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ABSTRACT OF THE DISSERTATION 

Molecular and Computational Methods for Cellular State Control 
by 

Drew Groves Michael 
Doctor of Philosophy in Biology and Biomedical Sciences 

(Molecular Cell Biology) 
Washington University in St. Louis, 2015 

Professor Michael Brent, Chair 
 

The control of cellular state has many promising applications, including stem cell biology and 

regenerative medicine, biofuel production, and gene therapy. This dissertation demonstrates a 

comprehensive approach to cellular state control at the transcriptional level.  We introduce a 

novel algorithm, NetSurgeon, which utilizes genome-wide gene regulatory networks to identify 

interventions that will force a cell toward a desired expression state. Following extensive in 

silico validation, we applied NetSurgeon to S. cerevisiae biofuel production, generating 

interventions designed to promote a fermentative state during xylose catabolism. Our selected 

interventions successfully promoted a fermentative transcriptional state and generated strains 

with higher xylose import rates, improved xylose integration and increased ethanol production 

rates.  We then step down to a single gene level and exhibit a cis-engineering strategy that 

enables precise expression control. We demonstrate that synthetic promoters can be functionally 

decomposed into individual components that can be characterized in isolation and used to train a 

composite model capable of predicting the action of the full system.  These findings represent 

significant progress towards the insertion of orthogonal control circuits into the cell for the 

control of gene expression. Taken together, this dissertation represents an integrative process of 

quantitative measurement, modeling, and intervention that comprehensively examines methods 

for cellular state control at the genome-wide and gene levels.
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Chapter 1: Introduction 
 

The advent of microarray technology in 1995 fundamentally changed how biological research is 

conducted (Schena, Shalon, Davis, & O., 1995).  Researchers previously limited to studying 

dozens of genes could now examine entire genomes in a single experiment.  This radical 

expansion of scope created the need for the discipline of systems biology.  Systems biologists 

have invested massive resources in genome sequencing and systematic connectivity mapping 

projects, leading to an improved understanding of the cell as a complete system (Gerstein, et al., 

2012).  However, these maps are primarily focused on a single regulatory level and relatively 

little research has focused on using these network models for the prediction and manipulation of 

cellular behavior (Chuang, Hofree, & Ideker, 2010).  Now, technical advances within DNA 

sequencing and synthesis are ushering in a new era of integrative systems and synthetic biology.  

We are rapidly developing the capacity to read cellular state at multiple levels and to integrate 

this information into systems level models of cellular connectivity.  As these capacities develop, 

molecular geneticists will be faced with the challenge of using this multi-tiered information to 

understand how natural variation and interventions within one regulatory level will generate 

change across the entire system.   

This dissertation presents research that manipulates cellular state at the genome wide and 

individual gene levels.  We use genome wide gene regulatory networks to algorithmically 

identify regulatory interventions that will force a cell towards a desired state.  As transcription 

factors can regulate many genes across the genome, these regulatory interventions offer a highly 

efficient method to manipulate gene expression.  We demonstrate that a single regulatory 
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deletion can be rationally selected to manipulate the expression of hundreds of genes in the 

desired direction.  These regulatory interventions offer the capacity to access both novel and 

evolutionarily optimized transcriptional states on a genome wide level.  We then integrate our 

transcriptional measurements with a model of central carbon metabolism to evaluate how 

changes in transcriptional state cascade into changes in metabolic state.  At the gene level we 

manipulate the cis-regulatory DNA of a synthetic promoter library to allow accurate expression 

prediction with substantially fewer experimental measurements.  This cis-engineering component 

represents progress towards a future when the expression of a synthetic DNA construct can be 

precisely controlled across changes in cellular state and environment. 

In Chapter 2 we demonstrate that a gene regulatory network model can be used to rationally 

engineer cellular transcriptomes.  In this situation, we start with an origin expression state, a goal 

expression state and a gene regulatory network model describing the connectivity of all 

transcriptional regulators within the genome.  We constructed an algorithm, NetSurgeon, to use 

this data to identify regulatory interventions that will enforce a desired cellular state.  The 

NetSurgeon algorithm simulates the effects of regulator deletion and over-expression to generate 

a rank ordered list of interventions predicted to force the system towards the desired state.  

Following extensive in silico validation, we applied NetSurgeon to the problem of S. cerevisiae 

biofuel production, identifying interventions designed to promote a fermentative transcriptional 

state during xylose catabolism.  75% of the evaluated NetSurgeon interventions successfully 

forced the cells towards a fermentative transcriptional state.   In addition, our intervention strains 

exhibited 31% higher rates of ethanol production and improved xylose import rates by 120%, 

demonstrating success in the transcriptional and phenotypic levels.  This work represents the first 

quantitative assessment of transcriptome engineering, demonstrating the current state of the field 
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and integrating transcriptional data with metabolic measurements to provide a comprehensive 

view of the cellular response to transcriptional interventions. 

In chapter 3 we demonstrate that synthetic promoters can be functionally decomposed into 

individual components which can be characterized in isolation and used to train a composite 

model capable of predicting the action of the full system.  Working within a synthetic promoter 

library designed to respond to a repressor and an activator, we find that a composite model 

trained on the two transcription factors in isolation is able to predict 72.8% of the variance in 

expression within a novel genotype where the two factors are expressed simultaneously.  The 

decomposition process provides evidence for the independent action of the two input 

transcription factors on promoter output, enabling a significant reduction in the number of 

measurements required to generate an expression model by avoiding the need to fit interaction 

terms.  This work represents significant progress towards the goal of enabling synthetic 

promoters to be characterized in isolation and assembled into complex systems according to 

basal expression and response function requirements.   

1.1 Contributions 
1. Application of NetSurgeon, an algorithm enabling rational transcriptome 

engineering.  We present an algorithm designed to rationally manipulate transcriptomes 

by simulating the effects of regulator deletion or overexpression within a gene regulatory 

network.  We applied this algorithm to S. cerevisiae biofuel production, producing strains 

with higher rates of xylose consumption and ethanol production.  This work is presented 

in Chapter 2. 

2. Measurement and integrative analysis of the cellular transcriptome and metabolism 

secondary to transcriptional interventions.  We develop an integrated picture of 
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cellular response to transcriptional interventions at the transcriptional and metabolic level 

through RNA sequencing and analytical chemistry.  This work is presented in Chapter 2.   

3. Functional decomposition of a synthetic promoter architecture that exhibits 

independence and allows accurate expression prediction.  We demonstrate a synthetic 

promoter architecture that enables accurate expression modeling with reduced 

measurement requirements.  This contribution is presented in Chapter 3. 

1.2 Collaborative Effort Statement: 
The work contained within Chapter 2 is a manuscript that Ezekiel Maier and I contributed 

equally to and are sharing first authorship.  Ezekiel and I jointly designed the research and wrote 

the paper.  I performed the molecular biology, designed the experiments, and analyzed the 

metabolic data.  Ezekiel implemented the NetSurgeon algorithm and analyzed the RNA 

sequencing data.  Ezekiel, Holly Brown and I completed the metabolic data acquisition process. 

The work contained within Chapter 3 is a manuscript of which I am the primary author.  This 

work is co-authored with Holly Brown and Prof. Michael Brent.  I have executed the majority of 

the genetic engineering, experiments and modeling within this project.  Holly Brown contributed 

to the cloning of the synthetic promoter library.     
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Chapter 2: Transcriptome Engineering 
Promotes a Fermentative Transcriptional 

State 
 

2.1 Abstract 
The rational manipulation of transcriptomes offers the possibility to engineer the cell as a 

collective unit toward specified goals, revolutionizing medicine and bioengineering. Progress in 

transcriptome engineering has primarily consisted of experimental approaches that are iterative, 

slow, and expensive. We have developed a novel algorithm, NetSurgeon, which utilizes genome-

wide gene regulatory networks to identify interventions that will force a cell toward a desired 

expression state. Following extensive in silico validation, we applied NetSurgeon to S. cerevisiae 

biofuel production, generating interventions designed to promote a fermentative state during 

xylose catabolism. Our selected interventions successfully promoted a fermentative 

transcriptional state in the absence of glucose and generated strains with 120% higher xylose 

import rates, improved xylose integration into central carbon metabolism by 303%, and 

increased ethanol production rates by 31%. We conclude by presenting an integrated model of 

transcriptional regulation and metabolic flux that will enable metabolic engineering efforts to 

prioritize functional regulators of central carbon metabolism. 

2.2 Introduction 
The central promise of regulatory systems biology is that a map of the cell’s global connectivity 

will enable us to understand, predict, and rationally manipulate cellular behavior. The 

manipulation of cellular state has many promising applications, including stem cell biology and 

regenerative medicine, biofuel production, and gene therapy. Fundamental progress toward the 
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goal of cellular state control has been advanced via systems biology - the study of cellular 

behavior as a complete unit, and synthetic biology - a rapidly advancing discipline which aims to 

design regulatory and effector molecules with defined behaviors. In systems biology, immense 

resources have been invested in genome sequencing, systematic deletion collections, and 

massively parallelized data acquisition, leading to network maps and improved understanding of 

the cell as a complete system (Gerstein, et al., 2012). However, relatively little research has 

focused on using these network models for the prediction and manipulation of cellular behavior 

(Chuang, Hofree, & Ideker, 2010). Synthetic biology has focused on creating molecular 

components that can be placed into a system to modify the transcriptional state of a small 

number of genes. However, genome-scale regulatory engineering is still rare, with most systems 

restricted to a small number of regulators and a limited set of controlled targets (Cameron, 

Bashor, & Collins, 2014). Bridging the gap between these two disciplines, we demonstrate that 

the integration of functional transcriptional network mapping, gene expression profiling, and 

computational modeling can be used to rationally engineer cellular state.  

 

Transcriptome engineering focuses on the manipulation of extant cellular networks and 

regulatory systems to enforce a state associated with a desired cellular phenotype. The use of 

native cellular regulatory mechanisms and network models enables the investigator to access 

evolutionarily optimized states and avoid the extensive iteration often associated with the 

integration of a synthetic regulatory circuit into a host system (Cardinale & Arkin, 2012) 

(Litcofsky, Afeyan, Krom, Khalil, & Collins, 2012). The majority of transcriptome engineering 

thus far has taken place within the context of developmental stem cell engineering, with the 

generation of induced pluripotency being the best example (Takahashi & Yamanaka, 2006). 



7 
 

Since the development of induced pluripotent stem cells, many transcriptional interventions have 

been identified that move cells at various developmental stages along a specified lineage (Morris 

& Daley, 2013). However, current strategies for direct lineage conversion are often unable to 

fully convert cells to the state of the goal cell fate (Cahan, Li, Morris, da Rocha, Daley, & 

Collins, 2014) (Marro, et al., 2011) (Feng, et al., 2008). 

 

The CellNet algorithm was developed in response to current deficiencies in cellular engineering. 

CellNet is a network-guided algorithm for determining how completely an engineered cell 

recapitulates a target cell state and identifying transcriptional interventions to guide further 

engineering (Cahan, Li, Morris, da Rocha, Daley, & Collins, 2014). CellNet identifies sub-

networks within mouse and human cell-type-specific regulatory networks whose expression state 

is predictive of the cell type. These predictive sub-networks are used as features for classifying 

novel gene expression profiles according to the cell type they most resemble. In addition, 

CellNet selects transcription factor (TF) interventions for transcriptome engineering by 

computing a Network Influence Score for each TF which is the sum of two components: the 

dysregulation of the regulator weighted by its expression level and the dysregulation of its targets 

weighted by their expression levels. This approach for target selection intervention was used to 

guide B cell to macrophage conversion by knocking down B cell regulators (Morris, Cahan, 

Zhao, San Roman, Shivdasani, & Collins, 2014). The generalizability of this method remains 

unclear due to the limited number of interventions and evaluations performed. These are exciting 

demonstrations of the power of transcriptome engineering, but studies in these complex 

developmental systems are limited by incomplete transcriptional network maps, complex cell 

culture requirements, and a lack of quantitative phenotypes directly linked to molecular effectors.  
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These issues have thus far prevented a quantitative assessment of transcriptome engineering 

efforts. 

 

In order to quantitatively assess the current state of transcriptome engineering and establish 

benchmarks, we utilized S. cerevisiae as a model system. 196 of the 209 transcription factors  

with an annotated DNA-binding domain in the S. cerevisiae genome possess a known DNA 

binding specificity (Spivak & Stormo, 2012) (Weirauch, et al., 2014) and the genome-wide 

effect of TF removal on expression has been quantitated through microarray profiling (Hu, 

Killion, & Iyer, 2007) (Kemmeren, et al., 2014). These data provide us with the ability to 

generate an accurate network model and to validate our algorithmic approaches. The simplicity 

of S. cerevisiae culture enables quantitative modeling and assessment, with the input/output 

metabolic function measurable by high-performance liquid chromatography (HPLC) and the 

transcriptional state of the cell quantitated by RNA sequencing. 

 

We identified the industrially relevant fermentation of the pentose carbohydrate xylose as a 

prototype application that met all our criteria for the quantitative assessment of transcriptome 

engineering. Xylose is a component of hemicellulose, a polymer that represents approximately 

23% of lignocellulosic biomass and is not efficiently fermented by S. cerevisiae into ethanol 

(Chandel & Singh, 2011). Biochemical research has identified all enzymes required for the 

integration of xylose into the cell’s central carbon metabolism. However, recombinant yeast 

strains expressing these enzymes, and grown in mixed glucose/xylose cultures, rapidly ferment 

all available glucose and then undergo a diauxic shift into a respiratory metabolic state.  

Salusjarvi et al demonstrated through transcriptional and proteomic analysis that cells grown on 
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xylose exist in a hybrid fermentative/respiratory state (Salusjärvi, Kankainen, Soliymani, 

Pitkänen, Pentti, & Ruohonen, 2008). The abundance of systems-level data, known metabolic 

pathways, clear regulatory constraint and quantitative phenotypes enabled us to utilize the 

transcriptome engineering of xylose metabolism to evaluate the current state of transcriptome 

engineering. 

 

In this work we present a novel algorithm, NetSurgeon, which is designed to enable 

transcriptome engineering. We ran this algorithm over genome-wide gene regulatory network 

maps (GRNs), and assessed its performance at selecting TFs whose deletion or overexpression 

will move the transcriptional state of the cell toward a desired goal. Following algorithmic 

validation, we applied the algorithm to engineer a fermentative xylose transcriptional state and 

assessed global cellular response to our transcriptional interventions by using analytical 

chemistry. Our results demonstrate that transcriptome engineering can be efficiently guided 

using network models and reveal the degree of transcriptional control over a quantitative multi-

factorial phenotype. 

2.3 Results 

2.3.1 Algorithmic approach to transcriptome engineering 
Our transcriptome engineering method, NetSurgeon, simulates interventions on a transcriptional 

network model to prioritize those that are likely to move the transcriptional state towards a goal 

state. Our transcriptome engineering efforts consisted of three steps. First, a map of the network 

of direct, functional regulation is built (Fig. 2.1.A). Second, starting and goal transcriptional 

states are defined and NetSurgeon, searches through the all possible interventions (deletion or 

overexpression) to identify interventions that are likely to move the transcriptional state towards 
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the goal state (Fig. 2.1.B). Finally, strains containing the predicted best interventions are created 

and RNA-seq and HPLC are used to quantitatively assay their transcriptional and metabolic state 

(Fig. 2.1.C). 

 

Figure 2.1. Overview of the computational and experimental approaches for rational control of transcriptional state. 
Panel A: Approach for generation of a gene regulatory network model from DNA binding specificity information 
and gene expression profiling. Panel B: Approach for target selection through intervention simulation and regulator 
prioritization. Panel C: Approach for quantitative assessment of intervention effect via RNA sequencing and HPLC 
metabolite profiling and modeling. 

We built an integrated gene regulatory network map by building and combining separate 

functional and physical maps using NetProphet (Haynes, Maier, Kramer, Wang, Brown, & 

Brent, 2013). NetProphet is a state-of-the-art GRN mapping algorithm that combines a 

differential expression (DE) analysis and a co-expression analysis. The physical map was built 

using a combination of TF binding information from both chromatin immunoprecipitation 

(ChIP) implicated TF target interactions (Abdulrehman, et al., 2010) (Balaji, Babu, Iyer, 

Luscombe, & Aravind, 2006) (Harbison, et al., 2004) (Lee, et al., 2002) and TF binding potential 

estimated by scanning a collection of position weight matrix (PWM) models over all yeast 

promoters (Spivak & Stormo, 2012).  An integrated functional and physical GRN map was built 

by assigning a score to each TF-target gene pair that was equal to the geometric mean of the 
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scores assigned to it in the functional and physical networks. The geometric mean ensures that 

high scoring interactions are supported by both binding and expression evidence. 

 

To select interventions that will shift transcriptional state toward the goal state, we applied 

NetSurgeon. This algorithm assigns a score to each possible intervention representing its 

confidence that the intervention will yield a shift toward the goal state. The score assigned to 

each intervention is based on the number of targets of the regulator that are predicted to move 

toward the goal state and degree to which the initial and goal states differ for the regulator and 

targets. Deletion of a TF is predicted to increase the expression of targets it represses and 

decrease the expression of targets it activates. Conversely, overexpression of a TF is predicted to 

decrease expression targets that the TF represses and increase expression targets it activates.  

High-scoring interventions are those that are predicted to change many genes in the right 

direction, with greater weight given to targets that are the most significantly differentially 

expressed genes between the initial state and goal state. 

 

2.3.2 Network models can efficiently guide transcriptome engineering efforts 
To assess the ability of NetSurgeon to select interventions that will move the initial 

transcriptional state toward the goal state, we used NetSurgeon to select regulator interventions 

for single regulator intervention goal states from publically available gene expression datasets. 

We choose to use independent single regulator intervention expression profiles for validation 

goal states, rather than randomly generated expression states, because randomly generated 

expression states may not be biologically achievable. We constructed the GRN used for 

validation in a similar fashion as previously described, except the functional network was 
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inferred from only one of the three gene expression datasets previously used, the dataset 

consisting of 269 regulator deletion strains grown in YPD (Hu, Killion, & Iyer, 2007). 

 

We initially examined NetSurgeon’s performance on goal states that we knew could be achieved 

by a single TF deletion mutant growing in synthetic complete medium (SC). This medium was 

different from the rich medium (YPD) in which the expression profiles used to build the network 

were obtained, but the two media featured the same sugar: 2% glucose. The goal states were an 

independent set of expression profiles from regulator deletion mutants (Kemmeren, et al., 2014). 

For each of the 245 goal states, NetSurgeon used the NetProphet+PWM network to assign scores 

to all 320 possible regulator deletions. We plotted the number of goal states for which 

NetSurgeon ranked the best intervention (the one that actually produced the goal state profile) at 

or above each rank (Fig 2.2.A, green). We compared this to a random assignment of rankings for 

each of the deletion goal states, by running NetSurgeon on 100 random networks of the same 

topology (Fig. 2.2.A, gray). We found that NetSurgeon is able to assign higher scores to the 

correct interventions compared with ranks assigned by running NetSurgeon over randomly 

generated networks (Mann-Whitney U test P < 10-46). Further, we observed that NetSurgeon 

performed at random chance levels using the permuted networks, indicating network structural 

accuracy is critical for NetSurgeon performance. We also assessed the ability of NetSurgeon to 

identify the best intervention within the top 5 scoring interventions, a reasonable number of 

interventions to test experimentally. NetSurgeon ranks the best intervention in the top 5 for 91 

goal states, which is 29-times better than random networks scores (P<10-165). 
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Figure 2.2.A. In silico assessment of NetSurgeon using 245 deletion mutant expression profiles grown in synthetic 
complete medium. Plotted curves show the number of goal states for which NetSurgeon ranked the best intervention 
at or above each rank (green), compared with random ranks (gray). 

We also evaluated the ability of NetSurgeon to identify interventions in cells cultured in 

conditions even further from those used to construct the GRN. The goal states consisted of 63 

expression profiles obtained from regulator overexpression strains grown in selective synthetic 

medium supplemented with 2% galactose (Chua, et al., 2006). We assessed the scores assigned 

to the best regulator for each overexpression goal state and compared the outcome to scores 

generated using random networks (Fig. 2.2.B).  We found that NetSurgeon is able to assign 

higher scores to the correct interventions compared with random network generated scores 

(Mann-Whitney U test P < 10-6). NetSurgeon is also able to assign the best intervention a top 5 

rank for 8 of the 63 goal states (13%), a 10 fold improvement over the mean of the random 

network. 
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Figure 2.2.B. In silico assessment of NetSurgeon using 63 overexpression strains grown in grown in selective 
synthetic medium supplemented with 2% galactose. Plotted curves show the number of goal states for which 
NetSurgeon ranked the best intervention at or above each rank (green), compared with random ranks (gray). 

In order to evaluate the effect of network accuracy on NetSurgeon performance, we applied 

NetSurgeon to GRNs inferred from the same expression data sets by CLR (Faith, et al., 2007), 

regression (Bonneau, et al., 2006), NetProphet (Haynes, Maier, Kramer, Wang, Brown, & Brent, 

2013), and NetProphet integrated with PWM scores. We first evaluated the structural accuracy of 

the five GRNs by determining the level of ChIP support for high confidence interactions in each 

GRN. We then evaluated the performance of NetSurgeon when using each of these five GRNs 

on our two test data sets: the TF-deletion in SC glucose and TF-overexpression in SC galactose. 

We plotted the structural accuracy of each of the five GRNs against the NetSurgeon’s accuracy 

when using that GRN (Fig. 2.2.C). We observed a clear pattern of improved NetSurgeon 

performance with more structurally accurate GRNs. A level-log regression model was fit to test 

this observation (Multiple R2 = 0.853, P=0.00014) and forecasted a maximum NetSurgeon 

intervention recovery of 0.85 AUC with a perfect network model, which is a 33% improvement 

over current NetSurgeon performance. 
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Figure 2.2.C. In silico assessment of the effect of network structural accuracy on NetSurgeon target intervention 
selection accuracy. Network structural accuracy of five GRNs, summarized by area under the precision recall curve 
at 5% ChIP recovery (x-axis), is compared with NetSurgeon intervention target selection accuracy, summarized by 
area under the curve of the number of goal states for which NetSurgeon ranked the best intervention at or above 
each rank (y-axis). Gray dotted lines indicate chance 5% ChIP recovery AUC and cell state selection AUC.  

To assess the practicality of NetSurgeon-guided engineering, we ran NetSurgeon on the 

NetProphet+PWM network and computed the median number of interventions needed to identify 

the first, the best, and all deletion genotypes that reduce the distance between the wild-type cells 

and the goal by at least 10% (Fig. 2.2.D). A median of 12, 22 and 51 mutant strains were 

required to recover the first, the best, and all interventions (10-, 7-, and 4-fold better than 

random, respectively). 
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Figure 2.2.D. In silico assessment of the median number of NetSurgeon interventions required to generate any 
strain, the best strain, or all strains, that will converge expression state at least 10% towards the goal state (green), 
compared with random ranking (gray). 

2.3.3 Application of transcriptome engineering to ethanol fermentation 
Following the successful in silico validation of our approach for transcriptome engineering, we 

applied the algorithm to the industrially relevant problem of ethanol production in a mixed 

glucose-xylose co-culture. Principle components analysis of RNA-seq data from S. cerevisiae 

cells grown with xylose as the sole carbon source indicated that the system was in a hybrid 

transcriptional state with some characteristics of cells grown in 2% glucose, a fermentative state, 

and some characteristics of cells grown in 1.3% ethanol, a respiratory state (Fig. 2.3A).  As S. 

cerevisiae cells do not natively consume xylose, we hypothesized that the system was unable to 

recognize the pentose carbohydrate as a fermentable carbon source and therefore entered into a 

transcriptional state that was non-optimal for fermentative metabolism.  
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Figure 2.3.A. Principal component analysis of RNA expression profiles reveals a state transition between cells 
grown on 5% glucose (green), 5% xylose (blue), and 1.3% ethanol (red). 

We therefore sought to identify interventions that would shift the system from the xylose-only 

transcriptional state (origin state) to the high-glucose state (goal state). In order to apply 

NetSurgeon to this problem, we generated the integrative, genome-wide network map described 

above and attempted to optimize the expression of the 445 genes involved in central carbon 

metabolism. Using this map, NetSurgeon produced a rank-ordered list of regulators whose 

deletion was predicted to force the system toward the 2% glucose transcriptional state. From this 

rank ordered list, we selected the top eight predicted interventions for biological validation via 

PCR-mediated genetic deletion of the selected regulators in the H2217-7 yeast strain. In order to 

assess the combinatoric effect of the predicted deletions, we generated an additional three strains 

carrying deletions in two of the NetSurgeon-selected regulators (cat8/hap4, cat8/adr1, cat8/aft2). 

For a limited comparison of our algorithmically selected deletions with expert intuition, we 

deleted the master regulator SNF1, the yeast ortholog of AMP kinase and a critical regulator 

responsible for glucose repression and other features of fermentative metabolism.   
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WILD-TYPE SINGLE KO DOUBLE KO 

H2217-7 snf1 cat8/adr1 

 adr1 cat8/hap4 

 cat8 cat8/aft2 

 usv1  

 gis1  

 msn2  

 hap4  

 msn4  

 aft2  
Table 2.1. Wild-type and deletion mutant strains profiled 

We found that the NetSurgeon-selected targets were supported by existing literature. Cat8 and 

Hap4 are respiratory factors active in the general cellular response to xylose and deletion of 

HAP4 was recently shown to improve cellobiose consumption rates (Salusjärvi, Kankainen, 

Soliymani, Pitkänen, Pentti, & Ruohonen, 2008) (Lin, et al., 2014). MSN2 and MSN4, encoding 

stress associated factors, were observed to be highly upregulated in xylose and their 

transcriptional targets misregulated (Matsushika, Goshima, Hoshino, & others, 2014). Usv1, 

Gis1 and Aft2 were all found to have clear roles in the yeast transcriptional response to non-

fermentable carbon sources and general stress response (Hlynialuk, Schierholtz, Vernooy, & der, 

2008) (Pedruzzi, Bürckert, Egger, & Virgilio, 2000) (Blaiseau, Lesuisse, & Camadro, 2001).  

 

Aerobic batch fermentations were used to assess the outcome of our transcriptome interventions 

at the transcriptional and metabolic levels. Cells were inoculated into synthetic complete medium 

supplemented with 2% glucose and 5% xylose at an OD600 of 1.0+/- 0.2 and grown for 48 

hours. Samples were taken for RNA-sequencing at 4 hours and 24 hours, representative of the 

glucose-xylose and xylose-only metabolic states. Aliquots were acquired for HPLC metabolite 
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analysis across the 48 hour fermentation (Fig. 3B). Using this data, we examined the 

NetSurgeon’s ability to control transcriptional state and quantitatively assessed the effect of 

transcriptome transcriptional state change on a complex phenotype. 

 

Figure 2.3.B. Top: Glucose (light blue), xylose (dark blue), and ethanol (red) metabolite concentration profiles from 
the fermentation of the wild-type H2217-7. Bottom: Overview of RNA-seq (magenta) and HPLC (turquoise) 
sampling strategy for aerobic batch fermentations used in this study.  

2.3.4 Transcriptome engineering successfully promotes a fermentative state 
Differential expression analysis revealed that 2,887 genes are differentially expressed by at least 

two fold in wild-type cells as a result of glucose depletion (42% of all genes. Fig. 2.4.A). Six of 

the eight NetSurgeon-selected interventions lowered the number of differentially expressed 

genes. The cat8 mutant was the best, preventing the change in expression of 1,182 of 2,887 DE 

genes while creating only 526 new DE genes, for a net reduction of 656 DE genes. Notably, the 

deletion of CAT8 reduced differential expression better than the deletion of SNF1, a master 

regulator of the S. cerevisiae glucose repression system.  
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Figure 2.4.A. Number of 2-fold or greater differentially expressed genes between the wild-type strain in the 
fermentative state and each strain in the respiratory state. Green and red bars indicate strains with less and more 
differentially expressed genes than wild-type respectively. 

Next, we calculated the Euclidean distance between the wild-type expression state in the 

glucose-xylose phase and the deletion strain’s expression state in the xylose-only phase (Fig. 

2.4.B).  Six of the eight NetSurgeon interventions lowered the Euclidean distance between the 

two phases. The single deletion mutant cat8 reduced the genome-wide expression distance 

between the glucose-xylose phase and the xylose-only phase by 28.4%. The mean reduction in 

Euclidean distance of the six successful NetSurgeon selected interventions was 20.8%. As in the 

DE analysis, the deletion of HAP4 and ADR1 increased the total distance between the two state 

vectors.  None of the double mutant strains (cat8/hap4, cat8/adr1, cat8/aft2) reduced the distance 

between the two states more than the single deletion of CAT8. 
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Figure 2.4.B. Euclidean distance between the full expression profile of wild-type strain in the fermentative state, and 
the full expression profiles of all strains in the respiratory state. Green and red indicate reduced and increased 
Euclidean distance compared with wild-type respectively. 

The NetSurgeon-selected interventions were specifically targeted at optimizing the expression 

state of 445 genes involved in carbon metabolism.  Among these 445 genes, the CAT8 deletion 

reduced the Euclidean distance by 36% (Fig. 2.4.C).  On average, the six successful NetSurgeon-

selected interventions reduced the Euclidean distance between the two state vectors by 24%.  
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Figure 2.4.C. Euclidean distance between the expression 445 metabolically active computationally optimized genes 
in the fermentative state of the wild-type strain, and the matching optimized gene expression profiles of all strains in 
the respiratory state. Green and red indicate reduced and increased Euclidean distance compared with wild-type 
respectively. 

Each of the eight NetSurgeon selected transcription factors had known roles in the regulation of 

the cellular stress response or respiratory processes. We evaluated the ability of each 

transcription factor to promote a fermentative state across specific metabolic pathways (Fig. 

2.4.D).  With the exception of adr1, each deletion mutant affected the expression of genes across 

many of the metabolic pathways in central carbon metabolism. Seven of the eight NetSurgeon-

selected interventions lowered the Euclidean distance in at least one of the central carbon 

metabolism pathways evaluated. All six of the interventions that reduced differential expression 

and global Euclidean distance moved the expression of glycolytic genes toward a fermentative 

state. 

 

Figure 2.4.D. Euclidean distance between the expression profiles of central carbon metabolic pathways in the 
fermentative state of the wild-type strain, and the matching central carbon metabolic pathway expression profiles of 
all strains in the respiratory state. Green and red indicate reduced and increased Euclidean distance compared with 
wild-type respectively. 
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Three of these interventions shifted the expression of TCA cycle genes toward a fermentative 

state. Deletion of CAT8 promoted a fermentative state in many metabolic pathways essential for 

xylose fermentation, including genes involved in glucose utilization, the pentose phosphate 

pathway, glycolysis, the TCA cycle, and acetate/glycerol production.  All of the TCA cycle 

genes were moved toward the expression level associated with fermentative metabolism (Fig. 

2.4.E).  Deletion of CAT8 also reduced the Euclidean distance of all TCA genes from the 

fermentative state by 60%. These observations highlight the power of transcriptome level 

interventions to modulate the expression of many more genes than is feasible by traditional, one-

gene-at-a-time genetic engineering.   

 

Figure 2.4.E. Comparison of the expression TCA cycle genes between the fermentative state of the wild-type strain 
(red), the respiratory state of the wild-type strain (green), and the respiratory state of the cat8 deletion mutant strain 
(blue). 
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2.3.5 Identification of transcriptional states associated with improved 
fermentative performance 
In order to assess the change in cellular metabolic behavior following our transcriptional 

interventions, we profiled metabolic intake and output via HPLC. HPLC analysis identified three 

metabolic states associated with high glucose, low glucose, and respiratory metabolic phases. We 

focused our downstream analyses on the high glucose and respiratory phases of the fermentation 

during which we had carried out RNA-seq.  

 

To examine the ability of the selected transcriptional interventions to control the metabolic state 

of the cell, we calculated the percentage of input carbon that end up in each of the major carbon 

fates in each phase (Fig. 2.5.A, 2.5.B).   Carbon import rates significantly declined in the absence 

of high glucose, with a mean reduction of import across all assayed genotypes by 86%. In 

addition to changes in import rate, the cells significantly upregulated their commitment of carbon 

to respiratory processes in the xylose-only phase. Carbon commitment to respiration changed 

from a mean of 24% in the glucose-xylose phase to 89% in the xylose-only phase. This indicated 

that the metabolism of all strains had shifted into a respiratory mode during the xylose-only 

phase (Fig. 2.5.B).  
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Figure 2.5.A-B. Transcriptome interventions alter carbon intake rates and commitment, but do not prevent a 
transition to a respiratory metabolism. Panel A: Cellular metabolic input and output across profiled genotypes during 
the glucose-xylose phase of aerobic fermentation. Panel B: Cellular metabolic input and output within the xylose 
phase. 

Although the tested interventions did not prevent the transition to a respiratory metabolic state, 

they did affect the cell’s commitment of carbon to output metabolites significantly. We observed 

41 statistically significant changes in carbon commitment across the 13 profiled genotypes 

(p<0.05, t-test, Benjamini-Hochberg corrected). 28 of these changes were within the glucose-

xylose phase. Carbon commitment to all of the profiled metabolites and phenotypes was altered 

in at least one of our transcriptional interventions, indicating that changes in transcriptional state 

have the power to impact all dimensions of cellular metabolism. Carbon commitment to xylitol 

was significantly increased in transcriptional interventions associated with respiratory processes, 
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a potential side effect of the respiratory factors regulating the promoters of the XYL1, XYL2, and 

XKS1 enzymes required for xylose integration into central carbon metabolism. Interestingly, all 

significant changes in carbon commitment to ethanol and biomass were reductions. The deletion 

of SNF1, HAP4, USV1, GIS1, MSN4 and AFT1 significantly reduced carbon commitment to 

ethanol, with a mean reduction in carbon flux by 26%. Deletions involving CAT8 or HAP4 

significantly reduced carbon commitment to biomass by 33% and 38%, respectively, in the 

glucose-xylose phase of the fermentation. We found that the cat8/hap4 and cat8/aft2 double 

mutant strains exhibited similar carbon commitment phenotypes as the CAT8 single.  However, 

the cat8/adr1 strain deviated from the cat8 single mutant by committing wild type level of carbon 

to acetic acid, while lowering carbon commitment to glycerol by 70% vs the wild type strain 

(85% lower vs. cat8). 

 

We also observed 57 statistically significant changes in the specific rates of metabolite 

production or consumption across the glucose-xylose and xylose-only phases of the fermentation 

(p < 0.05, t-test, Benjamini-Hochberg corrected). Within the glucose-xylose phase, we identified 

industrially relevant changes in glucose and xylose consumption rates, acetic acid output and 

ethanol production. All of the profiled interventions on respiratory regulators (cat8, hap4, adr1) 

improved the specific rate of glucose consumption between 11% and 40% (Fig. 2.5.C).  We 

found that hap4 and msn4 mutants improved the specific rate of xylose consumption by 170% 

and 120% respectively (Fig. 2.5.D). Acetic acid, a fermentation byproduct demonstrated to 

inhibit glycolysis, was also produced at 53%-83% lower specific rates in the hap4 and cat8 

mutants (Fig. 2.5.E) (Pampulha & Loureiro-Dias, 1990). Importantly, the specific rate of ethanol 

production was significantly increased by 22% and 31% in the cat8 and hap4 mutants (Fig. 
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2.5.F).  Within the set of stress-associated factors, we found that the deletion of USV1, MSN2, 

MSN4 and AFT2 significantly reduced the specific rate of ethanol production, with a mean rate 

reduction of 22% (Fig 2.5.F).  Double mutant strains for cat8/hap4 and cat8/aft2 performed 

similarly to the cat8 single deletion strain.  The double mutant for cat8/adr1 exhibited wild type 

levels of acetic acid production while lowering production rates of glycerol vs. the wild type 

genotype. Taken together, these data demonstrate the ability of transcriptome engineering to 

generate significant changes in cellular behavior, even in the absence of complete phenotypic 

conversion. 

 

Figure 2.5.C-F. Transcriptome interventions alter specific rates of metabolite production or consumption in the 
glucose-xylose phase. Panel C: Specific rate of glucose consumption. Panel D: Specific rate of xylose consumption. 
Panel E: Specific rate of acetic acid production. Panel F: Specific rate of ethanol production. 

2.3.6 An integrated model of transcriptional regulation and metabolic flux 
leads to novel, validated predictions of interventions to optimize biofuel 
production 

The lack of data linking transcriptional state with metabolic phenotypes has prevented the use of 

transcriptional interventions for effective engineering of metabolism. In order to address this 

issue, we utilized our dataset to construct an integrated model of S. cerevisiae central carbon 

metabolic flux and expression. We identified regulators linked to flux by correlating their 

expression with pathway carbon flux. From this set of regulator-flux correlations, we identified 

regulators putatively controlling metabolic flux outcomes via network-predicted direct regulatory 

relationships (Fig. 2.6). 
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Figure 2.6. An integrated map relating transcription factors to central carbon metabolism flux. Blue rounded 
rectangles: pathways in central carbon metabolism. Green ovals: transcription factors. Links between transcription 
factors and pathways denotes transcription factor expression correlation with increased (black arrow headed link) or 
decreased (red circle headed link) flux through the pathway. Solid link lines: transcription factor directly regulates 
the expression of genes in the pathway. 

This analysis revealed that three transcriptional regulators were deeply interconnected with 

biochemical pathways important for xylose metabolism and fermentation. CAT8 expression was 

correlated with genes associated with xylose utilization, the pentose phosphate pathway, acetate 

production and the TCA cycle. Msn4 was predicted to directly regulate genes involved in xylose 

utilization, the pentose phosphate pathway, and the TCA cycle, and flux through these pathways 

was anti-correlated with MSN4 expression. Pdr3 was revealed to be a regulator of glycolytic 

genes, and flux through these pathways was positively correlated with PDR3 expression. This 

integrated model of transcriptional regulation and metabolic flux is an important step toward the 

rational engineering of S. cerevisiae metabolism. 
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2.4 Discussion 
We have demonstrated that transcriptional network maps can be used to rationally manipulate 

cellular state by identifying the crucial regulators mediating a state transition and prioritizing 

them for genetic intervention. The formalization of this process of rational state manipulation is 

expected to enable future developments in personalized medicine, improve approaches to stem 

cell engineering, and reduce the costs associated with these efforts. Our work establishes 

quantitative benchmarks in this new field, enabling the rapid progress generally associated with 

clear benchmarks (Stolovitzky, Monroe, & Califano, 2007). 

 

The availability of deletion and overexpression collections in S. cerevisiae has enabled us to 

assess the state of the art in network-guided transcriptome engineering. We found that 

NetSurgeon can identify the best intervention within a median of 22 guesses, a 7-fold 

improvement over random guessing. We observed that network maps built from data on one 

environmental condition can be successfully used to predict interventions in different conditions. 

This is important for applications that deviate from standard environmental conditions. Finally, 

we have demonstrated the utility of TF-network maps enriched with direct regulatory 

relationships; maps generated by NetProphet together with PWM models led to selections that 

were substantially better than those made by using maps expression correlation or CLR.  

 

We applied NetSurgeon to optimizing yeast for ethanol production from glucose-xylose 

coculture. NetSurgeon selected critical regulators highlighted in the literature and six of the eight 

promoted a fermentative transcriptional state. Although the single deletions were insufficient to 

entirely prevent a state transition involving 43% of the yeast genome, it succeeded in 
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significantly changing the rate and ratio of cellular carbon commitment. We found that regulators 

associated with respiratory processes had significant metabolic effects in the fermentative phase 

of the culture. We also found that deletion of stress factors lowers the rate of production and the 

total ethanol yield. In addition, our dataset of 8,055 metabolic measurements with 73 matched 

RNA sequencing profiles across 14 genotypes will enable future engineering efforts to identify 

and rationally manipulate the critical regulators of metabolic flux in order to maximize biofuel 

production. 

 

One of the advantages of transcriptome engineering is the possibility of accessing evolutionarily 

optimized states associated with specific phenotypes. The expression levels of genes within 

linear metabolic pathways such as glycolysis and the TCA cycle are highly regulated in order to 

maintain a correct ratio of enzyme products necessary for avoiding intermediate metabolite 

accumulation and allosteric inhibition of upstream processes. The engineering of optimal 

expression levels across entire pathways is a challenging problem that is often addressed through 

iterative selection strategies (Wang, et al., 2009). We observed that manipulation of regulator 

expression levels is a promising strategy to access pre-defined expression states across entire 

pathways. The effect of CAT8 deletion on TCA gene expression is one example of an 

intervention reconfiguring the expression of an entire pathway toward a fermentative state. The 

TCA cycle within S. cerevisiae consists of twenty-six genes, making optimization of this 

pathway’s expression level a difficult task through one-gene-at-a-time engineering. Cat8 was 

predicted by NetProphet to regulate four genes within the TCA cycle and the glyoxylate 

pathway, and removal of this factor was predicted to move the TCA cycle toward a fermentative 

expression configuration. We found that CAT8 deletion moved all twenty-six genes of the TCA 
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cycle toward a fermentative state, providing evidence that naturally evolved transcriptional states 

can be leveraged for transcriptome engineering. 

 

Our analysis of the double deletion strains highlighted the complexity of epistatic effects within 

gene regulatory networks. Although the generation of strains with multiple regulatory 

perturbations offers the possibility of large scale reconfiguration of cellular state, we observed 

that the three double deletion strains failed to reduce differential expression and Euclidean 

distance as much as their component single deletions. This non-additivity between genotypes 

indicates that a more sophisticated approach to modeling the effect of multiple regulator 

perturbations will be required to expand target selection approaches multiple perturbations.  

2.5 Materials and Methods 

2.5.1 Network guided target selection 

To rank possible regulator interventions for convergence toward a goal expression state, 

NetSurgeon uses a GRN to simulate interventions for all regulators, and for each simulated 

regulator intervention a score is assigned representing the confidence that the regulator 

intervention will converge the expression state toward the goal state. The score for a simulated 

regulator intervention is based on the enrichment of the regulator’s simulated intervention effects 

to fix the total dysregulation of all genes between the initial and goal expression states, where the 

total dysregulation of all genes is quantified by the sum of the negative log pvals of significance 

of differential expression. Specifically the NetSurgeon network intervention score for a regulator 

is: 

NetSurgeon network intervention score (Ri) = max( -log10 ( hypergeometric distribution(Xij * 

(W/D), W, U-W, (Xij+Yij) * (W/D) + Cij - Zij))) for network cutoff j = 500, …, 40,000 



32 
 

where U is the total number of genes in the network, W is the number of dysregulated genes, D 

is total amount of dysregulation, Xij is the total amount of dysregulation that the intervention of 

regulator Ri will remove when considering only the top j interactions in the network, Yij is the 

total amount of dysregulation that the intervention of regulator Ri will make worse when 

considering only the top j interactions in the network, Cij is the total number of genes regulated 

by regulator Ri when considering only the top j interactions in the network, and Zij is the total 

number of dysregulated genes regulated by regulator Ri when considering only the top j 

interactions in the network. 

2.5.2 Strain engineering 

The xylose metabolizing strain VTT-C-99318 (CEN.PK2-1D ura3::XYL1 XYL2 his3::XKS1 

kanMX) was acquired from Salusjarvi et al. and used as the base strain for all experiments in this 

study (Salusjärvi, Kankainen, Soliymani, Pitkänen, Pentti, & Ruohonen, 2008). The At5g17010 

xylose transporter from A. thaliana was transformed into the VTT-C-99318 strain and 

maintained through the use of dropout media (Hector, Qureshi, Hughes, & Cotta, 2008). The 

genetic deletion of algorithmically selected transcription factors was accomplished through PCR 

amplification and targeting of drug cassettes to the selected ORF via the addition of 45 base pairs 

of homologous sequence to the 5’/3’ amplifying oligos (Baudin, Ozier-Kalogeropoulos, 

Denouel, Lacroute, & Cullin, 1993). Prior to use in experimentation, all strains were freshly 

plated onto selectable media from frozen stocks. 

2.5.3 S. cerevisiae fermentations 

All S. cerevisiae strains were grown aerobically in 60 mL of synthetic complete at 30℃ in 250 

mL baffled erlenmeyer culture flask shaken at 225 RPM. Cultures for identification of 

differential expression associated with carbon sources were grown in triplicate in either 50 g/L 
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glucose, 50 g/L xylose or 1.3 g/L ethanol for 8 hours prior to collection of biomass for RNA 

sequencing. Culture of cells for evaluation of the impact of transcriptional interventions were 

performed in triplicate and initiated by inoculating 1.0+/- 0.2 OD600 units of biomass into 60 

mL of synthetic complete media supplemented with 20 g/L glucose and 50 g/L xylose. Samples 

taken for RNA-seq analysis were aliquoted from the primary culture, spun down at 3000xg and 

frozen in liquid nitrogen prior to downstream analysis. The supernatant of samples for HPLC 

was collected by centrifugation of culture samples at 12,000xg for 3 minutes prior to snap 

freezing for storage in a dry ice/ethanol bath. All samples were stored at -80℃. At least two 

independent experiments of three biological replicates was performed for each genotype 

evaluated by HPLC. Cellular density was quantitated through analysis of culture turbidity at 600 

nm. 

2.5.4 Metabolite analysis: 

The concentration of input and output cellular metabolites was analyzed using HPLC. 

Supernatant solutions were stored at -80℃ and filtered through the use of 0.22 um syringe prior 

to HPLC analysis. Metabolites were eluted from an Aminex HPX-87H column maintained at 

65℃ and peaks detected by refractive index. Identified peaks were quantified through integration 

and interpolated against serial dilutions of standards for glucose, xylose, xylitol, glycerol, acetic 

acid and ethanol. Analysis of HPLC data was performed on a per biological replicate basis, with 

metabolic input/output relationships quantified across each fermentation and pooled into a single 

distribution based on genotype. Turbidity measurements were converted into units of g/biomass 

based on the turbidity to biomass conversion factor published (Hector, Qureshi, Hughes, & 

Cotta, 2008). Calculations of analyte rate and specific rate of change were performed across 

steady states identified in the ethanol dimension. In order to evaluate internal carbon flux, a 
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system of linear equations was developed to describe central carbon metabolism in S. cerevisiae. 

The system of equations was fit to experimentally measured parameters of carbon import and 

export for each genotype across the glucose/xylose and xylose-only phases of each fermentation. 

2.5.5 RNA sequencing and analysis: 

Total mRNA was isolated using the yeast RiboPure kit (Life Technologies, Carlsbad CA). 

Libraries for RNA-Seq were prepared as in (Haynes, et al., 2011). Briefly, poly(A) RNA was 

selected from the total RNA isolated as above using the mRNA Catcher Plus Kit (Life 

Technologies) with an epMotion 5075 automated pipettor (Eppendorf). The poly(A) RNA was 

subsequently sheared by incubating in TURBO DNA-free buffer at 75°C for 10 minutes and 

purified with the QIAquick PCR Purification Kit (Qiagen). First strand cDNA synthesis was 

performed using random hexameric primers and SuperScript III Reverse Transcriptase, followed 

by treatment with E. coli DNA ligase, DNA polymerase I, and RNase H for second-strand 

synthesis, all using standard methods. The cDNA libraries were end-repaired with a Quick 

Blunting kit and A-tailed using Klenow exo- with dATP (New England Biolabs). Illumina 

adapters were ligated to the cDNA and fragments ranging from 150-250 bp in size were selected 

using gel electrophoresis. The libraries were enriched and indexed in a 10-cycle PCR using 

Phusion Hot Start II High-Fidelity DNA (Fermentas), purified, and pooled in equimolar ratios 

for multiplex sequencing on an Illumina HiSeq 2500. 

2.5.6 RNA/metabolic data integration and analysis: 

We utilized two different complementary methods for integrating RNA expression profiles and 

metabolic data in order to gain a better understanding of the molecular mechanisms controlling 

metabolic phenotypes. First, we used the limma software package (Ritchie, et al., 2015) to 

identify differentially expressed genes within the fermentative and respiratory states between the 
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wild-type strain and each deletion strain. We then used this differential expression analysis to 

putatively link genes mechanistically to metabolic analyte outcomes by identifying differentially 

expressed genes in metabolic pathways linked to each metabolic analyte. 

In addition to differential expression analysis, we also identified genes linked to metabolic 

outcomes by identifying genes whose expression significantly correlates with carbon flux. For 

each gene and each metabolic pathway we computed the Pearson correlation coefficient between 

the gene’s expression profile, and the computed carbon flux through the pathway. We then 

generated a null distribution of correlation coefficients between gene expression and pathway 

flux by randomly generating 10,000 expression vectors by sampling per condition from the 

expression of all genes within the condition with replacement. These null distributions of 

expression correlation with pathway flux were then used to assign false discovery rate corrected 

p-values to the significance of each gene’s expression correlation with flux measurements of a 

metabolic pathway.  

2.6 Supplemental Data 

2.6.1 High glucose phase rates of metabolite change: 
Genotype GLUmean GLUsem GLU_t_pval 
WT -0.8640 0.04068 NA 
snf1 -0.8830 0.03323 0.8440 
cat8 -0.8415 0.0121 0.7723 
hap4 -1.317 0.03588 1.82E-05 
adr1 -1.297 0.1274 0.009629 
usv1 -0.9007 0.01453 0.6935 
gis1 -0.9811 0.02502 0.2283 
msn2 -0.9082 0.01736 0.4717 
msn4 -0.9382 0.03238 0.4728 
aft2 -0.8673 0.03078 0.9833 
cat8/hap4 -0.8808 0.01033 0.8841 
adr1/cat8 -1.959 0.01241 1.55E-08 
cat8/aft2 -0.8936 0.01969 0.7587 
Genotype XYLmean XYLsem XYL_t_pval 
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WT -0.1633 0.0287 NA 
snf1 -0.09280 0.06998 0.4728 
cat8 -0.1617 0.008607 0.9869 
hap4 -0.4809 0.04761 0.0003854 
adr1 -0.3100 0.04937 0.04074 
usv1 -0.1477 0.009625 0.8637 
gis1 -0.1950 0.1421 0.8637 
msn2 -0.1627 0.02697 0.9982 
msn4 -0.3855 0.04770 0.006759 
aft2 -0.06599 0.1808 0.6297 
cat8/hap4 -0.1465 0.03033 0.8486 
adr1/cat8 -0.1050 0.07373 0.5462 
cat8/aft2 -0.1359 0.02614 0.7104 
Genotype XYLITOLmean XYLITOLsem XYLITOL_t_pval 
WT 0.01504 0.001955 NA 
snf1 0.01799 0.006156 0.7587 
cat8 0.06486 0.006472 9.88E-07 
hap4 0.1059 0.003404 3.55E-12 
adr1 0.02693 0.001828 0.001984 
usv1 0.006838 0.004180 0.1331 
gis1 0.008630 0.003863 0.2209 
msn2 0.01200 0.002770 0.5416 
msn4 0.01561 0.001403 0.9238 
aft2 0.01438 0.001193 0.9175 
cat8/hap4 0.08079 0.001039 1.02E-11 
adr1/cat8 0.1272 0.009137 7.30E-10 
cat8/aft2 0.08068 0.0006325 7.30E-10 
Genotype GLYmean GLYsem GLY_t_pval 
WT 0.1001 0.006579 NA 
snf1 0.09914 0.00716 0.9693 
cat8 0.1881 0.002016 1.57E-08 
hap4 0.1451 0.005586 0.002191 
adr1 0.1277 0.01063 0.08131 
usv1 0.1040 0.004458 0.8579 
gis1 0.1350 0.003150 0.01654 
msn2 0.1023 0.002893 0.8637 
msn4 0.1006 0.003264 0.9863 
aft2 0.1157 0.006877 0.2885 
cat8/hap4 0.1920 0.001974 5.64E-07 
adr1/cat8 0.07439 0.008366 0.08275 
cat8/aft2 0.1903 0.001928 6.76E-07 
Genotype ACETICmean ACETICsem ACETIC_t_pval 
WT 0.004685 0.0003660 NA 
snf1 0.004943 0.0008489 0.8637 
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cat8 0.0005829 0.0002893 9.64E-07 
hap4 0.002423 1.34E-05 0.01327 
adr1 0.009178 0.001232 0.003930 
usv1 0.004734 0.0002487 0.9756 
gis1 0.005000 8.99E-05 0.7473 
msn2 0.005123 0.0001408 0.4713 
msn4 0.005301 0.0002399 0.4418 
aft2 0.005568 0.0001715 0.22833 
cat8/hap4 4.62E-06 0 1.26E-06 
adr1/cat8 0.009605 0.001838 0.009461 
cat8/aft2 4.62E-06 0 1.26E-06 
Genotype ETOHmean ETOHsem ETOH_t_pval 
WT 0.3403 0.01810 NA 
snf1 0.3083 0.02564 0.4654 
cat8 0.3222 0.01188 0.6297 
hap4 0.4901 0.01425 0.0008515 
adr1 0.5172 0.07528 0.05013 
usv1 0.2763 0.004821 0.1490 
gis1 0.2790 0.009706 0.1217 
msn2 0.3123 0.01122 0.36099 
msn4 0.2855 0.01558 0.1506 
aft2 0.2461 0.006381 0.03550 
cat8/hap4 0.3227 0.005091 0.7459 
adr1/cat8 0.6423 0.08348 0.001027 
cat8/aft2 0.3470 0.01571 0.9036 
Genotype BIOMASSmean BIOMASSsem BIOMASS_t_pval 
WT 0.3747 0.01888 NA 
snf1 0.3811 0.01456 0.8964 
cat8 0.2375 0.007063 6.22E-05 
hap4 0.4279 0.01569 0.1744 
adr1 0.5245 0.08661 0.1504 
usv1 0.4085 0.01083 0.4037 
gis1 0.3864 0.01879 0.8257 
msn2 0.4248 0.00664 0.05645 
msn4 0.3875 0.006663 0.7808 
aft2 0.3740 0.006049 0.9951 
cat8/hap4 0.2722 0.004360 0.01347 
adr1/cat8 0.8211 0.01212 4.86E-08 
cat8/aft2 0.2697 0.001422 0.01194 
Table 2.2: High glucose phase measured rates of metabolite change. Units in grams analyte/hour. 
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2.6.2 Low glucose phase rates of metabolite change: 
Genotype GLUmean GLUsem GLU_t_pval 
WT -0.76000 0.02587 NA 
snf1 -0.5639 0.09095 0.07733 
cat8 -0.9529 0.02526 0.0002985 
hap4 -0.7996 0.005789 0.5641 
adr1 -0.6028 0.08063 0.1183 
usv1 -0.6308 0.004378 0.04090 
gis1 -0.6287 0.01001 0.01194 
msn2 -0.5929 0.01442 8.13E-05 
msn4 -0.5989 0.007970 0.002705 
aft2 -0.6717 0.02808 0.1183 
cat8/hap4 -0.9891 0.008234 0.0003133 
adr1/cat8 -0.04606 0.006369 7.30E-10 
cat8/aft2 -0.9579 0.002997 0.001140 
Genotype XYLmean XYLsem XYL_t_pval 
WT -0.30811 0.03079 NA 
snf1 -0.2401 0.1379 0.7444 
cat8 -0.3110 0.03465 0.9805 
hap4 -0.5234 0.06040 0.01194 
adr1 -0.3757 0.05140 0.4027 
usv1 -0.1727 0.04210 0.05730 
gis1 -0.1261 0.04237 0.01654 
msn2 -0.1187 0.02508 0.0008600 
msn4 -0.1858 0.04959 0.1044 
aft2 -0.5588 0.2099 0.2205 
cat8/hap4 -0.2619 0.009227 0.5748 
adr1/cat8 -0.3455 0.06256 0.7229 
cat8/aft2 -0.3014 0.01133 0.9629 
Genotype XYLITOLmean XYLITOLsem XYLITOL_t_pval 
WT 0.03124 0.004564 NA 
snf1 0.01565 0.003949 0.06187 
cat8 0.2021 0.02013 1.67E-07 
hap4 0.2151 0.009082 4.10E-11 
adr1 0.05618 0.008336 0.03554 
usv1 0.02012 0.008886 0.3848 
gis1 0.02392 0.007061 0.5462 
msn2 0.02499 0.001931 0.3895 
msn4 0.01521 0.001134 0.07112 
aft2 0.01809 0.002766 0.1532 
cat8/hap4 0.2422 0.004232 7.15E-13 
adr1/cat8 0.1301 0.004710 3.21E-08 
cat8/aft2 0.2233 0.001818 5.51E-11 
Genotype GLYmean GLYsem GLY_t_pval 
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WT 0.07131 0.003119 NA 
snf1 0.04807 0.002550 0.000175841 
cat8 0.1360 0.001975 2.73E-10 
hap4 0.02332 0.0007066 4.54E-06 
adr1 0.05335 0.01065 0.17089 
usv1 0.06736 0.004306 0.6550 
gis1 0.09382 0.007308 0.01435 
msn2 0.06634 0.003552 0.4654 
msn4 0.05605 0.0008246 0.04535 
aft2 0.05642 0.007501 0.1045 
cat8/hap4 0.1385 0.002602 5.08E-09 
adr1/cat8 0.001222 0.0008510 7.07E-08 
cat8/aft2 0.1396 0.001274 9.92E-08 
Genotype ACETICmean ACETICsem ACETIC_t_pval 
WT 0.005455 0.0004036 NA 
snf1 0.007101 0.0008818 0.1654 
cat8 0.0003676 0.0004408 8.11E-07 
hap4 0.002770 0.0004088 0.003318 
adr1 0.01014 0.001942 0.04090 
usv1 0.006227 0.0002950 0.4218 
gis1 0.006832 0.0002242 0.1630 
msn2 0.006638 0.0004214 0.1299 
msn4 0.005399 5.89E-05 0.9756 
aft2 0.005403 0.0002528 0.9756 
cat8/hap4 0.0008132 0.0003617 1.28E-05 
adr1/cat8 0.01200 0.002458 0.008565 
cat8/aft2 0.001540 6.53E-05 0.0001269 
Genotype ETOHmean ETOHsem ETOH_t_pval 
WT 0.1580 0.02454 NA 
snf1 0.0310 0.04200 0.03721 
cat8 0.1444 0.06895 0.9175 
hap4 0.08498 0.02998 0.2564 
adr1 0.002097 0.07833 0.1080 
usv1 0.1799 0.06412 0.8257 
gis1 0.09483 0.01527 0.3110 
msn2 0.01142 0.02772 0.003222 
msn4 0.06948 0.01741 0.1044 
aft2 0.1583 0.03766 0.9988 
cat8/hap4 0.2582 0.005461 0.09193 
adr1/cat8 -0.2485 0.03299 1.26E-06 
cat8/aft2 0.2481 0.02454 0.08610 
Genotype BIOMASSmean BIOMASSsem BIOMASS_t_pval 
WT 0.2379 0.01495 NA 
snf1 0.2519 0.04480 0.8523 
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cat8 0.2219 0.02070 0.6935 
hap4 0.1362 0.01832 0.003894 
adr1 0.1831 0.009282 0.03189 
usv1 0.1779 0.03296 0.1532 
gis1 0.1812 0.01042 0.06257 
msn2 0.1914 0.01184 0.06257 
msn4 0.1675 0.02452 0.05645 
aft2 0.1693 0.02661 0.07095 
cat8/hap4 0.2089 0.01964 0.4277 
adr1/cat8 0.14416 0.008730 0.00316 
cat8/aft2 0.2095 0.008854 0.3734 
Table 2.3: Low glucose phase measured rates of metabolite change. Units in grams analyte/hour. 

2.6.3 Respiratory phase rates of metabolite change: 
Genotype GLUmean GLUsem GLU_t_pval 
WT -0.1491 0.01330 NA 
snf1 -0.04858 0.01287 0.0002607 
cat8 -0.05351 0.01058 0.0002269 
hap4 7.53E-05 7.35E-05 0.0001152 
adr1 -0.07057 0.01970 0.01194 
usv1 -0.1620 0.001016 0.7308 
gis1 -0.1453 0.003358 0.9389 
msn2 -0.1661 0.003271 0.3609 
msn4 -0.1423 0.003716 0.8397 
aft2 -0.1469 0.0001007 0.9756 
cat8/hap4 -0.02512 0.001392 0.0005899 
adr1/cat8 0.0001488 0 2.44E-05 
cat8/aft2 -0.03455 0.002254 0.0001088 
Genotype XYLmean XYLsem XYL_t_pval 
WT -0.2247 0.0317 NA 
snf1 -0.03776 0.05824 0.02693 
cat8 -0.1238 0.02082 0.05752 
hap4 -0.0433 0.04537 0.01570 
adr1 -0.1044 0.06913 0.2115 
usv1 -0.1905 0.01198 0.6997 
gis1 -0.1599 0.02209 0.3666 
msn2 -0.1679 0.03185 0.3734 
msn4 -0.1139 0.02407 0.1501 
aft2 -0.1999 0.01390 0.7825 
cat8/hap4 -0.1777 0.02773 0.5768 
adr1/cat8 -0.1588 0.03047 0.4220 
cat8/aft2 -0.2100 0.07106 0.9118 
Genotype XYLITOLmean XYLITOLsem XYLITOL_t_pval 
WT 0.02406 0.002801 NA 
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snf1 0.004538 0.001899 0.0002260 
cat8 0.05806 0.001988 5.89E-07 
hap4 0.01938 0.003988 0.51248 
adr1 0.02763 0.002729 0.5462 
usv1 0.02567 0.001713 0.8597 
gis1 0.02191 0.002204 0.7653 
msn2 0.01972 0.002118 0.3840 
msn4 0.01734 0.002403 0.3040 
aft2 0.02819 0.001806 0.6550 
cat8/hap4 0.04450 0.002613 0.006099 
adr1/cat8 0.01934 0.004564 0.5462 
cat8/aft2 0.04692 0.005475 0.004074 
Genotype GLYmean GLYsem GLY_t_pval 
WT 0.01080 0.002991 NA 
snf1 0.01048 0.001648 0.9756 
cat8 0.003694 0.001527 0.1532 
hap4 0.002914 0.002155 0.1980 
adr1 0.006534 0.001086 0.4654 
usv1 0.01082 0.002363 0.9988 
gis1 0.01267 0.003509 0.8314 
msn2 0.01212 0.002161 0.8434 
msn4 0.01043 0.002149 0.9756 
aft2 0.007961 0.0007762 0.7819 
cat8/hap4 -0.001448 0.001398 0.09284 
adr1/cat8 -0.0009731 0.0007099 0.06690 
cat8/aft2 -0.005282 0.005142 0.03857 
Genotype ACETICmean ACETICsem ACETIC_t_pval 
WT 0.002646 0.0001809 NA 
snf1 0.001816 0.001151 0.5809 
cat8 0.0005004 0.0001094 2.02E-07 
hap4 0.002029 2.51E-05 0.1581 
adr1 0.003177 0.0002555 0.1898 
usv1 0.002669 7.75E-05 0.9756 
gis1 0.003224 0.0002226 0.1541 
msn2 0.003390 0.0002091 0.04019 
msn4 0.002788 0.0001332 0.7742 
aft2 0.002839 3.39E-05 0.7587 
cat8/hap4 0.0002233 4.50E-05 3.80E-06 
adr1/cat8 0.003420 0.0003505 0.1044 
cat8/aft2 0.0001506 7.39E-05 2.97E-06 
Genotype ETOHmean ETOHsem ETOH_t_pval 
WT -0.1099 0.01905 NA 
snf1 -0.1168 0.02537 0.9118 
cat8 -0.1554 0.006761 0.1878 
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hap4 -0.1812 0.006568 0.08275 
adr1 -0.1559 0.02827 0.3110 
usv1 -0.1256 0.005367 0.7819 
gis1 -0.09323 0.004446 0.7700 
msn2 -0.08174 0.01266 0.4081 
msn4 -0.1063 0.01731 0.9668 
aft2 -0.08977 0.003533 0.7587 
cat8/hap4 -0.1707 0.007069 0.1878 
adr1/cat8 -0.07971 0.01374 0.5583 
cat8/aft2 -0.1572 0.02818 0.3110 
Genotype BIOMASSmean BIOMASSsem BIOMASS_t_pval 
WT 0.01788 0.007420 NA 
snf1 0.008518 0.007927 0.5641 
cat8 0.01175 0.006568 0.7171 
hap4 0.0200 0.001792 0.9389 
adr1 0.02547 0.002284 0.6218 
usv1 0.02062 0.005903 0.9036 
gis1 0.01583 0.008078 0.9389 
msn2 0.01768 0.002857 0.9951 
msn4 0.01625 0.009072 0.9561 
aft2 0.01152 0.0005007 0.8092 
cat8/hap4 0.00525 0.003329 0.4654 
adr1/cat8 -0.003194 0.01224 0.2578 
cat8/aft2 -0.007291 0.001755 0.1606 
Table 2.4: Respiratory phase measured rates of metabolite change.  Units in grams analyte/hour. 

2.6.4 High glucose phase specific rates of metabolite change: 
Genotype GLUmean GLUsem GLU_t_pval 
WT -0.4317 0.01115 NA 
snf1 -0.4223 0.01952 0.8034 
cat8 -0.5339 0.006630 5.51E-06 
hap4 -0.6068 0.01507 1.15E-06 
adr1 -0.4794 0.01080 0.0220 
usv1 -0.4114 0.007343 0.3584 
gis1 -0.4393 0.01094 0.8424 
msn2 -0.4207 0.007133 0.5559 
msn4 -0.4700 0.02988 0.2810 
aft2 -0.4241 0.02071 0.8486 
cat8/hap4 -0.51118 0.008711 0.001128 
adr1/cat8 -0.5127 0.01045 0.001213 
cat8/aft2 -0.5296 0.009417 0.0002006 
Genotype XYLmean XYLsem XYL_t_pval 
WT -0.07901 0.01243 NA 
snf1 -0.04307 0.03305 0.4060 
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cat8 -0.1011 0.004600 0.2965 
hap4 -0.2150 0.04367 0.005094 
adr1 -0.1159 0.01740 0.1797 
usv1 -0.07915 0.007689 0.9970 
gis1 -0.09444 0.07032 0.8803 
msn2 -0.07475 0.01209 0.9004 
msn4 -0.1766 0.02368 0.0068785 
aft2 -0.03800 0.08872 0.6881 
cat8/hap4 -0.08467 0.01658 0.9004 
adr1/cat8 -0.07779 0.03094 0.9918 
cat8/aft2 -0.08063 0.01554 0.9825 
Genotype XYLITOLmean XYLITOLsem XYLITOL_t_pval 
WT 0.007286 0.0008039 NA 
snf1 0.008860 0.003082 0.7318 
cat8 0.04057 0.003150 8.63E-09 
hap4 0.04904 0.002704 6.35E-11 
adr1 0.01041 0.0009437 0.05078 
usv1 0.003106 0.001899 0.06694 
gis1 0.004278 0.001913 0.2000 
msn2 0.005607 0.001286 0.4060 
msn4 0.007073 0.0005546 0.9386 
aft2 0.007023 0.0004801 0.9193 
cat8/hap4 0.04771 0.001379 4.74E-13 
adr1/cat8 0.03695 0.001361 7.77E-10 
cat8/aft2 0.04686 0.0004497 6.06E-14 
Genotype GLYmean GLYsem GLY_t_pval 
WT 0.04989 0.003097 NA 
snf1 0.04755 0.003956 0.786786056 
cat8 0.1194 0.001946 1.28E-11 
hap4 0.06797 0.0005997 0.007887 
adr1 0.05069 0.006095 0.9605 
usv1 0.04746 0.001932 0.8042 
gis1 0.06443 0.001011 0.04956 
msn2 0.04761 0.001470 0.6881 
msn4 0.04584 0.001625 0.5388 
aft2 0.05628 0.002676 0.32728 
cat8/hap4 0.1132 0.001129 2.16E-07 
adr1/cat8 0.02137 0.003028 0.0001747 
cat8/aft2 0.1128 0.0005845 4.37E-09 
Genotype ACETICmean ACETICsem ACETIC_t_pval 
WT 0.002308 0.0001335 NA 
snf1 0.002327 0.0003932 0.9911 
cat8 0.0003702 0.0001837 4.20E-07 
hap4 0.001070 1.79E-05 0.0006723 
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adr1 0.003311 0.0001508 0.0004690 
usv1 0.002161 0.0001166 0.7122 
gis1 0.002308 0.0001088 0.9996 
msn2 0.002386 6.86E-05 0.7789 
msn4 0.002421 0.0001380 0.7531 
aft2 0.002722 0.0001198 0.1349 
cat8/hap4 2.73E-06 5.23E-08 3.20E-08 
adr1/cat8 0.002635 0.0004355 0.5167 
cat8/aft2 2.78E-06 1.54E-08 1.17E-06 
Genotype ETOHmean ETOHsem ETOH_t_pval 
WT 0.1691 0.006968 NA 
snf1 0.1476 0.01312 0.2513 
cat8 0.2071 0.006927 0.006346 
hap4 0.2223 0.002148 0.001128 
adr1 0.1861 0.01233 0.3408 
usv1 0.1260 0.002189 0.01231 
gis1 0.1396 0.003067 0.07458 
msn2 0.1443 0.004583 0.02413 
msn4 0.1299 0.006671 0.008868 
aft2 0.1219 0.003876 0.00770 
cat8/hap4 0.1870 0.008833 0.2565 
adr1/cat8 0.1792 0.01999 0.7122 
cat8/aft2 0.2057 0.009022 0.02096 
Genotype BIOMASSmean BIOMASSsem BIOMASS_t_pval 
WT 0.1222 0.003283 NA 
snf1 0.1204 0.006021 0.8816 
cat8 0.09935 0.002307 0.0002274 
hap4 0.12972 0.001676 0.2564 
adr1 0.1224 0.009142 0.9970 
usv1 0.1230 0.002806 0.9528 
gis1 0.1228 0.004476 0.9770 
msn2 0.1298 0.001888 0.1199 
msn4 0.1151 0.0002426 0.3684 
aft2 0.1179 0.0007409 0.6242 
cat8/hap4 0.1055 0.0009395 0.03412 
adr1/cat8 0.1386 0.003421 0.03042 
cat8/aft2 0.1063 0.001000 0.01315 
Table 2.5: High glucose phase measured specific rates of metabolite change.  Units in grams 
analyte/grams biomass/hour. 
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2.6.5 Low glucose phase specific rates of metabolite change: 
Genotype GLUmean GLUsem GLU_t_pval 
WT -0.2042 0.007456 NA 
snf1 -0.1402 0.01838 0.00783 
cat8 -0.3333 0.007709 6.76E-09 
hap4 -0.1962 0.001803 0.7122 
adr1 -0.1489 0.02838 0.1013 
usv1 -0.1532 0.002747 0.006878 
gis1 -0.1707 0.006701 0.03150 
msn2 -0.1512 0.003967 1.93E-05 
msn4 -0.1587 0.005588 0.004345 
aft2 -0.1869 0.0004651 0.3368 
cat8/hap4 -0.3239 0.008456 3.66E-07 
adr1/cat8 -0.006967 0.0008907 9.84E-10 
cat8/aft2 -0.3133 0.004322 3.66E-07 
Genotype XYLmean XYLsem XYL_t_pval 
WT -0.08113 0.006543 NA 
snf1 -0.1014 0.02055 0.3999 
cat8 -0.1081 0.009998 0.06855 
hap4 -0.1387 0.01347 0.002545 
adr1 -0.08139 0.01188 0.9954 
usv1 -0.04567 0.01167 0.03135 
gis1 -0.03499 0.01246 0.009241 
msn2 -0.03106 0.006784 0.0002193 
msn4 -0.06715 0.006330 0.3999 
aft2 -0.1469 0.05378 0.1980 
cat8/hap4 -0.08542 0.003269 0.8435 
adr1/cat8 -0.05265 0.009390 0.09195 
cat8/aft2 -0.09707 0.01095 0.3272 
Genotype XYLITOLmean XYLITOLsem XYLITOL_t_pval 
WT 0.008094 0.001089 NA 
snf1 0.003814 0.0008607 0.02548 
cat8 0.07616 0.002982 2.02E-13 
hap4 0.05708 0.003749 6.15E-10 
adr1 0.01148 0.0006106 0.05509 
usv1 0.005142 0.002135 0.3065 
gis1 0.006288 0.001784 0.5228 
msn2 0.006351 0.0004519 0.2817 
msn4 0.004064 0.0003970 0.05343 
aft2 0.006290 0.0004941 0.5167 
cat8/hap4 0.08243 0.001031 2.02E-13 
adr1/cat8 0.01908 0.0007882 0.00039658 
cat8/aft2 0.07569 0.001122 1.00E-14 
Genotype GLYmean GLYsem GLY_t_pval 
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WT 0.01950 0.001532 NA 
snf1 0.01240 0.0006667 0.004962 
cat8 0.04854 0.002495 5.97E-08 
hap4 0.005921 0.0002787 0.0002926 
adr1 0.01370 0.003112 0.1703 
usv1 0.01656 0.0007795 0.4372 
gis1 0.02730 0.0007553 0.03627 
msn2 0.01688 0.0007377 0.2602 
msn4 0.01430 0.0004788 0.1553 
aft2 0.01600 0.002545 0.3584 
cat8/hap4 0.04488 0.001206 1.31E-07 
adr1/cat8 0.0001936 0.0001382 3.77E-05 
cat8/aft2 0.04556 0.001667 1.84E-07 
Genotype ACETICmean ACETICsem ACETIC_t_pval 
WT 0.001434 7.19E-05 NA 
snf1 0.001784 0.0001647 0.1015 
cat8 0.0001682 0.0001645 2.41E-06 
hap4 0.0007509 0.0001330 0.0007309 
adr1 0.002003 0.0001727 0.01123 
usv1 0.001641 7.49E-05 0.2102 
gis1 0.001803 6.94E-05 0.03997 
msn2 0.001676 9.38E-05 0.1083 
msn4 0.001393 2.50E-05 0.8726 
aft2 0.001514 0.0001148 0.7078 
cat8/hap4 0.0002675 0.0001193 1.27E-06 
adr1/cat8 0.001913 0.0003221 0.1372 
cat8/aft2 0.0005049 1.79E-05 5.51E-06 
Genotype ETOHmean ETOHsem ETOH_t_pval 
WT 0.04252 0.006765 NA 
snf1 0.02754 0.01594 0.5008 
cat8 0.0515 0.02312 0.8091 
hap4 0.02250 0.008148 0.2524 
adr1 0.009062 0.01639 0.1115 
usv1 0.04558 0.01579 0.9147 
gis1 0.02054 0.006656 0.1505 
msn2 0.003376 0.006975 0.002699 
msn4 0.01827 0.004474 0.09872 
aft2 0.04278 0.009321 0.9954 
cat8/hap4 0.0833 0.007024 0.006572 
adr1/cat8 -0.04261 0.00668 1.59E-05 
cat8/aft2 0.08147 0.008095 0.01045 
Genotype BIOMASSmean BIOMASSsem BIOMASS_t_pval 
WT 0.04196 0.002417 NA 
snf1 0.04113 0.005895 0.9583 
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cat8 0.05026 0.003402 0.1161 
hap4 0.02332 0.002644 0.001049 
adr1 0.02775 0.003001 0.0057006 
usv1 0.02962 0.004656 0.04773 
gis1 0.03233 0.001678 0.04710 
msn2 0.03203 0.001790 0.01094 
msn4 0.02868 0.003491 0.01944 
aft2 0.03037 0.003970 0.04710 
cat8/hap4 0.04788 0.002436 0.2832 
adr1/cat8 0.01454 0.0009660 2.65E-05 
cat8/aft2 0.04533 0.001486 0.5148 
Table 2.6: Low glucose phase measured specific rates of metabolite change.  Units in grams 
analyte/grams biomass/hour. 

2.6.6 Respiratory phase specific rates of metabolite change: 
Genotype GLUmean GLUsem GLU_t_pval 
WT -0.03126 0.002965 NA 
snf1 -0.009996 0.002940 0.0004690 
cat8 -0.01508 0.003442 0.007830 
hap4 1.61E-05 1.61E-05 0.0002006 
adr1 -0.01563 0.004504 0.02362 
usv1 -0.03142 0.0003164 0.9950 
gis1 -0.03357 0.001901 0.7759 
msn2 -0.03440 0.001090 0.4545 
msn4 -0.03181 0.001280 0.9583 
aft2 -0.03440 0.0008461 0.6607 
cat8/hap4 -0.006350 0.0002588 0.001236 
adr1/cat8 2.06E-05 2.71E-07 0.0002006 
cat8/aft2 -0.009061 0.0005444 0.0003965 
Genotype XYLmean XYLsem XYL_t_pval 
WT -0.04620 0.006630 NA 
snf1 -0.006371 0.01362 0.03402 
cat8 -0.03297 0.005493 0.2653 
hap4 -0.01045 0.01019 0.02385 
adr1 -0.02545 0.01473 0.30650 
usv1 -0.04238 0.002539 0.8609 
gis1 -0.03002 0.008117 0.2676 
msn2 -0.03503 0.006736 0.38362 
msn4 -0.02479 0.004632 0.1703 
aft2 -0.04696 0.004116 0.9883 
cat8/hap4 -0.04519 0.006741 0.9804 
adr1/cat8 -0.02309 0.004625 0.13729 
cat8/aft2 -0.05515 0.01804 0.7216 
Genotype XYLITOLmean XYLITOLsem XYLITOL_t_pval 
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WT 0.004916 0.0005541 NA 
snf1 0.0007903 0.0003068 7.15E-05 
cat8 0.014932 0.001083 3.66E-07 
hap4 0.004300 0.0008342 0.7008 
adr1 0.005101 0.0005095 0.9004 
usv1 0.005514 0.0002121 0.71225 
gis1 0.004940 0.0004550 0.9954 
msn2 0.004032 0.0004177 0.3408 
msn4 0.0038882 0.0005999 0.4322 
aft2 0.006715 0.0003738 0.25646 
cat8/hap4 0.01131 0.0005758 0.0001526 
adr1/cat8 0.002812 0.0005521 0.09195 
cat8/aft2 0.01342 0.0008718 1.39E-05 
Genotype GLYmean GLYsem GLY_t_pval 
WT 0.002370 0.0007170 NA 
snf1 0.002157 0.0003382 0.9004 
cat8 0.0009957 0.0004074 0.2564 
hap4 0.0006162 0.0004681 0.2301 
adr1 0.001142 0.0001288 0.3408 
usv1 0.002877 0.0006724 0.8022 
gis1 0.001676 0.0004747 0.7500 
msn2 0.002488 0.0004480 0.9583 
msn4 0.00233147 0.0005062 0.9950 
aft2 0.001827 0.0001195 0.8435 
cat8/hap4 -0.0003786 0.0003556 0.1095 
adr1/cat8 -5.55E-05 7.16E-05 0.15531 
cat8/aft2 -0.001391 0.001295 0.04250 
Genotype ACETICmean ACETICsem ACETIC_t_pval 
WT 0.0005442 2.88E-05 NA 
snf1 0.0002910 0.0002078 0.2965 
cat8 0.0001269 2.46E-05 3.40E-08 
hap4 0.0004351 1.70E-05 0.05343 
adr1 0.0005853 4.30E-05 0.5707 
usv1 0.0006105 2.04E-05 0.2968 
gis1 0.0007239 3.27E-05 0.00594 
msn2 0.000695 3.70E-05 0.01234 
msn4 0.0005949 1.85E-05 0.4934 
aft2 0.0006544 1.10E-05 0.1703 
cat8/hap4 5.63E-05 1.05E-05 2.51E-07 
adr1/cat8 0.0005144 4.03E-05 0.7122 
cat8/aft2 3.83E-05 1.87E-05 2.19E-07 
Genotype ETOHmean ETOHsem ETOH_t_pval 
WT -0.02291 0.003945 NA 
snf1 -0.02355 0.004636 0.9726 
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cat8 -0.04240 0.002100 0.008263 
hap4 -0.04213 0.0008925 0.04250 
adr1 -0.02847 0.005803 0.5707 
usv1 -0.02296 0.002609 0.9970 
gis1 -0.02070 0.001200 0.87268 
msn2 -0.01657 0.002490 0.3352 
msn4 -0.02374 0.004149 0.9605 
aft2 -0.02070 0.0006198 0.8931 
cat8/hap4 -0.04456 0.002333 0.02548 
adr1/cat8 -0.01183 0.001150 0.2510 
cat8/aft2 -0.04147 0.007428 0.06449 
Genotype BIOMASSmean BIOMASSsem BIOMASS_t_pval 
WT 0.002538 0.001030 NA 
snf1 0.0008083 0.001010 0.39000 
cat8 0.002165 0.001183 0.9004 
hap4 0.001957 0.0007562 0.8435 
adr1 0.003206 0.0003044 0.7820 
usv1 0.002935 0.0008657 0.9004 
gis1 0.002381 0.001223 0.9770 
msn2 0.002387 0.0003701 0.9583 
msn4 0.002459 0.001362 0.9918 
aft2 0.001752 1.05E-05 0.8435 
cat8/hap4 0.000928 0.0005724 0.4943 
adr1/cat8 0.0005621 0.0007871 0.3972 
cat8/aft2 -0.001263 0.0003105 0.1199 
Table 2.7: Respiratory phase measured specific rates of metabolite change.  Units in grams 
analyte/grams biomass/hour. 

2.6.7 High glucose phase carbon commitment ratios: 
Genotype GLUmean GLUsem GLU_t_pval 
WT 0 0 NA 
snf1 0 0 NA 
cat8 0 0 NA 
hap4 0 0 NA 
adr1 0 0 NA 
usv1 0 0 NA 
gis1 0 0 NA 
msn2 0 0 NA 
msn4 0 0 NA 
aft2 0 0 NA 
cat8/hap4 0 0 NA 
adr1/cat8 0 0 NA 
cat8/aft2 0 0 NA 
Genotype XYLmean XYLsem XYL_t_pval 
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WT 0 0 NA 
snf1 0 0 NA 
cat8 0 0 NA 
hap4 0 0 NA 
adr1 0 0 NA 
usv1 0 0 NA 
gis1 0 0 NA 
msn2 0 0 NA 
msn4 0 0 NA 
aft2 0 0 NA 
cat8/hap4 0 0 NA 
adr1/cat8 0 0 NA 
cat8/aft2 0 0 NA 
Genotype XYLITOLmean XYLITOLsem XYLITOL_t_pval 
WT 0.01352 0.001159 NA 
snf1 0.01798 0.006360 0.6007 
cat8 0.06383 0.005148 1.60E-08 
hap4 0.05779 0.001890 3.37E-10 
adr1 0.01805 0.002427 0.1581 
usv1 0.006776 0.004142 0.1003 
gis1 0.002302 0.002291 0.001625 
msn2 0.01198 0.002720 0.70595 
msn4 0.01002 0.001548 0.17361 
aft2 0.01148 0.003382 0.6312 
cat8/hap4 0.07738 0.002978 4.09E-12 
adr1/cat8 0.06229 0.004966 1.13E-08 
cat8/aft2 0.07632 0.002879 2.10E-12 
Genotype GLYmean GLYsem GLY_t_pval 
WT 0.09462 0.006691 NA 
snf1 0.1000 0.01060 0.7567 
cat8 0.1860 0.003726 1.60E-08 
hap4 0.07209 0.002692 0.1523 
adr1 0.08730 0.01397 0.7247 
usv1 0.1033 0.007475 0.6183 
gis1 0.1287 0.01808 0.09638 
msn2 0.09577 0.003405 0.9166 
msn4 0.07439 0.003687 0.2014 
aft2 0.11525 0.02015 0.3603 
cat8/hap4 0.18255 0.007486 1.21E-05 
adr1/cat8 0.02747 0.002899 0.0003756 
cat8/aft2 0.1823 0.007601 4.61E-06 
Genotype ACETICmean ACETICsem ACETIC_t_pval 
WT 0.004386 0.0001036 NA 
snf1 0.004995 0.0009385 0.6183 
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cat8 0.0006000 0.0002980 7.34E-10 
hap4 0.001417 0.0001174 1.64E-10 
adr1 0.005610 0.0002493 0.0004755 
usv1 0.004539 0.0002024 0.6312 
gis1 0.004586 0.0007391 0.8019 
msn2 0.004747 0.0002387 0.27212 
msn4 0.003437 0.0004443 0.03294 
aft2 0.005373 0.0005067 0.04521 
cat8/hap4 4.74E-06 2.55E-07 2.33E-13 
adr1/cat8 0.004527 0.0008047 0.87744 
cat8/aft2 4.53E-06 1.89E-07 2.33E-13 
Genotype ETOHmean ETOHsem ETOH_t_pval 
WT 0.4239 0.01551 NA 
snf1 0.3637 0.01128 0.03796 
cat8 0.4281 0.01037 0.8947 
hap4 0.3259 0.009744 0.01130 
adr1 0.4075 0.02054 0.6591 
usv1 0.3561 0.01203 0.04443 
gis1 0.3133 0.01155 0.005537 
msn2 0.4006 0.02470 0.5973 
msn4 0.2821 0.004013 0.0007962 
aft2 0.2217 0.009443 6.85E-06 
cat8/hap4 0.4189 0.009825 0.8942 
adr1/cat8 0.4118 0.01767 0.7567 
cat8/aft2 0.4395 0.009425 0.6492 
Genotype BIOMASSmean BIOMASSsem BIOMASS_t_pval 
WT 0.2546 0.01477 NA 
snf1 0.2714 0.0175 0.6270 
cat8 0.1687 0.004961 0.0005967 
hap4 0.1564 0.005801 0.007645 
adr1 0.2200 0.01434 0.2050 
usv1 0.2796 0.001897 0.5041 
gis1 0.2707 0.01626 0.6680 
msn2 0.2831 0.01029 0.2186 
msn4 0.2072 0.01080 0.1799 
aft2 0.26051 0.03459 0.9025 
cat8/hap4 0.2039 0.01158 0.08722 
adr1/cat8 0.2430 0.01896 0.7516 
cat8/aft2 0.1873 0.008329 0.02207 
Genotype RESIDUALmean RESIDUALsem RESIDUAL_t_pval 
WT 0.2087 0.02893 NA 
snf1 0.2111 0.04785 0.9683 
cat8 0.1508 0.01276 0.2293 
hap4 0.3852 0.01605 0.006322 
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adr1 0.2614 0.02917 0.3462 
usv1 0.2584 0.01632 0.4436 
gis1 0.2947 0.07261 0.3185 
msn2 0.2066 0.03563 0.9683 
msn4 0.4204 0.01779 0.004579 
aft2 0.35680 0.06945 0.07375 
cat8/hap4 0.1025 0.02677 0.07378 
adr1/cat8 0.20287 0.01042 0.9304 
cat8/aft2 0.1144 0.02092 0.1002 
Table 2.8: High glucose phase carbon commitment ratios.  Mean values are expressed on a per 
genotype basis as a fraction of total input carbon detected in analyte output. 

2.6.8 Low glucose phase carbon commitment ratios: 
Genotype GLUmean GLUsem GLU_t_pval 
WT 0 0 NA 
snf1 0 0 NA 
cat8 0 0 NA 
hap4 0 0 NA 
adr1 0 0 NA 
usv1 0 0 NA 
gis1 0 0 NA 
msn2 0 0 NA 
msn4 0 0 NA 
aft2 0 0 NA 
cat8/hap4 0 0 NA 
adr1/cat8 0 0 NA 
cat8/aft2 0 0 NA 
Genotype XYLmean XYLsem XYL_t_pval 
WT 0 0 NA 
snf1 0 0 NA 
cat8 0 0 NA 
hap4 0 0 NA 
adr1 0 0 NA 
usv1 0 0 NA 
gis1 0 0 NA 
msn2 0 0 NA 
msn4 0 0 NA 
aft2 0 0 NA 
cat8/hap4 0 0 NA 
adr1/cat8 0 0 NA 
cat8/aft2 0 0 NA 
Genotype XYLITOLmean XYLITOLsem XYLITOL_t_pval 
WT 0.02780 0.003196 NA 
snf1 0.01457 0.003052 0.02869 
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cat8 0.16331 0.003734 2.33E-13 
hap4 0.17308 0.01469 8.40E-09 
adr1 0.05507 0.008892 0.01421 
usv1 0.01149 0.004092 0.04390 
gis1 0.03291 0.01079 0.68394 
msn2 0.03152 0.004508 0.6474 
msn4 0.01942 0.001170 0.2678 
aft2 0.01891 0.004944 0.2307 
cat8/hap4 0.1917 0.002876 3.46E-12 
adr1/cat8 0.1453 0.01175 1.60E-08 
cat8/aft2 0.1829 0.006955 2.79E-12 
Genotype GLYmean GLYsem GLY_t_pval 
WT 0.06749 0.005184 NA 
snf1 0.04833 0.006769 0.08472 
cat8 0.1071 0.006651 0.0008233 
hap4 0.01705 0.001473 0.0001221 
adr1 0.05291 0.01253 0.3777 
usv1 0.08258 0.01107 0.2838 
gis1 0.11876 0.01962 0.01307 
msn2 0.08993 0.007987 0.06165 
msn4 0.07101 0.006263 0.7976 
aft2 0.06206 0.01809 0.8025 
cat8/hap4 0.1047 0.003931 0.001185 
adr1/cat8 0.0006359 0.0003789 2.89E-05 
cat8/aft2 0.1083 0.0008388 0.002393 
Genotype ACETICmean ACETICsem ACETIC_t_pval 
WT 0.005081 0.0002723 NA 
snf1 0.008840 0.0009790 0.002232 
cat8 0.0005912 0.0002948 1.36E-08 
hap4 0.002298 0.0004116 0.0001716 
adr1 0.009934 0.001869 0.02323 
usv1 0.007704 0.0006988 0.002556 
gis1 0.007227 0.001620 0.1618 
msn2 0.009443 0.001501 0.02500 
msn4 0.007295 0.0006187 0.005313 
aft2 0.005625 0.0012908 0.6944 
cat8/hap4 0.0006153 0.0002729 2.00E-07 
adr1/cat8 0.01641 0.004337 0.005834 
cat8/aft2 0.001208 6.05E-05 1.82E-06 
Genotype ETOHmean ETOHsem ETOH_t_pval 
WT 0.19175 0.02640 NA 
snf1 0.1373 0.04812 0.4434 
cat8 0.1787 0.04781 0.8774 
hap4 0.1091 0.04585 0.1997 
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adr1 0.09888 0.04054 0.1213 
usv1 0.196 0.07429 0.9535 
gis1 0.1577 0.01737 0.6313 
msn2 0.07782 0.02287 0.01261 
msn4 0.1567 0.04345 0.6312 
aft2 0.1630 0.01867 0.6312 
cat8/hap4 0.2706 0.009417 0.1523 
adr1/cat8 0 0 0.001625 
cat8/aft2 0.2568 0.02024 0.2181 
Genotype BIOMASSmean BIOMASSsem BIOMASS_t_pval 
WT 0.1617 0.01388 NA 
snf1 0.2097 0.02276 0.1440 
cat8 0.1093 0.01163 0.03246 
hap4 0.07627 0.009949 0.003680 
adr1 0.1275 0.01162 0.1628 
usv1 0.1104 0.01911 0.1457 
gis1 0.19231 0.01009 0.3699 
msn2 0.1770 0.01292 0.5973 
msn4 0.1510 0.02201 0.7701 
aft2 0.09440 0.005475 0.02428 
cat8/hap4 0.1132 0.01050 0.08075 
adr1/cat8 0.1329 0.01676 0.3487 
cat8/aft2 0.1187 0.006969 0.1083 
Genotype RESIDUALmean RESIDUALsem RESIDUAL_t_pval 
WT 0.5461 0.02659 NA 
snf1 0.5551 0.03727 0.8947 
cat8 0.4049 0.04625 0.02869 
hap4 0.6166 0.04234 0.2659 
adr1 0.6555 0.03184 0.03907 
usv1 0.5407 0.05908 0.9416 
gis1 0.5173 0.02756 0.6677 
msn2 0.5727 0.03318 0.6677 
msn4 0.6513 0.01583 0.09656 
aft2 0.6484 0.02641 0.06443 
cat8/hap4 0.3590 0.007799 0.005313 
adr1/cat8 0.6520 0.03064 0.06359 
cat8/aft2 0.3210 0.002893 0.001444 
Table 2.9: High glucose phase carbon commitment ratios.  Mean values are expressed on a per 
genotype basis as a fraction of total input carbon detected in analyte output. 

2.6.9 Respiratory phase carbon commitment ratios: 
Genotype GLUmean GLUsem GLU_t_pval 
WT 0 0 NA 
snf1 0 0 NA 
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cat8 0 0 NA 
hap4 0 0 NA 
adr1 0 0 NA 
usv1 0 0 NA 
gis1 0 0 NA 
msn2 0 0 NA 
msn4 0 0 NA 
aft2 0 0 NA 
cat8/hap4 0 0 NA 
adr1/cat8 0 0 NA 
cat8/aft2 0 0 NA 
Genotype XYLmean XYLsem XYL_t_pval 
WT 0 0 NA 
snf1 0 0 NA 
cat8 0 0 NA 
hap4 0 0 NA 
adr1 0 0 NA 
usv1 0 0 NA 
gis1 0 0 NA 
msn2 0 0 NA 
msn4 0 0 NA 
aft2 0 0 NA 
cat8/hap4 0 0 NA 
adr1/cat8 0 0 NA 
cat8/aft2 0 0 NA 
Genotype XYLITOLmean XYLITOLsem XYLITOL_t_pval 
WT 0.04064 0.004802 NA 
snf1 0.01417 0.004595 0.004036 
cat8 0.1334 0.01838 0.0001477 
hap4 0.07079 0.01882 0.1140 
adr1 0.05091 0.01013 0.4510 
usv1 0.04221 0.007740 0.9100 
gis1 0.04265 0.004003 0.8774 
msn2 0.03887 0.004474 0.8769 
msn4 0.03377 0.008468 0.6149 
aft2 0.04116 0.007351 0.9683 
cat8/hap4 0.1130 0.01312 8.28E-05 
adr1/cat8 0.08181 0.02430 0.08075 
cat8/aft2 0.08859 0.01220 0.002313 
Genotype GLYmean GLYsem GLY_t_pval 
WT 0.01302 0.003898 NA 
snf1 0.03495 0.008821 0.06247 
cat8 0.006011 0.002096 0.2904 
hap4 0.004370 0.004138 0.3462 
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adr1 0.02885 0.008357 0.1722 
usv1 0.03643 0.01203 0.09023 
gis1 0.02757 0.007196 0.1409 
msn2 0.02391 0.005037 0.1935 
msn4 0.02077 0.006424 0.4283 
aft2 0.01717 0.001671 0.6970 
cat8/hap4 0.001787 0.001787 0.1889 
adr1/cat8 0.0003550 0.0002205 0.09068 
cat8/aft2 0 0 0.1239 
Genotype ACETICmean ACETICsem ACETIC_t_pval 
WT 0.005007 0.0002636 NA 
snf1 0.006249 0.002377 0.6862 
cat8 0.0007528 6.90E-05 1.38E-08 
hap4 0.007984 0.0005475 0.000580 
adr1 0.005997 0.001095 0.4383 
usv1 0.005609 0.0002703 0.3462 
gis1 0.007296 0.0008452 0.01692 
msn2 0.007769 0.0009707 0.03853 
msn4 0.006619 0.0006016 0.03073 
aft2 0.00592 0.0001432 0.1313 
cat8/hap4 0.0006521 0.0001575 4.67E-07 
adr1/cat8 0.01038 0.001735 0.003529 
cat8/aft2 6.98E-05 6.72E-05 5.87E-07 
Genotype ETOHmean ETOHsem ETOH_t_pval 
WT 0 0 NA 
snf1 0 0 NA 
cat8 0 0 NA 
hap4 0 0 NA 
adr1 0 0 NA 
usv1 0 0 NA 
gis1 0 0 NA 
msn2 0 0 NA 
msn4 0 0 NA 
aft2 0 0 NA 
cat8/hap4 0 0 NA 
adr1/cat8 0 0 NA 
cat8/aft2 0 0 NA 
Genotype BIOMASSmean BIOMASSsem BIOMASS_t_pval 
WT 0.02974 0.008777 NA 
snf1 0.03157 0.01196 0.9248 
cat8 0.02466 0.007199 0.7701 
hap4 0.03434 0.008993 0.8321 
adr1 0.03777 0.01038 0.6839 
usv1 0.03430 0.008727 0.8321 
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gis1 0.04316 0.004223 0.5680 
msn2 0.02752 0.005803 0.8942 
msn4 0.008362 0.005840 0.3144 
aft2 0.01884 0.0009880 0.6816 
cat8/hap4 0.005601 0.003559 0.1898 
adr1/cat8 0.004691 0.004691 0.2260 
cat8/aft2 0 0 0.147962972 
Genotype RESIDUALmean RESIDUALsem RESIDUAL_t_pval 
WT 0.9020 0.013690 NA 
snf1 0.9166 0.02057 0.6750 
cat8 0.8296 0.02243 0.02502 
hap4 0.8733 0.02992 0.4677 
adr1 0.8906 0.02015 0.7452 
usv1 0.8988 0.01164 0.9248 
gis1 0.8865 0.01700 0.6474 
msn2 0.8913 0.01854 0.7516 
msn4 0.9171 0.02347 0.6816 
aft2 0.9072 0.009879 0.8942 
cat8/hap4 0.8775 0.01226 0.4944 
adr1/cat8 0.8791 0.03868 0.6427 
cat8/aft2 0.9084 0.01321 0.8774 
Table 2.10: Respiratory phase carbon commitment ratios.  Mean values are expressed on a per 
genotype basis as a fraction of total input carbon detected in analyte output. 

 

 

 

 

 

 
 



58 
 

Chapter 3: Functional decomposition of  
synthetic promoters allows accurate 

expression prediction 
  

3.1 Abstract 
Quantitative control over gene expression is a fundamental requirement for the design of 

complex biological systems.  We demonstrate that synthetic promoters can be functionally 

decomposed into components that can be characterized in isolation and used to train a composite 

model capable of predicting the behavior of the complete promoter.  We characterized response 

functions for two types of components individually, and then constructed cells expressing both 

types, and used them to drive a fluorescent reporter in S. cerevisiae. Our model predicted 

expression in this novel genotype in response to simultaneous changes in concentrations of 

activating and repressive trans-factors.  The model explained 72.8% of observed variance in 

expression and provided evidence of independence between modules of the synthetic promoter 

architecture used within this study.  We utilize this property of modular independence to reduce 

the number of measurements required for expression modeling by up to 81.2% versus non-

independent architectures. 

3.2 Introduction  
An understanding of the quantitative relationship between cis-regulatory DNA sequence, trans-

factor concentration, and mRNA output will be required for engineering complex gene 

regulation systems.  Attempts to quantify these relationships fall into two categories – top-down 

and bottom-up.  The top-down strategy uses large numbers of synthetic cis-regulatory sequences 

within a limited number of trans factor states to learn general principles of cis-regulation and to 
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train mathematical models designed to predict expression from novel promoters (Gertz, Siggia, 

& Cohen, 2009) (Sharon, et al., 2012) (Mogno, Kwasnieski, & Cohen, 2013) (Kheradpour, et al., 

2013).  The alternative bottom-up approach focuses on a small number of synthetic cis-

sequences while measuring output at numerous trans-factor input concentrations to train models 

focused on enabling the engineering of multi-component systems (Ellis, Wang, & Collins, 2009) 

(Guido, et al., 2006) (Murphy, Balázsi, & Collins, 2007).  Both approaches have been 

successfully utilized to predict the expression and behavior of biological systems, but the 

immense effort and expense required to train a predictive model has restricted the widespread 

application of quantitative expression modeling and synthetic biology. 

One of the primary challenges preventing the widespread adoption of expression modeling is the 

large number of expression measurements required to learn the complex interaction rules 

describing expression output for a library of cis-sequences when numerous trans factors are 

present across a range of concentrations. Characterizing this space by brute force requires 

observing the effect of each trans factor in isolation and in interaction with all other trans-factors 

that act on each promoter, leading to an explosion in the number of experiments required to 

generate a model.  This explosion results from the potential for non-independent interactions 

between concentrations of different TFs and binding-site configurations. Transcription factors 

(TFs) have evolved to form protein-protein interactions, allowing DNA-bound TFs to recruit 

additional TFs and components of the basal transcriptional machinery (Fig. 3.1.A) (Ptashne & 

Gann, 1997).  This results in cooperativity and non-linear response functions. Also, changes 

within the cis component cannot be assumed to exhibit independence; alterations in DNA 

sequence can generate new sites for alternative TFs or alter local three dimensional structure, 

thereby altering TF affinity for binding sites without changing the binding site sequences  
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(Matthew, Zhou, L, Dantas-Machado, Gordân, & Rohs, 2014). These complex interactions make 

it difficult to accurately predict the effects of sequence changes on how promoters respond to 

various TF concentrations (Fig. 3.1.B). 

 

Figure 3.1. Panel A: Non-independent TF architectures exhibit physical TF:TF interactions and functional 
DNA:DNA interactions.  Independent architectures minimize TF:TF, DNA-DNA interactions.  Panel B: 
Independence within a modular promoter library reduces the measurement space required for modeling by avoiding 
the need to characterize interactions.  The TF1 sites vary across the library (blue, 1-3 sites).  TF2 sites are held 
constant (purple, 1 site).  Due to independence the TF2:DNA function is only characterized once, while the 
TF1:DNA function is generated for each new genotype. 

Efficient design of complex transcriptional circuits depends on the availability of cis and trans 

components that can be characterized independently and combined to produce a system with 

predictable behavior. There have been initial attempts to characterize the responses of multiple 
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promoters to changes in TF activity, but to our knowledge there have been no demonstrations of 

independence between promoter components and trans factor concentrations (Ellis, Wang, & 

Collins, 2009). Working with a combinatoric synthetic promoter library in S. cerevisiae, Mogno 

et al. observed that the TATA box acts as a modular and noise-less scaling device, demonstrating 

that the transition from weak to strong TATA boxes increased expression without altering the 

rules of upstream cis-regulation (Mogno, Vallania, Mitra, & Cohen, 2010).  On the other hand, 

Ellis et al. demonstrated that changes in the nucleotides surrounding the TATA box of the S. 

cerevisiae GAL1 promoter were sufficient to alter both basal expression and response to the LacI 

repressor, even though the TATA box and LacI operators were not modified  (Ellis, Wang, & 

Collins, 2009).  The demonstration that 86% of single nucleotide substitutions in the mammalian 

Rho promoter generated significant changes in expression casts doubt on whether the functions 

of any sites are independent of sequence changes to other parts of the promoter (Kwasnieski, 

Mogno, Myers, Corbo, & Cohen, 2012). 

We set out to develop promoter architectures in which sites that are responsive to different trans 

components can be characterized separately and combined to produce a system with predictable 

behavior.  We therefore constructed a small promoter library with one or more sites for the ZifH 

and LacI DNA binding domains. We studied the responses of these promoters to varying 

concentrations of E. coli LacI and to a fusion of the ZifH DNA-binding domain to the VP64 

activation domain or the SSN6 repression domain (Ellis, Wang, & Collins, 2009) (Ajo-Franklin, 

et al., 2007). We selected these TFs because we thought that their origin in highly diverged 

species and their distinct mechanisms of transcriptional activation/repression would minimize the 

likelihood of direct TF-TF interactions.  We also designed the promoter library to localize the 

activity of each TF to specific cis-regulatory modules (CRM), each containing one or more sites 
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for that TF. Each promoter was composed of two CRMs and a basal region required for RNA 

polymerase (RNAP) recruitment. We then characterized the response of each CRM to titration of 

the TF it was designed to interact with in a strain lacking the other TF. We also measured the 

basal expression level from each promoter in the absence of either TF. The component response 

functions were combined to predict expression in a novel genotype in which both TFs were 

expressed across a range of concentrations under control of a single drug.  The full system 

containing both CRMs and both TFs demonstrated two types of independence. First, the 

responses of promoters to LacI titration were independent of the ZifH CRM. Second, the 

responses to simultaneous titration of both TFs could be predicted from the responses to titration 

of each TF alone.  
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Figure 3.2.  Promoter decomposition and evaluation process.  Response functions for each of the components of the 
synthetic promoter are fitted in isolation. Basal expression is characterized in the absence of all trans factors.  
TF1&TF2 response functions are characterized in isolation through titration across a range of concentrations.  The 
model is evaluated on its ability to predict a novel genotype in which both TFs are expressed. 
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3.3 Results  
3.3.1 Construction of synthetic promoter libraries and TF titration systems. 
A synthetic promoter library was generated through the assembly of two modular components.   

Each synthetic promoter consisted of a ZifH module containing 1-5 consensus ZifH binding 

sites, spaced 8 nucleotides apart and one LacI core (Fig. 3.3). In ZifH modules containing less 

than 5 binding sites, the extra upstream sites were replaced with a randomly generated sequence 

held constant for each ZifH position across the library.   Although the LX core from Ellis et al. 

was used in this study for all synthetic promoters, we also evaluated the assembly of alternative 

cores with the ZifH upstream sequence (Ellis, Wang, & Collins, 2009).  Pilot evaluations of this 

assembly indicated that not all LacI cores were structurally compatible with the upstream ZifH 

modules. Specifically, the assembled DNA was unstable, leading to consistent, large segmental 

deletions within the inserted cores.  We found the LX (wild-type GAL1 sequence with inserted 

LacO sites) core to be compatible with all tested upstream ZifH modules and utilized this core 

for all further experiments and analyses.  The ZifH modules and LX cores were assembled via 

overlap extension PCR, cloned into plasmids downstream of the GAL1 UAS and integrated at the 

URA3 locus. We use ZiLX to describe the promoter genotypes generically.  When referring to 

a specific member of the promoter library, we substitute i for a number that indicates the number 

of ZifH sites within the ZifH responsive CRM.  

 

Figure 3.3.  Synthetic promoter architecture used within this study.  Each promoter consists of two modules. The 
ZifH module contains 1-5 ZifH consensus sites.  The LacI core module consists of two consensus Lac operators, 
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cloned downstream of the GAL1 TATA box (Ellis, Wang, & Collins, 2009).  Synthetic promoters are cloned 
downstream of the GAL1 UAS, enabling galactose induction and glucose repression.  

Characterizing the response functions of the components required the ability to titrate trans-

factor concentrations.  We utilized the tet-VP16, Tet-Off system for all titrations (Fig. 3.4) 

(Gossen & Bujard, 1992).  This system was integrated at the TRP1 locus, controlling expression 

of the titrated trans-component as a function of anhydrotetracycline (ATc) concentration.  Both 

engineered variants of the ZifH transcription factor were titrated against the synthetic promoter 

library (Ajo-Franklin, et al., 2007) (Bellí, Piedrafita, Aldea, & Herrero, 1998).  The yeast codon 

optimized LacI from Ellis et al. was used for LX core repression.  All constructs were sequence 

confirmed following integration.  See table 3.1 for all strains used within this study. 

 

Figure 3.4.  Synthetic promoter characterization scheme used in this study.  Promoter libraries are integrated into the 
S. cerevisiae genome and the TF:promoter response function is generated by titrating ZifH or LacI. TF titration is 
achieved through ATc modulation of the constitutively expressed tet-VP16 system (Gossen & Bujard, 1992).  
mRNA levels of all system components are read out via the Quantigene RNA assay and promoter library output 
characterized by flow cytometry. 

Strain ID Promoter LacI ZifH-Vp64 ZifH-SSN6 Function 
sDM79 Z1LX - - - Basal 
sDM81 Z2LX - - - Basal 
sDM83 Z3LX - - - Basal 
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sDM85 Z4LX - - - Basal 
sDM87 Z5LX - - - Basal 
sDM31 Z1LX + - - LacI 
sDM42 Z2LX + - - LacI 
sDM44 Z3LX + - - LacI 
sDM47 Z4LX + - - LacI 
sDM27 Z5LX + - - LacI 
sDM48 Z1LX - + - ZifH-VP64 
sDM49 Z2LX - + - ZifH-VP64 
sDM50 Z3LX - + - ZifH-VP64 
sDM51 Z4LX - + - ZifH-VP64 
sDM52 Z5LX - + - ZifH-VP64 
sDM58 Z1LX - - + ZifH-SSN6 
sDM59 Z2LX - - + ZifH-SSN6 
sDM60 Z3LX - - + ZifH-SSN6 
sDM61 Z4LX - - + ZifH-SSN6 
sDM62 Z5LX - - + ZifH-SSN6 
sDM68 Z1LX + + - LacI/ZifH-VP64 
sDM69 Z2LX + + - LacI/ZifH-VP64 
sDM70 Z3LX + + - LacI/ZifH-VP64 
sDM71 Z4LX + + - LacI/ZifH-VP64 
sDM72 Z5LX + + - LacI/ZifH-VP64 

Table 3.1.  Strains used within this study. 

3.3.2 The tet-VP16 system allows precise titration of transcription factor 
concentration across a physiologically relevant range 
After constructing strains with synthetic promoters and the TF titration machinery, we wanted to 

know whether the changes in TF concentration achieved with ATc titration were comparable in 

magnitude to the changes in TF concentration during natural transcriptional responses. We 

therefore analyzed RNA-seq data collected from an S. cerevisiae CEN.PK2-1D strain grown in 

synthetic complete medium supplemented with five different carbon sources: 5% glucose, 5% 

galactose, 5% glycerol, 1.3% ethanol, 5% xylose. This showed that transcription factors were 

expressed at a broad range of levels, from zero expression to the 99th percentile of all genes, with 

a median expression in the 29th percentile of all genes (Fig. 3.5.A). For each gene, we calculated 

the maximum fold change observed between any pair of carbon sources. This  analysis indicated 
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a median fold change of 2.3 for both TFs and non-TFs (Fig. 3.5.B).  

 

Figure 3.5.  Panel A: Combined expression percentiles of all S. cerevisiae transcription factors across six 
environmental carbon source conditions.  Panel B: Maximum mRNA fold change of Non-TFs and TFs across six 
environmental carbon source conditions. 

We found the the tetVP16 system was able to generate a maximum 1.9 fold change in LacI 

mRNA levels when tested within a strain titrating LacI against the Z5LX synthetic promoter.  

This was similar to the median fold change observed for native TFs in response to carbon source 

variation and generated a 10.1 fold change in GFP reporter mRNA expression (Fig. 3.6).   
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Figure 3.6. Quantification of mRNA expression levels during the titration of LacI on the Z5LX synthetic promoter 
controlling GFP expression. 

3.3.3 Characterization of synthetic promoter basal expression and 
transcription factor response functions 
We characterized the behavior each component of the system (basal level, LacI response, and 

ZifH response) by titrating each trans-factor in isolation and measuring expression of GFP by 

flow cytometry.  Promoter expression in the absence of all TFs was calculated by measuring 

GFP expression during the ATc titration in a strain that did not express any of the TFs. 

Originally, we used this as the basal expression level in our model. However, we found that 

slightly better predictive results were obtained when using a basal level calculated by averaging 

the reporter expression levels in the two strains containing a single TF, measured at minimal TF 

expression (250 ng/mL ATc). Since this approach also reduces the number of strains and 

measurements needed to construct the model, we use it hereafter.  Relative to the Z1LX 

promoter, we observed a 43% reduction in basal GFP expression for the Z5LX promoter (Fig. 

3.7). 
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Figure 3.7: Expression of the ZiLX library members in the absence of trans-inputs.  Expression values were 
calculated from the mean of GFP expression observed at maximal repression of LacI or ZifH within the single TF 
titration strains (referred to as ‘basal expression’ hereafter in the text).  

The titration of LacI exhibited a clear repressive effect that did not vary greatly across the 

promoter genotypes (Fig. 3.8.A).  On average, repression saturated at 62% reduction from basal 

expression.  In light of the different basal expressions of the promoter library, the relatively 

constant LacI response functions indicate successful construction of a system with a LacI 

response that is independent of the specific 5’ ZifH CRM chosen. 

The ZifH-SSN6 titration indicated that this chimeric protein was a strong repressor, capable of 

generating functional changes in promoter expression even when maximally repressed by ATc 

(Fig. 3.8.B).  We observed a clear monotonic effect of genotype within the titration, with the 

addition of each site increasing ZifH-SSN6 repression efficiency.  Repression saturated at mean 

of 71% repression of basal expression when averaged across all genotypes.  Notably, the Z5LX 

genotype exhibited maximal repression at all points in the titration curve.  We observed a 

significant reduction in the cellular growth rate at maximal expression of the ZifH-SSN6 

construct (data not shown).  This observation generated the potential for non-independent action 
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of ZifH-SSN6 on other components and we therefore did not include ZifH-SSN6 in downstream 

modeling.  The ZifH-VP64 activator also exhibited a monotonic response to the first three 

additional ZifH binding sites, saturating at a 61% increase in expression at maximal ZifH-VP64 

expression in the Z5LX genotypes (Fig. 3.8.C).  Unlike the ZifH-SSN6 construct, a reliable 

effect of ZifH-VP64 on promoter output was not observed until maximal ZifH-VP64 expression. 

 

 

Figure 3.8.  Fitted transcription factor response functions.  Each line is a polynomial or linear function of TF 
concentration. Panel A:  LacI response function.  Panel B: ZifH-SSN6 response function.  Panel C:  ZifH-VP64 
response function. 

 

3.3.4 The LacI response function exhibits cis-independence: 
Following TF titration, we evaluated the system for the presence of cis and trans independence 

using the analytical strategy outlined in Figure 3.9.  For LacI cis independence, changes in the 

ZifH CRM had no impact on the LacI response function.  This enables the characterization of the 

LacI response function with one ZifH CRM to predict the response with other ZifH CRMs (Fig. 

3.9.A).  In the case of trans independence, the simultaneous effect of LacI and ZifH on promoter 

output can be predicted from response functions of the two components characterized in isolation 

(Fig. 3.9.B and Fig. 3.11B).  The presence of cis and trans independence enables further 
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reduction in measurements by using the cis independence of LacI to characterize a response 

function on one promoter genotype and predict the LacI response within the other ZiLX library 

members (Fig. 3.9.C and Fig. 3.11.C).   

 

 

Figure 3.9.  Analytical strategy for evaluation of cis and trans independence within the ZiLX system.  Each element 
in the No-TF column represents a measurement of promoter expression in the absence of trans-inputs.  Elements of 
the LacI and ZifH vectors represent a response function.  Elements in the LacI/ZifH category represent a 2D matrix 
of LacI and ZifH concentrations (Fig. 3.11.A-C).  Orange boxes are measured and blue boxes predicted. Panel A: cis 
independence of LacI response from changes in the ZifH CRM.  The LacI response function does not change 
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significantly across the ZiLX library, enabling a response function trained using one promoter genotype to predict 
the response of the other four genotypes to LacI.  Panel B: trans independence of the ZifH and LacI inputs.  
Independence between the ZifH-VP64 and LacI enables response functions for ZifH and LacI trained in isolation to 
predict the simultaneous titration of the two inputs.  Panel C: Use of cis and trans independence to further decrease 
characterization requirements.  The cis independence of LacI enables a simultaneous titration of LacI and ZifH to be 
predicted without characterizing a LacI response function for each ZifH CRM. 

We hypothesized that the cis independence of LacI from genotype could be used to minimize the 

number of samples required to generate an accurate model of LacI response.  We utilized a five-

fold cross-validation approach, training a LacI response function on data from one promoter 

genotype (i.e. one ZifH CRM) and predicting the other four (Fig. 3.9.A). The average variance 

explained across the cross-validated models of each promoter’s LacI response was 95%, 

indicating that response function trained on information from one member of the library were 

highly predictive of the LacI response across the others (Fig. 3.10).  As a control, we attempted a 

similar cross-validation strategy on the ZifH-SSN6 response function, a function expected to be 

genotype-dependent.  The genotype-independent ZifH-SSN6 models on average recovered only 

51% of total variance and presented with a highly variable degree of predictive power (standard 

deviation of variance explained = 26%).  Our independence result for LacI represents a 70% 

reduction in the number of measurements required for characterizing the LacI response function.  

 

Figure 3.10.  LacI cis independence enables LacI response functions trained on one genotype to be highly predictive 
of the LacI effect on the other ZiLX genotypes.   
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3.3.5 trans-independence between LacI and ZifH enables accurate prediction 
of ZiLX library gene expression  
We assessed the ability of a composite model predicated on trans-independence between LacI 

and ZifH to predict gene expression of a novel genotype in which both TFs were simultaneously 

titrated across a range of concentrations.  In this evaluation, the response functions generated 

from the individual titrations of LacI and ZifH are used to predict the expression from the ZiLX 

library during the simultaneous titration of LacI and ZifH across a range of concentrations (Fig. 

3.9.B, Fig. 3.11.B).  In order to test the performance of each component function, we generated 

expression models that were trained only on basal expression (Fig. 3.12.A), basal expression and 

LacI response (Fig. 3.12.B) and basal expression, LacI response and ZifH-VP64 response (Fig. 

3.12.C).  This process revealed a successive improvement in predictive power as each function 

was added to the composite model, ranging from 52% of variance explained for the basal-only 

trained model, to 72.8% of total variance explained with the composite model trained on all 

response functions.  The variance explained by the full composite model is consistent with the 

most accurate thermodynamic models of promoter libraries currently available (Mogno, 

Vallania, Mitra, & Cohen, 2010). The use of trans independence reduced the total number of 

measurements required for expression modeling by 70% compared to an architecture that 

requires characterization of TF:TF interactions (Fig. 3.11.A vs. Fig. 3.11.B) 
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Figure 3.11.  trans independence enables response functions generated from LacI and ZifH titrated alone to predict 
the effect of simultaneous ZifH and LacI expression.  Panel A: Promoters which exhibit non-independence between 
LacI and ZifH requires measurement of TFs expressed across many different concentrations for model training.  
Panel B: trans independence between ZifH and LacI enables response functions characterized from the two factors 
expressed in isolation to predict expression of both.  Panel C:  cis and trans independence enables a further 
reduction in measurements by training a response function for LacI in one genotype and predicting the LacI effect in 
the other genotypes. (Orange boxes: Measurements used to characterize response function.  Blue boxes: Predictions 
generated from response functions.  Purple boxes: Predictions tested with ZifH/LacI simultaneous expression.)   
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Figure 3.12.  Composite models of ZiLX library expression within a novel genotype expressing ZifH and LacI 

across a range of different concentrations.  Panel A:  Expression predictions generated from a model trained only on 

genotype basal expression.  Panel B:  Expression predictions generated from a composite model using basal 

expression and LacI response functions.  Panel C: Expression predictions generated from a composite model trained 

on basal expression, LacI and ZifH response functions. 

3.3.6 Expression models built using cis and trans independence require fewer 
measurements 
We evaluated the ability of models built using cis and trans independence to predict the behavior 

of the ZifH/LacI double titration.  We again utilized a five-fold cross validation approach, 

training the LacI response function from one genotype and testing model predictions on the other 

ZiLX library members (Fig. 3.9.C, Fig. 3.11.C).  Mean variance explained within the cross-

validated composite models was 64.5%, exhibiting 88.5% of the accuracy observed in a 

composite model trained on all titration LacI and ZifH titration data (Fig. 3.13).  This represents 

an 11.5% reduction in accuracy for an additional 37.3% reduction in measurements required for 

expression prediction over the composite model utilizing only trans independence and 81.2% 

fewer measurements required vs a non-independent architecture. 
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Figure 3.13.  Comparison of the total variance explained by the trans independence composite model and cross 
validated models built using cis and trans independence. 

3.4 Discussion 
We have attempted to functionally decompose a synthetic promoter into individual functions, 

characterize each function, and predict the expression of the full system.  This approach, 

predicated upon trans independence between the basal, LacI and ZifH modules, successfully 

explained 72.8% of total variance in observed gene expression.  Significantly, we found that an 

independent promoter architecture allows a composite model fitted only to examples of 

components titrated in isolation to predict the behavior of the complete system.  This is a 

departure from other modeling strategies which are commonly fitted to a subset of the complete 

system and used to predict the behavior of a hold-out test data set.  By avoiding the need to 

characterize interactions between components, we were able to significantly reduce the sample 

space required to train a predictive model.  The independent promoter architecture also enabled a 

simple mathematical formalism to accurately predict gene expression, potentially expanding the 

scope of quantitative gene expression modeling beyond specialist laboratories. 
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The small number of genotypes in our promoter library limits our ability to predict the 

generalizability of the observations above.  Due to the technical limitation of the single titration 

system used in this study, LacI and ZifH were expressed at equivalent levels during the 

combined titration.  It is possible that a combined titration in which the two components are 

expressed at non-equal levels may generate interactions between the two factors, requiring 

characterization of these interactions.  We selected LacI and LacI-VP64 for the combined 

titration as the ZifH-SSN6 construct exhibited growth defects during maximal expression.  The 

SSN6 growth defect is a phenotype potentially indicative of sequestration of transcriptional 

components by SSN6, a process that would generate non-independent effects during a combined 

titration.  Although the use of the ZifH-VP64 response function in the composite model 

significantly improved predictive accuracy, we note that ZifH-VP64 only induces a significant 

change on promoter output within a limited range of the ATc concentrations used within our 

analysis.  We observed clear positional effects of the number of ZifH sites within the promoter.  

These effects lead to a reduction in the basal expression from the Z5LX genotype relative to the 

Z1LX genotype.  Significantly, changes in basal activity did not substantially alter the LacI 

response function and we found the effect of additional binding sites for ZifH-VP64 and ZifH-

SSN6 to monotonically increase the effect of each transcription factor on promoter output.   

We have also demonstrated that accurate characterization of the LacI response function can be 

achieved through titration of LacI against the LX core module in one promoter genotype.  A 

cross-validation strategy was applied to successfully predict the effect of LacI in isolation and 

during a combined titration with ZifH.  This observation promotes a model in which the 

genotype of the 5’ ZifH module and the functional effect of LacI are independent. 
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This work represents a step towards a future in which independence can be utilized to generate 

modular libraries of cis and trans components that can be characterized in isolation and 

combined to produce complex biological systems. We have taken the initial steps towards this 

future by characterizing the interaction between the ZifH CRM, the LX core and two trans 

inputs.  Future research that expands on this work to include variation in the core module of the 

promoter could allow modification of promoter basal expression and identify the expression 

regimes in which independence between CRMs exists.   

We attempted to extend same modular approach that we took with the CRMs into the trans 

components of the transcriptional machinery.  We demonstrated with ZifH-VP64/SSN6 domain 

swaps that the activity of a DNA binding domain and linked CRM can be modulated through 

changes of the TF regulatory domain.  Although we could not expand on this observation due to 

the cell-growth defect generated by high levels of SSN6 expression, regulatory domain swaps 

offer a promising approach to maximize the modularity and utility of transcriptional regulatory 

components. 

3.5 Materials and Methods    
3.5.1 Titration strain construction and synthetic promoter assembly 
DNA for the ZifH DNA binding domain and the VP64 transactivator was acquired from the Ajo-

Franklin lab (Ajo-Franklin, et al., 2007).  The SSN6 ORF as described in Bellí et al. was 

provided by the Herrero lab (Bellí, Piedrafita, Aldea, & Herrero, 1998).  DNA for the yeast 

codon optimized LacI repressor from Ellis et al. was provided by the Ellis lab (Ellis, Wang, & 

Collins, 2009). The ZifH DNA binding domain was fused in frame to VP64 and SSN6 ORFs via 

overlap extension PCR and cloned into the pMB008 expression plasmid downstream of the tet-

O2.  LacI was PCR amplified and cloned into the pMB008 expression plasmid.  Following 
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sequence confirmation, the resulting transcription factor expression plasmids were digested with 

PvuII, gel purified and integrated into the TRP1 locus of S. cerevisiae BY4741 using the lithium 

acetate/single-stranded carrier DNA method (Geitz & Schiestl, 2007).  All integrated constructs 

were sequence confirmed. 

DNA for the 1-5 ZifH and LX modules ZiLX library was synthesized by Blue Heron (Seattle, 

WA).  Individual modules were PCR amplified with overlapping primers, gel isolated and the 

purified modules combined into full length promoters via overlap extension PCR.  Following 

PCR assembly, the modules were gel purified, BamH1/Pst1 digested and cloned into a 

BamH1/Pst1 restricted pLVGI plasmid (Ellis, Wang, & Collins, 2009) via ligation and 

transformed into chemically competent STBL2 E. coli (Life Technologies, Carlsbad, CA).  

Following sequence confirmation, the synthetic promoters were amplified by PCR, fused to the 

hphMX drug resistance cassette via overlap extension PCR and gel purified.  Purified promoter-

hphMX constructs were integrated into the genome of the transcription factor titration strains at 

the URA3 locus using the lithium acetate/single-stranded carrier DNA method.  All integrated 

promoters were sequence confirmed. 

3.5.2 Transcription factor titrations and flow cytometry 
Titration strains containing the integrated transcription factor (s) and synthetic promoters were 

activated from frozen stocks and grown on YPD + Hygromycin B for three days at 30°C.  

Individual colonies were selected and grown overnight in YPD.  Aliquots of the overnight 

cultures were transferred into 1 mL of synthetic complete medium supplemented with 2% 

galactose and ATc and grown for 22 hours within deep well 96 well plates.  GFP quantitation 

was performed on a Beckman Coulter Cell Lab Quanta SC cytometer and 10,000 events captured 

per well.  Fluorescence measurements were gated by forward and side scatter to remove doublets 
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and outliers prior to normalization.  We observed a linear decay in fluorescent signal due to 

removal of the cells from galactose induction during flow cytometry.  A linear model was fit to 

internal plate controls at the start and end of each 96 well plate to remove this effect.  Across 

plate variation in fluorescence was normalized by dividing the mean fluorescence measurement 

of each well by the mean of plate normalization controls, providing a normalized mean 

expression value for each well.  

3.5.3 Expression modeling 
Expression was modeled according to the equation: 𝐸𝑥𝑝!" =   𝛼!    𝜃!"#

!!!
!!! .  Where expression of 

genotype i in ATc concentration, k, is equal to the basal expression of genotype i (α), multiplied 

by the response function (θ) return of transcription factor j, on genotype i, in ATc concentration 

k. A polynomial response function (θ) for each transcription factor was fit to each member of the 

library by titrating each transcription factor input in isolation against the library member.  To 

avoid over fitting, transcription factor response functions were constrained to adhere to the 

molecular mechanism of each transcription factor and the effect of ZifH-VP64 was thresholded 

to the final point in the titration series. 

3.5.4 Expression analysis of LacI titration on the Z5LX promoter  
The LacI titration system and Z5LX promoter were integrated into BY4741 as described in 

section 3.5.1.  Titration of LacI onto the Z5LX promoter was performed as described in section 

3.5.2, with the exception of the experiment being run in 3 mL culture volumes and not 96 well 

plates.  Following titration, cultures were centrifuged at 10,000 x G for 1 minute, and pellets 

snap frozen in liquid nitrogen and stored at -80°C.  mRNA expression levels for LacI and GFP 

were quantitated from cell lysates using the Quantigene Plex 2.0 platform (Affymetrix, Santa 



81 
 

Clara, CA) with the manufacturer’s recommended protocol.  Background subtracted expression 

values were normalized to the geometric mean of ACT1, PDA1 and UBC1. 

3.5.5 Transcription factor percentile expression and fold change analysis 
Normalized RNA expression values for S. cerevisiae CEN.PK2-1D grown for 12 hours in 5% 

glucose, 5% galactose, 5% glycerol, 1.3% ethanol, 5% xylose were used from Chapter 2 of this 

dissertation.  The expression percentile of each transciption factor in the S. cerevisiae genome 

across each environmental condition was calculated and plotted for all environmental conditions. 

The maximal fold change for transcription factors and non-transcription factors across all 

environmental conditions was calculated as max( median expression) / min(median expression) 

for each gene.  All analysis and data visualization was performed using Python. 

3.6 Supplemental Data 

3.6.1 Transcription Factor Titration Data 
Genotype Titration [ATc/Dox] Plate Index Mean StDev 
Z1LX LacI 100 ng/mL 

Dox 
AA1046 A2 94.8 31.6 

Z1LX LacI 250 ng/mL 
ATC 

AA1046 B2 95.8 31.6 

Z1LX LacI 75 ng/mL 
ATC 

AA1046 C2 90.4 29.9 

Z1LX LacI 50 ng/mL 
ATC 

AA1046 D2 87.3 28.6 

Z1LX LacI 25 ng/mL 
ATC 

AA1046 E2 93.2 30.6 

Z1LX LacI 12.5 ng/mL 
ATC 

AA1046 F2 79.7 25.8 

Z1LX LacI 6.25 ng/mL 
ATC 

AA1046 G2 55.6 19.6 

Z1LX LacI 0 ng/mL AA1046 H2 27.8 9.26 
Z2LX LacI 100 ng/mL 

Dox 
AA1046 A3 105 35.5 

Z2LX LacI 250 ng/mL 
ATC 

AA1046 B3 107 37.2 

Z2LX LacI 75 ng/mL AA1046 C3 102 33.2 
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ATC 
Z2LX LacI 50 ng/mL 

ATC 
AA1046 D3 95.3 31 

Z2LX LacI 25 ng/mL 
ATC 

AA1046 E3 103 33.9 

Z2LX LacI 12.5 ng/mL 
ATC 

AA1046 F3 90.4 29.5 

Z2LX LacI 6.25 ng/mL 
ATC 

AA1046 G3 71.5 25.2 

Z2LX LacI 0 ng/mL AA1046 H3 31.7 10.5 
Z3LX LacI 100 ng/mL 

Dox 
AA1046 A4 99.6 35.3 

Z3LX LacI 250 ng/mL 
ATC 

AA1046 B4 98.2 33.2 

Z3LX LacI 75 ng/mL 
ATC 

AA1046 C4 93.6 31.2 

Z3LX LacI 50 ng/mL 
ATC 

AA1046 D4 87.6 31.6 

Z3LX LacI 25 ng/mL 
ATC 

AA1046 E4 95.8 32.8 

Z3LX LacI 12.5 ng/mL 
ATC 

AA1046 F4 79.4 28.2 

Z3LX LacI 6.25 ng/mL 
ATC 

AA1046 G4 63.6 23.9 

Z3LX LacI 0 ng/mL AA1046 H4 30.6 10.4 
Z4LX LacI 100 ng/mL 

Dox 
AA1046 A5 96.4 33.9 

Z4LX LacI 250 ng/mL 
ATC 

AA1046 B5 92.8 33.5 

Z4LX LacI 75 ng/mL 
ATC 

AA1046 C5 88.3 29.6 

Z4LX LacI 50 ng/mL 
ATC 

AA1046 D5 71.6 27 

Z4LX LacI 25 ng/mL 
ATC 

AA1046 E5 78.4 28.2 

Z4LX LacI 12.5 ng/mL 
ATC 

AA1046 F5 69.9 25.4 

Z4LX LacI 6.25 ng/mL 
ATC 

AA1046 G5 55.9 21.3 

Z4LX LacI 0 ng/mL AA1046 H5 28 9.71 
Z5LX LacI 100 ng/mL 

Dox 
AA1046 A6 50.4 20.4 

Z5LX LacI 250 ng/mL 
ATC 

AA1046 B6 58.7 20.8 

Z5LX LacI 75 ng/mL AA1046 C6 43.9 18.2 
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ATC 
Z5LX LacI 50 ng/mL 

ATC 
AA1046 D6 49.2 18.6 

Z5LX LacI 25 ng/mL 
ATC 

AA1046 E6 47.8 19.5 

Z5LX LacI 12.5 ng/mL 
ATC 

AA1046 F6 36.4 15.7 

Z5LX LacI 6.25 ng/mL 
ATC 

AA1046 G6 32.7 14.2 

Z5LX LacI 0 ng/mL AA1046 H6 16.5 6.58 
Z1LX ZifH-VP64 100 ng/mL 

Dox 
AA1046 A7 113 37.9 

Z1LX ZifH-VP64 250 ng/mL 
ATC 

AA1046 B7 109 33.8 

Z1LX ZifH-VP64 75 ng/mL 
ATC 

AA1046 C7 94.7 32.3 

Z1LX ZifH-VP64 50 ng/mL 
ATC 

AA1046 D7 106 37.8 

Z1LX ZifH-VP64 25 ng/mL 
ATC 

AA1046 E7 98.4 32.8 

Z1LX ZifH-VP64 12.5 ng/mL 
ATC 

AA1046 F7 71.5 36.9 

Z1LX ZifH-VP64 6.25 ng/mL 
ATC 

AA1046 G7 90.9 31.3 

Z1LX ZifH-VP64 0 ng/mL AA1046 H7 102 33 
Z2LX ZifH-VP64 100 ng/mL 

Dox 
AA1046 A8 112 36.7 

Z2LX ZifH-VP64 250 ng/mL 
ATC 

AA1046 B8 102 37.6 

Z2LX ZifH-VP64 75 ng/mL 
ATC 

AA1046 C8 108 35.2 

Z2LX ZifH-VP64 50 ng/mL 
ATC 

AA1046 D8 114 38.2 

Z2LX ZifH-VP64 25 ng/mL 
ATC 

AA1046 E8 108 35.9 

Z2LX ZifH-VP64 12.5 ng/mL 
ATC 

AA1046 F8 105 35.3 

Z2LX ZifH-VP64 6.25 ng/mL 
ATC 

AA1046 G8 104 35.4 

Z2LX ZifH-VP64 0 ng/mL AA1046 H8 129 42.5 
Z3LX ZifH-VP64 100 ng/mL 

Dox 
AA1046 A9 99.4 32.6 

Z3LX ZifH-VP64 250 ng/mL 
ATC 

AA1046 B9 100 31.2 

Z3LX ZifH-VP64 75 ng/mL AA1046 C9 71.6 30 
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ATC 
Z3LX ZifH-VP64 50 ng/mL 

ATC 
AA1046 D9 69 28.9 

Z3LX ZifH-VP64 25 ng/mL 
ATC 

AA1046 E9 51.8 34.5 

Z3LX ZifH-VP64 12.5 ng/mL 
ATC 

AA1046 F9 89.8 28.9 

Z3LX ZifH-VP64 6.25 ng/mL 
ATC 

AA1046 G9 91.2 29.3 

Z3LX ZifH-VP64 0 ng/mL AA1046 H9 134 43.2 
Z4LX ZifH-VP64 100 ng/mL 

Dox 
AA1046 A10 100 33.1 

Z4LX ZifH-VP64 250 ng/mL 
ATC 

AA1046 B10 90.2 31.6 

Z4LX ZifH-VP64 75 ng/mL 
ATC 

AA1046 C10 81.5 29.5 

Z4LX ZifH-VP64 50 ng/mL 
ATC 

AA1046 D10 90.2 32.1 

Z4LX ZifH-VP64 25 ng/mL 
ATC 

AA1046 E10 96.7 38.2 

Z4LX ZifH-VP64 12.5 ng/mL 
ATC 

AA1046 F10 89.5 30.1 

Z4LX ZifH-VP64 6.25 ng/mL 
ATC 

AA1046 G10 88.9 30.3 

Z4LX ZifH-VP64 0 ng/mL AA1046 H10 133 44.7 
Z5LX ZifH-VP64 100 ng/mL 

Dox 
AA1046 A11 64.2 24.4 

Z5LX ZifH-VP64 250 ng/mL 
ATC 

AA1046 B11 54.8 22.8 

Z5LX ZifH-VP64 75 ng/mL 
ATC 

AA1046 C11 52.5 20.6 

Z5LX ZifH-VP64 50 ng/mL 
ATC 

AA1046 D11 50.9 23 

Z5LX ZifH-VP64 25 ng/mL 
ATC 

AA1046 E11 52.2 21.9 

Z5LX ZifH-VP64 12.5 ng/mL 
ATC 

AA1046 F11 51.1 21.1 

Z5LX ZifH-VP64 6.25 ng/mL 
ATC 

AA1046 G11 49.4 21.4 

Z5LX ZifH-VP64 0 ng/mL AA1046 H11 89.5 36.5 
E1 Plate Cntl NA AA1046 A1 62.5 40.5 
E1 Plate Cntl NA AA1046 B1 88.1 30.2 
E1 Plate Cntl NA AA1046 C1 77.3 28.7 
E1 Plate Cntl NA AA1046 F12 71.3 26 
E1 Plate Cntl NA AA1046 G12 62.9 24.6 
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E1 Plate Cntl NA AA1046 H12 68.9 25.3 
Sample  Titration [ATc/Dox] Plate Index Mean StDev 
Z1LX ZifH-SSN6 100 ng/mL 

Dox 
AA1047 A2 95.9 34.8 

Z1LX ZifH-SSN6 250 ng/mL 
ATC 

AA1047 B2 97.4 31.7 

Z1LX ZifH-SSN6 75 ng/mL 
ATC 

AA1047 C2 94.1 32.6 

Z1LX ZifH-SSN6 50 ng/mL 
ATC 

AA1047 D2 94.7 32.8 

Z1LX ZifH-SSN6 25 ng/mL 
ATC 

AA1047 E2 67.8 24.7 

Z1LX ZifH-SSN6 12.5 ng/mL 
ATC 

AA1047 F2 72 25.7 

Z1LX ZifH-SSN6 6.25 ng/mL 
ATC 

AA1047 G2 36.4 18.8 

Z1LX ZifH-SSN6 0 ng/mL AA1047 H2 11 15.7 
Z2LX ZifH-SSN6 100 ng/mL 

Dox 
AA1047 A3 58 30.4 

Z2LX ZifH-SSN6 250 ng/mL 
ATC 

AA1047 B3 71.2 34.4 

Z2LX ZifH-SSN6 75 ng/mL 
ATC 

AA1047 C3 67.6 32.1 

Z2LX ZifH-SSN6 50 ng/mL 
ATC 

AA1047 D3 61.6 31.5 

Z2LX ZifH-SSN6 25 ng/mL 
ATC 

AA1047 E3 36.7 23.1 

Z2LX ZifH-SSN6 12.5 ng/mL 
ATC 

AA1047 F3 21.5 17.4 

Z2LX ZifH-SSN6 6.25 ng/mL 
ATC 

AA1047 G3 4.6 7.83 

Z2LX ZifH-SSN6 0 ng/mL AA1047 H3 1.77 8.05 
Z3LX ZifH-SSN6 100 ng/mL 

Dox 
AA1047 A4 47.8 30.8 

Z3LX ZifH-SSN6 250 ng/mL 
ATC 

AA1047 B4 60.2 33.6 

Z3LX ZifH-SSN6 75 ng/mL 
ATC 

AA1047 C4 51.3 31.7 

Z3LX ZifH-SSN6 50 ng/mL 
ATC 

AA1047 D4 46.7 30.8 

Z3LX ZifH-SSN6 25 ng/mL 
ATC 

AA1047 E4 30.4 24.3 

Z3LX ZifH-SSN6 12.5 ng/mL 
ATC 

AA1047 F4 18.1 17.9 

Z3LX ZifH-SSN6 6.25 ng/mL AA1047 G4 5.33 10.2 
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ATC 
Z3LX ZifH-SSN6 0 ng/mL AA1047 H4 0.906 5.05 
Z4LX ZifH-SSN6 100 ng/mL 

Dox 
AA1047 A5 43.9 28.7 

Z4LX ZifH-SSN6 250 ng/mL 
ATC 

AA1047 B5 63.2 30.4 

Z4LX ZifH-SSN6 75 ng/mL 
ATC 

AA1047 C5 56.6 29.1 

Z4LX ZifH-SSN6 50 ng/mL 
ATC 

AA1047 D5 47.1 29 

Z4LX ZifH-SSN6 25 ng/mL 
ATC 

AA1047 E5 30.8 21.3 

Z4LX ZifH-SSN6 12.5 ng/mL 
ATC 

AA1047 F5 17.3 16.1 

Z4LX ZifH-SSN6 6.25 ng/mL 
ATC 

AA1047 G5 3.56 7.62 

Z4LX ZifH-SSN6 0 ng/mL AA1047 H5 0.712 2.81 
Z5LX ZifH-SSN6 100 ng/mL 

Dox 
AA1047 A6 8.9 8.85 

Z5LX ZifH-SSN6 250 ng/mL 
ATC 

AA1047 B6 16.7 13 

Z5LX ZifH-SSN6 75 ng/mL 
ATC 

AA1047 C6 13.3 11 

Z5LX ZifH-SSN6 50 ng/mL 
ATC 

AA1047 D6 10.6 10 

Z5LX ZifH-SSN6 25 ng/mL 
ATC 

AA1047 E6 13.5 11.9 

Z5LX ZifH-SSN6 12.5 ng/mL 
ATC 

AA1047 F6 4.72 5.52 

Z5LX ZifH-SSN6 6.25 ng/mL 
ATC 

AA1047 G6 1.2 2.52 

Z5LX ZifH-SSN6 0 ng/mL AA1047 H6 0.289 0.345 
Z1LX LacI/ZifH 100 ng/mL 

Dox 
AA1047 A7 86.6 29.6 

Z1LX LacI/ZifH 250 ng/mL 
ATC 

AA1047 B7 86.7 28.2 

Z1LX LacI/ZifH 75 ng/mL 
ATC 

AA1047 C7 47.9 24.4 

Z1LX LacI/ZifH 50 ng/mL 
ATC 

AA1047 D7 84.7 27.7 

Z1LX LacI/ZifH 25 ng/mL 
ATC 

AA1047 E7 83.7 27.7 

Z1LX LacI/ZifH 12.5 ng/mL 
ATC 

AA1047 F7 75.9 25.4 

Z1LX LacI/ZifH 6.25 ng/mL AA1047 G7 54.2 19.9 
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ATC 
Z1LX LacI/ZifH 0 ng/mL AA1047 H7 35.3 12.1 
Z2LX LacI/ZifH 100 ng/mL 

Dox 
AA1047 A8 96.5 33.7 

Z2LX LacI/ZifH 250 ng/mL 
ATC 

AA1047 B8 109 35.5 

Z2LX LacI/ZifH 75 ng/mL 
ATC 

AA1047 C8 102 33.7 

Z2LX LacI/ZifH 50 ng/mL 
ATC 

AA1047 D8 98.1 33.5 

Z2LX LacI/ZifH 25 ng/mL 
ATC 

AA1047 E8 79.4 27.1 

Z2LX LacI/ZifH 12.5 ng/mL 
ATC 

AA1047 F8 81.4 27.5 

Z2LX LacI/ZifH 6.25 ng/mL 
ATC 

AA1047 G8 55.3 20.5 

Z2LX LacI/ZifH 0 ng/mL AA1047 H8 47 16.1 
Z3LX LacI/ZifH 100 ng/mL 

Dox 
AA1047 A9 88.9 30.8 

Z3LX LacI/ZifH 250 ng/mL 
ATC 

AA1047 B9 87.9 28.8 

Z3LX LacI/ZifH 75 ng/mL 
ATC 

AA1047 C9 86.8 29.1 

Z3LX LacI/ZifH 50 ng/mL 
ATC 

AA1047 D9 86 29.6 

Z3LX LacI/ZifH 25 ng/mL 
ATC 

AA1047 E9 69.9 30.2 

Z3LX LacI/ZifH 12.5 ng/mL 
ATC 

AA1047 F9 71.7 23.6 

Z3LX LacI/ZifH 6.25 ng/mL 
ATC 

AA1047 G9 63.3 22.1 

Z3LX LacI/ZifH 0 ng/mL AA1047 H9 51.2 18.2 
Z4LX LacI/ZifH 100 ng/mL 

Dox 
AA1047 A10 82 30.3 

Z4LX LacI/ZifH 250 ng/mL 
ATC 

AA1047 B10 80.2 28.5 

Z4LX LacI/ZifH 75 ng/mL 
ATC 

AA1047 C10 78.5 28.7 

Z4LX LacI/ZifH 50 ng/mL 
ATC 

AA1047 D10 75 27.4 

Z4LX LacI/ZifH 25 ng/mL 
ATC 

AA1047 E10 75.1 26.4 

Z4LX LacI/ZifH 12.5 ng/mL 
ATC 

AA1047 F10 65.5 23.2 

Z4LX LacI/ZifH 6.25 ng/mL AA1047 G10 57.6 21.4 
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ATC 
Z4LX LacI/ZifH 0 ng/mL AA1047 H10 56.9 19.7 
Z5LX LacI/ZifH 100 ng/mL 

Dox 
AA1047 A11 46.2 22.5 

Z5LX LacI/ZifH 250 ng/mL 
ATC 

AA1047 B11 48.3 20.6 

Z5LX LacI/ZifH 75 ng/mL 
ATC 

AA1047 C11 47.1 18.7 

Z5LX LacI/ZifH 50 ng/mL 
ATC 

AA1047 D11 48.1 18.5 

Z5LX LacI/ZifH 25 ng/mL 
ATC 

AA1047 E11 32.4 14.1 

Z5LX LacI/ZifH 12.5 ng/mL 
ATC 

AA1047 F11 36.9 16.5 

Z5LX LacI/ZifH 6.25 ng/mL 
ATC 

AA1047 G11 30.8 15 

Z5LX LacI/ZifH 0 ng/mL AA1047 H11 37.5 14.8 
E1 Plate Cntl 0 ng/mL AA1047 A1 80.9 31.9 
E1 Plate Cntl 0 ng/mL AA1047 B1 81 30.6 
E1 Plate Cntl 0 ng/mL AA1047 C1 84.7 30 
E1 Plate Cntl 0 ng/mL AA1047 F12 62.9 26 
E1 Plate Cntl 0 ng/mL AA1047 G12 64.4 25.2 
E1 Plate Cntl 0 ng/mL AA1047 H12 61.9 24.3 
Sample  Titration [ATc/Dox] Plate Index Mean StDev 
E1 Plate Cntl 0 ng/mL AA1048 A1 68.6 28.3 
Z1LX No-TF 0 ng/mL AA1048 A2 78 30 
E1 Plate Cntl 0 ng/mL AA1048 B1 65.6 28 
Z1LX No-TF 0 ng/mL AA1048 B2 73.2 29.5 
E1 Plate Cntl 0 ng/mL AA1048 C1 58.1 24.6 
Z1LX No-TF 0 ng/mL AA1048 C2 65.8 26.6 
Z1LX No-TF 0 ng/mL AA1048 D2 65 25.3 
Z1LX No-TF 0 ng/mL AA1048 E2 59.2 24.5 
Z1LX No-TF 0 ng/mL AA1048 F2 57.5 23 
Z1LX Plate Cntl 0 ng/mL AA1048 F12 54.9 22.6 
Z1LX No-TF 0 ng/mL AA1048 G2 56.1 23 
Z1LX Plate Cntl 0 ng/mL AA1048 G12 52.8 22.1 
Z1LX No-TF 0 ng/mL AA1048 H2 53.9 22.3 
Z1LX Plate Cntl 0 ng/mL AA1048 H12 52.9 21.8 
Z2LX No-TF 0 ng/mL AA1048 A3 94.6 34.8 
Z2LX No-TF 0 ng/mL AA1048 B3 82.1 31.9 
Z2LX No-TF 0 ng/mL AA1048 C3 81.3 30 
Z2LX No-TF 0 ng/mL AA1048 D3 82.4 30.1 
Z2LX No-TF 0 ng/mL AA1048 E3 85.8 30.3 
Z2LX No-TF 0 ng/mL AA1048 F3 73.4 27.5 
Z2LX No-TF 0 ng/mL AA1048 G3 73.2 26.5 



89 
 

Z2LX No-TF 0 ng/mL AA1048 H3 73.6 27.6 
Z3LX No-TF 0 ng/mL AA1048 A4 92.9 35.9 
Z3LX No-TF 0 ng/mL AA1048 B4 80.7 31.9 
Z3LX No-TF 0 ng/mL AA1048 C4 80.9 31 
Z3LX No-TF 0 ng/mL AA1048 D4 82.4 31 
Z3LX No-TF 0 ng/mL AA1048 E4 80 29.9 
Z3LX No-TF 0 ng/mL AA1048 F4 75.8 28.6 
Z3LX No-TF 0 ng/mL AA1048 G4 76.4 28.5 
Z3LX No-TF 0 ng/mL AA1048 H4 72.2 27.6 
Z4LX No-TF 0 ng/mL AA1048 A5 92.5 33.6 
Z4LX No-TF 0 ng/mL AA1048 B5 84.5 32.3 
Z4LX No-TF 0 ng/mL AA1048 C5 84.4 30.9 
Z4LX No-TF 0 ng/mL AA1048 D5 99.2 33.5 
Z4LX No-TF 0 ng/mL AA1048 E5 94.6 32.3 
Z4LX No-TF 0 ng/mL AA1048 F5 74.6 27.9 
Z4LX No-TF 0 ng/mL AA1048 G5 68.2 26.1 
Z4LX No-TF 0 ng/mL AA1048 H5 71.5 26.5 
Z5LX No-TF 0 ng/mL AA1048 A6 65.1 27.4 
Z5LX No-TF 0 ng/mL AA1048 B6 55 25 
Z5LX No-TF 0 ng/mL AA1048 C6 55.6 23.9 
Z5LX No-TF 0 ng/mL AA1048 D6 54 23.3 
Z5LX No-TF 0 ng/mL AA1048 E6 53.1 22.3 
Z5LX No-TF 0 ng/mL AA1048 F6 44.5 20 
Z5LX No-TF 0 ng/mL AA1048 G6 42.2 19.8 
Z5LX No-TF 0 ng/mL AA1048 H6 34.7 20.9 
Table 3.2:  ZiLX library transcription factor titration data. 

 

 

 

 

 

 

 

 

 
 



90 
 

 

 

 

Chapter 4: Discussion 
4.1 Conclusions 
This dissertation demonstrates a comprehensive approach to cellular state control at the 

transcriptional level.  We harness the power of gene regulatory networks (GRNs) to identify 

regulatory interventions that broadly manipulate cellular state on a genome wide level.  We then 

step down to a single gene level and exhibit a cis-engineering strategy that enables the precise 

expression control of a limited number of genes.  We believe that both approaches are 

complementary in nature, enabling an investigator to globally reconfigure the cell with 

regulatory interventions and then optimize expression of particularly important targets via cis 

regulatory engineering.  Having introduced these two mechanisms of cellular state control, we 

take the next step and successfully apply the genome wide approach to the industrially relevant 

problem of biofuel production. 

In Chapter 2 we introduce NetSurgeon, an algorithmic approach to identify regulatory 

interventions that enforce a desired transcriptional state.  We show in silico that NetSurgeon is 

capable of effectively identifying all regulatory interventions that are generating differential 

expression between two states, theoretically detailing the exact set of regulatory interventions 

required to completely reconfigure a cell towards a desired state.  We then apply NetSurgeon to 

the complex problem of S. cerevisiae biofuel production.  75% of the NetSurgeon selected 

interventions moved transcriptional state in the desired direction, each intervention moving 
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hundreds of genes towards the correct expression level.  These results demonstrate that complex 

gene regulatory networks can be rationally manipulated, enabling an investigator to broadly 

control cellular state.  The application of this algorithmic approach to a complex problem also 

highlights the present challenges faced in moving beyond a single transcriptional intervention: 

none of the three double regulatory interventions outperformed the single deletion of CAT8 in 

enforcing a desired cellular state.  This observation highlights the need for more research on 

understanding the response of the cell to multiple transcriptional interventions. 

We also measured and analyzed the cellular response to transcriptional interventions.  This is a 

rare display of integrating data across multiple cellular regulatory levels to produce a coherent 

picture of how interventions at one level cascade across the cell.  We generated a dataset of over 

eight thousand metabolic measurements, painstakingly generated through low-throughput 

analytical chemistry by technical necessity.  We used this information to contextualize the 

success of our regulatory interventions at the transcriptional level with the difficulty of rationally 

creating a desired change in a complex quantitative phenotype.  We find that although our 

interventions promoted the desired cellular state at the transcriptional level, cellular metabolism 

– the phenotype we were attempting to control, still transitioned into a respiratory mode and 

started consuming ethanol.  Taking the first steps towards a solution to this problem of 

phenotype control, we generated an integrated map of central carbon metabolism and 

transcriptional regulation linking a flux balance model with RNA expression measurements.  

This integrated map identified regulators that functionally regulate carbon flux through central 

carbon metabolism and will enable more sophisticated approaches to metabolic engineering in 

the future. 
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The difficulty in moving beyond a single regulatory intervention and enforcing control over 

metabolism from purely transcriptional interventions highlights the need for a precise cis-

engineering capability.  Integrative maps of cellular metabolism and transcriptional state can 

theoretically be used to identify specific regulators and effectors whose expression can be altered 

to optimize a phenotype.  Cis-engineering of the promoters of these genes would enable an 

investigator to modify expression levels of a few genes while minimizing off-target impacts.  

Working towards this end, we demonstrate that a synthetic promoter library can be decomposed 

into a set of independent functions can be characterized in isolation and used to predict 

expression from the full system.  We also observed evidence of independent action within the 

trans-elements of this synthetic promoter architecture, an important property that will reduce the 

number of measurements required for model training and enables a simple expression model to 

accurately predict system output.  This work represents significant progress towards the insertion 

of orthogonal control circuits into the cell for the precise control of gene expression. 

In summary, this dissertation represents a thorough examination of approaches to control cellular 

transcriptional state.  We demonstrate success at genome wide transcriptome engineering and 

exhibit a method of cis-engineering that enables the precise expression control of a single gene.  

We also go one step further and begin the process of learning how transcriptional state controls 

the complex quantitative phenotype of cellular metabolism.  This work is an example of an 

integrative process of quantitative measurement, modeling and intervention that will become 

increasingly common and powerful as our understanding of the molecular physiology of the cell 

continues to develop.  Looking beyond the direct application of our work within biofuel 

production, we hope that the advances presented by this dissertation will contribute to the 

process of advancing human health and treatment of disease. 
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4.2 Future Directions 
The rational manipulation of complex biological phenotypes is likely to require an integrated 

understanding of the molecular processes that generate the phenotype at all levels of cellular 

information flow.  With the constant expansion and increasing accuracy of transcriptional 

regulatory and protein-protein interaction networks it is rapidly becoming feasible to form an 

integrated network that connects quantitative phenotypes to all layers of the central dogma and 

cellular signal transduction system.  As these integrated networks become available, perturbation 

of the system within one level offers the potential for the investigator to form an integrated 

picture of the connections that link the regulatory layers.  These perturbation studies also offer 

the potential to uncover the optimal regulatory layer for intervention.  Once the optimal 

regulatory layer for intervention is selected, network connectivity maps could be weighted by 

information gained from the perturbation studies to select interventions to control the phenotype. 

We are able to conclusively demonstrate that GRNs can be used to efficiently select the 1st 

regulatory intervention that moves the system towards a desired state.  Our work also highlights 

the difficulty of selecting the correct second intervention to move the system even further 

towards the goal state.  The problem of selecting addition interventions beyond the first is not 

simple to solve.  We found that the removal of the first factor can be effectively modeled by 

looking at the network connectivity and considering the likely up and down regulation of the 

targets of each regulator.  With the removal of the second regulator, we increase the potential of 

altering the cis-regulatory landscape, opening up previously occupied sites on promoters to 

competing transcription factors and altering transcriptional output.  The successful prediction of 

multiple regulatory interventions may require the use of sophisticated models that include cis-

combinatoric regulation to effectively predict system steady state.   
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We have also highlighted the difficulty in controlling a complex phenotype by transcriptional 

regulatory interventions.  At the beginning of this dissertation work, we lacked an understanding 

of the connectivity between the cellular transcriptional state and metabolism.  This gap in our 

understanding required us to hypothesize that fixing the cell into a glucose transcriptional state 

would force a cell consuming xylose towards a fermentative state.  Now that we have generated 

an extensive set of linked metabolic and transcriptional measurements, we can begin to 

understand the how changes in transcriptional state will alter metabolic phenotypes.  From this 

perspective, the deletion of transcription factors acted as a large scale transcriptional state 

perturbation study, in which we altered the system at one level and observed changes in 

metabolic space.  When this perturbation information is combined with the flux balance 

modeling performed, we can start to identify functional regulators of transcriptional state that 

generate effective changes of metabolic behavior.  The prediction that PDR3 over expression 

will increase glycolytic flux and direct more carbon to ethanol is an ideal starting place for 

further investigation. 

The general improvement of xylose fermentation is likely to require the consideration of post-

translational regulation.  We attempted to modify cellular post-translational state in a limited 

fashion within by deleting SNF1, but other interventions that modify cellular post-translational 

state need to be evaluated.  During the course of strain construction, we attempted to 

constitutively activate the glucose sensing signal transduction machinery through the deletion of 

BCY1 within the S. cerevisiae CEN.PK2-1D background.  All attempts at generating these strains 

failed.  Similar attempts to constitutively activate the Ras pathway via Ras2 G19V integrations 

failed (Fedor-Chaiken, Deschenes, & Broach, 1990). These pilot evaluations of post-translational 

state modification indicate that this problem is non-trivial and needs to be carefully considered.  
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In theory, interventions that modify cellular post-translational state synergize well with 

transcriptome interventions.  The transcriptome interventions change the cell’s interpretation of 

the DNA, inducing the expression of protein machinery that is then activated by interventions 

that alter post-translational state. 

On the cis-engineering side of cellular transcriptional state control, we present one example of an 

architecture that exhibits trans-input independence.  These examples are limited to 

demonstrating the independence of the LX core from changes in the upstream ZifH binding sites 

and do not attempt to examine the independence of ZifH activity from changes in the promoter 

core module.  A full ensemble of titration strains and promoters were assembled towards this 

end, fusing the L18 core to the 5 different ZifH modules (Ellis, Wang, & Collins, 2009).  These 

strains were never evaluated due to time constraints.   It is likely that different expression 

regimes exhibit different rules for interaction with activators and repressors – it may be easier to 

repress a highly expressed gene than activate further expression, and vice versa for a lowly 

expressed gene.  These expression regimes and their interaction with upstream modules could be 

evaluated using the different promoter cores generated by Ellis et al, but the difficulties in 

assembling upstream regions with certain cores needs to be considered (Ellis, Wang, & Collins, 

2009).   

The promoter architecture demonstrated in Chapter 3 used a small artificial regulatory network 

to titrate in non-native transcription factors against the ZiLX promoter library.  These non-native 

TFs were selected to maximize the probability of achieving independence between the 

transcription factor inputs.  However, the use of non-native transcription factors drastically 

increases the amount of genetic engineering required to control expression from the promoter 

library as the non-native transcription factors must be integrated into the genome to control 
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expression.  The use of native transcription factors would lessen this engineering burden.  

Examination of different native transcription factor families and mechanisms of action for 

independence represents a logical extension to this research. 
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