyz* be a Laurent polynomial. Then the even part of
h is
he (z) =Y hopz*,

k
and the odd part of h is

ho (Z) = Z h2k+1z_k.

k



For synthesis filters, we define the polyphase matrix P (z),

he  ge
P(z) =
ho 9o
and similarly for P (z) using h and §. The perfect reconstruction property can be rewrit-
ten (8] as

T

P(z)P (27') =1Id.

Since the entries of P and P are all Laurent polynomials, their determinants are Laurent

polynomials as well. Then,
det (P (2)) det (P (z_l)T> =det (Id) =1,

which can only occur when the determinants of P and P are degree 0 (monomials). We

can rescale g to ensure det (P (z)) = 1. Suppose det (P (z)) = cz™ for some nonzero c¢, then,

he gfn he o ho e ].
det = = lefo Tode _ et (P(2)) = 1.
h, Jo cz™ cz™ cz™m

CZ’!YL

DEFINITION 13. A pair of filters h, g are called complementary if the associated polyphase

matrix P satisfies det (P) = 1.

Given an FIR filter h, a complementary filter can be found if and only if A, and h, are
coprime |7, 19]. We can apply the Euclidean algorithm to h. and h, with any division

scheme to obtain



where {gi} are the quotients and cz™ € ged (he, h,). The GCD is necessarily a monomial

since h. and h, are coprime, and a complementary filter ¢ is defined by

he ge N1 q 1 cz™ 0
-]
ho Yo k=0 1 0 0 Czlm

Given synthesis filters h, g, a pair of analysis filters can be found which satisfy the perfect

reconstruction property by defining h and g by

Thus, if an FIR filter A has comprime even and odd parts h. and h,, then we can always
find g, b, § with the perfect reconstruction property [5].

The lifting scheme is a way to build filters satistying the perfect reconstruction property.
The idea is to start with the lazy wavelet, which only downsamples the signal, and then
multiply by matrices with unit determinant (lifting steps) to ensure the resulting filters
h,g will be complementary. The choice of lifting steps leads to different properties of the
resulting multiresolution analysis, and can be used to build any FIR wavelet. The two

following theorems from [8| outline the lifting scheme.

THEOREM 14. (Lifting) Let h,g be complementary filters. Then any other finite filter

g™ complementary to h is of the form:

9" (2) = g(2) + h(2)s (%),



where s (z) is a Laurent polynomial. Conversely, any filter of this form is complementary

to h.

THEOREM 15. (Dual Lifting) Let h,g be complementary filters. Then any other finite

filter h™ complementary to g s of the form:
W (z) = h(2) +g(2)t (%),

where t (2) is a Laurent polynomial. Conversely, any filter of this form is complementary

to g.

To build the desired FIR filter, start with the Lazy wavelet and alternate lifting and dual

lifting steps, which correspond to multiplying the polyphase matrix by matrices of the form

1 s(2) 1 0
0 1 t(z) 1

for lifting and dual lifting, respectively. Using the lifting scheme to construct wavelets with

special properties is described in detail in [4, 17].
1.4. Overview of Results

Wickerhauser and Zhu [19] showed that every filter has a nearest neighbor factorization
if additional matrices are added when the Euclidean algorithm does not directly produce a
nearest neighbor factorization. In chapter 2, we show that for most popular filters, these addi-
tional matrices are needed exactly when the PRS generated from A, and h, is abnormal. The
only candidates for a direct nearest neighbor factorizations are from the {left, sym, ..., sym}
or {right,sym,...,sym} division schemes, depending on the filter length, and exist when
these PRS are normal. Uniqueness of direct nearest neighbor factorizations for filters with
certain length restriction is shown, and an algorithm to compute the factorizations is given.

The effects of an initial z-shift are characterized and related to normality of the PRS.



In chapter 3, the results about direct nearest neighbor factorizations are applied to
Daubechies filters and the existence of a direct nearest neighbor factorization is numeri-
cally verified for filters with lengths up to 220. Asymptotics of Daubechies polynomial roots
from |14, 15| are used to prove limiting behavior of Daubechies filter coefficients, and are
related to properties of Daubechies filter factorizations.

In chapter 4, normality of PRS for traditional and Laurent polynomials is analyzed.
Sturm sequences are introduced, and normality of the first division is related to the zeros
of a higher order derivative of the starting polynomial. For quartic polynomials, this gives
a geometric representation of normality for the first division. An example is constructed to
show that convergence of the even and odd parts of a family of polynomials is not sufficient for

normality. Sufficient conditions for normality are given for a particular family of polynomials.

10



CHAPTER 2

Nearest Neighbor Factorizations

2.1. Introduction

Recall that the Euclidean algorithm for a given division scheme of h. and h, for an FIR
filter h results in a factorization of the polyphase matrix P, where the complementary filter
g can be defined using the lifting steps [8]. Limiting the form of the lifting steps can result in
fewer distant memory accesses. This motivates the nearest neighbor factorization definition

from [19], repeated here:

DEFINITION 16. Let P be the polyphase matrix of a filter bank. A lifting factorization
of P,

M1 s (2) 1 0 M 0
P(z)=
l];J(:) 0 1 te(2) 1 0 M

is called nearest neighbor if it satisfies the following conditions,
se(2) = ap + Bz’

[ (Z) = Y2 + O,

where ag, B, Vi, 0k, M € C.

Wickerhauser and Zhu [19] showed that every FIR filter has a nearest neighbor factor-
ization if additional matrices are added, often at the expense of the factorization having a
higher condition number. With these additional matrices, every division scheme of an FIR
filter results in a nearest neighbor factorization. We recall a lemma from [19] which includes

the definition of the condition number of a matrix.

11



LEMMA 17. If P (z) is the polyphase matriz of a perfect reconstruction filter pair, then

sup{ Amaz (P*P) = |z| = 1}

cond (P) := inf{ Amin (P*P) : |2 = 1}

where Apin (M) and Ao (M) are eigenvalues of matrix M. Furthermore, if P =
P ---P,, then

cond (P) < cond (Py) -+ -cond (P,) .

ExAMPLE 18. Consider a polyphase matrix with the following lifting factorization

This factorization is not nearest neighbor, but one can be found by decomposing the first

matrix using additional matrices,

P(z) =
0 1 2z 1 0 1

2710 1 271 z 0 1 0 1 0

0 =z 0 1 0 27! 2z 1 01
10 1 —2z1 1 0 11 1 0 1 2zt 10
z 1 0 1 —14+2z 1 0 1 -1 1 0 1 0 1
1 —z 1 0 1 1—z2 1 0 11 1 0 10
0 1 211 0 1 -1 1 0 1 2z 1 0 1

12



In this case, we see that a single lifting step must be expanded into 12 matrices to satisfy
the nearest neighbor form. Furthermore, 11 of the 12 additional matrices (all but the Id

matrix) increase the condition number of the factorization.

For the Daubechies-4 filter with the {left, sym} division scheme, the Euclidean algorithm

results in a nearest neighbor factorization directly using the quotients as the lifting steps.

ExXAMPLE 19. The Daubechies filter with four coefficients and shifted by z is

C1+4v3  3+4V3  3-V3 , 1-V3
h(z) = 4\/52—1- 4\/§+4\/§z +4\/§z.

The polyphase matrix factorization with the {left, sym} division scheme is

P2 1 0.57735 1 0 0.29886 0
z) =
0 1 —0.43301 + 2.79904> 1 0 3.34607

which results directly in a nearest neighbor factorization. Therefore, no additional matrices

are needed.

DEFINITION 20. Given a filter h and a division scheme with Euclidean algorithm quo-

tients {qx} such that

he | R A M
ho k=0 1 0 0

and {qi} satisfy the nearest neighbor conditions, then the factorization is called a direct

nearest neighbor factorization.

Note the equation in the direct nearest neighbor factorization definition can be written

in nearest neighbor form using

¢ 1 0 1 10 1 ¢ 01
10 10| | q 1 0 1 10

13



For factorizations with an even number of quotients from the Euclidean algorithm, the
matrices can be paired and the flip matrices cancel for each pair, resulting in the desired

nearest neighbor form,

qll QQl 1(]1 1 0 181 1 0
1 0 1 0 0 1 q 1 0 1 tp 1

For factorizations with an odd number of quotients from the Euclidean algorithm, there
is an additional matrix which cannot be paired and hence a flip matrix remains. This can

corrected for by starting the Euclidean algorithm with the roles of h. and h, reversed. Then,

o A M ]
he | g 10 0 |
(| Jou [ o] (Ela 1]\ M
I g 1 o]/ o
ot [n| [1 o] (&L an 10 M
1 O_ [he N g 1 =1 | 0 1 Qra2 1] 0
7% N I TV e IS 10 M
e | o 1\ o 1] g 1 0|

and the factorization is nearest neighbor whenever the quotients satisfy the conditions of
the nearest neighbor definition. Thus, whenever the {right, sym, ..., sym} division scheme
is given for a filter with an odd number of quotients, assume the Euclidean algorithm had
input polynomials of ag = h, and by = h,, unless otherwise stated.

Wickerhauser and Zhu [19] showed that not all FIR filters have a direct nearest neighbor

factorization for any z-shift and division scheme, demonstrated by the split Haar filter,

h=—(142").

%-

14



This is easily seen, as there is only one division scheme for the split Haar filter and it

does not produce a direct nearest neighbor factorization.

2.2. Effects of z-Shifts

Since the GCD in a nearest neighbor factorization must be constant, it can be useful to
multiply the z-transform of the filter by an initial shift before factoring into lifting steps.
This corresponds to multiplying the z-transform of the filter by some power of z, which
has no effect on the filter coefficients. We begin with two lemmas showing the effects of

multiplying by even and odd powers of z.

LEMMA 21. Multiplying the z-transform of a filter h by z*™, m € Z, multiplies h, and h,

m

by 2™.

PRrROOF. The z-transform of the shifted filter is

hshzft( ) 2mh o 2m Zh' P Zh Z2m z

Thus, the even part of hgpife (2) is

hshift,even (Z) = Z h2iz =z Z h22 =2z (Z) .

Similarly for the odd part of hgpife (2)

Pshift.odd (2) = Z hoip12" " = 2™ Z hoiv127" = 2"h, (2).
; i

U

LEMMA 22. Multiplying the z-transform of a filter h by z switches h, and h,, and multi-

plies h, by z.

PROOF. The z-transform of the shifted filter is

15



hshige (2) = zh (2 —thz th -

Thus, the even part of hgpip (2) is

h’shift,even (Z) - Z h2izl_i - Z h’2i+lz_i = h’o (Z) s

and the odd part of hgpip (2) is

shzft odd Z h2z+1z = =z Z h2z = Zhe ) .

An arbitrary integer power shift of a filter can be thought of as first an even power shift,
and then a shift by z if the power is odd. Thus, multiplying a filter by 2>™*! shifts the
even and odd parts of the filter by 2™ according to lemma 21, and then swaps the even and
odd parts and multiplies the even part by z as specified in lemma 22. In the context of
lifting factorizations, shifts by an even power of 2z allow us to adjust the GCD to be constant

without affecting the lifting steps, as shown in the next lemma.

LEMMA 23. Given a filter h factored into lifting steps {q;} with GCD M2z’ the shifted

filter 272 h has the same lifting steps {q;}, but with constant GCD M.

PROOF. A filter having lifting steps {¢;} with a nonzero GCD Mz’ implies

1 Mzi
ho (2) 10 0

16



Using lemma 21 with the shift 2727 h.(z) and h, (2) are multiplied by 277, hence the

lifting factorization becomes

27 h, (2) he (2)
:Z_]
277 h, (2) ho (2)
_ H ¢ 1 Mz _ H ¢ 1 M
10 0 10 0

U

This result allows us to record only the coefficients in the support of the remainder
polynomials generated during the Euclidean algorithm on Laurent polynomials when finding

nearest neighbor factorizations.

2.3. Number of Direct Nearest Neighbor Factorizations

We focus our attention on filters that satisfy |h.| = |h,|, as many popular wavelet filters
satisfy this condition, including Daubechies filters which are the main topic of the next

chapter.

REMARK 24. Let h be a filter of length 2V which satisfies |h.| = |h,| = N —1 > 1. Then

there are at most 4 - 3V =2 division schemes with quotients of degree at most one.

The remark is shown in [11], and results from 4 choices for the first division depending

upon which terms are canceled,

left,left — left, right, right — right,

no choices for the final division, and 3 choices for the remaining N — 2 divisions,

left — left, right — right, sym.

17



The {sym} element corresponds to canceling the two extreme terms. The sequence of re-
mainder polynomials resulting from a given division scheme will play a key role in nearest

neighbor factorizations.

REMARK 25. Given two Laurent polynomials, it is possible to have normal and abnormal

PRS corresponding to different division schemes.

For a given division scheme to produce a direct nearest neighbor factorization, the quo-
tients resulting from the Euclidean algorithm must be in the nearest neighbor form, otherwise
additional matrices are required. We begin with a result about the first division for length

2N filters which satisty |he| = |h,| = N — 1.

THEOREM 26. Given a filter h of length 2N which satisfies |he| = |ho] = N —1 > 1, and
a division scheme resulting in a direct nearest neighbor factorization, then the first element
of the division scheme is either {left} or {right}. This is equivalent to the first lifting step

(quotient in the Euclidean algorithm) being a constant.

PROOF. Let {ai}i\io and {bi}ﬁio be the polynomials in the Euclidean algorithm, starting
with ag = h. and by = h,, and let {qi}i\il be the quotients. Since the division scheme results
in a direct nearest neighbor factorization, the first lifting step is of the form ¢, = ¢;2+d; or
q1 = ¢z ' 4 d;. For the case q; = ¢,z +dy, assume toward contradiction that, ¢; # 0, which
corresponds to having {right — right} as the first element of the division scheme. Using

lemma 23, assume h, and h, have constant lowest degree terms. Then

N-1
0 0,j %
Jj=0

N-1
b(): E bo,jZ]
J=0

18



N
bl = ag — (hbo = Z bl,ij.
j=2

The (Laurent) degree of b; has been reduced by at least 1 as required for the Euclidean
algorithm. For the next step in the algorithm, the quotient must be of the form ¢, = o271 4-d>

for the factorization to be directly nearest neighbor. Then,

N-1
a; = bo = E 0,17]'2’]
J=0

N-1 N N
bg = qa; — Qle = Z b(),ij — (022_1 + dg) Z b17ij = Z b2,j2’j.
j=0 Jj=2 Jj=0

We note that |by] = N when dy is nonzero, and |bs] = N — 1 when dy = 0 since the
extreme terms cannot cancel. But then the degree of the remainder has not been reduced
in this step since |b;| = N — 1, a contradiction. A similar argument leads to a contradiction
for the case ¢ = c;27! + dy with ¢; # 0. Thus, ¢; must be constant, which corresponds to

the first element of the division scheme being {left} or {right}. O

Thus, only two choices of the possible four {left,left — left, right, right — right} for the
first division can result in a direct nearest neighbor factorization. The next theorem shows
that there is only one choice for the remaining steps in the Euclidean algorithm that can

result in a direct nearest neighbor factorization.

THEOREM 27. Given a length 2N filter h which satisfies |he| = |h,] = N —1 > 1, and
a division scheme that results in a direct nearest neighbor factorization, then the division

scheme must be either {left, sym,...,sym} or {right,sym,...,sym}.

PROOF. The first element being {left} or {right} is a result of theorem 26. Let ag = h.
and by = h,. Assume the first division is normal, and hence |a;| = |b;| + 1. Without loss of

generality, suppose that the lowest power of ay was eliminated, corresponding to {right} as
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the first element of the division scheme. Then, using lemma 23, assume a; = ij:—()l ay ;2
and b; = Zjvz_ll b1;2’. There are then three possibilities for the division, eliminating the
highest two, lowest two, or highest and lowest terms from a;. The remainders corresponding

to the division choices {left — left} ,{right — right} ,{sym} are
N-3
bL = Z ngZj
=0
N-1
b = by,
=2

N—2
b;ym = Z ngZj,
j=1
respectively, with corresponding quotients of the form ¢ = ¢z~ + dy. Note that ‘bf‘ =
5] = 65| = N — 3. With any choice, a; = Z;V:_ll as 27, and the corresponding g3 must
satisfy |g3| = 1 in order to reduce the remainder degree in the division. Since the previous

quotient was of the form ¢u = co27! + ds, the next step must have the form

q3 = c32 + ds.

The resulting b3 polynomials corresponding to the above by polynomials are:

N—1 N-3 N—1

. . . . .

by = ay — qzby = g as ;2 — (c3z + ds) E by 2 = E by ;2
j=1 j=0 J=0

N N—-1 N
by = as — gzby = Z a25%" = (cs7 + ds) Z bsj%’ = Z b2’
j=2 J=1

Jj=1
N-1 N-2 N-2
sym sym § : j E i E j
b3 = Qa9 — Q3b2 = CLQ’]‘Z] — (CgZ + dg) b2,jzj — b3,jzj'
j=1 7j=1 7j=2

The extreme terms of b and b% cannot be canceled by the subtraction, which can be seen by

comparing the degrees of a; and g3bs. Thus, [bf| = |bk| = N — 1 which cannot occur since
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that would imply the degree was not reduced. Then, [b3"| < N — 4, with equality exactly
when the division is normal. Thus, the only possibility given a direct nearest neighbor
factorization is for all elements in the division scheme after the first element to come from
symmetric division.

Now suppose the first division is abnormal, then |b;| < |a;| — 1. The next step in the
Euclidean algorithm would require a quotient of degree more than 1 to reduce the degree of

the remainder sufficiently, and hence would not result in a nearest neighbor factorization. [J

Thus, out of the possible 4 - 3¥~2 division schemes for a filter satisfying |h.| = |h,| =
N — 1, there are only two candidate division schemes which can result in a nearest neighbor
factorization. The next theorem reduces the number of candidate division schemes for such

filters to one.

THEOREM 28. Let h be a length 2N filter which satisfies |he| = |ho] = N —1 > 1
with a direct nearest neighbor factorization. Then for even N, the division scheme must be

{left,sym,...sym}. For odd N, the division scheme must be {right, sym,...sym}.

PROOF. Let h be as above and suppose N is even. Then theorem 27 shows the only

possible division schemes resulting in a direct nearest neighbor factorization are

{left,sym,...sym}

and

{right, sym,...sym}.

Suppose for contradiction the division scheme is

{right, sym,...sym},
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and let {g;} be the list of quotients from the Euclidean algorithm. Since the factoriza-

tion is nearest neighbor, {¢;} must contain only degree one Laurent polynomials. Since by

assumption |h.| = |h,| = N — 1, there are at most N quotients. Thus,
h el 10 M
S ) (2.3.1)
ho k=1 | O 1 qor 1 0

where M € ged (he, h,). To satisfy nearest neighbor form, ¢go = ¢y2+ds, but from theorem 27,
the {right, sym,...,sym} has a constant ¢; and ¢o = co2~! + dy. For ¢y to be of the correct
form, ¢y = 0, hence g must be a constant. But then the left hand side of equation (2.3.1)
has polynomials of degree N —1 and the right hand side has degree at most N —2 since every

other g; is at most degree one, a contradiction. The same argument holds for odd N. U

THEOREM 29. Let h be a length 2N filter which satisfies |he| = |ho| = N —1 > 1. For
odd N, the division scheme {right,sym,...,sym} having a normal polynomial remainder
sequence PRS (ho, h.) is equivalent to {right,sym,...,sym} resulting in a direct nearest
neighbor factorization. For even N, the division scheme {left,sym,...,sym} having a
normal polynomial remainder sequence PRS (he, h,) is equivalent to {left, sym, ..., sym}

resulting in a direct nearest neighbor factorization.

PROOF. (=) Let the filter be as above, N odd, and let {right, sym, ..., sym} result in
a normal PRS. Then since N is odd, we begin the Euclidean algorithm with ag = h, and
by = h.. The first division cancels the lowest power term of by, and since the division scheme
is normal, there are no additional terms canceled. Then the first lifting step ¢; is constant

and, up to a shift by z,
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The extreme terms b; ; and by y_; must be nonzero for normality to hold, and the extreme
powers are aligned for the highest powers and differ by one for the lowest powers. Continuing
with {sym} division, which again must be normal, then the next quotient, go, must be
exactly degree one. Comparing the degrees of a; and by, the quotient must be of the form

g2 = c327 1 + dy. The next step of the Euclidean algorithm results in

N-1
— E 5
o9 = A2 ;2
J=1

N-2
bg = a; — Qle = Z bg’ij.
j=1

Since the division is normal, b, must have nonzero extreme terms, by ; and by y_2, and the
quotients resulting from the division scheme thus far satisfy the nearest neighbor condition.
The next division is similar the previous {sym} step, but since the left powers align, the

quotient will be exactly degree one, but of the form q3 = c32 + d3z. The next step yields

as — E ag’ij

j=1

N-2
by = as — q3ba = Z b3,j2]-
j=2

The extreme terms b3 and bs y_o again must be nonzero since the division is normal,
and the highest powers are now aligned. The {sym} divisions will hence alternate quotients
in the necessary forms to satisfy the nearest neighbor condition. This pattern can only
be disrupted if an extreme term of the remainder is zero, which cannot occur with the
assumption of normality.

The proof for {left, sym, ..., sym} follows the same arguments as {right, sym, ..., sym},

with the only change that the Euclidean algorithm starts with ag = h. and by = h,.
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(«<=) Without loss of generality, assume the division scheme {left, sym, ..., sym} is
abnormal. Then for at least one division in the Euclidean algorithm, the degree of the
remainder is reduced by more than 1. Then the total number of steps, and hence lifting

steps, in the Euclidean algorithm is at most N — 2. Then

h’e (Z) . ]ﬁ2 qi 1 ng (h'eaho)
ho (2) 10 0 ’

but then the product on the right hand side of the equation must have degree strictly
less than NV — 1 since |¢;| < 1. This is a contradiction as |h.| = |h,| = N — 1 by assumption.

Thus, no division in the division scheme can be abnormal. O

The connection of normal PRS and direct nearest neighbor factorizations is promising
as abnormal PRS form a measure 0 set considering h = Z;V:_OI hizl as (hg,h1,...,hy_1) €
RYN. Unfortunately, there are few, if any, ways to check normality of a PRS in general
without going through the entirety of the Euclidean algorithm and checking the degrees of
the remainders. We will find families of polynomials in chapter 4 for which normality can
be proven without computing the entire PRS.

These results show that with the restrictions of direct nearest neighbor factorizations of
length 2N filters satisfying |h.| = |ho] = N — 1 > 1, uniqueness is achieved exactly when
the associated PRS is normal. In [1], Brislawn approaches the question of uniqueness in the
lifting scheme with a group structure approach, very different from our direct computation
approach. Our approach results in a uniqueness theorem for a smaller class of filters, but

allows us to find an algorithm to find the factorizations whenever they exist.
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2.4. Algorithm for Nearest Neighbor Factorization

Using the results from section §2.3, we outline an algorithm for checking whether an arbi-
trary filter of length 2N satisfying |h.| = |h,| = N —1 has a direct nearest neighbor factoriza-
tion. Due to lemma 23, we need only track the coefficients of the polynomials in the Euclidean
algorithm, and theorem 29 allows us only to check for normality of the {left, sym, ..., sym}
or {right, sym, ..., sym} division scheme (depending on whether N is even or odd), instead
of all 4 - 3¥=2 possibilities. We outline the algorithm for the {left, sym,...,sym} division
scheme for a filter h = Z?Z_QN_l h;zI satisfying |he| = |ho|] = N — 1. The algorithm for
the {right, sym, ..., sym} division scheme works similarly, the only alteration is starting the

Euclidean algorithm with the roles of h. and h, reversed.

Step 1: Eliminate Constant Term of h,. We denote the coefficients of h, by h, =
ap = (co, 1, ...,cy—1) and the coefficients of h, by h, = by = (do, ds, ...,dn_1). The first step

in the Euclidean Algorithm eliminates the highest order term from h, via the following:

a; = by = (do, dy, ...,dN—1)

by = ap — qiby = (01 —qidy,co — quda, ..., ,CN—1 — Cth—l) .

If the extreme terms in b; are 0, that is, the division is abnormal, then the algorithm ter-
minates and there is no nearest neighbor factorization for the {left, sym, ..., sym} division

scheme. If the extreme powers do not equal 0, then set the first lifting step as ¢;.

Step 2: Symmetric Division. We proceed with the Euclidean algorithm using sym-

metric division until the algorithm terminates after a total of N steps when by = 0 and
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ay € ged(he,h,). At each step, check that the extreme powers of b; are nonzero, else

the division scheme is abnormal and the algorithm terminates. We represent symmetric

division in coefficient arrays with the following operations. For a; = {co,...,¢n+1} and
b; = {do, . ..,dy} which agree in the lowest power of z, symmetric division yields:
Co Cm+1 1 -1
= 5+ ——2 =8+ 1z
qZ do dm 1 (3

Ay = b; = (d07d17 "’7dm)

bis1 = (c1 — sidy — tidp, ca — Sidy — tidy, ..., Cpy — Sily, — tidim—1) .

If a; and b; agree in the highest power of z, a;,1 and b;y; are the same, but the quotient
becomes
Co Cm+1

PTa T

= S8;z + tl

At each step, set ¢; as the nearest neighbor lifting step.

Step 3: Determine z-Shift. If the Euclidean algorithm terminates and results in a
normal PRS, then let M be the coefficient of the GCD obtained from the last step of the
Euclidean algorithm. Then the GCD is

N
2

Mzl=2) € ged (he, hy) .

If the original filter, h, had a different z-shift, use lemma 23 to shift the filter so
h = Z?:_QN_l hiz7 and then apply the lemma again to obtain the correct GCD via the

appropriate z-shift.
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ExXAMPLE 30. The Daubechies filter with 8 coefficients is
{0.23038, 0.71485, 0.63088, —0.027984, —0.18703, 0.030841, 0.032883, —0.010597},

thus
he = {0.23038,0.63088, —0.1870, 0.032883}

h, = {0.71485, —0.027984, 0.030841, —0.010597} .

Step 1, left division, cancels the highest order term of the filter, which corresponds to the

first element of h.. After the first division, the coefficients of the remainder polynomial are
{0.63990, —0.19697, 0.03630},
and the corresponding quotient (lifting step) is
¢ = 0.32228.
Applying Step 2 (sym division) yields remainder polynomial coefficients of
{0.37888, —0.06722}

{0.12115}
{0},

and corresponding quotients of

¢ = —0.29195 4+ 1.1171%

.54
q3 = 1.6889 — 0-5400
z

qs = —0.555 4 3.127z.
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The coefficient of the GCD is the last nonzero remainder coefficient, M = 0.12155.

Computing the GCD using Step 3,

(SIS

0.121552L72) = 0.12155:172) = 0.12155272 € ged (b, 1) -

Thus, the original filter requires a z-shift of 22 to result in a constant GCD and a direct

nearest neighbor factorization via {left, sym, sym, sym}.

2.5. Matrix Representation of the Reconstruction Algorithm

Given the lifting steps {¢;} and M € gcd (he, h,) of a filter, we can reconstruct the original

filter using the following equation,

N/2
Pz =1]
i=1 | 1 O 0 M!
If in addition to the filter, we want to recover all information in the associated Euclidean

algorithm used to generate the lifting steps, we can use the following theorem.

THEOREM 31. Suppose a given filter of length 2N with |h.| = |h,] = N — 1 has a nearest
neighbor factorization with lifting steps {q;} and M € ged (he, h,). Let A be any matriz, S be
the zero matriz with 1’s along the superdiagonal, and G be the zero matriz with Gyi411 = M,
each with dimension (N + 1) X (N 4+ 1). Then define C' as the diagonal matriz of coefficients

on the highest power of {q;}, with the first diagonal entry equal to 0

| 0 0 0 ]
0 g O 0
C=100 0
CN—-1
0 0 0 ecn
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Similarly, define D with diagonal entries equaling the coefficients of the lowest order

terms of {¢;}.

-0 0 --- 0 |
0 d 0 0
D=10 0 0
dn-1
0o 0 --- 0 dn

Then N + 1 iterations of the following matriz equation will converge to the matrix of

coefficients obtained by the Euclidean algorithm producing the specified lifting steps:

A=SCA+ASDS + SSAS +G.

PROOF. The theorem is proved by writing the effects of the Euclidean algorithm on the

remainder polynomials at each step in terms of matrix operations. O

2.6. Filters with No Direct Nearest Neighbor Factorizations

The algorithm described in section §2.4 can be used to generate filters with no direct

nearest neighbor factorizations. In [19], the split Haar filter,

1 -9
hzﬁ(l—kz ),

was an example of a filter with no direct nearest neighbor factorization. Having multiple
zeros in the support of the filter is often enough to guarantee no direct nearest neighbor
factorizations, although we give examples to show it is not a necessary condition. We also
show that common properties of filters such as orthogonality and vanishing moments are not

enough to guarantee the existence of a direct nearest neighbor factorization. We begin by

29



restating a lemma in [11] which shows the even and odd parts of a filter must have similar

degrees or no direct nearest neighbor factorization can exist.

LEMMA 32. Let h = {hg, h1, ..., hay_1} be a filter such that ||h.| — |ho|| > 1, then h has

no direct nearest neighbor factorizations.

PROOF. Let a, and b, be the starting polynomials in the Euclidean algorithm. Then for
the factorization to be directly nearest neighbor, each quotient must have degree at most

one. Suppose |a,| > |b,| + 1, then the first division can cancel at most two terms from a,,

hence
by = ap — qibo
|b1] > |ao| — 2 > |bo| — 1 > |b,| .
But then the degree of the remainder has not been reduced, a contradiction. U

LEMMA 33. Let h = {ho, h1,..., han_1} be a filter satisfying |he| = |ho| and
|support (he) N support (hy)| + 1 < |support (h.)|,

then h has no direct nearest neighbor factorizations.

PROOF. First, suppose N is even, and let ag = h, and by = h, be the starting polynomials
in the Euclidean algorithm. The first division must cancel at least one term from ag so the de-
gree of by is strictly less than by. The conditions |h.| = |h,| and |support (he) N support (h, )|+
1 < |support (he)| imply the extreme terms of ag and by differ by a monomial with traditional

polynomial degree of at least two. Then,

by = ap — q1bo,
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so the extreme terms of g0y and ag must align, requiring ¢; to contain a term with
traditional polynomial degree of at least two, hence the factorization cannot be directly
nearest neighbor.

The same argument holds for odd N and ag = h, and by = he. O

Although filters with many zeros in the support often do not have a direct nearest neigh-

bor factorization, it is not sufficient to ensure no direct nearest neighbor factorizations exist.

ExXAMPLE 34. Counsider the filter

h ={36,72,72,0,48,60,60,24}.

Then, using the {left, sym, sym, sym} division scheme yields a direct nearest neighbor

factorization. The coefficient arrays of the PRS are

{72,0,60, 24}

{72,18,48}
{_54a 3}
{886} .
This PRS is easily seen to be normal as the length of the remainder coefficient array
decreases by exactly 1 at each step.
A common property of filters is the perfect reconstruction property, which is also not
sufficient to ensure a filter has a direct nearest neighbor factorization. A filter having the

perfect reconstruction property is equivalent to coprimality of . and h, [19]. This property

is not enough to guarantee a normal PRS, as shown in the following proposition.

PROPOSITION 35. There exists a filter h such that he and h, are coprime, but PRS (he, h,)

is abnormal in the {left,sym,...,sym} division scheme.
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PROOF. Let h, = 92° + 522 + 42 + 2 and h, = 1023 4+ 222 + 62 + 3. Then the
{right, sym, sym, sym} division scheme is abnormal, but k. and h, are coprime as they have

no common roots. The polynomial remainder sequence is abnormal as the first remainder is

7 11
bl = 523 + 322.

Since the degree of the remainder decreased by more than one (by = h, has degree 4, by
has degree 2), the division scheme results in an abnormal remainder sequence.
However, this filter has a normal remainder sequence for the {left, sym, ..., sym} divi-

sion scheme, which demonstrates normality is dependent on division scheme. 0

Many filters are designed to have orthogonality and vanishing moment conditions, and
we investigate the effect of these properties on direct nearest neighbor factorizations. For
FIR filters, these properties can be translated to conditions involving the filter coefficients
[7].

DEFINITION 36. Let h = Z?ivo_l h;z" be the z-transform of an FIR filter of length 2/V.
Then h is orthogonal if it satisfies the following double shift orthogonality equations,

2N—-1

> hihisor =0, k=0,1,2,...,N - 1.
i=0

A filter with [ vanishing moments can also be classified using equations only involving

the filter coeflicients.

DEFINITION 37. Let h = 322" "" h;2% be the z-transform of an FIR filter of length 2.

=0
Then h has [ vanishing moments if it satisfies the following equations for £ =0,...,1
2N—1 '
> (=1)'ifhi=0 k=0,1,2,....N - 1.
i=0
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These properties are not sufficient to guarantee a direct nearest neighbor factorization,

even with no zeros in the support of the filter, as demonstrated in the following proposition.

PROPOSITION 38. (Recluselet) There exist orthogonal filters with at least one vanishing

moment and no zeros in the support with no direct nearest neighbor factorizations.

ProOoOF. The filter

{0.742661, —0.107110, 0.123776, 0.011555, 0.01, 0.06, —0.069335}

is a length 8 orthogonal filter with one vanishing moment and no direct nearest neigh-
bor factorizations. This filter solves the following system of equations for orthogonality
and one vanishing moment, along with conditions to make both {left, sym,...,sym} and

{right, sym, ..., sym} division schemes be abnormal.

7
> hihigor =0, k=0,1,2,3
=0

ho —hi 4+ hy — hg + hy — hs + hg — hy =0

hy (g — ke h7<h2—hg—fl‘3>+h N
hy — ol he — helz -
Py (hy =25t ) (g — e ) e
- hih - hsh 5=
hy — Bfs hy — Bk

The taps hs and hg were specified to ensure a real solution to the system of equations.

The abnormality equations were generated by performing the nearest neighbor algorithm
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with arbitrary coefficients, and finding conditions such that the degree of a remainder was
reduced by more than 1 by setting extreme terms equal to 0. Since at each step, the two
extremal coefficients being zero results in an abnormal division, there are many abnormality

equations that can be used which result in different filters. 0

We call orthogonal filters with at least one vanishing moment “Recluselets” if they have
no direct nearest neighbor factorization. The system of equations used in the previous
theorem is closely related to the system of equations used to generate Daubechies filters.
The Daubechies system has a maximal number of vanishing moment equations (N for a 2N
length filter), whereas the Recluselet system has one vanishing moment condition but two
abnormality equations are added. In general, we find that each vanishing moment equation
and abnormality equation reduces the dimension of the solution set by one. This method
can be used to generate longer Recluselet filters, although computation time becomes an

obstacle around filter length 12.
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CHAPTER 3

Nearest Neighbor Factorizations of Daubechies Filters

3.1. Introduction

In [5, 7|, Daubechies constructs orthonormal, compactly supported wavelets with the
maximum number of vanishing moments. We give a modified construction for Daubechies
filters. Our goal is to use the asymptotic behavior of Daubechies polynomial roots along
with Vieta’s formulas to explore asymptotics of the nearest neighbor lifting factorizations.
The algorithm described below generates a degree N (length 2N) Daubechies filter, and is

equivalent to the traditional construction presented in |5].

(1) Find the N — 1 roots {¥;}"" " of the polynomial:

1=0
(2) Transform the roots {¥;}" " into 2N — 2 roots, {Z;}*" 2, using
Z+Z7'=2-4Y.
(3) From {Z;}*"7? select the N — 1 roots which lie inside the unit circle, {r;}. ;"

(4) Form the polynomial H (z) with N — 1 roots z = r; and N roots at z = —1.

N-1 2N—-1
= (H z2—1; ) 2+ 1)N Z hon 12"

=1
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-0.35

— 1.0

FIGURE 3.1.1. The transformed roots {r;}.~ ;" for N = 20 with the limiting
curve |z + 1] = /2

(5) Scale the filter so that 3" |hs| = 2, by dividing H (z) by the constant

1

'_ (1—7”2)

=1

NI

C =2N-

Note that the resulting polynomial has the coefficients indexed in reverse order, so that
the filter coefficients match the order found in Daubechies’ original construction:

_ H (z) (Hii_ll (2 — 7‘@)) (z+ 1N 2v-1

H(z = : = hon_1_i%".
(2) C NI (1 = ) ; aN-1

This construction has the advantage of not involving negative powers of z, thus allowing
the use of Vieta’s formulas. In section §3.4, we show C' = oN=3 Hf\:ll (1 —r;) is strictly
positive, and thus results about signs of filter coefficients can typically be proven directly by
looking at the unscaled filter H (z).

We heavily use the results from Strang and Shen [14] with respect to the locations of the

N

Z€e10s {ri}l__ll. The authors showed these zeros come in complex conjugate pairs, lie strictly

in the right half plane, and converge on the circle |z + 1| = v/2 from the inside as N — oo.
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3.2. Properties of Nearest Neighbor Lifting Step Roots

Wickerhauser and Zhu verified that Daubechies filters up to length 20 have a direct near-
est neighbor factorization [19|. With the factorization algorithm described in section §2.4,
there is only one possible division scheme that results in a direct nearest neighbor factor-
ization. This allows for a more efficient algorithm for verifying higher order filters. With
these considerations, we verify numerically that all Daubechies filters up to length 220 have
exactly one direct nearest neighbor factorizations.

In contrast to general Laurent polynomials, nearest neighbor factorizations for Daubechies
filters demonstrate remarkably stable characteristics. For nearest neighbor factorizations,
the first lifting step is constant, and the others have the forms ¢ = cz +d or ¢ = ¢ + dz%.
Plotting the roots of these lifting steps for the {left, sym, ..., sym} division scheme for var-
ious degrees in figure 3.2.1 demonstrates the stability of the relative size of the lifting step
coefficients.

Similar behavior is also found for Daubechies filters with the {right, sym, ..., sym} di-
vision scheme. Various degrees are shown in figure 3.2.2.

Since the lifting steps are degree one Laurent polynomials, the positivity of the lifting
steps roots corresponds to opposite signs of the lifting step coefficients (¢; and d;). This
pattern has been observed up to N = 110 (length 220). All of the observed lifting step roots
(N =2 to N = 110) are bounded on (0,1) for the {left, sym,...,sym} division scheme.
The existence of these points is enough to show a normal PRS and hence a direct nearest

neighbor factorization exists for all V. Due to the predictability of this behavior, we make

the following conjectures.
CONJECTURE 39. All Daubechies filters of degree N > 2 have ezactly one direct nearest

neighbor factorizations corresponding to the {left, sym, ..., sym} and {right, sym, ..., sym}

division schemes for even and odd N, respectively.
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FIGURE 3.2.1. Nearest Neighbor Roots for degree N Daubechies Filter with
{left,sym,...,sym} for (A) N =20 (B) N =40 (C) N =110
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FIGURE 3.2.2. Nearest Neighbor Roots for degree N Daubechies Filter with
{right, sym, ..., sym} for (A) N =19 (B) N =39 (C) N =99

39



Numerical analysis of the lifting step roots for the {left, sym, ..., sym} division scheme
suggests asymptotic convergence among the first 0.2\ lifting steps for a filter of length 2.V.

This is summarized in the following conjecture.

CONJECTURE 40. Given a degree N Daubechies filter, with N even, and the

{left,sym,..., sym}

division scheme, the zeros of the lifting steps {Z,}?le are bounded by 1, and the first 0.2N

lifting steps converge to
21
241

Z;

as N — o0.

3.3. Bounds on Daubechies Filter Coefficients

Using the asymptotics of the Daubechies polynomial roots and their relationship to the
Daubechies filter coefficients, we prove results involving the tails of the Daubechies filters and
properties of their direct nearest neighbor factorizations. We use a different approach than in
[15], where Strang and Shen give global asymptotic behavior of Daubechies filter coefficients.
The estimates from [15]| do not have the accuracy necessary to analyze individual coefficients

and their relative sizes.

LEMMA 41. The scaling coefficient C' = 2V~2 Hf\:ll (1 —r;) used in the above construc-

tion of Daubechies filters is strictly positive.

PROOF. The roots {rl}fvz_ll come in complex conjugate pairs along with a single real
positive root when NN is even. Strang and Shen |14] proved the roots lie strictly in the right
half plane and inside the circle |z + 1| = v/2 and |r;| < 1 for all i. Let M = max; (|r;]) < 1.
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Grouping the terms involving conjugate pairs for odd N and reindexing as needed gives:

2

—1

H1—r,: (1—r)Q—7m)=]] (1 -2

1 1=1

2

N‘
M‘

7

L
H (1—M?)

For even NN, there is a single real positive root, ry_i, along Wlth 5 — 1 conjugate pairs

of roots, so with reindexing we get:

N-1 T-1 3-1
A=r)=rya | [JQ=r)@=m) ) =rxaa [ [T (=7
i=1 i=1 i=1
J-1
> TN—1 H (1 — M2> > 0.
i=1
In either case, the product is strictly positive, hence C' > 0. U

COROLLARY 42. Given a degree N Daubechies filter h = {hg,h1, ..., hon_1}, then

N-1 -1
ho = <2N_% H (1 - 7”2)) = C_l > 0.

i=1
PROOF. From the construction for Daubechies filters, we see

~ N— N

H (z) <Hi:11 (z — Tz)) (z+1) 2N—1

H(z)= = : = hon_1_i%"
U= NI (11 Z o

Matching coefficients in the above equation, we find hy is the leading coefficient. The

numerator is a monic polynomial, hence:

N-1 -1
ho ( %H 1—’/“Z)

Using lemma 41, hg = C~1 > 0. O
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Using results from Strang and Shen [14|, we bound the relative growth of hy and h;.

LEMMA 43. Given a degree N > 1 Daubechies filter h = {ho, hq,..., hany_1}, then
0< ho (~VEN +2N + V2~ 1) <y < Nho,

PROOF. Using the formula in the construction described above,

H(z) (Hfi‘ll (2 —m)) (z+ 1" = r
H(z)= o oN-1 Hf\i—ll (1—r) = ; hon_1-;2".

Using Vieta’s formula for the hy coefficient

The roots {rz}f\:ll come in complex conjugate pairs and possibly a single real positive

root when N is even. Strang and Shen [14]| showed
0 < Re(r;)) <v2-1

for all 4.
Since the sum of the roots must be real, the imaginary parts cancel out, and the upper

bound for h; is:

N-1
hl = —ho <ZR€(T’2) —N) < —ho (O—N) :hON
i=1

For the lower bound we use the positivity of the real part of the roots along with the

previous result hy > 0. Again, the roots come in conjugate pairs so only the real parts
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contribute to the sum.

COROLLARY 44. Given a degree N > 2 Daubechies filter h = {hg, h1,..., han_1}, then
0< ho < hl.

PROOF. The corollary is obvious using 0 < hg and lemma 43,

0 < ho < ho (—\/§N+2N+\/§—1> < ho (0.6N + .5) < hoN < hy
for all N > 1. ]

We prove the following lemma which will be useful in upcoming theorems.

LEMMA 45. Given a degree N Daubechies filter h = {hg, h1, ..., hany_1}, hon_1 is nonzero.

For even N, hony_1 <0 and for odd N, hoy_1 > 0.

PROOF. Using the formula from the construction described above,

(2) (Hi]i_ll (z — 7}')) (z4+1)Y 22

H = = = 2t
(2) C oN—1 Hf\i_ll (1—r) Z hon_1-i%

Computing the constant coefficient, hon_1

H]\:l (—7:) N— 1H 1 Tz
h -~ — 1= — Z
N1 = (—1) c

From lemma 41, C' is strictly positive, and {rl}fi_ll are nonzero and strictly in the right
half plane from |14], thus hoy_; is nonzero. The sign change for even and odd N is apparent

from the (—1)" ™" term. O
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COROLLARY 46. Given a degree N > 1 Daubechies filter h = {ho, h1, ..., han_1}, hon_2
18 nonzero.

PROOF. For N =1, h is the Haar filter, and thus the corollary holds.

For N > 1, we have shown in previous results that hg, hi,hony_1 are nonzero.

All
Daubechies filters satisfy double shift orthogonality conditions, in particular,
hohan—2 + hihon—1 = 0.
Thus, it is clear hoy_o = %ﬁ”” must be nonzero. O

LEMMA 47. Given a degree N > 1 Daubechies filter h = {ho, hq,..., han_1} hano1 ),

7 han-—2
In particular, hony_1 and hon_o have different signs.

PROOF. Since the filter satisfies double shift orthogonality, along with the previous re-

sults showing hg, hi, hon_2, hony_1 are nonzero,

hon—1 —hy
= — <0,
han—2 ho

using the results that hg,hy > 0. Since hoy_; alternates sign as N increases, so does
hon—a.

O

3.4. Asymptotics of Daubechies Filter Coefficients

The asymptotics of the Daubechies polynomial roots from Theorem 5 in [14] allow us to

obtain bounds on the Daubechies filter coefficients. Let {Y;} be the asymptotic estimates
for the roots of By (y), then:

1— /1 —exp (2mit=
Yy = \/ 2( Nl), k=0,..,N—2.
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FIGURE 3.4.1. The Daubechies roots (squares) along with the Strang asymp-
totics (circles) for N = 20

Using the transformation Z + Z~! = 2 — 4Y to obtain asymptotic estimates Z for the
N — 1 roots {r;}" 1,

7y = \/1—62’}3’“ —\/—ez’ﬁ’“, k=1,..,N—1.

A plot of the Daubechies polynomial roots and these asymptotic estimates is shown in
figure 3.4.1.

We will use these regions to obtain asymptotic bounds for the filter coefficients since the
7y estimates cannot be used directly. Let j be a positive integer, A be a small positive real

value, and A; =24 (j — 1) A. Then denote the sets of asymptotic Daubechies polynomial

roots in the upper half plane as

A
Aj :{z

|z+1\§\/§and arg(Z%) §arg(z)§arg<ZL)}.
5

Bj+1
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Let

9]4 = {afg (2x)

z, € Af)}

BjA = {|zk| ’zk € Af)} :

then,

LEMMA 48. Let {r;}" " and {Z;}" ™" be the Daubechies polynomial roots and associated

asymptotic estimates defined as above. Then, for any AJ-A,

# {ri € Af}

1—0(1)<m

<1l+4+o(1).

PROOF. Fix AjA and € > 0. In [14], Strang and Shen show the global error for the Z;
approximations to each r; is O <N‘é> . Then, for some of the Z; € AJ-A, the associated r;
may not be in the AjA region. An example region is shown in figure 3.4.2, with the shaded
region representing A]-A. The dashed region shows the possible locations of the r;, obtained by
drawing a circle around with Z; with radius O <N _%>. Strang proved that the r; lie strictly
inside the circle |z 4 1| = v/2, hence we disregard the dashed region outside this circle.
Denote the dashed region inside the circle |z + 1| = v/2 by C’ and define C = C’ — AjA.
Then C contains every r; ¢ AjA approximated by a Z; € AJ-A.

The Z; are asymptotically evenly distributed along the limiting circle |z 4+ 1| = v/2, hence

#{ZieAf}%%_Aﬁl,
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FIGURE 3.4.2. AjA region with error estimates shown

For a fixed N, there exist a constants K such that |r; — Z;| < KN~z for all i. Define

the set

Zi— 24 _n_

> KN~3 and > cN—%} .
Ajt1

Z; — N
A5

D:{Zi|ZieAfand

Then every Z; € D has an associated r; € A]-A, and

N N 1 N
#{Z;, € D} = - —2KN 2 <#<:r, e A
e D=5~ a5 e

Thus,
A _1

#{TiEAj}>%—A‘ZF1—2KN2_1

= N N - _0(1)
#{ZZEAJ-A} yretlv

Next, consider the Z; close to the endpoints of the AjA region,

#{7, € C} < 2N 2.
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Hence,

#{neatt #{zeat}+aizec S

#{Z,EA].A} #{Z,EA].A} §1+ﬁ:1+o(1),

N

>
>

1
0

This lemma shows that the expected number of Daubechies polynomial roots lie in each
asymptotic region for sufficiently large N. For example, to find the percentage of Daubechies
roots as N — co which have Z > arg (r;) > %, use the formula for Z, with £ = &, and find

B
the ¢ for which arg <Z£) =71

arg <Z%> =arg (\/l—ezéﬁ— —ezéﬂ) :%.

Thus, for sufficiently large N, % of the Daubechies roots {ri}N_l have § > arg (r;) > 7.

We are now able to obtain much sharper bounds on the Daubechies polynomial roots.

LEMMA 49. Let {r;}" " be the roots of the N** Daubechies polynomial inside the unit
circle. Then for sufficiently large IV,
N-1

Z r; < 0.36343N.

i=1
PROOF. We begin by rewriting the sum using the fact that the roots come in complex
conjugate pairs with at most one real positive root when N is even. Assume that N is odd
so there is no real root, and let M = % Order and index the roots in the upper half plane
{r:}* by 0 < arg (r) < ... < arg (ry). Then,
N-1 M M
Zn = Z(T’i—l—ﬂ) = 2236(7}')-
i=1 i=1 i=1
We use the asymptotic regions of the Daubechies polynomial roots to find an upper bound

for the sum. Summing over the M roots in the upper half plane corresponds asymptotically
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to summing over AjA for j > 1 and a fixed A > 0,

M 0o
;Re (r;) < ;Re <Z%) ZR@ (ZN ) ALHRe (Zﬁ) .

These inequalities use lemma 48 to ensure that no significant portion of the r; fall outside

of the AjA regions. The upper bound decreases as L increases and A decreases. Selecting

L =10° and A = 0.01,

- N
> Re <Z v ) Re <Z v )] < 0.36343N.
AL—i—l ALy

For even N, the contribution of the additional real r; is at most V2 — 1, which doesn’t

change the bound for sufficiently large N. O

The key bound in lemma 49 is,

Z:Re ri gij ( %)—i—o(N)

as N — o0.

The 3.4.3 shows the Af regions, with the Al region shaded in gray. The real part of any
point in the gray region is bounded above by Re <ZA%)

A similar strategy allows for us to define a lower bound on the sum of the Daubechies

polynomial roots.

LEMMA 50. Let {r;}" " be the roots of the N** Daubechies polynomial inside the unit
circle. Then for sufficiently large N,
N-1

0.35581N < Z T

i=1
PROOF. We begin as above by rewriting the sum using the fact that the roots come in

complex conjugate pairs with at most one real positive root when NV is even. Assume that
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FIGURE 3.4.3. Examples of Asymptotic Regions for Daubechies Polynomial Roots

N is odd so there is no real root, and let M = % Order and index the roots in the upper
half plane {ri}M by 0 < arg (ry) < ... < arg (rp). Then,

N-1 M

Z'f’i:Z(m—l—ﬂ) :2ZR€(7’Z')

i=1 i=1 i=1
Summing over the M roots in the upper half plane corresponds asymptotically to sum-

ming over AjA for j > 1 and a fixed A > 0,

M [e's)
Re (r;) > ReZ —o(N) > Re (| Z —o(N),
SRz (2. ) ol 23 (2, ) -0
as N — o0.
The lower bound increases as L increases and A\ decreases. Selecting L = 10° and
A =0.01,

J+1

N-1 L
S r22) Re (ZAL) > 0.35581N,
i=1 j=1

for sufficiently large N.

20



- -
80+ ’,”-"

-
60+ ”f’f

-~
40+ 2%

20"

100 150 200 250

FIGURE 3.4.4. Actual values of SV, 'r; for values of N = 100,120,...,260
along with asymptotic bounds from lemma 49 and lemma 50 (dashed lines).

For even N, the additional real root contributes at most /2 — 1, and doesn’t change the

bound for sufficiently large N. U

The behavior of the exact value of the summation along with the bounds given in
lemma 49 and lemma 50 is shown in figure 3.4.4. We obtain the value of Zﬁvz_llri from

the filter coefficients using Vieta’s formula for the first coefficient.

N-1
hl = —ho (ZT’,—N)

i=1
N—1

Z T, = N — E
i=1 ho

We use a similar strategy to obtain asymptotic behavior of more complicated symmetric

polynomials of Daubechies polynomial roots.
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| N [0.35581N | S0y [ 0.36343N
100 | 35.581 35.296 36.343
120 | 42.697 42.536 43.612
140 | 49.813 49.779 50.880
160 | 56.930 57.026 58.149
180 | 64.046 64.275 65.417
200 | 71.162 71.526 72.686
220 | 78.278 78.778 79.955
240 | 85.384 86.032 87.223
260 | 92.511 93.287 94.492
TABLE 1. Sum of Daubechies polynomial roots and asymptotic bounds for
large values of N

LEMMA 51. Let {r;}" " be the roots of the N** Daubechies polynomial inside the unit

circle. Then for sufficiently large IV,

> rimi, <0.072753N7

1<i1 <ia<N—-1

PROOF. The roots {ri}N_l come in complex conjugate pairs, with the possibility of a
single real root. Assume that N is odd so there is no real root, and let M = % Order
and index the roots in the upper half plane {r;}" by 0 < arg (r1) < ... < arg (ras). The sum

can be rewritten as the sum of conjugate pairs:

M
§ Ti1Tip = E Ti1 iy + Tillr_i2 + TzlriQ + T_il 772 + § Tillr_il
1<iy<ig<N—1 1<iy <ig<M i1=1

M
=2 Z Re (ry,14,) + 2 Z Re(rilr_i2)+2|7"i1‘2’

1<y <ig<M 1< <ig<M i1=1

The final summation is strictly positive and only contributes O (N), so we need only
bound the other terms. Summing over {ri}M corresponds asymptotically to summing over

AjA for j > 1 and a fixed A > 0. Bounding the first sum involving products of roots, both
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of which are in the upper half plane,

Z Re (ry,riy) gi(’AA‘) ‘ZAJN+1

1<i1<ia<M 7j=1

Z ei<arg<z%>+arg<zl%>> . (3.4.1)

A

- A d A
+; (|47]) ]; A7 | Re ‘ZA;VH

The first summation corresponds to terms with both roots coming from the same AjA

A
region. Since for each section there are a total of ‘AJ-A roots, and (|A2j ‘) total terms of this

type. Given r;,, 1, € Af, we bound the real part of these terms by

2 2iarg<Zl>
Re (ri,ri,) < Re ‘Z N e 2 +O(N2>.
Bj+1
This bound holds since,

|TZ1| < ‘Z N
Dj+1

|7’,2| < ‘Z N
Bj+1

0 < arg (Zi) <arg(ry,) <

Aj

e B T

0 < arg <Zé\r) <arg(ry,) <
i

The bound consists of taking the extreme values for each A]-A, rather than a global esti-

mate on the asymptotics, allowing for a much more accurate bound. The second summation

in equation (3.4.1) corresponds to terms involving two roots in the upper half plane, one

from AjA and the second from AkA, where £ < 7.
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To bound the remaining sum involving terms on opposite sides of the real axis, we use the
same approach as above, with a modified bound for the real part. We again select the largest

possible modulus and arguments resulting in the largest real part for the upper bound:
i(arg(ZN>—arg<Z N >>
e n; Ay

The bound on the real part subtracts the arguments since this gives a lower bound on

o

Z Re (r;,73,) < Z <’AjA

1<i1<ig<M j=1

Z N

Bj+1

Z N

Apy1

);\Ag)Re

the real part of the product.
As L increases and A decreases, the lower bound increases. Selecting L = 1000 and

A =0.2,

N | —

( > >: > Relur)t Y Re(un)

1<i1 <ia<N—-1 1<iy <io<M 1<i1<ia <M

AA 2 2iarg<Z N >
< ’ J Re 'Z e i1
<2 (%)l
L AA AA P P i(mg(ZAL)—i-arg(ZAN >>
: j+1 k+1
() ot e [ NV
7 .
A A z<arg<ZAN>—arg<ZANl>>
+ 3 (a2 ) 3ot e 2| |2 |\ A

2N 2 2iarg<ZN>
+%((§>)Re Zn| e AL

Ar

(0.072753]\72) .

N | —

<

The final summation is an upper bound on the tails of the infinite sums, and increasing
the L value greatly reduces the contribution of this term. If IV is even, the additional real

root contributes O (N) terms, so the result is unchanged for sufficiently large N. U
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COROLLARY 52. Let {ri}N_l be the roots of the N** Daubechies polynomial inside the

unit circle. Then for sufficiently large N,

> riri, > 0.063902N7.

1< <ia<N—-1

Proor. We find bounds for

%( Z rilri2>: Z Re (ry,riy,) + Z Re (ry,r3,) (3.4.2)

1<i1<ia<N -1 1<iy <io<M 1<i1<ia <M

following the same analysis as lemma 51 with the following changes to the bounds,
A
’

> 2 2iarg<Z >
Z Re (r;,1iy) > Z ( 5 )Re ‘Zg e ey
Jj=1 ’

1<ii<io<M

0 A i(arg(Z N >+arg<Z N >>
o3 el Joelas

=1

These bounds are very similar to lemma 51, with the opposite endpoints of the asymptotic

J

J
) > JAr| re ‘ZN Zx

regions selected. In our notation, this corresponds to j — 5+ 1 and 7+ 1 — 5. The key

observation is

This bound holds as,
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0 < arg(r;,) < arg (ZN) <

Bj+1

S

The alterations for the bound on the second summation in equation (3.4.2) is
i<arg<Z N )—arg(ZN>>
e AV RN lay®

which again switches the j and j + 1 indices. As L increases and A decreases, the lower

4N

gy ’

)DURAES 91 (P) oV EA {E
k=1 !

1<iy <io<M j=1

bound increases. Selecting L = 50 and A =1,

1 _
5 E TiTio | = E Re (Ti1ri2) + E Re (Til Tiz)
1<i1<ia<N-1 1<y <io<M 1<i1<ia<M
2 9 arg <Z N >
e Bj+1
z(arg <Z N >+arg <Z N >>
Bjt+1 Bk+1

@4aﬁym@§»

=~

(0.063902N2) .

l\DI»—t

There is no need to bound the tails since we are bounding from below, and the case where
N is even does not change the result for sufficiently large N as it only adds O (N) terms to

the original summation. O

We compute the value of > ,; _; -y 477, for large N and compare to the results

found in lemma 51 and 52. The value of >, _; ., <y ;7 7i, can be found from the filter
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FIGURE 3.4.5. Values of >, .., .y_,7i7i, and asymptotic results from
lemma 51 and 52 (dashed lines).

coefficients using Vieta’s formulas,
N-1
ho N
D S Y D SR § 3 (2)
O 1<ii<ip<eN-1 1<y <ig<N—1 i=1
Using Vieta’s formula to rewrite the sum of roots,

hy b\ (N
h_o_ Z T, Tiy N(N h—o)‘l—(Q)

1<i1<ig<N—-1

Thus, we can express ), o; _;,<n_1 i Ti, in terms of filter coefficients as
h N h
Z Ti1Ti2:N N——l — ——2
o ho 2 ho
1<i1<ig<N-1
The data for selected values of N are shown in figure 3.4.5 and table 2.

In addition to giving asymptotic behavior of the first few Daubechies filter coefficients, we

will use these bounds to prove properties of nearest neighbor factorizations for Daubechies
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N [0.063902N% [ 32, _, 1 w1 T7s, | 0.072752N7 |

20 25.5608 20.8040 29.1008
40 102.243 92.7918 116.403
60 230.047 216.981 261.907
80 408.973 393.589 465.613
100 | 639.020 622.718 727.520
120 | 920.189 904.429 1047.63
140 1252.48 1238.76 1425.94
160 1635.89 1625.74 1862.45
180 | 2070.42 2065.40 2357.16
200 | 2556.08 2557.74 2910.08
220 |  3092.86 3102.79 3521.20
240 | 3680.76 3700.54 4190.52

TABLE 2. Valuesof )\, _;, -y_ Ti, T4, and asymptotic results from lemma 51
and 52 for 20 < N < 240.

filters in section §3.5. We estimate the asymptotic root behavior for the next symmetric

polynomial, again providing an upper and lower bound.

LEMMA 53. Let {r;}" " be the roots of the N Daubechies polynomial inside the unit

circle. Then for sufficiently large IV,

> Ti Ty, < 0.04223N°
1<i1 <ip<iz<N-—1
PROOF. We begin by rewriting the sum to take advantage of the root conjugate pairs.
Without loss of generality, assume that N is odd and let M = T_ so there is no single
real root. Order and index the roots in the upper half plane {r;}™ by 0 < arg(r) < ... <

arg (ry), then

E T§1TiyTig

1<i1 <ia<ig<N -1

M
TZS + TZS E (7”2-17‘@'2 + L 772 + T_il Tip + 7?17?2) + E Tilﬁl E Tig + 772 :

1<i1 <@g <i3 i1=1 iaFi1

||M§

28



The last summation only contributes as O (N?) so we need only find bounds on the other

terms:

M
E (Ti3 + T;3) § : (TilriZ + Thﬁz + 7?17“1'2 + 7?17?2)
i3=1

1< <12<13

—=2% Re(ri,) Y, (2Re(ryrs,) +2Re (ri,73,))

i3=1 1<i1<12<13
Z)IAND DERTETAES) YRS SRR ST ol (Y TENR
i3=1 1<t <12<13 i3=1 1<i1<i2<13 i3=2

Summing over {ri}M corresponds asymptotically to summing over AjA for j > 1 and a

fixed A > 0. Thus,

3

M . 00
> (5) e = 3l
j=1

i3=2

N_ N L A N_ N 3 N N
2" %) |z < ‘A. 2 Az 2 .
( 2 ) ‘ S| ; ! 2 Sion " Apyr\2

Specifying L and A gives a bound on the symmetric polynomial. As L increases and /A

decreases, the upper bound decreases. Selecting L = 10% and A = 0.01,

3

L N __ N
Z Ti1Ti2Ti3§Z’Aj,A‘<2 2&])'2 N
j=1

AN
. X . +1
1<i1<i2<iz<N-—1 J

N (N
2 < 0.04223N3.
- A ( 2 )

As in previous results, if N is even, it only contributes an additional O (N?) terms and

hence does not change the result. U

The previous results allow us to prove basic facts about the asymptotic behavior of
Daubechies filter coefficients. The strategy is to use Vieta’s formulas to obtain symmetric
polynomials of Daubechies polynomial roots, and then decompose the sum into a form where

we can use the previous results.

LEMMA 54. Given a degree N filter (ho, ..., han_1), h1 < hs for sufficiently large N.

29



PROOF. From lemma 43, hy < hoN. Let {Ri}zN_l be the set of Daubechies polynomial

roots {r;}"" ' along with the N roots at z = —1. Then from Vieta’s formula

hs = ho (1) > Ri, Ry, R,

1<d1 <ia<ig<2N -1

2N—-1

This is the sum of all possible products of 3 roots from {R;} . Thus, we must show

N < E _RilRigRig'
1<iy <ia<iz<2N—1

There are (2]\2)_1) total terms in the symmetric polynomial which we classify into four

types:

1. (§) (N —1) terms with two roots at = = —1 and a single root from {r;}" " :
(=1) (=1) ()

2. (Ngl)N terms with one root at z = —1 and two roots chosen from {ri}N_l :

(=1) (i) (r)
3. (Ng_l) terms with three roots chosen from {r;}" " : (r;) (r;) (rs)
4. (%)) terms with three roots at z = —1 : (=1)° = —1

}N_1 come in complex conjugate pairs, possibly with

The Daubechies polynomial roots {r;
a single real positive root, all of which are strictly in the right half plane with Re (r;) < v2—1
and inside the unit circle. Since the Daubechies roots come in complex pairs, each term can
be paired with its conjugate (of the same type), which results in a real valued filter coefficient,
as expected. Using the previous results involving asymptotic bounds for each of the first

three types of terms yields, for sufficiently large /V,

> —Ri, R, Ry,

1<d1 <ia<ig<2N -1

> (—0.36343N) (‘];[ ) + (0.063902N?) N — (0.04223N?) + @7 )

60



> 0.00662N> > N.

Using lemma 43, we conclude for sufficiently large IV,
hg = ho (—1)3 Z RilRizRi3 > hoN > hl.
1<y <ip<ig<2N—1
Numerically verifying the lemma for values up to N = 110, we find the lemma holds for

7 < N <110, and numerical results suggest the lemma holds for all N > 7. U

COROLLARY 55. Given a degree N filter h = {hg,...,han_1}, he < hs for sufficiently

large N.

PRrROOF. Using Vieta’s formulas for the filter coefficients and the previous results
hs = ho (—1)° > Ri, Ri, Riy > ho (0.00662N°) .
1<iy <ip<ig<2N—1
Bounding hs using that all terms are comprised of complex numbers on or inside the unit

circle yields

hg = ho Z Ril Rig < hO Z |R21R22|

1< <i2<2N~1 1<i1<i2<2N -1

<ho Y 1§h0<2N2_1):h00(2N2).

1<i1 <i9<2N—1

We can generalize the bound from the proof of 55 in the following lemma.
LEMMA 56. Given a degree N filter h = {hg, ..., han_1}, |hi| < ho (2Ni_1).

PROOF. Using Vieta’s formula along results from [14] that Daubechies polynomial roots

are inside the unit circle

il = [hol > R ... Rj| < ho > |Rj, ... Ry

1<1<..<ji<2N -1 1<41 <. < <2N -1
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2N —1
< hy Z 1§h0< . )
i

1<j1<...<ji<2N -1

3.5. Asymptotics of Nearest Neighbor Factorizations

Using the results of section §3.4, we are able to prove results about the asymptotics of

direct nearest neighbor factorizations of Daubechies filters.

THEOREM b57. Given a degree N Daubechies filter h = {hq, ..., hay_1} with polyphase
matriz factored with the {left, sym, ..., sym} division scheme, the first division is normal for

sufficiently large N.

PROOF. The first division being normal is equivalent to the extreme terms of the first

remainder polynomial being nonzero,

hohan -
hon_2 — % 40 (3.5.1)

 hohs
I

ho £ 0.

By the previous lemma, h; and hoy_o are nonzero, hence equation (3.5.1) is equivalent

to

hihan—2 # hohan-1.
By the previous lemma, hy, hy > 0 and

hon—
2N-1 _

h2N—2

Thus, the right and left hand sides have different signs, so inequality must hold for the

first normality condition.

62



For the second normality condition,

hohs

ho —
2 hl

£0

hihs # hohs.

Let {R;}*" " be the set of Daubechies polynomial roots {r;}" " along with the N roots
at z = —1. Using Vieta’s formulas,

hihy = <h0(—1) 2_: Ri) <h0 > RilR@)

1<i1<ia<2N -1

hohs = (hy) <h0 (—1) > RilRizRi3> .

1<i1 <ia<ig<2N -1

Thus, it is enough to show
2N—1
> —Ri R, Ry, < (Z —R,) ( > RilRQ) :
1<i1 <ip<i3<2N—1 i=1 1<i1 <ip<2N—1
Expanding each of the symmetric polynomials into types of terms involving R; and r;

and using bounds from previous results, for sufficiently large IV,

2N—-1 N-1 N N-1
~ Y Ri==Yr=> (-1)=N-> >N -036333N = 0.63666N
1=1

=1 =1 =1

and
N—-1 N
| Z R, R, = | Z TiyTiy — NZﬁ + (2) (_1)2
1<i1<i2<2N -1 1<i1<ia<N-—-1 =1
N
> (0.063902N?) — (0.36333N) N + ( 2) > 0.20057N*
and
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> —RyR,R,

1<41 <i2<i3<2N -1

N-1
N N
=— E TiyTiyTis + N g TiyTiy — (2) r; + ( )

1<i1 <ig<ig<N-—1 1<i1 <io<N-—1 i=1 3
3 2 N N 3
< (—0.042234N°) + N (0.07276N?) — 5 ) (0:36333N) + | < 0.01553N

Thus, for sufficiently large N

> —R,R,R;, <0.01553N°

1<41 <i2<i3<2N -1

< (0.20057N?) (0.63666N) < <2§1 —RZ) ( > Rith).

i=1 1<i1 <ig<2N—1
Hence,

hihs # hohs.

Thus, the second normality condition must be satisfied for sufficiently large N

_ hohs
h

hy £ 0.

The theorem was verified numerically for 2 < N < 110, and numerical evidence suggests

the theorem is true for all NV > 2.

COROLLARY 58. Given a degree N Daubechies filter h = {hy,

..., hay_1} with polyphase

matriz factored with the {right, sym, ..., sym} division scheme, the first division is normal

for sufficiently large N.
PROOF. Given a polyphase matrix with factorization coming from the

{right, sym, ..., sym}
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division scheme, the starting polynomials of the Euclidean algorithm are h, and h.. Then

the normality conditions for the first division are

hihs
ho

hs — £0

and

hihon_
hon_1 — 1ij 2 40.
0

Then since hg # 0, these conditions are equivalent to

hohs # hihy
and
hohan-1 # hihan—2
which are exactly the conditions shown in theorem 57. U
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CHAPTER 4

Normality of Polynomial Remainder Sequences

4.1. Introduction

In this chapter we focus on conditions for determining normality of PRS from the starting
polynomials, without having to compute the entire PRS. We continue with the notation for
Laurent PRS using a single starting Laurent polynomial and splitting it into its even and
odd parts as inputs for the Euclidean algorithm. We keep this notation as a convenience,
and note that we can define PRS for any two starting Laurent polynomials.

In general, the problem of determining normality of a PRS from the starting polynomials
requires computing the entire PRS via the Euclidean algorithm. The PRS can fail to be
normal if any extreme coefficient of a remainder polynomial is 0, causing the degree to go
down by more than one in a given step. For a starting polynomial with N coefficients, this
results in O (N) terms which must be nonzero for the PRS to be normal. If even a single
coefficient can take an arbitrary value, it is often possible to make the PRS abnormal. This
is the reasoning for the conjectures in the previous chapters as degree N Daubechies filters
have a finite solution set [18], and hence there are no additional degrees of freedom which can
be used to make the PRS abnormal (in contrast with Recluselets). When seeking normality
results, it is often useful to reduce the degrees of freedom in the coefficients of the starting
polynomial. This is done in the next section with Sturm sequences, which are PRS generated
from a polynomial and its derivative. For Sturm sequences, traditional polynomials are used
rather than Laurent polynomials, reducing the degrees of freedom in the Euclidean algorithm

since there is only one division scheme.
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4.2. Sturm Sequences

Sturm sequences are commonly used to find locations of roots of polynomials. The PRS
is computed for a polynomial and its derivative, and the sign changes are found at various
points. Normality conditions are not related to this root finding method, and are thus largely

ignored. For a detailed description of Sturm sequences and Sturm’s Theorem see [13].

DEFINITION 59. Let A be a square-free polynomial. The Sturm sequence for A is

PRS (A, A’) where A’ is the derivative of A.

While the definition can be extended to Laurent polynomials, we only consider Sturm

sequences involving traditional polynomials.
EXAMPLE 60. Let A (z) = 2* + 42® 4+ 62 + 7z + 2. Then the Sturm sequence for A is

PRS (A, A') = PRS (z* + 42® 4 62” + Tz + 2,42° + 122° + 7)

B 9_x+14235
14 47729 [

The Sturm sequence is abnormal since the degree decreases by two from A’ to the first

element of the PRS.

As mentioned in section §4.1, Sturm sequences have fewer degrees of freedom than the
general two polynomial case, and much fewer than the general two Laurent polynomial PRS
case. The goal is to find algebraic or analytic conditions on the starting polynomial which

relate to normality. We begin with a few basic results.

LEMMA 61. Let A (z) =Y 1, a;x" be a polynomial of degree n > 3 with real coefficients.

The first division of the Sturm sequence of A is abnormal if and only if

(an1)* (n—1)
2a, - n )

Ap—2 =
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PROOF. Let A be defined as above. Then
Al(x) = Zz agr !
i=0

Performing the first division of the Sturm sequence yields the leading coefficient (LC') of the

remainder

LC (Tl) = %an_g - (n — li(an_1)2.

The division in the first step is abnormal exactly when this leading coefficient equals 0.

Thus, we set the expression equal to zero and solve for a,,_s.

2 — 1) (a,_1)*
—Qp—2 — (n ) (a 1) == 0
n a,

(an1)® (n—1)
2a,, - n )

Ap—2 =
]

Unsurprisingly, the normality of the Sturm sequence for a given step only involves a
subset of the coefficients on the higher powers of the polynomial. We can make this statement

precise by inspecting the Euclidean algorithm in the following lemma.

LEMMA 62. Let A(z) =Y 1 a;x" be a polynomial of degree n > 3 with real coefficients.
Then the leading coefficient of the ™ Sturm sequence element, and hence normality at step

j, depends only on {a,, an_1,...,an_2;}.

This lemma shows that normality at a given step is tied to only a subset of the roots. This
further demonstrates the difficulty in determining normality from the starting polynomials.
Every coefficient plays a role in at least one division and hence even a single degree of freedom
for the coefficients can often be manipulated to cause the PRS to be abnormal.

The next result links the normality of the first division with the n — 2 derivative for a

degree n polynomial.
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THEOREM 63. Let A(x) = D1 ja;x" be a polynomial of degree n with real coefficients.
If A" the (n — 2)"d derivative of A, has a repeated root, then the Sturm sequence of A
is abnormal. If A™=2 does not have a repeated root, then the first division of the Sturm

sequence 1S normal.

PROOF. We first compute the (n — 2)"* derivative of A,

|
Aln=2) (.7}) — %anxz + (n — 1)!an_1x + (n - 2)!an—2-

Set this polynomial equal to 0 and solve for z,

l
%anx2 +(n—Dap_1z+ (n—2)a,_2=0

et (= DV £\ (@01 (0 = 1) = 20,0, (0 — 2)ln]

x prng
an!

A(=2) will have repeated roots exactly when the discriminant is 0. Setting the expression

equal to 0 and solving for a,,_s,

(an_1)® (n — D! = 2apa,_3 (n — 2)In! = 0

(@-1)’ (= 1)

Ap—2 =
2a, ' n

Comparing with lemma 61, we find this is exactly the condition for the first division to

be abnormal. O

This theorem suggests much more algebraic structure to the normality property of Sturm
sequences and PRS in general than is currently known, a similar observation also made in

[9]. Only the first derivative is computed for the Sturm sequence of a polynomial, so a
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FIGURE 4.2.1. A(z) = 2% — 223 — 1222 + 7z + 7 with inflection points shown.

relationship to the roots of a much higher order derivative is surprising. When deg (A) = 4,

this theorem relates the graph of a polynomial with the normality of its Sturm sequence.

COROLLARY 64. Let A be a polynomial with real variables and deg (A) = 4. If A has two

distinct points of inflection, then the first division of the Sturm sequence of A is normal.

PROOF. The proof follows directly from theorem 63, noting that the (n — 2)™* derivative
of A in this case is A”, the second derivative. Since the roots of A are the inflection points

of A, the corollary follows. O

EXAMPLE 65. Using the corollary, we can now observe the graph of the following quartic
polynomial and determine normality of the first division in the Sturm sequence.
The inflection points of the polynomial at z = —1, 2 are shown in figure 4.2.1. Since they

are distinct, the first division of the Sturm sequence is normal.

An exact condition for normality in terms of the polynomial coefficients can be found by

performing the Euclidean algorithm on general coefficients.

COROLLARY 66. The Sturm sequence for any quadratic polynomial, A (x) = ap + a1x +

asx? | is normal.

70



PROOF. There is only one division in the Sturm sequence which yields the GCD. The
normality condition is then
2
a —_——
0 4&2
For ay # 0, this is equivalent to the discriminant being nonzero, so A (z) = ag+ a2+ ax?
need only be square-free. Since every Sturm sequence has a square-free polynomial as the

starting polynomial by definition, the corollary holds. U

We can generalize the fact observation in the proof of corollary 66.

FACT 67. Let A (z) be the polynomial input for a Sturm sequence. Then by definition,
A (x) is square-free and hence coprime with its derivative. Then ged (A, A’) = ¢ for some

nonzero constant c.

To completely classify normality for Sturm sequences, perform the Euclidean algorithm
on general coefficients and extract the leading coefficients of each element of the PRS. Since
every leading coefficient must be nonzero for the Sturm sequence to be normal, the product of
the leading coefficients is a normality condition, although performing the Euclidean algorithm
on general coefficients results in an exponential growth of expression lengths and computation

time.

4.3. Abnormality Conditions and Examples

As previously mentioned, there are many degrees of freedom available to find examples
of abnormal PRS. The following example demonstrates that for a given Laurent polynomial
h, he and h, can be coprime, have interlaced and strictly monotonic coefficients and still

result in an abnormal PRS.

EXAMPLE 68. The Laurent polynomial

170
A(z) = 7z8 + 1727 +162° +152° + 1424 + 1322 + 122%2 + 112

71



with the {left, sym, ..., sym} division scheme applied to h. and h, is abnormal.

Examples of abnormal PRS with even a single degree of freedom in one of the coefficients
are easily constructed by performing the division on the general coefficients, and then setting
an extreme coefficient of a remainder polynomial equal to zero and solving. In some cases,
however, the expressions for the extreme terms have no solution, which leads to families of
polynomials with no abnormal PRS for specified division schemes.

We investigate the plots leading to the conjectures in chapter 2, where the lifting step
roots appear to be samples of a continuous limiting curve. While Daubechies filter coefficients
are not samples of a single continuous function, the even and odd parts are converging.
Coiflets are another family of orthogonal wavelets, discovered by Daubechies in [6], and
similar behavior is seen in the lifting step roots as shown in figure 4.3.1. Just as in the
Daubechies filter case, Coiflets have convergent even and odd parts. Unfortunately, this
convergence is not enough to ensure a normal PRS, even for arbitrarily fine samples, as

demonstrated with the following example.

EXAMPLE 69. We want to construct a Lipschitz continuous function F' on [0, 1] such that
any polynomial formed by taking coefficients equal to samples of F' at dyadic points results
in an abnormal PRS for the {left, sym, ..., sym} division scheme on the even and odd parts.
Since I will be Lipschitz continuous, the even and odd parts of the polynomial formed by

sampling will converge, demonstrating this is not a sufficient condition for a normal PRS.

J i

represent the value of the limiting function at dyadic level ¢ and position j. The idea is to

Let

manipulate the first sample at each level so the PRS is abnormal, and interpolate the other
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(A) Filter Length 36

(B) Filter Length 42

(c) Filter Length 48

FIGURE 4.3.1. Nearest Neighbor Roots for Coiflet filters of various lengths
with {left, sym, ..., sym} division scheme
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samples. For the first level,

¢}

N =
Il
|
)
W=
|
= w
@)
>
|
—_

= ci_.l) foreven j
+ clj;)

2
2

foroddj
Then the first sample (7 = 1) for levels ¢ > 1 is defined by the following sequence,

; c’fl (c’f2 + ci_l)

Ci = -
' 2ci2
1
C(l) = 5
1
C% = Z

The first few values of the sequence are
; 11 3 21 315
1= ===y -
127471671287 2048’
Then at each level 7 > 1, the abnormality condition
cich — cécé =0

holds.

The first few levels are given,

@y 2003 T 1537195131375
7Jj=1""1128716732"4716' 816’2716 8 16’4’ 16’ 8" 16’ '
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Define F' on [0, 1] to be the limit of the dyadic points as i — oco.

LEMMA 70. The sequence
{Cli};;

in the construction of F' in example 69 is monotonically decreasing and F (0) > 0.

PROOF. Recall from example 69,

i1 (-2 | -1
A G
01: )

2c]

By induction, we see the sequence is monotonically decreasing as

i—1 ( i—2 i—1 i i

cl (cll + ¢} ) R A e .

T _a—1 1 1 i—1

] = — = — | <.
2c] 2c]

From the construction it is clear
F(0) = lim ..

1—00

This limit has a strictly positive value, as:

24567 < (7)) 4 (&)

30303‘1 — (03_1)2 < cicﬁ_l + (03)2

T A ()’

i a1 ()
3cic; —c

i—1
2 2c]
) i1
. ct 4+ c .
i 1 1 i+1
2¢] — —5 <4
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0.25¢ v
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0.10+

0.05 -

X

01 02 03 0.4 05
FIGURE 4.3.2. The points from right to left are ci, c?, ¢}, ¢} shown with the

line through ¢f and c3.

The last inequality shows that ¢ is strictly above the line through ¢} and ¢~'. Hence,
lim; ., ¢} must lie above the y-intercept of every line segment joining ¢ and cil_1 for any 1.
Since the y-intercept of the segment joining c} and ¢? is 1/8 as shown in figure 4.3.2, the

limit is strictly positive.

LEMMA 71. The function F' defined in example 69 is Lipschitz continuous.

PROOF. The construction interpolates every point except the leftmost sample at each

level 7. Thus, F' is a continuous piecewise linear function on the interval

11

for i — oo, where the sequence {c!};-. are the endpoints of the linear segments. Usin
1Ji=1 g g

lemma 70 shows this sequence is monotonically decreasing and converges to a positive value,
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thus the slopes of each linear segment are
{a—a}l,
which is a strictly decreasing sequence converging to 0. Thus, for any z,y € [0, 1]
|F(z) = F(y)| < |z —yl,

hence F'is Lipschitz continuous. U

We now find a family of polynomials with normal PRS for the {left, sym,...,sym}
and {right,sym,...,sym} division schemes. These polynomials are generated in a similar
manner as the previous example by sampling a given function to generate the coefficients. A
nonconstant linear function sampled at equal intervals always has a normal PRS whenever

the even and odd parts have full degree. We begin with some technical lemmas.

LEMMA 72. Let ¢, d € R be nonzero constants and let n be an integer withn > 1. Suppose

the coefficients of two Laurent polynomaials are arithmetic progressions of the forms:
{c,2¢,...,nc}
and
{d,2d,...,(n—1)d}.
Then symmetric division on the above Laurent polynomaials results in a remainder poly-
nomial with coefficients in an arithmetic progression of the form

{_ ne  2ne m—2ﬁw}.

n—1 n—1  on—1

g e e ey

In addition, the symmetric division is normal.
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PROOF. The proof is a straightforward computation. Symmetric division is equivalent

to the following operations on the coefficient arrays,

2d 1 3d 2 —1)d -2
{20—30—n_lnc,Bc—gc—mnc,...,(n—l)c— (n y ) C_Z—lnc} =
nec  2nc (n—2)nc
n—1n-1""7 n-1 '
The division is normal since ¢ # 0 and n > 1 by assumption. U

We now show that polynomials with coefficients generated by sampling nonconstant linear
functions have normal PRS for the {left, sym, ..., sym} and {right, sym, ..., sym} division

schemes.

THEOREM 73. Let P (x) be any Laurent polynomial with coefficients of the form

{A, A+ k,A+2k,A+3k,..., A+ (2n— 1)k},

where k # 0 and the even and odd parts of P (x) have degree n — 1. Then the

{left, sym, ..., sym} and {right,sym, ..., sym}

division schemes starting with the even and odd parts of P (z) are normal.

PROOF. Using lemma 72 it is enough to show that two consecutive remainder polynomials
have coefficients satisfying the conditions in lemma 72 for normality to hold. We start with

the {left, sym, ..., sym} division scheme. The coefficients of the starting polynomials are
{A A+ 2k, A+ 4k, ..., A+ (2n — 2) k}
and

{A+k A+3kA+5k..., A+ (2n—1)k}.

78



Performing the {left} division results in a remainder with coefficients

n—1

{(A+2jk:) - %M(Aﬂzjﬂ)k)}

J=1

2k Ak? (2n — 2) k2
A+KE A+EkE7  A+k ’

Note that k& # 0 and since the even and odd parts of A have degree n — 1 by assumption,
A+ k # 0, so the first division is normal. In addition, the remainder polynomial has
coefficients in arithmetic progression of the form given in lemma 72.

Continuing with symmetric division yields a remainder polynomial with coefficients of

the form

n—1

. A+k [ 25k A+(@2n—1)k (2(j —1)k?
A+@2j -1k — 55 ( )— =

A+k (2n—2)k? A+k
o i) ™ ey s )
n 2n (n—2)n
{—n_l(A—l—k:),—n_l(A—I—k:),...,—ﬁ(A—l—k:)}.

Thus, the second division is normal, and the coefficients of the remainder polynomial
are in arithmetic progression of the form given in lemma 72. Since the rest of the divisions
are symmetric division and the inputs both have coefficients in arithmetic progression, the
theorem holds.

For the {right, sym, ..., sym} division scheme, the same argument holds with the array

manipulations associated with {right} division. O

COROLLARY T74. Any two Laurent polynomials with coefficients of the following forms

are coprime,

{A A+ 2k, A+ 4k, ..., A+ (2n — 2) k}

and

{A+k A+3k A+5k..., A+ (2n— 1)k},
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given that the extreme coefficients for both polynomials are nonzero and n > 1.

PROOF. We need only observe that the extreme coefficients for any of the remainder
polynomials in the Euclidean algorithm are nonzero as shown in theorem 73. Then the GCD

is a monomial and hence the polynomials are coprime. 0
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