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ABSTRACT OF THE THESIS 

Breaking Apart the Reinforcement Learning Deficit in Schizophrenia 

by 

Adam J. Culbreth 

Master of Arts in Psychology 

Washington University in St. Louis, 2015 

Professor Deanna M. Barch, Chair 

  
 Reinforcement learning deficits have long been associated with schizophrenia. However, tasks 

traditionally used to assess these deficits often rely on multiple processing streams leaving the etiology of 

these task deficits unclear. In the current study, we borrowed a recent framework from computational 

neuroscience, which separates reinforcement-learning into two distinct systems, model-based and model-

free. Under this framework, the model-free system learns about the value of actions in the immediate 

context, while the model-based system learns about the value of actions in both immediate and 

subsequent states that may be encountered as a result of their actions. Using a decision task that has been 

previously validated to assess relative reliance on each system we showed that individuals with 

schizophrenia demonstrated decreased model-based but intact model-free learning estimates. Furthermore, 

parameter estimates of model-based behavior correlated positively with IQ, suggesting that model-based 

deficits in schizophrenia may relate to reduced intellectual function. These findings specify 

reinforcement-learning deficits in schizophrenia by showing both intact and disturbed components. Such 

findings and computational frameworks provide meaningful insights as researchers continue to 

characterize decision-making circuitry in schizophrenia as a means to discover new pathways for 

interventions.  
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Introduction  
 

 Deficits in various aspects of reinforcement learning (RL) have long been associated with 

schizophrenia (SZ) (Barch & Dowd, 2010; Gold, Waltz, Prentice, Morris, & Heerey, 2008). Importantly, 

such deficits have shown relationships to other core features of the disorder, such as negative symptom 

severity (Strauss et al., 2011; Waltz, Frank, Robinson, & Gold, 2007). However, tasks aimed at assessing 

these deficits often rely on multiple processing streams (e.g., reward processing, cognitive control, 

attention, and working memory) leaving the specific causes of these task deficits unclear. Thus, one 

concern regarding RL deficits in SZ lies in delineating intact from disturbed processing components. Such 

findings will be imperative to not only our etiological understanding of SZ, but also when considering 

treatment approaches, as deficits in different processing streams will likely lend themselves to 

differentially effective interventions. The current study uses a recent framework from computational 

neuroscience to separate RL processes. This framework posits that decision-making behavior arises from 

two parallel control systems, model-free (also thought of as habitual control) and model-based (also 

thought of as goal-directed control). The model-free system learns, retrospectively through repeating 

previously rewarded actions, while the model-based system learns prospectively by weighing future 

outcomes based on an “internal model” of the environment. Using this framework, the current study aims 

to examine the relative contributions of deficits in model-free and model-based RL, as a means of 

specifying the RL deficit in SZ (Daw, Niv, & Dayan, 2005). 

 As referred to above, current theorists suggest that individuals utilize two systems, commonly 

referred to as habitual (model-free) and goal-directed (model-based) control, to guide decision-making 

(Balleine, Daw, & O’Doherty, 2008; Dickinson & Balleine, 2002). In habitual control, individuals make 

decisions by repeating previously rewarded actions (or not repeating punished actions) (Thorndike, 1933). 

For example, children learn not to touch a hot stove by getting burned previously. In contrast, goal-

directed control requires individuals to make decisions by prospectively weighing future outcomes based 

on an “internal model” of the environment (Tolman, 1948). For example, expert chess players make  

1 



	  

decisions by thinking about the future state of the chessboard. Recently, this decision-making model has 

been placed into the computational framework of model-based and model-free RL in order to more 

quantitatively assess the individual contribution, integration, and structure of these systems (Balleine et 

al., 2008; Daw et al., 2005). In model-free RL, the actor learns preferences for actions directly by 

repeating reinforced choices, without taking into consideration a ‘model’ of the environment. This system 

is driven largely by reward prediction error and the ventral striatum (Daw, Gershman, Seymour, Dayan, 

& Dolan, 2011; Gläscher, Daw, Dayan, & O'Doherty, 2010). In contrast, model-based RL requires the 

actor to learn an internal representation of the structure of the environment and utilize this structure to 

make decisions.  The neural correlates of this system include lateral prefrontal cortex (Gläscher et al., 

2010), dorsolateral prefrontal cortex (dlPFC) (Smittenaar, FitzGerald, Romei, Wright, & Dolan, 2013), 

orbitofrontal cortex (OFC) (Lee, Shimojo, & O’Doherty, 2014; McDannald, Lucantonio, Burke, Niv, & 

Schoenbaum, 2011), ventromedial prefrontal cortex (vmPFC) (Gläscher et al., 2010; Lee et al., 2014), and 

striatal regions (Daw et al., 2011; McDannald et al., 2011). Recent work has also pointed to a critical role 

of ventral striatal presynaptic dopamine in potentially modulating the relative contributions of these 

control systems (Deserno et al., 2015).  

 Previous reports have explored processes associated with both habitual and goal-directed control 

in SZ. For example, individuals with SZ have impairments in processes associated with model-based RL 

such as proactive cognitive control and working memory capacity (Barch & Ceaser, 2012; Otto, Raio, 

Chiang, Phelps, & Daw, 2013; Otto, Skatova, Madlon-Kay, & Daw, 2014). SZ patients also have 

functional and structural abnormalities in brain regions thought to be associated with model-based RL 

(dlPFC: (Barch, Csernansky, Conturo, & Snyder, 2002; Minzenberg, Laird, Thelen, Carter, & Glahn, 

2009; Semkovska, Bédard, Godbout, Limoge, & Stip, 2004); vmPFC: (Hooker, Bruce, Lincoln, Fisher, & 

Vinogradov, 2011; Park, Park, Chun, Kim, & Kim, 2008); OFC: (Gur et al., 2000; Pantelis et al., 2003; 

Plailly, d'Amato, Saoud, & Royet, 2006). In contrast, individuals with SZ often show intact functioning in 

processes associated with model-free RL, such as, procedural learning (Kéri et al., 2000; Weickert et al.,  
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2002), implicit RL (Heerey, Bell-Warren, & Gold, 2008), and intact striatal responses to reward receipt 

(Dowd & Barch, 2012; Simon et al., 2010; Waltz et al., 2010). These findings are also consistent with a 

recent RL study that utilized a computational model to reveal that working memory impairments made a 

significant contribution to the RL deficits in SZ with little evidence for alterations in the basic stimulus-

response component of RL (Collins, Brown, Gold, Waltz, & Frank, 2014). Neuroimaging results from our 

group have also found that patient deficits in a cognitive control network of brain regions predicted task 

behavior on a RL task, whereas, basic reward processing regions did not, which is consistent with the 

hypothesis of a model-based RL deficit in SZ (Culbreth et al., in review). However, despite this 

converging evidence, the computational framework of model-based and model-free RL has not been 

explicitly tested in SZ. Assessing these deficits from a computational standpoint may allow for better 

characterization of RL dysfunction in SZ, as well as, provide testable hypotheses about systems to target 

for novel interventions (Montague, Dolan, Friston, & Dayan, 2012)  

 The current study aimed to use this computational and experimental framework to examine the 

relative integrity of model-free versus model-based RL in SZ. We utilized a 2-stage Markov decision-

making task created by Daw, which has been previously validated to separately assess model-based and 

model-free choice behavior (See Figure 1) (Daw et al., 2011; Otto et al., 2013; Otto et al., 2014; 

Smittenaar et al., 2013; Voon et al., 2014; Wunderlich, Smittenaar, & Dolan, 2012). In this task, 

individuals make a 2-alternative forced choice, which leads to a common (70% of the time) or rare 

second-stage, where a second 2-alternative forced choice is made in hopes of receiving a reward. The 

reward contingencies of choices in the second-stage fluctuate, and participants adopt different strategies 

to maximize rewarded outcomes on the task. If individuals make first-stage choices based solely on the 

previous trial being rewarded they are considered model-free (i.e., habitual). However, if they assess the 

rarity of the transition along with the prior rewards (i.e. build an internal model of the task environment) 

they are considered model-based (i.e., goal-directed). For example, model-based RL would predict that 

individuals would be more likely to shift their initial response following a previously rewarded outcome  
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with a rare transition.  

  Utilizing this task, we hypothesized that individuals with SZ would show intact model-free 

learning estimates. This prediction is consistent with previous reports, which show intact procedural/habit 

learning in SZ (Kéri et al., 2000; Weickert et al., 2002), as well as, intact striatal responses to reward 

receipt (Dowd & Barch, 2012; Simon et al., 2010; Waltz et al., 2010). We hypothesized that individuals 

with SZ would show impaired model-based learning estimates on the Markov decision-making task. This 

prediction is consistent with literature suggesting that SZ patients have deficits in proactive cognitive 

control and working memory capacity (Barch & Ceaser, 2012), as well as, functional and structural 

abnormalities in brain regions associated with model-based RL (e.g. dlPFC).  Furthermore, we 

hypothesized that these learning estimates would be correlated with negative symptoms and measures of 

neurocognitive functioning (i.e., full-scale IQ), such that, individuals with greater negative symptom 

severity and lower neurocognitive functioning will demonstrate decreased model-based learning estimates.  

Methods  

Participants 

Participants were 33 individuals meeting DSM-IV criteria for SZ or schizoaffective disorder 

(SZA; N=13), and 30 controls (CN), with no personal or family history of psychosis, from the Saint Louis 

community. Seven SZ patients were unmedicated. Exclusion criteria included 1) DSM-IV diagnosis of 

substance abuse or dependence in the past six months; 2) DSM-IV diagnosis of major depressive disorder 

or dysthymia in the past year; 3) changes in medication dosage two weeks prior to consent; 4) past head 

injury with documented neurological sequelae and/or loss of consciousness; 5) mental retardation. The 

Washington University Institutional Review Board approved the study. Participants provided written 

informed consent in accordance with Washington University’s Human Subject Committee’s criteria.  

Clinical Assessments 

Diagnoses were determined by the Structured Clinical Interview for DSM-IV-TR (First, Spitzer, 

Gibbon, & Williams, 2001). Negative Symptoms were assessed using the Brief Negative Symptom Scale  
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(BNSS) (Kirkpatrick et al., 2011). Avolition and anhedonia were also assessed using the following self-

report measures: The Revised Chapman Physical and Social Anhedonia Scales (Chapman, Chapman, & 

Raulin, 1976, 1978) and the Snaith-Hamilton Pleasure Scale (Snaith et al., 1995). All participants we 

required to pass a urine drug screen and a breathalyzer test.   

Task  

 Participants completed a modified version of a two-stage learning task developed by Daw and 

colleagues (See Figure 1 for sample trial) (Daw et al., 2011). Extensive instructions on the task structure 

and practice trials were completed prior to task administration. At the start of each trial, a two-alternative 

forced choice was presented. This choice then led, probabilistically, to one of two, second-stage “states” 

(Figure 1). Importantly, each choice led more frequently (70%) to one of two “states”. During the second-

stage, another two-alternative forced choice was presented and feedback was received (i.e., reward or no 

reward). In order to ensure learning throughout the task, the probability of receiving a reward for the four, 

second-stage options changed slowly using Gaussian random walks. All together, participants completed 

200 trials, and had 3 seconds to make a response for each choice. Interstimulus and intertrial intervals 

were 1 second. Reward outcome was presented for 1 second. Stimuli on the task consisted of spaceships 

and aliens, instead of the Tibetan characters in the original Daw paper(Daw et al., 2011), to provide a 

more interactive task environment for better compliance and understanding in our patient population.   

Data Analysis 

Logistic Regression  

 We conducted a mixed-effects logistic regression following the protocol of Daw and colleagues 

(Daw et al., 2011). Analyses were performed using the lme4 linear mixed effects package in R (Bates & 

Sarkar, 2007).  The dependent variable was the first stage choice (coded as stay or shift). Explanatory 

variables were whether the previous trial was rewarded or not rewarded, whether the previous trial’s 

transition was rare or common, and the interaction between rarity and reward. All coefficients were taken 

as random effects across participants, and estimates are reported at the population level. In order to  
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observe group differences between model-based and model-free learning estimates diagnostic group was 

coded as a binary variable and interacted as a factor. Finally, full scale IQ as determined by the WTAR, 

BNSS negative symptoms scores, and the Snaith-Hamilton pleasure scale were group-centered and 

interacted as covariates to determine individual difference relationships.   

Reaction Time  

 In order to observe the relative contributions of model-based and model-free control, we also 

analyzed reaction time at stage 2. We conducted a repeated-measures ANOVA with 2 factors, diagnostic 

group and transition type. In order to observe individual difference relationships of second-stage reaction 

time differences between transition types, partial correlations were conducted between an RT difference 

score (rare – common) and BNSS rated negative symptoms, full-scale IQ, and the Snath-Hamilton 

pleasure scale.  

Results 

Demographics 

 The groups did not significantly differ in age, gender, ethnicity, or parental education (Table 1). 

However, as expected, the personal education of the SZ group was lower than the CN group. The SZ 

group self-reported increased levels of anhedonia compared to the CN group across all measures (Table 

1). Table 1 also describes the current prescribed medications of the SZ group.  

Task Behavior 

 In order to assess the relative contributions of model-based and model-free learning we analyzed 

first-stage choice behavior (coded as stay or shift). As a reminder, model-based and model-free strategies 

make different predictions about how previous second-stage rewards should influence current first-stage 

choices. For example, consider a trial where a first-stage choice results in a rare transition leading to an 

uncharacteristic second-stage state where a reward is obtained (rare rewarded condition in Figure 2). The 

pure model-free learner would repeat the first-stage choice on the following trial, basing decision-making 

solely on reward and ignoring the transition structure (Supplemental Material 1). However, the model- 
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based learner, taking into consideration both reward and task structure, would show a decreased 

likelihood of repeating the same first-stage choice because shifting to the other first-stage choice would 

lead with greater probability to the previously rewarded second-stage state (Supplemental Material 1). 

Figure 2 illustrates the frequency of staying with the previous first-stage choice for the SZ and CN groups. 

Qualitatively, the SZ group choice behavior appears less model-based and more model-free than the CN 

behavior (Supplemental Materials 1).  

1. Hierarchical Linear Model 

 In order to quantitatively analyze choice behavior, we then conducted a mixed-effects logistic 

regression, which predicted the current first-stage choice (coded as shift or stay) as a function of the 

previous trial’s outcome (reward), the previous transition (rarity), and diagnostic status (group) (Table 2). 

There was a significant effect of reward, such that the probability of staying with the same first-stage 

choice increased when the previous choice was rewarded, demonstrating model-free learning. There was 

also a significant reward x rarity interaction, such that participants were less likely to repeat the prior first-

stage choice that led to a reward if it was a preceded by a rare versus a more common transition (see 

Table 2). Furthermore, there was a significant reward x rarity x group interaction, such that the SZ group 

demonstrated less evidence of model-based learning compared to the CN group (see Table 2 and further 

analyses below). Finally, although qualitatively greater in the SZ group, the group x reward interaction 

failed to reach significance indicating that the CN and SZ groups did not differ on estimates of model-free 

learning. 

 In order to further examine the source of the significant reward x rarity x group interaction we 

conducted separate HLM analyses for the CN and SZ groups (Supplemental Materials 1). In the CN 

analysis, participants showed significant and robust effects of both model-based (rarity X reward) and 

model-free learning (reward) (Supplemental Materials 1). However, in the SZ group, participants showed 

a significant and robust effect of model-free learning (reward) while only showing a trend level model- 

7 



	  

based estimate (rarity X reward) (Supplemental Materials 1). These within-group comparisons strengthen 

our conclusion from the reward X rarity X group interaction that model-based learning seems to be 

reduced in the SZ group (Supplemental Materials 1).  

 Follow-up analyses were conducted to determine individual difference metrics that may account 

for increased/decreased, model-based/model-free learning estimates (Table 3). Contrary to our hypotheses, 

learning estimates did not show a significant relationship with clinician-rated negative symptoms (BNSS 

total score). However, model-based learning estimates did show a significant interaction with full-scale 

IQ while controlling for diagnostic status, suggesting that individuals with greater intellectual capacity 

utilized model-based control more than those with reduced intellectual functioning (i.e., a more positive 

beta weight for reward X rarity interaction) (see Table 3). Importantly, this association between model-

based learning and IQ was found separately in both the SZ and the CN groups. Finally, model-free 

learning estimates showed a significant interaction with the total score of the Snaith-Hamiliton Pleasure 

Scale, indicating that participants with higher levels of hedonic capacity demonstrated a greater effect of 

reward (i.e., a larger reward effect) (Table 3). However, this relationship was not significant in the CN 

group.  

2. Reaction Time 

 As a second means of assessing model-based and model-free control, we analyzed second-stage 

reaction time. Importantly, model-free RL would not predict differential second-stage reaction times 

following rare and common transitions, as this form of learning carries no information of state transitions 

(Deserno et al., 2015). Thus, any differences in the second-stage reaction-time between transition states 

should be due to model-based learning. Using a repeated-measures ANOVA, we found a significant main 

effect of transition on RT, where choices following a rare transition were slower than those following 

common transitions (F=38.60, p<0.001) (see Table 4 for descriptives). Contrary to our hypotheses, the 

interaction between transition type and diagnostic group was not significant (F=1.64, p=0.2). However, 

when analyzing the simple effect of RT within each group separately, we found that the size of the  
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transition effect for the CN group (η2
partial = 0.305) was almost twice the size of the SZ group (η2

partial  = 

0.173) suggesting a more robust level of involvement of model-based RL for the CN group. Finally, a 

significant partial correlation was found between RT difference (rare-common) and IQ holding diagnostic 

group constant (r = 0.301) providing converging evidence for the aforementioned relationship between 

greater IQ and greater model-based RL estimates. However, no significant relationship was found 

between RT and self-reported or clinician-rated negative symptoms. 

Discussion 

 The goal of the current experiment was to assess the relative contributions of model-based and 

model-free learning in SZ. Consistent with our hypotheses, individuals with SZ demonstrated reduced 

model-based learning estimates compared to healthy controls, suggesting a deficit in their ability to create 

and utilize an “internal model” of the task environment to drive goal-oriented decision-making. In 

contrast, individuals with SZ did not differ from healthy controls in regards to model-free learning 

estimates, suggesting intact habitual learning. Supplementary analyses of second-stage reaction time 

indicated evidence for model-based learning in both groups. In general, participants took longer to 

respond for second stage choices preceded by a rare transition compared to a common transition. 

However, the size of this effect was almost twice as large in the patients compared to the controls, 

suggesting that while the groups did not significantly differ in regards to reaction time controls showed a 

much more robust effect of our model-based estimate. In regards to individual differences, model-based 

learning estimates were positively correlated to measures of intellectual functioning in both the patient 

and the control group. However, the hypothesis that model-based and model-free learning estimates 

would be related to negative symptom severity was not supported.  

 The current results are consistent with several previous reports related to cognitive and affective 

dysfunction in SZ. The results of reduced model-based estimates are consistent with previous reports 

showing that individuals with SZ have deficits in processing domains frequently associated with model-

based RL, such as proactive cognitive control and working memory capacity (Barch & Ceaser, 2012). The  
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results of intact model-free estimates are consistent with results showing intact procedural learning and 

implicit RL in SZ (Heerey et al., 2008; Kéri et al., 2000; Weickert et al., 2002). Furthermore, these results 

are also conceptually consistent with a recent report by Collins and colleagues who used a computational 

model to illustrate that working-memory impairments made a significant contribution to impairments on a 

RL task in SZ, with little evidence for alternations in the basic stimulus-response component of RL. 

Interestingly, Collins and colleagues also failed to show a relationship of task deficits and negative 

symptoms (Collins et al., 2014). This converging evidence suggests that perhaps the RL deficit seen in SZ 

relates more to levels of higher-order cognitive functioning than negative symptoms.  

 The current results are also consistent with several previous reports examining the external 

correlates of model-based and model-free learning. As stated in the introduction, increased model-based 

behavior has been shown to be positively correlated with higher-order cognitive processes, such as 

proactive cognitive control and working memory capacity (Otto et al., 2013; Otto et al., 2014). Consistent 

with these findings, we found a significant relationship between model-based learning and IQ, suggesting 

that participants with higher levels of intellectual functioning were more likely to use model-based 

strategies. This relationship was found in both the SZ and the CN groups. Interestingly, we also found a 

significant relationship between a measure of hedonic capacity (Snaith total score) and model-free 

learning, such that individuals with higher hedonic capacity illustrated a greater reward effect. These 

external correlates provide further evidence for and characterize the separable systems, which underlie 

model-based and model-free learning by suggesting that these systems may be associated with differential 

external factors (i.e., reward processing and basic hedonics for model-free and higher-order cognition for 

model-based). However, the current study is unable to disentangle the causal direction of these 

relationships. For instance in regards to IQ, one unanswered question is do individuals with SZ have 

model-based deficits because they also tend to have lower IQ estimates, or are decreased IQ estimates and 

reduced model-based learning both manifestations of a common neural dysfunction? It will be important 

for future reports to examine individual difference relationships with larger sample sizes in order to  
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elucidate the nature of the relationship between these factors and how they unfold over time.  

 The current study yields an important finding regarding RL deficits in SZ. However, we believe 

that a further benefit of the current approach lies in the directly testable hypotheses about dysfunctional 

neural systems that emerge from our initial result of impaired model-based RL in SZ and more broadly 

from the model-based/model-free framework. Importantly, this framework provides accounts of the 

biological systems that underlie these different forms of RL. Now that we have established evidence 

suggesting a model-based deficit in SZ, future studies can leverage this framework to discern which 

neural mechanisms, within the model-based system, are associated with this deficit. Previous literature 

suggests three likely biological targets for such a deficit. 1) abnormal presynaptic dopamine in the ventral 

striatum (Deserno et al., 2015); 2) abnormal functioning in the lateral prefrontal cortex (Deserno et al., 

2015; Gläscher et al., 2010); 3) abnormal cortico-striatal connectivity. Importantly, as noted in the 

introduction, individuals with SZ have shown functional deficits related to all of these possible biological 

targets. Such studies will be critical as they will allow researchers to specify the neural structure of the RL 

deficit in SZ, and will possibly result in the generation of biologically-informed targets for novel 

interventions.  

 The current findings also have implications for current intervention strategies aimed at improving 

RL in SZ. Our findings suggest that the RL deficit in SZ results largely from deficits in model-based 

processing. Thus, these initial findings suggest cognitive-remediation interventions aimed at improving 

cognitive domains frequently associated with model-based learning (e.g., cognitive control) might be 

beneficial at alleviating the RL deficits associated with SZ. Indeed, preliminary evidence suggests that 

cognitive remediation may be beneficial for improving performance on a Wisconsin Card Sorting Task 

(Cella et al., 2014), which taps into at least some of the processes relevant for model-based learning. 

However, it is unknown whether these improvements translate to other RL tasks. Future research needs to 

be conducted to discern whether these cognitive-remediation interventions might be beneficial at restoring 

model-based learning in individuals with SZ.  
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Limitations 

 The current study has several limitations. First, although we saw robust effects of both model-

based and model-free learning estimates in the CN group we also saw a main effect of transition type, 

where participants had a tendency to shift first-stage responses more for trials following a common 

compared to a rare transition. This finding is inconsistent with previous reports, and is particularly 

perplexing being as neither model-based nor model-free RL would predict an effect of transition (Daw et 

al., 2011; Deserno et al., 2015; Otto et al., 2013; Otto et al., 2014). However, qualitatively our data 

appears consistent with previous reports suggesting that while this effect was unexpected it likely did not 

influence our model-based and model-free estimates (Daw et al., 2011) (Supplemental Materials 1). 

Second, the sample size of the current study may not have been sufficient to comprehensively examine 

the relationship of individual difference factors to learning estimates. However, we were able to show 

individual difference relationships between intellectual functioning and model-based RL. Future studies 

will need to be conducted with larger sample sizes and more diverse individual difference metrics in order 

to better characterize relationships between learning estimates and external factors. Third, in the current 

study we utilized a hierarchical linear model to analyze choice behavior on our sequential learning task. 

While the HLM approach has been previously validated to robustly quantify model-based and model-free 

learning more sophisticated computational models may allow for further separation of model-based and 

model-free components between groups providing useful information for guiding future directions of 

research (Daw et al., 2011(Gläscher, 2010 #17). Such models also allow us to further characterize the 

model-based learning deficit in SZ by assessing key variables such as learning rate, which will be 

beneficial in assessing whether individuals with SZ are slow or unable to build “internal models” of their 

environment. Thus, follow-up analyses using more detailed computational models will be conducted in 

order to glean additional information possibly masked by the HLM approach. Finally, the majority of our 

SZ sample was currently taking anti-psychotic medications, which may have altered reward-related 

responses.   
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Summary 

 The goal of the current study was to utilize a recent computational framework to separately assess 

the relatively contribution of RL processing streams associated with SZ. We found evidence for reduced 

model-based learning estimates in individuals with SZ compared to healthy controls, suggesting that 

individuals with SZ have difficulties creating and utilizing an “internal model” of their environment to 

drive goal-oriented decision-making. However, model-free learning estimates were intact in individuals 

with SZ, suggesting that basic habitual RL processing appears unaffected. This finding is in line with 

multiple reports that show that individuals with SZ have deficits in processing domains that are 

commonly associated with model-based learning such as cognitive control and working memory capacity. 

Importantly, the current framework allows for the testing of distinct hypotheses about the nature of RL 

deficit in SZ. Future studies will be needed to better elucidate deficits in neural circuitry, which might 

cause the behavioral abnormalities seen in the current study. For example, is the model-based learning 

deficit a result of poor striatal functioning, prefrontal functioning, or aspects of cortico-striatal 

connectivity. Such investigations will aid in understanding the etiology of this deficit and provide 

biological targets for further inquiry as researchers attempt to better characterize decision-making neural 

circuitry in order to discover new pathways for interventions.  
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Tables 
 
 

Table 1: Participant Characteristics 
 

Characteristics  Healthy Controls (N=30) 
Individuals with Schizophrenia 

(N=33) 
      
Demographics Mean SD Mean SD p-value 
Age (years)  35.9 8.2 36.7 9.25 0.72 
Sex (% male) 46.7%  51.5%  0.70 
Ethnicity (% non-Cauasian)  58.0%  56.7%  0.63 
Personal Education (years) 15.2 2.7 12.8 2.3 <0.001 
Parental Education (years) 14.4 2.6 14.4 3.50 0.97 
Medication status       
Atypical antipsychotics (%)  NA  55%   
Typical antipsychotics (%)  NA  3%   
Typical and atypical (%)  NA  6%   
Medicated (no antipsychotics)   15%   
Not Medicated (%)  NA  21%   
Clinical ratings       
Brief Negative Symptom Scale       
Total Score NA  24.5 13.2  
Avolition/Anhedonia Subscale NA  16.0 8.8  
Self-Report       
Social anhedonia 8.8 6.0 16.5 6.1 <0.001 
Physical anhedonia 11.7 8.5 20.2 8.7 <0.001 
Snaith Hamilton Pleasure 50.7 5.9 43.5 10.5 0.001 
Neurocognitive Measures      
Wechsler Test of Adult Reading 101.2 14.3 98.3 12.0 0.39 
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Table 2: Coefficients predicting response repetition from the outcome of the previous trial, the transition 
type, and diagnostic group. 
 
Coefficient Estimate (SE) p-value 
Intercept 1.01 (0.11) <0.001 
Reward 0.99 (0.14) <0.001 
Rarity -0.20 (0.05) <0.001 
Group 0.01 (0.12) 0.963 
Reward x Rarity 0.52 (0.12) <0.001 
Rarity x Group 0.09 (0.05) 0.035 
Reward x Group 0.18 (0.13) 0.177 
Reward x Rarity x Group -0.22 (0.11) 0.049 
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Table 3: External Correlates of model-based and model-free learning 
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Brief Negative Symptom Scale 
Coefficient Estimate (SE) p-value 
Intercept 1.02 (0.15) <0.001 
Reward 1.22 (0.23) <0.001 
Rarity -0.10 (0.06) 0.09 
BNSS -0.02 (0.01) 0.09 
Reward x Rarity 0.25 (0.15) 0.09 
Reward x Group -0.01 (0.02) 0.40 
Rarity x Group 0.0003 (0.004) 0.95 
Reward x Rarity x Group 0.013 (0.01) 0.24 

Intellectual Functioning 
Coefficient Estimate (SE) p-value 
Intercept 1.01 (0.12) <0.001 
Reward 1.00 (0.14) <0.001 
Rarity -0.19 (0.05) <0.001 
Group 0.12 (0.11) 0.28 
FSIQ 0.01 (0.009) 0.11 
Reward x Rarity 0.50 (0.11) <0.001 
Reward x FSIQ 0.007 (0.01) 0.49 
Rarity x FSIQ -0.01 (0.003) 0.003 
Reward x Rarity x FSIQ 0.027 (0.008) <0.001 

Snaith-Hamilton Pleasure Scale (Hedonic Capacity) 
Coefficient Estimate (SE) p-value 
Intercept 1.01 (0.12) <0.001 
Reward 1.00 (0.13) <0.001 
Rarity -0.20 (0.05) <0.001 
Group 0.12 (0.11) 0.28 
SNAITH 0.01 (0.01) 0.55 
Reward x Rarity 0.51 (0.12) <0.001 
Reward x SNAITH 0.03 (0.02) 0.03 
Rarity x SNAITH -0.01 (0.01) 0.16 
Reward x Rarity x SNAITH 0.02 (0.01) 0.11 



	  

Table 4: Second stage choice reaction time by group and transition type.   
 
Reaction Time (Stage-2) Healthy Controls Schizophrenia Patients 
     
Transition Type Mean SD Mean SD 
Common Transition (seconds) 0.64 0.17 0.71 0.23 
Rare Transition (seconds) 0.77 0.19 0.80 0.26 
Rare – Common (seconds) 0.13 0.14 0.9 0.13 
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Tables 
 

A  

B  
 
Figure 1: A. Sample trial diagram: binary choice at stage one (spaceships) leads to a second binary 
choice (aliens) at stage two which is rewarded/non-rewarded (treasure). B. Task structure: Each stage one 
choice predominately leads to one of two second-stage states.  
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Figure 2: First-stage choice behavior (coded as stay/shift) averaged across individuals within each group. 
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