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ABSTRACT OF THE DISSERTATION 

Gene Association Mapping 

in the Era of Next-Generation Sequencing and Systems Biology  

by 

Tianxiao Zhang 

Doctor of Philosophy in Biology and Biomedical Sciences 

Human and Statistical Genetics 

Washington University in St. Louis, 2016 

Professor John P. Rice, Chair 

In the past decade, advancement of genotyping technology, first microarray then 

―next-generation‖ sequencing, has enabled scientists to examine the susceptible genes that 

contribute to the risk of complex disorders using a genome-wide, ―hypothesis free‖ strategy.  

However, despite this ―hypothesis free‖ label, these genome-wide approaches (including 

genome-wide association and whole genome sequencing studies) depend on two implicit 

assumptions. The first assumption is that the genetic risk of complex traits is contributed by 

independent genes/variants (assumption of independence).The second assumption is that 

different genes have equal potentiality to confer to the genetic predisposition of the complex 

traits (assumption of equality). Despite the huge success in susceptible gene association mapping 

in the last decade, more and more evidence has indicated that these two underlying assumptions 

of these genome-wide approaches may not be sound. Other than just studying one locus at a time, 

alternative methods which can carry out global analyses of biological molecules in populations 
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have been developed to understand the influence of the whole biological system on complex 

traits. Network based approaches, in particular, have proven informative. 

This dissertation will cover a few important issues concerning sequencing based study design 

and its applications in chapter II, III and IV. Human protein-protein interaction network will be 

constructed and a few of human gene network related issues will be studied and discussed in 

chapter V and VI. Abstracts for each chapter were summarized as followed.  

Chapter 2: In this chapter, we proposed a two-stage, gene-based method for association mapping 

of rare variants by applying four different non-collapsing algorithms. Using the Genome 

Analysis Workshop 18 whole genome sequencing dataset of simulated blood pressure 

phenotypes, we studied and contrasted the false positive rate of each algorithm using receiver 

operating characteristic curves. The statistical power of these methods was also evaluated and 

compared through the analysis of 200 simulated replications in a smaller genotype data set. We 

showed that the Fisher’s method was superior to the other three 3 non-collapsing methods, but 

was no better than the standard method implemented with famSKAT.  

Chapter 3: In this chapter, we aimed to identify potential susceptibility variants for bipolar 

disorder via the combination of exome sequencing and linkage analysis on 6 related subjects 

from a four-generation family. Our study identified a list of five potential candidate genes for 

bipolar disorder. Among these five genes, GRID1 (Glutamate Receptor Delta-1 Subunit), which 

was previously reported to be associated with several psychiatric disorders and brain related 

traits, is of particular interest. Our findings suggest a potential role for these genes and the related 

rare variants in the onset and development of bipolar disorder in this one family.  

Chapter 4: In this chapter, we investigated the potential of FMO genes to confer risk of nicotine 

dependence via deep targeted sequencing in 2,820 study subjects comprising of nicotine 1,583 
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dependents and 1,237 controls from European and African Americans. Specifically, we focused 

on the two genomic segments including FMO1, FMO3 and the pseudo gene FMO6P, and aimed 

to investigate the potential association between FMO genes and nicotine dependence. We 

identified different clusters of significant common variants in European (with most significant 

SNP rs6674596, P=0.0004, OR=0.67, MAF_EA=0.14) and African Americans (with the most 

significant SNP rs6608453, P=0.001, OR=0.64, MAF_AA=0.1). Most of the significant variants 

identified were SNPs located within intronic regions or with unknown functional significance. 

Chapter 5: In this chapter, we aimed to investigate the followed three scientific questions: 1) Can 

centrality reflect the biological significance of genes in a general human gene network? 2) 

Among these four commonly used centrality measures, does any of them outperform others? 3) 

Will they do better if we combine several centrality measures together using machine learning 

algorithms? To answer these scientific questions, we constructed a comprehensive human 

gene-gene network using protein-protein interaction data. Four essential gene sets were extracted 

from a variety of data sources serving as true answers in the evaluation and optimization process. 

Our analytic results indicated that there is a connection between the essentiality and centrality of 

human genes. A pattern of strong correlations was identified among the four commonly used 

centrality measures for a general human PPI network and the performance of each centrality 

measure was similar to others serving as predictors of the essentiality of genes. The improvement 

of the prediction models was limited when we combined several different centrality measures.  

Chapter 6: In this chapter, we aimed to investigate the potential enrichment pattern in centrality 

of susceptible genes for certain complex disorders in a functional specific sub-network. Gene 

expression data of human brain tissue recorded in the Human Protein Atlas were extracted and 

utilized to construct a series of brain function specific sub-networks. Susceptible genes from 
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three categories of complex disorders, including neurodegenerative disorder, psychiatric disorder 

and non-brain related disorder, were extracted from the GWAS catalogue. We identified a 

significant enrichment pattern of high centrality of susceptibility genes contributing to 

neurodegenerative and psychiatric disorders in these sub-networks. Our findings indicate that 

susceptibility genes of complex disorder might have higher centralities in functional specific 

sub-networks.  
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Chapter 0: Prologue 

 

―On proceeding to the spot, I found that nearly all the deaths had taken place 

within a short distance of the pump. There were only ten deaths in houses situated 

decidedly nearer to another street-pump. In five of these cases the families of the 

deceased persons informed me that they always sent to the pump in Broad Street, as they 

preferred the water to that of the pumps which were nearer. In three other cases, the 

deceased were children who went to school near the pump in Broad Street...‖ 

—John Snow, On the Mode of Communication of Cholera, 1855 

 

―My experiments with single traits all lead to the same result: that from the seeds 

of hybrids, plants are obtained half of which in turn carry the hybrid trait (Aa), the other 

half, however, receive the parental traits A and a in equal amounts. Thus, on the average, 

among four plants two have the hybrid trait Aa, one the parental trait A, and the other the 

parental trait a. Therefore, 2Aa+A+a or A+2Aa+a is the empirical simple series for two 

differing traits.‖ 

—Gregor Mendel, Letter to Carl Nägeli, 1866 

 

―A LADY declares that by tasting a cup of tea made with milk she can 

discriminate whether the milk or the tea infusion was first added to the cup. We will 

consider this problem of designing an experiment by means of which this assertion can be 

tested.‖ 

—Sir Ronald A. Fisher, The Design of Experiments, 1935 
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Chapter 1: Overview 

1.1  Genetic Epidemiology : Its Origin, Definition, and Early 

Development 

1.1.1 What is genetic epidemiology? 

Genetic epidemiology, as the name suggests, is an inter-discipline that is related to 

both epidemiology and genetics. I would like to describe a genetic epidemiologist as an 

epidemiologist who tries to unravel the enigma of (human) genetics using the tool sets of 

statistics. In this sense, genetic epidemiology, as a field of study, can be traced back to 

three origins. The first one is modern epidemiology. The core methodology and 

terminology used in genetic epidemiology are directly borrowed from it. Another one is 

genetics. Unraveling the genetic (and the environmental) determinants of human traits 

and disorders are the major goals of genetic epidemiology. Last but not least, statistics. 

Statistics is the fundamental tool utilized in genetic epidemiology study, and statistical 

estimation is required in most, if not all, genetic epidemiology related publications. Just 

as other thriving disciplines, genetic epidemiology is also an evolving study subject that 

keeps on adapting to the progress of biomedical science in modern days. Besides the 

three origins I mentioned above, genomics and bioinformatics are also involved in 

genetic epidemiology studies in the 21
th

 century.  

From the perspective of epidemiology, there are mainly two kinds of study designs: 

observational and experimental. In observational studies, researchers only observe their 
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study subjects and do not intervene. While in experimental studies, a researcher, instead 

of observing from the sidelines, controls the factors affecting a certain case study [1]. 

Genetic epidemiology, as a concept used in this thesis (and in most academic scenarios), 

is strictly observational. This perspective actually provides us a chance to distinguish 

genetic epidemiology and human genetics. Human genetics offers a wider concept 

compared to genetic epidemiology. Besides observational studies (genetic epidemiology), 

it also includes experimental studies performed using model organisms. Both study 

designs have its advantage and disadvantage. Confounders (population stratification, e.g.), 

especially those unknown, can always be problematic for observational studies (genetic 

epidemiology). They place obstacles for the ―giant leap‖ from statistical association to 

causal inference. On the other hand, experimental studies (based on model organisms) 

could handle this confounding issue very well. However, generalization is a major weak 

point of these kinds of studies when researchers try to trace the significance of some 

causal variants identified in model organisms (mouse, e.g.) using gene 

knockout/knockdown technology back to human beings.  

Genetic epidemiology studies try to clarify the following logically ordered scientific 

questions about human traits\disorders:  

1) Does this trait/disorder have a pattern of familial aggregation (family clustering)?  

2) Can shared genes explain the familial aggregation? 

3) How much can these shared genes explain the familial aggregation? 

4) Where are these genes and how do they contribute to the trait/disorder? 
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A first observation of genetic related traits/disorders is always their familial 

clustering pattern. However, this pattern is not necessary due to shared genes but could 

also be share environments. Several study designs, including immigration studies and 

adoption studies, can provide a way to separate the genetic variance from the 

environmental variance. After knowing the fact that genes matter, the next question is 

that how much these genes could explain the familial clustering pattern. Twin studies are 

a common study design to answer this question. Once we know the phenotypic variance 

that could be explained by genetic variance, then where are these genes? Linkage studies 

and gene association mapping could answer this question. Genetic data are not needed to 

answer the first three questions. I will briefly discuss them in the next section.   

1.1.2 Early genetic epidemiology studies: nature versus nurture  

Before scientists took a great interest in it, family aggregation as an observation 

from everyday life has long been noticed and characterized in some idioms, such as Like 

father like son or A wise goose never lays a tame egg. The early genetic epidemiology 

studies can be traced back to the work of Francis Galton, who was half-cousin of Charles 

Darwin, in the 19
th

 century. Galton was interested in answering the question whether 

human traits were hereditary. He devoted most of his academic life to devise large-scale 

data collection of different measurements of human traits, from mental characteristic to 

intelligence. Galton proposed that if eminence was hereditary, there should be more 

eminent men among the relatives than among the general population, and the numbers of 

eminent relatives dropped off when going from first degree to second degree relatives, 

and from second degree to third [2]. This is a typical familial aggregation study design, 

although it is not enough to test whether a specific trait is hereditary because of the mixed 
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genetic and environmental variance. Galton recognized the limitations of his methods in 

his works, and believed the question could be better studied by comparisons of twins. He 

also proposed adoption studies.  

An Adoption study investigates the similarity between the adoptees and their 

biological and adoptive parents. The similarity between adoptees and their biological 

parents is expected to be heritable, while similarity with their adoptive parents is shared 

environmental effect. With this study design, an adoption study can separate the effects 

of heredity and environment. However, it is difficult to link an adopted child to their 

biological family. Therefore, a simplified version (familial design) is sometimes applied 

by comparing the non-biological siblings who are reared in the same household. 

Additionally, another study design, the so called ―immigration study‖ can do the same 

thing by comparing the phenotype of immigrants, populations in their original countries 

and populations in their resident country. The phenotypic similarity between immigrants 

and populations of their original country can be explained by the shared genetic 

background, while similarity with populations of their resident country can be explained 

by the shared environments.  

Both adoption and immigration studies could offer us a way to deduce whether 

observed variation in a particular trait is due to environmental or to biological factors 

(sometimes popularly expressed as the "nature versus nurture" debate). The next question 

would then be how much of the variation in a human trait is due to variation in genetic 

factors. The portion of phenotypic variance that can be explained by genetic factors is 

summarized as the concept of heritability. Traditionally, heritability can be estimated 

from empirical data and simple study designs, such as the correlation of offspring and 
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parental phenotypes, the correlation of full or half siblings, and the difference in the 

correlation of monozygotic (MZ) and dizygotic (DZ) twin pairs. In the past decades, the 

heritability of many human complex disorders/traits has been estimated and summarized 

them in Table 1.1. 

A major feature of these early epidemiology studies is that no genotypic data is 

involved. Therefore it is impossible to map the susceptible/causal genes that contribute to 

those human traits/disorders. This deficiency will only be remedied when there is a set of 

genetic markers which cover the human genome and a cost effective experimental 

technology to genotype them. The advancement of DNA technology in the 1980s and 

1990s meet these two conditions and enables the genetic epidemiologist to conduct 

research to finally locate the susceptible/causal genes in the human genome.  

1.2 Gene Mapping: From Linkage study to Genome-wide Association 

Study 

1.2.1. Linkage and candidate gene based association study 

The goal of a linkage study is to identify the genetic linkage between genetic 

markers and potential trait/disorder loci occurred during meiosis. The genetic linkage 

segment can range from a couple to a dozen of megabases (Mb), and this build-in 

mechanism determines that a linkage study can only identify a genetic locus that covers 

several Mbs on a chromosome. Short tandem repeats (STR), which are genetic 

polymorphisms that consist of a unit of 2 to 13 nucleotides repeated hundreds of times in 

a row on the DNA strand, is an efficient genetic marker for conducting linkage study. 

STRs are multi-allelic genetic markers, and that means they are much more informative 
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compared to single nucleotide polymorphisms (SNPs) of which most are biallelic. 

Genotying of 400 STRs is enough for a typical genome-wide linkage scan while it may 

take more than 3,000 SNPs to achieve the same statistical power. Compared to a linkage 

study, an association study, which is based on linkage disequilibrium (LD), is more 

accurate and can pinpoint the location of specific susceptible genes. Nevertheless, it was 

too expensive to have a half million SNPs genotyped for one subject when conducting a 

genome-wide association study (GWAS) in the 1990s. To make a compromise between 

the experimental costs and accuracy in gene association mapping, a very popular 

association mapping strategy back to the 1990s (and early 2000s) was to conduct a 

genome-wide linkage scan first, and the significant loci identified in the linkage study, 

which is a chromosomal region of around 10-20 cM, was scrutinized in a candidate gene 

based association study based on a set of dozens of SNPs selected within the candidate 

significant region (usually 10-20 genes). Although this study design is logically sound 

and financially feasible, it is not a systematic solution to identify genes for human 

complex disorders/traits. An insightful review published in 2012 estimated that the total 

money spent on candidate gene based association studies and linkage studies in the 1990s 

and the 2000s exceeded $250M, but had generated very limited findings compared to the 

findings of GWAS in its first five years (2007-2011, ) which also spend around $250M 

[3].  

1.2.2 Genome-wide association study 

Although the first GWAS results were published in 2005 and 2006, GAWS as a 

theoretical design had been proposed by Risch and Merikangas ten years earlier. In their 

1996 landmark paper, they showed that an association study performed with one million 
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variants genotyped in a set of unrelated subjects will be more powerful than the genome 

linkage scan that was widely utilized in gene association mapping studies at that time [4]. 

The breakthrough in SNP genotyping using microarray technology [5] finally turned this 

once theoretical design into a real one. The first published GWAS study was a study 

conducted on age-related macular degeneration (ARMD) [6]. What may amaze 

researchers today is that this study has successfully identified a significant locus (and it is 

proved that this locus contribute largely on the risk of ARMD) with around 100,000 

SNPs genotyped in only 96 cases and 50 controls [6]. After that, genome-wide 

association studies (GWAS) have rapidly become a standard method for discovering 

susceptible genes for a variety of complex disorders/traits, and it is widely believed to be 

a promising tool for identifying potential susceptible loci. So far, many GWAS studies 

are published annually. As of June, 2015, 2,414 GWA studies in total have been 

published [7]. Around 10,000 susceptible loci have been reported to be significantly 

associated with around 1,000 complex human traits/disorders [7]. Up to now, most of our 

knowledge of susceptible genes that contribute to the human complex disorders/traits was 

generated by GWAS.  

Despite undisputable successes of the genome-wide approach mentioned above, 

GWAS is sometime criticized for its focusing on common SNPs while ignoring rare and 

structural variants which may have large effects on complex traits[8][9][10]. 

Considerable evidence has shown that rare variants and structural variants may have 

significant effects on the onset and development of complex disorders, however, this 

evidence is selectively omitted and only common variants(minor allele frequency ≥ 0.01) 

are considered  in GWAS due to a pure statistical concern (to maximize the statistical 

https://www.ncbi.nlm.nih.gov/pubmed/20479774
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power in analysis) and genotyping technology limitations[11]. In the past six years, this 

challenge has been partly resolved by the development of sequencing technology. 

High-throughput sequencing technologies, or so called ―next-generation‖ 

sequencing(NGS) technologies, which process millions of sequence reads in parallel, 

provide monumental increases in speed and volume of generated data at a relatively 

acceptable cost[12][13]. Fewer GWAS were published annually since 2012, and this 

trend is coincidence with the popularity of sequencing based studies (Figure 1.1).  

1.3 Next-Generation Sequencing based Gene Association Mapping: 

Promising and Pitfalls 

Advancement of DNA genotyping technology has greatly promoted the research of 

genetic epidemiology and gene mapping in the last 30 years. Cheaper and faster DNA 

genotyping technology enables some once theoretically genetic epidemiology study 

designs, such as genome-wide linkage scan and GWAS, to be done. In this sense, NGS 

enables the researchers to capture the information of every single variation in the human 

genome. The 1000 genome project, a public population genetics project using NGS 

technology, has shown that there are more than 88 million variations, including 84.7 

million SNPs, 3.6 million short insertions/deletions (indels) and 60,000 structural variants, 

in the human genome [14]. Compared to this number, genome linkage scan only involves 

about 400 STRs and GWAS only examines 300,000~600,000 common SNPs. The idea of 

a whole genome sequencing (WGS) study is preferable to the previous gene mapping 

study design in completeness by measuring every variation in human genome. Several 

WGS studies focusing on relatively small number of subjects with psychiatric disorders 



10 

[15][16] and cancers [17] [18][19] have been published in high profile academic journals 

and novel findings were reported. 

Despite its advantage and promising future mentioned above, sequencing-based 

association mapping, at least in its current stage, still has two issues left unaddressed. 

Firstly, unlike linkage and GWAS, there are no matured statistical analysis methods can 

be applied to sequencing data. A major challenge for sequencing based data is that there 

are a lot of genetic variants with low allele frequency. That means the single marker 

based analysis methods utilized in GWAS cannot be applied directly to sequencing-based 

data due to lack of statistical power. A common approach to overcome this issue is to 

collapse rare variant information within specific genomic regions (genes, for example), 

and these methods are generally called collapsing methods [20][21][22]. I will provide 

more details about these collapsing methods and conducted a comparison study to 

investigate the efficient of multiple sequencing data analysis methods in Chapter II of this 

thesis. The second issue concerns money. Although NGS has greatly reduced the 

experimental cost of human genome sequencing, it still takes 5-10 times of experimental 

cost to have a human genome sequenced (WGS) compared to genotyped by a microarray 

panel (used in GWAS). Two other study design can partly address this issue. The first 

one is instead of performing WGS on study subjects, researchers can perform exome 

sequencing which only focuses on exonic regions of human genome (1% of the human 

genome). This strategy can retain a large amount of genetic information of significant 

functional regions while having a much lower experimental cost compared to WGS. I 

will present an exome sequencing based study on bipolar disorder in Chapter III. Another 

study strategy is to sequence a couple of targeted susceptible genomic regions. On one 
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hand, rare and structural DNA variants of targeted genomic regions can be thoroughly 

investigated through DNA sequencing, while on the other hand, the experimental cost can 

be restricted to a reasonable level. I will present a targeted sequencing study of nicotine 

dependence in Chapter IV.  

1.4 Genetic Epidemiology Studies using Insights of Biological Networks 

1.4.1 GWAS, WGS and their discontents: hypothesis “free” or “engaged” 

Genome-wide approaches are described as ―hypothesis free‖ study designs, because 

comparing to the candidate gene based approach, this study strategy does not need prior 

knowledge about the candidate genes. A genome-wide scale study enables the genotyped 

genetic markers to offer sufficient coverage to most of the human protein coding genes (if 

not all) [23]. The ―hypothesis-free‖ basis of genome-wide approaches offered the 

opportunity to overcome difficulties and obstacles imposed by the incomplete 

understanding of disease pathophysiology. However, despite this ―hypothesis free‖ label, 

these genome-wide approaches (including GWAS and WGS) are somewhat dependent on 

some underlying hypotheses.  

The first underlying assumption is that the genetic risk of complex traits is 

contributed independently by genes/variants (assumption of independence). For example, 

in GWAS, the simplest analysis strategy is to do logistic regression in a single-locus 

manner [23], and in association mapping based on DNA sequencing data, the so-called 

―collapsing method‖ was widely utilized for which variants information are often 

collapsed within a genomic region or gene and then each region/gene will be tested 

pointwisely [21].However, in the past decade, many studies of quantitative traits in 
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animal models suggest that epistatic interactions between loci are widespread[24][25][26], 

and various examples of gene-by-gene interactions for human complex traits have been 

identified[27].A research study using yeast strains provided an estimated importance of 

epistatic interactions for 46 highly heritable traits. It shows that the contribution of 

gene-gene interactions (including both two-loci interactions and high order interactions) 

varies from zero to ~50% and detected two-locus interactions explain only a minority of 

this contribution [28]. In this study, the researchers have used yeast, which is a simple 

unicellular organism, as their research subject. We can expect that in some higher level 

multi-cellular organisms such as mammals, the patterns of gene-gene interactions will be 

more complex. The second assumption is that for GWAS/WGS, different genes are 

considered to have equal potentiality to confer the genetic predisposition to the complex 

traits (assumption of equality). This assumption has been partly challenged by the 

evidence that susceptible genes often show a clustered pattern within certain biological 

pathways [29][30]. In addition, previous studies conducted in several different model 

organisms [31] have shown that highly connected proteins or ―hubs‖ are more likely to be 

encoded by essential genes which are necessary for fundamental processes in an 

organism and lead to pre- or neonatal lethality when disrupted.  

To conclude, all of the above evidence has indicated that genes are neither created 

equally nor perform their functions independently, and novel insights are needed for 

understanding the mechanisms of genetic predisposition for complex traits. Other than 

simply studying one locus at a time, alternative methods which can carry out global 

analyses of biological molecules in populations have been developed to understand the 
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influence of the whole biological system on complex traits[32][33]. Network based 

approaches, in particular, have proven informative.  

1.4.2 Human Gene Networks: Novel Insights into the Genetic Epidemiology Study of 

Complex Traits   

Human gene networks are graphical representations of the interactions between the 

genes. In a human gene network, genes are represented as nodes and the relationships 

among them as edges. Human gene networks can be divided into three categories: 1) 

Human gene networks derived from curated knowledge; 2) Human gene networks based 

on experimental data of physical interactions, and 3) those that are inferred from 

high-throughput data [31]. In the past decade, the most interesting finding of gene 

network analysis is that proteins that are encoded by essential genes tend to have high 

centrality degrees in the protein-protein interaction network. This feature was firstly 

identified in yeast [34][35]. Since then, several studies were conducted to focus on the 

phenotypes related to human diseases. Wachi et al. studied genes that are differentially 

expressed in lung squamous cancer tissues, and found that up-regulated genes in the 

cancerous tissues tended to be highly connected and central [36]. Another study in 2006 

investigated the network position of 346 genes that had been implicated in a 

comprehensive census of all human cancer genes. They showed that on average the 

proteins encoded by these genes tended to have twice as many interaction partners as 

noncancer related genes [37]. Nevertheless, in a 2007 published research paper, Goh et al. 

created a network of human disease/human gene associations, in which each genetic 

disease is connected to the genes known to cause it. They found that most of the disease 

genes have no tendency toward higher degree in the human protein-protein interaction 
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network [38].One possible explanation for this discrepancy among the studies above is 

that the former two studies focused on cancer genes in particular while Goh et al. 

investigated disease in general. 

Among all these early studies, a significant limitation is that all these studies have 

focused on cancer or Mendelian disorders, and the researchers have paid limited attention 

to complex disorders. This limitation can be justified by the specific time when these 

research projects were conducted. Most of the knowledge of susceptible genes on 

complex disorders has been generated after 2007 when GWAS become a standard genetic 

epidemiological research strategy on complex disorders. In addition, recent evidence of 

interactome networks in the last decade has also questioned the potential incompleteness 

in these previous studies. Large scale, comprehensive analysis incorporating with new 

findings obtained in the past decade is needed. In chapter 5 of this thesis, I will first 

examine the centrality measurements of genes as indicators of their biological 

significance in a human general gene network. Then, in chapter 6 I will explore the gene 

sets centrality feature for different complex disorders and functional pathways 

enrichment patterns in general human gene networks and disease-specific sub-networks. 
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1.5 Figures 

 

Figure 1.1 Histogram of GWAS publications by year. The publications of 2015 were 

included from January to June.   
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1.6 Tables 

Table 1.1 Selected human disorders/traits with estimated heritability.  

Traits/Disorders Heritability (%) 

Acne 81 

Age-related macular degeneration 49 - 71 

Alcoholism 50 - 60 

Alzheimer's disease 58 - 79 

Asthma 30 

Attention deficit hyperactivity disorder 70 

Autism 30 - 90 

Bipolar disorder 70 

Bladder cancer 7 - 31 

Blood pressure, diastolic 49 

Blood pressure, systolic 30 

Body mass index 23 - 51 

Bone mineral density 44 - 87 

Breast cancer 25 - 56 

Celiac disease 57 - 87 

Cervical cancer 22 

Chronic obstructive pulmonary disease 76 

Colon cancer 13 

Coronary artery disease 49 

Depression 50 

Epilepsy 70 - 88 

Eye color 98 

Heart disease 34 - 53 

Height 55 - 81 

Hypertension 30 

Leukemia 1 
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Longevity 26 

Lung cancer 8 

Nicotine dependence 60 

Obesity 70 

Ovarian cancer 40 

Parkinson's disease 25 - 30 

Periodontitis 42 

Prostate cancer 42 

Psoriasis 66 

Schizophrenia 81 

Stomach cancer 1 

Stroke 32 

Testicular cancer 25 

Thyroid cancer 53 

Type-1 diabetes 88 

Type-2 diabetes 26 

Data source: SNPpedia(http://www.snpedia.com/index.php/SNPedia). 
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Chapter 2: Application of Non-collapsing 

Methods to Gene-based Association Test 

2.1 Introduction 

Unlike GWAS which focuses on common SNPs that have relatively higher MAF, 

sequencing based association study could generate tons of rare or low frequency variants 

and traditional statistical methods often fail in association mapping due to poor statistical 

power. To address this issue, as introduced in Chapter I, one commonly utilized strategy 

is to collapse rare variants information within specific genomic regions (such as genes), 

and this ―super marker‖ will be tested statistically[20][ 21][ 22]. This strategy could 

partly solve the issue of statistical power, however, it has assumes the directions of the 

effects of DNA variants are consistent, and this assumption may not be true. Compared to 

these collapsing methods, the non-collapsing methods, which do not require the 

assumption of consistency of effects direction, may be more reasonable choices for rare 

variants based association mapping.  

In this chapter, we proposed a two-stage, gene-based method for association 

mapping of rare variants by applying four different non-collapsing algorithms using the 

whole genome sequencing dataset and simulated blood pressure phenotype of genome 

analysis workshop (GAW) 18[39]. Genetic analysis workshop provided a platform for 

developing and evaluating statistical methods to analyze population and family based 

human genetics data. It is held every other year. GAW18 focused on identification of 

genes and functional variants that influence complex phenotypes in human sequence data. 
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In this research we will first obtain significance P values by fitting a mixed effects 

model for each variant, and then apply four non-collapsing algorithms, including Fisher’s, 

gene set enrichment analysis (GSEA), sequence kernel association test (SKAT),  to 

obtain the gene-wise association P values. Collapsing (or burden) methods combine 

variant information by assuming consistent direction of effects across variants. None of 

the methods considered here adopt this assumption, although some do combine variant 

information.  

2.2 Materials and Methods 

2.2.1 Model fitting and algorithms 

A mixed linear model was fitted for each variant as described in previous 

literature [40]. The model was defined as: 

 （2.1）, 

where Y is the quantitative trait of interest (we used first-visit systolic blood 

pressure [SBP]); X is the genotype; β is the fixed effects of the genotypes; and Q 

represents the population structure variables . In this study, we chose the first 10 principal 

components from principal component analysis (PCA) for Q. ν is the fixed effects of Q; Z 

is the variable that evaluates familial relatedness (the theoretical kinship matrix was used 

for Z); and µ is the random effects coefficient for Z that corrects the polygenic impact. 

After obtaining the variant-wise P values by fitting the mixed linear model shown 

above, four non-collapsing algorithms were modified and applied to the data set to obtain 

Y X Q Z      
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the gene-wise association P values. The algorithms of the four methods are summarized 

as followed: 

1. Naïve method. The most significant variant-wise P values within a specific 

gene were chosen as the gene-wise association P values. 

2. Fisher’s method [41]. The gene-wise statistics were calculated through the 

following equation: 

      （2.2）, 

where pi is the p value for variant i, and k is the total number of variants within a 

specific gene. Because many variants are highly correlated, the basic assumption of 

independent tests for Fisher’s method is violated. Fisher’s formula may not have a 

chi-square distribution, so we assessed the significance via permutations. 

3. Simes’ method [42]. The gene-wise p value was summarized by the following 

equation: 

     （2.3）, 

where pi is the p value for variant i, and k is the total number of variants within a 

specific gene. 

4. GSEA method [43][44]. The test statistics (indicated as ES score) were 

aggregated from variant-wise p values within each gene via a Kolmogorov-Smirnov–like 

process in which running sums are accumulated. The equation is given as: 
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    （2.4） 

where N is the total number of variants, r(j) is the j
th

 largest statistic values, NH is 

the variant number of a given gene, S is any given gene, P is the parameter that gives a 

higher weight to variants with extreme statistic value, arbitrarily set to 1 in this study, and 

NR is given by: 

           （2.5） 

Statistical significance and adjustment for multiple hypothesis testing were 

assessed by a 1000 permutation based procedure. A family-wise error rate (FWER) 

procedure was used to adjust for multiple-hypothesis testing. In this study, the FWER p 

value was calculated as the fraction of all permutations whose highest statistics (or 

smallest p values) in all genes is higher than a given gene. In addition to the four 

non-collapsing algorithms introduced above, we also included two standard rare variants 

based methods: SKAT [21] and famSKAT [45] in our analysis. FamSKAT is an extended 

version of SKAT and can be utilized to analyze rare variant when family correlations are 

present. Furthermore, to evaluate the statistical power of these methods, we extracted the 

variant information related to the 22 true-positive genes located on chromosome 3 and 

analyzed these data for all 200 simulated phenotype replicates. 

2.2.2 Data and computation 

We only analyzed one phenotype replicate and sequencing data of chromosome 3 

due to the huge computational burden. The sequencing data were annotated by 
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ANNOVAR [46]. Intergenic variants (variants at least 1 kilobase [kb] away from any 

known gene regions) were excluded, but variants that can be mapped to regulatory 

regions (ORegAnno) were kept [47].  

To preserve the familial structure, a permutation-of-residuals procedure was 

applied [48]. First, we fitted a mixed effects linear model on the phenotypic data with all 

the covariates in the model (except for genotype term) and preserved the residuals for 

these models. Second, we shuffled the residuals (rather than the phenotypic data used in 

an ordinary permutation procedure) and randomly assigned them to each subject and 

generated 1000 phenotypic data replicates. And third, we obtained the permuted statistics 

and p values by fitting a univariate linear model with genotype as the only predictor of 

the residuals. This method may introduce potential bias to the permuted statistics and p 

values comparing to directly fitting the full model. To quantify this potential bias, we 

randomly chose 1429 variants and calculated the percentage difference of the −log10 

scaled p values obtained from directly fitting a full model and from the two-step 

permutation procedure proposed above. The results of the permutation bias analysis 

showed that the percentage difference was only approximately 10%, and the correlation 

coefficient of variant-wise statistics was 0.9959. These results indicate that the effects of 

this bias are limited. 

Genotypes were coded in dominant model. That is, the genotypes with 1 or 2 

minor alleles were coded as 1, while genotypes with 2 major alleles were assigned 0. 

Variants with minor allele frequency >0.3 in genome-wide association data set were 

selected for PCA. We used Eigenstrat 3.0 for this analysis [49]. The R package kinship2 

(http://cran.r-project.org/web/packages/kinship2/index.html) was used to calculate the 
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kinship coefficient matrix for our data set. The R package coxme 

(http://cran.r-project.org/web/packages/coxme/index.html) was implemented for fitting 

the mixed linear model. The R package SKAT 

(http://cran.r-project.org/web/packages/SKAT/index.html) was implemented for rare 

variant analysis with SKAT. The R source code for famSKAT was downloaded 

(http://www.bumc.bu.edu/linga/research/publications/famskat/) and implemented for rare 

variant analysis. Receiver operating characteristic (ROC) curves were made and 

compared among the four algorithms and two standard methods. 

2.3 Results 

The data consisted of 1,237 genes with 87,190 variants that passed the annotation 

criteria were extracted from the sequencing data set of chromosome 3 for 849 subjects. 

After fitting the mixed linear model, the Q-Q plot and histogram of p values of these 

87,190 variants is shown in figure 2.1. Data for the 22 true positive (true answer) genes 

with 1,098 variants were extracted and used for analysis with 200 simulated phenotype 

replicates. The statistical power information for all the six methods was summarized and 

is presented in table 2.1. From the power analysis results, we see that the gene MAP4 was 

successfully identified to be significant for all simulated 200 replicates.  All six methods 

achieved 100% power for this gene. For the rest 21 genes, the largest power was 27.5%, 

which was achieved by SKAT for LOC152217. 

To compare the four non-collapsing methods and the two standard methods, ROC 

curves based on these six methods were constructed and shown in figure 2.2. From this 

fugure we noted that, overall, the Simes’ method performed a little better compared to the 
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other five methods, and that GSEA, SKAT and famSKAT did not perform as well as 

Simes’ method. The other two methods were slightly better than GSEA, SKAT and 

famSKAT method. However, when we limited the false positive rate to be smaller than 

0.1 as shown in the right hand plot of figure 2.2 (in practice, only a high true positive rate 

with a low false positive rate is of interest), we see that Fisher’s method and famSKAT 

performed better than other methods at the low false positive rate range. They both 

capture around 15% of the causal genes (true positives) with a cost of only 5% false 

positive signals. However, we did not test the significance of the ROC curves, so that all 

these observed differences could just be noise.  

2.4 Discussion and Conclusion 

MAP4 was identified to be the causal gene with 100% statistical power. This 

result is reasonable since, according to the ―answer sheet‖ of GAW18, MAP4 contains 

the most ―causal variants‖ and these variants have a relatively larger effect size 

comparing to the variants within other genes.  However, this result was obtained when 

we only analyzed the 22 ―true answer‖ genes. For a genome-scale analysis, the 

significant signals may be missed due to correction for multiple comparisons. We have 

also analyzed the whole genotypic dataset of chromosome 3 with simulated phenotypic 

replicate #1(including 1,237 genes and 87,190 variants). The result indicated that only 

naïve method and the two standard methods identified gene MAP4 to be significant.  

The non-collapsing methods introduced in this paper have been broadly utilized in 

testing the significance of biological pathways in GWAS datasets. When we substitute 

the term ―pathway‖ in these non-collapsing algorithms for the term ―gene‖ in sequencing 
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analysis and ―gene‖ for ―variants‖, we can apply these non-collapsing algorithms to 

gene-based association detection through modifications. An obvious advantage of 

aggregating p values (or statistics) by applying non-collapsing algorithms compared to 

ordinary variants collapsing methods is that it is a method free of the assumption that all 

the causal variants from a gene have effects in the same direction. This assumption may 

not be held in many scenarios even though it is the assumed in many existing rare 

variants association mapping procedures. 

In this study, we utilized the residuals-of-permutation procedure to deal with our 

familial based data. Conducting a permutation on family data has been a challenge in 

statistical genetics research. Ordinary permutation procedures have been mostly utilized 

in case-control data, which simply shuffle the phenotypic data and randomly assigns 

them to each subject, thus cannot be directly applied to family data because it destroys 

the family structure. In our research, instead of shuffling the phenotypic data, we shuffled 

the residuals obtained from fitting a linear mixed effects model without genotype. These 

residuals have already accounted familial relatedness in the model fitting step and 

therefore our permutation procedure preserved the familial structure.  

Several previous researchers have already applied the non-collapsing methods 

proposed in our research to conduct gene-based analysis [50][51]. However, these 

previous works have mainly focused on common variants in GWAS dataset. As an 

attempt to apply these non-collapsing algorithms to gene-based association tests using 

sequencing data, we have demonstrated some potentially promising aspects of this 

approach. However, several problems remain unaddressed. One important issue is the 

computational intensity. In this study, we have utilized a multi-processor-computing 
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server with 23×2.8 GHz CPU and 64GB memory in total. The most time consuming part 

of our analysis is the permutation-of-residuals process and linear model fitting of the 

permuted datasets. We have paralleled this process into 20 jobs, but it still takes around 

30 hours to complete (this is only the work done for one chromosome). Compared to the 

permutation process, the p value combination step can be completed much faster (~30 

minutes). Since a lot of the non-collapsing algorithms require permutation procedures to 

create null distribution of the statistics, it is somewhat difficult to implement them on 

genome-wide scale dataset. In addition, many non-collapsing algorithms cannot be 

utilized for a gene-based association test directly without proper modifications. The 

choice of parameters in non-collapsing algorithm for rare variant association detection is 

more an art than a science. Finally, adjustment for multiple hypothesis testing is another 

important issue that needs to be addressed. Our results indicate that the FWER method is 

too conservative. For the future work, hierarchical modeling combined with MCMC may 

provide better solution to the multiple hypothesis testing problems [52].  

To conclude, in this study, we showed that the statistical efficiency of several 

sequencing data based methods were not very promising, although some of them were 

commonly utilized in sequencing data analyzes as standard methods. Further 

investigation is needed to explore the potential statistical properties of these approaches. 
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2.5 Figures 

 

Figure 2.1 Q-Q plot and histogram for the mixed effects model. Q-Q plot (left) of –log10 

scaled p-values and histogram (right) for the mixed effects model based on 1,237 genes 

(87,190 variants) from 849 subjects. In Q-Q plot, black line, expected; blue dots, 

observed. 
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Figure 2.2 ROC curves for four non-collapsing algorithms and two standard methods. 

ROC curves for four different pathway algorithms based on 1,237 genes from 849 

subjects on trait SBP (first visit). In the left plot FPR ranges from 0 to 1. In the right plot 

FPR is scaled to be less than 0.1 since only the true positive rate (TPR) with a low FPR is 

of interest. Black curve, naïve method; blue curve, Fisher’s method; red curve, Simes’ 

method; green curve, GSEA method; purple curve, SKAT; yellow curve, famSKAT. 
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2.6 Tables 

Table 2.1 Comparison of the statistical power of the four non-collapsing and two standard methods.  

CHR Gene Power of Methods 

Naïve Method Fisher’s Method Simes’ Method GSEA Method SKAT FamSKAT 

3 ABTB1 0.015 0.18 0.025 0 0.075 0.01 

3 ARHGEF3 0 0 0 0.035 0.005 0.005 

3 B4GALT4 0.015 0 0.015 0.035 0.01 0.015 

3 BTD 0 0 0 0.015 0 0 

3 CXCR6 0 0 0 0.085 0 0 

3 DNASE1L3 0.005 0.005 0.005 0.005 0.04 0.01 

3 FBLN2 0.005 0 0 0.035 0 0 

3 FLNB 0.01 0.015 0 0.03 0 0 

3 LOC152217 0.09 0.145 0.135 0 0.275 0.04 

3 MAP4 1 1 1 1 1 1 

3 NMNAT3 0.005 0.04 0.005 0 0 0 

3 PAK2 0.07 0 0.05 0 0 0 

3 PDCD6IP 0.005 0 0.005 0.005 0.04 0.03 

3 PPP2R3A 0.045 0.01 0.02 0 0.005 0.005 

3 PTPLB 0 0 0 0.02 0.005 0 
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3 SCAP 0.025 0.005 0.04 0 0.045 0.065 

3 SEMA3F 0 0 0 0 0 0 

3 SENP5 0 0.02 0.01 0.045 0.01 0.005 

3 SUMF1 0.085 0.005 0.06 0.01 0.015 0.005 

3 TFDP2 0 0 0 0.035 0 0 

3 TUSC2 0.005 0 0.055 0 0.02 0 

3 ZBTB38 0.01 0.005 0.01 0.02 0.04 0 

Power is calculated based on the analysis of the 200 simulated phenotypic replicates. The largest power for each gene is highlighted in 

bold. 
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Chapter 3: Family-based Whole Exome 

Sequencing Study for Bipolar Disorder 

3.1 Introduction 

3.1.1 Clinical and epidemiological characteristic of bipolar disorder 

Bipolar disorder (BPD) is a mental illness with lifetime prevalence of about 1% 

[53]. BPD is characterized by periods of elevated mood (manic/hypomanic episodes) and 

periods of depression (depressive episodes) [54]. Currently, there is no cure for BPD, and 

medications and therapies are used to treat the symptoms. Patients with BPD and their 

families experience significant losses in functional status and quality of life, placing 

untoward stress on personal relationships. In addition, BPD is one of the most expensive 

mental health care diagnosis, both for patients with the illness and for their health 

insurance plans [55], and that in turn adds a financial burden on the patients’ families, as 

well as on society as a whole. Biomedical and etiological studies on the onset and 

development of BPD can throw light on new drug discovery and therapy development. 

3.1.2 Gene association mapping of bipolar disorder: a brief review 

The etiology of BPD is not clearly understood but extensive research has 

indicated that both genetic and environmental factors play a role [56]. Familial clustering 

studies have identified a ten-fold higher risk of BPD in people who have affected first 

degree relatives when compared to the general population [56]. The heritability of overall 

bipolar spectrum disorders is estimated to be 0.71[57]. More than 40 linkage scans for 
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BPD have been published and implicate many areas of the genome, although several 

studies have inconsistent results [56]. Genome-wide association studies (GWAS) have 

identified several susceptibility loci including markers near PALB2 [58], DGKH [59], 

ANK3& CACNA1C [60], 3p21 [61], NCAN [62], ODZ4 [63], TRANK1& LMAN2L [64], 

ADCY2&6q16 [65], and SESTD1 [66]. Nevertheless, despite these findings, a recent 

study has estimated the SNP heritability (the proportion of variation in disease liability 

that is captured in GWAS by considering all SNPs simultaneously) was ~0.4 for BPD 

[10]. This indicates that further research is needed to unravel the genetic etiology for 

BPD.  

The traditional microarray chip technology based GWAS focuses on common 

variants (genetic variants that have minor allele frequency at 5% or higher), and 

selectively omits the rare variants and structural variants such as short insertion and 

deletions (indels) due to technological problems [67]. The recent development of 

―next-generation‖ sequencing technology has enabled researchers to investigate these 

variants which are not covered in GWAS at a relatively lower genotyping cost [68]. 

Exome sequencing, which sequences the exons of protein coding genes in the genome, is 

considered to be a powerful tool in genetic association research [69]. By focusing only on 

the region of exons, exome sequencing only sequences around 1% of the human genome 

(far less than whole genome sequencing) while investigating genomic regions of 

functional significance. A recent research project focusing on lithium-responsive bipolar 

disorder has identified several rare susceptibility variants by exome sequencing analysis 

based on 36 familial samples [70]. This result indicates that exome sequencing 
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technology combined with proper study design is a promising method for association 

mapping.  

In this chapter, we have recruited six related BPD cases from a single BPD 

extended family. The rationale is that a single variant is segregating in this large, unusual 

family and that this approach will minimize genetic heterogeneity by restricting analysis 

to a single family. We have performed whole exome sequencing on the six BPD cases, 

and examined the DNA variants that are shared among all these six cases. Additionally, 

we have also performed a genome-wide high density linkage analysis based on common 

SNP data. The linkage peak region has further narrowed down the potential susceptibility 

variants and genes for BPD. 

3.2 Materials and Methods 

3.2.1 Study subjects 

The BPD family was selected via a history of multiple relatives with BPD. An 

index case was recruited from department of psychiatry at Barnes-Jewish Hospital. 

Relatives were diagnosed via diagnostic interview (SADS-L) and two independent senior 

psychiatrists gave best estimated diagnosis made through consensus. Signed consent 

forms were obtained from all the recruited members. This study was approved by IRB of 

Washington University in St. Louis. The pedigree structure of the family recruited in this 

study was shown below (figure 3.1). Six subjects with BPD were included in this study. 
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3.2.2 Experimental Methods 

Genomic DNA was isolated from the peripheral blood leukocytes and the DNA 

was stored at −80 °C for genotyping. The microarray genotyping was done by Illumina 

OmniExpress. We applied quality control process to remove singletons and SNPs with 

missing rate higher than 10%. The whole-exome sequencing was carried out using 

Agilent SureSelect All Exon 50Mb Target Enrichment kit and on the SOLiD System by 

EdgeBio.  The average read depth for the six bipolar subjects were 57x. For the 

exome-seq data, the alignment was done using novoalignCS (V1.01.15) by EdgeBio, and 

the data were recalled with HaplotypeCaller (GATK v3.3) [71]. The QC was done by 

GATK¹s VQSR. 

3.2.3 Statistical methods 

We implemented parametric linkage analysis based on the software Merlin [72] to 

identify potential linkage peak regions with the pedigree data. The allele frequency data 

were extracted from Hapmap 2 CEU samples. SLINK [73] was used to simulate the 

linage analysis to obtain a LOD score threshold with acceptable statistical power. The 

potential effects of exonic SNVs were predicted using SIFT [74] and Polyphen2 [75].  

The redundancy of the microarray SNP chip panel enables us to implement a 

10-set replicate analysis strategy in order to reduce the number of potential false positive 

signals obtained from the linkage analysis. We 1) randomly selected 10 sets of SNPs with 

considerations of minor allele frequency (MAF> 0.3), Linkage disequilibrium (LD) 

structure (to account for LD) and their genomic coverage (each SNPs set contains around 

10,000 markers); 2) conducted linkage analysis with each of these 10 replicated SNP sets 
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independently; and 3) identified the peak regions that are repetitively identified in all of 

the ten rounds of analysis. To account for the potential impact of LD on linkage signals, 

we only chose one SNP from each LD block which was constructed based on the 

Hapmap European population data. The LD block was estimated using Plink [76]. 

We implemented the Perl based software ANNOVAR[46] to annotate the exome 

sequencing data. To investigate the potential susceptibility variants/genes within this 

large family, we extracted variants that 1) pass the quality control criteria specified in 

GATK software; 2) are under one of the linkage peak regions; 3) located within genetic 

region with functional significance (splicing site variants, non-synonymous SNVs, stop 

gain SNVs,  frameshift indels, or non-frameshift indels within exonic regions) and 4) 

Only variants that were not recorded in 1000 genome database or variants with recorded 

MAF < 0.05 were included.  We also incorporated our filtering results with R package 

RVsharing [77] to have a statistical estimate of our observed excess sharing among all the 

related BPD cases of those candidate variants.  

3.3 Results 

3.3.1 Results of linkage analysis  

Simulation of the linkage analysis with SLINK showed that a LOD threshold 2.0 

will only achieve 22% statistical power. To increase statistical power, we chose 1.8 as the 

LOD threshold with the cost of increasing the false positive rate. To control the number 

of potential false positive linkage signals, we implemented a 10-replicate linkage analysis 

strategy. Genotypes data were released for 733,202 SNPs with our Illumina microarray 

chip and 537,258 were left after quality control. The redundancy of these markers 
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enabled us to implement a 10-replicate analysis strategy to reduce the number of the 

potential false positive linkage signals. This marker sets selection and analysis 

implementation was as indicated above.  

The linkage analysis results of 10 replicate SNP sets are shown in table 1. As 

shown in table 1, four peak regions in total were identified from the linkage analysis. 

They are 5q33.1- 5q 33.3, 5q35.1-5q35.2, 10q21.1-10q21.2 and 10q23.1-10q23.33. Two 

of these 4 linkage peaks, 5q33.1- 5q 33.3 and 5q35.1-5q35.2 (figure 3.2) were only 

identified 3 and 1 times, respectively. This indicates that these two linkage peak signals 

may be false positive signals. The two consecutive peak regions on chromosome 10, 

10q21.1-10q21.2 and 10q23.1-10q23.33 (10q22.3-10q23.33) were identified multiple 

times in the 10 replicate sets and 10q23.1-10q23.33 (10q22.3-10q23.33) was identified 

repetitively in all of the 10 replicate SNP sets. This result indicates that the chance that 

this peak region is a false positive signal is very low (figure 3.3).  Here we provide a 

brief estimation for the false positive rate of this peak region. The LOD threshold we 

used here is 1.8, and this is approximately equal to p value <0.002 [78]. Although we 

tested around 10,000 SNPs, considering the potential LD among SNPs, the independent 

number of tests might be around 400 (this is a reasonable estimate because 400 is the 

number of tests when using microsatellite markers for linkage analysis). Therefore, the 

false positive rate for each replicate is around 0.55 (1-0.998
400

).  For a genomic region 

that is proved to be significant in all of the ten replicates, its false positive rate can be as 

low as 0.0025 (0.55
10

). Therefore we concentrated those variants under this peak region 

(10q23.1-10q23.33) on chromosome 10. We have summarized the results of linkage 

analyses of each marker set in table 3.1. 
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3.3.2 Results of variants filtering 

Genotypic data were released for 140,814 variants (table 3.2). Among the 140,814 

variants, 114,432 (81.26%) variants passed the quality control specified in GATK 

software. Within these high quality variant calls, 444 variants were located under the 

linkage peak region of chromosome 10. The number of variants was reduced to 60 if we 

only considered those variants with potential functional significance. Among these 60 

variants, a total of 15 variants were not recorded in 1000 genome database or were rare 

variants with MAF less than 0.05 according to 1000 genome data in Caucasian 

population. Nine out of these 15 variants were only identified in one of six bipolar 

subjects sequenced, and 6 variants were shared by 2, 3 or 4 individuals. We have 

summarized the information of these 6 variants in table 3.3. Tests of RVSharing indicated 

that three out of these six variants (shared among 3 or 4 patients) were statistically 

significant with P value <0.008 (0.05/6). The other three variants that were shared among 

two patients had a P value of 0.0695. These 6 variants come from 5 genes including 

DYDC2, GHITM, MINPP1, CDHR1 and GRID1. Two SNVs located in the genes 

CDHR1 and GRID1 were predicted to be ―damaging‖ or ―possibly damaging‖ by SIFT 

and Polyphen-2.   

3.4 Discussion and Conclusion 

Our aim was to identify potential susceptibility variants that contribute to the risk 

of BPD. In order to minimize genetic heterogeneity, we restricted analysis to a single 

large family in which several distantly-related individuals suffer from BPD. If a single 

variant affecting risk for BPD is segregating in this multiply affected family, this 
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approach should identify the variant within the larger set of segregating variants, 

nominating candidate genes for future studies.  

We narrowed the targeted genomic region down to a ~15 MB region by restricting 

the analysis to a linkage peak identified on chromosome 10. This region (10q22) has been 

previously reported to be linked with BPD in a large scale linkage study by Fallin et al 

[79].  After filtering for minor allele frequency, sharing among affected relatives, and 

functional significance of the potential susceptibility variants, we identified a list of 6 

variants within 5 genes. A total of 3 variants in 2 genes, GRID1 and CDHR1, were 

identified in 2 of the 6 BPD cases. The two cases that shared these 3 variants are also first 

cousins within this four generation pedigree (individuals #142 and #5 from (figure 3.1).  

GRID1 encodes a subunit of glutamate receptor channels. These channels mediate most 

of the fast excitatory synaptic transmission in the central nervous system and play key 

roles in synaptic plasticity [80]. GRID1 has been widely investigated in multiple 

psychiatric disorders and brain related traits [81][82][83][84]. It was first reported by 

Fallin et al. that GRID1 was significantly associated with schizophrenia and associated 

with BPD with suggestive significance among Ashkenazi Jewish case-parent trios [81].  

A study of mice in which the GRID1 homologue, GluD1, was knocked out reported that 

the mice were hyperactive, manifested lower anxiety-like and depression-like behavior, 

and robust aggression [85].  The two rare GRID1 variants we report here (rs2306265 

and rs3812645) represent the first evidence that rare variants in GRID1 may contribute to 

BPD.  

The other gene with a shared rare variant, CDHR1, belongs to the cadherin 

superfamily of calcium-dependent cell adhesion molecules. Its encoded protein is a 
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photoreceptor-specific cadherin that plays a role in outer segment disc morphogenesis 

[86]. Mutations in this gene have been associated with recessive retinal degeneration [87] 

and autosomal recessive cone-rod dystrophy [88]. However, no previous study has linked 

this gene to any psychiatric disorders. We also identified 3 interesting variants in DYDC2, 

GHITM and MINPP1. These variants were predicted to be ―benign‖ or ―tolerated‖ and 

might not affect the protein structure. However, all of these variants were shared by 3 or 

4 BPD cases in this pedigree, and their sharing patterns were significant after Bonferroni 

correction using the RVsharing algorithm.  

We note that, given our sample size, these P values can only be used as a 

suggestive guidance when prioritizing variants for further study. One major strength of 

our study is that as an exome sequencing based study, we can examine both common and 

rare variants. Previous association studies on BPD mainly focus on common SNPs while 

ignoring most of the low frequency and rare variants. Restricting to common SNP, may 

hinder the ability to find susceptibility variants or genes. In our study, we considered both 

rare and common functional variants via exome sequencing technology. In addition, an 

advantage of our family based study design is that rare variants that segregate with 

reasonably high penetrance in an extended pedigree can provide a linkage signal helpful 

in identifying the susceptibility genes.  

There are also several limitations of our study. A main limitation is that we lack 

familial controls. The variant sharing we utilized as a filtering strategy in our study might 

generate some false positive signals due to relatives sharing neutral DNA variations. 

Having exome sequencing data from several healthy family members of this pedigree 

might further narrow down our candidate gene list. It is still too early for us to make any 

http://www.ncbi.nlm.nih.gov/pubmed/20805371/
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conclusion on the potential role played by these candidate genes in the onset and 

development of BPD. Limited by our sample type and study design, further research is 

needed to replicate our finding in unrelated individuals. More research is needed to reveal 

the potential relationship of our candidate gene list and biological mechanisms of BPD. 

In summary, our study identified a list of 5 potential candidate genes for BPD 

based on exome sequencing in a large bipolar disorder pedigree. Among these 5 genes, 

GRID1 has been reported to be associated with several psychiatric and brain related traits 

in common SNP-based studies. Our results provide some evidence linking rare variation 

in GRID1 with BPD.  These findings suggest a potential role for these genes in the risk 

for BPD, but require replication in large, independent studies.  
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3.5 Figures 

 

Figure 3.1 Pedigree structure of the BPD family sequenced in this study. Blood samples 

of the 6 BPD cases at the bottom of the pedigree were collected.     
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Figure 3.2 Significant peak regions identified on chromosome 5 in three sets of linkage 

analysis. a. Linkage results for chromosome 5 using SNP set #4 with 10,058 SNPs; b. 

Linkage results for chromosome 5 using SNP set #6 with 9,715 SNPs; c. Linkage results 

for chromosome 5 using SNP set #8 with 10,402 SNPs. Two peak regions 5q33.1- 5q 

33.3 and 5q35.1-5q35.2 were identified 3 and 1 times respectively. The LOD threshold 

was indicated in dotted line.  
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Figure 3.3 Significant peak regions identified on chromosome 10 in all the ten sets of 

linkage analysis. a. Linkage results for chromosome 10 using SNP set #1 with 10,396 

SNPs; b. Linkage results for chromosome 10 using SNP set #2 with 9,648 SNPs; c. 

Linkage results for chromosome 10 using SNP set #3 with 9,963 SNPs; d. Linkage results 

for chromosome 10 using SNP set #4 with 10,058 SNPs; e. Linkage results for 

chromosome 10 using SNP set #5 with 10,407 SNPs; f. Linkage results for chromosome 

10 using SNP set #6 with 9,715 SNPs; g. Linkage results for chromosome 10 using SNP 

set #7 with 10,418 SNPs; h. Linkage results for chromosome 10 using SNP set #8 with 

10,402 SNPs; i. Linkage results for chromosome 10 using SNP set #9 with 10,236 SNPs; 

j. Linkage results for chromosome 10 using SNP set #10 with 10,402 SNPs. Chromosome 

region 10q21.1-10q21.2 and 10q23.1-10q23.33 (10q22.3-10q23.33) were identified 

multiple times in the 10 replicate sets and 10q23.1-10q23.33 (10q22.3-10q23.33) was 

identified repetitively in all of the 10 replicate sets. The LOD threshold was indicated in 

dotted line. 
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3.6 Tables 

Table 3.1 Linkage analysis results of the ten replicate sets.  

Set # of markers Chromosome Regions  LOD 

1 10,396 10q22.3-10q23.33  1.92 

2 9,648 10q21.1-10q21.2  1.91 

    10q22.3-10q23.33  1.92 

3 9,963 10q21.1-10q21.3  1.91 

  
10q22.3-10q23.33  1.93 

4 10,058 5q33.1-5q33.2  1.88 

  
10q21.1-q22.3  1.91 

    10q23.1-10q23.33  1.92 

5 10,407 10q21.1-10q21.2  1.91 

  
10q23.1-10q23.33  1.92 

6 9,715 5q33.1- 5q 33.3  1.9 

  
 5q35.1-5q35.2  2.77 

    10q23.1-10q23.33  1.92 

7 10,418 10q21.1-10q21.2  1.91 

  
10q23.1-10q23.33  1.92 

8 10,402 5q33.1- 5q 33.2  1.9 

  
10q21.1-10q21.2  1.91 

    10q23.1-10q23.33  1.92 

9 10,236 10q21.1-10q21.2  1.87 

  
10q23.1-10q23.33  1.92 

10 10,402 10q21.1-10q21.2  1.9 

    10q23.1-10q23.33  1.92 

The most significant linkage peak region was found on chromosome region 

10q22.3-10q23.33 with LOD score of 1.926. The LOD threshold is 1.8.We have 

highlighted the 10q23.1-10q23.33 which were identified to be significant in all ten SNP 

replicates. 
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Table 3.2 Filtering procedure applied to the exome sequencing data from 6 BPD relative 

cases.  

Filtering Procedure Number of Variants pass QC (%) 

Genotype calls released 140,814 (100) 

Quality Control 114,432 (81.26) 

Linkage Peak Region 444 (0.32) 

Variants with functional significance 60 (0.04) 

Novel variants or variants with MAF less than 0.05 15 (0.01) 

The number of variants is reduced to 15 from the 140,814 released by exome sequencing 

by applying various filtering strategies.   
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Table 3.3 Summary information for 6 genetic variants identified after applying the filtering strategy. 

CHR SNP Position Ref Alt Gene Function AAChange SIFT* Polyphen2** Sharing P*** 

10 rs36027713 82126541 C G DYDC2 nonsynonymous SNV p.P123R T B 4 0.0003 

10 - 85902497 A T GHITM nonsynonymous SNV p.E72D T B 4 0.0003 

10 rs45584033 85974231 C T CDHR1 nonsynonymous SNV p.P812S D D 2 0.0695 

10 rs2306265 87484382 C T GRID1 nonsynonymous SNV p.V529I D D 2 0.0695 

10 rs3812645 87489317 T C GRID1 nonsynonymous SNV p.M430V T B 2 0.0695 

10 - 89280872 C T MINPP1 nonsynonymous SNV p.T137I T B 3 0.003 

* SIFT prediction. T stands for tolerated and D stands for damaging. 

** Polyphen2 prediction. B stands for benign, P stands for possibly damaging, and D stands for probably damaging.  

*** P values here stands for the probability of observing the sharing pattern in our pedigree. Significant variants after applying 

Bonferroni correction were shown in bold.
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Chapter 4: Targeted Sequencing 

Identifies Genetic Polymorphisms of 

Flavin-containing Monooxygenase 

Genes Contributing to Susceptibility of 

Nicotine Dependence in European and 

African Americans 

4.1 Introduction 

4.1.1 Clinical and epidemiological characteristic of nicotine dependence 

Smoking is a leading cause of preventable death, causing about 5 million 

premature deaths worldwide each year, and current trends show that tobacco use will 

cause more than 8 million deaths annually by 2030 [89]. Strong evidence connects 

cigarette smoking and lung cancer [90][91][92], and according to the data from 

American cancer society, lung cancer causes the most death each year compared to 

other cancers [93]. In addition, cigarette smoking is also the principal environmental 

risk factor for developing chronic obstructive pulmonary disease (COPD), a disease 

characterized by chronically poor airflow [94][95][96] . Therefore, understanding the 

underlying biological mechanisms of nicotine dependence will still have huge public 

health significance in the future. 
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4.1.2 Gene association mapping of nicotine dependence: a brief review 

Early studies based on samples of twins have linked the lifetime smoking 

practices to genetic predisposition [97]. A meta-analysis of the data from five studies, 

each involving more than 1,000 twin pairs, showed an estimated heritability of 60% 

for the propensity to smoke [98]. The followed linkage and gene association mapping 

studies have identified several susceptible loci, including genes encoding dopamine 

transporter/receptors [99][100][101], cholinergic receptors [102][103][104][105] , 

taste receptor [106] , serotonin receptor [107][108] and gamma-aminobutyric acid 

type B receptor [109], that are associated with nicotine dependence. The breakthrough 

of microarray technology at the end of 20
th

 century enabled the ―unbiased‖ 

association mapping analysis in the whole human genome. Genome-wide association 

study (GWAS), which scans the whole genome by capturing the information of 

common SNPs, has been proved informative for nicotine dependence 

[110][111][112][113], and greatly accelerates the progress of this gene hunting 

process.  Nevertheless, GWAS only focuses on a set of pre-selected, generally 

common SNPs, and tends to omit the rare variants and structural variants such as 

short insertion and deletions (indels). The recent development of ―next-generation‖ 

sequencing technology has enabled researchers to investigate these variants which are 

not covered in GWAS at a relatively lower genotyping cost [114][115][116]. A recent 

published study focusing on targeted sequencing data of CHRNA5 has identified 

several novel rare and low frequency coding variants that contributed to nicotine 

dependence [117].  
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Three protein families are involved in nicotine pharmacokinetics: liver 

cytochrome P450 enzymes (CYPs), flavin-containing monooxygenases (FMOs) and 

uridinediphosphate glucuronosyltransferase enzymes (UGTs) [118]. The 

flavin-containing monooxygenase (FMO) protein family consists of a group of 

enzymes that metabolise drugs and xenobiotics [119]. Five forms of FMOs are found 

in human and have been designated FMO1-FMO5 [119]. Among these FMO genes, 

part of nicotine inhaled during smoking can be broken down to N′-oxide by 

flavin-containing monooxygenase 3 (encoded by FMO3) [118]. Hinrichs et al. has 

identified significant association between SNPs of FMO1 and nicotine dependence 

[120]. Although a recent study has shown that common polymorphisms in FMO3 can 

influence nicotine clearance [118], no study has provided direct evidence of the 

association between FMO3 polymorphisms and nicotine dependence.   

In this chapter, we investigated the potential of FMO genes to confer risk of 

nicotine dependence via deep targeted sequencing in 2,820 study subjects (1,432 

European and 1,388 African Americans) comprising of 1,583nicotine dependents and 

1,237controls. Specifically, we focused on the two genomic segments including 

FMO1, FMO3 (protein coding genes for flavin-containing monooxygenase 1 and 3) 

and FMO6P (pseudo gene), and aimed to investigate the potential association between 

FMO genes and nicotine dependence. Via implementing targeted sequencing, we are 

interested to figure out that whether rare variants contribute to the association signal 
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derived from common variants. In addition, comparisons were made between the 

association results based on European Americans and African Americans.   

4.2 Materials and Methods 

4.2.1 Study subjects 

This research was reviewed and approved by the Institutional Review Board at 

Washington University in Saint Louis. All the study subjects provided informed 

consent. Study subjects were recruited from Collaborative Genetics Study of Nicotine 

Dependence (COGEND) and the Genetic Study of Nicotine Dependence in African 

Americans (AAND) [110][104]. A total of 2,820 individuals comprising of 1,432 

European and 1,388 African Americans were examined in our study. We assessed the 

study subjects’ smoking behavior using Fagerström test for nicotine dependence 

(FTND) [121]. The nicotine dependence patients were defined as current smokers 

with FTND score equal or greater than 4, and controls were defined as having FTND 

score of 0 or 1 and have smoked at least 100 cigarettes in their lifetime (Table 4.1). 

4.2.2 Targeted sequencing of FMO1 and FMO3 

DNA samples were extracted from blood with Puragene. Targeted sequencings 

on two 100kb regions of FMO1 and FMO3 were performed at the Center for Inherited 

Disease Research (CIDR). These genomic regions also contain part of gene FMO4 

and a whole psedogene FMO6P. The quality control was implemented in samples and 

variants level respectively. The mean on-target coverage was 180x for each 
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sequencing experiment and greater than 96% of on-target bases had a depth greater 

than 20x.  

4.2.4 Quality control measures 

Data quality was systematically evaluated using a robust alignment and variant 

calling workflow implemented by CIDR (http://www.cidr.jhmi.edu/index.html). Over 

100 quality control metrics were evaluated in real time to quickly identify potential 

errors and implement fixes throughout the sequencing process. Briefly, sample quality 

controls were conducted based on batch effects, discordance with array data, alternate 

callsets, relatedness and some research specific criteria. Strategies used for variant 

quality control includes VQSR, duplicate sample discordance, Mendelian errors, 

Hardy-Weinberg equilibrium (HWE), sequence context, locus report by gene and 

genotype missing rate. All variants passed the Variant Quality Score Recalibration 

with a mean quality score of 99, mean depth of 122 with no missing calls, no 

Mendelian errors and zero discordances between duplicate samples. Importantly, all 

the rare variants were then manually evaluated by the Quality Assurance/Quality 

Control analysis team.  

4.2.3 Statistical methods and bioinformatics analysis 

A total of 1,432 European and 1,388 African Americans with targeted 

sequencing of FMO1 and FMO3 were examined. General data analyses were 

performed by R (R i386 3.2.1) [122]. To quantify the potential population 

http://www.cidr.jhmi.edu/index.html
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stratification, we conducted principal component analysis (PCA) in the combined 

sample (115,338 markers), as well as separately in the European American sample 

(154,049 markers) and African American sample (218,399 markers), using a previous 

collected genome-wide array dataset containing 950,847 SNPs [123]. Sequencing data 

were annotated by sequencing data annotation software ANNOVAR [46]. After 

variant level quality control, 5,105, 2,600 and 3,817 variants located within the two 

targeted genomic regions (FMO1/FMO3) were extracted from combined, European 

and African American sample set, respectively.  

Variants satisfying the following criteria were utilized in variant level analysis: 

1) variants with MAF > 0.05 and 2) located within targeted gene regions or the 

linkage disequilibrium (LD) blocks that are (partly) overlapped with the targeted gene 

regions (detailed definition of blocks is given below). The association analysis was 

conducted by fitting logistic regression model. The genotypic data were coded in 

additive model. This analysis was performed in combined, European American, and 

African American individuals separately (for combined subjects, we tested a union of 

SNPs sets selected based on European and African American subjects). Gender and 

age were included as covariates in all the three analyses. The first two principal 

components based on the three sample sets were also utilized as covariates accounting 

for the potential population stratification when fitting the logistic models. To address 

the multiple comparison problem, we implemented Bonferroni correction. The 

number of tests was calculated in the following way: 
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                  （4.1）, 

where for each dataset, n1 stands for the number of LD blocks generated by 

this dataset and n2 is the number of variants that do not belong to any LD blocks. In 

addition to testing associations for single variants, we also conducted haplotype based 

analysis with combination of multiple variants in European and African American 

datasets, respectively. LD blocks were constructed using the default algorithm taken 

from Gabriel et al [124]. 95% confidence bounds on D’ are generated and each 

comparison is called "strong LD" when the confidence bounds have upper bound ≥ 

0.98 and lower bound ≥ 0.7, and a block is created if 95% of informative comparisons 

are "strong LD". Variant level association analysis and LD construction and haplotype 

analyses were conducted using Plink [76].  

Variants then were classified into two categories for the gene level analysis 

(mostly rare variants). The two categories are: 1) gene-region variants set, that is the 

variants located within the gene region, and 2) functional-region variants (variants 

located within regions with significant functional significance, including exonic 

regions, 3’/5’ UTR, smaller comparing to gene-region set).  For these two variants 

sets, analysis was performed on variants with MAF less than 0.01, and 0.05. Both 

SKAT and weighted burden test [125] were utilized for the gene level analysis. Same 

as the variant level analysis, we also conducted this analysis in combined, European 

and African American individuals separately. Gender, age and first two PCs based on 
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the three sample sets were also included as covariates. LocusZoom was utilized to 

make regional association plots [126].  

We examined the targeted SNPs and/or genes using several bioinformatics 

tools and databases.  We utilized the protein-protein interaction database STRING 

(http://string-db.org/) [127] to explore the potential interactions of our targeted genes. 

The Regulome DB (http://regulomedb.org/) [128] was used to predict the potential 

functional consequences the identified risk SNPs. This database is a web based 

bioinformatics tool integrated with multiple types of data (including ChIP-seq, 

DNase-seq, and eQTLs etc.) from the Encyclopedia of DNA Elements (ENCODE) 

project[129]. 

4.3 Results  

4.3.1 Variant-wise association of FMO genes and nicotine dependence 

270, 326 and 368 variants were selected for variant-wise association analysis 

in European, African American and combined sample set, respectively. 6 and 18 

(covered 262 SNPs) LD blocks were constructed in European and African American 

sample sets, respectively. Based on these LD blocks patterns, we obtained the 

significant thresholds for variant-wise analysis were 3.6×10
-3

, 1.25×10
-3

 in European 

American and African American sample set, respectively. We chose the most 

conservative one as our P value threshold in analysis (1.25×10
-3

). Multiple different 

significant variants were identified in European and African American datasets (Table 

http://string-db.org/
http://regulomedb.org/
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4.2, Figure 4.1). A cluster of significant variants were identified in European 

American individuals (with most significant SNP rs6674596, P=0.0004, OR=0.67, 

FMO1). In African American individuals, we identified several clustered significant 

variants (with the most significant SNP rs6608453, P=0.001) in pseudo gene FMO6P.  

4.3.2 Haplotype based and gene-wise association of FMO genes and nicotine 

dependence 

We performed haplotype based analyses in European and African American 

dataset separately. The P value thresholds were decided by Bonferroni correction and 

thus were different for each dataset. We utilized 0.008(0.05/6) and 0.0025 (0.05/20) 

as P value threshold for European and African American dataset, respectively. No 

significant signals were identified through haplotype based analyses. Gene-wise 

association analyses mainly focused on rare and/or low frequency variants in our 

dataset. Although we have tried multiple analytical schema (combination of different 

MAF threshold and region definitions), no significant association signals were found 

in this analysis (Table 4.3).    

4.3.3 Bioinformatics analysis  

Proteins that show evidence for interaction with proteins encoded by FMO1, 

FMO3 and FMO6P were extracted from STRING (Figure 4.2-4.4). Both FMO1 and 

FMO3 have a strong relation with a variety of genes belong to CYP gene families. 

FMO6P, however, as a pseudo gene, only showed limited evidence related with 

PRSS16. We explored the top significant variants (rs6674596 and rs608453) in 
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Regulome DB to investigate their potential biological significance. Regulome DB has 

its own scoring system to measure the biological significance of a variant. The range 

of the scores is from 1-6, and the smaller the score is, the more evidence that indicate 

this variant has biological significance. Rs6674596 has a Regulome DB score of 5, 

and it located within a DNase hypersensitive area of assayed in multiple cell types. In 

addition, this variant also located at a sequence motif region (HNF1). Rs608453 has a 

Regulome DB score of 6. It also located in the a sequence motif (Cdx). No expression 

quantitative trait loci (eQTL) or transcription factor (TF) binding related evidence 

were shown for neither variants.  

4.4 Discussion 

As part of a large scale targeted sequencing study focusing on 

nicotine-dependent/nondependent smokers, our aim was to test the hypothesis that 

genetic polymorphisms of flavin-containing monooxygenase genes contribute to the 

risk of nicotine dependence. The underlying rationale of this study is based on the fact 

that flavin-containing monooxygenase genes are key genes of the nicotine metabolism 

pathway [118]. FMO1 may play a role in nicotine metabolism and contributed to the 

nicotine level in brain organ [130], and FMO3 encodes flavin-containing 

monooxygenase 3 (encoded by FMO3), which can metabolize a small percentage of 

nicotine into nicotine N’-oxide [118]. We studied both rare and common variants in 

FMO1, FMO3 and FMO6P through large scale targeted sequencing.  
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A number of common variants in FMO1 were identified to be significantly 

associated with nicotine dependence, and we noted that there was an ethnic-specific 

pattern. We identified a cluster of significant variants in FMO1 in the European 

Americans. The most significant variant was rs6674596 (P=0.0004, OR=0.67, 

MAF_EA=0.135, MAF_AA=0.463). However, this significant result was not 

replicated in our African American dataset (P=0.9325, OR=1.01). The association 

signals for FMO1 have been reported by Hinrichs et al [120]. Several significant 

SNPs reported in that paper, including rs742350 and rs1126692, were also identified 

to be significant in our study. Considering both studies utilized COGEN samples, our 

results on the common SNPs basically replicated Hinrichs’ results. In addition to the 

significant findings in European American sample set, we also identified a set of 

significant variants located on gene FMO6P from the African American dataset (with 

the most significant SNP rs6608453, P=0.001, MAF_AA=0.097, MAF_EA=0.192). 

Just like significant variants were only identified in European Americans, this 

significant signal of FMO6P was only identified in African Americans but failed to be 

replicated in European Americans (P= 0.1109, OR=1.17). No significant SNPs were 

identified from the combined sample set, although in the combined samples set the 

sample size almost doubled with a correspondent increment in statistical power. The 

reasons behind this ethnic-specific pattern might be complex, and the most plausible 

one is differences in the regional LD structure between the two racial/ethnic groups. 

This difference might mean the surrogate SNPs miss the signal created by the real 

underlying susceptible variants in a specific set of samples.  
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One major advantage of our targeted sequencing study is that we can examine 

every possible DNA variations in our targeted regions and conducted association 

analysis thoroughly. However, in this study, we did not detect significant association 

between the rare variants and nicotine dependence, although we systematically tried 

many combinations of statistical methods, MAFs, region definitions and sample sets. 

The most significant rare variant set was identified for gene FMO1 with region 

definition of ―gene region‖ and MAF<0.01 in African Americans (P=0.0636). The 

lack of significant findings for rare variants suggests that the significant associations 

for common SNPs are not simply surrogates for rare variant associations (synthetic 

associations) [131].  

We found it interesting to examine the functional significance of the 

significant common SNPs we identified. All of the significant common SNPs are 

located either in introns or outside the gene. Therefore, if these significant common 

SNPs alter function, it is not by changing protein structure. The most significant SNP 

in FMO1, rs6674596, is located within a DNase hypersensitive area of assayed in 

multiple cell types, and most of the regulatory regions and some promoter regions 

tend to be DNase sensitive. This suggests that this SNP might have an effect on the 

expression of gene FMO1. Nevertheless, without further evidence from biological 

experiments, it is still too early to explain this association signal. 

FMO6P is a pseudo gene which means that this gene cannot be properly 

expressed as a protein, and it is probably because it is unable to produce a full length 
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transcript [132]. FMO6P is reported to have significant sequence homology with 

FMO3 [132]. Previous studies have set up direct links of SNPs in FMO6P with 

chronic allograft dysfunction [133] and pharmacokinetic characteristics of sulindac 

sulfide in premature labor [134]. One interesting note for these previous studies is that 

the significant findings of FMO6P are always accompanied with significant findings 

from FMO3, and at least in one study [135] , the significant SNP of FMO6P is in 

complete LD with significant SNP of FMO3. This suggests that the significant hit in 

FMO6P might be a surrogate for some true underlying signal in FMO3. However, in 

our study, although some SNPs of FMO3 are indeed in complete LD with the 

significant SNPs of FMO6P, the whole significant SNP cluster is located in the 

FMO6P region (Figure 4.1). On the other hand, if the signal we identified in FMO6P 

is not the surrogate for effects of SNPs in FMO3, but has an independent effect on 

nicotine dependence, then further research will be needed to clarify the underlying 

function of FMO6P. 

A major strength of our study is that, unlike most of the common SNP based 

association studies, is that we implemented a targeted sequencing technology for 

genotyping of our study subjects. This enables us to consider both common and rare 

variants within the three gene regions. Additionally, this study design enabled us to 

analyze both SNVs and indels which are often omitted in SNP based study designs. 

However, there are also some limitations to this study that need to be noted. Firstly, 

we lack replication for our significant findings. The design using two racial/ethnic 
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groups in our study enabled us to use as the two datasets as replication set for each 

other. However, significant findings in the European American dataset were not 

confirmed in the African American dataset. In addition, our sample size limited the 

statistical power to detect potential modest effects of SNPs. This is a common 

challenge, especially when using study designs, such as targeted sequencing, which 

generate genotype data at many variants, leading to multiple comparisons and 

corresponding stringent significance requirements. Future work to address this 

challenge would be to combine multiple sequenced datasets using meta-analysis; such 

approaches have been productive for GWAS of complex traits and have yet to be fully 

leveraged for sequencing studies and rare variant analyses. 

In summary, we tested the genetic effects of three flavin-containing 

monooxygenases genes (FMO1, FMO3 and FMO6P) on nicotine dependence by 

performing targeted sequencing on 2,852 nicotine-dependent and non-dependent 

smokers. We performed both variant-level and gene/region-level analyses to examine 

the genetic association of rare, low frequency and common variants within these 

region and nicotine dependence, and both SNVs and indels. We identified significant 

association signals for gene FMO1 and FMO6P. Replications of our finds in other 

ethnic groups were needed in the future. Most of the significant variants identified 

were SNPs located within intron regions or with unknown functional significance, 

indicating a need for future work to understand the underlying functional significance 

of these signals.  
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4.5 Figures 

 

Figure 4.1 Regional association plots of FMO1-FMO3-FMO6P genomic region based on European Americans and African Americans. a) 

European Americans and b) African Americans. The blue dash lines are the –log10(P-value) threshold used in our study(1.25×10
-3

). 
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Figure 4.2 Protein-protein interaction network of FMO1. 
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Figure 4.3 Protein-protein interaction network of FMO3. 
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Figure 4.4 Protein-protein interaction network of FMO6P. 
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4.6 Tables 

Table 4.1 Characteristics of study subjects 

  

Nicotine dependent Non-dependent 

Sample, n 

 

1,583 1,237 

Gender 

   

 

Female 901(59%) 805(65%) 

 

Male 682(41%) 432(35%) 

Ethnicity 

   

 

European American 730(46%) 702(57%) 

 

African American 853(54%) 535(43%) 

Age in year, mean (range) 

 

37(25-45) 36(25-45) 

FTND score*, mean (range) 

 

6.34 (4-10) 0.16(0-1) 

*FTND is the Fagerström Test for Nicotine Dependence.  
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Table 4.2 Significant signals in variant-wise association analysis.  

CHR VAR GENE POS A1 OR_EA P_EA MAF_EA OR_AA P_AA MAF_AA 

1 rs11812044 FMO6P 171115567 A 1.16 0.1232 0.19 0.65 0.0012 0.10 

1 rs17565793 FMO6P 171116267 C 1.16 0.1232 0.19 0.65 0.0012 0.10 

1 rs17623477 FMO6P 171116304 C 1.16 0.1232 0.19 0.65 0.0012 0.10 

1 rs7051747 FMO6P 171116550 G 1.16 0.1232 0.19 0.65 0.0012 0.10 

1 rs7066454 FMO6P 171116603 T 1.16 0.1232 0.19 0.65 0.0012 0.10 

1 rs7063044 FMO6P 171116760 T 1.16 0.1232 0.19 0.65 0.0012 0.10 

1 rs6608453 FMO6P 171117140 T 1.17 0.1109 0.19 0.64 0.0010 0.10 

1 rs6608454 FMO6P 171117170 C 1.16 0.1232 0.19 0.65 0.0012 0.10 

1 rs12726624 FMO1 171231630 G 0.67 0.0004 0.13 1.03 0.7385 0.47 

1 rs17581251 FMO1 171232446 T 0.67 0.0011 0.12 0.98 0.8685 0.08 

1 rs28360379_indel FMO1 171234851 A 0.68 0.0006 0.13 0.99 0.8698 0.43 

1 rs6674596 FMO1 171235088 T 0.67 0.0004 0.14 1.01 0.9325 0.46 

1 rs13376631 FMO1 171235742 G 0.69 0.0009 0.13 1.00 0.9831 0.43 

1 rs12094878 FMO1 171243863 C 0.69 0.0012 0.14 1.04 0.6315 0.47 

1 rs12062692 FMO1 171245579 G 0.69 0.0009 0.14 0.97 0.7002 0.48 

1 rs7539057 FMO1 171248614 A 0.70 0.0012 0.14 0.95 0.4840 0.42 

1 rs742350 FMO1 171250044 T 0.69 0.0012 0.14 1.03 0.6911 0.46 

1 rs12091482 FMO1 171251509 T 0.70 0.0012 0.14 0.94 0.4723 0.42 

1 rs10399952 FMO1 171251663 G 0.69 0.0011 0.14 0.95 0.5037 0.42 

1 rs10399602 FMO1 171251876 C 0.70 0.0012 0.14 0.95 0.4840 0.42 

1 rs7519999 FMO1 171251958 G 0.70 0.0012 0.14 0.95 0.4840 0.42 

1 rs1126692 FMO1 171252287 G 0.70 0.0012 0.14 0.93 0.3914 0.46 
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1 rs12092985 FMO1 171252537 A 0.70 0.0012 0.14 0.95 0.4840 0.42 

1 rs10912714 FMO1 171253037 G 0.69 0.0011 0.14 0.95 0.4840 0.42 

1 rs12059179 FMO1 171255346 T 0.70 0.0012 0.14 0.91 0.2620 0.39 

Significant findings were highlighted in bold. 
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Table 4.3 Full results of gene-wise association analysis. 

Gene Population MAF Region  SKAT Burden 

FMO1 European American <0.05 gene region 0.8072 0.2071 

   

functional region 0.8003 0.2857 

  

<0.01 gene region 0.5491 0.1463 

   

functional region 0.8020 0.2657 

 

African American <0.05 gene region 0.2905 0.2146 

   

functional region 0.8675 0.2844 

  

<0.01 gene region 0.0636 0.2481 

   

functional region 0.9902 0.8136 

 

Combined <0.05 gene region 0.2030 0.4330 

   

functional region 0.4013 0.4399 

  

<0.01 gene region 0.5486 0.7550 

   

functional region 0.7578 0.6936 

FMO3 European American <0.05 gene region 0.4270 0.2791 

   

functional region 0.9838 0.3735 

  

<0.01 gene region 0.8539 0.6863 

   

functional region 0.8246 0.1389 

 

African American <0.05 gene region 0.7460 0.5758 

   

functional region 0.3600 0.6912 

  

<0.01 gene region 0.9340 1.0000 

   

functional region 0.5992 0.3285 

 

Combined <0.05 gene region 0.1351 0.9251 

   

functional region 0.8212 0.5602 
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<0.01 gene region 0.1902 0.0691 

   

functional region 0.6783 0.4064 

FMO6P European American <0.05 gene region 0.3707 0.3239 

   

functional region 0.2326 0.1856 

  

<0.01 gene region 0.2917 1.0000 

   

functional region 0.0948 0.3778 

 

African American <0.05 gene region 0.7999 0.3774 

   

functional region 0.2711 0.6926 

  

<0.01 gene region 0.8139 0.3701 

   

functional region 0.1175 0.6725 

 

Combined <0.05 gene region 0.6998 0.7264 

   

functional region 0.3588 0.5644 

  

<0.01 gene region 0.5938 0.1462 

   

functional region 0.7372 0.5602 
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Chapter 5: Evaluation and optimization 

of multiple centrality measures in human 

protein-protein interaction network 

5.1 Introduction 

Human gene networks are graphical representations of the interactions between 

the genes. In a human gene network, genes are represented as nodes and the relationships 

among them as edges. Human gene networks can be divided into three categories: 1) 

Human gene networks derived from the curated knowledge; 2) Human gene networks 

based on the experimental data of physical interactions, and 3) those that are inferred 

from high-throughput data [136]. Centrality is a key indicator that identifies the most 

important vertices within a graph. To quantify centrality, four major measurements have 

been proposed: 1) Degree centrality, which simply counts the number of interactions to a 

node; 2) Betweenness centrality, where nodes which fall in the shortest path of other 

nodes have high betweenness; 3) Closeness centrality, which is related to the topology of 

the nodes in a network; and 4) Eigenvector centrality which ranks the nodes in a network 

based on its integrating neighbors [137]. Despite some early studies [138][139] that 

utilize the simplest degree centrality measure, most of the recent research projects have 

implemented the eigenvector centrality measure, such as algorithms modified from the 

Google PageRank algorithm, to evaluate the importance of a gene in a gene network 

[35][140]. However, research questions such as to what extent these centrality measures 



72 

can represent the functional significance of genes or whether any of these centrality 

measures outperformed others have never been seriously investigated.  

In this chapter, we aim to investigate the followed three scientific questions: 1) 

Can centrality reflect the biological significance of genes in a general human gene 

network? 2) Among these four commonly used centrality measures, does any of them 

outperform others? 3) Will they do better if we combine several centrality measures 

together using machine learning algorithms? To answer these scientific questions, we 

construct a comprehensive human gene-gene network using protein-protein interaction 

(PPI) data.  

5.2 Materials and Methods 

5.2.1 Construction of human protein-protein interaction network 

To evaluation the efficacy of multiple centrality measures as indicators of the 

biological significance of genes, we first constructed a genome-scale human gene 

network based on human protein-protein interaction (PPI) data. We extracted our PPI 

data from the STRING database [127]. As a database of known and predicted 

protein-protein interactions, STRING provides data users each protein-protein interaction 

with a confidence score. To evaluate the potential effects of the quality of PPI data to our 

study results, we constructed 4 human general dataset based on the full PPI dataset and 

PPI dataset with top 75%, 50% and 25% high confidence score, respectively.   
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5.2.2 Calculation of multiple centrality measures 

Four measurements of centrality were calculated based on our general human 

gene network, including degree centrality, betweenness centrality, closeness centrality 

and pagerank centrality. Degree centrality is simply the number of adjacent edges to each 

node. Betweenness centrality equals to the number of shortest paths from all vertices to 

all others that pass through that node. Closeness centrality is defined as the reciprocal of 

the farness which is the sum of distances of a node to all other nodes in a network. 

Pagerank centrality ranks the nodes in a network based on its integrating neighbors. The 

R package igraph was utilized to perform the construction of human network and the 

calculations of these centrality measures [141].  

5.2.3 Extraction of human essential gene sets 

To evaluate the centrality measures as indicators of the functional significance of 

human genes, besides the general human gene network we constructed, we also need a set 

of genes to serve as ―true answers‖, which means that we are sure that these genes should 

be biologically essential to human beings. We prepared our human essential gene sets in 

the following three ways (resulting in four gene sets):  

1) Online Gene Essentiality database (OGEE). OGEE is an online database that records 

both experimentally tested essential and non-essential genes [142].Two categories of 

essential genes, large-scale experiments based and text-mining based, were recorded 

in the OGEE database. We extracted these two sets of essential human genes from 

this database, and they were marked as OGEE.experiment and OGEE.textmining in 

the following, respectively. 
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2) Mendelian disorder related gene sets (marked as OMIM in the following). We 

extracted a set of human genes that were reported to cause mendelian disorders from 

Online Mendelian Inheritance in Man (OMIM) [143].Two files, the GeneMap file 

and MorbidMap file, were provided by OMIM. GeneMap contains the information 

that is centered by genes while MorbidMap file classified genes by their related 

phenotypes. The Mendelian disorder related genes were not specifically indicated for 

each term. To extract a potential gene list, we conducted the following filtering 

strategy: 

i. We removed those terms in both files that were tagged by ―[]‖, ―{}‖ or a question 

mark ―(?)‖.Brackets, ―[]‖, indicate "nondiseases," mainly genetic variations that 

lead to apparently abnormal laboratory test values but not disorders. Braces, ―{}‖, 

indicate mutations that contribute to susceptibility to multifactorial disorders or to 

susceptibility to infection. A question mark, ―?‖, before the disease name 

indicates an unconfirmed or possibly spurious mapping.  

ii. For the GeneMap file, we only selected those terms with an indicator ―C‖ 

(confirmed), which means this association was observed in at least two 

laboratories or in several families. 

iii. For MorbidMap, we only selected those terms with an indicator ―(3)‖, which 

means the the molecular basis of the disorder is known. 

iv. We then merged the two gene lists obtained from the GeneMap file and 

MorbidMap file, and obtained the OMIM gene set. 

3) Empirical gene sets (marked as ExAC in the following). This is an essential gene set 

that is extracted based on the Exome Aggregation Consortium (ExAC) data.ExAC 
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and includes exome sequencing data from a wide variety of large-scale sequencing 

projects spanning 60,706 unrelated individuals[144]. We extracted a set of essential 

genes by selecting genes that do not contain any destructive variants. The basic 

rationale of this gene set is that if a gene is very important and essential for human 

beings, disruptive mutations of this gene cannot be found in people with no severe 

pediatric disease. We utilized ExAC data set to obtain this gene set in the following 

filtering strategy:  

i. A standard quality control (QC) process was applied to the ExAC dataset, only 

variant calls with quality indicating as ―PASS‖ were included in the following 

study. 

ii. We removed those genes that contained frameshift indels in any of the 60,706 

individuals and this step reduced the gene number to 4,465. Frameshift indels are 

very disruptive mutations that may completely disable the gene function. 

iii. We removed genes in major histocompatibility complex (MHC) regions. The 

rationale of this step is that there are a lot of repetitive sequences in this region 

and this severely affected the quality of the sequencing experiment. Therefore, the 

genes we identified in MHC regions that contain no frameshift indels may not be 

because that these genes are important, it may be just because of the low quality 

of sequencing. We eliminated those variants with low quality during the QC 

process. After applying this strategy, there are 2,760 genes left. 

iv. We assumed the length of coding sequence (CDS) of a gene might affect the 

chance that a frameshift mutation occurs within the gene. Therefore, we ranked 

the 2,760 genes by their length of CDS and only included the 1,200 genes with 
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shorter CDS.  

The basic rationale behind the selection of essential gene sets is that we want to 

collect a set of genes that are ―functionally significant‖ for human beings (so they can 

serve as the ―true answer‖ in ROC analyses).  It is art more than science to select these 

gene sets because there is no universal standard to determine what kind of genes can be 

considered ―functionally significant‖. Lethality is the first potential criterion. However, it 

is difficult to apply this standard directly due to ethical issues. To overcome this 

difficulty, we utilized two methods. The first one is the experimental method. We can 

obtain a set of genes that were experimentally proven to be lethal when knocked out in 

model organisms, and then map those genes back to the human genome and extract the 

homologous genes. This defines to the two gene sets we obtained from OGEE. Another 

one is the observational method. We simply examine the genomes data of human 

populations to examine whether there are any genes without disruptive mutations. This 

defines the empirical gene set (ExAC). In addition to lethality, a list of causal genes of 

mendelian disorder might be another choice for a set of functionally significant genes. 

5.2.4 Comparisons and evaluations of different centrality measures 

To compare the effecacy of these four measurements of centrality as predictors of 

functional significance of genes in human gene network, we made receiver operating 

characteristic (ROC) curves in the following ways: 

1) We checked the four essential gene sets by each definition of centrality measure. 

2) We checked the four different centrality measure for each essential gene set. 
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5.2.5 Logistic regression model by combination of multiple centrality measures 

To evaluate whether there is an improvement using a combined score of different 

combinations of these centrality measures, we constructed a series of logistic regression 

models. Due of the severe multicollinearity among these four degree centrality measures 

(Figure 5.1), we fitted our model using a penalized regression technique. The 10-fold 

cross-validation approach was used to assess the performance of these prediction models. 

We calculated the area under curve (AUC) as a major indicator for comparisons of the 

models. Regression model fitting and model comparisons were conducted by R package 

glmnet [145].  

5.3 Results 

5.3.1 Human protein-protein interaction network and essential gene sets 

We constructed a general human gene network that covered 18,199 human protein 

coding genes using the full PPI data from STRING. This gene network covered 82.6% of 

human genes. We obtained four essential gene sets, including OGEE.experiment (1,511), 

OGEE.textmining (1,502), OMIM (1,244) and ExAC (1,200) gene set by the methods 

described above. The number of genes for each gene set and the overlaps are shown in 

Table 5.1. From this table, we can see that the four essential gene sets we extracted were 

basically independent from each other with limited overlaps. The following main results 

were conducted using human gene network constructed from the full PPI data 

downloaded from STRING. Most of these results were validated in the other three 

networks that were constructed with less but higher quality data (using 75%, 50% and 25% 
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of the PPI data). We have summarized the information of these four networks in Table 

5.2. 

5.3.2 Comparisons of the four centrality measures as indicators of biological 

significance 

The centrality measures of the four essential gene sets were calculated based on 

network constructed from full PPI data and shown in Figure 5.2. ANOVA analyses 

indicated the differences in centrality of the five gene sets (four essential gene sets and 

one random selected gene set) were significant in all of the four centrality measures (for 

degree, closeness and pagerank centrality P<2×10
-16

; for betweenness centrality, 

P=7.91×10
-16

).  In general, all of these four essential gene sets had higher centrality 

compared to the randomly selected gene set for all four centrality measures. Two 

essential gene sets that were extracted from OGEE (experiment and textmining) had 

higher centralities compared to ExAC and OMIM gene sets. ROC curves that compared 

the average centralities of these four essential gene sets were shown in Figure 5.3. The 

centralities of the four essential gene sets were calculated based on network constructed 

from 75%, 50% and 25% PPI data were shown in Figure 5.4- 5.6.  

5.3.3 Comparison and optimization of the four centrality measures using logistic 

model 

The four centrality measures were compared using ROC curve for each essential 

gene sets (Figure 5.7). As we can see from this figure that, for all these four essential 

gene sets, there is no significant difference among the centrality measures. None of these 

centrality measures outperformed the others as a predictor of the essentiality of genes in 
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our general human gene network. This result was validated in human gene network 

constructed using 25%, 50% and 75% PPI data, and these results were shown in Figure 

5.8-5.10. The logistic models were evaluated using AUC measurements. The AUC plot 

based on four essential gene sets were summarized in Figure 5.11. As we can see from 

figure 3, in general, models including more centrality measures performed better (except 

for OMIM gene set). However, this improvement was limited. The largest improvement 

in AUC was around 0.05. Detailed information of AUC measures for different 

combinations of centrality measures were summarized in Table 5.3.  

5.4 Discussion  

Previous genome-wide studies have shown that disrupted hub protein, protein that 

locates at center position in a PPI network, is more likely to have lethal effect than a 

non-hub protein, and this phenomenon is sometimes described as ―centrality-lethality rule‖ 

[146]. Our findings substantiated these previous observations. All of these four essential 

gene sets had significantly higher centralities compared to a gene set randomly selected. 

Another interesting observation is that the average centrality measures of these four 

essential gene sets showed a gradient pattern. In general, essential gene sets extracted 

from OGEE had highest average centrality, and OMIM gene set was slightly lower, while 

ExAC gene set had the lowest average centrality. This pattern can be explained by the 

differences of the potential functional significance among these essential gene sets. 

OGEE gene sets were based on the experimental evidence of lethality in model 

organisms, and the disruption of these genes might have lethal effects in human beings. 

On the other hand, genes in OMIM gene set were causal genes of human mendelian 
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disorders, and in most situations, disrupting these genes will cause mendelian disorders 

but not to be lethal. In this sense, the OGEE gene sets should be more biologically 

significant compared to genes in OMIM gene set. These evidence indicated that greater 

biological significance implies average higher centrality in a general PPI network. 

Another feature of our study that is different from previous research is that we provided a 

tool to quantify and evaluate the efficacy of the centralities as predictors of functional 

significance of genes in human gene network.   

One thing interesting to note is the performance of ExAC gene set in our analyses. 

The ExAC gene set was expected to have similar properties to the OGEE gene set 

because both of them were based on the lethality standard as described in the method part. 

However, the average centralities of ExAC gene set were the lowest among all of these 

four gene sets. This might be due to two reasons. The first one is the ExAC gene set was 

extracted based on around 60,706 individuals, and this sample size might not be large 

enough to rule out some non-significant genes. In addition, several arbitrary criteria used 

during the filtering process might increase the chance of the exclusion of some important 

genes. For example, we utilized the length of coding sequence (CDS) as a filtering 

criterion to reduce its potential effects. This criterion can rule out many small trivia genes, 

however, as an arbitrary criterion, it might also exclude some potential functionally 

significant genes.  

The four centrality measures commonly used in network analysis constitute 

different mathematical computations on the same underlying data. Degree centrality, for 

example, is very easy to calculate, but betweenness and closeness centralities are 

computational intensive especially when the adjacency matrix involved are big. Despite 
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these differences in computational level, previous researchers have noticed the statistical 

correlations among multiple centrality measures in a social network [147]. In our study, 

we also observed a pattern of high correlation among the four centrality measures using 

our general human gene network. In addition, this correlation property might also 

contribute to the similarity of the performance of these centralities serving as predictors 

as functional significance of genes. This high correlation property might also be the 

reason that combinations of these centrality measures could only make a very limited 

improvement for the performance of the logistic models. This indicates that the 

development of multiple measures may be somewhat redundant, and they might perform 

similarly in statistical analyses.  

In this study, we have showed that genes with high centralities were enriched with 

essential genes.  A potential limitation of this study is that we only explored the property 

of gene centrality in a general human gene network which covered most of the human 

protein coding genes. The biological mechanisms are very complex and a general human 

network cannot provide enough resolution to scrutinize detailed aspects of the enrichment 

pattern of functional genes. Furthermore, in this study, we only investigated the gene sets 

that are essential to human beings, and it might be more interesting to examine the 

centrality property of genes that are susceptible to complex disorders/traits. Therefore, for 

future study, it might be more fruitful for researchers to construct some functional 

specific sub-networks and focused on susceptible genes of complex disorders/traits.  

To conclude, in this study we have showed that there is a connection between the 

essentiality and centrality of human genes. A pattern of strong correlations was identified 

among the four commonly used centrality measures for a general human PPI network and 
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the performance of each centrality measure was similar to others serving as predictors of 

the essentiality of genes. The improvement of the prediction models was limited when 

combined several different centrality measures.  
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5.5 Figures 

 

Figure 5.1 Scatter matrix for the four measurements of centrality. The outlier in this plot 

is gene ubiquitin C(UBC). It was removed in the following model fitting. 

  



84 

 

Figure 5.2 Comparison of the average centralities of the four essential gene sets. a) 

degree centrality. b) closeness centrality. c) betweenness centrality. d) pagerank centrality. 

A gene set tagged as ―Random‖ was also included for the comparison. This gene set 

(with 850 genes) was randomly selected and was exclusive from the other four gene sets. 

  



85 

 

Figure 5.3 ROC curves of the average centralities aomng the four essential gene sets. a) 

degree centrality. b) closeness centrality. c) betweenness centrality. d) pagerank centrality. 

The X and Y axis are false positive rate (FPR) and true positive rate (TPR), respectively. 
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Figure 5.4 Comparison of the average centralities of the four essential gene sets using 

network constructed by 25% PPI data. a) degree centrality. b) closeness centrality. c) 

betweenness centrality. d) pagerank centrality. A gene set tagged as ―Random‖ was also 

included for the comparison. This gene set (with 850 genes) was randomly selected and 

was exclusive from the other four gene sets. 
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Figure 5.5 Comparison of the average centralities of the four essential gene sets using 

network constructed by 50% PPI data. a) degree centrality. b) closeness centrality. c) 

betweenness centrality. d) pagerank centrality. A gene set tagged as ―Random‖ was also 

included for the comparison. This gene set (with 850 genes) was randomly selected and 

was exclusive from the other four gene sets. 
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Figure 5.6 Comparison of the average centralities of the four essential gene sets using 

network constructed by 75% PPI data. a) degree centrality. b) closeness centrality. c) 

betweenness centrality. d) pagerank centrality. A gene set tagged as ―Random‖ was also 

included for the comparison. This gene set (with 850 genes) was randomly selected and 

was exclusive from the other four gene sets. 
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 Figure 5.7 ROC curves for evaluating the four centrality measures as predictors of 

essentiality in human gene network. a) OGEE.experiment. b) OGEE.textmining. c) 

OMIM. d) ExAC. 
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Figure 5.8 ROC curves for evaluating the four centrality measures as predictors of 

essentiality in human gene network constructed by 25% high quality PPI data. a) 

OGEE.experiment. b) OGEE.textmining. c) OMIM. d) ExAC.  
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Figure 5.9 ROC curves for evaluating the four centrality measures as predictors of 

essentiality in human gene network constructed by 50% high quality PPI data. a) 

OGEE.experiment. b) OGEE.textmining. c) OMIM. d) ExAC.  

  



92 

 

Figure 5.10 ROC curves for evaluating the four centrality measures as predictors of 

essentiality in human gene network constructed by 75% high quality PPI data. a) 

OGEE.experiment. b) OGEE.textmining. c) OMIM. d) ExAC.  
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Figure 5.11 AUC plot based on four essential gene sets. a) OGEE.experiment. b) 

OGEE.textmining. c) OMIM. d) ExAC. Numbers at the top of each plot indicated the 

number of variables included in regression models. Only largest AUC measures were 

shown in this plot for different variable combinations. 
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5.6 Tables  

Table 5.1 Number of genes in each essential gene sets and the pattern of overlaps. 

 

OGEE.experiment (%) OGEE.textmining (%) OMIM (%) ExAC (%) Covered by Network (%) 

OGEE.experiment 1,511 (100) 298 (19.8) 170 (13.9) 150 (12.5) 1,441 (95.4) 

OGEE.textmining 298 (19.7) 1,502 (100) 302 (24.7) 133 (11.1) 1,455 (96.9) 

OMIM 170 (11.3) 302 (20.1) 1,224 (100) 110 (9.2) 1,191 (97.3) 

ExAc 150 (9.9) 133 (8.9) 110 (9.0) 1,200 (100) 1,140 (95.0) 
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Table 5.2 Summarized information of the four human gene network. 

 

Combined Score threshold Number of genes covered (% to human genome) 

Network 100 / 18199 (82.6) 

Network 75 175 18173 (82.5) 

Network 50 212 18146 (82.4) 

Network 25 317 18076 (82.1) 
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Table 5.3 Detail information of AUC measures for different models 

Models OGEE.experiment OGEE.textmining OMIM ExAc 

degree (1) 0.7345 0.7409 0.6703 0.5958 

closeness (2) 0.7461 0.7483 0.6856 0.6131 

betweenness (3) 0.6953 0.7280 0.5569 0.5324 

pagerank (4) 0.7323 0.7440 0.6763 0.5976 

(1)+(2) 0.7456 0.7479 0.6841 0.6135 

(1)+(3) 0.7337 0.7400 0.6682 0.6001 

(1)+(4) 0.7353 0.7637 0.7010 0.5971 

(2)+(3) 0.7459 0.5514 0.6836 0.6131 

(2)+(4) 0.7322 0.7492 0.6812 0.6133 

(3)+(4) 0.7460 0.7432 0.6720 0.5986 

(1)+(2)+(3) 0.7456 0.7489 0.6848 0.6122 

(1)+(2)+(4) 0.7457 0.7859 0.7154 0.6109 

(1)+(3)+(4) 0.7296 0.5390 0.7043 0.5986 

(2)+(3)+(4) 0.7459 0.7496 0.6805 0.6122 

(1)+(2)+(3)+(4) 0.7484 0.7882 0.7250 0.6115 
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Chapter 6: Centrality pattern of 

susceptibility genes to complex disorders 

in functional specific protein-protein 

interaction sub-networks 

6.1 Introduction 

The biological processes in humans are regulated through complex molecular 

networks. One of the most important features of such networks is that the effect caused 

by blocking one pathway within a network can be bypassed through some other ―back 

door pathways‖. Accordingly, if a gene loses its function because of mutation, and if it is 

not located at the central position of a gene network, it may have little impact to the 

biological process due to the bypassing effects. On the other hand, if this gene has a 

relatively high centrality in the gene network, the loss of its function may block several 

pathways simultaneously and therefore no bypassing pathway can be used to supplement 

its loss of function. In chapter five, we have shown the centrality distribution of several 

essential gene sets in a general human gene network. In this chapter, we will present what 

the centrality distribution pattern would be in function specific sub-networks for several 

sets of susceptibility genes contributing to complex disorders.  
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6.2 Methods and Materials  

6.2.1 Construction of human PPI network and calculation of centrality 

We utilized known and predicted PPI data from STRING (http://string-db.org/) to 

construct our human PPI network [127]. Besides the human PPI network constructed 

using the full dataset from STRING, we also utilized the quality score provided by 

STRING to construct human PPI network with only 50% of the STRING data with 

higher quality score to validate the results we obtained from the network constructed 

using full PPI data. Centrality of genes was measured by degree centrality [148]. R 

package igraph was utilized for network construction and related analyses [141].  

6.2.2 Construction of brain function related sub-networks 

RNA-sequence data from the database The Human Protein Atlas 

(http://www.proteinatlas.org/) were utilized to construct brain function related 

sub-networks [149]. The number of Fragments Per Kilobase gene model and Million 

reads (PKFM) values of cerebral cortex were utilized as a filter criterion, and a series of 

brain function related sub-networks were constructed based on genes that have a PKFM 

value in cerebral cortex greater than a certain threshold. We labeled the human general 

PPI network as network No.0. Then, genes that have a PKFM value in cerebral cortex 

greater than 0.1×average PKFM in all human tissues (data of 44 tissues were recorded in 

the database) were extracted and constructed as sub-network No. 1. Genes that have a 

PKFM value in cerebral cortex greater than 0.2×average PKFM in all human tissues were 

extracted and constructed as sub-network No. 2, and so on so forth. 30 sub-networks 



99 

were constructed, and the sub-networks with the larger number have fewer genes but 

these genes were more related with brain activity.  

6.2.3 Extraction of susceptibility genes to complex disorders 

Susceptibility genes of 25 complex disorders were extracted from the GWAS 

catalogue (http://www.ebi.ac.uk/gwas/) [7]. Reported genes were extracted from the 

GWAS catalogue for each disorder. These 25 complex disorders can be classified into 

seven classes including neurodegenerative disorders, psychiatric disorders, liver related 

disorders, skin related disorders, kidney related disorders, pancreas related disorders and 

lung related disorders, and the last five classes can be combined as non-brain related 

disorders (Table 6.1). Additionally, an essential gene set was also extracted from online 

gene essentiality database (OGEE, http://ogeedb.embl.de/) as a comparison set. This 

essential gene set was collected based on large scale experiments on model organisms 

with lethality as an important criterion for recruiting them. To control potential 

confounding factors, some disorders that were difficult to be defined as brain or 

non-brain related disorders (such as obesity and substance addiction) were not included in 

this study. In addition, this study mainly focused on complex disorders as a qualitative 

variable, genes that only affect quantitative medical indicators of the disorders were not 

included. 

6.2.4 Statistical analyses 

Two levels of enrichment pattern of susceptibility genes to complex disorders 

were analyzed and compared among all these three major categories of complex disorders. 

The first level is on the number of genes and the second level is the average/median 

http://www.ebi.ac.uk/gwas/
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centrality of genes. We utilized a 1,000 permutation technique to compare these 

enrichment patterns of the three complex disorder categories in a series of brain function 

related sub-networks. For the centrality level, null distribution of the average/median 

centrality for each gene set was created through permutation in each sub-networks and 

the general human network. Then the P values of the observed average/median centrality 

of each gene set were calculated. 

6.3 Results 

6.3.1 Construction of general human networks and brain function related 

sub-networks 

A total of 31 human PPI gene networks were constructed (1 general network and 

30 brain function related sub-networks). Summarized information of these gene networks 

are shown in Table 6.2. The largest network, network No. 0 is a general human PPI gene 

network with 18,041 genes. The smallest sub-networks, network No. 30, is constructed 

by genes that were 3 times expressed in cerebral cortex comparing to the average level. It 

only included 1,774 genes but these genes were highly expressed in brain and are highly 

related to brain activity.  

6.3.2 Extraction of susceptibility genes to complex disorders and their centrality in 

multiple networks 

A total of 468, 724 and 814 genes were extracted for neurodegenerative disorders, 

psychiatric disorders and non-brain related disorders (Table 6.3). In addition to these 

three gene sets, an essential gene set of 1,511 genes was also selected. The overlaps of 

genes among these three complex disorder categories were very limited. There are only 
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44 genes overlapped between neurodegenerative disorder and psychiatric disorder (9.4% 

and 6.1% of neurodegenerative disorder and psychiatric disorder, respectively). Most of 

these genes were covered by the general human PPI network (86%-91%). The degree 

centrality distribution of these three disorder categories for network 0, 6, 12, 18, 24 and 

30 are shown in Figure 6.1. Severe positive skewness and multiple outliers were 

identified for all of these 6 networks. In this situation, median seems to be a more suitable 

parameter to characterize the distribution of centrality.  

6.3.3 Enrichment pattern of susceptibility genes to complex disorders in brain 

related sub-networks 

The enrichment pattern of susceptibility genes to complex disorders in gene 

number was shown in Figure 6.2. As we can see, the two susceptibility gene sets related 

to brain showed significant differences from the permuted background, while the 

susceptibility gene sets of non-brain related disorders did not showed significant 

enrichment pattern. The enrichment in high centrality of these susceptibility genes were 

shown in Figure 6.3. Apparently, the median centrality of gene sets susceptible to 

neurodegenerative and psychiatric disorders become more and more significantly higher 

in a series of brain function related sub-networks as the genes constructed in these 

networks become more and more highly expressed in human brain. On the other hand, 

the gene set chosen by susceptibly to non-brain related disorders failed to show this 

pattern. Although it is significant in the general human network (network 0), it did not 

become more significant in more functional specific sub-networks. We also checked this 

using the average of degree centrality (Figure 6.4), and a similar pattern was obtained. To 

examine the potential effects of PPI data quality to our results, we also conducted this 
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analysis in a network constructed by 50% higher quality PPI data (Figure 6.5). The 

results indicated that the effects of quality of PPI data were limited. The centrality and 

gene number enrichment for each of these five non-brain related complex disorder classes 

are shown in Figure 6.6-6.10. The significance identified in network 0 was only identified 

in pancreas related susceptibility gene sets. The characteristics of average degree 

centrality for multiple gene sets in different sub-networks were also shown in line plots 

(Figure 6.11). The top 20 genes with higher degree centrality in sub-network 30 are 

summarized in Table 6.4.  

6.4 Discussion 

Susceptibility genes for complex disorders were believed to be peripheral in 

human gene networks, because for complex disorders there are multiple genes each with 

smaller effects, so that each gene seems not that important [38]. Our findings have shown 

that this may be true in a general human gene network, however, in functional specific 

sub-networks, the genes that confer risk to a complex disorder might have significant 

higher degree centrality. The following two features can be obtained through the 

centrality distribution patterns identified through our analyses. Firstly, compared to the 

essential genes with lethal effects in model organisms, the three complex disorder related 

gene sets have a very peripheral distribution in general human networks and the series of 

brain function related sub-networks. Secondly, for both neurodegenerative and 

psychiatric disorders, their centralities become significantly higher in the brain function 

related sub-networks. This trend becomes more and more apparent when we utilized 

more extreme criteria (PKFM values) to define the sub-networks. On the other hand, 

susceptibility genes to non-brain related disorders failed to show this pattern. These two 
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features indicated that for a certain type of complex disorder, the centrality of the 

susceptibility genes are significantly higher within properly defined sub-networks with 

specific function. Currently, there were several network based association mapping 

prioritization methods [138][139]. Our findings indicated that for these methods, the key 

point is what sub-networks were chosen, but not the fancy algorithms to incorporate P 

values with the network parameters. Because centrality of genes in a gene network only 

becomes meaningful when functional specific sub-networks are properly defined.   

Another point interesting to note is that gene BDNF is in the 20 gene list (second 

largest degree centrality) with top centrality in network 30 (Table 6.4) but has not been 

extracted as a psychiatric or neurodegenerative disorders related genes. BDNF and its 

val66-to-met mutation have been reported to be associated with several psychiatric 

disorders including schizophrenia and bipolar disorder [150][151][152].We rechecked the 

GWAS catalogue records and found that this gene was not reported as a susceptible gene 

for any psychiatric disorders to date. However, this finding may indicate that centrality 

can be utilized as a promising parameter in prioritization of candidate genes conferring 

risk to complex disorders.  

Since all of the data we utilized in this study were obtained through publically 

available databases, our study is partially confined by the completeness of current 

aggregation of relevant data. The targeted disorders of our research should be some 

complex disorders that have been intensively studied in the past, so that we can extract a 

larger number of susceptibility genes conferring risk for those disorders. In addition, 

these disorders should also be relatively more concentrated in a certain human organ or 

tissues, so it will make it easier to define a sub-network to test them and reduce the 
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potential interference effects. This condition rules out some intensively studied disorders, 

such as obesity. The two kinds of brain related disorders fitted the two conditions. Both 

psychiatric disorders and neurodegenerative disorders have been studied thoroughly in 

the past decade in GWAS and many susceptibility genes for these disorders have been 

reported. With data from the Protein Atlas, it is easy for us to define brain function 

related sub-networks and this process is totally independent of the susceptibility gene sets 

we extracted. Tissue specific gene expression data is one way to define sub-networks. 

One of a major advantage is that the sub-network will be highly functional specific to 

certain human organs or tissues. Several other public available database, including 

KEGG and Gene Ontology can be utilized to define sub-networks in the future. 

To sum up, in this study, we examined the distributions of centrality for 

susceptibility gene sets to complex disorders in multiple human gene function specific 

networks. We identified that susceptibility gene sets to complex disorder have significant 

higher centralities in properly defined function specific sub-networks.  
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6.5 Figures 

 

Figure 6.1 Distribution of degree centrality for the three disorder categories in network 0, 6, 12, 18, 24 and 30. 



106 

 

Figure 6.2 Number of genes of susceptible gene sets in multiple brain related sub-networks. 1000 permutation was performed to create 

the null distribution. 
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Figure 6.3 Median of degree centrality and their statistical significance for susceptible gene sets in multiple brain related sub-networks. 

1000 permutation was performed to create the null distribution. 
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Figure 6.4 Average of degree centrality and their statistical significance for susceptible gene sets in multiple brain related 

sub-networks. 1000 permutation was performed to create the null distribution.  
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Figure 6.5 Median of degree centrality and their statistical significance for susceptible gene sets in multiple brain related sub-networks 

using 50% higher quality score PPI data. 1000 permutation was performed to create the null distribution. 
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Figure 6.6 Gene number and centrality enrichment pattern for susceptibility genes to 

kidney related disorders in multiple brain related sub-networks. 1000 permutation was 

performed to create the null distribution.  
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Figure 6.7 Gene number and centrality enrichment pattern for susceptibility genes to liver 

related disorders in multiple brain related sub-networks. 1000 permutation was performed 

to create the null distribution.  
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Figure 6.8 Gene number and centrality enrichment pattern for susceptibility genes to lung 

related disorders in multiple brain related sub-networks. 1000 permutation was performed 

to create the null distribution.  
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Figure 6.9 Gene number and centrality enrichment pattern for susceptibility genes to skin 

related disorders in multiple brain related sub-networks. 1000 permutation was performed 

to create the null distribution.  
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Figure 6.10 Gene number and centrality enrichment pattern for susceptibility genes to 

pancreas related disorders in multiple brain related sub-networks. 1000 permutation was 

performed to create the null distribution. 
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Figure 6.11 Line plots of the average degree centrality for susceptible genes in 

sub-network 0, 6, 12, 18, 24 and 30. A random gene set of 1,000 genes was selected 

serving as control.  a. full plot; b. plot without essential gene set. 95% CI of the mean 

were added in the plot as the error bars.  
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6.6 Tables 

Table 6.1 Complex disorders selected for this research project. 

Disorder category  Disorders  

Neurodegenerative disorder  Alzheimer’s Disease, Amyotrophic Lateral Sclerosis (ALS), Parkinson’s Disease, Dementia, Eplipcy 

Psychiatric disorder  

Schizophrenia, bipolar disorder, major depression, autisms, Attention Deficit Hyperactivity Disorder 

(ADHD) 

Liver related disorder* Hapetitis, Non-alcoholic fatty liver disease, Primary biliary cirrhosis, liver carcinoma  

Skin related disorder* Psoriasis, Melanoma, Acne, Non-melanoma skin cancer 

Kidney related disorder* Chronic kidney disease (CDK) 

Pancreas related disorder* Type I&II diabetes  

Lung related disorder* Lung cancer, Chronic obstructive pulmonary disease (COPD), Asthma  

*Non-brain related disorders 
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Table 6.2 FPKM thresholds and number of genes covered for the 31 networks 

constructed using STRING PPI data.  

Networks *FPKM 

threshold 

No.gene **No.covered.gene (%) 

0 - 19589 18041 (92.1) 

1 >0.1 14552 13748 (94.5) 

2 >0.2 13740 12973 (94.4) 

3 >0.3 12900 12174 (94.3) 

4 >0.4 12075 11401 (94.4) 

5 >0.5 11215 10602 (94.5) 

6 >0.6 10298 9742 (94.6) 

7 >0.7 9325 8810 (94.5) 

8 >0.8 8322 7856 (94.4) 

9 >0.9 7316 6901(94.3) 

10 >1.0 6397 6034 (94.3) 

11 >1.1 5637 5301 (94.0) 

12 >1.2 5005 4702 (93.9) 

13 >1.3 4508 4241 (94.1) 

14 >1.4 4091 3848 (94.1) 

15 >1.5 3741 3517 (94.0) 

16 >1.6 3458 3255 (94.1) 

17 >1.7 3226 3038 (94.2) 

18 >1.8 3048 2870 (94.2) 

19 >1.9 2860 2694 (94.2) 

20 >2.0 2707 2547 (94.1) 

21 >2.1 2564 2412 (94.1) 

22 >2.2 2464 2317 (94.0) 

23 >2.3 2351 2212 (94.1) 

24 >2.4 2269 2138 (94.2) 

25 >2.5 2185 2059 (94.2) 

26 >2.6 2123 2002 (94.3) 

27 >2.7 2053 1937 (94.4) 

28 >2.8 1996 1885 (94.4) 

29 >2.9 1941 1833 (94.4) 

30 >3.0 1879 1774 (94.4) 

* PKFM threshold is defined as number × average PKFM in all tissues. 

** Genes covered by STRING data.  
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Table 6.3 Information of gene numbers of the three major susceptibility genes categories  

 

Neuro (%) Psych (%) Non-brain (%) 

Covered by general PPI network 

(%) 

Neuro 468 (100) 44 (9.4) 36 (7.7) 419 (89.5) 

Psych 44 (6.1) 724 (100) 39 (5.4) 660 (91.2) 

Non-brain 36 (4.4) 39 (4.8) 814 (100) 700 (86.0) 

Neurodegenerative disorders, psychiatric disorders and non-brain related disorders were 

indicated as Neuro, Psych and Non-brain, respectively.
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Table 6.4 Top 20 genes with higher degree centrality in sub-network 30.  

Gene Ensembl ID CHR Degree Centrality Disorders Band Description 

CDK5 ENSG00000164885 7 710 - q36.1 cyclin-dependent kinase 5 

BDNF ENSG00000176697 11 664 - p14.1 brain-derived neurotrophic factor 

FYN ENSG00000010810 6 634 Neuro q21 FYN proto-oncogene, Src family tyrosine kinase 

MAPK11 ENSG00000185386 22 590 - q13.33 mitogen-activated protein kinase 11 

DIRAS2 ENSG00000165023 9 538 - q22.2 DIRAS family, GTP-binding RAS-like 2 

PPP3CA ENSG00000138814 4 536 - q24 protein phosphatase 3, catalytic subunit, alpha isozyme 

SNCA ENSG00000145335 4 526 Neuro q22.1 synuclein alpha 

RND1 ENSG00000172602 12 524 Psych q13.12 Rho family GTPase 1 

RIT2 ENSG00000152214 18 512 Neuro q12.3 Ras-like without CAAX 2 

RAP2A ENSG00000125249 13 506 - q32.1 RAP2A, member of RAS oncogene family 

RND2 ENSG00000108830 17 504 - q21.31 Rho family GTPase 2 

DLG2 ENSG00000150672 11 504 Neuro q14.1 discs, large homolog 2 (Drosophila) 

PRKCA ENSG00000154229 17 502 - q24.2 protein kinase C, alpha 

MAPK4 ENSG00000141639 18 496 - q21.1 mitogen-activated protein kinase 4 

PRKACB ENSG00000142875 1 490 - p31.1 protein kinase, cAMP-dependent, beta catalytic subunit 

SST ENSG00000157005 3 488 - q27.3 somatostatin 

GAD1 ENSG00000128683 2 478 - q31.1 glutamate decarboxylase 1 

GRIN2A ENSG00000183454 16 472 Psych p13.2 glutamate receptor, ionotropic, N-methyl D-aspartate 2A 

YWHAH ENSG00000128245 22 464 - q12.3 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein 

DIRAS1 ENSG00000176490 19 462 - p13.3 DIRAS family, GTP-binding RAS-like 1 
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