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CHAPTER 1Introdu
tionOur goal is exploring and better understanding fa
torizations of polyphase matri
es for�nite impulse response (FIR) �lters. In parti
ular, we fo
us on nearest neighbor fa
toriza-tions dis
ussed by Wi
kerhauser and Zhu [19℄ that allow for e�
ient implementation of thedis
rete wavelet transform (DWT) for the algorithms of Daube
hies and Sweldens [8℄ andMallat [10℄. Nearest neighbor lifting is a spe
i�
 form of the general lifting s
heme thatimproves the lifting algorithm by optimizing the number of e�
ient memory a

esses. Near-est neighbor lifting fa
torizations are typi
ally generated by implementing the Eu
lideanalgorithm for Laurent polynomials, whi
h introdu
es multiple 
hoi
es of fa
torizations of apolyphase matrix asso
iated with a �lter, and are the main fo
us of this work.1.1. Filters and the Eu
lidean AlgorithmA �lter h is a linear map h : ℓ2 → ℓ2 whi
h is 
hara
terized 
ompletely by its impulseresponse, {hk∈Z}. We only 
onsider real-valued �nite impulse response (FIR) �lters whi
h
orrespond to only �nitely many nonzero �lter 
oe�
ients (also referred to as �taps�). Sin
ewe work primarily with the lifting algorithm and polyphase matri
es, it will be 
onvenientto represent a �lter by its z-transform, the Laurent polynomial with 
oe�
ients equal to theimpulse response,
h (z) =

∑

k∈Z

hkz
−k.Definition 1. The support of a Laurent polynomial h (z) =∑k∈Z hkz

−k is
support (h (z)) = {k ∈ Z | m1 ≤ k ≤ m2} = [m1, m2] ,1



where
m1 = inf {k ∈ Z : hk 6= 0}

m2 = sup {k ∈ Z : hk 6= 0} .Definition 2. The degree of the Laurent polynomial h (z) =∑k∈Z hkz
−k is

|h| = m2 −m1,where support (h (z)) = [m1, m2] ⊆ Z.This de�nition di�ers from the notion of degree for traditional polynomials. For example,
|z2 + 3z| = 1. With this Laurent de�nition of degree, we are able to implement the Eu
lideanalgorithm on the ring of Laurent polynomials.Lemma 3. Let A (z) and B (z) be nonzero Laurent polynomials satisfying |A (z)| ≥

|B (z)|. Then there exists a quotient polynomial Q (z), and a remainder polynomial R (z)with degree stri
tly less than B (z) , satisfying
A (z) = B (z)Q (z) +R (z) .In 
ontrast to traditional polynomial division, there are 
hoi
es for whi
h terms to 
an
elin Laurent polynomial division whi
h result in di�erent quotient and remainder polynomials.We fo
us on examples involving quotients of degree at most one, sin
e we wish to workprimarily with nearest neighbor fa
torizations whi
h require this 
ondition.Example 4. Let A (z) = 9z + 12 + 6z−1 and B (z) = 3z + 2. Sin
e |A| = |B|+ 1, thereare three 
hoi
es for the �rst division in the Eu
lidean algorithm a

ording to whi
h terms of2



A (z) are eliminated. If the lowest two terms are eliminated, denoted {right− right}, then
A (z) = B (z)Q (z) +R (z)

(

9z + 12 + 6z−1
)

= (3z + 2)

(

3

2
+ 3z−1

)

+

(

9

2
z

)

.We 
he
k the degree of the remainder is less than the divisor, |B (z)| = 1 > 0 = |R (z)|.Comparing the remainder with A (z), we see that indeed the two rightmost terms, thosewith the two lowest powers, have been eliminated. The other two 
hoi
es for the divisionare eliminating the highest and lowest power from A (z), denoted {sym}, and eliminatingthe two highest power terms, denoted {left− left},
(

9z + 12 + 6z−1
)

= (3z + 2)
(

3 + 3z−1
)

+ (−3) {sym}

(

9z + 12 + 6z−1
)

= (3z + 2)
(

3 + 2z−1
)

+
(

2z−1
)

{left− left} .Sin
e the degree of the remainder polynomial is redu
ed at ea
h step, we 
an implementthe Eu
lidean algorithm on the ring of Laurent polynomials. The 
hoi
e of whi
h terms toeliminate at ea
h division, however, in�uen
es the result.Definition 5. A division s
heme is the sequen
e of 
hoi
es for the divisions at ea
h stepin the Eu
lidean algorithm for two Laurent polynomials.In general, the Eu
lidean algorithm is implemented on Laurent polynomials A,B sat-isfying |A| ≥ |B| ≥ 0 by de�ning a0 = A and b0 = B and performing the following for
k = 0, 1, 2, . . . :

ak+1 = bk

bk+1 = ak − qkbk.In the above equations qk is any of the possible quotients from division. The Eu
lideanalgorithm terminates when bk+1 = 0 by �nding a greatest 
ommon divisor (GCD) bk, of the3



starting Laurent polynomials, similar to the traditional polynomial 
ase, as shown by thefollowing lemma from [19℄.Lemma 6. Let n be the smallest positive integer for whi
h bn = 0. Then an ∈ gcd (A,B).The greatest 
ommon divisor for two Laurent polynomials is unique only up to multipli
a-tion by a unit, whi
h, in the ring of Laurent polynomials, is any degree 0 polynomial (nonzeromonomial). The 
hoi
e of division s
heme will be the key to 
ontrolling the fa
torizationsresulting from the Eu
lidean algorithm in the lifting algorithm.1.2. Polynomial Remainder Sequen
esThe sequen
e of remainder polynomials generated by the Eu
lidean algorithm is 
alledthe polynomial remainder sequen
e or PRS. For traditional polynomials, there is only onePRS asso
iated to two polynomials as there are no 
hoi
es in the Eu
lidean algorithm. Wenow extend the de�nition of polynomial remainder sequen
e to Laurent polynomials andde�ne the property of normality.Definition 7. A Laurent PRS for a given division s
heme is the set of remainder Laurentpolynomials obtained by the Eu
lidean algorithm at ea
h step. For polynomials A and Bwe denote it PRS (A,B).Definition 8. A (Laurent) PRS is 
alled normal if the (Laurent) degree de
reases byexa
tly 1 at ea
h step of the Eu
lidean algorithm. A (Laurent) PRS that is not normal is
alled abnormal.Definition 9. A single division in the Eu
lidean algorithm is 
alled normal if the degreeof the remainder polynomial de
reases by exa
tly one, otherwise it is 
alled abnormal.Sin
e the division algorithm redu
es the remainder degree by at least one, normality
hara
terizes when the maximal number of steps in the Eu
lidean Algorithm are needed. The4



following is an example of a normal PRS for the polynomials A (x) = 2x4+7x3+8x2+5x+3and B (x) = 3x3 + 4x2 + 2x+ 5.Example 10. The Eu
lidean Algorithm for the polynomials A (x) = 2x4 + 7x3 + 8x2 +

5x+3 and B (x) = 3x3+4x2+2x+5 has only one division s
heme as there are no 
hoi
es forthe divisions for traditional polynomials. If A and B are 
onsidered Laurent polynomials,then the division s
heme 
orresponding to the Eu
lidean Algorithm for traditional polyno-mials is {left− left, left− left, . . . , left− left}, shown below. We begin by 
omputing thequotient q1 and remainder r1,
A (x) = q1B + r1 =

(

13

9
+

2x

3

)

B +

(

8x2

9
− 11x

9
− 38

9

)

.Thus, the �rst polynomial in the PRS is r1 = 8x2

9
− 11x

9
− 38

9
and we 
ontinue with theEu
lidean Algorithm to �nd q2 and r2,

B (x) = q2

(

8x2

9
− 11x

9
− 38

9

)

+ r2

=

(

27x

8
+

585

64

)(

8x2

9
− 11x

9
− 38

9

)

+

(

1395x

32
+

1755

64

)

.Thus, the se
ond polynomial in the PRS is r2 = 1395x
32

+ 1755
64

. The �nal step in theEu
lidean Algorithm yields the �nal polynomial in the PRS whi
h is ne
essarily the GCDof A and B,
(

8x2

9
− 11x

9
− 38

9

)

= q3

(

1395x

32
+

1755

64

)

+ r3

=

(

512x

15795
− 11840

123201

)(

1395x

32
+

1755

64

)

−
(

448

13689

)

.We 
on
lude the �nal polynomial in the PRS is r3 = − 448
13689

, and
PRS (A,B) =

{

8x2

9
− 11x

9
− 38

9
,
1395x

32
+

1755

64
,− 448

13689

}

.5



Sin
e the degree of the polynomials of the PRS de
reases by exa
tly one at ea
h step,the PRS is normal. 1.3. Dis
rete Wavelet Transforms and LiftingThe dis
rete wavelet transform (DWT) takes a signal u ∈ ℓ2 and applies the analysis�lters h̃, g̃ to de
ompose it into 
oe�
ients of the wavelet basis. The signal passes throughthe low-pass h̃ and high-pass g̃ �lters and is then subsampled. The inverse transform (IDWT)re
onstru
ts the signal by upsampling it and then applying the synthesis �lters, h (low-pass)and g (high-pass). We only 
onsider FIR �lters in this dissertation, hen
e h, g, h̃, g̃ have �nitesupport. A 
omplete des
ription of wavelet transforms 
an be found in [2, 3, 7, 12, 16℄.A 
ommonly desired property of �lters is the perfe
t re
onstru
tion property that allowsthe original signal to be exa
tly re
overed by the synthesis �lters after passing through theanalysis �lters.Definition 11. The perfe
t re
onstru
tion property in our z-transform notation is then
h (z) h̃

(

z−1
)

+ g (z) g̃
(

z−1
)

= 2

h (z) h̃
(

−z−1
)

+ g (z) g̃
(

−z−1
)

= 0.The even and odd parts of a �lter, de�ned below, are useful in representing the DWTand IDWT.Definition 12. Let h (z) = ∑hkz
−k be a Laurent polynomial. Then the even part of

h is
he (z) =

∑

k

h2kz
−k,and the odd part of h is

ho (z) =
∑

k

h2k+1z
−k.

6



For synthesis �lters, we de�ne the polyphase matrix P (z),
P (z) =





he ge

ho go



and similarly for P̃ (z) using h̃ and g̃. The perfe
t re
onstru
tion property 
an be rewrit-ten [8℄ as
P (z) P̃

(

z−1
)T

= Id.Sin
e the entries of P and P̃ are all Laurent polynomials, their determinants are Laurentpolynomials as well. Then,
det (P (z)) det

(

P̃
(

z−1
)T
)

= det (Id) = 1,whi
h 
an only o

ur when the determinants of P and P̃ are degree 0 (monomials). We
an res
ale g to ensure det (P (z)) = 1. Suppose det (P (z)) = czm for some nonzero c, then,
det









he
ge
czm

ho
go
czm







 =
hego
czm

− hoge
czm

=
1

czm
det (P (z)) = 1.Definition 13. A pair of �lters h, g are 
alled 
omplementary if the asso
iated polyphasematrix P satis�es det (P ) = 1.

Given an FIR �lter h, a 
omplementary �lter 
an be found if and only if he and ho are
oprime [7, 19℄. We 
an apply the Eu
lidean algorithm to he and ho with any divisions
heme to obtain




he

ho



 = (−1)N
N−1
∏

k=0





qk 1

1 0









czm

0



 ,

7



where {qk} are the quotients and czm ∈ gcd (he, ho). The GCD is ne
essarily a monomialsin
e he and ho are 
oprime, and a 
omplementary �lter g is de�ned by




he ge

ho go



 = (−1)N
N−1
∏

k=0





qk 1

1 0









czm 0

0 1
czm



 .Given synthesis �lters h, g, a pair of analysis �lters 
an be found whi
h satisfy the perfe
tre
onstru
tion property by de�ning h̃ and g̃ by
h̃e (z) = go

(

z−1
)

,

h̃o (z) = −ge
(

z−1
)

,

g̃e (z) = −ho

(

z−1
)

,

g̃o (z) = −he

(

z−1
)

.Thus, if an FIR �lter h has 
omprime even and odd parts he and ho, then we 
an always�nd g, h̃, g̃ with the perfe
t re
onstru
tion property [5℄.The lifting s
heme is a way to build �lters satisfying the perfe
t re
onstru
tion property.The idea is to start with the lazy wavelet, whi
h only downsamples the signal, and thenmultiply by matri
es with unit determinant (lifting steps) to ensure the resulting �lters
h, g will be 
omplementary. The 
hoi
e of lifting steps leads to di�erent properties of theresulting multiresolution analysis, and 
an be used to build any FIR wavelet. The twofollowing theorems from [8℄ outline the lifting s
heme.Theorem 14. (Lifting) Let h, g be 
omplementary �lters. Then any other �nite �lter
gnew 
omplementary to h is of the form:

gnew (z) = g (z) + h (z) s
(

z2
)

,8



where s (z) is a Laurent polynomial. Conversely, any �lter of this form is 
omplementaryto h.Theorem 15. (Dual Lifting) Let h, g be 
omplementary �lters. Then any other �nite�lter hnew 
omplementary to g is of the form:
hnew (z) = h (z) + g (z) t

(

z2
)

,where t (z) is a Laurent polynomial. Conversely, any �lter of this form is 
omplementaryto g.To build the desired FIR �lter, start with the Lazy wavelet and alternate lifting and duallifting steps, whi
h 
orrespond to multiplying the polyphase matrix by matri
es of the form




1 s (z)

0 1



 ,





1 0

t (z) 1



for lifting and dual lifting, respe
tively. Using the lifting s
heme to 
onstru
t wavelets withspe
ial properties is des
ribed in detail in [4, 17℄.1.4. Overview of ResultsWi
kerhauser and Zhu [19℄ showed that every �lter has a nearest neighbor fa
torizationif additional matri
es are added when the Eu
lidean algorithm does not dire
tly produ
e anearest neighbor fa
torization. In 
hapter 2, we show that for most popular �lters, these addi-tional matri
es are needed exa
tly when the PRS generated from he and ho is abnormal. Theonly 
andidates for a dire
t nearest neighbor fa
torizations are from the {left, sym, . . . , sym}or {right, sym, . . . , sym} division s
hemes, depending on the �lter length, and exist whenthese PRS are normal. Uniqueness of dire
t nearest neighbor fa
torizations for �lters with
ertain length restri
tion is shown, and an algorithm to 
ompute the fa
torizations is given.The e�e
ts of an initial z-shift are 
hara
terized and related to normality of the PRS.9



In 
hapter 3, the results about dire
t nearest neighbor fa
torizations are applied toDaube
hies �lters and the existen
e of a dire
t nearest neighbor fa
torization is numeri-
ally veri�ed for �lters with lengths up to 220. Asymptoti
s of Daube
hies polynomial rootsfrom [14, 15℄ are used to prove limiting behavior of Daube
hies �lter 
oe�
ients, and arerelated to properties of Daube
hies �lter fa
torizations.In 
hapter 4, normality of PRS for traditional and Laurent polynomials is analyzed.Sturm sequen
es are introdu
ed, and normality of the �rst division is related to the zerosof a higher order derivative of the starting polynomial. For quarti
 polynomials, this givesa geometri
 representation of normality for the �rst division. An example is 
onstru
ted toshow that 
onvergen
e of the even and odd parts of a family of polynomials is not su�
ient fornormality. Su�
ient 
onditions for normality are given for a parti
ular family of polynomials.

10



CHAPTER 2Nearest Neighbor Fa
torizations2.1. Introdu
tionRe
all that the Eu
lidean algorithm for a given division s
heme of he and ho for an FIR�lter h results in a fa
torization of the polyphase matrix P , where the 
omplementary �lter
g 
an be de�ned using the lifting steps [8℄. Limiting the form of the lifting steps 
an result infewer distant memory a

esses. This motivates the nearest neighbor fa
torization de�nitionfrom [19℄, repeated here:Definition 16. Let P be the polyphase matrix of a �lter bank. A lifting fa
torizationof P ,

P (z) =

N−1
∏

k=0





1 sk (z)

0 1









1 0

tk (z) 1









M 0

0 M−1



is 
alled nearest neighbor if it satis�es the following 
onditions,
sk (z) = αk + βkz

−1

tk (z) = γkz + δk,where αk, βk, γk, δk,M ∈ C.Wi
kerhauser and Zhu [19℄ showed that every FIR �lter has a nearest neighbor fa
tor-ization if additional matri
es are added, often at the expense of the fa
torization having ahigher 
ondition number. With these additional matri
es, every division s
heme of an FIR�lter results in a nearest neighbor fa
torization. We re
all a lemma from [19℄ whi
h in
ludesthe de�nition of the 
ondition number of a matrix.11



Lemma 17. If P (z) is the polyphase matrix of a perfe
t re
onstru
tion �lter pair, then
cond (P ) :=

sup
{

√

λmax (P ∗P ) : |z| = 1
}

inf
{

√

λmin (P ∗P ) : |z| = 1
}where λmin (M) and λmax (M) are eigenvalues of matrix M . Furthermore, if P =

P1 · · ·Pn, then
cond (P ) ≤ cond (P1) · · · cond (Pn) .

Example 18. Consider a polyphase matrix with the following lifting fa
torization
P (z) =





1 z−3

0 1









1 0

2z 1









1 0

0 1



 .This fa
torization is not nearest neighbor, but one 
an be found by de
omposing the �rstmatrix using additional matri
es,
P (z) =





1 z−3

0 1









1 0

2z 1









1 0

0 1





=





z−1 0

0 z









1 z−1

0 1









z 0

0 z−1









1 0

2z 1









1 0

0 1





=





1 0

z 1









1 −z−1

0 1









1 0

−1 + z 1









1 1

0 1









1 0

−1 1









1 z−1

0 1









1 0

0 1









1 −z

0 1









1 0

z−1 1









1 1− z

0 1









1 0

−1 1









1 1

0 1









1 0

2z 1









1 0

0 1



 .

12



In this 
ase, we see that a single lifting step must be expanded into 12 matri
es to satisfythe nearest neighbor form. Furthermore, 11 of the 12 additional matri
es (all but the Idmatrix) in
rease the 
ondition number of the fa
torization.For the Daube
hies-4 �lter with the {left, sym} division s
heme, the Eu
lidean algorithmresults in a nearest neighbor fa
torization dire
tly using the quotients as the lifting steps.Example 19. The Daube
hies �lter with four 
oe�
ients and shifted by z is
h (z) =

1 +
√
3

4
√
2

z +
3 +

√
3

4
√
2

+
3−

√
3

4
√
2

z−1 +
1−

√
3

4
√
2

z−2.The polyphase matrix fa
torization with the {left, sym} division s
heme is
P (z) =





1 0.57735

0 1









1 0

−0.43301 + 2.79904z 1









0.29886 0

0 3.34607



 ,whi
h results dire
tly in a nearest neighbor fa
torization. Therefore, no additional matri
esare needed.Definition 20. Given a �lter h and a division s
heme with Eu
lidean algorithm quo-tients {qk} su
h that




he

ho



 = (−1)N





N−1
∏

k=0





qk 1

1 0













M

0



 ,and {qk} satisfy the nearest neighbor 
onditions, then the fa
torization is 
alled a dire
tnearest neighbor fa
torization.Note the equation in the dire
t nearest neighbor fa
torization de�nition 
an be writtenin nearest neighbor form using




q1 1

1 0



 =





0 1

1 0









1 0

q1 1



 =





1 q1

0 1









0 1

1 0



 .

13



For fa
torizations with an even number of quotients from the Eu
lidean algorithm, thematri
es 
an be paired and the �ip matri
es 
an
el for ea
h pair, resulting in the desirednearest neighbor form,




q1 1

1 0









q2 1

1 0



 =





1 q1

0 1









1 0

q2 1



 =





1 s1

0 1









1 0

t1 1



 .For fa
torizations with an odd number of quotients from the Eu
lidean algorithm, thereis an additional matrix whi
h 
annot be paired and hen
e a �ip matrix remains. This 
an
orre
ted for by starting the Eu
lidean algorithm with the roles of he and ho reversed. Then,




ho

he



 =





N
∏

k=1





qk 1

1 0













M

0









ho

he



 =





0 1

1 0









1 0

q1 1









N
∏

k=2





qk 1

1 0













M

0









0 1

1 0









ho

he



 =





1 0

q1 1









N−1

2
∏

k=1





1 qk+1

0 1









1 0

qk+2 1













M

0









he

ho



 =





1 0

q1 1









N−1

2
∏

k=1





1 q2k

0 1









1 0

q2k+1 1













M

0



 ,and the fa
torization is nearest neighbor whenever the quotients satisfy the 
onditions ofthe nearest neighbor de�nition. Thus, whenever the {right, sym, . . . , sym} division s
hemeis given for a �lter with an odd number of quotients, assume the Eu
lidean algorithm hadinput polynomials of a0 = ho and b0 = he, unless otherwise stated.Wi
kerhauser and Zhu [19℄ showed that not all FIR �lters have a dire
t nearest neighborfa
torization for any z-shift and division s
heme, demonstrated by the split Haar �lter,
h =

1√
2

(

1 + z−9
)

.

14



This is easily seen, as there is only one division s
heme for the split Haar �lter and itdoes not produ
e a dire
t nearest neighbor fa
torization.2.2. E�e
ts of z-ShiftsSin
e the GCD in a nearest neighbor fa
torization must be 
onstant, it 
an be useful tomultiply the z-transform of the �lter by an initial shift before fa
toring into lifting steps.This 
orresponds to multiplying the z-transform of the �lter by some power of z, whi
hhas no e�e
t on the �lter 
oe�
ients. We begin with two lemmas showing the e�e
ts ofmultiplying by even and odd powers of z.Lemma 21. Multiplying the z-transform of a �lter h by z2m, m ∈ Z, multiplies he and hoby zm.Proof. The z-transform of the shifted �lter is
hshift (z) = z2mh (z) =

(

z2m
)

∑

i

hiz
−i =

∑

i

hiz
2m−i.Thus, the even part of hshift (z) is

hshift,even (z) =
∑

i

h2iz
m−i = zm

∑

i

h2iz
−i = zmhe (z) .Similarly for the odd part of hshift (z)

hshift,odd (z) =
∑

i

h2i+1z
m−i = zm

∑

i

h2i+1z
−i = zmho (z) .

�Lemma 22. Multiplying the z-transform of a �lter h by z swit
hes he and ho, and multi-plies he by z.Proof. The z-transform of the shifted �lter is15



hshift (z) = zh (z) = z
∑

i

hiz
−i =

∑

i

hiz
1−i.Thus, the even part of hshift (z) is

hshift,even (z) =
∑

i

h2iz
1−i =

∑

i

h2i+1z
−i = ho (z) ,and the odd part of hshift (z) is

hshift,odd (z) =
∑

i

h2i+1z
1−i = z

∑

i

h2iz
−i = zhe (z) .

�

An arbitrary integer power shift of a �lter 
an be thought of as �rst an even power shift,and then a shift by z if the power is odd. Thus, multiplying a �lter by z2m+1 shifts theeven and odd parts of the �lter by zm a

ording to lemma 21, and then swaps the even andodd parts and multiplies the even part by z as spe
i�ed in lemma 22. In the 
ontext oflifting fa
torizations, shifts by an even power of z allow us to adjust the GCD to be 
onstantwithout a�e
ting the lifting steps, as shown in the next lemma.Lemma 23. Given a �lter h fa
tored into lifting steps {qi} with GCD Mzj , the shifted�lter z−2jh has the same lifting steps {qi}, but with 
onstant GCD M .Proof. A �lter having lifting steps {qi} with a nonzero GCD Mzj implies




he (z)

ho (z)



 =





∏





qi 1

1 0













Mzj

0



 .

16



Using lemma 21 with the shift z−2j , he (z) and ho (z) are multiplied by z−j , hen
e thelifting fa
torization be
omes




z−jhe (z)

z−jho (z)



 = z−j





he (z)

ho (z)





= z−j





∏





qi 1

1 0













Mzj

0



 =





∏





qi 1

1 0













M

0



 .

�This result allows us to re
ord only the 
oe�
ients in the support of the remainderpolynomials generated during the Eu
lidean algorithm on Laurent polynomials when �ndingnearest neighbor fa
torizations.2.3. Number of Dire
t Nearest Neighbor Fa
torizationsWe fo
us our attention on �lters that satisfy |he| = |ho|, as many popular wavelet �lterssatisfy this 
ondition, in
luding Daube
hies �lters whi
h are the main topi
 of the next
hapter.Remark 24. Let h be a �lter of length 2N whi
h satis�es |he| = |ho| = N −1 ≥ 1. Thenthere are at most 4 · 3N−2 division s
hemes with quotients of degree at most one.The remark is shown in [11℄, and results from 4 
hoi
es for the �rst division dependingupon whi
h terms are 
an
eled,
left, left− left, right, right− right,no 
hoi
es for the �nal division, and 3 
hoi
es for the remaining N − 2 divisions,

left− left, right− right, sym.17



The {sym} element 
orresponds to 
an
eling the two extreme terms. The sequen
e of re-mainder polynomials resulting from a given division s
heme will play a key role in nearestneighbor fa
torizations.Remark 25. Given two Laurent polynomials, it is possible to have normal and abnormalPRS 
orresponding to di�erent division s
hemes.For a given division s
heme to produ
e a dire
t nearest neighbor fa
torization, the quo-tients resulting from the Eu
lidean algorithmmust be in the nearest neighbor form, otherwiseadditional matri
es are required. We begin with a result about the �rst division for length
2N �lters whi
h satisfy |he| = |ho| = N − 1.Theorem 26. Given a �lter h of length 2N whi
h satis�es |he| = |ho| = N − 1 ≥ 1, anda division s
heme resulting in a dire
t nearest neighbor fa
torization, then the �rst elementof the division s
heme is either {left} or {right}. This is equivalent to the �rst lifting step(quotient in the Eu
lidean algorithm) being a 
onstant.Proof. Let {ai}Ni=0 and {bi}Ni=0 be the polynomials in the Eu
lidean algorithm, startingwith a0 = he and b0 = ho, and let {qi}Ni=1 be the quotients. Sin
e the division s
heme resultsin a dire
t nearest neighbor fa
torization, the �rst lifting step is of the form q1 = c1z+ d1 or
q1 = c1z

−1 + d1. For the 
ase q1 = c1z+ d1, assume toward 
ontradi
tion that, c1 6= 0, whi
h
orresponds to having {right− right} as the �rst element of the division s
heme. Usinglemma 23, assume he and ho have 
onstant lowest degree terms. Then
a0 =

N−1
∑

j=0

a0,jz
j

b0 =

N−1
∑

j=0

b0,jz
j

18



b1 = a0 − q1b0 =
N
∑

j=2

b1,jz
j .The (Laurent) degree of b1 has been redu
ed by at least 1 as required for the Eu
lideanalgorithm. For the next step in the algorithm, the quotient must be of the form q2 = c2z

−1+d2for the fa
torization to be dire
tly nearest neighbor. Then,
a1 = b0 =

N−1
∑

j=0

a1,jz
j

b2 = a1 − q2b1 =
N−1
∑

j=0

b0,jz
j −

(

c2z
−1 + d2

)

N
∑

j=2

b1,jz
j =

N
∑

j=0

b2,jz
j .We note that |b2| = N when d2 is nonzero, and |b2| = N − 1 when d2 = 0 sin
e theextreme terms 
annot 
an
el. But then the degree of the remainder has not been redu
edin this step sin
e |b1| = N − 1, a 
ontradi
tion. A similar argument leads to a 
ontradi
tionfor the 
ase q1 = c1z

−1 + d1 with c1 6= 0. Thus, q1 must be 
onstant, whi
h 
orresponds tothe �rst element of the division s
heme being {left} or {right}. �Thus, only two 
hoi
es of the possible four {left, left− left, right, right− right} for the�rst division 
an result in a dire
t nearest neighbor fa
torization. The next theorem showsthat there is only one 
hoi
e for the remaining steps in the Eu
lidean algorithm that 
anresult in a dire
t nearest neighbor fa
torization.Theorem 27. Given a length 2N �lter h whi
h satis�es |he| = |ho| = N − 1 ≥ 1, anda division s
heme that results in a dire
t nearest neighbor fa
torization, then the divisions
heme must be either {left, sym, . . . , sym} or {right, sym, . . . , sym}.Proof. The �rst element being {left} or {right} is a result of theorem 26. Let a0 = heand b0 = ho. Assume the �rst division is normal, and hen
e |a1| = |b1|+ 1. Without loss ofgenerality, suppose that the lowest power of a0 was eliminated, 
orresponding to {right} as19



the �rst element of the division s
heme. Then, using lemma 23, assume a1 =
∑N−1

j=0 a1,jz
jand b1 =

∑N−1
j=1 b1,iz

j . There are then three possibilities for the division, eliminating thehighest two, lowest two, or highest and lowest terms from a1. The remainders 
orrespondingto the division 
hoi
es {left− left} , {right− right} , {sym} are
bL2 =

N−3
∑

j=0

b2,jz
j

bR2 =

N−1
∑

j=2

b2,jz
j

bsym2 =

N−2
∑

j=1

b2,jz
j ,respe
tively, with 
orresponding quotients of the form q2 = c2z

−1 + d2. Note that ∣∣bR2 ∣∣ =
∣

∣bL2
∣

∣ = |bsym2 | = N − 3. With any 
hoi
e, a2 =
∑N−1

j=1 a2,jz
j , and the 
orresponding q3 mustsatisfy |q3| = 1 in order to redu
e the remainder degree in the division. Sin
e the previousquotient was of the form q2 = c2z

−1 + d2, the next step must have the form
q3 = c3z + d3.The resulting b3 polynomials 
orresponding to the above b2 polynomials are:

bL3 = a2 − q3b
L
2 =

N−1
∑

j=1

a2,jz
j − (c3z + d3)

N−3
∑

j=0

b2,jz
j =

N−1
∑

j=0

b3,jz
j

bR3 = a2 − q3b
R
2 =

N
∑

j=1

a2,jz
j − (c3z + d3)

N−1
∑

j=2

b2,jz
j =

N
∑

j=1

b3,jz
j

bsym3 = a2 − q3b
sym
2 =

N−1
∑

j=1

a2,jz
j − (c3z + d3)

N−2
∑

j=1

b2,jz
j =

N−2
∑

j=2

b3,jz
j .The extreme terms of bR3 and bL3 
annot be 
an
eled by the subtra
tion, whi
h 
an be seen by
omparing the degrees of a2 and q3b2. Thus, ∣∣bR3 ∣∣ = ∣∣bL3 ∣∣ = N − 1 whi
h 
annot o

ur sin
e20



that would imply the degree was not redu
ed. Then, |bsym3 | ≤ N − 4, with equality exa
tlywhen the division is normal. Thus, the only possibility given a dire
t nearest neighborfa
torization is for all elements in the division s
heme after the �rst element to 
ome fromsymmetri
 division.Now suppose the �rst division is abnormal, then |b1| < |a1| − 1. The next step in theEu
lidean algorithm would require a quotient of degree more than 1 to redu
e the degree ofthe remainder su�
iently, and hen
e would not result in a nearest neighbor fa
torization. �Thus, out of the possible 4 · 3N−2 division s
hemes for a �lter satisfying |he| = |ho| =

N − 1, there are only two 
andidate division s
hemes whi
h 
an result in a nearest neighborfa
torization. The next theorem redu
es the number of 
andidate division s
hemes for su
h�lters to one.Theorem 28. Let h be a length 2N �lter whi
h satis�es |he| = |ho| = N − 1 ≥ 1with a dire
t nearest neighbor fa
torization. Then for even N , the division s
heme must be
{left, sym, . . . sym}. For odd N , the division s
heme must be {right, sym, . . . sym}.Proof. Let h be as above and suppose N is even. Then theorem 27 shows the onlypossible division s
hemes resulting in a dire
t nearest neighbor fa
torization are

{left, sym, . . . sym}and
{right, sym, . . . sym} .Suppose for 
ontradi
tion the division s
heme is
{right, sym, . . . sym} ,21



and let {qi} be the list of quotients from the Eu
lidean algorithm. Sin
e the fa
toriza-tion is nearest neighbor, {qi} must 
ontain only degree one Laurent polynomials. Sin
e byassumption |he| = |ho| = N − 1, there are at most N quotients. Thus,




he

ho



 =





N
2
∏

k=1





1 q2k−1

0 1









1 0

q2k 1













M

0



 (2.3.1)whereM ∈ gcd (he, ho). To satisfy nearest neighbor form, q2 = c2z+d2, but from theorem 27,the {right, sym, . . . , sym} has a 
onstant q1 and q2 = c2z
−1 + d2. For q2 to be of the 
orre
tform, c2 = 0, hen
e q2 must be a 
onstant. But then the left hand side of equation (2.3.1)has polynomials of degree N−1 and the right hand side has degree at most N−2 sin
e everyother qi is at most degree one, a 
ontradi
tion. The same argument holds for odd N . �Theorem 29. Let h be a length 2N �lter whi
h satis�es |he| = |ho| = N − 1 ≥ 1. Forodd N , the division s
heme {right, sym, . . . , sym} having a normal polynomial remaindersequen
e PRS (ho, he) is equivalent to {right, sym, . . . , sym} resulting in a dire
t nearestneighbor fa
torization. For even N , the division s
heme {left, sym, . . . , sym} having anormal polynomial remainder sequen
e PRS (he, ho) is equivalent to {left, sym, . . . , sym}resulting in a dire
t nearest neighbor fa
torization.Proof. (=⇒) Let the �lter be as above, N odd, and let {right, sym, . . . , sym} result ina normal PRS. Then sin
e N is odd, we begin the Eu
lidean algorithm with a0 = ho and

b0 = he. The �rst division 
an
els the lowest power term of b0, and sin
e the division s
hemeis normal, there are no additional terms 
an
eled. Then the �rst lifting step q1 is 
onstantand, up to a shift by z,
a1 = he =

N−1
∑

j=0

a1,jz
j

b1 =

N−1
∑

j=1

b1,jz
j .

22



The extreme terms b1,1 and b1,N−1 must be nonzero for normality to hold, and the extremepowers are aligned for the highest powers and di�er by one for the lowest powers. Continuingwith {sym} division, whi
h again must be normal, then the next quotient, q2, must beexa
tly degree one. Comparing the degrees of a1 and b1, the quotient must be of the form
q2 = c2z

−1 + d2. The next step of the Eu
lidean algorithm results in
a2 =

N−1
∑

j=1

a2,jz
j

b2 = a1 − q2b1 =
N−2
∑

j=1

b2,jz
j .Sin
e the division is normal, b2 must have nonzero extreme terms, b2,1 and b2,N−2, and thequotients resulting from the division s
heme thus far satisfy the nearest neighbor 
ondition.The next division is similar the previous {sym} step, but sin
e the left powers align, thequotient will be exa
tly degree one, but of the form q3 = c3z + d3z. The next step yields

a3 =

N−2
∑

j=1

a3,jz
j

b3 = a2 − q3b2 =

N−2
∑

j=2

b3,jz
j .The extreme terms b3,2 and b3,N−2 again must be nonzero sin
e the division is normal,and the highest powers are now aligned. The {sym} divisions will hen
e alternate quotientsin the ne
essary forms to satisfy the nearest neighbor 
ondition. This pattern 
an onlybe disrupted if an extreme term of the remainder is zero, whi
h 
annot o

ur with theassumption of normality.The proof for {left, sym, . . . , sym} follows the same arguments as {right, sym, . . . , sym},with the only 
hange that the Eu
lidean algorithm starts with a0 = he and b0 = ho.
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(⇐=) Without loss of generality, assume the division s
heme {left, sym, . . . , sym} isabnormal. Then for at least one division in the Eu
lidean algorithm, the degree of theremainder is redu
ed by more than 1. Then the total number of steps, and hen
e liftingsteps, in the Eu
lidean algorithm is at most N − 2. Then




he (z)

ho (z)



 =





N−2
∏

i=1





qi 1

1 0













gcd (he, ho)

0



 ,but then the produ
t on the right hand side of the equation must have degree stri
tlyless than N − 1 sin
e |qi| ≤ 1. This is a 
ontradi
tion as |he| = |ho| = N − 1 by assumption.Thus, no division in the division s
heme 
an be abnormal. �

The 
onne
tion of normal PRS and dire
t nearest neighbor fa
torizations is promisingas abnormal PRS form a measure 0 set 
onsidering h =
∑N−1

j=0 hjz
j as (h0, h1, . . . , hN−1) ∈

RN. Unfortunately, there are few, if any, ways to 
he
k normality of a PRS in generalwithout going through the entirety of the Eu
lidean algorithm and 
he
king the degrees ofthe remainders. We will �nd families of polynomials in 
hapter 4 for whi
h normality 
anbe proven without 
omputing the entire PRS.These results show that with the restri
tions of dire
t nearest neighbor fa
torizations oflength 2N �lters satisfying |he| = |ho| = N − 1 ≥ 1, uniqueness is a
hieved exa
tly whenthe asso
iated PRS is normal. In [1℄, Brislawn approa
hes the question of uniqueness in thelifting s
heme with a group stru
ture approa
h, very di�erent from our dire
t 
omputationapproa
h. Our approa
h results in a uniqueness theorem for a smaller 
lass of �lters, butallows us to �nd an algorithm to �nd the fa
torizations whenever they exist.24



2.4. Algorithm for Nearest Neighbor Fa
torizationUsing the results from se
tion �2.3, we outline an algorithm for 
he
king whether an arbi-trary �lter of length 2N satisfying |he| = |ho| = N−1 has a dire
t nearest neighbor fa
toriza-tion. Due to lemma 23, we need only tra
k the 
oe�
ients of the polynomials in the Eu
lideanalgorithm, and theorem 29 allows us only to 
he
k for normality of the {left, sym, . . . , sym}or {right, sym, . . . , sym} division s
heme (depending on whether N is even or odd), insteadof all 4 · 3N−2 possibilities. We outline the algorithm for the {left, sym, . . . , sym} divisions
heme for a �lter h =
∑0

j=−2N−1 hjz
j satisfying |he| = |ho| = N − 1. The algorithm forthe {right, sym, . . . , sym} division s
heme works similarly, the only alteration is starting theEu
lidean algorithm with the roles of he and ho reversed.Step 1: Eliminate Constant Term of ho. We denote the 
oe�
ients of he by he =

a0 = (c0, c1, ..., cN−1) and the 
oe�
ients of ho by ho = b0 = (d0, d1, ..., dN−1). The �rst stepin the Eu
lidean Algorithm eliminates the highest order term from ho via the following:
q1 =

c0
d0

a1 = b0 = (d0, d1, ..., dN−1)

b1 = a0 − q1b0 = (c1 − q1d1, c2 − q1d2, ..., , cN−1 − q1dN−1) .If the extreme terms in b1 are 0, that is, the division is abnormal, then the algorithm ter-minates and there is no nearest neighbor fa
torization for the {left, sym, . . . , sym} divisions
heme. If the extreme powers do not equal 0, then set the �rst lifting step as q1.Step 2: Symmetri
 Division. We pro
eed with the Eu
lidean algorithm using sym-metri
 division until the algorithm terminates after a total of N steps when bN = 0 and25



aN ∈ gcd (he, ho). At ea
h step, 
he
k that the extreme powers of bi are nonzero, elsethe division s
heme is abnormal and the algorithm terminates. We represent symmetri
division in 
oe�
ient arrays with the following operations. For ai = {c0, . . . , cm+1} and
bi = {d0, . . . , dm} whi
h agree in the lowest power of z, symmetri
 division yields:

qi =
c0
d0

+
cm+1

dm
z−1 = si + tiz

−1

ai+1 = bi = (d0, d1, ..., dm)

bi+1 = (c1 − sid1 − tid0, c2 − sid2 − tid1, ..., cm − sidm − tidm−1) .If ai and bi agree in the highest power of z, ai+1 and bi+1 are the same, but the quotientbe
omes
qi =

c0
d0

z +
cm+1

dm
= siz + ti.At ea
h step, set qi as the nearest neighbor lifting step.

Step 3: Determine z-Shift. If the Eu
lidean algorithm terminates and results in anormal PRS, then let M be the 
oe�
ient of the GCD obtained from the last step of theEu
lidean algorithm. Then the GCD is
Mz⌊−N

2 ⌋ ∈ gcd (he, ho) .If the original �lter, h, had a di�erent z-shift, use lemma 23 to shift the �lter so
h =

∑0
j=−2N−1 hjz

j and then apply the lemma again to obtain the 
orre
t GCD via theappropriate z-shift. 26



Example 30. The Daube
hies �lter with 8 
oe�
ients is
{0.23038, 0.71485, 0.63088,−0.027984,−0.18703, 0.030841, 0.032883,−0.010597} ,thus

he = {0.23038, 0.63088,−0.1870, 0.032883}

ho = {0.71485,−0.027984, 0.030841,−0.010597} .Step 1, left division, 
an
els the highest order term of the �lter, whi
h 
orresponds to the�rst element of he. After the �rst division, the 
oe�
ients of the remainder polynomial are
{0.63990,−0.19697, 0.03630} ,and the 
orresponding quotient (lifting step) is

q1 = 0.32228.Applying Step 2 (sym division) yields remainder polynomial 
oe�
ients of
{0.37888,−0.06722}

{0.12115}

{0},and 
orresponding quotients of
q2 = −0.29195 + 1.1171z

q3 = 1.6889− 0.5400

z

q4 = −0.555 + 3.127z.
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The 
oe�
ient of the GCD is the last nonzero remainder 
oe�
ient, M = 0.12155.Computing the GCD using Step 3,
0.12155z⌊−N

2 ⌋ = 0.12155z⌊− 4

2⌋ = 0.12155z−2 ∈ gcd (he, ho) .Thus, the original �lter requires a z-shift of z2 to result in a 
onstant GCD and a dire
tnearest neighbor fa
torization via {left, sym, sym, sym}.2.5. Matrix Representation of the Re
onstru
tion AlgorithmGiven the lifting steps {qi} andM ∈ gcd (he, ho) of a �lter, we 
an re
onstru
t the original�lter using the following equation,
P (z) =

N/2
∏

i=1





qi 1

1 0









M 0

0 M−1



 .If in addition to the �lter, we want to re
over all information in the asso
iated Eu
lideanalgorithm used to generate the lifting steps, we 
an use the following theorem.Theorem 31. Suppose a given �lter of length 2N with |he| = |ho| = N − 1 has a nearestneighbor fa
torization with lifting steps {qi} and M ∈ gcd (he, ho). Let A be any matrix, S bethe zero matrix with 1's along the superdiagonal, and G be the zero matrix with GN+1,1 = M ,ea
h with dimension (N + 1)× (N + 1). Then de�ne C as the diagonal matrix of 
oe�
ientson the highest power of {qi}, with the �rst diagonal entry equal to 0
C =

























0 0 . . . 0

0 c1 0 0

0 0
. . . 0... cN−1

...
0 0 . . . 0 cN

























.
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Similarly, de�ne D with diagonal entries equaling the 
oe�
ients of the lowest orderterms of {qi}.
D =

























0 0 · · · 0

0 d1 0 0

0 0
. . . 0... dN−1

...
0 0 · · · 0 dN

























.

Then N + 1 iterations of the following matrix equation will 
onverge to the matrix of
oe�
ients obtained by the Eu
lidean algorithm produ
ing the spe
i�ed lifting steps:
A = SCA+ ASDS + SSAS +G.Proof. The theorem is proved by writing the e�e
ts of the Eu
lidean algorithm on theremainder polynomials at ea
h step in terms of matrix operations. �2.6. Filters with No Dire
t Nearest Neighbor Fa
torizationsThe algorithm des
ribed in se
tion �2.4 
an be used to generate �lters with no dire
tnearest neighbor fa
torizations. In [19℄, the split Haar �lter,

h =
1√
2

(

1 + z−9
)

,was an example of a �lter with no dire
t nearest neighbor fa
torization. Having multiplezeros in the support of the �lter is often enough to guarantee no dire
t nearest neighborfa
torizations, although we give examples to show it is not a ne
essary 
ondition. We alsoshow that 
ommon properties of �lters su
h as orthogonality and vanishing moments are notenough to guarantee the existen
e of a dire
t nearest neighbor fa
torization. We begin by29



restating a lemma in [11℄ whi
h shows the even and odd parts of a �lter must have similardegrees or no dire
t nearest neighbor fa
torization 
an exist.Lemma 32. Let h = {h0, h1, . . . , h2N−1} be a �lter su
h that ||he| − |ho|| > 1, then h hasno dire
t nearest neighbor fa
torizations.Proof. Let ao and bo be the starting polynomials in the Eu
lidean algorithm. Then forthe fa
torization to be dire
tly nearest neighbor, ea
h quotient must have degree at mostone. Suppose |ao| > |bo| + 1, then the �rst division 
an 
an
el at most two terms from ao,hen
e
b1 = a0 − q1b0

|b1| ≥ |ao| − 2 > |bo| − 1 ≥ |bo| .But then the degree of the remainder has not been redu
ed, a 
ontradi
tion. �Lemma 33. Let h = {h0, h1, . . . , h2N−1} be a �lter satisfying |he| = |ho| and
|support (he) ∩ support (ho)|+ 1 < |support (he)| ,then h has no dire
t nearest neighbor fa
torizations.Proof. First, suppose N is even, and let a0 = he and b0 = ho be the starting polynomialsin the Eu
lidean algorithm. The �rst division must 
an
el at least one term from a0 so the de-gree of b1 is stri
tly less than b0. The 
onditions |he| = |ho| and |support (he) ∩ support (ho)|+

1 < |support (he)| imply the extreme terms of a0 and b0 di�er by a monomial with traditionalpolynomial degree of at least two. Then,
b1 = a0 − q1b0,30



so the extreme terms of q1b0 and a0 must align, requiring q1 to 
ontain a term withtraditional polynomial degree of at least two, hen
e the fa
torization 
annot be dire
tlynearest neighbor.The same argument holds for odd N and a0 = ho and b0 = he. �Although �lters with many zeros in the support often do not have a dire
t nearest neigh-bor fa
torization, it is not su�
ient to ensure no dire
t nearest neighbor fa
torizations exist.Example 34. Consider the �lter
h = {36, 72, 72, 0, 48, 60, 60, 24} .Then, using the {left, sym, sym, sym} division s
heme yields a dire
t nearest neighborfa
torization. The 
oe�
ient arrays of the PRS are

{72, 0, 60, 24}

{72, 18, 48}

{−54, 3}

{886} .This PRS is easily seen to be normal as the length of the remainder 
oe�
ient arrayde
reases by exa
tly 1 at ea
h step.A 
ommon property of �lters is the perfe
t re
onstru
tion property, whi
h is also notsu�
ient to ensure a �lter has a dire
t nearest neighbor fa
torization. A �lter having theperfe
t re
onstru
tion property is equivalent to 
oprimality of he and ho [19℄. This propertyis not enough to guarantee a normal PRS, as shown in the following proposition.Proposition 35. There exists a �lter h su
h that he and ho are 
oprime, but PRS (he, ho)is abnormal in the {left, sym, . . . , sym} division s
heme.31



Proof. Let he = 9z3 + 5z2 + 4z + 2 and ho = 10z3 + 2z2 + 6z + 3. Then the
{right, sym, sym, sym} division s
heme is abnormal, but he and ho are 
oprime as they haveno 
ommon roots. The polynomial remainder sequen
e is abnormal as the �rst remainder is

b1 =
7

3
z3 +

11

3
z2.Sin
e the degree of the remainder de
reased by more than one (b0 = ho has degree 4, b1has degree 2), the division s
heme results in an abnormal remainder sequen
e.However, this �lter has a normal remainder sequen
e for the {left, sym, . . . , sym} divi-sion s
heme, whi
h demonstrates normality is dependent on division s
heme. �Many �lters are designed to have orthogonality and vanishing moment 
onditions, andwe investigate the e�e
t of these properties on dire
t nearest neighbor fa
torizations. ForFIR �lters, these properties 
an be translated to 
onditions involving the �lter 
oe�
ients[7℄.Definition 36. Let h =

∑2N−1
i=0 hiz

i be the z-transform of an FIR �lter of length 2N .Then h is orthogonal if it satis�es the following double shift orthogonality equations,
2N−1
∑

i=0

hihi+2k = δk, k = 0, 1, 2, . . . , N − 1.A �lter with l vanishing moments 
an also be 
lassi�ed using equations only involvingthe �lter 
oe�
ients.Definition 37. Let h =
∑2N−1

i=0 hiz
i be the z-transform of an FIR �lter of length 2N .Then h has l vanishing moments if it satis�es the following equations for k = 0, . . . , l

2N−1
∑

i=0

(−1)i ikhi = 0 k = 0, 1, 2, . . . , N − 1.
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These properties are not su�
ient to guarantee a dire
t nearest neighbor fa
torization,even with no zeros in the support of the �lter, as demonstrated in the following proposition.Proposition 38. (Re
luselet) There exist orthogonal �lters with at least one vanishingmoment and no zeros in the support with no dire
t nearest neighbor fa
torizations.Proof. The �lter
{0.742661, −0.107110, 0.123776, 0.011555, 0.01, 0.06, −0.069335}is a length 8 orthogonal �lter with one vanishing moment and no dire
t nearest neigh-bor fa
torizations. This �lter solves the following system of equations for orthogonalityand one vanishing moment, along with 
onditions to make both {left, sym, . . . , sym} and

{right, sym, . . . , sym} division s
hemes be abnormal.
7
∑

i=0

hi =
√
2

7
∑

i=0

hihi+2k = δk, k = 0, 1, 2, 3

h0 − h1 + h2 − h3 + h4 − h5 + h6 − h7 = 0

−
h1

(

h4 − h0h5

h1

)

h2 − h0h3

h1

−
h7

(

h2 − h0h3

h1

)

h6 − h0h7

h1

+ h3 = 0

−
h1

(

h4 − h5h6

h7

)

h0 − h1h6

h7

−
h7

(

h2 − h3h6

h7

)

h4 − h5h6

h7

+ h5 = 0.The taps h5 and h6 were spe
i�ed to ensure a real solution to the system of equations.The abnormality equations were generated by performing the nearest neighbor algorithm33



with arbitrary 
oe�
ients, and �nding 
onditions su
h that the degree of a remainder wasredu
ed by more than 1 by setting extreme terms equal to 0. Sin
e at ea
h step, the twoextremal 
oe�
ients being zero results in an abnormal division, there are many abnormalityequations that 
an be used whi
h result in di�erent �lters. �We 
all orthogonal �lters with at least one vanishing moment �Re
luselets� if they haveno dire
t nearest neighbor fa
torization. The system of equations used in the previoustheorem is 
losely related to the system of equations used to generate Daube
hies �lters.The Daube
hies system has a maximal number of vanishing moment equations (N for a 2Nlength �lter), whereas the Re
luselet system has one vanishing moment 
ondition but twoabnormality equations are added. In general, we �nd that ea
h vanishing moment equationand abnormality equation redu
es the dimension of the solution set by one. This method
an be used to generate longer Re
luselet �lters, although 
omputation time be
omes anobsta
le around �lter length 12.
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CHAPTER 3Nearest Neighbor Fa
torizations of Daube
hies Filters3.1. Introdu
tionIn [5, 7℄, Daube
hies 
onstru
ts orthonormal, 
ompa
tly supported wavelets with themaximum number of vanishing moments. We give a modi�ed 
onstru
tion for Daube
hies�lters. Our goal is to use the asymptoti
 behavior of Daube
hies polynomial roots alongwith Vieta's formulas to explore asymptoti
s of the nearest neighbor lifting fa
torizations.The algorithm des
ribed below generates a degree N (length 2N) Daube
hies �lter, and isequivalent to the traditional 
onstru
tion presented in [5℄.
(1) Find the N − 1 roots {Yi}N−1 of the polynomial:

BN (y) =
N−1
∑

i=0

(

N − 1− i

i

)

yi−1.(2) Transform the roots {Yi}N−1 into 2N − 2 roots, {Zi}2N−2, using
Z + Z−1 = 2− 4Y.(3) From {Zi}2N−2, sele
t the N − 1 roots whi
h lie inside the unit 
ir
le, {ri}N−1

i=1 .(4) Form the polynomial H̃ (z) with N − 1 roots z = ri and N roots at z = −1.
H̃ (z) =

(

N−1
∏

i=1

(z − ri)

)

(z + 1)N =

2N−1
∑

i=0

h̃2N−1−iz
i

35



Figure 3.1.1. The transformed roots {ri}N−1
i=1 for N = 20 with the limiting
urve |z + 1| =

√
2

(5) S
ale the �lter so that ∑ |hi| = 2, by dividing H̃ (z) by the 
onstant
C = 2N− 1

2

N−1
∏

i=1

(1− ri) .Note that the resulting polynomial has the 
oe�
ients indexed in reverse order, so thatthe �lter 
oe�
ients mat
h the order found in Daube
hies' original 
onstru
tion:
H (z) =

H̃ (z)

C
=

(

∏N−1
i=1 (z − ri)

)

(z + 1)N

2N− 1

2

∏N−1
i=1 (1− ri)

=
2N−1
∑

i=0

h2N−1−iz
i.This 
onstru
tion has the advantage of not involving negative powers of z, thus allowingthe use of Vieta's formulas. In se
tion �3.4, we show C = 2N− 1

2

∏N−1
i=1 (1− ri) is stri
tlypositive, and thus results about signs of �lter 
oe�
ients 
an typi
ally be proven dire
tly bylooking at the uns
aled �lter H̃ (z).We heavily use the results from Strang and Shen [14℄ with respe
t to the lo
ations of thezeros {ri}N−1

i=1 . The authors showed these zeros 
ome in 
omplex 
onjugate pairs, lie stri
tlyin the right half plane, and 
onverge on the 
ir
le |z + 1| =
√
2 from the inside as N → ∞.36



3.2. Properties of Nearest Neighbor Lifting Step RootsWi
kerhauser and Zhu veri�ed that Daube
hies �lters up to length 20 have a dire
t near-est neighbor fa
torization [19℄. With the fa
torization algorithm des
ribed in se
tion �2.4,there is only one possible division s
heme that results in a dire
t nearest neighbor fa
tor-ization. This allows for a more e�
ient algorithm for verifying higher order �lters. Withthese 
onsiderations, we verify numeri
ally that all Daube
hies �lters up to length 220 haveexa
tly one dire
t nearest neighbor fa
torizations.In 
ontrast to general Laurent polynomials, nearest neighbor fa
torizations for Daube
hies�lters demonstrate remarkably stable 
hara
teristi
s. For nearest neighbor fa
torizations,the �rst lifting step is 
onstant, and the others have the forms q = cz + d or q = c + dz−1.Plotting the roots of these lifting steps for the {left, sym, . . . , sym} division s
heme for var-ious degrees in �gure 3.2.1 demonstrates the stability of the relative size of the lifting step
oe�
ients.Similar behavior is also found for Daube
hies �lters with the {right, sym, . . . , sym} di-vision s
heme. Various degrees are shown in �gure 3.2.2.Sin
e the lifting steps are degree one Laurent polynomials, the positivity of the liftingsteps roots 
orresponds to opposite signs of the lifting step 
oe�
ients (ci and di). Thispattern has been observed up to N = 110 (length 220). All of the observed lifting step roots(N = 2 to N = 110) are bounded on (0, 1) for the {left, sym, . . . , sym} division s
heme.The existen
e of these points is enough to show a normal PRS and hen
e a dire
t nearestneighbor fa
torization exists for all N . Due to the predi
tability of this behavior, we makethe following 
onje
tures.Conje
ture 39. All Daube
hies �lters of degree N > 2 have exa
tly one dire
t nearestneighbor fa
torizations 
orresponding to the {left, sym, . . . , sym} and {right, sym, . . . , sym}division s
hemes for even and odd N , respe
tively.37



(a) N = 20

(b) N = 40

(
) N = 110Figure 3.2.1. Nearest Neighbor Roots for degree N Daube
hies Filter with
{left, sym, . . . , sym} for (A) N = 20 (B) N = 40 (C) N = 11038



(a) N = 19

(b) N = 39

(
) N = 99Figure 3.2.2. Nearest Neighbor Roots for degree N Daube
hies Filter with
{right, sym, . . . , sym} for (A) N = 19 (B) N = 39 (C) N = 9939



Numeri
al analysis of the lifting step roots for the {left, sym, . . . , sym} division s
hemesuggests asymptoti
 
onvergen
e among the �rst 0.2N lifting steps for a �lter of length 2N .This is summarized in the following 
onje
ture.Conje
ture 40. Given a degree N Daube
hies �lter, with N even, and the
{left, sym, . . . , sym}division s
heme, the zeros of the lifting steps {Zi}0.2Ni=1 are bounded by 1, and the �rst 0.2Nlifting steps 
onverge to

Zi =
2i− 1

2i+ 1as N → ∞. 3.3. Bounds on Daube
hies Filter Coe�
ientsUsing the asymptoti
s of the Daube
hies polynomial roots and their relationship to theDaube
hies �lter 
oe�
ients, we prove results involving the tails of the Daube
hies �lters andproperties of their dire
t nearest neighbor fa
torizations. We use a di�erent approa
h than in[15℄, where Strang and Shen give global asymptoti
 behavior of Daube
hies �lter 
oe�
ients.The estimates from [15℄ do not have the a

ura
y ne
essary to analyze individual 
oe�
ientsand their relative sizes.Lemma 41. The s
aling 
oe�
ient C = 2N− 1

2

∏N−1
i=1 (1− ri) used in the above 
onstru
-tion of Daube
hies �lters is stri
tly positive.Proof. The roots {ri}N−1

i=1 
ome in 
omplex 
onjugate pairs along with a single realpositive root when N is even. Strang and Shen [14℄ proved the roots lie stri
tly in the righthalf plane and inside the 
ir
le |z + 1| =
√
2 and |ri| < 1 for all i. Let M = maxi (|ri|) < 1.40



Grouping the terms involving 
onjugate pairs for odd N and reindexing as needed gives:
N−1
∏

i=1

(1− ri) =

N−1

2
∏

i=1

(1− ri) (1− r̄i) =

N−1

2
∏

i=1

(

1− r2i
)

>

N−1

2
∏

i=1

(

1−M2
)

> 0.For even N , there is a single real positive root, rN−1, along with N
2
− 1 
onjugate pairsof roots, so with reindexing we get:

N−1
∏

i=1

(1− ri) = rN−1





N
2
−1
∏

i=1

(1− ri) (1− r̄i)



 = rN−1





N
2
−1
∏

i=1

(

1− r2i
)





> rN−1





N
2
−1
∏

i=1

(

1−M2
)



 > 0.In either 
ase, the produ
t is stri
tly positive, hen
e C > 0. �Corollary 42. Given a degree N Daube
hies �lter h = {h0, h1, . . . , h2N−1}, then
h0 =

(

2N− 1

2

N−1
∏

i=1

(1− ri)

)−1

= C−1 > 0.Proof. From the 
onstru
tion for Daube
hies �lters, we see
H (z) =

H̃ (z)

C
=

(

∏N−1
i=1 (z − ri)

)

(z + 1)N

2N− 1

2

∏N−1
i=1 (1− ri)

=

2N−1
∑

i=0

h2N−1−iz
iMat
hing 
oe�
ients in the above equation, we �nd h0 is the leading 
oe�
ient. Thenumerator is a moni
 polynomial, hen
e:

h0 = C−1 =

(

2N− 1

2

N−1
∏

i=1

(1− ri)

)−1Using lemma 41, h0 = C−1 > 0. �41



Using results from Strang and Shen [14℄, we bound the relative growth of h0 and h1.
Lemma 43. Given a degree N > 1 Daube
hies �lter h = {h0, h1, . . . , h2N−1}, then

0 < h0

(

−
√
2N + 2N +

√
2− 1

)

< h1 < Nh0.Proof. Using the formula in the 
onstru
tion des
ribed above,
H (z) =

H̃ (z)

C
=

(

∏N−1
i=1 (z − ri)

)

(z + 1)N

2N− 1

2

∏N−1
i=1 (1− ri)

=

2N−1
∑

i=0

h2N−1−iz
i.Using Vieta's formula for the h1 
oe�
ient

N−1
∑

i=1

ri +

N
∑

i=1

(−1) =

N−1
∑

i=1

ri −N = −h1

h0

h1 = −h0

(

N−1
∑

i=1

ri −N

)

.The roots {ri}N−1
i=1 
ome in 
omplex 
onjugate pairs and possibly a single real positiveroot when N is even. Strang and Shen [14℄ showed

0 < Re (ri) <
√
2− 1for all i.Sin
e the sum of the roots must be real, the imaginary parts 
an
el out, and the upperbound for h1 is:

h1 = −h0

(

N−1
∑

i=1

Re (ri)−N

)

< −h0 (0−N) = h0N.For the lower bound we use the positivity of the real part of the roots along with theprevious result h0 > 0. Again, the roots 
ome in 
onjugate pairs so only the real parts42




ontribute to the sum.
h1 = −h0

(

N−1
∑

i=1

ri −N

)

= −h0

((

N−1
∑

i=1

Re (ri)

)

−N

)

> −h0

(

(N − 1)
(√

2− 1
)

−N
)

= h0

(

−
√
2N + 2N +

√
2− 1

)

> 0.

�Corollary 44. Given a degree N > 2 Daube
hies �lter h = {h0, h1, . . . , h2N−1}, then
0 < h0 < h1.Proof. The 
orollary is obvious using 0 < h0 and lemma 43,

0 < h0 < h0

(

−
√
2N + 2N +

√
2− 1

)

< h0 (0.6N + .5) < h0N < h1for all N > 1. �We prove the following lemma whi
h will be useful in up
oming theorems.Lemma 45. Given a degree N Daube
hies �lter h = {h0, h1, . . . , h2N−1}, h2N−1 is nonzero.For even N , h2N−1 < 0 and for odd N , h2N−1 > 0.Proof. Using the formula from the 
onstru
tion des
ribed above,
H (z) =

H̃ (z)

C
=

(

∏N−1
i=1 (z − ri)

)

(z + 1)N

2N− 1

2

∏N−1
i=1 (1− ri)

=

2N−1
∑

i=0

h2N−1−iz
i.Computing the 
onstant 
oe�
ient, h2N−1

h2N−1 =

∏N−1
i=1 (−ri)

C
= (−1)N−1

∏N−1
i=1 ri
C

.From lemma 41, C is stri
tly positive, and {ri}N−1
i=1 are nonzero and stri
tly in the righthalf plane from [14℄, thus h2N−1 is nonzero. The sign 
hange for even and odd N is apparentfrom the (−1)N−1 term. �43



Corollary 46. Given a degree N ≥ 1 Daube
hies �lter h = {h0, h1, . . . , h2N−1}, h2N−2is nonzero.Proof. For N = 1, h is the Haar �lter, and thus the 
orollary holds.For N > 1, we have shown in previous results that h0, h1, h2N−1 are nonzero. AllDaube
hies �lters satisfy double shift orthogonality 
onditions, in parti
ular,
h0h2N−2 + h1h2N−1 = 0.Thus, it is 
lear h2N−2 =

−h1h2N−1

h0
must be nonzero. �Lemma 47. Given a degree N > 1 Daube
hies �lter h = {h0, h1, . . . , h2N−1}, h2N−1

h2N−2
< 0.In parti
ular, h2N−1 and h2N−2 have di�erent signs.Proof. Sin
e the �lter satis�es double shift orthogonality, along with the previous re-sults showing h0, h1, h2N−2, h2N−1 are nonzero,

h2N−1

h2N−2
=

−h1

h0
< 0,using the results that h0, h1 > 0. Sin
e h2N−1 alternates sign as N in
reases, so does

h2N−2. �3.4. Asymptoti
s of Daube
hies Filter Coe�
ientsThe asymptoti
s of the Daube
hies polynomial roots from Theorem 5 in [14℄ allow us toobtain bounds on the Daube
hies �lter 
oe�
ients. Let {Yk} be the asymptoti
 estimatesfor the roots of BN (y), then:
Yk =

1−
√

1− exp
(

2πi k
N−1

)

2
, k = 0, ..., N − 2.44



Figure 3.4.1. The Daube
hies roots (squares) along with the Strang asymp-toti
s (
ir
les) for N = 20Using the transformation Z + Z−1 = 2 − 4Y to obtain asymptoti
 estimates Zk for the
N − 1 roots {ri}N−1,

Zk =

√

1− e
2iπk
N −

√

−e
2iπk
N , k = 1, ..., N − 1.A plot of the Daube
hies polynomial roots and these asymptoti
 estimates is shown in�gure 3.4.1.We will use these regions to obtain asymptoti
 bounds for the �lter 
oe�
ients sin
e the

Zk estimates 
annot be used dire
tly. Let j be a positive integer, △ be a small positive realvalue, and △j = 2 + (j − 1)△. Then denote the sets of asymptoti
 Daube
hies polynomialroots in the upper half plane as
A△

j =

{

z

∣

∣

∣

∣

|z + 1| ≤
√
2 and arg

(

Z N
△j

)

≤ arg (z) ≤ arg

(

Z N
△j+1

)}

.45



Let
θ△j =

{

arg (zk)
∣

∣

∣
zk ∈ A△

j

)}

B△
j =

{

|zk|
∣

∣

∣
zk ∈ A△

j

)}

,then,
arg

(

Z N
△j

)

≤ min
(

θ△j

)

≤ max
(

θ△j

)

≤ arg

(

Z N
△j+1

)

∣

∣

∣

∣

Z N
△j

∣

∣

∣

∣

≤ min
(

B△
j

)

≤ max
(

B△
j

)

≤
∣

∣

∣

∣

Z N
△j+1

∣

∣

∣

∣

.

Lemma 48. Let {ri}N−1 and {Zi}N−1 be the Daube
hies polynomial roots and asso
iatedasymptoti
 estimates de�ned as above. Then, for any A△
j ,

1− o (1) <
#
{

ri ∈ A△
j

}

#
{

Zi ∈ A△
j

} < 1 + o (1) .Proof. Fix A△
j and ǫ > 0. In [14℄, Strang and Shen show the global error for the Ziapproximations to ea
h ri is O

(

N− 1

2

)

. Then, for some of the Zi ∈ A△
j , the asso
iated rimay not be in the A△

j region. An example region is shown in �gure 3.4.2, with the shadedregion representing A△
j . The dashed region shows the possible lo
ations of the ri, obtained bydrawing a 
ir
le around with Zi with radius O (N− 1

2

). Strang proved that the ri lie stri
tlyinside the 
ir
le |z + 1| =
√
2, hen
e we disregard the dashed region outside this 
ir
le.Denote the dashed region inside the 
ir
le |z + 1| =

√
2 by C ′ and de�ne C = C ′ − A△

j .Then C 
ontains every ri /∈ A△
j approximated by a Zi ∈ A△

j .The Zi are asymptoti
ally evenly distributed along the limiting 
ir
le |z + 1| =
√
2, hen
e

#
{

Zi ∈ A△
j

}

→ N

△j
− N

△j+1
.46



Figure 3.4.2. A△
j region with error estimates shown

For a �xed N , there exist a 
onstants K su
h that |ri − Zi| < KN− 1

2 for all i. De�nethe set
D =

{

Zi |Zi ∈ A△
j and

∣

∣

∣

∣

Zi − Z N
△j

∣

∣

∣

∣

> KN− 1

2 and

∣

∣

∣

∣

Zi − Z N
△j+1

∣

∣

∣

∣

> cN− 1

2

}

.Then every Zi ∈ D has an asso
iated ri ∈ A△
j , and

# {Zi ∈ D} =
N

△j
− N

△j+1
− 2KN− 1

2 ≤ #
{

ri ∈ A△
j

}Thus,
#
{

ri ∈ A△
j

}

#
{

Zi ∈ A△
j

} ≥
N
△j

− N
△j+1

− 2KN− 1

2

N
△j

− N
△j+1

= 1− o (1) .Next, 
onsider the Zi 
lose to the endpoints of the A△
j region,

# {Zi ∈ C} ≤ 2cN− 1

2 .47



Hen
e,
#
{

ri ∈ A△
j

}

#
{

Zi ∈ A△
j

} ≤
#
{

Zi ∈ A△
j

}

+# {Zi ∈ C}

#
{

Zi ∈ A△
j

} ≤ 1 +
2KN− 1

2

N
△j

− N
△j+1

= 1 + o (1) .

�This lemma shows that the expe
ted number of Daube
hies polynomial roots lie in ea
hasymptoti
 region for su�
iently large N . For example, to �nd the per
entage of Daube
hiesroots as N → ∞ whi
h have π
2
> arg (ri) >

π
4
, use the formula for Zk with k = N

i
, and �ndthe i for whi
h arg

(

ZN
i

)

= π
4
,

arg
(

ZN
6

)

= arg

(√

1− e
2iπ
6 −

√

−e
2iπ
6

)

=
π

4
.Thus, for su�
iently largeN , N−1

6
of the Daube
hies roots {ri}N−1 have π

2
> arg (ri) >

π
4
.We are now able to obtain mu
h sharper bounds on the Daube
hies polynomial roots.Lemma 49. Let {ri}N−1 be the roots of the N th Daube
hies polynomial inside the unit
ir
le. Then for su�
iently large N ,

N−1
∑

i=1

ri < 0.36343N.Proof. We begin by rewriting the sum using the fa
t that the roots 
ome in 
omplex
onjugate pairs with at most one real positive root when N is even. Assume that N is oddso there is no real root, and let M = N−1
2

. Order and index the roots in the upper half plane
{ri}M by 0 < arg (r1) < ... < arg (rM). Then,

N−1
∑

i=1

ri =

M
∑

i=1

(ri + r̄i) = 2

M
∑

i=1

Re (ri) .We use the asymptoti
 regions of the Daube
hies polynomial roots to �nd an upper boundfor the sum. Summing over the M roots in the upper half plane 
orresponds asymptoti
ally48



to summing over A△
j for j ≥ 1 and a �xed △ > 0,

M
∑

i=1

Re (ri) ≤
∞
∑

j=1

Re

(

Z N
△j

)

≤
L
∑

j=1

Re

(

Z N
△j

)

+
N

△L+1

Re

(

Z N
△L+1

)

.These inequalities use lemma 48 to ensure that no signi�
ant portion of the ri fall outsideof the A△
j regions. The upper bound de
reases as L in
reases and △ de
reases. Sele
ting

L = 106 and △ = 0.01,
N−1
∑

i=1

ri ≤ 2

[

L
∑

j=1

Re

(

Z N
△j

)

+
N

△L+1
Re

(

Z N
△L+1

)

]

< 0.36343N.For even N , the 
ontribution of the additional real ri is at most √2 − 1, whi
h doesn't
hange the bound for su�
iently large N . �The key bound in lemma 49 is,
M
∑

i=1

Re (ri) ≤
∞
∑

j=1

Re

(

Z N
△j

)

+ o (N)as N → ∞.The 3.4.3 shows the A△
j regions, with the A1

2 region shaded in gray. The real part of anypoint in the gray region is bounded above by Re
(

Z N
△2

).A similar strategy allows for us to de�ne a lower bound on the sum of the Daube
hiespolynomial roots.Lemma 50. Let {ri}N−1 be the roots of the N th Daube
hies polynomial inside the unit
ir
le. Then for su�
iently large N ,
0.35581N <

N−1
∑

i=1

ri.Proof. We begin as above by rewriting the sum using the fa
t that the roots 
ome in
omplex 
onjugate pairs with at most one real positive root when N is even. Assume that49



Figure 3.4.3. Examples of Asymptoti
 Regions for Daube
hies Polynomial Roots
N is odd so there is no real root, and let M = N−1

2
. Order and index the roots in the upperhalf plane {ri}M by 0 < arg (r1) < ... < arg (rM). Then,

N−1
∑

i=1

ri =

M
∑

i=1

(ri + r̄i) = 2

M
∑

i=1

Re (ri)Summing over the M roots in the upper half plane 
orresponds asymptoti
ally to sum-ming over A△
j for j ≥ 1 and a �xed △ > 0,
M
∑

i=1

Re (ri) ≥
∞
∑

j=1

Re

(

Z N
△j+1

)

− o (N) ≥
L
∑

j=1

Re

(

Z N
△j+1

)

− o (N) ,as N → ∞.The lower bound in
reases as L in
reases and △ de
reases. Sele
ting L = 106 and
△ = 0.01,

N−1
∑

i=1

ri ≥ 2
L
∑

j=1

Re

(

Z N
△j+1

)

> 0.35581N,for su�
iently large N. 50



Figure 3.4.4. A
tual values of ∑N−1
i=1 ri for values of N = 100, 120, . . . , 260along with asymptoti
 bounds from lemma 49 and lemma 50 (dashed lines).For even N , the additional real root 
ontributes at most √2− 1, and doesn't 
hange thebound for su�
iently large N . �The behavior of the exa
t value of the summation along with the bounds given inlemma 49 and lemma 50 is shown in �gure 3.4.4. We obtain the value of ∑N−1

i=1 ri fromthe �lter 
oe�
ients using Vieta's formula for the �rst 
oe�
ient.
h1 = −h0

(

N−1
∑

i=1

ri −N

)

N−1
∑

i=1

ri = N − h1

h0We use a similar strategy to obtain asymptoti
 behavior of more 
ompli
ated symmetri
polynomials of Daube
hies polynomial roots.
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N 0.35581N
∑N−1

i=1 ri 0.36343N100 35.581 35.296 36.343120 42.697 42.536 43.612140 49.813 49.779 50.880160 56.930 57.026 58.149180 64.046 64.275 65.417200 71.162 71.526 72.686220 78.278 78.778 79.955240 85.384 86.032 87.223260 92.511 93.287 94.492Table 1. Sum of Daube
hies polynomial roots and asymptoti
 bounds forlarge values of NLemma 51. Let {ri}N−1 be the roots of the N th Daube
hies polynomial inside the unit
ir
le. Then for su�
iently large N ,
∑

1≤i1<i2≤N−1

ri1ri2 < 0.072753N2.Proof. The roots {ri}N−1 
ome in 
omplex 
onjugate pairs, with the possibility of asingle real root. Assume that N is odd so there is no real root, and let M = N−1
2

. Orderand index the roots in the upper half plane {ri}M by 0 < arg (r1) < ... < arg (rM). The sum
an be rewritten as the sum of 
onjugate pairs:
∑

1≤i1<i2≤N−1

ri1ri2 =
∑

1≤i1<i2≤M

ri1ri2 + ri1 r̄i2 + r̄i1ri2 + r̄i1 r̄i2 +
M
∑

i1=1

ri1 r̄i1

= 2
∑

1≤i1<i2≤M

Re (ri1ri2) + 2
∑

1≤i1<i2≤M

Re (ri1 r̄i2) +
M
∑

i1=1

|ri1 |2 .The �nal summation is stri
tly positive and only 
ontributes O (N), so we need onlybound the other terms. Summing over {ri}M 
orresponds asymptoti
ally to summing over
A△

j for j ≥ 1 and a �xed △ > 0. Bounding the �rst sum involving produ
ts of roots, both52



of whi
h are in the upper half plane,
∑

1≤i1<i2≤M

Re (ri1ri2) ≤
∞
∑

j=1

(

∣

∣

∣
A△

j

∣

∣

∣

2

)

Re





∣

∣

∣

∣

Z N
△j+1

∣

∣

∣

∣

2

e
2i arg

(

Z N
△j

)




+

∞
∑

j=1

(∣

∣

∣
A△

j

∣

∣

∣

)

j
∑

k=1

∣

∣

∣
A△

k

∣

∣

∣
Re





∣

∣

∣

∣

Z N
△j+1

∣

∣

∣

∣

∣

∣

∣

∣

Z N
△k+1

∣

∣

∣

∣

e
i

(

arg

(

Z N
△j

)

+arg

(

Z N
△k

))


 . (3.4.1)The �rst summation 
orresponds to terms with both roots 
oming from the same A△
jregion. Sin
e for ea
h se
tion there are a total of ∣∣

∣
A△

j

∣

∣

∣
roots, and (|A△

j |
2

) total terms of thistype. Given ri1 , ri2 ∈ A△
j , we bound the real part of these terms by

Re (ri1ri2) ≤ Re





∣

∣

∣

∣

Z N
△j+1

∣

∣

∣

∣

2

e
2i arg

(

Z N
△j

)


 + o
(

N2
)

.This bound holds sin
e,
|ri1| ≤

∣

∣

∣

∣

Z N
△j+1

∣

∣

∣

∣

|ri2| ≤
∣

∣

∣

∣

Z N
△j+1

∣

∣

∣

∣

0 < arg

(

Z N
△j

)

≤ arg (ri1) <
π

2

0 < arg

(

Z N
△j

)

≤ arg (ri2) <
π

2
.The bound 
onsists of taking the extreme values for ea
h A△

j , rather than a global esti-mate on the asymptoti
s, allowing for a mu
h more a

urate bound. The se
ond summationin equation (3.4.1) 
orresponds to terms involving two roots in the upper half plane, onefrom A△
j and the se
ond from A△

k , where k < j.
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To bound the remaining sum involving terms on opposite sides of the real axis, we use thesame approa
h as above, with a modi�ed bound for the real part. We again sele
t the largestpossible modulus and arguments resulting in the largest real part for the upper bound:
∑

1≤i1<i2≤M

Re (ri1 r̄i2) ≤
∞
∑

j=1

(∣

∣

∣
A△

j

∣

∣

∣

)

j
∑

k=1

∣

∣

∣
A△

k

∣

∣

∣
Re





∣

∣

∣

∣

Z N
△j+1

∣

∣

∣

∣

∣

∣

∣

∣

Z N
△k+1

∣

∣

∣

∣

e
i

(

arg

(

Z N
△j

)

−arg

(

Z N
△k+1

))


 .The bound on the real part subtra
ts the arguments sin
e this gives a lower bound onthe real part of the produ
t.As L in
reases and △ de
reases, the lower bound in
reases. Sele
ting L = 1000 and
△ = 0.2,

1

2

(

∑

1≤i1<i2≤N−1

ri1ri2

)

=
∑

1≤i1<i2≤M

Re (ri1ri2) +
∑

1≤i1<i2≤M

Re (ri1 r̄i2)

≤
L
∑

j=1

(

∣

∣

∣
A△

j

∣

∣

∣

2

)

Re





∣

∣

∣

∣

Z N
△j

∣

∣

∣

∣

2

e
2i arg

(

Z N
△j+1

)




+
L
∑

j=1

(∣

∣

∣
A△

j

∣

∣

∣

)

j
∑

k=1

∣

∣

∣
A△

k

∣

∣

∣
Re





∣

∣

∣

∣

Z N
△j

∣

∣

∣

∣

∣

∣

∣
Z N

△k

∣

∣

∣
e
i

(

arg

(

Z N
△j+1

)

+arg

(

Z N
△k+1

))




+

L
∑

j=1

(∣

∣

∣
A△

j

∣

∣

∣

)

j
∑

k=1

∣

∣

∣
A△

k

∣

∣

∣
Re





∣

∣

∣

∣

Z N
△j

∣

∣

∣

∣

∣

∣

∣
Z N

△k

∣

∣

∣
e
i

(

arg

(

Z N
△j+1

)

−arg

(

Z N
△k

))




+
1

2

(
(

2N
L

)

2

)

Re





∣

∣

∣
Z N

△L

∣

∣

∣

2

e
2i arg

(

Z N
△L

)




<
1

2

(

0.072753N2
)

.The �nal summation is an upper bound on the tails of the in�nite sums, and in
reasingthe L value greatly redu
es the 
ontribution of this term. If N is even, the additional realroot 
ontributes O (N) terms, so the result is un
hanged for su�
iently large N . �
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Corollary 52. Let {ri}N−1 be the roots of the N th Daube
hies polynomial inside theunit 
ir
le. Then for su�
iently large N ,
∑

1≤i1<i2≤N−1

ri1ri2 > 0.063902N2.Proof. We �nd bounds for
1

2

(

∑

1≤i1<i2≤N−1

ri1ri2

)

=
∑

1≤i1<i2≤M

Re (ri1ri2) +
∑

1≤i1<i2≤M

Re (ri1 r̄i2) (3.4.2)following the same analysis as lemma 51 with the following 
hanges to the bounds,
∑

1≤i1<i2≤M

Re (ri1ri2) ≥
∞
∑

j=1

(

∣

∣

∣
A△

j

∣

∣

∣

2

)

Re





∣

∣

∣

∣

Z N
△j

∣

∣

∣

∣

2

e
2i arg

(

Z N
△j+1

)




+

∞
∑

j=1

(∣

∣

∣
A△

j

∣

∣

∣

)

j
∑

k=1

∣

∣

∣
A△

k

∣

∣

∣
Re





∣

∣

∣

∣

Z N
△j

∣

∣

∣

∣

∣

∣

∣
Z N

△k

∣

∣

∣
e
i

(

arg

(

Z N
△j+1

)

+arg

(

Z N
△k+1

))


 .These bounds are very similar to lemma 51, with the opposite endpoints of the asymptoti
regions sele
ted. In our notation, this 
orresponds to j → j + 1 and j + 1 → j. The keyobservation is
Re (ri1ri2) ≥ Re





∣

∣

∣

∣

Z N
△j

∣

∣

∣

∣

2

e
2i arg

(

Z N
△j+1

)


− o
(

N2
)

.This bound holds as,
|ri1 | ≥

∣

∣

∣

∣

Z N
△j

∣

∣

∣

∣

|ri2 | ≥
∣

∣

∣

∣

Z N
△j

∣

∣

∣

∣

0 < arg (ri1) ≤ arg

(

Z N
△j+1

)

<
π

2
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0 < arg (ri2) ≤ arg

(

Z N
△j+1

)

<
π

2
.The alterations for the bound on the se
ond summation in equation (3.4.2) is

∑

1≤i1<i2≤M

Re (ri1 r̄i2) ≥
∞
∑

j=1

(∣

∣

∣
A△

j

∣

∣

∣

)

j
∑

k=1

∣

∣

∣
A△

k

∣

∣

∣
Re





∣

∣

∣

∣

Z N
△j

∣

∣

∣

∣

∣

∣

∣
Z N

△k

∣

∣

∣
e
i

(

arg

(

Z N
△j+1

)

−arg

(

Z N
△k

))


 ,whi
h again swit
hes the j and j + 1 indi
es. As L in
reases and △ de
reases, the lowerbound in
reases. Sele
ting L = 50 and △ = 1,
1

2

(

∑

1≤i1<i2≤N−1

ri1ri2

)

=
∑

1≤i1<i2≤M

Re (ri1ri2) +
∑

1≤i1<i2≤M

Re (ri1 r̄i2)

≥
L
∑

j=1

(

∣

∣

∣
A△

j

∣

∣

∣

2

)

Re





∣

∣

∣

∣

Z N
△j

∣

∣

∣

∣

2

e
2i arg

(

Z N
△j+1

)




+
L
∑

j=1

(∣

∣

∣
A△

j

∣

∣

∣

)

j
∑

k=1

∣

∣

∣
A△

k

∣

∣

∣
Re





∣

∣

∣

∣

Z N
△j

∣

∣

∣

∣

∣

∣

∣
Z N

△k

∣

∣

∣
e
i

(

arg

(

Z N
△j+1

)

+arg

(

Z N
△k+1

))




+

L
∑

j=1

(∣

∣

∣
A△

j

∣

∣

∣

)

j
∑

k=1

∣

∣

∣
A△

k

∣

∣

∣
Re





∣

∣

∣

∣

Z N
△j

∣

∣

∣

∣

∣

∣

∣
Z N

△k

∣

∣

∣
e
i

(

arg

(

Z N
△j+1

)

−arg

(

Z N
△k

))




>
1

2

(

0.063902N2
)

.There is no need to bound the tails sin
e we are bounding from below, and the 
ase where
N is even does not 
hange the result for su�
iently large N as it only adds O (N) terms tothe original summation. �

We 
ompute the value of ∑1≤i1<i2≤N−1 ri1ri2 for large N and 
ompare to the resultsfound in lemma 51 and 52. The value of ∑1≤i1<i2≤N−1 ri1ri2 
an be found from the �lter56



Figure 3.4.5. Values of ∑1≤i1<i2≤N−1 ri1ri2 and asymptoti
 results fromlemma 51 and 52 (dashed lines).
oe�
ients using Vieta's formulas,
h2

h0
=

∑

1≤i1<i2≤2N−1

Ri1Ri2 =
∑

1≤i1<i2≤N−1

ri1ri2 −N

(

N−1
∑

i=1

ri

)

+

(

N

2

)

.Using Vieta's formula to rewrite the sum of roots,
h2

h0
=

∑

1≤i1<i2≤N−1

ri1ri2 −N

(

N − h1

h0

)

+

(

N

2

)

.Thus, we 
an express ∑1≤i1<i2≤N−1 ri1ri2 in terms of �lter 
oe�
ients as
∑

1≤i1<i2≤N−1

ri1ri2 = N

(

N − h1

h0

)

−
(

N

2

)

− h2

h0
.The data for sele
ted values of N are shown in �gure 3.4.5 and table 2.In addition to giving asymptoti
 behavior of the �rst few Daube
hies �lter 
oe�
ients, wewill use these bounds to prove properties of nearest neighbor fa
torizations for Daube
hies57



N 0.063902N2
∑

1≤i1<i2≤N−1 ri1ri2 0.072752N220 25.5608 20.8040 29.100840 102.243 92.7918 116.40360 230.047 216.981 261.90780 408.973 393.589 465.613100 639.020 622.718 727.520120 920.189 904.429 1047.63140 1252.48 1238.76 1425.94160 1635.89 1625.74 1862.45180 2070.42 2065.40 2357.16200 2556.08 2557.74 2910.08220 3092.86 3102.79 3521.20240 3680.76 3700.54 4190.52Table 2. Values of∑1≤i1<i2≤N−1 ri1ri2 and asymptoti
 results from lemma 51and 52 for 20 ≤ N ≤ 240.�lters in se
tion �3.5. We estimate the asymptoti
 root behavior for the next symmetri
polynomial, again providing an upper and lower bound.Lemma 53. Let {ri}N−1 be the roots of the N th Daube
hies polynomial inside the unit
ir
le. Then for su�
iently large N ,
∑

1≤i1<i2<i3≤N−1

ri1ri2ri3 < 0.04223N3.Proof. We begin by rewriting the sum to take advantage of the root 
onjugate pairs.Without loss of generality, assume that N is odd and let M = N−1
2

so there is no singlereal root. Order and index the roots in the upper half plane {ri}M by 0 < arg (r1) < ... <

arg (rM), then
∑

1≤i1<i2<i3≤N−1

ri1ri2ri3

=

M
∑

i3=1

(ri3 + r̄i3)
∑

1≤i1<i2<i3

(ri1ri2 + ri1 r̄i2 + r̄i1ri2 + r̄i1 r̄i2) +

M
∑

i1=1

ri1 r̄i1

(

∑

i2 6=i1

ri2 + r̄i2

)

.
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The last summation only 
ontributes as O (N2) so we need only �nd bounds on the otherterms:
M
∑

i3=1

(ri3 + r̄i3)
∑

1≤i1<i2<i3

(ri1ri2 + ri1 r̄i2 + r̄i1ri2 + r̄i1 r̄i2)

= 2

M
∑

i3=1

Re (ri3)
∑

1≤i1<i2<i3

(2Re (ri1ri2) + 2Re (ri1 r̄i2))

≤ 2
M
∑

i3=1

|ri3|
∑

1≤i1<i2<i3

4 |ri1ri2 | ≤ 2
M
∑

i3=1

|ri3 |
∑

1≤i1<i2<i3

4 |ri3 |2 = 8
M
∑

i3=2

(

i3
2

)

|ri3 |3 .Summing over {ri}M 
orresponds asymptoti
ally to summing over A△
j for j ≥ 1 and a�xed △ > 0. Thus,

M
∑

i3=2

(

i3
2

)

|ri3 |3 ≤
∞
∑

j=1

∣

∣

∣
A△

j

∣

∣

∣

(N
2
− N

△j

2

) ∣

∣

∣

∣

Z N
△j+1

∣

∣

∣

∣

3

≤
L
∑

j=1

∣

∣

∣
A△

j

∣

∣

∣

(N
2
− N

△j

2

) ∣

∣

∣

∣

Z N
△j+1

∣

∣

∣

∣

3

+2
N

△L+1

(

N

2

)

.Spe
ifying L and △ gives a bound on the symmetri
 polynomial. As L in
reases and △de
reases, the upper bound de
reases. Sele
ting L = 106 and △ = 0.01,
∑

1≤i1<i2<i3≤N−1

ri1ri2ri3 ≤
L
∑

j=1

∣

∣

∣
A△

j

∣

∣

∣

(N
2
− N

△j

2

)∣

∣

∣

∣

Z N
△j+1

∣

∣

∣

∣

3

+ 2
N

△L

(

N

2

)

< 0.04223N3.As in previous results, if N is even, it only 
ontributes an additional O (N2) terms andhen
e does not 
hange the result. �The previous results allow us to prove basi
 fa
ts about the asymptoti
 behavior ofDaube
hies �lter 
oe�
ients. The strategy is to use Vieta's formulas to obtain symmetri
polynomials of Daube
hies polynomial roots, and then de
ompose the sum into a form wherewe 
an use the previous results.Lemma 54. Given a degree N �lter (h0, . . . , h2N−1), h1 < h3 for su�
iently large N .59



Proof. From lemma 43, h1 < h0N . Let {Ri}2N−1 be the set of Daube
hies polynomialroots {ri}N−1 along with the N roots at z = −1. Then from Vieta's formula
h3 = h0 (−1)3

∑

1≤i1<i2<i3≤2N−1

Ri1Ri2Ri3 .This is the sum of all possible produ
ts of 3 roots from {Ri}2N−1. Thus, we must show
N <

∑

1≤i1<i2<i3≤2N−1

−Ri1Ri2Ri3 .There are (2N−1
3

) total terms in the symmetri
 polynomial whi
h we 
lassify into fourtypes:1. (

N
2

)

(N − 1) terms with two roots at z = −1 and a single root from {ri}N−1 :
(−1) (−1) (ri)2. (

N−1
2

)

N terms with one root at z = −1 and two roots 
hosen from {ri}N−1 :
(−1) (ri) (rj)3. (N−1

3

) terms with three roots 
hosen from {ri}N−1 : (ri) (rj) (rk)4. (N
3

) terms with three roots at z = −1 : (−1)3 = −1The Daube
hies polynomial roots {ri}N−1 
ome in 
omplex 
onjugate pairs, possibly witha single real positive root, all of whi
h are stri
tly in the right half plane with Re (ri) <
√
2−1and inside the unit 
ir
le. Sin
e the Daube
hies roots 
ome in 
omplex pairs, ea
h term 
anbe paired with its 
onjugate (of the same type), whi
h results in a real valued �lter 
oe�
ient,as expe
ted. Using the previous results involving asymptoti
 bounds for ea
h of the �rstthree types of terms yields, for su�
iently large N ,

∑

1≤i1<i2<i3≤2N−1

−Ri1Ri2Ri3

≥ (−0.36343N)

(

N

2

)

+
(

0.063902N2
)

N −
(

0.04223N3
)

+

(

N

3

)
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> 0.00662N3 > N.Using lemma 43, we 
on
lude for su�
iently large N ,
h3 = h0 (−1)3

∑

1≤i1<i2<i3≤2N−1

Ri1Ri2Ri3 > h0N > h1.Numeri
ally verifying the lemma for values up to N = 110, we �nd the lemma holds for
7 ≤ N ≤ 110, and numeri
al results suggest the lemma holds for all N ≥ 7. �Corollary 55. Given a degree N �lter h = {h0, . . . , h2N−1}, h2 < h3 for su�
ientlylarge N .Proof. Using Vieta's formulas for the �lter 
oe�
ients and the previous results

h3 = h0 (−1)3
∑

1≤i1<i2<i3≤2N−1

Ri1Ri2Ri3 > h0

(

0.00662N3
)

.Bounding h2 using that all terms are 
omprised of 
omplex numbers on or inside the unit
ir
le yields
h2 = h0

∑

1≤i1<i2≤2N−1

Ri1Ri2 ≤ h0

∑

1≤i1<i2≤2N−1

|Ri1Ri2 |

≤ h0

∑

1≤i1<i2≤2N−1

1 ≤ h0

(

2N − 1

2

)

= h0O
(

2N2
)

.

�We 
an generalize the bound from the proof of 55 in the following lemma.Lemma 56. Given a degree N �lter h = {h0, . . . , h2N−1}, |hi| ≤ h0

(

2N−1
i

).Proof. Using Vieta's formula along results from [14℄ that Daube
hies polynomial rootsare inside the unit 
ir
le
|hi| = |h0|

∣

∣

∣

∣

∣

∑

1≤j1<...<ji≤2N−1

Rj1 . . . Rji

∣

∣

∣

∣

∣

≤ h0

∑

1≤j1<...<ji≤2N−1

|Rj1 . . . Rji|
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≤ h0

∑

1≤j1<...<ji≤2N−1

1 ≤ h0

(

2N − 1

i

)

.

�3.5. Asymptoti
s of Nearest Neighbor Fa
torizationsUsing the results of se
tion �3.4, we are able to prove results about the asymptoti
s ofdire
t nearest neighbor fa
torizations of Daube
hies �lters.Theorem 57. Given a degree N Daube
hies �lter h = {h0, . . . , h2N−1} with polyphasematrix fa
tored with the {left, sym, ..., sym} division s
heme, the �rst division is normal forsu�
iently large N .Proof. The �rst division being normal is equivalent to the extreme terms of the �rstremainder polynomial being nonzero,
h2N−2 −

h0h2N−1

h1
6= 0 (3.5.1)

h2 −
h0h3

h1

6= 0.By the previous lemma, h1 and h2N−2 are nonzero, hen
e equation (3.5.1) is equivalentto
h1h2N−2 6= h0h2N−1.By the previous lemma, h0, h1 > 0 and

h2N−1

h2N−2
< 0.Thus, the right and left hand sides have di�erent signs, so inequality must hold for the�rst normality 
ondition. 62



For the se
ond normality 
ondition,
h2 −

h0h3

h1
6= 0

h1h2 6= h0h3.Let {Ri}2N−1 be the set of Daube
hies polynomial roots {ri}N−1 along with the N rootsat z = −1. Using Vieta's formulas,
h1h2 =

(

h0 (−1)

2N−1
∑

i=1

Ri

)(

h0

∑

1≤i1<i2≤2N−1

Ri1Ri2

)

h0h3 = (h0)

(

h0 (−1)
∑

1≤i1<i2<i3≤2N−1

Ri1Ri2Ri3

)

.Thus, it is enough to show
∑

1≤i1<i2<i3≤2N−1

−Ri1Ri2Ri3 <

(

2N−1
∑

i=1

−Ri

)(

∑

1≤i1<i2≤2N−1

Ri1Ri2

)

.Expanding ea
h of the symmetri
 polynomials into types of terms involving Ri and riand using bounds from previous results, for su�
iently large N ,
−

2N−1
∑

i=1

Ri = −
N−1
∑

i=1

ri −
N
∑

i=1

(−1) = N −
N−1
∑

i=1

ri ≥ N − 0.36333N = 0.63666Nand
∑

1≤i1<i2≤2N−1

Ri1Ri2 =
∑

1≤i1<i2≤N−1

ri1ri2 −N

N−1
∑

i=1

ri +

(

N

2

)

(−1)2

≥
(

0.063902N2
)

− (0.36333N)N +

(

N

2

)

≥ 0.20057N2and
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∑

1≤i1<i2<i3≤2N−1

−Ri1Ri2Ri3

= −
∑

1≤i1<i2<i3≤N−1

ri1ri2ri3 +N
∑

1≤i1<i2≤N−1

ri1ri2 −
(

N

2

)N−1
∑

i=1

ri +

(

N

3

)

≤
(

−0.042234N3
)

+N
(

0.07276N2
)

−
(

N

2

)

(0.36333N) +

(

N

3

)

≤ 0.01553N3Thus, for su�
iently large N
∑

1≤i1<i2<i3≤2N−1

−Ri1Ri2Ri3 ≤ 0.01553N3

<
(

0.20057N2
)

(0.63666N) ≤
(

2N−1
∑

i=1

−Ri

)(

∑

1≤i1<i2≤2N−1

Ri1Ri2

)

.Hen
e,
h1h2 6= h0h3.Thus, the se
ond normality 
ondition must be satis�ed for su�
iently large N
h2 −

h0h3

h1
6= 0.The theorem was veri�ed numeri
ally for 2 ≤ N ≤ 110, and numeri
al eviden
e suggeststhe theorem is true for all N ≥ 2. �Corollary 58. Given a degree N Daube
hies �lter h = {h0, . . . , h2N−1} with polyphasematrix fa
tored with the {right, sym, ..., sym} division s
heme, the �rst division is normalfor su�
iently large N .Proof. Given a polyphase matrix with fa
torization 
oming from the

{right, sym, ..., sym}64



division s
heme, the starting polynomials of the Eu
lidean algorithm are ho and he. Thenthe normality 
onditions for the �rst division are
h3 −

h1h2

h0

6= 0and
h2N−1 −

h1h2N−2

h0

6= 0.Then sin
e h0 6= 0, these 
onditions are equivalent to
h0h3 6= h1h2and

h0h2N−1 6= h1h2N−2whi
h are exa
tly the 
onditions shown in theorem 57. �
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CHAPTER 4Normality of Polynomial Remainder Sequen
es4.1. Introdu
tionIn this 
hapter we fo
us on 
onditions for determining normality of PRS from the startingpolynomials, without having to 
ompute the entire PRS. We 
ontinue with the notation forLaurent PRS using a single starting Laurent polynomial and splitting it into its even andodd parts as inputs for the Eu
lidean algorithm. We keep this notation as a 
onvenien
e,and note that we 
an de�ne PRS for any two starting Laurent polynomials.In general, the problem of determining normality of a PRS from the starting polynomialsrequires 
omputing the entire PRS via the Eu
lidean algorithm. The PRS 
an fail to benormal if any extreme 
oe�
ient of a remainder polynomial is 0, 
ausing the degree to godown by more than one in a given step. For a starting polynomial with N 
oe�
ients, thisresults in O (N) terms whi
h must be nonzero for the PRS to be normal. If even a single
oe�
ient 
an take an arbitrary value, it is often possible to make the PRS abnormal. Thisis the reasoning for the 
onje
tures in the previous 
hapters as degree N Daube
hies �ltershave a �nite solution set [18℄, and hen
e there are no additional degrees of freedom whi
h 
anbe used to make the PRS abnormal (in 
ontrast with Re
luselets). When seeking normalityresults, it is often useful to redu
e the degrees of freedom in the 
oe�
ients of the startingpolynomial. This is done in the next se
tion with Sturm sequen
es, whi
h are PRS generatedfrom a polynomial and its derivative. For Sturm sequen
es, traditional polynomials are usedrather than Laurent polynomials, redu
ing the degrees of freedom in the Eu
lidean algorithmsin
e there is only one division s
heme.
66



4.2. Sturm Sequen
esSturm sequen
es are 
ommonly used to �nd lo
ations of roots of polynomials. The PRSis 
omputed for a polynomial and its derivative, and the sign 
hanges are found at variouspoints. Normality 
onditions are not related to this root �nding method, and are thus largelyignored. For a detailed des
ription of Sturm sequen
es and Sturm's Theorem see [13℄.Definition 59. Let A be a square-free polynomial. The Sturm sequen
e for A is
PRS (A,A′) where A′ is the derivative of A.While the de�nition 
an be extended to Laurent polynomials, we only 
onsider Sturmsequen
es involving traditional polynomials.Example 60. Let A (x) = x4 + 4x3 + 6x2 + 7x+ 2. Then the Sturm sequen
e for A is

PRS (A,A′) = PRS
(

x4 + 4x3 + 6x2 + 7x+ 2, 4x3 + 12x2 + 7
)

=

{

9x

4
+

1

4
,
4235

729

}

.The Sturm sequen
e is abnormal sin
e the degree de
reases by two from A′ to the �rstelement of the PRS.As mentioned in se
tion �4.1, Sturm sequen
es have fewer degrees of freedom than thegeneral two polynomial 
ase, and mu
h fewer than the general two Laurent polynomial PRS
ase. The goal is to �nd algebrai
 or analyti
 
onditions on the starting polynomial whi
hrelate to normality. We begin with a few basi
 results.Lemma 61. Let A (x) =
∑n

i=0 aix
i be a polynomial of degree n ≥ 3 with real 
oe�
ients.The �rst division of the Sturm sequen
e of A is abnormal if and only if

an−2 =
(an−1)

2 (n− 1)

2an · n
.
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Proof. Let A be de�ned as above. Then
A′ (x) =

n
∑

i=0

i · aixi−1Performing the �rst division of the Sturm sequen
e yields the leading 
oe�
ient (LC) of theremainder
LC (r1) =

2

n
an−2 −

(n− 1) (an−1)
2

an
.The division in the �rst step is abnormal exa
tly when this leading 
oe�
ient equals 0.Thus, we set the expression equal to zero and solve for an−2.

2

n
an−2 −

(n− 1) (an−1)
2

an
= 0

an−2 =
(an−1)

2 (n− 1)

2an · n
.

�Unsurprisingly, the normality of the Sturm sequen
e for a given step only involves asubset of the 
oe�
ients on the higher powers of the polynomial. We 
an make this statementpre
ise by inspe
ting the Eu
lidean algorithm in the following lemma.Lemma 62. Let A (x) =
∑n

i=0 aix
i be a polynomial of degree n ≥ 3 with real 
oe�
ients.Then the leading 
oe�
ient of the jth Sturm sequen
e element, and hen
e normality at stepj, depends only on {an, an−1, . . . , an−2j}.This lemma shows that normality at a given step is tied to only a subset of the roots. Thisfurther demonstrates the di�
ulty in determining normality from the starting polynomials.Every 
oe�
ient plays a role in at least one division and hen
e even a single degree of freedomfor the 
oe�
ients 
an often be manipulated to 
ause the PRS to be abnormal.The next result links the normality of the �rst division with the n − 2 derivative for adegree n polynomial. 68



Theorem 63. Let A (x) =
∑n

i=0 aix
i be a polynomial of degree n with real 
oe�
ients.If A(n−2), the (n− 2)nd derivative of A, has a repeated root, then the Sturm sequen
e of Ais abnormal. If A(n−2) does not have a repeated root, then the �rst division of the Sturmsequen
e is normal.Proof. We �rst 
ompute the (n− 2)nd derivative of A,

A(n−2) (x) =
n!

2
anx

2 + (n− 1)!an−1x+ (n− 2)!an−2.Set this polynomial equal to 0 and solve for x,
n!

2
anx

2 + (n− 1)!an−1x+ (n− 2)!an−2 = 0

x =
−an−1 (n− 1)!±

√

(an−1)
2 (n− 1)!− 2anan−2 (n− 2)!n!

an!
.A(n−2) will have repeated roots exa
tly when the dis
riminant is 0. Setting the expressionequal to 0 and solving for an−2,

(an−1)
2 (n− 1)!− 2anan−2 (n− 2)!n! = 0

an−2 =
(an−1)

2 (n− 1)

2an · n
.Comparing with lemma 61, we �nd this is exa
tly the 
ondition for the �rst division tobe abnormal. �This theorem suggests mu
h more algebrai
 stru
ture to the normality property of Sturmsequen
es and PRS in general than is 
urrently known, a similar observation also made in[9℄. Only the �rst derivative is 
omputed for the Sturm sequen
e of a polynomial, so a69
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Figure 4.2.1. A (x) = x4 − 2x3 − 12x2 + 7x+ 7 with in�e
tion points shown.relationship to the roots of a mu
h higher order derivative is surprising. When deg (A) = 4,this theorem relates the graph of a polynomial with the normality of its Sturm sequen
e.Corollary 64. Let A be a polynomial with real variables and deg (A) = 4. If A has twodistin
t points of in�e
tion, then the �rst division of the Sturm sequen
e of A is normal.Proof. The proof follows dire
tly from theorem 63, noting that the (n− 2)nd derivativeof A in this 
ase is A′′, the se
ond derivative. Sin
e the roots of A are the in�e
tion pointsof A, the 
orollary follows. �Example 65. Using the 
orollary, we 
an now observe the graph of the following quarti
polynomial and determine normality of the �rst division in the Sturm sequen
e.The in�e
tion points of the polynomial at x = −1, 2 are shown in �gure 4.2.1. Sin
e theyare distin
t, the �rst division of the Sturm sequen
e is normal.An exa
t 
ondition for normality in terms of the polynomial 
oe�
ients 
an be found byperforming the Eu
lidean algorithm on general 
oe�
ients.Corollary 66. The Sturm sequen
e for any quadrati
 polynomial, A (x) = a0 + a1x+

a2x
2 , is normal. 70



Proof. There is only one division in the Sturm sequen
e whi
h yields the GCD. Thenormality 
ondition is then
a0 −

a21
4a2

6= 0.For a2 6= 0, this is equivalent to the dis
riminant being nonzero, so A (x) = a0+a1x+a2x
2need only be square-free. Sin
e every Sturm sequen
e has a square-free polynomial as thestarting polynomial by de�nition, the 
orollary holds. �We 
an generalize the fa
t observation in the proof of 
orollary 66.Fa
t 67. Let A (x) be the polynomial input for a Sturm sequen
e. Then by de�nition,

A (x) is square-free and hen
e 
oprime with its derivative. Then gcd (A,A′) = c for somenonzero 
onstant c.To 
ompletely 
lassify normality for Sturm sequen
es, perform the Eu
lidean algorithmon general 
oe�
ients and extra
t the leading 
oe�
ients of ea
h element of the PRS. Sin
eevery leading 
oe�
ient must be nonzero for the Sturm sequen
e to be normal, the produ
t ofthe leading 
oe�
ients is a normality 
ondition, although performing the Eu
lidean algorithmon general 
oe�
ients results in an exponential growth of expression lengths and 
omputationtime. 4.3. Abnormality Conditions and ExamplesAs previously mentioned, there are many degrees of freedom available to �nd examplesof abnormal PRS. The following example demonstrates that for a given Laurent polynomial
h, he and ho 
an be 
oprime, have interla
ed and stri
tly monotoni
 
oe�
ients and stillresult in an abnormal PRS.Example 68. The Laurent polynomial

A (z) =
170

9
z8 + 17z7 + 16z6 + 15z5 + 14z4 + 13z3 + 12z2 + 11z71



with the {left, sym, . . . , sym} division s
heme applied to he and ho is abnormal.Examples of abnormal PRS with even a single degree of freedom in one of the 
oe�
ientsare easily 
onstru
ted by performing the division on the general 
oe�
ients, and then settingan extreme 
oe�
ient of a remainder polynomial equal to zero and solving. In some 
ases,however, the expressions for the extreme terms have no solution, whi
h leads to families ofpolynomials with no abnormal PRS for spe
i�ed division s
hemes.We investigate the plots leading to the 
onje
tures in 
hapter 2, where the lifting steproots appear to be samples of a 
ontinuous limiting 
urve. While Daube
hies �lter 
oe�
ientsare not samples of a single 
ontinuous fun
tion, the even and odd parts are 
onverging.Coi�ets are another family of orthogonal wavelets, dis
overed by Daube
hies in [6℄, andsimilar behavior is seen in the lifting step roots as shown in �gure 4.3.1. Just as in theDaube
hies �lter 
ase, Coi�ets have 
onvergent even and odd parts. Unfortunately, this
onvergen
e is not enough to ensure a normal PRS, even for arbitrarily �ne samples, asdemonstrated with the following example.Example 69. We want to 
onstru
t a Lips
hitz 
ontinuous fun
tion F on [0, 1] su
h thatany polynomial formed by taking 
oe�
ients equal to samples of F at dyadi
 points resultsin an abnormal PRS for the {left, sym, . . . , sym} division s
heme on the even and odd parts.Sin
e F will be Lips
hitz 
ontinuous, the even and odd parts of the polynomial formed bysampling will 
onverge, demonstrating this is not a su�
ient 
ondition for a normal PRS.Let
F

(

j

2i+1

)

= cijrepresent the value of the limiting fun
tion at dyadi
 level i and position j. The idea is tomanipulate the �rst sample at ea
h level so the PRS is abnormal, and interpolate the other72



(a) Filter Length 36

(b) Filter Length 42

(
) Filter Length 48Figure 4.3.1. Nearest Neighbor Roots for Coi�et �lters of various lengthswith {left, sym, . . . , sym} division s
heme73



samples. For the �rst level,
c11 =

1

4
, c12 =

1

2
, c13 =

3

4
, c14 = 1whi
h are samples of f (x) = x. Then for i, j > 1,

cij = ci−1

( j

2)
for even j

cij =
ci−1

( j−1

2 )
+ ci−1

( j+1

2 )

2
for odd jThen the �rst sample (j = 1) for levels i > 1 is de�ned by the following sequen
e,

ci1 =
ci−1
1

(

ci−2
1 + ci−1

1

)

2ci−2
1

c01 =
1

2

c11 =
1

4
.The �rst few values of the sequen
e are

ci1 =

{

1

2
,
1

4
,
3

16
,
21

128
,
315

2048
, . . .

}

.Then at ea
h level i > 1, the abnormality 
ondition
ci1c

i
4 − ci2c

i
3 = 0holds.The �rst few levels are given,

{

c2j
}8

j=1
=

{

3

16
,
1

4
,
3

8
,
1

2
,
5

8
,
3

4
,
7

8
, 1

}

{

c3j
}16

j=1
=

{

21

128
,
3

16
,
7

32
,
1

4
,
5

16
,
3

8
,
7

16
,
1

2
,
9

16
,
5

8
,
11

16
,
3

4
,
13

16
,
7

8
,
15

16
, 1

}

.74



De�ne F on [0, 1] to be the limit of the dyadi
 points as i → ∞.Lemma 70. The sequen
e
{

ci1
}∞

i=1in the 
onstru
tion of F in example 69 is monotoni
ally de
reasing and F (0) > 0.Proof. Re
all from example 69,
c01 =

1

2

c11 =
1

4

ci1 =
ci−1
1

(

ci−2
1 + ci−1

1

)

2ci−2
1

.By indu
tion, we see the sequen
e is monotoni
ally de
reasing as
ci1 =

ci−1
1

(

ci−2
1 + ci−1

1

)

2ci−2
1

= ci−1
1

(

ci−2
1 + ci−1

1

2ci−2
1

)

< ci−1
1 .From the 
onstru
tion it is 
lear

F (0) = lim
i→∞

ci1.This limit has a stri
tly positive value, as:
0 <

(

ci1 − ci−1
1

)2

2ci1c
i−1
1 <

(

ci−1
1

)2
+
(

ci1
)2

3ci1c
i−1
1 −

(

ci−1
1

)2
< ci1c

i−1
1 +

(

ci1
)2

3ci1c
i−1
1 − ci−1

1

2
<

ci1c
i−1
1 + (ci1)

2

2ci−1
1

2ci1 −
ci1 + ci−1

1

2
< ci+1

175



Figure 4.3.2. The points from right to left are c11, c
2
1, c

3
1, c

4
1 shown with theline through c11 and c21.The last inequality shows that ci+1

1 is stri
tly above the line through ci1 and ci−1
1 . Hen
e,

limi→∞ ci1 must lie above the y-inter
ept of every line segment joining ci1 and ci−1
1 for any i.Sin
e the y-inter
ept of the segment joining c11 and c21 is 1/8 as shown in �gure 4.3.2, thelimit is stri
tly positive.

�Lemma 71. The fun
tion F de�ned in example 69 is Lips
hitz 
ontinuous.Proof. The 
onstru
tion interpolates every point ex
ept the leftmost sample at ea
hlevel i. Thus, F is a 
ontinuous pie
ewise linear fun
tion on the interval
[

1

2i+1
, 1

]for i → ∞, where the sequen
e {ci1}
∞

i=1 are the endpoints of the linear segments. Usinglemma 70 shows this sequen
e is monotoni
ally de
reasing and 
onverges to a positive value,76



thus the slopes of ea
h linear segment are
{

ci1 − ci+1
1

}∞

i=1
,whi
h is a stri
tly de
reasing sequen
e 
onverging to 0. Thus, for any x, y ∈ [0, 1]

|F (x)− F (y)| ≤ |x− y| ,hen
e F is Lips
hitz 
ontinuous. �We now �nd a family of polynomials with normal PRS for the {left, sym, . . . , sym}and {right, sym, . . . , sym} division s
hemes. These polynomials are generated in a similarmanner as the previous example by sampling a given fun
tion to generate the 
oe�
ients. Anon
onstant linear fun
tion sampled at equal intervals always has a normal PRS wheneverthe even and odd parts have full degree. We begin with some te
hni
al lemmas.Lemma 72. Let c, d ∈ R be nonzero 
onstants and let n be an integer with n > 1. Supposethe 
oe�
ients of two Laurent polynomials are arithmeti
 progressions of the forms:
{c, 2c, . . . , nc}and

{d, 2d, . . . , (n− 1) d} .Then symmetri
 division on the above Laurent polynomials results in a remainder poly-nomial with 
oe�
ients in an arithmeti
 progression of the form
{

− nc

n− 1
,− 2nc

n− 1
, . . . ,−(n− 2)nc

n− 1

}

.In addition, the symmetri
 division is normal.77



Proof. The proof is a straightforward 
omputation. Symmetri
 division is equivalentto the following operations on the 
oe�
ient arrays,
{

2c− 2d

d
c− 1

n− 1
nc, 3c− 3d

d
c− 2

n− 1
nc, . . . , (n− 1) c− (n− 1) d

d
c− n− 2

n− 1
nc

}

=

{

nc

n− 1
,
2nc

n− 1
, . . . ,

(n− 2)nc

n− 1

}

.The division is normal sin
e c 6= 0 and n > 1 by assumption. �We now show that polynomials with 
oe�
ients generated by sampling non
onstant linearfun
tions have normal PRS for the {left, sym, . . . , sym} and {right, sym, . . . , sym} divisions
hemes.Theorem 73. Let P (x) be any Laurent polynomial with 
oe�
ients of the form
{A,A+ k, A+ 2k, A+ 3k, . . . , A+ (2n− 1) k} ,where k 6= 0 and the even and odd parts of P (x) have degree n− 1. Then the
{left, sym, . . . , sym} and {right, sym, . . . , sym}division s
hemes starting with the even and odd parts of P (x) are normal.Proof. Using lemma 72 it is enough to show that two 
onse
utive remainder polynomialshave 
oe�
ients satisfying the 
onditions in lemma 72 for normality to hold. We start withthe {left, sym, . . . , sym} division s
heme. The 
oe�
ients of the starting polynomials are

{A,A+ 2k, A+ 4k, . . . , A+ (2n− 2) k}and
{A+ k, A+ 3k, A+ 5k, . . . , A+ (2n− 1) k} .78



Performing the {left} division results in a remainder with 
oe�
ients
{

(A+ 2jk)− A

A+ k
(A + (2j + 1) k)

}n−1

j=1

{

2k2

A+ k
,

4k2

A+ k
, . . . ,

(2n− 2) k2

A+ k

}

.Note that k 6= 0 and sin
e the even and odd parts of A have degree n−1 by assumption,
A + k 6= 0, so the �rst division is normal. In addition, the remainder polynomial has
oe�
ients in arithmeti
 progression of the form given in lemma 72.Continuing with symmetri
 division yields a remainder polynomial with 
oe�
ients ofthe form







A+ (2j − 1) k − A+ k
(

2k2

A+k

)

(

2jk2

A + k

)

− A+ (2n− 1) k
(

(2n−2)k2

A+k

)

(

2 (j − 1) k2

A + k

)







n−1

j=2

=

{

− n

n− 1
(A+ k) ,− 2n

n− 1
(A+ k) , . . . ,−(n− 2)n

n− 1
(A+ k)

}

.Thus, the se
ond division is normal, and the 
oe�
ients of the remainder polynomialare in arithmeti
 progression of the form given in lemma 72. Sin
e the rest of the divisionsare symmetri
 division and the inputs both have 
oe�
ients in arithmeti
 progression, thetheorem holds.For the {right, sym, . . . , sym} division s
heme, the same argument holds with the arraymanipulations asso
iated with {right} division. �Corollary 74. Any two Laurent polynomials with 
oe�
ients of the following formsare 
oprime,
{A,A+ 2k, A+ 4k, . . . , A+ (2n− 2) k}and

{A+ k, A+ 3k, A+ 5k, . . . , A+ (2n− 1) k} ,79



given that the extreme 
oe�
ients for both polynomials are nonzero and n > 1.Proof. We need only observe that the extreme 
oe�
ients for any of the remainderpolynomials in the Eu
lidean algorithm are nonzero as shown in theorem 73. Then the GCDis a monomial and hen
e the polynomials are 
oprime. �
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