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ABSTRACT OF THE DISSERTATION 

Screening Protein Ligand Interactions Using Microelectrode Arrays 

by 

Sakshi Uppal 

Doctor of Philosophy in Chemistry 

Washington University in St. Louis, 2015 

Professor Kevin D. Moeller, Chair 

G proteins comprising of α subunit and βγ dimer are signaling proteins that play essential 

roles in various pathological conditions. Direct modulation of these G proteins (specifically Gα 

subunit) using small chemical probes to elucidate their acute function is of great value. YM-

254890 is a small molecule which is the first selective inhibitor of a class of G proteins, Gαq.  

However, despite its biological importance, this molecule is not available to researchers. In 

addition, the complex core structure of this cyclic depsipeptide has thwarted efforts to obtain a 

series of analogs by total synthesis. Moeller lab sought to overcome this obstacle by synthesizing 

simplified YM analogs that retain the ability to specifically inhibit Gαq. Thereby, this effort 

requires not only the synthesis of the YM analogs, but also the availability of both the purified G 

proteins and a rapid, cost effective method for screening newly synthesized analogs in real-time 

for their potential activity toward G proteins. This dissertation focuses on the 1) isolation and 

characterization of G proteins necessary to test the potency of simplified analogs and 2) 

development of a rapid screening method by utilizing the power of microelectrode arrays.  
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In Chapter 1 of this dissertation we discuss the potential utility of directly targeting G 

proteins and why it is essential to develop G protein modulators. In Chapter 2, we provide 

details on how three different G proteins (Gαq (wild type and mutant), Gαi1 and Gαo) were 

isolated. While expression of recombinant proteins from insect cells is widely used, we applied 

the Titerless Infected-cells Preservation and Scale up method to express Gαq. A number of 

approaches were explored to optimize the biochemical assay that exhibits the activity of Gαq. 

Eventually a receptor-assisted nucleotide exchange assay was developed that could test the 

activity of purified Gαq. In Chapter 3, the activity of other G proteins was examined by a 

fluorescent nucleotide exchange assay. In addition, we introduce the first simplified analog of 

YM, WU-07047 and its potency towards Gαq and other G proteins was analyzed. Even though 

the receptor-assisted nucleotide exchange assay is a reliable way for testing the simplified 

analogs, it requires radio-labeled ligand and a number of accessory proteins. Hence, efforts were 

moved towards development of a rapid screening method utilizing the power of microelectrode 

arrays. The idea was to monitor binding interactions between immobilized small molecules and 

purified G proteins via electrochemical methods. Chapter 4 investigates an approach to modify 

the array surface via the use of PEG-polymer as a means to reduce non-specific binding. In 

addition to the reduction of non-specific binding, the ability to incorporate PEG onto the array 

surface provides an opportunity to utilize PEG-polymers as a linker. These linkers move the 

immobilized molecule away from the array surface. In Chapter 5, we tested the compatibility of 

G proteins to the electroanalytical methods applied on microelectrode arrays. Moreover, we 

study a known binding interaction between a G protein and a short peptide on the arrays. Based 

on preliminary results, we can see specific binding interaction between them over non-specific 

background binding.  
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Chapter 1: Introduction 

 

1.1 G protein-coupled receptors (GPCRs) 

 

Signal transduction cascades (also known as cell signaling) mediate nearly all biological 

functions.1,2,3 These cascades are paramount because they determine how the cell senses and 

responds to its environment. Many signal transduction pathways follow a general scheme 

illustrated in Figure 1.1. The event begins when an environmental signal ranging from photons 

of light to small molecules (referred to as a ligand) is received by a cell surface receptor.3 This 

signal is then converted or transduced into a biological response through a series of chemical 

transformations.1,2,3 The biological response can be diverse in including processes such as cell 

death, differentiation, and proliferation as well as metabolic changes within the cell.1 These 

biological responses can arise from the activation of numerous signaling pathways which must 

be carefully regulated in order for the body to maintain a normal physiological balance.  

Figure 1.1. General scheme of signal transduction pathway. This figure is adapted from 

“Signal-Transduction pathways: An introduction to information metabolism”.1  
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In this context, the majority of clinically used therapeutics modulate signaling pathways.4 

This can be done by targeting either the most upstream molecule in the pathway, the receptor 5–8 

or one of the downstream chemical steps in the transduction scheme.9 This dissertation will focus 

on one class of receptors known as G protein-coupled receptors (GPCRs) and the associated G 

proteins involved in the signal transduction pathway.  

GPCRs comprise of the largest class of cell surface signaling proteins.10,11,7 These receptors 

are integral transmembrane proteins that contain a seven helix bundle that crosses a cell 

membrane and interacts with G proteins through an intracellular binding site.  The G protein 

plays a key role in the signal transduction part of the signaling pathway. GPCR’s and their 

associated G proteins are essential in numerous physiological and pathological processes.7,12,13 

Most of the human GPCRs can be classified into five main families: Rhodopsin (701 members), 

Adhesion (24 members), Frizzled/Taste (24 members), Secretin (15 members) and Glutamate 

(15 members).14,15 Defective G protein signaling pathways lead to numerous diseases 

(cardiovascular, neurological, inflammation, cancer, endocrine disorders etc.).16,17,18 It has been 

suggested that modulating GPCR function might postpone or end the progression of numerous 

cancers.7,18,19 Since GPCRs are critical players in cell signaling, they are common 

pharmaceutical targets. Currently ~30-50 % of the clinically approved drugs on the market target 

GPCRs.4 GlaxoSmithKline’s Zantac (targets Histamine H2 receptor to treat gastric ulcers), 

Bristol-Myers Squibb’s Plavix (targets P2Y12 receptor and acts as antiplatelet agent), and Eli 

Lilly’s Zyprexa (targets Serotonin receptor to treat schizophrenia20) are prime examples of drugs 

in today’s market that act by binding GPCRs.12 Most of these therapeutic strategies broadly aim 

to either activate GPCR signaling with the use of an agonist or inhibit GPCR signaling with the 

use of an inverse agonist (an agent that exerts opposite pharmacological effect of an agonist21) 
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and/or antagonist (an agent that blocks agonist binding to the receptor and in itself has no 

intrinsic activity).21 

1.2 Heterotrimeric G proteins  

The heterotrimeric guanine nucleotide-binding proteins (G proteins) that couple to the 

GPCRs are molecular switches that relay signals from activated GPCRs to a wide variety of 

intracellular effectors.22–24 The G proteins are referred to as molecular switches because they 

switch between an on and off state depending on the nucleotide they bind. A GDP-bound Gα 

subunit is in ‘off’ or inactive mode whereas a GTP-bound Gα subunit is in ‘on’ or active mode. 

Details of the G protein activation cycle are described in Section 1.3. G proteins play an 

important role in transmembrane signaling process because they take part in the sorting of 

incoming signals. In other words, these proteins amplify and direct incoming signals coming 

from multiple receptors to appropriate cytoplasmic secondary messengers. For example: one G 

protein, Gs protein activates adenylyl cyclase (its cytoplasmic secondary messenger) upon 

getting a signal from β-adrenergic receptor (a GPCR).25,26  

G proteins are comprised of three subunits; α, β, and γ (referred to as Gα, Gβ and Gγ), which 

are encoded by 16, 5, and 12 genes, respectively.27 The classification of G proteins is based on 

the structural and functional similarities of their Gα subunit. Gα subunits are usually 40-46 kDa 

in size,28 and they fall into four main subgroups: Gαs, Gαi, Gαq, Gα12/13.
29

 Table 1.1 depicts these 

subgroups, the subfamilies that lie within the groups, and their downstream effectors and effect.  
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The Gα subunit consists of two distinct domains: a GTPase or Ras homology domain 

(because of its structural resemblance to Ras superfamily of monomeric GTPases24) and an α 

helical domain. Both of these domains are connected by two flexible linkers.31,32 The nucleotide 

binding pocket exists in between these two domains. The guanine nucleotide exchange is a result 

of the interdomain movement between these two domains. Ras domain is the nucleotide binding 

domain that hydrolyzes bound GTP. It also provides binding surfaces for the βγ dimer and 

GPCRs due to the posttranslational modifications with the fatty acid myristoate (present in all 

Gα subunits except Gαt).
24 This posttranslational modification at the N-terminus of α subunit is 

pivotal for membrane localization and protein-protein interactions.24 The Ras domain has three 

flexible loops which are known as switch I, II, and III.24,32,33 The γ-phosphate of the bound GTP 

makes favorable interactions with these switches, causing overall conformational changes within 

G protein α-subunit subfamily Downstream effectors Effect 

Gs Gαs, Gαolf stimulators of adenylyl cyclase   cAMP 

Gi Gαi1-3, Gαo, Gαz,  

Gαt 

inhibitors of adenylyl cyclase 

stimulates cGMP phosphodiesterase 

  cAMP 

  cGMP 

Gq Gαq, Gα11, Gα14, Gα16 activates phospholipase Cβ (PLCβ)  IP3, DAG, Ca2+ 

G12 Gα12, Gα13 activates RhoGEF, phospholipase Cε 

(PLCε) 

  Rho A 

signaling30 

Table 1.1. Classification of Gα subunits based on their structural and functional similarities. 

Information presented in this table was obtained from “Regulators of G protein signaling as 

new central nervous system drug targets”.67 
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the α subunit. This new conformation attained by the subunit allows it to specifically distinguish 

the downstream effectors.34–38 The helical domain is unique to Gα proteins and contains a six α 

helical bundle that covers and buries the bound guanine nucleotide.  

Figure 1.2 represents the opening of the interdomain cleft. Ribbon model shows α helical 

and Ras domains in green and light blue respectively. The C-terminal helix of the Ras domain 

(α5) which makes contacts with the receptor and the nucleotide binding site is represented in 

yellow. Prior to receptor activation, GDP (purple molecule) is bound in between the two 

domains. Double electron-electron resonance spectroscopy (DEER39) has demonstrated that even 

in the absence of a receptor, both domains can separate with each other in the presence of GDP.40 

This suggests that this movement is not sufficient for GDP release. Upon receptor activation, α5 

Figure 1.2. Representation of opening of the interdomain cleft. Panel A. The inactive 

receptor and G protein (PDB: 1U19). Panel B. Complexation of G protein with active 

receptor describing the reorientation of the helical domain (PDB: 3DQB). Van Eps N. et al. 

Interaction of a G protein with an activated receptor opens the interdomain interface in the 

alpha subunit. Proc. Natl. Acad. Sci. 2011; 108(23):9420-9424.  
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displaces away from GDP which weakens the interactions between GDP and Ras domain and 

consequently when both domains separate, GDP releases. The catalytic G protein activation 

cycle will be discussed in the next section. 

The Gβ and Gγ subunits exist as functional dimers and are usually referred to as Gβγ dimer. 

Gβ subunits are about 36 kDa and Gγ subunits are about 8 kDa in size.41 Efforts to express these 

subunits separately have been rendered unsuccessful as it leads to unstable Gβ and unfolded Gγ 

subunits.42 Once the dimerization has occurred, only denaturing conditions can dissociate them.43 

All Gγ subunits bind to the membrane via an isoprenyl group on their C-terminus as a result of 

posttranslational modification.44 This binding interaction between Gβγ and the membrane is 

essential for the stability of Gα-receptor interface. Numerous studies have shown that Gβγ 

dimers are not just passive partners for Gα subunits. On the contrary, they are pivotal 

contributors in assembly and regulation of signaling pathways with the help of Gβγ binding 

proteins and are now potential therapeutic targets.45–47  

1.3 G protein activation cycle 

Activation of G protein can be described by the catalytic cycle in Figure 1.3. The cycle starts 

with an inactive G protein (GDP-bound Gα with Gβγ dimer) associated with the membrane-

bound GPCR (Step 1). When a ligand binds to the receptor, a conformational change is induced 

within the receptor (Step 2). Distance between the nucleotide binding pocket of Gα subunit and 

the nearest receptor contact site (α5 in Ras domain) is ~30 Å.24 An activated receptor can perturb 

the Ras domain of the Gα subunit and weaken the interactions this domain makes with GDP. 

Recent atomic-level molecular dynamics (MD) simulations of heterotrimeric G proteins with and 

without bound GPCRs have shown that rotation of helical domain (~90⁰ in case of no bound 

GPCR and ~150⁰ in case of bound GPCR) dramatically interrupts the interdomain nucleotide-
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binding sites.40 However, this rotation of helical domain is not sufficient for GDP dissociation 

which is the rate limiting step for the entire activation cycle. Conformational changes in the Ras 

domain initiated by an activated receptor and frequent domain separation work in conjunction to 

release GDP. The receptor stabilizes the unstable and short-lived nucleotide-free Gα subunit until 

a GTP binds the nucleotide pocket. Since cellular concentration of GTP (mM) exceeds that of 

GDP by several orders of magnitude, GTP binding is almost instant.24 The receptor catalyzes the 

process of guanine nucleotide exchange (Step 3). Once GTP binds to the Gα subunit (now 

regarded as active Gα subunit), it initiates a structural rearrangement of Gα eliminating Gβγ 

binding surfaces. This causes the Gα to dissociate from the receptor and Gβγ dimer. Gα utilizes 

Figure 1.3. GPCR mediated G protein activation cycle. Steps of the cycle are numbered 1-6.  
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the binding energy of GTP in order to form a conformation that will allow its interaction with 

specific downstream effectors (Step 4).31 Intrinsic GTPase activity of Gα subunit mediates GTP 

hydrolysis resulting in GDP and Pi consequently making Gα return to its resting state. GDP-

bound Gα subunit associates with Gβγ and turns off the signaling (Steps 5 and 6).  

1.4 Diversity of GPCRs elicited signaling  

Figure 1.3 shows a simplified description of canonical G protein signaling. The real process 

is much more complex. Although all GPCRs have a similar architecture of seven membrane 

spanning α helices, variability within the structure arises from the carboxyl terminus and amino 

terminus.15 A single extracellular stimulus can activate multiple signaling pathways. For 

example, Serotonin, a small molecule, can bind 13-16 different GPCR family members that are 

expressed and coupled to separate signaling pathways.12,41 As mentioned previously, GPCRs are 

targeted by the majority of pharmaceutical drugs as a means to regulate the signaling pathways 

but the successful development of therapeutic strategies have been hampered due to the 

complexities associated with these receptors. For example, Table 1.2 lists GPCRs that couple to 

one class of G proteins, Gαq. Complete inhibition of Gαq mediated signaling would require a 

ligand that would abrogate activity of all GPCRs capable of coupling to Gαq.  In other words, a 

ligand that would block one receptor might not be effective because an output signal can still 

appear due to the activation by other receptors. Another example is Gαi coupled µ-opioid 

receptor: OPRM1 which is known to regulate the analgesic and euphoric effects of opioid drugs 

like morphine.49,50 OPRM1 receptor activates extracellular signal-regulated kinase (ERK) 

pathway which phosphorylates ERK. Morphine, etorphine and fentanyl are some of the known 

agonists of this receptor which activate ERK phosphorylation with similar potencies. The 

difference, however, is that morphine uses the Protein Kinase C (PKC) pathway and etorphine 
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Table 1.2. List of GPCRs that couple to Gαq family of G proteins 

 

uses β-arrestin pathway to phosphorylate ERK.51 Hence, the same endpoint can be achieved 

through different pathways by different ligands with similar potencies. The functional utility of 

this redundancy constructed by nature into GPCR signaling pathways is a mystery.  

 

Gq family Subfamily Receptors  

Gq αq Alpha-1 adrenergic receptor, Vasopressin 

type 1 receptor, 5-HT2 serotonergic receptors, 

Angiotensin II receptor type 1, Calcitonin 

receptor, Histamine H1 receptor, 

Metabotropic glutamate receptor (group 1), 

M1, M3, M5 muscarinic receptors 

 

Despite the amount of information that is known concerning GPCRs and their G protein 

coupling partners, little is known about their specificity. For example, the TSH receptor can 

activate all known G protein subfamilies52 expressed in the thyroid. Why does one GPCR 

specifically couple to one G protein whereas the other GPCRs couple to multiple G proteins? Is 

this complexity evolved only to create a ‘fail safe back-up’ option? A clear understanding of the 

coupling specificity between GPCRs and G proteins would require an investigation at the level 

of G protein and receptor coupling interface. Given this intertwining between a single receptor 

and multiple G proteins, it is difficult to understand the chemistry of G proteins via GPCRs.  

In contrast to the large number of genes encoding these receptors (more than 800 known 

GPCRs), fewer genes encode the heterotrimeric G proteins. There are 48 potential Gβγ dimer 

combinations calculated from 4 Gβ (there are weak or nonexistent dimer formation between Gβ5 

and Gγ subunits53,54) and 12 Gγ subunits. However, as mentioned previously, Gα subunits are 
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encoded by only 16 genes so it is much easier to target and learn about G protein signaling 

pathway via these α subunits.  

1.5 Activation of G proteins by accessory proteins 

Regulation of G proteins independently of GPCRs by other players regarded collectively as 

accessory proteins has also been recently identified.55 These accessory proteins can be 

categorized in 4 sets: guanine nucleotide exchange factors (GEFs), guanine nucleotide 

dissociation inhibitors (GDIs), GTPase-activating proteins (GAPs) and Gβγ interacting 

proteins.56–59 These accessory proteins provide additional signal input to G proteins in the 

absence of GPCRs or they can act as binding partners for G proteins to serve functions that are 

not yet clear. Recent findings suggest that accessory proteins are essential for the regulation of 

cardiovascular system.56,55,60 The accessory proteins can be briefly described as: 

1. GEFs for the Gα subunit: This class of accessory proteins catalyzes the guanine 

nucleotide exchange from the Gα subunit in the same manner as an activated GPCR 

would. Certain groups have reported AGS1 (activator of G protein signaling 1)61 and 

Ric8 (resistance to inhibitors of cholinesterase)62–64 as GEFs for certain Gα subunits.  

2. GDIs for the Gα subunit: This class of accessory proteins share a common structural 

domain known as GPR (G protein regulatory) domain or GoLoco motif. This domain 

interacts with the GDP-bound conformation of Gα subunit and prevents nucleotide 

exchange resulting in the inhibition of Gα mediated signaling.65,66 AGS3 (activator of 

G protein signaling 3) and Rap1GAP (Ras-related protein 1GAP)65,66 are examples of 

signaling proteins that contain GoLoco motifs that can act as GDIs.  
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Figure 1.4. Effect of accessory proteins on activation/deactivation of G proteins. This figure 

is adapted from “Accessory proteins for heterotrimeric G-protein: Implication in the 

cardiovascular system”60 with permission from Circulation journal. GPCR mediated G 

protein activation cycle.  

3. GAPs for the Gα subunit: This class of accessory proteins accelerate the GTPase 

activity of Gα subunit.67–69 Most of the proteins in this class contain an RGS 

(regulator of G protein signaling) homology domain. RGS2 is a GAP for Gαq.
70  

4. Gβγ interacting proteins: This class comprises proteins that deactivate Gβγ signaling 

by making contacts similar to Gα subunit. Gβγ can signal via its effector molecules 

(GRK2, GIRK, calcium channels etc.) only upon its dissociation from Gα subunit 

because effector molecules and Gα subunit share an overlapping surface present on 

Gβγ.71 Phosducin and phosducin like proteins (PhLP) are examples of proteins that 

belong to this class.72  

 

 

 

 

 

 

1.6 Role of Gα proteins in diseases 

Gαs was the first G protein to be associated with a human genetic disorder.73 Mutations 

inactivating Gαs causes prototypical hormone resistance disorder known as 
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pseudohypoparathyroidism,74 whereas somatic mutations activating Gαs have been associated 

with sporadic endocrine tumors.73,74 Mutations that activate Gαs occur at Arg201 to either Cys or 

His inhibiting intrinsic GTPase activity which in turn results in a constitutively active Gαs and 

constitutive cAMP production.19,75 A variety of mutations at Arg201 have also been linked to 

McCune-Albright syndrome (MAS), a rare disease causing skin pigmentation, bone disorder and 

autonomous hyperactivity of several endocrine glands.75 Another G protein, Gαo with mutations 

at Arg243 to His was found in breast cancers.76 Somatic mutations were found in both Gαq and 

Gα11 (proteins that activate intra cellular calcium mediated signaling) that cause uveal 

melanoma.77,78 Gln209 to Leu (Q209L) and Arg183 to Cys (R183C) were the identified 

mutations and out of the two, Q209L mutation is more frequent in uveal melanoma cells.19 These 

examples mentioned above depict how gain of function or loss of function mutations in genes 

encoding for G proteins are associated with complex pathologies such as cancer. It is also clear 

that G proteins are not just simple signal transducers but are an essential part of a complex 

machine. Dissection of intracellular signaling networks can have substantial impacts on several 

aspects of both basic research and clinical medicine. However due to the redundancy in GPCR-G 

protein coupling mentioned in Section 1.4, any effort to gain a better understanding of molecular 

biology of signal transduction and explore more disease causing G protein mutations, requires 

approaches that directly modulate the G proteins.   

1.7 Application of mouse models as a way to study G protein mediated signaling 

The complex nature of GPCRs, GPCR independent G protein signaling via accessory 

proteins, and the direct role of G proteins in diseases provides us with a clear rationale for 

targeting G proteins. One way to deduce role of specific G proteins is through conditional or 

classical gene targeting technique which allows alteration of definitive genes.79–81 Homologous 
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recombination is a DNA repair mechanism employed to introduce an engineered mutation into a 

mouse and is usually utilized to create a “loss of function” mutation (or an inactive gene).80 The 

knockout mouse has been an invaluable tool for the geneticists to explore functions of genes. 

Through classical knockouts of certain genes, complete loss of activity is attained which helps in 

the inference of that gene’s functional utility from a physiological context. Offermans and 

colleagues have elucidated the role of Gα12/13 mediated signaling beyond the cellular and 

subcellular structures through their use of these types of mouse models.82,83 The function of Gαq 

protein in platelet activation was also explored with the use of mouse models.82,84 In addition, 

pathophysiological roles of multiple Gα proteins have been explored through these genetically 

engineered mice strategies, strategies that offer great advantages because of their in vivo 

applications.82,85,86 These genetic approaches potentially have high target selectivity. Despite 

these advantages, the use of mouse models has its own inherent set of limitations as well.87 For 

one, generating conditional mice lines is time consuming and expensive. It can take years to 

produce a functional mice line. Second, a single G protein can have multiple close homologs. 

Therefore, the classical knockout strategy can be rendered useless if it results in compensatory 

regulation of other genes.88,89 Finally, knockout or knockdown of a protein interacting with a 

receptor may affect function of other proteins along with that specific receptor. For example: 

arrestin (a family of signaling proteins)  has a dual function in receptor signaling, and it also 

serves as a scaffolding protein involved in cell migration and cytoskeletal reorganization91. 

Therefore, any knockout or knockdown of arrestin might not simply point towards its role in 

receptor signaling.92  

There are other alternatives for studying G protein mediated signaling: knockdown of 

selected genes via RNA interference (RNAi),93,94 selective inhibition via antibodies,95,96 selective 
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activation via constitutively active mutants,97 and selective regulation using chemical probes.98–

100 Chemical probes are small molecules that can be used as tools to regulate and learn about G 

proteins. These molecules are not yet drugs but they can mimic the function of a drug or its role 

in studying a physiological mechanism. This dissertation will focus on the use of novel chemical 

probes for direct modulation of G proteins.   

1.8 Utilization of novel chemical probes as G protein inhibitors 

Development of G protein selective inhibitors to study the underlying mechanisms of G 

protein activation and function, both in vitro and in vivo, appears to be of great pharmacological 

significance. For example, pertussis toxin, an enzyme complex produced by the bacterial 

pathogen Bordetella pertussis, selectively inhibits Gαi class101,102 whereas Pasteurella multocida 

selectively activates Gαq protein.103 In other studies, peptide based inhibitors potentially disrupt 

the GPCR-G protein interface and prevent activation.68,104,105,106  

For our part, we are particularly interested in the development of small molecule inhibitors 

that serve as chemical probes for Gα subunits. The goal is to develop methods for a better 

understanding of biochemistry of these key players in the cell signaling pathway. To achieve 

decent in vivo binding affinities (low nM or better), a small molecule must form multiple non-

covalent interactions with the protein of interest. This strategy will work efficiently if the target 

protein is not flat with limited surface topology. The α subunit of heterotrimeric G proteins has 

structural features consisting of a catalytic site and numerous clefts that could potentially bind to 

small molecules.24,107,108 X-ray crystallographic, DEER spectroscopic studies have provided 

many of the mechanistic details regarding receptor-mediated GDP dissociation.40 These 

structural and mechanistic details provide an opportunity to target GDP release with a small 
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molecule. For example, one can envision the inhibition of Gα subunits by blocking the inter-

domain movements necessary for GDP release using a small molecule.  

Numerous small molecules have been developed that target specific G proteins by preventing 

GDP release. The molecules work by blocking the inter-domain movement. Suramin (Figure 

1.5) is a symmetric polysulfonated napthylaminebenzamide derivative that can directly interfere 

with receptor-G protein coupling.109,110 This compound was originally introduced in 1916 by 

Bayer and was developed to treat African sleeping sickness and river blindness.19 Suramin has 

been shown to block the receptor-mediated activation of Gαs (IC50~250nM). It also inhibits 

guanine nucleotide exchange on Gαi and Gαo at higher concentrations (20 and 10 fold higher for 

Gαi and Gαo respectively).110 One drawback of this compound is its sulfonated groups. Suramin 

has six negative charges which prevents it from passing through the plasma membrane. 

Characterization of this molecule is done using purified components (purified G proteins and 

adenylyl cyclase etc.).109 Regardless of its inability to traverse through the plasma membrane, 

this compound is the first example of a small molecule inhibitor of G protein signaling. In efforts 

to learn more about this compound, researchers have derivatized this molecule and developed 

analogs (Figure 1.6) that are more selective towards Gαs in comparison to Gαi or Gαo.
110,111,112   

Figure 1.5. Suramin, Gαs family inhibitor  
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Figure 1.6. Suramin analogs (A: NF062; B: NF503; C: NF449) 

  

 

                   

 

 

 

 

 

 

 

 

 

 

 

 

 

Another G protein modulator is BIM-46174 (Figure 1.7) which has been identified as a ‘pan-

G protein’ inhibitor. Pan inhibitors couple to multiple G proteins and can be used as potential 
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cancer therapy agents.19 BIM-46174 was identified in a differential screening library using 

human cancer MCF-7 cells. This library was established to categorize compounds that would 

inhibit the heterotrimeric G protein complex. This imidazo-pyrazine derivative halts GPCR 

signaling mediated by all four classes of G proteins (Gαs, Gαi/o, Gαq and Gα12).
98,99 It acts 

directly on the G protein/receptor complex and not on any downstream signaling proteins.99   

                                                

                                            

                                

This dissertation is concentrated on a specific Gαq inhibitor, YM-254890 (Figure 1.8). YM-

254890 (abbreviated as YM) is a cyclic depsipeptide derived from Chromobacterium sp. It is the 

first and only known compound to specifically inhibit the Gαq mediated signaling pathway.113–115 

In addition, YM exhibits antithrombotic and thrombolytic effects in rat models.115,116  

Figure 1.7. BIM-46174 (Gαs, Gαi/o, Gαq inhibitor) 

Figure 1.8. YM-254890, Gαq inhibitor 
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An X-ray crystal structure of the heterotrimeric G protein (Gαqβ1γ2) complexed with YM 

(PDB ID: 3AH8) has provided insight into the molecule’s mechanism of action at the atomic 

level.19 Figure 1.9 illustrates specific binding of YM to Gαq using PyMOL software (The 

PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC). In order to simplify the 

ribbon model drawing, Gβ1γ2 sequences have been eliminated. According to the crystal structure, 

YM molecule (grey line diagram) makes extensive contacts (represented in red) with both 

GTPase (also known as Ras-like  domain) and helical domains and places itself between Switch I 

(represented in orange) and Linker  1 (represented in magenta) which reduces the hinge motion 

of the interdomain linkers as shown in Figure 1.9. Once bound, YM compound exhibits an 

overall folded V-shaped conformation and its aromatic phenyl group docks into a small 

hydrophobic pocket (yellow phenyl ring in Figure 1.9). YM compound behaves as an 

“interfacial inhibitor” which binds to both domains and forms a dead-end complex.    

Figure 1.9. Specific binding of YM to Gαq. Ribbon models were reconstructed using PyMOL 

(PDB ID: 3AH8). Nishimura. et al. Structural basis for the specific inhibition of 

heterotrimeric Gq protein by a small molecule. Proc. Natl. Acad. Sci. 2010, 107, 13666–

13671.  
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In this way, YM provides a potential lead compound for developing new inhibitors for Gαq 

and potentially other partially homologous Gα proteins as well. This has led to an intense interest 

in YM. However, these efforts are being hindered by two reasons. First, YM is not commercially 

available, and second its complex cyclic depsipeptide core structure has hampered its de novo 

synthesis. For this reason, we sought to overcome these obstacles by initially synthesizing 

simplified YM analogs that retain the ability to selectively inhibit Gαq signaling and eventually 

developing analogs that selectively inhibit other Gα proteins. The goals of the work are to 

understand what makes YM specific to only one class of G proteins and then capitalize on that 

information. Is it possible to ruin the selectivity of YM for Gαq and then reengineer in new 

selectivity? What controls the selectivity of the molecule? Is it a function of molecular 

conformation, or does it relate to the specific groups used to comprise the pharmacophoric 

regions of the molecule?  

In order to address these questions, we need to synthesize analogs of YM, isolate and purify 

the Gαq protein, identify in vitro biochemical assays that allow us to determine the activity of 

analogs synthesized, and then develop a cost effective method for rapidly screening newly 

synthesized YM analogs in real-time for their potential activity towards Gαq.  

1.9 Goals of this dissertation 

The work described here will focus on the last three tasks in the list presented above. 

Namely, methods for the isolation and purification of several Gα proteins will be described along 

with biochemical assays that capitalize on the proteins for probing the biochemistry of YM 

analogs. Along the way, we would like to ask certain questions that will assist us in gaining a 

comprehensive biochemical characterization of YM molecule. Once we simplify the YM 

molecule, does it loose its specificity towards Gαq? In addition, we will describe efforts to take 
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advantage of microelectrode arrays for the rapid screening of small molecule-Gα protein 

interactions.   
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Chapter 2: Expression and Purification of Gαq 

from Insect Cells 

 

2.1 Introduction 

G proteins receive signals from a variety of integral transmembrane cell receptors (G protein-

coupled receptors, GPCRs) and transmit them to numerous intracellular downstream effectors.1 

Purified, recombinant G proteins have been paramount reagents in advancing our knowledge of G 

protein structure, function and signaling pathways.2–4 For example, the cross-disciplinary research 

involving biochemical and crystallographic characterization requires homogenous functional G 

protein subunits in large amounts. As mentioned in the first chapter, our lab is interested in learning 

about G protein-mediated signaling pathways via novel chemical probes, in particular, simplified 

analogs of a Gαq specific inhibitor known as YM-254890. In order to test the activity of 

synthesized analogs, large amounts of purified Gαq protein will be necessary.  

Gα subunits can be commonly classified into four classes: Gαs, Gαi/o, Gαq, and Gα12/13.
5 Large 

scale production of two classes of Gα subunits (Gαs, Gαi/o) has been well established using 

bacterial cell expression system (E.coli expression system).4,6 E.coli expression system is the 

simplest and least expensive heterologous expression system which can be scaled up easily.7 

However, α subunits of Gαq and Gα12/13 class cannot be expressed from bacterial cells as functional 

proteins due to unclear reasons. Fortunately, insect cell expression systems have made it possible 

for these α subunits to be expressed and purified as active proteins. This chapter will discuss 

expression, purification and characterization of Gαq protein from insect cells using a new 



28 
 

approach, which utilizes Baculovirus-Infected Insect Cells (BIICs) and Titerless Infected-cells 

Preservation and Scale up (TIPS).   

2.1.1 Insect cell expression system  

Recombinant protein technology has made impressive advances over the past decades. A 

variety of expression systems have been developed, but the E.coli expression system continues to 

dominate the bacterial expression system and is the first choice for heterologous protein 

production.7 However, many eukaryotic proteins require folding chaperones and various covalent 

modifications following translation in order to become functional and/or adapt proper structure. 

Bacterial expression systems are not capable of carrying out these events. Fortunately, there are 

other expression systems which can overcome these limitations and provide active protein. With 

respect to mammalian cells, insect cells are the second best host in terms of their ability to produce 

fully processed and biologically active recombinant proteins.8 This is because insect cells are 

eukaryotic and are able to fold proteins in a manner that closely resembles mammalian cells. 

Subsequently, chances of proteins expressed from insect cells having normal biological activity in 

comparison to proteins expressed from bacterial cells will be greater. In addition, insect cell 

expression system is a popular choice because it allows expression of recombinant proteins in large 

scale whereas large scale protein expression can be cumbersome and expensive in mammalian 

cells.9 Sf9 and sf21 cells from the fall armyworm spodoptera frugiperda are the most frequently 

used cell lines. Cell lines from Trichoplusia ni (commercially available as High-FiveTM) are also 

insect cell lines and have been used to give high yields of recombinant proteins.8,10 Stable cell lines 

from all the insect larvae are obtained from embryonic cells and represent undifferentiated cells. 

Recombinant baculoviruses are used as expression vectors to produce foreign proteins in cultured 

insect cells. These baculoviruses are double-stranded, circular, supercoiled DNA molecules in a 
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rod shaped capsid.11 Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) and 

Bombyx mori (silkworm) nuclear polyhedrosis virus (BmNPV) are the two most commonly used 

baculovirus for gene expression.12,13 The genome of the baculovirus contains a foreign nucleic acid 

sequence, a cDNA encoding protein of interest under the transcriptional control of the polyhedrin 

promoter.12,14 This chimeric gene constituting of the polyhedrin promoter and the protein of 

interest is present in place of the non-essential (not required for the replication of baculoviruses15) 

and wild-type polyhedrin gene.14  The recombinant virus can then be used to infect cultured insect 

cells and eventually express the protein of interest (instead of naturally occurring polyhedrin 

protein) by taking over the gene expression machinery of the host cell.16 Baculoviruses are 

nonpathogenic to plants and mammals17 and therefore can be safely used with minimal 

containment conditions.13 Since its introduction in 1983, Baculovirus Expression Vector Systems 

(BEVS) technology has improved and now emerged as a state of the art technique to make 

recombinant proteins.12–14,18,19 Details about insect cell lines and expression methods are available 

from Life Technologies instruction manual titled “Guide to Baculovirus Expression Vector 

Systems (BEVS) and insect cell culture techniques”. 

2.1.2 Why insect cells for G protein expression?  

Heterotrimeric G proteins are peripheral membrane proteins and require proper folding and 

lipid modification to interact with other proteins and for plasma membrane localization.23,24 All 

Gα subunits are modified at or near N terminus via covalent attachment of fatty acids, myristate 

(a C14 saturated acid attached through an amide bond to a glycine residue) and/or palmitate (a C16 

saturated acid attached through a thioester bond to a cysteine residue).25,26 All Gα subunits undergo 

reversible S-palmitoylation. Some Gα subunits are palmitoylated at one site (Gαs and Gα12) and 

some at two sites (Gαq and Gα13),
27 but only members of the Gαi/o family undergo an irreversible 
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co-translational myristoylation along with reversible palmitoylation. The myristoylation is carried 

out by an enzyme known as N-myristoyl transferase (NMT).28 Studies have shown that these lipid 

modifications are not sufficient for plasma membrane localization, and that heterotrimer formation 

is also necessary. As a result, Gα subunits need to interact with βγ dimer.29–32 As yet, no evidence 

has emerged that depicts β subunits undergoing lipid modifications, however, γ subunits are lipid 

modified by covalent attachment of a prenyl moiety.33,34 As mentioned previously, only the Gαs 

and Gαi can be expressed and purified from E.coli as functional proteins among all G proteins. 

Another major consideration during expression of Gα subunits in bacterial cells is that the Gα 

subunit should be present in the soluble fraction of cell lysates. If not, Gα subunits need to be 

solubilized and/or refolded which can easily lead to inactive protein.24  

The sf9-baculovirus expression system (a type of BEVS) can overcome these limitations and 

offer great advantages. Sf9 cells provide a variety of posttranslational modification mechanisms 

such as palmitoylation, myristoylation and prenylation (lipid modifications essential for 

interaction of G proteins with other proteins and receptors36,37). In concert with providing an array 

of posttranslational modifications, the sf9 expression system can be employed for the production 

of multiprotein subunit complexes.13,20 Multiple baculoviruses encoding α, β and γ subunits of the 

G proteins have been coinfected in cultured sf9 insect cells to express the desired G protein 

heterotrimer.35 Earlier expression studies of Gαq in sf9 cells, without co-expression of βγ subunits, 

resulted in misfolded and aggregated Gαq protein.37,38 Hence a new procedure was developed 

which required co-expression of His6-tagged Gγ subunit (6-His-Gγ) with the desired Gα subunit 

and β subunit.35 The His6 affinity tag consists of six consecutive histidine residues bound to the N-

terminus of Gγ subunit. The presence of this tag results in high affinity binding of the heterotrimer 

to a resin containing chelated Nickel (Ni2+).35  Hence, the Gα subunit was recovered by treatment 
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with aluminum fluoride which reversibly activates α subunit and results in its dissociation from βγ 

dimer35 (fluoroaluminates have been shown to activate GDP bound Gα by mimicking the γ-

phosphate of GTP in its binding site).39,40 Although this method successfully provides homogenous 

functional Gα subunits but the laborious procedure limits its application.24,35,41 

2.1.3 Production of protein using BEVS 

 Protein production using BEVS is a two-step process. During the first step, the insect cells are 

grown to a desired concentration (usually 1x106-2x106 viable cells/mL). The second step is the 

infection of cultured cells with a baculovirus. Once the baculovirus takes control of the gene 

expression machinery of the host cell, it results in production of the target protein.14,18–20 One of 

Figure 2.1. Generation of recombinant baculovirus and gene expression using Bac-to-Bac 

Baculovirus Expression Vector System. This figure is adapted from the user manual titled 

“Bac-to-Bac® Baculovirus Expression System, An efficient site-specific transposition system 

to generate baculovirus for high-level expression of recombinant proteins”, Publication 

Number MAN0000414, pg 12. (Life Technologies).   
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the widely used BEVS is the Bac-to-Bac® baculovirus expression vector system.21 A detailed 

description of this system is provided by Life Technologies in a manual titled “Bac-to-Bac® 

Baculovirus Expression System, An efficient site-specific transposition system to generate 

baculovirus for high-level expression of recombinant proteins”. This description will not be 

repeated in this dissertation. However, a simplified summary explaining the generation of 

recombinant baculovirus is provided.  

Figure 2.1 shows a general scheme depicting production of recombinant baculovirus using 

Bac-to-Bac® BEVS. In order to make baculovirus containing the desired target protein, the donor 

plasmid has to be transformed into an intermediary bacterial host (in most cases DH10Bac). This 

host contains a bacmid (baculovirus shuttle vector) and a helper plasmid. The helper plasmid 

assists the transfer of essential sequences from the donor plasmid to the bacmid (a process referred 

to as transposition) to generate recombinant bacmid which can be isolated by commercially 

available DNA purification kits (Life technologies, Carlsbad, CA). Transposition then places the 

gene of interest under the control of the polyhedrin promoter, a promoter which can be recognized 

by host cell machinery. The recombinant bacmid DNA is then used to infect cultured insect cells 

which generates a small scale, low titer stock of baculovirus (generally referred to as P1). P1 is 

then used to infect insect cells and amplified to a higher titer baculovirus (contains more viral 

particles and denoted as P2). Another round of amplification can be done in a similar way to 

produce even higher titer stock of baculovirus (denoted as P3). This titer stock is then used to 

infect insect cells to test expression of target recombinant protein. Finally, the highest titer stock, 

P4 is then used for large scale protein production. Additional rounds of amplification can increase 

the probability of defective interfering particles which reduces the efficiency of viral expression.22 

Hence, most protein expressions are carried out using either P3 or P4.   
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2.1.4 Expression and purification of recombinant Gα subunits using Ric-8 

In order to simplify the production of recombinant G proteins in insect cells, another method 

was introduced which utilizes a mammalian protein called Resistance to Inhibitor of 

Cholinesterase 8 (Ric-8).42,43 There are two mammalian homologs of Ric-8, named Ric-8A and 

Ric-8B, which are hypothesize to function as guanine nucleotide exchange factors (GEF) and 

folding chaperones for G proteins.44,38 Ric-8A specifically interacts with Gαi, Gαq and Gα13 class 

of G proteins39 whereas Ric-8B is specific towards Gαs
48. Ric-8 assisted expression and 

purification method of Gα subunits works by co-expression of GST-tagged Ric-8A or Ric-8B with 

untagged Gα subunit in cultured Hi5 insect cells.42 Since Ric-8 is GST tagged, Ric-8: Gα complex 

can be isolated from glutathione-sepharose resin. In order to recover Gα subunits, the protein 

bound matrix can then treated with aluminum fluoride. One of the most significant results from 

this method was the yield of Gα obtained comparing to the one obtained from Gβγ co-expression. 

The yields from GST-Ric-8 co-expression method increased ~20 fold for Gαq, ~25 fold for Gα13, 

~8 fold for Gαi1 and ~11 fold for Gαs short (a variant of Gαs protein).42 Besides impressive yields, 

what makes this method so appealing is its applicability to all four classes of Gα subunits.42 

No matter what co-expression method is utilized to obtain the protein, a high titer baculovirus 

is required to infect cultured cells. As discussed in Section 2.1.3, both P2 and P3 baculovirus 

stocks are considered amplified viral stocks but one of the two will express higher amounts of 

protein without reducing the efficiency of viral expression. An important piece of technical 

information that has not been introduced so far is how to determine the titer of baculovirus stock. 

In other words, how is the strength of virus determined? The most frequently used methods for 

titration of baculovirus are end-point dilution and plaque formation assays, which are lengthy and 

challenging to perform and can take 4-7 days after virus infection.49 In addition, stability of 
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baculovirus is affected over time due to several factors such as storage temperature, virus 

concentration and freeze-thaw cycles.50 Infectivity of baculovirus can significantly decrease upon 

exposure to light.51 Baculovirus stored at 4 ⁰C (covered with foil) can be stable for about 100 days 

but its potency can decrease after that.50 Studies have shown that a virus stored at -80 ⁰C can be 

stable for at least 300 days but will suffer significantly after every freeze-thaw cycle.50 Hence, a 

method that eliminates the need to titer baculovirus and preserves it for longer periods of time 

would be of great value.  

2.1.5 Using BIICS and TIPS method to express Gαq   

Baculovirus-Infected Insect cells (BIICs) are insect cells that allow replication of the 

baculovirus within themselves followed by cryopreservation. In other words, these cells are first 

infected with the virus and then prior to cell lysis, the newly replicated virus is cryopreserved 

within the cell. BIICs are stored at -80 ⁰C and are stable for at least 60 months without loss of 

viability.52 BIICs technology was established for long term storage of baculovirus and was used in 

conjunction with the Titerless Infected-cells Preservation and Scale up (TIPS) method. BIICs 

technology and TIPS method was first developed and patented by David J. Wasilko, S. Edward 

Lee and William Hermans (Pfizer Global Research and Development).53 But now the concept has 

been harnessed by Contract research organizations for large scale production of proteins from 

baculovirus expression.54 The TIPS method allows for direct infection of cultured insect cells from 

BIICs stocks eliminating the need for high titer virus stock. Since the titer of the virus is stable for 

years, one can get reproducible protein expression. Optimization of protein expression on small 

scale and then easy scale up (upto 100 L) makes this technique extremely attractive.52 Hence, after 

a certain period of trial and error, we selected this system for use in our efforts.  
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2.2 Results and discussion  

2.2.1 Baculovirus technology allows the expression of Gαq   

Baculovirus technology has been increasingly popular in numerous academic and industrial 

laboratories for expression of recombinant proteins that require posttranslational modifications.13 

Figure 2.2 illustrates the entire process from gene cloning to protein production in a flowchart.  

 

 

As mentioned previously, overexpression of wild type Gαq in insect cells results in insoluble, 

aggregated protein and requires co-expression of Gβγ dimer.37,38 Another solution to this problem 

is a chimeric Gαi/q protein described by Tesmer et.al.56 This chimera replaced the wild-type N-

terminal helix with that of Gαi1 and allowed expression of a soluble and functional Gαq. Nishimura 

et. al. had used this Gαq chimera to show inhibitory effects of YM-254890 (now abbreviated as 

Figure 2.2. A general outline depicting the process and time scale from gene cloning to 

protein production in insect cells.    
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YM) on Gαq.
58 Along with this protein, numerous mutant forms of Gαq protein were used to 

explore the effectiveness of YM and one of them was Gαq I190N (containing one site mutation of 

isoleucine to asparagine). According to the authors, this mutant Gαq reduces the sensitivity of the 

YM compound (730 fold decrease in potency). With this in mind, we generated two baculoviruses 

encoding Gαq and Gαq I190N to produce large quantities of homogenous purified proteins in order 

to test the activity of simplified YM analogs. Using the BEVS, we were able to incorporate Gαq 

and mutant Gαq separately into two plasmids that can be recognized by insect cells and produce 

baculovirus that can express Gαq and mutant Gαq protein upon infection.  

Clones for Gαq and mutant Gαq (WT-7`, WT-11 for Gαq and Mut-3 and Mut-8 for mutant Gαq) 

were selected for transfection in cultured sf9 cells. Both clones for Gαq were successfully 

transfected but only one for mutant Gαq was transfected as shown in Figure 2.3. Both proteins are 

histidine-tagged and thus western blot was probed with anti-His antibody. Both proteins are ~44 

kDa in size and the relevant bands are highlighted with the red box. Unfortunately, the protein 

molecular weight marker did not transfer well. The additional bands on the blot are probably 

Figure 2.3. Western blot showing transfection results of Gαq and mutant Gαq. Lanes 1-5 are 

WT-7`, WT-11, Mut-3, Mut-8, non-transfected sf9 cells respectively. Lanes 6-8 contain sample 

buffer only. Essential bands are indicated within the red box.   
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degraded protein bands. Successfully transfected clones were then amplified as described in 

experimental section (Section 2.4.2).  

2.2.2 TIPS method can be applied for expression of Gαq  

In order to utilize TIPS method for protein production, it was essential to attain optimal 

conditions. It was decided to evaluate this method based on two factors: the amount of BIICs used 

to infect cells and the incubation time. This titration experiment (96-h study) was performed using 

Gαq-BIICs stock (Section 2.4.3 provides experimental details on the production of BIICs stock). 

Fresh sf9 cells (cell viability > 95 %) were infected with varying amounts of BIICs and a 2 mL 

sample was obtained after 24 h intervals. Cell count and viability was monitored throughout the 

experiment. It was observed that cell count doubled in the initial 24 h but slowed after that 

(doubling time for sf9 cells is 24 h). As far as viability is concerned, it was not affected greatly 

until 48 h (viability remained > 90 %) and thus it was concluded that cells so far showed no signs 

of infection. This was consistent with the literature report.52 However, after 48 h, the dynamics 

changed dramatically for flasks that were infected with higher amounts of BIICs (1500 and 2000 

BIICs/mL). Cell viability dropped to 65 % for 1500 BIICs/mL sample and 75 % for 2000 

BIICs/mL flasks. Cell viability for 500 BIICs/mL and 1000 BIICs/mL was ~85 %. During the last 

time point (96 h), all flasks had cell viability below 50 %. Figure 2.4 shows western blots 

illustrating the time course aspect of this experiment along with the effect of titration of BIICs on 

Gαq expression. Western blots were exposed to Anti-His antibody. A positive control was loaded 

to ensure that antibody was functional.  
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The cell viability results suggested that expression had not started until 48 h; a conclusion that 

was supported by western blot analysis as well. Minimal amount of protein was expressed within 

24 h of infection for all samples. Although the infection process was the same in every case, 

varying BIICs concentration produced unique protein expression results. Upper western blot 

(showing results from sf9 cells infected with either 500 or 1000 BIICs/mL) in Figure 2.4 indicated 

similar expression kinetics for 72 and 96-h time points whereas cells infected with highest amounts 

of BIICs (1500 BIICs/mL) did not show increased protein expression after 48 h demonstrating that 

more BIICs does not necessarily result in more protein. Both western blots (assuming equal cell 

loading) showed that the infections done with either 500 or 1000 BIICs/mL (final concentration) 

and infection period between 72 and 96 h gave the most amount of expressed protein. Even though 

calculations were made to ensure equal cell loading and both blots had similar exposure times, 

there can be variabilities. Therefore, in order to confirm this result, another western blot (Figure 

2.5) was carried out using all samples from the 72-h time point. 

Figure 2.4. Effect of incubation time and varying amounts of BIICs on expression of Gαq in 

sf9 cells. Positive control (+ve); protein molecular weight marker (M); time point samples 

collected at 24, 48, 72, 96 h for sf9 cells infected with final concentration of 500 BIICs/mL or 

1000 BIICs/mL (upper blot) or 1500 BIICs/mL or 2000 BIICs/mL (lower blot). MW= ~ 44 

kDa. 
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2.2.3 Protein expression from TIPS method was similar to traditional virus infection method 

 

 

Figure 2.4 showed that TIPS method can be used to express Gαq protein. But the question 

remains as to how the method is compared to the protein expression using traditional virus stock. 

To answer this question, fresh sf9 cells were infected with original P3 viral stock and infected cells 

were harvested after 48 h. The cell pellet was saved for western blot analysis (Figure 2.5). In order 

to ensure equal cell loading, it was incubated in Ponceau stain before blocking the blot with milk. 

The ponceau stain is used for rapid reversible staining of protein bands on nitrocellulose or PVDF 

membranes. This stain is not specific towards any protein and is therefore representative of the 

overall amount of protein loaded. In Figure 2.5, only one band within the black box is the desired 

Gαq protein band. It was hard to deduce which band was the correct one using Ponceau stained 

blot but western blot probed with an anti-His antibody followed by HRP-conjugated secondary 

Figure 2.5. Comparison of infection by BIICs vs traditional virus. Positive control (+ve); 

protein molecular weight marker (M); varying BIICs amounts (500, 1000, 1500, 2000); sample 

buffer (E); amplified baculovirus encoding Gαq (P3). Ponceau stained blot (upper blot) to 

demonstrate equal cell loading. Western blot (lower blot). MW= ~ 44 kDa. 
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antibody detected relevant his-tagged G protein bands. Western blot showed similar protein 

expression from all BIICs concentration (for 72 h time point) except that the expression was 

slightly lower in case of cells infected with 2000 BIICs/mL. Also it was observed that protein 

expression from BIICs was comparable to expression from traditional virus infection. 

This comparative analysis showed that TIPS could be an effective alternative method to 

express Gαq protein. One of the biggest advantages of using TIPS method is its reproducibility and 

easy scale up. If one considers the impediments associated with traditional viral stock discussed in 

Section 2.1.5 (stability, titer, scale-up etc.), TIPS method is more than just a failsafe option. 

This method was also applied to express mutant Gαq. The mutant form includes a mutation of 

isoleucine to asparagine at site 190. No titration-time course study was performed and it was 

expressed using similar BIICs concentration and incubation time (1000 BIICs/mL and 72 h 

incubation time).  

 

2.2.4 TIPS method can be used to express other proteins as well  

Resistance to inhibitors of cholinesterase 8-A (Ric-8A) has been shown to act as a chaperone 

and a GEF (guanine nucleotide exchange factor) for Gαq to catalyze nucleotide exchange.42 Details 

regarding Ric8-A-assisted nucleotide exchange assay will be discussed in Section 3.2.3. We 

intended to test generality of TIPS method to express proteins other than G proteins. Hence, we 

Figure 2.6. Western blot showing expression of mutant Gαq using TIPS method. Positive 

control (+ve); protein molecular weight marker (M); mutant Gαq (Mut Gαq).  MW= ~ 44 kDa. 



41 
 

decided to express GST-Ric-8A. Similar titration-time course study was performed (as described 

in Section 2.4.5 for Gαq) to obtain optimal protein expression conditions. Figure 2.7 shows the 

western blots illustrating the time course aspect of this experiment along with the effect of titration 

of BIICs on Ric-8A expression. A positive control was loaded to ensure that GST antibody was 

functional. Other bands in the gel are probably protein degradation products. Just like in the Gαq 

titration-time course study, the 72 h incubation time seemed to lead to optimal expression of the 

protein. We used 1500 BIICs/mL (final concentration) and a 72 h incubation time for large scale 

production of Ric-8A. The success of this experiment showed the ubiquity and appealing 

application of BIICs and TIPS method.  

 

2.2.5 Ni-NTA affinity chromatography provided purified Gαq and mutant Gαq 

Even though both the Gαq and mutant Gαq proteins expressed well in insect cells, purification 

was a bit challenging. Since detergents like Triton X 100 (usually used to lyse insect cells) can 

Figure 2.7. Effect of incubation time and varying amounts of BIICs on expression of Ric-8A 

in sf9 cells. Positive control (+ve ); protein molecular weight marker (M); time point samples 

collected at 24, 48, 72, 96 h for sf9 cells infected with the final concentrations of 500 BIICs/mL 

or 1000 BIICs/mL (upper blot) or 1500 BIICs/mL or 2000 BIICs/mL (lower blot). MW= ~ 86 

kDa. 
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affect nucleotide exchange activity of these G proteins,59 other methods had to be used for lysis. 

After numerous optimizations, the final purification protocol described in experimental Section 

2.4.8 was used. Since both proteins were His-tagged, Ni-NTA chromatography was employed for 

their isolation. This technique takes advantage of the high affinity of the immobilized Ni-NTA 

resin for the hexahistidine tag.  

Purification of Gαq:  

Figure 2.8 summarizes the results for Gαq purification using a coomassie-stained SDS-PAGE 

(upper panel) and a western blot (lower panel). A major portion of the expressed protein was in 

the pellet. We reckon that this portion of the protein was aggregated and even if we were to isolate 

it, it would be inactive. Additionally, aggregated protein, if not removed, might skew our future 

bioactivity results. Following cell lysis and a high speed centrifugation spin, the supernatant was 

loaded onto a Ni-NTA resin column (T) and incubated for 3 h at 4 ⁰C. After the incubation period, 

the contents were filtered and the flow through (F) was saved for gel analysis. Ni-NTA column 

was washed once with lysis buffer (W1) and then with higher concentration of sodium chloride 

(W2 and W3) to remove proteins that were non-specifically bound to the resin. Protein was eluted 

from the resin using elution buffer containing high concentrations of imidazole which competes 

with the hexahistidine tag (E1, E2, and E3). Upon elution of the protein in elution buffer containing 

imidazole, it is essential to perform an overnight dialysis to remove imidazole.  

The presence of imidazole can interfere with the activity assays. Dialyzed protein was then 

concentrated and stored in dialysis buffer in smaller aliquots at -80 ⁰C. Concentration of a purified 

protein can be quantified in two ways. One of the simplest and fastest methods of total protein 

quantification is Bradford assay which is a colorimetric assay measuring proportional binding of 
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the coomassie brilliant blue dye to proteins.57 However, if the eluted protein has additional 

impurities, this method might not provide accurate quantification of the desired protein because 

the dye binds non-specifically to all proteins. In that case, quantification is done by a coomassie-

stained SDS-PAGE quantification method. This method provides quantification of the protein of 

interest relative to a known standard protein (BSA). Since our eluted protein did not show a lot of 

impurities (E1, E2 and E3 lanes in Figure 2.8), purified protein samples were quantified using a 

Bradford assay.57 This preparation yielded 2 mg of purified protein. In our experience, purified 

Gαq yields range from 1-2.7 mg from a 750 mL culture.   

 

Purification of Mutant Gαq:  

Figure 2.9 summarizes the results for purification of mutant Gαq. The same procedure was 

used as described above. Unlike Gαq, the eluted fraction for the mutant Gαq contained several 

Figure 2.8. Ni-NTA affinity purification of Gαq. Protein molecular weight marker (M); pellet 

obtained after ultracentrifugation (P); total lysate before filtration (T1); total lysate after 

filtration (T2); flow through (F); wash with lysis buffer (W1); wash with wash buffer (W2 and 

W3); resin after elution (Beads); eluted protein fractions (E1, E2 and E3). Upper panel: 

coomassie-stained SDS-PAGE. Lower panel: Western blot analysis.  
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impurities as seen by additional bands in the coomassie-stained SDS-PAGE gel. Additional 

purification methods such as size exclusion column chromatography can be used to obtain highly 

purified protein. However, this purification was sufficient for our protein requirements 

(biochemical assays discussed in Chapter 3). The next step was to determine the concentration of 

the eluted protein. Since additional impurities were visible (E1, E2 and E3 lanes in Figure 2.9), 

quantification of the desired protein was done by coomassie-stained SDS-PAGE quantification 

method. Figure 2.10 shows coomassie-stained SDS-PAGE and the standard curve obtained from 

band density (integrated pixel intensity from BSA bands). A 1.5 L mutant Gαq infected cell culture 

yielded 1 mg protein. Bradford assay provided E1 concentration as 3.3 mg/mL and E2 

concentration as 3.9 mg/mL. Concentrations of E1 (~1.2 mg/mL) and E2 (~2.1 mg/mL) were 

obtained through SDS-PAGE quantification.  

 

Figure 2.9. Coomassie-stained SDS-PAGE analyzing Ni-NTA affinity purification of mutant 

Gαq. Protein molecular weight marker (M); pellet obtained after ultracentrifugation (P); total 

lysate before filtration (T1); total lysate after filtration (T2); flow through (F); wash with lysis 

buffer (W1); eluted protein fractions (E1, E2 and E3).  
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2.2.6 Glutathione-sepharose chromatography purification of GST-Ric-8A 

 

Ric-8A has been shown to catalyze nucleotide exchange activity of Gαq.
42 Therefore, it would 

be beneficial to have purified Ric-8A so that it could be used in our biochemical activity assays 

for Gαq. Hence, Ric-8A was purified based on the published protocols.42 Further details regarding 

the mechanism would be discussed in Chapter 3. Figure 2.11 summarizes the purification of Ric-

Figure 2.10. Purified mutant Gαq gel quantification. Panel A. Purified proteins resolved on 12 

% SDS-PAGE stained with coomassie blue. Panel B. Quantification of BSA in a standard 

curve.  

 

 

 

Figure 2.11. Western blot probed with Anti-GST-HRP conjugate antibody analyzing 

glutathione-sepharose affinity purification of GST-Ric-8A. Positive control (+ve); protein 

molecular weight marker (M); pellet obtained after ultracentrifugation (P); total lysate (T); first 

flow through (F1); second flow through (F2); wash with lysis buffer (W1); eluted protein 

fractions (E1& E2).   
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8A using glutathione-sepharose resin beads. A significant portion of protein did not bind to the 

resin beads (F1) even after reloading onto the beads (F2) which could denote the fraction of protein 

that was misfolded. Quantification of purified Ric-8A was done by coomassie-stained SDS PAGE 

gel (data not shown).   

2.2.7 Expression and purification of other G proteins (Gαi1 & Gαo) 

YM compound is known to be specific towards only one class of G proteins (Gαq). Will 

simplified analogs of the molecule lose this specificity towards Gαq? In order to answer this 

question, we needed other purified G proteins as well. Hence, we purified Gαi1 and Gαo (both these 

proteins belong to one class of G proteins, Gαi). Unlike Gαq, both Gαi1 and Gαo can be easily 

expressed and purified from E.coli (as discussed in the Section 2.1.2). Established protocols have 

been published discussing expression and purification of these two proteins.23 Recombinant 

protein expression in E.coli can result in the formation of highly aggregated protein known as 

inclusion bodies. Greentree et. al demonstrated that in order to reduce the formation of inclusion 

bodies and get better expression of soluble Gαi1 and Gαo, it is necessary to express the proteins at 

lower temperature (30 ⁰C) and with lower IPTG (reagent used to induce protein expression) 

concentration (100µM). To this end, both proteins were expressed in E.coli as described in Section 

2.4.10. After expression, cell lysates were prepared and purified over a Ni-NTA affinity column.23 

Figure 2.12 shows SDS-PAGE and western blot analyzing the purification of His-tagged Gαi1 

(denoted as Gαi1, panels A and B) and His-tagged Gαo (denoted as Gαo, panels C and D) 

respectively. Figure 2.13 summarizes coomassie-stained SDS-PAGE and standard curve obtained 

from band density (integrated pixel intensity from BSA bands) for Gαi1 (concentrations of E1 (~8 

mg/mL) and E2 (~4 mg/mL) were obtained through SDS-PAGE quantification). Similar analysis 
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was done for Gαo for its quantification (data not shown). For both Gαi1 and Gαo, a 1 L culture 

generally yields 4-7 mg protein based on our experience.  

 

Figure 2.12: Panel A & C. SDS-PAGE analysis of Gαi1 and Gαo purification using Ni-NTA 

resin beads. Cell pellet (P) after ultracentrifugation, total cell lysate (T), flow-through (F), wash 

with lysis buffer (W1), wash with wash buffer (W2 & W3) followed by elution of protein in 

three fractions (E1, E2, E3). Beads were boiled to ensure that protein was eluted successfully 

(Beads). Protein molecular weight marker (L) is shown on the left for both gels. Panel B &D. 

Western blot probed with Anti-His.  

Figure 2.13: Purified Gαi1 gel quantification. Panel A. Purified proteins resolved on 12 % 

SDS-PAGE stained with coomassie blue. Panel B. Quantification of BSA in a standard curve  
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2.3 Conclusions  

In conclusion, a new application of the TIPS method toward the expression of G proteins from 

insect cells was introduced. This method uses Baculovirus-Infected Insect cells (BIICs) to express 

recombinant proteins. The use of BIICs eliminates the need to titer the virus and can provide 

reproducible protein expression. Based on our studies, protein expression using BIICs was similar 

to that of traditional virus. In other words, insect cells infected from BIICs had comparable 

expression profile to that of cells infected with traditional baculovirus. Hence, two G proteins (Gαq 

and mutant Gαq) were expressed using TIPS method. In addition, another protein known as Ric-

8A was expressed using the same technology. Other G proteins (Gαi1 and Gαo) were expressed and 

purified from E.coli. All proteins were purified utilizing affinity tag chromatography and 

characterized using coomassie-stained gels and western blots.  

Prior to investigating effects of simplified YM analogs on these purified G proteins, it is 

imperative to test their activity. Purification process can be rigorous and, if not carried out 

accurately, can affect the activity of proteins. In order to study function of G protein, nucleotide 

exchange assays are performed. Chapter 3 will focus on different approaches that can determine 

whether the purified G proteins are functional.  

2.4 Experimental section 

Unless noted otherwise, all chemicals were ordered from Sigma Aldrich (St. Louis, MO). All 

other vendor information is noted in the experimental section.  
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2.4.1 Insect cell culture  

Freshly thawed sf9 cells were grown in SF-900TM II SFM (Life technologies, Carlsbad, CA) 

containing 0.5X antibiotic-antimycotic (Life technologies, Carlsbad, CA). Since the cells were 

adapted to serum free conditions, media was not supplemented with any serum. Cells were cultured 

in a 125 mL tissue culture flask at 27 ⁰C with constant shaking between 127-130 rpm. Stock cell 

cultures were passaged every 2 days and maintained at a cell density between 0.8x106 -2x106 

cell/mL (usually cell density was maintained close to 1x106 cells/mL).  

2.4.2 Generation of Gαq and mutant Gαq (I190N) recombinant baculovirus  

Gαq: Plasmid encoding chimeric His-Gαi/q (will now be abbreviated as Gαq) was kindly 

provided by Tohru Kozasa (University of Chicago, IL). DNA encoding chimeric Gαi/q has a N-

terminal His6 tag, followed by a TEV cleavage site, amino acids 1-28 of rat Gαi1, an Arg and Ser 

linker followed by amino acid residues 37-359 of mouse Gαq
55

  This plasmid was used to create 

recombinant baculovirus after transfection of cultured sf9 cells (cell density = 0.8x106 cell/mL) 

according to the manufacturer’s instructions (Bac-to-Bac Baculovirus expression system, Life 

technologies, Carlsbad, CA). The transfection viral supernatant (P1) was harvested after 72 h 

(swollen cells is considered a positive sign for a successful transfection) by centrifuging at 500 g 

for 5-10 min and then stored at 4 ⁰C in a tube covered with aluminum foil until the amplification 

step. A 50 µL cell pellet was saved at -80 ⁰C for western blot to test the expression. Figure 2.3 

shows transfection results from western blot.     

For amplification of P1 viral stock, 10 mL sf9 cells (cell density = 1.0x106-1.5x106 cell/mL) 

were plated in a T25 cm2 flask equipped with a filter cap and infected with 250 µL P1 viral stock. 

The infection viral supernatant (P2) was harvested in a similar manner as P1 after 72 h. Another 
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round of amplification was performed to obtain P3 by infecting 30 mL sf9 cells (cell density = 

1.0x106-1.5x106 cell/mL) with 250 µL P2 viral stock in a T75 cm2 flask equipped with a filter cap. 

The infection viral supernatant (P3) was harvested after 48 h and stored at 4 ⁰C in 15 mL conical 

tubes (10 mL aliquots) covered with aluminum foil.  

Mutant Gαq: I190N, one site mutation was introduced into the original plasmid mentioned above 

by site-directed PCR mutagenesis. Site-directed PCR mutagenesis is used to carry out specific 

changes to the DNA sequence of a gene and was performed by Kevin Kaltenbronn (Washington 

University School of Medicine, MO). Recombinant baculovirus for this plasmid was generated 

using the exact same procedure mentioned above. Figure 2.3 shows transfection results from 

western blot.    

2.4.3 Preparation of Gαq and mutant Gαq BIICs stock 

Freezing media used to cryopreserve infected cells contains 8 parts (or 90 %) SF-900TM II 

SFM media containing 1X antibiotic-antimycotic, one part (or 1 % final or 100 mg/mL in SF-900 

II media) BSA (Sigma Aldrich, St. Louis, MO) and one part DMSO (or 10 % final).   

Sf9 cells (50 mL at cell density of 1.8x106 cells/mL) were infected with 500 µL P3 Gαq or P3 

mutant Gαq and incubated at 27 ⁰C for 24 h. Before cryopreserving infected cells, viability was 

checked using 0.4 % Trypan blue solution (Sigma Aldrich, St. Louis, MO). High cell viability 

(>95 % viability) is recommended for cryopreservation. Infected cells were centrifuged at 500 g 

for 10 min. Cell pellet was re-suspended in freezing media (final cell density of 1x107 viable 

cells/mL) and transferred into 1.8 mL clear cryovials in 300 µL aliquots. The cryopreservation 

process was started by slowly by cooling the vials in a Styrofoam box overnight at -80 ⁰C and then 

storing the vials in a storage box at -80 ⁰C or in liquid nitrogen for long term storage.  
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Note: All BIICs stocks were prepared from untitered liquid viral stocks (a liquid viral stock 

prepared from a culture with a maximum density of 1x106 sf9 cells/mL was presumed to contain 

at least 1x108 plaque forming units (pfu)/mL).52    

2.4.4 Preparation of GST-Ric-8A BIICs stock 

Baculovirus encoding GST-Ric-8A (P3) was kindly provided by Gregory Tall (University of 

Rochester Medical Center, NY) and BIICs for GST-Ric-8A were prepared from P3 viral stock as 

mentioned above.  

2.4.5 Production of Gαq protein using TIPS method 

Expression of Gαq was evaluated based on two parameters: BIIC-to-volume ratios (500, 1000, 

1500, and 2000 BIICs/mL) and time of infection.  

Titration-time course experiment 

The Gαq BIIC stock (300 µL) was quickly thawed in a 37 ⁰C water bath and diluted into 30 

mL (1:100) cell-free medium (media used to culture cells). Four culture flasks, each containing 

fresh sf9 cells (50mL at cell density = 1x106 cells/mL), were infected with varying amounts of 

BIICs from diluted BIICs stock. The final BIIC density in each flask was 500 BIICs/mL (flask 1), 

1000 BIICs/mL (flask 2), 1500 BIICS/mL (flask 3) and 2000 BIICS/mL (flask 4). Infected cultures 

were incubated at 27 ⁰C with constant shaking between 127-130 rpm. After infection, 2 mL cell 

pellet samples were collected from each flask at 24 h intervals and saved for western blot. In 

addition, cell count (using hemocytometer) and viability (using 0.4 % Trypan blue solution) was 

monitored at 24 h intervals. Western blot samples were centrifuged at 500 g for 5 min and cell 

pellets were re-suspended in 1x Laemmli sample buffer containing 10 % β-mercaptoethanol. The 

samples were heated for 10 min at 100 ⁰C and 10 µL of each sample (calculations were done in 
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order to ensure equal cell loading) was electrophoresed on a 12 % SDS-PAGE and transferred onto 

a polyvinylidene difluoride (PVDF) membrane. Membrane was blocked in TBST (20 mM Tris-

HCl pH 7.6, 137 mM NaCl, 0.1 % Tween 20) containing 5 % non-fat milk for 1 h. Blocked 

membrane was probed with an anti-His antibody (H-15, sc-803, Santa Cruz Biotechnology (Santa 

Cruz, CA)) (1:1,000 dilution) and washed three times in TBST followed by incubating in HRP-

conjugated secondary antibody diluted in TBST for 1 h. Upon washing the membrane three times 

with TBST, it was incubated in Amersham ECL western blotting detection reagent (Enhanced 

chemiluminescence, GE healthcare, Buckinghamshire, UK) and visualized using ChemiDoc 

imaging system (Bio-Rad laboratories Inc., Richmond, CA). Figure 2.4 shows the western blot 

analysis of the titration-time course experiment.   

Large scale expression of Gαq using TIPS method 

The Gαq BIIC stock (300 µL) was quickly thawed in a 37 ⁰C water bath and diluted into 30 

mL (1:100) cell-free medium (media used to culture cells). Three sf9 cell cultures with viability of 

>95 % (743 mL each at cell density = ~1.5x106 cells/mL) were infected with 7.5 mL of diluted 

BIICs media (final concentration: 1000 BIICs/mL). All infected cultures were incubated at 27 ⁰C 

with constant shaking at 127-130 rpm for 72 h. After the incubation period was over, cells were 

harvested by centrifuging at 500 g for 10 min. The cell pellet was flash frozen in liquid nitrogen 

and then stored at -80 ⁰C until ready for purification. A 2 mL cell pellet was saved to test expression 

before purification.  

Large scale expression of mutant Gαq using TIPS method 

Exact same procedure was applied for large scale expression of mutant Gαq (Figure 2.6).  
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2.4.6 Gαq protein from BIICs vs traditional P3 viral stock 

Two sf9 cultures (50mL each at cell density = 2x106) were infected with traditional P3 viral 

stock (10 mL virus /L of sf9 cells). Both cultures were incubated at 27 ⁰C with constant shaking 

between 127-130 rpm. Both culture flasks were harvested after 48 h by centrifuging at 500 g for 

10 min. A 2 mL cell pellet was saved for western blot analysis whereas the rest of the cell pellet 

was stored at -80 ⁰C. Western blot was performed as mentioned in the section above. Except before 

blocking the PVDF membrane with milk, it was stained by Ponceau stain (Sigma Aldrich, St. 

Louis, MO). Figure 2.5 shows western blot comparing expression of Gαq from two different 

infection methods: BIICs vs traditional virus.  

2.4.7 Production of GST-Ric-8A protein using TIPS method 

A titration time course study (similar to one described in Section 2.4.5 for Gαq) was carried 

out for GST-Ric-8A in order to obtain optimal condition for its expression. Western blot was 

carried out as mentioned in Section 2.4.5 except for using anti-GST HRP conjugate antibody (GE 

healthcare life science, Buckinghamshire, UK). GST tagged to Ric-8A leads to a molecular weight 

of 86 kDa. Figure 2.7 summarizes the results from the titration-time course study for Ric-8A.  

Large scale expression using TIPS method: The GST-Ric-8A BIICs stock (300 µL) was quickly 

thawed in a 37 ⁰C water bath and diluted into 30 mL (1:100) cell-free medium (media used to 

culture cells). Two sf9 cell cultures with viability of >95 % (743 mL at cell density = ~1.5x106 

cells/mL) were infected with 7.5 mL of diluted BIICs media (final concentration: 1500 BIICs/mL). 

All infected cultures were incubated at 27 ⁰C with constant shaking at 127-130 rpm for 72 h. After 

the incubation period was over, cells were harvested by centrifuging at 500 g for 10 min. The cell 
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pellet was flash frozen in liquid nitrogen and then stored at -80 ⁰C until ready for purification 

(Section 2.4.9). Cell pellet (2 mL) was saved to test expression before purification.  

2.4.8 Ni-NTA metal chromatography to purify Gαq  

His-tagged Gαq was purified as previously described with minor modifications.56 All 

purification steps were performed at 4 ⁰C. Frozen cell pellets were thawed and suspended in cold 

lysis buffer (20 mM HEPES pH 8.0, 100 mM NaCl, 10 mM β-mercaptoethanol, 0.1 mM EDTA, 

3 mM magnesium chloride, 10 µM GDP and 1X EDTA-free protease inhibitors). Cells were lysed 

using a dounce homogenizer followed by sonication. Sonicated cell lysates were spun at 186,000 

g for 1 h and the cloudy supernatant (T1) was passed through a glass fiber filter (GF/D, Whatman). 

Filtered supernatant (T2) was then added to a 50 mL polypropylene tube containing 2 mL Ni-NTA 

agarose resin (Qiagen, Valencia, CA) pre-equilibrated with lysis buffer, mixed gently by rotation 

at 4 ⁰C for 2-3 h, and loaded onto a Bio-Rad disposable column. The flow through (F) was saved 

for analysis. Ni-NTA resin was washed with 40 mL lysis buffer (W1) followed by two washes 

with wash buffer (lysis buffer with 300 mM NaCl and 20 mM imidazole pH 8.0) (W2 and W3). 

Gαq was eluted with elution buffer (lysis buffer with 200 mM imidazole pH 8.0) and dialyzed 

overnight against dialysis buffer (20 mM HEPES pH 8.0, 100 mM NaCl, 1 mM magnesium 

chloride, 10 µM GDP and 2 mM DTT). Resin beads were incubated in lysis buffer and loaded on 

the gel to check if all protein was eluted (Beads). Dialyzed protein was concentrated 20 folds to 

500 µL using Vivaspin 20 column (Fisher Scientific, Waltham, MA), was flash frozen in liquid 

nitrogen, and stored at -80 ⁰C in aliquots to avoid repeated freeze-thaws. No further purification 

steps were performed. Eluted protein fractions (E1, E2 and E3) were analyzed by SDS-PAGE and 

western blot (His-probe antibody H-15, Santa Cruz Biotechnology, Dallas, TX).  This preparation 
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yielded 2 mg of purified protein as quantified by Bradford assay.57 Figure 2.8 summarizes the 

results of Gαq purification from BIICs infected sf9 cells.  

Ni-NTA metal chromatography to purify mutant Gαq 

Exact same procedure was followed to purify mutant Gαq except purification analysis was done 

by coomassie-stained SDS-PAGE (details provided in Section 2.4.9). Figure 2.9 summarizes the 

results of mutant Gαq purification from BIICs infected sf9 cells.  

2.4.9 Glutathione-Sepharose Chromatography to purify GST-Ric-8A 

GST-Ric-8A was isolated from whole cell lysates over a glutathione-sepharose resin column 

as per published protocols with minor modifications.42 All purification steps were performed at 4 

⁰C. Frozen cell pellets were thawed and suspended in 185 mL cold lysis buffer (20 mM HEPES, 

150 mM NaCl, 1 mM EDTA, 1 mM DTT, and 1X EDTA-free protease inhibitors). Cells were 

lysed using a dounce homogenizer followed by sonication. Sonicated cells were centrifuged for 1 

h at 100,000 g. Clear supernatant (T) was loaded onto 2 mL glutathione-sepharose 4b resin (GE 

healthcare, Buckinghamshire, UK) pre-equilibrated with lysis buffer, mixed gently by rotation at 

4 ⁰C for 2-3 h. After incubation, contents were loaded onto a Bio-Rad disposable column. The first 

flow-through (F1) was passed through the resin again and the second flow-through (F2) was saved 

for gel analysis. The resin was then washed with 50 mL lysis buffer (W1) followed by two washes 

with wash buffer (lysis buffer with 300 mM NaCl) (W2 & W3). GST-Ric-8A was first eluted with 

7 mM reduced glutathione (E1) followed by a second elution with 20 mM reduced glutathione 

(E2) and dialyzed overnight again dialysis buffer (20 mM HEPES, 150 mM NaCl, 1 mM EDTA 

and 1 mM DTT). The resin beads were incubated in lysis buffer and loaded onto the gel to ensure 

that all the protein was eluted (Beads). Dialyzed protein was concentrated using Vivaspin 20 
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column (Fisher Scientific, Waltham, MA), flash frozen in liquid nitrogen and stored at -80 ⁰C in 

aliquots to avoid repeated freeze-thaws. No further purification steps were performed. Purification 

was analyzed by western blot probed with Anti-GST HRP conjugated antibody (GE healthcare life 

science, Buckinghamshire, UK) (Figure 2.11). Protein was quantified using the coomassie-stained 

SDS PAGE gel quantification method described in Section 2.4.10.  

2.4.10 Expression and purification of Gαi1  

Plasmids encoding His6-Gαi1 and His6-Gαo were kindly provided by Maurine E. Linder 

(Cornell University, NY). N-terminally His6 tagged Gαo and Gαi1 were expressed and purified as 

described previously with slight modifications.23 

The pT7-5 plasmid encoding His6-Gαi1 (will be referred to as Gαi1) was transformed into 

Escherichia Coli BL21 (DE3) one shot cells (Life technologies, Carlsbad, CA) following the 

instructions provided by the company. Varying amounts of transformed cells (5 µL, 10 µL and 30 

µL) were plated on Luria Broth (LB) plates containing 100 µg/mL ampicillin and grown overnight 

in 37 ⁰C incubator. A single colony was picked to inoculate two 5 mL LB cultures containing 100 

µg/mL ampicillin and grown overnight by shaking at 225 rpm in a 37 ⁰C shaker incubator. 

Overnight cultures were used to inoculate two 500 mL LB containing 100 µg/mL ampicillin. Cells 

were grown at 30 ⁰C with gentle shaking at 200 rpm until the OD600 reached 0.5-0.7. IPTG was 

added to the culture at a final concentration of 100 µM to induce expression of protein. Cells were 

allowed to grow at 30 ⁰C with gentle shaking at 200 rpm for 9-12 h. Cells were harvested by 

centrifugation at 3000 g for 10 min at 4 ⁰C. Cell pellet was stored at -80 ⁰C until purification.  

All steps were performed on ice unless otherwise mentioned. The cell pellet was suspended in 

80 mL of cold lysis buffer (50 mM Tris-HCl pH 8.0, 20 mM β-mercaptoethanol, 10 mM imidazole, 
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25 µM GDP, 1X EDTA-free protease inhibitor cocktail tablets (Roche, Basel, Switzerland). The 

contents were gently stirred for 10 min or until cell pellet was thawed. Clumps of cells that occur 

can be broken by passing contents through a 21½-gauge needle. Lysozyme was added to a final 

concentration of 0.2 mg/mL and contents were gently stirred for 15 min. Magnesium chloride 

(final concentration 5 mM) and 3 mg DNase I was added and contents were gently stirred for 15 

min or until the viscosity of the solution diminished. The cells were further lysed by sonication 

(15 s on, 15 s off, total process time- 1 min 30 s, amplitude- 3-5) on ice using a Q700 sonicator 

(Qsonica, LLC, Newton, CT). Post sonication, lysate was incubated on ice for 10 min followed by 

ultracentrifugation at 100,000 g in a 50.2 Ti rotor (Beckman coulter, Brea, CA) at 4 ⁰C. 

Supernatant was loaded on Ni-NTA agarose resin (1.25 mL) (Qiagen, Valencia, CA) washed with 

lysis buffer (3x5 mL). Contents were incubated at 4 ⁰C under gentle rotation for 3 h. Pellet was 

dissolved in 10 mL lysis buffer and saved for gel analysis. Upon completion of incubation period, 

the contents were loaded on a 20 mL disposable column (Bio-Rad laboratories Inc., Richmond, 

CA) and the flow-through (F) was saved for gel analysis. Resin was washed with lysis buffer (1x50 

mL, W1) and then with lysis buffer containing 500 mM sodium chloride (2x50 mL, W2 and W3). 

The protein was eluted in three fractions (5 mL each) by addition of lysis buffer containing 150 

mM imidazole and 10 % glycerol (3x5 mL, E1, E2 and E3). E2 and E3 elutions were pooled 

together and labeled as E2. The beads were re-suspended in 5 mL elution buffer (Beads). Both E1 

and E2 elutions were dialyzed in dialysis buffer (50 mM HEPES pH 8.0, 1 mM EDTA, 1 mM 

DTT, 10 % glycerol) using a 12-14 kD cutoff dialysis membrane (Spectrum laboratories, Inc. 

Rancho Dominguez, CA) overnight. Dialyzed protein was concentrated down to 500 µL using 

vivaspinTM  20 centrifugal concentrators (Thermo Fisher Scientific, Waltham, MA). Total protein 

quantification was obtained by Bradford protein assay.57 Concentrated protein was flash frozen in 
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liquid nitrogen and stored at -80 ⁰C in aliquots to avoid repeated freeze-thaws and was used without 

additional purification steps.  

Purification analysis 

Purification steps were analyzed via SDS-PAGE analysis. Samples were electrophoresed on a 

12 % SDS-PAGE and stained with coomassie blue. For western blot, samples were 

electrophoresed on a 12 % SDS-PAGE and transferred onto a polyvinylidene difluoride (PVDF) 

membrane. Membrane was blocked in TBST (20 mM Tris-HCl pH 7.6, 137 mM NaCl, 0.1 % 

Tween 20) containing 5 % non-fat milk for 1 h. Blocked membrane was probed with an anti-His 

antibody (H-15, sc-803, Santa Cruz Biotechnology, Santa Cruz, CA) (1:1,000 dilution) and washed 

three times in TBST followed by incubation in HRP-conjugated secondary antibody diluted in 

TBST for 1 h. Upon washing the membrane three times with TBST, it was incubated in Amersham 

ECL western blotting detection reagent (Enhanced chemiluminescence, GE healthcare, 

Buckinghamshire, UK) and visualized using ChemiDoc imaging system (Bio-Rad laboratories 

Inc., Richmond, CA).  

2.4.11 Expression and purification of Gαo  

His6-Gαo will be referred to as Gαo. Exact same procedure was applied to express and purify 

Gαo except the post- IPTG induction time was 16-18 h. 
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Chapter 3: Testing the First Simplified Analog of 

YM-254890 

NOTE: Part of this chapter has been published as Rensing, D.T., Uppal, S., Blumer, K.J., Moeller, 

K.D. Toward the Selective Inhibition of G Proteins: Total Synthesis of a Simplified YM-254890 

Analog. Org. Letters 2015 May 1; 17 (9): 2270-3.  

3.1 Introduction 

Our lab is interested in pursuing chemical biology approaches to investigate G protein 

signaling pathways and to determine the acute function of specific G proteins. Small molecule 

ligands that directly target selected G proteins to modulate their activity are potentially valuable 

as probes of biological function and as avenues to develop therapeutics.1 The first such small 

molecule-Gαq protein inhibitor is YM-254890 (now referred to as YM). To date, two main 

complications have blocked efforts to develop a family of G protein inhibitors based on the 

structure of YM. First, YM is not readily available which impedes efforts to use the natural product 

itself as a platform for building derivatives. Second, YM has a complex cyclic depsipeptide core 

structure that has thwarted efforts to obtain a series of analogs by means of total synthesis. With 

this in mind, our lab is interested in synthesizing and biologically testing simplified analogs of 

YM. This chapter will focus on testing the first simplified analog of YM compound named WU-

07047 (will be referred to as WU) for its effect on purified Gα proteins. Would simplification of 

YM structure result in loss of biological activity and its selectivity? This question was answered 

using an in vitro biochemical assay.  

Prior to examining the activity of WU, it was essential to test whether the proteins purified in 

the work described in Chapter 2 were functional. Since the activity of G proteins is studied by 
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their ability to exchange bound GDP for GTP, nucleotide exchange assays were used. This chapter 

will first briefly describe the YM compound and its mechanism of action followed by different 

types of GTPγS nucleotide exchange assays that are commonly used to assess the biochemical 

activity of G proteins and determine the efficacy of their inhibitors. The challenges associated with 

testing the functional activity of purified Gαq will also be discussed. A receptor-assisted nucleotide 

exchange assay will be introduced that solves these challenges. It is this assay that will be used to 

test WU. Finally, the specificity of WU compound will be examined using other G proteins (Gαi1 

and Gαo). For these assays, a fluorescently labeled nucleotide will be employed.    

 

 

3.1.1 YM, a Gαq/11-specific inhibitor 

The Gαq class of G proteins can be constituted as key players in GPCR signaling for essential 

agonists such as thrombin and angiotensin II.2 Wirth et. al showed that their Gαq knockout mice 

have lower blood pressure,3 providing strong evidence for the importance of Gαq in GPCR 

signaling and that Gαq antagonists might function as antihypertensive agents. Along these lines, 

YM (Figure 3.1) was discovered by Yamanouchi Pharmaceuticals. YM is a cyclic depsipeptide 

Figure 3.1. Structure of YM 
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derived from Chromobacterium sp. QS 3666 that potently (IC50 = 0.15 nM) and specifically 

inhibits the α subunit of the G protein class Gq.
4–6 YM has also shown blood pressure reduction,6 

thrombosis inhibition5 and decrease in neointima formation following a vascular injury in animal 

models.6 All these effects are consistent with the phenotypes of mice lacking Gαq.
7      

3.1.2 Mechanism of action  

 

Heterotrimeric G proteins are molecular switches that can intrinsically cycle between the 

inactive GDP-bound to active GTP-bound state.8 Binding of an agonist to the GPCR elicits guanine 

nucleotide exchange activity within G proteins which results in receptor catalyzed release of GDP 

by Gα subunit.8,9 A general G protein activation cycle has been discussed in detail in Section 1.3. 

Upon receptor activation, nucleotide exchange is the key step towards the activation of G proteins 

which leads to the dissociation of GTP-bound Gα and Gβγ dimer, which is now able to activate its 

Figure 3.2. Schematic representation of YM compound (represented in blue) directly inhibiting 

the hinge motion that results in the rearrangement of GTPase (represented in yellow) and helical 

domain (represented in green) causing the release of GDP (represented in purple). Nishimura et 

al. Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. 

Proc. Natl. Acad. Sci. 2010, 107, 13666–13671.  
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specific effectors. This activation cycle is terminated by the intrinsic GTPase activity of Gα subunit 

resulting in GTP hydrolysis. The Gα (now GDP-bound) now associates with Gβγ dimer and 

inactive basal state is restored. The rate limiting step in the catalytic cycle described above is the 

release of GDP. It is this step that is inhibited by YM compound. The selectivity of YM for Gαq is 

thought to depend on the unique features of the binding pocket for YM in Gαq. Figure 3.2 provides 

a schematic representation of YM compound directly inhibiting the release of GDP by blocking 

the hinges that result in the rearrangement of two domains. This binding pocket itself is present in 

all classes of G proteins. Hence, analogs of YM that were designed to fit the pockets of other G 

proteins might provide selective inhibitors of those G proteins. In this way, the development of 

YM analogs has the potential to provide a collection of inhibitors for probing the role of specific 

G proteins in various physiological or disease processes. This dissertation will focus on the first 

simplified analog of YM, WU. The WU compound will be considered active if it is able to inhibit 

the ability of Gαq to undergo nucleotide exchange.  

3.1.3 [35S] GTPγS binding assay- testing functional activity of purified G proteins  

Prior to testing activity of WU for Gαq and other G proteins, it is essential to test whether the 

purified G proteins (Chapter 2) are active. The functional activity of purified Gα proteins is 

measured by assessing their ability to undergo nucleotide exchange and bind GTP. Historically, 

the binding of [35S] guanosine 5'-(gamma-thio) triphosphate (GTPγS) has been used as an approach 

to characterize purified G proteins.10–12 In fact, non-hydrolyzable analogs of guanine nucleotides 

have been extremely important tools for elucidating the function of G proteins.13 Along these lines, 

GTPγS (Figure 3.3) is one of the most widely used non-hydrolyzable (or slowly hydrolyzed to 

GDP) analogs of GTP known to activate G proteins.13   
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Noel et al. provided a comprehensive crystallographic study of a heterotrimeric G protein, Gαt 

complexed with GTPγS.14 According to the authors, a water molecule plays an essential role in 

the GTPase mechanism. It serves as a nucleophile and positions itself in-line with the γ-phosphate 

before the attack. Conversely, the bulky sulfur atom of GTPγS shields the phosphorus atom and 

prevents its interaction with the active-site water molecule. The majority of GTPγS binding assays 

are performed using the radiolabeled version of the molecule in which the γ-phosphate is labeled 

with 35S. Since the γ-thiophosphate bond is resistant to hydrolysis by the GTPases, G proteins 

cannot reform as a heterotrimer and the lifetime of the nucleotide-bound Gα protein is increased. 

Thus, [35S] GTPγS labeled Gα subunits can be accumulated and measured by counting the amount 

of incorporated [35S] label. The use of [35S] GTPγS to directly measure G protein activation by 

monitoring nucleotide exchange was first described by Hilf et al.15 Upon binding of the radioactive 

nucleotide to Gα subunits, a filtration procedure was performed to separate free radioactivity from 

the radioactivity that bound to the protein. This classic method for GTPγS binding can only be 

used in purified systems because [35S] GTPγS is unable to cross cell membranes.13 This binding 

method provides a sensitive tool for assessing the functional activity of purified Gα proteins. 

However, while these assays provide reliable and accurate results, they have limitations. For 

Figure 3.3. GTPγS, a non-hydrolyzable analog of GTP.  
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example, the assays generate unwanted radioactive waste and are tedious to perform. Furthermore, 

the assays are not capable of resolving rapid kinetics of heterotrimeric G protein signaling and thus 

provide data at distinct intervals only.16 

3.1.4 Fluorescent ligand based exchange assays 

 

In an attempt to develop nonradioactive nucleotide based exchange assays which are capable 

of performing real time continuous measurements, several groups have reported the use of 

different fluorescent guanine nucleotides.17–19 Figure 3.4 provides two of the most widely used 

fluorescently labeled guanine nucleotides: N-methylanthraniloyl (MANT) conjugates of GTP and 

BODIPY®FL (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-alkyl) conjugated 

guanine nucleotides.18,26 MANT conjugates of guanine nucleotides are not applicable to all classes 

Figure 3.4. Fluorescently labeled guanine nucleotides   
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of Gα subunit and have behaved unpredictably for some studies.24 Therefore, in order to test 

activity of our other G proteins (Gαi1 and Gαo), BODIPY®FL GTPγS was used.  

 

BODIPY®FL fluorophore is linked through the γ-thiol of GTPγS. These nucleotides yield 

greater fluorescence enhancement in comparison to MANT labeled guanine nucleotides.26 

BODIPY®FL labeled nucleotides can be excited in the visible region and have shown to bind Gαi 

and Gαs class of G proteins.26 Due to their emission and excitation spectra in the visible region, 

intact cell studies can be performed with minimal background (a major problem with MANT 

labeled nucleotides).26 Even though BODIPY®FL GTPγS has significantly lower affinity (~10 to 

100 fold) for Gα subunits than [35S] GTPγS,26 these fluorescent probes are still one of the most 

convenient ways to quantify the amount of functional purified G proteins for two classes of G 

proteins (Gαi1 and Gαs) except for Gαq or Gα13 class of G proteins. Figure 3.5 demonstrates the 

mechanism of action for BODIPY®FL GTPγS. The guanine moiety can donate electrons to the 

Figure 3.5. Mechanism of action of BODIPY®FL GTPγS in the presence of purified Gα. 
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BODIPY moiety which results in fluorescence quenching. However, once the guanine moiety is 

bound by the Gα subunit, there is a steric bulk around the moiety which prevents the fluorescence 

quenching and there is an increase in fluorescence indicative of binding of BODIPY®FL GTPγS 

to Gα. Unlike Gαq, our other purified G proteins (Gαi1 and Gαo) exhibit faster spontaneous 

nucleotide exchange and can be assayed using fluorescent guanine nucleotides. Therefore, we 

utilized this convenient and easy method to access activity of purified Gαi1 and Gαo.   

3.2 Results and discussion  

3.2.1 [35S] GTPγS and purified Gαq binding 

The Gαq class of G proteins, like other G proteins, is activated by GTP binding and is 

deactivated upon hydrolysis of the bound GTP to GDP. Nucleotide exchange is dependent on the 

rate limiting step of the G protein activation cycle, release of GDP from Gα subunit. The ability of 

Gαq to exchange guanine nucleotide is reduced drastically by their separation from cell 

membranes.27 Most G proteins bind nearly stoichiometrically to GTPγS within 5-30 min in the 

presence of micromolar nucleotide concentrations. Even in the presence of high nucleotide 

concentrations (0.1 to 0.2 mM), the binding of soluble Gαq  to GTPγS is slow (more than 1 h for 

marginal loading).27 Assay conditions that are considered standard for [35S] GTPγS binding to 

other G proteins have been ineffective for monitoring purified Gαq.
33–35 As a result, binding of 

reasonable quantities of GTPγS or other nucleotides to soluble purified Gαq has been extremely 

challenging. This anomalous guanine nucleotide binding behavior is not unique to Gαq, another 

class of G proteins, Gα12/13 also exhibit this unusual nucleotide binding characteristics upon 

solubilization from membranes.36,37 Ferguson et al. showed that purified Gαq are not able to bind 
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GTPγS because of the slow dissociation rate of bound GDP, which is the rate limiting step for 

nucleotide exchange.38  

3.2.2 Use of ammonium sulfate to accelerate GDP dissociation 

Certain studies have used ammonium sulfate to accelerate the dissociation of bound GDP from 

Gαq.
22,38,39 One of the classic ways to precipitate proteins is to use high concentrations of 

ammonium sulfate (utilizing the tendency of protein to precipitate with increasing ionic 

concentrations).40,41 By taking advantage of a similar strategy, appropriate amounts of ammonium 

sulfate (200 mM) can promote GDP release.27 The idea is to use ‘right’ amount of ammonium 

sulfate that would be enough to affect the stability of the Gα subunit and result in GDP release. 

Since concentration of GTPγS is high in the solution, as soon as GDP dissociates from the pocket, 

GTPγS will enter the pocket and Gα. GTPγS complex will be further stabilized by the presence of 

magnesium ions. Hence, we decided to use this method to see if we could accelerate the exchange 

of GDP for GTPγS within purified Gαq.  

Gαq was incubated with 225 mM ammonium sulfate and 10 µM GTPγS at 20 ⁰C for varying 

periods of time. The reaction contents were then quenched with a buffer containing high 

concentrations of magnesium (magnesium ions can stabilize the GTPγS bound Gαq
11) and GTP. 

The quenched reactions were filtered through nitrocellulose membranes, dried and subjected to 

scintillation counting. Adsorption of GTPγS bound protein on the membrane will result in high 

radioactive counts per min. As shown in Figure 3.6, radioactive counts obtained from samples 

containing Gαq
 were similar to samples without Gαq. This observation was consistent with Gαq 

still exchanging the nucleotides very slowly. While radioactive counts were higher at the last time 

point, this was also true for the control and we concluded that no GTPγS binding was observed 

above background. This led to the question of whether our protein might be inactive or might have 
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been denatured during purification. Unfortunately, we did not have any positive controls 

(functional and active G protein) and therefore, there was no way of testing the validity of the 

assay. Hence, we did not have a concrete conclusion. 

 

 

3.2.3 Ric-8A assisted nucleotide exchange 

Chan et al. demonstrated that homologs of the mammalian protein, resistance to inhibitors of 

cholinesterase 8 (Ric-8) behave as non-receptor guanine nucleotide exchange factors (non-receptor 

GEFs).28 Non-receptor GEFs stimulate the release of GDP from specific Gα subunits and stabilize 

the nucleotide-free Gα form until GTP binding. Ric-8A stimulates the release of GDP by 

stabilizing a nucleotide-free form of the G protein.33 We decided to test GTPγS binding to Gαq in 

Figure 3.6. Effect of ammonium sulfate on [35S] GTPγS binding to Gαq. Binding buffer 

containing [35S] GTPγS and ammonium sulfate was added to reactions with Gαq or without 

Gαq. GTPγS binding was measured by quenching aliquots of each reaction at indicated times. 

The data represents (mean ± standard deviation) counts/min from three independent 

experiments.  
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the presence of purified Ric-8A (Section 2.4.7 provides experimental details regarding the 

expression of GST-Ric-8A). 

Purified Gαq (100 nM) was incubated in a timed GTPγS binding reaction with Ric-8A (200 

nM) or without Ric-8A as recommended by the published protocols.33 The analysis was conducted 

as described above. Once again, the experiment did not show any GTPγS binding above 

background (data not shown). The published protocol had expressed Gαq complexed with Ric-

8A.28 It was thought that this might be the problem with the assay conducted. Hence, we expressed 

both proteins as a complex in insect cells and performed glutathione-sepharose chromatography. 

Ric-8A protein binds GDP-bound Gαq and forms a nucleotide-free Ric-8A•Gα complex. This 

complex is stable unless GTPγS or GDP-AlF4
-  are present.28 Aluminum fluoride occupies the γ-

phosphate binding site on the protein and makes the G protein active in the presence of GDP. In 

other words, since the Al-F bond length is similar to P-O bond length, aluminum fluoride acts as 

an analog of phosphate and mimics the oxygen bound phosphate.42 During the purification, this 

aluminum fluoride activation step was performed to dissociate the complex and obtain free Gαq 

and Ric-8A. Upper panel in Figure 3.7 shows a western blot probed with anti-His antibody (Gαq 

is His-tagged). The majority of Gαq remained in the cell pellet (P) (this is consistent with all our 

other purifications described in Chapter 2). Gαq that did not bind to the glutathione-sepharose 

column is denoted by F. We reckon that this amount of Gαq did not complex with Ric-8A. Upon 

washing the resin with a buffer containing aluminum fluoride (AMF-1 and AMF-2), Gαq 

dissociated from the complex and eluted as pure Gαq. Some of the samples were loaded onto a 

different gel and the western blot was probed with anti-GST antibody since Ric-8A is GST-tagged 

(lower panel in Figure 3.7). Unlike Gαq, the cell pellet (P) did not have much Ric-8A which 

signifies that almost all Ric-8A protein was in the supernatant and was loaded onto the glutathione-
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sepharose column (T). No Ric-8A protein dissociated from the resin upon aluminum fluoride wash 

(AMF-1). Upon washing the resin with a buffer containing 20 mM  reduced glutathione, Ric-8A 

eluted from the resin (reduced glutathione competes with the binding interaction of fused protein 

with immobilized glutathione) as seen in lanes E1 and E2. Results from this purification indicated 

that both proteins were functional. With this information in hand, the Ric-8A assisted GTPγS 

binding study was repeated using these purified proteins.  

 

Figure 3.8 shows the results from three independent Ric-8A assisted GTPγS binding 

experiments. For all these binding assays, lower amounts of unlabeled GTPγS (1.5 µM compared 

to 10 µM used in experiments before) was used and as a result there was higher loading of labeled 

GTPγS. Use of less unlabeled GTPγS allows for incorporation of more labeled GTPγS and as 

result provides higher average radioactive counts for each sample. For some unexplainable reason, 

our control (samples with Ric-8A only) always showed slightly higher radioactive counts. Ric-8A 

protein does not bind GTP, therefore this result was odd. Just like the previous assay, no 

radioactive counts were observed above background. Something was erroneous about this assay 

Figure 3.7. Glutathione-sepharose affinity chromatography purification. Protein molecular 

weight marker (M); pellet obtained after ultracentrifugation (P); total lysate (T); flow through 

(F); first wash with buffer containing aluminum fluoride (AMF-1); second wash with buffer 

containing aluminum fluoride (AMF-2); eluted protein fractions (E1& E2). Western blot 

probed with upper panel: Anti-His; lower panel: Anti-GST.  
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and no concrete conclusions regarding the activity of proteins could be derived from these 

experiments. What was clear was that we still needed an assay that would allow us to determine if 

our purified Gαq was active, and then determine if YM analogs were effective inhibitors of that 

activity. 

 

3.2.4 Purified Gαq is functional as shown by receptor-assisted [35S] GTPγS binding assay 

We decided to consult Dr. John Tesmer at University of Michigan, Ann Arbor. The Tesmer 

lab performs nucleotide exchange assays on a regular basis. Therefore I visited their lab and 

learned about receptor-assisted [35S] GTPγS binding assays. The Tesmer lab examines the binding 

of [35S] GTPγS to Gαq using Sepia rhodopsin receptor membranes. As mentioned earlier, the 

ability of Gαq to exchange guanine nucleotide is reduced drastically by their solubilization from 

Figure 3.8. Effect of Ric-8A on binding of [35S] GTPγS binding to Gαq. Binding of GTPγS to 

Gαq was measured with or without Ric-8A. Samples containing no protein or Ric-8A only were 

used as controls. The data represents (mean ± standard deviation) counts/min from three 

independent experiments.  
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cell membranes.27 In a conversation with Dr.Tesmer, he pointed out that in the presence of receptor 

membranes, the ability of Gαq to exchange nucleotides is returned to normal. However, the receptor 

acts on the heterotrimer and not Gαq alone. Therefore, receptor mediated exchange assays require 

βγ as well.  

In order to ensure stability of Gαq, purified Gαq is always stored in a buffer containing excess 

GDP. But this excess GDP can act as a competitor during the GTPγS exchange assays. Therefore, 

a buffer exchange is essential before the receptor-assisted [35S] GTPγS binding assay. Following 

the buffer exchange, Gαq was incubated with Sepia βγ dimer to form the heterotrimer complex. 

Polypropylene tubes were used because they allow the least amount of non-specific protein 

interaction. The nucleotide exchange reaction was then initiated by the addition of a reaction 

mixture containing binding buffer, 100 nM Sepia rhodopsin and [35S] GTPγS to all of the sample 

tubes. Upon completion of the incubation period, the reactions were quenched by addition of cold 

Tris buffer containing excess magnesium to stabilize the bound GTPγS. The contents of each 

sample tube were then filtered through glass fiber filters. The filters were washed extensively with 

the same Tris buffer containing high magnesium ions, dried and subjected to scintillation counting. 

Figure 3.9 provides quantification of receptor-assisted [35S] GTPγS binding experiments. Two 

independent experiments were conducted (each experiment had triplicates for each sample). 

Increased radioactive counts per min for the heterotrimer suggested [35S] GTPγS binding. In order 

to ensure that this binding was not an artifact because of the addition of βγ dimer, samples with 

only βγ were also used (shows lower radioactive counts than heterotrimer in Figure 3.9). We 

decided to use no unlabeled GTPγS because it would decrease the overall radioactive counts. Since 

our control radioactive counts were always in the range of 700-1500 counts per min, we decided 

to use more labeled GTPγS. Besides expense, another caveat to using more labeled GTPγS is that 



76 
 

if filters are not washed properly, control counts will also increase. Therefore, it is essential to 

wash filters. In addition, we noticed that if control samples (samples containing only receptor and 

[35S] GTPγS) were diluted with 5 mL cold buffer and filtered immediately after that, overall counts 

were lower. The other samples were also filtered immediately after dilution. In other words, diluted 

solutions should not be allowed to incubate any longer and must be filtered right away. Over the 

period we have gained immense knowledge about handling G proteins and may be if we were to 

repeat the ammonium sulfate-assisted nucleotide exchange assay with longer incubation period, it 

might work. That assay does not require any additional accessory proteins (e.g. Sepia rhodopsin 

receptor and βγ dimer). Moreover, now we have a positive control (an active Gαq) to test the 

validity of the assay. 

 

Figure 3.9. Quantification of receptor-assisted [35S] GTPγS binding assay. The data represents 

mean (±standard deviation) counts from two independent experiments (each experiment had 

triplicates for each sample). 
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The success of this assay proved that Gαq purified from TIPS method is functional. 

Furthermore, we had a working assay to test activity of simplified YM analogs. The simplified 

analog, if active, would prevent [35S] GTPγS binding to Gαq and the radioactive counts will be 

lower.   

3.2.5 Synthetic plan for simplified YM analog, WU 

 

 

Figure 3.10 (A) depicting the small molecule inhibitor of Gαq, YM contains two regions that 

are highlighted along with several asterisks and a pair of numbers. The boxes highlight the regions 

of YM that bind to Gαq. The points in YM that make contact with Gαq are marked with the 

asterisks, and the numbers denoted hydrogen bonds that impart stability to the YM-conformation 

involved in binding Gαq (in both A and B). Both regions are connected by two bridging groups. 

Since no tangible information was available about these groups making contacts with Gαq, we 

reckoned to simplify the synthesis of YM analogs while allowing the molecule to still bind and 

inhibit Gαq by replacing these bridging groups with simplified chains. For a first attempt, the bridge 

Figure 3.10. A. YM; B.  WU. Boxes highlight the regions of YM that bind to Gαq based on the 

X-ray crystal structure of the YM-Gαq complex.29 Asterisks signify essential points of YM that 

make direct contact with Gαq and numbers denote hydrogen bonds that impart stability to the 

YM-conformation involved in binding Gαq.  
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at the top of the molecule was replaced with an alkyl chain and the bridge at the bottom was 

replaced with an alkene unit. The alkene would arise from a metathesis reaction used to construct 

the macrocycle. The trans double bond was located in the same position as the “s-cis” ester located 

in the bottom bridge of YM in the YM-Gαq complex.29 WU (Figure 3.10 B) was prepared by 

Derek Rensing in Moeller group. Details regarding the synthesis route have been published 

(Rensing, D.T., Uppal, S., Blumer, K.J., Moeller, K.D. Toward the Selective Inhibition of G 

Proteins: Total Synthesis of a Simplified YM-254890 Analog. Org. Letters 2015 May 1; 17 (9): 

2270-3).  

3.2.6 WU shows inhibitory activity towards Gαq 

With WU in hand, attention was turned toward determining its inhibitory activity in a receptor-

assisted [35S] GTPγS binding assay. Upon receptor activation, α subunit of the Gq heterotrimer 

exchanges bound GDP for GTP to establish an active conformation of the protein. By using [35S] 

GTPγS, this reaction was monitored over time to obtain conditions of half-maximal exchange. 

Under these conditions, the ability of WU to inhibit nucleotide exchange was compared to that of 

another natural product closely related to YM (UBO-QIC, Figure 3.11)43 relative to a vehicle 

(DMSO) control. UBO-QIC (or FR900359, a selective Gαq inhibitor) is structurally similar to YM 

and is commercially available.43  

To our knowledge, inhibitory effects of UBO-QIC on Gαq have not been characterized in a 

receptor-assisted [35S] GTPγS binding assay. In cell based assays, 1 µM UBO-QIC completely 

silenced Gq mediated signaling in comparison to 300 nM YM (UBO-QIC product description sheet 

provided by the manufacturer). The data in Figure 3.12 are consistent with the inhibition of 

receptor-driven nucleotide exchange on Gαq by WU in a concentration dependent manner. The left 

y-axis in the figure signify the average radioactive counts obtained while the right y-axis implies 
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the [35S] GTPγS binding from three independent experiments. Results indicated that WU and 

UBO-QIC displayed similar efficacy (up to 40 % inhibition in uptake of [35S] GTPγS), but WU 

was less potent. So while WU is a greatly simplified version of YM that retained none of the 

functionality in the tethers connecting the regions of the molecule thought to be associated with its 

activity, it did retain the ability to inhibit Gαq activation. 

This finding suggests that WU can provide a good starting point for exploring new Gαq 

inhibitors and learning more about the factors that impart selectivity to YM. For example, current 

efforts are underway to reinstall the hydrogen bond represented by the number 1 in Figure 3.10.A 

in order to determine its role in the selectivity and activity of the analog and to determine if the 

removal of the double bond in the bottom bridge improves activity.  

 

 

Figure 3.11. UBO-QIC (left), a closely related to YM (right). Figure obtained from product 

description data sheet provided by the manufacturer.  
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3.2.7 WU shows selectivity towards Gαq 

Since YM inhibits activation of Gαq but not Gαi or Gαo, we were interested in determining 

whether WU displayed similar selectivity. Chapter 2 illustrates expression and purification of 

both Gαi1 and Gαo and before testing effect of WU on these proteins, it was essential to assess the 

activity of both proteins. Because the rate of spontaneous nucleotide exchange by Gαi1 and Gαo is 

faster than Gαq, a receptor-independent assay was used to monitor the binding kinetics of a 

fluorescently labeled (BODIPY® FL) GTPγS.26,31   

The rate of nucleotide exchange in Gαo and Gαi1 was determined by the uptake of fluorescent 

GTP analog, BODIPY® FL GTPγS after the release of bound GDP. In the absence of G protein, 

the guanine base quenches the BODIPY®FL fluorophore resulting in a low quantum yield. Upon 

binding of the Gα subunit, quenching is relieved and there is an increase in quantum yield that can 

Figure 3.12. Quantification of receptor-assisted [35S] GTPγS binding assay. The data 

represents mean (±SEM) counts from three independent experiments (n=3). Statistical 

significance is marked by ***, where p <0.0001 with respect to vehicle.  
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be measured by excitation at 485 nm and emission at 530 nm. (Figure 3.5). Binding kinetics of 

BODIPY®FL GTPγS to Gαo and Gαi1 are different. Gαi1 has a slower rate of nucleotide exchange 

as seen in Figure 3.13. In order to study the association and dissociation of the ligand, a kinetic 

experiment was performed using Gαo because of its fast nucleotide exchange (Figure 3.14). 

Fluorescence of BODIPY GTPγS was measured alone for 2 min and then nucleotide exchange 

was initiated by the addition of Gαo (association of BODIPY GTPγS). The fluorescence associated 

with the binding of BODIPY®FL GTPγS to Gαo reached saturation at ~ 10 min. The dissociation 

of BODIPY®FL GTPγS was then observed by the addition of excess unlabeled GTPγS only in one 

of the samples (blue circles). Dissociation kinetics initiated by addition of unlabeled GTPγS can 

be seen due to the fluorescence decrease. This is a competition assay in which the unlabeled GTPγS 

competes with the fluorescently labeled GTPγS. Please note that Figure 3.14 shows raw curves 

and a decreased fluorescence (from 600 to 1100 s) in sample denoted by blue circles is just an 

artifact of the plate reader. The essential point is that the fluorescence decreases dramatically in 

the sample in which unlabeled GTPγS was added.   

Figure 3.13. Binding kinetics of BODIPY® FL GTPγS thioether to Gαi1 (red) and Gαo 

(black). Gαi1 has slower rate of nucleotide exchange.   
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In order to test validity of these assays, a positive control was used. This positive control was 

a peptide motif (also referred to as GPR motif) from a protein known as Activator of G protein 

signaling 3 (AGS3). This motif functions as a guanine nucleotide dissociation inhibitor (GDI) for 

Gαi1 and Gαo.
31 AGS3 motif binds strongly to all isoforms of Gαi1 and weakly to Gαo.

44 Binding of 

AGS3 motif blocks association of BODIPY®FL GTPγS in a concentration dependent manner. To 

this end, the rate of guanine nucleotide exchange on Gαi1 (Figure 3.15; left panel) and Gαo (Figure 

3.15; right panel) was assayed in the presence of varying concentrations of AGS3 motif. As 

mentioned previously, AGS3 peptide is a strong binder of Gαi1 and thus the drop in fluorescence 

is greater than Gαo (1 µM peptide causes ~50 % decrease in fluorescence in samples with Gαo 

whereas the same amount of peptide results in ~80 % decrease in fluorescence). Thus, both 

proteins and peptide were behaving as expected based on literature values.31 This assay showed 

that purified G proteins were functional.  

Figure 3.14. Association-dissociation kinetic experiment. Association and dissociation of 

BODIPY®FL GTPγS with Gαo. Red arrow 1 indicates the addition of Gαo to both wells 

and red arrow 2 denotes the addition of unlabeled GTPγS only to the blue well.   
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Using this assay and AGS3 as a positive control, the effect of WU was examined on nucleotide 

exchange activity of Gαi1 and Gαo. When tested in these assays over a wide concentration range, 

WU displayed no ability to inhibit nucleotide exchange on Gαi1 or Gαo (Figure 3.16). This data 

suggests that despite its simplified structure, WU maintained its selectivity towards Gαq.  

Figure 3.15. Effects of varying concentrations of AGS3 peptide on kinetics of BODIPY® FL 

GTPγS thioether binding to Gα. A time course of BODIPY® FL GTPγS thioether binding to 

Gα in the absence (blue) or presence (magenta, 100 nM; red, 1 µM) of AGS3. Left Panel: Gαi1; 

Right Panel: Gαo.   

Figure 3.16. Effects of varying concentrations of WU on kinetics of BODIPY® FL GTPγS 

thioether binding to Gα. A time course of BODIPY® FL GTPγS thioether binding to Gα in 

the absence (blue) or presence (magenta, 10 µM; red, 100 µM) of WU. AGS3 (green, 1 µM) 

was used as a positive control. Left Panel: Gαi1; Right Panel: Gαo.   
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3.3 Conclusions  

In conclusion, we have shown that all purified G proteins are functional and active. The activity 

of Gαq was studied using a receptor-mediated [35S] GTPγS binding assay whereas the activity of 

Gαi1 and Gαo was examined using BODIPY® FL GTPγS binding assay. In addition, we have 

developed an in vitro biochemical assay to test the activity of WU, a simplified analog of YM. 

While this analog is not as potent as UBO-QIC, it inhibits Gαq and appears to retain G protein 

selectivity characteristics like the natural product. No substantial conclusions regarding potency 

of WU (in comparison to YM) can be made at this point because of the lack of YM itself. UBO-

QIC compound has been compared to YM in cellular-based assays but not in an in vitro 

biochemical assay. It is possible that WU compound shows higher potency in cell-based assays.  

3.4 Experimental section 

Unless noted otherwise, all chemicals were ordered from Sigma Aldrich (St. Louis, MO). All 

other vendor information is noted in the experimental section. [35S] GTPγS (catalog no. 

NEG030H) was purchased from Perkin Elmer (Waltham, MA). 

3.4.1 [35S] GTPγS binding assay using ammonium sulfate  

The previously reported method was used with slight modifications.27 Reactions were carried 

out in binding buffer (50 mM HEPES pH 7.5, 1 mM EDTA, 1 mM DTT, 0.9 mM MgCl2, 0.05 % 

genapol, 225 mM ammonium sulfate and 10 µM GTPγS). [35S] GTPγS was diluted 1:1000 in 

binding buffer so the final radioactive concentration in each sample was 0.045 µCi. Binding of 10 

µM GTPγS (0.045 µCi or specific activity = 10,000 cpm/pmol) to Gαq was measured at 20 ⁰C in 

a total volume of 100 µL. Triplicate aliquots (10 µL each) were taken from the reaction at indicated 
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time points and added to a conical tube containing 3 mL stop buffer (20 mM Tris-HCl pH 7.7, 100 

mM NaCl, 10 mM MgCl2, 0.1 mM DTT, 0.1 % genapol and 1 mM GTP), followed by filtration 

through nitrocellulose membranes (adsorbs Gαq). Membranes were washed extensively with wash 

buffer (20 mM Tris-HCl pH 7.7, 100 mM NaCl and 2 mM MgCl2). Membranes were air dried for 

1 h before subjecting to scintillation counting (Tri-carb liquid scintillation counter, Perkin Elmer, 

Waltham, MA). Data was analyzed using MS Excel and graphed (Figure 3.6) using Origin 9.0 

(OriginLab Corporation, Northampton, MA)  

3.4.2 Disruption of nucleotide-free Ric-8A.Gαq complex using aluminum fluoride  

Fresh sf9 cells (cell density = ~1.8x106 viable cells/mL) were infected with 1:3 Gαq: GST-Ric-

8A baculovirus P3 stocks. Cells were harvested after 48 h by centrifuging at 500 g for 10 min. 

Dissociation of nucleotide-free Ric-8A.Gαq complex was performed using published protocols.28 

Figure 3.7 shows western blots summarizing the results from glutathione-sepharose 

chromatography.  

3.4.3 Ric-8A assisted [35S] GTPγS binding assay 

Purified Gαq (100 nM) was incubated with purified GST-Ric-8A (200 nM) at 25 ⁰C in GTPγS 

binding buffer (20 mM HEPES pH 8.0, 100 mM NaCl, 4 mM DTT, 1 mM EDTA, 10 mM 

magnesium chloride and 0.05 % Genapol) and 1.5 µM GTPγS (0.045 µCi or specific activity = 

10,000 cpm/pmol) for 45 mins. Triplicate aliquots were taken from each reaction and quenched in 

5 mL stop buffer (20 mM Tris-HCl pH 7.7, 100 mM NaCl, 4 mM DTT, 1 mM EDTA, 1 mM GTP 

and 0.08% genapol) and filtered through nitrocellulose filters. The filters were washed with 10 mL 

wash buffer (20 mM Tris-HCl pH 7.7, 100 mM NaCl and 2 mM MgCl2), air dried for 1 h and then 

subjected to scintillation counting (Tri-carb liquid scintillation counter, Perkin Elmer, Waltham, 
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MA). Data was analyzed using MS Excel and graphed (Figure 3.8) using Origin 9.0 (OriginLab 

Corporation, Northampton, MA)   

3.4.4 Gαq buffer exchange  

10 µL aliquot of purified Gαq (stored at -80 ⁰C) was thawed on ice. Once thawed, 10 µL of 

GDP-free protein dilution buffer (20 mM HEPES pH 8.0, 100 mM NaCl, 1 mM MgCl2 and 2 mM 

DTT) was added to it. This dilution step was performed because minimum volume that can be 

added to the exchange buffer columns is 20 µL. Diluted protein sample was passed through micro 

biospin chromatography columns (Bio-Rad laboratories Inc., Richmond, CA) as per 

manufacturer’s instructions. Concentration of the purified Gαq (now in GDP-free buffer) was 

determined using NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA).  

NOTE: UV absorbance at 280 nm method for protein quantitation cannot be trusted because of the 

presence of GDP. Hence, Bradford assay or gel quantitation methods were applied to quantify 

protein before buffer exchange.  

3.4.5 Storage conditions for [35S] GTPγS 

Fresh [35S] GTPγS was diluted to 0.5 µCi/µL (final concentration) in protein dilution buffer 

with 4 mM DTT (final concentration) and stored in 20 µL aliquots at -80 ⁰C. More than one freeze 

thaw of [35S] GTPγS should be avoided.  

3.4.6 Receptor-assisted [35S] GTPγS binding assay 

Cholate-insoluble Sepia rhodopsin and Sepia beta gamma (Sepia βγ) subunits were kindly 

provided by Dr. John J. Tesmer (University of Michigan, MI) who obtained it from Dr. John K. 

Northup (National Institutes of Health, MD).  
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Receptor assisted exchange of GDP for [35S] GTPγS on Gαq was determined by modification 

of previously reported procedures.27,29,30 All reactions were carried out in 5mL Falcon 

polypropylene tubes (Fisher Scientific) in a total assay volume of 25µL. Filter binding method was 

used to measure GTPγS binding to Gαq. Purified Gαq  was buffer exchanged into GDP-free protein 

dilution buffer (working stock concentration: 1 µM) (Section 3.4.4). Sepia βγ was diluted (working 

stock concentration: 1 µM) in GDP-free protein dilution buffer containing 10 mM CHAPS 

detergent. Sepia rhodopsin was also diluted (working stock concentration: 1 µM) in GDP-free 

protein dilution buffer except no CHAPS detergent was added. Nucleotide exchange reactions 

were carried out in binding buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 5 mM MgCl2, 1 mM 

EDTA, and 1 mM DTT). Purified Gαq (final concentration: 100 nM) was incubated with Sepia βγ 

(final concentration: 100 nM) on ice for 10 min to form heterotrimeric complex. The nucleotide 

exchange reaction was initiated by addition of reaction mix containing binding buffer, Sepia 

rhodopsin (100 nM final concentration in each sample) and [35S] GTPγS (0.5 µCi or specific 

activity = 1.6x106 cpm/pmol in each sample). After 20 min incubation at 20 ⁰C, 4 mL cold wash 

buffer (50 mM Tris-HCl pH 8.0, 5 mM MgCl2) was added to the tubes and the contents were 

filtered through glass fiber filters (GF/C, Whatman) (filters were pre wetted with wash buffer). 

Filters were washed further with 10 mL cold wash buffer and dried for 1 h before subjecting to 

liquid scintillation counting (Tri-carb liquid scintillation counter, Perkin Elmer, Waltham, MA). 

Data was analyzed using MS Excel and graphed (Figure 3.9) using Origin 9.0 (OriginLab 

Corporation, Northampton, MA).  

3.4.7 Testing effect of WU on Gαq using receptor-assisted [35S] GTPγS binding assay 

UBO-QIC compound was purchased from the Institute of Pharmaceutical Biology, University 

of Bonn. WU was provided by Derek Rensing (Department of Chemistry, Washington University 
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in St. Louis, MO) as a brown/red colored oil. Stock solution of 25 mM was prepared in 100 % 

DMSO and stored in 5 µL stocks at -20 ⁰C. 

All reactions were carried out in 5mL Falcon polypropylene tubes (Fisher Scientific) in a total 

assay volume of 25 µL. Filter binding method was used to measure GTPγS binding to Gαq. Purified 

Gαq was buffer exchanged into GDP-free protein dilution buffer (working stock concentration: 1 

µM) (Section 3.4.4). Sepia βγ was diluted (working stock concentration: 1 µM) in GDP-free 

protein dilution buffer containing 10 mM CHAPS detergent. Sepia rhodopsin was also diluted 

(working stock concentration: 1 µM) in GDP-free protein dilution buffer except no CHAPS 

detergent was added. Nucleotide exchange reactions were carried out in binding buffer (50 mM 

Tris-HCl pH 8.0, 100 mM NaCl, 5 mM MgCl2, 1 mM EDTA, and 1 mM DTT). Purified Gαq (final 

concentration: 330 nM) was incubated with Sepia βγ (final concentration: 330 nM) on ice for 10 

min to form heterotrimeric complex. The nucleotide exchange reaction was initiated by the 

addition of reaction mix containing binding buffer, 100 nM Sepia rhodopsin and [35S] GTPγS 

(1.6x106 cpm/pmol). After 20 min incubation at 20 ⁰C, 4 mL cold wash buffer (50 mM Tris-HCl 

pH 8.0, 5 mM MgCl2) was added to the tubes and the contents were filtered through glass fiber 

filters (GF/C, Whatman). Filters were washed further with 10 mL cold wash buffer and dried for 

1 h before subjecting to liquid scintillation counting (Tri-carb liquid scintillation counter, Perkin 

Elmer, Waltham, MA). Data was analyzed using MS Excel and graphed (Figure 3.12) using Prism 

software (Graph Pad Software Inc.). 

Fluorescence based nucleotide exchange assays using BODIPY®FL GTPγS  

All fluorescence measurements were made using SynergyTM H4 plate reader (BioTek 

Instruments, Inc. Winooski, VT). Excitation and emission wavelengths were set at 485 and 530 
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nm respectively (light source- xenon flash, wavelength selection- monochromator, band pass 20 

nm). There was a delay of 100 ms between well readings. CostarTM 96-well black plate (Thermo 

Fisher Scientific, Waltham, MA) was used for all fluorescence measurements. BODIPY®FL 

GTPγS thioether was purchased from Molecular probes, Eugene, OR.  

3.4.8 Association-dissociation kinetic experiment 

BODIPY®FL GTPγS thioether (final concentration 50 nM) was diluted in 200 µL assay buffer 

(50 mM Tris-HCl pH 8.0, 1 mM EDTA, 10 mM Magnesium chloride). All samples were scanned 

immediately using a fluorescent plate reader for 2 min (1 min interval). Nucleotide exchange was 

initiated by addition of 200 nM Gαo. Upon saturation (at time, t= ~20 min), unlabeled GTPγS (final 

concentration: 20 µM) was added to appropriate wells and mixed by manual pipetting and 

fluorescence intensity was measured for additional 40 min (1 min interval). Data was graphed 

(Figure 3.14) using Origin 9.0 (OriginLab Corporation, Northampton, MA).  

3.4.9 BODIPY®FL GTPγS binding assay to test activity of Gαi1 and Gαo 

Previously reported methods were used with slight modifications.26,31,32 A GPR consensus 

peptide, AGS3 (CTMGEEDFFDLLAKSQSKRMDDQRVDLAG, purity >90 %) was purchased 

from Genscript (Piscataway, NJ). The C-terminus of the peptide was blocked by amidation and 

the N-terminus by acetylation. Peptide was delivered as a white lyophilized powder. 10 µM and 

100 µM peptide stocks were prepared in 100 % dd H2O and stored in -20 ⁰C. This peptide was 

used as a control to test the validity of the biochemical assay. An aliquot of 200 nM purified protein 

(Gαi1or Gαo) was incubated in 200 µL assay buffer (50 mM Tris pH 8.0, 1 mM EDTA, 10 mM 

magnesium chloride) at 25 ⁰C for 35 min with or without varying concentrations of AGS3 (GPR 

consensus peptide). After incubation, contents were transferred to CostarTM 96-well black plate 
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and BODIPY® FL GTPγS thioether (final concentration 75 nM) was added to each well. Contents 

were mixed by manual pipetting and scanned immediately in kinetics mode using a fluorescent 

plate reader for 1 h (90 s interval, 144 reads/well) at 30 ⁰C. Data analysis and background 

subtraction of reactions without protein were performed with MS excel. Data was graphed (Figure 

3.15) using Origin 9.0 (OriginLab Corporation, Northampton, MA).  

3.4.10 Testing effect of WU on Gαi1 and Gαo using BODIPY®FL GTPγS binding assay 

Exact same procedure was used as mentioned in Section 3.4.9 to test effect of varying 

concentrations of WU on Gαi1 and Gαo. DMSO was used as control vehicle and AGS3 was used 

as a positive control to test the validity of the assay. Data analysis and background subtraction of 

reactions without protein were performed with MS excel. Data was graphed (Figure 3.16) using 

Origin 9.0 (OriginLab Corporation, Northampton, MA).  

3.5 References 

(1)  Ayoub, M. A.; Damian, M.; Gespach, C.; Ferrandis, E.; Lavergne, O.; De Wever, O.; 

Banères, J.-L.; Pin, J.-P.; Prévost, G. P. J. Biol. Chem. 2009, 284, 29136–29145. 

(2)  Bernard, R.; Thach, L.; Kamato, D.; Osman, N.; Little, P. J. Clin. Exp. Pharmacol. 2014, 

4, 13–16. 

(3)  Wirth, A.; Benyó, Z.; Lukasova, M.; Leutgeb, B.; Wettschureck, N.; Gorbey, S.; Orsy, P.; 

Horváth, B.; Maser-Gluth, C.; Greiner, E.; Lemmer, B.; Schütz, G.; Gutkind, J. S.; 

Offermanns, S. Nat. Med. 2008, 14, 64–68. 

(4)  Saito, T.; Moritani, Y.; Takasaki, J. U. N.; Hayashi, K. J Antibiot 2003, 56, 358–363. 

(5)  Uemura, T.; Kawasaki, T.; Taniguchi, M.; Moritani, Y.; Hayashi, K.; Saito, T.; Takasaki, 

J.; Uchida, W.; Miyata, K. Br. J. Pharmacol. 2006, 148, 61–69. 

(6)  Kawasaki, T.; Taniguchi, M.; Moritani, Y.; Uemura, T.; Shigenaga, T.; Takamatsu, H. Br 

J Pharmacol 2005, 184–192. 



91 
 

(7)  Wettschureck, N.; Offermanns, S. Physiol Rev 2005, 1159–1204. 

(8)  Oldham, W. M.; Hamm, H. E. Nat. Rev. Mol. Cell Biol. 2008, 9, 60–71. 

(9)  Johnston, C. A.; Siderovski, D. P. Mol. Pharmacol. 2007, 72, 219–230. 

(10)  Sternweis, P. C.; Robishaw, J. D. J. Biol. Chem. 1984, 259, 13806–13813. 

(11)  Higashijima, T.; Ferguson, K. M.; Sternweis, P. C.; Smigel, M. D.; Gilman, A. G. J. Biol. 

Chem. 1987, 262, 762–766. 

(12)  Bokoch, G. M.; Katada, T.; Northup, J. K.; Ui, M.; Gilman, A. G. J. Biol. Chem. 1984, 

259, 3560–3567. 

(13)  Harrison, C.; Traynor, J. R. Life Sciences, 2003, 74, 489–508. 

(14)  Noel, J. P.; Hamm, H. E.; Sigler, P. B. Nature, 1993, 366, 654–663. 

(15)  Hilf, G.; Gierschik, P.; Jakobs, K. H. Eur. J. Biochem. 1989, 186, 725–731. 

(16)  Mukhopadhyay, S.; Ross, E. M. Proc. Natl. Acad. Sci. 1999, 96, 9539–9544. 

(17)  Remmers, A. E. Anal. Biochem. 1998, 257, 89–94. 

(18)  McEwen, D. P.; Gee, K. R.; Kang, H. C.; Neubig, R. R. Methods Enzymol. 2002, 344, 

403–420. 

(19)  Eccleston, J. F.; Moore, K. J.; Brownbridge, G. G.; Webb, M. R.; Lowe, P. N. Biochem. 

Soc. Trans. 1991, 19, 432–437. 

(20)  Kimple, R. J.; Jones, M. B.; Shutes, A.; Yerxa, B. R.; Siderovski, D. P.; Willard, F. S. 

Comb. Chem. High Throughput Screen. 2003, 6, 399–407. 

(21)  Hiratsuka, T. Biochim. Biophys. Acta 1983, 742, 496–508. 

(22)  Remmers, A. E.; Posner, R.; Neubig, R. R. J. Biol. Chem. 1994, 269, 13771–13778. 

(23)  Lan, K. L.; Remmers, A. E.; Neubig, R. R. Biochemistry 1998, 37, 837–843. 

(24)  Zera, E. M.; Molloy, D. P.; Angleson, J. K.; Lamture, J. B.; Wensel, T. G.; Malinski, J. A. 

J. Biol. Chem. 1996, 271, 12925–12931. 

(25)  Gille, A.; Seifert, R. J. Biol. Chem. 2003, 278, 12672–12679. 

(26)  McEwen, D. P.; Gee, K. R.; Kang, H. C.; Neubig, R. R. Anal. Biochem. 2001, 291, 109–

117. 



92 
 

(27)  Chidiac, P.; Markin, V. S.; Ross, E. M. Biochem. Pharmacol. 1999, 58, 39–48. 

(28)  Chan, P.; Gabay, M.; Wright, F. a; Kan, W.; Oner, S. S.; Lanier, S. M.; Smrcka, A. V; 

Blumer, J. B.; Tall, G. G. J. Biol. Chem. 2011, 286, 2625–2635. 

(29)  Nishimura, A.; Kitano, K.; Takasaki, J.; Taniguchi, M.; Mizuno, N.; Tago, K.; 

Hakoshima, T.; Itoh, H. Proc. Natl. Acad. Sci. 2010, 107, 13666–13671. 

(30)  Greentree, W. K.; Linder, M. E. Methods Mol. Biol. 2004, 237, 3–20. 

(31)  Adhikari, A.; Sprang, S. R. J. Biol. Chem. 2003, 278, 51825–51832. 

(32)  Peterson, Y. K.; Hazard, S.; Graber, S. G.; Lanier, S. M. J. Biol. Chem. 2002, 277, 6767–

6770. 

(33)  Chan, P.; Gabay, M.; Wright, F. A.; Tall, G. G. J. Biol. Chem. 2011, 286, 19932–19942. 

(34)  Blank, J. L.; Ross, A. H.; Exton, J. H. J. Biol. Chem. 1991, 266, 18206–18216. 

(35)  Hepler, J. R.; Kozasa, T.; Smrcka, A. V; Simon, M. I.; Rhee, S. G.; Sternweis, P. C.; 

Gilman, A. G. J. Biol. Chem. 1993, 268, 14367–14375. 

(36)  Siehler, S. Br. J. Pharmacol. 2009, 158, 41–49. 

(37)  Singer, W. D.; Miller, R. T.; Sternweis, P. C. J. Biol. Chem. 1994, 269, 19796–19802. 

(38)  Ferguson, K. M.; Higashijima, T.; Smigel, M. D.; Gilman, a. G. J. Biol. Chem. 1986, 261, 

7393–7399. 

(39)  Ferguson, K. M.; Higashijima, T. Methods Enzymol. 1991, 195, 188–192. 

(40)  Mahn, A.; Ismail, M. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 3645–

3648. 

(41)  Moore, P. A.; Kery, V. Methods Mol. Biol. 2009, 498, 309–314. 

(42)  Wittinghofer, A. Curr. Biol. 1997, 7, R682–R685. 

(43)  Zaima, K.; Deguchi, J.; Matsuno, Y.; Kaneda, T.; Hirasawa, Y.; Morita, H. J. Nat. Med. 

2013, 67, 196–201. 

(44)  Bernard, M. L.; Peterson, Y. K.; Chung, P.; Jourdan, J.; Lanier, S. M. J. Biol. Chem. 2001, 

276, 1585–1593.  

  



93 
 

Chapter 4: Optimization of Microelectrode 

Arrays with the Use of PEG-Functionalized 

Diblock Copolymer Coatings 

NOTE: Part of this chapter has been published as Uppal, S., Graaf, M.D., Moeller, K.D. 

Microelectrode Arrays and the Use of PEG-Functionalized Diblock Copolymer Coatings. 

Biosensors 2014, 4, 318-328  

4.1 Introduction 

Guanine nucleotide exchange is an early event in the signal transduction cascade that can be 

monitored using an in vitro receptor-assisted [35S] GTPS binding assay. As mentioned in 

Chapter 3, these assays work well with Gαq subunits. The receptor-assisted [35S] GTPS binding 

assay is paramount because it provides information regarding the efficacy of the small molecules 

in their ability to inhibit the formation of Gαq•GTPγS complex. However, there are several 

impediments associated with this assay if one wants to use it as a fast method to screen the 

potential for activity in newly synthesized molecules. First, these assays require expensive 

radiolabeled ligands which require proper disposal procedures (an added expense). Second, due 

to the slow spontaneous nucleotide exchange, Gαq subunits need a large number of accessory 

proteins (e.g. Sepia rhodopsin receptor and Gβγ subunits). Finally, the method requires washing 

steps that makes it difficult to observe the binding events which occur with weaker affinities. 

Therefore, we sought to develop an electrochemical means to detect and monitor binding events 

between G proteins and potential new ligands as the events happen. Microelectrode arrays have 

great potential for monitoring interactions between the members of a molecular library and 

biological receptors because every electrode in the array is individually addressable.1–9 Hence, if 
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the molecules in a library are placed (or synthesized) on a microelectrode array such that each 

unique member of the library is located next to a unique, addressable set of electrodes, then each 

member of the array can be independently monitored by the electrodes. To this end, we wanted 

to utilize microelectrode arrays to probe binding interactions between G proteins and small 

molecule inhibitors. This approach would allow us to rapidly screen small molecules that can be 

shortlisted as G protein binders without the need for labeled receptors. Eventually, only small 

molecules that show an affinity for the G proteins being targeted will be characterized for their 

potency using biochemical assays.  

4.1.1 Microelectrode arrays- Introduction  

Microarrays can play an essential role in the high-throughput screening of biological 

molecules, and are playing an increasingly important role in the discovery of new drugs and 

biological probes.10,11 Microarrays can be defined as a collection of microscopic features that can 

be probed with target molecules to obtain either quantitative or qualitative analyses.12 These 

arrays can use multiple technologies to immobilize different library members onto them (e.g ink-

jet printing,13 photolithography,14 printing onto glass slides15). Our group is interested in use of 

microelectrode arrays (obtained from Combimatrix, now known as CustomArray Inc., Bothell, 

WA) as platforms for building molecular libraries. CustomArray Inc. has been commercializing 

these arrays for diagnostic purposes (as DNA or antibody microarrays). Our interest is in using 

them to evaluate small molecule probes for receptors.   

Two types of microelectrode arrays have been made available to us from CustomArray Inc. 

The first is an older design 1-K array that contains 1,024 electrodes per cm2 (Figure 4.1). These 

arrays are no longer commercially available, but are excellent tools for developing new array-

based synthetic methods. The second is a 12-K array that contains 12,544 electrodes per cm2 
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(Figure 4.2). The 12-K arrays are commercially available, and can be used for analytical 

electrochemical experiments because of their cyclic voltammetry capabilities. In a 1-K array, the 

diameter of the round platinum electrode is 92 µm and the distance between the electrodes is 

245.3 µm and 337.3 µm. In a 12-K array, the diameter of the round platinum electrode is 44 µm 

and the distance between the electrodes is 33 µm. Complementary metal-oxide-semiconductor 

(CMOS) technology is used to construct electrodes that are wired in parallel.9 Both 1-K and 12-

K arrays contain a binary addressable X, Y-grid of wires and the electrodes are addressed when 

both a vertical and a horizontal wire are activated at the same time. All experiments discussed in 

this dissertation were performed on the more modern 12-K arrays.  

Figure 4.1. 1-K array (left); zoomed image to show electrodes on the array (right).  

 

Figure 4.2. 12-K array (left); zoomed image to show electrodes on the array (right).  
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In general, electrochemical reactions conducted on a 12-K array are no different from any 

other preparative electrolysis reaction. A basic electrochemical set up involves an anode 

(positive electrode that is used for oxidations), a cathode (negative electrode that is used for 

reductions), an electrolyte (used to reduce the resistance of the cell), and a solvent. Since the 

array re actions are indirect electrochemical reactions, they recycle chemical reagents at the 

electrodes. This allows the array reactions to take advantage of the chemical selectivity that has 

been built into modern synthetic methods. A computer program is used to control the reaction 

time, the potential of the electrodes in the array relative to a counter electrode, and select specific 

electrodes which are used for a reaction. In all reactions run on the array, the platinum electrodes 

in the array are used as the working electrodes, and a remote Pt-electrode is used as the counter 

electrode. For the 12-K arrays used in this thesis, the Pt-counter electrode has been sputtered 

onto the cap (known as hyb-cap, Figure 4.3) that fits over the array and provides the space for 

the reaction medium. Depending on the reaction of interest (oxidation or reduction), the working 

electrode in the array is either an anode or cathode by setting the potential of the electrode in the 

array either positive or negative relative to the cap. All of this is accomplished with the use of an 

Figure 4.3. Hyb-cap as counter electrode for 12-K arrays.  
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ElectraSense reader that is also available through CustomArray Inc. The ElectraSense reader 

contains a series of addressable pins that make contact with conductive pads on the array that are 

wired to the electrodes.  

There are certain criteria that must be met before we can monitor biological interactions on 

the arrays. First, the placement of the molecules onto the array must be confined to specific 

electrodes in the array so that the electrodes can be used to monitor their behavior. Substantial 

developments have been made by our lab toward the synthesis, placement, and characterization 

of molecules on the surface of a microelectrode array.16–22 In fact, careful synthesis and 

manipulation of electrodes in addition to complete characterization of those molecules in terms 

of quality control assessment of the libraries synthesized is what sets the microelectrode arrays 

apart from its alternative methods.  

4.1.2 Placing small molecules on the arrays  

Figure 4.4. Diblock copolymers for coating arrays.    
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The placement of molecules onto the surface of an electrode in the arrays requires a stable, 

porous polymer coating on the electrode. This polymer provides the attachment points needed to 

fix molecules to the array proximal to the electrode, and insulates molecules on the surface from 

direct interactions with the electrode (an event that could interfere with a desired synthetic 

transformation).23 The nature of the polymer is vital because it must be inert to the range of 

synthetic reagents used to build molecules on the array while porous enough to allow those 

reagents to reach the surface of the electrode below. In addition, the polymer must be stable over 

time so that the library on the array can be used multiple times, and it must be fully compatible 

with the analytical experiments to be conducted. To meet these needs, we have found diblock 

copolymers having the general structure described in Figure 4.4 to be extremely effective. The 

polymers are comprised of one block of a cinnamate-functionalized methacrylate that is cross-

linkable and used to impart stability to the surface, and one block of a functionalized polystyrene 

that is used as attachment points to fix molecules to the surface of the electrodes in the array. The 

resulting surfaces are stable and allow the use of nucleophiles, electrophiles, oxidants, 

reductants, acids, bases, and transition metal catalysts on the arrays. While the use of the diblock 

copolymer is ideal in many ways, it does force the use of an indirect method to detect binding 

events that occur on the surface of the array. Molecules bound to the surface of the polymer 

cannot be observed directly. Thus binding events on the array are monitored with the use of a 

solution phase redox couple.  

4.1.3 Use of cyclic voltammetry (CV) to screen protein ligand interactions 

Once molecules have been placed on the surface of the array, they can be analyzed for their 

affinity to a receptor of interest. This is done by taking advantage of cyclic voltammetry 

experiments on the array.19,24 To this end, the functionalized array is treated with a solution 
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phase redox couple (usually a Fe (II)/Fe (III) system). The functionalized electrodes on the array 

are then used as anode and the remote counter electrodes serve as cathode. The potential of the 

electrodes in the array is swept from low to high relative to the counter electrode and then back 

again. The current associated with the redox mediator is recorded at each potential. The height of 

the peak in the CV (Figure 4.5) is dependent on the amount of iron present based on adsorption 

to the surface and diffusion. The size of this current (known as a peak-current) is measured by 

noting the change in current between the baseline (A in Figure 4.5) and the peak (B in Figure 

4.5). A baseline peak-current is established for each experiment in the absence of the receptor. 

With the addition of the receptor to the solution above the array, a change in the peak-current 

(either a decrease due to impedance of the iron to the surface or an increase due to the improved 

conductance of the surface) indicates a binding event between the receptor and the surface of the 

electrode. The effect from impedance of current is often large and can be readily observed in the 

raw data collected. For example, the CV data for an impedance type experiment is shown in 

Figure 4.5. Overlapping CV scans with increasing concentration (legend in the figure, 

M) of protein depicting impedance of current (left); Anodic current for Fe2+ was 

measured by noting the difference between current at baseline (A) and the peak (B) 

(right). 
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Figure 4.5 (left). Often in our binding experiments, we see impedance of current, and this type 

of behavior can be explained through a mechanism illustrated in Figure 4.6.23,25,26  

4.1.4 Need for PEGylation of array surface 

Our motivation for developing microelectrode arrays was envisioned to provide a rapid 

method for screening interactions between G proteins and their molecular binders. We intend to 

place simplified YM analogs onto the array surface and then monitor their binding interactions 

Figure 4.6. Impedance experiment on microelectrode array. Binding interaction between blue 

triangle representing the target molecule and the protein in solution denoted by green balls 

blocks the iron species from reaching the electrode surface. Figure obtained from Stuart-

Fellet, M. et al. Site-selective chemistry and the attachment of peptides to the surface of a 

microelectrode array. J. Am. Chem. Soc. 2012, 134, 16891–16898.  
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with purified Gα subunits using cyclic voltammetry. But before we could start testing out these 

events, we needed to solve a challenge and that was the use of poly (ethylene glycol) (PEG)-

polymer groups on the arrays. PEG-polymers are often suggested in connection with pacifying 

surfaces toward non-specific binding events with a variety of protein targets.27-29 Many of our 

initial electrochemical studies looking at small molecule protein interactions on the arrays had 

shown significant background binding events,25 so we hoped to utilize PEG-groups to at least 

mitigate this problem to an extent. In addition, the immobilization of small molecules directly 

onto the array surface can hinder its binding properties to the protein because of steric issues. 

Hence, in order to ensure that the immobilized molecule is in proper conformation, orientation 

and accessible to the protein, attachment of the molecule away from the surface via a linker or 

spacer arm is recommended.27,28 PEG-based linkers are a popular choice because of their 

desirable physical and chemical properties (such as hydrophilic, non-toxic, low rate of 

degradation by biomolecules).27–31 For this reason, we hoped to use them in connection with our 

small molecule-G protein binding studies as well.   

However, Dr. Libo Hu in our group had found that modifying the surface of the diblock 

copolymer with the PEG-polymer groups led to problems with the subsequent cyclic 

voltammetry experiments. In those experiments, the peak-current for the iron redox mediator 

steadily increased over time. The PEG groups appeared to be binding the iron thereby steadily 

increase the amount of the mediator adsorbed onto the surface of the array. And as a result, a 

baseline peak-current could not be established, and the effort was initially abandoned.  

But was the issue really a “lost-cause”, or was there a way to get around the problem and 

utilize groups on the arrays anyway? This chapter will focus on strategies that allow for the use 

of PEG-functionalized diblock copolymer coatings on microelectrode arrays. All experiments 
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described in this chapter were carried out using bovine serum albumin (BSA) as the protein with 

a relatively high affinity for diblock copolymer coated arrays. 

4.2 Results and discussion  

4.2.1 PEGylation of polymer coated array 

In order to functionalize the polymer coated arrays with PEG groups, a microelectrode array 

was spin coated with PCEMA-b-pBSt (Figure 4.4, X = Bpin), photolyzed to crosslink the 

cinnamate esters and add stability to the surface, and then functionalized with a PEG-polymer 

having 16 repeating units and a methyl ether on one end (PEG-16). The chemistry took 

advantage of the Chan-Lam coupling method previously developed to place alcohols on the 

surface of the array above the electrodes.32 In this reaction, a Cu(II)-PEG complex undergoes an 

electrophilic substitution on the aromatic ring that exchanges the borate ester for Cu(II)-PEG. A 

reductive elimination then couples the PEG to the aryl ring. The electrode is then used to 

regenerate the Cu(II)-catalyst. 

The success of this reaction was demonstrated by showing that the addition of PEG-polymer 

groups decreased the water contact angle of the surface from 78.3⁰ to 55.1⁰ (sessile drop 

technique).33,23 In this experiment, a drop of water is placed on a surface and then the contact 

angle between the surface and the water droplet is measured (Drop analysis, Image J software) to 

determine the hydrophobicity of the surface. The decrease in contact angle indicates that the 

functionalized surface is now more hydrophilic.  
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In addition, functionalization of the diblock copolymer with PEG-16 led to an increase in the 

magnitude of the current measured for the redox mediator (ferrocene carboxylic acid, FCA) and 

Figure 4.7. Sessile drop technique. Water droplet was placed on a non-PEGylated array 

surface (left) and a PEG-functionalized array surface (right). Contact angle measurements 

were made on three independent drops and data represents mean (±standard deviation).   

Figure 4.8. CV for ferrocene carboxylic acid (FCA) with the PEG-functionalized polymer 

(red line) and unfunctionalized polymer (black line).  
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a change in the overall shape of the wave relative to that obtained with the non-PEG-

functionalized surface (Figure 4.8). Both observations can be explained by the change in the 

nature of the polymer caused by the incorporation of the hydrophilic PEG-16 group. The more 

hydrophilic polymer swells better in water, a situation that allows higher adsorption of the iron 

species into the polymer leading to a higher peak-current. This increase in peak-current is 

beneficial for the subsequent binding experiments because it makes it easier to detect changes in 

the current when binding events occur on the surface of the electrode. 

4.2.2 Ferrocene carboxylic acid (FCA), a new redox mediator for CV studies on PEG-

functionalized arrays 

Most of our early work with block copolymers utilized a bromine substituted polystyrene 

block (Figure 4.4, X = Br) to attach molecules to the array. Dr. Libo Hu had modified this 

polymer with PEG-groups to perform studies described in the introduction. The 

ferricyanide/ferrrocyanide couple has been used most frequently in connection with this 

polymer.19,23,25 While the use of the bromostyrene based polymer was effective, a desire to build 

tunable surfaces on the arrays led to the development of a diblock copolymer that contained a 

borate ester substituted polystyrene block (Figure 4.4, X = Bpin). While this new polymer 

offered numerous synthetic advantageous, the use of the borate ester on the array initially led to 

the same issues during subsequent cyclic voltammetry studies that we had seen in the original 

PEG-functionalized surface studies. Namely, the surface appeared to adsorb iron during the CV 

experiment, and the current measured for a ferricyanide redox mediator on an array coated with 

the borate ester polymer was not stable.23 Fortunately, it was discovered that this drift on the 

borate ester surface stabilized with time. Would this also be true for a PEGylated surface?  
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As part of the effort to address this question, we decided to study 

the use of a second redox mediator on the arrays in addition to the 

ferricyanide/ferrocyanide used in most of our previous studies. We 

hoped that switching the redox mediator to one based on the highly 

reversible and stable ferrocene/ferrocenium redox couple, FCA 

would reduce the adsorption of iron by the surface. The use of the 

carboxylic acid-functionalized version of ferrocene (Figure 4.9) was 

due to its increased water solubility, a major factor in FCA being 

selected for use in numerous other electrochemical biosensors.34,35  

Before discussing the specific experiments, it is essential to note that a CV obtained using the 

arrays is not a “normal” CV with a reference electrode. Instead, the CV registers the relative 

potential drop across the cell that leads to the current flow and thus, the potentials measured on 

an array cannot be compared to literature potentials measured with reference electrodes. In fact, 

the potential at which the signal is observed can drift from experiment to experiment depending 

on the overall resistance of the cell. Hence, it is essential not to ‘read’ into changes along the X-

axis of the CVs recorded.    

The first experiment attempted examined whether the currents measured on the PEG-

functionalized surface would stabilize over time, and if so, which mediator would serve best in 

this capacity. To test this, two microelectrode arrays were coated with the borate ester diblock 

copolymer and then functionalized by every electrode with PEG-16. The functionalized array 

was then covered with a buffer solution containing either ferricyanide or FCA with potassium 

nitrate as the electrolyte. The current measured for a series of 50 CV experiments using either the 

ferrocyanide based or FCA based mediator (Figure 4.10). The data quickly showed that the use 

Figure 4.9. Ferrocene 

carboxylic acid (FCA).  
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of the FCA mediator did lead to a stabilization of the current at a much faster rate than was 

observed with the ferrocyanide mediator. The peak-current for both experiments did eventually 

stabilize.  

Figure 4.10. CV scans (1-50) obtained from PEG-functionalized array surface. Ferricyanide 

(left) and FCA (right) used as a redox mediator.  

Figure 4.11. CV scans (20-40) obtained from PEG-functionalized array surface. Ferricyanide 

(left) and FCA (right) used as a redox mediator.  
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With the use of FCA, the peak-current stabilized after approximately 20 CV scans. The 

superiority of the FCA experiment can be further seen by examining scans 20-40 for a pair of 

CV experiments that were run out to 64 scans (Figure 4.11). Again, the true reproducibility of 

the data obtained with FCA can be clearly seen. Based on this finding, all of the studies 

discussed below were conducted with FCA as the redox mediator.  

4.2.3 BSA non-specific binding study on the PEG-functionalized array surface  

Once a baseline peak-current was established, the PEG-functionalized array and the CV 

strategy forwarded above was examined for its compatibility with CV-based binding studies. For 

this experiment, non-specific binding of BSA to the polymer coating on the array was studied. 

Hence an array coated with PEG-16 modified diblock copolymer was incubated in a 1 picomolar 

(pM) solution of BSA in HEPES buffer containing FCA and potassium nitrate as an electrolyte. 

A block of twelve electrodes on the array was used to collect CV data for FCA. In the first trial, 

30 CVs were run in order to make sure that the anodic current for the oxidation of iron (Fe2+) 

was stabilized. This procedure was repeated using two additional blocks of twelve electrodes. 

The current obtained from each of the three blocks of electrodes was then averaged and recorded 

with the spread in the data determining the error bars used for the point. Following the 

experiment with 1 pM BSA, the array was washed three times with an electrolyte solution that 

contained 10 pM BSA. The CV experiment was then repeated in triplicate using a new 

concentration of BSA. Again, the peak-current was measured after 30 CV scans. This procedure 

was then repeated each time increasing the concentration of the protein in solution by a factor of 

ten. The experiment was stopped at 1 mM BSA. The data obtained was then plotted on a chart 

that compared the relative current change to the concentration of BSA in solution (Figure 4.12). 

The data in the chart was normalized by assigning the highest peak-current measured on the 
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array a value of zero (drops in the current are all relative numbers) and the lowest peak-current 

on the array a value of one. In this way, larger percent changes in the graph relate to greater 

binding of BSA to the surface. As indicated above, the error bars shown in Figure 4.12 show the 

spread in the data recorded at three separate sites on the array for each concentration of BSA. 

This variance in the data was small relative to the total drop in current. Hence, we concluded that 

the surface of the array did have the uniformity necessary for the analytical experiment.   

 

The evidence showing the PEG-16-functionalized polymer to be compatible with the CV 

experiments led to two immediate questions. First, do we need to collect 30 CV scans in order to 

get a binding profile for the non-specific binding? In other words is the rate of change initially 

associated with the adsorption of iron equal to the rate of change after stabilization? If so, then 

the experiment can be conducted without waiting for the 30 CV scans as long as each experiment 

Figure 4.12. Curve for the non-specific binding of BSA to an array coated with a PEG-

functionalized array using 30th CV scan. The curve represents normalized data (mean ± SD, 

n=3). 
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is run at the same time point. Second, did the presence of the PEG pacify the surface at all, and if 

so would a longer PEG polymer be better or worse?  

4.2.4 Comparison of binding profiles before and after current stabilization 

As mentioned, the binding profile described in Figure 4.12 was obtained using the 30th CV 

scan after the current had stabilized. This is potentially problematic because waiting for the 

current to stabilize increases the overall time of the experiment. The can be an issue with protein 

stability. So did we have to wait, or would the rate of change be consistent enough for us to 

conduct experiments prior to complete stabilization? The answer to latter question was yes. The 

experiment illustrated in Figure 4.13 compared the non-specific binding of BSA to the 

PEGylated surface for three different experiments. In one (a repeat of Figure 4.12), the peak-

current used to generate the graph was taken from the 30th CV scan at each concentration of 

BSA. Again, this was to make sure that the system would be fully equilibrated and current was 

stable. In the second, the peak current for the 10th CV scan at each concentration of BSA was 

used to generate the binding profile. In the third, the current for the 1st CV scan at each 

concentration of BSA was used. The goal of this experiment was to determine if the drift in 

current could be completely ignored. While the raw CV data in the three experiments did vary 

significantly, the change in that data relative to the amount of BSA present did not. All three 

experiments generated the same binding curve for non-specific binding of BSA to the PEGylated 

surface. Since the initial change in current occurs at a consistent rate, the same overall binding 

data can be obtained at any time point as long as the same time point is used. However, this 

generalization might not be applicable to all protein studies. Hence, for future studies, a similar 

experiment would be repeated to check if it is necessary to conduct 30 CV scans for each 

concentration before recording the data. 
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4.2.5 PEG-functionalized array surface reduces non-specific binding of BSA  

The second question about pacification of the surface and the use of longer PEG-polymers 

was asked because longer PEG polymers are often superior in terms of pacifying a surface 

toward non-specific binding events.29 To test the idea, an array coated with the borate ester 

diblock copolymer was functionalized with a PEG mono methyl ether that was made of 40 repeat 

units (PEG-40). The experiment to measure non-specific binding events on the surface was 

repeated using the exact same protocol used for the PEG-16 modified surface. The data was 

plotted along with the data obtained with the PEG-16 surface and the data obtained for a non-

Figure 4.13. BSA non-specific binding experiment. Binding curves generated at different 

time points.  
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PEGylated surface (Figure 4.14). The binding experiment with the PEG-40-modified polymer-

coated array worked very well. The shape of the curve for the non-specific binding of BSA to 

this surface (red dots) was nearly identical to the curve obtained with either the PEG-16-

modified polymer (green squares) or the unmodified system (blue triangles). However, the 

surface functionalized with the PEG-40-modified polymer showed lower non-specific binding 

than did the other alternatives. Note how at each concentration of BSA greater than 10−7 M, the 

relative change for the PEG-40 modified problem was significantly smaller than the other two 

curves. In this way, the use of the longer PEG was not only compatible with the experiment, but 

also more successful in pacifying the surface to non-specific interactions with BSA.  

Figure 4.14. Comparison of polymer-coated array surface functionalized with different 

lengths of PEG.  
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At this time, the exact origin of the difference between the PEG-16 and the PEG-40 is not 

known. It might be that the greater pacification of the surface with PEG-40 is simply due to its 

larger size. Alternatively, the greater suppression of background binding may be due to better 

surface coverage of the electrode. Currently, we do not have an accurate assessment of surface 

coverage for the two polymers. In principle, this can be done by placing the PEG-oligomers on 

the surface of the array and then using the same chemistry to place small fluorescent probes on 

the surface. The extent of fluorescence would give an approximation of how much surface area 

the PEG-oligomer covered.  

4.3 Conclusions  

PEG-modified diblock copolymer coated microelectrode arrays can be used in analytical 

experiments that monitor the current associated with an iron redox couple as long as the 

experiments are conducted at a consistent point in time. That point in time can be the first CV 

scan taken, a scenario that minimizes the overall time required for conducting an analysis. These 

findings open the door for the use of PEG-polymers on microelectrode arrays for reduction of 

non-specific binding of proteins and as linkers. Chapter 5 of this dissertation will focus on 

binding studies carried out by purified Gα subunits. 

4.4 Experimental section 

Unless noted otherwise, all chemicals were ordered from Sigma Aldrich (St. Louis, MO). All 

other vendor information is noted in the experimental section. The ElectraSense® reader and 12-

K microelectrode arrays can be purchased from CustomArray,Inc. (Bothell, WA). The 

microelectrode arrays (containing 12,544 electrodes/cm2) were spin-coated using a MODEL 
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WS-400B-6NPP/LITE spin-coater (Laurell Technologies Corporation, North Wales, PA). For 

voltammetric measurements, the reader is used to activate selected electrodes on the array and an 

external BAS 100B/W potentiostat controls the potential sweep and records the currents 

measured.  

4.4.1 Procedure for coating arrays with block copolymer 

The diblock copolymer Polycinnamoyloxy ethyl methacrylate-b-poly-4-

pinacolatoborylstyrene (PCEMA-b-pBSt, Figure 4.4, X = Bpin) was prepared by Matthew 

Graaf as previously reported.23 Three drops of 0.03 g/mL block copolymer solution (PCEMA-b-

pBSt in 4:1.5 DMF/THF) were placed on the array making sure that the entire electrode area of 

the array was covered. The array was then spun at 800 rpm for 40 secs. The block copolymer 

coating was allowed to dry for 15 min and then cross-linked using a 100 W mercury lamp for 15 

min before use. 

4.4.2 PEGylation of PCEMA-b-pBSt polymer using Chan-Lam coupling on arrays 

Scheme 4.1. Chan-Lam type coupling reaction on a microelectrode array. 
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The following procedure was adapted from the known Chan-Lam coupling.23,32 Poly 

(ethylene glycol) methyl ether-750 (10.0 mg) and 50.0 mg of tetrabutylammonium 

hexafluorophosphate were dissolved in 1.0 mL of DMF. To this solution, 50.0 µL of a 25 mM 

copper(II) acetate in water solution was added. The contents were mixed, and then 120 µL of this 

solution was added to the array. The array was placed into an ElectraSense reader and all 12,544 

electrodes selected and used as anodes. A potential of +2.4 V relative to the auxiliary electrode 

was used to pulse the electrodes for 20 cycles of 30 s on and 10 s off. After completion of 

reaction, the array was washed extensively (~5-7 mL) with 95% ethanol.  

4.4.3 Contact angle measurements 

Contact angles were measured with the sessile drop technique.33 Pictures were taken from a 

Nikon camera equipped with a microlens (Dr. Joshua Maurer). Contact angles measurements 

were made using drop analysis (Image J software, Bethesda, MD).   

4.4.4 General procedure for conducting CV experiments on a 12-K array 

CV was carried out on a BAS 100B Electrochemical Analyzer potentiostat (BAS 100W 

version 2.31 control software). A 12-K microelectrode array was cleaned with Nano-strip 

(Cyantek Corporation, Fremont, CA) and spin coated with the block copolymer solution as 

described in Section 4.4.1. The cross-linked polymer was then functionalized next to the 

electrodes as described previously.24 An iron solution (120 µL/ either 5 mM ferrocene carboxylic 

acid or 8 mM ferrocyanide and 8 mM ferricyanide) in 20 mM HEPES, pH 8.0 with 0.1 M 

potassium nitrate that contained a predetermined concentration of BSA was added onto the PEG-

functionalized array. The array was then placed in an ElectraSense reader and one block of 12 

electrodes was activated. CV measurements were made by sweeping the potential at selected 
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electrodes on an array from −800 to 800 mV at a scan rate of 400 mV/s. The potential in these 

experiments refers to the difference in potential of the working electrode relative to the counter 

electrode; a platinum plate of area 0.75 cm2 located approximately 650–800 µm away from the 

array with an O-ring. Each experiment was conducted at three independent blocks of 12 

electrodes each chosen randomly from different areas of the array. After the measurement was 

made for a concentration of BSA in solution, the array was washed with the next concentration 

of BSA by injecting and withdrawing the solution three times. Detailed protocols on operating 

the microelectrode arrays have been published.25  
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Chapter 5: Testing G protein Compatibility 

Towards Microelectrode Arrays  

 

5.1 Introduction 

In Chapter 4, the PEGylation of microelectrode array surface was discussed as an approach 

to reduce non-specific binding between proteins and the array. In addition, the compatibility of 

PEG groups with the analytical studies on the arrays provides an opportunity for the utilization 

of PEG-based linkers. Prior to screening small molecules for their binding interactions with 

purified Gα subunits, it is essential to examine whether the electroanalytical approach is 

compatible with the G proteins. Does binding of the protein to the surface of the array alter the 

capacitance of the surface? Is the protein inert to the iron species used as the mediator in the 

reactions? In order to answer these questions and further develop the analytical capabilities of the 

arrays so they can be used to study G protein interactions, the work described in this chapter was 

dedicated towards determining the non-specific binding of G proteins to the surfaces used on the 

arrays, and demonstrating that we can see a known interaction between a short peptide and a G 

protein above the background signal using the arrays. To this end, we have shown the 

capabilities of the arrays for detecting in real-time the binding of the peptide R6A to Gαi1.  

5.1.1 Use of purified Gαi1 for background experiments  

As mentioned in Chapter 2, both Gαi1 and Gαo can be easily expressed and purified from 

E.coli (in comparison to insect cells) in large quantities. Therefore, we wanted to perform the 

background control experiments using one of these two, much more readily available proteins. 

Using CLUSTALW2 sequence alignment software (The European Bioinformatics Institute 
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Table 5.1. CLUSTAL 2.1 sequence alignment summary.  

(EMBL-EBI), Cambridge, UK), we found that Gαi1 exhibits ~55% homology to Gαq making this 

protein a desirable candidate to perform optimization studies on the arrays (Table 5.1 shows 

homology results from sequence alignment). For our future studies, we hope to use the arrays to 

evaluate the selectivity of YM analogs for a series of G proteins, one of which will be Gαi1. 

Hence, this protein was selected for our initial study.  The effort began with an assessment of the 

non-specific binding of Gαi1 to the PCEMA-b-pBSt-polymer-coated array, and the influence 

coating the surface with PEG might have.   

Seq A Name Length Seq B Name Length Score 

1 Gαo 354 2 Gαi1 354 72.32 

1 Gαo 354 3 Gαq 353 52.69 

2 Gαi1 354 3 Gαq 353 55.52 

 

5.1.2 Testing specific binding of Gαi1 to small molecules 

In order to test the capability of the arrays to monitor small molecule-G protein interactions, 

we needed to pair Gαi1 with a small molecule that it is known to bind with. In general, short 

peptides have been used extensively to either activate or antagonize G proteins.1–4  A polypeptide 

found at the C-terminus of the AGS3 protein is known to specifically bind to the Gαi class of G 

proteins and slow its ability to spontaneously exchange nucleotides. We have already introduced 

this 28 amino acid long peptide in Chapter 3 so we knew that it binds to our purified Gαi1. This 

AGS3-derived peptide is known to bind Gαi1 with micromolar affinity (KD = ~1µM)5 and inhibit 

GDP-GTP exchange in a manner similar to that of YM blocking the interdomain movement in 



120 
 

Figure 5.1. Non-specific binding of Gαi1 on PCEMA-b-pBSt polymer-coated array.  

Gαq.
5,6 In addition, another peptide known as R6A was identified that exhibits high affinity (KD = 

60 nM) towards Gαi1.
7 Based on this data, we selected AGS3 and R6A as peptide ligands for 

Gαi1 in our array based studies.  

5.2 Results and discussion  

5.2.1 Gαi1 non-specifically binds to the PCEMA-b-pBSt polymer-coated array 

 

In order to examine the behavior of Gαi1 towards the polymer-coated microelectrode arrays, 

an electroanalytical signaling experiment was conducted.  To this end, a microelectrode array 

was spin coated with the PCEMA-b-pBSt polymer and a set of CV experiments were conducted 

using increasing concentrations of Gαi1. These experiments were similar to the ones carried out 

in connection with the non-specific binding of BSA to the arrays discussed in Chapter 4. Data 
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from 3rd CV taken at each concentration was analyzed to obtain a peak-current that was in turn 

plotted with respect to the concentration of Gαi1
 in the solution above the array. The data in 

Figure 5.1 represents the average of the peak-current measured at three different sites on the 

array. The average peak-current was plotted as a percent change based on a normalized curve 

with the highest current being measured given a value of zero and the lowest current measured a 

value of one. The standard deviation of the relative change for the three sites on the array at each 

protein concentration provides the error bars shown in the figure. As visible from the data in 

Figure 5.1, a non-specific binding interaction between the protein and the surface of the array 

did occur starting with a protein concentration of around 10-8 M.  In other words, Gαi1 starts 

adsorbing on the polymer surface after 10-8 M (~30 % binding based on the data provided). This 

is a significant amount of non-specific binding that we hoped to reduce by the addition of PEG 

groups to the polymer.  

5.2.2 PEG-modification of polymer did not reduce non-specific binding of Gαi1  

The attempt to minimize the non-specific binding event shown in Figure 5.1 utilized the 

PEG-40 group that had proven effective in connection with the previous BSA binding studies. In 

the experiment, half of the electrodes (top half of array) on a PCEMA-b-pBSt polymer-coated 

array were functionalized with the PEG-40 polymer. The lower half was left unfunctionalized. 

The array was then incubated with varying concentrations of Gαi1 and then in each case CVs 

were obtained for each concentration at selected blocks (four blocks each for the PEG-40 

functionalized surface and for a set of unfunctionalized control blocks). The peak-current was 

assessed after three CV scans at each concentration of the receptor. The raw CV data is shown in 

Figure 5.2.  
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Figure 5.2. Gαi1 non-specific binding on unfunctionalized surface (left) and PEG-40 

functionalized surface (right). Conditions: 5 mM FCA dissolved in 20 mM HEPES, pH 

8.0 with 0.1 M potassium nitrate. Gαi1 concentration varied from 10-12 to 10-5 M.  

  

The first thing that we noticed was that CV scans obtained from unfunctionalized surface 

(left) drifted on horizontal scale more than the CV scans obtained from PEG-40-functionalized 

surface. This is an example of why we measured peak-current by noting the change in current 

between the baseline and the peak and did not simply record the current at a given potential. The 

second observation that we made was that the relative current change at each concentration was 

similar for both surfaces except for the very last concentration. At 10-5 M, there was a sudden 

change in current associated with the unfunctionalized surface. But no concrete conclusions are 

made from raw CV scans and therefore we normalized the data as explained before. Figure 5.3 

summarizes the binding curve generated for Gαi1 non-specific binding to the unfunctionalized 

(black dots) and PEG-40-functionalized surface (red square). Clearly, Gαi1 binds to both surfaces 

in a similar fashion. The non-specific binding starts after 10-8 M and if we were monitoring weak 

binding interactions, PEG-40 is not the answer to reducing non-specific binding interactions 

between the surface and Gαi1.  
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Figure 5.3. Binding curve generated for Gαi1 non-specific binding to unfunctionalized surface 

(black dots) and PEG-40-functionalized surface (red squares). The curve represents 

normalized data (mean ± SD, n=3). 

 

While the PEG-groups did not solve the non-specific binding issue encountered, it was 

becoming clear that the studies were a success. One of the biggest motivations for the project 

was to determine whether G proteins were compatible with the analytical experiments on the 

microelectrode arrays and the use of the iron mediators employed to date for such studies. In this 

regard, the preliminary results shown above did demonstrate the viability of the experiments.    

While the level of background binding was disconcerting, we had previously shown that the 

detection of specific binding event can be amplified by the use of an array. For example, the  

nanomolar binding of an RGD peptide to its integrin receptor was observed with picomolar 

concentrations of receptor in solution.8 If a similar amplification was seen in the case of G 

proteins, then we might be able to see a specific interaction between AGS3 and Gαi1 before or on 

top of the non-specific binding event.   
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5.2.3 Binding of AGS3 peptide to Gαi1  

AGS3 peptide has been expressed in E.coli cells with a N-terminal His6 tag without affecting 

its binding to Gαi1.
6 Hence, it would appear that the protein tolerates steric bulk at the N-terminal 

side of the peptide, an observation consistent with using that location for attaching the peptide to 

the array. For that purpose, the AGS3 peptide was ordered with a cysteine on the N-terminus. 

The peptide was then placed onto our PCEMA-b-pBSt polymer-coated array utilizing the Chan-

Lam coupling via the cysteine.9–11 As a control that provides a measure of non-specific binding 

to the polymer coating, we added a random tetra-peptide (CYAL) to blocks of electrodes on the 

array in addition to the AGS3 peptide. We used the peptide instead of analyzing blocks of 

electrodes with an unfunctionalized surface because the presence of the short peptide tends to 

swell the polymer upon incubation with aqueous buffer. This increases the conductance of the 

surface and leads to peak-currents of a magnitude that can be more readily compared with those 

obtain for the electrodes coated with the AGS3-functionalized polymer. Hence, the top part of 

PCEMA-b-pBSt polymer-coated array was functionalized with AGS3 and the bottom part of the 

array was functionalized with CYAL. The middle of the array was left unfunctionalized. The 

functionalized array was then incubated with solution containing the redox mediator and Gαi1. 

Five CV scans were then taken at each block of electrodes selected for the study for each 

concentration of the protein employed.  

Figure 5.4 illustrates the binding curves generated from three different types of electrodes in 

the array. Once again, non-specific binding of the protein to the surface of the array started at a 

concentration of protein around 10-7 M. This was true for both the unfunctionalized and 

functionalized surface with the CYAL peptide. Unfortunately, the data generated from the 

electrodes functionalized with the AGS3 peptide was not statistically different from the 
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Figure 5.4. Binding curve generated for Gαi1 binding to AGS3-functionalized (red triangle); 

CYAL-functionalized (blue dots) and unfunctionalized surface (black squares). The curve 

represents normalized data (mean ± SD, n=3). 

 

background data. No additional binding due to a specific interaction could be observed. Either 

the background level was simply too high or the surface bound peptide did not bind to the 

protein. There was a concern over the ability of the surface bound AGS3 to bind the receptor 

because the peptide was placed directly onto the polymer-coated array without a linker. Hence, 

sterics may have made the peptide inaccessible to the protein. With that in mind, we decided to 

repeat the experiment with a linker and with a peptide known to have better affinity for Gαi1.   

 

5.2.4 Binding of R6A peptide to Gαi1  

In vitro selection using mRNA display libraries based on the AGS3 motif has revealed a set 

of novel peptide sequences with conserved residues that are known to bind Gαi1 with higher 
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Figure 5.5. Binding curve generated for Gαi1 binding to R6A-functionalized (red dots); and 

unfunctionalized surface (black squares). The curve represents normalized data (mean ± SD, 

n=3). 

 

affinity.7 The dominant peptide from this selection, R6A, was shown to bind Gαi1 with a binding 

constant, KD = 60 nM as measured by surface plasmon resonance (SPR).7 Since this peptide is a 

stronger binder of Gαi1, it made for an ideal candidate for assessing the capabilities for the arrays 

to monitor small molecule-G protein interactions. In a preliminary experiment, the R6A peptide 

was placed on an array without a linker. To this end, half of a PCEMA-b-pBSt polymer-coated 

array was functionalized with the R6A peptide. This array was then incubated with a solution 

containing the redox mediator and Gαi1. Since R6A specifically binds to GDP bound Gαi1, the 

solution above the array contained 25 µM GDP to ensure GDP-bound state of Gαi1. CV scans 

were then collected for the electrodes increasing concentrations of the protein as in the previous 

experiments. The data was normalized as before to obtain a binding curve depicted in Figure 

5.5.  
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The large error bars associated with the data obtained for the unfunctionalized surface 

indicate a significant problem with the experiment. Typically we use small error bars relative to 

the total change of current on the array to characterize a polymer coating as having uniform 

electrochemical properties. Clearly, that was not the case in this experiment and a problem with 

the polymer coating was suspected. Nevertheless, it was clear from the data obtained using R6A-

functionalized electrodes that a binding event with the protein did not happen at the expected 

protein concentration. Instead, the data appeared similar to the one obtained for the non-specific 

binding of Gαi1 to the surface. Clearly something was amiss. Two changes were needed for a 

definitive experiment. First, a linker had to be placed between the peptide and the surface in 

order to move the ligand away from the array. This was needed in order to make the peptide 

more accessible to the protein. Second, a scrambled version of the R6A peptide had to be placed 

on the array using the same linker employed for the R6A peptide. This was needed in order to 

establish a more accurate baseline for non-specific binding in the experiment. What is the exact 

non-specific binding curve generated for the functionalized surface and with the linker in place 

could we see the known specific binding between R6A and Gαi1?   

5.2.5 Binding of R6A peptide conjugated with a PEG linker to Gαi1  

With respect to the linker, we decided to place a PEG group at the C-terminus of R6A. The 

R6A peptide has been expressed in E.coli with a maltose-binding protein (MBP) tag on the C-

terminus without a loss of binding affinity.7 In the same paper, authors had immobilized R6A for 

the SPR experiments via its C-terminus. Therefore, we knew modification at the C-terminus will 

not affect its ability to bind Gαi1. As for the length of the linker, we decided to place a PEG-6 

linker (length ~32 Å) at the C-terminus of the peptide followed by a cysteine. This length of 

linker was decided because of its commercial availability. The thiol of the cysteine was used to 



128 
 

attach the molecule to the array in order to capitalize on the same array chemistry employed 

earlier.  

Next we needed a scrambled version of R6A. Consequently, the peptide sequence of R6A 

was inserted into a scrambled peptide generator (mimotopes, the peptide company). This 

generator provides multiple permutations of the original sequence and the first generated 

sequence was used as the scrambled R6A peptide for our binding study. The scrambled version 

of the R6A peptide was then modified in the same way with PEG-6 conjugated at the C-terminus 

followed by a cysteine so it could be placed on the array in a manner identical to R6A.  

The experiment was initiated with the functionalization of the array using R6A-PEG-6, an 

LRSC tetra-peptide (to make sure the polymer coating was behaving properly from an 

electrochemical standpoint) and scrambled R6A- PEG-6. Unlike our other signaling experiments 

where we use a block of 12 electrodes to run CV, we decided to use blocks of 65 electrodes each. 

Blocks with a greater number of electrodes generate ‘nicer’ CVs because of the larger currents 

that are involved. The larger current makes it easier to detect changes in peak-current. In 

addition, our range for the concentration of Gαi1 started with 10-15 M. The iron solution 

containing varying amounts of Gαi1 was incubated onto the functionalized array for 3 min before 

generating CV scans (3 min incubation time was decided based on the previously reported SPR 

study7). Figure 5.6 summarizes the results from this binding experiment.  

As seen from the figure, there is a minimal relative change in current associated with LRSC-

functionalized electrodes throughout the experiment. It seems like the presence of the tetra-

peptide did suppress the non-specific binding to the surface. The same could not be said for the 

surface functionalized with the scrambled R6A peptide. In this case, a strong non-specific 

interaction was seen right from the start of the experiment. It seems that Gαi1 sits down well on 
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the peptide surface and quickly interferes (impedes) the iron mediator from reaching the 

electrode below. Interestingly, the specific binding interaction known to occur with R6A affects 

the experiment in the opposite fashion. The binding of Gαi1 to the surface causes an increase in 

current (why the opposite direction for the “curve”). This is not uncommon. Binding of the 

peptide to a molecule at the end of a tether attached to the surface does little to sterically block 

the surface of the electrode. However, it can nicely improve the swelling of the polymer and in 

so doing increase both the amount of iron that absorbs into the polymer and the rate of diffusion 

to the surface of the electrode. Both of these effects increase the conductivity of the surface. 

Hence, while Gαi1 interacts with both the surfaces, one functionalized with the scrambled R6A 

and the other functionalized with R6A, at roughly the same concentration, it does so with a 

different mechanism leading to opposite changes in the conductivity of the surface. The result is 

that the interaction with the R6A peptide can be clearly seen “over” the background signal. In 

fact, the observation that the binding curve “drops” in spite of the background impedance due to 

non-specific binding suggests a stronger interaction with the R6A peptide at the lower 

concentrations.   

One method for examining the interaction between R6A and Gαi1 more clearly is to subtract 

the non-specific background peak-current from the peak-current measured for R6A. After all, 

this was the reason that the scrambled peptide was placed on the array so that the most accurate 

non-specific binding current could be obtained. The result of subtracting the background peak-

current from the R6A data is shown in Figure 5.7. The data shows the clear increase in 

conductance associated with the binding event, and then saturation of that signal at a higher 

protein concentration where the current stabilizes.  
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Figure 5.6. Binding curve generated for Gαi1 binding to scrambled R6A-PEG-6-

functionalized (black squares); LRSC-functionalized (red dots) and R6A-PEG-6 

functionalized surface (blue triangles). The curve represents normalized data (mean ± SD, 

n=3). 

 

It does appear that the use of array to measure the binding event has amplified the signal to 

the point where we are only seeing the final portion of a binding curve. According to the 

literature, R6A is a nanomolar binder for Gαi1.
7 As mentioned earlier we have seen similar 

amplifications of binding events on the array when examining RGD-peptide/integrin interactions 

(another nanomolar binder). The literature suggests that the increase in binding is associated with 

an exchange of the protein between peptide ligands on the surface of the electrode that does not 

allow the protein to escape from the electrode surface even when it is not bound.12 This 

amplification can in principle be reduced by decreasing the surface coverage of the peptide 

ligand on the electrode (discussed in Section 6.2). Future work will take advantage of this 

chemistry in order to “move” the binding curve generated for the R6A-Gαi1 interaction back 

toward the nanomolar range where it can be properly observed and analyzed.  
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Figure 5.7. Binding curve generated for Gαi1 binding to scrambled R6A-PEG-6-

functionalized (black squares); and R6A-PEG-6 functionalized (red dots). Average peak-

current from 3 data groups was normalized to the peak-current obtained from scrambled 

R6A-PEG-6 functionalized surface; error bars represent standard deviation.  

 

5.3 Conclusions  

In conclusion, we have shown the compatibility of G proteins with the electroanalytical 

methods employed on microelectrode arrays. In addition, our preliminary results depict a known 

binding interaction between a short peptide, R6A and Gαi1 using arrays. The signal for the 

binding event was seen above the non-specific background signal associated with a scrambled 

R6A peptide. While the overall technique was successful, additional experiments will be 

performed because the desired interaction is amplified by the array to a point where it is partially 

obscured by the detection limits of the technique. Moreover, this binding study showed that the 

random tetra-peptide, LRSC can be used to reduce non-specific binding of Gαi1 to the polymer-

coated array.   
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5.4 Experimental section 

Unless noted otherwise, all chemicals were ordered from Sigma Aldrich (St. Louis, MO). All 

other vendor information is noted in the experimental section. Basic procedure for conducting 

electrochemical experiments and cyclic voltammetry has been discussed in detail in Chapter 4.  

5.4.1 Gαi1 non-specific binding to PEGylated PCEMA-b-pBSt polymer-coated array 

The following procedure was adapted from the known Chan-Lam coupling.9,10 Poly (ethylene 

glycol) methyl ether (n=40), MW= ~2,000 (10.0 mg) and 50.0 mg of tetrabutylammonium 

hexafluorophosphate were dissolved in 1.0 mL of DMF. To this solution, 50.0 µL of 25 mM 

copper (II) acetate solution was added. Contents were mixed, and then 120 µL of this solution 

was added to the array. The array was placed into an ElectraSense reader and half of 12,544 

electrodes were selected and used as anode. A potential of +2.4 V relative to the auxiliary 

electrode was used to pulse the electrodes for 20 cycles of 30 s on and 10 s off. After reaction 

completed, the array was washed extensively (~5-7 mL) with 95 % ethanol.  

Upon functionalization of half of the electrodes on the array with PEG-40, non-specific 

binding experiment was initiated. Accordingly, general procedure for conducting CV 

experiments on a 12-K array as mentioned in Section 4.4.4 was followed except instead of BSA, 

array was incubated with Gαi1 (concentration range 1 pM to 10 µM). 4 blocks (12 electrodes 

each) were selected from functionalized and unfunctionalized part of the array to conduct CV 

experiments. The data was analyzed and graphed using MS excel and Origin 9.0 respectively.  
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5.4.2 Binding of AGS3 peptide to Gαi1 on a microelectrode array 

AGS3 peptide (CTMGEEDFFDLLAKSQSKRMDDQRVDLAG, purity > 90 %) and a tetra-

peptide (CYAL, purity > 90 %) were purchased from Genscript (Piscataway, NJ). The C 

terminus of both peptides was blocked by amidation and the N terminus by acetylation. Peptides 

were delivered as white lyophilized powder and were used without further purification.  

AGS3 peptide (3.0 mg) and 15.0 mg of tetrabutylammonium hexafluorophosphate were 

dissolved in 300 µL of DMF. To this solution, 15.0 µL of 25 mM copper(II) acetate solution was 

added. Contents were mixed, and then 120 µL of this solution was added to the array. The array 

was placed into an ElectraSense reader and 1000 electrodes were selected and used as anode. A 

potential of +2.4 V relative to the auxiliary electrode was used to pulse the electrodes for 20 

cycles of 30 s on and 10 s off. After completion of reaction, the solution was replaced with fresh 

solution and the reaction was run again (20 cycles of 30 s on and 10 s off). Upon completion of 

reaction, the array was washed extensively with 95 % ethanol. In order to functionalize array on 

new 1000 electrodes with tetra-peptide (CYAL), the same procedure was carried out.   

Upon functionalization of array with both AGS3 and CYAL peptide, binding experiment was 

initiated. 125 µL of Gαi1 (final concentration 100 µM) was added to 180 µL iron solution (18 mg 

FCA dissolved in 50 mM Tris-HCl pH 8.0, 1 mM EDTA, 10 mM MgCl2 and 0.1 M potassium 

nitrate).  From here serial dilutions starting from 100 µM to 1 pM (500 µL each) were prepared. 

All protein solutions were placed at 0 ⁰C. General procedure for conducting CV experiments on 

a 12-K array has been mentioned in Section 4.4.4. The electrochemical analysis began with CV 

tests at each block of electrodes using blank iron solution (no protein added). This part was done 

to select 4 blocks (12 electrodes each) from AGS3-functionalized, CYAL-functionalized and 

unfunctionalized part of the array to conduct CV experiments. Binding experiment was initiated 
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by incubation of iron solution containing the lowest concentration of Gαi1 onto the array for 3 

min and then running three CV scans for every selected block (total 12 blocks). The conditions 

for the CV included a potential sweep from -700 mV to + 700 mV and back again at a scan rate 

of 400 mV/s. In these experiments, the potential refers to the potential of the electrodes on the 

array relative to the platinum-counter electrode located on the hyb-cap. Before moving on to 

higher concentrations, the array was washed once with the next concentration of protein. Data 

from CV scan # 2 from every block was analyzed and graphed using MS excel and Origin 9.0 

respectively.  

5.4.3 Binding of R6A peptide to Gαi1 on a microelectrode array 

R6A peptide (MSQTKRLDDQLYWWEYLC, purity >90 %) was purchased from Genscript 

(Piscataway, NJ). The C terminus of the peptide was blocked by amidation and the N terminus 

by acetylation. Peptide was delivered as a white lyophilized powder. 

R6A peptide (3.0 mg) and 15.0 mg of tetrabutylammonium hexafluorophosphate were 

dissolved in 300 µL of DMF. To this solution, 15.0 µL of 25 mM copper(II) acetate in water 

solution was added. Contents were mixed, and then 120 µL of this solution was added to the 

array. The array was placed into an ElectraSense reader and 1000 electrodes were selected and 

used as anode. A potential of +2.4 V relative to the auxiliary electrode was used to pulse the 

electrodes for 20 cycles of 30 s on and 10 s off. After the reaction completed, the solution was 

replaced with fresh solution and the reaction was ran again (20 cycles of 30 s on and 10 s off). 

Upon completion of reaction, the array was washed extensively (~5-7 mL) with 95 % ethanol.  

Upon functionalization of array with R6A peptide, binding experiment was initiated. Gαi1 (15 

µL, final concentration 10 µM) was added to 300 µL iron solution (18 mg FCA dissolved in 10 
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mM HEPES pH 7.5, 150 mM NaCl, 3 mM EDTA, 8 mM MgCl2, 25 µM GDP and 0.1 M 

potassium nitrate). From here serial dilutions starting from 10 µM to 1 pM (500 µL each) were 

prepared. All protein solutions were placed at 0 ⁰C. General procedure for conducting CV 

experiments on a 12-K array has been mentioned in Section 4.4.4. The electrochemical analysis 

began with CV tests at each block of electrodes using blank iron solution (no protein added). 

This part was done to select 4 blocks (12 electrodes each) from R6A-functionalized and 

unfunctionalized part of the array to conduct CV experiments. Binding experiment was initiated 

by incubation of iron solution containing the lowest concentration of Gαi1 onto the array for 3 

min and then running three CV scans for every selected block (total 12 blocks). The conditions 

for the CV included a potential sweep from -700 mV to + 700 mV and back again at a scan rate 

of 400 mV/s. In these experiments, the potential refers to the potential of the electrodes on the 

array relative to the platinum-counter electrode located on the hyb-cap. Before moving on to 

higher concentrations, the array was washed once with the next concentration of protein. Data 

from CV scan # 2 from every block was analyzed and graphed using MS excel and Origin 9.0 

respectively.  

5.4.4 Binding of R6A-PEG-6 peptide to Gαi1 on a microelectrode array 

Both R6A peptide conjugated to PEG-6 linker (MSQTKRLDDQLYWWEYL-PEG6-C, 

purity > 90 %) and a scrambled version of R6A peptide also conjugated to PEG-6 linker 

(QLSEDTYLLMRWDYWQK-PEG6-C, purity > 90 %) were purchased from CPC Scientific, 

Inc. (Sunnyvale, CA). A tetra-peptide (LRSC, purity> 90 %) was purchased from Genscript 

(Piscataway, NJ). The C terminus of both peptides was blocked by amidation and the N terminus 

by acetylation. Peptides was delivered as a white lyophilized powder and were used without 

further purification.  
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The same procedure was carried out in order to functionalize array with R6A-PEG-6 (3.0 

mg), scrambled R6A-PEG-6 (3.0 mg) and LRSC peptide (3.0 mg) as mentioned previously. 

However, the electrochemical analysis was done on 4 blocks with 65 electrodes each. 
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Chapter 6: Conclusions and Future Directions  

6.1 Summarization of previous chapters 

The motivation for this multidisciplinary project is the development of novel chemical probes 

that can directly target G proteins and help us learn about G protein mediated cell signaling. To 

this end, there are three crucial parts to this dissertation. First is synthesizing simplified analogs of 

a natural product YM-254890 known to inhibit signaling of G protein, Gαq. Second, isolation of 

various G proteins to test the activity of simplified analogs and third, development of an 

electrochemical method to rapidly screen newly synthesized analogs. This dissertation is focused 

on the second and third part of the project. Chapter 2 of this dissertation described details on how 

we isolated the necessary G proteins. We learned about Titerless Infected-cells Preservation and 

Scale up (TIPS) method and applied it for expression of Gαq (both wild-type and mutant forms). 

In addition, two other G proteins were expressed and purified from bacterial cells. Following the 

isolation of G proteins, we tested their biochemical activity using nucleotide exchange assays.  

During this period, we learned about Gαq in terms of its stability and its ability to undergo 

nucleotide exchange. A receptor-assisted nucleotide exchange assay was developed to test activity 

of Gαq and potency of the first simplified YM analog, WU-07047 (Chapter 3). We learned that 

the simplified YM analog retained its activity towards Gαq, and preliminary data from fluorescent 

exchange assays depict that WU compound did not show any potency towards Gαi1 and Gαo. 

Having established a pathway for total synthesis of a YM analog, our efforts were directed towards 

development of a rapid screening method on microelectrode arrays. To this end, Chapter 4 is 

focused on modification of polymer-coated array surface with PEG-polymer groups. We learned 

that with the use of another redox mediator, ferrocene carboxylic acid, we were able to generate 
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stable current with less time on a PEG-modified array surface. Moreover, use of longer PEG-

polymer groups reduced non-specific binding of BSA to the modified array surface. Chapter 5 

investigates the compatibility of G proteins with microelectrode arrays. As a proof of principle, 

we examined a known binding interaction between a short peptide (R6A) and Gαi1 using our 

electroanalytical methods. As discussed at the end of Chapter 5, we can clearly see the binding of 

the protein to R6A over the signal for background binding between the protein and a scramble 

R6A analog. The desired signal was amplified by the microelectrode arrays to a point where an 

accurate determination of a binding constant could not be made. Furthermore, the negative control 

showed large non-specific binding to the protein on the array.  

In summary, this dissertation has laid the groundwork on both biochemical and analytical 

fronts of this project. Next, we propose future experiments that will continue to answer lingering 

questions and address the issues that were described above.  

6.2 Optimization of ligand concentration 

Recently, Matthew Graaf in the group has developed the synthetic strategy necessary to build 

arrays with peptide gradients. This experiment has shown that increase in reaction time can affect 

the coverage of ligand on array surface, and that the relationship between reaction time and 

coverage is linear. Hence, in order to decrease the peptide coverage on an electrode in a 

microelectrode array, the length of time for the reaction (less reaction cycles with the electrode 

turned on) should be performed. In our binding studies discussed in Chapter 5, all peptides were 

placed by conducting 60 reaction cycles (30 s on and 10 s off). Our first attempt to reduce the 

concentration of peptide on the array would be to run 10 reaction cycles for the Chan-Lam coupling 

used to place both the scrambled R6A and R6A onto the array. Upon functionalization of the array 

with these two peptides, we could ‘backfill’ with the tetra-peptide used in the final analytical 
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experiment shown in Chapter 5, since that peptide (LRSC) appeared to suppress the non-specific 

binding between Gαi1 and the surface.  

6.3 Expression of accessory proteins 

The importance of the sepia rhodopsin receptor and the βγ dimer for assessing the activity of 

Gαq was discussed in Chapter 3. The receptor-assisted nucleotide exchange assays require these 

accessory proteins that were provided by the Tesmer lab at University of Michigan. Hartman et al. 

have isolated sepia rhodopsin from enucleated squid eyes.1 His-tagged Gγ subunit has been co-

expressed with Gβ subunit in sf9 cells.2 One of our next goals should be to develop these methods 

in our labs. Once we have these reagents available, it would easier to perform nucleotide exchange 

assays.  

Receptor-assisted nucleotide exchange assays for Gαq employs [35S] GTPγS, but would this 

assay work with BODIPY®FL GTPγS? In theory, if slow GDP dissociation problem was resolved, 

the fluorescent ligand should work and added expense associated with radioactivity ligands could 

be avoided.  

6.4 Testing mutant Gαq 

In Chapter 2, we discussed the isolation of a mutant form of Gαq (I190N) from insect cells. 

The YM compound loses its potency towards this mutant Gαq.
3 However, this protein had not been 

expressed during the testing period of WU compound. But now we have the purified protein and 

we can examine the effect of WU and other simplified analogs on this protein. One can use this as 

a negative control in both the exchange assay and on the arrays. This protein might help us in learn 

additional information about the synthesized YM analogs. For instance, if the simplified 

compounds exhibit potency towards this protein, then we can assume a different mode of binding. 
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This mutation is present in an important region (switch I), which imparts specificity. Hence, the 

compounds showing potency towards this protein, might be able to bind other G proteins as well. 

In this way, we can prepare a collection of G protein subtype-selective modulators that would 

provide powerful tools for probing the functions of specific G proteins in diverse biological 

processes and diseases.      

6.5 FRET studies to elucidate conformational dynamics  

As mentioned previously in Chapters 1 & 3, YM inhibits release of GDP by preventing the 

interdomain movement. Would WU and related analogs inhibit the activity of G proteins in a 

similar manner? In order to study conformational dynamics, we intend to use site-directed 

fluorescence resonance energy transfer (FRET) measurements.4–6 To this end, two cysteine 

residues (that can be conjugated to donor and acceptor fluorophores) can be introduced in the 

regions that need to move in order for GDP to release. If the two domains are in close proximity, 

a FRET signal is detected. However, movement of these domains will result in the loss of FRET 

signal. In this way, one can speculate the mechanism of action for the simplified analogs.   
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