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In this dissertation we will address three results concerning the limiting behavior of

variations of Hodge structures. The first chapter introduces the main concepts involved and

fixes some notation. In chapter two we discuss extension classes representing LMHS, compute

them for a class of toric families and introduce an alternative method for the computation

of VHS arising from middle convolution. The next chapter is concerned with the so called

Apéry constants; we provide a method of computing such constants by using higher normal

functions coming from geometry. Finally, in the last chapter we analyze a family of surfaces

with geometric monodromy group G2, and discuss the generic global Torelli theorem for such

a family.
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Chapter 1

Degenerating variations of Hodge structures

We recall the basic definitions and main concepts used throughout this dissertation, also we

take this opportunity to present the notations and conventions used henceforward.

1.1 Hodge structures

Let V be a finitely generated abelian group. For k = Q,R,C; we denote Vk := V ⊗ k. A

Hodge structure can be defined in the following equivalent ways:

Definition 1.1.1. A Hodge structure of weight n is a finitely generated abelian group V

together with a decomposition:

VC =
⊕
p+q=n

V p,q (1.1.1)

such that V p,q = V q,p.

Definition 1.1.2. A Hodge structure of weight n is a finitely generated abelian group V

together with a decreasing filtration F n ⊂ F n−1 ⊂ . . . ⊂ F 0 = VC such that:

F p ⊕ F n−p+1
= VC (1.1.2)

Definition 1.1.3. A Hodge structure of weight n is real representation ϕ : ResC\RGm →

GL(VR) such that ϕ(r) = rnIV for r ∈ Gm,R, where IV is the identity on VR.

Remark 1.1.4. 1. Sometimes we prefer to use a rational vector space V instead of a

finitely generated abelian group, the term used to reflect this change is of a rational
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Hodge structure.

2. The Q-Zariski closure of the image of ϕ in definition 1.1.3 is called the Mumford-Tate

group.

The main example which motivated the definition of a Hodge structure is of the coho-

mology group Hk(X,Z) of a compact Kahler manifold X. Indeed, the Hodge decomposition

theorem gives that Hk(X,Z) carries a Hodge structure of weight k.

Example 1.1.5. The Tate structure Q(1) is defined to be (2πi)Q with weight −2.

The usual operations of linear algebra can be easily extended to Hodge structures, in

particular one has the direct sum of Hodge structures, the dual Hodge structure, the wedge

product of Hodge structures, etc. Now let Q : VQ × VQ → Q be a non-degenerate form with

Q(x, y) = (−1)nQ(y, x).

Definition 1.1.6. A polarized Hodge structure of weight n is given by a Hodge structure

(V ,F •) together with Q such that:

Q(F p, F n−p+1) = 0

ip−qQ(x, x) > 0, 0 6= x ∈ V p,q

(1.1.3)

A typical example of a polarized Hodge structure is the primitive cohomology group

Hk
pr(X,Z) of a smooth projective variety X, together with the intersection product Q.

1.2 Variation of Hodge structures and the period map-

ping

The idea of varying Hodge structures in a family started with the work of Phillip Griffiths

[19],[20],[21]. The motivation for such concept comes when one has a family of smooth
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projective varieties ϕ : X → B and wonders what happens with the natural Hodge structure

of the cohomology of the fibers Hn(Xt,Z) as we change t ∈ B. If B is contractible and X

trivial over it, we fix a point b0 ∈ B, then we have diffeomorphisms gt : Xb0 → Xt, which

induces isomorphisms on cohomology level:

g∗t : Hk(Xt,C)→ Hk(Xb0 ,C) (1.2.1)

Therefore, we have a representation:

ρ : π1(B\{b0})→ Aut(Hk(Xb0 ,C))

We call ρ the monodromy representation and its image Γ, the monodromy group. Sometimes

it is more convenient to work with the identity component of the monodromy group, so we

define the geometric monodromy group Π as the identity component of Q-Zariski closure of

Γ.

Now set1 fp :=
∑

a≥p dimH
p,q, then we can define the map:

Pp : B → Grass(fp, H
k(Xb0 ,C))

Pp(t) = g∗t (F
p(Xt))

(1.2.2)

Griffiths proved that the above map is holomorphic:

Theorem 1.2.1. [21] The map Pp(t) is holomorphic.

The Hp,q(Xt) can be glued together to form a holomorphic vector bundle H with holo-

morphic sub-bundles Fp ⊂ H given by the F p(Xt). Associated to this data, we have a flat

connection ∇, the Gauss-Manin connection. As a corollary of theorem 1.2.1 we have:
1We are using the fact that the Hodge numbers are constant for b ∈ B

3



Corollary 1.2.2 (Griffiths Transversality). Let σ be a section of Fp then:

∇(σ) ∈ Fp−1 (1.2.3)

When t = b0, the g∗t above lies in Aut(Hk(Xb0 ,C)) leading to a representation:

ρ : π1(B)→ Aut(Hk(Xb0 ,C)) (1.2.4)

This is called the Monodromy representation. If we denote the image of ρ by Γ, then the

period mapping can be seen as:

P : B → Γ/D (1.2.5)

Where D is the set of all weight k Hodge structures and Hodge numbers fp satisfying 1.1.3,

D is called the period domain. Note that we have to quotient D by Γ in order for the map

to be well-defined.

The following example illustrate the period map P when the fibers Xt are elliptic curves.

Example 1.2.3 (The Legendre family). Consider the following family of elliptic curves on

P1 \ {0, 1,∞}

Xt := {y2 = x(x− 1)(x− t)} ⊂ P2 (1.2.6)

On each Xt we have the holomorphic form:

ωt :=
dx

y
=

dx√
x(x− 1)(x− t)

(1.2.7)

Recall that since an elliptic curve has genus 1, the space of holomorphic forms is 1-dimensional,

hence ωt generates the whole space. Also, sinceXt is a curve, we only care aboutH1(Xt,C) =

H1,0 ⊕H0,1 to describe the period mapping.

Denote by α, β the homology basis pictured in Figure 1.1, with α· β = 1. Now, recall

4



Figure 1.1: Homology basis

that the periods of Xt are by definition:

A(t) :=

∫
α

ωt

B(t) :=

∫
β

ωt

(1.2.8)

The period mapping in this case can be seen as:

P(t) =
B(t)

A(t)
(1.2.9)

All this geometric discussion motivates the definition of a variation of Hodge structure:

Definition 1.2.4. A variation of Hodge structure of weight k over a connected complex

manifold B consists of a local system V of Abelian groups together with a filtration of the

vector bundle V := V⊗O, by holomorphic sub-bundles:

F p ⊂ F p−1 ⊂ . . . ⊂ F 0 = V (1.2.10)
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with sheaf of sections Fp and satisfying the following conditions:

1. V = F p ⊕ F k−p+1

2. ∇(Fp) ⊂ Fp−1, where nabla is the flat connection on V associated with the local

system V.

1.3 Limit mixed Hodge structures

The motivation in defining mixed Hodge structures comes from the idea of generalizing Hodge

structures to non-compact and singular varieties, where the idea of pure Hodge structure

might not exist, instead we might have a structure with different weights attached.

Definition 1.3.1. A mixed Hodge structure consists of a finitely generated abelian group VZ,

a increasing filtration W• on VQ and a decreasing filtration F • on VC such that F • induces

a weight k Hodge structure on GrWk VQ.

Example 1.3.2. Let X be a smooth projective curve of genus 2, and consider X̂, the

resulting singular curve after we “pinch” one of the generators for the homology H1(X). Let

π : X̂n → X̂ be the normalization map, then we have the following exact sequence:

0→ K → H1(X̂)
π∗−→ H1(X̂n)→ 0 (1.3.1)

where K denotes the kernel of π∗.

Let F 1 be the subspace of H1(X̂,C) generated by any non-zero holomorphic form on X̂,

then
(
H1(X̂), F 1, K

)
defines a mixed Hodge structure, moreover H1(X̂)/K ∼= H1(X̂n) is a

weight one Hodge structure and K has a weight zero Hodge structure, therefore H1(X̂) has

nontrivial weight-graded pieces of weight one and zero.

6



Now consider the weight k polarized variation of Hodge structure V = (V, Q,F•) over a

complex manifold B. Assume that B has a smooth compactification B̄, with a holomorphic

disk embedding:

B ⊂ B̄ 3 x

∪ ∪ ↑

∆∗ ⊂ ∆ 3 0

(1.3.2)

Let s be a choice of local coordinate on ∆. Restricting V to ∆∗, and letting T denote the

local monodromy, we have:

Theorem 1.3.3 (Monodromy theorem). T is quasi-unipotent.

Therefore, after taking the unipotent part in the Jordan decomposition if necessary, we

may assume T is unipotent. Then it makes sense to define log(T ) :=
∑

i
(−1)i−1

i
(T − I)i. Set

N = log(T ), there exists a unique filtration W• = W (N)• on V such that:

 N(WkV ) ⊂ Wk−2V

N ` : GrWn+kV
∼=→ GrWn−kV

 (1.3.3)

For example, if the weight is 1, the filtration is given by:

{0} ⊂ Im(N) ⊂ Ker(N) ⊂ V (1.3.4)

and if the weight is 2 we have:

{0} ⊂ Im(N2) ⊂ Im(N) ∩Ker(N) ⊂ Im(N) +Ker(N) ⊂ Ker(N2) ⊂ V (1.3.5)

If we set `(s) := log(s)
2πi

, then the local system Ṽ := ∗(e
−`(s)NV) extends to ∆. By the

Nilpotent Orbit Theorem [35], the Hodge sheaves Fp ⊂ V extend to locally free subsheaves

Fpe ⊂ Ve := Ṽ⊗O∆ on ∆, and the SL2-orbit Theorem[35] implies:

7



Proposition 1.3.4.
(
Ṽ,W•,F•e

)
|x is a mixed Hodge structure polarized by N, called the

limiting mixed Hodge structure (LMHS).

Example 1.3.5. Recall the Legendre family example 1.2.3, we compute the LMHS at 0 for

this family. The monodromy matrix around 0 is T0 = ( 1 2
0 1 ). Therefore, N = ( 0 2

0 0 ), and both

the kernel and image of N are 1-dimensional. In this case, V/Ker(N) is a 1-dimensional

Hodge structure of weight 2, hence of type (1, 1) and Im(N) is a Hodge structure of weight

(0, 0). This is a typical example of LMHS of Hodge-Tate type (When there is no odd weight

graded piece and graded pieces of weight 2p are of type (p, p))

8



Chapter 2

Mirror symmetry and Calabi-Yau Variation of

Hodge structures

In this chapter we shall briefly describe how a recent result of Iritani [25] allows one to sys-

tematically compute LMHS of variations arising from families of anticanonical toric complete

intersections. We shall carry this out for the 1-parameter, h2,1 = 1 hypergeometric families

of complete intersection C-Y threefolds classified in [15]. Each family yields a semistable

degeneration over Q with X0 the (suitably blown-up) “large complex structure limit” fiber.

We also give a more explicit computation of the LMHS for another type of variations, by

using Katz’s theory of the middle convolution [27, 13].

2.1 The Z-local system

Until recently, toric mirror symmetry (e.g., as described in [9] or [34]) only identified complex

variations of Hodge structure arising from the A-model and B-model, because the Dubrovin

connection on quantum cohomology merely provides a C-local system on the A-model side.

Iritani’s mirror theorem says that the integral structure on this local system provided by the

Γ̂-class (in the sense described below) completes the A-model C-VHS to a Z-VHS matching

the one arising from H3 of fibers on the B-model side. The upshot is that to compute Ωlim

(at 0) for a 1-parameter family of toric complete intersection Calabi-Yau 3-folds Xt ⊂ P∆

over P1\{0, 1,∞}, we may use what boils down to characteristic class data from the mirror

X◦t ⊂ P∆◦ .

9



In each case, V := Heven(X◦,C) = ⊕3
j=0H

j,j(X◦) is a vector space of rank 4, P := P∆◦ =

WP(δ0, . . . , δ3+r) is a weighted projective space1 (with δ0 = δ1 = 1), and X◦ ⊂ P is smooth2

of multidegree (dk)
r
k=1 with

∑
dk =

∑
δi =: m. Let H denote the intersection with X◦ of the

vanishing locus of the weight 1 homogeneous coordinate X0; write τ [H] ∈ H1,1(X◦) for the

Kähler class and q = e2πiτ for the Kähler parameter. We shall give a general recipe (following

[14, sec. 1]) for constructing a polarized Z-VHS, over ∆∗ : 0 < |q| < ε, on V := V ⊗O∆∗ .

The easy parts are the Hodge filtration and polarization. Indeed, we simply put F p :=

⊕j≤3−pH
j,j ⊂ V and Fpe := F p ⊗ O∆ ⊂ V ⊗ O∆ =: Ve. Similarly, Q on Ve is induced from

the form on V given by the direct sum of pairings Qj : Hj,j × H3−j,3−j → C defined by

Qj(α, β) := (−1)j
∫
X◦
α∪β. A Hodge basis e = {ei}3

i=0 of Heven, with ei ∈ H3−i,3−i(X◦) and

[Q]e of the form (2.3.2), is given by e3 = [X◦], e2 = [H], e1 = −[L], and e0 = [p]. Here L is

a copy of P1 (parametrized by [X0 : X1]) in X◦ with L ·H = p, and [H] · [H] = m[L]. The

{ei} give a Hodge basis3 for Ve.

Q =



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


. (2.1.1)

For the local system, we consider the generating series4 Φh(q) := 1
(2πi)3

∑
d≥1Ndq

d of the

genus-zero Gromov-Witten invariants of X◦, and define the small quantum product on V

1Technically, there are three exceptions to this amongst the examples we consider, which are weighted
projective spaces WP(δ0, . . . , δn) for which the convex hull of {e1, . . . , en,−

∑
δiei} is not reflexive. As

described in [15], taking ∆ to be the convex hull of this set together with −en yields a reflexive polytope,
and P∆◦ is the blow-up of the WP at a point not meeting (hence not affecting) the complete intersections
we consider. Hence we may take X◦ ⊂ P = WP(δ1, . . . , δn).

2The codimension of the singular locus in P is at least 4 in every case, so does not meet a sufficiently
general X◦.

3Note: in all bases we shall run the indices backwards (e = {e3, e2, e1, e0}, etc.) for purposes of writing
matrices.

4derivatives Φ
(k)
h will be taken with respect to τ (= `(q))
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by e2 ∗ e2 := −(m + Φ′′′h (q))e1 and ei ∗ ej := ei ∪ ej for (i, j) 6= (2, 2). This gives rise to the

Dubrovin connection

∇ := idV ⊗ d+ (e2∗)⊗ dτ,

which we view as a map from V ∼= V ⊗O∆∗ → V ⊗Ω1
∆∗
∼= V ⊗Ω1

∆∗ , and the C-local system

VC := ker(∇) ⊂ V .

Now define a map σ̃ : V → V ⊗O(∆) by

σ̃(e0) := e0, σ̃(e1) := e1, σ̃(e2) := e2 + Φ′′he1 + Φ′he0,

σ̃(e3) := e3 + Φ′he1 + 2Φhe0.

For any α ∈ V , one easily checks that

σ(α) := σ̃
(
e−τ [H] ∪ α

)
:=
∑
k≥0

(−1)kτ k

k!
σ̃
(
[H]k ∪ α

)

satisfies ∇σ(α) = 0, hence yields an isomorphism σ : V
∼=→ Γ(H, ρ∗VC) (where ρ : H → ∆∗

sends τ 7→ q). Writing5

Γ̂(X◦) := exp

(
− 1

24
ch2(X◦)− 2ζ(3)

(2πi)3
ch3(X◦)

)
∈ V,

the image of

γ : Knum
0 (X◦) −→ Γ(H, ρ∗VC)

ξ 7→ σ(Γ̂(X◦) ∪ ch(ξ))

defines Iritani’s Z-local system V underlying VC. The filtration W• := W (N)• associated to

its monodromy T (γ(ξ)) = γ(O(−H)⊗ ξ) satisfies WkVe =
(
⊕j≥3−k/2H

j,j
)
⊗O∆.

5cf. §1 of [14] for the more general definition of Γ̂(X◦)
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2.2 The limiting period matrix

In order to compute the limiting period matrix of this Z-VHS over ∆∗, we shall require a

(multivalued) basis {γi}3
i=0 of V satisfying γi ∈ W2i∩V, γi ≡ ei mod W2i−2, and [Q]γ = [Q]e.

The corresponding Q-basis of Ṽ|q=0 =: Vlim is given by γlimi := γ̃i(0) where γ̃i := e−τNγi ∈

Γ(∆, Ṽ). Of course, the ei are another basis of Vlim,C, and Ωlim = γlim [id]e. Note that since

Nlim = −(2πi)Resq=0(∇) = −(e2∗)|q=0 = −(e2∪)|q=0, we have

[Nlim]e =



0 0 0 0

−1 0 0 0

0 m 0 0

0 0 1 0


.

A basis of the form we require is obtained by considering the Mukai pairing

〈ξ, ξ′〉 :=

∫
X◦
ch(ξ∨ ⊗ ξ′) ∪ Td(X◦)

on Knum
0 (X◦). Since 〈ξ, ξ′〉 = Q(γ(ξ), γ(ξ′)), any Mukai-symplectic6 basis of Knum

0 (X◦) of

the form
ξ1 = O + AOH +BOL + COp

ξ2 = OH +DOL + EOp

ξ3 = −OL + FOp

ξ4 = Op

(2.2.1)

will produce γi := γ(ξi) satisfying the above hypotheses. In this case, taking

σ∞(α) := lim
q→0

σ̃(α), γ∞(ξ) := σ∞

(
Γ̂(X◦) ∪ ch(ξ)

)
,

6That is, 〈ξi, ξ3−j〉 = 0 unless i = j, in which case it is +1 for i = 0, 1 and −1 for i = 2, 3.
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we have γlimi = γ∞(ξi).

We now run this computation. Let c(X◦) = 1+a[L]+ b[p] be the Chern class of X◦; note

that there is no [H] term due to the fact that X◦ is Calabi-Yau. Since the Chern character is

ch(X◦) = 3−a[L]+ b
2
[p] and the Todd class is Td(X◦) = 1+ a

12
[L], Γ̂(X◦) = 1+ a

24
[L]− bζ(3)

(2πi)3
[p].

This yields

γlim3 = e3 + Ae2 +
(
−B +

m

2
A− a

24

)
e1 +

(
C −B +

4m+ a

24
A− b ζ(3)

(2πi)3

)
e0

γlim2 = e2 +
(
−D +

m

2

)
e1 +

(
E −D +

4m+ a

24

)
e0

γlim1 = e1 + (F + 1)e0

γlim0 = e0

Imposing the symplectic condition produces constraints 1 +F +A = 0 and a+2m
12
−D+E −

AD + B = 0. After normalizing7 A = B = C = D = 0 ( =⇒ F = −1, E = −a+2m
12

) in

(2.2.1), expressing each ei in terms of {γlimi } gives the columns of

Ωlim =



1 0 0 0

0 1 0 0

a
24

−m
2

1 0

bζ(3)
(2πi)3

a
24

0 1


. (2.2.2)

To compute N (with these normalizations), we apply O(−H)⊗ to the ξi in Knum
0 (X◦);

7A = 0 is the canonical normalization of the local coordinate; the remaining choices are made to simplify
the end result.
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then

[T ]γ = [O(−H)⊗]ξ =



1 0 0 0

−1 1 0 0

0 m 1 0

−a+2m
12

m 1 1


,

whereupon taking log gives

[Nlim]γlim = [N ]γ =



0 0 0 0

−1 0 0 0

m
2

m 0 0

− a
12

m
2

0


.

The data required to compute N and Ωlim for the complete intersection Calabi-Yau (CICY)

examples from [15] is displayed in the table 2.1. Here for example “P5[3, 3]” means that X◦

is a complete intersection of bidegree (3, 3) in P5. Since X◦ is smooth, the Chern numbers

may be calculated using

c(X◦) =
c(P)|X◦
c(NX◦/P)

=

∏3+r
i=0 (1 + δi[H])∏r
k=1(1 + dk[H]).

Remark 2.2.1. An interesting case not included amongst the CICY examples is the so

called “14th case VHS”, labeled “I” in [loc. cit.]. It is shown in [6] that this VHS arises from

the GrW3 H3 of a subfamily contained in the singular locus of a larger family of hypersurfaces

in weighted-projective space. The LMHS of this sort of example is probably inaccessible to

the above approach. The technique of the next section provides a possible approach to such

examples.
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X◦ m a b
P4[5] 5 50 -200
P5[2, 4] 8 56 -176
P5[3, 3] 9 54 -144
P6[2, 2, 3] 12 60 -144
P7[2, 2, 2, 2] 8 64 -128
WP4

1,1,1,2,5[10] 10 340 -2880
WP4

1,1,1,1,4[8] 8 176 -1184
WP5

1,1,2,2,3,3[6, 6] 36 792 -4320
WP5

1,1,1,2,2,3[4, 6] 24 384 -1872
WP4

1,1,1,1,2[6] 6 84 -408
WP5

1,1,1,1,1,3[2, 6] 12 156 -768
WP5

1,1,1,1,2,2[4, 4] 16 160 -576
WP5

1,1,1,1,1,2[3, 4] 12 96 -312

Table 2.1: LMHS parameters

2.3 The middle convolution approach

In this section we will describe a different approach in computing LMHS. By using Katz’s

theory of middle convolution we will construct certain variations of Hodge structures and

explore some of its properties including the behavior on the limit and the verification of a

conjecture presented in [18, Conjecture III.B.5].

For full details and computations we refer the reader to [11, sec. 5].

2.3.1 The construction of the variations

If {a} and {b} are finite sets of points in A1 we define {c} = {a} ∗ {b} to be the set

obtained by taking all sums of pairs aj + bk from {a} and {b}. Let U1 = A1
x\{a1, . . . , am},

U2 = A1
z\{b1, . . . , bn}, and U3 = A1

y\{c1, . . . , cp}. Let U ⊂ A2
(x,y) be the Zariski open where∏

j(x− aj)
∏

k((y − x)− bk)
∏

l(y − cl) does not vanish.

Given local systems Vi → Ui (i = 1, 2), and projections π1(x, y) := x, π2(x, y) := y − x,
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and π3(x, y) = y. The middle convolution is the local system on U3 defined by:

V1 ∗ V2 := R1(π̄3)∗ (∗ (π∗1V1 ⊗ π∗2V2)) (2.3.1)

By using middle convolution and quadratic twist [13, sec. 2.3-4], we are able to obtain

a weight d, rank d + 1 variation of Hodge structures Vd over P1\{0, 1,∞} with hd,0 =

1. The family {Xd(t)} produced (which are singular for d ≥ 2) all take the form w2 =

fd(x1, . . . , xd, t), for example:

• d = 1: w2 = (1− tx)x(x− 1)

(Legendre elliptic curve)

• d = 3: w2 = (1− tx3)x3(x2 − x3)(x2 − 1)(x1 − x2)(x1 − 1)x1

(CY 3-fold family)

• d = 6: w2 = (1− tx6)(1− x6)(x5 − x6)x5(x4 − x5)(1− x4)×

(x3 − x4)x3x2 − x3)(1− x2)(x1 − x2)x1(1− x1).

Also, it follows from [13, theorem 1.3.1] that for 1 ≤ d ≤ 6, Vd has Hodge numbers all

equal to 1. The monodromies of Vd for some values of d, and the generic Mumford-Tate

group are described in table 2.2 below.

at 0 at 1 at ∞ MT-group
d = 1 U(2) U(2) −U(2) SL2

d = 3 U(4) −U(2)⊕ 1⊕2 (−U(2))⊕2 Sp4

d = 6 U(7) U(2)⊕2 ⊕ U(3) (−1)⊕4 ⊕ 1⊕3 G2

Table 2.2: Monodromies for Vd

In the Sp4 case, we may assume given a symplectic basis, so that the polarization takes
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the form

Q =



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


. (2.3.2)

After conjugating by Sp4(Q) to have

N =



0 0 0 0

a 0 0 0

e b 0 0

f e −a 0


(2.3.3)

and canonically normalizing the local coordinate at 0, one knows (cf. [18]) that the limiting

period matrix takes the form

Ωlim =



1 0 0 0

0 1 0 0

f
2a

e
a

1 0

ξ f
2a

0 1


(ξ ∈ C).

The entries other than ξ are rational and correspond to torsion extension classes. The

conjecture in [18, Conjecture III.B.5] basically says that the LMHS is Q-motivated if and

only if ξ = q ζ(3)
(2πi)3

(q ∈ Q).
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For G2, again after appropriate normalizations, one has

Ωlim =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

∗ ∗ 1 0 0 0 0

* ∗ ∗ 1 0 0 0

∗ * ∗ ∗ 1 0 0

ξ ∗ * ∗ ∗ 1 0

∗ ξ ∗ * ∗ 0 1


where ∗ denotes rational numbers. In this scenario, [18, Conjecture III.B.5] claims that

ξ = q ζ(5)
(2πi)5

(q ∈ Q).

2.3.2 Computing the limiting matrix

Henceforward we will restrict ourselves to the cases d = 1, 3, 6, and analyze the LMHS at

t = 0.

Consider the form ωt = 2d−1

(2πi)d
dx1∧···∧dxd

w
∈ Ωd(Xd(t)), which is holomorphic on a desingu-

larization of Xd(t). Then there is a basis {γj}dj=0 of Vd such that
∫
γ0
ωt → 1 as t → 0, and

the monodromy matrix about t = 0 is:

[T ]γ =



1 0 · · · 0

a 1
. . . ...

... . . . . . . 0

· · · ±a 1


(2.3.4)
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We may assume after normalizing that (γ0 · γd) = 1. Let `(t) = log(t)
2πi

, then we define:

Πd(t) :=

∫
γd

ωt = (−1)d
d∑
j=0

`j(t)
∑
k≥0

ajkt
k (2.3.5)

We have:
1

2πi

∮
|t|=ε

dt

t

∫
γd

ωt = (−1)d
d∑
j=0

aj0`
j(ε)︸ ︷︷ ︸

=:Πnilpd (ε)

+O(ε logd ε)︸ ︷︷ ︸
→ 0

with ε

(2.3.6)

where Πnilp
d (ε) is the period of the “limiting" form ωnilpε against γd. Its full period vector is:

[ωnilpε ]γ =



1

a
(d−1)
10 `(ε) + a

(d−1)
00

...∑d−1
j=0 a

(1)
j0 `

j(ε)∑d
j=0 aj0`

j(ε)


(2.3.7)

After scaling the parameter t = αs, where `(α) = −a
(d−1)
00

a
(d−1)
10

=
a
(d−1)
00

a
, and applying e`(α)N , the

period vector 2.3.7 becomes:

t

(
1, 0, . . . ,∓ ã10

a
, ã00

)
(2.3.8)

Therefore, the extension classes that characterizes the LMHS[18] are ã00(d = 3) and−ã10/a(d =

6).

2.3.3 Computing the extension classes

We now address the computation of the extension classes. For d = 1, we have ã00 = 0, yet

a00 is non zero, as we shall verify.
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Recall that we are after 2.3.6, which in this case translates to:

2

(2πi)2

∮
|t|=ε

dt

t

∫ 1
t

1

dx√
x(x− 1)(1− tx)

(2.3.9)

After some work, the result is the following:

1

πi

∫ 1

η

du

u
√

1− u
+

1

π2i

∑
m≥0

∣∣∣(− 1
2
m

)∣∣∣ ε−(m+ 1
2

)

(m+ 1
2
)

∫ η

0

um−
1
2

(1− u)m+1
du (2.3.10)

Wich modulo O(ε log ε), becomes:

≡ 1

πi

{∫ 1

η

du

u
+
∑
k≥1

∣∣∣∣(−1
2

k

)∣∣∣∣ ∫ 1

η

uk−1du

}
+

1

π2i

∑
m≥0

∣∣∣(− 1
2
m

)∣∣∣ ε−(m+ 1
2

)

(m+ 1
2
)

∫ η

0

um−
1
2du

≡ −2`(ε) +
1

πi

∑
k≥1

∣∣∣(− 1
2
k

)∣∣∣
k

+
1

π

∑
m≥0

∣∣∣(− 1
2
m

)∣∣∣
(m+ 1

2)2

︸ ︷︷ ︸
−a00

(2.3.11)

After some simplifications, we get that a00 = −2
2πi
{log 4 + log 4} = `( 1

44
), moreover 1

44
∈

Q∗, which confirms the conjecture from [18, Conjecture III.B.5]

Now if d = 3, equation 2.3.6 reads:

23

(2πi)4

∮
|t|=ε

dt

t

∫ 1
t

1

∫ x3

1

∫ x2

1

1√
f3(x1, x2, x3, t)

dx1dx2dx3 (2.3.12)

After we do a base change, we get 23

(2πi)3
times:

∫∫∫
[0,1]×3

(∮
|t|=ε

√
1− t√

F3(X1, X2, X3, t)

dt

2πit

)
dX1dX2dX3 (2.3.13)
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where F (X1, X2, X3, t) is equal to:

{(1−X3)t+X3} {(1−X1X2X3)t+X1X2X3}X1X2

3∏
i=1

(1−Xi). (2.3.14)

After some computations we arrive conclude that the normalized Π̃nilp
d (s) in this case is given

by:

− 4

3
`3(s) + 16

ζ(2)

(2πi)2
`(s)−48

ζ(3)

(2πi)3︸ ︷︷ ︸
ã00

(2.3.15)

And once again we confirm that ã00 satisfies [18, Conjecture III.B.5].

The case d = 6 is more subtle, and we could not prove [18, Conjecture III.B.5] in this

case, but we do hope that the conjecture is still true, more precisely, we should have:

Conjecture 2.3.1. The canonically normalized Π̃nilp
6 (s) is given by

4

45
`6(s) +

5

9
`4(s) + q2`

2(s) + q1
ζ(5)

(2πi)5
`(s) + q0, (2.3.16)

where q0, q1, q2 ∈ Q.
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Chapter 3

The Arithmetic of the Landau-Ginzburg model

of a certain class of threefolds

3.1 Apéry constants

The application of normal functions in areas peripheral to Hodge theory has emerged as a

topic of research over the last decade [3],[4],[14],[24],[28],[33]; areas related to physics have

accounted for much of this growth. The goal of this chapter is to use normal functions to

give a ‘motivic’ meaning to constants arising in quantum differential equations associated to

a certain class of Landau-Ginzburg models.

In [3], there is a explicit computation of a higher normal function associated with the

Landau-Ginzburg mirror of a rank 4 Fano threefold, which turns out to be the value of a

Feynman Integral. We want to present a similar approach, but instead of a Feynman integral,

we will express some Apéry constants ([2],[23],[16],[17]) in terms of a special values of the

associated higher normal functions.

Landau-Ginzburg models are the natural object for ‘mirrors’ of Fano manifolds; more

precisely, mirror symmetry relates a Fano variety with a dual object, which is a variety

equipped with a non-constant complex valued function. For example, a LG model for P2

is a family of elliptic curves and more generally, the LG model of a Fano n-fold is a family

of Calabi-Yau (n− 1)-folds. In general, mirror symmetry relates symplectic properties of a

Fano variety with algebraic ones of the mirror and vice versa.

In the following sections we will be mainly concerned with the Landau-Ginzburg models

22



for a special class of threefolds, namely the ones whose associated local system is of rank

three, with a single nontrivial involution exchanging two maximally unipotent monodromy

points. Looking at the classification in [7], one finds the short list V12, V16, V18 and “R1”, where

the first three are rank 1 Fanos appearing in [23] and the latter is a rank 4 threefold with

−K3 = 24 (K the canonical divisor). The involutions for these LG models have essentially

been described in [23] and [3]. In the presence of an involution, it is possible to move the

degeneracy locus of a higher cycle from the fiber over 0 to its involute, a property which we

use for the construction of the desired normal function.

Let P∆◦ be a toric degeneration of any of the varieties considered above; then each one

of these will have a mirror Landau-Ginzburg model, which is a family of K3 surfaces in P∆,

that can be constructed as follows. Let φ be a Minkowski polynomial for ∆, then the family

of K3 is:

Xt := {1− tφ(x) = 0} ⊂ P∆ (3.1.1)

Let

ωt = 1
(2πi)2

ResXt

(
dx1
x1
∧ dx2

x2
∧ dx3

x3

1− tφ

)
(3.1.2)

and γt the invariant vanishing cycle about t = 0. We define the period of φ by

Πφ(t) =

∫
γt

ωt =
∑

ant
n (3.1.3)

where an is the constant term of φn. We say that an is the period sequence of φ.

Consider a polynomial differential operator L =
∑
Fk(t)Pk(Dt) where Pk(Dt) is a polynomial

in Dt = t d
dt
, then L · Πφ(t) = 0 is equivalent to a linear recursion relation. In practice, to

compute L one uses knowledge of the first few terms of the period sequence and linear algebra

to guess the recursion relation. The operator L is called a Picard Fuchs operator.
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Example 3.1.1. The Picard-Fuchs operator for the threefold V12 is:

D3 − t(1 + 2D)(17D2 + 17D + 5) + t2(D + 1)3 (3.1.4)

More generally, one also gets the same linear recursion on the power-series coefficients bn

of solutions of inhomogeneous equations L( · ) = G, G a polynomial in t, for n ≥ deg(G).

Definition 3.1.2 ([23]). Given a linear homogeneous recurrence R and two solutions an, bn ∈

Q with a0 = 1, b0 = 0, b1 = 1, if there is a L-function L(x) and c ∈ Q∗ such that:

lim
bn
an

= cL(x0) (3.1.5)

We say that 3.1.5 is the Apéry constant of R.

When we have a family of Calabi-Yau manifolds, a common way to look for Apéry

constants is by considering the Picard-Fuchs equation. As described above, the coefficients

of the power series expansion of the solutions of this equation satisfy a recurrence and in

some cases the Apéry constant exists, see [2] for a wide class of examples. Beyond this

“classical” case, we can also talk about quantum recurrences, which are recurrences arising

from solutions of the Quantum differential equations satisfied by the quantum periods, which

are defined using quantum products, see [22].

In [23], Golyshev uses quantum recurrences of the threefolds V10, V12, V14, V16, V18 to find

Apéry constants; his method is basically to use a result of Beukers [23, Proposition 3.3] for

the rational cases and apply a different approach for the non-rational ones. In the course of

the proof of his results, he also describes the involution we mentioned above, but only for

V12, V16 and V18. The main theorem of this chapter is:

Theorem 3.1.3. Let X be a Fano threefold, in the special class described above. Then

there is a higher normal function N , arising from a family of motivic cohomology classes on
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the fibers of the LG model, such that the Apéry constant is equal to N (0).

As an immediate corollary of this result and Borel’s theorem, the Apéry constant for

these cases must be a Q-linear combination of ζ(3) and (2πi)3, which provides a uniform

conceptual explanation of this feature of the results in [23] and [3].

Remark 3.1.4. We note that throughout this chapter, the cycle groups are taken modulo

torsion (⊗Q).

3.2 Construction of the “toric” motivic classes

We assume the reader is familiar with the basic notions of Toric geometry, see [9] for a brief

review or [10] for a more comprehensive treatment. Let

φ =
∑

amxm ∈ C[x±1, y±1, z±1] (3.2.1)

be a Laurent polynomial with coefficients in C and ∆ be the Newton polytope associated

with φ, which we will assume to be reflexive. (A list of all 3-dimensional reflexive polytopes

is available at [7].) We briefly review the construction of the anti-canonical bundle and the

facet divisors on the toric variety P∆. Let x, y, z be the toric coordinates on P∆ and for

each codimension 1 face σ ∈ ∆(1), choose a point oσ with integral coordinates, and write

Rσ for the 2-plane through σ . Then take a basis m1,m2 for the translate (R3
σ ∩ Z3) − oσ

and complete it to a basis m1,m2,m3 for Z3 such that

R≥0〈±m1,±m2,m3〉 ⊃ ∆− oσ (3.2.2)

Change coordinates, by setting xσj = xmj , j = 1, 2, 3. Consider the subset

D∗σ = {xσ1 , xσ2 ∈ C∗} ∩ {xσ3 = 0} (3.2.3)
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of P∆; let Dσ be the Zariski closure of D∗σ, and set

D :=
∑

σ∈∆(1)

[Dσ] = P∆\(C∗)3. (3.2.4)

Henceforth we shall write x, y, z for x1, x2, x3.

A standard result in toric geometry is that the sheaf O(D) is ample and in case ∆ is

reflexive; it is also the anti-canonical sheaf for P∆, and hence P∆ is Fano in this case.

Given non vanishing holomorphic functions f1, . . . , fn on a quasi-projective variety Y , we

denote the higher Chow cycle given by the graph of the fj in Y × (P1)n by 〈f1, . . . , fn〉 ∈

CHn(Y, n).

Definition 3.2.1. A 3 dimensional Laurent polynomial φ is tempered if the symbol 〈xσ, yσ〉D∗σ ∈

CH2(D∗σ, 2) is trivial, for all facets σ, where D∗σ ⊂ D∗σ is the zero locus of the facet polynomial

φσ.

Remark 3.2.2. The definition above can be restated as follows: For Xt a general K3 surface

of the family induced by φ, let X∗t = Xt∩(C∗)3; then φ is tempered if the image of the higher

Chow cycle ξt := 〈x, y, z〉X∗t ∈ CH
3(X∗t , 3) under all residue maps vanishes. (Equivalently,

viewed as an element of Milnor K-theory KM
3 (C(Xt)), ξt belongs to the kernel of the Tame

symbol, cf. [29].)

In this chapter, we will focus on a special class of Laurent polynomials, namely Minkowski

polynomials. See [1] for the basic definitions and properties of Minkowski polynomials.

Example 3.2.3. Consider the Minkowski polynomial φ = x+ y+ z+ (xyz)−1 with Newton

polytope ∆ with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) and (−1,−1,−1), see figure 3.1. Let σ be

the facet with vertices (1, 0, 0), (0, 1, 0), (−1,−1,−1) and fix (−1,−1,−1) as the ’origin’ of
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Figure 3.1: Newton polytope for the Laurent polynomial φ = x + y + z + (xyz)−1. Taken
from [7]

the facet. Then clearly one possible choice of the new toric coordinates is:

xσ = x2yz

yσ = xy2z

zσ = x−1

(3.2.5)

Moreover D∗σ = {zσ = 0}, so that D∗σ is given by the zero locus of the facet polynomial

φσ = 1 + xσ + yσ. Therefore ResD∗σ〈x, y, z〉X∗t = Reszσ=0〈xσ, yσ, zσ〉X∗t = 〈xσ, yσ〉D∗σ =

〈xσ,−1 − xσ〉 = 0. Similarly, any other facet σ of this polytope has the property that

〈xσ, yσ〉D∗σ = 0.

The fact that the symbol 〈xσ, yσ〉D∗σ is trivial for all facets is not a coincidence; in fact,

this is always the case for three-dimensional Minkowski polynomials. More precisely, we

have:

Proposition 3.2.4. Every three-dimensional Minkowski polynomial is tempered.

Proof. In general, it is not true that every Laurent polynomial is tempered; one of the features

of Minkowski polynomials is that they give rise to a decomposition in terms of rational
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irreducible subvarieties, a fact that will be strongly used below. We use the equivalent

definition of tempered as presented in remark 3.2.2.

Noting that Dσ := Dσ ∩ Xt and D = D ∩ Xt = ∪Dσ are independent of t 6= 0, and

X∗t = Xt \ D, let ı : D → Xt and  : X∗t → Xt be the natural inclusions. The localization

exact sequence for higher Chow groups reads:

· · · → CH2(D, 3)
ı∗→ CH3(Xt, 3)

∗→ CH3(X∗t , 3)
ResD→ CH2(D, 2) · · · (3.2.6)

Now in general, Dσ is reducible, with components determined by the Minkowski decom-

position of σ. Write D = ∪Di as the resulting union of irreducible curves, and D∗i =

Di \ ∪j(Di ∩Dj). By the localization sequence (for Di), we have

CH2(Di, 2) = ker
{
CH2(D∗i , 2)

Resij→ ⊕jCH1(Di ∩Dj, 1)
}
. (3.2.7)

Since the edge polynomials of a Minkowski polynomial are cyclotomic,1 for every i, j the

composition

CH3(X∗t , 3)
Resi→ CH2(D∗i , 2)

Resij→ ⊕jCH1(Di ∩Dj, 1) (3.2.8)

sends ξt to zero. By (3.2.7), we therefore have Resiξ ∈ CH2(Di, 2) for every i. Since in

dimension 3 the irreducible pieces of a lattice Minkowski decomposition are either segments

or triangles with no interior points, all the Di are rational and smooth. Moreover, since

both the Minkowski polynomial and the decomposition of the facet polynomials are defined

over Q̄, the Di are rational over Q̄. Now the Resiξ are clearly defined over Q̄ (as the

Resσξt = 〈xσ, yσ〉 are), and so belong to CH2(P1, 2) ∼= K2(Q̄) = {0},

Therefore Resiξt is trivial, and φ is tempered by Remark 3.2.2.

Remark 3.2.5. The notion of Minkowski polynomial for dimension greater than 3 is not
1in fact the roots are ±1
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yet well understood. However, if we assume the lattice polytopes in the Minkowski decom-

positions of facets have no interior points, then the proof above will extend to dimension 4,

since we would still have rationality of the Di (as above), and no significant problems appear

in the local-global spectral sequence for higher Chow groups.

3.3 The Higher normal function N

Recall that if S is a smooth projective variety, then

Hn
M(S,Q(n)) ∼= CHn(S, n) ∼= GrnγKn(S). (3.3.1)

Not every member of our family Xt is smooth, but we can still have an element in the

motivic cohomology. Such elements can be explicitly represented via higher Chow (double)

complexes, so that we can still use standard formulas for Abel-Jacobi maps [32, §8]:

AJm,n : Hn
M(Xt,Q(n))→ Hn−1(Xt,C/Q(n)). (3.3.2)

The Landau-Ginzburg models for the threefolds V12, V16, V18, and R1, may be defined by

(the Zariski closure of) the families {1− tφ = 0}, with φ given by:

V12 : φ =
(1 + x+ z)(1 + x+ y + z)(1 + z)(y + z)

xyz

V16 : φ =
(1 + x+ y + z)(1 + z)(1 + y)(1 + x)

xyz

V18 : φ =
(x+ y + z)(x+ y + z + xy + xz + yz + xyz)

xyz

R1 : φ =
(1 + x+ y + z)(xyz + xy + xz + yz)

xyz

(3.3.3)

As these families of K3s all have Picard rank 19, their Picard-Fuchs operators take the form

DPF =
∑3

i=0 Fk(t)(Dt)
k, with Fi(t) relatively prime polynomials. We call F3(t) =: σ(DPF ),
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Figure 3.2: Newton polytopes for (top) V18, R1 and (bottom) V12, V16 respectively. Taken
from [7]

which is taken to be monic, the symbol of DPF . In the four cases the symbols are

1− 34t+ t2, 1− 24t+ 16t2, 1− 18t− 27t2, and 1− 5
16
t+ 1

64
t2, (3.3.4)

respectively.

We shall adopt the notation X π→ P1 for the total space of each family, X ◦ = X \X0
π◦→ A1

1
t

and X◦ = X \X∞
π◦→ A1

t , for restrictions. Henceforward, X will denote any threefold in the

list V12, V16, V18, R1.

Proof of theorem 3.1.3

Associated to X is a Newton polytope ∆, and to the latter we associate a Minkowski poly-

nomial φ. Since by the proposition above, φ is tempered, the family of higher Chow cycles

lifts to a class [Ξ] ∈ CH3(X ◦, 3) [[14],theorem 3.8], yielding by restriction a family of motivic

cohomology classes [Ξt] ∈ H3
M(Xt,Q(3)) on the Landau-Ginzburg model. (On the smooth

fibers these are just higher Chow cycles.)
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The local system V = R2
trπ∗Z associated to the Landau-Ginzburg model of X has the

following singular points:

• V12 : t = 0, 17± 12
√

2,∞

• V16 : t = 0, 12± 8
√

2,∞

• V18 : t = 0, 9± 6
√

3,∞

• R1 : t = 0, 4, 16,∞

(Besides 0 and ∞, these are just the roots of σ(DPF ).)

In each case, we have an involution ι(t) = M
t
, (M = 1, 1

16
, −1

27
, 64), exchanging say t1 and

t2 with 0 < |t1| < |t2| <∞. The involution ι gives then a correspondence I ∈ Z2(X × ι∗X )

which gives a rational isomorphism between V and ι∗V. Since I induces an isomorphism, the

vanishing cycle γt at t = 0 is sent to a rational multiple of the vanishing cycle µt at t =∞.

Hence in a neighborhood of t = 0, we have:

∫
γt

I∗ωι(t) =

∫
I∗γt

ωι(t) = n

∫
µι(t)

ωι(t), n ∈ Q∗ (3.3.5)

Moreover, as a section of the Hodge bundle, ωt has a simple zero at t = ∞ and no zero

or poles anywhere else. So I∗ωι(t) = Ctωt, for some C ∈ C∗. If we set A(t) =
∫
γt
ωt, then

A(0) = 1, and it follows that

C = lim
t→0

n

(2πi)2A(t)

∫
µι(t)

ResXι(t)

(
dx
x
∧ dy

y
∧ dz

z

t−Mφ

)

= − n

M
Res3

p

(
dx ∧ dy ∧ dz
xyz · φ(x, y, z)

)
, (3.3.6)

where p ∈ sing(X∞) is the point to which µι(t) contracts. Hence C is rational and ω̃ := I∗ω

is a rational multiple of tω.
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Now let Ξ̃ := I∗Ξ ∈ H3
M(X◦,Q(3)) be the pullback of the cycle, with fiberwise slices Ξ̃t.

If AJ is the Abel-Jacobi map2 as above, then

AJ3,3([Ξ̃t]) ∈ H2(Xt,C/Q(3)). (3.3.7)

Taking Rt to be any lift of this class to H2(Xt,C), we may define a normal function by:

N (t) := 〈Rt, ωt〉 (3.3.8)

By [14, Prop. 4.1], N (t) has a power series of radius of convergence |t2| > |t1|. Moreover, by

[14, p. 474], we have

DPF (N (t)) = σ(DPF )Y(t), (3.3.9)

where Y(t) = (2πi)2〈ω̃t,∇2
Dt
ωt〉 is the Yukawa coupling.

Applying [14, Rem. 4.4], the right-hand side of (3.3.9) takes the form kt, where (in view

of (3.3.4)) k = limt→0
Y(t)
t
. By writing ωt in terms of a basis of e

log(t)
(2πi)

NV about t = 0, we find

that k = Cκ where κ is the (rational) nonzero entry of N2. We conclude that

DPF (N (t)) = kt, k ∈ Q∗. (3.3.10)

Finally, if A(t) =
∑
ant

n is the period sequence, then B(t) =
∑
bnt

n = −N (t)+A(t)N (0)

is another solution for the Picard-Fuchs equation, so that

N (t) =
∑

(anN (0)− bn)tn.

Since the radii of convergence for the generating series of an and bn are both |t1| < |t2|, while

that of anN (0)− bn is |t2|, it follows that bn
an
→ N (0). �

2In smooth fibers, AJ takes a rather simple form in terms of currents, see [31]
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Corollary 3.3.1. N (0) is (up to Q(3)) a multiple of ζ(3).

Proof. The proof is a direct consequence of the following commutative diagram (See [32]):

H3
M(X0,Q(3))

∼=−−−→ Kind
5 (Q)yAJ3,3

yrb
J3,3(X0) −−−→∼=

C
Q(3)

(3.3.11)

Where the lower isomorphism is the pairing with ω0 and rb is the Borel regulator. The

Abel-Jacobi map then reduces to the Borel regulator and by Borel’s theorem it has to be

multiple of ζ(3).

Remark 3.3.2. An explicit computation of N (0) for R1 has been written in [3]; the com-

putation for V12 was done by M. Kerr and will be available in a forthcoming paper. Below

we present the explicit computation of N (0) in the case V16:

Example 3.3.3. Consider V16 which has a Minkowski polynomial given by φ = (x+ 1)(y+

1)(z + 1)(1 + x + y + z); We change the coordinates to simplify the computations and use

the same idea as [3]. The normal function N at 0 takes the following form:

N (0) =

∫
∇
R{x, y, (1− x− y)} (3.3.12)
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Where ∇ is the “membrane” ∇ =
{
(x,y) : −1 ≤ y ≤ 1 , −y ≤ x ≤ 1

}
. We have:

N (0) =

∫
∇
log(y)dlog

(
1− x− y

)
∧ dlog(x)

=

∫ 1

−1

log(y)
(∫ 1

−y

dx

x(1− x− y)

)
dy

=

∫ 1

−1

log(y)
(∫ 1

−y

dx

x(1− y)
+

∫ 1

−y

dx

(1− y)(1− x− y)

)
dy

= 2

∫ 1

−1

log(y)
log(−y)

(1− y)
dy

≡ 4

∫ 1

−1

log(1− y)
log(y)

y
dy mod Q(3)

≡ −4
∑
k≥1

1

k

∫ 1

−1

log(y)yk−1dy mod Q(3)

≡ 8
∑
k odd

1

k3
mod Q(3)

≡ 7ζ(3) mod Q(3)

(3.3.13)

where the Q(3) reflects the local ambiguity of N by a Q(3)-period of ω̃ (owing to the choice

of lift R). Since the Apéry constant is a real number, we normalize N locally by adding

such a period to obtain N (0) = 7ζ(3).

3.4 Maximally unipotent monodromy condition

The proof of Theorem 3.1.3 makes use of an involution of the family over t 7→ ±M
t
to produce

a cycle with no residues on the t = 0 fiber, but with nontorsion associated normal function.

That is, we use the involution to transport the residues of the cycle we do know how to

construct (via temperedness) to over t =∞.

What is absolutely certain is that without a second maximally unipotent monodromy

fiber (at t = ∞ in our four examples), such a normal function cannot exist. This follows
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from injectivity of the topological invariant into

HomMHS(Q(0), H3(X ∗,Q(3))) ⊂ ⊕λ∈ΣHomMHS(Q(0), H2(Xλ,Q)),

where Σ ⊂ P1 denotes the discriminant locus. As an immediate consequence, nothing like

Theorem 3.1.3 can possibly hold for Golyshev’s V10 and V14 examples.

While we could broaden the search to all local systems with more than one maximally

unipotent monodromy point, those having an involution (or some other automorphism)

represent our best chance for constructing cycles. Though it is required to apply a couple

of the tools of[14] as written, the h2
tr(Xt) = 3 assumption is perhaps less essential; if we

drop this, there are many other LG local systems with “potential involutivity”. Inspecting

data from [7], we see that the period sequences 35, 49, 52, 53, 55, 59, 60, 62, 97 and 151 have

monodromies that suggest the presence of an involution. This is something we will investigate

in future works.

Finally, we omitted one case with h2
tr(Xt) = 3 ad an involution, namely B4 (cf. [7]). This

is because there is a second involution, namely t 7→ −t, wich probably rules out a meaninful

Apéry constant (as |t1| = |t2|).
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Chapter 4

Elliptic surfaces with exceptional monodromy

There have been several constructions of family of varieties with exceptional monodromy

group [13],[36]. In most cases, these constructions give Hodge structures with high weight(Hodge

numbers spread out). Nicholas Katz was the first to obtain Hodge structures with low

weight(Hodge numbers equal to (2, 3, 2)) and geometric monodromy group G2. In this chap-

ter I will describe Katz’s construction and prove explicitly that the geometric monodromy

group of one of the family he constructed is G2.

4.1 Katz family of elliptic surfaces

In [26], Nicholas Katz studies the appearance of G2 as the monodromy group of a family

of elliptic surfaces. Katz describes 4 families, 3 of which have G2 as geometric monodromy

group. For the sake of simplicity, I will work with one of the 3 families, but the exact same

approach applies to the remaining two in which G2 occurs. We start off, by constructing the

family of surfaces mentioned above.

Let E → P1 : y2 = x(x − 1)(x − z2) be a rational elliptic surface with singular fibers at

z = −1, 0, 1,∞. For t 6= 0,± 2
3
√

3
,∞, take a base change by:

Et → P1 : w2 = tz(z − 1)(z + 1) + t2 (4.1.1)

The result is a family of elliptic surfaces Xt → Et with 7 singular fibers on each surface, as
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described below:
X ←↩ Xt

↓ π ↓ πt

E ←↩ Et

↓ ↓

P1 ←↩ {t}

(4.1.2)

Proposition 4.1.1. For each Xt we have dim(H2
tr(Xt)) ≤ 7.

Proof. Set X := Xt, E := Et, π := X → E. We have that X has 4 singular fibers of type

I2, 2 of type I4 and one of type I8. Each fiber In contributes n
12

to the degree of the Hodge

bundle. Therefore, π∗Ω1
X/E has degree 2,i.e π∗Ω1

X/E = O(p+ q). Now:

Ω2
X
∼= π∗π∗Ω

1
X/E ⊗ π∗Ω1

E
∼= π∗Ω1

E(p+ q)

Which gives h2,0
X = 2, and a similar analysis gives h1,0

X = 1. Finally, Noether’s formula gives:

h1,1
X = 10− 8h1,0

X + 10h2,0
X −K

2
X = 22

We have 19 algebraic classes coming from the singular components of the singular fibers In,

hence the transcendental part is at most 26-19 = 7.

Remark 4.1.2. In fact, dim(H2
tr(Xt)) = 7 as we shall see.

We now describe a particular choice of 7-dimensional basis of 2-cycles that we will use

henceforward. First, consider the 1-cycles α, β, γ−1, γ0, γ1 over each Et, as described in figure

4.1. Denote by δ1, δ2 the basis for the local system over each point of Et, with δ1· δ2 = 1.

Let’s see how they behave under the action of the monodromy, but first we analyze the

situation over P1(with z2-coordinate) before the double cover, i.e on y2 = x(x − 1)(x − z),

so that we can predict how the cycles change after the double cover.
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Figure 4.1: 1-cycles over the Base Et

The degeneration in this case is a nodal degeneration on 0, 1, the monodromy matrices

are then given by the Picard-Lefschetz formula:

T0 = ( 1 2
0 1 )

T1 = ( 1 0
−2 1 )

(4.1.3)

Now consider the P1 which has z coordinate. In order to make it simply connected, we draw

some cuts over it. If we go through paths around −1, 0, 1, as described in figure 4.2, we can

look at the image of those cycles under the double cover and see what the monodromy is.

For example, as go around -1 on the z-plane, the image goes to once around zero, then once

around one and one more time around zero again on the z2-plane, hence we can deduce that

the local monodromy around −1 is T0 ∗ T1 ∗ T−1
0 . Applying the same reasoning to 0 and 1,

we get the resulting monodromies:

˜T−1 =
( −3 8
−2 5

)
T̃0 = ( 1 4

0 1 )

T̃1 = ( 1 0
−2 1 )

(4.1.4)
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Figure 4.2: Cycles enclosing -1,0 and 1 in P1 minus the cuts.

The vanishing cycle at each singular point is then:

• 2δ1 + δ2 at -1

• δ1 at 0

• δ2 at 1

Set η1 = δ2 and η2 = 2δ1 + δ2, so η1· η2 = −2 and the vanishing cycle at 0 is precisely

1
2
(η1 + η2). We use henceforward the notation a× b to denote the 2-cycle on Xt obtained by

taking the 1-cycle a on a fiber of πt and continuing it along the 1-cycle b on Et.
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4.2 Construction of the 2-cycles

Now that our notation is established we proceed with the definition of a 7-dimensional

subspace of H2
tr(Xt):

A1 = η1 × α C−1 = η2 × γ−1

A2 = η2 × α C0 =
1

2
(η1 + η2)× γ0

B1 = η1 × β C1 = η1 × γ1

B2 = η2 × β

(4.2.1)

Note that, A1, A2, B1, B2 are trivially transcendental, the same is not true for the Ci. The

reason is that the Ci may–in fact they do–contain algebraic cycles resulting from classes of

singular fibers. To overcome this, we have to “add" enough cycles in order to make all Ci

transcendental.

Let’s take a closer look at the C−1, for example. As we can see from figure 4.3, we can

pick a cycle equivalent to C−1 but with minimal intersection, in other words:

C−1·D− = −1

C−1·D+ = 1

C−1·E− = −1

C−1·E+ = 1

(4.2.2)

Now, let’s try to eliminate the intersections of C−1 with algebraic classes. Start by setting:

C̃−1 := C−1 + aD− + bD+ + cE− + dE+ (4.2.3)

If σ is the class of the zero section, then the transcendental condition reduces to the following
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Figure 4.3: The 2-cycle C−1

system of linear equations:

C̃−1·D− = 0

C̃−1·D+ = 0

C̃−1·σ = 0

C̃−1·E− = 0

C̃−1·E+ = 0

(4.2.4)

Without loss of generality we may assume a = c = 0. Solving the system we get that:

C̃−1 = C−1 +
1

2
D− +−1

2
E− (4.2.5)

By following the exact same reasoning, we deduce that:
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Figure 4.4: The 2-cycle C0

C̃1 = C1 +
1

2
G− +−1

2
H− (4.2.6)

where G− and H− are the components of the singular fibers of the endpoints.

Now we address C0, consider the figure 4.4. Following the idea above, we set:

C̃0 = C0 + aL1 + bL2 + cL3 − dF1 − eF2 − fF3 (4.2.7)
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We again solve the system of equations required for transcendency:

C̃0·L1 = 0

C̃0·L2 = 0

C̃0·L3 = 0

C̃0·F1 = 0

C̃0·F2 = 0

C̃0·F3 = 0

C̃0·σ = 0

(4.2.8)

The resulting cycle is:

C̃0 = C0 +
3

4
L1 +

1

2
L2 +

1

4
L3 −

3

4
F1 −

1

2
F2 −

1

4
F3 (4.2.9)

4.3 Computation of the monodromies

Denote by V the space generated by the transcendental cycles (A1, A2, B1, B2, C̃−1, C̃0, C̃1).

The intersection matrix is:

Q =



0 0 0 2 0 0 0

0 0 −2 0 0 0 0

0 −2 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 −1 1 2

0 0 0 0 1 −1/2 −1

0 0 0 0 −2 −1 −1
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Figure 4.5: The 1-cycles α, β, γ−1, γ0 and γ1 over the Elliptic curve Et

Notice that since det(Q) 6= 0, we have dim(V ) = 7. Since V ⊂ H2
tr(Xt), Proposition 4.1.1

implies that dimH2
tr(Xt) = 7.

With our transcendental basis (A1, A2, B1, B2, C̃−1, C̃0, C̃1) defined, we now compute the

monodromies matrices at the singular points t = −2
3
√

3
, 0, 2

3
√

3
,∞. For computational purposes,

we will work with figure 4.5 instead of figure 4.1. When t → ± 2
3
√

3
, we have a nodal

degeneration on the base curve Et. In figure 4.5, such degeneration can be described as

when the “x” of one cut merges itself with an “x” of the other cut.

It’s straightforward to conclude that in this case, the C̃i remain unchanged, while in the

other cases the cycles over the vanishing cycles remain unchanged.

Finally, the cycles that do change, do it so according to the Picard-Lefschetz formula since

the degeneration is nodal. In conclusion, we have the following monodromies for 2
3
√

3
, −2

3
√

3
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respectively:

M+ =



1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



M− =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

−1 0 1 0 0 0 0

0 −1 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



(4.3.1)

The situation when t→ 0 is much more subtle. If one looks at figure 4.5, the endpoints

of the cuts behave roughly as −1− t
2
, t and 1− t

2
, therefore when t go through a path around

0, the endpoints will certain move, but this time not in a nice way as they did in the case

above, they will instead make the γi cycles cross each other and also α and β. This is the

crucial point which results in G2 monodromy, as we shall verify.

Let’s start off by analyzing the resulting cycle α̃ of the monodromy action on α. If we

look at figure 4.6, we see not only α is no longer a vanishing cycle, but also that it crosses

the cuts trivializing the local system. What that means basically is that η1 and η2 might

change after monodromy; this is in fact the case, as we shall see.

Now, consider α̃ − α, as depicted in figure 4.7. Note that the vanishing cycle at 1 is
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Figure 4.6: α̃, the resulting cycle after monodromy

Figure 4.7: α̃ + α

η2, hence any cycle which is the continuation of η2 won’t have monodromy around 1, so we

can simplify α̃ − α to encircle only 0, and vice-versa. Using the expression for the local

monodromies 4.1.4, we can compute the resulting 2-cycles for the ones that are over α, i.e

A1, A2. Denote by M0 the monodromy at 0, then:

M0(A1) = A1 − 2A2 + 2B1 − 2B2 − 4C̃0

M0(A2) = 2A1 − 3A2 + 6B1 − 2B2 − 4C̃0 − 4C̃1

(4.3.2)
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Figure 4.8: γ̃0, the resulting cycle after monodromy

Similarly, we can follow exact the same procedure for β. We get:

M0(B1) = −2A1 + 6A2 − 3B1 + 2B2 − 4C̃−1 + 4C̃0

M0(B2) = −2A1 + 2A2 − 2B1 +B2 + 4C̃0

(4.3.3)

Now, as figure 4.8 suggest, the case for each γi is more subtle. Contrary to the α, β

cases, the 2-cyle C̃0, for example, is formed by continuing a 1-cycle that involves both η1, η2,

therefore we can’t ignore any of the points −1, 0, 1 in computing the monodromy. The result

is the following:

M0(C̃0) = −A1 + 3A2 − 3B1 +B2 − 2C̃−1 + C̃0 + 2C̃1 (4.3.4)

Following the same procedure again for the remaining cycles, we get:

M0(C̃−1) = 2A1 − 4A2 + 6B1 − 2B2 + C̃−1 − 4C̃0 − 4C̃1

M0(C̃1) = −2A1 + 6A2 − 4B1 + 2B2 − 4C̃−1 + 4C̃0 + C̃1

(4.3.5)
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Now we can write our full monodromy M0:

M0 =



1 2 −2 −2 2 −1 −2

−2 −3 6 2 −4 3 6

2 6 −3 −2 6 −3 −4

−2 −2 2 1 −2 1 2

0 0 −4 0 1 −2 −4

−4 −4 4 4 −4 1 4

0 −4 0 0 −4 2 1



(4.3.6)

Since we can rearrange the loops around −1, 0, 1,∞ so that their product is the identity,

we naturally get the expression for M∞ as the inverse of the prodcut M−·M0·M+, leading

to:

M∞ =



0 −4 1 0 −4 2 2

4 0 4 1 −2 2 4

−1 4 −3 −2 6 −3 −4

0 −1 2 1 −2 1 2

−4 0 −4 0 1 −2 −4

0 0 4 4 −4 1 4

0 −4 0 0 −4 2 1



(4.3.7)

4.4 The period mapping for the Katz family

Recall that by the Monodromy theorem 1.3.3, all the monodromies are quasi-unipotent.

Hence, all of them have a well-defined logarithm, which we will denote by Ni := log(Mi),

see chapter 1 for a brief review of this topic.
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A quick computation shows thatM0 is in fact semi-simple, so the unipotent part (M0)un is

the identity and hence N0 = 0. The remaining monodromies do have non trivial logarithms:

M+,M− are actually unipotent andM∞ is the only non-unipotent. We can easily check that

M3
∞ is unipotent though.

IfM∞ = Ms·Mu is the Jordan-Chevalley decomposition and I is the 7x7 identity matrix,

then:

N+ = M+ − I

N− = M− − I

N∞ := log(Mu) =
1

3
log(M3

∞)

(4.4.1)

We have the following result concerning the monodromy group of the family Xt:

Theorem 4.4.1. The log-monodromies N+, N−, N∞ generate g2.

Proof. Consider the elements:

Y1 = [N−, N+] Y8 = [Y5, Y6]

Y2 = [N−, N∞] Y9 = [N∞, Y5]

Y3 = [N+, N∞] Y10 = [N∞, Y9]

Y4 = [Y1, Y2] Y11 = [N∞, Y10]

Y5 = [Y1, Y3] Y12 = [N+, Y11]

Y6 = [Y2, Y3] Y13 = [N∞, Y12]

Y7 = [Y2, Y6] Y14 = [N−, Y13]

(4.4.2)

A quick computation leads us to:

Lemma 4.4.2. The elements N−, N+, Y1, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12, Y13, Y14 are lin-

early independent over Q.
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Figure 4.9: Roots of g2

Now define t1 := Y1 and t2 := [Y4, Y5], a direct computation gives us that [t1, t2] = 0,

moreover they both are diagonalizable. Let ad(.) denotes the adjoint representation, if we

act through ad(ti), i = 1, 2, on g, we get 14 linearly independent (in both cases) eigenvectors

with 1-dimensional eigenspaces, moreover we have:

• 1 with eigenvalue -2

• 4 with eigenvalue -1

• 4 with eigenvalue 0

• 4 with eigenvalue 1

• 1 with eigenvalue 2

Which are in 1-1 correspondence with the roots of g2(see figure 4.9), therefore h := 〈t1, t2〉

is a Cartan subalgebra and g = g2.

This gives us the immediate corollary:
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Corollary 4.4.3. The geometric monodromy group for the Katz familly is G2.

Henceforward, we denote by Γ ⊂ G2 the discrete subgroup generated by the monodromies

M−,M0,M+,M∞.

4.4.1 On the generic global Torelli theorem

The generic Torelli theorem for the family Xt follows easily if the VHS determined by the

latter satisfies the following proposition:

Proposition 4.4.4 ([30]). Let V → B \ {p1, . . . , pn} be a variation of Hodge structures over

a complete curve B, with associated period map φ : B → Γ \D. If there is a point pi such

that the monodromy Mpi is of infinite order and satisfies:

1. Mpi is not a power of an element in Γ.

2. The limiting mixed Hodge structure at pi is not of the same type from the one in

pk, k 6= i.

Then the map φ is injective off a finite set.

Proof. Consider the variation of Hodge structure V � V∗ → B × B, given by the exterior

tensor product of V with V∗. It has fiber HomZ(VZ,b, VZ,b′) over the point (b, b′). Let ∆B

denote the diagonal of B × B, by definition ( see chapter 1) we have that the Hodge locus

B(idV ) ⊃ ∆B.

Now suppose φ is not injective off a finite set. Then there is a sequence sn = (an, bn) ∈

B(idV )\∆B, with distinct ai, bi. Since B(idV ) is algebraic [5], we either have B(idV ) = B×B

or B(idV ) contains a 1 dimensional component C distinct from ∆B.

If the former holds, then V is isotrivial and the limit mixed Hodge structures are the

same (up to Γ-action), which contradicts our hypothesis of different LMHS.
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If the latter holds, then B(idV ) contains a point of the form (pi, q). Also:

γ(0idV ) ∈ F 0
lim,(pi,q)

∩W (pi,q)
0 ∩ End(VZ) = HomMHS((V, F •lim,pi ,W

pi
• ), (V, F •lim,q,W

q
• ))

Therefore, γ gives an isomorphism between the LMHS at pi and q. By hypothesis, we can’t

have q = pj for some j 6= i; moreover if q ∈ C, then W q
• is trivial, but since Mpi is of infinite

order, W pi
• = W (log(Mpi)) is not, a contradiction.

Lastly, if q = pi and U is a neighborhood of pi, we have that φ is of degree d > 1 on

U \ pi, hence is locally of the form:

∆∗ ∼= U \ pi → ∆∗
ι−→ Γ \D

z −−−−−−−−→ zd
(4.4.3)

set S := ι∗(generator of π1(∆∗)), then Mi = Sd, a contradiction.

Remark 4.4.5. The argument in the proof above is still valid when we have LMHS of same

type but not isomorphic.

Now in order to prove the generic global Torelli for the family Xt, all we have to do is to

prove that M−,M0,M+,M∞ satisfy the hypothesis in the proposition above. The relevant

LMHS are described in figure 4.10.

As we can see from figure 4.10, the LMHS at t =∞ can not be isomorphic to the ones at

t−, t+. Moreover, M∞ is of infinity order, hence the Torelli theorem in this case boils down

to:

Conjecture 4.4.6. The monodromies M−,M+,M0 and M∞ lie inside a copy of G2(Z).

Moreover, if we denote by Γ ⊂ G2(Z) the subgroup generated by them, then there is no

S ∈ Γ such that M∞ = Sk for some k ≥ 2.

However, if we denote by Mss, the semisimple part of M∞, then we have that M∞ =
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Figure 4.10: LMHS at ∞ and t−, t+ respectively. A bullet represent the dimension of the
(p, q)-component of the Hodge structure on the Graded pieces.

(e
1
2
NM−1

ss )2, which disproves the conjecture if e
1
2
NM−1

ss ∈ Γ. We do expect the following

result to be true:

Conjecture 4.4.7. There is an automorphism φ of the Katz family Xt such that φ satisfies

π ◦ φ = ι ◦ π, where ι is the involution ι : t→ −t. Moreover, the generic global Torelli holds

for the family X̃u, where u = t2, and X̃u obtained by the quotient of Xt by φ.
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